-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdropped_observation_dimension.py
367 lines (308 loc) · 12.3 KB
/
dropped_observation_dimension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python3
"""
-------------------------------------------------------------------------------
File: dropped_observation_dimension.py
Description:
A unified script to run dimension-drop experiments on one of three
Gymnasium environments:
- Pendulum-v1 (3D observation)
- CartPole-v1 (4D observation)
- Acrobot-v1 (6D observation)
We optionally drop one dimension (or none) from the observation space,
train a PPO agent multiple times (in parallel), compute average rewards
across test episodes, and compare to a random-action baseline.
The final result is a bar plot of average rewards ± std for each
dimension-drop scenario (plus random), using skyblue bars.
Usage:
python dropped_observation_dimension.py
--env_name [Pendulum-v1 | CartPole-v1 | Acrobot-v1]
--total_timesteps 30000
--episodes_for_test 50
--num_runs 5
--save_plot results.png
--n_jobs -1
Parameters:
--env_name: Which environment to use. Must be one of {Pendulum-v1, CartPole-v1, Acrobot-v1}.
--total_timesteps: Number of PPO training timesteps (default: 30000).
--episodes_for_test: Number of test episodes (default: 50).
--num_runs: Number of independent runs per dimension setting (default: 5).
--save_plot: Output filename for the bar plot (default: results.png).
--n_jobs: How many parallel workers to use (default: -1 uses all cores).
Dependencies:
- Python 3
- stable-baselines3
- gymnasium
- matplotlib
- joblib
-------------------------------------------------------------------------------
"""
import argparse
import numpy as np
import gymnasium as gym
from gymnasium import spaces
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
import matplotlib.pyplot as plt
from joblib import Parallel, delayed
class DropDimensionWrapper(gym.ObservationWrapper):
"""
A custom wrapper that drops a specified dimension from an N-dimensional observation.
It automatically updates the observation space accordingly.
"""
def __init__(self, env, drop_idx):
super().__init__(env)
self.drop_idx = drop_idx
# Original Box shape
orig_low = self.observation_space.low
orig_high = self.observation_space.high
# Remove the specified dimension from the low/high arrays
new_low = np.delete(orig_low, drop_idx)
new_high = np.delete(orig_high, drop_idx)
# Define the new observation space
self.observation_space = spaces.Box(
low=new_low,
high=new_high,
dtype=self.observation_space.dtype
)
def observation(self, obs):
return np.delete(obs, self.drop_idx)
def get_env_config(env_name):
"""
Return a dict containing:
- 'dims_to_test': A list of dimension indices to drop, plus None for no drop.
- 'dimension_labels': A list of short labels for each dimension
- 'dimension_labels_random': Label for the random baseline
- 'original_obs_dim': integer dimension of the original observation
We also demonstrate how to label each dimension for plotting.
"""
if env_name == "Pendulum-v1":
# 3D observation: [cos(theta), sin(theta), theta_dot]
return {
"dims_to_test": [None, 0, 1, 2],
"dimension_labels": [
"No drop",
"Drop 0\n(cosθ)",
"Drop 1\n(sinθ)",
"Drop 2\n(θ_dot)"
],
"dimension_labels_random": "Random\n(No drop)",
"original_obs_dim": 3
}
elif env_name == "CartPole-v1":
# 4D observation: [cart_pos, cart_vel, pole_angle, pole_ang_vel]
return {
"dims_to_test": [None, 0, 1, 2, 3],
"dimension_labels": [
"No drop",
"Drop 0\n(Cart Pos.)",
"Drop 1\n(Cart Vel.)",
"Drop 2\n(Pole Angle)",
"Drop 3\n(Pole Ang. Vel.)"
