forked from nipy/nipype
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresampling.py
618 lines (553 loc) · 22.5 KB
/
resampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
"""ANTS Apply Transforms interface
"""
import os
from .base import ANTSCommand, ANTSCommandInputSpec
from ..base import TraitedSpec, File, traits, isdefined, InputMultiObject
from ...utils.filemanip import split_filename
class WarpTimeSeriesImageMultiTransformInputSpec(ANTSCommandInputSpec):
dimension = traits.Enum(
4, 3, argstr="%d", usedefault=True, desc="image dimension (3 or 4)", position=1
)
input_image = File(
argstr="%s",
mandatory=True,
copyfile=True,
desc=("image to apply transformation to (generally a coregistered functional)"),
)
out_postfix = traits.Str(
"_wtsimt",
argstr="%s",
usedefault=True,
desc=("Postfix that is prepended to all output files (default = _wtsimt)"),
)
reference_image = File(
argstr="-R %s",
xor=["tightest_box"],
desc="reference image space that you wish to warp INTO",
)
tightest_box = traits.Bool(
argstr="--tightest-bounding-box",
desc=(
"computes tightest bounding box (overridden by reference_image if given)"
),
xor=["reference_image"],
)
reslice_by_header = traits.Bool(
argstr="--reslice-by-header",
desc=(
"Uses orientation matrix and origin encoded in "
"reference image file header. Not typically used "
"with additional transforms"
),
)
use_nearest = traits.Bool(
argstr="--use-NN", desc="Use nearest neighbor interpolation"
)
use_bspline = traits.Bool(
argstr="--use-Bspline", desc="Use 3rd order B-Spline interpolation"
)
transformation_series = InputMultiObject(
File(exists=True),
argstr="%s",
desc="transformation file(s) to be applied",
mandatory=True,
copyfile=False,
)
invert_affine = traits.List(
traits.Int,
desc=(
"List of Affine transformations to invert."
"E.g.: [1,4,5] inverts the 1st, 4th, and 5th Affines "
"found in transformation_series. Note that indexing "
"starts with 1 and does not include warp fields. Affine "
"transformations are distinguished "
'from warp fields by the word "affine" included in their filenames.'
),
)
class WarpTimeSeriesImageMultiTransformOutputSpec(TraitedSpec):
output_image = File(exists=True, desc="Warped image")
class WarpTimeSeriesImageMultiTransform(ANTSCommand):
"""Warps a time-series from one space to another
Examples
--------
>>> from nipype.interfaces.ants import WarpTimeSeriesImageMultiTransform
>>> wtsimt = WarpTimeSeriesImageMultiTransform()
>>> wtsimt.inputs.input_image = 'resting.nii'
>>> wtsimt.inputs.reference_image = 'ants_deformed.nii.gz'
>>> wtsimt.inputs.transformation_series = ['ants_Warp.nii.gz','ants_Affine.txt']
>>> wtsimt.cmdline
'WarpTimeSeriesImageMultiTransform 4 resting.nii resting_wtsimt.nii -R ants_deformed.nii.gz ants_Warp.nii.gz \
ants_Affine.txt'
>>> wtsimt = WarpTimeSeriesImageMultiTransform()
>>> wtsimt.inputs.input_image = 'resting.nii'
>>> wtsimt.inputs.reference_image = 'ants_deformed.nii.gz'
>>> wtsimt.inputs.transformation_series = ['ants_Warp.nii.gz','ants_Affine.txt']
>>> wtsimt.inputs.invert_affine = [1] # # this will invert the 1st Affine file: ants_Affine.txt
>>> wtsimt.cmdline
'WarpTimeSeriesImageMultiTransform 4 resting.nii resting_wtsimt.nii -R ants_deformed.nii.gz ants_Warp.nii.gz \
-i ants_Affine.txt'
