From 30e16b5c3427dadcfc86f63b2b95493745e3a436 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Sat, 2 Mar 2024 12:20:21 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?add68a8e41ebab29d7efe63ae3541ade03574069=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5622810 -> 5622810 bytes ivy/.doctrees/index.doctree | Bin 853850 -> 853850 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index dbeb62dd471d197310e726e8a5fabd7177e403ea..f8fba0e09f2153fc8fe7cfaf4b19d485a6927beb 100644 GIT binary patch delta 129 zcmbRCl6Bfk)(zK8*h~#942_K@|KGTK^K?@YCK!LCxh0gj`GYxU6^#9V<9TdKgtvy2 d!*u@NXfyqR0pqIe!McpiSQKxUHejrF0RTBODVhKP delta 129 zcmbRCl6Bfk)(zK8*vyTSEe#SU|KGTK^K?@YCK!LCxh0gj`GYxU6^#9V<9TdKgtvy2 d!*u@NXfyqR0pqIe!McpiSQKxUHejrF0RR_nEgk>> diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree index 8fac6bf7a03263a0f8acdad29b582fdff547b9eb..79505395bf9fc344057f7879854f427360dadb89 100644 GIT binary patch delta 44 ocmeC1z|=Q^X+xPIo2h|?p|R2C8pHEUQ1;|N6HA!z1e3a8053KT4FCWD delta 44 ocmeC1z|=Q^X+xPIo4Ikar9tB68pHEUQ1;|N6HA!z1e3a807Y^RIRF3v diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree index f5c4f541b284204dba0f10605d70de5955b65e3d..0c0b6ba78e28cccdc59cb9ce108f329c0693767b 100644 GIT binary patch delta 44 ocmeyfi0RKFrVa6iY^DYlhQ>ylQw`5BLD`edO)O!;WhQK~08q0HIsgCw delta 44 ocmeyfi0RKFrVa6iZ05$vmIjHNQw`5BLD`edO)O!;WhQK~0A}wFW&i*H diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index f5606a144a8f2bb044ee8ed2f576cfd7aafbbe52..3dcf9cc2ad82638560d775c182e23bb6ae210b4a 100644 GIT binary patch delta 44 ocmdmgiE;lW#tmVrY^DYlhQ>ylV^q_aq3p>gG%R7l?3xx107C2xuK)l5 delta 44 ocmdmgiE;lW#tmVrZ05$vmIjHNV^q_aq3p>gG%R7l?3xx109hyv+W-In diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index 22f333f3b04daa0fe3740f19383e7d07507ac29d..9ab8b88c7bae0bc99144c23e6cfe9ebd989c95d7 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|er>TLtNurryn&IZ@9Eyxc+=HCVRRH=L3%>vW delta 39 lcmX@o&UB=mX+s|er@3)bvU!?en!)Dj9Eyxc+=HCVRR9R742J*! diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 4e0942eb7a4d20ba4ab5d7f1d5901c0fbebb0185..7455698c215b55db958aeee6565ebd4eb51378af 100644 GIT binary patch delta 859 zcmY+?ze~eF6bEoFnFK*fL7Wu*3ld{`cObNbOIJZbaJg$pk?Q2oL2whn!KFxCY_<4{ zX0a5!t_24{r*1`ba8_D$bMk1Kdw1h|$>WpvzUjx=ew=;i4yJsEI3aOzxYHYKA}Axb zVXZ;g*?YTyr$Lk%qJ!G$`;&Sjh<2OSDwLhek3v2zu~+L2PNMyJ^a?FQz@9i;KtNzR zCZfkhqzu{94NS%J68Zxq93vYg4GB#o6xBdOh@T+mAt17+Bg7Z2GMZBe;R$jF2;l}o zxTxN12z4h&3lQ1U5$cLojHV0eZCG-y;uj#yGZ5y9%D09vDr6#gl@K#eB_G#EXjyH+ zl2er&OXb1LQ?XDSxfbNXC#SmgER~1s>05ALbXTm*PPzrf<5O+d0ioE~f?{#l&=8vZ zS5e~%5ZTia8XUKqR@83VFR8k_Ifd$@RNzzAx!w@gwF*T*|2_Y V65`g6t=5-4{mXK$sQlXH&wp0~3qb$? delta 859 zcmY+?ze~eF6bEqbG6{l6L7Wu*3$ATwE+DjnOIJZbaJjq0BGt*EgWx8DgG-UP*lO_? z?P4i-T?-C^PTh*=;HHAaihHC9L@CuZj%a1}{m$cd&oJ9Kz=oMO)K&d=iLX|77lU*0j?j$Lg7_Vxp1_%>Y3MS-X-9UK! zUq$sRKvd5}c;>j>z)`#5yd+K#pJe9R(P0AnBmt4>8)vPUOnC9c+z=)_d%`1Z WO^&$v(D4>k5Tu4r7@xTYsNWcDbTKRtbc-}p^zVDYjHiLc`E84|jv=Y3>jjxW0nDEZUZ zQth<5oi+|$421<+myHSjj*jmC@57mQK)Z97wM7tmM9#~mkzJC?}t>M33xH)JB zz59>g??>_9G5mKN|D9M~#!!tXWrT2em73aCGPB`TTk+EApc|BfsJz8_na;uRx@3nc zoi0x?+Yb%*w}b7CpjQdoHMO<_U=utchvTzRzuMp#xmpo{^TW0B&EW{l>M&0dNkIQt z>GJy+%&E^qaa9}!y=vpIKGnhS_C^@g!k#*Sab+W{cY0x^*6Va@owM!HleOW^U^1O{ z4QIC!gWGX#pwgB)V*AKS4)?*^g5kx@&Spm~;fkn*p8-)FwT~Ob54z1xP>T=8akG3j z+^9D@XBF;`uCLWM)>i7PVg2Z8wZ68xUJo{oSA(UaN7h%@s;kv-rG9j!UJKS&j&2+| zv0ANgq{@KDwj6JRSMQerF-M4jwiz#oE zih}FGHpy-@#AeI-MaU==t91m?lK#JC-4u0}Hn1y8tsrVIMXk*x3eO%E)Z7t4P~%c% zn<3qH%H8(nL%rba$$oEu$=qNhRx506fOI=O5HRKwG`kH*LLemoGH*2^u%eMeT=sjA z4x=}Rx7fz^pw)#Sv2C9izRk8p?P_yS3oB7O>Q`|58tjL!@0{oXZnF)^uzRPt8&;#B znRNQZ@Gc8!5QmkZ*6Ls=%0nDONYDTR2RzOl(bKQpflNZDyLSWD3+rJoY*$rJ@CH#2 zDg=kA_wf03sUIQOgVyL1W54#OB%p7CT*zI>S%8g|0>OFQXaTWzC1^&FqA}FHR>YYket(fZW;wGI$8OQ!@cVDkEJ@dyn5`pF*gsPUy}xy5ODxYrAI zECkhjYgV)V{C1}uN?;#E8}`y5?%1u126OWhZHQKEK74qa7#w3{`d}=cSa{! z=G%7dqXFHStYBAQ2Xp&rfCrw1fC>7YF^pV0{gF%z(?IjTTt$-SEgaZaK zq9riSCO8!(@tZC@oJDYKa43-QO^Hfe0o}K{edv4Vpiy4@;DZmAprAVK;W@=VK&NGh zh_Kzk&^H@BxzY>I45D5Lb%CbNXm|lsbw?qtHgG(`CS*ld3Dw)l{FOdfZBnwu<$$Ct zf0Bn^cVcaA?fCNg@ndU8){Y-rT|cr8seISOXJFPs!r;*QZ}R!^)nojA_4x6l>#M6r zP8`SQZ{z26d-TfuX8>Is%ueA6<6aL{X?b~lZT-aZ+UkkbBP+*GEN6U46*YneP4VG; zd1UqIaeRH`=<#Kasa85RCZ@{6gUxfkJGy%8#L<(L~>Jqx{6&~UB_3e>)4W&6G!ps z9o|nJbG7j+!SJn~PMaY(9b~CHt0N~)9D|Am9hjhf$lL4%wMf|^&UYtPSB|c&9Rpo0 z6AwP*HG>_fs_tMXjvhO4{KU#pDB{HUot`Q3U_m1dnw#N9FK|8v4pvXBui{XwtgL2@ z*x^A+eYDO~w0``^(RGrd59zI-9d%(3j8XCW^6}O6PC+#p+db>Vl>nm%pK$h1q%T?n47SAYcu&dOffcfQP80FYe^^Fhr zy`Wv|v{G{e-j5tVzH;QqQO?b`(PBzap>o!=O8Pstjstz1Y~Uu(1fiCvzQDwmj~>PR zj&n&qLX11T{`fe@)>qb#uN(*7c|3dvE2eT0i#q7caBc1A`Y{mk3YcWZcyvM0c67f2 z+rW`p0UdKZg?J7SLW*UvMC{e-iDT<)Cx8=tqxRQ+1C|EG9#X~KE0~)njvYA;1g@d~`i=Za#)t*x#dIS!7ueC)&;cQd_a8oI5C>8~C;cKq1#3GB-Hv58M& zh)FOLEZd#a^0DJ<$5+;mtsOgoISs@l&@QHmu&usY#N|=D7M?5jaEc%y5|o<3%b_-RDMsh1KT2gu-p#M+FwU;Ff7p|alLU+ z4#IkL&T2AHaIe_u4ElqO(2Dc}wXoHRm!JkzPh-1!&?2rl(b}mW>4&G^_mK~chKHmB z{1m-*1x9~mBZy(~EiJELUa&u*x$jiOGk8VwrH@oTy#BG%FP-XO-dP{6irH*Fdg;mD zxtHE|c;%zfZXc~x`n{kUnvd#d+Kp4u;WH1fpWS7O>-?x4L*CmDkACElm!5t9%69E3 ze0WdR6pvJz!D~B}?YI)civYXsigUsC`r|Lvx1W0!I9ba2?r5daIa}$&F#z=s)_O;2 zrBJ!9s1L&0;E7XDpWb+Bm+y}`6As!mL?KYGx4Z{nmLIw+_(cz@|2{#&`XbpHIo5;)9e*gtu& zve69Mrw=};=BVZg7fcCJks=cnr`nQQ$>EKlwyB(88rXZ5f(Q32%si$74Fyo*aTdwk z|NmROT2&h?zQ3gYxA{Fj|gd$sh= z^Tg8x#WdDSaet>7o;-+P$!64sN3Q!osl0ro7q;Gg@WBs*ZFEX6Le}&k5Z|-ZSQmUx zz=`Uxo5RxCsMc?sJb2{j^1)Igq(AoLL5TB%V}opT5aMY)P+C!=Sh`4&#M!fF&1w|I z()Ctb(uA3}T9BWGs%EyKe0C=fVqWn2bXeZdIxEge!O?+Z7 zyv%j$UxSz#JnN5xIXpu99Sj}Atb&bIq~#4g74uKy;DBRUgLb}MHs9(d`?34)H=u5G z2mML_8+bGr46hEmgN;fma?*I>JX~jur}-!17x0CGXz6>zWE2W6(>e`&>@P^HvGh*N z{Ze$p-XO;Ieh|6(>5@J}b?|k($p5Q;+E3NwFb;AR+M~)tTI9&bkYfJ0lbG0W1M?bdn#L|(EJr=*z-gsAQ`2)>oTTec> z)j#^tkDd6y2TnhH5)!4_gLQ{VUpU(oKfcUqkR2fsl%u39VS8kM zzd|Xb(03v+BQBGF$D_b@xkdI0T9rUhaWhH|_?uqubvpg?<=0Ky`PbpgI-h_qL156m z1^XI@6dLbq(9D#|BK9vGWtZtbT>9{Kr;+}#O%;{Z9;?xtc2fIW0YXwe#pBF35es}=GAU2>FMvW6jaHZTr2xK4F=xG(n z8eUqCx;t$o6dc$ZAmoa{={Mi#bWV>3c8F{A5a33g8ZFM@<%53x@bSZlc_$M*pgnu^ z+yRgZ`44Zn?>-r!f+$_}bho2I>B&AEFwq3}BgS8nE>~(7Wd({x=GP zTZqqS%MKF34zVBRWhI2E1MM(5v+7rzf%LD}Db#_x!{+Q)>dgSj3dt@)j6hjNs8wTp z_?GTYvgj+@NR+M1Vj&y)$}K z^}AaCTMHhnOZ|L9`e*F%Cd8s{yi_EGv!T~(*#UWhzrm{LLTEmDp~2!-#Dl!$p5{AR z!MUh~zDy?xDC!ye!yjRL6W=BiRzkW0sEqZ25jmq?OQBf_&wv1p)Jnd)LN)4{CMe$D zZ^jjHWhQ+jzh1##t03MUe9Q@q{V*mmC_D--H@+gq9`(-*RNO6rah>yXgkgs+3X)SAa1X%v zRW?AQ(?nF%J#$wn`A=&>asS48)(wAAPZ9| zT%&spjUxw)3YN0%onQ6DLEa`|#eN{O>vqTpbTW%++p2Q$H5UVdY$JNcKNt%3z{~a7 zyU2hV$^zLk=sF~CKZv2nVC6sTo=%w>Jy^+A{gN_;z{hzR#aXGT0w@%oG)nr_ zxM;gv4Fhq|Nn}vtjmCKcv+-Etar^h@8XvTOe_!Jf^Y@|573{tjjL&s=qYMDmsxs&z zh803(Wu8l!s+X9l#&>B?20YaaW76|Rnh~n!NIFUr$D1^2st4y=ZBvGT2rmY>4 z(rf&~be6O&cgIbO&O<{Swy&w-P5YI!QO&N1VwQ}dwRlBk(nek0X}?L$K4~&)rVV@OD~u2d)Gssa@XtU58eC5 z%dfop$}6ufZQftH=apCPy8E7c-(6Z-D&2K=sTINjUIJSworN?GOVCFkWNI4Nez+!< z?z?Y)>AuqQ3d?ax^Y&Vads?a^y`U77o&gUlqZd2ASLH*LUgvM;wL?#JDD^ufkSGwx zuC|{{`@8{MdgO%{N(N!2PQBCy9L%s|I>^Ve=D76wqt8D5f?D|b(u;OR9~VF3$KhP+ zH)N(lB{hD%wBKS?=EDyU$tU-lVGMFX9C5!?ZNhh1I;odaR{!Jz4>8*d$RswUPoU-s zlcPkPyuPDw+l;ou5@xEl3of5S8jEI-68;AWGDkCmnk?Nqr4;-!B2B%W7c@aV+-zD< zWzf#4pxQV@gq2P{sJ;d@@NgWu_uh9aIOko05r7dB)QN$2tKD8IJp%o81Npt62)K@e z63Me9=d~2YSSA$nuvRX8Bx*KG8)2zSe=Fz#G^B>^H-diYEbyRv?#If&Vg^msr(Htq zeM9wD6a;5K)~!eu?z9l>o13nh6d?JseNUf5fdkg)%oeYavyI9d^av&@TZz>?Lax*9 z->;@Gvwu$I!m!8vSO|_1aucwpbwtbHq9(5)1nKn@84Wia`+L9M7->mpzzU7>1#OlGvPd$I?u<_Bw2Om;n_30 zO{K7edIdbI;8nDiz~GpEq^1K(gndr$8i!Nhc@oS<7)lyotNh!j)9J=R~ z_C5Eym{v3fD1=&8|2QPb7fcd)+$8Dt#v3Jf;_^>DRTn6~N-tkvmg!D7#Gw-C?3-Fr zxjTp(hn&yTeK{N9X@Y^cbobrvVB_;3d}oscx?0Z5tFNX(Pmm42<^LwWpIn0QRq0+z zVM*f_uKxHV5JqbG+!U8P+*`WaJ(G%v4J^bkQp zIbfCGK6Q2aAeh>vE!^@Uj!WWgM}{t^6Dx=Y#r9a0W88>2v`rz3KQL7#<=xp*KIx-{ z)8k@g3qDmjXL6#UL2)C%z@Jy57y^}1UW~p;_QqL|VFufssHQSB4)Z1sTb1~QaHW-K z=jjZLi)@;v4!+Vpm^#)@FHFz*S2>3C4i7EgUpl-Z)SuD_oSskyMvd=ieCNO#84{9^ zwc_fBaXw$7oX?4^B9}&(MhP_CD^i%vXn^p$Bp`S2~}QUXFo(k6%XwIn8u zHd|DL+V$yt2CO;d@)5g5+Tl6qDQ#X{N!sK>iVQ4I(b%yEu2Cjd3w=<$@ZeZkw=1v= z7^!%Xas?t`R=bC{9-&tzJq0kD1}qz-_ize{%T5ikE(tP7Yqwv)AFA%wiPb!Ow++hI z+PG9f!(+Rrg1+r;3pW!~-}kO9h4GOkY~A5jt9iJ}N%A6(1!@9_K1^M02Grh%4OmaeXDIv+zet1(93BZR5zP$h>XIU z!n`5GmpZWNZhilUo_ebE%)?KgD!u2_(+@xK)O#O(^wH-}z3{?=BRho~ldpAzs~_U( z!tjQt9)9Mr4?X-CK7Hz`_co()r?=^Rb|r=g&*88kKnP25U$+KlJbnRHlFqM@W~<_H zTU0n|co`Gm*iqjrH1`EBg?|>g?6_qb2#EaxLL5Hw(*gMjw_h2bra$FXJ>G57LO+E3 zt%Y251SXqw5W6wb4NYPdj{p^4-=7)ljip^ z7Kb0IcZLlpTn*udU!Te0Opt7%5l&B71nQk8w_#p@=m^3UI*@ zcU2NU>9siOQM=xue@b0S;hEK}K(3sxBNnlOoUq~BpM}DKb%vOsbzsw4fZ`-Kk*|6h zSDwQrWv0O8w*5wdelUY-oTvj zTTH7;rT{J5J7k(nI7HvzmNqgD?`8L$Jp8E#-}Ui?zh9+#X^jj$F2*gJb4l~{s+sX? ztGiIGF~Js2QH`NPfGM@cblQIoH?NuHhpg@7(`%}@2$@duwP3H~t!L;D8O;Z(yul79 z`{{58$EK!seRvr%Mi8y!D%IaQb*u(_3yGeWQJ^9{65NZbPt;b)qx+ckLl+{i-ZCG( zTA@paxxQESksTP+aLo}469m0k%G;};*kYm4o2%WfIL#-6(+1qNs!tXcZeZ(fc({`t ziq7W%JL3oqHnFPCX@r~fIlMk;P{gP%nd-JfTfuf9$EEN>81MP`y|QL)zR?LSRNs9Vo$eHz#cwUQf>W-viI_EnJilCXUk?8J7vCF!Pz zGx6Qwg)2$7tCMaj18IOoPQH}{ z3nPQxvC$5ME^@Y#1ObB-2WKcZ(UsFG(PPuanWkh&>FBa)za|++f_cMz6f}=x z!;-b$mUN<_!n_5r7lxL>bdqH|$hX}j&jTv28SthAmRdW^HKm{ouUQ(zy`>FYjBZ4{ zhLU{Zpv%IQZ?3i9n1v0`kQiz=xXnIm?OGZzN*SaTMZX^JiK@Ijt%92v6;H>PmSBRrz zZg#x8%y_mR*tS(!Dq^F-z+t+L{m72akL1dPo}Z<&NDK{p^p@yDd=O{S}^*n+$j z==(iqt#36wqBgv8&=oCeT;@CU z8VyuJjVg~os|KzV5MGGGUHuLQBKhR?iu*O%5?bGLV4*q>E^m<5z?gM(UQ2WYiOqONv=fsJAwai_VBygY@At^44ONHjRLzgl-!`Sw&1B*VqJd>Wr_ zx4Q8e_S42^Ccl1G^4HH!I($y@>*pqa{k-I_pGf}tX7btR+h2z_*h&Yq$+f1K&~W1m zY}dvxneG=gzSta@#up}V|CRMsHNG+V?wgVh|2p~WziE841@SFO=Wn%x3~x?OHs_Y` z0NZ=`wu~;=5v8%(o=hz;OnB>aV0+t{ZhbEPWj&BvpO^aACsO}<6aPvaep{cP{^u8@ z|2f1zx4w{nXr~|DrRML$8~kZIo#79tF3^@Ll9onpaEKY^eO67oM7b{U7kHcy^G7z(@S-|flB7TZz_ds)4c(kZ z8Nbe2Ah1QWL5v{!$XSE*(FPZl3S1h3$Vtf>!J$%@$WFvp;VeSh`7;l{(e0c(F~Ozj z5I12pkncj3G6Lmlg$HGttGm;#tWizIniZ#^%4AB8-|$A&N9ltsg9Jv@=GCqzf7A|e zo$3(}Hoz78P`6n7!5Kuh63vh*Ixz*N--WN^KVF%zU~W-hxScE}A!+hzbDhZuN^8n( zt(-$3N|bGLg_$74?IQWq_S|dQaeLHo!9hg<49;XO(gm!WbgCWD_B;<|U6LaPhAK7Z zl2K&mjQiRMy5aP~ktOMFZx zL=G=mFCT$Bz;dly?MRS#DAg9@%-Oz2)|b0U->qkfi052vB-aop63vqdL~UO9k!e8Z zdikC4s}CepdXt?1B)Zda>vJx4(C(}oaXnP;6BW)q7me>qSnXEKS@!vdiO(eSL24+R z^SZ)GqO0FxCt^A{DzSlbz3qgWg{_S?Se=@KX;07zhYEHbY2cD(=ANkQsUDhp;YzPp z$#Rx9l*Ve>X|RySa3WZ9#jI!RAQ$%zcQfARf;HF8D^z-v3TCvW6!ey>vTywa40=0@ z+g)&?)x&cv)vXfk@s3n4b)C#y_@J8Z9AC&DQ&*7*V@L|>qQK0rz1TpC5%h3o3pD~{ zO*N45sEY8EHbIN+5^gIZoutHdY)42BVX_dyzOTOy4k%Yk&Yv&Yza!D7u0Bz)aAmrr zoYv%__m|-9fB{#khhY19q7zO`2mz5crXtCET5&)>^T zB#!-ZdT_WHky6#<2l}t(gF6#CztV*@8s1?defsC}=H}AJKK#Mj_Qq?^eDDL#XD-Ci z@WJuVpe-!vF7eW_6DN+Nh{VxjD6w+l2x=p&;4Y*A5Y^5nLZtCMjqf!(z4cB~(cKOy zZM}>CxZn9@FxVJgB{4o#^$>oYCog2mBcp!$7jaF(;vQa#fDg;!JkwYkUM&|x%GTR_ z*>l?OY>JjPZfM-J^)(#qYx&35@sF>^AM`9C1)bMeM3Xmmx#~CE2Q6RO+)xn?4c|{g zY{^(iK~t5pv_)T3k-DT&RSdF?Wt35jb#C%#_yHdvS}sXJ7az2Ak22_qO!-550t_;* zhn#m6f<#_E;)34Q+WJ7g`Ps%YE)&B2T%(#j8b0cqpmyoA_Ky#g(_AKdgPZwT9~g2r zTr|RUBA8p9u2c#f+l28xl(%TC`i(nsOCf5->Fz%-#}K&h&upu>g_f?Jmf zsRT*AAm7s6&SkfAnek{C80MfTy3)$nQtBVvT2+-!!FQW*Ra-Zeb%~$hGrk#Hn)S`l zHZnICw+{Q26k!KGfbOd1K*0b=W)bHVDGD%I3FU;Ygc7K`9;n|Yo(9(YeNxTK#l{R+ zGnIgb@Aj=yxB8H#o64+t%F1qVfX7SY^B)aA?gN`bo+)AG8^rBcHXX~S1A5b-TEaVn z$|2{}5Ok^{^h+pkqa$%hWel={Oj$RT8#~<&WG?QI!I+z&cUhkt^EE`TQ6-jYylII9 z{ZN%O1(Riw=HWY>c6un(>|m3k5{fAv1J?f0oQI|!bScxn zJQ_y1=ub&+c^Zj5|B=tHNK{=RwH#`0Ex3h9sg0625^fpD73 zxErAC00>HB}A-Yx`fL7$RVm# zn9sDN3d-?$Vm56*2y@Oc!D`1XjT{ z6M}~;h$bjStCd+91Ybb01T9Ju6FG@0K1aVL0K-=+mswBxD8g)u53Q!H3`sP|(99hc z>I304qtsysNfv&>EV#fv3=eSA(NKl-#w|&g-j+rjVsf!=^ewIes|XwR)OJ49-M|l?=o;uY}1!L(|zt z#=3mUw@~}R?$AtJ8WP=r^GXC=h0_O2H{l>{@~?)>+(S0SL1fXzE;K{~W(-Lw3i0rI zx4q0_qr+1^?3jb$TaRf2At^qp_{M1X9v>Wx-~)l5%MgF?iP2nQQK15i*r8z`%=F5V z@}{`<3Rf+3DM-W@d~+NZe?H*jeZVkqz4u%dr92jSRFPDvj_MP>dAmo^H)prKjIyX5 zNFZ+@+_jZr>bTOsSV5lK6+JX8{X9mCJ+$zyi9X;a2XT z?y_@-bUT;(yetu*Bm+`5&M`dT4S*D&4t0MCp(s8LgM)*IA`-I-0dQ6kUOAp|U>y?h z&E9Di3PJn?Hp%=9whbuv`H<_80XR$bjG4^^hN82AQcjt>sEdocbI|fx1m7E8cTe~dLW776=Hghol}|Sr4H^w!$~~*o zQAV)62}7XMT*J}0&#LAre<2bkYIt2uy~bAOeJnfzSwx3(Nji6#Zs)RGC^eSl)4nCU z{e8gQ_A-2eEo40agH&Yv=A?Oq#|O+%G@ijkw+tzkOY5g7bsZdVSzI{83xU8AQf3#TUB4ODKB0}lsog>m8m?~xkU$@ zxEZ0pe7TWLaRVNtC#VgK9bk1)>2X z!OaCePOMfq)%z0p2DW>meduwiBApk~z}aI-^?8G(SRyXnVjMj7n|u1EQ<*g8Onk1u zsbfw8#h31yvAQXa9BTUD)}gYO=86hQOl>r5=AtNlFmm@a-5uUmgnU#~3xU}p^z3lp z+_9X#+`CM|7_ej3Pnz5MFp}<3 z-d1Hobef5mM5mwJ#TBscWB$fnQ+P?|I1ojp_(8+3W^6*si~XTJzgn_r{j!ukah z|148j$v#hRH{-~wF_-$C3e}Y0ysV)p*ZhOAE99fV^#u)lUK+&&K%)|dos&>ho>qoU zR{+1}=pud0?iN#-nEog)*fB){OV*F^ndkJ@*(q#xm^*+RQX+?LW@T2ugPRfiv{db5 z3bwHv)bJ9uM5f-Zc4XWW2uC0uco)9s%{x&@%}?$?_7)~*s zj8xw(Lksx%Vv#0RF4x`r3pL+Pwr%z>giVIFO9Zr)Fv{r|2^KfNuDI^Te zvv)^xwX!O6$N54DDu~l7hl|Nvnz7=u5A3djGcEHnbbx{gA;yheFmS?)^YSGSa8}xa zL+C!@b(&#b1>M(*7`jus30AasAjt?!ECMUfaVESeDFrcGm%Aq21fi(8G&A?1g(9vQskv5{^?|XCO3_V{0%tri&a4(` zq%$juO1WI5nsKfs*qD{LCW%R2r0JZcmSil2xs;b?BtDQX)r^M&`vaKH$ldX~M-xYZ z7jDvAj$&aJ-n8j#50 z5@0mcZ%})PAGOJ;DU$TPx6d3A>sz5;GDdUYs)-+V)n4wdi2aJ8MUUut72SLcErX;XOV;rmf7kn>HYpC^7Q+w)xBl zGKEpo5m|3cn%}f{e7zhr+t;Lhx2ldBYY!+_$tu)qKc~jdu{H|UB7Wv6^sl7t^ zdEm|o&qayTx2%29P^gf{=XHr21p2_5HZm2dyX23ss@3Paaey>c^HjU4PWsqr0euOc zT$De|pzCZ~Ra!)G!831+(WBHoibU}G!2B5~IBPiFNFi3&Exf6QyUJY_a8tRo8EN9V z?htgS&;eH@gGkYxZ^u(-OZ6(F@~G(l(DpKJxjAgj2h?dUBQr1~KPPvA#tTRnPt`{| z?&POTzG{GVpk5Ll)Wx$5;3AUW;1zxaC{#3hl%8rPw-mi{JvC#G2I02Tv#lr$YSyCT z!XaLqW>}bM_NW>Qnkr!Ls!Uto{-;)<87=eb;1LUZ-3~9VqEaLania8FvU#{~9Qdel zg97({O&Z(^c>1c3dVJ_lq#!-(o>;u+BjGbePT`a*(RqAaK;)Z?yZkv~O)P`vX1mXK z2vCH!N^vSzb#GVm9uE^hx}Z2b^5N&oN)f9#gO#Uns1BzM@xXmaOcdzQDiph4fB;ip&iQ8KS~(LzKZ4tIH_Ru(waw%X|e zrsHI8A?IAYAPan$y3SYh-a!Offq&g0dO>X!4x;Ptbif;kB z3D58GdcOAPF51TZcv?d_T#Y7W6AZ%HxYG#|xaP!dk!|YF6hM$bj}0Q^8#ayxkxNZZUyymdAM1;wv-$c!3h37VD!P8p)>_GnKFt!SR=NM;>U8?qTxlk*fAZ;ut9cEkz#(%jclqt zI7I=jf52UnpHP-|T;{Gf-MuV1y%fd}HQ<1+D5$E`rtBYx?=h-|RA4-sogyW?sti`a*ds@JN)8jp(K_>SvoY zjRJNgUQCPdd;n@?xVI8^6H}scj)qr=;0I<{#l@=v6*xfR^RtD#ymXajz`nJod*CYd zCIo@sQp$^ACVZ3j^q4W|&A3aQSPvI<+ui$w8AzMr6a^BX@ao_Na4%-1&gb-|mF1>P zC}G&{w2<*-uJ&dhWE~?{!>V0$yW+)U6+u_6X*BJ1ELamYM-$?GY=*64UsH6?M&l~T7Euu8Dk$u-4!Q#b2)-5k|wX4e^T zJ zkg=4zJ6XfYig&Qpb9Naa-2xmFabZ;+qzzhp#;1g)1(9z?=^i?3LKzZXPEur2&_SVH z>!J?cQ@SfBLC%s}epxt3e&A{sRm3Hyve8TAWfpiv8NQo-)J6@EqCMhMj2r+FoWWZMDfvyX=8?~P9n&+7xFklRw59i=u#DKktZ1sbZw(X z19_*{1(i4ZB&=vFkE2ZY6j#H$Q5Uaoq0X*I5WJi$I;`Yi;^`7=yOBnrhs*7*W&5+d z)v7o(9AQDCGpnB*j_&pL=kY+d9d9y+`gjEe&W_zUZ} zXeH6hfbEF8Pe)yQl9$3p!{h2877*mt2G!U4vu?dW6;{06HwP;rkll!Q1DFBr9i84h zt4~k8L8)>(?skbt=i1`P!cbF}$NF^@6oY=8&+F2{!M7HdHBKbIs|-B4rFl8wR!g-> zY-~xFQTOKU>?$N`gKiTRJ5mnBYEWih1@9DrJ7w)juBpW`*l$-9q6%!z3th(B!~^MpX)~mxVa)LEqAy<}xmRs320lBzO6a z4{D0$+|K2ok6d$T+DxwS#*vDwTIEc8wJCdWeY3KSWn5~4j&E*^>2vMnoY~s5Np^<27A9LQKcmnL@0*%`-TKv~4FtvTR%s2-%xuGj zVjf`H~Nxpc+99_jK%|_R*yh+=ByWC7#RX#9!LueLUBlE&L-_@l~Ek;Qf@%R`m z(7X|tf6ZK3e7nb6%^rFs#Wc1EHp(c-`R~*0A`w&Mp!=bewY*>#u8{|qD8%3k&!!?+qqoRfhljq&BZ`2Sn(NV_$7B$W*LuXhty+O^XglYVPb^& z7{xmH_N~ilmV^UUq5Y`Z^5RF`9&cI7jAzzKrSYDOe2;IcJh*f>Ss-I*N$q#uk;`&k z82fWHJRt1j%pk%GsblZq$%-Vdbq=^2NMvD(@ ziqO;D%hRO0m__D}VLBSyyb8nP9bTSS+d&~ZRM?d#t+PVA#e6`duEK+NQAC*m=m~UT%9i#v4N6o?J)j!{DDaUZLY(>Nt&tH(ECp z4M&q4jFfsWA!to@G(4-C3$VAj6XlT?PHR&SmEl)Ysi2E5?WrCtgqo(Gs`j!DbEMDm+2guf08KrYu*eVENI1=_>D?{_`LY-HL8BJPpY#5f_Uxyh`T z;(MxuTGWE0!Q6XL4_eqddmz6Me4y+b-xIa9-iD9+K1iK}JZ&_~)_`LIZUb;lug;$b z)zNW#D3e0UQZuF7elj7J0rM7X#b67(#;GgYedOS_m*FtNw7r3!0=m7V=_#j5>Y`Wv z+sM;77i+jz4&g?I;}vei6l@IUj`~*YG=us<`t!z_O)fo7l6#FWo!Z;Ln{l-cDoQeg z2Zhj!Ttdntl`H~m>YCecQ-m|_8$cjnqZ1=RG($Vf8`UAu_zcZwUs+hL5@jiH3%Om3 zC1c5b$2Pf8Q)m4vUBcR{EKV^UatS{pHUbZHxjEq7DIAwDmjSqE!$(Ojw@6$4Cg#P5 zK^FJcgi>4G8kq@NQ}{Qm!4-{ZfA+2pTH`wb&LlA`8;%uH3SDkLC*+fsKv{-bUSL=p zS*faPzrN?2PY$z_ zovM$qk-PT1BbCKh+Tpo=P)Dxho+%$;Rb{n#*?1x4quL!HECAp1{A}D@H&ARG^FpY@ zCE)ZwW(xnC_seat(5nl&TqTz>^+jo~2rD46wVAC|F>P&o6-&zmd{eTGWvh?aM`*l0 zlROG^WK26`d2v?dp59P2>*8&P{KUA~&mFc*QO!IF3dZG>s_pB%3hF!#zrwUL@e0@L z14i{Tu7IUEt#9YjJs`y3UE#G~^|-C~$$&g8x$Ou{=@{F!mN{-Rq!#d%uSM=iwb4;3 zxR++K)lDbEg9WN2<35`U6cTsFpORr?nP%Van6@&qv%ulJY*HeWzOSW4o=i&0F?q!l z9)n>i@k;U*x_7K8jxCOa4Ixj~nq0w1NRHDv?u_bsX{`tc)3@|$A&?~x@XVDd<5&mt z8*q5~g$7lASk^r>zO8g+LR!-_rIe8YkLc`ZIBQ@=vmc`>8im;u`pa}iJ11tXMpqNE z8r8`=>{CNL2DypQ!a9P)9UIqO_slsu$dpq_Zr(^`ngRN7pYBmcxqsZa^_nV<_s|E( zX)Yss0k_ZgCe1|cO@?D>iW3VDo4hTv*S9}vyizhxUX(Z%jDQ@A$#}0oGB@A11^gZ7 zr`3c6<*VObub1JvJ^-eTwP2C0n=iuhHXuvaMnbjrB6&S)1vsPD5weSC6o643^m@#` zHOWCJ50SwY3jjm%L#G=feWZ&=B8)W47OuP6q$1mjT&#Caoo_>34wHIXUcFquWYw0G zH)s4&PxERQWOTlHXGkb_Hl`!$Z?++t5%pjl6fft=qcTUImg}I4esa0RhrRK%90EOU zq|q1^-fvpuJHP2?R`kGY`SzJuug;(dD!*VRxOmWv@RXEPD7nUNv|QhqT_G`fLrOts zNPLlD5md84{@Y&PeT@{y&i5mvC1Wle_g2L3i>+@D;Gs7;k zUBV^tCg6b1>y(F^UKyhQsf|I@RGpX{Ozpj5?#>zEK6b9BAUG8v@t-l= z&BNP7L31*UKf-e%`teW((~R2n0w0!k;vF)u#XLRO%F z6nReO0OXqG`%qhZ(6X~{imbG|Q2GDAfT#C|L0L7V!5 zhYV_49VD7%+!D=ZFq$zo<9^FhjMw#@Mht(@Ya$`$6mto>bKYujCLA!5GskO<_84N8g zx_q$GJ>Z5wdC3f?T|xR)7ElEmULjp*x097xr|DSUK&AH6IJs7rxL4AA%%euD+G}X; zLgTvd>4CWpozK!{Jre2-BATa?99^{Bou#iLNs-wsF@-A4AC11q#1^lFVmQl36Z{<| zd5{Q&GW%U7cD(451O@4V5;Mcs=JlW!1dC8(DzufaG8hW-Ejfih(@{C)z)fpXo@8+u zUMz!w1C!w-NFPz(?9)APHyIw~dF@ix`C83T=^X9PHyx*$H^SxV9QVQ?m%rzN3oqdRGP3)ok=WMe$t?8@T46}OT?=|ONKvoW zvMar^5xKC)PSaY8H&sY-wueAw=rkFsnd?1)ZRRlkW4>Bz9# zGjBJj2D$aF?lffRbyJ*Q<7zucL)A+L1+3mWQq3b=ND13=XZn-(WQ1sw_9Bc|W0(RP zeBuQ12&ueySm{rMD@z3zx@m;?2V=1#Vs;8)zeF z0`=aJvw4kHnGq@2UQMMPBo&R4EKG?U;Wbsu3{`}|yfI<_ft#_t@T~A~ueeILE&N4nLtCuVVR0SahnMqYo>6eN!DLI#sBz?a3XfE$)5x`vAzA+9mt z9+)LdT{_M>);F3RTv8tm8@WutV6r&MF_rXdBCU`dz)SaqSEi^;zwhJqskz%f^Y3Qe&DTeokm9i zgz3aksyi9lR#A2pS6mnA;#{7uA=PJbJ{rdK-l^9{!Ss5TL7Qp(v|`9J{qB9;k1`p5lYopS{Hd78oDS<(ZoVg5lrZH zEOM0MLyoEII|^>!REiKvFX53nueDczW6E2r651T7o`b*0sts8C>I;EAEHOJ}b8_oi4GiKMu2AN4o9Ma^?nTt>|n$Hyok^d*DI zEjlt@=j-!*#NZx}CHG2{cdH!7OWEy=H@nqaqV8|>iD_?cMb*88YXfmKbEUwNn&G+` zdfC*%E^4E;V+PI((2tHCH9BW2?-En0ArC&FB-=RkyA7Z%WxUl6sC`h=23ws=`%e+?lC~k zon9+O0c!Xy_;P0#7F4MHLtd`5oBD3rkhg(ntQF=mo_Q`no9b;~^~%^gg)w_B+Xv0? z9PZR32-E`CI+)o{#q*_;1X;7UppbT=r*BAgOk(GYLlhqd)kB!mb5_k|RqoE`vMRST z3LR~SNS23T_KIJ3oyqElJl84Z2IxCA#x0emE~w-@I;4<-z|^BlA0Iu#XRruH#fZy>P% zP4;^`cydAUsdg4h3-bDuW-1BRv$H)#o7y{+AJR44(nm<{iNUov+(N*eH&a;5BvE5uoC76OBr`-7(2(|I_aAhQ0@bVpHX}} z!e+okqf-grUumU&JvfuG$u2s4aNTxR_m(72@5~C&O9(BEd2Qb4Qm#gc%2s3Hbgyik z;so*X2(Dwy#lH2jN5g#iGCe);S|fZ~v$-nhUMv!(%|n>$BXIhb!yc0BF~Tc8I(6xL z%E*G0&$juA`FNd<2kUxObQ#NK)$xi<`gWx{4yw%-X6L&ZHkO{Bo8juz|C7r{w}k1lI61Q@hTaiJZ@;(>=<_mx8TFFHw9tJX?u( zTDafaLkU<>!!m+9yWS11cbwb7_b56eq9zNkCF%Dpy*8`TNO{&}jsw(gxhsfEo;lax zT@RUeL)_!zc4p-w+6(S)MO+?v1mKS6^hH%=U5Cu8`#U|ot8mFmDIQ+wTR;YYJdAIV zFT9yhiXll|;lMo`-ubwzOw(b;^*UFQ`5?OO<@jvS4bHL1hZk8n5elcdys3f`UIlBa zHCi#_rR^zpPiluZq1@iR%XxB^P(-pBPk_8{k?iG!+GKqOad~SS_crsHdv@^G#h*4C z%P9NX?%=`}l0|2W(+VwRD3?>98Ge^l_+L_49LhVuH|XT5De{kcOvYm|a4(tVYD6Y4 z+=QFFOD=FGV|7tvalv2kQe1D#uUb5vAP=^2X$PflDaot3eA=OC-|a79v5p z)rl}l(O9S1k9=duR@tk-ax?b`yY%nF zxl2sx)XJDQ$Lymy>VY$nqciS>v&@X!J?>nlwSSOV1-kW$1bg4fw|?6Q&!Wj(_vRb% zsPv{yD~amLADy-FjzZ>}n~RTBq`63%@9Z02(;ka_*)vrnaaBbR)pg%O6$?^6tX%Y@ z_1Utj$(b*lv)OVA_tLE#w>q7EqtaZ_xz=84bI9B~Y1b$~I%fu_w2aFK!#0+y4fyrs zQkuUuvF!@Ayp_u=(n$0TokmM)i;~+w1MxL_>$n+tl1=)-;mY>R;NA3=bD?5G5 z^&U3IJdm6iKitJ#Sicsh?H0&6c~Ql^7sQ-Km9FK<3OKj9fs&dgE5MudW=POSO{T3J zp!lbXe0%Lmd*pmDY@_mIpe&g#-sFYklCKY#+peFjoc|K0dS0uDPsN}kcV?zzdArlw zfCI-AWZB5&M~;IpcNC{D60zFGADI7A;WR>Q6Ym*xbry^_>RrHa#Fdq>hf_P~c9FeK z#k-5^<#6g8_u->}Jqveoeo%RKb)eVjpUA4esQ$H(Xos3IZ}Phjbo`4>*bmSj-V~$NIs5AS{c!`yffpr zmth-#fXYd(%-Geq6=X98t?+E8cN!^;P5AwlrJe7DN$;iaaJaZFr@Qmb0@$5GM(PlG z@21kY$xXdaDl6wluME%6ov!IEqFiE3BP@5q>F(vzcon4=Au|jP z$$66#5F9MR${k6UJ6or(NJUy4-jqMH5k8Qn4K}hI7q1_~@@O9j+lUiV5Aa}8>JE)p z3x{s&gM^<=*j^Pt0Y}c~IO$#Uf!*y8H3xX4LnZIbYx33M)-~RMISJf)E=-!jobcqb zMA5tsm-mf^^#z|Yec27qC3+&WHjt7L7t0mR#{4ik8Oj*QHy|zFn`p_qbm|2c=YL;_0aC##FcKCU>hya>bNh8Tu((@ZO;Y8Nb})`-0$jDAAT5m6)5un6z*2 zLnxMg`jBrMorit2nw+ojSvKN>oTeF7{S?#=_S*}#L!|B^_X@Wc_F5N*FL!k`Tx1%7 ziKauHMB0M3=JTB$jy;o$EvGLETd9b)S8Xbwt{Rpx$)DtXK?XQL_FfNCwmz?YDH58{ zhKG9gz<>T7M^5hA8%oASJ z=pdxU%M|bONhl^L8gNqdQr#cSNceRRLoN#JndB3{wkAQNuFKuR%W@V%hMAOJbJA#B zzHv;Oc^cGPDJ?bGY$9;GX%|wNx6~m9;6tBGM|H@R?J8a#5LaN5m3^Z(D66 zZeAzl>rw^h@>8p)ab`tKO~u7J?az|ib;)ty9G48O`6g`Ikb4(5HhT>AFIr5>Hml&y z;FW6o zwL9{hC4Ku;#nc57_`9Smobf)4QC5Me%PrK2(#KvoH-&zRV)_x^H1K9{rf^{>Ja@ZH zM;wJ_hrb5bdNIbd$8O`AzOEPvT=CK>_~z+OuN@)RWzpU%-dyhzCy zs%^MPN9RX}hL(i$H$2raA%wbz7%!>4Oc$&H0TfsT=-NT&jeVO0k{<*o$ZNB(Yevyqs z==_j+=|SGy{S!AjY)1J>t_QbXTb+2x6nn;g!Y2@SO|fSgimC4?n=fSWB^+t&vt4RL zo6r6av8{{inbFq9N2^Pj5%bOc{AMjZ!*#l^!e$5Wyluj4qJ>BFosDqJsKD!4ZgG}6 zU@=bYB-`}+hUTkp<$!vtCcj!0R;i*_=8GqG{X#7eN+_#5nlJv&t}`2tl9{i5jhmHO ztYxeci23Mweso0eH@TdnDExYsWHf-Az*>{B`S`<}XXeMp?AA$n7!jcs{g?7%y>pWz zduz*>ai8L(k7Z5zgxjVD^bUE{!QZQE}3!GJ#^Ez$@yr!vTuQR3(Ti~&b8}m5&U%0 zTsJ+h;_MwP0lVUIFucK}shbbJp0m0&S%GG0E5}WT+qgu{&^Y!k2CMnxdQQT5p~3gb zic(pSHg7(JmtL$eF@w4pc=5o5ujv4GRB6K}jb&;5;`S!QR=xXfSaTkyI zY(J5LYXoH3T;JGdo(iSr%ey$>-N~1JrPuU+2gh-GJC7SL)1O`q;R5fO-ha#^=WLbJ zd-5q{^U*&e_HI-b8&5CQCf?!_MdU@!_Bz`rm+q9h^dwu}VOpdBN10_f6c5mM@dU^L zjv#khQr-^^=l&qQe}}#0UZvZZP7R;y2m87FgF(bDGnZUV?aPmsXC`>3@(j7~eG;q8F0`fDt&bdHR@atN60`dXkU+z`8 zGe~dXuCug;uA;Qh<`nay^}E7T)1d!aCipExqgXyOPEZ1O0`0N6G3eM^0`faK!MtpW zU03Wn7zF0aoTfP4XI!+l<^+>p7bPy!&b;vXaW<{}w4)-Et#CKl(~66GisVE=sX<-#7Sby@=L z2MKL1^0N_10r+9!PrRQq?lCh))W-fBqHV5|X5!`wT%X|P;?RyKL}vKyTk^k z=k6Ccce&-a$758xI{GXF4M{DVIZSC{rbQNm46*8r&5esojr-a4zS!-dYCqoQ;i4 z&g@=&7ZAVA!@E{=cw4HJ0o@;-X69<65@AUvTe>B70(Ezn8-vD>&?= z!uc5-e6`@`DV_4yh~}cZJf=48qsS?WD_4m-#p#NtH=zX*rH?RudfGpjW|v%V$-kWj z&y(8LpK;<#1@X)>YC_Am@gNrcjJ!oYyMp*Fn&j%JZy(?+i|&i7p?weMS(F&Yl&}jp zXt^M2te*8Y?nhC=O{r1`h@7J5Z9-f6b&`G2aZ?J>XAwu@LK&l7hlBd)*lAWJ$YhVd znrIWh#O&Z$Zy-J!#SMXZJCW+WL*>jNZ;FT+>kG94^p`nNF^y)QC@zZPs#Cp>(mMk6 zA9AYmViQ4Tz4Gtdi_Kwzrp)e2&d!_QGzB7csVaf^>3agv#o#w{U&Q#CeP6gI-R3|` z?*_5B7a*C}D(ilcAjR+*o8`Fl_tE8epK`U;Mcr8e{lh%U;t|+8(Cv=q!N0(Xf5^wy z#wS&1;^rYJnffE#J8=x`#ng2Vw#T}_eWE%a3klGODOSU<&Cc^O|J zSjkH#0`ArM7O5)Y2&5mLZ(<6PdW%57y`2otTacm9I`QnK!1*H*goGN#kBZ*(T?s-x z^;2thgX(F4cNyW$j(@`27}V=X!BD2wKjAWGzv6(j3!QiI-#9M`4$ibr0CKS3BQy!* z%>oUoHwp(<^%mSQCooiPOo07MB5d}VnL8nZ{hN6(y*GOb5t+WOr((3zglEA#`n)Pk?c%yAZ!6{YsTHWat zkS(s&tL)paazW}-IMbVp(!LJaOmlsb1tAg^h`jq~^#O6Gc!!sFmeLT-| z&%H&@3r^19-Mv50wd=Y51>t+I)=mo_7Z#TaN z+acU}@a)2!IBqwR+U8MbTW^EdEp_IA0#QxGxzie4zYXzu`&;lry);}OMl)&pN2n1FxL~h*8^LSVA9aXN#@Vy zX}z-p@!Q+b>GIdd%a{uKp8P&p#2^v=9i**ugq3?wGze| zDy7#dt+1uvn3Y*>bCzB^KX;bqJh&MK|Aa@)TgtEiIE}bpBn+>grU;A*BcZakZ|2&( z0i9exK7Co?Su4zc$vOHtVcvFF(4g%^Rd#`Y73b~eCV9X!UlbOMv^Z_Qk&_E~>={J? z_<02Amo|9-RpG!;g<5%88%`|P=Dmn&p1}S}p6=NW5Njz_F=5ocGA7Q~5ZY{1MQC_M zQg8jI6Odm?%v&-6A%i6S*0U`3C%Nadoo{v15*9ZuXiuK+WzKfC4eIvD&Asna%bYJD zY`+GchY42^kj)p6kCUGK7Dy40>cJLGOfBA~SAmZnaXTB;bDr+w0s`>II7@F}AeXUB z0^1-kZ`7zLutB>D_HLpxALMGiKHyw{Z2n7EO%+R@;i;7DT1^)FTbWxi&FtEnMpAtT;mwUa)Tof@ePt#` zm}Ytar;+#j+>E)Whtye_-oM+E=>goTz}vT1@bq%u!rkx+=qb==o*BcnPMPHw5USUS zJp)v!IV^y`oy+&Ck~08qhNuJ_H=?=@#QaF6M{fq;Cb$2;5EWhr#tcAvs#2UY<=-W> z?$!34Gjo0$u{`e?KtT&_TKpU*IWIr5-10qpaX_%7da34>53JK?Lh^edAMp5q%eCdoqTrz%F3VKPG+)^ZEY?v;Q^5WAy*P4w%0R&V zkG-In&8miW4<|S80oK(IWqyZv-n{1J6q}+Us`{Av+_m=tjl7U6)BHQ!WUoaz#WbTB zk<$pZ29@#my97D!aZxXy3cPRSPR|byuNeruzfTO#%UYut35I%0K92zBWnRsyu4S>q z<<2WNn_;Z&g5Trhy!QPR8%%I65kAc=o_oa|O@pg@vB9`Ru(B*0{E5ASr^U%H?FA#m z{IocEl{?~%Bu=vAK8;#HZb)>zn(zn)eEui2(A)78X&v#e-WE|1=VKc zmk4!kGS_o8g7q)=5&>2*{$*-T^U50Bm5Evd%`$#~i=P`JSh$7wA+CI0v7id4cbhs- z{%d$D=iMPNaaP8JTUQg)Ud*!{Zle11wiaJsPh`$}JVBQ(zx=_ z)E2Ipod2f@b6#x)FMb+!`8g!VdGVNBxw?XQoR@5@-|UUO*yO}*b_XXn_gc@OG`3Pi zznG|-SJ8`M^7b@qxSPwJ_ZY{64b*F`>N#G^InKKu)=~KRdx1be({7Fb#L3M|%UEpp zHQA8YIKBDdA^IZlDxBZEhHt;eXpU?6UQMum)6J=#?{&>P?UU8U4v>8Onve5cE?nHy zbE_(RCz0ysj8j21x8&5(`KG;@s?9l({koDivH$!`GgUWq^uP9IuN=)=rg|aa`bEPu zQ%zM>_=kIg)UkRCH)J!VX=dtHV)z+?^rmsRMJ93y)mNk8tM+KNP9d$!NLBtg!88b% ztn2Xad9wWSV=BP5;={Z524GSP;?oGwueMDyL#Il_KO)`Fe?;B-5g#PT`PtrBWr<(m z(*3eznx!M%Ko0!>qKZEMflpPV_$#h_e#*oJN&8};O!j+uisqM469q7~2zP!Yq)KBP z;6??$yYeY!l2bdu?VFOUe5gv0avS+T{-gA>4rIsqaqjBo!WN{;b~KO)r0*o(Nc>3^ zER)ElpK*0@vNY?m)Nql(;Z=(tEKx6igw&S*Sm>-PqvuHxa0a#qka1 zK*bK<_$>~%IMSdAqRqq=VsLQ_<3R4huHbO>g;8R^fehA0r>Wi51G0|R;ztAVCnbiS z<)HaX+^vp*D;&zEV|k;AS{KlC@h(%lW}JV2!_oKgdX7 zzfam*;HvsPjXhGrBFE86@5-Xit;U`d(Umow;hL%o;1R3=ldiaO35W8&YVV4?T_2Hl zJ0`M`Lupg;^EpOy0n0(UdZ*V1gN?(@7G4ZT!oEpMIl?hde^SOYDOv9$g?v(m#3R2# zD8E3~u?S(Z-RW)M+O{i9{xdO}uW&fN-&~!;>08GA4^`qs7WTu$Wxg5V0GMttTO9MX zMGs`C<7c^5`P_Hb6>UUqTs}kDBEjDmbF{_b4?&YH8R#E#pv6%IYw#uE*0*u9wsH^k ztT?P9PTa4wJ8f2flI8vFV#%Wx)pg45k5XLbpX6DWR*N>F*6UKqe~%}5am0Z%WF1j_ zp2U$a$7Wp=2Es)I*{C7cl&=QNI#fN8m-~;%J=`9~an!)-PSGv_ig=mRA3ni^?}sX61k??ikf~QtzZZ$T1hkb=V07c<88mLB6rxQ=|5A*n36DAXA*K`rPq z`?nHoZ$gjhG*`6e|9d_uqpj-EeuMa1*xH~pskNEWex3BV@X^-v+J2Fk%$F)t?i&); zSWXV|xYM+5)?10jS91^AltYbC#`keOiyFji(LY<{O3coza3%hW#cmeObm*#?$^^Gp_QEP3Y`wTXafDP5~5^2DiQJebU*6odx!@) zWVFYuish&rrdT;0_S&Hi+k7`SXs=Ni+0*`Wi`XH!o3vJaj3n%>%QpuB5WL=wYq%Zq zOrO!7e0f&WQGjfPXkiiYlOF+`WdKJ2zP<>tVbll17B5`nAcikKw8%jWWBeco$~&d2|hnU zlDPn}Cv-{Uf;z)-^V8(! zTPfmP+UWWnl3xLhX0Bz{qF}QQ>q{_u9ci)vmz!@$1$hWWYo~3}ZN7_WUGx#b(8%x6MI-*4s6DsfBclCe5MOO1py6IF++~`O4syl$ z?y~ui-2k#NaHof)w@RzSbPOTmTR3`u!K-J%ln5^uycSm6M4JCjGRsdlop0r*8v%%{ z(hGFV`1iTpi{?zHd&cm&i<)-6+j`D5Vz{sh^GEjd)40S%kJ%hlnh83(r&oJJMl?HUsgD(T`0Kl#ZZ-xjI&T*ZcGf03C8i^elzWFhPX%_3@C z=c36;)z3)AyoJZ+%!1jHjG12SACMm|dSK*Yk{_m+;SZ6T7cFzu>7mdK+M9!Bp!vm9 zT=Sx7if5?ajC6G4H%P{v1@CV^WCkLZi<%X}r4Eyn7p)GfOZITmBk^%t>!*)@GGu%o z8J5B=P&G!@E~~zyp!01mRn-;jpUdSIkg@7wbH249_n#Xu*5F+NWRR02odPbisRlWXTL_WPky_>|yzhvleST97&|Gnr@H$5*5Sp591UzWo z?L=`5`Iunqy^9#i4AbTdub8Az_dznw0?vV{Ru#88oqnT|Lf;Q?puI+)s^;AadYh4p zzQ5s6`R;P}8h`FFay#=mk(jnus2S9+bHDQWu?u6`0pm_JQl+OVxc{j6@jDm3&OV+e zf!okHbC2*8FBGwQK;zhbXEEM82V(Vr#>qS43KzMP$@89gHO;>9_f`&@uS3kfPI#EA zr%5_iZCNAD<|jALGi1l+^nK&P*VkzdT5X(4`#|?!bA9<5;T-Ghw5!NxRWF0bh}VT} zlfv^6p36m|wx(XH5C;AnQM=f|5~TjyMXwCP+LnL(2CgjMa+-Yy>k&j@+JW{jxxjo+ z;T&Va1q$s__U^~2$1ig4Xfialo$|n<_l|=Nv_yP^dzUZm=fI=AcK!1_==m2xXCJB& z2HPkyY>HjKebEQ5;hgSA7rki>hh@Hxn9SD&XUAl;EOh@XMByU0Oj&YOcuZxyzvOuN z7S-$vYjw6mlv&j}b(NczpZGfaa9vaT{~vH+i_{y8ucdB}+i!Al`7ZBy7N^}i+W*k0 zY==6F`D%`x@A961>;YbPHf0^YlQ{llEEvmV#ah?*@TokJ3tjMluZVR}5+Nbq@8_WT z3GlOHx!38R5Ki#r*Isbp1^nOEFL7)0eM_?ss!T;&vBRdKeFw)~q@e1<1uk6Z4@gL; zrIAxSWA-I-sEOUYb(a)7RF2i@UbBLu{hRbJrQ-=SlVX>4DR%0$Haho`h#UlZD(w-%Gw< zc$!h*5M*~1%NCv(b3^uckk#=)zK{6I7id$hgr&hzhAHmy@Hkj|g=6jUf@JRA-j9iy-BX@4WZ@AVRDQ7@`Cnx;_auktA7 zr|nI*1m~{hUEGHJn8S4NwVPfx;Zcr|?~bqqPjmO$_AC$DyUqc4_GSb}Q2E)7Ay=o`a*RX$&JDs0lJ?qM< z9UWi&LoO=cPMUd~0V;UtG8CV+_@PWj!{1Uu6yUGPUQb0A4G>cYcV)F|_%|GFaX56# zpggfy9JWHZ&9xKzOL(^OwX0bv1BC#R%2$8Lu@<*qYOG{sKgZD)w_hC15aOSaG!}|P zX3YwJ`ntvPC)`|X_apQC@;ivbe3yW(1D<=jOug_9E@Ct7xx!m)x@v)}?p89yM|}cl zms|PfB0dUrxsNg3Ls*Z@3ahsXsZ`gAvp>cSo_SgT)ec&r_IfMke}Q{HEBdMdV%C+qW-=Wv`NkH(~V(82R+zGo0@9=E0Os4jFYnqx2;IdY+xpqRZ@zB~BrrfT#Yc z8PRD#*FqFJPHqo<+g`wg>FL6JKPhNdrefwf=;App%~T#BK=0ku0*BoI+(!M*U;}Rh zC)`EQx-k#I!}p?&k$|erL-5*-Ifcy$dt9ho0$US2B{iqe9aDXiRQweic z&cUTCkNE_>|2VhZ8__PnkOXY!tg16uIg1xw5eJ%}`#+%$IIBm4L-bo+D65(T{*=(( zJ1hH0q6SZL+h>)7iNyH^Zp*9&sHR2t(b<dpnGIx)i`K!N`%YK&rY$rv;=So`Oo#*HhE+;NcLS(Amnh zD+#O`fJXc0Fo+nDlgl!zPm+n5QHCT|Dek*!a^! z^I917bY{Xv9Y@p}FsS>nPZxS>o582X)RLIwdOA|GU7b<23aq9sPoExFHzNyD=c>-g zS_gGY_w%eSXRQ9%It3kw?sg$J45u`@_J#MJHeN11hw=3>^4QbaK0TlhqWey{wqFN% z;OQ_sJTh3m6ki`^^iyd$0a@?ylJzKKar9Ggq*x<2NP9z(O8vgw4SV)WDV5=&eh=lE zMZ-w!(=>>q&&1ocHpl5Z?9Je={=ngyaoFQgtsYG2FZsA`3WrmR*?C+juJ*ZLL~Ya` zeOMV){PW#kuhL8Gla@SIeC!LY__>F_vPvNNk z?SpG(#m0mfYZc;RFOGuI?~h%x$xRzuZ)|m`A{=e1H*h9>-W+oR#Oj&cd@>E5>GlvV z8L_;+{0+?Lj<+tF!F@}V*z#$)gUyB!%yYjiZ#l0*9(nFpZSgT&N53kkF25`_}<2VcOL!IvSGQ?E|Z6ldslKuqm*qKghUSv&1tb(Ovm5bn8i_dw#`UQ;Ie*a?_n73J7QUFaDsCwe(f zkG7y2PMZ$R?$F*JVKr?!pBQVs+lYMDT_LnI5PU2|j0b~(HVy?fe} z8$HhCp6x$)oHiZiaB)Xz*~c|L4b2)tt@%4I?eh1jO`!vkzu{@p$4lE-n;&Wz5fnEn zGSVPki4K*UTRG=vp?2%{LrEUuhV$UW?qd4T?x-M|rHP$|@#3~a&H=wbB6J_nv8rxg z%tm#rtwwfx=AwMpNyq3aq+9ncI;A(H?fC)NEX*0%7+&i3z4i)vDYxfi8AEJvV3W5n zM(EBZ?NwYcDV__8bv5fjAYY<QTkSc7e+Z@whQ9=9@8yd`XVzPB9dPkn~QMn}jglXh?9Pe_|& z$BE}C2FnRNDw3TBUfN#ezYdGKeTaMM9uXW9Jks)J#hkS1Lu{|VyaO+Fr!Q`KDIUVu zQvNoaOnu66jE1cP$$;jgyE-L?m|)!=317t=932@P8DaO-BoWRv(;MxQwc})EE3!>@ z-*>WBMB_!)+qshq$|`42z(rZ=~PLc_&NBXXZaAhJz&Jvv##YzQLkUp&m{&InU5L+=8K zoq}Q;f-oi)sE~UG`C8{OjD5O8lqXh=V$URdn;qUZ)T?pH+OFZNOI=~4PIt3U^7h0VI!4ZYyNZ_s&bePd5EJ$sN6E?H=kQ5))i+t6EM{Vd zj1cc-$c-QcQ{|Gi5I;a6x}QzbC3%#+H^zA zR8B1@D-x+Yh`QjHojqIaI)XOoe%;6R8#{ZJ7T(gc^g3CydDj!=pgRgAc~lEA0%$ee zZYit;9Mi3^VqqvOI#O>OU`_y44Qw&Bd}1d{l9eMxTM)2*Tk0kFq?`3F*%6;`Mp`Xi zO+nSr9p_xNCJuudY(2#2IV4i|;ZTa^;tZAtb2&WEskrcj!GkTY5Wkyb+qRx&qE~=c zW`NkOZ#`U~e_9x`ytO?s$y~Qao}y=Vec}2ftAvZ@#8*}@tK)Go6xpv^>0PvD=h?j^ z>w{>#`bmrzC(O|CVqz}E4rM`Z>2|9r8=>PhfTM;spvXqix3vYCwI9h>msG8 zHOSxaWrMw7P`8_R!$WKDwI}IvwIwK}^xBTo_&dqr-yP>Hz2R6ChVB^ThBaH+)<;@X zn{#pTa!=dPv?vE_HTgO%d=oE4avjm&o9ZiojavD}Gs^?Z)<1__IDlSe%ro;ryjz2>S~<87 zjoMU|T)-%27@WXI$61Jg;81a}E}eQP>+u3)T$N-ruxU{AW1_R;HZvGyT`?I22Zydg zx>_>Qw$F)LBA5-2DkP)AyVKa4hp?ZlFhBOAPNy?+CpqCr@hMl!ecm}(E}x7Wd~;8R ze}-&wnP}ZMEi-X4JV{Q0KjDH83vxPJAXCbbHyHV7;0Yk~)Hrhu&Xm>_l}GQe$td_x zMqf_6!Ya;lk&<*BGx=8qLaBTN4Q;D4%;#Tv+#V4Yo z;tiq$7i(CSsa-f^s##_1b1X01Co(N&WIQKjh4Kro=kSy@?SJs@q&oF;~oI>6|HVtt7IV0dV*t&a=K6b zz5x-GNJ?5}b`=QenUsw(NG6ff*A))b(lPl|`3G61w5)g<)whg}B5DDhc!S6kTj%&C5}{{Z9L*DKe?;6?2$s}wLmuD7&i)Q(tLRCIiY(yevzqQfKOe&4mTQafOmVon@q~%#qsGyT6Rt39L&)!SY?Sv>A)cAA*t2bZ4 zcxfHucsUAh$4Mt{!>(R!wY)Iw@GAUqNZVSuE%R_+EWSl2s!^1s(|I2rRMqjoLDoL2 z&Cn>7goY>=IpIh^-Ox*#?dF_X>ki22IS?hjs3lHSqkm(_DRRy^Ba9VqsHh<#&XWVcT2?m6a$ovg4M6()v7<7m6CuA*aCV<$c$ zd{ht~OvwkTr;%;8-rqJO2(;UI8iRD&Ixa^cF$1+8P5W<>*6gATfHhme+RriqF*aEe zBpdUKNV#n=aS#uUjzr|KqOTVP%xfD7mgnGwp=fI=4vL~96|)2J`DX6$WK@5_Gh0vK zpkb{*QuY#(nnWr@cN7!OC$dNwYN`4&GSN2Aa!BcjaIt|U zELt2|N9{OFt|XhFQe8hb%lS6W>AERAOfcoaEE4DV;=uYCaXMw<*u=_enBb{3MAoTs zKmkC*MQu<6fy#>5)S5t#z^w(ePn4!w8|W2q>j0fYSY4nX=+*<83yu0fZ$hpC(Cgqf z1ZoNHOF%P$8UalOY7F!%tlZ4LAn z?6m>v3Dg#-FSzZ1vH`UR>I`lNpkI-qmw`IMUPquna618I$4_VcoPur_pa^ig0^Nc} zH=vyO>5iYz!0iE43>rOw^5dr$e)1x$H&An+K0xhZr7zG~==KA89zXr@QyyWj0F}ef z0Q_8m&#wY4h3-J0-jEvv)CuS{pgiCP0i6SS9cTFQ-NMZ*ifLU2#Wyv09GP_0uUAjbQ$T01{wj47@%E{ z8wT_$7+&|!qV2V{co zETDzZO$0g#G#jWk(EC8AA@>2$%dqkxP*!k10=fe9F;H&E{SPQR&>Wz%h;1&=HiXRs zx&kyGXgTaH0NQ}Cg+LP#wg~7i=zaq99DY8G4@M6k%Tj z%|qBXKtDj^Tc8{WTMIM+XdTd3(D)809CGV{dINnAv<>lY06L7YjX%3$F2l-BAO&a_(C6Up2KpOe zKLf=A?ExwQ^b61m$o&db2tRxA^B?^C4Ja>S+XwU|H1-4C06G8^0(21QC!j+>*PweC z=zUoJ9jG<9M}T5r?uP5^B|*h!#0&^QG& z1aX`O>Ik_rKuZvI7U(YI&H-J4?s=eNKz{>0gxm$7vCzE;bQ|a&pyuFS0;&Ox%Rmhf zb_M7+pnrk-LE|dW9mIAGC<`>M1676G4WQo;b`vNAes1BXDZ*|8t%Q|3K+i+tE>HoW zdq9~XcONJk=mF4+`1ub%`=I*}Xe7`hpjROG7-$QuJOP>pZiejQCmtvxP=26HKsOxvg@Jm2TLkD& zgcSwai?Cuqg%DO8s2?ns0J;xU66gh>Qb02yR~o1jbjtu;N4}H=Is>_KKx=`@1APRI z3P2a3Q4#1zgjE814yZCvCTLUvng&!A=v#2B0c}Sd)q(y1w+7I8*b4wE3AsR^g9xh$ z)C8y&P;PK*0}TPH15^r?p)Sx*uv`!5A8_jftw9_OfQG?SL*I ztUXW{=ym|A4erZ8Q-C@G9Rar!&>(1Z25Jq|1?V%Nu0RVQ*A1vNPDu9Kz+dN4KyFI^#NLdu)aW_L9QRrap?93`VVri03C(g0H9A1_A1aQgbf5LgRntB zU4UK#dK>nFfL?&y>p*XS8w^weVIe>>AQuW$5!^7Kya+P@X^VtG8AYX}_G zl?0%zh+{ZVW1ta0Ky4BB z0nmQr%ZEUv;onC ztpeH!Prm^A5SG6L>Ise2KqiEJ1yl)num(s0_iLcru<{Mi&yf2Ts6WEi0?h_m2lN)u zcR&lFyB_EzgnbV*9cTm45?I*?v;kp10L=y31e6Wj%|Hhb_9IX;pe;ZRVR0NReQoj~6M?E*Rp?rxwH(EStNDfDS_L z512B;;_S)f0_JqI)$=sZv& zJop>vJA_>TDvhv_SfxZLx z2GA{VZvvG?*e#&KK(~SZg~lDAi;%kuR35o;4`@8X?gKpmdH{44=s%!eq5BZ%ceI5^ zKw$`b3{)6ao&f!W*fKmXetv>(Mxf3J%LH^1x|xA$KsO6e2XM0jm4KCOK$8)s0DTMe z98gneWCyB=u;+os0KEXz0w@PiS;U(YXfseQphrNtflfd!4^Rb!98fE8%L5$)w*t@|po&1DkgEhV2Vs?gP9dxcP%faV zK~)}>K*2!c zpb-MJ11J>eJD@P2(~vU|7qJZn+6nFupvmBd1C;_Y0%b-1sX#`=I}~UYPy|qW$VCDL zA}k8%HH1Y2<%Mnx5Wdr+4gj%Rybp98=mVgx(D)GOHOPGg^fAId2FeV% z{{dwLngbLC?p&byK=Xj6gF7E+Ezkm>8bAwyN+M4e0aXF|1ZXq3p90l^mCt~tz=O|$ z`XX#G&|}CgAvtiD0@Vjv1~e4hS_Qf9fGUH#9;h+U_dx5x-2l`O zXd}>3pdWyiz|&1YJD{-{=o6qHfw}{20lEf_tw8w@?@vH`z}*If;{es|K(D~w4xrKC z?gVOzuw6h22-^)*9QJ+&dL3vF&`@xH0eS+BUx6ATY%fqBpx=NLpnX7Rp}QZb3BnEl zEkoErpvMS11cY<4)WbkH+e-Z%Xd~o~09AwBQJ@n*$ACrv{Q)!*=r~Xrr2J2yg3$d7 zXc0U;0rVfjP6CYwIt4Tj=rqtk$ejV21$$?KzChSHpw*B&53~y0zkwPf>;e$ZT2U_o zeF=?!fC>U#0;&MH%RqGzb_FOOto#eK9NeowXApJ`Xadl6AQjvjK-Yn80?h&U7SKBg zyAAXAb+#{fPpvORXmtK7WlpSFi zUJyUMp^*`20OH65R2baMKsgYW1?Y2xWd$mTuxvmdKvw~p2<~%0nZV5sloj0Pf$+Yt z`T|f(aB~3lgho!F5(vu$lm%hAfnGvb9-t|(k{9SXaPtA>0Ll;aF1Q7N`UAZPG!dvE z(0W)Y1QZI5!a(RmUh(y-SU2wUsbCP2~9XbQ9d+-5+7q0t=ZDo_ic+2FPWdWf)AK%Jr6 z8t5Ft+5r6w)D~zmxb1*iK({^6HE=rsMS=S=&}@Wt1R9L6PC$PktTRvrpe{fo!0ieY zfv|2sKLT|JS_;$y=v~P51e$?(dja)9SZ|E z0YEE&UIi)&?m(bl5bq#D2zw1E94H9rd2n9`s*12+paTdC0on-^3KRnr1{45f0ICj+ z!9W8LHU!9kuyCL%Kt`ah;Hp5U;onf8HxL#9^d;mXfwlrg0sRiSXrSYeivhwuKXn+; zUC6}({SR_+Kr?~jfo1_E0KEsf;Xq#@Yy{A4gpC9`4m1kreQ-wunSsUtB_Q56fOY_l z1quQh2b3SW^dfYp0~H2(7w9i=X8>X6jcNw^6P9NJRfI3^0d+yx zETGyzi9kO?cQ%j-=zXA@;C>)bLPCi8R>lk&#KsX*p17EBW7Nn1aex6G0TY_oDYL1t zb0F;;5?kRCJ7qK#a%LLw)@XDTc=?=pF)@jqvYQGx1=E2pkT2rIP=kjD$A!ikV?<1u zP5GU;VxMMsVy8@|7oEamM#YCC{wz<$j}3%E!PzbGLZ=80uP!vQv8}{TO%hB6#GZHT zKjU3V;+O?W)>KnIhj6i5Db|oU)uhNQ6Z>yW&&kceaoCJw$`za-_U0JF#39QDu^lzh zl*t&DXv%4f3>Mq3@Oq<&ATiu%%3~0(0^y6wqr`^UaD&L+siqf0g}_j80EpPa8WbEB zCiZ8GL-i7;m~zC3ZT9%?Sx`c3M53v1czk?JT%*815gZr5IS>#XJ0vjClnavdrBv}< zU!mL8lp}Uj_uTzGJ9LOIRDP9T~mJltr^@?o7S=MohgA&!T!iDh6 z>JQ>F)s!3xbRJcZVjPr@z{ zuYqWRn$jrpHc?B6y3*weQTs%j)RYwkIEMF$n)K3X;vJ(HIt{;0)R&}}_}vkro@bjA z|0Ak7QDc9;NmOg1emKNdqRC3Nphv`uA!<{|S)w8-z5#ogszJQ`*KZN;B=JsFI7bwo z#A`~?UFV4!M!W_!FA&v_sH+q25QV4DnlgSP$5()SDLn5X@qQy})Lzbs8$?YVcZ_%= z$x8H4&WVmhEn3WZy@e!?7k@&MKM|E-@kyevzd%!(jygru6-t9T>tCW)l9hD|=TcMR z^`G{Dcw>n-^T-XN9+J(Dr#Y|jyk1i(^u9~H%%r#VF{c4L2Q=lUn_PZbhbJ(8?S zR(@Z{)NP94&+c3*TS(Gy_aBn%MZDo3GZjL5F<+e^UN@2)*yAEm809r(^p0$=pblcJ z)Rb;{a}$NJQBz(Xl$R)sahh@|S4pBUqG*b7KsBO%A?m%-k|N1d{VEd=BaWt&n8Q4b zkD7AuK3l;IL{k#Ku1Jy?Uo>S_LI6=17d7SQ7b_5jkzG@Awa!TtMmtSeIl2l_7|Ar{ z&x;%b<~N$Mdj{LY2(BqhYrja67~?hN`iJ?5!f2-{o7dMM3S+6J94*IQW6ai+R$EIG z40}Ema@dd=&LCwT2v(pBf6$!{hN6hNi}6d6HXsSPEA?f zB9J68Khu=qrPynX|C-YGhjPTjXsam^Ygo@rlyb8O@i6LYO625vL}6B;Dc4$Ze3<=d z%5%Fo2QmB6l!{BZY%#uT%B@G72F!SbFN5-v70ixA|I#%NQJ6_-N_6vFL}3=9DG!db zpO~G95(_I&Jj^#VCHp!~J7y`GvVU47;$i-zDFbg6A__B9O&OWH3{jXVY0B3@rHHCc zyz_mz?qZLVro7RKQ`Da%6FTQ0$-^XhdK>e?iJCl$ZSEz>xCUIBgNW)?hwIBik{myR zdz-98E&PVlUW_FB)#W<>9HpVogBK`1g(N4fsZP{Uk_`W+F#AG&)}C~fT2(AbzB02W z@lF!;@0q`emxF8`S4t3XE?F5@qaab(i=`>sf8*SpN0KWBaIG6oR&F)p(mY30?*G{9 zF&y6~+@t(W)RbjhUrv*i_Xl!c_c>9a2f5rYljP%*+;XlE)ow)r^5qAjZmcgx6n1Ng zkz{jSqIwgr@g2_V%an$%9wA(coRMqY%S3$?z&U}vWSTN!54VSH#9Mik%iTm)`n<&> z7k0&I%GI~nN?wxOUB4-LhWmR>$^EbcQMh;4lqNyliNd|GrW86njHuqEcjd?VMB!ds zQ;HM|AqscHnzCe3JW=Md+|O!C)&3^p;XYhbTK67G)E?qB=^929?s7GyN~W1a z;r?4tfw4qkWk6GoEE_}=)+{uoouMsJxF^<>n2`5~!acvHWE)~63isNYvh|bMMB$EF zQ^F5SCkl7zqGvxno~R>4{qfstMCBlx1Pv+Lb7*BWTL(BAgd2<-&HC9}N&9K*rhqW6`*_WdiQE!vvyy*jp!n%p3Tz)==D6Dm8%9cE{ zh{6h!rsO={iYTlUi8R#jLKIek#8?&In<(5@i{5kzmpfJ!M4r{1$dVL$;0p_h!kx7! zvAGMFM^uMa!9?LMS&U9G%Zb9ehNjH9#QB1|bWJJv!yMva1w&H?W#AZQQw(|5a|^&K zgQkR*HIpP(Jv8Nf(Gf)9ZeCdVntj1qfu`IZ&yrXr5M#h-P6O`jH6_P4pORh}@je+d zgD9-qh;ij@Zhu(c5F?kyH47^_nxgD)Ns?Gq(UgGplZe84ipZA|8c|rE(3DOA93NH} zL~A^-h{mes@HmD)- zuwtYs4JSqth1DBP*;SX@5msw7rT;rz>#%~MDJ|bzOp;jH(3BgGKO<@~Nlv~QM-*18 z#2id(O%&FeH07;T!->Kgl%}kn$9)LaOvIch?i1o+#Yj`Wisaa_P9o}3t!2dPMAXVB z4T!>elcs#xfpY?DQ<^erz+~cKwMmRX2geYVm3aS5{(~s2Z)?hb+dd}>E3=wn2>+d^ z0YoJZKS0z#(wqE{)2EVWe}D8N@vyqADGv+pCJL*tn)3IPzlr*ss5bQv6SbVEoozM{ zg*9+ZIdpX$QCJPulme@d5QP))b1 z+&D_qR-#@V{4-Hl%N9Lm|9^7PVl1zyad=N}^qPb@U$^sco;y-mD2J$4X<)qPF* zZtNkV@FYOYj2rDI3eO(Ic)M~ZQFz87X7KIS6NTqGnzCc+J)-cuN7SBLcZtH2Elqj# zP0q7EM7lKC~x>jcuP+T|?i;n|p`gspo_)JUSveU*W%Y$Uy_ z`|cBOH1QVfIYrbp;(dIETmKS@eQ15I*9D39*EgBS3Z9^eT9BBHsD@-^z3CEJnM6Eg z47YGR=M-)F2G`FfMD4tEgCy~cQS{e^xZQq3yjCIHPy9!`BT-o?20T#|cYNReOL}^h3Of@-e_gf+ zQ6CfU@CUVtYCybGZl6lyvAm#;kICrsILA2X`>#v$@rn z>Pl4Kz*@w6K-Bba+7gAGM`8y5xIIysD8B29+Y!}^B!4>JfhaRk3#+_F)J~#i)r}%* z2c_@ef>@$vvDe)?5rut1n$jR&I8lMb>wRN1QLmAe^$BB$%1pkD?`tFqd#5y|+UISE zI!KcH?!C^E#9Q(`dv=(3*IKE>!ww)#XX@ zqRJ8Pmjwo*u=7Y$_P#KTC?k3O@>I4NOFZ+xLy32RyzV%(Gf~kbdGRy$fMb|7lXnDMKLx00-s`GVt%BWmfm&BQxI zdcRJYO%!%VYRaUU^N3nR)RZ#YiCRZ`ru_?u!ahYYpI^A1s8(bpHY0o8og{aRd6#%^ z5Or!oB2oVkb$#wirpU_3xnB~MpLh?SUqcjjJ&HAmwws7rLB5nzW)iiMsB9T`5>=Gr zTQHTVM#P&rc@|N3hokVfAS;D#^4O1EU!pW)m{*_l zN*CwZ+NVSvY>T*zrcG zxbJUqfh6aUmFSzl5``UOqW7N1l6aF;w7A>1iHG-D#oVnhml1ZJiTk5k9D8n}##CU> z@ZPCd>uU3e^ssMDtkXWZMX_I`6wPVCGfuo;D^`2e+$8xu@ut3Vg{V5@b)Q#xR=J$0 z3E8=Kt54LU<2<7-MtVOK|BLjlP<#Up^Qbn3c<;!$>007#{vYT3M6y!z$Qz_rkt8E? zWFiXt_%vmGr>o?3W#VNF;n{s#(yQ3}dy^p{EC0+-Tth6^H>0Kq>haqQ( zhxY-*D&x$1Op)aAqFe_%6ZJ-s$He=Gs9rBUAZiRz8#3i1o8u|=!Bsg2@pgcCGIB5z z@xCKoQ_qNS4M8PWr^3b#bx46ChF4bSt-7s$maL=9}=$y>22Gcfq0vV_vWjG zh^j#GwJ%nhsOiM}voH4=VWhWbM1Zs*&UYqORu{NYo69{p{zBiK<4_++4v# z%_Ygq^#>63GsVzqZU>_9PLrnmwWk$Pcwb3VvOH)<)B%$GR;feOOJpTi_dY~@NW2?I zS`)RO^u~{9L{vkf2HhJ(6yDzxW5>ogq7D=9^}lKn)r@R@c9_$!ka$t`x)84w@xHiF zlc67V(QM*%-QAIRct=dE{ygD)8BIK8enaAYN;dDGYC_Z!k{o}sA5mRNvcTJ~ z6SaY;OJ!amsvb$sx)Mm#7ewV!ISp@-WYPYeiFcc*mHXQhwT-CY{q>1zMtXnVevPP- z#M`>3DNzrIn*BT5d_vTrZY_z|pQuusUM6ZfQL%;D>#SsR!|58t%SP15jIR>4j#4|l ziIJ$DMAewphA6z1Ce|(ra@mUYa6z@r$muf?)wO3^lFUQY)(7E4Z6_-=f8m_RTTo)X zHQzGg6(DNGnj%D1CCQUtzDLwS^7_=qc|;kB>Ro3MQ5lK4x`JE4KC*JP0+-k#;(gd$ zCCMVhd#U3jqH0kL#THE^3U7UhmCKF)BMNVLYRcrTorwB_^fv5WLDUJd`OdnDME#F= z-Li0r%_FMi9`3zWqQ36_21z!i_zE>M5OtDx(HAEW^*iz2ANeLx2BL13m`)VlF4L3_ zD;5%UjCcjYqljurzRbzSp5-Clw^um6QN){OSWc306yNw`Gl^PC)Qq5ah{{Kj^KvH= z)q|*Z2P294k*MqqrxDeF^iJkpK-3tbdKLbZsJkTDrAstX&53ud+7hCs60gekcZteK zyiuh;Cu%%-{kRY3%Ld|2cs+r5cmq$YHjS7=6yBH>PnJ!b_VuLqeC@f!`<|%nC&m-? z15wi(yiL?rq8jZDBkEm>AC~dwM5k-s#)VNiTazU4hOdom6!AeT%SSIi{#6!{#?t?5cTl; z#l-7IlF?h%5QR5s#jLUbTlt$Li?}!>jRO!v!I+hc)QPvQ= zZ!Fd$mn|a6w<*4+7bg=nnj~v3YYAL;+YxVXkI#rVgY?V=xsB~1>WdNUiHG-&#of~7ABg&ec(>G9 zM7=;(3in=3ltwW`j^tJqM3UiqXA`drNsg+=b?_&W96gTfJlt96SR0~a6HTpNAW|GaHHk~I5CoE{nmD%@*+C{u9i6@CFMAXh^XNj6mHuq*b zOw_OBOP;PALk8k??Q(*6nTWbS<`z+VN%EbmXNU?Ro3B6O7=9<}Naz9L{Xu%SF5V~V zBjVNh?g~+V618z0TlpW^Jo?2!;=Mq6t6x7yR3u4`d69GC4Ds>}xkS9RM4bz{Ow{Kj zxwY4RqVki?lRNejg;PH?XrN zr1uR;RyfZwOe4w9AKoV3b0m3m%MGGB5H)ZWmsk(dD|O=(@qQ#;wPn|cdWWc5D(B}N zqFOcQoS#N|C+cv%;7kp%%HMt)>HSBNL+fQ6h`W$MB)MQ2m*#%rU2pI+Ngg3TU#`Wa zvVf@STdx!EGoqTj`cA~$K3RE1c}To96kqErJBY$L7MjwdN(M^90@6Dh^N4syiE26^Gx3HHHS+77 z#QTe=xg~ZJ^(n>h+VCtS8AZI@vZbD<_~P##CCS#ri*Ceqq6_g3L~yBmM!d~kxm5lk zn?<^8C%xK4O~}u!<2*?&yUD%qDB_)+%`No;@eB{S+&5DUo8IBp|20W2AMyv;{FfyA z)c=*J(j=MniUtl>1eZ?7HH8;^90qvG;Bi*MiqbuWQC2x(9ll zsOuGGk!Lu^Ow4H?6{M05CM$o}FcGg2#c-e$?+yKk^vd^to+Q5@-h{0DG^q(uM+`ZM zhf~tTQ_=$kh-yQ;a|ch8&2X}^B@4IyZ;6+q0`G3VSE=2KNAS(M#PG5V9ui7=<`?`r@SayhKjw6T{k#`2ghqLj-^RWW_ zOn({iI)3;8@%oZpUnB4OSWPkX&ohsBYlym-kz*)EdR716oua!)FMgAmB-fGT_=g3F zYDLtNwft=NP10*znD@TkAl|z*`AP3v#2ed+cgf;ZJ+UM5F6Yv9lHC4gR!aL+j-g8| z#c-GOM(^UanJq;9-R5KBeMp{l+sS=TPtyDTF0V_ONpkhERU|o+s7sHciF%KyGxCX8 zHlnV5{|eQtM?}SF?Del?bI>BrGo1RUDIXOcPLe^yTXH8O*?gU-c@LTpg;OxaKGid9 zWhwbta4gRNvr{ej^4K1#1=48j`CgX$WV1Qhe64f|l2nPB^%XzuY)^XKO|^-4mTXq} zt}9V56R*zm{G9nS;uSm6kYaC1R$6TAPJZIFPfe-OjCb30B)uj3c{O`D>1CV6yu76M zOU|4WLm=@&Kl_%bIO6qg@H_3DJVn%3<1$fvILT5|&Sc{j{wBpxC1+iV{T5OGv?)iD zWr=EcjLYvaQ5&_jB>4(aJ?iuNU^&XAKMqcy*sBw-(gohZFqL8-(DO~w>r8$|1xHYR z_9fmA3+Z`Pf+vM%1wNHkTDLKGSr zf$vPk@%i+DbmFUcor2`5=*d}+VRn!;(>n>?_24&m@}Qz#+URI%r_8FVCuqwAhnzLj zxq05r1-$X$T@MgfDEXXHg4-)TN8RLV3sQ+=V>3t~+-PHuAkQj%a(1pw~)2Wy)CpaCvG}C#Y-u0lh zw+kWKok1X73L!