],
"dimension_labels_random": "Random\n(No drop)",
"original_obs_dim": 4
}
elif env_name == "Acrobot-v1":
# 6D observation:
# 0: cos(theta1), 1: sin(theta1),
# 2: cos(theta2), 3: sin(theta2),
# 4: ang_vel_theta1, 5: ang_vel_theta2
return {
"dims_to_test": [None, 0, 1, 2, 3, 4, 5],
"dimension_labels": [
"No drop",
"Drop 0\n(cosθ1)",
"Drop 1\n(sinθ1)",
"Drop 2\n(cosθ2)",
"Drop 3\n(sinθ2)",
"Drop 4\n(ang.vel.θ1)",
"Drop 5\n(ang.vel.θ2)",
],
"dimension_labels_random": "Random\n(No drop)",
"original_obs_dim": 6
}
else:
raise ValueError(f"Unsupported env_name: {env_name}")
def make_custom_env(env_name, drop_idx=None, seed=None):
"""
Creates a Gymnasium environment for the given env_name,
optionally drops one dimension (using DropDimensionWrapper),
and optionally seeds the environment for reproducibility.
"""
env = gym.make(env_name)
if seed is not None:
env.reset(seed=seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
if drop_idx is not None:
env = DropDimensionWrapper(env, drop_idx)
return env
def train_model(env_name, drop_idx, total_timesteps, seed=None):
"""
Train a PPO model on the specified environment, optionally dropping
one dimension. Returns the trained model.
"""
def _make_training_env():
return make_custom_env(env_name, drop_idx=drop_idx, seed=seed)
# If you want to parallelize environment sampling:
# train_vec_env = make_vec_env(_make_training_env, n_envs=4)
train_vec_env = make_vec_env(_make_training_env, n_envs=1)
model = PPO("MlpPolicy", train_vec_env, verbose=0, seed=seed)
model.learn(total_timesteps)
return model
def evaluate_model(env_name, model, drop_idx, n_episodes=50, seed=None):
"""
Evaluate a trained model for n_episodes, returning the average total reward.
"""
test_env = make_custom_env(env_name, drop_idx=drop_idx, seed=seed)
total_rewards = []
for _ in range(n_episodes):
obs, info = test_env.reset()
done = False
ep_reward = 0.0
while not done:
action, _ = model.predict(obs)
obs, reward, terminated, truncated, info = test_env.step(action)
ep_reward += reward
done = terminated or truncated
total_rewards.append(ep_reward)
return np.mean(total_rewards)
def evaluate_random_action(env_name, drop_idx=None, n_episodes=50, seed=None):
"""
Evaluate random actions in the given environment (optionally dropping one dim),
returning the average total reward over n_episodes.
"""
env = make_custom_env(env_name, drop_idx=drop_idx, seed=seed)
total_rewards = []
for _ in range(n_episodes):
obs, info = env.reset()
done = False
ep_reward = 0.0
while not done:
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
ep_reward += reward
done = terminated or truncated
total_rewards.append(ep_reward)
return np.mean(total_rewards)
def run_single_ppo_experiment(env_name, drop_idx, total_timesteps, seed, episodes_for_test):
"""
Train + evaluate PPO for a single run, returning average total reward.
"""
model = train_model(env_name, drop_idx, total_timesteps, seed=seed)
avg_return = evaluate_model(env_name, model, drop_idx, n_episodes=episodes_for_test, seed=seed)
return avg_return
def run_single_random_experiment(env_name, drop_idx, seed, episodes_for_test):
"""
Random actions for a single run, returning average total reward.
"""
return evaluate_random_action(env_name, drop_idx=drop_idx, n_episodes=episodes_for_test, seed=seed)
def main():
parser = argparse.ArgumentParser(description="Unified dimension-drop experiments on various Gym environments.")
parser.add_argument(
"--env_name",
type=str,
required=True,
help="Which environment to run. Must be one of {Pendulum-v1, CartPole-v1, Acrobot-v1}."
)
parser.add_argument(
"--total_timesteps",
type=int,
default=30000,
help="Number of timesteps for PPO training per dimension setting."
)
parser.add_argument(
"--episodes_for_test",
type=int,
default=50,
help="Number of test episodes after training each model."