"""
_cmd = "WarpTimeSeriesImageMultiTransform"
input_spec = WarpTimeSeriesImageMultiTransformInputSpec
output_spec = WarpTimeSeriesImageMultiTransformOutputSpec
def _format_arg(self, opt, spec, val):
if opt == "out_postfix":
_, name, ext = split_filename(os.path.abspath(self.inputs.input_image))
return name + val + ext
if opt == "transformation_series":
series = []
affine_counter = 0
affine_invert = []
for transformation in val:
if "Affine" in transformation and isdefined(self.inputs.invert_affine):
affine_counter += 1
if affine_counter in self.inputs.invert_affine:
series += ["-i"]
affine_invert.append(affine_counter)
series += [transformation]
if isdefined(self.inputs.invert_affine):
diff_inv = set(self.inputs.invert_affine) - set(affine_invert)
if diff_inv:
raise Exceptions(
"Review invert_affine, not all indexes from invert_affine were used, "
"check the description for the full definition"
)
return " ".join(series)
return super()._format_arg(opt, spec, val)
def _list_outputs(self):
outputs = self._outputs().get()
_, name, ext = split_filename(os.path.abspath(self.inputs.input_image))
outputs["output_image"] = os.path.join(
os.getcwd(), "".join((name, self.inputs.out_postfix, ext))
)
return outputs
def _run_interface(self, runtime, correct_return_codes=[0]):
runtime = super()._run_interface(runtime, correct_return_codes=[0, 1])
if "100 % complete" not in runtime.stdout:
self.raise_exception(runtime)
return runtime
class WarpImageMultiTransformInputSpec(ANTSCommandInputSpec):
dimension = traits.Enum(
3, 2, argstr="%d", usedefault=True, desc="image dimension (2 or 3)", position=1
)
input_image = File(
argstr="%s",
mandatory=True,
desc=("image to apply transformation to (generally a coregistered functional)"),
position=2,
)
output_image = File(
genfile=True,
hash_files=False,
argstr="%s",
desc="name of the output warped image",
position=3,
xor=["out_postfix"],
)
out_postfix = File(
"_wimt",
usedefault=True,
hash_files=False,
desc=("Postfix that is prepended to all output files (default = _wimt)"),
xor=["output_image"],
)
reference_image = File(
argstr="-R %s",
xor=["tightest_box"],
desc="reference image space that you wish to warp INTO",
)
tightest_box = traits.Bool(
argstr="--tightest-bounding-box",
desc=(
"computes tightest bounding box (overridden by reference_image if given)"
),
xor=["reference_image"],
)
reslice_by_header = traits.Bool(
argstr="--reslice-by-header",
desc=(
"Uses orientation matrix and origin encoded in "
"reference image file header. Not typically used "
"with additional transforms"
),
)
use_nearest = traits.Bool(
argstr="--use-NN", desc="Use nearest neighbor interpolation"
)
use_bspline = traits.Bool(
argstr="--use-BSpline", desc="Use 3rd order B-Spline interpolation"
)
transformation_series = InputMultiObject(
File(exists=True),
argstr="%s",
desc="transformation file(s) to be applied",
mandatory=True,
position=-1,
)
invert_affine = traits.List(
traits.Int,
desc=(
"List of Affine transformations to invert."
"E.g.: [1,4,5] inverts the 1st, 4th, and 5th Affines "
"found in transformation_series. Note that indexing "
"starts with 1 and does not include warp fields. Affine "
"transformations are distinguished "
'from warp fields by the word "affine" included in their filenames.'