>%;6j~or$Hq*YCAT(NU!%jHQXtLbQ+0IdOa8LrlQNOF`aT@m^-fsf4hRAfOhbz5a51YD^2kF!$j&&y&(#eO1UT=>$W+2UnNB3^uGP_e5 z(xpM*JcTsR1UK$7&GbzMmpw?Q%2?IwmGQPaO)_0-!WOUB#a`~@K|0lh5Lpw_A&XrZ zcg^&H6>m3(+An#Hh7GFb;jx~-JM<6$)M@Iw=j))!+6iufs38ll*MYoi~rBY=*7kM4r{!{N*{j07gYFi0+7B4Tw zozmbWW~NUGA`rHj1=b0u zRWqPgoxqXx>jp*`Ljw7rErf~>W5=rr&5~!@*zv76H1?(*R`uYJP|ABZdsfrS9>!<)Fg8%eZKjWvd9}wn zDJzt_x!~#`7HiitnCWYCNUry5&s?9W$2ffnd7|3~aEo$yfMgk)9Ui&c`U(eG7rF^E zeHPF+3T3#gjFu!ijrU08({q+FQpvJk!69E{j}#jl%)?qiyO{)km0X+>i5W>UHBv+? z&&tG^lwy|jw~WziC3aelF{vKq-EH;t^~TPpX9e*IIDONh<$o?+b~VpjsJYgutwV|1 zT7u)Ftjpdmv>&7c$<#Eb32k~!lX0q=R|lQm=~x!7-YZ;|1Awa)($Xg-QQ6$@cE9qO z5om>Mn`zwUk{i(++hz$_AH3#3ahU_&Z=0=Ut*}%#mxjOzKI48VZ&#)7J;}e9lWU6h zcY}6!VmR{AtDWdJ>9p56Fq156cP9}p-a3TFI7}dLa3=EGt%i|T=8@Mrmi{u2l37=c zGX%$misR~eqihPx29Cm(DX&u};UFX)1xOz(BV!UHnAihMGvU&Db3C3$TSSW6&7yJi zx!f8o*=G81N0N6Gwh3B7yfMNU&l7W9=Qvh-F^h9fDYg?a)2B%gdkTw;aX8^WF5W1P zTuHI@}NuBM#>e6yFChM&LmBpuw@h zk%ke`u|w%j!_>jUr3PbUOmu8KmiCY_eA7~0)`Ds&_#$?2$D&N-z0NMFCRfdpNSL?z7!x%){hIc`4ec2iZ{ffR*Ti~;CPu6L**pJ`_*cXEEDg0f>VM~!CQM+QK)sZ;mPRu&W zCDB*g-))%bOHGJhclK)QZpA|-@wx{OGfB8$FJkHB99)p&fX$MbzFCFX%W+ZgI}eVp zg2V<#iSLR~R+o}ePF<&+L?t~twp7?8&GZ2#MBR#2+^7Xn3F0dyu@03Wjk<~YKGQfq zl%B|HkyP%)#m6Ry&zex_wDqtZqmIZT=O$5FPP{y5((Vr%Pj&fb`sf#GMiaMdhQn(E zX;LRl?x%>FnM3V#-^Nq9VoICNGHn{0hZQZ=14b&l`Xi2Q%CWPvbyD{IXc~64Iow<~ zOS!YP+)X)j^0st1jx&`!Z`3LDK|>;#B)>tnL&uwMY*h}DEZiYt3(l!>$l*W~@ z%Z)0QLXAM7h>4Oz|C@q}-u;h7@j7zb-5KM}Vi zfjWB2O==Q-E{&OkW5s3wQF>0pty`;GrX(V;EJvkjr#?|OVsAE`^|DLzrVseok@prW zy2(=T)>2J&pBYppJ@WzeZJGD78+yj~PGww+-R?<(wSU!_MA(a2<{FkhOg;^<6EV}L z$5HE3=y4*&`7Fkm*l6*E+c--v=>DC5`m7$LVGnNUV09+iW_5}zC@(*~sXygb4Y1#LqJB!p?C=iElk~ z)TxYNwu}Mo#)Z4z_+ep@f#Mt9lxmAta-wRC3XT;k3!H1SWyhVOduBCCmaL_RlIG;R z*P*m5)*MCbr^a$>CCk$?c^03;79ZiJiFA;iv{?<4$oT_lRe#T$m$VNQYUCkmg!=*h0l4QOjuJm|?=97(O73-RUgdc`ENC zqH(ep)y=1P_RZ>?^wbiKwRB~dPZm!M3V8}ltR&))ul3hjtx|d*!aLZ z?<8*JX(1URV_=0+ot97j`^Z8~^Cmu78h$F*#Jfl0`}3BL*sNYn>snz}uQ{3I7KZcZ z>~}A;ke$s_9>y7lC5RV^#CVZ%oqpG;QE*hEM+k`)I|yj|idp?p`cufELyCwVGDNmK zvsyulSe!|sQ?Ncrb>hc|+b>9()fqBv{XDF1cEff^baXrxuw#M@BYEco<%*}>jWA{D zZajWDCyqBGStfy;7nVUMSZtuN?@-#OItwf>1Es#*1zF$i$?81?22)=Z&nLBH5@0GY`zb0 zRdArp4IfIRDjT-$21Z-{L(CUq!P;&Mbr(--;W|@W9cd3%47T{5OFLwdS#rrC?Y0@a-P5LI zhF&|Vq-M?5r&eaQk5kk>P(ZJ^ICNW6VO@xH$TzvlWRr3sH}=Tfuq>SD7_{GM?9SUS zNzH?7#U&0nk$twM9{50EJaH-vA8_fh?^W5Ovf#W_ZyI_x`fT!;4okIlXf^5EeJ%67 z7PHF9rDvEMCw#AE40YQj`6g6SyRHl)#jD6h9Ihv}FX_w(+@#dF3BFf9M);mfBYn@M zjZSsO2O9Qh-^-f}(#vB`C)eZG`{=z{UF?3R z?ZWt`A6IVaY?{rt+}Q(<2x1 zay`2$pUt>XdD5kx-|%w$#pQVHt@K~^a_ukb<@m>Wc}B3^tF8aKS9{*uUT%9gyj=HQ z^=jEyb3b+$Iw}3hR5`EKv)9~DX&TNi_R82@$h>qJ;ex#!|9$r-?P-|%UA^4DKalZT z-eqxm3gNI#&Hj{SdDyB;+uQ8)%<9LoxGi6$Nj5?{x`n?*%dhTdk`474xoeV#a5*NE zSF@AK8nfC<=BZ~%G)ryW9M+54>ANZxmy^v{C!Lq%DH=&UBy>!wqpn%qDINCC4Z;pN zNP8#tS+YL*O=0cw@|-5n%X6C7WM%c%XqVZmV|_+>H&;imz3cTY4&TbMY>Y^@XK~PI zpcjwrftO>yVy|gd5Bgg-m|5nnXTAPmuXdtYy?mGdflR$;c~{D-dH1L6Q7xy1C)Yac z-Y1tQlcqScuv4k)Mr*REnbmUs)|5_rwLpzt9-?Bsn)(ZJfbyFeO|+Mb>l1&Q0)8h; zIL+>2-FtG>M&_6A_Lt*i26=0a__Dv%s7wAfz!Z@sY`Irky?bz-8H4kIvnE%THl9*yq!(Kfa}8%@ zv)WI#8h`S6jvN;J$>-g&GW(Oy17+Q?oHLQ!s+IMKRkQkwA11YqY`UJbK(l&CW|U>| zJEdC%Yi5~r7ul0&yf!U23*?v|wwJ|z=yRwa_N7Ps(C1)39A^jnVLq>vZP2q$F-~gx zXs39{4=d3rKdeNHq|d&4W3hnh2Tj^(3`tCb%%uI_$V4c_oWpa1bkpZ)NbCchu% zb3wVs#7Dce6@EDWuJrlwx2UYBo=h`MsaySO_-MnBBwTYgxde~|g?qupAfA6DH>epn51`C)V0EbkmGpD}cL zhBhQNILs&xc<0Y}>wd&lgLvQ?7auHJp;@h$ytG5>N}qH6ipw^Wgujj+q*Jf)oLq}> z#Rs!$^Z}1wkRGS_Ww|-BfGuBfaq5(xJ{{Ps{^3qPo-Xge=SlwkD~A`T|B~LO+~&<{ zGq2b7+|mQf%LY!x5gZzC98O>Qrcu(Yo{*_aLS8iGcw=0=F*G=WUkD%SP72ehHC^<9 zUhu5UH_H*DPWg;&C$Z5HL4zZrM+8O3$jts;I-bNQ#q8f9tK;R7ez}Z430K1m!;PT^ zt`haV>}oNYt4VZKwhz!=NxtsVPNVoyF)~?Gq}i0)efo@BYo)i|ihrUk)&RLD(y4|! zyh|JuWQ;P#2L*A3sOV1nOqc$>Wb*yH-KodvQ+Acz$$@n0CEF(7g6%&bINi%tErWD5 ziRn?C%Vkl;%S~sSOn({u(hZF@(Da3i_>gR8E>Av9&-OEMi83*+Y}m0i zNRzAYs@ti!^RBv0&8$9>b>8JDqvPTXyu#vElr}Y&^1>=E?jU6u`_pdkCo)$pS>)99 zIERK?6koI!Y#k`yuAOmbiW-xe)ZdVR@v0$x#tUI zo_siZa_XE-<qLr*bB@lH~MATmMu}o#z|QdhUGr!b#Vx z&XB#g-#A=NI&68_BDoxP*obOY=lWaW{4ATb-xSVHxv=gx4lDjv{SU}0;cnMt(jCr{ zc;@Tar@iEF&E`XYYc~7+trj-)H-~e`Nu4XB22E{jn^q6Yw7T8mEC&WSOqF!TbNkko zie}o(-B>!on8w&2SkTkoCa#s_YJp{5m)sh&(~7#MmC)o)#dnI+tZJTC z;Agx>Ve+?HpT`Y{pE?L&yBkf$={~%NjMtUH&GyXAlLva9?yo8!J#?i%a7tWNnJ>PZ zxPxxYExeQcMvpu+s~J5Xo6YJzk7}h^T_huQ^TQxTJdCcE&)2U^a)3$q7GPEtccQXx zwh$-Ec$oPoJgS(_vgi7rOqr$UOKx<3`dvbkWe0?l+S8I|b)JmL&GjU+s!ByyCLm6; zV6)m-R)5PWY)+0kyeVrt$>XF)<^3$n?RTGV)&`&VFt1EYeo=-vd8*R}nJ&v>P;wK-xR~JBI71L^W8njX%6c@V zFsl!eKkm<=qqZJEwceu{mRbGYBfV$Y2mavm9&VK$x>8M^J_+ny&l*pfH{$Km58dbQ zI=i!+R`pD-+>$x#xU;tFq-$31$!vFb*O6H@$bQp(%`CD_`%Nb8mz{~bNlnEQoIhpm z`b{3a;MBt;HA8khY0u=^fqW+2)7xcxa)LwQ z9j2m>$R(q+tn+%W-qe)E;C2UT8SNch*BK|%XcJZ~>8A(7tXcir!$g|ZygpM3;$lE?MhKx?v`sL0{znH%j;v2I2N}s0bPS!n=)yeI?`x(#JcKh3K`liRT#1cN! zuG;zAC_BSvI>$Ypwkyx)M5Sdf=<7}S7oRDl7yPY$Yd+I81o=!McJZ09^e2Ct{I>A0 zlQOFxNzEj_i(-2d#$@@^sr1`rUU+{hyG!PYm+E98??yl0yG`O(+4rTG`Li=-$e00t?o@bJ z8H6^nN(Pl?%Y4@2b@R7^} z?^nh@y;mIn^KLtM!MpuYq<5R)8J}qjYkkI(&%IkD`DJ_X-rV(qoH3@{ZsWY~-PC{UGc(q2 zyju>_WI1@hmwL`;ill>gCr&-QTO)q-nR0l?yXA1lyU|aR)xdkB_D?=DR{rNRb#jm_ z74P?#`+X))j`++NvcP9N`OIfL8R9ebq@>Sy^0Cjf;)6cp$x)x_?VI>ap3L`|8oS14 z`jg{6Q%@H7Og%a3GoB3b8BhN58Bad-nN}R-GkJ2}XZn-YK9eV1d?rsm^O-#P$7kA3 zZJ+Vvyw8-*D4)rb3qF%4n|-Dgf9*4+^RLg8PHCSholdZPcf;X6Lle(v~;CsTZ;cdP6(ExC`+lumA+DV<6_lP8s>Cl&M# zd9=ML5E2|`ptl547#W^A+Ng@OZ#lCri8m3P50f&r42+J64-Aivi#LSDM@L7528V_l z0=tij508!ttP@bHWLIa}`B0~(ZaY?_?@N}BY>TX#vT;H(j zVs@F;S7rJO%KXK_YeDqhg&~%lbamu%Is@2LN3Xzi4()I_nBC=17dVxpXWwb^;Al@* zUu?C1@!jPk+-xUiT95d0sE&HMXNWSy21igySxu6!*LsJ;LqCvn%Zf=CmO~#S`aId4rbQJ= zvftF*p32$m+?dSj&vJd<#ctbr0K7x(vW*N3K=Gjp0q95V(Z;Z#9Wv)ZOVcS$0xmhLw#dQ*35f?eY> zHF2YCbmq6ZbI&A_Yi*;hcDW{Z>YLs70^F%JjuR434_48?sYxOqY`ttFH!|OOw&+$Z zb-GVBtMRf+O{NRB8zar?c`2_uowcRY{-g%8dO<3=IGC7H7@e&3$E>!OImtH<%426W7E^k#;jhJ6WU}FV5`t(b(xGMnGw)htITR&ncTGKS9Hrn zj_Zct*wAn}{+ZR)vb0O zw60LQ=J4QH@f$06@rIy~;4pD(92y-F93lcM)M;CxK^yU(XsQ>IV2lV03W;$lP!Mh24AAYnBq)({tEh!3jOFsN3Ypqc?OQ9}|pHmj}NY-%a2kBSy;zlvg3-;~*(j89MXF*l@7MP-G+uoD+( z7#V7aiMOuLxZKd*k{+Z*rPhs@#nxQt7}V9z0F=NyC&sVS-0D?jyqC^+@iv)WvaJHGB`d)f8*W+!vjr|aTp(z`Y;G+5*CQ9;3Cf@PZp#ReIp;$x$O>Rab3 zdHtl$oRWUFbRpeOcl|-4@2^|SIxn~)Z*6>Q?0r)(J0STDK)PBj*Q>TaZI@U2UJ*?NZ)K*h^Sg%!EPRY{6dfl4VN_R^ZZ>q-W zRE@KyZYk6(%$p2i$`l{Xm)Kxq6o$AMV~hd!dZPEBDpki)B4)MR(-X$p@;=Kb7MW6* z$?A=Y?QEl>8nnj;^*zeo{5#!SEw6RhftZQzcH18 z(xUF6-a&1^yd`|uNBxibK3|Tp!k5f@o-fV$(wZ;PEE2<)NY<;t)Jdk!b40_K>c^KC z*@*&dByHY9QYGouCcKz9K%W$Y0A`CrXI579hS_@yt_LcMzO3NOaaQ<> zsXtloG%JkdzyuDw#DR5L;a{eTa<+D15fdwv<4bwI{LB|KUv9GG^K9iUzRYA^MK*Su z17~sIU8e5wB`043qyigzpQ(L($< z!huJn6}B16fhYNrgC*y(NG?vwJPsVrBIo!rhA)5fy^c!e)N@TCwN>&?_< zj^Qi5tYEzo%qz}RYvxU0suW+o=fIcw@*k&R8&f70dCY-%Ij}zmX5q^NzVv2ZU5@WR z4y?|XU3?kJygf`EV4J`3a*mBd@0Q_yu{QIzT{xZO3cg2)Vs`U%a^}7 zhF;A3mnFyYv7XEOLM^r1c@_9Fg9EcNHH)c&d>O!(fy`6cSRw~zVd`_fEayvI zmi&M(**WkCm)IQEYs`Tqn99YHt2r>9FUMHn42u+Gk?YLs$(KSL7|2v%zN}(}iA-(f z%S#-%niam_%R9{blBru9-vpLy$(KxgslbwNGnIocy;&~d;7f6i?=njk<;yrWy`2@VbKq^M$JDFLtHzgd z9QYbjd-)Q~m-}q2D_%5r zZwK>s@}&}ACb39+R`1T#WTwh9^@!D<@Z~-S_G6JbY-Km|26EspOx0n@LmYUFB^UE0 zlmn0OC72}#GqsXM;`nlid8e4Sh%f7ycZMTs#UkA~@D0BFBQGqHpQ(ae94ll*d@0Jj zMoisdstDUG#nc+6*0RVrrrIzyfJHVkb&GjFFqO!>O&pku12@a;VP0Pjtid9W`BI;G zpYkO;2iD_DaaMSalVW7*1*Yb($R8X-9uEAAsbgYhq--^RBSo6sFcPHIYRsa$rf0y)sj6nKzv!GcZ+>shdo7{6~??;d^y0E8LVE7FLOEYXI9wBIiWD`00+LrA|EofpLq@Wl7r(r%v3X$ zT*y=_NwMB+riL*!nyF7&atQ}^<-iSmsmFm|@Z~KIyv>(wd}+qKl1x3|%M-rz=gV}y zWM#>0d|AiQ_T)=!_+9I;#hAfU-EHa55D}Lx$gjv zs`%bU(>tMemm&g6S5d@52L+^K$IWJw>}8V;yV+0_d&StX_uhNQ-g|G@v7so6qM~B^ z&U??M%)K|9-5frC|2$82-YIw9Gv%I{JM~F6MzG%zZ2ZoSd$a9Swr#_EoDc(jng`kpZkaX zUSi`ocI?g}C$Q~I_Irg5zQ)dam2G((WH~=DpB<;N<1_5I4?AAO#t=66il)RpNfuvH zWWC7Gb!6iT4*43#(u!@{vhg}QmT<`T+4zY4E@Im!Y+S-2^VqMF9lvDT18iK+j%_(4 zAAfJvur10)EgQ%11N*V<7q+cs8y}Hv&11*A+3`=d-Omj7vEym%n9Yup*qFh7PqOV~ zHa4yH6aAszT=R?*jU4kOW5`;+n(SD?q$ax+0n<2eBOlh z6Z;*)j_0s(GKbvA#wi?xx3yby*s+KmcVJsTHu|&i68jy@whK7UgV~X{gC(|ZC3aXP zwnABc4lu@z_1oWd*$VPP28Li1!D0P8{c3Biib9Sbd$bpb_TVHn4%fd|HC zEOfiAT38n%96H<tR^Y zo?GaGT4SYjpv_Cxf*uJl5j} z{VwYl{N&?jHo^@?5cIDse4tzComw4${=*NtOcr`dRvLcrNdwV8t?ek?3%M5G}PP54UG_Ww6GN zMVg5zrx$3-sV==V6sTEo?uy2_r)4YbxhFE-AYw8w_e2Kfp2!$MGLUg28*fso$#y;) zAMyitvR^J6d$Tc?jR*&+W}}jy8_2fRY{T3W#kr7e^Vq=L6FIiySl(b`0~?Du$i8em z#g5Ogfw?Do?gwVLjf3pTwq^T9OSnI13S)QTM7H^&yE#r zT*8j$u%z8SY{T3W34ysMGO9VwPuaMYjgR?(yV>>$KZm&| zdSDql#@P{bPvp2WKY+O>vSIFtjHw)?jvwgFMjtj_X5%b2e&LY09Lou8oXviid!opG zW5;vZ@prcU!A1cagAxyLWaqQ(O*YzckYQ|t(xNz_vBv2dJGc3jOyK8L)FgJAB7h%RSGXg{)j&BhUIe8a{U9OQa7*0JLcY&^yW z=AP*B*=$?K40p3}D?itr{kpLYuRT3*4BNJ213HZyC$oXMC$c@uwmJ?1{Ys9-?05h> zrn9k$joIwCGxPn$jytjOA{z_X?-jOT?up{W+!GlevtKqF5jJ+^kQcJyV}{+?wu+5> z4!HyS6|n6L_8ZRz=AMXQ7W@6kA(ydnF9-R9{d%&ooQ?i$9Lqsg@&lNAqR94V#~gM% zo{baPu_qgc^5dtlExR#nf#x>au9rXuKvETd`keJZ8^Ik(3ko z;WCcuBQ_SX;{ays&qkR2c4FJdY^!Et3O~@Ajj!49CN}1<T3@8PBuh95xQ*kgu@qa*p#qcKnweKVZk**ubn5#d0&-ZfD~&4!M90 z%t}#^Jvo+s?D!RjyoPN%vT-#B!K@TLu#$ts*>4dWi`jUT{g$%rC$`{+VOJ}*!YT#_UzY@ z4a`c>@%Am?%r%u11MaDs?~q;V{ml_I})5{_(pk8PNhB0qdH zkg**bn3W=1Z?=8GMu?-1vh7=rI>L_Eu<;N(j$_+VY@5us@AGL)a0sQe+#>A>U=k z4>{xwYy{YG6&rpIS;jVeThZe&Hr{2w&)M&4HXdX@%t}$nF&tz%J08i#cL{@ov}GG+ zrRafM6GUv_(}^5MvTY;VI&+-cvF#qVJ-|VZV%s>j9mGK%W!tap_ZZt&u;1hCSjdi; zl_I|3>^GMk2Xc^q+1Qo+u4N;K9d}`)8$W<=Gm0g|Hq1(q?NSbcSt+t%R*DRK9+R;b z`xUW)k7ROOz_ztagpX!&e3)&+IqF;3*p-d0?DqpdcM97cVB4`Aq%S*SR*E9)$2NQ- zlI?U3*@|sF*!BzC_GRM{cEmS1J@5n@n3W>ivut~p<6ObEfB3mw*b(2c6mkgrWwPT! zHZUtiexI{#Pd0k-1KYFlH5-_fqLBM=ET6H_hK;oxF$f#sO@c z&PE1@%w*$1rk%+KW~E4^FTb~H!*2-`6JL+qH9B4Z`{J=;QuH{+`pEc%9rHLy0UJH}xj6gvW!reR6|yme9fz{<4I9Pm*Pdhfl8yb@5hI1f z_YFJV%nxAXkQ|q=aSI!ml_JLz`MIU+h*>FeJd&ULhy7k+<2ZKg&LJnT?M(K2g$>L~ z(c`bOEsujN=LhDq<5YHhh8;1?Mh{%X#t=3zD@BfHb4biek?lpcb!6iT4*43#(u!@{ zvhg}QmT<`T+4zY4E@Im!Y+S-2^VqMF9lvDT18iK+j%_(4W~E4$8n#8*sAc0AeqcYg z{ld1jY{RS+JvWaX?`Fq8*>*oO+{ccmv12wnPGVyQ`#s6FliAqF#%b(_St(-piyaST z$G6zFisQVJjqBJbXTKh7T+9!=!viu|rjgk+NYuIrK+rDMn6a2uv?D!))`q&Y(QY6by>~{z|p2Nn;9C9NY zr*II=O3?#z*s+KmcVJsTHu|&i68jy@whK7UgV_~}aDIG~Rl{TyT@KX4KI z-NCj|Y+zQ3LXKlw1qZpGZIjp-#IayjibB?~Z4DdWvN4gLdz>Fw#5T-I(E~TLZ7%!W z#Sh%WMpyQGk^LTI$1!Xi$9@~wb^_ZlD@Aes%#NqB@jLrH#m0pk*-Z93iyhBq;~X|J z+4zTz*El35lql-?Y&)C{Oem4#O&ljCl*on&B{DwcAeV70VYXpHiTwJo?OuKk6H4T` zH;1&?n85o0Vz#Zhp`*RGX)<)QEe#!g&JSba zi6TCZBmR|*UTpl!#(`{L;)z1;#I{rU@hQwb*S5v$GHXILbZi0!t?XSab%it!VIMCt zsET%v$5zy3*db`Tq5rY=&{j^=zbF=o(=O;06)Wqq>DZcZX*5{1;!w)f?wFmJ9bAmr ziMsYUd#u&`>SzQ<$+VhpAMz2SSqsEdms#znr)sG0Ne{(J{B^nhnwn^+#2zZc5L#M@ z2G9;&QI{16`(rVZgm6ZczmidQX}r48QsNIRhz83LCSI3S<1dF-gXr-Rdv?THO-!5! z>q~+aE3L1{Ai2LGqpo9Vu*@G1*R+}+h~OxR#jWO-A_WP7t#uU0`ip)@SnCHek!9=2 zqzHay;}X>Fn(lH(1^eL;@GP^=a9ReI59_t4Q}T1cQT27MK6`m3cP zb7w$%r39Ff5+rCJpmXwqG0K2ie>ha?B}Ff#6eH-BkfaDzl?9_jUSBKRc`;Zi#f?cw z(LhhTGoYjgSe5XbIakU4 zq5NiMxT`=w$$F<;1=1r`j-*yANpoe=E)7~6Dv&fnqzu_!9j`HSeVI~}y=76l;{bi^ zL2gBRk7M!bYC0)2Sg#dKX_hOc87oVZu{0Qsn5-8lStD}IYiquM?s|BwQif_-hCDmv zt!Ovy0<%rLOUYd+zxRcHw28G#yxM}tl=K7Tq-TVvF^CxI=4B=8YB|xxNObcp@hYVR zSh6AL{Y-z%)dTukNxLwKgqK7k{?Y)EJ35W5={G1Pm?uk6gia70aTWHeaQ`X!u`EW& z_%7!A-fY{Szn!i>*iKe>`E-n$-79w0gw9IxH)Qg{P*t;iz`jcQ4KjT$nqCi$H(W`* zSgwJc%^DDIrq8vHQj&dTNeUafpzda8s*?UGxeR(xqi^&+H}iFNkW!pyWO34|2O2h7 zf^sD(R=Wx60Hkq)v_?t#gWTw~Ybf{TD&Mh6A#O{e@|pcmBM;6{((ftff!z)?m;6hV z{LAFzXOy`*9ycmk|CZ}`p8cXz0~m7j_U}`2W4WeK)!U%u-OMZglv0E=xzM{Mt#4je z3WEi!LVmPucnh0p0X|mBkS=FPYm`Z|eUP;gSoqsxkRo8xit~$ zkB6&iu-Bj-prqbk&hdgKpCmQrm*5B`dxgy2acqRn*~8d)B_;j<`Vox)-9=|wH;jbzW`XBjz&jYJXpzpx18|ehOWRo zs&UoyP8c~bN-4o7vRW#bh^h{C5OB6lla=h)J}Bvec@;~1bE-mROZGMrK37S-OwRf? zv*L7aK7CjF#sn*@`;j&tIE6lKX$7&pY(r7 z(xHut^-6*teXcX$h);9@OCWT9-HLwckfoWEu{cA7txqzUi z9l#dd=F@Js136R+eWRmMzp00BCuYr;!BqK8@J*%poX|k-B2n#6bXc3Ih7T(Rs!KvU z%&YL%_(~(e7+y`^=+aVCLA{_9p|>nT-bB((^tFVg1;$(Ou9CZt%w2#);|rgT#}1l$ z@e3vU%QAasXIHttLYUfUy;731WJ%f}A0|X8BdGK4@zMOZQiNaRSEG&HGoY`xW?qJz zUb?q4SJugPF4$iU4Kf%NvV&5D6J!z6CXAk8aQ0Smo-G%CF87A(sQBvc413?qF zpE_lr-7P{xh}!S3qO;}=DfU!K@td6KIn*~S4bh5NlX+hy^SN@?w`u4XkB*kdapi+4 z!aSu2zsrelLmx$am7#AEjaXqE(a8T&r3in>BIHk<;v2uXn!b%_shL5(P)S}OledQI zqvoe3SQZasu)+}FD5U^{Hd_ap>51iq=mR~DuLVah?2Lpob}y`mdtr%iTd)Uq8nI}4 zV0~p}UsOLj8d~Zeq`F#}=jU%W&+Q(d-R{@7cjha1hm!qGnLTq{FcvB|Yx*Nf+O~2{ zFWR3z1bJL?s=dFU=^EY_mHflxWarGT@$t1|#w+%o$-KoTPwex%Hoxy6D^OWYiyO@f zu-25v`jqT6HL;qFFWC5sjWxEBn40*OEHpK7fLs#A6X=@RNHnyRM(I6rWFtk?^g|?7 z3Eq>-A~%ups)#w2nATfIT_ICv$0B7l)#13A>#dcv4?Q?gzz=Wl*EQr>Dl+Q~})VxzP4wvxP7u2y-AXj>^Q z^$JHK)du%!CHL1dcm6m!Z_`)5>$GYA^amyR5i)tkXjkuGlalotnKc~>#K`BYKDs{G z7jgwFm>mx+ps_ZO&SyI%`}Hz=E?TIPco}W-G!ouZNxe?a?X=($vmY`@$@zoKnNvT= zWA=FWP%=LzGpAREViiUfPg0WNY)(OC(z&^@it=d49L%4iB%Up&*8Z??eOQ+$iPy<3 zQzrGXX;p!d(Gex>-7;;KR|9dRlJ{2m_06W%DMl+n%>0n^~5oA`VsaW^@| zITcvQN8d2!%XE#Bd8}NCHu2-k~8db zHgx8{O4d5LcIAw%_UiQHZLjNc*(ddHeylOCCQ7wBXiv5nsqUoYE|&8;n>JI@E)K_7 z-}Xx41LW+cma*LV2{X*3-D2at>9RO^G+DARPFdl1bh*cyGFcsr933is7?94#CG8V5i zDtuT;`vI_ni!;2L;kR5KCe{r;|2kN zKb_7cGBf&lCF#d<;pWGJ{%D{gW*-G()U0=uQL5q)TtVssm`-n53>;Qw67ACdVB zr^PEvXxzl>#rjc6ziWnE;It*%EbzaSq!-GhS+ne&G^Q5G?yGCOd~)MeFb>CFcxH8b zCHwAjs@qIjQXQe~JF!sAQ-oeh5mw0}q~jekYWQF!X?~_$#bQCnGR#p*(jDZY&Z2!0 zCH}Bk#U?9x3*^MM!-h#8orXxOz-j%tuPp3$Y}T2p6yglIn6qLPG!z;(zc~X+-tjVT z5fYDecV5b@TFH;wX{6SxGUzwgz${ae&dL-?GlMjQ^s$e1LnMK5|{y_c?x?b4+az3ZW{I%vA)mcfJBj<7!jT*SRx_y62vI;wa&H49oC4E3nepXea3TJv66|6?di(B{vEz-~rp`-ocj*S+_D(PR4 zbG>*H4M<^`{mdY5{x*9;XP6Rfv6102xj+iXEunME>9m4SB@VeY%H=9kEbDx-)8O!h zY+TI7rEFYo8;QZ;E6GBG!+&Rq<&rZl7_9bROMl%41dcqWKQufaSl_yprn0YF7vE$!CKc@*6%8LUzU@bF^zPNS@XY8vJR42 zb7uu>?9aV9=BlpsO6v1u>g+M0Du2|uvFmRwahCX6g{LIbOsQ4>$k`!wY7n4^i^x%2lnnVOu?p z-oXhhMh@($l;CYyg2M69C><5%xtDHVCH)t2!FO?GfUo}Z)X0f>N>NJXoXEtkI>$DT zQYGz`auv)QO-I)A*+*vKFH~|*kaNH7taynJH={Xlbqt**`(uX(?`gm=qM8U7RBlrBl)A1VjL;wI~q_v5XO9`rzxpVl5?Kk>6%cb`*Y=B zCG~na)ma#uaegLMD0zR9d7E1$6<1R4BiA?jB&OAXROK84fX6ARr^%@oQa=55>18Lz4Eoa28(DZ`m^j^~Z0^%Y+03qDbDXUOUAP#uk9*)!cE zgUgKQpYE;;n%gPAGsW0qBhKf_S<}0gI?dSJfs@r^3xbR2cS$9!Ly3k0t>)9|q|uNm z>p!Nf)&{cEF!Zl%Y-HmPHa6KtVi@{wvd}Pe2U(`p$SYj%<~hrmJHYJWr7FNdvHyzMasPm5X`3ESuZ;`pP=z^~bzvG_UpptiI zxrP@|N3W7@`=wJNLXMe;sFM8xnLV#Q$LVD^UazB-+&OZNZ$|@EG&Y8|0D9NZG_JXz zI;A|T>L+B+Yt?F-R`_fF3gk{+t(8lni2st8V1|AdmeP<{^zqBwUCM=iK??yE}nyX5RH4A5n&bhi(E|3vA0 zBI8B;P)T1S)92ZpF@6IL?r)UbAJ)Hg&A)5iH=_g`9mHRi(tIgb!Sravu^Vlh9d#Y8 z4szYg4=$#&HgT1&vjHenlK(81eMYRtd5=(6CF@L?wS#@P*yc5UKcyHQ<(zLvtF5@& zqoeJ0o%SwDAqLBNv0Z7rIvfhnp_hqs$r2w&bh%Uo9ffR;dyP@b(@B=6gS+4FYWwzA zigCOADt4gL1!(4qa-n(Mc!*MrW98gv)6hXew-_ITX1f?titw~7LT)o31GP%(-Q_~a z!qPnIo*Ave@k-vijaiO7>snu0STSlNvM<{fv_K7`cvT#7O;`tZyn=N6W13 z+%2G^yYs11h;3yd@)I9A?&BZ6SCVg^L=7)`|45mffY;+9*YsEx+8fE8A?kwo`Jpk~wp*u-dImc2Y98kuyA#KInoDWwN`H_DNZX zWkhHw$DAadV6twpaqXvMX^MI1n#Q%M9gkH#7)rg29&fsoI#u2|GH*tx%6W-MOv!qnT-~>e1^i)rN|Z*> zgwh6ay7mzB9dx#zYxevYr97|5xsX=n7*RZ3$$7b~)-!3uo|11A_{B=v|KzMs4~ELk z6Txm!lKv~_Z+`vzMX#56z3073@(<*U?nK?C+E(++`P_@<-ti}ug6t*>(!n7}DV_G> zyg%qQr5Ksn;sWzxh%uC2K5u3Bky3)2<%}q(uMX9bMUF<`TP6GLGCR7@wZqI+=D#Uv zKa<~qtQZ|ZSQ<26_-zO3H2eaYH;rC+L&+2=IorrptV5y~S3!4AH>cLSDaF`R)^!>7 zr>T+n{z}$auU(ZAe3e8Er}v9Wz)1L5CG9nG!ZWd-+_9~Dx{`KBnReTS zWqWGZGJdbgHyTe+l7r(zojIEr8JLPfg46>0M*?e`AjK62RZpU ztizn2AnTOON6XBawKQ1n==c4pq}?rvibfqF+CuI)4>@y?t_OC!oZc)f;dHKAZL8$n zLr$>W(H(AT5ucKFluX<3vFBQ!Fi=U}P0s7|(vaWm?v7NF-Y2Kn&gh|LMo(1I{w1e1 zgFfIK2b#}TvS!JNO>?#pekEs5`FkRZ8biFghL)~U@}4HAH65ziAU#4!dbnJy*{H&i zD#!Z%QG-I*&lJhJnd~$kd@CEbvvDUIciTo{JosL+(0Fi~Or2w|^rI7n%x=+B6hYGw;Z&Jl zl9@Z&1!6DpY*=UEDwNlia)jlIQ5d3yUUaEwLI|Tye5|CuMyBu3KwrPG!F}TVTBR80 z%kN|xyELk!!GPUWbQQ!#r3i1x6{58*f}MJg*E4Ofu11#1d60vmaOZw&C3A_KbXs&* z9i}$6)qFaxE(8TdlEmWGIBv&r;%IlJG#AVHP;Bc2+Fn>o0=d^<4^T=lLe7u$5S@Ev zyon=}qyd?<7{%ZGwGZQz5{#53C~Bw%9v_P{l>EhV_ouKtNV8*AaomvTT>5yJlKu)g z`Prcu=Ib1d-~uIam0aPA`1%RD+k{e2*FhLHZ?Tg9KDiBO(@^fE!9di$6VwplM5PFe zWf8jC%9n58pl!wWqz&|ut06c?Da(GcEE#T{bA^)i2DuWX$7pM@k?prCNsHv9wrObn z=?j4ORU0Baq!i(MS%mg>$zn)p!rSogOa(uT=aRQZfPk5ws@F>3Y(PN9cAvq#%fpM zyqY#^h_0`L@L2#*7nf0kC`F_%0)@R2i&{M9t6B zJ(S{fk;N&pr?`R$^&9nzgX#IrI zER`s^f0pyVOXBm#t^|pXBkmQOqjM3ZD8I>XWoNrv91YTytWi1y1Q&P*;?bD%K++?X zl5CJOg}>4pdW){k*{Mnq4wmagVSSw_4b@VEZB&c%mGnEx^x0@9T|KpHl*GN|tS@M2 zE9oK(b8*d`O7_E&NH#vn!y(7+i$|5jugk<8?XN*W9lxZM!!OIxrJ>T-%i=ve^1f1( zKV{8K7oOS!1&*CyUn!ZV$;^eQ1@=&-`wQu3CH*FuzO8-oI~LN~JLKKxPyK7ku*HVZ zFP7^^=ca=<^*hzvV|m3x&7Nf@*=a;Qn~hvH^4Tb~jl_t0YqHRY`nIy7$O;D+yH2X_ zL60{bPfwM1mRvf!)(>47si(dJ>I`ifqr>DeyojUCsegs-t?o*+qf*SXWHB=WrIGOj7(@k$Y%m%9;#biGcb+U`EkGIX=$oT;QgSFV@Yw2#id zVaI5)=PQX{l+&F{-~r|6{2)Y3VqYLPnfz=N&ij~xnAY3^3XW9DVfvcgtzz9 z$HvRIQYpoIa{4>_V|=EI>vPJGv-87lm!jPkV%|N0>D#fja=J(w@ zO35ye^QdtO)@VA74EkIt#&)t8MP-pVT?9ZQP(f1Ej!&x}mHeM1p{HrcDHNy(JGKt| zrDX0cr#zb!6Ya-x?61xqrt33(ArlujHp$SDRpn-@++Ha`NN%EbY9$rut1Zu0GRXr3l~3O;>gx5{(8T!7}4z9Hk_V$mNm~@CPbrl6PDZ>8*~?yszUV<7y@EQF3})H_W)v zH`Ai<+@$;0wr%}IlntZ=s+(lH^df68bk<& z-4or{D#iF-&h@lF#9V24my+{#nKQH8PdBcZ^Er8qse zBd0jS-E<6Bvi>70l$;7mtNRwbeU!}q$;_Fk(+*WORZ07&oXvFpQaE0TFILwXH3ymO zTWqX*o?Pd!zn>OvQ0Funp{05;`=EZufMTU7o>fA28t5)%ql}FTHZ0pn40MOdLId5G z$|^3+c_h_RdbH^vcdDE($@L%$lW(-4%;+?otmHjJ&hqx*2(3)S%rBkVLZ{?nouK3V z>lI2VUX@dy8K*(iu=!?1dqGKggG@;c3JxDNXx~-R2IO4Mu8h zO4^uATR@XO_KR#^J8EQjZzcP?a-pZYl;;p7>F07O7tpDxxI~9qYp3eoQ^|g{%$`#c zj8;YB;c&>v?0uEY56VSd)R1nEMr)pu|4X^8%q!u=jIL&*RLMO?u4tJR?*8IJCGB)M z%QH*eCubg|q&+eTTAUjhH(RXJl(gT;wCOee1*XovP)jP;s?3@Qbw$jh#jaD*ww2SG zL+_AB$MJ+7p`Rn}jHbjKg5PS2gnuPEtnlj+k-f;Hv< z?FUNIE^=WPmqa7}(tsZ~GucaY%-+Eor3548WM|@y4x2-EzbI)p$_dZ0XPN@eZ8)uV z(RGJ9%L=;~x&%wlBUQ9i#nlZiP)e{}5^1L+%xY=Zqhs2)i<0>sIqe1E#K)DpPqu@S z{QM&j}$4Ax}U8d1WLB`2>LEQ$| z$=B1Avs@Mefb=xWM3f{ zah|^>9JCu0$1y!;D!Ct*GrVszDX&_6LRM< zpSCvB@=uSw-S?a1TWm0SxLh>~?IppqI*%ly`9dR4UNptB9wR#qB0s^#Q*1oL#&foj z7({-7EHsEbS1z0#Xw?g5gHzgx_Z~&xbf7s^xdtXtYZG$W`(j-i6u(po@UJXDQ9=OE z&452C`FEA;MS89Cc=~^oq}R%%#aJU?U-9hun&j@PEB72Z+jGVyZrm_C-5r(8yU5Jx zbfdTV5#2{g+D(4_Xg3!=Xh9vKDSPAXAF8C!mcK4@CMJl@+}=yc9Fh~>xjxBQY8MOG z%N0Bn^L|Q6^5i^7pXR(&=Kv+?rE+B}oMIoL>+^@pgC$Y(6E~=&|442L(=5N)`bL$U zt>t{qnnj1{I6p6rR`Px-r!{LL9|&)}TXjm_z2qY96kLpn4f?EI6snQDi?eD zROeuAS0(8W@=KmG&R^sAVg0a?EU6hhMAm>55 zgd`1Hv|U1sQ3`RaTmkdPFQ#qDbWR2xqhzZ3{gvc><+5m<_=vW*)uN#_D#Ia40eZ-t zn~sShus>IuJH{!bl%t=V5&7KadGw@fmE_~)Dv&t^_f?zC&GAaw)8*>lJ(2fG9G-TT zQkqtBCgjYbt1$u<&W`S7O6DGNKBUcZ>>RsU$@z<%+We{hDw=$zxl!6$V7zn>D9QJg z$up+Wk~FirJ)>lOM9${C@w{;YXZjl{epAW)sLY)?g|0<+EVBMoN&AFMTi?Jme?0B? zN+J5oDz?6Rhhuu1IYRmmr4-M~S&=<9O1CIFD|^Onx(?pEvSxQ(@6^WR++t(aE96W_ zkCv60V^!Om!dP9%P9xRb*yzEAkBwfokr=7&LlzpT{zrb>6El^SwATQql7;C_FkZi5 z6jRed=~PA7MJ|KJX&lET0DCLB|C5uS8;;WwHh;i*Hsll~^$@wZvliG(K+J7h2P%0p zBKTf?1|?wd0PRk`dUhRvO+`Z)2t4(4TEKR~;!IMk7+@KU;ds&2HIw~R( z2vO@|pZgtfOa|Vol;CSw0$hV(emXs=Bwa1n_#C?PgEX7-?(5f-%=^fCtqon&NQY_h z_GgbW|41pqXR-)+ILeHV-ZeA+TP1fJncKd9#C4e7Z%X2|ay83aP~oSw_q3bGZyrgs z?e4lJ{6|^G(0RilEC;7WZnO>|9$4Vm7F?thVUnEhg*8z+i3K;pQqemuf9s~CUoYoC zmcP`B&`GaG>(XDz+ez-f=O*q7bzVfatCm{M@%9yT7cyFwNR;j)!yp}osf-L5tCV7j zEJd+>zaZ5*x?!TKoW7aO1)kHD5_~61&^l2B7$2m0SI4E)hbjd)LKYw!`%heLtED79 zT2?tZ3!-$dfa`5vq-5?cSNje%w7RCgQ-`wvJ=Qj!pcLaFIRi5A$!3nwoULSCFSF+0 zqs8M|O(paFa!u=i5jd*k!OD_gDR*jJ_3jp>7(Q8yv}l!?=?^M7AD1&d&G}+KtK|Gu z=FCdmxoGIrx0Jkn(%G_5!}DIPG}*36N*Zrw?;9GM2jsDA$96h849@zvFaio% zzn&&4xlfl9UlgZV}! z^ULyEm{AsW4wT-fWPL#%vZBj}%ghrIpHh-$$)%o8%eipq4BZ9d$miFUe_oVOBU^#|^2*k}bivyHm>?K$1*7k|V zp)y)I<}ofXLMgyiaz12)OPvaIoRW2noNTY$cUJltN-?gI-|#f6*3>G8DLK!Rlb%tr zq}nm?wm`|cP)=!KL#NF>A=#ZSFB)w72=yd9r zn_Yt|l%&(-?9JqF5hJa)Drp}{f|m9xI(6nlO4?oIEXG<(r|NbcsQa8!jyq&Iyq5yK ztt37{&iAZPEI@;q=IXQ6O5WdO-t;o(Tl|BP^jVoSn+|eyr*@N)crUql)0aAzvuBOc zb;Eijk=j6{dPyu)ZjNcTQxb2IiM_Th^i3izZx{XZR>@JI9CHI?h-SXPU)I&*owVY&+?JPSgSv$*# zE%wuf26PEf$`RVgV}4fbrj%f){6gjVYwcy2F7+~A$-S-IR;JUcm|@0yJX1-UC6jvX z;+e0c{YWn9bZBrRtzjkUXL6-(Pa6{HOc|_bZfHduleJ5fQd}Y@eRIccoTQ|`T&DLt zg5q2yuO;&~d-}qaO71=6x7xiM{5B=&YB|A8YFmR+an!bzN-5r#lioy%hC1))IX$nG zA}C9dR_fS1^Ny0UNY-o_G%xB{W%#+0^+P$O&1|{-QOP`7)^6>pXtOWvM{K_R{7WfB zYdQH@bLi^EP>nfxm%W#+i?&2ge1ToL<5g%@9Q)zgE7@c6tDaLDja1VXEys)1OUZnb z%-q;taj2HTO71pto~JoCUXD_7&X761j&qr;q=(i%vExZkc&1Q`pf7d1(c*m z$fSAA^}VZ=+`r42?0G2HG9~ZcNu;@$!z3}a(wHg>g*#E|iBWT7GBpxoj#ESV0NWA_s%hNff2 zsZyuQN-%@YY;jD?%u=$xCF{Gw1^!SB+d({*iyp3||3uF33|hLe@#Zw#R$(ZXtCY-rtUrlg|a-fjDU6;;98(s=Y=UR zDA|X|g^&|mLS4FW$Z`AByGrJvGIIuZ)bz~U?uZ2avqb;a;T3ACFwqLCTCUA zu}8GI(@1Pw$$OE^+k-SnX_&sy`DW2l`#OwP^K0p>1RUFJh;y7N&K4UB9wLj`m2N9Y zTssv*KeRGP^FugFhXgicJkONTT26KvAFgBL3^vYU;~d*aj1R9M3ylvyEq`_8(+5w8 zWGHprV{tXb(R743Rr0gt*CNedVjiS?hm!L-Il=8{7YNQzr(v8RuAhxngdFqkk0^zB zQBHUpzW5Ngk$Rr2{Gw8Xj!B46Q%wh?;amlOtv?iYy&vx>MYuwK4~nQGM`wvZjzEOg zG8uLMOC|qnvTp2b^M`6_2fRH?OnKq;7XGA^q?Mc#zG@n7qN+d}4yjBef&Nhnw5=>q z23>9A=!@iz(dmQN~k^J3pNFQ<8onljhQD(3(t^(Ar*?@@nF65Y^7>q4rl z6T8V-8dC!XmEz>dMc*dA`3^`_DMF=O7(MK@BFQPfqm|-(Dd$L*b6uDh-zT<6&xbJYI$CmHchxSD{Pd?xY4W>=w}754}ez%C~Z#un0$? zS0zrrcWU4#l>9YvR&;Y_MdG|IcV@h*6ecPQ(~+ z0lK%I)^P;(8=A$UwH6to@X%^W=QT*;GOMwQF88@1hjrZaK?y zNCi^=gtm4V@BA1g^Ph4CG+b=CdF`{mQj+_VXdN3m#k9*m=okz?M9F`jTn71QlI$-* zXL}SY&qxcPfv65|9B6H_~M*4=*9Klp7s(a znx!^hz{`{pJSk^GI==gj62DnVda_K~h8ot*4Mjbm6k($*Lbt~6GU2Q28Kp3%$SNSIVsUSTRkyjz&Knjm`E-^6O;sY|q;ZhAD~5pLBPHv#@;j784Z<*L7!2NTmAqAQY75J8votnM zxvTVVO8PbO8=M`A(OG&S$MH|wj@NZ~#>(l=p{@sw_d69xk&=0;oaDSPZKv_d?ruu% z>*Q4DHl*5ot@WaCexKt zEJ-Hi0kefTRLS|RoN~G@!*Myfl?3T|>8-YDg+FUEA8Sv@uT>VE?GUPTw2O<95MXn> z_sTg<9otZqS+h@2vi_JvUY9v9E;w6B>XWm$v13bpAmhEdTuHv2yh=CIW82>?O4^^~ z;-%BaBjz~hgG$mvEGx0IwOXNcYE%uvj=A?PzD z?M9h4uVDnj@kzW+$$g4kwd^sMA;x?3r;@dw{2pZ`I(!Ci<^)}bYmS`LS){OB`nj!= zw@A)qx{t##o99!K?jR>Ntvp~Vje$zeellmX=R=P)xwqKRZGTy&=8qtmY6@kIAv+DA zjALU08!g#6sa#^A0(^ z-Zu=bRT7Vqi9L@6+^FOoAa{wHJ+L@!qOP?VC#Tu#RPNSF+6uW|d7S#*UCDaCoY-bF zdVrF9lFaR?wMHm;2W5%cBV#gsO_@{Im9&q`FOt_i73U~v7s;vJ++q4xDCyV9 zogS}L->Rg&Sx&Wwo_%mZ&XV{hha!ocG9_&0Gh(TFKm1F5R4& z!B|zW#y4~~Lu37*WPVXDVXtn-CME5Ia#lC{!IU*g*V7u41b1`Y_;yO}q{>=4N!}93}IqGPCD*afy=m zce#w4(VGz^^HVaj*Kp5~O4y!7miWSr~Bvt9Sw(*!%!a%m^da9iPiWPg=#8%`;I=qkmftB zG;$l&abA>GJkiU-FG;+JD-Bkf7a^xl*1aBw%L3$% zs*3n(LN(#wUPjuBmDF#_Wzc#G?Jy;!R1x%*&^E(>StWZY1-MCWOxh10G<2kIRt-*H z@r|P!V5k~I%mvarDy7KD7QeT)8yl%4-ECh_;fs_}ouuAkDBznw+mKvWR_vyfCs&rI z?a)EPM*2p_NRV+sIvK`K+QXdMwS{k#6@+CCekY$NdmOgU6bQn5l_(%SM5AkN#9m3k=!AJhK%&hsS1^ueTgfT)O*V>M&S_XhK85ZDF54(^p;G&)3{)5 zFdV`7GHIs(%?U=rv{5=zpd0QGaF7&Wl;p;c~Yj?*PGJHMbwFS3@<8`X*P^L?fkf zcV7Ic6lkzEh`8j|NGyP!)GQW8Pihzm#%)EqA|)XYcQuIez+-(PPKcD~%qY z@j7SktLuC2E7y{O{m0E3YnPX+k!`PJuazrGoBA&y`Zz1Kn|ZSX+Dj=yv0OFshv0qX z{-2rqgO%ii<@9&vZsz{9Qp)aoCTb$JYDPU6rIaKlXF~>x-^~2UO4iS1)&XE`Y|PN6 zpxZT-x?Nu!b5X2m*UQL|xk}M~kYCNh;b=-4`hEs|KuLd`{9gL(`EuW^V7a}54h<}8 zDfD>eILC0Rl>+@L3)FjjRq4Q*$Urin)oB$g71s1nb&y89f<98E&PuyXDN`?5rp$?P zx&p_nwab;X|H`!e>svMM16BA#3*t$P^j)Bo>_Azv+!^suU;$l}<2bJ6S|xRFxksEg z4DZW+k!V%OZ@esbDYKK~fi?gQ2U?6L_5s=#Xe!WC@I46V8K82YpTJfF^aEr$7U(uS zaR$(yaJvL(8Qg9J`Ww&Q2ec8-J_VG9aIXXX4!4hi(&4riXaJtr2=p6bN%PUqQ}AsK zGz)Isfl3f=0MP#M9RXAUG!Ezz_|5}52W}S7^LTava zxIGBe1#Zs*4TIZTK<`5O&w$>odDDu=xl@=0@N35djkCi-+h73h3`C|-{DpY^as#F zpaP(yfCeGlX+V9!b~VuXaJvKOO`u1B+Tw{9fri2DJ)mci-nBpnz;`3id+<%`O+OVt zt$|*LZ+DX@s89?KJy25t`P&Q;a3@8h}3xGa=?_!|$zUR zC?C(>3UnEscnGKvIrJRRHUWJDl+}lRzQ7ahfUXDX3A7Hr zgMfYj+5_k@ph-X-!8QkIHrz^p)AA{spST6M5Ui3g1pZ#qix8=m7W*14;)P53~tr zCeUnzn-8=z7+1>Yq=I{}>p^diu?KnoD=N}yNZb{o*!;9Uvy2GH|BA0ym5K-oZ_ z14V#-1ll!&e*OZw5GcDZ{rDhDd!XIn)(dDA&|skaO!^rGv;)FT1}cEtT%a=$E&wzh zs2b=S$g&J*Rwn%{2l^4uUI4TV=vttA@x)y~e`M0nV?aHDUItnYvRDzCgHnK&5co{FyZAlOmPoNB*yl{>Awu4^6*c$i~HN zT*}7fwvm{AzmhC8{eEQ@kuC)N1PF2zP#FX{4d^4F3xO8F_d1{fc;arL{y>idg%R!* zpq=3M0no>ATLV-L^b61w#L}ui{j>%u0QwrfU4U)^+5u<|e0K)A6Y-4(IugFqfKGz% z!9eTbRsr-AP#kCl!G#l}4 z2h<8^C!jX)-5uyja7+Mt3g|$f=iyrhGzTaKbReER2Iv*Ioep$4crOO}556}5{R`iF zfj)rmlR&!xy#|z-O+Oz2-3+&Hfo=!-4d^pGyX`>wSpZZ7)CNy<1KJZD{ek+ycUPdV z@a$NiYv48=Xh)z!fv(0A7SQKN+ajQqc;W=0IKrI`vOpv6G906mIu4+1TP+p|DF z!R;-e8xiwoKpo(=4(Mp0KY@0`6PbhP=Xkia1=<5{KA=%R1A)51cO=k#aGMD97u;q8 zWx>r4)DwA71#}wRjsQ9w;Z6aX4!84w-h$iJK-)mR`+(Abo&tIa=yjkl!hH;M4bWPk z^AXENpf?aMZ7}_m!mTw>3Ea8^T@1GYKqKHb0w@494rnCM44`7jd>GIba9aRWg=ZH7 z-3Q(ifffUu1GFE|6+ky2+^s-GaC->od!Xll+9AHTfhGX02Kox<2cY%{w+W~tP}UIo zS&!0h2ebjGCr~%YHwb7Qp4|he3(zE>qaeW?pyv=v3DD2*jR5_ISdIkR0Jl?t4o0~1 zfp!GC2BDq+};7Y0B)ZHZ3pxt&?jK~3#d2TvWL;n7eMWSLXe;rP!w*1fxd+Vqktmt zoeXph&|IL0;2QuM2e)dVqu{m-XfoWE1AUM9E&%Eb-)n6*_}&F{JJ4f5zd*j1fu2XW zRX{HQeGRk&&<3F6@x*^X6A^R%aQc}Jx6VK(!L2V)AGi$%`Uf%Z1N0xzRG>fMdl1k( zJW&aBDL9q_y@YTl104e26+o}T?JA(*c=mRncj5am(1&>T1)v*%-USN4_Y0s^KPsY-#y;E9Dm)8Ts* z(2+o=0euH_p^fmwbwF+5b~jK5)SSnGZUx6HK(_&X0MrHH)&Px!+b=*H;nr#w`sobb z0-){S)&=Muxa|P+0G`+x=qR|21{w#qX+Q_ziGzV2g38d(Lpy3GjBG6p;z6UfAPkagVFVIgwyCU2_K-U80?n*y7@a+h+3s4`R zZirYgT&@XU%0BB#JXMi4o z@0&o60(}bf1km?D{lWGJ(6eyM*o}VP1#cUm6>!@g=pV#43}_el?hW)G+@=5xLAV2f zGT~bWv=Ar;^git%qBGpiW5dt~P@2SfD9D(}BJNIuz&#APeYd#JmWo zJDxoO=pneB4YVHUa-jS1#4SKRpa+2-hwrmMzXH7l)CaMA2J{fZtpj=u^8E?a3vQVs z>E|S%wm{F|Ss&0qgc}I-1l&dfZIAdS0-X-G*+8WT=LZ@JR0Z@l(6K;gBIYxIb_BWv z=rZ`;2=p>yxew?Ck;xNQV_3*plCpr74fGd#Nl=n}Y{1avvjxj+`sl|XwSzT1FS!)+zd`*3?6CjiWZ&|si8@Erv-186ePlR$HUMj%`O=m?-{px@!U3}|n- zEeARkZWjP;1Gj5|j)nwx0X+h@$AEf4=9hss;r&l)pFq zoPk(613d@S7w8Z8?hX`$1QUSL!7&TyEpQwT^a*?`f%5RgQlJ8$lYx37z7;@mgu4o; zFWhbi8V|RJfeL|M02%_{cY%fieF5|h(0ZU^g!>z)Jvegqp`R~-Isokt-`+rLA>R<7 zZ{WKp(9MWtU!WV{HV(BY67k&)^bf*4 z4)hYxD?rD=_XD8rcy#LTl?4Alxo(*;hp4j%VvtxZ&buD-TcL9%O4d zV!`di)_nNl#$anId~t)X^$dJ*t**5Xd~wmObrBHmn6-ug;U-tUjuqFcT4&=~Ty|>N zHms<}hCS;OAY6E7U4mzE*PNAyaJcf#s)R3YTeH4|8}2}}9st6< zWY+cY#SLLrTRe*kx-9#aEnJml)xZt+R9R6V+!STi0^yz}>lnm>dy}mF;D*bLtY6@U ztAwnzaKrUJmVHMLuH3Qa!56pQSa-u0x6oLB!VR~;SocE~+{a?w2VY!{Vx0zG+*D#^ z!xy)QSd)Nog@-i*;c%6P^(5SIzlC)&5U!c9HUi;}2kSJ1!#xX@eOUtTKCu3RFD@P6 zn*(qYfb|yKa5}%W3cNTm-?|bA$Jble0SyBxM>w4DZuJ1daqHH_;J^{+);mBrm)x=s z7snyt)+o5)=x*x@JaIbEJ%|q{TwC@r)i`k4x)R}V`m^-`5YA+_%7JiDvh^tt4llN@ zMJzZ@*s6ltZ$N7h-?roFXDr-`fTqH&8_;!d>ksrDp4}B_7|>XtHSnDdv;=O40(}cN z3+M^NvIyv2_?`gtBYe*W^1=6VAp6+ITY!E-xCem_f$y_G=K#G0baDp$de$X446X<6SeA@yQ!Pf`01Kb7z^#d9S)E{Un&`St+5YWMJD+jtDlYVM!H~1b4 zWS>EG2GC&$cL~tpKsN%to=!ja0r~O7Q$Qm#>F0HzixBQ(pgZ8U7HAaEMxX(ZK5ZiX zjDuTipb9+E9q4|z4FH-1Gy-T)7X6F^vJV280aOFG!+_QREdcr!Xfe=4#CIal5=(aM?+H|%(_4hO;p zB+K4Kgq=XvP2k0D9LwHPgMBcTy_p5OQLIn#1U80Pmw^LYG^{Y(utCDIcR65tg4G9Z z*dbuui}mbf zShZ`}OK-7y*4h{0u#(lPMK~-dwTclAt2?d1aKq|KD+V{Lc(gtT!U99fUL}aNe%5h_ z1&i#gUxBc+&FTe&)n?YeKv>;n9SDTQR#xw9`oYpCYbUs2m63HSV#d-QYYKR=z{Z*j zH!O0A*QM7)X#W*%Q#cUbpLVB96!J>q;c&2KemE4XS#j;pZ3#LHWRF0 zT~VyMB2=|_5S{m3MLRKLE9!~^wC%|ssF`2wkNV5$)R>B99%f;3qQSCYG*}e~HW$pk z_@O;6Qg1cCIvS~r)DYmCrH!>k?e{YmHm|3&(yZIhZ2ZE;Z*2T-8+F-q0bejmy9`#G zQkO}B#G|1Vb<;{I%LdoqT;vZA4%IFhTuL`M&4&!I4Qlip1Z#umAcUwFvR=lzTz^%d zg4VFn>ircJD|xD~u1UJBbtH||n#7Nn_^ltvg7T8ZPsHSr;T&VG9ix>_hG!Y)H0M#& zoJYInJpS=D!_ioHj%?}I-zdD16m!!J!%3$;i!OVoh0fs>oaPY}Pind7SqZE@6pvAG zb)9;nsJ#j}F?rjU9$_JNPF;w$u?3;(`7z$rfjcNlXdC(|iI@jA#5^?RnCq)suIc@()T_E(qdPWSA_i?o+kELjX;clP zP9I64rBtfw>g+fZmIX@w0LQ11%*Q+F}u>vn?X=yap)LJf=l#8SVC9-+tQ(shO z7C6+;6)6{0;?ryeFQc|{rikYZTF`*cw zOH#9Z)Y80f)GVv)D4H#Re%4m&*HFncCf%V?wwaP@$+$GizbWUHw?_Ga;xRQ!v8_>> zO25LTNd8KlJxN9KN6Im~6v=OP6kD&P+l`J!{YwTl%`r!L57L+Sjugd~=)1bhyQ5v+ z?libdyIJ&HytgAqOl9}ZcCL{;zPyW47Bw+55?#_RM9@*S{gKQ_a81! zx$b&ayt;jL{Rb8>$u7hNEv-t8U5FKS6wP)awqCnJ#gixC7Q9=gp@2~lDg&3mX<`LZrNx@@qa+K z)E86J3~=a|?WU$$OfLP>jiT5Roz^^x$J8%8;ObS1E*;Z3bs>_}F&$El*`;IJwls=H z9m91>rDJ|+Y0XabTSj2UX)Ed&y7&<{=QfP9y8AANQNI4Kb&M@#y^u-jn1fqd9~yPc z0d^Fr7snPKTy5`>0S+B=Y|6#t(lJM+oMYa7m`aMrOUHO5!u@S@MCw8$sbdzW9J5Qu z#9JCgqmJP^rP48TG*VDM=Ekk8V;YnT9en8b9AABcQuM#pG4%ugwvb8cm`7V$5{)`$ zr5(lp1s&s&0S+DWWy;0m(lM)3&M|Kt^E$=jrDHr2;np#qq%K5~I_ATaV|MA7_gfl8 zqmJP^rP47EXrv$=^Cs5DY`uO=r&th*C0OQNo6xC<(OT{X7`px(Wq>=Ua6E#XN?r3Y|h`h%BG+u8j3^7l!gM16YNf) zlx&HP%y_SX-T+-Mj>81K*2dNQ4T5Y9q8ZiJL#-U!(u{9ZD@WN;G^lXEE^qg?8Enz*U-ZY^?E>g-8sk;_w#*`-A;v7^{}!}(1n44dYf zqs-qSsZx6vU1k1e%6XG)nL8&8o2J8E`md!fN0O!ga>_9`Q~E7v02RU%HC*! z9mW5JW+Tf^vqN|6nsQmVbjR?NGs&|!tzHz5Q6P1>_KYAGRf4uJRbpPaHzal1Bvr-0 zlw)?OiUD>MTd$!g;I%kjB^)48l&!gpu1yMA10diZK zkVF^Y&aFExo*t=kd_BHS2}n&Rc~-KzJ-vDW^r>7m&yuu0rFe|usLQdN2D_XRtc`8|y3|>d z)Dde_j@hLn*0eN=MjgSmMx`U3(?~&|3AtNWM|5e}iHSW4w8k(}hJmN*c#V0~`q1fH zMsv*c(i{z+2VSb9!E;bTRD1hoj0CNh)2P25>SPefuKb$V(T?K(fI8{iOeQ!q% zDV@EyuF~mVzwf%${CHI?UR@oD)&%R7{2$Og4aMe>5f1%xf6B$?(m(g4oO9m#=W2?_D5W}|t$#LGstI8l zJ3e=&E=-a-=(dz&cIlv-TN*{94&pkd(m~5LQjiWByLEL?#?oNaai`gDl!7gxYxeTe zHT7RWUR|7ezd0iBX%C)uGrI?YJ6AY9s`Jw=gPpU+!+ zq*FXbc_ao$xujfrqD|_wN$QEBlw)@3iTsvE(Woc5-l+7%x|Y^nNI`lcvUTTC+L{Z0 zc(C-u701$9JUkvgk8*WOXpJdeTBG6P$4hNAcn)g1QiLTm>a2$jncdR5(5ORZ*irl+ z&><+Ih9ys4!?R0ME+UscS(I{qdFzuhipMCMx(;@4#FYg1cTi30A|$C>7N#7tOSe?D zG>S&u!u3g|Tc&BGAl*{Eb#+Ug-HNoL1H2ZPC(b-X>DUrFWvrJ@sqbxgsg!y@?uoEq zMs@X2CHJ>9(;HREJ$4k$s*e2{WZc`K0@C?2C!>WXY7 z(kQ!Id%TxAcaqxU?UZA7X^%JTD7N09d>fv&ZOku6S?A15_5E{|btXlzB|4z)vTkpe zwKE0o5>HEAf+S14Rmw5{&r7^RGs(W;o$XThN`<@Rhomk=k|jSd z<(Qi(`4%+ujXec!E?N*p<5cdQEmc~HuaL^EyCS&IkF%p{mw4^bj;CC0J?mVZ=Ikgx z9iUXZB*{%p(Uw-C#tuWoj-uHP!`5p_s9+jX?r23WOu1lOt;l&PXO(B!S|?CEW{-i_ z1UHr5tw+vDojplCa%RdgyYxt1OQUGiBV3DAdL*oog1$HgZrv}Aj1cXSjTom}zE3IG z65kq{RiP}EQ9(UEG~Q`xUN`EEH|;2z)f-#!LnF&hvqNKSO1Ugt8sqnrGs#} z0!a*fa#1B{`!=i!{WW#kBvr-FDaY(m6+hZhY`sPyu`1N7gm;*g>f7cj;XV|_miV%8 zmvGZnq0N+Y&(z72Eax66$NWDp=O(K{y~=vFzN}}YoGHn^&CXS!&6M}F)CEYgy!T5v z=4Q&f1?_iZ7l0dt7DUnbDe+oM6;$F=V)fSjlqklhMDr)fottu{^{jEKljNvZYMe!8 zv_l>pgR@#%l^Qz+r`u69+cDUBZ3h*Pk$6WB;r^71$JKt^lX7l(maug-#bcCA9qSZF z0^FY!ccv~tk~-zKlw)@3l$%=`MWasPx}?%6%QaHaXT=)a+OqXdN67TYTt`~}MoHKb z-xZ_1<}ezjKD{O}8axLj#4>8BhyK{m(%f#;AM5QXn$7a9_+gRFiFW9XPP0=j4VT_% zPf=`%erGzxW0Xi;o;|jiD69l;{1u`b`)E$c_`#@f6p==PqL); z#<|LPOv*Xp-8Q((n8%x%O7CtM_D-EW$&wzGa?Jnpl5W#D*6&%`QGIDgQqGlROPlAY zoGEaZcsO+lk}UC1$}u-n;w@;$8@mGBEVLks#?Om&Ep40Cs$FeA0W$Q z-}eL>T0&TQ0;q_fV8})wn@J#u#-^wH&P?C*bT_?BG7)5vRa-?EKv7iOQ53}m!4<@Z zPoIh+Jb54jqWD00ZYYSz|5VlOTV1#AovCx~z1{iq`!StlX1+T0ov%)v+S@$5=&6)4 zxhzQ5_i?W;p;hZExyI=svI5t_5nuLd*~I+?s+MGa@Hq~#FXRWayw&$)3co;mNb5y@ zhUUxH$@X^vN6i#OT=CXGk1IdHTVNPheuPHW;>r&=MEi1v1)|sWvgYyoerJTv9{!Ey z#?xC?P^JC5aZ-}A)A4ekx_@9sg$Rt8^AOr}RMC7Oy zagvC+>^1cEtyL^i4|D}y8Grbh*a+q;!A6)HFIrCpVXlo|2DanUa7SA*vq*9Xyk8=} z&3Rz}37!sT1KM3qmF1l}>(Q+FdfYx9aMTn-1f772=s{;K-Vno}vkHx@1)VogA!N`I z+6onP5@D=>1=2a~J#9XvVpaLY@!B%!yPzVtM9EiljkO_$Ey6f{ug<6!T3kUTUWS%S zIYeM+Y2#Yy)Rvli;>j1#e$nE|=g?I7y4Jn{aMXArHtMw)ug8$j;0rg5A)iDeYcb?w z9HM;#mf0fLZz0U%?T5i2Tr1SP{Yx}0rrs7OgtaQ@K7Rmjf}ziUjz;dd&*#e=KiKbG zJ3{+?96;c5EmOZQ@=STQR73au{&+JCegAS)z9)3}GG`E-1_442R4%4g#2KjE*WR3A zTD}k$njkc(Y{_{rpVY` zx;*{F3t$ee?P;F=JDL>F_!Z}dwT+;ba#8H4*x<+3|wr{MskhpH@@KcqQCVE)j)u7$lu>fU%KIq>u_ zSD>Ax^)Q#BN%Qr$T>~67mk>Mp{Oh3yoQv^x7zUgR(8yZAIgbh<1CCHusDSg9Fjl~j z0sgbYhLd|Y8-+4B>PV*ir`7*fN#Ub{A;4)pQx+kVQjdqO| zQ=UR|u(KY`oPXFk9&psKBi<7jp)z_9T8lTvFbJ(eBWpqE4O9pjgoMUI1))S3 zDLwJ3n~yr7DIn*jhm!s)#vd06;z&OM7fkh1V)rL&Z~}RRrbV= zFQEOP#g5ORIr5JkHvo>}59hTt?kK0!W$rr6XYi#O28mCik+mT4F%HqbA@3A18R_HS zhrtqDJJbC8OEe#*{uLK9OWXCX-~nXW*X}=NzcK8;ox=@7cmEt&#LlLbayqNs?w%p% zA$?rlb#`c%j{^u?B4z6G*`941{*8NoeEEjnemN>{6S{Ai0f;_<03kJZF|{Jh3djKd z)ZR;QSO!p6GJthxnfhuh#B;0MB&Emk$pBWPrRW4unE|Zi5c^67Q1@g2Hrfwb57CF_ z$k&zjnSi7CLuLT=X4I7#Kn`E3VUWn6k+lrqtsJ5g8GzTn*MlV?Gk{?@%woD+xYSgz5NX|a)7r9y|(Q5MOQ$8 zkRAU?)QUJA{~z0XsrDRqDI;jv^nf>G1C+1k8XH3_n>MG#<#OSuXFbM%*|;3p5tK{} zUgE9{ObpuBdo-Ptmi6~!3CqweA_00{2SD4tmsBau1b#8B6Zs5P`9zjcXU| z1|3;3H12< zw_sbN=J7cIfy>`bJ?^HSZ$N~N*WB@XW5FH2sLe6)5n;O8F6_7-n-`?@axL)lMv3H;a>#Md# zm`B8fRZ7p~v)FMVRWveXIG;o83n{|{UT076_!Qa~TF3EmG)cbhw66vn#UaikV!~BU zvCG^I42?;Sb(2@j4#~K z&p$*Xcihh{kBIsCdd$wyzJ3W!im9)?kB9~M`=59N4E_BNG;)By3H`TB0YryDfRHJ` zUTQ_06yRU&-R(G;AB%v?c=NTYG9P&|TCToYYpe;g(!nm-5~eAgk54x6IxrVELUQyY zvw_!gh`?;1eI3RW?h{^bPe#y#c8bdLu&OsA>|&lhqRD#7n(0$C)-~H95tkfS3{~0X9wNB0V&!YJ;^}Y9<2yb0<6+DBt#ZU#mMWAVek)eWzB+7d50S36o`J{pI4Q6`WcGRlhY0L( z+82Hn2h!k)KHJbP)1uE7G;h9Mw@(HfwdXmIZ_^2^iXMD6;!QCOKBu9PwcxXk3L%4! z&{wG7b66NFAh-QTdvn{_?ry+ zYnm=fyVdu^n6IK;q{W!q(0uuN*}e&I)EFbK1J*t0n6S*9PQMjzf?;gA1&yr5mYb;% zGPVdkg^Dd#hOq)-%h>iNHZ$0`Iq=1bzd>c92rTPE1QtlQF%MPznaaP6D$jC=z^Ky3 zF*A6lwep^rGCz&=juunq00b`I^N%S90FD|{#L)%Semz;4i7($UpiDy}YXN04hiG5I zI!_$xRXOwcd^OmFYmu7ISE89Q_4z`ctNPVK_xwqCD-1n*j%e>1-fWgk z^k=I5nVy2>cURIE(faijU#Ni!$g*jo;SEWjr^-pD6rbe~fhk4%`WSGLr}~}_=6&0v>Un-7CSL@|+sZz6YPKZ(W3(PtPn<4qCFVqBV(^hG!2sPDF&mT+&>v0LW zBQF_irf`UTAlA4p(`fL-oL8e=rp26N(Y*P3-98v_)R-eCV1qsCn6k{BBw2ws#W409 zg+|t5&*4-E8GD4jLdBkmVXT1Ib9Z|uNv34`t?VvmoH%?3w zj2d3fr4ld0OOZqD1L0+AOT|3_<$APRw16^&Aj)%Jvr7tkKjLdW0HJo$%?-vW-}lg3m&#nQA~j~jo* zmuwg}{)9%>;>I62MEi!iGsHw>lP!;*mu0XmPxEsUAaJ?5sh`E2%9-pgB{{enEm&W*g?LM^R%+U%^g}+m!F#FNk-0&GLj>jq z?dv!uyVdse8DB*^MC&tdL-XY8Q~M^sQGC)6PwBa)>w)7|e9?x1;}$fs7C3IELdd`& z^b;y@Tp7j+2ppT+J1;S{r&7w~*q~xex>izR$KRkPQ4B2Bg&0`4)-mH0vHAp%KU1lf z0pwW@5g0()IJlVBT6Iqlncsu;j21-Z07Mjt=K+AD_@yzE4=`G-*W<`ceCdX9WEvV- zizAacMEm-RIU-4KWz6I6)nE~>C2Ia&iRQ(>)6o4b(oVe&y4O#_+hFMR6Vb>W_xb{v zsE^?JbHjVSh~~!B^WwEU|9a@&--Wls(EI&p0flzUWc#h6H;g!rml4wuq0d;$u7i@ReUXrzaypkEv{v-y_oRD8(dim1+JAyU&m<}y z)r@Y`XqiMwkUtjYjt{?Rn024Ofo`<_PWwst*a?4~81Nl?deArK1bu_|WYf1)AUQg> zp08K~ReS+yDy{266M?B9UmTC<1I>+UOdAKoV?;q)&nGF30@oPV82SPSQ0r9ylKeo=Tn zCbDOoTH2kcl@gVDF(F#{rNgX=i9#QZjq;hv{?hJLt(1a-Q=(v}zn5Zvn976@oPm{^vP7vG<^QJgB`JTA3K2Wyb9eMZRA*|> zRCgtMVN`yqRZwHhD`KO5UUD}pok<=_PeJLaepb5Xf`h??)7aT~1@VY?e zTBcU`o^tm)$N`7nYPy1N}t#c*V?JAduKEfYaHyCvpL14*=>3O z37ahg?AcVENU7}*{I)MOo4KWuAIMaO5>1L#cF&K7UAq7{YH~IUk~3a%s<~6$9dt=X z_l9S5Hx)v*mKukMJTZd_&4F^MnrCN3GKByKd=$!#B1_X9uz+=5viyQK2<>$j?T zb%gjsC@zWticb01WIlJSKB03jl_IIyd#Dh`ERzGq^wpVKCb7;cT9phN7%KAqW2{`i zQs??l(f z#zy`uw*f#_7^M6vl{ZO!nFcO9_9Ed>}TD z9G-+?n+Byyz0Ixx3`#MBQX@F(Ix5T3QP)r*Vt3TRD|0#4Yp>Z;F66WM8vG$MP%eO< zz)Sj4`Zr_q&>_hTwIp4v=ZOnH06kC5D(2Xlpp~iB zE1nGpr^e=;WU_~u)7ow<$COlW(-f`Utf8_i+s!Fd2(N<(Q@e6@Sj-dPXY$7=nHdlf%uyo)UlLBL8uEO#YNTc+roEp`~ zQYPn8A!2vXY*y`brc%iarJHGq;*T3*^9P%ye6>#Z^;E7T-NRIf*y*0RwO%Z;WZi%C z^sU&)o|T0Ct*qpchDmo)d6U%NPKAh_`o&wVRFi#nk^y=te@zD@$9|kxIe+|}S9i#VHuMSV*u|yK7Ym(!)vyC(AaiX(g z<86GB@6*wlJ0m=ETd5E-wrr+C$OtF=7b?Q72ycaGilMBS9>xl|7U{?Bjk8m>irAOf z0kKbs0w02kM6kNvnCly6M-8kWpz6Te_#bHM%S}!UW5P2asIzDP%qT-Y1o~XD^>U_*!=fBbvVNR zcb(s=maS~QH=j*IXD-ZJVfOP)bHy(m>HkXug>=1`?;V1{0Jkp#yZFQ}9OnNEyZbY> zbgpDo(~zvDVU8cFZ#Aami`haQUJ``*aaq{k2cg*avM>M1zWj)N`7!(QQ}*R&?92V^ z%LDAof3q(S!56F1HIUhpv&yyp;nQA*{~8mrnKIwO(NLRrV{Bic)H8f#V|;%;m$Qn) zS2U(NMmYa)WuvQDALxPOO}XLIq4TcgYhYZd2=lmCHYQavyQPZxUz-KlzXn6<_SA#N zj5+-jdm4N+j$hGV8n9NdY~8A?;HeeVeg*rV-;?G`Rd>ZbBmQNE*h4rVD?1et078ZH zYrTcz0!UhzFuKJ!T>m9ARuBSR&HrKTrBCxqezc+X6h7D(KRMOW%H00WE1{{U4ph0Xt zJZ-&H2ssqXa)`h=1L|;h?8Xi2w<`R;7Yd3%yaD|BY`$$!$&s?Wk_r(!zvH3bhWQwU z;oD+m*k{Y_tyFp>!?#c&ybKdM3)$a@@I!!*R;;2{gjoUoO}f2#-|S79!F(TVHG`EA z*eMTphvn4c2~S5Orj{Y0ykDs3mYs&OVMqjJDB+2GthNk40m>%jMv}|1R0!E(_Tvzd_dGMU)q4g?xjLLu zTn#5c`qX0ysn}?rnXEPohTX%wV2$`AsH{oi52HfFPW*)RaDL3&CvAz1?=E(mb_(We z^hxfGRE{Lgr%@qdr+M-z@RSA2b!k*rW21UXvPYEZPj{Khm85%s3K2Wqi)1)qR|dfV z&Hwh1>tbVnaZ6wk+gV52MS2aDN$HHMs1UI`W9FGKPsMh}pHVF5`Q{2G0lp(PAIwU^ z9m}lbRNXCEi|${e@+PVOG8Mv0Jt3Es>99zY2oTbW$EoR>lMXLx@AS*0jV0K9tY>L| zjz&=pISo1>3sTZHpOp7msu-l6p5YLIDX$&FH0YRJt<#`#fk{?;1+0g#0}F7U5F8q1 zYe8~0wB@H@1HD)_;XfkRpjv*Ux$UBvV7JbT&SiGYXI~b=7w^1iV-o8|`zob+F*j^B zM`}L>Q;PNy0CQ$bry^%drQt2JrCkg!+^U6ea;WC|d#co&=6Y;XjP3fRI)kL#>DtAs-kEok#oDb@?gkOf`{7Y=^f% z_@ZJ(X~AEOMp7*sQ^cePTdz-Ns_6{d7}6|QY2rSa&TUk3rON;V}&~=glppXCKhdY^7HT{|C9>6pnP^l8p==cW&VmDPoJaG zCuRN@Dn#raIFR2@2KN-giozzV#`fGUIekn!4^WB?Y*_fvp+Q-+Zuh_tr*O2;$!(u;_kl-(8T#ZH_`Cj z!Nuz{>T>6KXcL_NUMgsaLl80|@;Q-7PRHwA1p18QD08Ry@@ZcWI7-uNOiqfv)_-B* zli^AH*vKSCna8v=0_BYx+oUc02u-o07v5UoxR0!F^7I26_ZBx_4sp8;bHk0iKr75~z9UJ}AlKgOgs#&T= z`ARBZQq(6=A!4U|l5-!Z_tw6?*!Z5D>=RdzvLZFIb5y1z*%>NC>|}Srf#;glTQ4Zm zerIe{Ph_{?ivl&GFQ>93iN1si;U${T&&sY^bQlB(X~igAH8q?~+SZ?`loLI9I6~KY zF5r&X91hRpu_9BvNX_M6qxws_{L55`*val{Uh1b%{YY$7PfRxN?$d+VLsXU|(GOA~ zyhIZkhHP76OiF-|Rt!>8LT6Uv(YDQM@NwIWHO}GJ#9HU@YirA$Q;a0LZrNq6Tuq@J zyj4ceJ`-0n!Jd%W;4}_Fn0BB>#c`WAZ8}R`FMU-swAx9)Q7CInN|uVnJt_7@Z>GnD zXRn(IAsfh%93t{udfcW>Yu2hX?|_n`SWoez84dyWrq~yq=IvCDWHfvu6(V+;C$Oj7 zH*Qdg-Wway>{(EF>9_!cME0SRy_?FEB)dk1@RCjFH)Pi%;t~NuS}~bg5vS|9h1B&> z<6_r3*kMvfOXVSd#t$w< zlT7H0vp%j2M}?Yx)+j#^iVm6eE~Y}nPWiYq^VV)PY^;ur>hZ}zUYbVnN-94xI-Ep> z@KQ|30c08>ViW;FTJZq2c{)ANZKO1UygoFuxxX#3gIyx!ok%|~8Zk9q;nN2-@5fE^ z>#JDFN-XusF@~rjkvbdX5N+&*rn?W_BubT>rS8-GP&D+~?*bf!yvB^A`^Zg7l&iJc z4}@p)Ix2*0FV}F0$orz%V#69gPsWw)y#whxP;L~%Tb=qj&Mq~6qRhFP&1dc6n^f+k znD3xM#7_S#xabD14P&pF`m+B-Z0yg5cWs=aQ^Dl_n#!Cc{}C!g?Bvhc42kbbCm~8~ ztC!2AikbkAE5{}Nxk>_@syc;h!DoN4AY@kd@;>W;8SYcce&jEYjr^JNA>}~g4-HTJ zAykOim4BfBTkgJX;Plwsa8SUL?!m3$R4St~9Ic^3#O{}L| zQT`q(Uy|~7Q6XZdd=@MS!quzn76V`2zY-hovtfnVDS8C*zeHtDlK%xNMC|0x+nBFr ztwJGFv`Y1=f8zPyu{mIVa-g;N5t7eeP#Kg?_!$+#>jc7Fhny}EgJ}YUw4zE);+*M{ zU$ysa`qXtWOVaP0K~v`4t{pRGzcK7Td-}PNB-bs6FO_9~^8ka1bDot%VMR2w+6MxT!dhcuveuj8wCXFQM}_C_a4LjsCCfNOF@*~6H1}a4C6i8mGkxA^4;WOBa4(fBl_eCS5meZ&5%AghUIwYlQ^6AijOl4Cl>xUeo zjUD!OPj68^FuQ}$H)H^4bS$k0Y@RTu{c>Q!Etf+Xq;w;-h}@c zp6I8k5VG++#UUc^`IkO%;fG*~K3{|fo1eJw#>6(bd$2dPA>V5yp7_wEN&uZ*i6$e^ z{V|74)pHY4RbGAp%GVt+0}Ke6!cL_^cpX6qgff zIX|nGIK}FRd!b8pHQPKr8f`TW^;uqq8E{^7y2mYA2?sv0^;D`%WNcl-A=(&Q=ZQz6 zVS79!c)_S_dv-}46Jk?%uTWvrBeB-@PJdg?tynv>67Zdf(jA42NtYM zY=R41SJ%shJi8&CE&1@~uQY@&#pZ;C$xNyU2IQIsu*Du>fHpYz0+mJSh|f_WVt2&C zW>YAZY9lmK5{U#O9d8;i7TJpp-b&+cYS}3`$wjAg#&#jmolg)Ssyku{&xi9~=3e zNL*BntJj#8eMyjsFA=)@r>e>t&LD(L4h0bfEq0_zuaMaP!ME72Ez13bF zp1=1}A!K`LaEQS15P1@H_L@EUD!(mK9E{d9{B`WzUNin3GUMPgpI7B#<0 zB~R-2HbGt+FCS`d*5Ax_l0)C+lB)>%m$7lXDB0Y!&-avr1un(9!XF6F@Xx6bQsF-p zPMUbSdkLX>|JwARZ_Ek$20!_~;MCG?KD=>Vz~4--o}hT*#n?QtAlYBq%||z`2U6nY zZ%ygXQ%RIce~t>_^#h@Em-&HcZv+Tw#VGNPdK!1`dblhab`bE5UoZhDa!N%CN7Uj9 zc=KQy-7P%@rHceoZ;*$92_ZB3S5P5hcfl0cUkVqv_SE@P=dIUpY>bWhsqCbOEL3ZG zr%~CGEpHtaB6h;NwzB6{;N-F*^KxutPlQ{zp}vql-jogjzU@kCX+I?LZ&ArKJ*6q{qP*#O@)w6<2xK8aI{11 z{l{<1=C=%~Tt5RvMKQk7xt@}&X7h03oqyGt{ymi@sn*|8A>wCxJKJ%kGCi#xAJbxk z7yqg=JsAoPnND?4A>wCxQ+>dz>0@GKx>z3oP4llh)7?~>q^6IgLd4GWREQp@=WB@# zR;E%^rM*2i!WXe1vMXOp6>3<`YJ4yd0Dn#t`PuSjXWr`)0_}#G)KP?GY zaYK1*=nfw`*)=LtlI(M-5b=|}h3!tMs$|~~BiUtMUP^rEWM5BZN|HTHg@~Q(@u$@b z`Haf-w_@XZO44SgdFyqlr!vIqz#39k4pPvvC+OP znc-!ps;unPKmp2z_cE9{t^cGu9+WV)9M5j)f4R&CmTx=QqWV&i%#>; zsT@g~e@cajo#wHpt@PX)|9osLcd>)bDfnOK_&F*;lHapl@d zDspUVDsrq&{{k>0Wad4W3K2j3tJj>B*pMmq)!Ft{CH+1rM*4Hs9(Z_6l$vV&i%$QE zRPLnukEcR-=_f3y%2iphd`EzgR(yoIrsAy1zN*a^lb=%07ucz;#3_YRc9**UbTAru zH4bXoe_GA=6<72)g{FH%p~@no&&q6-stzfzGKXm6%IxA(GTB{z56gSc-Ch?B%l4&! zqY&9x00%L+4J|v%1D=(?COpGeQ6XgGc{hiMeBE{)?742)?Vo^`ZMD`94#nF3K_CXu{t;E~wapW(Ivep4OX%dG9* zdWg!Kr2auFMC{a0c3yM-(?@Rjw30i#92?~moadZ%rvF8yNizKc6~fCjp_iA5g6K^M z5YmbPYDJtx;n}ur-)ec%`bl`2edn-v%X&J5HTJH1u?jEaTAo+kPuL^EDSy@drU+kk ze+>ZRQhnd|ty^wqDHSbt5(W<6tZ-{H>ZzDlq0Ml@j#Tn79DQz2wf7a9r`)OTu@O7Z z4UAB_J3#PxLE^#i%-&ChkS**!;hd-sSSc>pkngEvDtXTXY5!`I3t&ryQ@SSZ7pVM6 zasQnP5xWa!x3+?frChz>alk=CaRrw-N*fq(%GT�tVo+J_kb5zmN*yrJvA2$Ua6y zI0A&UVw66Hy16~*S@KP>`F`YQ$xo;HOS=42Dn#sL`#(#5ZfsPK^elOi%912{7Zt)w zG@)V0wj~Bs1PEzGH#J5(gYrdPa4&dJ`VxIwIFU_kuB=ot>h&czN28<0QQmob81bhw z)pRE9o~l~G|A||mjQV^g@jpcsiPYK0IYc1A%L5sv2F2;HX$L+vSBa3Q?^F`6fhuUHaL+A5j*`e))(33n((0BMyu9e%BjjfHa6~O z!tDa0;M9Oqutxj}Dr-{rM^PcX#1r~?nJS2mga9F}_$ajjJE_9P_TE61*jO*r@~Jan zMY>dhTc-xtqF8gE-)<4J#Fv zKM&a zenfUfA`THCq!k%zMVzjv(dNtI`OU$(l2v7wAtqMla_SA*U2lt|sWuMt?|j&;!D&`{ znvY#`xlwzYabQr$d~<&e(Z=3pD$C-Vm&B_%z1+PR#g_e=3zZ88X*UAz~+gQa~nK zjE(fk$&tw3MP*8o-A{#xo$TP(5$*TI#`m-&f4VOPyGgR_rd(}w`W`A@lJa*^A!4U| z20SI?osWmP)nZ&Zlb9WzHvDW$fRt!y4%nqWH%)!?