-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFOL.v
752 lines (594 loc) · 24.1 KB
/
FOL.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
(** * First-Order Logic *)
(** Definition of first-order syntax, semantics, and deduction from the Library of Undecidability Proofs *)
Require Import Coq.Vectors.Vector.
Local Notation vec := t.
Require Import Equations.Equations Equations.Prop.DepElim.
(* Some preliminary definitions for substitions *)
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
(* Signatures are a record to allow for easier definitions of general transformations on signatures *)
Class funcs_signature :=
{ syms : Type; ar_syms : syms -> nat }.
Coercion syms : funcs_signature >-> Sortclass.
Class preds_signature :=
{ preds : Type; ar_preds : preds -> nat }.
Coercion preds : preds_signature >-> Sortclass.
Section fix_signature.
Context {Σ_funcs : funcs_signature}.
(* We use the stdlib definition of vectors to be maximally compatible *)
Unset Elimination Schemes.
Inductive term : Type :=
| var : nat -> term
| func : forall (f : syms), vec term (ar_syms f) -> term.
Set Elimination Schemes.
Fixpoint subst_term (σ : nat -> term) (t : term) : term :=
match t with
| var t => σ t
| func f v => func f (map (subst_term σ) v)
end.
Context {Σ_preds : preds_signature}.
(* We use a flag to switch on and off a constant for falisity *)
Inductive falsity_flag := falsity_off | falsity_on.
Existing Class falsity_flag.
Existing Instance falsity_on | 1.
Existing Instance falsity_off | 0.
(* Syntax is parametrised in binary operators and quantifiers.
Most developments will fix these types in the beginning and never change them.
*)
Class operators := {binop : Type ; quantop : Type}.
Context {ops : operators}.
Inductive form : falsity_flag -> Type :=
| falsity : form falsity_on
| atom {b} : forall (P : preds), vec term (ar_preds P) -> form b
| bin {b} : binop -> form b -> form b -> form b
| quant {b} : quantop -> form b -> form b.
Arguments form {_}.
Definition up (σ : nat -> term) := scons (var 0) (funcomp (subst_term (funcomp var S)) σ).
Fixpoint subst_form `{falsity_flag} (σ : nat -> term) (phi : form) : form :=
match phi with
| falsity => falsity
| atom P v => atom P (map (subst_term σ) v)
| bin op phi1 phi2 => bin op (subst_form σ phi1) (subst_form σ phi2)
| quant op phi => quant op (subst_form (up σ) phi)
end.
End fix_signature.
(* Setting implicit arguments is crucial *)
(* We can write term both with and without arguments, but printing is without. *)
Arguments term _, {_}.
Arguments var _ _, {_} _.
Arguments func _ _ _, {_} _ _.
Arguments subst_term {_} _ _.
(* Formulas can be written with the signatures explicit or not.
If the operations are explicit, the signatures are too.
*)
Arguments form _ _ _ _, _ _ {_ _}, {_ _ _ _}, {_ _ _} _.
Arguments atom _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments bin _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments quant _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments up _, {_}.
Arguments subst_form _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Section fix_signature.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Inductive Forall {A : Type} (P : A -> Type) : forall {n}, t A n -> Type :=
| Forall_nil : Forall P (@Vector.nil A)
| Forall_cons : forall n (x : A) (l : t A n), P x -> Forall P l -> Forall P (@Vector.cons A x n l).
Inductive vec_in {A : Type} (a : A) : forall {n}, t A n -> Type :=
| vec_inB {n} (v : t A n) : vec_in a (cons A a n v)
| vec_inS a' {n} (v : t A n) : vec_in a v -> vec_in a (cons A a' n v).
Hint Constructors vec_in : core.
Lemma term_rect' (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (Forall p v) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. fix strong_term_ind' 1. destruct t as [n|F v].
- apply f1.
- apply f2. induction v.
+ econstructor.
+ econstructor. now eapply strong_term_ind'. eauto.
Qed.
Lemma term_rect (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (forall t, vec_in t v -> p t) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H2; subst; eauto. decide equality.
