-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_sf.py
executable file
·416 lines (366 loc) · 17.2 KB
/
run_sf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os
os.environ["WANDB_DISABLED"] = "true"
import sys
sys.path.append(os.getcwd())
import math
from typing import List
from dataclasses import dataclass, field
from typing import Optional
from datasets import disable_caching
disable_caching()
import logging
import json
import torch
from transformers.utils import add_start_docstrings
from src.models.baichuan.tokenization_baichuan import BaiChuanTokenizer
from src.models.baichuan.modeling_baichuan import BaiChuanForCausalLM
from src.models.baichuan.configuration_baichuan import BaiChuanConfig
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
from datasets import load_dataset
import copy
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
Trainer,
set_seed
)
from transformers.trainer_pt_utils import get_model_param_count
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import add_start_docstrings
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.trainer_callback import TrainerCallback
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
model_name: Optional[str] = field(
default=None,
metadata={
"help": "The model architecture to be trained or fine-tuned.",
"choices": ["baichuan", "llama"],
},
)
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__)
class TrainingArguments(TrainingArguments):
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length."},
)
eval_steps: int = field(
default=300,
metadata={"help": "Maximum sequence length."},
)
use_lora: bool = field(
default=False,
metadata={"help": "Whether to use LoRA."}
)
lora_config: Optional[str] = field(
default=None,
metadata={"help": "LoRA config file."},
)
ddp_find_unused_parameters: bool = field(
default=False,
metadata={"help": "ddp_find_unused_parameters"}
)
gradient_checkpointing: bool = field(
default=False,
metadata={"help": "gradient_checkpointing"}
)
resume_from_checkpoint: Optional[str] = field(
default=None,
metadata={"help": "训练模型保存路径,如果填写相应路径,则基于相应路径下的模型继续训练。"},
)
logging_dir: Optional[str] = field(
default=None,
metadata={"help": "TensorBoard 日志将保存在此目录中"}
)
report_to: Optional[str] = field(
default=None,
metadata={"help": "报告"}
)
# save peft at train end
class SavePeftModelAtEndCallback(TrainerCallback):
def on_train_end(self, args, state, control, **kwargs):
peft_model_path = os.path.join(args.output_dir, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
return control
def print_rank_0(msg, log_file, rank=0):
if rank <= 0:
with open(log_file, 'a') as f:
print(msg)
f.write(msg + '\n')
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
global_rank = torch.distributed.get_rank()
log_file = os.path.join(training_args.output_dir,'print_log.txt')
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
if model_args.model_name == "baichuan":
model = BaiChuanForCausalLM.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch_dtype,
)
tokenizer = BaiChuanTokenizer.from_pretrained(model_args.model_name_or_path)
elif model_args.model_name == "llama":
model = LlamaForCausalLM.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch_dtype,
)
tokenizer = LlamaTokenizer.from_pretrained(model_args.model_name_or_path)
else:
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch_dtype,
)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left" # Allow batched inference
print_rank_0("tokenizer.eos_token_id = {}".format(tokenizer.eos_token_id), log_file, global_rank)
print_rank_0("tokenizer.pad_token_id = {}".format(tokenizer.pad_token_id), log_file, global_rank)
print_rank_0("tokenizer.bos_token_id = {}".format(tokenizer.bos_token_id), log_file, global_rank)
# peft model
if training_args.use_lora:
print_rank_0("Loading lora config from {}".format(training_args.lora_config), log_file, global_rank)
lora_config = json.load(open(training_args.lora_config))
print_rank_0("Lora config: {}".format(lora_config), log_file, global_rank)
config = LoraConfig(
r=lora_config['lora_r'],
lora_alpha=lora_config['lora_alpha'],
target_modules=lora_config['lora_target_modules'],
lora_dropout=lora_config['lora_dropout'],
bias="none",
task_type="CAUSAL_LM",
)
# "RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model = get_peft_model(model, config)
# 是否继续训练模型
if training_args.resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(training_args.resume_from_checkpoint, "pytorch_model.bin") # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(training_args.resume_from_checkpoint,
"adapter_model.bin") # only LoRA model - LoRA config above has to fit
training_args.resume_from_checkpoint = (False) # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# model.is_parallelizable = True
# model.model_parallel = True
def generate_and_tokenize_prompt(data_point):
input_ids = []
labels = []
source = data_point["conversations"]
for sentence in source:
sentence_from = sentence["from"].lower()
sentence_value = 'Human: \n' + sentence["value"] + '\n\nAssistant: \n' if sentence_from == 'human' else sentence["value"] #https://github.com/LianjiaTech/BELLE/issues/337