-Bytwk7xk<+jRj2TP z(+!Kjf{+RPd@4lj4p``QKr>*eUU)-nURb1gq1h^Y`ij?6d6aG81S&-Au9&-VL&{yc zVs6M3y?dFmvAJPha-fiMSFe~0MCn>TaSoL~>4Ke92(JqW^B!{QL=3745Ymd5Lr$F} z+dFkKc^zCz0i*g#&B`eW$Oog5Rb!4jXVPcY(lC>YNpya*EfS@NX)E(g`n8A&i|s-oC#S=DGQ!KVt48!Cnr4KQ_10 zx3+*+#O918{2VGg9?9oV`1=7ZHfSC>7z_!SGatwy+8EO(vGs(tr2;&fqJ)*zv5`7i z9PSlGY8qaTXw=;}+8y`gEPh1^UmMo9I&t7CoK`&*Sf@5VFPmmP1572Aa0jDp#zk1)|cP zGn)DKXwq_>^6ANnTC7I;G$=b{@;8|Z5j*KKw_4eHrOKXw_1j|ms@Qm+1-v^Y2k)^x zhRU0a8{Jfh*r}h$uA71<>^(Wkj@T%llw@~Ji4rxHZ>RDkseU6BB6h0BugqpG&xw`2 zvGF`1nGwZlB=4p&BuTDOAz~+a*0#(bn>u9a_l8o2U8JUTn>WTr`0Qkr7tNFJf>X3c z{tZ;-B>C4EeF|TVhZE|&OpWeuQMrzq;$rws1UI`W8xWAE3qn5^&He6e?eS1 z<0QBRguQ&gO4M|J02CWCT^vJ&h@I*=BFxkVSe9PM@6|K)!((H8t`l!Og=-F2MrBWG zJxPU#-2qc!RN9;GtBYrMmHu@@Y|Kw%PrkO4s!_h4%9o^kEfpem%BQT()G~=?TG6^b zQHqW6smUA^nrarR5niCOB?-?{Az~+dI=nW)-bPLAw(@=bp52{S$Hw`LBs@F8%1t%P z)o6b&l`~0ug9_oLoiOPs=S{_I8UaFD@qOwq~Fe=c$KDP+-VhcLEh6c6!HdI@2THqhsTDT(UUm zcd|1@Wk~KWvAwWng?xHqCr^C6by&cXhzW<^EYh>)=`|YqCtxgT} zMx;Dt+>@8p z7L2ZlhFyC%;3&+&8eP7%P%THiG(3+NQz2wyxqw3ib~)tTTl3boDmt-dPiCO(y&>^) zP<9j>7j^FE!!bjlYIp>vT1#2Y;x#XPhDxDS^Cty`K{uF1f5Fy7SZD8s>ux;PhyN%x zI=lFWEhte>oPH3Vzwc8aq>AqrE{J-!)+9!BZ@p0PF#T+7OivVBSw4tNvZyx z3K2Wihp>*1tqSeP!v#+DT0&gj%)7(HnVACYlu}aInHR+sJCg98CpRUvTbSZ(HfR4@ zO$`cDv^X*i>;qmHfz+KO;ip>) zB&{;<{UmRh1PE!xC|x=AI>!Uuo}6!smzS*hnBYS6r{OcW5ilvt>5y#knvAAabJvovrZiNrC5OvE z=U!gGJ0NzbVwA7AmYr?{k6RpfsS@d)zKG6 zG8$)jF!xAw_^qt4LH zNLsAG@=(h8)ceP%llrAab<6%`_OrYCNg5`b#Kw5Q68=L}f+WWe zQX#w?6LKS&UWtB}03oe7j9L*Vy_(eC2i5r!DD*@bc?+mA**oVQk#tIpL)`Q#@WA4z z_u9?`TS6vQ(>O$6VrAdnKW5C~7Y(03yxex)j&)?xJ{|f&7w3p#O`%(B)!%sK%WAL3T?Z@Hk74{SS&%c4Mr;o9p189&K= z_9i5kC#~5!TJ!bzGhx0;yWimaXgIYCfTND7mL>pR zHQXGd12U}eoTqTj0UN07Ne8T_Ld5QX!{A_ZArGfqkK+9SK-!Y2 zWC{hVkgpCXjiM5pPYz=jwQzfQH_Xq+4OZcSL>8vXE#_!mDp4txUMf%_V)xSAZS``w zRH-F;;VHYd^&;O2t>&cH#^#fG$*L%wy@xQ;ey*#j{7DzQmkJTP3l^^|)T~Mo0uZJ>jfxse-Pu`rIt_9Kc(jQZsZ28Z z97;QrDht_ow{eI-N~52yoxA~NYsCbW+Wikj!>Qd5I0|u%DM<*pH8CmW)7=k-XR%6! zkS(LkA)=S?0=Rp*UUr@W<7Z7al(H~5QEy-V5R@Lp#H>#KLU#KyT)Zr04fl2k1GLWQ z15_HNp05)$28D>|^*m`y1?D?T0|R+=^68tgF*-R37lAg5)Hu8&JcnPSLP#}#S-2tU zqiGY)+y=M%=F~3z*Re6(m4qR5mX)W`{0NmJDb96fP|rC>0aV_3-TYUxLLn z_RpS}c1&y%IFQ|523Dk;d*YcDsgc55H<%JKsXmelVeAre-Z_s=tLKaLQXL+?hI`R){`@03odq zBS->-v|0ux#)qR3c;iTSf1Mnl~J$HbipsF zs+GcjfJ3w~T2Fjq9Ui}87ab}SFfT^Kul+ROD6};K_E|q4p1bF$5VE2Cg+l~R5>QjX z39xEeFJ#o0unxRDntb1%VxR7CF%%dwrCUISh@Il`o3pjj#tn*ySH{ZlEA^i5Bq}{J z0GvpL@G?y3Fl3)2!Vm#MTJdvgYjpaY=O(nZ&zZQc0&fPuP7lwdX*3dQEOGl8IS~zm z4yQyVLi%(pgH%yST~#?m8#|V+&9FUpFmI{5mOc;-pY|1iqp;SPm~2w4x6A9o^LGsu zLbiyjI7DFQLLST>>|BEemm9&s(?qG4zX90PGkXMHiHhF@GoqM^)?IK&(zy{0?luBT zQl(!09AH!D>_vFpH+N8pmD>KAAhsQI(#!3q;0#7%EL&+-Sbc=EYQL259s1PxVO+4=+yLOS0==5bqipvpsSsXQV3g_vFqxN&o{j(^t%xfNS+ttJ z);VhWF&LX97AM8=Nwd78N_D8zM43ahF{hrtxn4<>ORx=jC;=-UvLxB`0!y!}O#3Z1Xny&cIjJg_QuSY^Ld5QlSFf|+e08Rfa5q3RmpDgO zQ_WW|5_xuKG=D-$f1>-5*c^3SvQJo-a<@h^XEo2VHmyr}tdHvwZW@O+ z=gL;d=}0y$z*<;3;})&Vu=&hOz5&b$xuWoT4$;OOs>_)zQ;E$+L#(|Oa1_>HUeXzp z`;1G@3D4h7Duiq!XLE?ac}eP`S7J-4nrDK74w*g5d%86QH=pDJlzkZ(5yh;e?tp`n zW!DgXc5jz3BqepO1@d=LS(SnOLMlY;j)7-O%5W9_%1R|Oq_%>aV{-y~wgd_V&Uv94 z;h&b#C2)w-?lI;MK9Y zVHSJ6%7WW*Q&qQQtuHv1%A0HrE2t2$Q$K4HJou97DOdrg<XP3AtE1A9t=}~;vskzK-pC={N52bg`VA&*j~wG)!hj9 zgB4MXDRpNYBA=uOOZY7?{0in6Wnt=UDOQIxA-q>>%v;-ywnHxtUJ`eDJ@}url-GB#USDu+=aVib^Ao1M#-jjC{s zJ}j2Q&~r_tQu4g9l;)1W)Zerj&tv@qJnh6wXG2a)l&-npEmZzw8-5cNB6b(dT3M}H z6`qhb*EN(te{pR5&rU*OCW>|kJNg{h1ytrF`R7p~yyRm#6GugItRwPZ0)({Ua%xZD zjCGzTjdiGN3sW|3fHWK~C1saTE1J498cj74?h4sJ32s*7YtJj-SeWIOs-)*W5cO_%bS6Qm#oVMC^o5+6?nx13KLsVxxOn z3gIQ2kS54XLqsS7gtX#U)Hvz%NZoDQk`pivoeZY{y7}>N&)J>J9d)q*sD14r@MV;< zIlj{qJ~I-RpndNaKh_UA4r%IkCb#e1#_bd(p@agbbSZ zP$6XK7TO6Fx}30IG2IXw)gx^& zT~B3661|oR;U$_7dt~?$*#iMWTJg3pK@?{7myK)ddj52n2Px(msT`q{!aRAqdGKbqaCPwq0zqMArL+$S0y9*1iUC6y6#T z5oM8DM7$|HhaaXw$R_eZ4iR||zXUG3gx6E}p{vSJ0^V_9|6tW%f?`lzv%eP%h+@rN zr++EC0#h21;#bc~BQ%HHLuFHn`YtL&><*c=y2Pegc`L6bcEF3ICoB2a)3Lc>Rx($D zBXCa9DfSquo{K$2B~EhxBo!id?&q<~L-_7{HZpbHpzuHSJ#jUI`TQacz7L-bQ(af+ zPM8EXgiMGhP$9fdAoTk!sRNe+0YX~wHmaJONvrGHHfhC2R8!e9%GwItG7Imds=FlC zM5C;h1u}Vr3`W=KUbj@G_w&gbPN9lJHu94>L>sdPn8}A1@p5%O;#XR%6%DWUcEC}X zYp|L8mO{0TswX^;X)1(lA#dRjk!KFGS+Hy>8P0N7^I28TS3tQ@Bn&$5b9kg|>KRUI z^RhMiFQsxPWqdIeB6j*0?WjPG1`j{GE@NOz2SW5JK8j7q2cfC>@2Q)Zk| ztXHj|W37LV%?&eQseu(d(z&u{sjNxjpP@p;PJF_7dJ?$juO6}|x~t-?P=4l54N!C5 z8&@}RaPt*P@CASRkRAN1idRA%L$p3)CRh_PwVp9nq!9F`5;rJo%7?B!qjL;nNDk__@r5rBXaXN9gslWzz$COmXe{awZDznl#+o=$-J0}6hW4FMbx3ZOm9YXFg z@kA=IDpO^tmomyYKQ`AK#7@YxLaV{^!2x2?b?{-z1e?Q8mE&5cwhr891zLU^4)m}!xdHDX9l zfRI+aj+(PLlQlnU?_|w*adV;~t6xSVtHyM9$B(!hanyZ24^TxQb@X!%5jZJh-`?-N zBiY$t!gou31HS8jldRL^opK(zL0}Zn(l$85qDLG zFB{&}vhXFCS-~c+GSze@4afJ2)pEXIRrn7c;ze_R(7hoHe$KKV7RB5DVz&I7eHnAr zm@$_9EBN=*UWWhdN8wM6rnl|K;BQyjkHgn1>?io2e*<4nA7eks|MFY-3fD6~1t0bS z03^1Boqhzro4Il9ivH4owE~WY!5*#^Y!aQ>&;QSrvegwHo4YI3+OSx8|3B^>%%K-2 z@XIDD92}~N{xpmguoOGHz1z~KZ!Yuu=U^g)ojO&A76*fOBA9_{vC9!Pz*WY~>+a2YsDPNCkl zyoczO(GYDP4LAys4Y);<+mI?ZZD3hx(*`Z`IVn8LCyvZ=l<%lI2XwpESv4T{1oe<^ zhI1NpNOvj(mG0NU1G6jxJW1)H`uQ(9*MQGFhu=}}{^U6Zhb#^6pJxWj6P56Ab0yyc zx9BUjh)Q4rlK+lDT^LK@)=tJ+3W$I^OE?cHX@sVXw{mMkwZAu0A!Gt{mf$R?rQ)|t zG$jOY9qSUh4oVBYSbipx5HOc^#i6+FM*ho=jOGd%DL);dl$fDSDUIVZMT#jS*JC!T zN4==nru_P?tu>i1YU26%nCddgeU?G(m_&u*Xcn(wk50EV3)wV^Io?!w#od2phxgfB zgU^KhHQXnm8q8Hx2ycVIFr_6$BA^o>q!q_gDLZ6M9Y|j&zm}ZF$ z+!S8!cMzZFi0#SpMm|c=wSD_`-G9mVVg2XSctRl$feD_I5yPDX;It;hqci8L1A8jq zs5#?t?5Yl9Pj|bubRx%e02C%J#hW>GMwSUqu=k z&w$f(PT@#V?&ugf5X_Pq$@FB?Y*|@Ju+9T}LP}%^O^#_acmq`;ZdJ9oFo-wSP$N|| zvSVBYeo+Lic8g=46bJO4Mc$tccw)%SU|mRod##AG#h#G0FuP&1N@b(&tguuM2)wz55;+Ww+;NG_abriV8| z#v00FI~uv;@{sulFjg=2miU^pM+auFK2<06^a z8bb!HtVbTVhnL4!(4?5k+@-P~?<04roqX#EV^fFe?6GdiT6M7gk4Ittf#;l=65v9hu zP$uIoHWW%18oA>_X-QQ%ZF*00Qh1G=h~~vKl#o-^W@UAG9FI5FP#&*FBX?XLi`_Uf z2)9zQX|jM3@2>DF=||IJs*-iYNaC%tE*1-Kv!Pge(8wJZ%Tiylh}CXS$MgR1a=8{w zkf~hOM<5qxr-9=Wxt@15-fBa^ycdleAQ-tRWb}nm0nwP;Q!f-?>lRxXbQT50k}@94 zmP<$Tsgr|u0~KQRN$g$-WyN#EEfqGi0=Bt)e=Ha?_H=hEySnHdwDpd>Np?bZpgbm> zS2uV)38vr{ynNeAV>936(%hw$De!&d@PYx{I#5XW7D~I*rE-;TY>_|H&2~R{f2JF( zWJW4GCERVwvbj7?6}8;k@ThPD+5`B_kE3jD=n{4IM8XNfSl2ksR_- z#EcKaPqCG;k%@z)T0OhVa_e9qgALhr?8e`cR7&sX>A)Dc^NWvc{RWiF}89q0Y?*uGdALX=18IDDJ3>A)F zAI1s@#}Br5%km^Amn)WP%IAT6o86U~!vUu)kCIEqgi(^`@`<}od=yB%M&VP5wYG_qry z%4JRHg0E6#Bh!N0IK;k?7EE+%?ddHZMtei+Eq;ln$=9Lwy?~>*q%noZ zj;6bug5@Os1Neds1IEwM$XdYoDTioZQZQX~s{UT?x-N81Fb*K1$o+IL&uYmD0)4$d zzIa1lzx@B7uV>5d)ZgE)4)5<{@q~B5HQ`pJ2uGiB^*r!#`^JD~pK3{=1 z!O-VNp^*dHH=#F|34!Pw2oN$MxRokiCn4C`-h^Oswp1P(lh%`h8d|WveMn;!IVoV4 zIff~nkWXH4E>%4;FDP<|eIYNHA}j7m4X#J~L`w~Z(MhpC@w!$(hINe-7{UXVJ`FI5Flix zu!~v|CsVkoy(2R%aRi45%q9Z68OmnBk*`ph)^wZCjY`|lUUMocccg7WbLH!J`((gT^9iHF%bral z-JZ%i=E@0*jd*hn!_sLSInd*6Ty9#ZlHguBaLQ?OxLhdR{~$cU(C0Ji=*SYt-6t9TQ$K-LVPgv#FFvcuLBX?XX zNsm;@&E4h2Qe^-RyjH!p!o4-TZr+Th$u!WM5rJ-W2J~oi7QP0C5;_Bo+;IsV5+otG znxk6CXT1t~S9k?ofo926LEEELP?G>%K$qexU?`xA(a0SaP+$yd@>lgFJ6{j4ps%87 zGF4EdG00^=m(Xqa8W>9GRy6WHEg^Bv$RnZOhL_M2Xqq}DA?Ku(<0U!k_iKC&3?=jk z8oA>VI&_3?Ea38>Ssw^J=$Z}?@eI0lMBI}#InX1~6nq^FWi%0u+;JK4x4GDqj~J$R zyXho^a{X$dlfx_Mb!d)E!_d}<736!f-D~mY8;a*RG;+tqv&a*JKr_C*S0TJ?@@RHU zWfR4$vs-aJ+VtWLHxx`3jofj;EYStijMJWk=L6v-a~+x=Q^{Cp1~6;(2of!6t|YT~2?**TYawPot3ooMFo6X*e=FHdS_C~-_{L@&e$I2kjb_dkeu~yDHy%}$LAwI+s3@pc=E;bJth zW1Q@mF5nP>@gnjqXUPE7RBLclIGfJoytkKs9SjU9oUfv3GL0QR^8i@k$cpQU)opmg z4V7~%8aY5YgnUG%G$NQ0Af$fJpjJd$A^Or#R=hfl6_8jhZtuyzDWVZ3^rL?Vd=T5( ze49$+b)#ff+U1X}&1Tf=#m0b@Arq*VxW`85M@PK)(ayr%4~RP-Z5w``-SoI=6kb|s z7$xHr_dCXv!diAkSiH$T49I2|2`=ZKmc19g!LJCk-v)o$WS_^sp3i^W=T5*y+*g4e zO!NuqWFc;zkSe2ws#No(BD_DcAqwM~x7iIhHbw!*$*&ES;g0^(BEho;VITUi^Lk52 z*D9+STcR+}+EcbFdA6DZH&QiDj{>sKf@?S#S|tAHt7LL{Fc0LiJ__sd1DU?4d|Sv2 zftH6G;wtx$zAeD*rI|`PQ|PmLDw&AXS147h@bW+-60HnmiurQA!0(QX$Q$ga511E8 zOM|E2bEScZWLE`WWc%~QzTt+rVLPOEs}|hOA4&77mMS%FS0wS6Pjgpcia)aEU$5mM zIUkBBy6>*Q8D3W1mYJ`^p?_yHUq?8fM>?NJIiD%#v)lPx;d~zLd>-R`9_xI*()oOq z^Z9D$^El`8HO}Yp&gW~L&l8-_6P?f3IiIh0K2LH!Pv)QK8M-C#YcK~LGf*Ber|<64tG-;{_vT&6nd4LJUT-ZxhDJ;ylsZ#r#Err5t7It z*G4|=(sCDO8rFfU>9l83t^uZo^zoH=9(^a}bRYZ7!H(!-n2h6f)W^z~;cYbZ^*hkW z+F1EQ4iVViV-`g&r-|YYFes!bzJ{j7ceH3nBMMeWT@+u&+h{0?FQSna{D(+$BgN}(|!^@;2TfD zM?;yrD#LCe@7&eF9}YeKI1nJ>8GjJwu6P}Fbu7l)XsC__XymxnF{&t(Y!g-p^~tME z;Z<=unitcMLC7{mC3RVxiZ{|w7HiPR9hb%Y*4e8{rP`nG)$@zDg;&NNG&QEmI1xV% zaqFpzqmH-JP#hIBa>vEd^4Lc@9iWZRgxAI=(ae}?;{<{>oF<@4<70R;4W;oBG;+tK zp>`+LdXJW5JP=+OKS%RoDhx_@!YirE;-`2c4Q26PXylH|LPy+tF%HMuX(*0m zXylHILx~uBN)=5QZwW7qH=${XF=FsK>Y_LkZ=<0owxN*&L_yfgFOLI=tvv(?c^p7& z?;=1*E5t5!0)({UU(_=m%nI0@Hle*&&rD&*r^cjng>ojlOF5VDX>`N#Z555xe3P+! z6`k#iU(wuS&Ns=+@2M}Q^OIeUWy&TspQ~m*K~=H5YUU;mu`lc{o7z%y&%UxBqP^m@ zR(ZqBy=ba@9czCLa1^&RX7KS;i}89Ky9ZymVH~>)jjYA7Z*zz?ZW!Zdx5WuYp>vP7 z{{aSt+%WbxG%cpy7B6aRRnUF@XS@l9K7SUC+;N|`WVG`s`Nl&^E`3g9SSao$vyw(BwELVVeVG30zSvKB-3a)|cj49=VCk}r?1 zzYO+-Oc}n2X2sOkt#7K!8t5MXJl+CBkAD`8+;NY$EVD??JYIh+yw`t)X2#U(-Z#}{ zEp*TS58etx&;K_XIl%LT&R*sVqPrkK$b8{!YDJuU;lZ(Oz4l=2DVeHztL;HIVMCO! z(i&%ta(o$H?x>Y2`Mq$nt$2BXXAZ6BPP?@q=@v)xM|nMc3Df|WTsvBldBZ{u5tugw zb|}%GQk=2YSN6acirEiEHro8tUXKG;+svqQ{eg zQqD@}N;OYB`H%2I`5u}cQ=x>2C(Y{W@#MRBa}9O!Ei`h+buwRzC+waQk4F9)UL$`( zQ)8-;ljy;ORaMu=AMvId>f>oNa>w zMRirf?l&@3mUjUBcl*TmPHM*wj z8POB?q7CEMuhGa_{Cb2#v~R9vrn3Vlz|(U-9y(#31rSjr%(|!Na8G+Gp!<6|-T*^? zPeCJh+~0FscHRW|{FLxMKN(GoY3p9VeeP2U-S4l%8)4}8*P@XF{7&fJWriR+3Ic@8 zQ@%+JSk7YLW9`ilCT_1J#9ExP$aE1}u)b<*?2KbYuvT%h>{0JYe>+uGGIw|zhX~9a z0=t#ymj%1FZ}nLY`~=!lTH<`99cKk@~@SyCMCQdsLNr!Rs%A+_;5nibP9U^HXmrwzBNT0nRXZ>*s>{(?sC zxHx9G;wYxs+wlWRU%vbkp`~#sKtwU%(8Gq&GLDZlnibWAaR}a2Ltz|*M((&U=D5Oe zmoq$l${FFsu@%ir+;PLLtlp_?#v5xWj}2(#j>}_St2_eMY%UHjkPFbvmaqDgLrEV1#&+cx#I$v-zpHdNA^f$;wMAr zrsDx3p4`-E_lRHb0`pU)<`k9V2RW5-0N!3hk&HnjcU&Y3Jt7H6LXHbBlUJh2F^wcf z8%F|V(yXx_O^(J}Y$%iz8oA>_X&K4z)}^N++3*@U2hEGAMyN9&Of~`8$WFYmhVnQY zjofj0EOz6_V5X3V6Gc`UsDtyP6g#YwB=}yd>v}f2OPy8 zjfp(qaYtzZ>ri~Dh5_pkG_n@34&o5)TP>U-c5wOl_bjj^2=tp1v5(iK(Y&b5E=G>)yTqU%sKY&qE^zc$?67%kE!v z1q2A0guG16rkw3&H@5e#sn9|+&bpLlzWh1-)Z*z!!qWfo6 z_H_SGp}pa>3)%fYiRQ@Hq4xcNqxi$={<))^QssE%aeS$Uq2f_AvKA^H<`8Y~{(byA z=hLCP|Cs=ROMy-O+uHs6dwCkZY(p1uqs{`0AlkzM~@4iVV(x37Pgz^m-(`ah0#gwrNu*Z)y8N4~za-wQa3KN^$x zctLo|DOUFVH{y#mj1xDYk+nE+JrzR6389-%abkBED`1xJ!|k0VoKh(DjY(Hay|sbN z9wl5n0Tsc`U-(L_ahhMaK+G0`fv$auRDD9nuc_qA(D4X|2n-!#Dn32=jRR*zn$75u3MLuflJsg6{L9@Fp1g{BSgK$9>*%6@Ck89>1r<`~59w zYJ7vZt+#UTRroE{(0%_VycveRKNF1{;Cn)+FY^Y`X%Haf_~IdI;Bv+ngX7yezL>nb zKVPum!i!R=tfUPeMvK;0agA+$X+ySDtW`>dbZ-IPZZ4Ipek+aMpXuh73PY8S$|ryL zAXQB=e|SHK2+SYaH}sey>+OjvccERRWe?v*6Xok=`}2UKIK{aWU)rt*lW*Y5HVh_T zMkl(g9m`qunsbvz`LZ(`^s!B8&b2B#4_0?J95FSlh z@4wbA#2)pC`%6?(WpMZ>hX@W1xA(g_r}J#R^N9Tm@Or(S9fmJ|gg>#@?H@gaKWqP( z_;^BmJSjeYCq8WW`JKbd8?V+YKOz&|&OFU)vA@ScZzf-~D#MMH*x%K*-wiijhs7vb z)f(J*F3h*=im3l4`xT&~%Z4}EhdQ6joX^Afr)BSjA3W`4_|JYD{ArVY9{+ki|Mj{( z^BVxDZ09HvSK)9G!&WZS8I2{tbBz$(^u=c|BpYM5$S zd&*WN&%iQ;VP|<>sf_ZM5o^|GLG)%Qp?L1AWO8{h2i!hdKQN*-`GHJdSYH(~L!iN7 zXBtvrLix*xh7_Pv%T&^tLZ8)B$%Ir-p~Taia6TW%6!YbJAyb3a6_RCkNiz^6ZWvTJ zQT{R_L9qWnR~iT@n<{Xe?avqch8rh`X%AJa7P1*sOO+b8BUB5o*1$d0T0R@PS=MX$ zLcTT>GK%i5WXfe$t(Mei0D35v8Wo+-lJi-1KF@VNE6!)t`K&pgb?0-?`P}V%?r}bc zoX@?^=i8jm^PJD~ozJ&BpBFfv7doF8IiDBvPjsqw4*VL7XM*N(qrW=JC(Zc;*nmrO zwBhzmyc!uq^6xtgvd;n>b-116%YCg4y_p8^N$Hh*71^;zt^d%Kdd{shbm>B}GCx%0gkO84cV2EK&)Xx{t*-XcS9ejknO7$@gN@8%GJ zEjV(wPZw@ar!zg(blNj>_97S)(*4h)DKTxzN1C|bsh2K-=kRtJir_D3_i&W*JIg0~&eXkwBlNN#Nq}61V`(NW>Cg)zT$!9^NcN2@Ii;_aO zel&8&W#Hxm1-&zv__@$I;dp?ECnq$_2UxXq2^@eo%TNMi(8&9c1oSv?TzCn*63vKd z959uDZ)b2c-Yi22q|nIwjs%K&6v&2`z&U6}B9;KFmL3Im;>|LYz}aZzj!VFuA}Yf! zH18DARpB-8ZZsvP8Zew9;`P!+@J_s4h9bBejofh&xJe}%O^K-x3?l-smo9?uo;i2$Cco0pDsSsXiBm__GG)df#x6e=#_o0zH zE(s?YWar(Kd|><+LMMX<07M6qL0%=z`D5@#89M)^|Nort>?_LGtbuBNuR0odWq1J` zjpy3%you37v0E)o1Sz~>h9Woujok4F&?P#B0rj}iIpN*E6U~KbKd{WCAAkyJjz1f3 zlA+^wppiT7cqjB1b9wbG@pp%J{X5ZYn7ZC*D9Ed%IsbCJQHIXH1dY6}IKN`S3E|fK z@6Pbfza7m+q|WD6(wzSlyitbE{}LLxkY-Cd9P$8?6C0Yo$rxM7&*w5;z`>93TP0m0a>xFL8MR0YV;k7Z+9#Afy%I z(kTLjwBilaBiqj1Vo$aAZn3ew^@5r}HPDU7w*@p_&+nn>trxTGqMb~EU7EF`c^j4Q z?W2(RupjN_CMkDq_}n*oB~`Zaim}T$MBs%P?YlT(Jgc$izJy!RZg85VeCgm8G)2Ci zv_A+qiaVS~j<}z+NOd#5RKrO1DKxScsXk7HkTF82CRB`gM;I&MPM#;)`_RGE?RD5} zQAs$@@V4gL&q7Ubw|e+WtdSYz(kktWOZ^Hy?MJ$6-0ZYtwxVF4fbtC0DKen^os=- zM~NuKbU9PWsEaXohgZpW(7c$cWNpZJ(yXu+O}>dY*-#{RppiQ+k_C!LY9%Kl_k@%G z3on#Ept&&>O4yFat+XCb{ughwp;Uf{M((&&7I~#oFZPxSIVBECDYDwST*`Q}4dpU`M((&=4pd``;H^0v z@JQz4;U)7?G()D6*%UUos8!cxb0gk#L)qMbM(((5mio!Y86S95b62nlJL5@2+fbFZZ<@w8{fhA z+wq1QO6F~7=wsYqrJ@)|hiZl!BtYyoed?eavNFNIgm7tl1BDrZ|r<@nWKk2#;i z+yDQl`w}p@imL4(NhXtJCOZisVZyK^$aG{8WG5>LOAI8Uh|u)R+?nZ4Pj}Nx77zsy z1Zh$H21P_s6h%>7KtVwKKv7Zr@dFVAMP(5X5LXlh`OmGY?&`W#x96Oy?%NZe$L^4s zymiib-+Rufx^?R!1#~?bx#a@dtFD0f-kyMj9(R|}W8^?#CG@riOGxZ)5(3xMo$4gXj_bo$yL0r*J_8kG)&olXxJ9I(N;WiTj&M`F&1_T zPL+%Vvd(rgC*m5B+s(I-BW0vD5Z;_Il3>D)E+bGM5@mmHFS}~$aB@@8mK<1cqGnE7_VN3vsM)aqDhcGE@ zlqa!-;j<(Ll@p>j&<924hu3WhmsjSiwh%HuaLqX7hhMu`0sZBR(dLKtHR9pIg3?|d zOBSd(OYC9D67Xzd<$1;!JkL04E?7ktozSh!1Qs&527UW7mSKYyH;@jA6Vm4e?tePl`b0E6?Uhc**1o!!D7+boQf--P@} zec4Q*n8+02pB#e!C&hd=9Un-;i-WQ`_?OGD|57|wiZ_qF(w&_!Snfd%A`Wjvhs{fS z!(OJi71jer$_F9`@wVl>eA54SaOO!lhWuB99yEgfKftmx2yd@R!XOZ1to!N2b}tXV z|7N63X=qLp`FJ8d==J6kgmJQk0zC7Nj@WP_lgyRUOrIm=HzKVY_TX$;^lxXpLUE+L z9}+tQH@FFbg$45d>@c3Y0)(}1D47`?DesH4sNjM5STVuFghhsq%@1&$7n6lzvX3I! zQZboM7PpUhsXR|d>r?7vE=#?{mcWyT$jp;`=?~`@Q1(Jn?-#`}R_2kBl34-0Sea)H(2{^{IEW&vW7P zbZAkgE%yJegMGf>r|UCrrglc6UdTRx*9)gU;3yX>pbxk++CE_XaI!F@v;f}*2O2R^ zSZTV3YD(TH6*0yPQ#w?`eBmbBXv-eq>kJ~aM+krLxZ%&DPV`+4%ou(}W<#4X{E{3a zV^5d52XGWV#8C!}C~eB{AbnKil;P)OWMQ0~GW?7|L^l-_XKx$$o%k*4)u!>gGe9(A zMyT`4*AB%Ik$#@gSRO|o8_Du(J08o^y%FeiJ>~#)rstre_5f3(ePb4}E+j z+xwD{L#}Cy+AYgJF9jA5GP8WuR<>f9aF=lLv;WRL%1;~@7YOEOL<)#(@b&OHfET!NW8i1^=aAX6JW)Pu4kFWulTyZ&iGf>GIVtlz$d73jX~1Z5z!cIigsOKQXxA~EF=drN@EcFHZ?&R zwN^gX)EE%f2CBv>rO418yb%nh&5eY7WP7lLL4>vk(bbO06|Vz1)pZe^pTO7V=Wn3%N(n1A!O#@>T${(d%0KvD~d0)MLMOJ2*=oD z2Gz|69|0F=jg3)X<)ck`12v%#Mk(SnE``kS`{2p99(ACNdRTw)i?Z zNJchO*8q+}NO=nDI0RQ>T-jTGl|C*qSA3a_tmTR?+Cs=&!Ik5bD?Z?21>}lvMw=_z z{K7Dt*rqfYe+3^Jku27jk_EBJ@NH8hYRDNc*~VPvj29S0XwHam38Gyv637~JZlQ9b zWsR8tL2Jd#Sz{-_Q79=-Wm%&lB`s}q(g#MSjj3d0Ep4gosT+for4`#lz?tG`oVZrh}H?aB;%6XD*0+RCq zGI9v#7ByYA1-v*|K*+_1=WI)qSbX?Ov=6^bN@oWPxkR5jiMWxhR-@D$?n+e6QtFSP zCAh&>II<XU~wA!qLs++{>asE5CBgziHU`((%2zZ7 z3nRWO0h^!o#vnzOt1-K{GzJy3lpw)e2k0Xslg9hW$Xe1kpFu?57?^p!4Xkl&3~nLE1k1D17=*HY zGkts{+utA~x18Yt#1|rk_|!^ zgBS}9!j!7tfev9EnHS-u+_JES94I5TsW$_TLQ1)VEj(6D*XI>0=|dya$1!ANEqxrx zAfjs#X7CmHYPbSSZvk^0dxQcxC|IUv*W6O5I-v8NqZ@$adzg&ea=z!tn+nyC1vvkl zJLjJv2L{XeyufXRsuMczpQ0Oqtuq;$RzSA8Cgpr zuh>G!B*N9>ltg~zVg+nkIxpI}MjLF49?k|HnOa5Gs8L{L=S@q(Hbta{ys?~oK?w24 zym1tR2+bRjZd&4A2lB=snG-E<^pnG6q&2k>a1=@^o0bG!Vqm!pnV=7hOdDsAk+rmO z8iRp3+` zkkSL4@#E+gAQ?ZFjNEd@YYu6aF$=JMt~={zlOuy=J$N>=^g?HTE8Pkt^F=ap2=f+Y zUUmw+Tv$NJPT`-nMN4!Fw@14QIVm|XF7BlZYMXEeS+GX6l{YkO5i&WztyHR$p=bDx zt&U{R@NEVW+A~B~OxlIhfo$?yGC5km@N06EjQpm43OEWQVkx1*mKazrCH#s$FfxJs zl8me+kOyrcWCG#ZaY`UJxmW=!kn5sNAmdjg0?A|19n>DjD6aB)mOR)YzJ2M0e_-q~ ziD7doLMTD=={e z5nTf@UlT~8w=bR?&ZU)G&R2q2j{3NQ92{&qIMPZVRX?@F@KL&@NP&EqjNEd8>=6`5 zZ$6vo?@JVl@xo9d=M@5(gDR{aKZQIo}I=td%C@hLKL%Vn`Bm^(5xYk`3|%Y*I$`8hd4Sb-d4 zlRj#l)#oceqZ^A9%1_A1EfChB_XilSRwOG&H)U(DUx|v9E zOdunNh{Iw#ncR`ax2sq{$StjJw!I-Gt>7D@oUEARVg>Ar`_K4DUp+D{124?p;*H}K zT1mX8k}ob})-10!?yk*y>^14eNBhOkV%#=inzH@MurKZuTOG@NaT^)LSlBbwQR{jj z>AjoGi@0FrNkH4lu`*Jd8Uh@Jm+}nOHq~0M=dvyI(UG~VKt|SbS&l(OxA|!{e-x)S zVgbIt1Qt2&d-?)7E?B<#339p*I_saK+kj;KGi2nJvp!EA2~>yqU%E5@AUQTz<`=Ll z-Ry_X{?F-lAld&J899V~i?S~}2VOcXAY}it!PXJq3g{f}iFQZ*1oi}$(lN~WUuvc@ zimiN^D>rP?nYxP1l$K0BPL7h1?9@eoqb8Gs^<~;RbjGRNoLLq3t52o`>c$ViRN6(UQGFLZj>boDE&?2tYQy#d4AoU%^``Vrx~)jgZzm&b z#pYH95nUrOQ;MVdSW4~o*S~;0j@tMWIV#vRVA!C9(?-=*Eg?KlHx?<5XUWK8NE}ca z`?9(1fyA-sE@yEp00>%BjunSt#|cUt!c{$Q%%hu%l*Sw~a?7Q$OEqsmyav+ATpSL2 z%mnmtyt_Wul0$>l$4a{%!tWBR{^}xGO}7^*k`-j+mWyOwtw_>^V&Sa#U_KGNowv98)7Jl$ZVOtNI;mdj*rtxSfq{a(C3TMVR<>)b_hEjcn+k*u&! zB^7sdiCjZB7b%ge$;d62$edbfKB$h@-PQ3bIVxCnIJBz1tGYB^p__`7#>-^nmP`k{9DUxn7^4JndF)J2=10p%qT_mTFLxW8s4kD@g ztBYhK-Cm?fHjt59E|U4RT?hoNlo`mT`@P_V<|22QTtE&ERwk?MJCPcXb)lR`w-_mu zbIHgp7s~8_P_}q|fmCvnyGFiFjtf>Jw(F|UdVxm3SzR7qr5lTs$Ct^-EtiM9BU73F z1=R67cXj-R92TrPZ12caeAUJADBV`1I36Y=w_F_4tGS~x^Q*ldGwu7%ed=U@XilGM zJCCV2Dq=79g|yL4MG9j)8M)=c=#;|H=eLKs>*5e{NU#~>aLb;Z~r0%jm`;<#8z)x#jYZcV24db^(FhM$J7i@JHsJ=KNrEZtJ1FrFqOw_F(ARblXDuw-V?zi%7g zJd`Nrlkt2a8%QJze&9THnFkQfnYz5yvPBK^T^G+By6s5u%p@bXTs#Y^;@JXsW8e^5 zFAj@G{=ruP(X4eB&1!OZu=(X!OVI><*2S`dZZlFWN0X6TE|!HxvG9HU0lAdi<&q}{ z2rHL$4Umg?rb2KcS4y&UtC509laWINWAXTle1e8=r?-HRPug8(y8%~P!5`XivLfSR z1w6;|-|>;26fmWjhgWra+xom*QF)T*e?bQ3{@T>FgyzQU0Y4d=XY*n5TVa^M7M)~s`NXM44))ZB(7ZfJmBxhfikk3 zx*u>9QpCGErR{nR{0)61X8q&t@U@2|-A#@|t#%>HEG;KuqSXjI8I*>G0liARc z#tL$n%t>Q^z)>g>FYv3-B?gvF(9!gPks0F%GP0I24rLJ0)rC%eJcpU(JQzc(-WtnU za!9Z&&t!eFV!mD-()8hxTqnuME$4ccJdnf8_ciW(Uri1RmhZWYZ_Ndr^H0!CKyv;u zGI9v#7Uf)a1iUy{K*&kXd|O9+E1)BI$An0y7ZVft!QsRxKNv$4%=(oxYI{c zNARzs_}4M~YX$o<3az}{)DINAM80nb)+$X?is}zz!YrlwR2qVEd)^!H@?HksA(VPy zA;jykd(^&Qbc?xq$}{@1!#OyrfIZLvk4EK&1mYtMaV)e6lXxfsUBb>kq;e!YZc8VN zUOtf)evSj2+Ky`U$Qij#y$JDA$SO}^Nk#A|F4mXew>V?3kr^x3%_J{Zk^fCb7LjRB zC*jR@5S?KWn}0H-=o*F&UU7|lA7IIMYC8Nw9`a>Pqne*SS8IKxbV$PYqmPaxd?^`O zsBuX(G*L4>Q`TA|+i|drmVt#!lI?eqqk_G#=LEWiuuJ?@x&=taPaz|RFfJ?o=y^|M zi7CCMblNM%{bZrk3OZIw3h*Jzq?Njag(5Y6LZn^8lu{;nR>?oUG_AfY_8KsUCS0TH z%7>a;hoZS@D8{%w%p9c(Ra%CWOhi}Pibs~1Pl%u&Z+^#iglh;>rQ?AH;chY$S_=6d zIZ{S4Q#S&R!irdXl(y^T;tu-Q$mH=IGP0IDzRe(_YYb-c(kkN>;QA%7hj!IzT)#k$ z3YKeLE`lEDj6X-W0Ll0t$jB{ce6DN|LRsJKN6xIz2Z%;=|N0d^KhPvdFLdVT(yc%; zKZ}eU!n{Rs_bW4Rym`5>fRO#c$804m`h$N*+aK(l$ZS`Z6iy>+)tFw&hnf0R4?+oO~qLu2p`Td~N-;B5?IEUX$#0FMJz;yq*zv?_59IYdSpQz^hv=qOL( zs|7%l7*sZF+vtNL(?f}jtfhxMgNUvbm?CD`8oM`uA&x!3_2h71+3jHLR!!GAzK%XL zlH+U1$Svo%Qx<>yDt^SB=ZDB4!Sc*+94Y4OTt7e`9?A9nWaJR8Eo!wa_q+&LK*(}` zvaKVc+;3`&bU9$g8aNHe+nUX9?&?b?3I(sA6#rd*OifKjy_ILM;t%gNixrBnVRfLC z9<`>=hM{QSh8;cMu&)GP2+ZYyT{ig^!iRJ;iP zdG5%P)aWZs<*CU`U%J%q4J6YL%F{=dl=o(?SKMZuPUSyhaQh;;g}v3KFjC&D&M)?5 zGh4hotp3CA?NR6VhP-r+{n9>lekqwr7L)8C7awkMo!?9+wllQ4zmsLEsfz=TFPGBZ zNV%)dSpH*aqeLN_D<+5G{2AZudeJI)u)>w`eH`)1ZSbdjl9RDMbtFjQqLKBfqr~^o z;`cpjy$^5{M#ODSL6#U-&Rsr29~ar{e29#!^*SG95Yf$D#QjYp z$KMBAXjh%a@&A$|g5|jO{$?1{-=&X^WcoHTa?6>nxxZ;-`_JxdzetV>mhIsE%`nFQ zNVfpV_%meW5XLQPxoih`S+IbR^O%&aBVr!&AFE}{RAa&+`NhH&W z-n7>>P?^xEGnr-gQnQp%bmb#h3oH6;zY&1r?%;IhnE&a&xH%?%6iZYriq}}A6d*%O zupd}y)e6d%V5u#HGQ`peAkrdmOvQ>&a1Rk|wG?>YBKY zZX-?;SL{4)r*Z!OQrD7)Xt_9c6Bko8aPdT@KhECr9+*Hr;x3bi$nn9-gq=)|PaOtt zb-_G9w-zUu)cs`Smg{8Kz9Fw~Gn^G$DCKflSpV#g_j_BCeZgch;U~_?%6ck zVP`%fR1)T^u94TtOk#Inze+}KxkmO3iyO-+{f5$WfV*0jHBBw-paTcBNUwF>>_@j6 znOl~Ukz1~t`3Bt>#1eNG%e%D0y1*TRWcP$Br3ra2iAWAz3X?} zW$|rtJg~CZA35!n-sw8HiEbTI2VW;6hv>j!4OA|p@)Z^f2)UGYvTZ{pmeTHxb}4Nd z+vwF**+x)%diKA_YBox-yal_OHncsLEe?5wWFd}NZq}eiAG-CGD1~}^S+&k;#snJLm z5(o){p3vsd-9RR^nPg-wp>;Bd=vMHiaSiomv*|*hvaJPE92f6alLKN*Cn;SqYa5^# z=CrPl6?CJK`Z$`5+;V*^R`P3{&9vi5c&(2}xdF|T+%=OY2MMd0cQrsWqDbk1&~=oh zJA%|vnvC3X9nI!CN@n_DVXqKRY)b~y&9&~*xrQ7UtaRAvw_)=uWPz&nU02K1blZ_? z`2-ocrvex=y<3h9h;-MMiG9PI%{1h!14*@f=K(;ApHs(|d}$R5p_1 zg3Tul=v)-vb+v4u+m2MriDcxKt7T?&C5ErU1k=g|?pisI92KlqPIO8uLCJk&5{u8M)<( z>F)E-YK9kqWHWv6ondReqKjb*Gr?r@8+Z9UN)8iNK4-YeXS7i0T6&o73Q|kIAS1V2 zOLK&lGH^!|He4k$FuM%2HIskl+yS=%L~}ae4UJGwt@FBG#?y^Q>SZS~a?ABHldt^x zlO^Mv`Ve=q97K)^Hr2TGH9^mHrR-0)9I2ET8M)<3nI+=I?#sd>+WFu)H~sEXNsz;W zmCAajyrQ|TYvl~O=}4`dMn-PAR(8<>=4Y2c9lG3IFPD)+gVoE)jn#|qzOI=|>ERBoELgoXBEQtQu50C1y6H%*e2a|Sa;gnyy@_JqP<+^b zN$a*iDVq2HoTo%{0HQflBDZ^u^`f9FXeQkYq=Guh$SqgUykP8%+F9+cofYKRVAIV; zr*vcXUsui1bo-I2If9Jba@FkaN3Gzobg%0ikE1dEO zb63~I-{|HdHSuRMa?3Tb`*5jPg5zJdn;tg_YGv>Hou^9O0MVSOl3T}8Hw?Oly6A2o zHMEe7+;R;~%;mHFfwZ#GT`C*Mk-(;vy2pQvx*yZ`R#(J{bZe1{IF5`Qq6mxUA>|{L z{1G_|2>D3mOSTW{iAO3oM|)81&V^#Xa;El2$(l9_vb=&lNLhI#ou5j(tmYWn(N3xL z?NXk#Gn_~FVO!D2ha$@iVk|rqIRQKlEqNREF+ zMs7LBH80lCdG7qVGtW~2q7expFK5Uwq1wk-R+2v|VKvVV!K zXhqq-FWQq7b`HLpdp%jC#!TW|_IfVmi@I1Voa2M@HkNR&mwanE(%%p zGvp8%=}estI0_x2?E5r{L1o$BOdk}PCWgq!TAJ_}MC4^(XZO=!h-2CRBsm;dc5BPN zk>e}rLnAr9f{fg9j%&)k&ht;*dHyjuBv_tf%9T8>!!SRv4mZtMqFXQDCY2y(}lmCyJn2c&GZ;R{*C3yVE_Xd54QX6)xNH-m+lpDy%Emz7+Z@Aa% z?}sxe%zN5@?=F?c$x*>d#Wkx0eb=?}7~OWHRvsZEw_GdTflEz4vo6rVbUfhP!At=N z+SC9mo->KtdjihK0{^WCLs!!zx-&>MO&}w;Tuqbxt)_4NrXVGw< zb#1(vZZlFF2au6lu8pa_HhQzAOn-0}*pRzAJaRm+>Y#2W4WtlADHX4Eee}|;M(QI@ zMsB%2I{Zitdx=b3zpZbQe$G*TVkAtSe39W(i39dUR~06*hC(7L|lE|M3>QNfDD zb>0*7UDwKUblZ_y`2!ib2tSci&HyNpnVKQ>dm9cAaYZmkD)92i!@)>e;uu^%uqg29Tpljz- zbRUq~xr&V3a_w|(V<(LdB-2GNAIvR3cNfgh$RWWBhI-g|aE_xmuB+rHbixEq8wx)Il5xT7@y8S8>eUAg3?Ez#Ggnx23(=u|1 zj69|m0gggPx!tcyoF_4=+=;XweN<$ISV~6LGQ{4t5Hdq>)i`B{i7r-@dQ-oS_HoIn z1uv2B8!E83y(^jGEO3Oji^{05@=8;t@W+E&=cY^{eiTy-QzUB07#Z8B%Z#y^L4;6pD3?e$F zXD|29=2fH~;QKDHh;|ifeBViq3zqL)7~i@NI_tO7Z9uYqD;c@vtj}AS%@h+!*y>%6 z`9HZc|2#Q1SmqZn=FNWS>_1Dl1Ihl=WaJR`Eo#1O8+hrkfRGc5AzMep#9~skZ9``s z&Y#Z?kBgTwNq8O8u+lm7JVeb|M%kG=2R^W=ao|6R@vo|3N`*3X4*Pg3v-WWGp7ZaMS2%F3(8Ex`Vl-P!*lIXYPO z7Y2F=)e~I-pQl@bRKRD+$RP@_XaQsw!OMsRgzO^rv~@&u5!qrCo*hHT{~!+B2gJ zQvZTbsSU>}Km8D1B(BmM;|}XtY9ifWWR}{QjI3p;aSS554rO98qlw~Buz_}AYoa)q z90{x_s7IFuMB%%uOX5JfxkyR8iHzKGNlfA)3p6SN?xN@;#{w$~$4tQ;)@5-f-C(3F zPA4OW$iku-k^Ky>P8JZdpZT3_jTHUN!O`1O*5M!YuF&%IFV=^0B>A8m-BO{@yn*m4RL)>>YA5(ib zeN<$s_#PQqOBHu8i0GP%seIYPk5r(F`~xg;Y%Tsujt7?C&YHyzGs`d0$40XJ0vWmG zEKiq990sQMc-Wcg-2tKzGYkDn=1ZBX{d)P|jXpk-?fGQn5VkF9w=Dm>6j(sW@_)6h zY(@FMGTQRrwy~Hm^}!6FwgX6zm1;~Vp-e}(IcA|A zh*%unnw~7igAb702u3@$12@nkItdm5ynF`U9(!?lV%{4l<&z@@(vP+yz3Qu8P_C!j zie&#fGO|`su4NFR8KL0`VTnN|1Np?Tw>6vJ%;hqi?JuQ0B~3gARyr!?5pt}sX`=4# z@9;DcGrO%NkB8`nBjxh|8M)>1+07symSZv?Aw@Ei9&wh;1b}EnC#qMLV=R-5bXAkd z8|cO&W%BxtCzCx)GJ(4aEPjUk@@99j96*mhvLe-ea;;8&@o%HlI;=@%8Qo;0WcDK? zw>+~fGDv2aHLYSTwa#i%c^BPWq*P8NBZo-EVn!<`#k`NU zfRK~oZMJDrTEXXSPFB3b#R_=Lp{p&@bE2oMDsInt#*GGFC0}I5E2O*yJ3-f9Rp#$z zB;1Ma_kBU{Gx)Nt@Z~)Jiwt5c%>FtO{)TyeWSsWsCYeZah0CX^enyU!Q46U%07sqU zQ%|^3IF8kNtxx=ZLbn>3G=D@!){^EA7({dvziEAmLNU%C?hV`?cnwT(oZbDK91yHP zsOJ}{0;zFY*T+BUMkDp{cQSIz^)b69ROXXg_x+W#O!fhYM$G8+JVHIeC{!lGcU>)e z(rrhoWic7K^=k3YLh}`q=uLaP>;#g^+uhZ&i5wSfQgKs@?z^s*ljyc1)v}(9+;X+B z(>K`_7wk>m@2-;b$??FdgnBlsnp1q0aG!N`yoYWxQXS`zkwesBF$DwD&k?uHBx?7Kgk-vS6G|eV;6Jqe{z%+0Uj%ecj&w+G#dJQ_q0RE*e>%dRBZtC%*s4zP;2&_{HO1 zhySHE!JpQr-o`#pVgJ08nzq>gyAJlrb|XFt|BTj_iliws9v8k-#=FhM3RpUNWJ07% zN8|kiDU@42Qy-;H5X?Ewc!mz4~oJx)dmfzaVoMx6!p^uGZc_SIQF_1%#aF>}>0ZnCMK6_Sw|&1C)zv8ZO5jw zy@|BC*?Zr|8j~W>o4p5x5sDHGiD4fw%yBlbCxZx03=z%-c3JthlTTi~ep7tS$!}f1 zY4!S5@s)2~zh>RB$|UVXG8I~?IF1}NbE-HLa1?^dhu7PeCpe9Td8s9rW9fDxlglbH zvX)$yGlMD zQVnNuD#wRCqR}4qgGN8?v1=d*)lKn%cH#5xY=4#>P2+Y;JqH|N!FJVAy~Fr4-B2X$ zpClt|N#IIb2-#t9@i}!Ek*A_be*V#(Mfwc{!!ZXvN{%Ns2knPZWz{V$`8-TF45`9j zFyyh&e$1-4U%eUwX{YVi&IFGK2wJ~}CHT!0f~y|t`DQ1&g-E9VOV*HoCr$-xEh7Ka>q2iu);m7C(BIWQ#GV<7xLox5EPYfm8=T;|)n%pI-34+hIYwB4)IA+b6G)i5nq0m` zHyA0GZ<3K)E*IHf6k$dYAIK>A<5_okJWY-XRvxs1QgKg{!xMA^k#hJg8977_7IRZM zz2(yz3kZ3GZItP4!ymDq4zFe`<>HB4l0CZ=m;^2Ujq@aE5kNF&5_ABj=~dm+XFv<+ z<{>3HkBqEIGHNl*;n5lp$FP_bvEE$~$CCqtO;d;96`}a3%VI6vMx-oOlaX64i&;f@ zy;Og8YbGpBoZ~KvZRD_EMS)r?(LB^8QKDOjltiA4+;U0Gs|HNDkOJl7dUsu1M~)3v z7l&bzh1pGA9M{s#M2h1YGIEGGEZP#;+3@?u77((tS!}x^=vx6>1Exj0b!fIfx$DX$ z{Nsk;R%F*eIx(nD=$;{~+bGTQ5!k0BSYKVWD9$ZX?nxUq4LoJ5AGw?8_YA^f)xPof zg{Q3A4hL)``_=#(%JgaSraFxuiRS6tdlPG$F+m*bK0E-;&)1E<&i!slq8m*D4zgmJgjczegBkv$1hiJs2 zm5|*CPg52UvK#p?uW4a77aL!>=2wo4S|j!h`~8Jq#?+?bDtEnpoXincug8&dTDa4i zXh-N~BSm{TLmmrNZO_nnR5N~{#{Ixu4|mZ6i>z@Q8>fe=|9Zu{lWsp!7`Ky=wQP1P zgNUx;?Gvt`L@t-!&SwPy5&Z>>bS#2@B8Li_R8DE2h-yNh>*#s93rHP3OGXaSkwr<9 zRgtGT3y2n0#W@u@uY^B(l zSg3%3Gsvp~sMdi%8hgrJ3%{p_6ye^(jEt;hu}2t0bX9P# zkn~Yo2m%6{@jK@_*Z~m1u6mTt6e*xh4HHn^N;rk?08&Gf$jBiYvM6J+67uwB0nx%r zIHUgZ=yC3{J(kQ3wg%QcOy67swY6Za`mLgyixlZ{hCCLk-)Bb`y$r3Vhh;}T> zm8^I?omoJ%u;O*rt9B`O!48s{!B)GvuU|A)yP&IDrR%2~ixg;rA&-Shw`(8@VO4I# zo%_q_;Y7~p>b~#^!+q6jJxg6iw;CyeOUcMumb#chL^q#X7*tD5f)7-;yTCNZ+1#Dv z0AZ6w-Pik~1XJUNw-c$$O=M(Em!mv=&~Qb}AE-RiKOpWn821T(&|MxMAO{C45Bd(15T|vmyq|6~ zQY+_^kz1~nIn}TwVUgOXlUv+%ax*zFSe?*UrwtD48uSn*U9v{mr7=W~2v!ZI)pHr&nhQGTi|HmHIbTFZ4&mIQlFMd*7Y7Rn z*$jNvR=lDaSRHLM(COc1NoEGSDz9n3aOC`vb4OC_Ro??-(Hb*M`4Gwpb6`xoVvJIJ z4E;c#t!iXHa3+Ho3;n?Kp+u%X?Zv%qiQ!z@3nY+B$XtjEM79MNk)vg#GgSf{g_-iG z_j7AVjj3+xN#+8&naCt_9vN9nGUqag=$eRmB3gmfzkoQt4OTgJ6E~4#gB8c9ixmcO z1l-j{@^!koNRfP%jNEdO%ngdfzgroQ$dm38`5iejSc#0f$FZJ7d}nom{Dy8UQXr3# zky|d1P9YG!)Duv~^rxMZ$25RwL~E*7mP1Ed&N3*2d#OueGTlm~B-+TxEtkYJAqhjO zIMQ7Zhmiwg4$Ss%0ZibMFSz16PA9q*D2su7jm5h4VeH4`l zmvymRPB$4TmdnVwT2W+AMGjUVihKG^atv!$|%6{O15?yxS?7oCW=XDb^G`Y)|mWpjNPA; zKaMfOl+`-JI%*FXOPjw5*~oR&eHlb($RoV3I?;DIkWn_0*$@uO)zb~+7#Rso9St}N zALVv-`-KrDMwNF|Po$5EOclqGk+oEDEQ1KWni{^1d@8>sY2f!fu*7iz^jva0u>5v1 zex>btK{%T}Hj?G7WaO5!JYC+1G%)>Dcc#BgjtQ3OS&V7bex2ntPxO+RLTOkzLgxi=ftHetDl4ycYygC5O35*_0MFS* zT($szU=U-W1(?L04m1Is&rlf=SBGo@rUC@5Q8JR6`VWLkVWd2Tr4B)s7+1Cd?euYx zDPtlTSxXr^Gl=NgfDT?tjT|2Vw$QFRjpIYf5y5giqoxrEWBOqF=t!myBqO(+>6x;W z8re>|vpqnL3YP6Tfo33#@jki*NXE}3BZn|_WlNc&`huLz06+#2(AZs#TYlKVv$mN4BfzWw#t#+ zz_kowEOY~%itmA@;HP9hw1V+taQW1cCma9l(1?NTa}p=C(eibl2!XE2Dd&@xN_j{~XW17t3=vhjX$ zh>Ucm3V@@~QJ%z7hfk9jR4yHyPahPSCf-9v*3!f|3?jPrV2W6U*Vw%o3~_7L=tE`)#brol1f5E8>>o)V6qzOtBO_~R;t&QA zdD++5&4D3~Wq+6)4lKL1W#7ngias=w<3TcV%Q>zo`#R5`a_9Lfa!9Z|2g|;Z>yOii zM{+$vMh@ZHqGrpo&x?Qsge?2J*g7K0{=X(hTJ|Sw9rE((DJ;JR4`}JgsIl@f#`(UN z$oCDw4tMh{0`bEbw@RrqhO+-F+gQu8|4Rlj7Rr7b^EpuXUng@RE(=-sUnK|0NN4JK zz)=V(Pi8YhPL&u|mi|}h!y;3~%VcCNRs4-XL|6K!@fp8~;r;$dz1lQ}mjVQ>`^7Rm zy=KlI!t>tr!I3<7laX7_^9(s{HgSEbJJ+X>gM#IHHsd=BNR6^XvhUZ#I7 zJB1~$P;on%3awJyN)DEh&D0kGM)7EmIxAAVPCQ!yl1bWDv~Tlf@yEVoG3}V{OZmBZTd0j&n;Fv0A4! z$z4 zucw=eROodKIkdP%m#P-(aj3qoG|+`V;?Dg;^nfC3+p&~PRmW$&2Y-NWGg1WilaaMF zb)PMSOjBHn%}i4budj0kJ$NTode?pC+xL z8Kw`4OcN-Xa{VLv@JOzIKt>MX+M;I5vd@cv1%xd7$J#pLTLEQ%X|!d3 z`Wo?W-Y#*Bt}^|e`XV(m8Rb@f3)`9`)_wh*NMTFDm1mgQ&tccnsFlARETlEfLN~JV zPh=2dq4Ll258#a#v+%&Sc(F{N4_HR#LwGCufc?k;Gg6vb061zNPB}IDvgS#x-w3oTZ&Z1 zMly2Cl`%WvzjBP_jY`A<+PK7B8yAt|g4IUd#R-Epg1+kNxPWdeQXS`!kz1~g$%#Td z4abHC4|e~yyC!ZTM+2*gH`iNT)iohJ)Rpjcx`jw3e3gvcdL=+tv89+V1z$4tq`MM+ zM~+5wlu+?dSHf@T79y4KC>gosN|@c3_x#;Ytfknz)&B}qjOl-J?k1)I1g$g2YJyfV zbYFFKOs3n4R7V>bx#j9;A4n&PMK5?1!jbNhIE)+&tRxO16%65^u7gA91|oHE5E;4U zI+!KG6o2E{J>ozcag(`l}O!p25A$JP?vSB z+(|bXsg>Kw$Sv2(JS}jhGV>RAq5O#)8>~=P+B6<=FA4KkSIP5qdyy)6mWFd>YsoRf=8@w`d8EGIx@uO_?MA9*1sQn^s3xE2PkI@67$wt}9nQg9m3rX~ z?3Jn>P|Y@X)s)CFYLaT|`mL)bPq!PXnk*T)<*Ml%tVGYhQ63P>j0Kv;#WwNr@h zw62%?=td*;axWRV<$9UV*V_H*Fk5=h#EpyZue)pIRdR5!T3JQXN{GX{PF|rKjMT}? zWaO6XWFC7|wz9Mq)|u@0XXkm(Qh;dAyoWX~Hv6lqWN*5?NR@Pxkz1~kxoXsm?^-_9 zT_dNEBZEyP%Soxkbb6Kr;TnpQaj_x$Sv0n&p_1xhFyVy zR_8Ex0Ubh)RTDGNsQ&9JI*4vRQbqfdkz1~!X{?SJCrpFxQt2lL1S^%d(2Es!QrAO* zZX{9gZY3kPTtTyo`9vSwGfED?K8CYO$-LJeNH%|R z*UR(dxM1}{+ljCHs;lE!x~)icJWWP!xjGhZ%_nklvsh(^0=sz>kja9-I?s{j0Yr1= zNVNNlb)44qGKX$7QZF;f$RT>MI8H#GNWdRXw}6l*66|dIfRZ?o;QVM`j5ZN&jr#99 zyl})nwLA3!oYtLsCt2Ob3|3z5@QM^+mh#NI;V7cF+sZ~BNU(`PjD-UUCUK_&x#nCl z8{*24rx2V?j*^kkR1$C$M#@wC7REna!1&J0t@Lq`>7qzR*3!jU3?jNC1v>a!Qj8pb z8EkPpPT-5=h+sLM!8oq9UM~!vr;mDCNz!<6D}Qd4^Y zj>1WKTBRWfd7;*U^pTNi<4t5_Ep7BLi0E2^>D8iYdY{$+SmW3f^pRtN<$0Fc6ojyS zCVhM)+ozL}Th8`urKp-1{~ve8KSGWRmhoNm#vp|C57BKvvi?CbatP}dbzQawyhK<) z$kt$*ts|l}_}BPI-=o?FrKkY=?UiMM2fznfelkj}e3Y>>fYHLJ_K4ygNY9I%F)%{775He0|oq8+~{r*YnB9 zE$4cc(hwNK}<$JE)516m-b#xPuoUb7xhj4CD%Vj&ji-QG(YzOYOO;n;C zcx$vb4aOG|Th!O$T}D=_QD)`CO}#*=m`o>&+fDCO7e9(IgOsXcXap{`m5XcyE@lv+ zjX-pDVxsSHpgeqoOoCP(ZX}1u$YbhLfTPe+ZfEI&@gzo-9l#CrQIQ$qdNQ(>A+EE9 zkQsuj#wkNw=wbyNblx8AT4GyYX*ie9_A3*HKZ6gAm@up{C5eLnI7OkD>`SCgiK6Dm zv5IYqKn?lgMcbImeDOyH5t=U|e9uX{@H&t)X8nW8iIy{_14JWQ%GV)Q3MFFVP@zjp z8`H1@U$N7;oyPh9gBMY+*vtPaBlE{(>=0FCEq}Bzi0CSVm_eB7J_d}TU4k0jN0LKg zE)hE2wKIrN(hs8#kL3CgGIGngu9-oY`5t!XJ4Fr)mha#UB9!w%x(P_m`^m^5oLdxk z*&pyKVF4j$5YO1wDlvn&Alm+*vy@4mRr1Ecp+H-_d_kQ|e1$ApqvFa(8v6vVXzUNX zVvO5VHA$&OhW6k~w%U>H!50|BSZEKXtIh|yg!{>iXl3I*a{va>(}?M07pET)s@F#w@`3t6-C3tMCdrGFZ;%v)QD{3!V9w=~f__ z{~H;(<;?FY*BtAzzw~8i_V)&eM$8NJD}G^M=~4AWS3o!25~KpU$jBiIuqghrf8b@r z0z&o=pR<*+=pQbOb_H_6Fk5S`-KaD~R;)4El#eiW4Wr+VBKMV9_W3}P&l{t4i5pzt3{=0Nx-_a(0)hsa1{>OjCz z=n$_>_h}M?%Cf(lJ}5Fh97RUf(!=2lBD%6KUYoA7TLeQKi~d>UaA4W3eQmmt;|zUh zB*&Y{$Svo%=C$cM&!2VY`P1Z(V0jL{Hr>eeC+Wi@xxSK&9Ky9lt(N7U7Xb?hS?(9u zIwH#b>CwJ6z4OFUx|oFh1btqi;J>H5cHaLx@P(F`jA|<%!b(5lt?9!7W0XQ;sQbUM z4YsWNk1~j{Q1?432gvzs1R8*y|3zg&TpqFk7zYrv9?3{%>Lm!6!b`dCX-)x3W3^7| z4Z~|>Lb2No{!K>K63jojRN9XpH*Tr_NdJ=5lkiOc&~2%w;0tysbcX$4cGwSI>k5H- z1`x}g)q}GQig=T|B6^yph(rC^W86Pfs1RdE3;B<-i|aoYRD|NCE{T2VRw8T8K4jz& zNmvvNS#x*-vVf2^=V4oIi<)zBv{THEJiLfAJ3KC)$>xU>>TEMhmbEcUl~LCgBT0dr&IAgP<}p2W<@JMA0`LONNnmofTIvo=AElz zzMe(O^x=_NKk97rYob~%xy!#OXT~8!XBBe{4iFrOQ}wV zwqXg_N}GrY;mEdOF9tCd+J<)Fbs&YTC-b3|kK@T%ek)E@^0q) zdUw9BBZmdccW}#lDCgJGO+a#f4H-FvbBlT|TLNAjEFfe{u!pT9q9u4W+A}md_%6k9 z@hypT$tx(G!870rEk_vz7qWM4)E)1_BBcNsdV;5H11@`l-!q7@&=ZI!5Cj{6&S3Jt zseFiQM6P7F0R*jqGE$m)86u_-BbE}xo>xJg7+&@VI_#y6$A4Coemhsx91jPw`D!D)12qf<@GIGm#uUSe^!WQ7Z-<|seIXGDEgG&jD zBRc34TIFqUppBP@+loA3ey-Ab-5t7U?OD?W;U5 z*R?7cIJ@cK|4>D26kmB}wS@G;IPrde97T+kYEhFZ4ur95XGv%hq?+EuAi^`nEko7q zD`E?b*bwuIzkQ{xnC&a(Jt$i*!hibPWkxrlJP~S>mnn{RokHuz&c33d7OktOTP zd+SkHmPu?$4#M#?nZbB*$b)xp_Io22jjS&(HvDe&wKK)-Il%OPZ7;*G6-qh(x%pze z*Bb(K=nUAe?qT@V%4R0`ZQlg;d-Dyym&oT6+xdtK4L|n#f&lecL{Cz;_ zBoG=F?doW7`etbu_^uO!Y+nK7kQwB^V&cv(vFumk-nPVWE?p-ajFWgGm*o4Dn1Q>6 zc))ftvES$l`HjjZCT^NZseUA?zg07)$qjE?pO^DrVI3cWtuhclF0G}8!F}x{Go@^) z0H-SyJ!tFve;4Xa<&B%+GRcDa`2_`aS;Vi$FmP`vneGS6*mdW}J)TSEJg}8tfJS8{ zx5Wn%aN?Z*ul&tnV5V1|n#}a2Oa0zJ(x(fq^wjBa?Wf}YN5cQ;^FKWQW6=Ld`X8J9 zk755K>wlc(e-!+WlK-*Q|Jd$-oa29->wmo0|2W_OxWNCo(Es>=|8a@`ajF0DA^7mh zlZF%9`XT&7BgefC|0}okB^VbY<(e#C9zU4Q_KsXqo;Z~3@Aonz7ni3AKg3^LQl6A4 z4fjIp-am3Yv<}5&5&X+$(%a!*P0lB_%G}2OvocERf53`TYTDv)6NDrzS^`VY`$wlJ`0!4urevQ75t&Kr{>BYGCACmO_$(m_VRJq`pE_#t=xah zHo&snf0IFkmivaDsKzGXQ~doXBFaj1A8AZw>k;W=Jn3}A@?XgU<)Ce z-}@OvBPU`k+|yTP^Ilh2%>M&}HbBvan9qQi=e?e~f&Z6n)TDg>VGGgpz|TB6=|5W$ z8u~@AHY@bAy7O%4`oUiS<6D&o8T@&+5KRw$=ca5fH1f-v7WwJj#cZyA*pIS}nGE~k zwh+OvTNHQMAMnCq0U@pUn(f8wTj9_5qwNnSo{-q?PuFUnmfGGJEtMCup3Xm2)r0k6 zwp3X8k64-ytJE~Z+<%L$ETpmu48o!ru<5y8tNR?xjOG1)2foEyzGZMjHk;mGJ^S`* za@<9OyEABx_sE|h$IIBwr7i{>g`4u;Y>_a)UrcvMm?YN-KSnnRxkmUu3^|n9Mz$TV z)#Y_JEex?ZOk$J8csy_$@rPhCtvAsq{ysgPll%#FJ_Ae17ndi(U6@inIbxuA8IIzr zZ+h4HzjWJ>Tz{90ECMGp^KG^evOaLdIn{@cFe^f}+5Dt)fSPn(2YVb9`6@ZE4NW@W zkd|~_p__yh;>(=B@nKIwMz&!km~;;4uU?peq_gxjXNva*2wG!}r5KfTYJAhV?xx#@ zJEfP<O7X{}IN^-1UUBDzgTZZ9AsYf0riTL_s{xWabK zq;i0oRPKRjI3|_5$pLLhQUOP_&gFY_Q;@>DgCUQhq;kNj>IE3+SYC3c^aXkx8umM%EI^muw+qBH`NFu@Z@Y3@6BN6C4gw$Yl%aJCObaF>%Z& z&y&N7%_#LmDBaOg%d>QYkRp7VA&-I7;=f*{mecAb8JGmkd)=AdIRMd|7PO~Mj;YdH z^-NDTGwGHgdF~`5YsqG+Erd)qTx~m6vSD3IU~%On2!&&gSx=58Hphf_EvA)~%gqoI$Bgm~a#*n$CA@2?bw}%3ZloK86yXgFc?_f$*0t0Gp<3GmIp%S9dLN@l z6PaVeyB3pYda`+hZW)s2hselUvU$K3LM9uowjC?ku&yPrdb%m#?&w9esO zi)rb02Hg&%JV(SjlGRRekE=EWd#`I3}1! z$)Ut17=E}|a37WLf|gVsrW=72+b>>3C{Sb|Bp(>q9yCX!xrrxNCwo^1N*mLYjgkdd`ybA~O1Og3C? zJ65u3Tb0k|vL&@!`5eT;v0M2JIh@#Tg&&8hbt}RRExCM(ZU|CzS25%w?V-mJnNrNp z1?fKNNo8NUO-OF{AtP%^WlviOnN+yKcC4hb^O`lAlys7WI5>7E1LRO*yA$(TitmD! zNc!kTAjNhjLmmT(qyroeOCkT`PUA=D5k#gC^IA%+H#(mmqFaOH^Mhn$EqQ#v7D6Tu zuBsg?d5m8d%pUhaARM#Dz2sP8v&Vd6Gt7L@(#H?!Rv_i}eTF;+(nqK7d075<*`3J0 z(L;#LAA5unS#?KGAb+NtgJkqYGP0IH{%8v!6A0JUj+H`xQVqW& zBZsKLq8P|}!qbceggk~Y@&f=To&c{hNaU4@vd4I53GNOM&1p}~8>EF7T20xFZU<6w z^BHnzO^Gh8%;3I<6_pd*$y`SdBC@EMcYFjK(i6!VxEyk1Q;@=YH$xr+>11}*{jiMkHFrwC zLXRUdqnK~r=|1U6vdtl2lBO zo0$nrA5kNu}gYX`UX(MszAQ zKIus%OScKhZJLa%C6%NtgiI=2VLMh*nR#L>BAMAy@8LQ3&EhCBw+%tD>nu$j>#?j%1%4=6IjR|S$0Kic~SMKQM@8#}+w<-IhYK7t$_edUT3n8zI!x%&(*XCKs zcUxY0t9Ms2)0Kr+wCB6llrnvO7ofg9ZvYISwE;#^8yHyFU46B9PcqZPjOeMncD$ey z(q|h@DeW_DA(~DIJOk^$CBCcrUh&$*a!J!Tm|nRGs^eZj4Z4RgZ!Y<^h1obPIkl*(OoUWS=rqbljvP^s>;jiuDp?F_=A zQrXn~`dcNYtVk65hWvO3R(_u%2V7i%@-3LZCr8Shf`1M;3M=K^)ef5x7pwI|%Lb3r zZ9z8Fk1^y>G8r*+mCIDgcrj9mhRn%CW0uZ!L4a@41QCO`yrPtU=bfb{;P9P(T zh{^2x23rVO1GvbXYQQ60r(rKfYo**vjG zKeV*6oNftHcSkYgF_2bfSKY5(e}To{v)mcY(Bo)ajL}O)U{7{{(W*;&O4&>|2}$h` z8Cgpyo-Kq-DO_L;NGTQ&(hA-RSwP72dMmlKi*SnOHWqDjJ9(p5EW(rbU2n@NdGQXQ zl$IBbNv+(K-Qwl9B)zT6`m&i~KG|FHM_X3lqsB|Q5v7+hbhzKK6_@OAzs(>*vsdHS zVs=}T&2RRjn#lBb^`)~J|Ie^I(3SUcStZWDZcLn0KLs2mlI4Zn1KfxnFrr5o(E~>G zFe9|$@hkT@|I!vhUOo>ph(@-lY^7%MhP>CaGCMq+RFABA9foUw%njk6(w&1L`}mMr zuwS)}loa(Vwh&DZcH4&SD~A$+Mr)5r&5HD-?%ei1Hl7yd-C
_9-sFz;pyfey1x zuggT;bxJZ{EG5!iUS>-&pUn)z{l`LAPuKcv*Q#vaW>4MSy}D@x?A{H-`-b$?8q$-= z_Q3LnZ-&Op3frJcUXErE5$5#Hw-x*>J`4|WKq>1_C~4elT5zX#m;7;i_t`=OgKg2M%3haW zKo$_vicyNSbz<9{r?0McnWC46G76tvTa(41E>mH-rD;Ow>gM?i?yFSo=<)672`xA` z+fpml@eKwMVPb20dot6X-Kwr|KissaPU_w&#?!8?U${r_|7;69!vF`M_gR(ZulGVS$ut=*pUHzO31g{~8_g9U$w zgo&MO)7V+sJq!l*^b3P}hN=ejq`{!NM5S$`EQw0mLZFGV?yqK5E}l}Z3l@pG*5o~P z!_Y^YM#}8kO9sa78Sux}GU$hGgD2x(W)Q9JqrTa+NRIDL_8+WA?rZLm`-&}uRPL8} z@EhGjnF{06`)whb9^swezVQU5fBIJw!@ISR*2DV`+t|qP{?!(u z>EWGmY_hnv)Z4W(+wT=}i9S!AbuF0OtY&p)_aIDMOTDlnT^(7=y7ORo$G&xrEkrQ% z7EPz@TY2ucfRI)+sc)US3GM=|NM;iGWPtnQn#TRKZvU=NZ)H%8_G4{1lULj-TZmx5 zEjW|3^ZR@j5Ymd9Z11Z0R=^JWE26!9JIN@e_ccaJ<%O{RRagdhY}18h$t~Ms>`$?( zkjj%2nZBWHK9d;sMhtgu-)k!hsjGK0h-jL)`uo{t_YHY{o8!>3#w!5`Y&^M+9CdLe z$~}tLk|Sok>z=wCa1?gReB+5qU`%&OFUQx=O+s!wxtfeD;w7)vPcVo^-Yu>#g5CPk zULsS<#o?BEe87Xfs$pVy04$^3Sk}aFKRG^FF~r!`#-JENUDHKzAKf&hDDEXAhls+W z3dlmj(~bp%l;(C@M=FJ+Ez(D^rmo{>(y3CIFMwhK#`Bcb|ieBJ3> zlgt;2Y&ZSJWZqLxt@r_0<0#6z$jo3xxo;g&2A$HX(4BO%kW##zGe~}VzTrh^*FX@e zDLasP{^U;b^YmyUYteytlB@pdiRW3meIaaL@dkLSu>Zf*D}FO0S16t)520nCCu|{P z2IAt|u`YRV}1PIzJ0h@mU4+bjjuj-PPeHPP=3ejUw zhKm?-Xb&7(SQ?&v<|!elUYmj3bCNs3>*=vX=AQlQYlzW^Xgm^f%J0Bp26q{}Wj|?j5rq&@X*}R`_5>kTaGvqOlY!=l7 zAQqg51X9k;?j(PM9#LeGMQdNj)z@L>yDkAIU+*rk;A8j_Q(@e4e2jg_Pk_3^_FUH1uK4`m25Olo*7y zI=f7BW_UJ0G^dxX*Xo$P(=*Ntx^+mZJIKgd#+kw(qHBM<)ToV8lU9Lsj#vM3a*VK7 z|DkniQhhIVjT}X{5~-2H$;crZu_!6BD)FRb0nx%0!0~U*1hycZ>n_K$$#h`l7&v7~ z>4TXkS`FGtw*@J>B0~B;1?bfb{GewvJ| zC6iCuLdayo)wN?Klc^`emYD3Yp~L+h1jMn%{e~PHUwc=W^#u!zij}~oc=a&_;o11Rp<0^r?Y9N|;@3X48>C7wy<16yzEwXob3t=gPUHwG!YcQWMAY7W6GKCAShkz#zhN)-6Nh z#w|U6vip5;vuw~0iurGLfERkHso*RV6&zDsZ`{CE){qXCtq2h3w z4Ht6GcsA!{;>AQ^b6umhWYchNoag1^xqNmopBQG4ORMAc)o4zhV-8P(=e@0oe1Bc+ zAupX9D5c?73)xcMKk&nk&Yos$FP{h0>RY5P8u3ye=H#Sa^_lvw|1oYld`$2^+We1p z|6_{(F%3Sv)aCFGj(Z*cm-;CDsjOZwsS)_QOHx22>LF7v}r#R|A6y*9{LRBmii_y z54({A864%mFiHeNC#JYWkE47o+gkX46YL>3UzigI&^-}Pi~(1R8^!44<( z6Ij<8I2yMEGXX^fZ8I8DC=7{gL3h5!1a?Ak&p^cl?J67(b~yHNJJ~`sos4NL{u?(Z zb2&)tO8ob2TKqe@{o>J6sEn$Gd>`9*$*XWrTZmxDEiNH>74q)D0zz7mwoNC#70~-l zj`rle87ss}25V1N`70TgD zeT|8D>MX!ff(h^Ut*lzHhR~nC^)NF+-*5C@_h7%kLaO8s8-+9a!!M&?lG(~SGwNnz1n!LV!~*gZ?lcIF_NIk-7xr3&n&CsI8@IX#_gnRY+wi8O z?X9_D5>6IYB>Py?VmYZhE5_55`G|Y)9Hh&+2-#wA3Y}VvZ!#+yPWE*FI)WMj z?^^C+^8tnR$+H^Maq5X`2D^eFTf)G6Zm1`wHW=Np!yIo5A?fFVx8P3F&(os?gtX$L z_35|1Q@Y46TE9&^0YJ0 ztp3)SXO8gwdhD$q`2Bi@JsYQz18CgwXy`yDcQbo?{7qXLZ>Nxl6%dlQjkXZ-TH3%M z8ktH%2=2@!^2KB#9fwX~AeK{?c`gAf{7oK==2>T+8Tj1>l6?_5WLUDNcMGfG-C&sk zczLN#`32;`HOkMkg=higQ{bKBtpAS{hLlqJ?OM7!fo}PG4W#-ea;UIWPwlQ)+ykCz zSN7M*18X#Y)fOU1vqhnmwVKxj3kYdNvugE>m8C*4JKVK;ThYrDv=;pZp)h=5z;Zvc zyN`|BS05$kEy5Vze3|MB_|(R%jNVl z&#e8$2C{fCIf_^or*uo#^qhPkd0dUXH`zkSY}jK9A#*a51 z^c;sJSD4-^lFNe~)vj;OnP+Oh-9X)C$&ttEZf3W%yGMAbC66?DcujsuTL>w?$cUfG z_GFL9Sn6kWR}Jr}`l)gM3G(>pC~32#_y|Td@4-j#V<9G=X=RP!t&hiA41c^eA3wcA$e4d-S68%1lhHy3bL^9 zhSLHLY8q( zu2UH=GAkM`gLb|xcwOLPx(`Ncz+y$p0&!D;A!nnrp@H{80d8CAQ||7FXXB>o?^5KRyHq}AIJ!#Q|K zuaaID&282t*52(^2Gjz*07iA}ZRgoSpaX5)A54SOUi{v`f2KXKy0*M&;RbQDQG3Lw zTFj5K4VV=7;S3_Q)oOTI*!%56UZ$%6yS&r=UF+cSD0s|x%l58Bp)1i<%qKF1Tr%zD zk5&YoXj+8#?%oRKz|BS9oSq~+CI!zQ!xBWI(39wq=I9N?8Sark%@#tc{T;RtvYv4M z$6`HEPXemltn!hj>0w$o>?x4vb!ivehin5bFSrldLP*-1RKVL;W`~DiMqN~=KQ}ck z+LIyLl@Ya2f891tGSpwSg=l)HC#_5x+N57LEz<4XeU$;VKtE_3B^l_S+d^o8Zo-*y z{<@Jkf2cfuEgS_lQXXIM(gSd?Swb9F7C3}#J@VMG*TC(BIBcwqA2zmRl*7iV`|8Bu zV&YP6uG?@_-t6l060m*~udLnpN4rh$_lC2DWoMO=eVf_eLtNxBZqs&w;B~@B?Fmin zpti~WCf*hN06k>9*a2-b0ZhcKgT*ZM27infVB=vbs%XsRKBv7z9*)~n4+5OZe>PZx z`}h3tyLtR?Dy?rE9$|{JzfvN#$oHbl|JVaQv~W#W<%fBM5~;laM?`9uRz+%7RX4-g zVsZAW9`|{XE=ySyhk29-3t)7;}0B2PHelVRa6#NZAKG@XiUk@bC zQi8q05B4hmV~zi@*8e!p|2P3YG&RcJDhr3hQ7CvTzzI?A+Y$=am!&4N8PDJE;2&^T zlgv*86BB`yUY_QkdUmom;N|_J0!S{OAzeNs5|{abf8{;=UFpjz_q!8mcEq3j&zQf^ zl@OI}eJTZ3`azKAX`&9&Yf8#h9Pn@F#{1HVLcuFA7i#~a#(`~P&VeQ68H@r5bPP&k z(Sw6gN6H=5zhfs*j+A$=`~^SVF6JMi6Zij3@69NvaKuzr`HxtlW^CpDq2bxztH2(| zMXZlAh|mR<#@@TC*-t9YR{sCgT?v?6MYSFv`@RfGAPGzu0twI)c3FjNkN}A>37af! zXXegKH$B}=FOv+bsNmL$z<{6#ilQiriXw<0naJVM z?Wt4MeY?Z=$%MrGb?W^8{p(cSs=C3m9y_c&;Y48}CWcY@hLR)66pilqL&2vq*}>W@i7_F z`eih-VkKX+h2T~~#kFl&$@o?N=S(&yrDLxzKsFrx z{z#Bpz*O3+-4An?nL9c2It?HiQ+4iRz-zT*s=Z9c2WCj{1T?Z@FJo;XxV=!BZDaOw zf|odJXuT&*eolaFINHlUIvoAwYv_!c z`pfR&!(5;{iotvZACRH`zC@5)z+iUd{SR}PC)}C+4L*^E4ihtBw%Rk*Vt$2>%#h+= zppg}e`I#*Qw-_q4ZO~$}y~TmV7U4zEjGdh=W-355rjj1PVpw++ioTL^9^R9@Sbos3!|ujW1uiEwn2$I!Vnb(0!zhe$^hGkFvrilOFy zPLNx`Os4uh5A%}k=Q^|bHa>-hUQ*-jkkBX9O8$e7$&l7J(8!9F{L>bKTL~4{wq+%w z*C|W4hr6rq5P)dRyr)KGLVKc^$wBy73{|&3L2dyvnMS%E<|dvypPTSGG<1_1m5JCX z)lTC0pbUvU9gVEm$*Hyw+)k*xwkU^?M%XB@el?`5-=phF(&mG7yrO8kx}R&pOc6hqDZfFQSol|awKtmGf=Z2k?O!a7(@^~%)o!V_vKAkfA-Tt+kri86WedS=g-UE&vlY#LwvR(D z9E+5XqSI+wq|~yNu+3~A!bfAMybluOmar9Rzn8R=?RIxgzk|%h2XYACAMwZ%D4?cTP`hqALQ?l3`bvi37t<i4|**hzMBzB`-e z;8SQ=sML6IEc8jWlFj&-3~4Q*krgXB+ZKXb2^Cizti%F>M?tTPvw+|iLJhlIO9ht! z9y126-W_#(TifD`hR+{fL_QARe`ku_BsV_f4{Yw4B44hWxuLYFV-s8e>t%X6`r$HN zxbI(h75)%#i*rY-t`_p(OF5!wg&4qyv+Uk&B zo_#-o2qhr=!a$1;;nlwAtGzo7HzLOac_>I$_g6GE?8)U92>uzJF)h2P-vW-nPWez$ zISDN5IPFq_B`FE@t*WNnOZ! z-SC~p?l}8X$y8RlYi1cbRi>tLf~jUqINx_9+;sIEV5FYl_#`PQ@2;dQ zI&G#(I;EaU3MN5SRT|$3Lsccw$W2$(^n(Az3trnvnz`OxGuNV%Vyc;g4K*WmQB}k> z_z(>haTOZ5>55n=r7K>{@-d1HT9QhB>aLRiK_|*oCCAyRMAvOqIX}XOZK#|F(8x_! z&dgFq(vGB)H{5mdPjp&Lb#jQIPLxins`x*AkcO)GI~qAe6&7nMd|8H0$}J%HvdlfU z6Fol)SeEG>9qF>ngyq=`cwf=~m`dVzcB`d&Oninru%g?S-WNG<51&U-@dwDd==**-IS@I07~0#l%di zU)kUkb}4;gQGEw=O~3PXB0efZ_gGJmEx4`wqDiNmhAuKE?oB7Q#0LoL($H}+gpOPG zRM>t$KCjx>2rAo$8MCc)Qyn}m#D{4}|9NO+mP2maLj)qa#kJk_I_Xa&&noGKaw|mW zD3ouY^JHoZha-g&?5C=fui@h~RLWP-$gQfBv%GwwpjXOM?n-$Qou@`ACD>0@DNo?z zG*rrO(8x_!%0j)T+^WFV=sT}Gqm4nfFGL;H;{0a6`RmuVQI1QDuFB-Y&O4&_u6<9Y5y0TQz_PXn& z8=WOnozR!XCexQLsh6rs-iwdYP$g%ekwa8sv68_TL+GT+0)ki7?;?X}bXE0KAPqjj zsW-6e-GzBAnix}IN}tXP%&UbisVck%ACjR8uR`eWZ1miI_`q}@1cS6KJaEXn=ORvvsw?r{Rq z3d=Tg*#j3(W?(54_CpQAr_Ga@T&XCHZrknVTrj_dPMns+)JuRPkW}8E6wGuhlt5-z zX!le@c@rO=p`pBvMpg{vH3AXcfYM$`9K1;`bmx<~qP#b*%UuwA14KP$P^uv4se)R9 z;QdmSum~TQp%NCNk(;iBnPhudwp0X9h!^@3IZtwi)7*t{3OX&}&T!@SZQHf^|A-br z560>gq4ZA`#EJO$3CMkgg)4x$R^O;97MpqN)R@P2$y zh8nmKjofq%wD)iB10R>66268; zZn_dC_4(V)hy)}fc*b1;PoeW+ssQ>~N}Un#{;149iI2yS`6tlGO=o_7KfH$-Or(=N zaaMD8_ruIBp3S6(Bq>bobe=p+0*J=ciU)>H9%^(@)y8;yfQH%_gGO$;HfAL?(vU=P zgu5sXMQ6s;AL!S?bpD|0nW~0^@sSy-;Q%yp^VN{{`oJd&Ud1T9EjhVtOuDO~7o8b* zHRyV#s-YVnnV}lqi$-p`8s_G*g+g*udMI95V}O<3Olcq|j~Z9GOX3Q2dQ2q|zT_0z zJyjQ<#D{07i;ts`Lv&%W0L|C1={lzc1Yg5`%y#XJtzmDD_O$PWm0P;KToI0eiQ7sa zLu*+p#PY7%L%tqwRG9B-R<9qm6$W3u{yBlLSiP?QhSFK9Gr4r4+dDDWlPG%C+zUH; zUq`2&JqmnV>1*huY1vC{1ss8(GX2gmt23%Bc7=3{1;%%lzJd?T&_G@$$e|=hw-UWT zpNp{DDR$f4d8)B1K-6QZp|X8YaH=s9+tnVb5ghp1zjajx3eB7Yoa~d~Z zr24Jrbq=-nwohL@IJC4_%qKUMz=`ttta!