Qed.
Lemma term_ind (p : term -> Prop) :
(forall x, p (var x)) -> (forall F v (IH : forall t, In t v -> p t), p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H3; subst; eauto. decide equality.
Qed.
End fix_signature.
Section Subst.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Notation "$ x" := (var x) (at level 3, format "$ '/' x").
Notation "t `[ sigma ]" := (subst_term sigma t) (at level 7, left associativity, format "t '/' `[ sigma ]").
Notation "phi [ sigma ]" := (subst_form sigma phi) (at level 7, left associativity, format "phi '/' [ sigma ]").
Notation "s .: sigma" := (scons s sigma) (at level 70, right associativity).
Notation "f >> g" := (funcomp g f) (at level 50).
Notation "s '..'" := (scons s var) (at level 4, format "s ..").
Notation "↑" := (S >> var).
Lemma subst_term_ext (t : term) sigma tau :
(forall n, sigma n = tau n) -> t`[sigma] = t`[tau].
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now apply map_ext_in.
Qed.
Lemma subst_term_id (t : term) sigma :
(forall n, sigma n = var n) -> t`[sigma] = t.
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now erewrite map_ext_in, map_id.
Qed.
Lemma subst_term_var (t : term) :
t`[var] = t.
Proof.
now apply subst_term_id.
Qed.
Lemma subst_term_comp (t : term) sigma tau :
t`[sigma]`[tau] = t`[sigma >> subst_term tau].
Proof.
induction t; cbn.
- reflexivity.
- f_equal. rewrite map_map. now apply map_ext_in.
Qed.
Lemma subst_term_shift (t : term) s :
t`[↑]`[s..] = t.
Proof.
rewrite subst_term_comp. apply subst_term_id. now intros [|].
Qed.
Lemma up_term (t : term) xi :
t`[↑]`[up xi] = t`[xi]`[↑].
Proof.
rewrite !subst_term_comp. apply subst_term_ext. reflexivity.
Qed.
Lemma up_ext sigma tau :
(forall n, sigma n = tau n) -> forall n, up sigma n = up tau n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_var sigma :
(forall n, sigma n = var n) -> forall n, up sigma n = var n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_funcomp sigma tau :
forall n, (up sigma >> subst_term (up tau)) n = up (sigma >> subst_term tau) n.
Proof.
intros [|]; cbn; trivial.
setoid_rewrite subst_term_comp.
apply subst_term_ext. now intros [|].
Qed.
Lemma subst_ext {ff : falsity_flag} (phi : form) sigma tau :
(forall n, sigma n = tau n) -> phi[sigma] = phi[tau].
Proof.
induction phi in sigma, tau |- *; cbn; intros H.
- reflexivity.
- f_equal. apply map_ext. intros s. now apply subst_term_ext.
- now erewrite IHphi1, IHphi2.
- erewrite IHphi; trivial. now apply up_ext.
Qed.
Lemma subst_id {ff : falsity_flag} (phi : form) sigma :
(forall n, sigma n = var n) -> phi[sigma] = phi.
Proof.
induction phi in sigma |- *; cbn; intros H.
- reflexivity.
- f_equal. erewrite map_ext; try apply map_id. intros s. now apply subst_term_id.
- now erewrite IHphi1, IHphi2.
- erewrite IHphi; trivial. now apply up_var.
Qed.
Lemma subst_var {ff : falsity_flag} (phi : form) :
phi[var] = phi.
Proof.
now apply subst_id.
Qed.
Lemma subst_comp {ff : falsity_flag} (phi : form) sigma tau :
phi[sigma][tau] = phi[sigma >> subst_term tau].
Proof.
induction phi in sigma, tau |- *; cbn.
- reflexivity.
- f_equal. rewrite map_map. apply map_ext. intros s. apply subst_term_comp.
- now rewrite IHphi1, IHphi2.
- rewrite IHphi. f_equal. now apply subst_ext, up_funcomp.
Qed.
