|
| 1 | +PROBLEM: |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +Return the root node of a binary search tree that matches the given preorder traversal. |
| 6 | + |
| 7 | +(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, |
| 8 | +and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the |
| 9 | +node first, then traverses node.left, then traverses node.right.) |
| 10 | + |
| 11 | +It's guaranteed that for the given test cases there is always possible to find a binary search tree with the given requirements. |
| 12 | +
|
| 13 | +Example 1: |
| 14 | +
|
| 15 | +Input: [8,5,1,7,10,12] |
| 16 | +Output: [8,5,10,1,7,null,12] |
| 17 | +
|
| 18 | +
|
| 19 | +
|
| 20 | +
|
| 21 | +SOLUTION: |
| 22 | +
|
| 23 | +
|
| 24 | +
|
| 25 | +/** |
| 26 | + * Definition for a binary tree node. |
| 27 | + * struct TreeNode { |
| 28 | + * int val; |
| 29 | + * TreeNode *left; |
| 30 | + * TreeNode *right; |
| 31 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 32 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 33 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 34 | + * }; |
| 35 | + */ |
| 36 | +class Solution { |
| 37 | +public: |
| 38 | + TreeNode* bstFromPreorder(vector<int>& preorder) { |
| 39 | + int i=0; |
| 40 | + return bst(preorder,INT_MAX,i); |
| 41 | + |
| 42 | + } |
| 43 | + |
| 44 | + TreeNode* bst(vector<int>& preorder,int upper,int &i) |
| 45 | + { |
| 46 | + if(i==preorder.size() || preorder[i] > upper) |
| 47 | + return NULL; |
| 48 | + |
| 49 | + TreeNode* newnode = new TreeNode(preorder[i]); |
| 50 | + i++; |
| 51 | + newnode->left = bst(preorder,newnode->val,i); |
| 52 | + newnode->right = bst(preorder,upper,i); |
| 53 | + |
| 54 | + return newnode; |
| 55 | + } |
| 56 | +}; |
0 commit comments