Skip to content

Commit 13cb633

Browse files
committed
refresh notebooks docs and examples
- [x] remove outdated notebook - [x] remove duplicates from examples - [x] refresh wording with cmdstanpy instead of pystan
1 parent 84fceaa commit 13cb633

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

47 files changed

+1389
-31567
lines changed

docs/tutorials/build_your_own_model.ipynb

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -496,7 +496,7 @@
496496
{
497497
"data": {
498498
"text/plain": [
499-
"<orbit.forecaster.svi.SVIForecaster at 0x2a5da37c0>"
499+
"<orbit.forecaster.svi.SVIForecaster at 0x17f0f6070>"
500500
]
501501
},
502502
"execution_count": 11,
@@ -531,25 +531,25 @@
531531
"name": "stderr",
532532
"output_type": "stream",
533533
"text": [
534-
"2024-01-11 22:10:27 - orbit - INFO - Using SVI (Pyro) with steps: 501, samples: 100, learning rate: 0.1, learning_rate_total_decay: 1.0 and particles: 100.\n",
535-
"2024-01-11 22:10:28 - orbit - INFO - step 0 loss = 27333, scale = 0.077497\n",
534+
"2024-01-21 13:47:27 - orbit - INFO - Using SVI (Pyro) with steps: 501, samples: 100, learning rate: 0.1, learning_rate_total_decay: 1.0 and particles: 100.\n",
535+
"2024-01-21 13:47:27 - orbit - INFO - step 0 loss = 27333, scale = 0.077497\n",
536536
"INFO:orbit:step 0 loss = 27333, scale = 0.077497\n",
537-
"2024-01-11 22:10:29 - orbit - INFO - step 100 loss = 12594, scale = 0.00924\n",
537+
"2024-01-21 13:47:29 - orbit - INFO - step 100 loss = 12594, scale = 0.00924\n",
538538
"INFO:orbit:step 100 loss = 12594, scale = 0.00924\n",
539-
"2024-01-11 22:10:31 - orbit - INFO - step 200 loss = 12596, scale = 0.0094562\n",
539+
"2024-01-21 13:47:31 - orbit - INFO - step 200 loss = 12596, scale = 0.0094562\n",
540540
"INFO:orbit:step 200 loss = 12596, scale = 0.0094562\n",
541-
"2024-01-11 22:10:33 - orbit - INFO - step 300 loss = 12591, scale = 0.0092175\n",
541+
"2024-01-21 13:47:32 - orbit - INFO - step 300 loss = 12591, scale = 0.0092175\n",
542542
"INFO:orbit:step 300 loss = 12591, scale = 0.0092175\n",
543-
"2024-01-11 22:10:35 - orbit - INFO - step 400 loss = 12594, scale = 0.0095741\n",
543+
"2024-01-21 13:47:34 - orbit - INFO - step 400 loss = 12594, scale = 0.0095741\n",
544544
"INFO:orbit:step 400 loss = 12594, scale = 0.0095741\n",
545-
"2024-01-11 22:10:36 - orbit - INFO - step 500 loss = 12591, scale = 0.0095602\n",
545+
"2024-01-21 13:47:36 - orbit - INFO - step 500 loss = 12591, scale = 0.0095602\n",
546546
"INFO:orbit:step 500 loss = 12591, scale = 0.0095602\n"
547547
]
548548
},
549549
{
550550
"data": {
551551
"text/plain": [
552-
"<orbit.forecaster.svi.SVIForecaster at 0x2a5da37c0>"
552+
"<orbit.forecaster.svi.SVIForecaster at 0x17f0f6070>"
553553
]
554554
},
555555
"execution_count": 12,