)
parser.add_argument(
"--num_runs",
type=int,
default=5,
help="Number of independent runs (with different seeds) per dimension + random."
)
parser.add_argument(
"--save_plot",
type=str,
default="results.png",
help="Filename for the resulting plot."
)
parser.add_argument(
"--n_jobs",
type=int,
default=-1,
help="Number of parallel processes to use with joblib."
)
args = parser.parse_args()
# Get environment-specific configuration (dims to test, labels, etc.)
env_config = get_env_config(args.env_name)
dims_to_test = env_config["dims_to_test"] # e.g., [None, 0, 1, 2] for Pendulum
dim_labels = env_config["dimension_labels"] # labels for each dimension
random_label = env_config["dimension_labels_random"]
# We want an extra bar for the random-action baseline, so let's track them together
labels = list(dim_labels) + [random_label]
means = []
stds = []
print(f"\nEnvironment: {args.env_name}")
print(f"Dimension scenarios: {dims_to_test}")
print(f"Running {args.num_runs} independent runs per scenario.\n")
# 1) PPO runs for each dimension
for dim_idx, drop_idx in enumerate(dims_to_test):
label_str = dim_labels[dim_idx]
print(f"=== Parallel runs for {label_str} (drop_idx={drop_idx}) ===")
# Build argument list
run_args_list = []
for run_id in range(args.num_runs):
seed = 1000 + 100 * dim_idx + run_id # example systematic seeding
run_args_list.append((args.env_name, drop_idx, args.total_timesteps, seed, args.episodes_for_test))
# Run them in parallel
results_across_runs = Parallel(n_jobs=args.n_jobs)(
delayed(run_single_ppo_experiment)(*r_args) for r_args in run_args_list
)
mean_r = np.mean(results_across_runs)
std_r = np.std(results_across_runs)
means.append(mean_r)
stds.append(std_r)
print(f"=> Mean reward for {label_str}: {mean_r:.2f} ± {std_r:.2f}\n")
# 2) Random baseline (no drop)
print("=== Parallel runs for Random Action (No drop) ===")
random_run_args_list = []
for run_id in range(args.num_runs):
seed = 2000 + run_id
random_run_args_list.append((args.env_name, None, seed, args.episodes_for_test))
random_results = Parallel(n_jobs=args.n_jobs)(
delayed(run_single_random_experiment)(*rr_args) for rr_args in random_run_args_list
)
random_mean = np.mean(random_results)
random_std = np.std(random_results)
means.append(random_mean)
stds.append(random_std)
print(f"=> Mean reward for Random Action: {random_mean:.2f} ± {random_std:.2f}\n")
# 3) Create bar plot (skyblue color)
x_positions = np.arange(len(labels))
plt.figure(figsize=(10, 5))
plt.bar(x_positions, means, yerr=stds, capsize=5, color='skyblue', width=0.6)
plt.xticks(x_positions, labels)
plt.xlabel("Dimension Dropped / Agent Type")
plt.ylabel("Avg. Episode Reward")
plt.title(
f"PPO + Dimension-Drop on {args.env_name}\n"
f"{args.total_timesteps} steps, {args.episodes_for_test} test eps, {args.num_runs} runs"
)
# 4) Label each bar with mean ± std
for i, (m, s) in enumerate(zip(means, stds)):
offset = max(1.0, abs(s) * 0.5)
plt.text(i, m + offset, f"{m:.2f}±{s:.2f}", ha='center', va='bottom', fontsize=9)
# Some envs (e.g. Pendulum) can have negative rewards, so let's set
# a margin around min and max
min_val = min(means) - abs(min(stds)) - 10
max_val = max(means) + abs(max(stds)) + 10
plt.ylim([min_val, max_val])
plt.tight_layout()
plt.savefig(args.save_plot, dpi=200)
print(f"\nPlot saved to '{args.save_plot}'")
# plt.show()
if __name__ == "__main__":
main()