),
)
class WarpImageMultiTransformOutputSpec(TraitedSpec):
output_image = File(exists=True, desc="Warped image")
class WarpImageMultiTransform(ANTSCommand):
"""Warps an image from one space to another
Examples
--------
>>> from nipype.interfaces.ants import WarpImageMultiTransform
>>> wimt = WarpImageMultiTransform()
>>> wimt.inputs.input_image = 'structural.nii'
>>> wimt.inputs.reference_image = 'ants_deformed.nii.gz'
>>> wimt.inputs.transformation_series = ['ants_Warp.nii.gz','ants_Affine.txt']
>>> wimt.cmdline
'WarpImageMultiTransform 3 structural.nii structural_wimt.nii -R ants_deformed.nii.gz ants_Warp.nii.gz \
ants_Affine.txt'
>>> wimt = WarpImageMultiTransform()
>>> wimt.inputs.input_image = 'diffusion_weighted.nii'
>>> wimt.inputs.reference_image = 'functional.nii'
>>> wimt.inputs.transformation_series = ['func2anat_coreg_Affine.txt','func2anat_InverseWarp.nii.gz', \
'dwi2anat_Warp.nii.gz','dwi2anat_coreg_Affine.txt']
>>> wimt.inputs.invert_affine = [1] # this will invert the 1st Affine file: 'func2anat_coreg_Affine.txt'
>>> wimt.cmdline
'WarpImageMultiTransform 3 diffusion_weighted.nii diffusion_weighted_wimt.nii -R functional.nii \
-i func2anat_coreg_Affine.txt func2anat_InverseWarp.nii.gz dwi2anat_Warp.nii.gz dwi2anat_coreg_Affine.txt'
"""
_cmd = "WarpImageMultiTransform"
input_spec = WarpImageMultiTransformInputSpec
output_spec = WarpImageMultiTransformOutputSpec
def _gen_filename(self, name):
if name == "output_image":
_, name, ext = split_filename(os.path.abspath(self.inputs.input_image))
return "".join((name, self.inputs.out_postfix, ext))
return None
def _format_arg(self, opt, spec, val):
if opt == "transformation_series":
series = []
affine_counter = 0
affine_invert = []
for transformation in val:
if "affine" in transformation.lower() and isdefined(
self.inputs.invert_affine
):
affine_counter += 1
if affine_counter in self.inputs.invert_affine:
series += ["-i"]
affine_invert.append(affine_counter)
series += [transformation]
if isdefined(self.inputs.invert_affine):
diff_inv = set(self.inputs.invert_affine) - set(affine_invert)
if diff_inv:
raise Exceptions(
"Review invert_affine, not all indexes from invert_affine were used, "
"check the description for the full definition"
)
return " ".join(series)
return super()._format_arg(opt, spec, val)
def _list_outputs(self):
outputs = self._outputs().get()
if isdefined(self.inputs.output_image):
outputs["output_image"] = os.path.abspath(self.inputs.output_image)
else:
outputs["output_image"] = os.path.abspath(
self._gen_filename("output_image")
)
return outputs
class ApplyTransformsInputSpec(ANTSCommandInputSpec):
dimension = traits.Enum(
2,
3,
4,
argstr="--dimensionality %d",
desc=(
"This option forces the image to be treated "
"as a specified-dimensional image. If not "
"specified, antsWarp tries to infer the "
"dimensionality from the input image."
),
)
input_image_type = traits.Enum(
0,
1,
2,
3,
argstr="--input-image-type %d",
desc=(
"Option specifying the input image "
"type of scalar (default), vector, "
"tensor, or time series."
),
)
input_image = File(
argstr="--input %s",
mandatory=True,
desc=("image to apply transformation to (generally a coregistered functional)"),
exists=True,
)
output_image = traits.Str(
argstr="--output %s", desc="output file name", genfile=True, hash_files=False
)
out_postfix = traits.Str(
"_trans",
usedefault=True,
desc=("Postfix that is appended to all output files (default = _trans)"),
)
reference_image = File(
argstr="--reference-image %s",
mandatory=True,
desc="reference image space that you wish to warp INTO",
exists=True,
)
interpolation = traits.Enum(
"Linear",
"NearestNeighbor",
"CosineWindowedSinc",
"WelchWindowedSinc",
"HammingWindowedSinc",
"LanczosWindowedSinc",
"MultiLabel",
"Gaussian",
"BSpline",
"GenericLabel",
argstr="%s",
usedefault=True,
)
interpolation_parameters = traits.Either(
traits.Tuple(traits.Int()), # BSpline (order)
traits.Tuple(
traits.Float(), traits.Float() # Gaussian/MultiLabel (sigma, alpha)
),
)
transforms = InputMultiObject(
traits.Either(File(exists=True), "identity"),
argstr="%s",
mandatory=True,
desc="transform files: will be applied in reverse order. For "
"example, the last specified transform will be applied first.",
)
invert_transform_flags = InputMultiObject(traits.Bool())
default_value = traits.Float(0.0, argstr="--default-value %g", usedefault=True)
print_out_composite_warp_file = traits.Bool(
False,
requires=["output_image"],
desc="output a composite warp file instead of a transformed image",
)
float = traits.Bool(
argstr="--float %d",
default_value=False,
usedefault=True,
desc="Use float instead of double for computations.",
)
class ApplyTransformsOutputSpec(TraitedSpec):
output_image = File(exists=True, desc="Warped image")
class ApplyTransforms(ANTSCommand):
"""ApplyTransforms, applied to an input image, transforms it according to a
reference image and a transform (or a set of transforms).