Lemma subst_shift {ff : falsity_flag} (phi : form) s :
phi[↑][s..] = phi.
Proof.
rewrite subst_comp. apply subst_id. now intros [|].
Qed.
Lemma up_form {ff : falsity_flag} xi psi :
psi[↑][up xi] = psi[xi][↑].
Proof.
rewrite !subst_comp. apply subst_ext. reflexivity.
Qed.
Lemma up_decompose {ff : falsity_flag} sigma phi :
phi[up (S >> sigma)][(sigma 0)..] = phi[sigma].
Proof.
rewrite subst_comp. apply subst_ext.
intros [].
- reflexivity.
- apply subst_term_shift.
Qed.
End Subst.
Require Import ListLib Lia.
Section Bounded.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Inductive bounded_t n : term -> Prop :=
| bounded_var x : n > x -> bounded_t n (var x)
| bouded_func f v : (forall t, Vector.In t v -> bounded_t n t) -> bounded_t n (func f v).
Inductive bounded : forall {ff}, nat -> form ff -> Prop :=
| bounded_atom ff n P v : (forall t, Vector.In t v -> bounded_t n t) -> @bounded ff n (atom P v)
| bounded_bin binop ff n phi psi : @bounded ff n phi -> @bounded ff n psi -> @bounded ff n (bin binop phi psi)
| bounded_quant quantop ff n phi : @bounded ff (S n) phi -> @bounded ff n (quant quantop phi)
| bounded_falsity n : @bounded falsity_on n falsity.
Arguments bounded {_} _ _.
Definition bounded_L {ff : falsity_flag} n A :=
forall phi, phi el A -> bounded n phi.
Lemma bounded_subst_t n t sigma tau :
(forall k, n > k -> sigma k = tau k) -> bounded_t n t -> subst_term sigma t = subst_term tau t.
Proof.
intros H. induction 1; cbn; auto.
f_equal. now apply Vector.map_ext_in.
Qed.
Lemma bounded_subst {ff : falsity_flag} {n phi sigma tau} :
bounded n phi -> (forall k, n > k -> sigma k = tau k) -> subst_form sigma phi = subst_form tau phi.
Proof.
induction 1 in sigma, tau |- *; cbn; intros HN; trivial.
- f_equal. apply Vector.map_ext_in. intros t Ht.
eapply bounded_subst_t; try apply HN. now apply H.
- now rewrite (IHbounded1 sigma tau), (IHbounded2 sigma tau).
- f_equal. apply IHbounded. intros [|k] Hk; cbn; trivial.
unfold funcomp. rewrite HN; trivial. lia.
Qed.
Lemma bounded_up_t {n t k} :
bounded_t n t -> k >= n -> bounded_t k t.
Proof.
induction 1; intros Hk; constructor; try lia. firstorder.
Qed.
Lemma bounded_up {ff : falsity_flag} {n phi k} :
bounded n phi -> k >= n -> bounded k phi.
Proof.
induction 1 in k |- *; intros Hk; constructor; eauto.
- intros t Ht. eapply bounded_up_t; eauto.
- apply IHbounded. lia.
Qed.
Derive Signature for In.
Lemma find_bounded_step n (v : vec term n) :
(forall t : term, vec_in t v -> {n : nat | bounded_t n t}) -> { n | forall t, In t v -> bounded_t n t }.
Proof.
induction v; cbn; intros HV.
- exists 0. intros t. inversion 1.
- destruct IHv as [k Hk], (HV h) as [l Hl]; try left.
+ intros t Ht. apply HV. now right.
+ exists (k + l). intros t H. depelim H; cbn in *.
* injection H. intros _ <-. apply (bounded_up_t Hl). lia.
* injection H0. intros -> % Eqdep_dec.inj_pair2_eq_dec _; try decide equality.
apply (bounded_up_t (Hk t H)). lia.
Qed.
Lemma find_bounded_t t :
{ n | bounded_t n t }.
Proof.
induction t using term_rect.
- exists (S x). constructor. lia.
