-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
390 lines (299 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import torch
import logging
import dgl
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import DGLDataset
from anonygraph.evaluation.classification.data_loader import DummyGraph, AnonyGraph
from anonygraph.evaluation.classification.rgcn_model import RGCN
from anonygraph.evaluation.classification.trainer import train
import anonygraph.utils.path as putils
import anonygraph.utils.runner as rutils
import anonygraph.utils.visualization as vutils
import warnings
import json
import os
import itertools
logger = logging.getLogger(__name__)
warnings.filterwarnings(action='ignore', category=UserWarning)
def add_arguments(parser):
# rutils.add_data_argument(parser)
# rutils.add_sequence_data_argument(parser)
rutils.add_graph_generalization_argument(parser)
parser.add_argument('--d_list', type=rutils.string2list(int))
parser.add_argument('--k_list', type=rutils.string2list(int))
parser.add_argument('--w_list', type=rutils.string2list(int))
parser.add_argument('--max_dist_list', type=rutils.string2list(float))
parser.add_argument('--l_list', type=rutils.string2list(int))
parser.add_argument("--calgo_list", type=rutils.string2list(str))
parser.add_argument("--reset_w_list", type=rutils.string2list(int))
parser.add_argument("--update", type=rutils.str2bool)
parser.add_argument("--anony", type=rutils.str2bool, default="y")
# rutils.add_workers_argument(parser)
rutils.add_log_argument(parser)
# parser.add_argument("--refresh", type=rutils.str2bool)
def train_raw_data(t, d, args):
raw_subgraph_path = putils.get_raw_subgraph_path(
args["data"], args["sample"], args["strategy"], t, args
)
# key = putils.get_anonymized_subgraph_name(t, args["info_loss"], k, w, l, reset_w, calgo, enforcer, args["galgo"], args)
# path = putils.get_anonymized_subgraph_path("yago15", -1, "mean", 0, , "all", args)
logger.debug(raw_subgraph_path)
# return
graph = AnonyGraph()
graph.load(raw_subgraph_path)
if graph.graph is None:
return None
logger.debug(graph.graph)
logger.debug(graph.graph.ntypes)
logger.debug(graph.graph.etypes)
logger.debug(graph.graph.canonical_etypes)
logger.debug(graph.graph.nodes("user"))
# logger.debug(graph.value2value_idx)
# logger.debug(graph.label_id2idxes)
n_features = len(graph.value2value_idx)
n_labels = len(graph.label_id2idxes)
model = RGCN(n_features, d, n_labels, graph.graph.etypes)
# return
results = train(model, graph.graph, 10000, 10, 0.0001)
return results
def train_anonymized_data(t, k, w, l, reset_w, calgo, enforcer, args):
anony_subgraph_path = putils.get_anonymized_subgraph_path(
args["data"], args["sample"], args["strategy"], t,
args["info_loss"], k, w, l, reset_w, calgo, enforcer, args["galgo"], args["anony_mode"],
args
)
if not os.path.exists(anony_subgraph_path):
logger.debug("skip: graph do not exist")
return None
# key = putils.get_anonymized_subgraph_name(t, args["info_loss"], k, w, l, reset_w, calgo, enforcer, args["galgo"], args)
# path = putils.get_anonymized_subgraph_path("yago15", -1, "mean", 0, , "all", args)
logger.debug(anony_subgraph_path)
# return
graph = AnonyGraph()
graph.load(anony_subgraph_path)
if graph.graph is None:
logger.debug("skip: graph cannot be loaded")
return None
logger.debug(graph.graph)
logger.debug(graph.graph.ntypes)
logger.debug(graph.graph.etypes)
logger.debug(graph.graph.canonical_etypes)
# logger.debug(graph.graph.nodes("user"))
logger.debug(graph.value2value_idx)
# logger.debug(graph.label_id2idxes)
n_features = len(graph.value2value_idx)
logger.debug("n_features:{}".format(n_features))
n_labels = len(graph.label_id2idxes)
model = RGCN(n_features, 500, n_labels, graph.graph.etypes)
# return
results = train(model, graph.graph, 10000, 10, 0.0001)
return results
def convert_results_to_list(train_results):
results = []
for result in train_results:
results.append(result.tolist())
return results
def get_training_raw_data(data, d_list, args):
update = args["update"]
strategy_name = args["strategy"]
if strategy_name == "mean":
n_sg = args["n_sg"]
else:
n_sg = 1
for d in d_list:
model_data = data.get(str(d), None)
if model_data is None:
model_data = {}
data[d] = model_data
# raw data
# logger.debug(data.keys())
raw_data = model_data.get("raw", None)
# logger.debug(model_data.keys())
if raw_data is None:
raw_data = {}
model_data["raw"] = raw_data
for t in range(n_sg):
logger.info("raw_{}".format(t))
t_model_data = raw_data.get(str(t), None)
# logger.debug(raw_data.keys())
# # logger.debug(t_model_data)
# logger.debug(update)
# logger.debug(t_model_data is not None)
# logger.debug(not update)
if t_model_data is not None and not update:
continue
if t_model_data is None:
t_model_data = {}
# logger.debug(t)
results = train_raw_data(t, d, args)
if results is None:
continue
for metric_name, metric in results.items():
t_model_data[metric_name] = {
"best_results": convert_results_to_list(metric.best_result),
"all_results": convert_results_to_list(metric.all_results),
"epoches": metric.epoches,
}