`AX^<7iU96{|6Km>1^wt#Bg_IsC26Q4m zCPO8zC&(>eK=Tx0t52phqrKRjOxxvSK?! zwh-KQsN}XS+nEXKTt;t~(U(6zfV?;w&-c-(H8mc3szzr#N}m+#xdR`Sp&D-^$Sq(! zyJ*O*KA)2L{Mnu7KjAZKXg{JlGw@dM>~RWT?S&333Zq&rTwx)dy0toLk)4y&0cOL(37~ zBnqWZfZb}(RI9lOADJP|H=>ahtGU4zf?Ew0+qPvje$}(0IF$3&!M$%;f3;t&dY*^W zI9kqDbaqWGC%o#>bxX0Hr}2RqYVr>Rxdp7puX;4Os6MEY1x??>ne8b6(U=-Hyy~gd zL)D5V;v+PqeHzB3{&h%*qpf@uol{d=q2Gtm+Df%EinV+hAC95^zDST;z*=Sp=?t@% z-?}sVYkVpV?M2wGU*WRQrR|q$F~7veWk~TOXk^7=9=3(x7DI)$ZCT7@;BIxM$J?To zF4OjO_L#{4(U?kFI5r?CG0+>uWG3L_F;w7Kg4_ZoGe;ma%w-O9=k^`=TpGGe_?(z? zTkV)?GY8@WGbDLGG_qndUA7S1W~kJ*Et}bysFIvfQQjv9Fa0b)dK~MT96H0Mbxruj zjnx@_*AxR9zz1ij%@jdy0RvhXPIdL6mDX%N>(2V8@rgBbqu|$F`1W4E<_TfF+Dp}% zK826ckp5vbvSLk_*+Ot@q9WY(tZ8kwxOyO$_69t-e4|G{<@ybz$I+U8h0d_MHHCFe zv8G?(gEQ3T&j@mhSW`$ost>JXO>K*uS^qCSvCh^sQZH3&`ZqpGL;C-PMpmrpRa*#d zO;m*2mNog4vy&3(lIA`7q3*go7$BmaoCSKL7|;RucnlS|FF|er1M(+lJOyE%)9udf zd-1t6^qla?nWkf^&76S`%#h^wppg}uIoTG1+YFUjBW%Gm1e2;ke^LJ<^Yh_qooQ2PZ3?{wJOW@=*Z84eYXs*jG!J5|lF$MbUW zp5&mnBte@K9%POAZLpOCSJXNJ5uy1_TAL_B7duEsg_rV!^+{;T0~{f9<;k5H(rAq2 zRV`%-?s?4FLhxr|fI!sU2*<;uNt5kspfy}os<%Nk+Y|h4;9;r0$~I42vRBwbG(6Q) zh^RYOB{Dr}C};$A-_@{uPwgbKj**((Z&n$3zGs^;p7ih9LNq+-ovUHdxi1e7c&4wT zyHqG<2Rgdbi9*3EbZkx*`#V7Y0uxU)j0rdZ!DEThSYj-em>)|Fo(z?qCv9`f>3PBy zLZ-)JROf{O9ZW1Bcob`FJHiTsbhKB!PgtGtzmo3noEJ1Ud#}2{wkWl%&PX7ogEPh*^{L>7B)FPc{a3uoh!U+OU%N=WMga1^lcnM8gw5V@)EH z=<}yKr)Ep}j$^XLUnvM-Y)3IK^X(jpNp?$}CbBry7aq?~MZzQsx zaB_dPV`H{sX+g~Tl7?k{V&~@mY^<1#C7?+q+xyt2ic5Vlfr!wnXPoR$%9m#cKu$ei zAsO#5LBa28ST1LDk~w%cZ5m7@|e#rfJ_qTU9fjwM`cnaoQF_&bUP>%BxxWC|N-8C>k_ePhM9_r{R_E*)UQU z#lrLR4dZ=EXAWA8nTmww3hXXPY~o{vX&vG(7zs{;F_30V{LxuE~D`vLf3J-@FArGQ|WK zzj&$X^9|!-0a+4ef%wb6F}U~|0s(R=fhfdmwaqFg=4o39V`8jps2$grG8w;s-ROH! z#|hbP(5kpXKVhFn6|u8A^R)F?(QiGLX00n6jD-*!>)25QBDAuq`X!My592*eQcV~9ZvFzm#VJ(>#pBwIeXy=@>6(LGv|{E0)yx}oLpVW(^#;D;15^M7J@%ql*~FjTow>K3c6-#0l{3E@!|{QGnf-Fch!clJL)Oi8F({>m%**!s?PV-{1rz25lO)O|zzj)m6>9^qsa! zz=*e+CuOr9tKh61UIxSdpTdY1+q?+gPB+sNlCDH%2%@UXCzilBJo@kQe!*tnC6cHEipuAGS;&^jfeRLG| z3N#C?#*3s?!8J8Q%_+9Z;Lq@h1j1sdv7QLDACuhTkLAZClK$pHI=vPi)N|{T;8Y55 zgcO!{?Cd3t$9iewbat&iwOia1TdJMdx{oc>S7kSM6tiUEh<+1C$mwSqmeU!X{n^d_ zo1f~7e9c_yYWIX*X$!#(=yF>KZiAFoCmYO@C_)8b{a{T#CJ$?M9=xntx^A^-SwDd$ z>+zyneWIpx_Oe!EiCnUvK1x5f%{lj|AJT-4I=-!K@kPVu4=+kRJHM^1|IXA__;CjO zXT4uP?RIj%m-qaqiG1v?BhgXmWJhl)qwb>oOT*IJ39nTl6#wxep~MogN+_{vC`!@s zynD{K+CuQB?P*F|y~&wTm3eo+*L{}1#X@kp$z6@o`b@5M-n5eZ3DCY{#W&U#LQcMg zPjRcGkDUbskD^glH}e?w82TGa1`=d@lOTd48YY7F&dPJ=?<}dbt*GEoTMD`D9ZVoX zOS8JWUOUfa2iJG-+OE?ZmQ^Uss>zJ;#+9_5>YmnT>Erd*sg>!N9qmP~i1dn2b%EETz*@4UR9zCI#$j}|b z9a;Fr;LtPgyQa`_Y_hnjw5g+1@SouXtX#m$2>1-P;En%nm}U;>>}J8m5*fOyIF^N9 zz>{2v^}&n3(xw;*4JHZ2N@&Um`fpnWa1s5>7DA@aLIGSvbmhtdf=995c9P>q0WZQ% zi1u6eV@}BWr$q(19kiq_vz_t+|4rADLJ{QLTS_khQFT@Rqbp6D6_(O8tC9OdD2@}K zB?Q7^Otx7xseOcN*0N+Kksn%~ht98r%U`m&AwT^>@=rl0pFNKJAm54Tq-oF7q*efq zKv0=p;x3Wc71ArkCf4KQGCa}sE`l7&aXqIswHaQZ&qdgEZSRM;acgJ_*%#uIs=cmF zCHp{fYSWDDY6sP_`aFDqhO7^vky-Y*TMybo@G*mG&uPp!fkY9i()t_Gw3-(5eF(=< zm3N@?YHC6BEU~Ogr9X=K+=h?HP=>cs_QIBuLus|BCu^I}TsaHXr&2mC{3myUpTVco z(001CwiDVl)o`A|hi1t1lW1hcaGtP*;D$r>wrv^CloPUj>#}faF`H2;o?Z5Jwwt*C zfh!YD?S`IRm+eOCjbb))@bMT*a7TjN0+r5AVh+NrW|cd+EAh!Rv>JLLZEbR^9aD{F z89p#WmXAUsD@JpKEd)0js8jRgdcg3jM8Ab6FxkBjNToP1iebMmqN=@3{B66S?h z0H3&`OlxuMRvnm&$H^&>F8|+ge`@ZZRWmG zI==F9{tb9JpW5&y{Ocw7mH*cMsy+SJ^{K1rk5AJd*U}%?(I1z>{~zAym-i>j5v-g3 zYD7o|y8QdI^8U3(kc=aY|I#3A|4D30d-2|UV!+!BC&b~eA7c8~D=z>^Og{JJC8mG1 zFP+_#NJC?Xnf{IbpFPdbg3H-Z<^CVWSvX+RKQudcyBt<2Y=l-RR6C-=c?)PQm0WBtxeqy;=N>eZR!s8 z^Ly;)o$TlL+0VP!&%4>rAF!YIu%GvmpI+)R06y+*_$M_CzgnBRoc#M5(p)Jud4d0X zQ^>zx^ws}W_-nXQhYbzfQR(C79J40dQ%Z}A>VJkV)Wc9~t#S^~ zW=FErKiOuJTk10eBGgjD-#pfTaY2{tiTh!b%~Z=*HOB!2PWajZF!e9Ult4&%t~leQ zq;)aLD7F1)d>n>V-}VIAg2TG6BuuBBhuYUapc;=$>jww9v$;P$i`t@IWfLx<48CX( z*sOL)E#{Zt12Uv_A2hO3%r7Po(XAwL{*#$xQQ?0RgoCqAH)8Y>JS^GN=`7;5cF$MgHPkvE-@~7dW zG30$R8oBAbPiDOLc!SAq@u^?#PW;j6gqS|{yVZK?S!a|d{z!Z{hRh#^Ms7Oul_$QZ zIFu8K&$$ynfX;_0@im`#+82fQ6h0b5-uuwVP3OJx#CwB@v{dAM)}8oIqZ49Ed`GP( z-tUa+^q;~9W61k38o6b7PiGTyasLx{-hYfvNL_gMJEQXcLwqoXyx)gLZaVKX*a#0* zJuHO7m$tga`tD!uiR-uubu8B%jSV#x5S zM&*4AJ{UvZOK9Y#^S&eV0zXyp&0eyvzbJoT>SlNTZ$c-=l>bGwW(C1csXDk3AC#dE zZa^b9T?aEOI)LkU;_zL;T)*T3kGrejF?3o?RZw#cxKQnqs)0xGAsK4m=V;`nYoPKL zfRx+nL}B!S&gJ3u0MVH8u(ksHgNU?4EXn+XMQ@{dDjO=`KWOBpE1)u0EN0_$4OKFM z{oN(7q+t?}&IgGFVYNr92ke87$WQ@`(a23#Ksy@;ig0G;-6K zpUR(q*e@lWMEIUN_1{IO#FYA)yT1taes@@c`S|~Bd_acme-n+|boR$F_6LOnD9^dm z{wz8drnJwmH31w{`Tiq55<|X!k46sR+hTt{-{McV5?esVorEv`OJ4gXXl} zX||%^M@vp25EjQ0>VLFEpX!Uysb<3Ghf6L%r%B6JY5;HqO3L$yLx`+(RTZPy!@2lC z4DDeHLAIc=?x#!IE8PbfCo{#kztSXLf^;*)>UhB5CVV2b2TW8(>0)yTqe7Pyc5lQ7 zWytOgXk^9wuO|@E9Wt3zmBC>09AU_R93pX~|1oqvOdn|at|^RuzbgvukK%(dr2Xe; zVI5Otc?do* zLuWb&jjYHrYC-Iz&097n>ESGQJ@liKV>&v~4N@k0$mUczc=)&s<**5j+;lnYSj^_T z`zzLvCxewFg{$4Aa3wl1rc$79L1ZbYeNts`IX)&s8C;4+Zn_L+Nixt45f8fS;C^&w zOm(20ujo3Z3gI4nP=-Rd3ys`#A;^AEC@Mq4EABdY8J!qY9hmrm-zQZDFXCe|l)(#V zN zh}UtA>s)*?wM(2T#rqpmTFjT);+6wzsOc6Wa^ zTkzs}aNO)boISmgGH-{V9F_SUbaqY6XWtsi)OJqQ<+t#`8S3&DG_s=0s1-52yOhtv z7r8>Tu+?1)PotA!s)fC3X+i9ks)9e@!!lIC@6gCiSHaw#p-f^R*2#hL1Xez1Zrc*uoGXa`kgOvDFhsEl!FpU_Ah*m zr?dWzfJ2fj-svuj!_m1hmBoHFY(n2VRTGEcqchaRL1^TrYhs3BoscmsIvI z$A@Id{-tQ-rnA2wkg7NwtSRKY?qo025KuT2;PQ0I6drU}#Qo?bnJVJ28bibg-BeX_ z4?avomE46!Zn{dQ`{_$1wuB57uZ*aQE4ORguFd}kZuuAP^=Dn!1_aB{Hq6gkbg-Bt@ zT?&KfyqHQMHbU(n_Dt160Uw#67IJ9hrfXr2uZ6%iEd2`gm)!O61$1sq^-ycMLEk%7 z6Q9FJXQ+wKqLG`f2~soA{VIAn{K{Ppzd)zOR1PDJ6hg;TCHxE@n4uDWf<|t-5~h|i z{u88ELEB-@mE(WWDKS++a1WMTISQRp74UC-P=*Tl7aFgSy<;`(0fLLR{I3lPN1)PZF>9@;yf_QXaf3;3^O7FV%fanO zgWeK&xyPD^J*SP3M?J~pU6`X6!6 z_$9Uw{OS4tfvD#u6++GU)q_KX1M%qRH=s4#?h~!>H4IGfCu$_w1vS-Qv&|D1_g8Eo z8lLJYs|RvvZvbB7sz&o@!}2|~GbuL9Mi0Il@aMJ}<4OOiEkwhUK6Pow#%wOOBD*=$ zaS|A?VDGOrEbG%c6EWDt9qWO1W4`gLT7ShhXFTmM+d?!v?YnP)85P{|)3FHlxOL<` zuvvIno#|WL0bjiBSd+-*Fk94^nNfgh$Y5ji9sl_0Tzn#RO|@x;EGTN z!ReV{3(;_T7A{X`{Trn^e0Kan+5dGhOUPO8<+6n&WNb)yRt|3%KYMg`(`X1k{=n>W zRm>88@;n-aqC;%+%PBg@7Q&b!>-uz8akxmNJJu$P#i5R4^YA0-iR1N|4Pyrm+6&`H zA{~Q|Q5J_{eU&&AUQV-3D(B@C0uf<}x~p$kZ~~xXLk=!m>{wLFBzuPv$tBFH77Ne9 z1r5vgF2t)Kj#$BuBgVoAx2bd8bG^kDf?3ksUpQ`#|rs$}ADAbBC=bDPwpry5!DnnC8cxi#HRSX2 zX|H2_DU*@EP5Q%z5iz}!e)m4@#qz9SCGq#!W{oHQ2euFmPyCeizB|FnMNd*$ta!d* zX`kBZ-#`nhuQaP9eXDK8c+#J?g^-hOv53Xj!RWwa0l}ka&`f>m(tJKK)UkBkYR!Co z))9@Wo?#~Aw;N03l3}y~$J?)2x?YTmAO&)YS&5L~WT(bU&_`Y>r-DV^?E@10$O zcML+J?{8S5CqtssX;@{VjVguGJ+|56LcPltLQc3vmBR}q`nXs?@F*HoD2-o{DD-d2 zCh|Q3=l^IJ=My@6sx2yn|IL;yPWWGKA>>qBu*C_dZw)OVcof~X>(%TH@p;i+DLlb{ zLku5Xkmt9HkE~0vU7jEER+u#@yt&l83El(3a4fq!2}Fcr-p7v2CfR%1yPLTrGApgg_DxaWAeEd+mVjwTRwfA`z&&n0Wp zkcNiq@fujAVaHB?LOC)4N!#pk`|P!aXgC2geF8T4C$?a9U-uYX+OYh$ll+s@Vz8ng zs{gWW?s)n?Vhhpm^v_rebzx!?tYRKh%5?kdX`%_;+OX`;?98yHW4+a;74!LqZRU9L zzh(;|C*NY+=cNN3W-K6h6dkr5VWq<*(cbJe;a$06av*t*Tsr)vK9VXgB$s=EdW&9f zDNSzks{BV+mNzX7eVP*DdE2aVg>5Ae7A1tuB1G+PmyBB4lNbksej$iB{@`F&Qf0G&FM46)=G+z#rKJE5FR0`%j>= zVak0cIei$;J?V{N=pVz!W61l5(a0gZThwg4?4!eq1qAn>?MO#L{ipsl#AsiBCkx8^ z3B=&&IzLA9VXC}cYAWw!)ogx<55-V)_ff9UCphX}M36z`Su308{N$ehk%w-q0Wq2!(>$SqPstltn;L$n|5JcLXKh{jZewQ7h!m(&qt3O*!5S|_5B6(<=- zAR?_HAX#BG#8QaHv4(gjIwz)&bFCU8*e6v1hvQ>1RKOu<_8e)9)ZM0BGeA!)nUqo|as=nPq z7dClk6!Co?AC95;t|Q2;P))Q~`yWT$Z3Wzw2I=sQpq$m51?h84~;u z8d-6d2MI)Ub;XW6V`0U`TM&|Caq%WPF{Y0=y_B!E6sjFlweUJVFhec8hDL6>7N!NX zQ1s-FCGWk|Sq6&$qA`<<@ETL>ld6D)_?Qe8up1gVL;)6s0|4hEiXgi4Vk3aHkRER;VwgK+nS}i%+<7`7wM74J(U$GxXAknM07R9RG`F%;Iv}d~&n6lt6@qz6dx1Ddko1Tnd)HwS~j5Xo+^z)@!=Ut<6ty$)1@(kNh1k2^7~)PEl6@myUQVo z&WfoV=weq$QP5NEk}82-d`N~8=td(qT>|Y?0v>#o0lvW!PbUjSNd(upi{L7BUQ9(0 z{G1i9=~-nM?35~lEAT-X%HWe|X|2sM(rp(h7?-2Xqt&*S4UB>y@za?{D5OUZ{3A`KtEh!@~8w}N)0__ezbeu++xsSuXb8Ywh=Q$_Iz zJ~l&9Jd8$ex+vJ9QL<3Exl}TR?N&P1j&Gr}VycCji$=Ulss!G|hh!*$*U`vLmjLsH zv%Gx9OUHAGo*r0ACiWm{q03zhdjmvc<`Ff0LDM%?6pQe&8H!>d8oBABm_!GQv{#VV z5l(Yg!71o`m^uP{+;4EGE2K>DJEPKmB0d;H+Sj9zn@&5MIb<_ld~;$bzA2wg^mHfS zLV!gKz>D`3hjOwSZgW?| zt>~^ImP!?m*$W508D-nzN zk~|n3;Vy$i(fKg7gPJ9x-x-zmgYm%_(tZFMx#_eoq;62k6telE*Ap*zeX!w#y>o!+ zV?Hq;PZ^T#dgw(b%2W@B*0P0~y;OzLjgQh$DDOohhX}=DH#*#1CGFnd;*4Z*A-9@i|0FVkSq1# zeE8Rc_;?Hr<9>pSr?c)Cj_%0&Up=!dEhW4Lu{!Qoe+8dN?I~=PSm{y^EwR;(sYAlc z_`nPqei4nV3<)pTLhvDh>da|KxW_#TYFxnBe>d#&= zlt~Q0C(>&r`Mvc?a_U`xBP6jrr?ZE)A7jamRg$d?AZNH|_dT`{yr?^wK!jFb7Gnyb zVfRY<6QJ{B^6;5UU+^cvVPx3e-m#&S%fS>x5dH@s5Zp+j6~2a(g`E{HAedM$3nn&5 zgNYSbFbYBMv&}A-|M|8MGC>yp$c>&pgccAyig(y{gw_6^i1wRz<3VYgvV~-ENYL2# z>!Y#qF50uKASl+R;0YRIy~8$}Tv@jfh)`p#=L224>`~+|WLg2f*{8eL>v@Y5YwG4b5ABSNX_!t_QC5b_Tcc4mga)(=8qJRSI zfrwWIRwRmvj*ajtOuQOn{;IkRLE4XL_dt_z|Lt30SP-Me9d?E=9LuiR1R~TO>R)zE ztERMr-W(zL?veFLY-%6C5wcgF4&S>kCSrbKV*}&@4)p;(%srp)u!Z1H>VX6z)R(Q7 zxn}arughl#vi=PYLh|1W4cDWvQj^~vNPe!`wo*r(VVgWY+P#M+5B)ta>#R;%2M2VM z1^6O-wnzN<-}@St&dHrQ+NiH&&AW{A-Sc=(?L5}s7iL%TSk-37Mt?_&pwQ1XETwa* zDXr==Ms~!gF7a9S?0(u7g1f}0C_&?oZ);n8(eU}hi&D?RVq^cEsjcwijA7g9*xa?* zOw5Fe2O37jyv_{7P*M1Zblhv3OKuu>+d{~6Sky+myrPes1q6>`vu#Is6x2YSq8MQS zvz6w&rTM;+{~EH;k<4^t{i9GF$5cN=fAO&Y6wnp-w;HC+`JIVM5V2$?MuLd-R)bJR zv^Q-D;o^MV7J|!S1VXIGzTMgKjMvlQuil)PVJjr?-_=?}ESwjtZd8e}u(R5D%wN5M zx4Lw>#_NeyD?iQF&|M%R#~OMrfe5Xk>tD$&G0A(!(qb{6+*B$`bC;zJqhMbn3Sw}N zNhL1jd3mQh8;4u6VQWj1HsqiHOr$%OCkkS-Jqr4OJ4G>q1>1^mR%P|P>bD)sN`0c|UJD6m%(QNHb-ldmu(3^k z^U8C5jV%d$9K6aFf(x=iB+TZ?2M_QsX(E$Bk%fC2#sa)as;+GK`}m=KGB4E7aF=Zk zISt>lg=jbpJHx05Z)&_EFFv&IkDh556Lb9mkc7ZXj_|iePuXUYlkuc2giMBow{erE zYls#QJc@SPBG-=s)`gFcc3pV%iN$1Ee7<)+t}ZTHo4Pk+uHzT5n6Ym!ntahIAYngp!V|$(HpUPiOo3z}v$*4hto{$+REs zNG~0|)M=E1wW)Uk^_L8*NhR&D%4fgv0M||xSyiYda4y;oiKZ3`qHT7;6>ym08 z^YI}W+Q-glWW_#a6Nu=BkXhZ?0l2e|UdR;RG!*YicFQtY2QfJgB5Tl@F_pmqfsJrl z8EE>aYT`J2e1@7h7LD9=P0Z*`!o7Cgu;DqMAoD({tUTXc59gq>VycJWO*}e1$bD0_ zuo)klp%#j0(C#FW(5) zg|3&XK2E_$X{e7A(a25L$E;Eg-u!!UvI{Yu_X?%7@;qSiwg3gzg)6^4yBfk3zUIwROvP9>^064k#>Nn$3#SBJ6L8Iv0d$@I;2d;M`=j=6g09jq)a3b z(Jfx@q3R4K;H( z8oBA3=}wVds)mJB*arfNA7t(IUty%ZI)VFO z1|+Rq=dP8{pz~y^m8DKv@q4T46 zSHmC|Zm zC^^q|Yn^MFxA2M7-e9O!zrn@Vn(S74r#j7>_~;C2ejSahIL&KRDPhle-DgF!xgNYN zUbnyTv!r|_5zDy7r@nHm5TgvMRSRJy4>fOVR(Us;Be ziU9<;&=t|XszbKa*xiE z(#edM$j1}uK5tV#p))7(|ItOGhu}%pojtFhVvYr|LyB$;Qhm@E57ryV2>>iXpWga0IH#yAzWdp+l-+y%!&lp<$hY zMrPTnTEms2+O})+|4F@vU`1EY@3}OePYjLput@T_0)oWV9*R6ZiO!j+Jm{WZqi(4p z`8Yl-Ly>$GjVy~Ka&7Fr91edZz<2XVecbD=kGs+7GSx>Hu@B>}sT#QxADW>?Zbu`B zXvCsS@oNm~+;r5kfT-G8>M+}muu5lEw3W^@e_rGDz*H;Ww;8T&6t78p8#;q?JFOJU zN9)R(nlmjL7LQ682Q?+je{9pvOO`hXL<`KPrc0fdhM?WnVM$Sjpj`nXxUxNRfv4p) zH3e`4X3FivVx$hJMluf{fT5A>ghp13WR@)iHxjBPCnNc%t)iKcyeC>CX&*@BYA@R) zAg%QW-4dQW*2 za0FV)(}K$=gf`YVUjq9hzHvi0`8^t0ag+Zg5Yera%oLUsG;Gg&H}-i{*q#Ou^(aYI zw&@6>bU__KCgVdem_Fq@>sLGU&--EcFbuhW2O2qq zdyAo;R}Xa1uz=tz8+Y0o7n_izqWyf}*aCbx+&f2H(6|sSSgqR1t8|6KKq8aOmC_0S zrchnk5d8D5N_4`=q$wEAvy~4o7={Q$D-;alS+AvH;RZA-%J6YLI!#()Q=b4Ffs*nh zVj~s0Si`(fxE9~Ap>bS;MplgDDgqH*p)i$>vU-+(4#D7xc7^4iqElkZ@(jYV5WZR< z{13i)L#}^>Ms7OSGkJla=lehIe7}KCiz(lh9~wD?bBj@(7Y1~2 zuz=u&!JutNSYa?6?MmgO-t0hPAPrkOie64wRyce;)}gd=D<7e)4!ojv?*{BDNp#VW zXhg#Bqp1iEfhch^C8ir*5gbGyLMwvk28_vpj!Q+snP@VU;o>xOrnG#fjsqNl6}Ey9 z2wpXgQ}B%&8pnxfWW_kv+d^>Tpc-;Aj{RMtfc3~x(atC)4!|ug$xLf+6Qy(a25bJh1#2NSeg^&KsP0pA8VWV#<_vdHFHW4VC+Ld>Dq@ zPe&t%aBnfv^J0Mx8Ws?ImN9HAVm8b8QpCjq-2(#~t1?4Ev2ZF{v|7cL57$jH{6=-9 zg8%#E2#eQ40ulx!O`UL(t!j9kuz^5?)(O!KACoG(kupP)f1HP=LK!!P(23Hrnd%1| zft2!8vLeM}S50FO-?pJ?6wt_uY2<7nxM@%YIhn>fmndL{adWh$F&1u$>`&yxcNX7= zKH#bwt;Fi^&Y}{XAXJTe++mw_?jE-hh*0;4aFzil`3NVHcl-g(isBu=L#IhgZ0aX~ zBT&NLSybp^4fA&vkK-FQG>*s6$ck}1N+6;e9@skzJZ zl<_)>t9*x{|t^@BZ^n4%U&i6s+w3t5C@;i%A&iBWMV95CrG;#>%7Na^Z4Cvrs z0l{Yzx7r#Nn@t=T?N-RiaH-<}e5I%jK2J0te%*F6TC!TbmDlLz6TvMDx_L$L&%0QR zG(=%Q($ok=TP5)t;cNoY3N^x%VArKW;nQe-lp*9(=v-+jPF(^x0x#w1WRek#UY%wP z<6Ad$lgrS^ikp0bKtxw9w9_pD!Hh|K{}>{|mFo)MKSbxnl<(PrZ4SXcsI1?IkHL`j zAE1$&&iWj_Q6QK#iTPLEng0hmH>S+bCCuylp|bxsd>n@C{}qiK!oJ1u&npNzbXY*} z3L<0M5mrHbD%uKSB3()HZ?6zHJsfZ%)~~dZvtN(&0}@6hO|`Hu1c{qOG1c&DAx0oV ztA*%>kji=_^jk8Jlh9NsL&pYmqO@$LmI01Hint!>bH>`{%L?o8Z5x`#8Z@$E8pqi} zaMPd)ax#s*T%v&W$nnvxNA3z=CHC^<5-$HH9N$8!mvSY$J#iv(CG-tf_-Lh9K0!AT z@tf97K>XkDqEW(qTyW!!{~PRbE)t<2VvVz0Zp#RFmP-jl3pmUC8i|ms<_6eD) z=xzd3Oy^(Fsd|{sF=*3Ku8K3Vn^$c~;CAy50?`6?Gh3Si$!K;y2}_V-G_wH$SN!RX zW(?qnMnm^#XuF|WOgladLyMV?Mpi6liY)}U7^*8Li}{YKoYXY}x0ovVlN^x=MsETqjhzEjh_~XkHX2 z8A9ht?#w5mn^Mt5Ey&>_MCf-jn`v+W2g5Dt%a{bN*jIw`J}?sziRoU}SCuXHXBNNBJha)+%2t z-5=kop;;_JBP(XH4}plTAecl80u8?&MB-QsY(nS5lwZ0r7Na*W0O(L)0l^D^Nwytf1;G4h zR|qDi6GI++2Y_4}6#TmOFQFeeU(!mge59@p@LMbBRtLx*bdi{7NWyrd8UG)#O*bF^ zA0`m3F#b>C9ha(rSJ7;+$Ae$m{||Jgw1lSq2si>O?8PaMUG;oCO!jlZIi72o(X zfrzdam_f%=o-c{(1*c%2Jca9B00LJPn{vHlV0nP|KxKR`J_19==b(|B&iE`ouJW8o ztgm%v{dja{Oj+NFu&(Qc%KR#P6o$;NL?eeVZ!y608i5WM77)Bfc*xeYSdB0x+MQLC z^Ioo)OvB!6%0b#$tx&=&VH#e6m=o)mu>x>AohhW5hzG&JjJCmHllx=3KvxCE_gCK@l= zrkz{J3j`w6LLz(vIaTPpWFj+8#j>K9$W(x+NB#L0WK1BYOpgQ#;j1n(3E#Y-i;PDj zD=spIKtwlQ?8uhy{Kv4Oc8T$$ASB##s4#v6Ix+fTLuH(Pw^GvymG?vOK^XFWFdDh( zyzj)zb>VT5xKF!tpF}6el>2$oyhG@S%6~6D5JUdE(a0hETMYfYdY}V{1q7dZJZC$M zv8hKf+Uj8<`8YD&m@Ql~b2D1DTFqG;>L3x3UDzWY>bS{PHN0lHkwApj4ABiElX$-+ z2YCcdg)(|Pj82r6&D5QMBi0M_4Hl1GHI0YxZ5x`#gJ@*MH14;B;HE(pLS^;D1?NIn*J2X?^m0u$7Nic;(}?Z#gWEbU=K9fHgCb2@o@`xMs5At}>QD zw1BJ34LJkhZIMi7Uo=sQ$;8lk({i1f2RH&p>1#;+?r!=m2g~rIlM9Hd2w$1jTAxC2gB;?kY(F5$Y-t zu5XO-yDT}#2e}lTBQ2$=3jjypgKeZDM6p)+MyfKtRYSA*2pU;2i%SSZgk>mQ z2+;6*4@81{-V}cCLg&Mj-{3|nJ z+t1r7Na*W0O(L)0l`-)dTl$xRw`yi`;v5$w|`wc{*fA%SRxdSG&(=Tcd)7R`<_Y#fhHm6qVtVSpo+ z1@t?ff#B7t#43E_hEB2)jjTAyG6E4@b-*st47XpC!EAcpiFyvnj3C%GygGP$dJ6O&FCliw9e6GtL(e zo+c2jP%MlkeU=Pl!s%E>lrmu~K;SAWEvc!0LZ$>l$`i=?Bc+Np%a;#E;hQxyjP20K ziebD(Ss#CVTifD`hR+{flzMi4TU-B~sjcwijN#POus>)I`-A^>gg`wHh~>$2`9R0; zJKPyQ5SJl=bImNT=%$hoj@nWl}76P*h9^5`x`wqGl1qtCz= zxLV%{sg()IbUuovOEH}fp;M0qGQSIl0_-G96=OQ$+ zVm}wyLU8+`Ds!@*GhL#9qGnFC_A?7EX&-66^gqz0dbkdLz68Oc=Sx4bC4igF0|cT4 z%w|VT0wj-l5lxQbF)yGqruUe~0Y~&0I$zRsLbaCX@Ie?_%d==?#ajMo3&E|0YRbu4 z?sbU*tmT$yw{y-aN21w(p9P1l#>-ZuF*>T>q zkU)g`ON5&|8AoCYB!^jx=16gv=rmLVM@Q!C> zCEVn$gd5R0GF3vS{K`kuA5{%E;Nvk=!}Vz75H(oT47}{1LyZLle*?6eZAbhlpzOFP z+8ND^$_nj3DP2sepE7$Mx`VSbtpdwS(TlV+usDf}d|^!($~5aHTWvGXr!r3yh|p3a zy77k5!h0`O8581IT9i>{EI{BYGcB{Je?ra#YRdG+HibVH0k1Gd;Uh3~lkL#RikrM; zt0wLyR83B9@&}hFz)c>A)=ef1BnIHEk8)|(YP4LnS}Px>bCH^tcKHFB-Pm=Et!B7= zEGG~xU>_5!-IjbKjV40zjU+lxS}s$k0FLMzQ%Frx4P7lidhtyg8b&u7Suu?F+Cp%{ zp!#t#jH6wm0K+&m+EtISc{srWhvtR%Ha9~b>QQqXp>qqr!R&zU%?5Y8<|a$XG3!NCH8uSMKoD_*u1 z@vUgLj7{i<>pC?zZ}p+|sx=q=?7^R=>Z$?%_q+Un$Sc(m-*fcXYKB(>2?7yX4MaCs zOssZWDhED_CPEn~K7`Jbmdn&2;E3e_ojp`TR}JHX_@)gF<03S&Vi*_LLU6;N`f)Oh zGhL#9*~2%YHH=xCl9@yvEThId)Bk}k;ffor;L3LIOlg4P3!@ReS6)POr1;7U=$vV3PCX7dqOZ_*rdlFd6nxI{96ky|i+L7}tXRw+2}E?m z2zzI$%bdjjP6_NYs_;JxAnH+&s{9AvndiuNtXDF4$W z!iwd^XxVBtSBIPTNNB*^!A&anSL9c6H}(;oA>l={|Dc`A=_`Dkwe(F7`=G`K!*Yg z2wni3XWJ200DLprb%)8_*$mu~kb$%FxkQgp2`okHRV%i#_RJaT9-T^zBt&5Z(o_WR zgs^ebC#ED`5gbk+TA?DC670HE8T6p}QAUmgI#*hXQ|kan;H6BzR~C$3olcyIZ{5&M zPD3LrZgL8Nh^|6tr|$)W8I$!)WBDvp#2e zHdBPtzFr<)&`=}xO-^F|2ky*&ADtUh=I2V=uY>(i*}nrHhavm7p^-z_w;29;1wn@n z3kY689AeuMRzbWP?FU1~0O4?oT__#?3thljl~!%#V|Ck}u%&|^oG>_PiiUsN=A0J| z{~{2rP&ACAj7TQZ(T(LqDHrAg1g^Bw(wdqCI07T(iNr*hl32TZDPd=PyN0GQ8;z`( zMmvFsu27g#9b`e+631&G7Tj~EaC{s(Bc>eFk}w#(Iy@YUZ{3jT6=>w9Gd*K@usBfJ zKF6Ky&FHL{vQ1A;$URUQFXAIGWc+M2atPxVqd6}K=&)b`!3%;{Z3ib-5WFwijnJbD zaIcM64}1@;RISYFaV0N_O&EMM<-m7srNhgCZxe`CC*L!R5v$W7-tcqOlf>x137J^-B*)2CUvl2_07zW4wP`HrEHL-@8B#d#q> z2LuZUUI={C)}UA+ur%62pk2L^SNeiz39VbL=*r7<>jX8oLrYh=8hkl4Z>u6+6J!ZQ zXiX5^urX8VzBG7TjV6XYGW;^$E7AGVa+~@f;E3e`Jy)T0L7iJ%jt{}mQZ7X!E0$8W zh2WM#_2gtJX_qKqoAmb4TFRtczLbHRrM!V$aY$Hl{4I0@xAdWvTUmS3vZj@gkXS^5 zP&E^aU)!deo5(K-L<^Y62yPryLr%u=h)Wb;91A1f=-8W1<^;ny)T@tStkl&WsCN`3G(n>p=QtR` z#m&W-aJX|EKp;Y$Bf^suWBe{lo^d*w55+T1MdwKG8LI$C;Dc>+Bt)@R`GUkr_*Me>D#zI{Wszm7%@VcTN#<^=#93M?S_V#L0-9bt~rgI&*szuLt-kI+!w`<$3&HpErMd!zqc=^tjQ1a9G5Ddvr zqLD+$w;0}eg+NCM3kY5zyl6XCu?k^Qv=zb(c5f{C!j0zcmT#d2tQDQb{jv1oSo-B1 ze<^ar?TokBN{CkpHxr1^Dj~W-gwn#kJLLCXsuq5YrbQV?eu++(mf6(3fFo85bQhGu zAB%vO4Uga>Fm#iL(a4IMJY);O-Gr*i$xUu@i2@cJH%5D~Y6tlEiLl-{vkzPEXhl{& zP&e18`GUfaM3ALsUNH@#!xhX-CfqS56NnaYjM30x$s`U&Ctop%1JD`L@|W5Ta0E8W z2X@M4=U>~;$tvm{RK2~21e0Y_kj9jIhvv3B`#!&-d1hNf{m8d))oRRkis!hjv9)N*_g z#Nt>MT!7AqDaXMBm0?Vui*MbK=`CpFrZXKlP^o467I(I9MrXy8ZTUcD7~?nLBQRwA zMl^B=;})YiF9_(cU;)7kfCuHrz$E>@6Hb765T~uoX98o@`+qOLwuefwnCvWmSjSz6J{i_T(J(1 zg+qN_K9OeKoC-L>l4|6{X*o~*2ht^Q#m-w&7TF{F7W|(mUz707*7TFnfJc$Xqmfx+ z#;22oVjPk)z)~}YAVpU)uw$1xwwFRExF?fkeAjAT-igkODbc}Wmmzc?j&IzM?nBVX zEHm$@W+rN$1II3PTxTFKN3PF8C&iR&`PgL$-~IRi4EgrZ$RT|5v3_LBV-7KKQz@PH zigDj4gi!*ImE!W-YB_YJt|qBS-5+h;Fnu6V%qO?B#f$Lqq(UxR5N~?E1%kq)I`-A^>=o?8r4{eoa$laG}h+m?)Qbv_W(D~BRow^%v1a8+w3>&|$coiGNFbtPd=6dCm$N4E{uV@qdqx%B-$duely`dbpS~X|`>*5UFl7HV zG;-6~pU0Q>M^M1tDQ5*N0*HD{9MmVDeo!R5FRBU_;$tyX!ER{e5EWRI2>$p^=QMOk zv4G%J#*MaeW>vL2)UpPo&VQ)tZj}GP!q7~L2#A!8q0lx1&>H%5v~9MJU(b!8dQn^|#Q-P3Jmrm_pC@^X`0a zMW@A-Z}|*GDCbY(Lonq04`}2N&MiiAUJTH|!2*I80}0!XuwvlEXp4c-$qd|OE|da$ zoQ1U}t5Uo%cj3s@R%7WEsR#*@DGW9X&Bx#9F z9RxT6A?$qwrHVDni-P6&W(`f_Xf(278b=a{=!ydNB0|UTAcW#r5){x0F=aUTA|iz6 z9KLZwo(Is#P3JlAB0|UY7u>o296BkcT+1&aLiqkHJ^(|$KaEBX;oD*)=fwaW5G){g zF)-h@Bdi!WHQJ*NyB4|=X|Ja(-jnq|FO|>sl)B*;iDJ>q6qDJEP$oPBeZ$$6R)6Jp zYu`qUv|>Ob^#iTM83zAsIQ}J;bs^cUy za)>%CiVj}4(4ol!g4Zoi*qR@!TYehtBE}Axfr3z*T!&V#R(j<_tZEZK8ewSDlpvq6 zl?pFGt|kznB}jC0+R@NqX<)ezO@LBp`~aOHEr+SE1CGE3JHG9+#2V#m72n4TRX$#857^DvEI>h{ z8prsrZQi+K{F^|8I!1)sr^eAvORmw0=0$Oh4uGh~^kgdF2#l};T8u2kIOgNqH8hT$ z(a4H%%q9@g4G8RjmX_mn5DRYEK;d`|IwRW0H>GkMJfIcE^l|vs4VgX`jofsm0|&IU zY@hGW_BrURn6fP&&g7a2HyrT9xUqa}iHpY4<@1MMD<}PZ)kQ1;O`h#ls7N?-GbsCFUw{6Js4rt`2vmCf!Uc>aE?o1zy&WY)hEMG9MXZrwr`-W`qi$)G% z+hPRgMF1TNEFgFh@NHXjVnx7P(XJX!q8s_!;&9mNETI_Kf|jdRYvpxySs!5M4M>#2 z7^JBQO14_!H9?+0v_efVInZ;dH24gfA@7(2^&!9!Xkp*03IwmNGhT^r z+|W%fMDq@zlcT-;of5C=hXupG%O%^^^mpg z2&*2Ri1xk0obGI9ur1!_!S?AyI_${yfmy6`Y2_F4reUN_Qhtb)2oVRh_k*BulPV@D zUPN>eh|nS;y0L}Oq~<^}nv>Bqu^#hsVk0_fTBcLW0Y@w+=&9WhE?FFW?cv?{I1HU; zEgD&In&WLDxYJN&IXTVVE>XZ6%tNAenpu+5^d!@XqSqtLSgwLD;VLAp`a+g3Q9e@% zPY|(Ys&a)b3*2QsNg!IlWe7!8mth%@Jm!07iWHCeE;?memQyzZjzCX&CsND^9#i2_ zahPx8qcC)sZ=#VEhxxiK1a}y!Dkq2exJwk^Fk{BSy=!5&oP-XZi!5$AA(xrJMQxeE z{b1j>{@$6_p*Qs~7ww04M?4!&V+({PC|6@Fuh}M_8_O#MB9ws$H%iQqyDz!Q+#Hr0 z#Z~421g_lEyUJL=5x8OZ%*Z`ZXGc5YBQSK78E9n1QKk}z(1*_AnX7%X5W8na&YHyg zDu@dAOe(yuMCZno_uxG*J?eoPf0-!mik zMO8r-AB&+1(rDxm6iUkB;A$i$$U}GyJUyXL&!j|vhAX#>^bj18SXzgl+ z7jkw?*h^us+k&m!(J+M(OjBKa%T`Uiy10cvv_f?;CD?VzUw(_`NEu;%jn0*p=F|g# zBk)qD8})+GtB&$ZeCvje@(3DPag>J%M08a}yYPa7NL}K4)Y;Az#dZKuk4jSIn|@wJ z?SsntTWD@fPXxY+Ms7OmbCzc_#RT|azAN~wNX+l&&U{zHn5VU*z8@<4d*kCUeC8LS zkwe(GC;@mCL5B_t2wp|pY%60{Mcfi?6*0yy9rqVkJ9B8kYR8rG;oAKfCaawgkT4)= z3WWh%!SF&MMIc(CP#8y9kc{IBG!IIN@JV!*v{a@p1RQ}8c3y+2hqcRJlYAWCuAxzU z6pgGH#fJz)bj1NXuc77mUWmnUq2X?HMoc*lp4SLt`c8c7hD_g%Ms7OOf%6(#wqJ5* z`!DFMn6fRO*9c?$d3*$hjBiCFhcIq2g7YGP4ht3#ya?#C?FcIZo{Dy>=Ga0y+t=fX zr#Sb?W1UGWwDJksDge8PP>E0&gfwNrVu%_yM`9AMrAapuR*_{%&MNZ4{{`jU1IbMQBZaT+PmsejHs62b_ zJa0m$#FS@R@Co6o&vP8#ydl@8qme_nwivnj;7@7I?K(`BtQ~hAUt6N(i8-rx0Mqw2(BX#txyn9j-(Vw6~d3v z9I@wzR|r2u=S)j;>f3-L@WXaTYl&o0@RH#^d=!Qj^8+-pVlm$*5Yeq4%wuot{b#f` z|F1%1xSCzz{~zf5nDS3|vxWCX9cccBkHt_0e?=oVT?HL{RMtI1k`pW_IxArpfT+h@ zL3M&o`Ov3E*{T}m;^Q$?!yGhnh#D+v23~g1p~eD&mmQz6l{G6nj*RvKsnOl}Y(czp z_PuD`YVD^^pUt813B#DC%s9hVKD^9$4}oZfGGi?1v*acpK(nHZEAK-mNlR=h3pfHH z?6WzPD%LD7B+kb-YiJthppg~R*i0azDmNlR_& zdB71EVFw`?S*%@NJiLZ)*U&g#K_e^1@iKvku6SSvA+#JX8pJ+(3daip0#{m_avVGe z5ytdx_|^@X-W849bfyCbA+&6t=+5?fbXH8+mJdRNG5#)m1cr>CfJP2s++sxMMFAZa zEFgGM@N-*}Vnx9hqFrhjLq8=U6a~X*scLm*c^Z-hBn&y4BH%Jx!SEvB69l3qiU8Va zsR+0o&4V&Pdb(NLm0Oh!FdrthXo4=UIcv1R=TVR*gM)HVEeQ4LIJQ2EmN(dl#i{;c?Sqi72hKX^82&WAWkZHPg+^{V!&CUKM1|#_ zxwHHebVf{Bre$6*di7cUF}`&}rhkY=4q@72#O8xOwSNl;KIk87+YvVC-w^GN!-+*N zQ^@8E+4P_%jQ*3hU>!*-v^ssPDj20O@My|_@enz#HfB=dWxyB$(F$e2ZLsV`(tSXQ+iT97V^L`0BHKx4FAFB#^-4*afbbd?~pxf3Q?2D>`&*Nh;RKay<Q+Hkud;)tG2YHre1?Q33RaA+I*T=qx=Qt4){h5&7uvBteC}rDdSP!)~2$1 zusgd4pwnT>Zt%7?Eyw%fn>OS)hDL5W$AR10RGz!td44ZCC8j*fx3y`xJ_FypA=mFg zBZqKpF>>?4pAG^R5Pb0ez3ouM2LH{`4*sLn*Oxb-WvbO!ovuxx@d+c2rU1C!RzAD{ zxRyY)LIE(A^jRta9z?Uk9uWS@@_uxZw8W;q1vmmB?AjDc6>F9k0r%jWH8hR8(8!8u ze2+jxw`#zyP0=y@3WS0yyA_6CMkmCS;o!9?Aw0i`Z`_dQ7tqK}=Q(g~ijM1D&voW{ z9zfKipjV$}`P!5azIVb0V956@G;#>v79%+?2Izob0l|xbYixzfih(WB76UsJ2F1_1 zor#vI)=%oR65vNCj60e_;51w5@Iv4e0?`VEz-Z{PR0dpxW<(hzEa{0WW_8>1R}a3fZf}!vU>{z;#dOQj82CsyTO$JEyp+En>OV5 zMl^EMIS#A@s67A9o#)5VDKX_)UJ1~0{TRM^L#`i1BZqKpF>>?4pAG^R5Pa}I(Y7OO z@V`6S%>|=!$;_az7is77ux_N4Sja8y*t<yxAla}7p zp8!YTq)d;$Rw7po^ zMtEK%&>_MCf)@!tvo$MLB>dfCrQpi8w(Z*df6f?Ql$v^cTifD`hR=szK0Cjyt^dx{ zR`_woaH>7*51xlVFHcGriUV!&Qm!Xa6puh(j@GVLc;%zD6~jo!nEbFRQ3(T*rbxKd zRz$o=C=-ZQC=wnI}dUxGB@qi*gTCM>z{0fuW=HqmdOy@d!k86$CrIC}&OL z{W^%sv5fc(Iya`g2Tw1`{ZQGz8Xt!t`&Xioo6dgV^rD|zy88EcwvW!Mwnw4sUYjz(5YWC4MQu8^2cSN*H$l9+xEgyUF2oQzJ2 zDbsYLyVL=7(AbC%z>x2Eqmi4=_m2F%MHuHFa_9Vm=){j(7do`gx3hqp|hl=HuV_b2#m0gw=l9;ySzYn7T>O+ zar_aDtQg1d2}E=S0{eoSmg8CP!#;Zo$1?!}S1_A$9Q=4o7}L}6ts62u8I9a@rUM^u z(XzeVo$aI1Sutf>{&-6m<458nFl78NG;#>z79%<@3h1z40l|xcyKPO16$OVxyywwN z_6;V|g??cH;r(c_YL!-}J&)B8g<(ij7+h#8B3>ArM<80EFqly3wp1G2h~`EaHf})Y zNlS0)GQbfyVS64ck*l+c>+vlc8pyS1WW_+PArR3O2W-z{C0i2Dk3uxK(p=&B=jfc6 z@*LdrSczX{`=|K!4cY!5G;-6~4(xfXWK3fGZFk21gU*X70UA<2Zy?P zOPTIsGMh=HyZrwwu^5B_M^gkG4sqe;L`)>S2sng5)F=XO@2_qdWqU>0&e1pgouOlk z+3sTA^M+F|!GHSuO4sf~Hk7WTKi1P98|jae$dB@*WTrb^>hXG$a0F!--U*ct(D`o3=Qi)y=%~NI-7t?Dh{`dyO4lS33=tQUZ$8&(j2T!^#B!@46jXj z>}N0g*++hQ<#7XvE#%GT@NsX$Kjl$<>FlQAwdJwhiJUJU_~nFrVl&4qr6w$$Pz}d~!Io z25^LDjNNSE%ZfcIe6eQ`->9M27tqLx*GJE5W=P`oE6@u^UcZD+gw|)nd4(rl;q?pn zMh$uW92&XlypHjGO(OO;?!^8Ioe5K7=}~mz#tO5)z_)71?9b51&1cphb0lVWc)#-_ z+XfK05(LLA87UQJ|BKFl*^t?Pqme_HwJ4f--A$`93kY6!A7tARR(BsB?c&@Rf2Z&P z;!fdZXnAV2rLWS`BONYc0SWbirUpL>{Qxk*@EZIG0#Ty|kE~o9M>{RqgooyVb&9IeNm0JNz=holdpW`p1PO{qhQCOb9F8bSV42&UyPalsW|^Hm4iE$hg0up< z2!fzw5ClPxAX$=#q6kP*kRS+%Bm*k&y~UNPqBe2GI)sU}9|Mnn_sgB$Od>%}A55GC?%rUScBQD71+8j$^@_%K$6lgFC9p zY#7;4lNk&mJEtJtJB}qxV|xJwgk6sY+q=POv0l=F$#(p`*@A*$|B1F^KF8f;iaJ!tc0~Q#*sP1knf| zX!09B*woJQD12;3mY0K(o6d6VU{edzo26%ZV>lfE#?pNtl3}vt2@9&k;6IpCc@R3)Na>DV`%xKuV*rH2wkKf{~5CpFy-j z<7dwiHqaj=e-GwCToZDM;Ja{^tW*Z45RSq~>^TCFCB~J_|2z1&jzV!3jBE(SHyK2B z%|G@W!Ql8oiY4X3z%Ss8xN@vNN3bz{4?emh(|5wiO=ntrj$p9;etNdwfwSVuw(U8B zjq$(X5jZmb28^7*xJL(n7ZgGx6%1=S^MnKkHR zr#wET0a+};dK5EuA0*00T7q>ML@QW=v24!TV!)SRR>TaYBiIK{l9kwCTf$KY5g$9{ zREc4wA=nci)=@Nehmj4@*o8r4X9&c{PHhZ-jY3K32fhj?#FgRr$4(P?{t7<0BhN>} z$W7-t_OVkN*Vm`#`dTXo6A@-$ zY_=-`E9jp)dz<3NB*|K14f@z=6rIv{EJol>-;7Hm@H&HN1tT!p{Mgx)Q&C35r6FxV zCqZCd$x3SQ5#>ptL%b3a(If_yCSW{1sH0f4!^nnMjAjtonE>&zQn}7#|Z2qtMwj$B|S8J!Y5Jx3_Z6s-=m3)Na>;qJD# zKa1#@p|uE=u46F)SNfKaGy#_}h{W`-on5o&5VO|S1AYxNW3-A#;51pu4Q?YGg_3Xr zJ5jJkml#-@frs#c9mV5*7}*eydl^J_{7&MBZQ5D>4+WFb5c~^Hi7U&zQ7GY?#_t1s zct@_^g^`=i^|UXROVu37US+lC#P(>@Sac|lq7e_%Brx}4t*!W9?)DWcaTBpu#y1hs z*DV!;a57w~);jaNiD2O*^jl*?As9*=V@6kSG1j> zDgJ0a#a9oHN2io)O+CU6IyEt0$(LwjWx&pod|4x6_`rEZg;ToAef_!aYFB@*l3QHK z_4f+I7a3v;Xi7wyniNf7#-EOoCgwht4wsD>5i@QloVW`eK8IHFgMU!w6xu?*u4&Ap zW=Z}<|A5mt8V_NalJjvLd3hLFB&nlV7^rqpqWVOdK4FC+5BwZHO#*5B!ogyZxQqam zB9jv2iWRI+)8Q%mqh~n5W-KGYa@l^6d0e&J)-}+bE9TTMBJDxZG(vf{v8{GGC{MLq zi%Kcon&JeqMtAkBq(BzqPCWHVkDfDJycl1fwCd1dy&iL&d-A%vrl zQu|tBoiZ`Bt4B0E!B`&wcxT^iFDQaIR^XE1#}oD^54m9Hh% zCSdlBbMXKi`5uCio6dLqYl*d#X`DZjp7V#`#JF;9d@Zpy36uBx@gN*|zZXVM;N7FS zN1d5VC~p)V5K?Wn_nnCF2P}@$P#Wy(SHF7D@eNd@tko87?QaiwP)Z}RxPvhi zC}yHX-AH$^0)t4r^T^O0kXhqgX!5Zx%!bi2)`9b6B{Y~#I0`4?(MBzDQ#01YM|RYV z)nQ~qGgf5~*?9x;Xrq=bjpu_Xnv~XHe>f+uJjWkx)Z#bU-WMO=k?p-;&WkJK`lF5798A_vz+-S^{Wusofpw3jE`0%S5griI7qt0KMEHV7vh@YC z*wW=dZ?2!#EpwGh?r6*M^pDz*8G2G1{ z5*cJ|F2U477F8C%%NjC{I$?I-@b#@jhV7E z*Pvii-i55jAQCkt!@Ce-MNVB4lU-p}3^CaW&XrwEHYFTYO!yH$@#sybvOPY!qljz^ zBO4;J6@$pGeN5-CI>a-k@qH9Ugmrj>?<$-ZSH8JFHRoWmek2})BkLs?x#_IWmM=Uk zgZazSGk-Ch8&~F6WVXRR50m|i@HiaVzW_!~VBe$bOXI*>hX;hbJ6YLxBI54k(rk^x z%(`)iHdo|(YzE?Gni3{m*6OpL`s8qPBCahSprem?(U%5!Z}LY5k?13`Yc4Y^3DCOB zm=LAN=q@V|1m?V~EC=sV+Eh2eAB$KfVG2we9)zR7eB@gY^3wi~FN72rUQ?+A=Gin+ z(4EP5v)$P_l`VhtSMuG30o%r{9pK8fmR-1$=iNzk-!GzbTlLruE>Ur*NoCoZL9~Ff zMC2&5*JPy^CdZJKJe)2ozrlWlqsj_DnNpvDsVNKb2plz~3r03f%OSoHQd4*}rP7ow z(nLX;^4n~eR3|e{Nm@(2k|xs#yRt(HMPaeI>B(ijxtDr!F@tCUJ&A~ktsrY^@(4_f zp(YQ($+D}-&j?3V6aG+6jo;Lg`|6+ zIo5&mWLJ*agrjgGwr$iRH#K8Td}K$>SRF<-G-Fi;k=?zl*tSv2md5iz6b;t84W9Rh zbK=T#eA`AXev|Ee@$ntm-U~)s@21nM9 zgOL+h_h{x=51sK`TpXYrcr2g<4OQk<|q=|y` z=lpE%OQx{xXnyiHk+L9~F* z5H-r=HEr1yrpC~go#1TQwPjPnQJ4w&Yf0J!Oh2hp3Iu_S;#GW~7j*;U znr_3#cVzpcMzQVDvt`@ot-u39E@PbFI}x#r(VcDEpAtRZ;7;B4m}3XHW~~Jm`rby+ ziki5MaC_RZ9bBNI#-$zDnnARJ9UyL$*=x?A7v{$39Co z@cT0}sWq25y6q6KcT24M;=5n~4X6 zG!$F-PDB`r&9gNWlj_e!2K#$*RrM6U<<3II%UXG%@7Al@nz;x~X<3%Vg^ztxFWtm{ z8AL0%iOK5ZwYIVb%#65PGMhnU z=Ot!}Cd?mFcJYGOINzIMN@*n)z?rdL(1FQ0e_z=)3zPZX@F*Oa-x)@3I`ea5PGVW? zAD^E6W8v($vOiBZ63R@>3RsFq;#dKLFmgf#c$fg`BX}F}fRH}o-@eUE_=qXlep9e> zF+0(Bu&=GFr_iTs z?c_z66~jXO5zdvB*x*sZQFsaY8|(4tO%Zt(AKg(z{s1EzBJu=-$j(5BH`e1B)A*iv zc53@DjvyLg8BM<9Z>-1XV6r|IkHL}kQ804TS&zN39?zP_{O0MI-we);>y@s*u^yj? z$^OQ89FFX703#=`@6q+8ap0}P140^yn|#Gf7>6HZy8zK%7_gkeeKcIM)_U_kX0slY z(v~cCVTo_qNV_n=AQJ6Dc0Gh%*WgrW`tg0348tjW4^ESn&)_t|Q7Eaut|5v@j4YQd zzl)FTs2JaYkqyN-%NIf_2Ctq}iqW4Y3flTq%62Q|q-uo@#>y9?_s>h^lDcI19L)t= zB(WA+xV`5tD2k1R#v@Zo)uJ9x`(|FM$CC`A1=J&=MNVClkdI+n3<>!!oGUA{!5f65 z@DlQ`TPxw4&g0+s@Qyn24;b0dk@tKdq>k`9N~I%@r-_1e=uH^gj zrK+-_a?5WwMoM<}l#<#4x{OXKTZ^1*P7!1GXQGm%oNUG*66GYr-Iddf`D>bTILwcs zDTl%dvun!kgrkrnzBFV^!PJ$5@emw!k~2g|2iIsBmXDE$W7;ep7}7Oo;s}tZckqWx4;QT!A5i1)@v-KA%vSV%XOS|*^)k3+{)>W;r z7f_9l9ezmj!sN_ahvA-{Mk6{Ur5+}a((SC9fBF(4{l@zYBGGST*LvnAWkJ)OmA-?L zW%Qmo1cBK!E8jso;i#^IKZi}4i77fW@kks+XBv!bh|XkR2q`+ex>AYGJH9n8L}#~b zMQ616Zt0gPkByL*EqvuA`c}fQCxsvA%eK^#FENNjEy?iSWh`SsQ;y?d9t`C;7EY2~ zIRe5_m17)pt-N@|uyPG`DL$;DObo)vhD=l#M0Sm0BELtmF?*%0~?pj!_rL-=GO#HEJ!e z(DyZA7LcMnmW8a>e6uW@!7B`+6`H}AXv$hIm^g&8U?{~nf@p+`{E!l*@F89kW<-fm zWh)qqkLoB9qhMr1B9>zi*|h@kny`i6%_$P>Dl_=q496~Q+mYoB zVC1H=9D7aJ!t~^zvl% zF)10G(upk2;8Nd;lFs0V45AgB0kNY_Uvmk+gxN8=$b)dctON%)6OO`7$j@unXJD=| z{Q{4`QC;qVk&VmwP6m;kW0)--a4nnne^OK_-NXBEZd`fi8#e9pFxh_xkHeAuzrn}} z>{}bdvipJTEnG}IAmlCOg}xIJE#=K@TgnXfSfj5%4>Wr6r851OT(zurl}*k;>(^R* z-d`As7QiVkB|b&GERAJDiW$3|66GWt%X$nVv9V;QG7&|30<_k0AWV_bTD}Bl%*t}G zJ>e+qg!~IbmPwfUvJW1FqrU73BOCg%yDx;)7hY4T^kv;NQP8%m>Dg`wA3IR36ngUN zD`e-=9I%dPt+j9~-)9&iCZ$d-Dl+7oYpEhXMXQwRdHP_BH>WLLE@1(WkmJOoG1 z$HT}8oO|?gX$N?7@PLrF8{hIRUU9pzW43lc?$R!lY`e7gh3nQ@bYa?E+A=z&Az3`a zUcQwiJ;ELgq7^(seV2B9{#qYd0`p_^kpVbiR*Hj#grkt7?b5DK!PJ$0JOoEw>4T9C zT?rUOcD_N|rCm>(#{8ueR!Rr)LpV9E%-eQp*C%4~e<2=-Bmd{a$W7$~8rxN^;ROXxE&8UHyRfg|I$!pKc$d}eILFNyWH)3g32oEcZv z`KhS3S(wbfjz{6h{Hri>0`neCUit*yE<7OQtwpczM8vJdtZaQkC%d&^J0%w82Gni% zpF0l~D{IYppNSdy)o6zp`r+|b&=%k$dWdT$S2pHa+PNUZXz`Kg~2`ptpQfTi2q&Qg>U|QI%YO ze{}Pa^g8*OG(*e>SxYcH!1peMF0d$I7H=(Fgvm1`=z2JPR{n#F2uGEmPxH+c!_3H(rEBqs9A)Wh7}=1eD|{iOEb(ef zB}=EKiGpP5y=-M^B9o7@N0!vo4k9O$N~d zN)u7iB_^(k%JlD{lo+Big&;5sXcv_>!ckZW`FqK+;7$GL#0PiOkMS_Fp&#wO5K=#Q z4W-hL*L^El+#0Qv?dJj}_T{SGy=`4b9F?mqR=0ZYOZjYse)xVZfJIgdOes~1fb8W< zz7&u>7(@#QNN0TJnu08WNih^;08W)%K^78@LW{UFibrosNIyQhqlEOq$cBUjz7SGE zcon6RkX_S6K^Ek#Y#-dN++Qh_s`M4qVo`hwl|GFcy_M3J?<-f1R-WeGOjB!wrtIzM zNm!^+q+Pk_o00VPSE&}JQpy&ExzU#usW8_wh!#+om6G$I>CMwHVTRs32`A33H}?~c zLQ=R2yA4X7i>W@3@j{uO3z0;Za5j0fPTCL6%WhMLUxg^+5(YblkQbf$@d)a3YVk7=65mQ#)# z%n#Bx4XTB{e0fkki~MMsPa_PB?=JV~_MC-Rk4~vvi>55`Wk71m0E1`&O^N7Hr?08X z_hEVrRrwyAFT1LoMmP#LVw1Zu1yfhPi-+K-E8l^U4P80Q7eeX^ucuVH(w`;@(v=6Z zeF8mxpqg7)Bu(irAEh{y=V%^{&=c>SYAh}mmQt)1A$i(2m91QFNHu zH|pROI7hB^usT~zU-o>=7W8L49>;3<6O7#SYFHz-!Q8DPrhh+mMNA=xMi@|28P?Jd z`$(9RSrwglOpaAC9!5^63J+HyjR|i-9uU%)e9O1Ig)#X@w)@QH(C5J0x+?ia`AQ{U zA$wBEcMnzu3QN@8^!vi~Y?Y^Qf#>tx=%eNJAY(BqEze?0_VO(&X-oEC5Q(-VyPgzL zWlMtAjF!Mu8O>+_&YG3&U?Jfs42Aquh=hrldee^w;;1)$FtVXHfiHyA8(v$f^k&yI zQP7Rhd)eLyO=S;a#N7pLB`No)LUS`s2eVSv((^tqJ6grB-TScMl=`(O%#FVJmkM(| zgJ=PTiO5lAuSv_(Fgb>_JPD`E%5QK#;V9IIbC3LW<@*HN?g^ke@-_OfWXchr#$U}Qr_ z<}--wyy*DGT)F4>BncBS`TrIkh$H`Jz{m;wdo+LPA9w@tfRJk-oxT$hYapM^)<3jI z=YX*lkIu<_>OGPg^`=i_H@}-6ByqsJ>z@8d2wZYmiDNmHV2dS zUGW$kS>FjpPGH@mr%PMFTZ9LMv;~j&ij}Yht7p4ZIkA2U;i6(r-7S75T(j1K^FLfj z9M;7GQ+kobAB4X3BmKeY45AhML1*nWzi8@O@3;|W#poT^!@05&8(c&<3NN+Oh2q4C z(d8D5Yw^(?HRNg-+0c+H7({kHVY;{*k7Z2b`vr;!bLa-&&%=3f<(qd7a}H+bcm|Kb zk@crwb73@&Bj7Yy=?o4g9EB3`fwdZ4VqobJdhvlB^&$@=8+x&jL1gC<#0S>w zEMGvuq_hX;!6|WNIsSpQM6S=lhj--q+c0v|xsH8c&Cd73>G^&DPKztw`Uln$Ilm7N z!IAU3VdMnPJ({`n1H3tSKuABZo$o}1A9yTVKQOB_*f;C}I%9u`ij}qU!reSKSW=Am z(K(|iXv{;4ijrPoIR=sF6|!q3Gi@2re8Xp8lEi%FXHwRJQ)cBkm`OOQZ{RPO*=Awh zbgY3#;V3ez!N`Wltn3RRMTS>ZDv|j(rO4#66`8s9EtNTT09IR{IXq1iwD0o6Y!B7x=*`g!Bc)tP zeTVf|G>b+^%+{V(hN9v@DfMcRl!txOEhXgv29YQ!8Sb_mSDUt`A#cNM7#i{>oF}`6 zJWDtVCt~A7EppSRypE6Ts2Q)q$cART#2~VBsAA(pEn6DTD_)FVbq3F~2?De8t~|## zPSoNz*`9%q@5uI47`f?e$2LyXGNv)Ub9%;ifb-(YxV~|sHV2dS?eG{JS>GB)PGH@m zsY_qLTZ9LMT=2NhSFFT>$AWBqL1**;q_E^@x(Dga^{ek=d>t-YYsGo*oS=0#icAEi zG$V^aIN7&=q(L~5K_nW4?79b$B4@5C$&X-CjNWl2oGL4?!FLHqp+#(*h(~W~$YuEG zjv8_?jBIGgMZOSHLwFUX(vaiRL_zl!|H)QErWHy{@)deDoxa4>H(1S83+0mXV%J}3 zKJmMZF&nUtJ+@r8F#^5?ZR}it7!~xjl3M@p_~i^P?|B zMWN)1^P~S6|9kVr-t|;a_o^awecK9q>D!sUzBwz(0A;k(Osj*>#|m<(3#T zg<36aNwHy9w~*Zx>xtSNPLyjItfp@YW>TeG@FE&n5S!uAI2OdlFtP}4qk5`%CCK(N z{1qc=YW%{%Vv*h%XS-c^RdL0^u>u*+i=HwVEM}<)&d+w~eNKU`f>r6v6mqcfW^$>)FqYxDG4T$!6n62u3JPt=? zIu}MZlxfHpB9a0wNW8LA2~ssp6y%+k&-TTIvBmt-$c!rT^8(GG5%P23@bUxt-VLe0)2X`t!qiHI2irrN`n!{t+CwG&>U-16f=w_ zxXkAQveTXCTd&fIoWmdzok(_#Y6CDinqj#Mre9pTa-rtua5k+K6#R&ARKv0{Tc`mi zXx<^+iU;T@d^f|$hVb3!3n7J%*J3K+`*xZr=nmEXh#4;AF!oiBn`YTR<4^dDa?q&oeJK_seEhK~)}`J^?~S@klMD?@eW z5kw;l^aR3D7zxKS)e&Tgab@qAi;wFlCbM8&jtK|yqbuL%>lvUN+;Ig&W zocD3nQFtOc9-PvOEau>6zJ(;s!A}`PE0_buPJH^BO?Vz=$7mtX!1=Ng96U@o3OC}s zYJ)%#fiw(H;So5B%I{%hLsWjtAhI(Ivw6$av!?Ohad~R%Foqx+VGm8-`O`W3Jj|A| z0v?AW`)x3C)7f81w%}nZVAJ#!uo0Xe*DHS&ZU2Zq7qbf1$76As;5Ut=SCMk2*+RAw_FXCE}Yn|u7$+A)#oJ=?hG2+a6C45syzKsv>s3T{> z$cB!D3?e%(AHf0ELut4dOmHF|Lfq&#YG_Ve)=A9)u(BcfiO^=RJ02y^=PK z`}fjw|93b!uH5Tq)+-Y+`F{%!#F78M!pI5ydo+LPA9w@tfRO&7=sOYNAHI|A9OEZg^`=icI@TsTE;ZSuS?JPHE>>B8P{LVuFb(@{VF^L zN7gTgkrP<===#z)@D||#A&tY@z7r9~;g{JiJaptLi=*9Li^|HH!{2BYm_k{L&HHON z6crCj=|L7>@P==?r7w7mK_vQu?3%{7+N?G4n0zHlhG7dP5(H+Stb7Llqg*MJ2wPB# z+?0%Q_{ffuF&0KPBx95>gp>?kJ*gz)72g^blCfU4_Zlm)Z-nQH#bHme+>_GV2o>4W zcK@+BUy9!HwQZRae>6Y(ur$S4J6Ekx>gvn)l`BUNDJ5)CmEC>oLaNFx459^8Wo}Xy zG?l5qWEm<`hSO$OnZpQ2p-7xAmoyVob&7Z-j;d3Dkqy;ZZ0scAmzB1t#KBs?;JJlPOlrx{KR5a5CGY5ewebkM;4v9rfdLFtVW^pJ5Q$-O5heHoElY z#}cNo-Aw^uecNFBa5yclZ1Z;@jVYL%ABu#{hCM}29Lj^dXLB9WU69mOPN?pl|54`$8iGJl7YWhFlN6X7Vth%H)5_@>Idg%9tj zGJl1U4VC!|gUHTRh%H)5$~4ATxf;Dr4aQd@2+VN1G9KTerA)%)eGVRkBkwa|z`utzknVyv5Dy6HE*|t1FyStq z$an#hzKkK>0*)_5oBs>2}dC%>}0nv_0UaWxe6cJQCKdAkqu$Fgh6CyD5mgx z{Cc`Hrk|s5Fw<`^{WP2uSEi>krnL!}d_Rc?;K=vmFmluRo*|bgk~nYwQEJXd6GS5n zqp6l(M<&nY`KBC!j}!HGnX=mM4icSWmIrw zWI+>~M`5lEvH2yOHY?r1t%Rdc6!KM*BsxVP@^Fj?@jx5}=NB-tAvpIii0m58D*WCc zA$eLAd`Q7zSFBM5|AbTIS_Pkq-RdMv$80|D(`#XMdC!oLK&>9uye4%$ ztWFS#w?XGjXj`r=`cL5eZ6=F6tf@b+W!=e8JhM1fT~=)NkQ|F+9*mq&93HkpIuqW7 zJRs!V(GPvAT-+Uv&i3wTo!Ym!=v3mt{(k!CK%NdL?#VCV#}>2WihHU@_vh8G6X)SN zw~AJHh^JGjMJl8SL z)=CJfgro2keuk-()3i*b`WhaVqf&hpMmCh{E4~m?sd(L`QmRAJL_zmZ=Vp5kH8c7^ z6dm-dowKgoKs`iL!t9u}7)Nv=hrTF8vryJChF!?H-+liGoCEm25?5 z(xUQUrI4pXOzDH8Cfw?a$)xigpErk@Zm#rSUDJRS0Lp#dJC%){<3;BPX{mi~pEcUY1 z)1@)JNqVL?#M9kgC{^>761{$VS~#YXUqtsDLl&mvd)ev}F!^2&55SS{bzx+qePqpd zY%g0qWg6!T({tVhC&u;a*7vg2Ct>n_2p)tZ?+3xi3A}ssd}$kaqws)`YV*9WU zdbZ0C?et21sahzi>kb#g^=d7)5j?N79=6h{EcW3d-@=mi;Q|KH3ie@KZQ7c?+z<0* zxQBb;JXt9ZenL13C*r)1TI8mv+=Y+qC@MdPkquF~l|f{;4k6Aftz}E&`CWzMs7OWvGYo68PgbF`MT7MuSgJ$xGylTZ2i2_+8j*Q zXX7zAvOWVwPGH@m>r3OnTZ9LMG!Ezamai}lFJ)^SrtqWfqYtIz=!lWhV%0$$3fHYw zX1qVZRzG;Z7M#+PEI#32-#U^$;Q$8F3O-?~K7CD9PJr1l`p9u`zN`cXMZ!_I5g%aF zXJBf|F?a-ynsOA3Y-mcAL1gC}#0S{)tZBUen4(JQAASVq#+CQ@2iWv^nCxGP$KlBS zWiWEn*^hmIP0yTG0netdfIqmkyH{ec)LkuSu=#){O&wg^nV z8M7%Kn4@BC1S1=YwZ1QeR4iV5sT6B+nkZ-oS0&p!A@MEhzFf6ZSZete^|3S^%yd~x z(fd}2ea4hW=k_h?rM~%>3N*+d5)~-JZCw0Y)UoMnT5}Q1j-fRd!1=Ng9DIXtRITA3 zxHkwiMCCj@0!L9f2SzqT<=YG*yQUNW7IiZ3zoMwHtJ2{8VK_IgyvJ{ahG+i)JPt?p z?}L$>&VKAxNY9*h<^MZ<1^fffk81_!w?g_{%v+)N@K_wH;O{VULKS$p0% z1*0*pHf>F24u<(M8qEQ4o~)DyI}(n)-t9sep7nJZ-DdS%DDb) zwl)Wo_3Q8$99h2xMowVeqw7oKz*~d|gftHGeJ3J}Lpj?u)Q;|4cW=I}Yf(vY4)4<} zFom)foA$7LsvkwvsWHj^XUD zlzSAx_!4EZ5rT2J?U73SnB({wC>btk zc8FPPin0`D%TSa-I8Am%=^-42l5hfhYEq-i5R?i&u%n=qVPr#4iVPyVmNALHi)v^2 zata2!CJmM^fm7nj^3>Q%sEJ(v03Y6w>+i$JP3L-=eEZbS_v7jLehf~FE8qP4T*eek z!|*5`f+Od@gpm_C_vrT0F!1K!0U_@(cK4l#Fbub4yEr+vC%-5+SXAFOopK{8PS#2b zx3U=qhvP@4Rfn3Q(lFgPWyEXVCYBG+HWhj--qKo~iJ zYY$zQt$_=L2ZU@5?Y3bTC9W*TTSg++Z{Wi_a{U^N+;pyEcaV0z=lwJ_-*X89 z^UJP$>vxceoX^5TaO8YCjGVx^M~{~_fj0*a2x$|}^(|gu6OPaJ4svpLxm3*+O3~Se z=6TSEz*TE4xo}6DUvRjUtOqAzQ<{;*9~|UcMbaPa&ma>0L3Zt9iZ*%8CVUm9#%Lg4 zfwN_0H#mZD6lOwxf{iu-b3y88JOD>ISpp*)ax&lxA?1YEQYtywH%%0@4S$zx?>fd5 z7U%l@g&yJ!lS)v=aY*kuzD<)$O{Pzrj0C4yFJ*rF~!_vJ#W%dHF|QC%{8e$~z= zt*OeNVXh2S`4gNaE8W4b2}fZh9M2wX2(rYua=Gd`d|XE{c^XDG#NR@CHpO6=iP64UMY=#ET}hLM}j^wclb4BUJx+h0h}_W!|IalNAX zt2O!zOrx*~9)Tm{8^Xv5jC*u>X%u){@PLr_9XI=ml(_GBGu!v|qOC4{`JB2uc??{u z)YjM6xA8IM)`|>4q=gX!yqgrJxyf8oPO2Z(X)>^0@J?tuj z_Dn*vkYn%k<$CZEn zGI;V_%)8bT@K_wH;5Zn$=~b|*yvui}grBCbgrC4Ua;=2b*&5Zd=VMmGkMVdMtKmm5 zazZtD_z7uAc&qV%ke1|gz7wgfVPyNTV}q-{VLQ{7h$bKZ zK^+BT0*q`3NC$(+&Qy%&jo4&&I|>B51`T$%hSTB7ZfET2hLz(j@SzwwaCIPZEF$^Tc|`xN|&)T{cC(nMmGJc7(^>H{dPWSt?&O1X2R$U zzk#!4B{R5_a1=(w-UdOI7+1FbU*Y3AO2xx4vLO`@Fo^70zu4Pg<@jTYC1v;jFPsrq zj^le9l9>KCKDr~*|A3L3&U9>VgO%;i-jbT_wF#mTPTstt^}P*AjDH%Bz>)D!!N>`W zd-QN=19)5TfRHxea^KPwHsJkizXCfZdMs5?w>AWDsajQK1UEs7pp~{{F$#-)i%J@W z9tP18MuAUSGYa2?xf0inTp;)coFyyW!O?`HFd~eCAWMuZjl$RQaUI3vWEj~HlM@+4 z=0?HF@$D2#N~3TKoDo-!<3=Hg>6`G;9htrXMs7OOF{5B*`?d6JzXE5)m2KT9Br*PH zJOW3?{{$l^Fz(UirBUE*!2?1Xg`Dq1gi&}X+dU04x(6#2+QiV-wJ_IxM84G1)-_O7 zmk-vw71b$g*@e4$E+2>pYXP$Ol!j!n2&+@fn5P!yBrU?K3?k7YWYpZ2UYaQA zZLEj0)t65G?XKwakp20bx>xEnnhIustR)w2?j1JNR zC(24`urJ{#q=bCWOFeW`H*)yUj=FIejBMz}ml;HMeqjo4we@sqOb<~wDZRqka8g{E z=BIvW6EOMy79M~j-)F$cP3L=t^a)9v-}9Fq4ccx;70Oy_Blw_G1g&%_i*@+OmkVhf z{=*^q!jkx=mL^ui~;z6e%ON=WQE9c?kI*Q3$7}*e$SqvgO z(;#+4SvlT|VoB*3_JA{Dy`%$^7>J=@2?S#f1s zf6$r4_)&NSj*M4fzBU_Qk4As=Nv4=2h>Y49t;QAiOB z3H8v;8;oc0p&fPODHz$%jo&kf>^y;3NT{bvV|v2RQ`>?Lf@p;GGntMrB-AHh@;wF* zz>)72VC1Ir9a~7Kr%dDg^XWO?6i$rm)vYfi)F)x`z7ZaTBk$|O$O*iAG z{vf;7F}^-+O+YSy=`ifUd2pVrj0RsP9EFqGbA~!&VraQ!a1K7SqilQ|MmA*QOkW5o z8@zr}$woO%6tutT)NF4n#^je42CAxLJWEr+);p{P=Ka2<2uZ0;i(dS}H`7uto?sA( zdXeFVrglDQO)WlxnK0DiKX8_;WCnjF9EB0Fx+uspq~c%rxQb zCNaJ@9)Tm{3t;2~#yxttv;n*=ctFUzhu`^%l(>6XBip-&(dIWNz6)2Xwami(Y&(>c zlbEm%-SJ43R%9^;-|;OZX%5a}5UpSi#`Gd-QZ^3wT5D zfRMJ}o4$oBY{5s_9>dVlON#^L#g$y2vZlBXT&z}A2^S7)4SYXGCF555lEo04UT zDD2K4TEQrcug_aE3xhCYMk}eniL#O&2;iNPTKY)|s%5?mxWPJiA-`~draOC@YFmluRjy;vEr%dDgvGklj3Ma;u zbN#7geG(?`zr=%ZR9fCbGo1a+Tq;__&T@vNnuth{>lJM0Tbjw!PWl_%MnkrDOOqoDo-!;}0N&mKaPQ zh>z~b^p{}drZXLT0KxO6d4)65vwa$z6<4?cOt?le36|h;$UAXI=zX`aZ*+r9-*1U^=aWoZEc4R1wH&{5&!AsKLPu( zmRq=Z*wu!%RPnz&pGPl(SGrWqH-sIP{GvP^Rn?sz3f`L6))qXZ zF*N+Vc&UZ-S^K{JTz9prKUc}o;!J<9K)jzJwt}1Jj3-1>pufX>ig}Nv?}ggidLAmXlj_{+wX_F1t<8u2-p8^wpIxWW9+aBf_gUr{@zB|Z<6{T=W)9NFIvMowT~T8H5; z4-OHIUpQDS(x(+85mEXHjupsayw_9Af3?=4{7En==?|tS{lQ18+6M_+Q)FpsfgZ&9dp+kHwGonchDh*)|KB%LF z~onW&-bV2 z`Cd3Bt~~3X%d~QR7e2fr*FT4m6S(&1=h71JCg1@fEx}g46A_l+k!<%@j9o-eE2??* zLs=`_iwcsp${e<5#-D*;4@_!tE4|2K4ccffn5!0rC9T0njM7%H1|4G7nmt$(=1a^` zE{d-Xr^!lrFqLo=O2P?jX|zU{7+6|_Rq=rxC1oCrY)Hyn29cdbn8crd*je6}f=Ou; z_JUL5$}(>sO8BN7+yfupk?UPyWV2R zUx1MfIr%>ZkzGF#d%~?8A4##Kyjdy18FA$}z9&41=_Byb9hvThk(*kf#Wy_bOO152e_#-az9GZL(jA+*W**vpff6UK zC3%PP5u7S3_rY6)qtH^@_Z^GgTm<_MKDwjK{0l}lWaa~32q`nXic-nU6KSHLJCY}} zT@V?+xKbYMw=9Ef4cDr*(82?Ty)8kOL0GhIs~=m?1XA9Ne4arhib{qzBNODrHBDIv z^JHjB7n~_8)xiS7Q8i@}TWOWCn~HJ>KDMKx90Vg9in2e0$gX!x6~|#kmn184jq5Wh z9<1>jT!(O0T)E~}RiA;$`002Aj*OoQBR8G#nesu3yh=3I??})3ZE$8>S)ZdlOOdlM zng1Ccg(LGng^?4O_h|jnJ@9tn0U>WvHuar|xJh|7+fA9v7uHwaR{bx9j|r5u&cZ{7 zH4Xl2nG~|pq%8L%|Mq1;-jDo)L9~K(7*$wb6O@(jM_Dr3$chAknJX*N!8pQE*a*im zK_QaFnDV*EYjLaJw7Dfn9+Hw>!hxaOHL)fJOW3?KMNx#T-zRfURnj-7Ca!NRk+T#bcI#u&i0u@dtZ4; zK1ZM4Qq~Rz;9|A*j<9z6m26vhocEk)36j%)ct;y2m86CdA^?b~7Grn5a=-kaAlrZN6bddB|-=f#zAeo~n^2b1+T@E9Cf ze+@=XVBMqdOY6W}ga?GQ4uS7Pgmrj2Tk9~oQm%epede&eu-=?=Cc9EA|^*)C3%7*?(@ z?2ZrXC?&hV$cB{c$RM(_3*xg~Hio}Sp``Q*Ux5?i%5eO%T?srNjSud~^AZ@j={(0i z+hybW+Voss4JXBwYyGob34C9H2jIx}r7&^=-yZ#4S_Iw@JRqb+SkreR!Xo6d-8emM zuvDOfE8DudqZd582djl8d1ayDO_~oTQP!FZ`$lk~fzLsig3_!k?%{P`nxuPpl|i(E zdzfw}K(i8^51}lI%S&2`@dSbSEo&hJ|Dm)g?1cOl#hinAi_(tA;HW>NVPr#pmS+&z z`HH!G8N$q)#{Cy4F6;_6xc@&mJFeW%i!Df)GchY*6Fd^f3fK@vZh8f*EN|=0+-X(N zo4yM2aE4r~U^P|+%bJZ@2@COP94ny%4e*+ zr9dZXACs??)rTEd!nJEHyf8n49wdrggsyZqi}$$9x4xwJxR^n-g7=spC$1^ZBQR@5 z-+2hml$H44XN04$67qK~WbCHC+>ej#s4w@z$cDb$#UQft8sc3GnJk+XvAHGd4=omTF6w$iLD z7UFQ(0ktl*{aFJ;s*Ss?_9BPj4CP*&`dDrV=c1qpkeP# zkT<`J8?ZNGdALgLTEyf&Uoxba+|3{o#U#UbzdPeo*EHpIm@7k5UWIdIr8{_na1>s| zi4yVXO`q}-KDwi_yZ|E`%JMve$gXdQPYA{{rtv-Fm*}-=@I93v8sSe(zT=+|jL*Sj zeG(pnBkL1jOyRLc|La<$f4*fp$)@ZXiif>v6V#Y!CSTT;?W9LpeD z!AgvYrmP9eWiV4lOSu@%k(KP=EW%Ov2s_wg6h@R7Ro;|bgpcYdBNxEPhK!uYAhNR# z6ZoT33%|dkNH9BZ@cSD$AFllJMQa(m*(`pAkL}3v!!UBwS)ME(C|a2QI6c$&M{ zG~cJM#&5FyZ+v`5w*LVmC$R0&*QGV!t-u39T7#v&6A{+n&)Gf#o!FnNR149W`%J~- z-xA*P5mcG1#WtenSc>R*@Jes8c!kYrLfEa9s4?jkHe(R2;1xRKQ`bDh;V^SXPdOCM zm6iNpcfwJ45z7wo=uMqD7$4nHXAXdo4V~GKL1gD0#Ii#?V;bMzq=-^_h;P7oapgO{ z>=2)W$@#=2rc-A!LZ%@zsEpTpJnb(&c;`1=szX^}Sk^LKBiShM$Yud8XuTY*07cqw*Fvn%3I%p>xg_Mwg zJGLIWDJL`Wp&jL98jNhn$z%qRorRdfZ{h3d(wN?b!ojXcgXtaNq_{H8-xSg&VDkM% zJOD?&w}FwH&i4#?BcH_ilJuMpz=?6?e73edyFLk%_kKJGN8bBjomv8_vdP9?r5aWh=D)|v|o!!i@?Am5wGXDw8Pw2?}|6t^%Ge1{4jAgRFVS4u0 z8!`6zyMReEF)LtQJQBwWSO-Qxsa}(m7FPSfm>w77ll*<%%!C7(TI{wa=oPo*s&+!Nx z8NU@qZaU+!cfMrKG}hlv&-$BiW?Wg<-}#cWFqwZHkHV4pS7GD?<~>@!bPv2;ctA+^ z(Ca%9;U2cjc3*^pM@Wd_j_R)J4ivkDV_gR&*A9BCCg2m&)yR>FgSQ>qk3gjEn^ ziE*V>7=w@NC?_kx$cCJ>F^J5qf|cXXQ!LmOX>hzLoDo-!<5nSw>5cHw9hqJqMs7OO zF{@x@dr^9}yWy<3vaMT%B*qWNBXDH=P#8IZagRPPtpaZg9uU$hyy)AUgjM)T##Uib zvCu!*qgaK@;Zn8M*@#*N5w_BpELPzX-?EZc;Rg(&C9DFUv}P3^hS@UO$OCYetb_+Q z5st!$unK}KF|M=<_u=C@%E{d@vLPpTFo?{pf|cWcP%J5}!h3K=Tse+gg(Rl`j*srh z^jk1;)0vK01uNU1dMq{Ds}MvZ%)fa>>sBF&@s;oh92uVjBPTHK(dVUA;BCPJLRy9I z`x#=v&4tB6G{ipOyKL_W;m1+H82RqwO zz_v$Um)3x{0uKmj4G#33NX;5#yR&gjwcOvAqp?qFTQQ3w&=;^S0_VWmIV93R$E zOE!a%4K3N2L1gC-#JBit4EIqeDGfpZC&ZQE__z2HcwUST?#OcwjNEjdW8dPlaeaPz zuFr*&;>xxDExrW4hwuO#`92#)PTVy;@v zmz0MM&(JI|VX{_Q*fWCfSjxzi&SbF)Px*2pt-|jaL@QW@@%4FYcHw_8XW|l)cHu)f zQC8Z6*9k`p58d1v{ZD*oM`?KbsNP3JpySVKK!8t40`=X_r{F|M5Jhc(nEVe-Bg9)u(B zd%(yEynFP2X(4!{@PLpO;LW$miD0R~ZeWTAsC_dsGxN5B>7alyUk3hauQ484ZHOg=M z)|GS*XEKOHPBQ#d#Uy3!n#SA;vt{&^o8e?x2@ftK9MwTgWe372;hXAmBR;&Nx?B$< z8|rc`gGjspJ+8lxR!z8K*@ZcSy9gy^8so20NSMzz7=H;)j4R{3t5_ys^8NxIgd^|I z!^lnNeU3cNU|HNxeLOYylL(>_F4DZ(SJIAuQYK>ZKLHQKk^c@DIe~u|q)p@gH|e?m6`UMb z?sbo$OvL2>VLT8={vUvm6ZrQq2-0Kl2I2uBJ;u(y6A>Qc$Ju&}Q490coZ>7d{vOpT zYq5p<4(lw?gQ+P{rB_)@#5f8bbK|0nq=^{IAX>phjET6>)MR~_9Wg=qgyVB?j;sU+ zD-n*uhuAO4DoTth_d|RJAJtJh)`F1@=~#n7WM>(~en|_zhf*Xdox;IzK3w^Y@0YZ* zd;mVSBg^~2$W3QCwqMf1^f%Ho{dG7eu1xFuCGBjVjF0cg_K7fZ0^1(FT-pKN3OpdB z9T??15n%`BX1f<+%EC%H*VCOFsJ3+t^yd2W1By5JCCvs?Cu_llM-1x?{8t_7GpJ2K z=}{KX@Srb6(lh*mL9~Krn5s`-^AB&q42la&`iH;5`LY&4@HF8l+=ToUE`0{(ZOC8n z2po0iWf}rM3Z~()I99=A z7&)N|JX(kBK3r5hAY}Ks$G4nC_t`w#o6#}RJDbId(sB-ji`H6kBmT}mg{_F0rO|xJ zx2$BN*@r>2LZfNtTxk+>EX*ZFmE)@@7R&@19A6G+#Fbx#>)6@B9}l+7L^N=dCHsW-w<)KiL>gl$G{i zb;40d5u5hwp_{g01AJ&lX_*fr8`APw29cd@5S#Yv>C%|)p>R?)7S!