Examples
--------
>>> from nipype.interfaces.ants import ApplyTransforms
>>> at = ApplyTransforms()
>>> at.inputs.input_image = 'moving1.nii'
>>> at.inputs.reference_image = 'fixed1.nii'
>>> at.inputs.transforms = 'identity'
>>> at.cmdline
'antsApplyTransforms --default-value 0 --float 0 --input moving1.nii \
--interpolation Linear --output moving1_trans.nii \
--reference-image fixed1.nii --transform identity'
>>> at = ApplyTransforms()
>>> at.inputs.dimension = 3
>>> at.inputs.input_image = 'moving1.nii'
>>> at.inputs.reference_image = 'fixed1.nii'
>>> at.inputs.output_image = 'deformed_moving1.nii'
>>> at.inputs.interpolation = 'Linear'
>>> at.inputs.default_value = 0
>>> at.inputs.transforms = ['ants_Warp.nii.gz', 'trans.mat']
>>> at.inputs.invert_transform_flags = [False, True]
>>> at.cmdline
'antsApplyTransforms --default-value 0 --dimensionality 3 --float 0 --input moving1.nii \
--interpolation Linear --output deformed_moving1.nii --reference-image fixed1.nii \
--transform ants_Warp.nii.gz --transform [ trans.mat, 1 ]'
>>> at1 = ApplyTransforms()
>>> at1.inputs.dimension = 3
>>> at1.inputs.input_image = 'moving1.nii'
>>> at1.inputs.reference_image = 'fixed1.nii'
>>> at1.inputs.output_image = 'deformed_moving1.nii'
>>> at1.inputs.interpolation = 'BSpline'
>>> at1.inputs.interpolation_parameters = (5,)
>>> at1.inputs.default_value = 0
>>> at1.inputs.transforms = ['ants_Warp.nii.gz', 'trans.mat']
>>> at1.inputs.invert_transform_flags = [False, False]
>>> at1.cmdline
'antsApplyTransforms --default-value 0 --dimensionality 3 --float 0 --input moving1.nii \
--interpolation BSpline[ 5 ] --output deformed_moving1.nii --reference-image fixed1.nii \
--transform ants_Warp.nii.gz --transform trans.mat'
Identity transforms may be used as part of a chain:
>>> at2 = ApplyTransforms()
>>> at2.inputs.dimension = 3
>>> at2.inputs.input_image = 'moving1.nii'
>>> at2.inputs.reference_image = 'fixed1.nii'
>>> at2.inputs.output_image = 'deformed_moving1.nii'
>>> at2.inputs.interpolation = 'BSpline'
>>> at2.inputs.interpolation_parameters = (5,)
>>> at2.inputs.default_value = 0
>>> at2.inputs.transforms = ['identity', 'ants_Warp.nii.gz', 'trans.mat']
>>> at2.cmdline
'antsApplyTransforms --default-value 0 --dimensionality 3 --float 0 --input moving1.nii \
--interpolation BSpline[ 5 ] --output deformed_moving1.nii --reference-image fixed1.nii \
--transform identity --transform ants_Warp.nii.gz --transform trans.mat'
"""
_cmd = "antsApplyTransforms"
input_spec = ApplyTransformsInputSpec
output_spec = ApplyTransformsOutputSpec
def _gen_filename(self, name):
if name == "output_image":
output = self.inputs.output_image
if not isdefined(output):
_, name, ext = split_filename(self.inputs.input_image)
output = name + self.inputs.out_postfix + ext
return output
return None
def _get_transform_filenames(self):
retval = []
invert_flags = self.inputs.invert_transform_flags
if not isdefined(invert_flags):
invert_flags = [False] * len(self.inputs.transforms)
elif len(self.inputs.transforms) != len(invert_flags):
raise ValueError(
"ERROR: The invert_transform_flags list must have the same number "
"of entries as the transforms list."
