-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_run.py
201 lines (159 loc) · 6.63 KB
/
test_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Train a ResNet-50 pre-trained on ImageNet on hymenoptera dataset.
# Used to test GPU training on CCV.
# https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
from __future__ import print_function, division
import sys
import copy
import os
import datetime
import time
import matplotlib.pyplot as plt
from torchvision import datasets, models, transforms
import torchvision
import numpy as np
from torch.optim import lr_scheduler
import torch.optim as optim
import torch.nn as nn
import torch
import os
is_local = len(sys.argv) == 2 and sys.argv[1] == 'local'
plt.ion() # interactive mode
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'datasets/hymenoptera_data' if is_local else '/users/tjiang12/data/tjiang12/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
RUN_NAME = f"torch_resnet_hymenoptera_5epochs_{str(datetime.datetime.now())}"
PATH = f"weights/{RUN_NAME}" if is_local else f"~/scratch/{RUN_NAME}"
# folder possibility
# os.makedir(WEIGHTS_BASE)
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# track best model weights
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
# train for num_epochs
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a phase: train and val
for phase in ['train', 'val']:
epoch_begin = time.time()
if phase == 'train':
# sets it in training mode
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
# get batch
for i, (inputs, labels) in enumerate(dataloaders[phase]):
if i % 15 == 0:
time_elapsed = time.time() - epoch_begin
print(
i + 1, '/', len(dataloaders[phase]), int(time_elapsed), 'seconds')
print('ETA:', datetime.timedelta(seconds=int(
(time_elapsed / (i + 1)) * (len(dataloaders[phase]) - i))))
inputs = inputs.to(device)
labels = labels.to(device)
# zero out the previous gradient
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
# forward pass
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
print("UPDATE:", best_acc, "to", epoch_acc.numpy())
print("Saving model to", PATH)
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model.state_dict(), PATH)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=5)
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
visualize_model(model_ft)