-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathnb_author_id.py
64 lines (45 loc) · 1.69 KB
/
nb_author_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python3
"""
This is the code to accompany the Lesson 1 (Naive Bayes) mini-project.
Use a Naive Bayes Classifier to identify emails by their authors
authors and labels:
Sara has label 0
Chris has label 1
"""
import sys
from time import time
sys.path.append("./tools/")
from email_preprocess import preprocess
### features_train and features_test are the features for the training
### and testing datasets, respectively
### labels_train and labels_test are the corresponding item labels
features_train, features_test, labels_train, labels_test = preprocess()
##############################################################
# Enter Your Code Here
from sklearn.naive_bayes import GaussianNB
t0 = time()
clf = GaussianNB()
clf.fit(features_train, labels_train)
print("Training Time:", round(time()-t0, 3), "s")
t0 = time()
pred = clf.predict(features_test)
print("Predicting Time:", round(time()-t0, 3), "s")
accuracy = clf.score(features_test, labels_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print("Accuracy:", round(accuracy, 3))
print("Matice Accuracy:", round(acc, 3))
#########################################
##############################################################
'''
You Will be Required to record time for Training and Predicting
The Code Given on Udacity Website is in Python-2
The Following Code is Python-3 version of the same code
'''
# t0 = time()
# # < your clf.fit() line of code >
# print("Training Time:", round(time()-t0, 3), "s")
# t0 = time()
# # < your clf.predict() line of code >
# print("Predicting Time:", round(time()-t0, 3), "s")
##############################################################