- apply find_bounded_step in X as [n H]. exists n. now constructor.
Qed.
Lemma find_bounded {ff : falsity_flag} phi :
{ n | bounded n phi }.
Proof.
induction phi.
- exists 0. constructor.
- destruct (find_bounded_step _ t) as [n Hn].
+ eauto using find_bounded_t.
+ exists n. now constructor.
- destruct IHphi1 as [n Hn], IHphi2 as [k Hk]. exists (n + k).
constructor; eapply bounded_up; try eassumption; lia.
- destruct IHphi as [n Hn]. exists n. constructor. apply (bounded_up Hn). lia.
Qed.
Lemma find_bounded_L {ff : falsity_flag} A :
{ n | bounded_L n A }.
Proof.
induction A; cbn.
- exists 0. intros phi. inversion 1.
- destruct IHA as [k Hk], (find_bounded a) as [l Hl].
exists (k + l). intros t [<-|H]; eapply bounded_up; try eassumption; try (now apply Hk); lia.
Qed.
Fixpoint iter {X: Type} f n (x : X) :=
match n with
0 => x
| S m => f (iter f m x)
end.
Fact iter_switch {X} f n x :
f (@iter X f n x) = iter f n (f x).
Proof.
induction n; cbn; now try rewrite IHn.
Qed.
(* Lemma subst_up_var k x sigma :
x < k -> (var x)`[iter up k sigma] = var x.
Proof.
induction k in x, sigma |-*.
- now intros ?%PeanoNat.Nat.nlt_0_r.
- intros H.
destruct (Compare_dec.lt_eq_lt_dec x k) as [[| <-]|].
+ cbn [iter]. rewrite iter_switch. now apply IHk.
+ destruct x. reflexivity.
change (iter _ _ _) with (up (iter up (S x) sigma)).
change (var (S x)) with ((var x)`[↑]).
rewrite up_term, IHk. reflexivity. constructor.
+ lia.
Qed.
Lemma subst_bounded_term t sigma k :
bounded_t k t -> t`[iter up k sigma] = t.
Proof.
induction 1.
- now apply subst_up_var.
- cbn. f_equal.
rewrite <-(Vector.map_id _ _ v) at 2.
apply Vector.map_ext_in. auto.
Qed.
Lemma subst_bounded {ff : falsity_flag} k phi sigma :
bounded k phi -> phi[iter up k sigma] = phi.
Proof.
induction 1 in sigma |-*; cbn.
- f_equal.
rewrite <-(Vector.map_id _ _ v) at 2.
apply Vector.map_ext_in.
intros t Ht. apply subst_bounded_term. auto.
- now rewrite IHbounded1, IHbounded2.
- f_equal.
change (up _) with (iter up (S n) sigma).
apply IHbounded.
- reflexivity.
Qed. *)
End Bounded.
Inductive full_logic_sym : Type :=
| Conj : full_logic_sym
| Disj : full_logic_sym
| Impl : full_logic_sym.
Inductive full_logic_quant : Type :=
| All : full_logic_quant
| Ex : full_logic_quant.
Instance full_operators : operators :=
{| binop := full_logic_sym ; quantop := full_logic_quant |}.
Require Import List.
Require Import ListLib.
Section Deduction.
Context {Σf : funcs_signature}.
Context {Σp : preds_signature}.
Notation "⊥" := falsity.
Notation "A ∧ B" := (bin Conj A B) (at level 41).
Notation "A ∨ B" := (FOL.bin Disj A B) (at level 42).
Notation "A '-->' B" := (FOL.bin Impl A B) (at level 43, right associativity).
Notation "∀ Phi" := (FOL.quant All Phi) (at level 50).
Notation "∃ Phi" := (FOL.quant Ex Phi) (at level 50).
Notation "$ x" := (var x) (at level 3, format "$ '/' x").
Notation "t `[ sigma ]" := (subst_term sigma t) (at level 7, left associativity, format "t '/' `[ sigma ]").
Notation "phi [ sigma ]" := (subst_form sigma phi) (at level 7, left associativity, format "phi '/' [ sigma ]").