raw_data[t] = t_model_data
vutils.write_training_data(data, args)
def get_training_raw_data2(d_list, args):
update = args["update"]
strategy_name = args["strategy"]
if strategy_name == "mean":
n_sg = args["n_sg"]
else:
n_sg = 1
for d in d_list:
for t in range(n_sg):
logger.info("raw_{}".format(t))
# check if file exist
path = putils.get_raw_graph_training_result_file_path(args["data"], strategy_name, d, t, args)
logger.debug(not os.path.exists(path))
logger.debug(not update)
if os.path.exists(path) and not update:
continue
t_model_data = {}
# logger.debug(t)
results = train_raw_data(t, d, args)
if results is None:
continue
for metric_name, metric in results.items():
t_model_data[metric_name] = {
"best_results": convert_results_to_list(metric.best_result),
"all_results": convert_results_to_list(metric.all_results),
"epoches": metric.epoches,
}
vutils.write_snapshot_training_data(path, t_model_data, args)
def get_training_anony_data2(d_list, args):
update = args["update"]
strategy_name = args["strategy"]
k_list = args["k_list"]
l_list = args["l_list"]
reset_w_list = args["reset_w_list"]
calgo_list = args["calgo_list"]
max_dist_list = args["max_dist_list"]
if strategy_name == "mean":
n_sg = args["n_sg"]
else:
n_sg = 1
for d in d_list:
for k, l,reset_w, calgo, max_dist in itertools.product(k_list,l_list,reset_w_list,calgo_list, max_dist_list):
current_args = args.copy()
current_args.update({
"k": k,
"l": l,
"reset_w": reset_w,
"calgo": calgo,
"max_dist": max_dist,
})
enforcer_str = putils.get_enforcer_str(current_args["enforcer"], current_args)
key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
for t in range(n_sg):
logger.info("{}_{}".format(key, t))
path = putils.get_anony_graph_training_result_file_path(args["data"], strategy_name, d, k,l,reset_w,calgo,enforcer_str, t, args)
logger.debug(os.path.exists(path))
logger.debug(not update)
if os.path.exists(path) and not update:
logger.debug("skip")
continue
t_model_data = {}
results = train_anonymized_data(t, k, -1, l, reset_w, calgo, current_args["enforcer"], current_args)
logger.debug("result: {}".format(results))
if results is None:
continue
for metric_name, metric in results.items():
t_model_data[metric_name] = {
"best_results": convert_results_to_list(metric.best_result),
"all_results": convert_results_to_list(metric.all_results),
"epoches": metric.epoches,
}
vutils.write_snapshot_training_data(path, t_model_data, args)
def get_training_anony_data(data, d_list, args):
update = args["update"]
strategy_name = args["strategy"]
k_list = args["k_list"]
l_list = args["l_list"]
reset_w_list = args["reset_w_list"]
calgo_list = args["calgo_list"]
max_dist_list = args["max_dist_list"]
if strategy_name == "mean":
n_sg = args["n_sg"]
else:
n_sg = 1
for d in d_list:
model_data = data.get(str(d), None)
if model_data is None:
model_data = {}
data[d] = model_data
for k, l,reset_w, calgo, max_dist in itertools.product(k_list,l_list,reset_w_list,calgo_list, max_dist_list):
current_args = args.copy()
current_args.update({
"k": k,
"l": l,
"reset_w": reset_w,
"calgo": calgo,
"max_dist": max_dist,
})
enforcer_str = putils.get_enforcer_str(current_args["enforcer"], current_args)
key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
anony_model_data = model_data.get(key, None)
if anony_model_data is None:
anony_model_data = {}
model_data[key] = anony_model_data
for t in range(n_sg):
logger.info("{}_{}".format(key, t))
t_model_data = anony_model_data.get(str(t), None)
# logger.debug(anony_model_data.keys())
# # logger.debug(t_model_data)
# logger.debug(update)
# logger.debug(t_model_data is not None)
# logger.debug(not update)
# logger.debug(t_model_data is not None and not update)
# raise Exception()
if t_model_data is not None and not update:
continue
if t_model_data is None:
t_model_data = {}
results = train_anonymized_data(t, k, -1, l, reset_w, calgo, current_args["enforcer"], current_args)
if results is None:
continue
for metric_name, metric in results.items():
t_model_data[metric_name] = {
"best_results": convert_results_to_list(metric.best_result),
"all_results": convert_results_to_list(metric.all_results),
"epoches": metric.epoches,
}
anony_model_data[t] = t_model_data
vutils.write_training_data(data, current_args)
def main(args):
# graph = DummyGraph()
data_name = args["data"]
strategy_name = args["strategy"]
# strategy_name = putils.get_strategy_name(args["strategy"], args)
# data = vutils.load_training_data(args)
d_list = args["d_list"]
k_list = args["k_list"]
l_list = args["l_list"]
reset_w_list = args["reset_w_list"]
calgo_list = args["calgo_list"]
max_dist_list = args["max_dist_list"]
if args["anony"]:
get_training_anony_data2(d_list, args)
else:
get_training_raw_data2(d_list, args)
def visualize(results):
for metric_name, metric in results.items():
plt.plot(metric.epoches, metric.all_results, label=metric_name)
plt.legend()
plt.savefig("test.pdf")
plt.savefig("test.png")
# plt.show()
if __name__ == "__main__":
args = rutils.setup_arguments(add_arguments)
rutils.setup_console_logging(args)
main(args)