docs/tutorials/decompose_prediction.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -111,13 +111,13 @@
111111
"name": "stderr",
112112
"output_type": "stream",
113113
"text": [
114-
"2024-01-11 22:10:53 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
114+
"2024-01-21 14:39:49 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
115115
]
116116
},
117117
{
118118
"data": {
119119
"text/plain": [
120-
"<orbit.forecaster.full_bayes.FullBayesianForecaster at 0x1058475b0>"
120+
"<orbit.forecaster.full_bayes.FullBayesianForecaster at 0x108f9ca60>"
121121
]
122122
},
123123
"execution_count": 4,

docs/tutorials/dlt.ipynb

Lines changed: 22 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -201,7 +201,7 @@
201201
"name": "stderr",
202202
"output_type": "stream",
203203
"text": [
204-
"2024-01-11 22:11:09 - orbit - INFO - Optimizing (PyStan) with algorithm: LBFGS.\n"
204+
"2024-01-21 13:46:06 - orbit - INFO - Optimizing (CmdStanPy) with algorithm: LBFGS.\n"
205205
]
206206
},
207207
{
@@ -218,8 +218,8 @@
218218
"name": "stdout",
219219
"output_type": "stream",
220220
"text": [
221-
"CPU times: user 795 ms, sys: 1.27 s, total: 2.06 s\n",
222-
"Wall time: 481 ms\n"
221+
"CPU times: user 613 ms, sys: 1.34 s, total: 1.96 s\n",
222+
"Wall time: 729 ms\n"
223223
]
224224
}
225225
],
@@ -252,13 +252,13 @@
252252
"name": "stderr",
253253
"output_type": "stream",
254254
"text": [
255-
"2024-01-11 22:11:10 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
255+
"2024-01-21 13:46:06 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
256256
]
257257
},
258258
{
259259
"data": {
260260
"text/plain": [
261-
"<orbit.forecaster.full_bayes.FullBayesianForecaster at 0x174876ca0>"
261+
"<orbit.forecaster.full_bayes.FullBayesianForecaster at 0x175098400>"
262262
]
263263
},
264264
"execution_count": 5,
@@ -333,7 +333,7 @@
333333
"name": "stderr",
334334
"output_type": "stream",
335335
"text": [
336-
"2024-01-11 22:11:12 - orbit - INFO - Optimizing (PyStan) with algorithm: LBFGS.\n"
336+
"2024-01-21 13:46:08 - orbit - INFO - Optimizing (CmdStanPy) with algorithm: LBFGS.\n"
337337
]
338338
},
339339
{
@@ -350,8 +350,8 @@
350350
"name": "stdout",
351351
"output_type": "stream",
352352
"text": [
353-
"CPU times: user 1.01 s, sys: 956 ms, total: 1.97 s\n",
354-
"Wall time: 501 ms\n"
353+
"CPU times: user 593 ms, sys: 1.38 s, total: 1.97 s\n",
354+
"Wall time: 468 ms\n"
355355
]
356356
}
357357
],
@@ -403,15 +403,15 @@
403403
"name": "stderr",
404404
"output_type": "stream",
405405
"text": [
406-
"2024-01-11 22:11:12 - orbit - INFO - Optimizing (PyStan) with algorithm: LBFGS.\n"
406+
"2024-01-21 13:46:09 - orbit - INFO - Optimizing (CmdStanPy) with algorithm: LBFGS.\n"