^lnNJGN=Ro-&Q|v(t0_EjTf*oa>wR>yt2fKLZcKk@wSJ?Y} zf{~lf{fhD-$Flj~BR&7S!s&74e`W0%hc*?n26nLOvfr2uUquyb4v;Xg&uX?B81DAX>p@jIYmI zYc=ZgB{kDcM7 zwW>^b(6DP3$XNr${#dw5o3eO^9ek@wdWY>8L@RiQ&iK?dfjI)^%4jORaIUO$2L}+2 z!b`{>qsOB+l_igl?x-vaVPr#Dx)?-u4q`gLtB+?)K3gtJ#IvR`|3G@??}KyW%KVDjnnZjaCi{2eaX7Mn2aKG+zK0c% zZi2TC4+!Zdw)UNfa1*y=yXSK1KzR{u_OJF<@&mo)Vo#y8SlNF$>SWJp>HN==&SSV5I5B+<91kbRwFXwz?1wQKvks2MgK?~br7&_r9e5ZB=|Om7 z@qmyXU|CW}?rgrq zzX~Hao#~iWu(Ew~dbV$bv*OCOZWWRkzaEdkk@0I`Ff72uEQ=SOr0r7*|?_DfqaKa?%MS8*(z9L1bDov0zuE!SS|mMqD|L zTZJU1x57tvWcmv*a?_cPSp_TGN2X`H1ZTySZQUv)F@6Ldfg|I+FmeLp9(`U~1>P1s zAf#1z)3-SZtMEa#`z2^q!FT}i6S!2ZbvB|_L4>U|CW}@0v2R&PtMDTR(GpgHPg=7I zzlYf}+Q@I=ELjN;?j{_Ck@~6vt1&UIvq{{AljM!zh&A@H(j!MCcUQ&_|x zTEQuF7GqP_{KAv4o@g1>Q^I(VM%VPRB=gRF+d=WJ6g_Vi4K6 zhT6-b$$Z~I5v5#axDC#WE8oh?qOm!ctp5y;!IAZ!!pKc$J^r$2ENj}8{@3)({{_yC zEAz(7qOp0H?7xi1;mH1rFmeL>9#%lQ3Enz9Af%h<_MM1u6GPc1_8SrgNg zu3~36Q&!@G%?L+fCFCC)l(C!ovI9Q0qrPkhBOCg%HG{~`Q%vPADad?jTrZ_~QaXx3 zI4iDP^ZQeM1}5VbJOW3?%P?}&8J{WNtw?13^7O1<0%yjR^*P!L6>=6P^FP3&aAf}b zFmeL(9!5ZV3EnO|Af%UA#djjYOWd99LyXD&gLLjh(&^i;&}1;VvQ}MK7(qip6Nnu@ zJ*=ttvoAl=RQ!oSw1TOK*o#eGYc^y5gtBKCi%|rDSukq>1n*PIRAa%vZL7v_3eIx) z_>O|}v2Pv7OZ~sR4mx&gYg^~Uq2q?u4qm1gqkC@;UZI~uhk{8-e=t4i4?bEo0qQkE z3}=crAeY7Y#_2iV0MB`Qp;XORO1a|DY2lbke$im1Fl6DJw;J0lOy=j~Q8+UHSs2-9 zHCZ!1SDFmhB_0o0=|q#;#dI(!pI2~;NcXc+2C!&141g$ zbG{-b%tmLnk3r-K6Z~Kae#itJ&Y-Mf{17f;YXxRBqa?|U;atQ;KoKO!Q7DKue-f%o1q)R#1x3Gmvxn~p| zH#I8ho+;_}Yi*DFFLs+Xp_r=-v~>;k_vEVT_dyQP>i4cq*nQqT{O3OYb3gxiko{PN zDBRJu9J08Q>nY?*)q(X2OOBquXt2~>EtKh&YJT)T>wh>u3a%EL(#~prBkZ6XuzV$7 z>duRkx(?C`Y51^tA%#=A%YFU1?rIkuvXY|^`g;Z9{tPjZleM$!L=$8A(A4Hcm@P5w zv2?6RzCt&%{GhYr;q+Nq4~`%lg|TolyCaItpe8SU^jG=d$Kr!8Q(mfd5Mp`LnEwd{6!#pi1s{B?o}C}V*>NSEpR{UB!KD62cnFTv zUkM|N&T>UPKUs4=ORj(<^ZrK)FD38K!l`lPogZUoorcN%AMh|7xqkviPT*cz0@uqc z9KUd|Sj<fMq^)$ykxLZw!1evm*k3r^u^Nxd5lu7q%3{RqlmBq zwpL&GMXSNcm!hs_wHN%4=CjZ!G8UN9t7`5dkgaJhOJ6Sd8?8-8i{Gwg5Xc@hi!+eq z?K1QcoE0&3t(|NGvm!1T*-o~Eb7dtqSeI}VUc@&-6yn6_lBvz{(H+%fGZ@)WlZ_cf zcJ4uJ`;2EyLpYb`EJ!CN+gCpxbFmlsbk8S&mXH8@N{PfJ9 z3+Kj_d41bwd>$tILwFpH?4J!IC$R6)^`n-}Z;W{B@PLrUVY=@`gmKtE+ovaM4VDJ- zv{{2b5OP#oSF}LT)^!x!l=tT=^dO~@>n2mtSJpmh`V7qx(=uy0+FvhOJiMb|F|&|a z#I=BVygXc`pILmyQ@%7wpYeMJk+@!wUGrIE_ZD=w8h{WeV$bYJtijCYa=dFm^a+PW6z2Gpg~ zFZ{VNI<$l5oei&1ij9Y+l(9u~{*S_qKW6Z_x7mb2w1DPJR_Cti%V97vhQ53mPL^F? zb|oBzn2>K0Q{y+a6 zQ{Z19seO3lLYhk>EY0?*q=Z6aktqdhQIhk0GcVoCxeTHOl!VjLC8n+k$vrSFhLGF| z=gKZ5*AkAxOE@)VRBFtL;pH;P?fCGHI&uq)Z0N{Mz7SGJcpatEk)bqEkdADc?ON-o zC4ISmWrg(+H@?f9riSPM|8SBrcc=359-KEBK#66GVq2QyRk>1$eY zGR%;nB`3o9vTI2{;V9gM{EbR|2Id{i@puG|x^gUxZ0O2T29ezw*=)WyLeHAU`wbKo zc4Zp8UkB&Lm3O{WZ=Z+B{xx_Uj_h9rBR8G>mE;bIVJhHH=_}wlI6tlxunKb#$#XHQ z;AuP-$0~RdMoy>#4`U#`1#c-H5b}Y|fxZ(F-l8MhRg4azpH35}EuG3O$h?H_pOaMq1}u_c@yD{;ZPgriUq zj$vw%H$`D{d`L%8*bGKCL}6nFk)1JEzQ3ScNPRSZN(&IcS#YIvETfbn7HN~qOpEa` z9XaiRk(d5L{Fmlsb9b3vDm0Ma+-OLB+nSB>dg)6fY`1LBnHrRa|AJ~!IH(}%i zc0K&EwA|c`c|b_ZJ>7RA!g6ntt>qpSy(pz9&qlAHCc#=<;np^{U4Jdhx~aOhyvN?& zN_aV3+Jf~d(3Ix;a||NUd}rs>#zcwH7Hsy1i4d2B+(o@FoFXfi!FGhB8gRbo&x*%T ziM{Yq9aUlv7}-#XU40>>O7N;lr4pY>69p~$uaxah%FcmmnKl;Gu3kki&Y`JbHxbxI0`Xh zi-8ip=_hZ*hj-MH>tSR=ORi-Q*>#B-e1Tj^na2356cTnd8jQaLC&rcW+00#9CSmga z0v?1T@6W@?P3L`%Tozvz_fua@&HW^Tz&w>J_bV~(6DDHvKLHQKk^c@DIe~u<10X#F zZy+8J@=hc4Eo5=0(cYfvDG?nz)$F}uANGce)>?7Si~BVXGcfG^#RA_#kv3sB2C)pA za7%Cf{6cXCqBs%p!|43NvDI>SwUVb}DcoNf4JQ;z-NnJ4{GviJKQMIY(AuGW-)4=C zW#5VAdUAbT1J!*0P^v>X7>w9167HSC>E)N^y9cZJuA>Uo-n!!>F4Ny_?vo;_T2XcN zE^y>R~lCln=)e ziv=w#3-X4%wHXA56OMYb(aG#bJ#^D>oQn_bXgG#o zWW#V|&GE#TUTZ8rLbFN9@z&dVdSRsJloz*HOl{$p7Iai z+_+NCcaGWTVY2@&9)~0QZ^OtOx#_&p;f?iMI*s3J((`*2oDf%jYv(rBgEx7;93R|~=SyJZ zR^YjQ$F1@Fbb6kjgcE}DTo2yl`Eh)3N1h*pk(|B#*MkYtMduW zOX$e>|6t^%Grr8nwHv0Vd%Y2(o4*mRJbyB;?sf6u9l2fyMs7OSlhsv4O~|{_lYI!B z6IUVU=ZL8Bn`|G1kMGF#{xEU^+a6EY0C_{IZ5KBU{(cUeF@q$^~*(WidnNT-PK zM;X?)d@q7)*IIbth&*!{mn(Jmmg(bKefc5F?w<>MOG`f1JC8vu|#Y(TH$;W*a9t1xoYYhiV{xh5fjT0N}zdg^+ZO%RQ^ zyD(K@O>MtW!j#OKn1P4nSQArW+mg9Vl(F|rN+ynl{ zJ%jzlLN|SJs4G{g{c?#&fS6pZz_sbvPk|9$jVhQeLpXlT%Ug+B69qAwdp z7+tyOe^5k2;qHwB<7wU)hKr8$3b*t5XZlpEJIR)rRT?`E!l$q;9?M{{S`ZX-ig1FX ze@FG2D;+%)ZUaY9``4AlNA=RjqI@b$KrlM+6x9AT%LK#N0-i*FWw4a*%J=nGDF-;2 z{GUgG#LC;cu`K#KiQ-|v@T$Noluq}K7guz#;gixpSSk}$$kb-ht=~1CfR&%U_Eq` z<-Vgs@lYIV;9wZJ=`}Dfp#~zetX08T>8s$IaDrT`fPcPx8Iv)!;2U@_j&<;L7`f?n zFq-Z=HNNjm&-d+cB3$|A`wF9*W#jt31s~Lr*PCGErt>y6a*eL6vmjD6>a30Nj!@;(I*!jbn*7`f@Z zPwmszQngEc`}Cx53undkQs;XP^%%u_c<_f z)A_Dl)zkqss(+Q9>WATcxKgcL)fBtQ@&owTjx65?BR8Gpsp6vGEzjio-|4yj2b>jG zu6eiCXJ9h^9v*=s<9~;do6h*e*h5J zH=XAh#$)jOQjPC@((}D1oEX=Oo8Ny~CSmfvJ0651@4LXrP3L` zhuC`k{cMki@7%pm%I7Mp=8B8+3oAKg6ZY)4P&aBVxo{KPHb%=P>>>-Ls}_o~Vau`| zdj^GvIbBgQay#}^29f!8Z0lZVb@sNsmFnM^Pw&9d0gy+~Mo;T*X7z8o;8n^4w6WTH zU>^+Dlc!zQ)&u)+s6uXW!v1kDta2$=Y}7RK1q!V((RP%@?XuD2FjJ5GBt_DTofEoWUnz)(ACgQR5V7ZmeA3& z(WTHJw0w61bGIblT`gCH?)5Z;Uja$)N(~&5KdNis=)S%@9k<)vMT$)tI~05WVhi$M z(fb!$ir=lo@7CgX8}YlX_}xzYeo_2xFMf9rzdMTGoy70X;&&JEyQ}!!P5kaIe)kZ+ z3&ii9;&(6cySMn=NBr(9e)ki$5ir*1}lXjiy-rUTZ`Oecs+b%M~2shk(++)j;2)@ zjogLl$?bv@;d<$EO^#Ny3{5@+AJmc8gJ9&Q^ExJ4sndu(Gd-~(oC#NAxh6+Zo6Me$ zkLt+msW5WWnH@(tV(X?FyLY5#_ck~iuIzG6u0?J#{4;!HM}~h2BR8Glv1}zHQ0w3RimhJrG}jH+1=Bd{{?rUxbmH&h2PgAJ&+i`F3inJdGem#wzoE8!c)ZyiUdk zb>wv-jNEiy=^I+nQyz`lFQ%t<8#ouP7wveqa3P*f8SHL}kL$?p<}h;8*`3H&gxTt| zMsa_7iu>S%xKhk_!^VOi8a!vYw&mKQ{{+#;9Rs;k72r`g622HlZaU$eB4_NGsK)q( z=@~yC&WJ1HQ)(A=^pKc8(KRmZbMes~nI3|Xo6dCY(vF@~YeYYip6G|*gt!u|T-xk0 zyTSAQ_~4E_-wPu*o#(0Iimq=T(8&H*da^%&v*Jp&c;S>imh7s}z_euV;t@D9{x*!< zbjHWBjU5`zYy3U6*D-Qq_StCE?wy|61#l)@ zuVB8s#dZf7%d5TQFmltG9d%?y^=#n!j)a# zYx!P0gWJdPVI8@B3`TA`x1(u?rpD~(cT&5kHLnb?_bs!?n=+_A#gfeb(tT7 zTo2v6h7ZDrcI0?}7`f>jPmFCT*H{kIvwS+75LcG@>QyXwljl?M!5w)%2}W)@&tus> ze~sbW(lh)sI2Eo8bAQEOPcU@)r}(gr-2MbcZaTN^{Iv^>+`ptJ_hmR2uH^DZhvIb+ zgWVVLaUI$HBaGYv?6TKjGz(aVC1IryxK7DifP>UrRP3?ljO?%8f;x_mu^xJ01OBSJxtz#GrBq(J%2q9Tnn17}-#WU-&{uh2S-lN+B*y69v6#J2~5Lo{rtOT&WgH zixrjVd=K@m*4hf^+f>4G;tsuo&tg#O(4q?CDK5+qiz1P#(9R$dRblO5WWIcA)k`sL zn_7xLnxCsIj{fUVX#EDG13(}D=hiQ;I{fniI+UrqH~NctI>W*GEld}bXbQ1+?KdP6 zqIc~#62BXZ-%Z#r{Eqsk>7Ql!j(Ue+MHBTMD2$ZvFmK0ZlKvI-d4!`}Od(%Zua%P_ z>|5glI|}<2FtQ=+S@S!VT{IfI6`Ds%cFS-otg;%I?DC~Jeytna7V%*nxh=rRP3N{V zu4o#?KS)pU_u-7VQp~sg#-lgw+4u0#9hv?vjNEjl$3%_k|50})@R1eO{tqydnMr2f zn1LA>_C*K`iy-^H@2j%4J;_bdJ)Q2*-I;|=QN*nU!LXzFKoCUvyQ83h2ndRTAd2`v z5D-+9CkToUB`i0P zg;v{SAHZv6lKnBP+=Og`tXU`CGA&CWp&!jBCT)m%G=HYGkLHsO4(KpD`qKSl!{Jgu z{*~}sjn3E6Nygc^*ok+avLTi$I1=y4WS3{+JyA%sJn?p3z^)^Uj=?ma`kdHQm|n{vgv^9IiRf(PNm@UC0fpQ@qrPVO~nnb@H0?rg@G{rD8QphsTyP z)zyO`H0J?u9HF6dIVe^$%d*|egJMsnQl%r?oR5$Uv7VqeOE+;PcXf~}mIf=CGCc~? zS15gS7To~}M?^!ZXDB?<&Rb?M$WpuZOlr-lT%}5s4ovv>y(K!HgkT57?otmm=d`3c zL&ffDu2jsZ@fGxBdV&?<@!c6ZtuND~I@1}x@|P%HmFQ=|ok zqZ78VFR0Ra&4oWshl=&MCT&aF!G)67L>np$(3HO{+w{b6M!&49^aRBcsb%RX;^ebXC>92?Fx-!V zrw3`?&sFM5&O^DGEj)857z#4g+(1Czpe7&0Vf!lm*+CUvRTEE6I#h&OX=SFDGU3e1 za&~Yqe1;0oy;jOepMFC-s{@0SgAq*UD>RPZ!iF|^`NjEj5xtW>>!?1|lUtDspD_|g zBiR+{xQOHrlJpcxHh3hC=K4WKW>%z_G*r{U-eC?Sx?=K%kxGFc1(Q#XB%rblWl7Rt z7zzyy3{qB?^kIq=>M2LkE>|tnf>D9OO|ev@E|+wQpvO%bebMPF=_D_e+!L7dP6x)Q zl$!A=Ea@~Ywe%F^ywQPeQ>YW0gp#fzNwbV;$j@K#iOA0|V=8i9M#OfSJsEu<;bbJe zR_R~Ubd+>tN$tjjlr-wmCw(-Di$@%KHc9$qvm(3{IkG8ZJ6fO*H)U+E%B8B@L6tkI zawk>ptjhPQau-$Zs>=7NayM1(uF5@Bxu+`kQsv&N+((uBs&YS7?yt%NRC%B(4^rj9 zsysxMhpO^0RUWR&BUE{$Dvwg-(W*Q~mB*^`I8`36$`e$1qAE{P<;kjizbZeV%2QN% zswz)Y<>{(CLzNj-eo&QJRW4Iyw<>#78K|;Xm3^x0S7lC>c~ve~WkHn#sw}Fqq{=~6 zo~g>RDl4k2s&Yt`D^$5sm8(>_T9s$1@@!R}qsnttd7dgiBuaSm&&Kp;t=#<6*?2Q# zyj%WnGQ@L($Zthk{I~zCM>?@rdNujYWy5s)1@o`*s+ljCABUB#7tF0@+(Bz4;?4;gV)R?+y*PBPPjAllX$giAbzhu;vHdka1pCf zTsPfjyggnulkv8&a_Wqy$!8Do7T=)U?N9lGutT_%<(FF#<898Tpt_-X1 zgHcY@U)tP`*UTjRZCE*V!n4iYJ_hMO`;&eN_6nD@JlWH1fjy>Qz%5`Be-2h2C&VMW zvJB$uzTusT&n1bm$;2bXBQ3Cr&%!NW5}yt$r%rrUV+(=YJ!b$vz#sU&uv550e6EYax|Eq>Ce0fJBG`Afn;ts!sfmlH-gE%A68DC`xLbw z)nNSvf7aK)&fv0^AJ5e{(kd6~T{9af&b>cG`{tCBs8@T`FkNXYSC0yLIMGTLbZ?k?4ub#>JRaki( zu@3j%8>}~b(>p2Om?Xv~DK}V)PY0|>z9C*cll3B4Id#^P1Mz``0r@z8$VbDz;0|bc zu9>vk9?3`G^)l%m3M;2hcV_(a6@&7J{3)LU`-Dq*jtJXv`)%5*@%ovxSHQ}t)7~Q7 zS~=oJMn)(2s(&ZA1$Gs;6KpLz0jF7Z-?#}ki`h4BfR$748(TH{2JKIhpLjYyK{I;C zZ~c46uVH6#d&f5M-m&I}+5O{j+%RVUcobGny?;!WALtqQ+yCjE?5#r*W0UO3JV1Sz zs2r%D*W2)VnRMUzzel&T@%g0zct?N0+vAR&OyBba^y=LFX8puEBkNkAlJKT`IScLRuEwOvRDYzxf9&j?OoO%!F zsDICF5dVxn@lV0t;1ZYb$m^Edgg=hg%p`mPteiUG>7k$M->ch9 zm-$+=me@UDcia+Y57-q}PQ3@rsr#*QB#ME)=#PFm>=rKi`65-fnqV{U$4y`|4`Ai- z!@O~JjlujHf96-hZb`{jG?ZtI(IgWxd(7)l2{x#S^T=Yv~@!ioFyC1xY8^i1eufWQw_k#}l zc3Y%&2K0^J^3LElB#E)i;Omy#gcsp8GYKz*l~X4?o&3}|UCp3;v_It|V2^Nzwp@*g zT5pp+6tA60`XE?2b<(qyuNu3*4ch1U(_RgGg-cuRcQjjI6JLQ_z$9LQl~X4^Px&i) zQlSC;7JukB!H(fVmpj)Tjj*}jfE&T&{zX_hb?&psWzj<=4d%c0XZ|?s6fSf5g^JMt zoA;x*0ZiUMhm}+3-JYY9E)B@*{M$Q2Ya@xV$_<7*O+Ag4J)Tkmhx|T zNSZ-+dw;syju~CKf?l`WCcHIXGn4QZu<|${tj^6f2%qjx_!QV1+#sz8*H8RaPSpFB zPR46y5wmrT@aZHmHhK7lf`9Y2*u9_=w}sgYCd109_k!v5qw~W9_zmuR z`E%bL_6T>}t1B9#*9RzP>KtxYymlt(onhtFNl&elF7_Clm-}<>hyB6jJVT6cZM!|5 z1H5h~Xc{3&jB|`U+GW!GT0|v(()a5+u6JChd%p^P?R!*HTU7M~i zSu!Xe;ZONc*dyHWta9>*^)~5)@Yu#V1e^I6aTA!#KMyOX&Rk?_(K~$% z{QKuxMV8WnkadAN$rMF*cdHe4pZKg-w17+zKZ7O=0EK$!{!u*8D0n zqZgdw-wRHLy~G{-o5@vI(U+UI$nFs*;1)4^#Idk)>OEpw*dx>hbO!v7`@_Egb_f@~ zyb~p2yv_N1ymBVz^I+xFIZqPt-XQ#Kf5P8@UBM;XA&0lPYgf5XzcsrJua?R7R#-W8 zw(a44@CMrF{LwxGdxDEr?n@Q7*jr?Ohu6v^`y{NKI@uYq+nx=?)Boe0nRk-J*raIk zblsTwc7&dcSI=ZU5mru}^;G37x{})fy}Li?U15K4$Fh3&t*;ZeM)b~j-Au|mz{;sp zo}w;IHxT#xBMx9^a1qPf4(hkPTYQ({6*Ku}VCB^LuGj2Ndjt4o{=hGVy~72r-ge8Q zU+KHm;$R`$9c1K@1Qk1uUyNJA>;W}cIrSbey;>4q`nnSCd;O{34SR%3UA`HMT5ps7 z0bVtO z^P+dX^Y4WuF*f=G_#xn>eG-)8-Jym}_9O(Upyc*rHv-DAa+&_oC z!o@B3E0`^?iT@P0fJyu(uyX3e7fF9H_LINk&;H-Af4J=B7h%oYV)uf7;ACvCgk$7y-L`gHWmz`=*TrpZ=MHa~zia2Vw$q36_sHU2S==X!2SlM7b=W*I zm){M=?YC(ki`UPjeH5&mI_-6}x0>%fzQ7;)`LJua(ASF$^RUxKnqjj)4>yC!{%lw| zb@uZl`!(%8{)RvK+hE6V$;&jX)YWK@ZQ(Vrcdq4~&P^tXu}SBmqdnFLoBKrE2qyQnVdd1h zFOUIpgq_H{`lH_&_6>K$uOFG>&34%Icfjpn(%%kNPM!Xyb^6Ws?ixWL@b3xBU_Wtt z!WOZf(7a7{ugKswF?+>nuyX3XVutJ$?j6aO`geefVV7__fLy(enQybM;ng!)e-c(s zo%Qq;*}_ne5r@#4=c?ZAkNO9&N4TivPKl`XHtFxW%sy19XQGZ=92d|n*cqXizI^oV^%0YLo5?G86@@Kq1><;b#mfr_OO}8lTgICU^ zyeF*OgmQqtznJuF{r$zn*Tc<42_$Z6yaHKUNF;cR5?V2|EWg)8dXF;U@V2(C!qBi~ z{&{+@(tk((1uE!e%#~ytbdrIAv?Rtlb-PK%)E-2rQ?swU)QDykQy7Ujb!vER$VV5#g*cmai z){!lC_m}9p^MPQv{|>9mek5tfsy2{*NJ!vN5-@pZNfYofScVUbEa7GtmU5bYk9Q;N zG$-%;FzLhq)#THE6P6ad>v21n@#Z>M*@`#UCY8|fM)oYPcyo@A6%=n~v^L&!?n^^| zMK&D%@euP8wF7(m?Cf&29b6&C5m>SjJ7Qhb5kp=`>SG;4o)Z#HW5|~I+xr_MU&VSA z`QHj(tQTLTDT@DMK0idifBNv2wf$Y*h&0_5aw9+P>I(`(!?i;^Rr<5#p32HxrGL0~ zsHapR$Sz+^H+P3-9pdRD0z14y2s$p+W4T$FX`dc>aAkT(Xa(x4(T+eXLTd3}x zgMBR`p~1pXWw5kgO_kGCIYX5*RXIzQvsF1q zm2*WIn&LObYh_OH8^Oxf6yIvHosCFo;62$N z?+LIwoD*!`#w!;G8m8OJKgZ%#GZ`NRE2qwQs-D6O$QSrSJ|Ff67qa|lS=(+?J`b;( zN%?G8Id#g@3OczkFn_}z^KGz0xR~W4P{eqf^R0O0OwKpM%45&@vbMIh+QNVGYkoFw z4--Ix^fUgXe+RpSOIl9KB5hS()T_Bq;rqbhDo_WwsV4ax;2?3#xmU! zj}jKyiFmC{vTMW2sgs?e9+V8YyZXc38FmJD*s7By)Dxb?cL%&;Cg1H~<#E7QKEE1# z1Ao5DU}u1Q)q}UiH-lHqJRv0*c)8H>dgH5f`~=9hS$s_ z{7G1Od=L(odkn&N`xE{F>}2e>8gw99!;aV*oa3#=|0eA$`mM&l zghb2VYB-m*BTaX`)rkDKtD8=&D3@q`{6N>TcH}o1LY1Kbf1My#6gvBP+SB|^2GFR1 zAX^-+d7DBvsJmaP0H#PvzNS>FgxXsqA%B@xT9#O*YE#}dm(Hr2Fy|G2k zRSy`}RK7c2F>@;46;`&U@>cVmOm3nuX5cMSLp<>=hke1t+bKRlkapWEo&9*dOu7NA zoIYJSNf~sn@uzzw>19%gd}*f;#az6N`O3s$|B2y;-2?5lXKOtP=Q%Bho`NarIMU^i~} zo@zHFiP3l~VP{fm#L{Dd#dQ&0DU<6$SUGjB?cqa@0rqHrut&h2z(%ZiRI|t)ir2~{ zdl0OgI@yWzAZma;#~RyD&lcAec%@9P6@O6YL0(D=lbP zTyMZDWpe!@teieqTCOq1>#zN}J`Otq;~K6pSzI5*D`j&1Ijr1-Yl8O$`jvxRh)y7( zUpc&ybU9qTa#-Hl4=FmbJ=uY_Or;tO#@;y0n}p_o&hAw^z_k?J_!`T#Fy8oKS7@5F zEVh{Dcn2|?ti{qz)qC_ih#5j+4euaYw!YcfXtxnHc7>U!R_ZUZc7`40#G2ofbYf6y za`$e-bUSwJfLG0o9oxamR_xeDNVIMZdzSbHTK8~+bU@~KE_N=1ox&w854blPVDrx4 z1~7S_1}mq|d*1$~Vl|s92IZ#AFZE}BG3*#Fb9vB~qY*au8g2xW`zK-LCfpND@H$73 z6GZ|Eog++5+7Oi^{HeXA+Y+W0vIEQ7)Fni*Ea8{b5G+nPJDmFivqmDY<}4vJu5Mdw zN^;~0zewtMohSTENQ{R(VOpf+#{BUQn2VJu{2g|c6K(!k(urZIsc!=!*i_|uqD?Tsd*qtK$g0ZCv9G?%u#DBfyt9H%sNOJg#jF`3Yq*o@>z6h4)- z+vr5$<3eH$iNe?%)o`@SC1(3w8I}1vUEKqNbVA^8?YL1^ES9Rn?jw9m6If>Umdcqz zsWdoTJ7&}j&Gm|VjD~B+kD8>oTxeByFi4FbJ=K-{xk4bDA34b28`Sl}gABf@%5SOi z+p7GID!(gAc*Eb9=+9cY;cv3+iAIk5AX$Mudstb|{h}fM`~9vZomfPvsSROr1gUy; zdV4QkFLS!P8&6(c+E`03t{Ed2~SZ|rUCe9f51n;&ftz= zxhcCo*IQBgP`qL$--BS~)cH=;`HO-09Dl^CVSjKD%i~70?e-{Mf!EEXT!EF-r>yfy zgYqr@ly8Flfl=1B+mvs>>t<5^BCOnma)Q+Xy}%$JHWNtb1%?ZfrWI;|;m+2+lxROL zTkI(f#9l|d40lpz536nKdg^m5E0m=PvDDwOnDAoKE}|C`{vae;zL>C&%Mr5Gu4i-k zldgfGLN!+`4dm!6*4iG4BtoTJksg(upURDBf&2x!hPXTs+Tc7+kt;G(%uxSzfDrcy2rYdKN5`MIQSN5}(?RA+J=_|&J zvkA4p^YL#9NsPv`!9U3>u|clhVMUC$r<}!j<;*E(Jy_YAa$3!KiW<-c<75089|=3d z8T0ctWBGWX47d3nhF8qwdoZk=I^P+wh-*+j*PrrPuuHg<<>f&!^KI5E@#>kZtFUtF ztY<1`sfp2m{S|-MUxt0cg)J`wj@xh3{t{k4llFhX%BjpfpsCJ@xMocUWgA zao+>b7to$vdBco#r;Pkjm%Ml|e*J9hX~D51un#;!RCm%#0(%OHrb_~?+n>g`M7S45 zq?)V0T&J6R?x13TU#4n z+7Ad;tJsJQsNbxXsSFJcmdaJ~iu@beD(1YH zjju>EsjYcbqE_|=)l9Zf5IraxUX)pBaC4s4H=>b!gG1qcx!D!jTp_!R7G>Sr%|_Je zryzs`4pS{!W$ut;(lW`HU)mugYgt`J5{Mpvvb( z3BMlu0sUDkcfL;5IgqhR(=ipzQLQJcNhC2Et2Eyxr^IsCn%s4xZMTWT1K`s)DC(VL5y%BlKk z?JC>?Ch^N*<k(b-a2e>;Hk3Q)k^#e-mn8-h8@up1%o6j7^>|pY7_F+k}_k zH8Tk>hLuw%yl&_x>s_^h`*?rc$H1=Pj%s7NTbhf80szc*=!&HpUi5GMbXuyX4B7q4M2h|veW=HCat0y~J?2V_RKhQ`?a;LEr% z%zp4CSUL56FxTF|W8i(;WjX-{}NVCo%;OHW9D`lgZrcz z-g({xk{FvjZ()PG*$SKdTDTQV^8fk2M}D>-AKBJsP~XX)`cmBAlWAXKP%hFL1)r$3 zmxJD+a&FkM%|fo-m@Tl0ci|Q=iN6O{PJOITk8WZ#XlMOtp8

8{22eF&^owHtAFG z+L@%^4=blmdX^$x-)d^WzQ`Z;r(vgXVav-jj0V`eKY<&-K5wRXUOt;7#wIUU#Ell%#Ao0ZFo{ovl~X4^-}NbkL47}e>U+bU;f{0p zH0ElBO@0sD3MTpY!OE$VUm$&EKEoR9OaAN&uy45R*B4p3yB#+D9Bv1belM(?I{jJ3 zheihWYyGib1v`a{UFPdX18m-x;|4H!e-2hoo%gf@LNaPv~)ev>0(0f~ZCWbhy#Zv(N_(XJ4y1KP+dTCnUb3m&V0Du5=s>vI7~6J=Q4y>w`hI6B11i25H@4 zLK2Q-BU*1H2k(dBsJ7~pgieIr<>Z?`fOKMLYVs*i=7bS`$^t!S9EV%Lj44OM%E~xB znvX~-p<{~dOgx=#i7{GBB`9NqutUEd) z#c)!u>PT^kkZ2ky#_9+m=KbFZSkc1ChQI_W%**IVYd%*=lx4b@gEUh{gc!sm^Xz+uoHIII^oAvLYj_h|MsL z6l+=1j-penjF4z~isgJ>Z8Y4KXElD(H8)SIRZC4SreP{|XNz>OT7~Y&Imp$CxhnlZ_ww*w z0B1mvU@*+Py^gp_`FAJ@kdtRFPeT^blH1gq+jhj=u$E~%{ZX>MIg zc&=`n`>;c-x#3BL%Dy8A?c?~@?dc~wNrCxH~;7}Nce5Ou1Y&Sf}S&k&1XcYa7!|1#|GfGre zg>N4pM&)9I!e^3?iblG#`y6TBn2kzCyP{9<3>jzYov5A$`pgva9YH;bFrfQb8W&dB zeL81cFb3YIH^pTm=#Tf9f8(N2_&(!2I?Y9n#Qh{arG;y`pHk(gRasNzXHwyz%CD&MR#kpgm0wfkZL0i#s{FbtzoE)+s`6W+gxA8)p+9To zk-XFE$J&N5!B{{0Guh&~O!|^&j{jnKm2_fD6*akj7Pa19KYIbMowuyX2jXX}+WnZOyb`%Hh%Mc6A`&T?ak*#evRa@+zY@qSo2 zb>h>tzp5pJ_80tVUjuuDOIyy=QR{8eSK_rZNnZvlr%t+~z7}p!{+U1J2Vrk;Da(zg zb<1tS_v1A)3EvAVr%rep-M&?SPhmj*mp|k;V25xa&lD4M#CV(YYk1{M&acACsdJv^ zc#UN6-fXUS-n}tNj7{Dx?~-&h!sfmqZUmG2B3LOzteiUQd39$+ z7LpC(U-c(`3+xy!aT(tojj*}jgd4%+egmwWI`=tsmo--U4eG!3r~Yf$EnMpJMHXi@ z!DjwAZUU3}qp))7%;(k}reDMu(A(#Er*i9%#Mq>A@`ydV4L0>Q+y*A~cmD5DpX8dw zck~CnJ?>=Z>1y^OYKI)%;o7gwc3Zq!CfluH<MXR;1p<#E6|`q_lR`Wk=MSHdmlbhByafhehu~sm$$qqK5oBF`&GPt zChb>X<-->Gv;y^dc=5}^VWFfOwL=t%Bgc+KYE71nwDKo_osde z>>h4>mv2d%HpT7(C*!6t`@jjXa_W6xPSkO(Jx!nTXa8~7EnN2UiQH;}&HMt~1Sa$I zVdd1BFN`{@`QqE{{^Y+6JBLeN&hJecV)Oq7ZU~eAZLo6c{MU`Tt=ZDd3;y(ch&sr_YbZELlK|Kz8W*4X6u@@^`3gY0h5 ziQB>K29sgs)VsmF@G;&v>d8p;_ww!o`Q2g1a07tcIN@l7&3#wg2qyQPVdd1hFOHub zwWg$hxj+AY*g;(Wa#P$I8e{i^05^u&50=5osrQ3;bxi%4Q@a{tBRYqn-B zv3tNm+!AIFm=7zb-UFsZ&iXX6{v-UM9|}8!JL=^Ef5dp3^Fes!OwRkm%BgdnbAY^& zc7J)dzyadh&*&YHtNm%OfZf8SEpt3q6O?21$8Qzf2qyJGSUGj-Q#q{6)NWCg;z?%BgdnrF?Zzc&mvG`*DBRkHSvj!j>;?>;_oGe~z2LB>q!a zId$SQl*0}!I(WCO@13r_1G|LFTW+s2&9`X(8#jPS`=79K>a=Gncb!O2X!h{l)*tuQ zBr!JGx%?Euvftvp1#SV8_olFN6W$4Kq0<-H$t%thNa%~~PD^^CxVp&h6Ro`=SS~KK zW#|T&!Jzr&;{~|)IwMWZd3O~1@^N8g@w5Kr3qW@}>_@{-;&w2D&4sYC6>L75R6++E*|WTY zO}CE~bUnrGt-UpKu0Y=wUUO8)c2l?+DD}iI(EJ582)nAn+4pMB+qKwnM%gFLi*;eg z&6+<;%0S1M2Zh8qh%pjSosVe05nuie1G3`F-(ZJ18RwrSofw>&JR42Mml#83gI<96 z3vL55w!920Te0QEq!K!|$R6btTkiLkdu4H-EFO@>5dHq?!&}yzSHMM^?z(U` z`tz=AcQv;nTg{b=N$F_U=*5(B z#UNYGWD9-4vT}A*Y%5jha^hk4QxRm_K(?4094e?j>%0yZ(+jH9LVuki-M!r8I!nl& zVyQeZD&3)+E%uZKMx&Qjs55l;=Zby9wFA8S7Hx_gjX_u`m8-%c=W{mX@ycMfTnXgE z_Gp9~ip|wrrJC!e*?APg%}_O0$W>PlM{Yhmf#$*R=EDkVKUtULho!=ZjMgZ{&+AQB-N;jAlQW+w2GLENLS35+$5938&F^<4N-#7>@O%`9s)Q z?kCN!l1>avO`auVu(O^r@4)M4K4snxD_c*Q-%cu_6iPb#6~ zjO?z<&0D5sd$I#MANXcW$WI-O^dYLh$a`nT&!qvKI|%YG#MnF7?zsch#4{7jv?pa zl`~_=*|4$|Lskii)^VP*Z@HXZ-4$_|LHiqI5H<=e+PA@O;nJ3ywX7!C%x}d_U^2fM zR!*Jyy8D;t)d8*XmDj-i8Gr7-gI&YrE^`KFGi>%x;$|?}KLIN@VV_{a*ExfnG!jVY ztvv5f+7Oj99N5}7VC_f9rS9mvuf-dnamv}*YTLS2I34f4>Z|P?*`Q?(d~LFyD)(3A0jfMul?SQvU{xNX%0pFom?{rf(-q@6`b=Sr=S?^Cj@uiN1oo85<*dhZv;{Wt z4R8yX#Mg(FQztIQ^N!|tKGvV}QLrz#ob`C7r&en`ACA|{qPWs?0UteiU8X_41u2H@}e1O6`T5H4W3oh@R#J^y|Subj#G>#%a_ zoaejVX&S))=nwpP*fU(<@=43p3Y+}1xD`zDPs7Tolb=X$pbgM-Hu6rdXOhI&q}P*0 z))l@sw<7m6yiz9D4p=#LuAPnT0S4WD{ORrqyMsH7rwh6b({0AP;Z-vk?*c2Q&Uk}0 z?cgx55BOux!ye*d-$-CzQ)}#=(1%;Y>XxLvOYdyG zNk}x^+1k3TPK)H{XD&Y&;pY(;m>N_1)VYUY$2pnj?H~3gV`}NvdyElHy@r~0uqTA!AZ;a-`&Q4d`-nB#1u{}O= zX2=LTvx99SCcyxfEf*-^yX7arsR!*JoB-il$ zUw^v)f?dI-+aZRp%!VwsZ{XE3*}euVH({ILX-hw_$y7dpgkCM0n6x2kwP=IZt`@Cx zJe`ObeN@|R6Et^l_N?00u7uwCs79YZj_{DS3)$rPkhYVMX!%2$^UF*+gwp*iQtcWl z=FS|V(;y3Uc%$=^(vknRyEG(@bluYhVB|l~6<5$XuJlBfuzGP;TP1p4R9@-Rz5&Y)l7_8`b@IKGtDlF#`r%(9ZEW}QB<3uR^uA|$qMGn@w%D8 zydPG!f_bYc&rp=*=rKTlf!gB<`Wo0J&aj%dLC=nYR)gPSeI;H!ll5h=a_X#SD%L90 z8L)rm5BovbCtTR_Jj}TL_9NE)c>PS;_rl7l)2@$fIWZZq|K$(+4cH}I*s+nV=2dHC zzlK-OWc@0v+=O+4d|IdEGI2{Fp;PjuNgJY4^4DAY4rS_*(L?5=x%n=eqVtfmtJSzS zY{XByA0bKKiH!41(w7Q}mM7`XGhm`^cV+9*pLcZ^a)V7SDv18x$U3EBcb1-qoX5(e zO5&D|%pje`?Y_kV(xWr&!?Uw{a^XoU{toLE4)bp&T}3l6R1K6}&RZ;?W|o6Nx{##F z!TF$)xIu0-oK-G`kAu#GL?M$ZgLIVtXtb?Dv!^o%$PHdV9T%bVOJgEektb}+jt zyye5ccha2))Hvr|Es#yL7h<%U7rx*WV>$AM@>B|!;e+*QsytnlXQ(ox$`7hCtIB1n z>{exuDg#yasBJw| z)d@mjXtdJ25975m)4X$GWh>2VHQDfl0-7fcw%?+Lc(VOE>Tf(blvMs>Msk7~E2mDlJ$y}M(0#<8?!&MrxO8PsC0=e>WA`DvRwmg8VCB@wPEjxJ47hLm!+i^O z1{bcJck6E)ExvE!6*Kw14lAe5x1;_x)d0NJ7T#&|<|HvTX|s&Yb<6G8ya`@2lkgH) zxe4I}ySVg5Fu6G>frQ=&)|K=XiP{KuSZgsQVBjf7~kYpa&{L6^83EEE3wa5n#u7uRY#owi`q z$ovcGe_u@h`>=QEpZsU(-;T;(BL4eQ@moXrX&bfC|2JLy_bZF(LiG>HR=4a@rK#F@ zBlKNGmUzBAzg#rNe`CZ-(uwsr^(}+8-41@A!|P@Szt6(TR`8RQ6GSc@{N(URAfba_ zCTT-d@cTh)KTPX9un-K;t#IKjd$ADsB(($UsqPTC12Y5$5j$et(h&%sNa|x92psBR}rSE~A}y&Z9sgzcr#rcZpOEaDf3;`kS06g2?pH##wJ$ihbc$ zLT|@Z!jo3KjUg3sjJGk>>}VK6Dm#oqn@EP*beLzKS(X!lCPRCio9w;@dQM$Td|yNx zZk_i^CeSMcz12*mKi5l|&O0{~XqL*uwc|#~dF5PRf5X7hBC;y9(6`HW2RYh7?L1=$ z@R^8C-lmi))L)$&rvX!Xg1#Nf;m&^NW@khww<6a=5z05V1ZNIqN5REGx!0c)ZOroT zG9)qz;fYiRmil|Qw@?a)f%EEP0Je~!ZzUvh-=5q%(De8(#HN7~bz|S5+1E`XzJsc- zOy7P40Rf=IE;Tyqn z6~Z6^Sg}esp9;AvBXU6q=o%=K$k@ zRI)uiVy^J!RhJ^OeDfYMD@Qkq%S?2%#EPX+NEz#vg)`A;878tj-?&XjS>^_YX!Lpu zQGgUe&JPKJz9nu@7%Z&z4+Rt=Gu2Y27&gz>s$$TWt>#uV`?L*cAN8kteDXDFuvE!O zqkJRXU}>d)7oeni2THE}X977X`9_v<(48ABmnb0k2fT7Hkj)i)!UV^6J}A=}LzHm& z&X$#2A0+_3+{N06zbT`!G*UUUOo7%nqoK`H+3-wU-=S3*S{9!CP8RvPSgiQ?x>&B% z_;x*N(coGBJ-AvPDt7xnQ3;v)6IJBX+_z~JH~cjB9aa8EmG7#uZAL?+m7S`bs>*4qoUY0ls+_6HS*o0^$~mf>tIBz*oUh7tRk=Ww z3st$ED%V%#B2_L{qbhe&<<6>nuPS#@<*urHpDK4#AkBJjW@t6WpZ5~R!*Jkq-^+B*&utYKiQ*TSAb(yybQP49*$Sb zWP1p#oI2a~EIrN|XwUOUdp7I|E?PCyh7aKu*;RP0OtM3;a_VF!g=Ec{_EvwiH^Z*r zqE$0(XtvGvM!Z@k+v{QF)Y-OYX>r3CwNLt^eFF9b7p)q#;ku4BY9GUEWs-daR!*Jl zq>$_m2HJ^RduLH=lf>9$QEJqNX4`Dvg$dM{Y~O~J#|K+8BJbeOcDoj^bwuQC@M@WC zw}O>ZXFILF36FO48KXDjPxv(0A>6<$kCuuUZ;#;*;FU8up9CwX&Ut3tRdTbXfx708 z`jfCvxTxh>?s5BV+85&WGiiSmR!*Jv+`6~)R#=1h_x*`~7xoL6_`2eNK)Ve#^>5)e zFsXkXR!*Jz)Vjw?WrOw~{b@fB`-4kc-oT=5w<$l1*UhB-G_0ID<#}~aMYfR}xaYjb zJMW%J5@VBhFNh89NF!|S({Ll0+&f_9)VVh@HQEbi@ZQIt_nxprxWhZ1sf8Qalq>Z+ z#NF`9nVffll~d>39)5&j03PrMoQFNZ1uWM{#HS+`**?5hCfOcXId!rV?U%z>`-8m# zb_5r!eCzLgH$042%H(=CViHN z^{Q{vEV}FC^)l%$fR$6HJ4t+3X23nlAMW9>E4X7uiGuMkKna3$vzA#r%rZ~_;%kwyY{x;Db%~L zE4XOYEGv#2u-LwhSIcDk7Ob2;TX7PC!FD@;w%d@z*rdmjtvm<9V!IVyEtBo$uyX2b zr$SkN5+yN4UdRUP%+R-ky6;!fR)eJ|0$1opgJ60*OKRlm3J+ggwC}EazTv zZpzSQ)7sW*3;)T#6`lmCUmAQAubzqc!?5yrKwL8S?|j!E@wZ@4por;E8!JqI9j}#1 z_G_?m>SQOkFofmh7rI|)`!o$rj;;Z_FaJ^d-~2D^kif@g~j8ZqaPZFo}8F=sW$NMAL6i9;SPXpP>x@M@WC?}U}d16w*5 z%wYR>f3|;vU4gOB0p+DY_!tUVWoi5%TG)%V{ ze;BWt$@pAYId#TU8;&x^@VERSe;xJ*7qZHk>;2O)lD~%6&7}MlSUGjd(};5YstRK) zKkJYAY1koL%<{wCi1GGlehROg$@w?1^7!FQw>}u0r!Do)wmL{+Y_hF5XENUAJPEIy z$$0{-oI2+)YK!q~eTToBKjvLve{hF$BWf$#ZOS|0bu%e1g_TpM+=$xtaSMI^n0sJ{ za52Y6v-7xxEM7U2^BJ&m>YS&jTak>2J?zi;64)7B#&RE4{W>S*LcKHgBD`WI-%rEJ zfGR!*I7NBs^l1MuJc0sjT|1{bj0p;Ncq zo{3+^Yi1ID5mru}@Kk-bo56Vf9lX=(1tc*xX|>F^wCy(Kd3fDS%ClkR)G2q=Z{0H( zAL7sWK-e4DIIdf66W$N6nMrtWSUGjVo%CoaZ$mT?5BVc5!|vcBmMfYK({08jylN)n z0<4@mGlU4YqIlvwaJ82A8dT4z6ECYw>*(ub9dAbyzud zzU|>fy9V5?cJ$7lHz$d)$)Dw$VsSmNMRpUsRwmgcuyX2Tr|Qd(4ZbJ&^F1E+2Y2ww z=Ob;q9iNZE>t<3u5>`%~a%baOY6J2|{ULuCb_W--%$^&j+ltTlrO}wA-fpX}n%0-A};EsnhMK3@xjcv)$&{z005Pov=5!eC6tL z-Ey1o_wbsTgueqTr%rgHeLw79{NcU~JAw;W=2FhSQNTKps5Hc(6UtAMJjyE4X7;u2~4PZMJ*k z)iT-c0V|IOwnN2kgKgQLZ3%V-%9hNw*%t6>nQU{ga_VfSSIgw2jPnAN>--U43wwl% zSRVfywcaLu6<#}&^yRQ}6VgHcuXLX6xx-uL@7lSo?eyXNJ+io07Wc{G0Z}N4Nzbm; zmVYHY1^2Nn!g())1iOFSYZvdOF%T9*IeM6zST;cabOoj)A5;(4;G|Bn0%R8V84 zH2J}n`58@qlAqh`2QQIit^J5nr4m$zKQ7|O|8KhZZ!rkpkdT^n^#ncroh1#b@!=$fz4OD}uM0{EXPJFp%%#k9<$qCC)&a zw~@=UWMk&rv-NIx^-R{gz{;t!p6`lY2J!)ap6#KW+|oQ(5#l1>axZC#N=I2bA$bQ=B;ZUZy6JOC?OvE|1}C3I|&J<2P#+~8vc z#g?rmxAYlso{BBSpi<2)E4YHo^j*;W*V*xEhq<0!*ukZ4ATPRflFeAct-6zrE|Z1C zIEXG1Q6}a9BfKny5n17-3-*|ka(*%C#KX&iNO*}g!p>dZgB!t&FI&ROR(#nksf3O% zvQK%%mx(@BP<*++wYkgW{b{#(xC9i-R|csO*dw*Gv(>h9g%rmsQ+M5nSkH81B?C#l ztK&vqNHmQbW3|q-x62jvcDq)Z>Obqsmb1maV7RuIheA0^%TxO#7pP>*LSp~K65X^y zmQgCnTM`TmR;eY)%@6{aLT))ZbdSW130BjeACUOZd&{MPOiy7j+r8YUEuqY^q2Au0 zJY3r|xiLe9LX)M-dKX+{_w1#=R}S4bu@Qw_k)EEr$*Ue3r9N+sfuPdgSI+ee*A7hF zmLkQ|6+ykPCm(dBVvy;llc_w|l0?OaZTR?5u!Z8Tbr(At0GVmiLEgQVW;&FH_~^s=Pv#SE}+VRbH*iYgBoy zDnGBvFR1c5Ren*G|E0?7Re6Idzog0=Re6&tzpToeRe6glzoN=pMG3!#_&EI;uxJSK?!uX9-+>2HmZ8^`^TyNnlGD zT)OfTZ)Lds5WWdsF_Z5SSUGjRQ}uI&f%qhU#K*(_;3AeE0&ClC%E#b!GbtYlE2mC* zl6Y)00DsgU@P}bnZ~@B*Egx5{2z@SIEtBn8uyX2br|L&?1Mt`V0e=nl2N$p$!P<6v z1b+pun@Rc0uyX2@C(@FMf%j>DyidW7;Nq1ZIfUyx*695WUMZ97uVCfWxlW6$Wf^=s z-shcTO(Kc0$+6^-!4cza&J*y;nVi>xl~du=|j6ZKm3i+IgU!he93(J&z>DCYe@8yVu{H zT7+lgH8Tm%fR$4xJU#k;*r0r%Kjr;kk8sDa{0K2>y&bLh#%pJi-UC)no%9s-2H${O z_J>@8oxz1H-#yf~9#|u}fLF}qn}d~8=i44`k1*g~=MVQ<*b`j1@@Xlw+8()A;k7c! zUJfg#PPQ}jk=SHm;C|loxYX7(OWGI!XNf0d@k$}F5&tiE!ujU z^jUcAOwuc1<?Nq%_*#P{M zKj7cM{@?DNjF&K1&UHjt|Zp3X1ggM)ahjNqczbSrbTN zZ1Su*;+sdqdTT_lh1bty{h!fdo#0zV{kfz36fS{;KB}QF>6T!1RKpYPE&ZH&ogmj2 z>!k-7y>z`@#aUj9WU+xPmdIjbQ8+_MZJFzHpBK0ywLyU>!2V*{24ii+(om9wG!-F$aBl}^uIeS9>MAC_os;RwX zL{LSTlj&C^s{pTbjS=RIhVn94S-E9OAy=tp$Tb7XF&UxMx{qx-_YJ=_4ST#n`f4&H z`bh@2W9L^jymAHX6)t4C_|`DpMm>yI%|v|(tgQOsXB&QLHRBokmnbMwL@YZv|Afr) zwA6oArY1$Xf|Z-F*0Vl$7}YwL(LSr7O6%g4YHVh}weq^_?U}Si ze;0q4A8ze|2@}e_z13I>F=IR)YNFwNyGE7zntLnkC9G{O>Lf7yR-l*3v>eUEN%fa z*gOp@TfycjA36`&sncJi zC*~1)z&`#xU{BaT+#ax@=mE{!V)ugGa9fzYU>8`qNiRr{E$D*GmU|4F*i6=5XVN2m~TXXxl7p|njV|e z9QnpMN&A=1H&zRY@sMv!)eSdhoa*7O$Hb zU#^0ct@v`ekZ4_wF2y`I1LP#_XBwMyFl1!G3Hp0j~Fd-|9{1En%6LS8mq!S~ej=RK0r1 z^A5aTW(>Ifuw}nLO=uVf(yp!=?$rfxBT8#e;dxXnaen=6u-kvR9!fR)eegRfa zo%C#-z&mNLw~sgNbx8tCpt!W>&)!EBNeJhnPG&T`AQiGF{b|ak{94{osLu$|-HrYrF&VlJz zlg4V;M^3=`e$t8YP+O@4C{?RY3s&H@GDAlNR<=UNppa-?TA;R4Ir!c}mUt!wH^Khk z@{Mk#a#OwmubWBvi?DL)lp|ZI9Hf8kPx^7#CtT9zRw_5`NAdcZw0{mOH=&(iF4yUR zoC*?1=yc$iqzzH&z?rR02c|E}R=fLyp0-SBh(64Tts2bR7Y$9$-c~D&ylUX}nU-pT zYC&vbAA3NaHGvm#6u(B0zwhYzEnpH~04t|XJhF>Q`^=zzlt1;u zVb5@>o4crVD{S(I;8rln9|$WqA)g=_(D{U%E)q!SeB!~RK}+Qm&$V{lVn(Hq>&X@S z+A=HYg5c81SWfX7xZgTEUG4Oda|-C=aAkAdFs5vA;L{NhC2E8Kphq7aPkJ z@s`*vx@36cYyU&v`BfrQR4E=byyRerH&Yx9fF{-I?-+3{`pp>V%- zhMd|5M$Rput(3xE-dE)ZCGAr>uh?HmjEB5ps&2S3zZ76n*8Gx#J>`U*e?RHOa|-!p zUE6NQlwQ1UW=!dZm93caK_St)d_t{HXnz^3uOfRqbBW7guW(sM*C%ufY~r88EnpJ= zEUcV5@yPmw_L)Kb0e|X0hCRcjZmv)0R@mh4!L4AD{~@g0gnWX@U*`{Ux=0|Q^M`$s zHbmtQ8@Ki=ui1m8T%}T?(`kwY`XIwPqGsX&XuxvzyHP))MwuO2%}XZMriNfixawd! znRr*A9S_Mwom!*$M!?w;rluOJcT{W!`^yPFKbLgkDTSP7EP%=ay)koR+yZ8>*$`H? zg3Tf!(YnM!9Z_R?&ES3_S>>5t90&V`%RPETjoA)+syQ0BgGv7gSUGk2kt1qM}8 z*;;LDwT1tjs}5iNh<{i35bP*!S1`}2F&kxfhjVaSnB8GDtlXqKBuE={<{{^n1QI&) zc-u4c*sQgg$E+;n9o;!PC}u^_mZ@}Si?MejKZ5(Ov-8!KkGOsjJ%nb&kIbXL+!bko zY(Q+HbG#|JD`{WTNywc-Vq7F4X7i27=mnUd8dy3Bc@FlMvlHYWC7l=>bxxky0z2+J zgImCiJHLaKt+?}~kZ5@lVtUQsKI=g5BxE{CV97d{do&3#+hNo1#O+|xpA0LfPCt@_ zn4U9wz+V16V0YL*+#X=&9%ftYUa%`}3$qvO3@bP31ql)doqNbBC4q#_J-(MTn5k8d z7h9WqOz18Z;|JuO3wK#(f2(zmm~O<6sTnchi2r(*Fg!MuIns=?l6EVdW~>wv;~~vx z51VWRm@mS#tkmN3u#cR;^EJ|m@lYR|3Q($6y{2(BUMn+{TmdUvp=4M{v@V@cADcS( z{+ulFT*vq+><=#A=*OmR%0I#DW>UTnR!*IA3{o^{wM4cE@|^)Q#b8@;Po?U z{~cCtLOa3SuG0fK6(o?*=|MGVLsWY3Y->LPnNnFnADZ?Sa`8_<-ggihm7E=|);GpE z0$DGOkIhStJmJ06AnY+q^)H<#>?kD0L!Qu4Z?=&uoCZ@ZO)rQ^gz994u5hd)=sSsvxuLR`WJh zyq1)UP9R1k#Bo5^__8*#ditnT=b( z3^p@hWh>ZB6%wsWDAcA3(`yFz1Ia3Ev|8NvgMGv09(|u-w!@~sH*N=${vNP$>hvS; zGfdAJJ)rF014^)exIMsppJBGe?ga(h7G^KV!OBf~L4s^SCmeE0Ng$yUj#rXSY%1aS zeQOhr&TNIYP|(2@Jwg1n#y8-e>+E)8d+$%BVR~#%b1Ycgmb8EAeB)LjF&^@bso6%u zjd=4bn3^@?{1Wz*6MX(2(uq;2-}}?B-HtE6!0Tqlm!HAPR(yF-NVG1;sNeh3@Rz}Q ztwX%Ci~qo0;j)f?5u$smP5ggx3z)?J1uLgcJn}_|_L)Jw%b)stNMbaeCF~Jyei5Qu zVUynyw}MH2Gg!F^`2>l8&L!k@kw8M{5;rI9!YY@T-P&AYa!)SX*Gm`p#kOM(z#Y~Z zW5)d5N5lBoq~%B@@=3dwP9^$;#CS+0I_k|f!pvu3YE~lg8Q4!w@cDB{C&om*`>0!P zhn7#_H8VrY$6;kFv|J!0T9-zscOP|c8JvGe)_5*a+yVQ9%Q^b)qi(-V`*ys3Chc#- z%Bj*Y} zL`XEvAzC-VOx5i+Ld_8{IMqu1-s4c%QBL;xT}dYfMXg3?+wBl@5MDPk#Ox0%TOnqj zq!K#B$R6YsVwU(=L01R;tS+yZ5}%^?3fG7B5Q7WpS(=Wxl(Gvb>x#OD75 zZU~eAW3Y1S{1@v@T_g2@$%lFOfr%u6}ls)M$ceL2Qb1 z+%kDCsE902JtJ%B+r~<7^g^|;mX?SAn{A|*RA*oFjk2G~$s$%_>$`ZU{W>{GaD_db@Jt5J$bYg~l`gc=4 zo{aHKB#wby!lf*)vy7Q0q&-aM4&N6N;~{tGY_!|R9{vDxQ{zZy55I>UB zfXTZZR!*JwJUsz7W4?z!^Y_7y;WC%YPmV^|+~12E!Q{RptlWfqf+Rra5ptqPAffY! z?(BM|hj$E>$~|E*P#Oq~#fY=v&g<-XwelFJ6tX3Yn$w&kW{&BAc*LYcc;L>=`ce=soZ8R@l?c z^SBjE^3TG`sgsY~^B(t`L4W>H-t^~?1eTX^>6`bw$6I3efSI@@%pNceR&LS*5@ZWH z;gHiv0tx-B^Vy_bSv~8V-P(j>a$%|CAkh=yPV4M(wUb6pG@wh~3rl(DhaQ)-H|dPx zXdy8kGKwjx)ka`h1v9dyl_A(oPR#ip(ut=Ma?@8Gm#SFj5M{h#W*jNO%2pgH2#MC^ z5NgwxoAQlhjA!z2J?s)L<>;obrmU~St7o#l7FJH3b!5|*oA+b>ydQzx!sTsl`fAGj zVcY~J^M_#NCd?B|@;XnDlS2XtohKZTv>_@__)u$)-BN|* zEnf}O?Wd3~ylQ52c@L~?MVBp;O6ce!`;S+2ne1Z)Eqg9*?UvH{)hexdhUfdNqSr1Z z`cF`-l;W>lD%2z_6LNOAG2aVPt*Vw#L+b5_b#O<}8BB^x2b}>S(KP6^a0PUp!vjYA zxg2I`#h=f?E^~H={6|P9hDYrMaWuk?M4!ctU`C?Pz{*x6`jn7p-E5=wf;b#!(El+R zhK*#4{yngJxb&lYK^#r7`@j!zQ<#0=4p=$$J`mXp;&7hP5B|r$AN&<|5w{X+zX=&-YvV+%vJ<+gmNh_J3@53>vR~_*Se&ovAN8VYHUN+dp_T6B_zf}sxe8l*$6Ag!F;Ug}WNGArQ)*-f-NmQy@y)1eJUM(|x911I2;o~47(YkbEn%r9IBK#pT#WR682X+XT z@XW|&(k7f&$*f+>X|I-4upCK^i({z9$50+X|+jrnZ`g&}2pY;tmB z3oj?dq8BD!6cSCdh1N|d9racl`NH&LQD|xm>BZ1alE9KGC-?ln$yYHX>N116<#uS9 zjMvNzEfZm7E3~YgR6>Uq*?YV~%O8^VVHH}w+u9u&^ZRqfKHB^l3@i(Jdg$LB`!kLt z$Bssv=^ptJ1lpe=OxKq4HftP~w3p}@bFh$T8e>|x_$lcbE-(VlAWY8+I0LZH+yUn_ z(uoHgxgpRAQdyy&SMsH_Ty%#Le4+E|-WJH3W`uBvNz&_&kgiWlk;q0Dm_lEm$dzii9 zN3e2}-jE=h&RhsG~wm#ZB&a`u5OfRdfD z$;|OU(@wTynY!vkI@wr9NHk40S~ufNBrrxm*#<^qO)Xo&9&*ynFCd*5joM_n_DPgf zr8<+?9IuoaH8z2jt*Egisf3Oivd?%$jW!=EXiLZ4tz98m$NYG0IoXe8J5)1k) zkrQ|REYgYLP+=s*WQCDW;FU7N$j4x1D~xiZ4u;+2#GZdI>BNwzGso+=RK@yf;{d#3W?0!5R<^>* zUP7XEX@dIv%uRVE8RMBMRAHBJDMvp)Ys&geym}_&WM4Zr)$==lx%>Te!T< z&(E4N{{n6Tlle8UauenW=6szt$jKprgiaeaNZJsUHf-A34@4$}p995mhUcjPSY&c` zvl`7?0W%u`Ved=Cw)5X6YfZsCs@Vpw^tQT!Ru$zJ{eYS zLOa3SuG0fK6(o?*k>#nR!AYeD-*4?J%2|{O_KO2Mdve*nQWz0FHXKI8{3{f<^4GzA z*4g34{KU?%72$!MjYh=gDM#LLZPNax^M>Y}V$XMlMC+Cw7RY?U^qRr_Rk8}p^eyhMz`o&fUq6yt znC-CX{|UE)N&k3Q1poY4aoo#@>I7LvqhJU!SWUv8Ld-WIzT%*SnE_JTRE za+6+=AbHUFhn!LpNa+0I@}%8a>r|XO!a4VVSnVQ@TJBZr@ zmPAq$XJhPsa3gLEvmaa!E2rKMHqvvt(|tx?c+$TwJOMk2+ZQ$!ePM(K+5O=$+#qIu zcm!5%(jO9}89Gyu6HWpNov9p`v>_@}*|@bUCF}MD#h{!mv}JNd`j@uMV7b&Y)E&Rc zb={NDu;%QCW1gs}w#cS5S`wQF9f`_ZY900{pt_z;RAvc@agnGvePD#9-C&-o#ro~b zF0j*_T_V3Z>BIo3M8(+*J0R_Zo52i7OJQXzAax0emM1Ds*BL#ak4*DSRC-_saeF{C zQE@iL?gv@i7-l~>16EGGA4C!rr~8b)FznwKE`goI?F(k2;%t!JA1=ZTV)lnm!^%zi zLxLRJw3qYriX*F_?@d%~s5c=tTRHNFTGGCz^M_9giSdv>%#1hQ$RoZ96SU@- z{|9@^*$MJrAe|VQn%s33x8Ht5`6^yNGv?d^D_b$=CLz(fd_vuu826dM{P$!NmhD^2 z{~PuUmwEKw#CR)g^1sEcV3PketeiUe$i0bizZvwWzTcbv6p|Q?tkNFw=DmsWme@U@ z9k+zp1J;3+oAiJL$%4)|+(E zYVv6|YP}t6`tjPCu_l0(tyr^6NVG1`n5)(;B3<3!eGOUUnPprF`-RJU-RSB?qzyLp z%WxZ*)GvjVQ>VTlvW5}ynnC_SfAaUkzTuLW`-})*euCsc=NEG7 zNFbr}i~W)|MCBLvw01pXW@VsMs?s+t&ik1seE1<(mBQtg~WKsF{bK<8`0*EFf}!dbbj$X>?tSs{9~jOqf(OxFlgKD`0^}XH#5FG z4J%vmsGFZbW@PHiP}!eD;^MwXM|_ z{*&K$*YI>XYuLX9dx_f#78%<*V=by1q8BRP#0_C~gx6u^CLJL`cAygsIg=!i&?|b4Lz>Z1Z?+M0&VZ>|q2^TBPfqap!$>E_MBTSqx7>~`@5gIq#+DOdWh=HECnQ>z zT+EcoMcrEl=TDP0o_WP5V4rX~%U51;`)%4E!|P|#{s^p`I_C5y9UagHp`6NR(4F%~Df%K`5_NBtMOq{*Shu^FnKHPoiifyY5P zD0T|C{3-KBxSYr^`WjO=O^1NUt->~9Hsdj1g6j{M`T zjXo19xng(h!Q~9HV>IH<$osc~LNE{%t1EMrV8mCfk>BkSCdYbmJ@Djp*F801x5(>0 z`hH1dLX!jOTX+p(d)Q~#|>t<5E5mru}a^%_q2kGDW zlYSER3752aZGoHi6L|eh+K<7?O=u^W)x#-SMoKvqB#_XF!HG#55?VobBwyUxGj66V z%N4Wb+*v_6mL05jIvSOn9gT5Qa%9GbvIA{*Y)W#Z2R;htdj*9nB2C=y8M1Y%awhNuMMJ*`b3mQa_aD+juVD%Egxlh*Ef za`d#{mgyZTc8A-lV|m4|sc~5Ba(2R6`TtXQ<^ggPWgA~0*&}yCE(k|J#h@4q9CXoil7LB zeAQJoQ{7e7nfIyM>E6#j?9Y$oskh!=^;=I@*HpLMiq#0D+R{}t|8i;A71@(!M^ryz zQ<}wR+~o>R`HVZbM550~ZwlISy{XWO(~B@v!+QK1&Yg8!1b=2aF;4ZZ`GmCI?wDoj zIXoONnf1lBOMO=bUEf zW?}gN-ZZhW91JTPh2=mlk=`UDpL3e&(nz1q!oj?PLHc8GQmCY(&pFKwn7luN2SDU~ z60Dp#@5pmbGi4g{@A@TRd^6Y?pMId3EUlKe`O%VMByNzo^!T$ z?TCEN`DMC4Fqu41$*&!WnTO|D53mAd9clHW+GZX^%&|GjVjP}zC7~W%p5YP`!8mmB zK5J!VK`%y*s5#Ec1g58S-;djFcp%R`ISrkp+{7$@aBImcm%9(SXt=1B4tdH?$U4oNBWi5=M z)&bKXti}T%@*aYf6L>q!?#dvD3Bf@^8H6WYrzL3+Zk@z_D3r9TC$VTP31%j21PbOR z{evgi7vAfW`U?XCF@JD1JWj2HjBrGj>*4|rIW`+v?7@|;14`M0%eX`$j1<=uI>Rn& z?%*z%lQDPP0q4kyI`|ROiSdwItT-sysxk++LLY)SAayW@tg4<2Kem16Sct4h7UeG3R-=rZ!yykzkS1=sPVe8K>im$I)^5D zuGxjNU~2L{QaiHiaH_1}gX5V_3`<=+YDR)LA3e^%8z)wn(_m$z!ko$_(sK1YhdNfnJ>tI$AhLf1R!(5=UT>5?;>j~z><>*p=Vrwoj5&Xo=Sl_i;vmeY% z_Eb5Fec)tSu?M>{ow%bA2VTX(H*3stym?}c*#lNKYRv9jB0WzLIru1+HjVmP7M7>8 z7=@EVrLLcM6zhn|zk&xsRX6GKv;#@DtQgG@H8Ov0z} zhKU8`Q?Rm8P(HyW(lZG&#p<=4@=sYXm|r(2{}@gQm9kh>h=p%HRsIlfp2+%oSUGdn z8>{7BJMVw^^L`pm3zfHcQ(<($Wd1ii1S0b%VC4kn4zs;73}SL{kWhvpaP5dR40opc z{(DkxSo=Kn_I+q&vJSI0t|ah~WAl>5Ds0EPfjvdZ0i~?Mwp?N&ScT58%bHI(80KWm zAP2%ZvZ4;&$#h~oStZWpK_i%~yOoCiVu<$*JMdIlYPJr`4 z-{u->DK-*zfSH?h0 z1r8F*7;NL(5orwGlCCkBytY^#To+qMc#`!1t4P*C*2bUIiI`(kk;NMP#g&Az27l%f z6TupE@jh$bU`9VmO5QZ;o%K{Ef%zvZ?BFGqsTdIXlRAM)Hml4*H{L9ouG5k<2-BQC5bf|&AO4G;p1pFl+~V50 zk$lV}Tmp|(>p-jT+j56nVa>XwjbqGm#iil@WM=^6D~0epbN2t}XYuv&_+rzK#SeVl zbp$Ct@Ksj{h5yU05)%Kt>H5R@qor!OQp>aB<*NC?Fz4+57#)rchP%dTFbuXF42@lk z^zDv~@Eg(d;9HH9J6sv5k#akimG{gd#H$@!<~07V$$Q((#Y|#69wbcuTSk6hVe5BQZdyyNGMZsn`?2CrsSRJ?u(sOWuK_376#U_FL~ude-g7JXTd|*I{xZIE$xWw zKA1-Mjp$?ZoyED zwGNmS=L$RkV#T=>RyHcm#atpi7qURO5G`pM^*^wnJlDB?52uDoUHsC|+6|Na@9;2) z?C*t@GiSd@d5`t;pElslzlTYThXFP3`Yklup>@R^1D$v%#4)fDteh|g9PEN}9AYwY zkWh}}G}pl_9miMGT?Uz4?AK48+z%eI)_T*%*JL8**bHVd7yGylDP=B}bBT#yF1mQ1 zwaKLflQJyDYB)(&*umjUCk8~mCKIS+v)#>~-wxr;5(`NlRyGRBDlU-=rm|Rv zNvuPd<(7j@S%(d{#6++TO@ht$B<5z^H^2mCht=Z5>*1VP2SG5O>BRUXy(bAl$|#hv zcr6|Uu>fraD;ou93oenKu}FGPV)FkWi_Ft!ydTaFmH&F*lUPT=`|wzZqhJNBocSnN z-+K~sBz)9=B%A{0h&mElz9+Gch7aTM5J$uDuyVp^aBvjLl!&RuK|-05|9P5{ucrGm z;f;bd@#8~&3XfXrkgI>F<*SkA2mM-Z)oA|Z(lFZClxDFUKXx5T%5waWOC(y3^yZz( zti#$;#p5s_d8a6Y@hF@jE92l!rW2!4@8;{EAtl+U@)M8XjS_3eL$I<@J05VAP_;vh z8L!%Ly-yVEV}0kO`#>{!Xx&J;7JIS!x*^p4SVvYHS3E_`u~BQOAzQP4cs{ml$t4nN zNQ#H)ckw=JWn>?ilu<^O!%4Ej4t8cbF(7iqQ=l>m$sTyK#6q$=tZWpLcW{aHCJ4FW zX(K$!Lh*bOslW-L5{|BTCU7p}jT1Q+Vdcy@M^-#-tS|IueF2;lDrgd!9hYjTx{mrkuVBo5ROUr;bKN5SLzQxH(nd$+wcCKXU*@-|XW9vd(T%vV{d z2mfFRi*c!olWJn&o6jKsgHhFqCFZ}dvQc9G<0_#_j2K5=CFXvgC|HR(F5PDkc4|p( zZR`LZ6f9Oz{;6Zju-q21ftU&$B$P4ux9fx?jlnn4U6hBM+QW57YlR+TZhA8(adMDBr= zjUsXj>(%v3cPN3~Dt1Dw5rUC~EWemRUTAZXYSds3l1ojb~{?WepA!f(I1Jydp z>K|;q8!}(YS8~PHdm+W&EtSE>CLxO{sJRX%WeSer5);7`bc;@Fw%|ONk-T5jYsqur zELkxJr!k!vk@{4=AyUGU?J8q1hPO*BB4@+OMiDuaOQdHEW{Bextc-7Av3RZ-+ze-g z%6K+s9F5+5X>=3bI+65^uyW?4=j>T#2QwB}!INc7yQ81?r~NFP6)Np{+EEWl_x3Y* z1VrLb!paH69cFiB5X7|LAfXIG$+aWWAp9U@gHXzq^n)#TDx!tSI?n37Ee(R}Nm4TC z*tBFZ3OlflU{6kRP${GECN41{jDqO2R#py$S;;Ocqi_hEB`fY=52h0%B8`HCCEHa- z;UK(SVlg=YRyK;szFZ=8qhMuxDvQO_D4YyugvvN-6p~1vh__B8eH^TuIq8T|u+qNT zpZ1k-R;aXfqmV@WGCTqz@k?Ok1mX^}yfO-6T5yn1M&S*v9g#-i&FQ{kSkO3iG07oP{zcV#0BdQ0C-u*J)3hldIA-C*6Bi^0``} z9Css^!(-Pv@apevxsK85Yb_18($a2x!*u{DyKxbhSdZQK-cU!!wx^7pIJP8sZ1awe zm1Du9>@swH@FKg^yK3dWS|y(!3!Y~GGyJ19Z{vToR$Pt~mlMS0!~9a8Rw(rqNBi>w zg<`%swsLGqeO1exHFDDO?NH+nm#!-2`c@C;O1;Mx*iZ0|9jhPFhDP%1^1a2v>ik$e z*9P^W+%P+YX0X|VquSC&Nu}uUHZ;JpU+80;>*Y3xug(>!`AYAqe6^Y{_V%+c9<9mu zH}iFL`&w)as{S@KG0eJhY`!o!RO=ni)hY${Q>k{4FZJh3qr>c#YmE)xc93V_SsN_+ zc8HIZi|f|pievR7+dx46h_a6zwbPE$B<0!n8FB-;zGZFgL#@(Y`Px_-KR|B%a-dQ7 z=@SIIvx>dV>eTwQCbt$w$I@J%Nbl6kR9Xt(HMM1UttnSl6{?MiB46)f-)yTCgd15A z{Fa%b)5cZ=cgpKs@_M(t-XpK~%IkgddcVB>PF^37*9YbG_wxFXygn?ie~{NldTFApSz+yrII^V z^>H+qzEwxZieLu+@28k`3x2}1*pHWc_G{Wb>GP!Po0;?v<|h4vR~9Eo@oy&1*8G|F zBssn0y{a&UNsPz3()BDe@pUC}oQKu{^U1Lb4}kdOI0;rZo*dKWJ*8olHPCPK2fZtt z4eOIzV1k~`mkb(_n}m19TP70T5mwHe@T~abipF`+pL0K)6Dnu1;WZw=NjrzPPo#Ym zteiRR=|j2ZgQJFe%pdjHa6+i4#j#tF;7!hF;*AqIe-c*CoO6$K$Qt9D{2AW}Cxgm( z8ZX-oYcEr%-t^pnH%#Pv9ju%=-!0a+grY%z#vl5VaE7SRx8l&(*BkRr{|g=saU}d1 zR?d7R%#^tkOIsTHMP+Y4zK}_@$B&DXuVUewtmom)6IsuJl{06(v9ZRe@!rRu_i{Kb z)LVT%ztxQ{n9TRULm)EW9aheq`Si$wuSR>+pLPXK2$i;QY?0ti&SkuDBIhEkoH^$n zx$dqpzR;iX1#mK`jD=%syfBa{RF3U@ykR2WFTl##^OdhYG`_#_=ld%-85rNjI~#-V zFYtzme18rrXU=zO^X-#H_+@{>FT&}d5}v{5@G?DRhuyW>%XKSwjHPYLT zc)RUwm_&QrwpjhvI$-jC4ITiI_hMK%bKZ@6x>nIhAL>u~5I7x9_cVKvY}D<8@TQ53 z4}g^?4&$1}_*8$!C&TG*V_Y*CpNKb2WPBW~oH^t5o(_JsKj$mqlu$X7P6xjXZ=T5d z5?DEN)-$3TM6_G_A%D~lz!{;U7C*9!MsMEL_u;J*N#6}CXHL2+%+;udc*-%}9;}N= zw8w)@;clCUZL*z&H%nx@0j!)kThgzXcJ*hyvo$s6Y}m0uNBEy$eH)^?3#D4VQewLq zPp`8xcm_r*g)z%+1nB2XJ6hveZy3ZuuoPC#d=OARTiowI26Av_s3m<9e!rW)Sh0P! z_$WLIBKad=3EPgo<2P^;q~O>+A65iLAd1D<`ma_)S^(gRp?_M-@Lza*$9zOS_P7Y0UvYO_Ci6 zqhNbsKbr30I$ecoU$I<`AHVksJW#EpjIfE?^>m#^)UhqHmfyy|kJVn_66^V~ zT57wOdt|S*va-11{migAlNgU@hG|SEhNLccMae;COdgx!4HFB>0$AB7D08_)db`tS zir>H6DIdUs@%+X6zHmycw{>7r7L!LTd~@>H8*iS-dM{WxbJiQH-?-a(ALq~eSU4?I z-eNC|(FK!v4G)3H{1{j{fw{wMuMC5j92_K+VR+tkijs!mU+Ef#Ndx+q|Gp28RO>Kn z<2n93`v#6&O%QySgYOv2}3Uh?iy zCgB`7Pgdl?N10BHNnQLhwh_7cwDB3dWnxh|3syFYN}WrjXB1|M$MHtCG|oR`(ReN= z`~=Pkm9v;a;_;ibe}uPBr2PX}Idj@`)x&rK@qhXg|2v!)D)9yURioJllloJ53`FXG zg_RSiJIwmZIEX32K|&daqH9N_ad>CCC*w^zE?>*V&gk8-h88F5IBVmI0uMPhIav(D zQq~RZX-W<#WfUlhg?zMpk%Av%@u_e zc&o%BvLCE$6p?+nM0!R+t|(aep28yWGzlMu^FiesT~V-8J|1tINO>)+oH^ylih_mo zH~mRp4(EhQT3=DH)BXnDK9TlCuyO)zhgn@212GjiNGM~l#I+;R7;KU9ib7v`WL>o| z7(X)iY1Rp>C|So@8&?#XVaFyUi$VCCD-UH5p5PJ_!5~a&bXzkCvqn)~^6pV4VLFq* zjFc65@G?tQjEP)PXhd#4ZA`&iCKi=0SlK8llek2BMnSG9G_s{}-i<|r-IoUEx4}7~ za*nPjG~zdD?~1oiq`fn&oH^~tib5k}8u7rN_#m7YDsg>9q0tAEdOscmk$MhRPN42E z>nr0RrU(ZKWgH%Jov5U7c*)5)1o-iv{FKkmz4B|=>EE#>g-hYFY8`0xy;~mq-0GnH zei2-39zgPZd^7e|1LRIuG-`nShD%HY^EflscWs{e4@}N*7XN~iWxf4_$CyqGOkHe! zjD>GbG5^GyCr&Ychn0;f<|!_bo{gL*UhKqDrV)SL8gDPTHIo>RX9kn_LjJD8(g~CM zmUs|E?wi5NnRDMnz1~?L`-A=29|$Lhdbe+;y{C$G#N@v}9te^Ddtv1S{tmuSSxYg2 zI7ldm@hjH?CLP9y(sdZ!gOyx=fgNfe^A=~rW7az0+PEgw3_CV^S$yZ2t^-TiicfNh ziC`;VP&JJe1l7*XC~yD zR3lp&=RdM&JlCWihI2yY99@%Y#Bb7m5O1GI`+itCbJ~$LsYb>$;xmr*CO(x(jE8eH z?`(Zds?i6NdN&>ek@{pV{yP%GgP7e=Q>u7!>@?&G+caX*LBt2`<`eYq$1i#?+*~w?|0g>yq?zDS!_qWv)a#36VbMEVE8$_exxrUo^;h$7-3 zp=Os3*N({9r8C{xr7PS|xvCIfzWzMx12$rx_yJvE|^6)?-ha*itvHL-k#OH71` zrAPK!t1maew2V3BIyg;M;K3zKCx%3x_td~88}4pCihdVwm{?H04J#W3EZ@gMAj-+4#n zqT2PmhQnw#^rW5yz$>i%EPd>jm}BMljWff6mv! zDWP%}i-WQ7P1e`o%@bK)4J#+Gc9_kTArO;*gM=~!JGpj58iG%x`(|mf_%K{_zruf5 z53q7%9b@$mwX_6o`xQo8+JS$$GEjElpIl-h*a7Po2NxZWGLpB8G6V~m1m>Bnn1e2+ z6E_6w{o>#}yjfxinFA{uC1fU-NY4^X7xOB=2Q|yL4+{mm3k|}{;e=2L&*GLZ61+K8 z?148<Aosznj2Yx^I7?RC!B3e^jEMa0gB)S9-R|awli%X)5{t>NVP&J3{E|zgXAfHeeFt;R8*^(ceBKk^UddqfR9KUsySF(vjajSZVL*PkU+GXzRayNFx45 zJOU!|C9rY=afex683i#dI7ld?aJlQyl}2G!x<+B@yZdT|HMv@WZR&`*g%NnXTBnct z{w-G$TJ1N6l>>^h8;H3+!GdaS|shB`X74SyoCBzSD|j*gXM!K3Ulbbat5 zy9Bqguh9aZq78n-{(j}y62i&pkvwb<w59KQT)uBqE zw0ewiT8CFFg)mXMw)TW=>>3)YAJw)tiseDJ)x6$59IOGh7jd{;=x=8?Mk;(%wJ%Sh z{w`zn{5$BJMB{@)w2 z|6a*fx2A8^!Tx_U_k@LUtV zk#__6(7n}?1t&3`n30m31G!N!p674CTP1q_>tJQW^QTRAvI+JX)(cOtPr`|yf))Ea z!a2g=`WL)WBG*5|%9(SWrd+0W-!3}Q8}C9UF&?Wl=6x$ReX7_^%JcBHiInHS%9&H1 z!ZXDjjmCH%f5ywb(S)+e}w@sw{b67cZ%3XYMM+5w_Kj0VPR8RqnJ6Nnq8F%o%@n(r^pM#aN zXUo^sG`8D**xN#H!z9{cp#@v99B8n84c;t~?P6FtbGFkXOPU(tL;VRK0w;ue_lgZ~ zk>Jhxd=TC^k@Eqta^{>n!!>0M@TvZQPlhu=1>D1TH1d^j;|@L%Z)I9PcCkTsuu zul6TPr>XZS+MWB5Ki>!7d{Frc=d5BkDc^^;O{9D` zteiRJF8&@%13cvobuG>D_jk7zdz(0oDM2v@jKFH=qBT%@TQ53kARgkXFR8wDES6m zLw&YC>NDZ2P*IDWpn4BX;-ADLAQC?vR!$)9u#Hpg1Qojg9VFCF&_UPNpmHbZ&(l43 zYNIv5NNfk_9q>4{4l=@TNgH2fskYqL*!;_-VYIPL43^!Xx4RA{wHx#{E|It!G`&3~ zlUawgLh>98NZu*xhot|2Gh}5P{DJAjXvmW#LQ1mH?jza8SiT+SX}nQl?f4t4Y}Ae? zTqRWP5M#!xcHH6<1>5TMzLa;759ii)^p2Fv#hvjEPFY$=Pk5pHbQHi}5Sr;;DYSMnwHQEM@1w`V@Nkm_u*}?x7_U8R9*oq%k1bPSjz?}jq9i68{TM=w>iuggrrt-RoU-R{DR^9sZBekJ1{xgUAq`_i&)!2%9S6^;~cYj5F zN+ox!(z5*OVG7eq^H&dBt{0eQFt%sGVfU-7qsm}x$NQnY{Y-Gvf!r6p!dPp@|} zhd){=j0GDqow%pmnol+B?T$I;Y>S6OoO8B;m5n(k?XfVK-A5YnBUvvzi5~_h!dm1l z#KrF=z9HQe?4JDas(gQcp)?pJl!`Vs`!trI z0yR{B<~pF1QTz#)meE9+SY9W2vOYnR!|VOx|`{G~c{3twDtplxoNXvB*%rWplWAl>5ES%yxjFegUFqfDJW}!3evNn5M z0@E>k!q?#(Spf&1WjZk)@+1WgO17$O+*k2diKXMqu(DA)zQ`rgvk3AtOBTL&vq(G_ z3VsXcgUVODZWQjoPWjh(+eFI0gq1U=9Qn+Wh4coedXxSioD(W({WD8;+W*DdC(`~8 zteimGVJ=s8KuiS=63Px7@7fV*2MX!hflj_g9N!A}E_k3?M_K&?<827SnGpsR$cAY$ZrRghhMqF}GUHb}REOkG~g53^Tu#}=yj*h=JutRI-O zu@13uI8!xpLVL^C)EBsBUsaFuxkO_1Xz`jln8h9_fj88_0`~Xed+F9kc}DWk^38PQ zZ>wz_tr zuRO9Y{Py}-eW2ys?cT;{sn%O6msqaK?MzmGVPIgaestS9(q9#gNW)iTRg`|i87 z>^!k`?abA2`C4u)A8aPP@`~W+%%g{AJKrL&x611;;3ZjJ9<ULTa#-^=Sm^7^p6{y|!0{F zA8f@sEY6PJn*CoZg4gi>el1UfWf$f5*}smtemVvB~ zpTW0SO5!UV;*8QpSOn7;m1)dKRplIqS}F8CygA9)HAp!kM7n$)Zm4#do7lzYA}bNOm_^Idif- z@&$qhx9Sgf1WpDO?lgY?Hr{*~e24LdiF^ZCIdi_@SIPS{xL@&y`z1INRJh{KreCc%&%n~H!MBU=kkjbC*`Mw*JjvGMt<2pT z;wBaw`wX_*~5D>4-r#z*{Af9fXxLCp%mF`HKemOa740 zgOfsqEKc>)I$&1nbMXL(yvJbW%z1b5-yms}Z}X>o3!DlnWwEj$emZ5`%QxfA64~Aa zD`(EOGyM6NhV})2w9mttprRF3n*V6cAp0!dDv|6nuyO)fhx1R=5h~*N3q9}XgDZ3W;b$w>D8oY}LHW$kQ)?Wo{ANu?3?RXxJ*%fWP2^0{7dC{?+btFfbO#``0CQP}O$4%6Q* z?J(;Hw=5P|*2AM_$6s`SiMIY|4H#*qJW?L5g?DP3q(gRXk`B?0x3oGGdfWjHgaF6; zv|uK>Y^**w&I5QbUt-^NtmS+2h4560-uyA6Iq^ZJ{J6KoK9R@|IOO%IcQyNRPrf+* zdEy6qj(hgmZ&Vo5_m6WkdZfIrl-Hx= zwO3w`me-uTu9DY2dF_|iyu1#`>!7?2$!kGg19@F7uSIzsme-QJmgRLsUXPL2io90k zwI;8l^14P|kCoT8^14o5kCWHq<@E%9g^#y6fc4dqKd=VZ5aaHO>$*SdGvItsS&I+(sMt-)r{QfADW3`}PaMj|^!)Z12aW$Std*SFz~61naQ zD`(DiYJcNZtY)x={pkj9I;eETuJ~r?CgVZ8X(Ho(Sb4%QHtf}T{*2Fs)8WL}=B~!@ zriqNthLtA_W5ZnC;?MYII2}%mZQkl8ylEoi8)4<_88>%{Xtnxzf5y+k>A)B_LpN*n zGkDWP#!te^nKPcuUdw89x2k*l=Pj5-JNVt_QZ!#n`HOFTP2cR4l8F)cGIL?YZ~q2{b{d-vqPo5IbWSl>WMi5M)639 zBcK8+XFdWJ4(4O~mgH_ijsG|N`CkO*hRT1DRY?6^~Zb-oDV8yvGYU4Zc@G)Z<|Q@N?3W~P&QsoJnB#R5jY=ilx^=O9>UuuQhoqd zo;Z|^mlLzj^mfzJnM8XmSNvYKy`7kXw@swn1uJJxc}7_E8ov+Irsm!JIlm3g2=#8B z&DTDn(VJC!SG;v1>78Na%t_C){8mo`9{2+vgcCyrE`DcY>4eF>9}j}aJqIgi&b>4I z`J@K=Tz}AGa3-jr#Yz|d(WgwFdS*TwZ)OjtQ{vNK~pVbu`d?2q^+I3-lX;uDv# z@XfpUM!b0<>lq@KkJY988{PE#NsaIzk)XI;wSM|iDdr*D`!r&i~puu zL%YRU-WGcilW32{7OR@#r|1UTg?O_>w)0@+%-K$6Kdjft?&nW-A2<=zn^x?<4Nn6w zxGu*VC34*ZR?eL3toYdm8sfG7h)3a^P!Vs;pPS)d{{Ywti!RE>SRoDKB9w!IvMj#u0O7pCu3gN+0l`B zKx5FeUq{Ebr;MFAwj_9T^Nx<8>x0MGWhMKcGZX$vFgNKR@Xtw2UQw(Hvdr{!Tptq#U4@z`P~W(-|#49Y*c4jpwa=EGbfG3`r&?