Notation "s .: sigma" := (scons s sigma) (at level 70, right associativity).
Notation "f >> g" := (funcomp g f) (at level 50).
Notation "s '..'" := (scons s var) (at level 4, format "s ..").
Notation "↑" := (S >> var).
Reserved Notation "A ⊢ phi" (at level 61).
Implicit Type ff : falsity_flag.
Inductive prv : forall (ff : falsity_flag), list form -> form -> Prop :=
| II {ff} A phi psi : phi::A ⊢ psi -> A ⊢ phi --> psi
| IE {ff} A phi psi : A ⊢ phi --> psi -> A ⊢ phi -> A ⊢ psi
| AllI {ff} A phi : List.map (subst_form ↑) A ⊢ phi -> A ⊢ ∀ phi
| AllE {ff} A t phi : A ⊢ ∀ phi -> A ⊢ phi[t..]
| ExI {ff} A t phi : A ⊢ phi[t..] -> A ⊢ ∃ phi
| ExE {ff} A phi psi : A ⊢ ∃ phi -> phi::(List.map (subst_form ↑) A) ⊢ psi[↑] -> A ⊢ psi
| Exp A phi : A ⊢ ⊥ -> A ⊢ phi
| Ctx {ff} A phi : List.In phi A -> A ⊢ phi
| CI {ff} A phi psi : A ⊢ phi -> A ⊢ psi -> A ⊢ phi ∧ psi
| CE1 {ff} A phi psi : A ⊢ phi ∧ psi -> A ⊢ phi
| CE2 {ff} A phi psi : A ⊢ phi ∧ psi -> A ⊢ psi
| DI1 {ff} A phi psi : A ⊢ phi -> A ⊢ phi ∨ psi
| DI2 {ff} A phi psi : A ⊢ psi -> A ⊢ phi ∨ psi
| DE {ff} A phi psi theta : A ⊢ phi ∨ psi -> phi::A ⊢ theta -> psi::A ⊢ theta -> A ⊢ theta
where "A ⊢ phi" := (prv _ A phi).
Notation "A ⊢ phi" := (prv _ A phi).
Context {p : falsity_flag}.
Definition tprv T phi := exists A, (forall psi, List.In psi A -> T psi) -> A ⊢ phi.
Theorem Weak A B phi :
A ⊢ phi -> A <<= B -> B ⊢ phi.
Proof.
intros H. revert B.
induction H; intros B HB; try unshelve (solve [econstructor; intuition]); try now econstructor.
Qed.
Hint Constructors prv : core.
Ltac comp := repeat (progress (cbn in *; autounfold in *)).
Theorem subst_Weak A phi xi :
A ⊢ phi -> [phi[xi] | phi ∈ A] ⊢ phi[xi].
Proof.
induction 1 in xi |-*; comp.
1-2,7-14: eauto using List.in_map.
- apply AllI. setoid_rewrite map_map in IHprv. erewrite map_map, map_ext.
apply IHprv. intros ?. cbn. now rewrite up_form.
- specialize (IHprv xi). apply AllE with (t0 := t`[xi]) in IHprv. rewrite subst_comp in *.
erewrite subst_ext; try apply IHprv. intros [|]; cbn; trivial.
unfold funcomp. now setoid_rewrite subst_term_shift.
- specialize (IHprv xi). eapply ExI with (t0 := t`[xi]). rewrite subst_comp in *.
erewrite subst_ext; try apply IHprv. intros [|]; cbn; trivial.
unfold funcomp. now setoid_rewrite subst_term_shift.
- eapply ExE in IHprv1. eassumption. rewrite map_map.
specialize (IHprv2 (up xi)). setoid_rewrite up_form in IHprv2.
erewrite map_map, map_ext in IHprv2; try apply IHprv2. apply up_form.
Qed.
Definition cycle_shift n x :=
if PeanoNat.Nat.eq_dec n x then $0 else $(S x).
Lemma cycle_shift_shift n phi :
bounded n phi -> phi[cycle_shift n] = phi[↑].