407407
]
408408
},
409409
{
410410
"name": "stdout",
411411
"output_type": "stream",
412412
"text": [
413-
"CPU times: user 280 ms, sys: 110 ms, total: 391 ms\n",
414-
"Wall time: 351 ms\n"
413+
"CPU times: user 324 ms, sys: 268 ms, total: 592 ms\n",
414+
"Wall time: 344 ms\n"
415415
]
416416
},
417417
{
@@ -479,7 +479,7 @@
479479
"name": "stderr",
480480
"output_type": "stream",
481481
"text": [
482-
"2024-01-11 22:11:13 - orbit - INFO - Optimizing (PyStan) with algorithm: LBFGS.\n"
482+
"2024-01-21 13:46:10 - orbit - INFO - Optimizing (CmdStanPy) with algorithm: LBFGS.\n"
483483
]
484484
},
485485
{
@@ -496,8 +496,8 @@
496496
"name": "stdout",
497497
"output_type": "stream",
498498
"text": [
499-
"CPU times: user 1.14 s, sys: 941 ms, total: 2.08 s\n",
500-
"Wall time: 468 ms\n"
499+
"CPU times: user 735 ms, sys: 1.51 s, total: 2.24 s\n",
500+
"Wall time: 478 ms\n"
501501
]
502502
}
503503
],
@@ -552,7 +552,7 @@
552552
"name": "stderr",
553553
"output_type": "stream",
554554
"text": [
555-
"2024-01-11 22:11:14 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
555+
"2024-01-21 13:46:10 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
556556
]
557557
},
558558
{
@@ -684,19 +684,21 @@
684684
},
685685
{
686686
"cell_type": "markdown",
687-
"metadata": {},
687+
"metadata": {
688+
"tags": []
689+
},
688690
"source": [
689691
"### High Dimensional and Fourier Series Regression\n",
690692
"\n",
691-
"In case of high dimensional regression, users can consider fixing the smoothness with a relatively small levels smoothing values e.g. setting `level_sm_input=0.01`. This is particularly useful in modeling higher frequency time-series such as daily and hourly data using regression on Fourier series. Check out the `examples/` folder for more details."
693+
"In case of high dimensional regression, users can consider fixing the smoothness with a relatively small levels smoothing values e.g. setting `level_sm_input=0.01`. This is particularly useful in modeling higher frequency time-series such as daily and hourly data using regression on Fourier series. Check out the `examples/` folder for the details."
692694
]
693695
}
694696
],
695697
"metadata": {
696698
"kernelspec": {
697-
"display_name": "Python 3.8.18 ('orbit38')",
699+
"display_name": "orbit39",
698700
"language": "python",
699-
"name": "python3"
701+
"name": "orbit39"
700702
},
701703
"language_info": {
702704
"codemirror_mode": {
@@ -708,7 +710,7 @@
708710
"name": "python",
709711
"nbconvert_exporter": "python",
710712
"pygments_lexer": "ipython3",
711-
"version": "3.8.18"
713+
"version": "3.9.18"
712714
},
713715
"toc": {
714716
"base_numbering": 1,