# conversation += sentence_value
sentence_ids = tokenizer.encode(sentence_value, add_special_tokens=False)#do not add bos_token_id
label = copy.deepcopy(sentence_ids) if sentence_from != 'human' else [IGNORE_INDEX] * len(sentence_ids)
input_ids += sentence_ids
labels += label
# add eos at every end of assistant sentence
if sentence_from != 'human':
input_ids += [tokenizer.eos_token_id]#make sure eos_token_id is correct
labels += [tokenizer.eos_token_id]
input_ids = input_ids[:training_args.model_max_length-1]
labels = labels[:training_args.model_max_length-1]
if not any(x > -100 for x in labels):
labels[18:24] = input_ids[18:24]#labels can not have all values being -100. 18 and 24 are just random numbers
attention_mask = [1] * len(input_ids)
tokenized_full_prompt = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
return tokenized_full_prompt
assert os.path.exists(data_args.train_file), "{} file not exists".format(data_args.train_file)
if data_args.train_file.endswith(".json") or data_args.train_file.endswith(".jsonl"):
data = load_dataset("json", data_files=data_args.train_file, cache_dir=model_args.cache_dir)
else:
data = load_dataset(data_args.train_file, cache_dir=model_args.cache_dir)
data.cleanup_cache_files()
train_data = data["train"].shuffle().map(
generate_and_tokenize_prompt,
num_proc=64,
load_from_cache_file=True,
)
val_data = load_dataset("json", data_files=data_args.validation_file, cache_dir=model_args.cache_dir)
val_data = val_data["train"].shuffle().map(
generate_and_tokenize_prompt,
num_proc=64,
load_from_cache_file=True,
)
for i in range(2):
print_rank_0("Eval tokenized example: {}".format(val_data[i]), log_file, global_rank)
for i in range(2):
print_rank_0("Train tokenized example: {}".format(train_data[i]), log_file, global_rank)
training_nums = len(data['train'])
num_gpus = torch.cuda.device_count()
batch_size = training_args.per_device_train_batch_size * training_args.world_size * training_args.gradient_accumulation_steps
t_total = math.ceil(training_nums/batch_size) * training_args.num_train_epochs
training_args.eval_steps = training_args.eval_steps
# training_args.save_steps = t_total
training_args.save_steps = max(t_total // 2, 5)
training_args.warmup_steps = int(t_total*training_args.warmup_ratio) if training_args.warmup_ratio>0.0 else training_args.warmup_steps
print_rank_0("num_gpus = {}, training_nums = {}, t_total = {}, warmup_steps = {}, eval_steps = {}, save_steps = {}".format(num_gpus, training_nums, t_total, training_args.warmup_steps, training_args.eval_steps, training_args.save_steps), log_file, global_rank)
print_rank_0("val data nums = {}, training_nums = {}, batch_size = {}".format(len(val_data), training_nums, batch_size), log_file, global_rank)
#Trainer
#https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py
#https://github.com/huggingface/transformers/blob/main/src/transformers/data/data_collator.py
#https://github.com/huggingface/transformers/blob/main/src/transformers/trainer.py
#https://www.deepspeed.ai/docs/config-json/
#https://huggingface.co/docs/accelerate/usage_guides/deepspeed
#https://huggingface.co/transformers/v4.10.1/main_classes/deepspeed.html
#https://github.com/tatsu-lab/stanford_alpaca/issues/176
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data,
data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True)
)
print_rank_0(f"Using {training_args.half_precision_backend} half precision backend", log_file, global_rank)
# Train!
len_dataloader = len(trainer.get_train_dataloader())
num_update_steps_per_epoch = len_dataloader // training_args.gradient_accumulation_steps
total_train_batch_size = training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
num_examples = trainer.num_examples(trainer.get_train_dataloader())
num_train_samples = num_examples * training_args.num_train_epochs
max_steps = math.ceil(training_args.num_train_epochs * num_update_steps_per_epoch)
print_rank_0("***** Running training *****", log_file, global_rank)
print_rank_0(f" Num examples = {num_examples}", log_file, global_rank)
print_rank_0(f" Num train samples = {num_train_samples}", log_file, global_rank)
print_rank_0(f" world_size = {world_size}", log_file, global_rank)
print_rank_0(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}", log_file, global_rank)
print_rank_0(f" Gradient Accumulation steps = {training_args.gradient_accumulation_steps}", log_file, global_rank)
print_rank_0(f" Total optimization steps = {max_steps}", log_file, global_rank)
print_rank_0(f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True)}", log_file, global_rank)
model.config.use_cache = False
if training_args.use_lora:
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
if training_args.use_lora:
model.save_pretrained(training_args.output_dir)#Save adapter_model.bin and adapter_config.json
trainer.save_model() # https://github.com/huggingface/transformers/blob/main/src/transformers/trainer.py#L2808
print_rank_0("\n Training completed!!! If there's a warning about missing keys above, please disregard :)", log_file, global_rank)
if __name__ == "__main__":
main()