Proof.
intros H. apply (bounded_subst H). intros k. unfold cycle_shift. destruct PeanoNat.Nat.eq_dec; trivial; lia.
Qed.
Lemma cycle_shift_subject n phi :
bounded (S n) phi -> phi[$n..][cycle_shift n] = phi.
Proof.
intros H. erewrite subst_comp, (bounded_subst H), subst_id; trivial.
intros []; cbn; unfold cycle_shift; destruct PeanoNat.Nat.eq_dec; trivial; lia.
Qed.
Lemma nameless_equiv_all' A phi n :
bounded_L n A -> bounded (S n) phi -> [p[↑] | p ∈ A] ⊢ phi <-> A ⊢ phi[$n..].
Proof.
intros H1 H2. split; intros H.
- apply (subst_Weak _ _ ($n..)) in H. rewrite map_map in *.
erewrite map_ext, map_id in H; try apply H. intros. apply subst_shift.
- apply (subst_Weak _ _ (cycle_shift n)) in H. rewrite (map_ext_in _ (subst_form ↑)) in H.
+ now rewrite cycle_shift_subject in H.
+ intros psi HP. now apply cycle_shift_shift, H1.
Qed.
Lemma nameless_equiv_ex' A phi psi n :
bounded_L n A -> bounded n phi -> bounded (S n) psi -> (psi::[p0[↑] | p0 ∈ A]) ⊢ phi[↑] <-> (psi[$n..]::A) ⊢ phi.
Proof.
intros HL Hphi Hpsi. split.
- intros H % (subst_Weak _ _ ($n..)). cbn in *.
rewrite map_map, (map_ext _ id), map_id in H.
+ now rewrite subst_shift in H.
+ intros. apply subst_shift.
- intros H % (subst_Weak _ _ (cycle_shift n)). cbn in *.
rewrite (map_ext_in _ (subst_form ↑)) in H.
+ now rewrite cycle_shift_subject, cycle_shift_shift in H.
+ intros theta HT. now apply cycle_shift_shift, HL.
Qed.
Lemma nameless_equiv_all A phi :
{ t : term | map (subst_form ↑) A ⊢ phi <-> A ⊢ phi[t..] }.
Proof.
destruct (find_bounded_L (phi::A)) as [n H].
exists $n. apply nameless_equiv_all'.
- intros ? ?. apply H. auto.
- eapply bounded_up; try apply H; auto.
Qed.
Lemma nameless_equiv_ex A phi psi :
{ t : term | (phi :: map (subst_form ↑) A) ⊢ psi[↑] <-> (phi[t..]::A) ⊢ psi }.
Proof.
destruct (find_bounded_L (phi::psi::A)) as [n H].
exists $n. apply nameless_equiv_ex'.
- intros ? ?. apply H. auto.
- apply H. auto.
- eapply bounded_up; try apply H; auto.
Qed.
End Deduction.
(** Tarski Semantics ***)
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Section Tarski.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
(* Semantic notions *)
Section Semantics.
Variable domain : Type.
Class interp := B_I
{
i_func : forall f : syms, vec domain (ar_syms f) -> domain ;
i_atom : forall P : preds, vec domain (ar_preds P) -> Prop ;
}.
Definition env := nat -> domain.
Context {I : interp}.
Fixpoint eval (rho : env) (t : term) : domain :=
match t with
| var s => rho s
| func f v => i_func (Vector.map (eval rho) v)
end.
Fixpoint sat {ff : falsity_flag} (rho : env) (phi : form) : Prop :=
match phi with
| atom P v => i_atom (Vector.map (eval rho) v)
| falsity => False
| bin Impl phi psi => sat rho phi -> sat rho psi
| bin Conj phi psi => sat rho phi /\ sat rho psi
| bin Disj phi psi => sat rho phi \/ sat rho psi
| quant All phi => forall d : domain, sat (scons d rho) phi
| quant Ex phi => exists d : domain, sat (scons d rho) phi
end.