)
for transform, invert in zip(self.inputs.transforms, invert_flags):
if invert:
retval.append(f"--transform [ {transform}, 1 ]")
else:
retval.append(f"--transform {transform}")
return " ".join(retval)
def _get_output_warped_filename(self):
if isdefined(self.inputs.print_out_composite_warp_file):
return "--output [ %s, %d ]" % (
self._gen_filename("output_image"),
int(self.inputs.print_out_composite_warp_file),
)
else:
return "--output %s" % (self._gen_filename("output_image"))
def _format_arg(self, opt, spec, val):
if opt == "output_image":
return self._get_output_warped_filename()
elif opt == "transforms":
return self._get_transform_filenames()
elif opt == "interpolation":
if self.inputs.interpolation in [
"BSpline",
"MultiLabel",
"Gaussian",
"GenericLabel",
] and isdefined(self.inputs.interpolation_parameters):
return "--interpolation {}[ {} ]".format(
self.inputs.interpolation,
", ".join(
[str(param) for param in self.inputs.interpolation_parameters]
),
)
else:
return "--interpolation %s" % self.inputs.interpolation
return super()._format_arg(opt, spec, val)
def _list_outputs(self):
outputs = self._outputs().get()
outputs["output_image"] = os.path.abspath(self._gen_filename("output_image"))
return outputs
class ApplyTransformsToPointsInputSpec(ANTSCommandInputSpec):
dimension = traits.Enum(
2,
3,
4,
argstr="--dimensionality %d",
desc=(
"This option forces the image to be treated "
"as a specified-dimensional image. If not "
"specified, antsWarp tries to infer the "
"dimensionality from the input image."
),
)
input_file = File(
argstr="--input %s",
mandatory=True,
desc=(
"Currently, the only input supported is a csv file with"
" columns including x,y (2D), x,y,z (3D) or x,y,z,t,label (4D) column headers."
" The points should be defined in physical space."
" If in doubt how to convert coordinates from your files to the space"
" required by antsApplyTransformsToPoints try creating/drawing a simple"
" label volume with only one voxel set to 1 and all others set to 0."
" Write down the voxel coordinates. Then use ImageMaths LabelStats to find"
" out what coordinates for this voxel antsApplyTransformsToPoints is"
" expecting."
),
exists=True,
)
output_file = traits.Str(
argstr="--output %s",
desc="Name of the output CSV file",
name_source=["input_file"],
hash_files=False,
name_template="%s_transformed.csv",
)
transforms = traits.List(
File(exists=True),
argstr="%s",
mandatory=True,
desc="transforms that will be applied to the points",
)
invert_transform_flags = traits.List(
traits.Bool(), desc="list indicating if a transform should be reversed"
)
class ApplyTransformsToPointsOutputSpec(TraitedSpec):
output_file = File(exists=True, desc="csv file with transformed coordinates")
class ApplyTransformsToPoints(ANTSCommand):
"""ApplyTransformsToPoints, applied to an CSV file, transforms coordinates
using provided transform (or a set of transforms).
Examples
--------
>>> from nipype.interfaces.ants import ApplyTransforms
>>> at = ApplyTransformsToPoints()
>>> at.inputs.dimension = 3
>>> at.inputs.input_file = 'moving.csv'
>>> at.inputs.transforms = ['trans.mat', 'ants_Warp.nii.gz']
>>> at.inputs.invert_transform_flags = [False, False]
>>> at.cmdline
'antsApplyTransformsToPoints --dimensionality 3 --input moving.csv --output moving_transformed.csv \
--transform [ trans.mat, 0 ] --transform [ ants_Warp.nii.gz, 0 ]'
"""
_cmd = "antsApplyTransformsToPoints"
input_spec = ApplyTransformsToPointsInputSpec
output_spec = ApplyTransformsToPointsOutputSpec
def _get_transform_filenames(self):
retval = []
for ii in range(len(self.inputs.transforms)):
if isdefined(self.inputs.invert_transform_flags):
if len(self.inputs.transforms) == len(
self.inputs.invert_transform_flags
):
invert_code = 1 if self.inputs.invert_transform_flags[ii] else 0
retval.append(
"--transform [ %s, %d ]"
% (self.inputs.transforms[ii], invert_code)
)
else:
raise Exception(
"ERROR: The useInverse list must have the same number "
"of entries as the transformsFileName list."
)
else:
retval.append("--transform %s" % self.inputs.transforms[ii])
return " ".join(retval)
def _format_arg(self, opt, spec, val):
if opt == "transforms":
return self._get_transform_filenames()
return super()._format_arg(opt, spec, val)