-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhyperbolic_vae.py
109 lines (89 loc) · 3.67 KB
/
hyperbolic_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from typing import Union
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.layers import Layer
from tensorflow_probability.python.distributions import (PowerSpherical,
SphericalUniform,
VonMisesFisher)
from tensorflow_probability.python.layers import DistributionLambda
from typing_extensions import Literal
from odin.backend.interpolation import Interpolation, linear
from odin.bay.layers.dense_distribution import DistributionDense
from odin.bay.random_variable import RVconf
from odin.bay.vi.autoencoder.beta_vae import BetaVAE
__all__ = ['HypersphericalVAE', 'PowersphericalVAE']
class _von_mises_fisher:
def __init__(self, event_size):
self.event_size = int(event_size)
def __call__(self, x):
# use softplus1 for concentration to prevent collapse and instability with
# small concentration
# note in the paper:
# z_var = tf.layers.dense(h1, units=1, activation=tf.nn.softplus) + 1
return VonMisesFisher(
mean_direction=tf.math.l2_normalize(x[..., :self.event_size], axis=-1),
concentration=tf.nn.softplus(x[..., -1]),
)
class _power_spherical:
def __init__(self, event_size):
self.event_size = int(event_size)
def __call__(self, x):
return PowerSpherical(
mean_direction=tf.math.l2_normalize(x[..., :self.event_size], axis=-1),
concentration=tf.nn.softplus(x[..., -1]),
)
class HypersphericalVAE(BetaVAE):
"""Hyper-spherical VAE
References
-----------
Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T. & Tomczak, J. M.
Hyperspherical Variational Auto-Encoders. arXiv:1804.00891 [cs, stat] (2018).
Davidson, T. R., Tomczak, J. M. & Gavves, E. Increasing Expressivity
of a Hyperspherical VAE.
Xu, J. & Durrett, G. Spherical Latent Spaces for Stable Variational
Autoencoders. arXiv:1808.10805 [cs] (2018).
De Cao, N. & Aziz, W. The Power Spherical distribution.
arXiv:2006.04437 [cs, stat] (2020).
"""
def __init__(
self,
latents: Union[RVconf, Layer] = RVconf(64, name="latents"),
distribution: Literal[
'powerspherical', 'vonmisesfisher'] = 'vonmisesfisher',
prior: Union[
None, SphericalUniform, VonMisesFisher, PowerSpherical] = None,
beta: Union[float, Interpolation] = linear(vmin=1e-6,
vmax=1.,
steps=2000,
delay_in=0),
**kwargs):
event_shape = latents.event_shape
event_size = int(np.prod(event_shape))
distribution = str(distribution).lower()
assert distribution in ('powerspherical', 'vonmisesfisher'), \
('Support PowerSpherical or VonMisesFisher distribution, '
f'but given: {distribution}')
if distribution == 'powerspherical':
fn_distribution = _power_spherical(event_size)
default_prior = SphericalUniform(dimension=event_size)
else:
fn_distribution = _von_mises_fisher(event_size)
default_prior = VonMisesFisher(0, 10)
if prior is None:
prior = default_prior
latents = DistributionDense(
event_shape,
posterior=DistributionLambda(make_distribution_fn=fn_distribution),
prior=prior,
units=event_size + 1,
name=latents.name)
super().__init__(latents=latents,
analytic=True,
beta=beta,
**kwargs)
class PowersphericalVAE(HypersphericalVAE):
def __init__(self, **kwargs):
kwargs.pop('distribution')
super().__init__(distribution='powerspherical', **kwargs)
class poincareVAE(BetaVAE):
...