End Semantics.
End Tarski.
Arguments sat {_ _ _ _ _} _ _, {_ _ _} _ {_} _ _.
Arguments interp {_ _} _, _ _ _.
Notation "p ⊨ phi" := (sat _ p phi) (at level 20).
(* ** Discreteness *)
Require Import EqdepFacts.
Require Import Decidable.
Lemma inj_pair2_eq_dec' A :
eq_dec A -> forall (P : A -> Type) (p : A) (x y : P p), existT P p x = existT P p y -> x = y.
Proof.
apply Eqdep_dec.inj_pair2_eq_dec.
Qed.
Ltac resolve_existT := try
match goal with
| [ H2 : @existT ?X _ _ _ = existT _ _ _ |- _ ] => eapply Eqdep_dec.inj_pair2_eq_dec in H2;
[subst | try (eauto || now intros; decide equality)]
end.
Lemma dec_vec_in X n (v : vec X n) :
(forall x, vec_in x v -> forall y, dec (x = y)) -> forall v', dec (v = v').
Proof with subst; try (now left + (right; intros[=])).
intros Hv. induction v; intros v'; dependent elimination v'...
destruct (Hv h (vec_inB h v) h0)... edestruct IHv.
- intros x H. apply Hv. now right.
- left. f_equal. apply e.
- right. intros H. inversion H. resolve_existT. tauto.
Qed.
Instance dec_vec X {HX : eq_dec X} n : eq_dec (vec X n).
Proof.
intros v. now apply dec_vec_in.
Qed.
Section EqDec.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Hypothesis eq_dec_Funcs : eq_dec syms.
Hypothesis eq_dec_Preds : eq_dec preds.
Hypothesis eq_dec_binop : eq_dec binop.
Hypothesis eq_dec_quantop : eq_dec quantop.
Global Instance dec_term : eq_dec term.
Proof with subst; try (now left + (right; intros[=]; resolve_existT; congruence)).
intros t. induction t as [ | ]; intros [|? v']...
- decide (x = n)...
- decide (F = f)... destruct (dec_vec_in X v')...
Qed.
Instance dec_falsity : eq_dec falsity_flag.
Proof.
intros b b'. unfold dec. decide equality.
Qed.
Lemma eq_dep_falsity b phi psi :
eq_dep falsity_flag (@form Σ_funcs Σ_preds ops) b phi b psi <-> phi = psi.
Proof.
rewrite <- eq_sigT_iff_eq_dep. split.
- intros H. resolve_existT. reflexivity.
- intros ->. reflexivity.
Qed.
Lemma dec_form_dep {b1 b2} phi1 phi2 : dec (eq_dep falsity_flag (@form _ _ _) b1 phi1 b2 phi2).
Proof with subst; try (now left + (right; intros ? % eq_sigT_iff_eq_dep; resolve_existT; congruence)).
unfold dec. revert phi2; induction phi1; intros; try destruct phi2.
all: try now right; inversion 1. now left.
- decide (b = b0)... decide (P = P0)... decide (t = t0)... right.
intros [=] % eq_dep_falsity. resolve_existT. tauto.
- decide (b = b1)... decide (b0 = b2)... destruct (IHphi1_1 phi2_1).
+ apply eq_dep_falsity in e as ->. destruct (IHphi1_2 phi2_2).
* apply eq_dep_falsity in e as ->. now left.
* right. rewrite eq_dep_falsity in *. intros [=]. now resolve_existT.
+ right. rewrite eq_dep_falsity in *. intros [=]. now repeat resolve_existT.
- decide (b = b0)... decide (q = q0)... destruct (IHphi1 phi2).
+ apply eq_dep_falsity in e as ->. now left.
+ right. rewrite eq_dep_falsity in *. intros [=]. now resolve_existT.
Qed.
Global Instance dec_form {ff : falsity_flag} : eq_dec form.
Proof.
intros phi psi. destruct (dec_form_dep phi psi); rewrite eq_dep_falsity in *; firstorder.
Qed.
End EqDec.