+rEcE)w2I|BEdB!K_m@ z>$rV)n}7 z<_#JvjN+qt)6~78O~qTW4tSmtvjvkFk7uRlSW;rOt}b3jsMt-bwFqyUI3X{Dm5m8G zb;_zvX_Qy^Q{E5GhjmsAk|?X#P0IV=Z4)Ukhm|v@JTo?DXrPbx2fY?f2^F+hxQvBw zvL3~oC$g@<%9*pC5uL&{)Zg$&eG!}yDr)h9F&e!|`a-;QBIyfYcBy$!6KK-ytdOD&9v1ri4dwJ`Re>oSd8 z7~3S>PsYp+&u#07olX6*v2f)rcq&}-DZwMwT3=H549669TSUPGmaqhkfd4fuF=9AeNfbVP&J# ze9Tosl^QXcyh=^pCkl3a^^TKMU4x&>jt%VKU;kk{PNPNU4%QEBamqT_#{F{!jbjd3 zxUn&8DKEFXqEO}KHZGA^UY4X+Uz%rA8oQdGgGm{cE0x^3r7B;VSzY`Y^sY2mZ_Xsf!>pRD#Vn%tz%;Cz z;t>#uFMyRZCq94AGW!r;fqjW6nfd|#)c1umL%qW{;rlXdy)en|jYmNwzZa~WK;B{U zSN=gv7Y-8YQRNobq9q?yHtbH-KTP6BwnU9X9UiRKkv8sMvEqToCMSz!IKy=qDa&vg zmzW5a!FCAHRWKc60=WXtkri<8MWz$uQ5V~PI4IewvI&>strAPe#jvtbI=;pw(z6NE z#3UPLN;3$*XOUpG-QfE>I3HBL;+?XJ-JBrq#oH!Qz6(}PpzKiH)dV4mgM);cAWn7d zh@2q0(w!hW_b*qg`S>ocMW00nsda>n$LEhlaIrFEnHCnZfHBW32alQ-=5dMjObhMV z=GE77cTkb1pyfU<@n=hi*oV>B2Q!CP<@@6?XEE2FFOm0qDu_&_A2y}H=j zUsy9%KXjZk!(OOo1b4wuWdq29LTs9GMV z^$zDMg9VwR$iA}O*_{`DUhiG<`fhpMLtgik*S+L*xxBuIU*Y{_%h@Awn`7Mu$zVR68eoM>eN)sx&e z@pg%HFNc*gr`sc^L=EpB{qa5wCxeQ28ej2i%;g5(2l0l9eD8;qGv_;}sJS-{^o%j@ zN0w`X9Xj!_rN6nW;_BS@nx`b z=EP^kpKdhXL;k$;a89Va<&SFPPiIC&Uxl|%q}>ZEXHI*L{;a9-KF6Q;XW*<*d5em! z_rScr&%z@h60gI`3B(;1QPn!ESdDX#Q0uUBT+N7FhkY>JJ%y9_xkS+yb$7!9)jGo8I)vcKjMi7T?{z0I*5boBxZN8ToCyWsP1imZHtN109xhkQ?G zKj`XNyj5c5cm`HBD#w$q5~^~DQR7uPe(4hhTUz`>x-t-h-D(s^!OzEW-dwu1lJ(njQA;Cz!Ki#s-yEtO>_))(w?N)9ts zS$5zOiIpYAU4u<_kql^l3)StNJi$vZch{%I^Q&z0g+;q*}HZ^0Lu61!sB)|2s2h-2VHSUK}Cuw`UV zUdwTCjsG~f8cq>)9Bi#`F*Lhlj)g1naEN2!GFUlbEI7CbWkkdz;~=3PVcz805%~!7 z#dIHGX6(u7HbH%~@s!A^AK>o?Pg4HqW;Hw|l(t)%(5U0q4>}>=Yo6jtE>@Yb5}0qievS5 zk8#%Gnp~0XpsKaGYvNmrMfRIg_Dh4_kxIFLw2xt{w7JHD5AWxZ zHaA)*6>0^3yi{*(v~P8IPZ!$U z4&?f3WyY!9RgpDSEf?3YBiY)0!wu(F=Xhcd zOW~diZ-RkhfepyjZDv=?m#XCo>m2(%UHffgtuk8b%hi~1WIb&ER9Xu+xbmC3R_+x& z9joWtol!A=Mt0NA|D4!OyFgwS%IhZbx~aS_lGn}Tb#r;$LSDC&*TwR>mAq~(udk8U z*UIbb+o)tnoM}8;&g8;tdlQY7T;xjfI-D`Ob_z zjB1omWBu`@d@7t0>pDqbQWhr+#=+GUP7Ia2*w$w0gvtFcco0PHe}3%qF} z9tM&9VputI_S4kHF%9^k{=g4`^Fh78h09j4o0Jd2+a^*z09MYN@|4EDHjVMA{)|tC zvq5DnYIq}Zlkkan%S6J*!OEEvp4!|hsUg1FAMurNI;e<++ir$#GQJFNn#lMPSUGdX zv*LSHHP8?FgMI+c2^F+BZzdkUN&7y$eIo6~taa^MuI$Y>oG>{=9dFvqHVQ8>b7!dtegZ5s!dKd?~D)Iq@lt z{qY*SOH4sV{w`n#}l=B(#gevqRPf6|}$ zU*N=0iHki5mQI-5|BMGgV;qQ_TlrGM03>u}16Iw(aPkKrJp4odl}>meQTpp-ACdr(T(-g)*be|COB^o+I-!XwmL zN$UHw{K;Xf6H?@kx0WZdz29~CsH0Kd$0bre8m0chmMM}cXnAyq{JW)2Q&c zp8YyHwhcchz9e{*eNlYq`rt8kSvfZDU&ZbgfosL`bQXo@@7O-ZJL3Oq#Q~-h|Fxnh zmNMZ+vHS?$F0oji1S=cGvcx4EDxE5p;)ZdMP{neEYe!_U4AL!@QxB=Jvl*(jLZ4PJ zZ(;qwMyb7E?%%Q+v?`d@NQAM$YB^8pX4mYiqInaSNV#Y(spneeDUyell{50UOIH<2 zedW>c=$ZDl(O0fi`pWr%vHFp1>qlRieYdRj=fxsjhtkwHI?T>VZFdXoXohn(=-8km z{14%5D%Z{ov0J)4Sji2yvpA7rw_ERJs5pep4`!}+j@*5`z|vfxdK zezb4&hK+>BezY}H;lWw$tRlyZ=1R3fF+UbLapOr=j>GTQJtePC%j+}p`geK#hrB*3 zum6tda}5xKdtG6ip$XeYa1Wy4OUPPj3LYJ_+5C;T=z8&)qDBoS^zZW7)VZ<$DV zXIMFN!jqYU(clLDa0lT;P~nPS&4;#2rcSMz_2Z2ax#nQy%(-?8>!_hU*B|W|oC_*i z@t7|yuR-^0yj>#QGhyY4LARj)I_GA8x;MeO!09qeXwbb8ZK7^O4{xF ztUusq;B-&{iyec_&`riq;!P77{{>dgoN>2!P}Kl$@g;BPyogD($2p7oEFZ9qJ9r`9 zE|Km$SUG#TVv#_jyPrSZec)VBZ(l)IE^Zifm*edc>Fxn5XHK_AF3@Or*ZSifg_A+W zE6y=#tSlLPD|o|1zGYZBbG}oXt797Bi~I>+2&aQeSj@l8(9QYx0=#J=-`!bviD&A&=<}2Dp zg?nr!-dOHNe|_+1o#F%Ou+4pT){^BXaW&-Ue@(Ncc6daspw8T?lF; zgLsMUAfYxg+{oW>AbU(?N90C^w@>cqNPLSvp5Fp|f^FWZPdXr9i+>YqH9S78)uX<= z<-5mL8yJSe&|+^!EISv5T*r;txsZ32P|#PoN=WFBq`P~i`GL=l-rSl&>&IEo9j9T? z`u%Xx?c=O0aO%fd$6V>CF>*GSNW3pI`8cb}fHuWk53`dcNWI+r9-K036$mb7IZc+k6XFHfEb|a*6RQ$geC;*k8#jwf=Edl{k(56D%-n2bw|uF*rR` z`qq!Ls;-!0;E#AH#4+$Ntep86uzj3WB~Kd%b1(272eX;Pco&&M zMA)e2Xha%ciDz-gW;%;mJ;-&KDI;aL}frLL2F=k##B^=Q)a~5sTJXksN zF<>(yDtX#CxWj)O+zzLRIt~(zi0Y0x7H-4CA&!MxVC96d;NT*Z5fPJ&gM>07`?_{S z8j*auMr5P@fm-Z`k2Al57BB0Fs~_BQ84R->VVtpf%wjX9vDh)&E(eja89iKLBG`<{ ztjAhGSq8I_{Zs23+rufc;tjT7Ix!q|`OPGTNj9o>e{P32N-P`O!pcV3*oI4_XCtP* zyHd%mTWZqnWr29wh9lv0Q0a;{*v-&Q#)sie6B!>0D`(Dl=APwJjeS-(U$Jnm`*S`6 zP6?H>IN2l?zRCJDym=z)Q(@%<)(&&HvH@ZeaF9?opwqP@(gw`zc6l4-ydE*RFfdRn z#f-o&Sr4#sWF2Gm_m8s?5Rt~_9*Y&Y)iwXh3jB;qOav>?#rv$8foEVo@>Wr1;7K@1 zR>Z*rOeY4UK1F=Ig%2v(tg-`t!J8$Pk3Yl8M)~*?mq^bJOc!&ijqswcqIaM{cp;O( z95I#fEKWEQyg5zG!y6}Zo&zgq&Uv<)Q*EsG@n^jpP70OvT+UkSfXRCgJOCo^-C^Yf z-VSrRvISy7aF9^8;3uvHO4@=4(p??sIV7K}^bHkCgE4FHad@y=M_PT~me!!vR+(xu zzS#U@F$5oV9YV?woWdp6V+g)C)O?XGPY9Cd1-;0&90jvZ*{~ycn*CqlK|*)FgP$OD zx47IZF87Pe1LCrP{ryVPK?98>v_8M0@s~?SOO@Q3e6hDs>d&u@oRoAq>!ZU-NnaMJ zN$sShnX&jaXLKD426L{)y!l<;A7nF|b%Y0>V>+>sSr-pjvGC1G`fa>O-qWS{s5H@P9 zLvGyP_sYOyamR+VrPx023P%;&XSqaTu}#mQ&$A>zD>$28h@vwJ&H^Se9!9;B>BQ*B z*S(fbm}O@!9t5%M%!ZYXvNOX~LX{mcro76|Gp-|BmYrGY8n~_xu=8;WwRN#da~R9y zcvKqyvn@wubg>a@sV9fJvRC!w5H68ePnHC2F>m>n4p*k2rFD~kx3oM`E0jyQV((zS z)|)Tphx6>DHg(eFiL9Fr{%u5LCpG^z-_{MSs(ymSgbh=ps(zez%iqQgF`d{Lt#85~ ziEX_w%j!q*D2QeC6j<3PtAe~kO;lx7+*%G2%FP|*+7Ve+*QM*`rn5~F9lfKak#f1X zV|?4*FIZ2oQERtxN3^UQ*!%NvTSqhC*jTpI+n>AQQ1$kwTw*=-HnmzaBiePX#ykbn zGHT3U;apjP2lq3b7?-;EphPr!v$i~rw@$1rkHX4EZFz)Cq-WLVisk5N#x&lWd=0%j z4c_ya#CSM$llOwil6tfcCiRW+7>Lwo!OEFaU#J$Qqgm6)zsH~ao^Wocclsi2fj!y} zlm5H#IEeIjgOwBLJD36GC&bj@Aff!kk6nwG^b^%|f0x+PUn!52M{C+o06qqfS?hqS ze`uV&go-vcVOfmCM_dP#G7=|oiHTq&rZ)Sn)s}C-oQzrJA~;c2)WI0ji9xB0omY)Wk)DN^Ew{Ke?njOEJuDo|-5aFugp)!gEnd@V9WZ(S1`mM9 z`&Y1X=Dg=A^U%CSH0B$A-JAKVaAK&;#doPJoiMq-j0ZvF{vxcLz};caSGGY+6b=%~ zHk{zv5osGPP1iO|Wj`9V9%Arrc*t7ETm7(cHV%;=xyB|bi*tA<>jL(eCC8L<4sYiY z6Tvx5QytfeOFvA?m{4+XrmV1ogP2Z?N_{4OEK#wWHRUM0ZDLJ10#-I^%7?f_dfs7< zn0i&dG}dRccs$L+nQ&I9ti{)e^&XhSKZ!>`Bz`)qoH_CNYT`|#expD28{o`Psf*Vb zwqBUzufwAtlK(EOoIu`T@>l*rOcxFk%0IltwIk9$%t`k(#zt&^cI?gYD=dDjLRkme zxc~Ssj59VhSq#HVuDMr+;RP-+5e&m*)?;n`)`UjN-P@-U}d9h%;gg4Sp@mxKa=hOED-F@GwALMr-Mp2`r|(<h$HFP0a@K$RXJuW(n1qyGHL7ANtkMXp;G7@D(0ETYyD$UOj>?% z^3ZY4!$`SMt(HsC?+!l122c3i!H4Db5Aynmy#A42;qM0C!Tz;0zZ*EUIeIkv`A-&z zr$PBU?~DI#yjz)0tQ^R9T+Pr;6Z#b1G;z}UE39lxT4^)xT*VF;*6?n5u{Yk$n8bKI zU6^=#_&Q`5wMljpyj3FE`LJ^4WT!SusfKrdf4uL7(_wW4fr(eXp>ECsGL7mH@;!Ld zM8~y9Ff8ID|o|1zF&fs6Zkqj>#4^@@zCHPp&l2ncC`@laq*^f9~U?3?~AV*{}~>h z*0DA2tHxoRF`sC8Z2Xh!AX1Nwf8Y}9d2CE=r~72qW36;_U*hfSCNqig@O96#JjHM{ zj*MfNjIyyI-YBtbyy{9^-LNkU;;C_M92sZOeX~E^Wq6{y`A?YHZ_vh0uXk4R1EZC~ zSYXnPt{R88qQQ83ylEoi?OL#3bM#p{mO7T?>=60lTKV`D{{nj8SaO_^a?JwGJ`DswMW*Hy&tg=CK%o zFS`ySWdy#+B_@Iq=nT88If0vDI`TeI=f&Lw=g0~;xSHw2c+|xT4+mvT6F1_m5=+Mo zu(DA)uHzEvy+EEOc4%4nKFcEUT%dgh&IgsR*h#2jH_gD4c-utEe}R=Vr#wsT$g+^$ z;v3$i7cq(P@bu=Lys`FEHv2uj5O1GIdmgNuK-*z1S9U;51r8F*4t(Bq*h)Kae7bgE zYSOtzE8)>~2bNW3bg`MqVi@ML zh%tXHhmSH08*_>E7>4%jM(b;7vt$lhZby@Ux3o}NldsfzNAi{7(OND%y^OMj3~i;D zUmN}_(JfiKu?&V=vfjzB@Ybsx1c205`RAI6(kATvSwx-__Ir7!{P$ojVLGv!pe|0Y zG5cUv?f2j@5Uci{u(DCL)27}d2d;*C9qWlF>NRjOtW`5GQHxjpjXO@JP;J+#;tdn| zj=;(Zd>y7#H7kqC>>#0Lq^1Bt9ZG{27Z0~@B+F*fc$G!G9@3J>R7 z*81DD-*rWyrs{8ViSy(sK42t`Z7G{*3BU19j^b-T=l{vzdarWk^FYBa>BjtF!?M0Af^ik3FRNI zavj3bKb(>7Q+?xnJMFC88a!gHMTYQ$B<$6IJPC?L8=Iyq&-ur=4k%?FN?c+hn1{ys zc02ZKmE~NRlQEx+!HKe>4o+n{F(~o#?HDrIw0ayl8*iFePR@jtjdJoyE|H#fh@Wp~ zkiMCPgZX)b^i6P5sH83D+u3;EhzCIAeFLnVIdAiPJA?VN{>-0&6GLU5aK4?5`;&MO zMDBlql@qu-%=yYTh>5~MLfMAZt{suKVS}ue9T@MAjh!-f;#lxh_$jp=E=S9hb-cB0 z*@1-{o1`qx;Z3Xy*aMavQ_4BKflEvT=g?esFpA3|Fezg~IS9^_6?U*Y(}_`$=i4!q<=Wc>FZ~~ z%>A0*Rh1u9m7iCgoAeK!U@oCPX$AY>V$3%@#p1^*ly#uhm$!UL-s)7FQW#onHnMnx zzq+Pdd4$JZB^2~WT_q&+AEav1d5FCt#8#tV z9t+#kDbC>%>v4+h*-OGsmFlZ*KQLPA6W^>0w~TC`U(0ra6vEHe<%-)!6VZA@NhE7a z3)Nnx)*BTVs~^+e21{)B%9^~^W;;7+ZSWIq?4+f^-dZ{QN_3$wU+rC!D~_@YJCUom zI+Pp9M|a!2gN?Cpx6N+y`c8S>onPVIH`}v+EzN_E=2-@mwhVe83kjP&jAxnsd9VDp z-@Kmb#Oj9p%&Vmn=7Q*Z@gRss=RL5pVRX{wzL2HNGU_$-C$NrrqF)E+#_Bx+6TSF) zl)WD&{WW+TMEX@&Idl5+TBEXGv7fEcF-Izci;gM$II=oa^~Y@_6lzO#G?iOQA+H&a-%D~r-u$E zfw_F@co4s&F*_iWs$P`70&}SoiN6FZXHI--66+oOS-+`mti^BSqM;j<-+(txr2KkV zIf1gn8kJh+63@C05^BX`rt5H(D;`^Svv*XJlGdh@HiIs4UFX_#Fki}7akZ(B<(8;G3jlEZf-fE=0n!6~yEk)XtMVtC}67aK+ygj!)a0S|&$ zc-FznM&Vh*CDP-*NF45BNt{OiDi#=a=Nj~{fYU>zzeVJn8cSEq$>&l$6yg}T7*@`F z3~Z^+tFa_c8wbDl9|ymKQ$!sHTWjamSh{15g?sUEh-2X{SUF)VIJgL9M8qWHAfXqYedv1*){vI=qj{`Sx4TuZ&?Ri$3oTx%)ZMprCi56E-?{YNAr{H#)j5+ z!laDp=IwB%tgwSOFrB#Bh<}pZwvF{Ic-zF9@@81ss42_1M0y@W`y{);dNqs3(^?F{ zS)sCyZds4qrZTC@Rp#*sh{RXH%9#_7Y*|-1(~QLD{i&Y=XNF2$-?FZHVfu&9;876C zp9L!?kaw8;m46V^g@c6h4|7~QBK^Zp)AbM24#<@XBcp5?H9RLRx_)sV>j+k=tRt@O zzk7K&8e(jEvMg2H?V5jO8h*+3Eq5QKfMcb*C`wDW~a$k;}yw}!V)r$FCwbmQ1V5QMcc)C*>?d;TMN~m8_+hkL7RgGIj7$NJXJ{PkByiUs!8vb}AH%(b%(_LC3xlYz1NP#ftC6pF>({z7iB z9DbOp-g=eZ{RSFfvvV!aYH2%jHc%{#6x)1%hHZ>8F1_vKQZBL<`rFvTP(HV&P-Syz zdw~q4a5E0cGPbgf=_>5dUL3?dutLax|5z;Bb0wsu9d#3~m%C^_8hz9!!{RxhN``>T3 zYJh6xkzQs%+xa-c>gsUsarsJ_6}@&&sO)x4!{Icl!f+dhz-Xz!jCyZhxm3;fjfNXU z+G`Tlq+k-(2$PTxHalg*j+J9eRs{cL3nbxBZ(o+zSLF47^7^X0c3ds~ZUcGUP+m8Z z*Gcj^SzbHkwM$;R<+Vp%r^xG6d7UP&)8%!Byv~%@S@JqtUgyZ`#_~E>Ugyc{e0g0U zuM6dM6M5ZKUKh#hX7akZylx?{TgvNVdEH80x0ct}@GJZizy1W=X&XN*a6O^Ycso2eB?1S;PiObjr!pg=ncG{HZ!up(Z~L>p3eE?WwR{!bjNPPs z1>QE1@};oy#G$-QKVJ6_RLbW}>e!$o{Ljj<;DL997o&{-9!`uKZnpF;+g9(Pe}}hC z#CqOEkVdcz8 zcZ=7T8spFUGyXK33o7HOk}-enYEFx#Rf_f)6=<+Q$ z2Hkh#?Gov}6IRZiuGloB(XIK@JqFGNMptfjGU%4@c8PRX!^)Y{of+G%r9u9xKjbgN zDWO81!!33!d~+85BHlca_2*&b%vtxyx5*miU;9)3C7cW@W$}gM#%plnUcMD?n8^2M zuyW>nyTw*T4ex*b@%{(S1r@KDhvgPagYLiZc8PTV2`f(wx}*9U_L6J7J@o6CL_0mS z+}vu=-5PI~NOwzEIdi(5;l@1e&i#Nt+k@duQ19FxG5vnGhHf%G0dJbfcpa>qIpc1zCtU-4l|SGs;9O7viHZGR1xnYxzHu+!E|KnCuyW>fClz+k?%SU4czdc&Cea>G z)x`@l`|XHv&u)abNu=5VD`!r1YV+4G8r)s{;qC;dgL>PFS+^Ow$#@66X(Hn{!OEF4 zp3?Z~k%qX>AMw#}HmHcF^ZU0Exk-2>-ZGK!;jnV%geS9~eQ9t%?GN`;a3ZL1yE)wO zw`xXp{si7Ak?Y4{<;=Oxi2mA61N=jOz}LeWp#m1~{G-vEq`!x^P9*&uSUGdj3mUnK z{n}AO{x^T*Pr#|6BHvWr)3zUN8h80)co;#p^-;9E0^_E_+_yk=`1 zFz@6o@c@XtH-nWk=iS8*KhY>3>`(bXI2F`eSK|%(HYE17Ulncaj5^DAE6#TvQ0luCU*Hn! z`EEteehFWMpPBRz<|h4vSJwM+`Kir*Ycs`9U{3P3Q3nV92u_q0b?{B56N6G0_P!aq zX$5|OH%%-j--nfra&j$~Nbgfuv&H8$o9WU>|DA>7c|_z>a8jtG#iE--;2jUq<$ByoIqXq0_t5=pSo(aSj^XY!=e$JH*l>$4Z?$6d(`>;&_o9R zN%vElU4>GAp)X&JS&YqCDA=&Ij=B2bEf*&GDtT@&TKbE|A1-ag8=I^e-Xc)b(|lMl0Q zj7Kp!vJJ&Vgd9d38@!fsa=a@HRZiA&iNuGJ^jzxHX1BG1@>Lj>QBb}N=gD4BKE-rm zOyojmGj!9Xd=YP&SW-R@D;p){99IcdQpEW2Dk-BrQLvISsXNt@GI^wuFOJ5l$s?=> z<55joe-AOTqS4ZwME-WEh&eWPE%oFfR}!k8JisLq>&cSz3Q8C6vsO$tx*jEE6q61n z5nWep?cwaj?%%0?l1K~PW4drlWi0ye@s_!E9p z+X&C%E9a5m%?aZTc;iIQuZNX0=R8|21lU-w^k;oIoD}NaEZ&T19WZ%+5D$RJ`~9$T z0&j=eT^R&1Avj2=)rSBO%|{41=rD~yu#7+jrl&_Jh8@H3o9En<{B=Mo-f=)mE>63H0n>WurN<=Q2#5O94htA zv^Vgvj+p!(#{(hqe-u_u;O{U&s5wRy5(f!2$9&ecBXW*;DBX3f$;I+up%$B3-gpB# zV6CIA-oA%W5p%45StgbxtRL9(l^jxPVtE~xmMBW#`$_cz3W_M)}#Dw4=p$x*-t{ssE zVQRXs&?i+3gQb{1c!G5Rt4Y>DR^QY5%Bz?k&X;P(vIk%51E>1OOL<_iImcoG9&^pM zG68?&5);7$bcS8lJiwG6pfu!tp&lx`m;`2&tU!Z*vqZ&s)WvZb9F%NTS%67+tHe^V z0jzA4ivJ1bsjWj#6HB=kzPtMK-5JgYm9O}Ty^7s@V%!mLn@D*nteiRJS!%_=Lb~6d zbPmo5m9*GE8IRwjeH7k4k@gX=asq9Kxm!*DVk&TuP}Bdzt`m}+{->uq{qtS=)q?h( z`fKn|wT`nk@6zXC$0j6;LHLU6z)}X`OI%_i7zDl_KkT+<5`GTzl6Q|X2|tDNWJMl) zo9V=uM7H8{V6tUp6n>1iOe`utgq4k=ay^$wZ>=D*2j9Z^ITj6O%?-}~fOA6Stnb0M z(|#InpGf;}uyW?KwLSP2;){RiO?-1EF&_5cyt8e4@a@z$#bY2+UjQp7PQh%@K>OmyD*mPvE2uHdO zA!QK`;}R3WB1}^q*G$4kU^2$!aT1&MX(wM^^cdz&|-6u#UR}6nsH?ie#<2$fmB`mf7dlFST9?BLS*G&`^InNtd1e_hf5oO*!VG>=tiR#)Zf;9+I93PNAW2x zF%cZa7V^hQ)>LS7(6um8V-C6o&Yg8o1Q#-$xX;*%uXL`jH)e&p8jprpp{|6LjS6)c zmq^cjEKwDGeOc7T#G@=q>}kLl6OX{TqK=6-YOCMt>z6q?9>U`yj*bUl<%H4UF!`wY zOB5jo2{nIx!nGrE{+f~Q{58E+87=j(X{)fN&>w%Q-TKGqIJOSL`hM2gNE_mo)n`Q(|A`{M4q!s8O{rpx7dJX_Q9lH#A6^* zFTl!~Q(vh3#d^qJ;7|U1I5$-Ci!?tG?T1PK3wRtv`k#Z96X-ik{>ndysl!1+`G-wh zJ0ktV4(Tq3_vF{*JJ{jBtK;6`Vb%+*T3H8N{Rpdfh&;eLJn6ECMZmE+%i<*-bVZ@O z#Qj`iB6x`@jc#l6$_6)~qzoVNKR8cT*um3GC&ol>*>6N{)|3C@Efed>e_&;!p8ShT zq~{^zmi^Cx|5kJD8_=n)U zP>JhX_8WaLseb^Efk^#eSUG{Z!-TIqgP0;5B$Q{k$F*2V&#+^92A*C$C7?()24C&1$UA)U$QTZVZ%CHO9!#T3D4lZRnF&^?L zAVEqttKO@B4{w%ON4^6q8+GJct`e$_h;idpN6z+%f*oxAM7njPc~*X{65EdRGV8{8 zJbbkAtb7)6Z0K4_$&0QqR4Ms4mzV&hq;Xb$t)i8aEq{WdGRnzjOkzA-=~Si@V-i0r zpAj=k$|iWz#F8=}RyIn?#;y{oq=@n3RZ^aF9mUd`%ue@pNOyH~RjtDI-Ny>bQ7o0? zQBd}_u4brL9j)GkG=qzcQ%mhQ!j-+M9UtNniM1oebMdD%x~*?uWg}5757gv*96g8NUe*n)P+7-Y8;wLH@Ys}PF%oyVGEqk24lXevjD+gAR%Tv= znHfgn-*Bd^*n>Yaofs8qBvkBXad{4Jn^;`_0V^BDAtX--8_6E{LP{9q2JHIBiB0Y>V>u~Ohn=r;m77L zi>o-xb)+d*QRfm9!Bx!ByRTKA@520y`R3bjzN|wa_$t$hv8jvsM(=@Hb*{oAAXc3# zU}dA~T*@WVa~KQduOu4BkmdXNu-CZ%iA9Ay2N>M{0Oy9vUF`X{_rs+Bdpr&z{oldL znbY4a@{5o4kARs!^Bw`yn8bKEP4mv*QvcP5))#XW^x&}&M?oj7oG=O;Y=d$hVoGt4 zP|o8F*WoOk$6wR^YVfQ|j(sh7xTAL@SIG_J`j*Ash^&BzueJIR4peNMV9@e)NaGKe ziojLev02UHIQDZLVajpr!zB_OM|#uGY_0R!ymJhU&6syeaJH=EgOyAtMy4*#+S58< zmYUUg0K`%=1S=b*ChsbtN{tvxUZrNaPZZ%s&vaKyyGF{zb!)T(-mhkTz$}t=oYfC+ z`DoK99P|p)h&MKVEtTa;R}QMOT*f65D@%&|w0dN(wUTld%*iMzcfe_~q7Ht$3I4HHYrZLqRYN^ap2=}jFQEAMJ2-SKnujxoe(3k^@OZTjwl=n^;^9gO!cqawwNbZ$go~c2vGJ)@QMJFo$QbuESZOvW~uNQ#~+=pMgg}Bz_vK zoH_Bx%QlrWjrtG#sed2N43)b6vQ72EB!4X)1(EzUuyO)<2N$4>gqSWIB$ScZ#kC{S zNL-TcbLh;W-0*OrG-y5C^S`VwShcbaI>NU~@#j$)H}yEr|F~jNUgBR|Vj_5nS@F(m z)n4?_N*H3i8%t6O`uEq8tb9NN3n(t$bVw z(=f`%WpIwHK!YzZofwaL4=*1alx$V4XkLQ1N-Py$hn0;|@l`I7-efUN>|wC*eSk&c zIX&D5=Yz^ue4|vwZcYey<87~x@;MuHY|s(@Cs6n2Z{a2~$307V0}Jx5TfLD_ViM!w z1kGDoIKg=QCiV^R_Sc6!Li>N?McZK#S3W?@2@Vp<2b|*C5$OXiPuB-btFrG}hdVos z6SLj}4_9k>srOs`K;&nn&R?t)p^M046O_d;>&Lr01G%D8STY zKh;+&2jEm$!3Q5;Ix#HuS=={7f;THnAKo~z!W<1N8}rFZE|H#n*jP-#k%VcqKgR;{ zbP=D0(?X>!UWgi9FqwZE4}r-1Q?PR8%onIRIGOuT{ki`bP7Rg&rrP2{q#GvtAL3yU z*m3btR!p#LHYF z5l4! zuQ}XmuPjcupZPsFz47eM?nI67!7LO{%Wxo^5bNz6n1qEvj0A5^82jUm6FI*ZR?eLB zY-JW~ck@a9tWSWGLS-#BTWcLKd9T9*Ao5-VD<|-FnBA2@5EFufgfa*(x=u^dAbc#{ zUzAR+lt)YPjdC}_1Jydp>U&w&8i02XJhIrVW3d4@xDFg;1Fqu|6T=3Ceby$4Kf*lZ zt)W&C9)^=-MH<}BbYegnHh`m&%_OZTPHXU9;nt)=4}H+WU*PtVgrtK9XQGc)VRci zumQZ!nhp38%tPK9$_AVVC&`L5ID_fLfJhr4P|0SM4LBEXmRK&vU}d9RoXsUtw*fZ7 zx3N$>R|9T=6G9~%wE+p7Z^j!Za=r;x&YW|^2H04?;LrMbI4M-tx(!I+{VW~;k@qvO zasqFMIb7KQF(EieC>wB$Ye%FFSd{MTf=PYsbwSJp?D9*rCRqnreWi6VU_3S+@Q`D( zk;NYD#JYh!9?1cv?7EFuTN%0>}6fJ>xj4&)X^3*XaNB%a>jR5%}0zR@j;cFHH?Z4)V<2rFk!IkGd+ zLi!qi(pSSdp_0~jCfaFV`G4Gfd7KvI`iN0AUXx2*#!} z(=*eZp6;Q$XGoAmkVUYOEr{Y%Q4|DG1VJ=UL{WqXf(U{jh$0BeCOZg%zgtze=T_Zw zYvz3K?XK$l_~Ye+d3@`f^ZoYsoVs=E7Jhvu+tG6Obu}0St-u084F=oVCL#xe zlaqa^epEGIip&MCiuf@)A@F9|G{S)Qh zJi_i?A`tACM%djGE(e$0$v(S7p;L}OhF_Y=@h&iO>Kso|57_Cixa`hz5iSXr=XLaL zgr?tf9=|-3>uwl1hHHzSt=fLj1S}v_+yAF+E0S&hy<~R>ti80D?OfKEEg9c|{{gI6 zqug3@>SH5t?o06BvsIXy5x(m~w8M-rRm)zR7k&@(MmoxUaJh`s7j6|e(Rm?Qd(;x3 zedQiJ0H)X61tSx$xx0XA#haOuwsllSlhiHevVhnxo za6Zfu879tyOJpRvutMNO=#YyK9!>J1YVqM5{Gv<)ITJ=E26DO&k=y_w7au6Qt3)7< zL&Gg_Ik@bG7axoq--KV9$?**^a_St179S|j&${#cG+Yuc&-&tnk?SY%%QLxt0!EJE z+M=7QfgorC77%J6$l4|%2ZA$_edaK+)Rij@^yMnqS}yYJ;luZ#resta;|)gq?7eWz zkzQmN4L&6Dz{Y7QEHxTz=0n7e2FZ1hwL*z&H=YN;bjdW;=FxeZ6(N*sb@~oBK2`q&d#4#y_ePEdyHP*si&VI;|Mr0Ta7QjChDJV42#@X;6yjH?q_{Hjb7`8147OyoEpBKg69^1D(*;y4&w z1lNPhZ)7kqviwE-+Dw+e03)Z)a(FPHO#jlI>7T?W|9iI8R_*^C zAEG_lzerhI7x)m&25JAB35aIgO-vCu5k4C2-y=$1Rjmumz^}@*iVb08VinVUh~(Qp z<@YcViDUae7_Nu$2V0>0M%urTt+yA8AY{|US`Dd_PjaqBT6Gty-?k?w_ z+A2#;2tW2A+F?RiE0no5DEtNHOa6k?Bge<#QW+^P+#_(JgF9FZ zN?;%s5UQ{I$X3L%uWXj=sT%9{<%;43nq0o8x7LyA%hoFS<&nG017YzRy@v614}3$5 zh+T%>h&~Wcd&nIdzspYuW~;&va+{bhsv5ru8*#Gux-)*JrZ* z85lW+ZHwNm+JDdrEFe_-f8VkFPfT{N+nOHH)!s_Jv@EjZ@GDrXMy1s|TlR8oDDX&A zG7Jg7uoagY5^nV&+F?kTq!QOgg=b*S~nf3A!T_#A&crjY4xi0o02t(uxcN!pXLxQ3JvXAEF%wgfSvx%{RUUb3rD9 zZ@?uo(pmVTz=_Zy58?1=k{4BL2>*j$lxY)Rfsu(#e94DMZX}S0a8P!CCjxO?LijCQ z4lcXlLpY2a{~vy7Cda>lkyGb5bO;CK`9JPF{~Im|muLMD4kOoZ;+JP~{ThrM!?i`v zR&76M0u~Ue?GM@}BHMl@*~bUs!(aoY&Pe0m?GLCO88y~~4}*D;MS6{)_3tdA#qNTn za8&Ex!G~yv)<4c?Lu>w@hWU^gs%3%W;363*Ei4i^5kiJO4CYZKFRR-BG5BSfc5xJp zOzdK@50PB^m!AnYG5iG)isJzAdAJ~4hNB+_GxB^EesLzxXTZp*^Bnmwm?)R_YyOEl z*EhpO;c`ts3})o}Mmzu}-`B&)F??I}a5V-54Z#9JjREs*6Om)U!O1>Gm{7^}W%J^g zq)KEIcuQn~8Iw_I_5F=c5%^yLQPD-Zk6|2m-L~#(9C*ctXoqoN;!xh2iEQ`~%8UG& zsF7g0fWYP^BejLG0w+RBJ-A~W3Z0Gx)9_0(?PDs8OzdN_50TthFg18kFjOv$>HS1F z*e{SUy$@UzF4IA~&=R10FTev}^1TO)oI2m@smBCyoY&krKLIWbm-7#5PYH&SpuCsx zAeg)_gOOu+x9IU|Ob8l<1%w(CUb1aha!mMjvJVNw!Ft-sIzNK7Y7|;4PuB55j&vx) z*ziMJL8-Cf`#wZFj1A(*J@Wm~hhd&bA9)b2k&)`c?E)vlN8{Cck0^OnwT5s%epRN4 z+zTTU6S>=mNN!jdI&zQjJL+NQIiW*9G-D#9{D!w7`VK-^eh=n?dkEV*FmmcFhqfUa ze#!IPnclW#OzYba&1}!cuh0BV&xDa<*tY2EYA^^|fdzyb46e16tsD$Kp6p|UaiuPA z^&tA%V;NSev0>DYHLf0nKk$LS_SlFw(ufR$LD5!FYB0$A5V3XZE2jRsq!Z`AP%Go9pI7@0W9*|reMNdoOSIZ3xm6yoge zuO#avn~0a^yNbDvOtsuC-lp!#4dy$=zYS(9`RvkS^g{u^7pa98N6uT&(XnJ@p&tD4 z#o&(%gFi0z|1ip~ewfK%f-BF>53ZQgEmpy6`En^+oa6m#@HcaUK>avnm@3MMh#R(2 z7ptt@xk|3onUm*|-luUhasq+K>Qg(*ef`l7vO?*D0D06=euBK5Ag}(}%2!ZwBP0L|2YTUQ{P5h_9k+U!3!3^t6{~SVo z5k{8fno!JFYZ+0pK3TBmY>_4|9VixawTuTC5uS1?u9OQK{jpK9yDY;gY#|_oQ_V}( zsW$4*RXTGeVNwItT$ecbA=lTDDT@P!gg-={qU_PhpoCrhp;En&7M5zB9 zg$Kg)pT#h;tdjbrA8HHX{nCR%2ikJ-o4GDg2*3H&XmPYSEbdtaT;0BiCk%+*zCf4;KlAAQ; zOCFTngG3t;*ZnYZ4A&MtTebb530Od=`7W?NCIvEW7@q8-M922-H|Xj8&tFjJ(DJOWqD zNOs{)ffHe;KHYy>V<1t+poWHr@EDjT^8k!YOy+k!L~=vJhQSs}S~rdR@sB#s5Mu;H zGbTjJ{S2S`xJ>BS_yIf;rUL%E`YB)&wJUT)73|=yg86vu$LCApS&MiCw(|4!vEn(_ zKqbG@-~gLz+e2wKR0(tOXqZa)2#g%#1s2nS8aRUXVgaEBj_YkDEeDSOOLm=Moodb- zGy28zxsFV?curZ4zE@I%C2Z_K^?gm_#)uDYMQ}lEjnE=Z%rIh{U@IdvVw8M{*byVS zUgJ>{$zJO*m%-GK`C=tpE+e~z&k39eHTB?NB0U4@C>P-oFdgNKFfwtJFW5pTM+wyA zho#jd{`dnn^KQ+frjL$_z98g4LUSKk=h+qv~ zvV({fyQPx?QeHCOhiC&Y@kmjrYesS$ObRiQW8hkujbuN86XB&EEUiYur!I07etD*g zEQXPZiyUeTpFRS31nf>J&ffMzY;2UGcG^o$q zf``HMnVVo_;xjkcLMWdJbminT7r8_se5NDWX=Ss1am2S+Ovx6-r^ZIKoBxR9nqfC~ z8{_>@y+|!g=ij!pDARerGW(c@ z8f5dBA6Z1RhTEj$Y*|;%a*PiV>nsUw9~x_&gA(! zFmmcVhYkufas8M(*N?zO;c~4X6d1$zLwEp8z8`>*WB9h{;c5&B8iECcda`?zZ6b0E z_+7H=9qZQ0wXC=WiGA5^!^csJGHTBDL5vq2@|N3l5iT}0OC71HV44pRI~63?IM(sG z31zR%2fM@6knXW7TrMNKg{=inbUp|k?dloOJByw02$+`gQ5cz6%67I8%2EO~Ia$h7 zmng)Y#nNOS?XDHSPvm5g2{!K-gIi7`In#u82Fmmb~hu&qQJRj%I^D%HqxIF9cvKhHP3coy)>%}l~4A&N&S~dHi z30Od=1&D`ijY%#*JeKTph>7xz074rl3Tb&;6zxF-!)dT)0yBF{Mt+pxd}!l z9&&>Zk=#rmziX`OrE&e7hzA?J3D?iURpD|S{;sjgfHM9x9s!f_Ct>8&84rEeSk+8p zefks5tWOgV%@_#jFI@kwvC4unKNXLH$^2v(Ifi+QX0PUjpj}u%sCnTcTM5f~;Va25 z4vfxL^U)6*e*zY((O>F&I}QqdV3B5I7!i)Jm5mw^4)Y<}VMG|~rL0-U3YZPjFb3fo z83`@q1Wtqx`C$T|D0x-2R8YmQ%Cw4p7@1f_pAV7TSRg-4VBq&E5sBkKa3x$1F2CUq z6PQ`P0>3ts<*&iWsk0pVFoA*T2i=*zAFc_PY5l_lX14Feug_%rZWuX+ZHwNm+JDdr zh9E8-)v-p0_YePYS2YJ5Y@3ms1OA-s9I$4s+&E1zo7nPlw5re(=;H~q{Qjv z#)C8cznN1j%cH|bTq~F&;>6}-DIhfnO!6VxVGx)&l(#kw>;SVNvs6n3^Wj1n2`y|c zaH7*du(CW9I=y?Ci(i^)A0L5{iG6JCLnJp6$PXJ1l}lrKsR+k$F37+|;W8cmu;EYw zlu_PXoa-Mp97=-nel8vallQY>$NUpyOQD&-yW<0OJl##LGCAf4()(d|Y zI1!ra!I4?R@+zZIix1D^(J&q8A22d;pugKfCL`^ewAEFIRW~10LXm)cmOct@58{xW{?dF>TCu%pF`1`M8Q=!Il zJst|vc&>wyiSb-x3!#iB(3g|(oa+*WFrKH9onuC2ySgF^tgnmso8d0TqqKm1SzcTb zwHoe^Ua_sUa+H^Rh*(ESa$B~@STm35Poi89^OzO-zQ7iA_xOA(FfCZG2*cu)B{41pB2Cb{D|q;IbRumhJr%3CDZjmu7Oj8;qPf z$DwW6^jCa>JI^J!BwU{LZP`Yym*JOZa@`9f$8c@YvsK#-f1J;T*8CrY`5^7# zez-_RN(;9MoCqO}<6(TNNNczkzbw-(?uLt-DJJ+)XL^DQt`fDb~!8)HGF$kJz=;r35B6K6rV~J14U$dnfFw4oW}SZW5nqtTa|(NaYb}%7+$s&v0{_G6p(V3**-)YIEx@9 zl)C08N5G^IKRFDpmDx}B6gUxHcTLr@_nG%#s1RrMmb;?9^Sa2X8NOpYDrdw|#{Yb$2vEisgclLAVWN4( zmIh@uFZmE{U^eTUDxmqy^rumZh|f$D5ZDlC_L)%vCqhp>I8not1+|!|coa;FnG7Qn ziw!D3SlvW$y&@toyAJD{1c+O&9Iq+jN{En zuh#le${>-g>qppXLOIQ0K13Th%?2?=(9C89OcXJjLAYvWv&jjZsM!RoGBJrzzp3JZ zF#V<>VBMjxUL>}1VG)|!7j22(-&;}N(_X8*WT;6x~?ujQ}mHX^5n@eqDx zreQn)BNM~;oh^hij6gk3hH<@16v8kLOm;vSo$V|~y<)?^H^(cSkNolii^$X97}G_t z*xW8v5sk#qKa0#4dJ)Yh<>Itp!emkH(Q-9#QhDY8(1a_*I!! z@lhC=SjBceL~@%78b^LnehVTJtTPjSd*FI-`HdX;Wn{Svzc!QQER38w%i$xxDASj@ zGrbb7372Vd1{i}33++5RGo9K*In?^f+UXayD!Y7g2}+eGC0#B0gkF9d7(p{*kW zF?&ZI7I|SlWt3k12;&`u&E63&Qs&c_2W?4FQ^Nf|MC_E1Tq_AS`-t^mfA3&MRY4mZ z{tXjG8q1q-*^HbQ{w{E$gToBN?h%y<9VTAGBViiP%P=xAo)>K)l<@@Wax$KKU7`^8 z9sf-BzGIAcsATjL$vZ#O9E)*&2gZ*qB3Q$n#||P|$2*VtK18giBzWgB&Syh&kmF!J zh=Uvh7s>1(`w5%~A&qxne5&MS)xF12_+^=Pu^2`sc5$c=kzB)QyaVHvN@Mu*A{4Bt z6Nb-%3&LeM@(zrd=QHq&GkHD@MoyjQ@H;RDu5Whd`bM}YT&~GGFlN55#{*#UeI1M( z!?#5bS7SiX5G)|n{l{F}MCAR)E6MI69pf!|MaO{GMFyBD8CB-~Dy$z_r0W>QfLCnm zt!^z|@*&z|4DfQ+n#A;HQ9ekMm?j{wS;$;zrEqMqwFVq!$^6gYVnQNeu_r`Vg_hL2~^gplE2_F{pqxDm(~NL>kHcaLJ4; z7j6?c5qjiCOe2pn3N<<0i$}q9n7d(Q;xKpGLMVp`RORF_SGza3Yk*jZuxr=>v+n_?4N4@evrA7{=DN5XvwD^*9;E1eYj;Vf;JUktBFY zyCXBg>mfCf6?X4rlwAEl<8#rG_H75<%nK2ELF5EmDwLg+e26x%lMk9}pqa~MFipf< zR>DOyGF|wbz=@j6Mxm#ngi9HRnoTak<6v6N7hz;#HD9oWP*xKt%gJh%xkMqX=En&i z1SG$*+ab=w7|c~_kqPBtkxMfS=3tY-04D=Bz62~oj40SJu{>x?fwGwUeTZ0#N$~OL z+R@}SZ}~UO5b>5b;cA(^lQXShXe#R({niwUO6;nL7CqSkAlhk3>Z0e<~Q8CT&iXBrCeor_K$F9 z|1h{ZT=s*#RdJb61sse=!c@Q_7&%4(7Q=v=CxSL&0ijk?@3l2CFA6bF+??!M$0YA) zp8VhndM?k!uyBp4tM6$VCdA$G@E>p$r@M%#ygQW<-|M)*Ryt~YsQVDH<3n=&M9|U5 zTk9e>!*q}?awA+QBcp|H3Y_TV5N!Teu~X-`9=|rzIj)0|iE~_I3!$7NP>_>zoa+*W zaE>n|yXY}V4n5*)NG0vdBqEV!+=eVNIfun=8N=u(ffJ#n9z4Gf1y6lsDt>XMk4%Pqh5x z%Jx1YAncb&*j@ma#oRO~+w1#FStJF@`5t%(OwML6T7(6he&QbXuQqgl}cl{<9X-7;61n?T!tgtIL$o2gI}D<^II@- z>O6VZ)}8Cw0-_lsKm9e6ZJcJlXW{`c`Q8#nj^W#)hpRClXb2V%Y7DsAR=9Eu z*gx4ZV48oR=Fn#df(60IR8WLo6Qy3dBPRrmTeaJ8vSE;1WtsU`gH#ugXTbQFwVteU^>g$FfwtL z&)GsKX9*PL!){Ycp9s5k^j( zM+)MA5_*d&!5%;t;PrP{~XUl8eF_GDCCeP63Z3K5)$EfiX${TRl9f7(`GjRVj4 z5V7Mxay`SNCX&528BBQ*rG|8lNdf|!o{a1k-W4^AP*Y#eU!c%4pi{yGJOZYpjD?Yj zql~hJP>vF)$;nZkvemS7lsA)gl#RW0iCVr~67P!*^!Jx5HSc2|!NNiGbnQb#d7I%a zhgx|{BTN>NR8(iim%!>Ba#0~cUBco11cs|_cqPpIU&bCq1F zGqqPJ}DD@hf0a{#ZXG{-1)&ZiioXSSOi1ggggE zmW7#6%vWm}QJg+mnr(cf{NhZy zm%zwUi=P^*Owv4u_J5hUzC;A($n}MAQMg>|`@drNJ|7Q&$@h6Matz<9%X5EB^@&Rd zibb){#xsgYm%y zE$%Pg+su5C!n5L9^)(x5YeT}DFe~!MqT0r5aGi|A7XBu1BAm!`w;GW*mQoc%FXLBc zddQ0~GVze-e2C;2UORa2s!=VC=MVi0{q+%^Hxm%p0L|q&coY|npRzpzzdn=g4PoTe z*`B7}wu)i=Fn7iehU>y*JlM@ibD*p*!ed~vz8{Pn!@5Op_Zo9>n-jDM3kWqH+-+-C zay(d)?4sr9V!0>!w%7%*RE;{TyY9d81BZiLw& zt>SvPMn*ylUl%wLKIHx@pD1}%H4a>dUzKSU*TBfcDz5S&k{bu){wo8&e-V*jgE-;$ zakw5_e#85(%q%~OUz^GD!!UB{EQj`A8JM2*vNO{Y1Vl52KKe`6_g|UW9*bX}$@VB1 zIfiYE-mThy&f}-rKG}G6sx$1vMq3 z%ACi5AhJl;F^mDDMYPytEQO=SfHi!GwipBaoV77vHq3|2P(2%%2^YyoX<>bV6Cp&7 z0RdI=vT6+262C0dE;fgeiCt{sLnJ;1m>51 zg6X_C(Se>h`zu(lMzPgh&zzM3`e))sT99ET_=T;C)J$-z577=Y!CIlrwaMTam>c

70is`Hev zwt&EfWiH#{GiO67P|nxFLtt{gCXAdq=b&cQmhNr=bHOkF-kKs^ok+dFs#`~Tl0}`!K{#J;Tv$BjKmhcC~zX2$UTOQ$fOecOn|c)r8-|HR19c-ecH^pR)ab`1P4={{}`*o$b&b!$!q4 z#{c8a_`l)0a2eP47&daCtiOrJz-0Y37&(S@i{7rrgP=uNK&bIx&^8e{9`q!;$zWVp zu4jHF8~uvSZm*&KWRzNcq3Km<;0=UEY>`G}7!Gz8@nSbkQaoxn*ujTrhv7hcg576C zbC6HNoX8y2O2Tn)nT)g+773gPCG|=Ed(REJq|y>1r$pnu7&|8VlyzCL+gzO_Ci8)EDlSYg-WC5{Y0AWt5xq z(}u>U(!BU0&B!nxylz{3H6Ogv9%4_btp8%JJ%e(%xA(RIFy_fJXnA|Uekz=^GX!>ey z2%3fkgqj;(vTa>*Zn!+zR~EK_aWM0 zR2b*ytl7uIFdw9CJO~%bNNM4AffFG_ZdMGaBCX#_;?e%toEb^E)td>O6-wE1I~T=g#%EE#q3>tQf=hY&-xa z-!oz47``ofxEce3hF}4q#(-;Wg)7H^KO{Q_jPA_kqbDJjVVxRVhV#hZJv5z4xq@-qC)+X-?a`i8_=~bk2_v8oOb=_#$n{Fc!=bF=IDHQblSk*vf}!hp}Mj zr3JdMd5s>4oupBN6m+kOlgz!(5a6W*Cz~sCFBd5-J=rKa5Xxcr%cinma4qO^8@A_ke zP#X02{w+KVCimZfkz=^GX!>ey2%3fkgqj<+uuVkH4IfK({a{pQIr=@QXGQ#&Ng0(^ z-^+1Fq8C@B9~s7kr)_Jk#)Kz*h;|qg#)ynH<5=@8lneQzP~*Wk0f9|YMmh^`iaJH; zsE_yesChJz7BL#XDAOj^fRTw!ydN;0*fG}=gKd12-JRUo{U}@xF1wRMI}nW=Z--x+ z$?+T*IdzVwsI7aH=Pq}ivv5hcJO?{XBjMBE^QZC4Gr2wvMvmdyqGzkNA2b0A2-WtV zux&-M?SCWLU5DfQ28y+Oe{n@*so+XjsYaPOzpFSDT%_X|27oJU<)a3GulW$|FaWIC zNL!l%egm^2e9f#826N5x+i@?dM?R)Y%TbtJtWR#`tD$J2O5*Kr~~% zr@w6dUByNYl=Thq7?`Y2hmm7gx9II^JP2BZ1%w(8F1MAh91nh!>`?}za?7LVAZB2t z8jZzyRltiY(tr#@!KZ9RqlSV{`Vj3f6pRrWYp!ty%mwKar@jz=v7_KdPwrcx96R?0#ZT}OtiO9D9c(R)a z)-0849hu+iI7qcdc{!abRO6lzckZ7c7TzIf6VtGlA8yn22Tlw z%B3;AOoZb&74*VI;W8a;KGzbUeCO~0n0zmVkyGb;J+$N87tIlmMx443l{`p<_9 zNl@M|#)Dw;egTXe!@EV3S93zpC@dhV{45PvyY-_JZh2Q%S?Jz2M%*e#G4)PAn44D<)f-7Yt zxA2U>iLg=+Hma-GsfoOfUz=$nufWK}L|*bCk{cG*k-avK>zVJMze2+GmI4ABpt)SH z7us1c9OIkg5il9w1V&Ds@%2NUHjecp-B~{zt_+v;4fJ_oC=2>qKLn40$^3yZat!kp z-Chk0LA$VkPy@q#wx%TqhDVbf7)JG%PmIh7m%v&z3eEX>f)`h$6&VJE3vETC288o{ zh;|qd#)yoy$>7H@7o=PK2riM4&ce3@PJ|BmJi(($UQ|6#_#u8#rcHbwMkY3Ktq+mh zNFbjlPn z=fes7z#^T-(D)Csm5plr2lx=}(D=uCDQlg-0<%GSLm94-k`3)aVU}pI%__diVe+foTo#oKs z1O}#m>(2E5!8PGBt)EF?X8Skz^_gt{3Pz4$+oE@?_8+tY3kcQz7uqHw+y4{EwtsK$ zTHkh&{y*_Qs3RFg=6pn95Lu+*7zTjxB3f)9mcmg3z!)E*9R`4Le$LtiFbC#CW~g=$ zYy%g`NNHh1ffFG_9#I%jB`>Q+fLZuunRc-ij7;oe3m+o65kMYMXkz#{5sKpsa12}! zF2ms?3S)Ra3com$=fyB`>O6;zC^T{Xd3UbQf{ViCT0f#NhVL`*0GNEA1|!GtZPCNk z7!WiB3kWp^e84slIR<?@ciH{!57a!$_3<7tG957ol>dg7WM~&DboyRZ={MxqW zY83dT577>zzyz7KHVixmb0U8rY8ZGHE|Zbg!ovb5LW%tFQG+gdVKojsjbE5)8&AT> z#5SJrA(9&hds~_aJjZlWjeCgn`wn|bn!YMvPJIn}EBDrgm!c{Ooq=#Gy7t2U-;bMUk zofLu|5(%Gf9=HO(Jkw9U1|t(cx!i|HZeCa~*iRTKna22oA|z~HCyd_@7lzAtuo>Nu z1m*o+JP0Q5cf-i3^S*)FRX7~?9q&7H{~lZ%F83R28w(?eQ2yV+17Y(27K|Ljzr_%s z=7^wySU{*b;w0NdTHLOGHO&zWBh0C zjQID5FLWl=UCuF)&&G5sVzex+dAWR&}Tl0}k{)_TLCWMUy z1U5+-sV%H2a3ZA0BMpW^r}ptd{L)POSPw=f_OXr+k=%$Nk2Dx6m&WvgA{^`&NSNLq zE((|F@R0^X2~fWG#RFjSy%&s}I^Urq4TeglalYK0^8vUpT+a0)4Th4SyjSobn7o%^ zOon)64)*PA+qc1pCVaXahiu<_GSoN4c;`s*swh~g~LZ1)O9^=AL;+mO! z31)_j3zxu^GLl<3L*N+4g`wD~gIW9bx>^l&na+U7L^M|=>pbljen)3ljUR;q@WO(xM5fLkP z=Ojg=286ABh;|qd#)ynH-&hQDA@fu3Jsb*`$Vg{l4}lY*qwzrnL6f|wdgtLF{Gv>o zH~>Z_HnGr$NNyx(d{BX~dzuKuaTYikE(e$0@Bv8PPmyrE0>3nq<3SiXb&f*^Akkm( zb?!W01DAx$vwi@Qk?X7Q%QLyY5=M^U+M;KxwjVSB3kcQrKWv+bZ2R*QZu?@DAky}q z7x80eWK@`Q+xOy%^ch3j|A%d@Ronl&578EFUu3Mc{mCCdxsX2!)%GU}2y8Mk(ph*% z)G0!TZ2KNfq$P~UFUquuF)%W*i4XV?iMM^q?rtIw?3YH^-5D+im)&sNH*&lKerYDh z^I_!FIS#db%5$$f&pEgxT%Pr|Z{&I@et9O>85lW+Ym1((+J4XkEFe_d|C?*69c($uSqGa7h-Ta_P#4%jdkfN#4%NaYcsNWgYy>06Xu)D?P=iO%WGo=m;PG`^ zQOm(&MbhgHozd?xb;6=GI*(;e9S=E{gDX7aZLCj zTn;X~k@W@>$KS^<&E)u67&�!|M&?SNvCZp8pJ&gv&EoZ!mHFC;akEuKx%l$8c@Y zvsK#khiHe!Kh{fG>->AcY{&#v=id{qk&)2C9Dx(zLw;w$CrVybwf>LcS7lnoE-*5& ziXDB3@Mm^<|gm`?N1HKPGa( zJjp0C=L41-u|=AWVF-A{w&rRGc*uunhaq5s%vzfR-iJAnKM*wsybG7fNNeFaffJ!b z9`Y^_fc?JxP0peEXQ)b7!QHT`Jpg!4CfX-U5y1nbFhF= zW5ENqMkU9Bo05GPFeYEkm!fYSTn0|hnHYXn zgo2IXgyE;*f^ZoQe|{;3=O^)tGkJajMoyjQ(C3#-Tu&S8%=J_O(Tu^5{+jjAFU9aZ z84rNT_e2;uhHr}=uEv0%Ay`1DG2n}~!j)sdO9?+5=!qyC0D~|aq(fBU8W{;KEEPBrKIFpzpD1}%H3IbGS7lm7 zAB;?_qToX$Hv-6q0|tJt6p=Vi09U~E;PM-OIACV^YxuR9EME>Ir_OTd;edhZ``wwo z7p@7HY5n1VneDsr>oeKD6Go0<+oE@?_8+tY3kcQz7uhBv+y7?CJ{*`N-Z{y4W{Vw} zQaSnx!jy5SF&VX1U*z}-f(+1)FVcMs)4(JVGd3Sf6{%@pf)CLS)4*Dx%(bClKFp2G zQ#~n|3zy1BZ($RG6QQLZ+%|@Sr+WrJf?u5JBU{7B#792tLnJpFtQ#!1hYF^#oe=>! zjtHNE%fe+lSV1N!P|iPzhrs0g6EJe>oKIJ;7R2*jcjx_FxHMeeH`HD!2&F-}KN}B& z$^GYGuyo@_cn_m%I9NzkhIo0UV<4RbHej*m5iho{v>cBjMOLk4kF2t*Hz00 z|G=-yw2Z&Q$iy=K=0haM?&P4q8adu*Jo>969Dh(iU}H0v2+Y_ z)R|sK4F*QG_jhM|U$`n+dbt`0g0^4*p~ivRZB0s! z11~4LnP7BxU%4yt6yY3Ls794F;VFU$EYf%kqrjQAvQeYJ={`g|i~`~*Lb*#D1g?eI zAWhR(G*nu5@JNh=0~fZ$Y8(f><#PH zXe;#t9Tx@s2pa)L`j25A_&EFvkvdZI!0tXoJIn)Ma?K{w0}=^LGJt&9X077LsR zFZJN&F&sUe501yL&h(NcFf#FyV||F^=7VX$GC{av8sC?Qh#cpH3*owO`3}CrOLL&C zpO44DWc@rCId#@QsBXB2Vg48H%-;&vhRgg$+QWo!9+dr6cpOajZ-J3x*tcl@YJLb> zhXsV1A9l4(M9vQvCp$lk&i7@bCn5h=B!C%}QESf22Yz6YwqzI={$pEhH7@+yhiHd! zVXT+3);6|S6J>*p37ZOtX54g47B~?;v?sOzX=B zX0`|M>oeJ|!pJdfTl8+#{)1Lv0ioLeo3;%}w*PaIeFtG|zFNtN4{C_fD}2rxcKS{nkMfEgi8;xV{NMp6rR3!Dfeax;M>OI}xv z0gvF2YiU+#sImQz{v5$iOz$-cmdIjL634A-b@h3^cei=Or}2oBd5-E zXfuJ4?Va7(-T|%(_ZO{iCWvEvJ{|#+@wqT^4C5BPT#W-kTd;so(wZ>W_&%_duPH6FVck!b3x5kLuxKK!G~yvxuEf~h)7(U4K9b7 zkv|pnLc(QmrHtej&K5WkR_ehGWMhM}AWdFd%?B&-YcoCMA{d!?$QONx6{!2UpCgVSckyB?p`t@X4Gwm1tx;yKyz?I>$Zuoj~ zEb}knQ81Z*9!8E~-lEy7c_C;Q77%J)DA^_==Y`KFyZLa8u=efdMJ9#qC!ro?l$!HN zMnPnec4Qb5=80&rTP7(SH6(27L$t$?FwW0ebB|BJe8>#dd~gI@BqODTy#!8#5P6bO zK$X0#8VwG^FUz!xgJEQ17mIv|rIrKFKJC=Tq>DGkHD< zMoyjQ&`Cxnu7Bvx_4nbTaJkk`GK%5*T08(I-&e!PF??I}a5V-54Z#9JjRCW56Om)U ztYlwF9M>ZrBGhuxC4+y7957ol>dg6^<3?oW)AZi$xA|SAd$w+JAeNn3jCGwo(23_*PY8;q^Uzlkd6JTUw8)JQl;m3hXM|G^x z;r)ZX^gI09r}DsKGu?ZNsIZ?Pq5ETSZMbxY4?K<~eHZ-lOwxCRk*!E?CfA_@kIj4+ z-TBVLW#RIzA9x(gc{d&clk-j(IfiqK=C0<0pi5XlsQKU-+g>H-gQJpttT0X-u1CIu z@I6?pMx{B=2aVVw&B!nxeAiYyYCiam578F$fy`Q)5AK6GAr0dmxJ*V`3#$Z9gp$U0 z5Tumkh1Gm;7k*);ZQKDP6Wh4mhZuf7XlAQudzNeTd{n0r~EM zf!|w1B#v{yO>jN9{D$8>FtdCEer+bpKY)=_XF2rlfr06#-I;z8t_hcE{oMmI+fU%v zXR`emj2y$ZMekPaKWGIO5UTxu+BOl{{%0n;Dln?2GkS2*ho+!@WRzHaFUJE5ytpFG z#?bsX6R~0gu@sGJ{xf`tc4+=%M8;b0UkGy{^HaTlZ@5H8It%j!PK1v7c>kqkk0yCh zwF>ZY{Gv>o*d0bDHnFP@kzDJa80;sc>{dk}j-9_BE(e$0$)S@AjU4ykmu7NYfRR(@ zc#1lMfbx8WJI`N(OTy(jSm}v`Pk+ysG?5ujXV!K}MQSV-~1SsN}kHm0YPaC(m1Y zT;pNn_ya-Jr*@Y6`o#q^{n<*kr;_dOm57h}h_MqwY$LHbTYC7%%o}8eey2z0YrSz4 zj$Rw3P?lg^F)#Lyh!;_VqpQ{sIN|AP zXm=q?M3h)dkYp$k9SfI?YbA#?K}4a{8?%q{m80>{nL0WWMwWFwLi~rpk27fjZ9B4n zdb5?T>WO)}jxBE``gLhKz#jsf;ehqi4$K0vI`U z8GVG|Mxv1Y#eu3eTi@ZXqub$nadot~iFPE@r$V|751%QdpTWqf3u&`>AsH4PUv(GH zzu+2i#k0^|JYLFFFfZUCGX?Wc7&&#pY!xqhvTKA*3~ra9OSN@1K>(=9p@l-$5Dw>@hrpxXNqTU7&&$E%p68M zY8g#a&kA?-48o=2s^{P)s7GZ^ryoVs9!*$QM{80=Wrc`SYp zE)!QX2e>z<*ag9N@Ti%xc?(8vYuOkV0=IRS&1?bDn!BlH$R=(9a3&r#Q#M<|$f?U_ z%lL8Fd!}w!_&e5JH%G&D;@ZukCfH5vg5QyN*i7LZ4kO11N9}YUc~5TuQJ=VUpjgb+ zGTs(OxqC6#7mH&R)c&=%;Z3_TqccS*f-P{t_H3sp9(IXhU}<6NWcTh*IyhU(_YV~P z-TRTv`&WsoV0-M0znJ=A&Dgx(7mhNr|GTk!zo2$mUTG_BwJrAwA0l>}cI+tn@xGy|3VN`nxFT{vP2 zA(S_f#EW?3Oi4TkBg^1agL>A7i1m)9@6g{m-a3Z1#da3+{o2aoX49MnG($i%V@jt^ za#$0bB$7N`eB2NZo~fbfFmmb|()JET{YP%C7Vp?~W^0;?4t7`3BDh@Kel+aEdbSNk z(x*Dw4-cQIqkUlH)OEBS$BV@KqqS_wduvkPiFT5^nofj^##PfXP4%Qu5vZnWcoIxa zod6@JuBmwpP34yNXG>j~u6&=qo9JqHNqrlx8COzAH&arf8c;=j6VHLEsISAwsVj;z zF?G|4=@0Hw`aN7Mu9TWOF?q>T4c&(a&(zR8Fmmb|;&i(HT%~WImNVJX8tXYv-|xdk z<7%m?oi1Dis;PJJB$%3d8%9oDQ=BQhlIs_r?9it0IqquOMnJUYUaqNAc#uBT(JVZC zrjE9PkyF=^w)fh2H&@A3d$avHO-RSN3+WiRUR+xm_Kj=wc24F`m2?yyKT}DIVdT`6 z#F>;TtM-d?gftP|>@K1k z;c9V3H0*0>s2BO!Qx#p0N6%Ezbue=3D&q9C>Inn6+(~**`XhvzPc_tu2hY^d@i21g8sf}H1Kxu-($~J^E~87}dU0jc)cHu}PnC2b z9zRn_=flXUD~Z$DPRdovhUd4xa+lIC;DT|b)YQ(_C;-*ct#|@VEv!p*2XSj6~Hd8m#VC2+wGu#v{3K+NNXpy^m_JfPX^_-?m(c$E&hW5dOXKH8x zjGVfLv{M`--V@qiqpb{`=q{leTq~}G4sAx;3gu1}bOIhbQ$ZydIdugMH}M$u6n)!W zI^Tqg#Fb7{CLZ%%qOapYGd1&77&&##4A;5B+h;V}`MtY#?t_cP)lO47S2%gn$n|U_xfCi$IVpEH867O${E&g49`OU;;x&=;VN-;(;UAs@9lXMkD95P zhhgN@Rim9C99ad7+0!#=1LvW5f`DkvP(17@u{iT{FYYH|9M%-R`pKgzLnWO;hHZ*u6T(<8d>U zvjj#?T{**bs>T)-ZPoY^cj;UR7m6#LrgW-C;&jFMd^~WbcFu#5W3*#&DxEsmE;!K2 z0z#c$bgS(FNGgipR5hn4zUC5zI9~7WaUC78=X%8+&17?|+p{w|I_hKh$qnYk_vFI| zbUgw8&Wt~j`l4nWtk)I97dfuYaHQU2wklRf>OJB^BvbqMHtXov`t+5jtejPNO3=`| zs_?YbPs+6DT9bjIH8yk}+TVvOW@NeWqQHr;Q{QR0=k@`g+A(@ELuoAP0KIqd z7@4m3_V8pUc!1s}CbC0E$c2BI+qly{OF%T^UX9Yez>@Y*u0#M^;n6Y$umy}v+TNx< zM64$_{kS}BNhtWy44oAxepuSPbc~44@u0<{;3{!VV%QTmhcSt8zI04ljK|B=%b_rG z>Uz<(glT%Il`}z^HPxKuu9`F8T5(k~>_Q?(HA7ib?VN^3&D74xFmmeJ(N6W1+7T7j z)N-S{TCRty!&S>}wjD|2N%e6Z9w$>D*TBfB>qGnIkJQJ|uS-+OU))vlI9wyHO04IW zp=_yE9>t?&YUN=VIYuiMce(0DIT)WUAk^*p8}Mu|6H!qFcWh2kJmeCExLrRk;nVQ< zT`qPO=KFG`nmEZid}}a!BXrm^{yysak8snTtyHor=H>@i%<0P3vYF0ewpz_q=lK8g z9I@G2MHjg#G~BY!6cJ;0B2obAmVHYfBKDR&{w~gDy=3@%_RTX3yviJ%uk|kItmOy& z?-f*I={gvuOD3;Q!(Rl~&&YUT7l9Mus%|*SLSJR_gV<5P63a+OD@3`8g=;E6DWQi73XaH@+f z^C6O31DG|kqB_NgmbLlo+agLwIeinZ71wPHM+rO2$*TdK%D#^0z*N##VdT`6G;?Gn zQ6c@_T}b!ArQ!>>BBTr7%&TKK)l`)LtySOWAN4R8M zclvY-Zty~-pt{-~Plc(gc`$P7x?-%3S82QJb{AA9Tq~}iTCqCr)qpDLcsvKDl9s^8 ztA+S4WOO1coPRjNudt~;HN=fG6bc`$P7N@CpERm=adD8_%Ywq(}v14VZ5L8ps@I;uJnhGPQuBnd#ni4mBhUKXJ+@-Y- zTsN*?b++J!Z%A6Q9#mlq@O+pG+XF_9QJBTHT(z?|*urN4p>}31@E>}|?#ycG4$!^J zrNLaKnipqx$L;|Ath=gDfw|(UnzsW~9M9cIGc@JKB`vkTO^dYRoO zs;lo^5uf!IRu}7ZPl*ya?mqo1TxG7)8P4r6Jn-(6IfiY{ls3`spYgz%+WnJ{9P4rM z?>;o$NG zQ(vx_IWd>->8)k@vb9Qnx#mzS-4%5aTs5wucu%gmiXx?;()uEv3R7BNfRR&|)`v%s zmQWMfru9pAIsF{26jx5n6$IW~J;zU*3ij1-1^1y!r{OI?$(C*#7PU+ZQez*TPyXFi{OEu)XkXm;&1q zMvf7f#oDJ@J`EPaEFjp=ikiM+Hle>{5Di3!tHuDq~SXE6L%d^hexv@ep2I=EFkXI~HtRgi1gZ@&KL$Qz5^D zk%_hZ))qo_x~ziF6|r&1;QXV!W8H1)=FWEplLbU;?hFhc6fry|6z4{Y!_>pp zMpGuLornj`RPA^lxea_Rw7M0X6d4vl=ocL}wcXt1urpp+rm68(w-|B=B~OI010Ft8 z81rFdVrO%0A(Wj3@?5>_EOgA@zQvrkjCORs8b7hsM3o$$NuB@~nme)aM4SuKJW-?> zGPbzniHJ*h_)HNm^O0lSEx`>Cp=17H>Js{yhdu7=?(+C5x4xH7?pUM4`$v3bV$nkH z53Wvl&#obzgz7;Q^JQ*EDiNk)E`^ba?Op6cBzH#;ItM9ETG?W;vskX`kFW0$kvdw> zU2wg)lH#3%gh{GV2fE~N2c8F0QMbd$sVge9TPs#keOdj{_1o@hdIPQ%S53TkWI;8F z8c-#@is!&o(!XHj)k8_-0nk=kIQ!BT0-`myd96{B>9NnIcn(Y@Z44u)uB6a=XK|ji zG+)YA^5O$|+M4-dcR3vj7mRC6t(csK3PIiJAUqMKrVfCSQ`Z!u&xtn_3YwfwbC=V} zaILs%~=5D`xOU9jKzN z!t-D%>Pi?nbwzEb7RBTGU1xbfY|$!}OWrqOHIsVOT~-gnMdQlqc-C`3Y#5IegKFzR zJQ=38?uU_6*A}Dib>+LeHA#*Akn>bNNYF!eMWMqVA9DOc(4)WmeWyO@^1wc<9rR!rnx z4XBci#dBaP>1Y@^btTOnd43XA%$M}9Ri5vzrSsrwakccx78p}d1*)cV@GO{WIuk}t zT}`1c;lxej-Q-=aRqj%{1uhj=O1#&Xu^C*Hfa>TbJO!qXZh(9RSK%BC-GF6x_SaePF+`wJGyTA#BSP_&UbWE1;pxe zN9WamDrqvF15-&8VdT|ANoDk-aN^W_-b~9IUm(nu0SX?RbcB+G2&MN}dQZJqaQ%gA*Idv^Dp0D&&vR!$x*;13! zSKa0GWw>5kIkn>XN}~=`QJ3O*Fcoz%jGVfn81B@&qQ9)m=`MFU-2oSiE2mbtlV1d? zrQ7i&m|D6GMowKzj8*V_)wBWg4RZnsizlUp1(T;L~G{nR=j60R0yi6_h9Dh zOijH5Bd4w@#`=J_Gkhue4*WcKMQz(MMYUpmK$d~(X*Qk)Q%^Ht-x?O6Kxnxo3r@s$1MubrW1HuBuwGlIa(L zYUu_%38t2Q03)ZaB}UgfDOb~9G9SI;!3F%UC*llRnil94ooFI1|!EP$>NkJ zbx>4r(vJlM`-Io#pL;h$HQ)VmrCcRj44-+nGJFcqjG4~2mKzF)*4$byV(m)r2~rFl z5M@eQYC|3AIUNt1Dcos3ayuLj71~{Hs7dG`q_8CRbC<+Ecx{<)P#xJkNrciT;#hzu zz!b+GFfwtq-F%4T&VdS@plDK2CD%33shyon+TvZsBqgh$U* z&@vb~MnM)$P4&gVUkfwERWR?s>&A|~YPdHV6DJ0E zH6A)szTftdW4mK=widdDG^!!gAHwbNkM6qo172Kad*t0hvUL$E0a3{B@g$fExerDr z26vAwgfh55r>mF2ZKMYO1NyQ(@n^%XJ%(qMu>N$_yzJ)%M{*GgVvgkz>6q!LzMH zH=eX4p`Ucv&A#TYhs*KOGTn@K>N!IXq2!4&F2loTDq|&#O#JL3A0oLSKlIsLgM_kO z+5TF7Fqg>=_J}v*%f;>V_fPK@@jBYeop9B-_QKnG!;zDr5Ohi7*LWgKVf_+DUfqN> zUl-O}?!tN2| zb*xSBM3}kznVDLPg|Slb&M>p(marm*&hky95|Xd%@!W5tbD zr@HIuGjOrEdOCu&?!X$YhVrNWv>cD0DWd@xc{Py{>383Am(h3OVx=b|)BN-uJbtE( zz6B$%CNd)3?GbkwJp>mkJsFvr+5>p}Od0(SMowKuTd0L}LsRSO)X(o2GuwIW{(yjJ z&DecV)4G{RoVKz5!t`?A$@veA-0s5Z)`c_QT{v@B2jO%Zg!2(RaHivI4I`&6oX|F8 zgX84-mgc&;@}(YaM|;LyKA(bX#qC?oTkjr9pSsT{@$i`<`UH%ex`>8vTiwKc>hAJ6 z7p@XlKFw=eB5^95v+=;0!ucGGoVsv6H0-=1>Nj6Ao}aoa=f`lFxXL-WX#iz^}CyHP9&sRB?T_23CGh13Nj zr!J)7pM5nRA(CxHm%HoeGPqb=9X0RSm&%{YXeAy$Q$`oT$g7Er$g{6I-DUJ^xLE1Q z$n@;%mw5b48T}kaUQJ{~o_)RUE~8iAVx=b|)3dLa@c5ZBdLBkjT}Gi}#SGJtXX*nb z<8Il_KjM6Mwuyjf&E45iOKRX$N$ zUp&NJO9#UB;+higBX^upJ5mBFrv330m}1%&MowK!!>>_S=xWht+%>cuE)!Qn&08(< zGN;lRz$0f$rvf9VE}h|5i@XBrt3}^+*Uop~I&rnrywxHj|b@7Cb z?lm;AYBBFUmp6B@hul^409-Jxig>4lak^Nv22@VJ!*gKD>9;U)>T(*sja6&pA^iuo zbsnq#3zvy2qUNt^I&*FZJO`$h=ljU*@X~g;S;kc+ z^!jr6-R+#aN|xdkX1=?f>CU}WNbpY$P;dzG6dtZY}IEFRx! zYY7*NP#xdmz5p&5w}EC_B`jGB+EVLyE=*aS3nQm4tI$d12gUl;(rm4>H`kRZ574i3 z+~zK>pTTA0iYwPDaYZUZCH7N1Bc{ZD3?rv5vG8t#Sc!F(OZpqPFSsk~pK!If%3{9C zjrT*Z5L8gl;E6B=^%RVpx}Z4I=bWy5wx?U{VbOZw26LQy;rariHKX|Pt+J~|F{rTC z#gkzQYi$@gbzz0Kv&1@87x{SgLU&E=4Ht`RRJ?DY7jdH!b)a(kIGzVnPP@a%tB0I& zdHtQHs=J)};bNsOCs79~r#?Inrkn~ea_Vy0F|_43)}2Hddo#6)Sd-88luOy7*8Z+= z*VfnI%5k;T+p6}b7ljJ#ay%)f&@O|KQx_U*sX^3qFk7r@`nuO$Uw6X=Oui((+>+_9l*QK-^cnsgcagmXmyav5zE+u-u`*P0 zuj839CHD%9oVw(8;YhAmv`nG3a-~cB-@bBRjx3^S z@w}LF+XO~VU2Z#Z+S+Sb2 zJd<1Auj%YDcbz=~*Nm$(-Y1eRR$Wy&sJI@&(_xD10T?-Taj_l}^_9DF8M>f9exCEZ zKSn^bX5MevL!w48sIWeOC&Luhe^)eUvY)#*bBNic8(~m4WNVZHnEkx_J!r)hG!S*{AT7m?HZmjJ$e?tUp`v z7Aedt6c@OQtPa;Lb&*9&LPd5io)S}JXT!*;i;OjWc{h^X#k@Y)|IA%pKZPsCl~>EA zuSPMbuzrju!xYw!VC2+=75<`C>_hNcu2d~o#AEPmUSI$Er@OeGfvd(9S68bVWVj$y zU{B!*F$MNl7&&!;u{K24Dg&iXaXwa;w-~04VC!$^eDk=jfN0IlW6L%~M=C-kwl~~jKA6zf4!am)yX6cuLimHI8!W2~xj2t5>i}z^NtGK~Slok*vzKR?E zQgXRk&BcEy`5JdEUj@^|)iU!-$$p06TPvEf6oz`~_DVcxrfRS7k=x;=+whl?Nl8L) zn13|LRL0#fGV!xJeTd{Fs&SU?3aM`&2vV_+w8G15Rg0{+c@JyJ}dJ9HQU0UI{iVV^kSSq$1 z8U(eiyP#$Zh}PUkG7rh+2x=&QDx;Zr{7e~b2_vU2qpd;@hp3E}6*FD=LCuqnb(hf5 zaG|)KbZFB&Daf75=SVzurhE>EkyDq?@H0|zJCg;Su3Zs{)nO5AZCQlKLKu z+~$&M$f;B;nk4n4yQH3gOP0K(^eRwEJ%(q&l++_Ia_W)_zq?3Xs@hjB*LpMNZZ~;* z=R3HG0-`koH}jM>#=sq|0hQBuJO`$n#=yv_%W3$gS1osYPiZPWd1KSt&0SDC!zD}J zq4X+HN$r4V!Iac|7&%5#7R%mh(9^=W!h{x;!z=1vcUQ<)@d7hf z)Ok+}L4|}0LA3H^JQb!^E`^ba=UwbWB)7UAYNN5D%2qQ~@8FW0zM$MqaIiMZSl4n!B)0hD+8S z!ZLjuaRr_WQ&@vAa_Yj`jxld_mWu;@B{9rrJC|t>q_1*P)p!)aXVpa1QpbQ3hG!q52m1whLKYjROlt@*xuKj7u#-PP7y!f zU03J9RpaW4ck~w80wd+1@;V1khbgZ!VdT{1#d(D2eVRqQ)vDbeu5uUFEpWZK!s4Ay z2@5MI1eMfHcp^+m-2fw}E-B8m?j0pktZ0gQ)?HCg!{y>Csx>Vzr~?($lXxCXK|KK@ zuQq}j(4R(6+tK;oS;oo@d;K@Au_N;VnKgDI$qFmmdG3cckOKU0;9x||lc%V`g| zSX_VNZH$LIo~QzKr`_-@m}1%)MowK!jNNH-dUM&qd{yk1(K=qqT~W*6ig6Xynr&D^ zrJ%Cv#ZzI*DhDH{E-TIy)oWVw{HnXAz6_U(tEtvZQ9&K3pf1JpU<&GD7(A;d2PeDhX$4#>uAYuzy;6_rNfd!fX%J6>DWximoVt`a`|}zHnRnCGsB7FcbroDR zuBKYEKQCMjDy}Q>Y?$J@0!B_HDC4CXqu`RZYJl|2YokE^mmi=4|) z7Am*<@wAw7yB9`IU2dTx`C@0S#;d6@H zAeXr7>{z&L+`ic&Ka13Z3hZb+AEv;LgppGhSm>L;u?@3QuI-|)pPuKgt8?ILadmZU zOZuc=1}djB@idrnIvqw%T~0eP#(n?npIUDvSM3#dlj4+QZPdTTU0OH6mE%f__dPmv zk%E+j%IpR_C8o@N03)X^GtS1Dn)vRtrmUykmGvZCEUvOzvvJ0&0u|E}cos}CJq9DE zE~d~IG-F$!SH}1uYw9k}H;t18L~Cvuc^?Qv9ZM?+mDof)A*RH}!^o*ij5B4`%KaJr z-RC{rg|!=8Ev{j;X3Fx*K;^VEo(5A+JHW`P%ZYQij5rpnFLP3^Qr4d-E_2sZFI+ON zrdo3bh^hq@Ru0dFDXgV1a_Yk3?0^ugg(<5G zVC2+g#o0q@T#diOT~oKi<>G3pHG4?oR^e~M^I!_Oi=#d=;_#1Z zu5+N4AJp##Uv(GPzu?kw#nsc2B`jJK>Rd12IWdLyPZ&9Mp>dpR(6sw~(_Ni!2{#rH zt+^#^jdKNcpn}=}&x0wb^HxT0T(@eKpv=497vgy^1+_Pf93v=; zbKTX^@WH{}77!^O4Zo4<$cL0GeevH^J&?=T%ARUy6dpZOLme=3>KY2&^HCqlm&6&h;`~sP zjCORF(e`k;xK_mb+|9_{EK&ffqSzfbKT}7?!pLo|qxrEqy3k!m=fl-XTt}h&sgBOW<7evV92mLH zbrg(7CO^8>T}P|nY9+3tQ2ta$x8U(Jb#xPq9HS$P1tYcQ6f7fHK%}_lw6R)qS}YE- zE%(KKi11B!0lx;*#1-)VteeD&pJ8a#$&j)XhFW%d84sGN+82G~c35@_eWae2B((Sv zUU%B;W6n2xGXz9yZuk~AOAn#si840C!)GdEI*d&GY?=>|%F2^LLQ8X%QhA_Q%xf!8 z2a6~jSDqHZwc?se^F%b1K5dHo;o&nyv=5A&x`;kBTsNAtG*`=N`Z>v6KPSRv;_Bz% zrkRkJIh9TgkDMu;6JX@jr4w5DHuz6hzLM|kE#~x(id^lkpKrsp;_9b){xg(5711~G z@R=g|I*gpUh_)Qoe|oZgeYyet!CgSVhwH=@&>>ATAU|~~p8N37nc}$zMowKk!w=E@ z<$SeT)(_raV|VBI=Y60=G-d0AwshT5`rviEx51uKYw_)TM0a@J7t0jTp7S94A z#U+7Fl?fh^%T_vj#p|W9s{*^a3wS31(VDwJp8r)FNrn~%%!x~dsI`HQ;-NF;yPc2R z4r>FU_e70V3Ed%wmj}Asg^|Up%iNa2J0^`Sj8F-PL_Uot!Ia2xFfwttV|<9@770Qx zU758sP^x4HbHz-))RkMV-RoT>f^}Rg_##{~Zm;Bhq=v7kNFiw7`~sc`Q&pdbkz-V4 z(ezZ`4D8PWBE`PBLAY<$Vms#D?lQg;=7=lfy;ye))m$yoE2GI03;Z=6E>o<(^pRt` zWOBw9TDUqQ7b!=mH-y{c>+ULe1urYJJs#w)f>7E-4=>??GxhL1j7-eyAGQ$6yaH9O zUgk9;WL{-)X5ug-|F(NL_u<(BqBSG`BA#@E6vHNFNSX+DCLT6ZxLf+ju|_s4IVTH! z3E&7?lhDsP>}E&1OX5hpwoEtU?b@qyBoRuVh~scP0j4+(fsu);9q2=}jf#r7|I%6$c z%U5gp&TKJuyua05#H(Pgnk-_KX1GJD|22|4F~VE$@R=gM$wzL7E*aY2euTL$p;i&@ zl+U`$<7vFU%udN%#83&3ERRqbh)|xy6JZMF2^g8U-D5sPavd}D@#Z*1EzOrY%L667 zZBE)G#KYiy}0`6{wo-$FpFn>0TH) zbv5xiUVo*mfBAdV0_SnOLqN1<9B)y_^U6T=^d8JQ`*Wr+a_V|wJh?kzAX}>Ci~8y5 z^V|isZOa7JisvkiI#5N;#`9o0)JzyTMo|{qR@BayVC#YfM2b6KLVH4w66(#@R)in* ztPF2!$h#}K8|I1IX?c4>#peyY6hjYqOi4>^s8_%`@vxb~J>Exdhutor=YEEogtmBu zC2@(nBre2j%iQV0+Y`!?L@0eCj`Q&ZnBq7OMkcOyjt`OC4wuk30!=C^_t)~}Qnr}s z$<;EsVy-VocDnpRMC`ah^j5fTT$kZ}c8ez|Q!QxET!rVtRM#yqa*Vnx8lLKzfdN`T z=snW{LPfFVM&8J70imMU+=s{(UYya^jJV!is zlcCku6lVzcmMf)fUv6dZD&oE4MY!0lmV|g~%BYUQ3!)H(F+M~xm49!u7_NLu)>WI3 z&E(91$&uMkUAvL(HgLg={1!G8I1zH{JH+j>8DcXub*cOarL*t|nTEHOj~vT%g74pi zhVG$Cghq_;gmsJv+OZuTg;&%#VNuTawBkIJDPeyx9xIdmLt$hYoU-_Xe27>twy@&i z4Iy+$hmuLQE8CZ;)^h#Y7QC}WaE?Mb11=HQ94v)0lq;Q!PQznm3gu)NId!3gUSH9K zGSDyjtG*<4qq|hDhl|9O$^tu2@ud=EOT}^>9xYQW*TBfBizW2%PKl*Qj$E0pT(wh7 zg&Cu8{^Bm2$Kir;g%f)cVI8EoQmjCJaVRp9)^)q7m?9%irK!UX5mcQ+qpSS z5D?g?&lQfPtsmmsGIFFKz z*uvePX_Q&JU%JFyGZ(^T;%a7ZyCFD|FBQ!Bc)U!(oChPv2*zRwR;}U&3p^GO>K1f?-$>n$aLlVs@hHbU)*K$I9w;LZ1!_$NuivnY97U7W~%047&&#-#7!{W zbb^_*uk!>mK|r)-+;y5@ykx0P#^S*;butP@PF*K)U8z4;=^Lo!O!l&iyIyvL3&ph; zr>+!En(AhIJZPqF=E2CR>n3jUt>pT1Wb*BHS4<~dBCcYbCf^`ks+HsMaG6?J0wbrc zmAKWHO0L?Q?br9=T;eX43*j1Z#S;4nf;05We5qQ_$Kz$Hatn-{x=#Kdcjp}-SygTQMlym!6eSKIIHZOFBxi;k z1<4FWO?7p5^;B2&R8>zBBqO0glqLzH2!bF8f(U{rk_0iK1VI!f2%;#0AU*`YQ>p9L z+2>ZTRr}sL-JgGa{k=Eut+)5OzuG6>eb)-v(=85}m)R^(Ue|;28to7YO6W}+q^4A| zm887FM+=hj60Pi=l(6xqIA=JWUTBX$tL>#;4y|e=;#m%<#-Ccgl9rYEctKiLpq0JT z5?WVE$<%DCuI#O6Wd`j~XX;8hTS>}pe6%1bJJZVENeNu{Y}%PC&Pxs@=cny$xso21 zIkZVAEHgCQa`l8IFF8J7keAuCvUgs>X10$07+33Axr#OjWkof!Ehj5Exq=TC+grU1THi>-vkX$rR_X~$Ue@IU z26*!VBB@Q(w z_4&c3OTb0?