docs/tutorials/ets_lgt_dlt_missing_response.ipynb

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -297,13 +297,13 @@
297297
"name": "stderr",
298298
"output_type": "stream",
299299
"text": [
300-
"2024-01-11 22:12:15 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
300+
"2024-01-21 14:38:49 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
301301
]
302302
},
303303
{
304304
"data": {
305305
"application/vnd.jupyter.widget-view+json": {
306-
"model_id": "675e617a68644e69bc19461f72afcb76",
306+
"model_id": "7127326a60cb455a92d2f29cc00a7a3d",
307307
"version_major": 2,
308308
"version_minor": 0
309309
},
@@ -317,7 +317,7 @@
317317
{
318318
"data": {
319319
"application/vnd.jupyter.widget-view+json": {
320-
"model_id": "e61ef67e9c1349a391fa6d7dd8049409",
320+
"model_id": "788443932419449f9e398df74e8180ab",
321321
"version_major": 2,
322322
"version_minor": 0
323323
},
@@ -331,7 +331,7 @@
331331
{
332332
"data": {
333333
"application/vnd.jupyter.widget-view+json": {
334-
"model_id": "4b4e1e5d00f0412fb2e3db4fe0f7f877",
334+
"model_id": "f75584f0370742288f15096a09a23ee2",
335335
"version_major": 2,
336336
"version_minor": 0
337337
},
@@ -345,7 +345,7 @@
345345
{
346346
"data": {
347347
"application/vnd.jupyter.widget-view+json": {
348-
"model_id": "a0676da571094a85b5d2f7028395da0a",
348+
"model_id": "ee67293605f9471c876b59bd14d63cc0",
349349
"version_major": 2,
350350
"version_minor": 0
351351
},
@@ -397,13 +397,13 @@
397397
"name": "stderr",
398398
"output_type": "stream",
399399
"text": [
400-
"2024-01-11 22:12:15 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
400+
"2024-01-21 14:38:50 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
401401
]
402402
},
403403
{
404404
"data": {
405405
"application/vnd.jupyter.widget-view+json": {
406-
"model_id": "62892bd875c846049d52ee7c19c7ec4f",
406+
"model_id": "91631a6519be4f9eb191e0655fbac846",
407407
"version_major": 2,
408408
"version_minor": 0
409409
},
@@ -417,7 +417,7 @@
417417
{
418418
"data": {
419419
"application/vnd.jupyter.widget-view+json": {
420-
"model_id": "f95443129e8f4ad6b519cde63f110bb7",
420+
"model_id": "5117ba9e278f4c93915daa1cade2411e",
421421
"version_major": 2,
422422
"version_minor": 0
423423
},
@@ -431,7 +431,7 @@
431431
{
432432
"data": {
433433
"application/vnd.jupyter.widget-view+json": {
434-
"model_id": "42da72d1bdf44ade9718c58a0f720fec",
434+
"model_id": "e047da76e6a3451dbfb3895656ccc731",
435435
"version_major": 2,
436436
"version_minor": 0
437437
},
@@ -445,7 +445,7 @@
445445
{
446446
"data": {
447447
"application/vnd.jupyter.widget-view+json": {
448-
"model_id": "6fa4d95140674159917f351e5cef602e",
448+
"model_id": "da8adf7c21ea478ebc9471902d193535",
449449
"version_major": 2,
450450
"version_minor": 0
451451
},
@@ -497,13 +497,13 @@
497497
"name": "stderr",
498498
"output_type": "stream",
499499
"text": [
500-
"2024-01-11 22:12:19 - orbit - INFO - Sampling (PyStan) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
500+
"2024-01-21 14:38:53 - orbit - INFO - Sampling (CmdStanPy) with chains: 4, cores: 8, temperature: 1.000, warmups (per chain): 225 and samples(per chain): 25.\n"
501501
]
502502
},
503503
{
504504
"data": {
505505
"application/vnd.jupyter.widget-view+json": {
506-
"model_id": "d00171d6ff2545f4a040fd4eaa0cbc85",
506+
"model_id": "c51672ad186240cc80ddffdcddff9c3d",
507507
"version_major": 2,
508508
"version_minor": 0
509509
},
@@ -517,7 +517,7 @@
517517
{
518518
"data": {
519519
"application/vnd.jupyter.widget-view+json": {
520-
"model_id": "91ba7166933843f58b473ebb545db892",
520+
"model_id": "956c2e23d6514668bf16bceac75fbbc8",
521521
"version_major": 2,
522522
"version_minor": 0
523523
},
@@ -531,7 +531,7 @@
531531
{
532532
"data": {
533533
"application/vnd.jupyter.widget-view+json": {
534-
"model_id": "0c82ee131b7447d59a20223622fbb1b6",
534+
"model_id": "aa820a1c6a57417cbe4ba807f7d1e063",
535535
"version_major": 2,
536536
"version_minor": 0
537537
},
@@ -545,7 +545,7 @@
545545
{
546546
"data": {
547547
"application/vnd.jupyter.widget-view+json": {
548-
"model_id": "e2f800290b394e4f8a483e2bf8d36644",
548+
"model_id": "e6349c96e2044c65a8b9f99a03fe181d",
549549
"version_major": 2,
550550
"version_minor": 0
551551
},
@@ -811,7 +811,7 @@
811811
},
812812
{
813813
"cell_type": "code",
814-
"execution_count": 15,
814+
"execution_count": 14,
815815
"metadata": {
816816
"ExecuteTime": {
817817
"end_time": "2021-12-16T20:11:05.798766Z",

0 commit comments

Comments
 (0)