_vI|4Bm0eW3E14tDJ3(xbV2r&82hL0LN&goYo?BCz(eg)+_(ljSdo|r z*ML_}>`}Mo$V{o<@rW*=A5o3s{r6`K3Wif zJ89)waE$@yyA_GfUH#q2O-iL;{|S!km#Fzj#N_NI$%1^}`qQ zGR1V$LFv!w--Je2c@;Ib5w$CI*)Ulmj1L|o*Sp7KdDHB9-xJuibUTu>Eq4g zXxPJggML`G-*Dr|^mW=c=kp$T&ge8fqLG$oXMrbcotp-8twq~7JbjIi7A%LaRFp%X zeFqOu*9(32fm6lc3F>P5spsFT8i^?8-;#osXJHTpfvg1&EAw%KJgh(~i{bGj6^YQQ z5qTS>PqqN3b~u!rWnYuu+XSgRNS#4jg_e+(#~C0zjm+!IqeeN|jgK6}XJ=a3J3i9@ zd{TLvpOT)RIkZj}DwHVY-_;8tg0 zJVE^up)2^zTi0eXzK3I!<2A*{#oh2%&0$U%G_qLsblgA8Fs z@%8ri^!&U_dxi2703kz|anT;artPnuM6Yio;#q-3IfRvS zmk6!P#||R2Hm&R(A*2SG29(w$=x{wjhtgj8s6i%m3DCiO=paA`(8}HcLTZq4aSMx} z)AR(LOq+!g6lD!6=PnUCk&hijXaTJ}SrD>^v0L;A-9($^2_eTYb^{+fh|qPkvUh|w z8-FoBD^n_;%p}Yud#e^brw8d7+A0>>$no0~4! zEyb2TKt01=!brq3!#*l{qN*lHs21gu0HNxlmAyl?H4ara-CIf&`!l^ZSX=AC+LCq- zEmg-w4_3nn3D@R)A|PCw(#qc93O|+}drhxi{__QE{7dPfI)Qc!h3YfWLzOQ`m}c?` zfG{0HD|?4&8@y5#GJXB-Qgxx8s`F{@)%TTOhn5-KIBu;no8Gtx_msa+U6R?GuN@wg>@?X<)^a|}2%29;JDCN{8Kriv3 zg8==BR`w1MaEvQ&lB{~5dWpBPk%(uB7vV9k^CHO#eB>ZLAEA}K(9=7=paBl(8}Hc+Ialwc2Bx*i-PzB+#EeaIod9ip-)FQ#ja&9F`CUs z4`S3$D|^StYEHCgm`l%p(zZx^&IF zn?E!--Ksx_>H#{KHVdskQ4V0`+$BN>@Uepk?Mo|9284REd9gEnvL2xmX|p^aRLNZ; zw1AHtL})Ip>>Z)a$6wM{Y&4(Hb*#v4(vx%p?HNka5z(#4f)+@iuH#bxfx3oP_6`)V zN7Pp^AJoPeo}!twS?B;4;mWO&yF}<1K6VhHBWdNy zflyAo&UU^Yp>t`oydY$9mk52Hj~ztl3|iScLcl3nrf6o`_I;we^$gufyM;0o;VD`* zc?r>X`QSl_zC$Z}hX^*H;dWp6QB`Crp5RrI@hr|FywO-rT>|tGK6DVE57Wxt0Rr9zDZA)g=%lb<05}}Lv*g=H8L@Q4ggzQTpkLVG4h&Ia;LXK-8_w%uX z2>pmw_KpxTrOx-+U25Le6Z9tS6-rQ)Q)-jCtU>?aLk9u+8?EdeAnWsau44{U%9A}k z=8Bdzl&$+|^}=jzBN5NS?6Bz0ImYsrD6PTA52EyOTG=~F!27Sp%1kPmbu_CvSP#TG=~Jz%9tZXJd|Bv?Fh`&b94;t7do;< zc=NHIz69w=K70_Q&(O+~0i;~IFImdWwXe{gs|V@xv|k=Ts;4hOI)e`%1nE>-**i$U zCZ$;bJCFVE)RXjG+Ax%)2sbIm@|P%mhmRjb>D#ojca(s^Z75&NIBL>MdXoM``-PGe z;ow$JUxM@pK70_Q-_gq6K?1Ii4CUup6QmUmQ?J)PVkF{OuSIx$#AGh<`7j?jh|f~A zvUhxdCBJEmwS{RBWg)b)9-$p*yU;Qe;gY|Wy~Jo+K6((NPtnTWF#>kA3+Ys5sE{|u zZWc+i^(6Jvj-ez)xU1bTK*E&f698eFMJs!U37BRV(u2uNu1CC%eVLx6i)q79mLi;H zkL52>`Vt>Mh|(8mW$!2fw<8PrVe!eDhx8cTPn(5e6yfd2O70S&AMvq+2>pOo_Kpy6 zwXK-xvp?bYrkKXoVo<)Z+z$=K!2f?y#oZS(9C<+)}(0d&!|^uYZ!?M zzd|#aOME`gM-JliQCitMK2ZG;AE7-!&(FTJS6=E*&e8vRFFte-pgm~iNdeFt@r|_w zdVuEAUikpXq%JE^kq;dNXoyz!4iNCpe$g~7F4(7M*Xa?uhIR`@D8hI4tI11`AvqsQo1v|lJj5gvHd)0ZIqoDUxa>8G@^caVVTwEUua z*Wv2v^!v0`C_@n*csM_({(pSrAU^-5mA&HwOs9>B_UB|a)$_BFk%(tG7U6QfoVu(( zpX5Ua0r~{3>>VIrOVNyCLkq11{V{rij-<^(D^P@6ij~|YLZ9Jd2NC)-tvopp8qTFG zgg&oF=nUE{F9@03B|@k2v4aSGj#l=L5YPd;R4_KWJ79lTPttd2&rp&g?0_A#Kmzq` zJ_Qh{Z_&!$fm%Dfb#Zc*-3#kadVc;uTZHnnr~Z{|ld;6*cYMSkF2ALfz2h>q1upVy zo*y|vz5M#Hk%(vdyjKLgI6vdL6dy7O%;L1NcVO0O4UE0u+CfjuwzNrTh1okAVjL^2 zPw_E>$ZSC?dq<|#kkr#-O^*BZz@%x5P++1Ml6rdNkTi>r7{nz(D|^SKRfWm*W$n|6 zi}k>Ki8cuZCW;DE&RHV!1wLjFnGssqJ2I_iG4f8v{d!`4M09+wX}3^rCyQS8t3+P4DV*Mszbv|}hp5xg}j4UjPXn@<3Q>0h+6cbGN^KVYbPDH>{S zbd-9v^+_WU&uZ%c{V78uaS6{S_`pGU)}fWX!_%UXX5GU=rmx>!ijLG%^cmVRv=l|q zNYmkf#Oc#~1|Uuc(aPR&0w&k8AL|)#3PV zyM$7+PXyFdl9tdU_@F^(j-!>mL(}5;Gi}~7w`ad!(lhe~+9Z^j2(DOEa+b)9@G*nP zoI@*nN2bN}H(ltphNd6sf%yS#5eiHM(_fRZ#O3>Z#2_x;qm?H#F5>Hgf79dg7uupu z;xgayZPP#V5reqANGp5CrNwH=e2mh*j`Q(j)T^bB8i@(JS}Lb3>&r@f$RIGw)5_j~ zX*GkHKQuVq8j$wV6SD_x5?W!Rn8B2DmdNbN#|$E~6RkXvk?GCm#kplskIWElQU{T# zCg4x{FL?x1t)@C;Bv|mn4j<=gTOpUD|-i~#WK4uW$yt0pPrY0(-xt;M6k>@ z8B1LL#YYU{@=sdXJ1#8_4f+b{WJxsd|KzdirPC*jL_ABU2o4QuSxaoz;iCqzS<o zj!ldHS~UZmA6Wa09-dFrW})>ag8o`fxl4o&;$sI9+MibTj!=u4O=d7@f63@nJvpDF zJwnNeU}jTJSpxG}K4cJ>`LwckU_KFkP?;(Any>Yi?4!zW>!JA;?Gp;ke)^-zdfF14 zZ}MS-;CzEt_6|;qt-g$TH`+dX`kkJd-_j zv!iE^EKx}J4i_?`1JCWdXxGRx$y};GZ~kd8JvtJ>J(_CL5}M8Uph0Lhp_RSYnHIY> z+0>wQ1~p4hOoFxu9hf56tuYx(T#n--25~u>R`!ldi#1a=U9=m3enHR62<;KdO9X4C za>^2zbNG-!V9uhIy#v$Yeao_Y&P|#h=&|`e?G%bl1n*lm5|{9Nj}IJ#=XP4zJ3Orh zr@XyE^A|lef2J)$sfl86$~*RFUgRSNarq;y>>ZaD%j|5vZ~EreZ04gg)oZ4ejKqXp zGgWey6=r!pW)PX>Xyu8H%#el59(rVUrA-Rdn2SHuwMbX_KP}fz5v;e%>^N?G?!*TV zva>y{?46xfbK!iSedBXTkIo?NQ2?Em#6&R{HYv+uGr)%o0@Ft;dk1Fy@bd%ndrS88 zm|L?}!TE}wnlIBvq15cJKR_7ETcUF*A2*23D6Q-romR`JIy!d6`Kg|rpU_UB>_oAQ z8cSTl^B^BM2+xmcW$*B`=rdw|f0uBQlZ#_N#qOC&diJ;F&AajY&Kl#W(eEv== zPX>H)dAsr2CyrMyuGTRU@hq+)#K&YV@mY(H9K>gJTG=~3t%t5k^$~9_d|FS>L9|n7 z@rh>WswFPr*`E&_gl8XG**iSI&?Q@BeNIo$XKAZYdLpbn&K6no`N%3YdUQ664V?(4$c@A$Je%-=gYaxfD|?5hMb*ir`;w*1 zT>DmfLXXaIv`^@06+zXhr!B!bnhzTU=LlNaJ2)+lBh0Rb^JdP7o}6=Nqfl}pIF1<0 zTcUFoA2*23>9n$UbXwG$p?opps5#%)lk+{=CzPBBYEC_E3C`_&*dRE!(#qb!X>p@# zC_m4d9sgO+%!{-|C^He<=rS2gT>i*M4C3;8TG=};E%t9rH`y&re^m>al}=DEsFpVp z@hqq!*uSY|EwNdSj~c{g8CuypHZ5-EINpQVRnN>$v`1)}iQr~VIb{jV_I$`7Fx$|| z-hpYc057CdnV~}79Fkk5W>AmK0PPftO#}<@M&c5lK0a^|o*r7+J3KAcQHAtiGL!2O zJxso=XXjGdD3qND)=^`5OLRv0xIuKjNGp3sr^Su+LVh@BcT4(-9-9YglTd6TxOH5~ zSt9deK4uV^AJWR+k!dlvDQ5cY_rm|BC+45DM<_87%x%gkOJM%ahYSMqS6bOSFfEqc zruT$3saYqfUO%m6B;r{=MX=;H8B1JN=OYGj`53M29ha8%C1-#2=O8^V`_mqEw7%pV zU;WvK4;chzPg;3G12ac_+4-}2VCK^vbrKkpvaB$}e8?a$1zOoVFfIC&6wRkw3ifg3 zH}%MTgLVl;CW1aC)ubgfU+04cq4_GU>>ZjGeXNTmbI6@CuQ2pwZFHX0qw{OpD-@jw z`d9~3mjL~e4;=*PXSA|+fLh!nuDR&=Ovi_2si(vLqpd>uiQp!2AajY&fBDEkeEvf# zPXc@#-OxAF;{8_4yvW!>3^4;ut$D_Yq*I4zDtOQNm%fS#E?+9H&h2#!Nd z#uAqvK4K7;B(3ZnmlnsN#ytBt^in-9qqIjTFA-d~D5ore`63@O2+RevvUgxwT<(7p~OURrK^&&MCONl%pfxN(8?1Vnc-Z@Lgt@(Wd2T@)KO$i&Jvlw z@-c(Ryh}tJ&+;jP)-6MYm9YN8mPHE_b>#*M}H@9Ns{)X}n+FB*6H?;d!`{4tg;9r6#;2Bw7k z%fQNE|L}^D99epA^Hx?Sohubb&m1lPU#vck4EUDzx$cR_dXf3AD%pSt_TLTviXPXFCCir$z~N1(S|mj68_k*Y{^<_Ww% zHRLf@9?h!FTi@;nH9|kAnrSPH{cg^oO>;i$f%!(K=>d)G)M}G^?5TE#edu|?5TGrlCx5Y%-~SA>4*9~6L@h}8%3}2{BP%7b$$m+ zKL3_e@Nu7iAY(zot$fTN2{+Tqwcr{9(Tx>}&LOi|$PcJHQ9B|kmhwZ1y5H7>{6!P2 z5}-fQmZ1ft;ng9fOy-Q|7xv>Kr0 zj6@Xk^2jUDSk4lfW%!suXqKdvy+dQYMQTAaJY*(z_U+c4^w?}q8->=Lmdy^vuR9fN zs#!~Lw&9}&!P$yd_72YUu%WANa-t_)Oqu0L!U@rU9-=1geM6 z00b&YD|-hjv=U{LgR|TaU8;v@lr{>5NLh&jSxa!f$VUx=a{;Y9k-;ex-QYZ^2j|DM zQ5^$kENcnQ5BaD;aPFa%y@Rt+*btTUG!ZMk1bdSIagm8ibUv^cIe!+>EYQB;^IiK^ugGQ(6@w8s5*Pf`gRIle)i?Xp) z|1}>aSo(fhQ4W3H{+8-BF9M6#;Lr0z{pxA-|9DTGOLh6=TQ1dGKKVelf`R|?@q!He zhgKHD-#b-|!tRtuzEt0^c@jMaOJk|-{BGA~dTcf^5>c$aBsQ%NI;ul}yI=$t?A5&G z8f-&8ZV;ahXl3vCY&;G=g+g+H6QJYt03A)+g^oBay9td`cj`Z!M&=TsBlyTcgbt&X zy(6^EI0%^+R0^d;ad>DbUnmt5ncPq|nX+##o}Y1|BmoVMRhY!MZGp#%+ zV49mwmGT7_OfTwT`XlXGr(p`DFJbyUA3g}vv$XO=hbf)O<%fz1)3(V>BXWKAXt#Vu zy=Ys`NW?Syj-WEx=}VZF;ll@ET9Q`w4wKc7(O$!ix!E%;=1n{4N!p$^3@u9s>&LjJ z+$Bca@Uep!ZAB|j8jOb0NxK!=fF7eh+Atp&m2;OE_3*KS7$s?C?-*H~sYNxKpDC7# z)(fwf>iHR^okIC(`9%(F`IfFEEy4LBA2bNg1+=nvaK_n^>&*`rGUnobI+x1#*fXLB z^#J{tb_@mR5dApToV*0-hkWoLNcYgn-a#6t0`(7+Jj&wuvU6SNQQ7g~K5rv+1&5beo_4nnj$t?V5ls}Y|)eeO>d z6Q(7+4bXf&K*O|GC_pWHQDYP6dfF160v|RAPo7rx4v*csq5k8n9ZJ^D&P?}$l=+~# z>EK{3!@i-X=6f%=9&j4VU*hyLK7J6VM`>m6IE}Nwum3uoU1k2KXX(GRV<<}zEbyC?mmvLz4;}>R z9a`BtNaM_rGQ~vs+{}JsXp`CMW!i>DBA#Vh1aqW%+7g}(_^?5E)}xiZ!!yn*&A4dV z-Z}v~S`W|>v|nfqieQx%OkF~B7#}(a(IK?5cZlrvp7rTxeWG1nq?Iyr(@u`g(sOh= zZ5hhZr}dlFhNEEi5~Wl4=s}cDqLsa)G)_G#rjn(SIriwyic{Cy^&H(w`-O58K|Knl zE+M*^4;_T)Mq1fBM0Ud~s~**z6kFGS)FbqJ+AS2JmY)R1_Kg~eOMsr`0|x zkoEaHd*`HRdZt;MMayN?)9Gc5L_E{!mY=2q(J?7YXqMzd2BBGuR`w3fI2X^%WN214 z?f!Di_Ii4@p$$U|PXrgwnsS#IZNY?328H!@? z8cSRPl;i^k0Xm*m_72dttq)%9cZX`dKkYNLQ9Vvyq`gCNI!3=N3$sDObpf9S2-kVE zvUj-bMxfTzx|C03&5cH@H2ql5(hq5?P?lQvude6U@+7U6wM6G0K57u1yJ%(a=!~;Z zZA>)xL5A#o>c8vR`77-e%1#9P)b+F_Jg@R$gYdjeD|?4$oXcp&MYFigCJR>OS$$Bw zEc=*|h-XkML+Ne%q>ZSlCJN1sC@f%>$*ZTsOB#uIro)OR3e8E&foU;5Xb_x5 zXl3uslB7*SSy3D= zjO8oq%JF=>ATGz!%HDAaxuG0vEnyM!MLjVW&_1EWC~hbRQ2AH9gaynG^}yUidxQeBd;1gKdb$#pyZCTHSni;ey~7f6`ps{mLA1|yE$nI&Mth=AUHeH%HF{Vnd6wdeXcGT1wAr(+9MPh z#T=)eu7oAahYP}zp_RSE60(Xi?uB)|_^KY5D`}rlU=*vUV9FAj%lVK&XfC0Zy+af7 z3XE|u*yq8T*ZfS+&7-tcC^w2%V63bqIuG+vgXla!D|<(04fg^(Q_R@c&i|w5zU9hQ(8Ouf^GqfgFZdSDKreL^dXVg?gTSweFlA2JBdezdZ8Xx4QPLv;s5Uz}6) z$ecvGgd#Je{lTb_umI-bCA${sD*tC-As;zN&OBP#J2@c}7{|DDv!0n7X@5{=6cd-kVYNUo)oy+aamhqI{(jI}&^R!_^*v{5K6iaVT5IZJGw;9~}{d7M`Ej!oF8 zG}iaUVrI#Ldgi;Bk%(vJs~MHX5|+R$!Uqfj^TFf;CgcT6^P4MWQs!-Lv8dikPt0`w z0W6itnU<7unV!AY@qXJswXIhKzaMCT}4**iKRCz3T2i{`uOJ!!j% z)&+WU&ZC_|$x)n0HYY8?Ihzj}1m{dz**iFEhpe`p#N4AN<}TVIl$hNVOYLg55|umn zXhBqNqm{j*vUvz9!$U*)Ldl#;=7zG#R63+(->Z6dUZy=m*-?B59dFh50v|pI)AO{l zcbG!zj%gX?XwkPyQN5U2(MZIzm{Qc8TDG$8OyQ#iQCXH&_Kr%(k&`jc)sk;_JuAD= z9-(zcapY7_SHiL*A1(;XcC@m0SVG=ZG47fDblHM0ucswTn}pJ$cvEF8Ux`bGj~B$H zmsa+UOUMaju{I=-U*%6t;*6CR?Hc%-`QIA&rP=Wsp4EoLVawMgepZo4YNEJB zAH_|YD28VZY`=tYW3m0ax;8v@wCv@J#-0AV2VOFNjHOG5{KK??DIxzduyWWxykaCr zK5SYS&rKJKnS8D|dgf^P|7P`pykf8@&SKnj{zgXj?#ZW$oAo41$wVq!Zq{Y}7nOUr zo0$uh-NFBv?#h3=I~547X+O08?ixXFOsPNqm)hm{-(wPgsz`*oKP}Y$Hr#)IYRDt5 zJeF0f_mLCjNk@8KVpcLWJ1q|0mnpH2sAk#`OrWJj-{2oL$E^Yf#HjK z5-y-kK}pyWCZRF#NgU4O;{$Oxn^yLY!*a<&U(r1*{7{d=J+vVx3Y#G)1agxY+{MQR zVsHno>>Y#U>sD23s5LzNRZqgJv?nMDTQDSq4G}N%;ejx`Kr4HPVU;l$8fDZX;$y?= z^}{MgBA)fbHWU$!9A%AIk&h9?VhXM79gC%$i-$e+ByRXqn+(w?9k zKy!rV^yFZ0IUgPf!zHwG2n=m(f;aZjt6P|DNHq4*|IqG6YB>tCgMInp9o@lR^sscP zY3KS6G{jB<$KAO$o71IaCYLVA-RrS`>Mok#nl?rqJJ-K!mz>7V^=~T@p*z>18`tfe z8?@fJUZMGtlKpTNnX8_2en8vhe7*y(8=a;{GcsL{G)+&kTjo~#4L6P<-s7VK3(UK% zpK%9ICsr3en4SDt=2HFOP`2r(xUv3ePcsrxtT5!$-hqDFfh@&yU!RW?eD3Sg%3@$y zyCM-<1tLGAux>+}BG8?v-3lJgW#*W#>6y=jS#yu0OpM%tV=c|bY1ZMiQ)p#q`NEE= z@v<^F5|*=(L-~L~Xbz^8y+dQQ6m&q7$`9vC_AUA|_1v6Bn}u@I^5sB?n`+Jyos;>P zL3B=}mA#|0kz+t=t~Z&=Er+yKb8geKa|`Vj%1+BSFd%knNlSQc;)4d^xq(*p4$t^? zr*bvRt~<}`*?EpO3uQ-Ncd9u{be`d32GMznR`!mL)xWsAD8o&F>=5-x8=vSqg$Ohr0Nki?QXjc9@-^2aPUx(m*1vaKKk^Qq zLs&1S*3AfP(+A&Z*;xPZrx}Sz7GUDxx9smT&chGnD==7}j~K*YU0PWVgB6L+9ZOjK zeHy&f_6n1QWUkNNBRt9ksXdpVtwL)?%kP$ti%nD7aut6lA2!I&!L+h>cBZ+9m$74> zWYP5ni8J-^oJM=7C1jaa+@BYTWGsb zfDUT48-xPXNL?~?6CXOr&<(V*cZRG(buoIS2Zu`bTY=B(@p+DR3dN^ob2=2CO4gE` zXZWZ=a-O1mItJ8?OEVx_Pr$^Gf2(mw6b?tUxPIczy=c#r{6iTi%*H@2%%&25nYH>rXv#$s%sSM{A~=gxCU&(Iv&FqEM~q8P)1$xDuMeDEMgvuS1T9F2GSmCvOU{rQqr zhOX8lbQSFticln{U$wj?Jy-B?gY;ZRD|@GBy!E?r(SEz)7kYFaqm4q*iDdm=PFiyF z2p=@a%|o=ZcW%a8zn3j^t>53%!}Bif779-!>-VwDB|&fVk%I)iNh^CNXuQf}zB^;T zhdk}G>b2MUMk1cIS0t6EoV4U-T|Q`#o3&}>$-vF9HQ6~_&&{ERu7FaV(QnMtQzy0 z9++2XlTct<_NW|h23${A^70ZNFv!cFXyu8^i~Aneswb&eOe-6Scveh0UPAA0t-uEi z^70W{dBXBizrJMEml=9qcB4(|NPVd%EbGh8e83{Tn3!>=hxg5aNNtfN{`GHv_~j1s-53jzLJ*9_;^8DE~b^e z(-O8$8oO0um6*r$ygWj?gz}VK=dA9b_6i6c#z}>dASV zb_*p(brVZuE(v;*j~pcEAGES}g2LVeuK8&0Bn>Arxt>f)Tm@bKbLvIZx<(?NMU?7I zU`OtfqP6+hL5kL(mAzB6X2|;tj(dEE>ajVPHV7>}EqmjRw^!r7zjpv1EXc{ewDLse z#J;z8vYwL@X@fe&iQ~TB0zO!flex6AcTU3A+bxEpoAkWgKpTbfqFQeUla}Mqb$rku zH`mb0-nj`ooorlHvnImN=&5;%wh5(1bvoHdSu*n*K4g%YU(w1T%(T(Fy3zi++6uP~ zi9i!>x=(K{kwz51tw^Y%cv2IEX~Ml@XPa;@d04(s%H;Z*dT@W@WOkk4{C$kC1WVt}73I+9-NF9bYdfEJpdEFv{q`Iawz7|M zj`wt_Os0<)`J#F&IC=)Fng@@u7nd-A^lfhse5yEFhA_=UqKK zZ__@Z@U&dBf$*4=B{XmHA%oETgI4wqO~?$VR<^CdYW-8xgVnl5f?E!tyzJKY+_pP( zkXoCM7DQzYTG=})*3m@0z6_Rsixwz{>Onb}HV6f!^{3cOGG^WFUIcYla+MY306ta_ zlYMDr@0f%PL&1UEqUB^gEho}Gp|mK5p9&!QkKyCh7TEp z=2x_G2sCZ%&U5SUKz;UNQeZ^5MhE*cHu>&FnS?cRoLHD!VRl z{zgU)j^tn>5M!i!6t`@zH|iaOaA0=(F$OL4|c(ANZjLw(o-! z%rT)W_nmXRukOPNqti@5%g&{hjpb?)3a22Db&cM}!PRU&Zjgt5T3HT{6^YQ=-A3td zT{Nt&OikcaoK7WD!-GSGyuI;!l?hY{&=s^@Xc_r*%XxUCShNDDIeS@FF5{yIF}j#m z_KuNteLe)E;_#rg^nXlG(Id25C`B!Ma98jczYH}fGRaGb9^!)sA-bPd_70Kt^h4iHd(i|A-5TAW%<;j50 z+@#&q>0~`VC(>4Vz{g}RtIq;HauA=nw6b@6S}ft+E3ljN=-fctgrd{>>KHU~)v}h@ zT*pTZVsj0x>>V5HRrlbm#~3Kbt7r7oJVm>NQq%J79&El`OT+h(TO7qLsbZ7^`DXa9|otC+%&V6ZE{yq&-51rPe3)f!{&s30!wM zWeLnNe8?a$N7BmPfoWA=#J1o0dS1?@Ekb#TqQ1Dc`##S{4B~PIt?V6_7WKuk&3Ct+ zmpf^XP+lUaFYfKV@A4soz}$D6O{d3lMp2<0V$`eHJc!_lAkh(TQb zKr2sZT*Lxt8=-$-&R@sKeo@>=%~s=Uy5r`!jCxMH6gMuTo>h?uy^t7st*o6Z!L9F=t=zm6 zc08h6=torh(Kha(-b6d*e98k?7@el4GqO#q3uM*jY26*GWmt=`aog|)K1Q(WT~|>K zeb^nmeY%$GVF#{Y27j5)n5dQa2A|?Bb#4sG$KLY#af`bgop$4=u3vm6teEjnAS+B8rK&#OE_@ zR*kV9Aua>tGOdeG03_=D$w!pcI-^>K#|&+S(w2IZHs_xNSczKR+-X^fYQLqX%q2sc z@{xlKZA2?i@TycCN*0RgmR0ElJxVia+t9g;x+=L0kVGBBCjb(4B(3b7DC@O~T2*qD zcWZn*Ur*Axv|T7k2edoBxe}KIeVz{-BAh`e(1|pM9!- z_N)As3C$!dPJ2pe0I2lEkvmG6Lxa_E!p;MSzow5;MpV7D%~GkLNJTDdcMBJZek zKR`b7mQBk-pLrlt@$?t)v4T&3F0EV(t})^iD-xjoQRllWcN9x{xTFYfYDK zGSMkXxqYOFXC-3;m0r=zt*$M`B=Hmq!*nw8A1=kpOwyj8nR)@%EN+Gbg zUs0W7f>Xkhqb+g{1p^Wm$6-GTOX#bqv-xO2RQhRU@2ITht}D*hQm@jJas}-WN{VAj zO_1X3oNyT*EC|ZQwDLp+#rZ1gV|q{?p&jY~C}FRlKEwwLf^t8t>>ZTV-4#W?e)_JS zlDBDlP)c@^`*&zLalUr?CLbw?$UkUh?})4sf{1+Obp5l{laqCgL_BL4M<;QZ5$CI> zYxALkkgP!~dxs>fj)>Px57jerFl|pK>WJ(0(gXNNK}7bYmAxYpQb!!GmY%F<hbB3~!HNzcd)v^^*zius81HPY+&NI^udp_L~rBH|U& zXY`0XMcdN}L|m_q{)UefMC4br@% z)4wcdFv5dF)jmAJ-X}3n4lHxCE6SnIxPu3bfoXEh zhrn@L@Nn@e6SDHW=nCFX=i#D!+B?usJCLP#?w9d#g3tY8TDcZnV_^AGMIy8cM1H8a zswe{8$!ylTb@iADN(sj!v^8icaNNnP?$?Euf^vrPs?|e$gdi68)5;SPi=6#N@Vj~} z-lnaI6N}seiN%|Igdi6Gpp`?gXk!l9n1)uzsx~AVHLJhfL>f_4XGN+g_R&OPCd1uJ zcJv0`;`m7a8oP~&@J6Pv9d1 zi`&eKGXHcVpWuAldboj^VQ~I?p@~;H#W|lh(>ec@kJ-@^r#i)PKITA%;(?#b#|S>~ z&(q4a;2Pt|8SP3m#*r#^s&V8PeH7Kwrix;FO%!G{Te-6zs9ko?`9tYKX3(^bvA$6I zJCg|a!*UkCkweBA)KYo#e>#&(7v!b#v484L2cv8%rH(P~x9vWH#u)cxMIy8chHnH! zKgd~cweOZHW#*c13g>g7PwoTy$%&EgJ=#L&!ykCf=rld9k)!3v=YGuH$+1j}*2{Sz z9*Cm(E}sQhG~cc$x4}o`!z5%)U}Oo7ozu=^f8qj^^^F8KpF}}P#Rf{i4S~$Md_EvD zYtzcL;2PuX8WoAq33lXcS*^$1Kf6ZbsC0JN+J8FS1k8;g0#@VkgtCp@^m9N6bmsiF`&NVGC$w?}Tkf5!Rn9 z^c4FGncQrvmffNU?Izkh6tryopf!w<73~H-F_5?GXl3ubZNu}H5hLewdfJ|$twU)W z=n!qj7RlOEd|DuDzoC^UA#0^%uHUL`OOL2$X-gQ1c$NVjVy$e8WNlGCEs(V?TG=~m z+f#L|m`Y~TJqZVHTkCP#l6DU*ZG-WbwtzE|xXt;@K;kx~mAwnnFoy#W%^7eUJ zd6Mx~9zLDC-K*#AZrZ#F#9PA{$=jWLVjyqdrIo$&wkKfkv1aoLfqeDT%HH|f4ChPkSzM*3>k8U3l&)DZ)8*W+xQtH+Wb0yD zc@nYZ*m`|T&(9Tw_O8{NW!k;GXe>_hF11Y z7`6jnl!M_jdbFOR?LyItaRf zgSGdxTw7Wv=n0!i+lG#ZG2R^vS|S-chEEA(>_}SKJ7d`0nuek74X*R`pq)#5hk_R4 z-5TMGr0w&3ULb8}(8}IvqbizfyX$T}Xm`@Kp`gWI(L#2;zRRZsGWH!>d2%u4+WdM& z&)7?}Z4-yFkUg+J@hO3f{ef2Y&KS4{Rx(XaQVGXK#mX0|7nLg*iFg*3aqfXN9FZgC zNBE3D!ahtZdnasX=>AP@{xNp7*SxJ({`p!9&E530?Myp}7PL9>oot7=Bgxx=&kiJS zTUyyWdDyN-(9-FVV{0>B2f!jJfF^FdxxF_7H6y3R#TZ1Z-O*YxnbMfvo+A zRt{mUjn(?W?!+{#{)go;rHc=(K?s*X-)*zkA>%^Jk{{FQ

y6KE$GY_7Pmo|9=tBA#U`KG?FH1l$nBtk35I z60A^mNVje-+hc4}wscI=PNU`TGw^yiRm;=umb z*rott=>_RTHZwbIv9-#V)WvH>BN5Mn0Pjb@uvK?LLN$fY1cYi?TG=~P*3Ay*u-Km* z9L(hU++}NbJzBfawxMNZO&vqqQ3_AkI!^is?dPR=Q}eb0m7q_lD-0vjgV@>`Far zm(wPqtl`J)%plpy9SPqhe0Csw7tzYz;X~GwHG7@3J*ubeVcIp6ws_W)O?F7U9^lgf z@w$&z_Kw%qKy4c|6>VNR)7M{03?@s3%zSIs|BfE9w`k{3#PCbEOhFTtNX*{gQvxx2 zomTda8M4(nl+P}ho3y|0z1~IYCFN8j5zmtHxL9UpH6tWaYx0SJNUcUIdq-*qpmNnV z7Onjst9%`zC+tAlKD2z{FQ+i&%k7HzhIrX(#DPTS)tc zk`~X_t7V8pY#yHwh**hM_KukK{SoITM$OUY%^?f48}*=FPrHYLhF?%?qog(4B5}Kx zPYcBDYFgPlZq{YU*0_!B7Fn!4t!M2C+B%fAzE~z`V?V($Pb6rM^ErW_{eo8Z4%$BW zT&>kskwxBOqw1x>B1R&frNR6-$!lejMDYU}m=O@g_h@DBC|V!GX;t%@_K__1rt8`3 zj*Y!c2iU7_HcHqw=CcA}n?@^phixak?ui{G3%KL;z#U5)hz_&(C*|6h(g|lIbVu=- zfzTaJD|?3yIcl%XVBA}7=jl;9o3;%_EuN$HW*5Nu`TcLAy&&*&VcZC}sU|j-WwPBx<+uNr9-{LMwYm4LN$R{dR|Q#eAV;4&96C zzQJ_PoK>ZhIg7cM^~}9Mn}{+O&(V7;cO-nz^Vxy$Jx42hhi_MW_9o%W*zB!%v3j*S z#Yn`nS{;hB-nq>W1bm6oPOlr`&LsHbcm?HWp1Jg>Ag*&%CLiBAW_YYwd(f>#?YgBo3jsy$=cknq@c zZN28*;~B|PGErJEl-_gxka;_>d_s}Tjs}~`+^)y^R{Ck7SRVl|J9_GgT78Gy2GnS2 zv|PKHPXR>v#)@)isuV@9}me8ilXQ?BptZQ?0_6o@-A3L#y6LFIBHkRx%RttWOTXt6n8byX48#1;NYn z!Gi=ZS5ck-_0HOdn;~2Y{KA99ZdW}TJMr#<#SY(x>%q_nm>?k8o=*dWWE)ypl)0_i zm1vZ?DyoyK%&p&C=Jw2{%X7LTO&f^NTDQPBrR?oCmo^)n;o(51tEtX2sagdu%me{+ zkxv5zdZ?ltTJ<{EUUD-CkigGASo^Ngqw+Q0W3cw&uL{zr1ndyde1%U4gyze%vZ#WW zRwO#Nh_Lz{h5Yimli6%4n=jgp+J0rCRaT;()1IM~2*2XX<5l-V?xFmY&j+OIC$zG6 zx~zT;p>z!&f~*+Aox>1U#Q_gDm5Pr0U;%E+AF^qLn8PRpJzDqs!Fw>XSwy zo>gMJRAq9Ks!#B_fK;tRD|@HPx(hKfAYTX3%HH_`$3pWJi2)0(GxTVkO8bSP6=&5ddm*X%9G?qF)n{pC?^J>F_f&pp zf%&Gk{W8IK^kjXT_6#K}&iQ-Y4@uXz_FYM;nJChQFW3Pvo0Sk(~XOPYUGhNm|)EXW-b_lj-fX@cQuO>KXk~Mq={K=*wP6 zsut&S0jc^Bt?ZpDaOboq(`P!yCoQnH)r0jZ+A_3m;kSeMx>d77vb6=D4#?JKw6b@$ zz>1YF^rkGZ(t5CF(SD&|#W|ZVdm*Vx@VS6g9Y-sBrwTg<>o!hia&s-NzNF{s3$$Y> zSNKaze8H-^A;}uyvjNFEhgSAZ*2dUOzE^bR{*fN5AE0(!+|{*6SNT6PM+f%XtNaJ$ z3;$Rh&zJE;!u5SLr$#CuT;HRWy~Aa-3fj|shoQSSn@^S!L-~1P^Ym|e$o@jxhO&jX zes6=Vh9#1*Kl3SpjJ-%JduI%saP`Wg#E*Yjy+r(|k(hi-#IhHXs+IU$K&qCfl_w8X z`5tS!wU?f%J!rqsk`?DPzIQO+BdOYz&jqAvCtBG%Ro2b?(DAU4oq=; zh2P9?VuY+nzCwG3q7~<1Pu&km*O&Qx zK)NoamA%siR;~U8LwOsmpX<^3DQy^vR-9FR}a$4-njy|;WI_o4b%VA zll5=fGL)=1x8ZAcNVfjPrvtL}Pg>bKTVTz~_Q;vmC$CU13qN5b;#n5PS+go;NUql5 zlL5I}i&pl|6}a1wO&9D5{Acu7eVXty^vIWmd^#GYCf&(ohtCqFqh29PCMV$bM-CSF_fz~4-KnsNV2}kX9JS; z4O-bdS>ToUTzY;f*;^8)I=|Dy^;_CB6s|b0#E%&w`FfI12;}S6w6b@;z?EV7;_|GF zz2~shmFoHX;zlB#`Forz!})T$EO9db~LR#X;>>IOPN%n{zkgR+86Y!jnLLj2-ccyk*uA=rvyA?`+w0h_Gj9*3B{P}CH@!r zlt9M*NGp41%=)Ha==`iYIE=lzZVj3r{fc^Nxss8HXK6V*#^xinVm9WBtZ2*gd4aSo zM=N`$jTXG_u8$3Hl*ilkhTux zEY=lgvn{fo4e)7!to6~#-dWobdr7D^N;JLTZUOfdJ#b&9{X>Dv$3KELc_XR2l+O*M zZj@H`P8~OjI(h*7R1e!vXxmWOI_9bhw+UE_PYGmf zbz0dwV_;jR+C0tKE#T97$_}E9LyK9QZJC-(ku$UX`J_P3_Mw%%b7p;EYn>Mzk&j=)Jm{#^qnDsH#@d#_YEpM$izojSbo3wiKKU zY2V;81Bv@Ot?ZpRZhq!yC-7T6YERO(p{R9We&+5f@M}ILkg;FV%9D;U(Oh8hud3Go zA2Je?b`9X}G4MZ{gb|Rj|I*6d8QY55(dc!w8rVV)*=Dgp*4KeC)7^1k6Fw)9vJGiv z@04+;PxTk=t;tzJ5883Gb?AuMfzzkDEplddG@lm8+7Yy}chA&(#qaR@%ke3J zj4eYePcp_F?F)9*Gqw|L8(PRZuxIA(Vz51*63Ey#w6b@`xHC;>GlM}rWdpQvC}kZu z(+ulr(8nhQa@IpDd*_UMLtyMperrqP%X-u%bcVW4_2ejZr=?khU+<%HC6EP;9q*o{z==0V%C8deV{+us^N*ST7~>|D!8#Ix+26aVRx<&GRjSLd?>$@>_s?43Mr zFKvD{-?zZx?I1mG`_sOm<*fsIX%$Z-W&7|sft2k@D|@Gm8$%bSOZG!5^oiVUuv8#lAQ%~17Xv0vt;_O%)QoFv+Cj)ZzRa)6QS75(0 zN6~sxkJYbfzfi2=?04p_R=?zP0jc^KtsFvCdf@dnySh#qoi?z03`l@MK{e4}@*BDL#A<;>9b<1B-<`$Z4TeL=J`Z zNlS+>-HGI^R3bAt)QrcrdOSYG`wKRBJT7`X0yYRxw%`*1LD`H}7S(Q(ibUs#vfg)c z5>gX8CRn-Ma(+HmhNYgpAatKXrOsg6*v+B^=hJ?qN*?Jb# zwNK9#L+56X>1lq1ep)EaN8mKq6SZe&_5Xg80b==`j6gQ>OAvA4^Z zz|15#e}7xg$eX;u-~-)0yni8=>w7r(uMG8 z-4~5X%BAlGw9n|Y?hu&dY$Z#p#5qzI1fRzT4-$NKMLD#_b#TMYTEI$M0zdI!mAgmJ z#$CLsL-mwJ2ck3YR?VpW!#mubh) za)WQ-g5@S?gxnT+flma4>Umn(J5<|^H)@S}SXB@>WcsfX-x+PMh;S;G(s*(H2JAY>QO%99bYE$vG7s2;M1Y3C*oWLr8a*#mq+ zAY}K^%HAQf4xLq76gYIyUlMipG>w)~z@AJV2ygr zSL696G9(aMtnBC!*HqaLE`X{S6w)a!ugT0Q{~ zqN{0T?+{rpA~~ku>A_j)p7P$iwHf-f9;GK}zfhE-KPMcsK~|;5`7}VFenBgH2WtGG zO`Z=fcAa|Wy@-*BXXYLK&}Iyf5Pd*DYP4PYd$h85h(0;){3s(QNYnKcb;m~0;gL^} z$__}3Hs&(`Ytb}Xc`{%mi_!6VjE<$PLdUfjFmhI-qxcL!j1H%jy<;?O{Ay%O%vtlJ z^Yk2@O?!oMgugn09u{ZH7RY*ZCZ7Tb(rL7^caX-vLzT&u(uJXXHd(UYR=i7((;c*9 zC{EGep$Zrwp}LJv1cd4qTG=~P;~%2b4?V?wmY4NRy+9j=G8O%fcf$vX)bo5EAX3lK z%998wafq_w_3EYE6eAJOQZ7EET!$#j@_B$rEln#=BBaD2$}W1OcBBpSU!`1!DBJOQ zfJkjkD|<(3vvH^8<$^z)b6(}l>Y>WemZ4D1jC`{o=!6{ndihL1tWvbHcdW+Wdn(9H zgUj_eT|!%h;uQU+LD>O`(M5a)AVwF`%HA;=f776BqP=PGu%4p_Xs=L?qTe*ASRg^V zk52&v>0VmdJ4n;V9p;+f1F^QD-qI8G25lNj6y7fo-G*xRLZbCLp9_fAYqYX=w00UF ztx~d-NhKU_f>@YM{ib@|x2BPZXWfT?Vgtr3)E9}|YJ6TGa;wtHlNdR%)o`F5x&3GZ z(aP32at&W(l`HXifym9Fl_xQBV)yHM zJ#yF522MQWT)Sac^Lc^DT}3NAa)Ww}@B!`HgaOPoPkWC~2L$Y0T6yvTCdSHcJzyIfiFg*F zu~#tH5IK!c2Lx<=TG=~b9KmUj-m}iOIP&A+6^D%pm;c+2Z+?6wDKfE zO1z45wjQZ7X~X;@SS8kJ5ttX&B7=0V{fEb^Y}aTVBJRBhJuBE*MQuL z9dkogtXueOK)i0EmA&IN{vFg>@prso@q(VL=V`}KvZB9(8Zbga^&FoF2-P#R@+5*v zUY(e7qk2`itdWRk(jFgF&Knd<^ND~^EkP@Lhid%$UG*QR<08e5daAagEkjFH^!K}h zPRLrdHJ=HH)t0ofcdR~z9(o5}L9k|689iLRv~eh0sknAZ1Aa)vQhYujVkgkb-VuZM z;_C-$;?0ap^n_hR`-T!0+fG))4hh(Wd^#Xt=hMoQ4=}M8|9~E_`)J=L3}CLk_aX#I+9Tf+Tf#|%CZ5USm1 zW$#eI+Y+w#JLc)BD$$mqRK>O}5%QYH96l2es~oND9V_^7x{$M98oE{w)z!3NC{(c> zP8%QO@OKrT2Z+=aw6b@k;Nh=W5~tIT>zVom?HI~bY{OsK2np3=d?FxJkI>5Ap&I}7 zSO-lX=xKV7whE;w`qyLK7`@A90AlnutsH_;8{fQad^WTC>BBZ8Jbn<}ra6;KCkwk} z`_i)t$}`-_%U%i8-Ek8T_VZ20t)ri& zxle4ukR^Kt^5!(oI+eV@gsc3@=6SSf=pajc1+hKIYM#j1+u3|hAYy0I%H9#%#yb2C ztz)y2rBr{qCy^gE4GAsK?$LvG7i}F1+F;z(tjQUP+Z}vnAa1wO${oV(;uX3U=_>zc z!&6638l5)qqL~%+-#ze>`7?8L;1%;{1f5-Ur}8=bGh(mmaeJAz4#kbw=5MdAl?{=U zy}%~~QuaKp+#$-s;o1T%YCV}`U$5z{YSpt`#;mneu3m&n2_g5P7AZv&(7sP|k+p9wKdX zBy^YX$$`*aL@RrT4&KKwzRpc%ixz8->REf3HVtJh_I-?+Clav-_?$q*?xU5xBW8E5 z3!RPio4S@RB=UtG^ZyR!2h(EP>>WLBZ_xณrZ4Q4VdT;Rgf#|(XD|<(82Xsiy z_XnY zAasbHv;%3!&=ME>4qDj|3DoI$Rb`8ZW_LG9TDH5{B`J_O| zenBgHhsSXv(_COYq{75&L(Rla2xZffpu*ftvq>v8%h?+8z1gnkK^^g9ZP$M4xzCF z*KCah?kGMr5V*r><;eqF?af&CwaD}Iz@1HdH(`KlwnhSXCZ8Gz+-bD3ci?tLht!&@ zO;-V}f%Psuc6ZPYqS%$<9#~xlN%(H#69nPAg;w?spWT-#blFhz)^StvWj%8*(8i(6 z5nsfqq|UyW(jD+cqV_zW7l_((w6b^9wj=9Y{feMf;#Ry>y-uBCB;r}8<~vm4>fT7? zmgRE;kz1Np_KqC9#asIo%e}W<^tA0r`-T>`*td8awn)&nOsrUzD+dHj4cwhUOp`lv=puE9kkuZLDV?f>W1azdg?BrO+=}i*P+4G_DCXl5uYQ7 z;DxlZcLd=r;M(Y6>~-9?d{|H31GIN2d9m-vHCrQryN^!|1nyp1**kDE$eQQ4U1$xq zZ|UKCgZ2@HZ()bZp2H>y;_G~xAc(Kg%HBcTodi+bHncFD`W^LBc1$M2V!>>t?V5;_S7Qe#?upe=pLudL!s-`sYTrziQF&v+(6_Wqm{iQ2fsdD|1H<= zE?PtFBDblR7a!2>q0Ghp`m}A1gzh~)IS{&cX=U%w!7t-9`C9))TjX`?$=ldS#IvxC z{bd}dLlVDfe1;%?>(k1U4!`CrjTU~#>hU{@wh%3Rox-o#A&KANe1;%?htkU4@ndIs z<(CnAvl;t^u(S2xok^RAg4d~8Ufmms+-ZDnAaW}hVPl&EdxmGX&d5wsATa=Ut+yR4CjXSLC((_Dv5 z62ztXG(ixTpq0IY2zRBf4=}EFIy>sw+m5ylEq}3hrEYRY;TC656(Svpo?HmePHtrMJ zpfM7*3;D!A*v_Ywy~73%piR?btE@esr|mx4I+V892hb*GByRWenSr?7O)GoH4c;(u zOoc7z-q1t$I&B~dUF;hs4u2$iukrbT=)FQKdq;0`^dgkA<>s2-Rj*H1GZOKvPkUn@ zP%FzO3D~N9N+4h>)5;-$weeNK#)k>3pOI@r!sCYtr&^rni^X&?^oxW?=(#?OepF}` zJp|{vlBM10RHj~or11&DL-^o9f)A`HPlQhpZZsYdf$!`Ezdd-0o{f`ud%~|(wU^hI=wCs1l_N*SZr)lF* z*oe<5v9OK#ArX6m&j&>8aa!3sV)o}p!V#ODP4r~uTD5G+JJhvoF(VPr8iDw_Gl^H# z3yIbud@dkbA51>9?306Vw6fD(rE4oaThsaH0nWuvh<+|sn?cmfkZ^VL$$)TeOe=e@ zTlQ-;E#S)cC5G~uV$n3=cMOn8J!Qw!_MrnL(Lb21U|Gu*iQBP!Rv>Oi(aMtuw>oOM zY}SR_1$x}hqwVvLo9&9k?QA|P5VtdFW$(Dz_j<#tTX8U-FZCzfBj`PP*zTguLt!I6 z4oB9uW=|w)cknrZsNF^@dq)i)NQ?R2@}0IqU&c9*zN&}qW!gRzw)h58+ZBo13w%}} zZqL)o-f^=J-(_V3cF*3mkHVmy}$3_p=m=6-E9r-*!q_(4#y(6{ZxJOFP9kRS0rz~w2iqnyi;}o_t zmf>>%QR=0Yy`wb#>7;u;f2E$K%W1bzmX3;?rO=(QOZX%}m@cA~y~AXGK}!yG_Fj)Q z;619R>S5Y8l&WO(RE@jy^#Gp@h}V6z@+82^-rKS8dPk4fTeNNd@Uq>Iv#K}vY(TtT zr*LruVSAtWGL_90O=+7UUy^v_F$>##1wHmGL9j);PMtkqZg6j}H zTnEy&`Kw&E8xpVm_-sJD_NJ9X@M`1YYUA!}_5NZT5+3iqZqU3eJusQe3=L<^r^fTS z&>OJl=)pdVeqbor$H6nc!9cFoJ=jniYS=Vx!=BD30y2F{MR_9JhPB=U2s0;e9W;0+ z_I5ojxAG=~_b~AH0NS7>V2I%6W^QT=a&9OXg#F zd2=;8IX`1x&0g*jc7^NH#<_cRa1^9XhL_^SICr=X%Y;({!S+O5CWPxi8Z0q0Hgm%+fG7 zW{pJd0zNemx$|gc@5t?e?PiS4l!tSfIm79M`Mh&6of=Gw#SkM->RkhT$J5C2l2 zjy>BW3E@3_jv$10(aPQ-v^I`I>t3>G-uf(LdeU}t$-nEN`zvi53LSp$wjJmio=C`E z<#Pfddzn`D4w-euy9H#$d@5u1bLXZL#Z=NBTUY+kf@2{f9OVg)QE*grF-Dw0HQdK+xWzmA!*zH6#sPd74c%^Yx5GZy`UJD5lLe zTP|hqu5Ea?diA-1k%(vYiGP!{ozlE6ui2_&I4++;vd_Evt3u)y^ z16O+fP%>w)HgDC#bu(?*#DJ^nhlJ}!J|7US>uF{0a9JO}2%V2L-3qiu$KUH2dzN+% zWo#hUOOs8uNYtL@(*jX@f>!p98hR1jeUD?Ad(^Z2C5=Qpv;CfUA*)_&k$5e}Cj{cP z2(9cLFLZ)m{se8dV3n|K^mJ`STZWdfcqjN(KO|h!`FudQx@qM}1=p}W2kX(pm8313 zIB*R+cKeU#^8w*HmR9x-m(?#Qd=8e++Gu@IkJbgWVJKR7`-FBjCVGt-74BAx|f+;F+KRafNm z0pXfLD|?4)WAH#Iv$-`Y?x_cBciJwrYT<2P+L?1@HkTD^7d{sdsvT)%?@*yLuEC_a zyPwJ|v}areJzII&HI%J*XIx{JNW`*yN+4nxTG=~dR@17`N&R4cZrbsd`B(LXT}hjU z5{9=gZl`+H9g%=t&SwMyb_uQQ9k5NnfpI8l??(Jg&(@=~UnpDnM|0X?%a|dtdYDfJ z#OeWB**jL~6~m!qp_EBx6XpFKYv%PIJzww8#-V)0d&My5iUjQ~J}VHkH)v(=prQSM z>Xw>!#*6tvqLfd}O{Xm4Hn>;4h+NM|#IuNuw;zzx9*N#mK0Oe(DAUJJyr#W?v+12l9D=uI^*g&+&)ki)btrQ&*SRKNBy897d4aH9ODlVa z4eYMkUC5WVv-fJB)id@q?HJ0~tXRj=iX9TIC-`(gv>vCGy`zOTnW}WBF7+4E#eOqi z%jEj3;d99!s+S3i8Hsq73Gp_W64prM7U5F^k^A8PW8_Mv?Mf=qXlY|1x0N2b>HKp6 z8zaYzoNbLnuA5H{L~dhRdGb`bny+L1Ml9r#dgP9$-9rb{&LB5tjYRHPJ~a@zqiE&H zik#@ka)BPX^Jw=bByz6CENAnnfykXnD^FJBM1Pih^vK;syEh?`bG2!?gHH`a?lxN4 zJ94{%C#ALS=5|jKYj}NC58lhPhbVZZSl6l{2FXG81wKI#zvpRX@A&P=;TP;uVxhOn zkJRhe6^%qZ>(`-9pcgbpVmF0P4#aL*TG=~xGg$1#?c}n%9=}~^AJNJ;zcctrlO%>a z@=1aiZbvJ7#}IvUy*9Qu`?}=y;ALs&Q1Ie?bG^xy(cz0f)U`-g`9A~yS=0PKjZc(i z`20ZTdTHg!$DHH6ge&#TT~0eU!I*Quo^T1D7KqwKwDM#_&Ds3rQ9Wu8)6PvO)WUke zJiw;~qIMsx>>V}qG`}`vxchUwqi5|c+B%fAcu(`2eUa0)H~73j*j}fVy~9RM+nn7x z*1J!=T%Bqp;#sbCWZD+iv|~*^EfBTUXywU>n&{neh#s{AY3I<O*p0s0W^U$%gBQv!zXC!b(@tJ|Z9ZoBI z2X0$#1zPWgVexjJp0~4U?@->domhp|jgh#W$tMQlb{ehh9XIrYp0)8p_6oU6Pud-{ zZ76B+ex|tLiG=JnJ|_^eTWDqPkdYVM>Ti!bcGq6k)Aj=GA4*$CF1Q8Fk=Q-YCkJBp z9IfmfyFIy~wC-%HJ|ZjLuU?o=F%t1COc!)wTy?r6L0p#45(IH+TG=~@XorWf0j1hG z$=Ow87d?SH(hi~(Fy0OiPJ1MJ+wtjv=xt3adq=O$8ralC!&+Np^#o>UBT)i7S_7M0 zk|6f-S%M&@Xl3spqHW`9KXO+Sh|BfhT|yg&f){VwxS%T%w2SzxK+rCvmA!+u8#n6{ zeGjZ^_plzi2WS&f=!QEn;}Z@^0Po{71OdF4R`w3yE*yZR%Z|U)S zgSHUGuhV!EfTf8`LsaPX3)x$4Yj$hPZTZGqc)Fr zZbG3}wMC*<;?n|An?oy4KGYnSm#){Nb}jAP1VhbzdFg6CEfBSJMy!pdT7kq6bQfDdTzP{!iDL1Gyr zaeI$X48-kSTG=~pXj@;`QnOnR*~Ug9o~35IZGA)5nA7-lK(yAUmA#{dUQROKU>i&< zOc(M+tB4(|=j$liHnfPvdpW7$iL76T^ErW#9ZD;EhYY<$ZkFoVWXW6(u^2mB&)Au? zYbay!ULqf}L?U(?pAv}J$+WU}#L$l`J2%Ph(DQX0Z5hf}yx+eK+a0@w&j*C-CR*7$ zTswfrO~bj&oZ)mLmCqH^so_#)uDz;!K@ZyVw0$UO`B;ydq&KpnJ;&z;LiY@<>>WC^ zqB-|sr#z%yS}toO;+gfwThYQcVVCCf0pVJLR-Qy~Id)%n)WfwMZ5dj{;)ct;?YcFe z4+z(mv~mbs>4DcxyTX%3rw#1BS6A1}(SaG&KYLaG>{I=-U*%6t;*6CR?Hc%7xyj)v zcb1Dm8xn^tUzd3E+_J>L())LHZFuTvIgS^Na{t`}FPT3koGD@duyWWxygxNW>J_6n z@=-Gkr;?>aZy`UJD5lN8oJ-l`@vxrc0{whYlJ{$GJa(lmhuSMP`jhg>{u@UWVv^^8P3Yr?2`YPcYIn#yMZ^0X$c z?42iTn?cs6OwPO+VW!S5qz=;~bqH-4TB44NxI{G>A*ni$PXwfDKURpZSoyR*|P zJSDT4h4!NC6g^ZY(T<@|9UC!JK_4Vj3;8@irsmPglYpr$LYcZ*&(w{yW8Rnw_#m0O zp3ehh>RMWP5-?SrO1bLPvwEhUrXBOfRKN$x)DwIjAXAUi%HEl>uGGjGRqajF#*)Wc z_$~Pp^+bI!BN5L;{e*}IKw*ZYYY{#fkggB@|D~(30J7-XN>A5x{(*qIR58)jFhkPS z%_jrWwK1*iy>?lzoQ2k|rnQg-SW*wz@w9X3xQHJQmUraF-5>9+m9Hj0BxA?&`GAZa zMJsz}%zA$|l(FE_$U^J_J!0q4#-WJemzpWWf_6y4&gRnr2|JTko;-vF7D^Uj_vi_` zi#E#06O19s=OaDO#6inpwR<0W`i6!3w#(0AX5> zR`w2)by)2f=IRHuA+zwK^;8`}+lCe>yipQLmFo7hW5U)dMW$$>6yN6OgKy%E= z&(f21I_(%r7Jj*uCd)N7KZQ>Ogz6+(**jEl%^I7US~K+9^<>>j+lG=ATg@7CL)NUD z`D{SEZlsmH<7M554<8a;^YuUK(fU1Y8H(1-$mi>|;V@*{{w$vfh}F}yvUjYekGuY> zndzRrFZWaR?0p#{5zp*B5f@mYllUe1TtKuIqm@I@YU7} zaAX!dHyqMKGRQj&o*Ux#RVhdURtQ`M_+&s_`ee|_5B;r|_;7yc@>5`bgH76~G;`eF1MnG`?uc90}bL-pyYu%50k&N?o4iOx=>1(4ugZkrDQ21E^FLt zVpi6kyJ_dp+LMmH_Bb4o3xzxRj6ll1ODlV)45(Y#^!)O#+ggIYrbp`)+Ab6={C*-{ zw`w*>o?hb90D1Zot?Zqro&Fzn=K^o(RR90uHe)7ZX3Q`cm%}m4;GDTJN<t_;u_V@c;@8`R|>ppxx7)%%qo4lqyWSqRFGKpkHg!G54=!7W)BQiG` zcZ|r~#;~$==D3GpWIbgNT6rp4Vh-9OIBL{XM&HN*gQm=A`{CXY>Dn7sR?wv}WDG~0 z{;)wq!s1lg3@)*{^$pQiXs&^kg)Dfr zCt+_i8U{N0<#nZkjy6+chfw(C(cdte4M(Go!jYrqqa1xS8v0I!EEW~9ntK@cib&dn zu=0nIv>bm(Wu0FdllEUYa-)s3Tu~(LJ=`lIY450-Y?T9-L#yD*7l2B{;F z)BLE2q|L;=B9b-(R<=&s98&S#)txJ5O0^yl8`^|bh zM7oa0{UOq|6juJQ(3L5b%bAkX!%gH~XinGpaLh&nUG;c~be)U)L!|3$SlK#V{0c!> z{l+T)OlcJd*7wc9x(yB&6|B<}EcaO`M5b=RT_G}c6Rd2VDPsPYjw1hLj@7ep#Hd&S zv$f%O1Vuw6>uKB@B3Vzt${!}Ogj#;$!^We=jhI9-wS3ZK$wrIgaBqlYje(V|lf|99 zQ_ZjTv03?2Z#m7s!?uq(TzkSnqo%DSXIL8n5i{2U+#w=g^I>J{d=Yzrob0@C&K#~D zIAT<|lFVFwG(@s8xHm+ymcz;)7P1O5vc6zW*5z=-Mgv)XG(@s4#l0btbqTEeVIiyE z$>!4h9Q}{Y$@&o-vC%-59}SVLdvR}wWZexbTPKUSn(fX$I|5pNH%IF=IAm0`=np&K z6Q)5pM7CbR-668|60B^UEn+3_1yho^wtmETn7AdANM@LrWF_ASh{)G8+#w=gQ(oH=M#8#Np;}9Rf#;n!1v#7M!m9@E>?2|{<-CEn#1*VIA&D1l3b&%$3vv+8r&Zu zU01`(*6CVE+W`@5l&dfNa~bSWbI2ZsLq~-ypWuoj7Z#DV2XVKEto-h)Foidd_MMP%(A+$|z&Z^6peS>w+hg{!);-4VeDEN+t6# zh_oF8D_f_HdscT@7;jlVlP*S{Z;slzaNww@^(9}Wsn#UV#+@Q^b|$R+A>&NCGuW3W-O58S)yPp5JW|+(8l0i5lLGQR<=$WHXiU|Dp|zb)10*h zaO|i_Z3M;xjkt)k&By&B(l!THwoV(I*CY#1J?5-s;K)%~8=1T&Uw>MTdqpJeG+5a> zY1j%uec6SZ=D6G(wM*g9QBfO#6@q$L#H@A+?iP`?i(zF2YZ@2wgm?P*7qMtaSiIAR zyGizVwyv71u8mH#3`H+#dB_~@2jI4%!cD(Pw&uIZ%@fO<4>$?$@%brkJ`v&{d&;BX z9v|+!r6ewqOKYNd{L37Vf8g;Y-r+;PNtTR9Bn$#5f5#mmg7O-yEM&V^Jc*IJyN4Sw z$cQQpxVOiq3#neGnsN$Gza!j2(D9h@=(L?lBr`hgB~R{qwOeIk;!C9G_n zwEg32RWj0ovA!(0TrGF3IdDh8A*6P9#RPzB5*m@a!*SP$+#LcdE4b4r#=?5e?~pYl z_$R=Z=Kdf1 zuMhSA>%+Z2g1EZo)VlN4v2AV20!7)I%*;p9X$`sO-io^X)x?E1Lot;~?wk!JYbb0@E zS8&nk(BSxVG1FHn7t{UDP~Y7_w8CofN?nlOp159H{;wGPONDL=ZeWP){cK;J@C$Zh1g_Q&2!rcC} zC!x%}8mYH=5|99rF88|mkgJ_G{k1V5n=px16zd`&d*XluUW#SVMBGXu9vi{R*74Xv z%pd&{I2N13u|FIfYG1Jshr{zxL}MS^Mj{$}!phdsXcy7&pZRq8aQLG_C38XwaEz#g z?1vK)byWlU8$N~*On2RD9U%*Wyf^j*ltN=q} zXc~@g{mNHEBCLRJ(=DPxEBrB*krkgev4Rb)UmV$?^@b;w(*pzS(ZJZ)`X%_Al70|_ zM-DT#&XkJPbgt->#qo9HA9by+TNoS3Ne0<3=#m@`vj6BwjD`W&q?GG-s;5@WNM2JL z{~P0?dMuM@MN$1P7P45&49*vmp4ggQasR}Ow?1wkG2^WRD+?L#zdk49RMS@YL|60C z)(+`xHpS+kQjI{eSKrwrZ877d`kiWDDO=%&T?@?#*$s}9Gz;WKLJlDjGQ7_sHFI&B ziPUt#$_i>Ux|gtr@)MMXMA%RMK{rjhRw=>tZQ1l4JGYbYa7sHjv8k17Sc;~O_$V~`@wk=5Mqdgm2gZd1 zmt#B$Wu4pd>Sr^74i-^vn0+C$$&ifm;mA;vfMg=3X%gsS{)t2Cb8-8KOq>lXTW4Y` zfr)A<<$q`#8Q(W2<2E=xR5IY4(eP5_;}+aXA|E%w$_hR-D#)-D_PZ+$i7<1`&~+rV z!mo;qtk}TB3RVjL&zO-dg^x_Hb;_04%um}BXu6et5rc;hQwlexS(`0P6ny()g_oox zeqT52VM+XNPeNHSDZ9khm&8-!GXjz(>VTUl_-MnjxSdI0g9vFW=O;3qSnCW*wsbU_ zy321*Zt^GaFt9P4{n;9~k(l+i^pus2J%Z)&HnPT!l#kI8`6y8OD+}G;B2Pk@7g}B_&ybT693x<{UNx8B*mDLm(GZx`aG0)J|RN=4r{gydD--JU(<>%Pe z@Dn;OlJs@lcp^#Hz{=K18b1Hb#7N?u7fCu7H=an+*|4&8l6Gu5lFyb)1Em^&#P9p& z0Nn;hiV9HEy{1j3{2JrXz-N)0TX36++}s2!Tjypbg&ScK=uhV4JPXH)O3q=XgZO}) zxsp2QY20ceJ5RyN9}aeeZfoL`#sjd8m_#xKbgS5rjp4`PRukD711oaw?Q?&thR}jBo@da~qE{CHVP)$??b?*6 zvXiZ`W1_2b#cXLchtl88QF;xI7Zs(WOi_w?E;95AZaI;mmtbY<4DH>Np-LuQaI&dv zshV={kFRB_%IviDQ^v!xEty0z!?LD#|57G{ngv26Y#Qzek+7+-vUS3^!-TR8(FL)$PW3 zr$usB;zkq6DZS9FT4gfl}O3eu(EYZ)cGa4-GwWY zA2sLYVK`J&UX1cf)M+ulJct`jBa>_&X5dB>$=M!O9;M{)+gCVpPBJIw zcsNwlOruQ>@3ctHQru`FImf`t*2$5d(~|GiIo}+ZbKwY4foXbAPqXP6M~RBcfw~I-5r4&M zWjSsyk(bk8W$V0fFVzNXi?XdG95|PogL5eyE-E-j>VhM4TqNic+;Ad67sJZd3EDxL zabi12ICOqwj?TSsoT%s=q>E0>W09G=af^w}+zBgNXGXr0uh|w64x!h~5qbp<8x)L$TH)UyW@N?Ny7!p5Rb282Lh?OeX)zmB-hC8&TPiU zyaCPOHFEPj3FXaV%Il(9e~sL<@ET3OnHEV}>0@v!1s;bt$(;lTP1?};Lzqsifd(bx zKmTskc(X<>T8=v!m>OOvcRX$?F%K^Fl$Fgsf)~ndr)c)bJ!{cB<<4h@8(tB1E*@3s zopK@olEp0qfQZWi3TNX+6Hz!5Rt}5{JEOIpgfdsO{A#)FRm`yWwhK;W#agbWx{cXq z2+b{Ul&D!lau^+grtY&?M%{$lOl0N;SlK!=+bWqUmn!^AS##`6Q@FuITAqNFt<$o#ik7Uy-*mCjGsekf9FxH6I4UcP4OwCCilmIe%_Wku9;|Gg zlx>uxE&{BTrPzJM8(ClCt~i3q+EiVOC;rD zSlK!$%ASaYu8+$sKQc$N*5|TFRz*N z@(LU!DleuzQQc>enU`>ziOjqJD_dtqIfBj=*>mk&g4yy9#-pNXOd^?4k?9E9b6BKh zDsC{5mdUWPby}2lORmU2n0AOcD@))2QIm^l-NM`zNm+!OOC)7KSlK!$?Wz%Uf4a(c zt#FB@Y7WavI7U=hBwH+?F|_Zo$V(Bon8?ctSlK!+Gn(*H&aFumOXYqJny;Hfa}69Q zDl~^1&e1Vw>TZkVT#cJeB1^a=N&juRCHRDbzHYaa^AwtCX(|etZbc}orlRf zs@JS$K5IOLn!zNJ8A2V?nog_XyU5V?xa~xSwuP0gGo&1QvzzyYF6(%6aF)U$qUIgb zvA5^2NXs#}!9-e)gq5w+qMQjH5C`Aqn!|E793d(!rZd5=zalGV;`S0*Sqm#$XC?A_ zd2Bag*Ghg$?-p}XZi3@OB}H;b6RLz)mPJl(z^x^6ay_hUofG9g%}SxvEAEPU+8mar z;2=?9kz9%n!4kME67vLZGLe{H!^+l)QPwP#QehQ;6Z*L4jEmhdOd^?L*R*Ew92RL= z4>y=dOB<|gofhSKL1h*HOyUA_R_4P2qUILU^#bOuNXi`CTp}r*u(EYh)IHIvth;v2 z&BA2NX;}^jiAsxcPvpBS5_1}EGLe{5U}fvXbf{)v*kcNnQkh+0&M|YTIWw2QVWKi) zddj5Xv`EdxxY0yvJ`F2dr$#yB>jzL)#oTMo&E0UIsN9&&_(t3o$+;6Zn@G<0U}fv% zC@Wt!-I?Jl-&f3;c?k{?l^N5@*K=5;4TN6le4F4+!TbcT1r(`IIB~Y zwf+4L+k})!`FoML(bP5OG+hk`k4n?&h6~xlghC|jO57D9VOPM)3c@t*gbA;e@voN9 zkO=P+I7autaA<{puZfWrvrVjEm)rbx{kAsc4I9eK5_B$Bd1>pmw!ty}4R^6iZTkveBQ6Yxr?Y zq7^m#J1k_emKmI_Oo*N%(c5c$&w?ZpURyH;w~d(L*7KB=4LpL^)@;c)aOCoqXj3mR zZ|eDYIHmX1h)umG*whgpg+`x)TS;v6PFPv!)^_$JlsUKM7u0Ma(BVJa#uY{xW|rZ- zG|S=ONHct1gku2;hw3fE({K}sWSjykTPGvB6yfJn{z*TMkxR`PxdaXqm5~GV7zrP3 z6wBj_abtU4^PK!K`2v05CYtG2saB!%MXyp;v`wDmBCKAc`9;|Gg40#@jKHbOV zkyp$ac?k{^l@YBx5_MM0BQM~_5^4D(tZbbYc^(m-;h6TkaXm7XNhC8a(aIyTw>Ku^ zCKAcm7*@7UhCGi%pXlTA$P#l#7QtakG>=4`74yh`xUoc9_J);5Auar~d>kz+&1osZ zVM>e^-dT~B6}YiPTKZsR>$He-B=YwMuQ7+@YB)MnNEV_)9Ob)%SK>Aj*|-8$w$4WM z*oi+5ZoIG(MuA1WR23|hlWF?akQZY7bA|Am!DFCW6-_Z@RS-h$(kG#|3@ z@0+-lL_YooE0112gh9=W7mNor+cSw|1~t0*LpHA27Ppef$5ybibw0!qum1=G*SRb; zhvOJHIMn0;k9d6-#h&Fz+(aT7hr!C$$%r0~_A8Ibn|d4`XPe`3CLAFu9($veX~a*F zk+ry;L`GJ@%GMd#Nm##=J)g(Ha+5hMH^8By!lK^D?SBI#hec|x#|ht{yEDLwTEy67$Cb#`OWo7G*;BL6cXv>R2WTRMgGu%pMu;G5E zA|6fYW;n5(l@qXtN<`$-u(EYTB1>4YEV8=KDf8FM+-nZW-Ef4c zknE?OM?6#hj9t-~dr6*;kK}z*7;D7jR37 zko*x=whqa3$q=PWmPn?(WL%I;WfI8@Rg`PtmHNO_HdOKb6akrx+erjuV^~=Mh{nW5 zI5*-Cn=~ZC8Jad-(nBl!VY-nO&*@GUxK^+kn*TR;L}zH$TgIMKj}8U9;crTsGY9uK zo13W)dpSeO=k|)WwsqRv|I5F|E<14VK3IIPcj>_r|Br+HKMwW(INbXq063hUIn~or z4%(H2vDQz|Oo-;bc*~p*w@lz?I5BgsA2T3S(#FlNWIFMQnOW)%u^P*BRWY}njax;` zZD)GQ%61*W$(U)ec8yFXZ8p@U))cmg+& z2*$5rW$R$XhDi-DGNoFv%HJhE?qy>(#xRLi)WBlSP%dCs81C_m7_i~{DB`gmZX*$o zHdxs@9!vT}FZ~k7U6Kfpx4u?i-Mhd6U zzrez9p!FbbAu-|o+*4Mz^au{BBi&ph5|P1YbZGq^Gum(n^$s3U>CjqibL9?)rfnYa zRA~LTa9fG3|0b*~ba#LAB$OGU<-_dAe$Nn-bj8h#+?vzOzZg?8gGsbvFeOr=+~Lri z65mm=BHA7|l!(Z-u(EYTb_@rjAtK%7QaYPq@k@Cpi}=d1#GNRo7(3}y^PZ5wOa65^B{2Epsoq+V@iamUPGwv1RdUgzxNT#0E1jO@G1Y|wj zP9h*}u=3~xBqsr6fjJ=a;qWA!K|DW2K<40f5&`Lim8}C3xnni#Vse#Kcd1lJ$-0`1 zIVj8FFi}A{P_+czysL@%D*|&GZZ8p-Q($H5!0aF!>97Fy6iVr;l$cA+iMa%h6O|a{ z-7~`y6LDBX=3?AnA~K(bm8~Nq9UL=caz!~X_nHH9HykA@Fq(tosJkLAcjD#}arqvs zY#kR>msC^n@`^bxFTr7=@}l1*h5m}bynx$F1m=&hvUOm#lXXdDr&23aQTM?GYxV1!BHinfIuxRWQ2saz}>yR1};g*O0(_PF8t?<{qjjXuN z#0s|MVY=28RvOD}-aCThmO7Q9Q*EESM{LJKH~e`?Q|aK8tkYkr%wC-vn9b;BKa^rW z6k8&f>|aRf0vYaKI8|37r0HZ`3700;jt`6((W4(@jx4#)X2x3avn^^xv)4I&yM}A@ z&*+9bZ1f8~3FTG>tz?5!|a1+3W9zA+miVx>4o#%wofhDo^6!lx|cJn_7K0 zxV)(&J_?QgIBq4e(I11Ah4SPPPeS?qYxJGX?;?!e?(2uLJ6BAX*QPRM_O~ggSS^%P7dMzl%?BSoYTCmQP>@ra;j+6qF7xo{ z6ElnQK)ni=n5QBqvvEs_oa_oKkHYLy8A!9EB2BYPw>d5;I8@Y{1I{iohec{m#SJD> zb26-~phjb)85yj4IZi_&9OPW5nJaX9GumM5XC$(2P{>jzz%hW)3ifqn%yQ1IP` zBd=e=A(OUo{)bE_);xpCay-(ak>OX=$H2;P4E77$N@D8!nWwC5?-3k>Z7Xf>$RH&; z5c@YX+i)QEHXc)Hxg@r{a(Q9cmXCNVFz`>@ULpf;z{*1R_qr#c%nmIdl0|mmMLwLa zbT_{be5copLD_*xv|<=0f}*UehX;juDpp9_;g%8+*#=g&j!5KSNeq!piD%?Eb4ET2 z$A{XDD0lM`7-6o8kQ|MhN`&MHSlK!xkwa=cBz@e3&L_<&`2-vwDkaK8YBWmvL`*)8 z+e*Y_4XkV(6IFMU&2o@@*Bp}Xz~P}nV$$7Yvmzqj#w{fxaviK}9T8O~DfSllgN(m7 zhvZ2(KvYOfGKuS}h{@x)twc;7gO#mgqN++N!fnkPzHVH(Zonjxsa#E}66UH1$-20y zL`XjP@Ij)=B`k7$RkFJ|CG+sm69>X3xy1EV#AG&ZD-n}jVdYVqOR8!9=J#%MN>Xrq zs6CEJE@7^UkerH}N`&NOSlK!xs$9Y%H;*e`KW9$KARHhnB__GV^;N{=BHUIYCKtfU zqZt#v%lV->CO?1!G(wn2x|}<3TZx$54l7&7BytWQI$zSA^H$GN=^{TM{);&*FT!D> z!g7#mWB2g0CJ~Rt%LF%g;PU}fvbL~d`9A>-W{$=|QA+24%EK2w-PGGm`Z&8hL7 z7QvZ>8%+df0<3HuoSo$hg7q)2;Pg~emA+gL56^+-@Eia~i<)wjFQd~_PUyG@(7w3g zM1b~!m8}C5IpZkHJf$*M{|=ag(+@|93XXD96&;*XSp+7J8%zYI7gn|o%r4C{PC3`x zCr>$FF(>CsaJZ=C9A(~LMLZV~`XX*Q5uqVi**ZeQ6v%6Yr1J}NbbbbhiHc4O3S{Q7 zh|EuLi;2kG4=Y>oeWl>rF&Vn!7U{sG96a7j)*Fclq&oT-bc+DIU0`7NaPXbs+dQP zz)dAWawx299TLSZ+pN<&ubk#5?>=G9$;aUkQ8`iG$}s$ZDDYN9WesjE5tSOOY#o)z zg{aZtb2hgsm*uy#e8-%WZ^IFyl5&9l0LXV%1m!y1SRyFb!phb`Q7kb!D{E=Kf_>7Q zlgHrzQ8_VKV)T3!F?kHPm59kBu(EYb6eX-v?&0R)Hh9Chgk6_OjJgt*c`73E0o;&- zL`41rE00=4)(min%ri%1_NYW;&47r=uDGQ{L}tOt))7&Ra-1~-{C1XFE~^dQ5rKc(^l(NhCAeF{o2qS4BuB;HDBG z84oL4heR3vnHkZN5*0G6PR2VI9a~1ZOQ?AOd^!&`6n4iEgq7tKg2x9osw(hP7%l){yL|E>F zm94{~m|4lO@j*l@x=S70*`@lh<)uiI}_!E011Gio)5{?fzjr{Mm*{ zBs2Um!i4!MVlo}Km59mau(EYb6k7~(6;|EyOUFl>b8-Y6A!<4?*ka&2D}r(;ZY&X$ zgJ5OrpeP2)g-ky;o&RxjO4h*Pp;BTnP-dQrh}3XPiHMY8W$TD2Cfo{6g}?9Z+vbd1 z2girXh{1%L>#7LJwYaH7NWKayTZcq(B+QMRbbS1{IVz9AQKF(^a3m~rSOn$~++ZRw z55daTfl+llrCzS%S@)mDW$XuVc&Mb9bUdYA5t0AkmJ$(p7gn~8h+;@wDD}>r!$C6J z9Fkp`#HbtVc)p65%))IYVzMKwJeo1#cekBtj>*YzfT+2|U`Xs@BH7<|0&Xi2lVz~7 zbxc%cY^j&u-*%BXB^SW)p;BT}#xhsMTyh?6DiM-%U}fu&L|#{oPT8~XE1k`<{efJ! zbB8%8x5GiAl45XMe#2i8ms@driMZShD_h4!HR`G3!e^G}&3SnajuMp@lTlB@VG)>T zaD$1!{0>&O4vgX!1NOb;GU#g@tbTA`X7DDY2#Z}TtX!O?Ukk<8%8V9R9PT@jYeadU~VYziw|hec85 zvfW{+YAIC|dZ8oCaXA!@5;e6Ll)0h9A}|Nx1`~l<3@cj)Mv+~LPH(!JTg7k4USp0+ z4UQ2N7lZ6lcUOd^jGIe@r35Qmhefdzz-Aw$8(OY2r{!8WNK{%3mI507inx3gx0i^^ zmtke=xF~YVK&g_G%b_+KV_#sohxRA8xn3e=jB#7 zNK{@7#y<^zMO<#i?Iq%JBdly47sY1na;YXfUH6Cltwc?#DVNZHGr zk%e%0sF}oIc+5N%5!ns5l!(Y&SlK!v$~+=Ge#o{;u&bXLBZz%rM8Ggk_$Jh-`{mN#7LJV%$_BB>Th4)*(?$tFazu;0$gsTr;Pn3Y+V8+!y2Z#N{SdJ-ek3h%con%ZlgEmEv~{P>)htM;+K zX~ZGgSo^|_75F^4@%8KlhfUhv`B_XS)R2 zsPP3hZ~G2qJi1cp?o2AzKTwE$vc1goO1DM=3@OOsaosRiWUo^c*>(I<-3XL@HOn=X~ z|Js~MV1oxLH!Y}t+#|$Zz7^5g6t|m*&L*(30v(O9eKCvw{pdetMt>{??=)%HScxOb?{X<@8!{YQX!iyVx3c!?@U( zQ!*`((d9Ut7Fg~{D2Im10$*oxruoot)A0E>RRdiFH&F21hJ(Qi;E+k%IA3ErvE~`v zQ|v^A7VVPz7+4w3_ne1YNlbm`c*@H59>J-A$kDq!P{~WW-kd$ZO z_)v3%aut7gQe0QX8tHeqsYFPA3oBcPByyH23Q1qOoUN?RRrviL6aHgN%6KNxiqg8J zIi=yRh|5^qULr2*!^+liiJaAp;!<$ZE7qpUVrJRPoR@`gl&G0Sc~*1y%n~{*0<#-# zFcFx!u(Cy9u2`pSoi_LX^4zr6F@xE`#GkWyPR?aa|Q5`7CZK5t7fq%A*w$Nndoo zIVAVN@fiU~TvtU%?!iqZLUI?ZY#kECxS1Vz?JwoBT*vdeIVZ2eA)<03*+fB{G3g4t z6;XK^x0Z;?pJC-ui;A>Hnf|`_DN$KS6t_IV%UjF`}jw<*}>b>)E=yA}ot>bBVC*4=XER(OAO?mx26wVGW6JG3qSc z8Kck&e>K9$iqlN2V2e?2j_h95^%tirPHe~94KBk)O%q~9d%Re*?xzcNo@At!pcI=_8U)P}3weLO49sP6E#y4L3zTcEimi@-Y`yw$8^i zE_29FGnliHg+oJSV-GZOG+Y!)i8O8`k&M$}W$R?j<;cje`ZATSrdBv>Q<*+?POOs3 z6$fhUzpJp*p~4j>L*~p}1_zDGOw$t#?%*L_bathNb6(6cpT&(Qvh*2P**Z&e0G2Aw zO0KBA-yEg;;FwWSItEQY%}`>#izMBH+fF3uE?C(*NqfskVi!~wQo)I$ey7@3%BEJc zBbuq6g0m*qU2szAaxXs@__{e%ufpM@LUoE3RHQJ7e7%gjLFDVtu(EZ&wwLl%DrQ*E zS1aav_=9@WKQJCsZO$Z;8BbO$fVsI`&Sy?inMHsTT7&66Ij_gEnCZI zVRJL7th0*i#11tFG;X;`=I+@&Iltk(8gp%GOEY=l0y#x_3>))@}b| z4#>N3XsCd|b9)UJgW!kDg#W^gB$DwDSlK!m(j3z7u(y$AW1LxS>zghr?#LvP8RO{X zkkD5#hjie!5=m)?m93Mqo2<7PU{?Y<)QR8|%;{MM$Bmj`nqEPooCt32zev=vxcx+; zj)Ik~6Ez^!l>US26S4h}%je>Y}&d5Aj zzr!y5FIT_SzYE5_?bMtkLhe?|naHH{%R5fb!E(!(ow`{c(ed%ndfR(Iqjm5NBnKX5yVg!~;=9+iY-O8wpJ(LFAc?6{usc&UR)Br{&pA|&ur zB%~d;lSs(cu(EYRc9i507P(p!^rKZ@E>y7R8J;xlBv*6%RK|$|$a4B*pFI^{t1_*cio`IW5q+>O#Y@Lo> zGw0{GaJWW} zpN88aKfl4vCi3$rtZbbhdG9p9AEh3mmzT}y_%j?CDjn#(t6uNpdKiR0 zoOAgTZX=P4XJKXQTx==l!d<10v9aj}#)F`s|@?@+l5h5iM-Tr&Bx zIWbqk5u*}wl+JX1R^_>vVZMM{PNe8^SlK#7J4vdOo?J28bT#M!b9{aZhl+~N!8-Ve zE{oj!7&n>7&5vN^(alX`IfP3)|1#(1A8@EfhMR`VA~%1>O(t^l8mw%c8`-Xwo

zbt2nZIBYt`7>|tFnM5)pBduL6g2y5?TjLfJso4@%woZ+-m*T16w^kl&j?GbUsFKY# zg3BT|hvOy_xj6(@w$6<-+my=vvBxX8Y;%@5HfO+*qGF?$ZFrAGYF6VG6RD}f%A=E- za;cv^Zc#*|ZrzT%16*+2tYfjB? z;7E-eHLk}ZHIL#J6RCL^R<=&fEZO)w`sEGeGAjxW|1A3YV~tDVb(lmlCGnwJBXEh+ zB0K+uTX>Mj&U>)3b#`R;3H7*PbcYwILaxH^WSDDCO;=*nXx%3icUR1#l5LY<$3*$1 zg8j|W*$0jkHQQ*-`3fG3)a;2{Or&N3tZbc{nUZ;!FouoQU9OiZm~)eZV@2iW5S?il ziO(WAJ-E$8ax$>8b#kOtO;3uwH(aUmdFCo}UcLZFh{}szRa5s=q~vnkQX(an!phbu zkaPY|1d}7 z?{H+Oh-jTAaXkz|AD$+84Y!fV#VfF~buM<6)G6VG`s_rSx3xM~?B&u)`#9sl(bh~N znZeOvI+cplYmuHUajS{+OoNrJ(<7@@+;yTzv3= zt`$mYey_r}%nA7>92_bkS|`_BCq*{CjvGm2;~H4mIvcW+YyIf~E_wXM9F0fe*ig~X zs$iLqA{h_kHWJBr5LUKMhHTA{MXhn*h@UfAXS{Lc`d>IoR7SMc3}fDkw7iE~OQhu; zSlK!)vONg>={5e{KC$!jUFMwZ!X%Oz;b_&Xp`SrBgk$2FxTQo!X28nU8Ig@@`fG)1 zE+zIjA2X-qBsfCUY@$a=-BU4>9FJQ{q+}_qY@HI>%t?b1wgE2HQ!8ewIbo0Xh33SZ z4@ZkijMmJF)N7HRb8)MQ^qdVVTc<}hCN8oEqrG$Xe97{Cb7XFVLqtVJYfK!vDsplQ zZYq(Jn_y+@oXB>slvX+A)n)c#bnL|tZYcC8b7r1}!$oCAYxj!WZIPd+akGj1JOwLT z=Vw>R{JuPpeA1ct5#w>vMoc1^`u7N(8GeP|B0=MDyNLvift9Tj)Gi@tpj<0DDW`v+ z%J1CX$DEoy;TTcV&i*>oM0^!VS%BM0BxOFVY@HO@?YVyR8f$A@CzUg&r3a1^l@_hr zb2)!SVlueBL}Hf1%GQaI-JZ)uknfhhV2;e?aG&(dR zDGNjB9pG!E8y=n?o5S-XIATlDex-;G%E*!Mp0!aTNBPmA8yXfA#ix8xkl?HHQ!BVp+af!Ji{})SQ@y;UH0o z(R#H$>a57hgSfFoR(=jETW3W!7tF#}E!Q&DTA4@XzvigC2gittiq>3k#8;7&cW_&Y zq`U}nv%_Pz>2UZ@X zbd*+eTcvu;>Bzvrq0*r@(&;O$7TH*i8%bp2G+5a>8?rh53JY7~aHIF^AxFyP=A>K- zhl)yy)||fRvdGOPxXDCrE{2t@b0fQbu97>$NtMc3hporTkD2_)9GrXMSW&^zx_wUK zvq;X}xXnaz?u3=ClOx*~Rbg*{ddtxKfaf)HU|xYkLA}v#KYl*Z>hLx?;BArJmm8+@lwGvhi zF=u5793yI4(VIsJeHBSrgxg9aWj|QiIw`Ubb-B?COl+cHK%1I949I*T4zW& ze??-7xV=PTR=~>EiILstQ7ti2GW<@tubY!{4ICdTDO#_J1b&KyT#egFB;-n1**YPz zoZ>}J`TF9+=A=9b$B9acR!-sk6^Z#dZZDCT|AUoBJ28@%7vD1{<{darBSnn--Nm*13`GzGXpF zy|{S1IWbG&AW_qd*6!P=vmz_U;KmYJITBX3&Wdal&BDhnf+?q~r82h+aIQHjXTvd~ zqM|j5j`%8)awcvok(9NtvUO5qJLDqKbLU+6x!haKak&W&6crb(9df+GA~QGO1{0aN z9#*!_jG}_6XP4BfbfM<()I4oY%~NowsMP3IFr3RGH&5Uu6S?^{tZbW`E7oaSr_KGp zK}GlE4j$6o1%BuDxXH$~?-(YLOzo@NJ=J{`ky#J7m559mtZW;ZLD}O)EL#`ZNg}p3 zEqQ2sfjKPm;V@CtjMn2tad$;t=HTWMdFh0et@9!~JkJ7HPV<|jGUl8thr>hVL~9G3 z@21GdX}Fn0K2Cv^t@E+95(lJd2wWKC#SmE z`0Agu*l5+;RX|#`CnMsIy1_Qq@ z&p5o-B0X>7Ruk#@8?0=d9@$kK-UsMkQd}$j>%M=S(8thhFhYU|a*&LfYFzBD$0U*|cF|12xhitf zhMP*{sn=>*85B!Gg9(ku+Oc#bO92`@2dTQm|Q2yHY*J~Rb zpDt$lO6(u?J41u$Ds{w7k&jN?Od=mU!^(<0;^bf3x~=W3p_%!`2e-AIHk4oD|8cPY z$D#fohkJhn5}%r~UR(aJ?0=QNnT4;`ts${&QeEOkPa;3=h_<#_pB!@Sc%CWu-JO4d z{lUzcsQL#}RsZ1qc7@bSOmT4IRIZY$?{(yoSHT?29NaF{97B+%ZMyy zU}b^Dk)~j5s_YE#r%tXiZ~ia9p`bSZj>9*<>yp^+m*XZ8+x=2lS<&tq2_(!xmzd|E zi#>_7UM8${=RdUp%Z2N!@{uaF&D6+kUJBdrz_OFB=1Rrb816}!UMYHmOR}X*Wp*}Q zO{X%2bfw~Of8)LKKAWwubVdK2F7LnY%G523b*g=L2Mr&N!5-IT=k1C0p5rl3Vr1gp zyieIAwWwT9uRW11d`p|=J-BItcuj6}lkdRslD2OCC8iT=o5A^FVu`n9m&7}vJ>SCZ zBW9U5J!NGx&m6hZVJk5ZU8!_;CY9?SD8#0s%(6^?`hv`fh`ZN;1bGH=Ab+Q z$A}7wGDeo0GjbXnAZmxB$4KC)$jB+Up+rVbgq24nBmL}c-rjPK-;{lcIU^Ut0ZNpS zx}zc^pT-R(GV&={**YWJN&1>1o7!eC$9uV&D_-w5=j2W}NK{TFH^>d&-$b1iS@|Ar zERmJ}2P<1=MK=3dVw)iQO8kcFm&`GF0gew96RnxGz)z8oKjL;03Hbx8Y@HC<_=ZK! zJwYZs1wVC~@%UyklNd$gn}(+%B^%?G5-IrztZbcJ=a3hIqIIyyHHe~BIXE^1O zw0pVQoRBNw5K#%yTDJ*Z6*;*AHIHjG2`w(6-?dfbbRzR~;KZilbkm}11?!347(1dp z(YR$!x}53byP_J*wG_(1qlVdY%WmGPde0?``)(WmsH@U2F_!rxeNtJMqOeaYc@oM# zNx9)pXVY`@Of)Ukxc$)GfGcmPE8&I;zMF8f-4$@qq-~x56w`?{(4b^PrleK7RDK4Q zhI^|&k6TJiKcDlIm90L4dvUi@L?g0M_530CJduA;>3^BwhMO(_2al?BrCMzNrq4q+ zzG_wbM?4lt_#tjHk%S+>%0fqUhbN)T6fG}VW-5_kwM&(qj8B()`_pTT*7IV!naD$1s z{0vqe-M9#4^84nv{2PwZ2;w3ukKe`(CgSo>SlK!*+c(KBvR-NDEse)jJ28o5##K!p zZzSaxMTfKlZZZ*>?O@JTc1h_oKMQL|~4Fm8}D_ ztt!XJ63nN}arq=1A}THinvI$i+2s?sy+l|(4l65Q(O7c~mo5F(3k`{I*>X^K-ZHep zUpX_fqF`bLTRgpJWEW4z9^w?)Gw<;$QXYZ7FX_iIc;GNgr{4YqaoN=0F54Rz7F&;# zESNr|%Wt?~`hX{)Tsl)OgS39ZbaJ=>TGlXc!VMFAtKm}V-{5db+cy6PrW0$L!MS4M zi?w9ruA;hcfpy{X=wET`h-vOGp0cuyM{s#`y3odvWy0vf=vLE>>*y_*L@VlOv9*)=;5s&R)W$SoIIv^)kEDcoH74dF_i@p4o ztP{;SIS!6fg877ZR|MvxxVc1Nj)s-30~5KlramreL@-+uE=l{8IW3=rgG8l8dG<*? z!xHmVMCB8>twdBl4l9ppR0h}`{#*z2|IAVOE*zwhK*jY{MCCiUtwdD54J%tmWlM1! zf7;cUFXD1Ke05EbGF`)?txklHPQc9WCH`n?1}S*&U8f zf|RI7U=Tls6rzyPBx0A}E8nsYFmNf|ad<61kDH z4oY9Tk}9T)JS6{P4#^MU_)sB{y!biX%v#+|5s)9?W)cCp16H;U$PBS;4VD5^S%*Cp z*Y6bhA@E<#N%;#LC@LwEZI{E5BKRvJ^CE695t-*<<6yD)zt>r8%88y;88F&Tj4L&Zd+W~sX=0@9D0NdzPhD_aLdGWubWYut3lLGm?o zNWKEchzg0u=qKu`2+EgmQ;DE_5mvSiie%k5h+g9g9uAgYn#1x7I8IbpG&U~r?ux+t z3^$hu%uirt>%eqKMnmpsS^3<_zs-4h8x9kdmqqwSH^xiUTM?Ik;?@#zc>`9qj?3mU zT!e%3J8f$`_}PI;Bs2I~pu>plsQh-gi9|5Aft9U;A*oO*nRK}F$^B6SxWw%D^OC+sZvt~n>)frCWlL}NEw%vTYWZ{xNSQMnFQ zwvLJ{pZKT@lvZX@8L`WWkm90avt5~-3=fG0_v@E|! zxM90-DZ2raNT!rM94}>6Zi@h|i2ye0G?pPE>~?udJP zgOPn;Ye~AAZm+H#aAI#g?zSB|CX{{|t$ARJ?IlX5JQHJ=l1c81o6F3`#-RZM;eByk zo`mu)G38BBt-mjhdtl3LsN+~WRbmZwBHU1c$KkDU$H769wsrnMrW0$R<_~N&T9tcX zDfBb2G`vCXqqwESBzUx^tZelWyg`n;UAGa9$PH`Jd*nXJ3^%+a>=SrYrGs&?{hL0p zHEjDwJQhg!IBqkMgf*~oU|iS{)jSDhrfB({a@+%35oGG`OjX?M$&JIl%d9jc=R0t$ zsF|bb3rPfWVvdW|)VFcNiTGRxD_h5BUi^Ay5ufgIDV@!vD^-8LCO?1tdvlPUgri0U z=>&29xUo&Fiw+VW0uialaTkb4Jq9aVM@rSDH(tIA<5}gOP1kCG#fXa zh|sREvh{4VaJUXGxUeggDfJH&oHePeq+IGY=P3n;j+&M})|#{=je`i+skk3RxK4(Z zt;4lD6|SB_DP5JK^*M922I0U_(K@-cXhotRf^`w@1re+ZU}fuIagPRy9iJ>q{m>kx zAHboaqSW-!Kzgs|`7Oe82W~eJp4(yN(GO2guGqs@-hVNN=S4VFBMgt{w+PSkxZOl} zo`aRG!?X8rU0P4An5pJU#rjR-PS)?&_?dytI*f;MQzPL9;(Ds6rt%Ejf9hH-Gg#+eD z^~0f}BGsZg%JW-q<(_CKt$?(SlK#Ka|rn< zGUdX}k-u#Y)IZ^vQGq(HWeF-001>A*a0iGuy$&l|$7$GgJN9|zit<^^9d}|&+ zk{Rr^Xx%RAzKGH`xcNksro+nCQKD2%H5E%AHD~E)IAqks)Vj(k^k0PO2;6=mOozhC z)?w-#uA3`6m0F?dZ4%}BxKEg)^l>;~RFpp2nm#V#y$I48+T3Xb9C z6W(?vjSw}8_0!vNdx_NC3M*TuM!ERTW>S^w zrY}69IfhfkB3L^8uC z!_hbIx`@yO+;k#B<6&j%2q}-ovN%ST1-XIL0p&*$X$Eh|fY; z**ZST$r~0$)!J3RIXrndQdD>hCvT!|i|F*?W)soL!phdsX;%4!>wa9~`I0$1UxY(N zWyieo3H=t~8N%%*!gCp{Y#p8%s%f0aN*{;L&&<*J2^=UYI)|A}{zbeN!MPu|nh4H) zu(ARijSHp1JE{DuX*49l3rUX9J@y@1;a`hnWW_EfR@&))^5qh#ONjO6U0afjJ*{z|o=du@LMm zx&j|XHg3mlB(iZUtZbc)$j!n*{_wxIRIya<7c$6;=7c;C$B0VEzB+`I`U6izPM*Up zC35l%tZbc=$fHbgPHM$m4?~4ZB~xY^cQuok1XiU}K~Y{o?V~RiBf%#TxGIt|0XLOM z%6M4WIw@jrQ|YVq^azio9AJ*fzHoG?h`_x~;G@XKUbu}!HWtFl3N|$6F2d;#f1sox z5!TGJbkkvIg+CrQvSOTx6>Jjb$}uB)J^98*=88_b+@3DsO^1gCGf z1&dfjBC{OPnVct?@rL8{$MMKYXL3XsjuoqH)wkXZhKTC|7LVb^6R~&%Ru;Oo z4r%!WPxBxKw|Qs!N(HB~f`3qIgIUHPt;-}@QH6^jo!BanxEP2f*avW{laEfo%GP<> zrAe36xP&@WE>-xGTl36enw=O-O|L|tcTw>Gh$QWbJ3!1#vtVWGB+a6bly&%7#*{fn zr^3OamO4#uL(t%exi3<5GHyPRq7z_c>lATYS-JWs$nDu&x|f?_8Z^h~A~;%9jGA7A zpo0IU?0bE=Q%JFs=OqbC&LaBSvMZ)pb%m1|maGktne&N+1Ysf zHi=1mIL2@F7>GPgzm-rJZ@JhTtLG2A0Ei^ja0iGam0@M;B#~yw2gC`4Z<~X39ULtxNUfeBcl{SRx)!&e$kA6} zW$PSqH_^!J^OgK`=HuoRJqE{$N>S6>%QgDAm1U8kM{w(j3_S!ZTW5&724BulrBLb> z_oJ-4t8pFv0UR(YNKM}k(f}z4fk@MTa2JR)y$dT_r-@V}RZ4|beBnLYoTXivL^5N# zR@X>g07Q~z;SLZ<+7VW^P7-O2rLro^%?+Gt&e6$mu&6ny)oU!weUYLQaPx^2ErXS< zQ$*|CR%P8i1RO~hnUiz@955J%%ba<;_p z-o3+|r`zF>QF%J4#cM2$Ac#cWiaS9h>SkEkI#HyVa6g!`s_A)irk;a?MrEqiGvSdi zh*Uj;yFsMtcd)W`sz_BhoA%A{RrsV%;}P8iCh_5@!o2{9B#p-%Ad)l|R<=$OX^+Y( zb|;Q7>AkNxN_)ZaqNb)+?@{q1AhNU&_khUKZm{x)ge4~5~*%lAMeijY!`;u(Eaf zxQ7AavkQuQ3f?fs>vcF%RJ@L95ngrQMSfnzZ71^cGOTQ!pN?kPOLi~8HeJS}z3EIM znbBU;CrN%K>rb8{#hBx=%W`Wgwqjr9J3gK)En z)GUUTty9B2B^&RrB=-)iF~_C`M~R9}(}ze9Y^3)MlySR>+>~Ht>)bT0bLwa8xib1X zb9SzUBSmGWRdr6?cd@tnDsDTGpD)A8*7<3gcO>@;JZ8?$BXE?c?6fNH$nO()2)CQa z%>%Hqb#9vGo%$JiF7JF`&dz_}NKx5oRoa2RdTPx?hQy6 z*b9E_&(uJ9RRz|HXd)yViL)Ww@z)*U|kvrk*pnYM~Gx~z{=LiYC3Y4-AHk= zIY}qLVWOs`R*l>hH&HCZ4JVRwEUavuoTejp@c_vM=G>eI2Z_o}t48k9b0g>AW)rD7 z3s$yH%?{0aGXK5>t`5509GqL>I8nhlszqIw@447l-HcmKWama$**ZH-_hkoX;N2H+ zIDnor2k03%SX6*owJ$s3zDUvUaPx^2{T5cXPEpenkUzywd6NGOrL8!{MwvJBs2Uvx<%k9Z+h4i zH=Rh&Ca|(~dYaZava^bZnzM5d942bgX;qD*xY=PbZa9&g{b6P66k**?g zBd?k{P-QrJRG>1gN=DUmm7Oh+#zP#1m2iKEoE2bY>zp-R8xwC1xz-$~ufjp1;?%0O zG3kvVU&hTQQgaooY@M3sRgv_jkVnkPc?b>^m7JDUMXDP@9>7f}((_YT**ZNtHS60N zmtt@o*?-LWc^3{9m7i9l8H|oyl(gIKiBsWpJ3NIjB{mGsTS`$Kr+)$vFyEwoXpd zy+P8OKF%{o=NvdrRCHRkH%N8E$62`LM0U=Al}9-{vYS0_HD~8$I8GzZj^aj-8*$5t z?0gGWw$4t|x+ijl1y}bxV-C>o;9yY!YE|76abK)^ev6w=r06%WvUQ5~Z8rWI=6VW_ ztnu@WE9$XKBAJT1r$y6?!-PbnZGGG&B5muy$_mG8+Qf?U&8;}s#EM#Xe(6{i zjrEUcYn%1SAvc!Kv*`5QoqvJ-!9qGt@egL^Co29)eyZvpyu>62CmfkRV{QAYO8Y_S zUZ*^C{*e2tev=%}eTdf_>Y4C0|Bq|^KfdYzalQA4G(QjSly&+`mDvR+T`s1oeNL)7 zUCCuCv*+xdDzG0K{mFs;Pl=Io(@M5A+3!$9Rg$sLxb}T{r3*9AC`!tc^u`b!(!X&oZ4@AP2{E z_`eo>b3N=|@Ef@5xgCBm)IjF@8xkuuB?iY8a+PW-S9SV>HYj>Zt&j9^?sc27NMFr< zsnU(OE#+DoY5&)RNMETLrbwi((3Kcs|3kmM6AJM-<}`cMD_4kz`M$)$Jia6RMIqGp z=*B68`Yv6G#6!K|(o(IMZ9je>2J{~ji}bh-?*}{C4+??)gKm_uD>f)8|9H&Aof z;77V^g@RK}xp^qo4d7b&(3~T6Jz9S^xBkgry1|I{{=3vaq+GGLJ>7on+T%*)OkaC{ zDeDy4tEKktTCR|7FBRE;jw81vGq(jfba0km8}!z4S%*~wb5qqImoS4;=@h$0GSipx z%o&PxYW3y;>97{4Ayu3)*0_&v~JF_;%Bk z2*01Xx)Sd9qeAcdIrBIU>Pm#4>qVYK%Zv80hxHGX%GF9N*57Bp)dG$s zvEHzw{(C~0Z_|xYi0du7667#z5B?`DNmp5~Uv}I9u>kjzi3NOehx@~w(H|Bf|F~}0 z!pJ}7NsM5k*uwY7X=k$>?G>lmUg~Ktq`RF$oaA>B3+$F1fd!q+f=*^ZXQ`(%ut13L zTjmjdQ&%En`)__DsV25`ORH^;ETywvJLLM=}-HsW&Hy>P@@VZX#$ zVNyrqcRT&x6~ex^Zp^}Lvxlw(A9jt>HLQO9oTniXS}{zguHD;gev~(?JggW@=LW^< z{M}+0^e2YF79E}eoecvz{c4#RAn=gaZOo8|UQc2Kd!OwOE9R;>_IaJ*js}iq9r`M# z-5=059F5NJUy@j)J6Q1=n$qc;(&?GfB<2^J$NbZ}5+VJc@+4Yb((VzBNMxusf4BD4 zxoV$Vgt4iQT+zw4pXlBxS*^7H>84NfJ=Lv=HQAo=CSzmCMoV?N2D-&sU|?rpU}s>U z@bTQN+X~^wbEB?A;tjd;@vQf9>$}DzS*DP#RM>J(``S{i?00MxR%d+aoLFA_bz)7o zO9wN_t1I;*A5x=Ed`Nq(PKVKoOcNocHJ=|(zitY7L%@QtO>ZG}CbpKmoJLMukN z=i7ZwjF5E~Bvpp0dOl`=z{3Z+jT!RrA5UU5^?Y2Uw@)n6!}ol$m~YGMF)aGG(v=A5 z-@=m^v7T@DIY`fUP-0D{?D=+|1NVH3bz33)c=p$oNW39+d%nKJnr{7$Tz0OQ!W`WY zhON-8E5WydMt>A`X?`NrkO-~tyEF}n& z&#>`otcSj-H6#xPODW=xsQK>tXU0i+zZ_c-kSuuKpv!28`SqTJvZro&Um#!be5f^H z&ELaxVnJ)V;Q4@g_o06cF+DijU*Z%$)rF0%3JzNeUCZ{7_(sG4lzg@8FvARMz5jZxW&5k$ zp*0cCPhmQ-pf&w!w=)mlHo6kwS36x-BK&IoMl||r-!uGb-yhkpcC+JZY(Ed1pschn zVw>0w3N{kNde~E0U|X=rJNOa*v(2#wveyi|C*fq>)(kt+6Fdp!C)xTP#FLJ6w^Mr) zQT}%7SQyW2O&Ielm`?oLoZR81LT|b$_+eoRVXb*QSLsTG-)O~?Xn6@U<`8eMS}fdO zWk1ydY9-+w+u?7G69+k8){RgI?Nz!GU<_4y=REwl8rH5X2(>zllYBN=L9p zTj^v!-Rb2KG5Y_b8@e$1KlCJ&DIS6yn|c7lEn@87cLq1g6*Gle*6Cq8#l0WR|AmDh|El|!*WADSjs3+L z+^|2rChH7T`-YBKXK-vLJ>YFjIeKvY-a@H+=%T?feYtGbDGpsYI3W-W{)>wSH!Rlr zyV+Th?9dS`ZB=ts_Cuv&VJ-V#jW4HHhyK>`6Siw>JE9}MG5ce%Yj$6$-_^O;V(lxec(PZ;8?u0-M?p5$)(a&wEjQ0(q?jOCO|5{vd^ zZ@(G)VXr>-epm?n#kx@o1OI7V33A{y3dfmw??CJL1KmTOWjFY-px^2RJ^y|?UsZYk zt1Vd;PW6;aMRwIuwu|)$2l|WpIqppCok7#NrP$y$%a^PFXUmrl<^4*nz)m@`Ckl~D z&96_6_R5o^{bLQT{j8_-tlhw?iUIc~Gdr7j^^2%in|fZw|LwXn`Tt@6CQxxI{XnV> z`RPkBpYPq#X!=fdyLeT-7!Khxx!H@i(Q%?1{U%c#Cu)6N^AT3Pw0Ea7D;UHvI^GBx z7#J&Tm}B1pJBnRkh4vVB1iMzw4M{rDjXKzGcGiDWh~n$!QG8WbB1|?f`wh|RJ;s|H z=M*cYa!;YOS{n7Kd$y!@ltg_B>s9MNtq%TV_WOp#;>NlXi3fjT{jg%4z3A4)g^5Le zQb+K+>ag#o8?&&3ovSO6c-W^MRVur?>HE^PinqZu80^Q=%_)h6e{;5nx9qTO^!4Ab z@2D52Xin6PVb~1E=}Pd;fOL034h_fWem9~a5n7SZfNjA+tI~ysE0aPZ+-3lvs=H(6A+JriLwUOUXwxH|WMT zY@X|NB@%C*O@pGAO=P;QaTMEy%`VT0rQ1gmYmm+AB{lnXH~#fs7ru~(bmJE`!2`My zd=qG7N;lcM(~#@y+`gcDL~YuMWi~Qo*Dm-w$!qmP+_AQOuQhEuIM<(l;H+WC^xNGw ziM94ld$nZ5&}6nb&3>AESbqm*j^O}eJ6(yeg}3n}T0YyXKGlDCYg!?{fa%1ioQFHr ze~50h!cS_6u0-MiZ+_amKe3=wPMha-qZS6fS63qOz;6@HIl0F1%Usbv9T>|%mnPN> z+jcNBI)l{L*)W6sC;w!iID)%GH=<#qT&ydRc%w}9XK)U7CyyGzh&9FSi8aNh!Ss>) z<6%pP4REVw^sX4&woaS-f00w^H*0D|F4sz^BbeaMn#!BtiNu;&+^{zdoS-qZ{uV>Y^~iffoN!MVc;j<- zCtdyxzX|e7-S#-n{mTjNUruuWa*F$xQ{BIu?*3&t`-_wR2m2o!{sH^H{6E=$Iy(Or z`|Cydf3d$_n19>*&+o9m9?_P6*ZZ4)v%j9k$^mba+-!f7+@7ROa{T;4WWU@&%n~i+ z!|T=IesHbm&BVtlpqpCM z{RZ7|hmC%{C!y@mTEAOjLU6;Pds)Zl?~6tFq1Hq=e-G1%g>G=;`n`_seH`ppg%a`s z^GNEPTXxhfV8hvl1@5QtHL)$`=>{@vi`kyU2xjq*EMp5PvOPe@ zCl=Fr_BxAy|;!$ zXvHui2klB~2mjM^cM(>+<$?C1Q)9;}*dJB*$R-<7d@Ej5P1-l9(soAhDKcX^ePcR( zW7r>_F|58~#t58DU=|tHy5l{G5v;E^3i_X;*kVW_mg?pt7T*c=9>@PtA&#Bqaokx~ zA|!n$zbRT?VI5d@($(O8(OAHjB^Yr3M?3vFW+C9m>P9O}a7XD%Bp>jAaIvIam0-Yw zno3d9R&=8k27EwQBJqGvtXEM%wv0i3Rbnxp)F`0pzbkP51>Km1VZU5gBJr>{shxh9 zSkM($H2y$0N@1Yy(3Ri=tx@iT6_ei|YeMHRMEvZTHU8_OeY`?aL{tG`g^E|Rd<>B84*=ceYR((Dzia1D6a4b$)I z5*tGQZ%<+b%Rk9Wwe78mYQU#i`j{i}wB^Om|2;U_Z9lW6&($k?DejNyAA z`>j^2hloMmu-*-dgBo;iHBN#&Fe*p zMY`F$mKW$oDGc;^x)OY#H9F|9kM~o*hD2z^+qxZ4(8vFw>Bd0SKv;XqXXEgiS8o$n z^n~~Qt$_*HLKf?)BwPCK)1@Q??H*4;*}J#A=aGM>e{4-?^S@#`v7j}**!2(Q;rqR= zMEHd~sVfnFr+yL9q>z#~yy<;?O?$esq$j@Xt z@o#(c`o<=2c`Ew*!Ys?4x-kqh1HL{!ba>oVE`sl-}fN`1o(`)PL~ z*ZXN9_^0YdE)4$3x)S8zYnKeo&lsMYSnMfh4A0gLTNwE>J&BPk5O#J?=QIu}`8Q-P zb5_=zB6}XAenncwJERkX{My6uwjz_LQmbKPR=9&{;!%h!IyOBh_?T=a6HMkG1rHt!e4OZTwM_yLyogemXT!|LI(5*d>btbekyr^!D{6 zlr@WbII3L)Zgd#C*q+tD;>npzYr>je%5>txANOXD$d3x2%X0HTo~9c}-3y9#tdA&< zU0dxd73X*D;oUo1ajLZeZT>1)hwxQBW-tJp~SWayTi>KtGwLjGT5K~MxF}WC^-Ah9Oe zx$y}_8Yr-+)3wNJJl`UrseY;(=dh`MtSiAcm1c+U-=yv5Q4NXEic>sClv8-xJ=esg zHUCW~x7+^HIoHQ(f_D<*Vp0eD-C*9Xztq*$C4Q)H={8;1`fvI{8@cPSH)RoY->zpz zCRimcJtVaGqSjQ@VnMK32aBWo>+G}y`*rnkp-q_yhK2Mdx)LGL6Fmtf(Yn3Ubk+o3 z6xzcPx3nSlPOKreavLIOiN*|sx;ggHjb#Y>?z$3*H^-Fv7m-h|kv7BWi8aI2#`nN} zTOIz7>BcS$|Nm$1JK*FviuI+_DQC&b>7eJJ@pwd&qrqS>7%(_s43CV-@n2up%+&PEZ0g}Wn;o54OXU#uM6T?u*8P;6$ZucVFRGq!_O#`~u123c zmHhcfPn9jnd<*Wr1yZ)qY1p2Wk>5#A>YJ+S!!bX$Wg$z(4{ceZduzEp>?X02LRlV1!2r^%WXiYs4}=wt~J zNAfs+2@)7%HYWJ&G?J>y9}z1xi-K!dVLPquZ-ddUq7C)#u8n%tMa0KY+Q67*uf52W z-BG>vw%W3g$+AhasNu7M4?-LjGl+B4R4t;*qgo!_>^2usa@JNu@|aEAvZ$ky-3M|< zTXsYCeEKjBJ$dP18Fo!_i z!#w5#btUADIy>JRl2@0gle`z4*3{nL=XJ^^`b2$QdS#q!O^vR3Ab6{j4jz82M^NqI>|b`)o7TH2iDp2PG-DLsd2E12}YE|qVg zIo#sTVeMOKN#$E;4&x{k%;A=Hy3BK!iaKOWl{t(uaE53DJOB0u)Z_WI78-XRBR%fQ z<|KnebEgi7G26aEPs*w`qj%b}2rs&o^qKqgkj*IXPApi66eru>i2E!0LsmzBTKfVf z@#kT-y60mXlVHaBnmoS?zx@z7!q?bK#cV*QkwjH)KqqS!1vj7tH%8VP9Z;mg+M!3#z=|R$sEY&)Kr5yUM3y4PM8e z)ot2B&u$!K8I0+_r*4X;Lo_Lr!fm_7YdbRH@3z&QsQ)fo7IjzuWPJ6HOffkM=<264 zxD3^QvTmxM(u{Un0_{fB{xMsfiP}G6%cAaTpN3Jt$vt(D&e>YKXRD$4C+enodXa?& zy)@l|rX$M#k*(%L`9H8_QFrC*&&0u!LLc6as=jeUO}2kATa>9<^u z*MF?y<6ntgUN?modv$$j^@?6>%OX6&Eq-~)k2l_#TCfl)PO}{`A_f1xs7i_n)ks0c zvFRt)5j*bm*3-{#+K6FqoOHGqR+l6lzn(dgP50x|gn{#iIj#uDw+`=ET86wNb1(Kzt09 z4HP_au(Nv2C2d*A1i4nTD7f#iUCv@p9DFggRfGLTjFO9-IQT+a9mxQ_-Ihh&)m-4j z!S~cn(M3-je5b9RMAdJzWl?uk$NwICsBW4rX100IR!gGjuh_B(E81d@Cfht-`Yl+9 z6c^dvi2H>9$%zdBoqYzrx49{o>~ZurCH6UKC;Arom`ycVDF<2$hJc=t=<;Mp zD!Ithev7S+WM$lF%cAaTF7UL^)J@SvpZ14s^(3n9wq;RwRmVT=UtTv&7kk>j%vMXH z=$F{C2rJs+Q7un>@@c>I#QvTir#&NN&gpav%j=hGGmy&s-(Jy-ar)vNC*TNW}i9=By7^OHNVs`>dq zHBykh?JXyEH?B_=rdJq~;vva38OJOIgRmBFuE~yOpjme1sUyev8y{XYx06exaLiLl zPsu_Orpm4OJk6ruq%CZCvyO+I*_LhUr#ByPmXO@>`NrC~wl-Q;rxPD@63?RW`xa_m zpFF;8CyB^e^! z@jhE!N_V`+mPP%$V|B1QcBI;K$s8R{Pu=m#*BagNNFBRlb+9{p8K^r*hDdijY^zJ@ zj)!bn)V(`quL*X?PJG)HeK9a-^u=H6))#Y{*97~51)z=~0U{moCtEE_M?7oGBHR%c z4;6VX@s7@dg-9{m_C_ED?cmp*(6EW+YdbpV@spz?3@C77=gvJjhn7QnJz5_$OfN>` zaJFr0FE<9=8Cz=dFdR6A_wn9a*a>=XgMub{viVg#J-s=429qF(zH9<-wi-LpnBU;7 zBvX~!`BQCKNawGxW#M-I(~ZN175qI>^S#d0w%tv8H}2W7cKt>QaZB~3&He5*HR|Ts z+^5Mry^TwOF?5!O(?jp?_Bkax^-5cH%DQryEeq+?Hd_{Mr*1p3HnWMlH|$%lf0%Ee zxnxY-J8IOUligXG%6F{FcIHbTe)0la6-q}wPqQdEIqL9ZTfbhTjT^qZ(a`2QYNJhc zH}Nr+w*h{=hR!oewn)>Fr|w&;SL&N=m1-N;Qu0N;FV{_}WxlBQh3d8XSz8ve<~+b1 zQ|nh#i@vD$%etw)j2HEOZmTm{A%1GhqV8%h^`hS7tu@(D6V+OKl+G}e|y z-IZVbMZMK^Q++uv>aDWXnvD9>Y+2M@@e}w2MEX6^5emcIUpJ*sbk7QO8;v|O_u6Vp z6u#S*MOfh$KQrZ*DnGd`ScnvFDE^GGc2ekPe8?$eY@BYdTle!bUT>Ue1n48WXy`>o z!ELr(D5KzJ&B9_kYP)lqur_nNsmp!Y+fe75>!!|$&D3a%-)KaSZ>(OA_t~}%$$+UB<%$qoNs6Cs_`}gap-?56+Ug)b0;DS}%*&b(Au0NA;a;p%!zlvga^#9ImN1ncY2fKe%hpoAM-w=Nl zXd{@mTbz_A>ktpvs@9=p)ks19ovBv-9qY~bgwyf9#QJOxomOj__iv^fsX<7?z;f=o zLPt!TL9f1YKzg#(mUtbs#bdEY|Y{XE-Wk8cPBH49Qp`=`(A1u zpA5iPU+EJ8^vRqq{R&IdlXt()Q2o_)Q~fE;ED;@P?n#7W%SoaZNYs+;YQal2Es!YE z16Nev0|#tb$o$yHomlHF+sV7KO&Nz~1%0=Heum^|uC!Lw)j@z=RdncVypp*R3+|-%s z>T+^UrbGAFE8cJP*ZpL`?~iuf>uvQeU3af7i@JB+Ed9zJq6z6G zm7XTr_bjGo|4Tn$bkOJP)2;gr*5G3BQxkTwmOt<_>?V+a5q@|+L0ej z{J67VAySms{aJ5Dmie0z+5%@flln{Ov>)-O3qqRB{m38cHa1R{{fJ0|Er~A;jTDk5 zGE#nL+s!gkeyv%Yz%9v)ef0ez?@07b-Y&qHg(vN(*A9GUGqvs?iY~23G&_|ZbIm&92g=;mAn8-d1a( z_@lNg>aX~%nO^$Q0^ed=GIxkvNx>Jb-%v-z>xT9BtlWkpihrH0)6%DO_wr*OV)QndB*At@~lm~3}B`W`fEsOfAoI<%$8T_Kyk&HKz^}H+F z=TPv&;ij%^P6yf;D&1Bam8$cIkLlN0(A113XT1W_e5Oj2n-dw$!H`ua} zNwU_Kg-liM?5d{f;%cOzsrp2*san`?Xl=$g1#?wC1Au|I!Et(brZSyR-ujw+(;g?+ z;iQf@xvjg6(f3@s&sunF7fFmoC$-x{?Iy@)%WWo7rBA!L#a7|+w7OBVC^*LpYu(mc zJGCv@p4QG2|D%k-P44}*(XDzp@iAxiv}WBhoFsnBk>~&GtJmngwk%{izecmD`T9Cd z8xb(fanevUD);l$Yz@YBjP9qi{Q|2hHLXA7n~tufpRv`P4ChbTvZ%lEwdn@mFv#mK z>LH>oIPiZ~N9F6L$u$^gIx_N~w$+>{|4CaGbyxn3eH5nH)a|5cdG%knFn4L=chzg~ zli8G7Z{gPc_b&3$@jr${sB+6T(w0TI3oJGQvX|h8iUkXi;(`E}m)2qV8QVWzX@pY_6lbsW;W@AZ)={2Cu1`_NO+x4Y&9WM;5^= zZM7zfzs#0J*^0N`?@qyoRq42nrq1lqOgfwFG&Fx}9X0PZ+~PMJ(fm!eY7@<0uUVYH zt?W45)(+BR$U^>xx@mH}{x+`LWJHIrt6qn%wPhir_to4DwT|!^<5}*ELHpUdsd_9< zZ`20L=!5zJTP?|8{e&%xx+{8go0EtA!_f0j>!#;1bW$R>7a7k_+3HBt{J1TPu$nD4 zGqNAzmC1sINKvQ#Q2eV7Gj`W&FI?mD}IRwk*Pmw&*L@-u$Z*df3;bHTX1| zZ>Tcn?AqG&;y{y_sn#U4)gZrW4Si(RH&vCiMPFpwEi#cWuw@}Vd#)`Dw`ZSQ?8L9a zhBE8zTGLj%XxOwb@S-7~+=u9^{kuZm;hq}xb`|eE8uqrBSHYBR2goouq*F>d zr2}JTy|gyERyPtKLumtJyq6rJn~oP(ue}%AvXDu1yJk`Fce(Xo*S}4g=%C8pB)=_X zDExiYYAr02QH4*{JL;BT!;yW+du-JvE7J7NG`~Szc=fO~v!ArS zKi`+_(HhNVDV{nX-qJl(H=WLC=Ek*FrSXVfAFN)lU$JE&Bl?TnHMRb|vJk)0w4q(U zFW%(71Wl2#ulo3JK60lqyq~RGS1h6!lO(-{Kt^{hMvE&3g~YNLkxu!otwv?A|H_s{ z-8*ISfmFUfnNHEi7PLByUYNP3UW?3>X1`tThUn@(of@xl^E<_sMOf{Yn_qsPpI15y z79vHxo-vcz1+z8dzGGta{>D1?KKoy!-N>X{XWMl$=`PkRPT#rWwJcimPOq=aF)Ao>q+JhV_x~kv;}>|@2XoL&Gxo#Zu`EwGWx`NyR8nT z8{T5eqVCXOI?Xt zAQ5jX@M=6s6qzw!wbiq9)t78pguBXOXCQ`De#lv{5Gi^SUXOdsFaOY618ola(aujv-A>BvAFMeSF)%N=3MqVCEc5&oja zX?4?fV>8-{sCT8UZe*UHY|EnV>Rq+Ax0l9q>e%`ES2c{F8QyfJ=))8AbuafYHk`{4 z*?{h@TUVUk?8~K>XKZU&E?Sd=av|_Aen+~)R_D@fTWwi{yUk)%bIs#_urrU_8n~J_ zX7uq2l;C?~+Ed%K#|`BgX>jfNwR7}SX?Lc$9!p$}Fj zQY3<5-;FVfAG7T_>HL0M7Sj1S&7z=L*S3?Uv-KPsSw8=kK0Ri1%6+xz6!l`_V`zGS z4vp5w1yS2{IEwq(v*?m}kFD-R{de24sJr^l+~M@;NcQ&rRGN*E-tgp~g!F}1{nYL% zv|;#k-TG%uGYPjm-=am+E2k$K{~%1Zh-ig36rZ%!y>#ElY+2O3`%b&eX-eiC`Zg>k z(9T_3_qFK*Z4knR*JAp*Q~9R0emd%u%rM5Z`U!X2U2BF7ABKMw9LPE_hQ74x@`SD0rRRQR%cAZ* zx3rBuhLxpHEgo<3V(#>T!N)Vn9y$^*9gP_qy|*?y^XNjjjCSU(FfCpj9tqR3frV*t zg^6@fBS}={UVXSNi@JBvY~xi3>?O%ehVyHUX>>~6I%SUeLIgIAo&b@KSZ=FDnJG(c zS=7BFmil`)ypYRJrT)HDI@KrNMKHGvJL}ddG*jGNoPIl)pF^%Nz9B3oZhxDtcBO+h z+p?&82QAo>&i3i=NaCd-ZKK802p>~Ub(lTVTeqHB*z8H6cM6^qEuIvSIn!gSPw5h6 z%cAaGGIL*&TrGZg;4DadNY+@oURk%knAMEtr5|wqqi#OZ34^v8lumf5EsJm`*#E9w zQtWqa!Cy?)fiR;s_oq5Tzmh&xo6hv!AV0({7{8ZdewlvUR`=3<|EpOPbV}CaQvzS7 zCgoECD>-(N?^u7O)ct@Etzn5I{dlJrQ8=bipW1)2S$s``RvP`iA-8y!UslfIe+msg zO(b&ezSouIowcu$bkc$P88pUc>`&!0_E(j4#y;O+;9UJjz^J-&^||*fW{yn04_6}v zy%PQ}tI20;u2@OWf3Lggq}}dh>To~5Ckqb{|A@|J=x_79l2Q9=vUeW{4c676(Wk|6 z2VkkWJAy>A>V28J!)#ed@Bg#P-oL`C_pO)SahLX|Iu6qzf;scxrPVd+-zmJhTqmuR z>c&;JeIVUn_-`zAG+yOGUrDu8@rRewb7_rOMDC+4$N$()?2*R zc?%CqaAb3`yL#2`uvM+?`ZP&C`PsB~&sIaFxw@%zaEc9nW2Swsj@|Ays*iDx&a+S3_L+41Cv91jt#Iq-M#(RXK2tZvm-&U!pV%r- z^#6orVevS&eP$H?!szI>nrvHR9>S%*Fxp5hSGhYKZp%W(@xQn$YW=(@_=V9^>Zb1! zUl?6(t1B6{OKn-yUEKw~FuJpD$}aka(QUSR5>;=uWf4}j#Zy%t%)Cxnun;Ng^k9yE zW%?vXmXF)^m2~$JTNYtOTlAH5H~&hsU?Ebhw0$^23NrOHk0C#Gp%>%|+F5NM zi{n@0#p&(YTqcz?c6T4D%|HsiHN86F2cWE4O)pL#=2nd#t}*u4_uGyP8C>tRWg*@A zE?X9Ex1M%lZ8)u_2~T23%CO@-UZbur*NR+f06b=^dKm!U*DOxlw2EJxhwZP;PV+Z( zH-^%Reme7?)vNDswk%}+{MnX;EY94CRV~intwsu3obM=hG;7Tl=cQ{qI-IorY$p8x z_s$E`uVT0#(F})LpIe&|R_+I-jX@Z*be~1yRQUsEwJi%7daG<%xJ&nr6Z^f?>E6;! zQE!>!G3S$Z)~J)+2;Q`l%w-bfMo;MPrRGBqXgHu_b0;$zGZf0?ERBgW&~s#o95wk%|>++fQ>mTB(9s+Q@is*!@0=>t~Fw6(=< z#uj?dh&-eH^s-#1(?J1`=vRG}_!uf17{%Y*i%!@_tJmBkwk%}A zKCD^PeCsh17I@R%|8Huk217Vj#oStCP5g(geq?a|)s{uwRXo;z&Ko0n$$@&Qc^u+8 zbzFxN9nFiV*($ec^KDtwUDfeF$2QhY)5UCM>uj|oWBOuS7GXtOJf!70&&$3A3z6c3 zwv&^0=KTYc`?4L0On(o(dq#1%6fStv&M~Ad zun;GKOQU*-nf;#8F|N0blh5$A&+)b2GP7TCv+v;|7jk2sMIB{+aK# zkxQP!MgHivz(w|P^>)6tn@e^h8L93;<|y?FpfT!;C^=2d02-klL^51Gh|J+?Hc+EV z0F732`Pyor5$ZcE{I`(|SH0jlPW=c;qk1=z;p&H6{R2Sb)nlkPQa#DHauYJgsD5OQ zQNKXuN$N~g7^!{@G*-=pT1Tp#DAK3~m`gL)TZ&|o`YMt}HHc(_dKM)|sc|gl?MNo6 zm*d(vbuySWsy`xgym}=v$ErUAjaGl*3KNkus#aVZrA}sXUj;N?eG|!WHJyvB2AZNi z4>=pu`3|g43Mswz)T=EgV_Z(+Fj%1RW zz$$nh7n#Jv?LN*tf+7v-X(Yqd4M>)#XE^goZsDy+MyOwM=C8QqCy_L&S*({fzV=JB z(4aoR4ZWLNSimLcGg{9@Ze_HHlaF!cRwUEZ-*FF(>hqjAfFiTizgSsQk=dv&=X#Bt z{Ed?~TpO;=RXxP4f5_LyaFXTZY%X~>lF_OO zEsRp<0S#B*<7*R8vOz7!waIEC&?5CRzP1s`IQ0zQ(LUz+Yrcn@IQbBl{0m=OjAX2O zF{7187OLC0$Va)tUzpi$WHzX=ocTOXp3fy0b8-!;k5DgS)WJOe!PUQn%;BmFnGNb6 zs6Jd>iOiAeA4pcK?{bB&a%L-%>FO>dBh+1}Fh}*E$Z(b6#6c!aAQTy;9!4@;J&9|R zRVUCy^#&AKrZypSjOs$>SoH%W5dKro| zsLvvEqS}sRxcW3-TZUwux)Yh>)kvTQ^-7>dH4{mLx{{Ntajj7)Fl$spoY~0et=z)9 z7@f%_U(L+M^0n{rh`g6sU%(|7Fq*_A-_MzST;cm%;VCXMlX?D*i|pkhv$)i03ve{<%)xX7a{?zx@| zGkPswJBO=xaB@B;Q@QombIA;s{BLG`j9G6-GD5wLc}`~Z3%+&|bJ@hnPngRLT%%_P z7x@h<`S+a6M|%zGmt1l#CpUAmU*LMbV`hJJ>v55*_}ZzQG;@(_8GQpugGzGpSC(@Z z^ZXl<5$d&kt%2+9<7+IWHZv@}bBaB8e zdNo&A#F>vV>t;qza*|@!IYvKY)>+Pc6ASUb$Q+?IFuIxVVJo9waJ@NP?-!i;UQV9n z_P)p!zQjeAbMibcvYD&z0cub$V6>F4{gbQzo0GqC=4D*uUgq)@zIHV-8`Oi0)-bd0 zaLMm;$+vOR!I|IVB*{Fx7`+EY8dRQ3euu9;!PoBRI~6E^;%Y4UDejBA;ON2fp@6MninNQ3$pCuieYgL*R;8H>zO>MXuCpSg^|txQlUM&p4_Qum_BLiGc* z(4eLubENtaP@B4lt4~HUUi}!EQhO3h~b0J!9P%F5?MqHb&Udknh0gX}%fkvulfu^c$NE+0~k-0;C z0!gEKfGezIW}gR|tG>fLhq%Z;QLj;*#hL$RE~oRgQJi@lC*Q^WHL52VUC7B2uD*m%xZbDu+8;Ps>Q>+)Uw4IP^a4&k$0b|%+5?Q1alMx^>f~!@AZbt!GrE(jpNgbG zy^b@#$`!uEni$PR9!BN}bsiVFn~Qvlubs=u1hh9?J;LZBF8M}A>s*9-4eBmN*D<=D z(VMyC+nMz)&ipthXL06#A(^Fa=gdEH@_9}!;vx$f{SC=*^>0R(bMjJ7Mxx{hHHs^I z1kDatd%5-Htg{#MwE<41AepAVfFcd*QqDYylT*0fx0!Vc2|cHgEL7h_k)`T>pfPF= zP=h*yD>R^?5o$CN+8Oh;A2XMGfEK9xI8z~+q%J_c;p%aqM)h6h;&3vVrT#upgIdc% zOks4KdFHv^J2;ufnU^9Nr9RE*9KLn~Cx1rf2z4=|JGjVjMz?_VaP@JZ(P{}=Z%}{3 zcp0uf%FTWZNu&BCC!a-fih3DW{{km};gSwmH>gIwhi`$)2=y4ZH=e6c*s4H zGuj9=LQUe#(>e1DBn|2rPNwp;8O-G=PIhzV&(R*0MCJ(fPOknoM#s72yEvJ{0zRMX zUC){GIP*rX_fNj|6;7VZtuNq`o4ClGeC=yUMyMvP{vc70C)@8RWK@(VzX>dQb4Y8EH2=aOFsmj*SAQ3DdPL2za}m;5es`2k;h4Wq|6 zxra-R=juIN;VCZpKb*XkGpBROpRr_pjB=bD;pA54vK^>VJAhS`8;mj@E`lWpB)13K2&ioT6FX3yS;}-tTMXo_+qxu%3?=jCeaPk&T z4)L{xoV=DRe4CR;nb~s~y`GDFkn8=Buf4%7$;ly3e#FU}xk84~Pr2TDMmt?082ulY zT+PW(IrBK9pD}uXD}0DEf6bXqoVkdH+i&^W)tvbXPF~0*|HR3QxX22wu%9z0bLMhJ zE0D}kE0Hv-ui)BfbrsN~>eb*mPF;n}lhjwCf{E%{Tzj=Th-AF_1~NyhB#LZQ=cB@S z^%}nRUqCC>b2#%92r*r402-^hQKV6Q7-*u}f@Gv>1(y-(Br3UcXt?TQVSdWFKjUOG zDvng2LXBp16sSr45>iZ4?_{P2aBYlwKUe=ClF4cwt_@dT#_W8{*G8&AWHzXmBblsT!DtjG z|3uQLzK)U;)Yrj!xJm$xRtJ#`Q{UvwcYx<`H5S^MqQ)ViEg*`}lO0^fs5HQ1cAP<6k1LT_^4}*LMSdytg@$%6EPTnCZ^$%FKP^n)A$ISO(N z%1VRufMh_jAiW^hf#g8)AblYH zAV)xsf*b=m4st!n4Inpy+yrtn$SokZg4{;LQEhJbT=*r*x(MWAkV`<;f~*5s53&Jd zBgiHqjy6C;>}MXOte=7W9OVCqINFwri`V>}vJxOkkPZ+Bz5JMmzs=I%RzXaggglZUDIv zJf$Rp^19B;l;hvIpc+ki8)LK-xg|gB$?44CHcuAcsJ@K~f+JDCW1@? znG7-oWGWFy!CZ!7Umj0cUjg|l$k#v~1o=A1H$WZ&`6kG>KpqD9Hpq8C9s&6-$oD`V z1^GV64?unh@)*dEKzAE{BFH3=$skierh-fZnGSLi$PAE~AhSSbgUkV$3o;L6KF9))g&>PSnm`tVECFc- zSqicY8{{02b3x7nIUnQ# zkmrD02yzj~#UPh}tOZ#IvL0ju$VQM&L>z5ChyEMRrmPVljYJ#;3p(~BBLGA~66UduE-U9Mgkhg)n9poJ#?*w@l5l6vz z3jw~_Ls{Pfc^Kr|Am0Ib1mwFQ-vfCRP(pfjkKEb&zj>JOuJhkZ*xJ4DxM| z?|?i4@?DVcfjkQGeUKl3{1D_ZkRO5k802w~CqSMgLO(WLiLbnavaSNT8sr*~Ye5nq z2SJh`?I0Z>ogfZK7sw%yZjcm+0yzwl2I&FGfMh{>L9PSIf#gB@K>9(BfE)!m267za zdXO7HZY1JpD>^hfW{|SRf{X(h4>AE{BFH2nj<%|!?8UF7tV=-Ff~*5s53&JdBgiHq zj=INH%FI_$)+~_OAag+Gg3JS%53&GcA;=<-CXmG-OF)`ImVzt;IT>U*$O@2^Ag6$w z3UV4q3rH)-Dv;Ab&LHAw`#&wKH{63|6i5wCy+lAaTL4+#P(fp1Y0->2;6i(0Nep+s3udG{spK=1 z4r+UnAQ+Ye!4L)1OzEJuNC|>zN)Sw0K*J~<)HW?aFm4HgF$`!rrGwfkCJ5#+K`^@k zy^GR8ZGRI4L!2O3==I zCJ2T!L9nO^f@w_`wp+OdBP!4VN(Z$yRS?Xo zf?!`21VgJJSX>3c^ePB8SV1tx3W8Nu5X`fJV5b!XgRLM~ZUw=FD+sn+K``nHf^}CA z%)EkN?-c~YuOL`}1;G?72=-i{Z&5m^4ZDJ1;S~f^uOOI^flj7$P}`CP!Kf?<)@4C3 zGYf*fSr81*f?$Cbw9!DYNy{}DL4j6MI;gFof?yUE1pBBU7)k}fVk!uxQ$ety3W70J z5Ui?#U|tmj%P!FUln!bWuOQfZ1;OYm2-aUgFaryMJy;M7!-8NT76enVAXvG9E~Io& zo4WLUo|A3?AK34%dL5G+H2U?LI(Tah3bjRe7ZBnW0CL9izYf?-JzEKGu6 zY7zt!H&7p?gWA?D2u5!~uzm}I8C($T;euco7X%BrAehPp!DcQ9#&bciq6>mKT@dW* zf?!}51WUUhnA`=y_AUrUctNnn3xZi*5bX1UV5k=ai@hM2?ghbyF9^nbL9przf_YyM z?EHdY@D~KjzaY2(1i=>|2u=Y(@D2!qn?Ml!1%lu>5Cji`Ah;3)!KWYy&ILhm@&J8^ z(n0O*5d^o7Aoza-!4V_~9w9++4GDseND!Pwg5Wh01ox33_>ly`p(F^NB|&g834*Ul z5S&he;C&JVHf&)en zJTZdck`V;oj378^1T8TT+%|Fz{u@DX^ETup-Da}osSlOTAZ1i>982!1I+ za8LU zf)IKm2r)Q<5R4-TQ8|JTo+AixI)V_eBM6Z@f)K(Z2(dhZ5Y!_G(LI6?<|7F4K7tVV zBM1>df)ENM2r)r|5F8{3Q9^(MEz0b|eV# zM}iQDBnS~nf)JV{2r){65UeB!QA>glz9a~7Oo9;5BnXjBf)L^)2(eCr5cDJn(NBU9 z1|bAQC)%%-X#dJjX(z}9n?XNf)MQ}2w{(c z5dSC$fsld_5h)0vk%AB-DG0%mf)F(+2vIvgr%^hn!*>KBjzT( z5Q2ULA^JxU!hi%J9!L-Zg9IT$NDxAW1R-Wf5Q2vUA&N*4!ifYSk`rh-rGq-8QxIZ1 z1tG{&5TZQ=A?#BS;y(o;5L6H%LIoi-R1jiB1tC~e5TZr}A$(L2;z$J{pi~edO9dgs zR1jiK1tI8E5TZ{7Aq-Uz;!y=5FjWvDR0SbaRS;rU1tEA<5TaNGA$|wwS7%{FB9KQA zB6N*5MsUrA^1xWqQC?p983`6!UQ2eOb{Z)1R-Qh5Msv! zA&5*6qR9jytV|FB7=hkO>7b5e6oimQL5O_@N>MtfgP;W=8d?y-q6Hy7S`Y%I1>J5S zgigyf#83-DFts2=RSQCRwIIY<3qruPAVgjZLI}1X#9|9VP_`gMXA43s9?((!D;bfi zKz|+!4I+e95Mo&cA*fXlqFV(a%vBJA5P=p@N?rv6AuLg@AwE$M0u==zP!VV=rDSI} z5JDH_8e$j)A;w#Cp_E!T5Td^28p6K?Axao%BBg^mTv!m|h6N#jSP&wK1tFwZ5Mql3 zA;?$|qKyS1>{t*Y(tvKEl&rl5LX4VRL$I14M6C%z_?jTZu?a#zn;=BC2||dQAjG-} zLeQHaM863_7@Q!)!wEuQoFGKV2}0N(&_^j9)bW3U5C|v;5rKjb8Yl=cf`Sk%C#H57!HLqP~W6oe>5K?p|_gt$aO2v8J+NJT*iSrmlW zML`H+6ohC-K?rLUg!o252y_&Lh(|#PeH4TkNI?jO6ojZqK?si&gg8k-2$&Rv$Vov6 z$OG!4bWlfr0yR+F=b#P&6@*w&L5R2n+DPf34!snF7)(J3#uS98OhE|G6ofcUK?v9s zgvd=n2;mfjSWZC*>J)_NPC*Fs6ohzBK?wX5ga}YU2n7{{m{36o4i$tbQ9%e76@<7^ zK?oofgh*0B2q_hW*iu0VG8KeqQ$Ywj6@>UxK?p<@goso@2u&4)7*#5c({hA za9Kf!n-zorT0w}U6@-vlL5Qstgdkf%h_)4kuv`iPAwG;VlTE z-hvSGEeOHif)F_l^eRfpUhob^D=4LyGy@?f93_`iN+k`1C~>)laB)EhatC@uKVcE= zE(l@of)M{M2!Zf|5D_m3q49zcBQFTS@`4aGF9_lDf)Gb92m$qi5JV5uP3fQx=LWiv zqPGWiT(=+ucnd~#HO6?g45$JLaq3D7TlP(Cs z>4FfYE(qc3KI$KscqpB1r`U6SutI+5&Y^*+eBy%BY2=RU%=RQxna*Ti65;6s!#i{` zK9|k*CGy96+Oz2)b3}|I!WJONM$nwM|WmBGRYpQq9!f|qsgiKUME=Qj)Ad>j_y>t zGv{Q6t{EDbNFO}OX4XqifBV4bY`bzg`fy@|x_vmEJu$3*U~ETsGIPkuJAL|AM!PUr zWK2hjzL*R_=$_q*RL{-S=TuDe5Jm5IA*X*}L`QG0t}yLN3jDv1l%l57U#3FTEXvxY zW`hol)i=L8x4W0_cv7F!)0?IbHSZxU^yDdLf|s*4cZjf>tEKjVxQ@n|>x{%}=Sl;P$CHvETiHSLxb@MeH)~Z%BH(_ z7%b;03&*DWy|An!oy|M>zQmDaI@MX2q3+t4vL4fOyjO`J;j&bw%gND~OSppzN~xK~ zl=Yat-C*jm>q=*nMLJhAjVbFf{igf64-Z0`^uC-$$BZ6?v86r6uVTjDAfz+w`)L?< zraGM1$)X2gun_Zct1k;)@dlwkND2;~U@hiHZ-^O_V^+c57>hBZuNsofl?vXNm*ywS zJc!m@Xw-}mUXM~gKiIaT-WTlqnb}Od633u@T=Y6&T(H_oZ^^`7_xJW@bA9xv)VCblz#=qIq>k6f`d}lou6J_TSa!O% z^i{87)_tc?5A5dPP?dfNE!Z<4Q>3KFu-6zk^L1nN+0VnVi}WP0k|NB*9n6a)-y6!I z_4Fjv=Jiy{8a$dM-{awr92t+Z!N<>!$U_I*1ZV%kBt0mO951};={XuKewzf-9lno|J|j(R+J^NZ=ef{%wd@inth zIZp-nC>LpJm~z-Z%}7b^W~OI}6t^_^k|I_4xUBCB44T9QWax%-7MM zE|L3QL>r0rY&KnZ{7(g2qm&`x662C5Ug&o9^O$efC~j~%*|_9!in&p}O#At9vN;N0 zX7M*TD}&2hiLHZXUZ6aSn^Y(9^6U=#1vw{=J#3+|ujg{0jB(RVfeYR(hm@xmXjWdJ zu)$?%;DX1+SCEVly?^oZTLYDto1;Hr)rpnk7d1F6@v}V+z5+xsdVKo%VObn?EVyW{2#${aq8mm%&Et!E zirN-ry~x|M7JOQ3jT@yrMxP1p8CqyR64=$2{CTA}CPnIajeO4N)|s@`Ol!4<9(j68 zhKoj5%<+pymwLT*;C_tMTM(@0_mcG9G;`sT`i{bfmSnMmy#2-G?T^UI#Y@R+)`Pr$ zy|UzW>(fb2!TsA(ub+z#GW|O=TGZ>Z_ZS1r*xkmdLJu&bl*i~oW50t3M{&8l2Zxk0 zw2KFaT=FJoXnLCu4k>PM!h=IDd7NStAAN90HRkB3n^;}$+CHnR=&nv*HDsA96{3SC zu&ayKTxisckv_Dm3vi&5BZHHFzFs{N?Wy=*IeMx|5f(qG@TD=CD(Ib(tA^eWg$o+$ zSQ)-rq<2F5mvBw5gGL0W$f*^ratp9f6s+MX;?F_bNV7Mwimvne5gjS%F>Ev@P7~c& zi9Lv3(9B|nR-4Uho=!t^NB<7uCDkl%@LFzO^LWLKzxn1eYu00)jyfec5FuxGGT)tS zPZzOMY2`&qddmA_aQQmb|Lt7PuWjAk1#5T>d?q-a7Ibtw9f!Gpv?@XmHa&v_WjrSP zj8$W9M>3PZZ;3b-6QD+~0N3|6l3uRY384(ekEd2bC9FA%a zcHcZYg{Cvzo9s9ocOQD!=9lmkvD+By3*|>hU+iyV{R=Nx$h@K874N1(N(oqDgQX2V zfnQ~=7}N#65@aJ0vcg9BIjURVpZ<~}8P{LI=!?4d^_LVWlh2@54|3*gE|Oq0m(glQ z_>v-3z?T#$>1EvyH1;M_xuJojIR2-vh3xCz5WWB=_SQap$Tx8)m+b9cK~`uzA_I9| zNBl^0(;sBSsxF57xoi9T$bHk7>S$V@?R1D_j?gjNWW>r34J_(&ay>16i58R~5-8CK z&(9E<@>i(rRb=O#wVq7(*?bCCuw=SvlWPzoUh_3C<8q5!RynFIY-Z?2GASq1;RKn? zb(xR^e6cW#v75+4;vCK94&%UZ+=pa@TAS)$Y1)#^bfz8B_e`@&i+3SZb@Doz4^F02 zDxRb(y4i)QP1=kOBW3sW(g9D@+;m+_=aPcm+)!I%w;nm(q{q8=N0iaR8KI&RP}G%y zbU#&dM`=GVu7clipn{(lsxT2P_>*R6V4B~AWX4t5lp}WsDU76&Dv}whG7YVGqlCuO z+C5vzr{p&!S6Xl-RCydK(>IYjpy0`VB{wHjc#>O~KcMXQ2<5g=1ur*LY4Xn0F{jfP zknV|lUuPE{niFl4<&N9TahnZcnZiW-xbOf4l2A+~TBr$rJ z^UsX_!pTHVTJ<$o{DlR?@6V*Vjze^9g4W0r`(&2lRouikIhoG9S2OPw-jnD|?k9fy z!0DeLpM0J?hOJ%6j=pRzbv@z(oJ>BOYwaUDnEq>MU=3GmNzp^A>{{AO9C%t?($?0d z`8BQ3jW*Hquo8xJ^Ji63zSV2b+dw>q@v${QUZYfBBH?X9%Do?-ooq5LvJ$7&lfaN` zdm`E1kw}s6oE-5Ls9D5H_K~roy}!>PMO|#gqScqd5N%(AhC(LMi?9WIt^#Z$_ zGri5C6Xe}Zu-@d%?&#@Fq+$b2wELbf^W7%hFIlNa+1VVkJtihvM@;x5D;L<0dP#>w|^~xK) z(e)^{@#k0YLk1gH`gyb3|2cDB`9EjEb@@jPkBl7%RA3DWZOGj-hW92H&EB*)2W&V$kvi8Qsn`jFD7}{O~iM=0ZhKe)E-rn?a z{liF)FWQ_V8Xfl6+9*Bz)VR9(J1H!(acc*=C_Fr|eh&}r+T0EQ>i4(cyQ{w$Lr6pZ zwn~0yl^9Eb-&|X(mpShDSC=nACY$S_(CvJ=KVkifyc-BD2uWBX$qIF&EN^&$-Wxii6^OXBhn|{f_3YO$$ykGT;E&y`DSdne)Fbq8qF)pAt%Ply^kxP8$K zwO>xzUVqeP@c1(CtX|gv;S8zw(S@3g5ntePeu)+zZ>=nsA#2+I@f@mK8+C_A_?6Xb zy^z3sTaFrO{Qfwj;O`F#kHwoK`Zr^%lXiOOUA&|8Kpz@7z0l8&f>naQHnziC=yd9z zUmJyOF=t94zVu_`l8C|z6>g1h*XZp7#rEzMGB&pE(H|QXax37{xP}K%BH0;l(yOqQ z$UZB&a#hH&RRr_~p!+596-xgAUR~Y*3^qG7;Evj;A1_#}H3*DuUb{<%VA4@9SU>0FS<#VgT5N={ruKW*#&yvTKJ6y9ZDZ4W86(s;DTq42zfQN zdsXN0hLl?}xGas~vfkT$%Ck1~qHds)cV~~9&f2t-JbauE9ZJW(-l(0mQpAvGk>nS+ zt$?#u${IYHCEw!_b5kK_t<>@E=@E`baJTEL3U1e`%5f1x{)kZVTc=&c%r@l;7xc826S!7D zzE}tA4jKmZx|th<68>FUu7v(ieS7tJau}Vv1s*VOmXz?W$KJJcY&o%FCk$$p>(kfos^+ z9hEblfb+Wg)9K>pF!&{mdt2yddqX$$>A?bZrtZylHcuPdxeGllu@@^ zIg16oDC~)1tQ&1mafMI&Xs<+^SLHnMqii6gFN`7P0lwlrX=|s=avuBz1@*)+M7@+n zE&tgcWgk(e?L5}%498joV(4=fy{;1(^AS0t9-Feprtdc=Rp9+0L!W^ddQX7bb$>aL z3(@{*4GPQ~Wfs{{6FeuAwlT~s^c#E(ej4JUajSFu;?a0-{i~hL36Xkq=9v3apX$YI zq(Vm`NqtAX&afQJJmfJ7MX76fanY35FJ4sMNWBHYdZp!+`i`39p5&(0J1bczs$Re1 zs;{!ZNp+vmF$>b!LkR@!_au+$(GbplaKRgjp$%}r_!B5>a9J9-;Bkr3 zMacLQsKneHb%eLU98f<0C>?I?B+}VzZ`^(9Q6xn?S&6xhBkE!{$Eo6*Ku#k{N0 zw)_p*DP^=2=S4+(1>F$Uw-@o2o>|0OTBNy^W!+xHD@v^u^omy9TEzQ_)(SaMs&9=r z8zbfHqUO6I?VVbdF8M`tqeZ&Eg5Jy`?UmPe5w9g$tD80>-bre$pm(zBdy9A>Y1S3? zLKbPRyjdRgHquxr;%zL_V0mLD#;bT7 zfv?fhnVrrNdbg(1w#s=-an!b|J zQ|UdGqe1XB?q_w*p@YTB7-zv{q@0$(*Jx=C9evqbaYvOQS*vDjw6)r1Oq6q1;A^yW zR-TRw>U8pzs<51u*k#S_IqI3<58at?2gUuw9fQ$^i(D_S}F-VC?czGKB!Wqo?s?o(`TGpY_IPZh~3s!(qA${tL%4QBtxHVlU0_q%8(YJ6cxBC3eP8h zjF#n5Daa?zjn?LlIvnWnAEZ&f2MA?oG~r6?O}6SK4toI0c|Wx9L~RYpX9$0-d$B^V zWx?)@c!+jXIgGibxE11{CpsU0aDBOl1{Bs*MEG5`5#AHf(7Y$Uzo^uH+|)*VUqD0r zc2AA9T>QcVe@{*HA6yFW8ZnGMdrAL-TeNHBUTU&5hHqngt!^Xi+3gg+B+rvd4r45T z4)3i_{x~6xvD6hVQBf?S*Li%bL7ToUcefqxh;q)FD9kS41rF-YxRw3%-Hkk-=abOi z!=>+ZbUHabw}URnl1JhOTcE9fi@LNU^%ex{#oTeo1uyj-HH%%^uI*|reU`WT5dEZ%lUbj6 z=M^yIUf|_=T3>5^o>sT7^IE->_ zP;FmH@>@ek1o-);432uYG5_Y0mp@Nm+K9b>JqEl2#yudYL8?V>A}|KLl1BZ-UT*ng zz^lQ09JRohdvod7c@Zcy|M))K0)`w5jB3U2Bd-49aD89x(jB3(?A7q@W4_TJ^SYC{ z&ODvK5xbB~#F+9+7GO8FOgT_GIJNC!St>-MEeU!Aj8{4Nk9^+D)O_F)9d8uOJskEi&$4 zK7B;J?|8w$cl~&iBF23zl68COl=cAg$1~=6g22N;Lr=4kq zPw;p|0THjRE!da4+tQ;3qE=asBb4xK>W@&+fFHJ>5mP^(z zV71&YpE=TAg)&Yb!LSIcKJwFfy@l4oq8R-Wua)U0=x0T9R8(nCPpEC9B8yVYj9-8Sj&`O6!JH`@MYn0CcJf*}`@To5eFM ziXkZdd}8%^g3|qWP0N`eZCiE>{4f zBiksmE1l|1z~bjkEMuQj4(rITigI2vjNV~uP#8nZ{d6Ur@5^6@FRI2bl2&p?AK>M% zft(_ZA?QB3RH1{JYOo*0AKMXimh(z(lnuo6WHE%?OBX70BuAM?WGv_P*C-pv80R$J zjr{VD;D|Dg$Y(!kBFAuG(jb!#^Do<*U514Alg1au=w^uNJB9xf=C&`4A?5)Vv%=7v zGW1zaz)O@3Mr6t4VDw+bhhN0>p|37W$>LWJ zi^DI9$!7VaEwo@%cKAgx!J?Mrvc?z*77j)^$SW;<&Jw3@B@TBdDNvl=Z_C;by6|uH zasry7H``iBFk>jnDG9`(f;gIJdy%EMoG9KX8wodY1v12yQxg1|wbS#Ki1EIxLE(q- z_#&~$j`~;dOM~oZ+k0jH{zHFz{jzQ@CtTWkO!r>fLpUXJ>kaZfXnnb>bO>cAtqW=JsG zD;(_x9Uo^%(T?Tm3dE+D4Cmb*2|^p*vxAM}JSgpAQra8JhF};>(8E z^8!_(k_QG*Ox;ChU0+U7cxV6xd5{T^mF<04-hI7Bd!gy4D*X&^1x;Y_>2}ie&FXw> z@<=k3PPWrq=w0+Bap!0@cQ{WUgrLn}f7*ddx}u7D&z)4Kd7ZvEK{Kj_nH3jHD6LSsF7&fhS6y zl$z)}-W!cPD&0cGqWFy&qU>@7^{*z9nNId0>X{uJ*JTL>i$Upvo_=DQHN@M|(d~2` zrZ+tD{k^@}9KO@TURXQf@av}x;R-csh<2b*DXl^67q$};&;Kffl;#a_x5tQUKlJc> z%}z$NX$ZDcFFU~=He6#B4?z47DMPe^ts25zM7t__%%ZSeXP#c3G|~(=@2D>u%jEhp zmdWnpz1hBQC!fkE`~@6gsU8{{SXX-GF3BXgq#jCY{#Y^m=n?(6(4Mfe6;`TETI#MS zqQ+9y`RF7)En=iJx_dw0P*kHvfx-By#-5%>*jTixx5plF8ZU8d;0 z{doLm=?8hOZ{qUW-GnKmaXSb2cJ#_r)5%cm`Bvs+V4)0guh8Psh@r(OdCaM)#M`S@ zxX5J)&7(b^Kn!p%Ejskew3f5B`q6HPW{7^Jzn1cDv8D>&QH{dGf*E38+mWRKqJ5!< zoJ<{7%01PH9w(e3{^1Tf=%UXdpL3>z(u{uEx+7md0BYI|*Hm>cr6e_O>>BsR-0+`N zhE}FpP6fnASugxCvKhi($L>%XWW3Rc^)h^-yhUK^8v{W!7p>@6`=l}I;@*Galv-9 zwHi_x0(Tv9`Vw8K99g#V+4K>I4yo$v=%#2_;vSLCSw{tLDvi3K! zx0;TK7tgo_3WcS8aI@T6s>)y?5nm@4283N#!VbZr)Y{~yC`JL zjee=oPv5F``$3@$ad+cNP4_zR5!+7xRxOPo;Gv%WzJ4+_ACI$))Ku`QMtM;wjT_oU z(HhaWq-`}u3uZAxamk;75QfEb)M3LZGb7&@6_c9NUL?9^+|+EZaMTwwk;Vi2DCx`I zX07>wTI-`9kPCT{{MwHCnrG9~4v85BoR3=4u;+2MSJ;zEygmU*!?orIYL%AMukEOZ zy?Al$q}ga^eWV{)PA-`i`{M>H`(v0*&;mJWT`rsK>`3POHs*5K+|WRUyX6q?))2d3 zQ;B46FHPrsvdf{@S=l9D&6YFNG!4-TH=Q8{tugW$gZ=98598WOU!k!fEPYrwL-ecY z97#5zWV^cZPF24QLk*MOE8H)K7_^3DGX%fd>1lU5I}w({_Rs$)ori@pMDGdRXKfA4 zA?DNz@H|)WI0-Rm4dJM?#?7^1&sMEnHq<2D17eM;x(61@5cL2=ZO`^+I;+|?M1`$z zXBJ{W3ire^#JwE(Jx(%{@Sc*E8_7_6q}^@RYu6LZ5P3gDuG(c4mA68#Pl$n5u<=Tn z-Zfm!oA(5H`6xh-Vl)1uR+O-ChMup?(P2AuC~pl6#vxtN;HdJ!Z;ED!y%#@;^89i1 znvG?Iu~)HDutt6LP8q1a>X(2 zZ|X{=`zT(jwllFpr&CA)t%hVQw4)w!BSG~_GBZtE=ZMTSmBx_fT5*x9CDjj&UswzC zPBPcgo!8+warJc=Td;(A%TITAo_Q828si z@yDIn9tt{2kzX!0yicF)WEL}IYc{WW(ycX53DfbBI*(p)4>oD=T5ewRc*Wf5eDs^2 zAIsBGS?^x;FFW@aS<&#jm>=Vre%jXN$kE%M$ha{Woj&9g+{25h!DpR@KP?Ihm7Tu%WR@*EiyY6(ots{_K=ye7A9{! z5{u6YrI)Wce(~t~q2r%aiL>i2h0 zuLRF=DpfW(4=&l1BLkC@>D=k`b!R&_=&zLok8&!(jI@Ur!%LKEjkaQpqwtI2m9rD| z77M|2wG|^yC0eG%v5MiFsi$ebu5(8+52JICI2n<*VR16 zjOIw%3V)g#)msBH8Nyy2xKIOgpV27ET%m#0s2-Hr70nbKCJ>0P1B!IjTB^G$(W9an zqH9y0mbj+lxk6K(scneNBC)8BI*+#wN-qs(S@~0j2F|qcpRfc;^*wL%!ax4-^DWZF zG|KdkKU_4FOsD+1#fxsXBJ~yo>-n21*$sp?TT-9C?aV(^c(XS%?>L2jtKy<}o6C(w zxST!Op>(!AnJ#aS=9LXDshigC-@A9?uC~Ocy}Ng{ZQQjXv3~ciOhZ>TiBhcv+A=z8@>be1=5qbL^twzNy}7{0d6wcFu4LR|=s3>`c}aicIL`_z$8Y`4 z#*LM~9Tp{@T80E3Z$qmWSEvJziQN2|6*L`x*B5tXO7DBzdu{av2ySfGR3d}hnyCiL z?8`aDx34u70j(J#tR>qwZ@-Fe^@|Eo>{n5^VyoYtA;#|TJ8ABcZ!c6a3q?ez0<9Y& zUfhRQI=eFVB2_eA+}2DH$R^$2OV0C@p7)VQPKnikmc=v57_w#~h5#G*8h!OZ|B$wo zqS$+%Uf;yDWQek^k1VI1*`t|i)KShV5^2W}W3zv`TBYD%!V(=wZxy@uY&6CKIclO| zjx6V;WIf1w=}b*p0>}p0l};Wi@1^9}ipEoJ1AoYL6R|W8;wyBIaV%-X7JJIYRcQ@0 zZ1mLbGM_o6n94J#nBS=sm-uJW9{Q0?uOb{eUUZQu#oPEoU{ykT;uwl-^DJDO++$bU zXkkP@)0Z^MF{j0ePaRz>XgRKmZ`q27VMu#THQiqLPWhQhViybXtxW9rA#spHk@VEm z3x45MqO#^>9Pcl(@>Istjho_iB)A;x@ie)WY>RC*885}mVMV1jL@>t66}1>E276I* zv7hbbiyJ>iuCCD-DIj{WSh@;C4+v>!eXln*c51tPZAM2iqf}9uLqZsmUR8_n5o$n2 zNU^uwDiJw;j9eQ~e>Lk!LGg=))mJ2bKu|;bJ0c5xRnMDZw(59!!;d>dy8Ts+jWBB& z6~zLz$`dnwJX{`7v(R93m7#*c+71M0RJ3q{2)_O@u*Vh02?w7spCW1*M_Fjmq~3%#xe$q zd4|dnF~0u~1k`KO{{_V@=K3v5+<;()b~m)uWDi;FH+QUjezS%&djewG=+EaW9bNJ6 z*5^@h55A?nKb7v(Kk~JZDS>|U6tk|!RcV!`4aM#6@+?W-IYn%Ps8+s;cYg)s zFoeC-FO))ng#03_LXj0eeqv-Wgxu#B=+V3B+K5^4XpEJ@5Ohavd%RdEOzem>n>R$G zSTqE{)KGsF?=>S57y@pqrEEAiw-TEieLWT7Q#`O(EJwY}aEQ*yche_$W5Vfa=@?JV zwYt}ho0=c26!nZwMLiBfi>uufsvYAW4V`IfaBaARanWkG^H@HbeDd9zmfH9jWiAeV+49%R8G-VTqGiABW7B4VmW!szjyM z?~(B1Gp6n$vu=#!q2rK)JRJ3FFHT6yzQ{eCx`W=cjEU(drR!(8QOdZJCB`MKgXj(E zFGuqY8O04wCmWYMPBFJP54#ILpU&CWCxY`GFh@t-WZdP9o>c6B8Vyc#&5&cZS2%hf z!4n5UwdMzE`LfAC)LQiOrA93N&VW6 z`in8@XC3W!a?zJCX~gJ{&FQO#v~#6GRNl$x2_7NQnhTAZF)~j#M?`>wqZWHom%Uf) zP4zl-A|ajhua5&SYp)ot6Wl9qSeNWLOs_I*(Yv=?d4}*1LsDz8jbf;DtJ$K_4OjH{ z(kXyA4@wK=&a*;md~wF%kHQwScopZ=YD#5Dyv4kmo!L$b!Yapk9cq$vSnT-bQ0b5k z(W)U;+diky6|86gKxwu{2!Oo`Az`ZsWeB_fvQ%Gp9i%N52T=OPTLV%V;%*6Cz;t(x z^__?wkG5(^b!nMa;_!_}*~)5LEZVv>pLh%L4n$%5KgBw-nXXj%r>lkM2%qn!$i@kN2pL0i&(f1mtG5wsQYlh-ydxgDcgy=8uL=M-QAE*`c%m_V^{o0ON z=}D@e7;D&2Q1nev-#+F3oS?vCu2t;C&`71=Gh;h`XW`3j)O~$PdKg8uRcOf$^DVLL zg^SZWDWR5)zS!nn_PRN;?X5trV&<%Za(N9KV(m!c6=SV2?|Lqr*p$oUo3H zHf@Numb?Ug^v-ED@)Qdjj`Wk;o*~3`H&dUlK=VJtU!E_=Z4u^Q>BNt;YzVf^yIhO; zRnf!`H*AQtFMKu8brkDnb$TmiTM4U~-jLVBMjpAI1csn{BE_nf5}#Ntck)K1)Xf_r zZZkFxxeAUO3+sf2UPWCTZrBh@pR7dE@R1{|Z2BHfhJx#{=vOmciv{e2?@4cN3X2gE znLg~Cax(N;sZ2+^EXEXEzrIpU!<-NP(PlDn{7v06!JwR&yW``umrn3=vi-Ltb#X|=QSSdDjP zwe0M&mJGU_zICeVp1D=G_TH-M?vXyQj3r~-Ap2uvY%B{S@tKDVn9m;;2pJ>NLpBK8$P#j7-*(%7hV(gcKm~96;34XO+T)Ube%rT60)l(n z2lAYb^Oa1vh7x$-HE+XEIB~vZ`MM8 zKDt2L75P@lbHaf5uh7R=16l*!J|^Q+Oj_2YCuRI9a1CjO=F};sf!*}K@z5Zw5ui&> zF*T2}`aw9~TcN^uMx^)3WVUy>!yzGnhFX_jMG8KEior!b0rrPdLJ9b7`Bm_S7M#&9 z{GP}`XKHZry-W;4;)p~IzKd0tgA{8T)NBTI7t2C#CFme(G(&P13%HckH~3y8=_-oz zW`KzrfsgK|ROm%7sxN^CT&5>`LwYhx@wyxp*PvF#E%a7`o~<}=DXZTO8f?|a(8J?% z%7|&&fV&ftfj;uMv}Vy%OC?Wi;dKMcS~}<&o}D7j%U4$44z6PHDA!5(=$A`Dvy}*F zDx{8no5&478f}yu{VEQ0^b1m7$-EiPM-Eg55-$mHQ(krCkfPQU%8)fVatP?M`pt0U z(B(qo(b?#9NJEAmi*)b0cRHj_G5WyaMOnT&p4?sZFwD)Q2}c^}Z40V|x~HoI>%Sy1 z#{MOxX}gY>N&|ID$NwGBg*NMyq{oyV)p&P{)aND!Do|_(ieywK(~i0=1LVNzIur>f zqthj~WdJ5x4y60>+1&E+`1p--GH&z&(vN4Mx*X(L)1c;{QL~VR-b&Dh9?2{OT*~T~ zVIGxRP5w16OAnT(_H~{Lw2@m)ia}E+)lPX%*P*C;I{{4E>BqP?R{M2x$&>b5>WH#; zb~+qQdwV{kLw|VWUJrls(Pli4v?;tVc=UGXOh%uxr&MCbuO zQRtU>4z0e)>-Ebr*lyl?+gl#3YON?i+iAIfHtLOvhcv&w`DjHclor;0?J39Q>F4%} zlhfgO`P})zC+VfpJ9~JOfF8L4&ZNVx(;@k}*I*<4g=_ghay4K!JT9+#ovLdb^_$w= zeLULT4e$P3NIR0kZ$inKU9`KqXKQy;+U$jyZMJS2v2OAgpsnuAY%769Ex21Zx`fcR zOMmxr(%-$9^i*qTgEr~!zR)iHGnbS8nTttJwRV#JnT+(iG=ZGonJqf!NKf07k--N=P6ycPj0xS{)7frOAUbu)bPGp{XUf-w7^q&WkOZ9 zR@@F920*qQlHMO`X=?}F^|MyW^?MhIIKTTs&}*jWX{jMFnZF&h1hd;gQ3ne_o!kx` zhH|zYl5rerX=?{Ph_hD8jbLtvXC6m8C?;T&PUAs=>o}3=uA5Kd@7%nyj5+)%1Oxq{msEKL&gxc2X z`U{is$@pxx{dvdKu)ha`7VnZ@wrGsm*K!a}5;WAo64XdSLyZQv`zZl`c!P+VKLVxeX^eGD!pFPwMm~_)!lj3g{{B7EcTvrH*MYh zl$k!kuBX8V`qBqy`7}e0Fdp1jtm*jcH33QQDyyI5uw3=mAc|GTsrd7O$kYXpDTuXf z1+jdYj$z&UXmL6?`~+e0eU?$QE!+U%`B(aqDZs%>ce7S%;Npf^UXu}+=tF}MedFx1P}AKidcJvZI8TM{>)Dl_mvo`rI(*I5g%t~sXye_cJqb}AXV>u>NoL!D{;CVz z7Lz%F&EA_G6ec!yt|w<#lytFraD2G_E`dHl8oFml{09-*2hFJ2eRL3gi%Hx|>j0hK z^U`oKJ>_Bc8r`JH`eeakv>6iTy)(x_bI-+|79ThXs@VT^KH5Q#YHc?NP zrX8_ynKKcGS0}O@SR~+_6o8LDaRSO#xxI>GShh8#qQ8+@W~J z-hgPg_^od^E|VnUHq*wU1bT$y0`|=>N*cJRQcFv^3T$iM`4mlyaslYv=17je1+=;hJ_vpZF%aWYX1zwDbvP z1D5RACw%?EjxBwHDHAJ})sf%u9sBDT6)$+}EuG)*)vI-%Y2(dDOKQ7^MZCZ*s?uMF z`1O9{@#Fr_Kk>Ef`TzSbV0jHUKf>C%7|?|W{`iAd*ZSs%Nud|lH(q?@Gr7rAaV3|I z`!rS7BNosY`F&b~iY^BiA_-a24D}-V*2iA_SXbF`kF41<6OcYX9W`)Kew>aPgti7Z zKi1j!7}-JoiS_f5ofHGw#>vvWpG<& z5@$4er7T{5_^GmMugYr_7+pZ4fbF7DAhtE?y)r&{ZFq1r9`1E(B#aDe+eJ>GQ~q4f z21ljvT+gO%(Q3SZdQ?1k99nr!7u2d2BTOmnT6t<)t6OB@VK&C0?9*6Yt1{Q%Lp(R` z=FfcPL5;jWV?tYlo3D0u26=zxctBfp^JiRj5I^tF9Gxxwtxt9z`T6;TnSlJ=?C&cN z3gqq2gti7ZyDN~lzvBV&ce6iN9mLPu-_hC9-*QFo?KYtE_Gcy_e>eO4%7X%V`!k`f z!Ohn?PaS#tJ02i^H~VwdLHxY^9bHcPVb_VTMS9|K5$RpkU8E;ETly#Gn&$AffcBp? z8_?lB*=?GEjA~%8)F91iGSAf3qKPrDb<`xC)LJxYo6(+njY>~OXW1Q}vI$LUxOrA( zJ>dhblHWXA(AX@vdA4ZncDecK;<)2dH$Ofc57469=;o?Bj1NbbNMBYj`Q7SGzg@kp z&u3sy+MAx;3m*~teAJUSA3c@Z!kXlIYx$BpI-2wq*Jk1;Ic@SAW{V|t3=Ut;6qQe^ zusX2xH|!7TOsqIBh9iFZ{qk}>=R!)eANAcwg>+cnpPrP1 z;r?(yZ`*Qd_S~@5gdguHY8MGW=(3a0x)WSXfzLih1++Av%=1&a2&DSO#YBC!o2W@$ zAjoHvLYHMGbcDKRTuiu^FC?5*KM4FHW$bwzw&T$A>><^t%?ndj`*3t$N5Yb;7z4WR zT~6plU5b@$DDM_xWr{%ivu9o%@12eKhOCF@)~XRt&I@CVv8b1F1ABg)eE=m8d!WC^ z(x*5roVJ`M!$F+#T z9aU}^YfiCry&%@BY^{@G&%GM*802zKEzi-2P%#MRoAGo!q01qUL9RLNrRxQ;o+lrt zjX75%hP4qMb+&c&q&kr087d@mYxBTW9m7@7P{$y)svEfZipuJz^RCJ}K%d3GPY-}k zOInC&S7i}sSM_yu<#el+{2VRA&Ryb^W6BVfn>C;^(&dipZALY{EN3v_`-O~V)9GL` zJTaacu-H@0ygqNMIkJQ*-^c4Ly6#U}_NRx%Ni!uwrbgc0ST!~{LWR#l@o6((Z>Bnq zEzGR$G-O2P`*iO=D3AMR$7fS&$mzqQd*e}dF`YJL)}T$6px@K(7PGIbYp>ymxTRWT z1ywwENIsiBxgPHIYpDl^)ZP2z<54rqW5%3(7s{%$g*OQC!J#2TSB*K|Yt?Qs#cD_8 z0ck#^C#8nR^ymV;EOpYk4`r*hm_oH*N8cJwDL3UqN?XS3AkLji$yhoYJnI^=oV@^L zbsu)3Yku<42dCwO0ey%>+a6k))n9|FJBg}PJG+IKk55LF8tOCr%)yJo;>|~V5LCB~ z{5tJrs5Qs0O9MU~nZy;BOPehHbyn5MhP^)C{K}WlAJUcS$?)FUY5C%0GNvhj!+K3w z8iZPx#$A-z_^1ZoMVSq-HTY`MpnicsH43kXEtU;Zt;N^OZjokXQ4if^RdX~Uwk8Ws zlgYT)8x+&i*WA=nH%O+3+0?9dFcW2K^-j|2h4Oqj5N-JI&uSV?rL|}r z{>=bK>9zlY22oYnQoFWz;q>82`ALeBjGeET)fN`D)}m8e7)+uz*|soHwpL$ETGe`R z@X#`(FV~Vcf`?gHlr`%^n7u9CJDhaVOm(2vtSZoGDI0;>R%nz|uUmvMxo;(kE$x>P z$;-!k<%8OwdQk#=6p@yQdf#s>MrYzw zv%OCdXaOV)l*_?vFG{GSnQevOqN zEr}`c?cBSy5>%zyc6TY*;#0(Pv^2Xzig40{ztHwWJpSHGIKdM7X^MGsB6_YRXROGK zDp9>4{@w#VVyLIQh5muR{deO3yaFrdOrj)O*t>6%>_kbvP+RNSkGjv89zIW3GN&&d zpVBw!4_~2w=AxP-<{%sN5CQQ&_iSEZwhyPis2h*i!||(^){5<({_eSTO+Mde6ZBFp zpym5#X_=yxezrg=8O4R>yvyy?_qT z0w&r6FW3Q5;FZ?kE_gq#8aywk;r2ax4xCOy_))tUVFuZ@C@td&oq9YJUly7a$a*y^ z;Q!>kv*Bp3tAX%BL&}{P0q>`ow~NzK{-j~v{z`m|(i#;oH>ia*psRV^Dww4KUe9}K zkGEi5nd2o1l-_ef$@kn=sVnm~$(a%Gexf|DQ)1@r9^&$Nn;+$Ne1P+v5$&~SbQsqG z^%+-N1&$q7;05UK4PADgZq15!s!#*P4(fS!QXUMa6oT*jfiXj;U@g3(f^{VlQj5zyIajx9ttD`STHa0PP2LxDRRxzhXtKZz>bP_2 zvhmMnu(lDT*g-u{Qb9~OZ_he$c5QQD%m{e*_$T^?w5tnfo4kb=)NtdxD{K6^23z19 zc;0%ImoTrEr^U==4BnFkt`6_{men7Dl@=th@EaqVKKF+scM7Q!SR`e7opqg}bBstt zLFg({zM_bh8f_pZgONLx+C4=VbYDzNT1WjT;b7!)W8)geb(Pyp1VS|f=I0l z9HFxJ+#k~GigVYcRuE}jnxU_%tp00%V)3p1sNy?dJ+bLG9my5!FF!B zxL;1ldVwKmbDQf(cAW_{AIwb%eJ~jK-*oo-Y_h8}nvI$Ozk*6we-^klE;1M#x#d3F z(K?^CTj9nl&%OH5PQqvVkK+Kccj`Y}ZwT*Y`;Q~DCGXaMu$pZD;c70{f4BzPF4>0x zs*!yiEhmjhK_AzN?KXI@~x<0|M<$RvBET9s;npYmyD<#9tJjuwF=FNc}a z>grUr;myN3Nb=smx=-0~i{pp%VQX$H36-dbQ2aes61hR27fp_{F@eZzmL|s!f%VsU zP3WYBLLU@+8PGfNE*a(NDIFQHkSPR#mIORwvL2FYmk-N8h zryi%irie1s7H_hIia!h$)2HuB(Vs&9MqQo8GI<4zr{MXl@Rb4-AF-8;v}bX}mJ(3yO#;Zi+x z(yXm_np~m!y8WgueFNW==~QQ%D~_z7qFVpf?;E4FW_TCo0_^Ds!zHTc0t#x+ZAEp2 z5v9;FCrqL8x`Uif&bl>OTL*DWfcZ;aGm4eb^Qi74%JRTnLa)C*}S71bX3i`?UbfEi)rhT%^IY7x{n{^Y=g_ zTZN4~3EXa(#L0%DtUlobioY8Iif|9qdt1upaBn=NHjT>r=$ zDa{0$^{x*g>+;!^s0#^FNt2D3XcvsKtE0kR&hXVT1+42G58ci8bZXUNk!fQ+GboPx zd*kf-)WDOylp{6>dNofl*+&NBBl^FyDKDluR6YQ18}*Grj0)$gTCB`37)IXj-y(rOoHRvOqsb?-Zvl;z$-TCbe? z>v_hWz+gu$Eey!Keg5}>ghFDgMBj}26kc; zXLZ%qosh{CUx$QVrI+FEpWOCHfTlQgVIdGIF`vLAJXupVOCQ#ok=KS;dOX<`$Mv zQ{!otmR1)Av7ac1*;=LDYd>5*CHrQT-nA`0w0*+gl#pIj3kY zg{SH6`}FnlzRQ9`XCf2I!bsuW$-i7~m7_sk#`6F)bZ6c3{Tc}2s&^=2@D z+TK5dSZZ^(HR;AZ^`~$O#LMsSd$(H4YQbByVqLdg1JSO#m>k@vxMg#HPfhgIu89&l zX`XM=%&s04C$n4pieuNH6o$V^_9HCbdTku{K%muozTELrG+@~+RUlSO+Kgp^Hgh!r zmum)>VDs1(%TAK;dsC*es${#&nk`Q$kWjv18vIKgueuy$S<@h*NwoP&hx6K4=&b}D zq>WmzJ;LuOLs`A48+(0!d{i8{cX{hm*JNOG(lHs6Jw$w-U5rh@_7Im$G^fjNc7fza6>FIGu$xcL}7%S2#Op zBG6@9mq^9r1JeXabDHZA^=wJme@ugMY_$a=mHhp;z2z;x`OTYN&Kr#hHpiZOxk)XIzZ)jx zmFfNBqAbWwj1=UmLk+eEYe1k!6S^Ap2(g zU96W_|6S4gkrsGdjlTqiU!jRSo1*%Y z(3G14mpG$OQF@m-gT+h6CHp|20_Ap~Nc2l=#Ov0&m34i<>AJ}&SR`7CuL_0V>9IDY zff(ylyNxwoP_x6ZH01V=Bx0za(oW&Yj2E%j>3nH4i;xO_7CPy|WIQrwbski%5UjNv z$Xf?h1Glbm!HChg$)JjOS_{K$wN9BH-TTbB$%>aWiUy?LQU#elqgI=W7`R+h1;WKp zDOrptkmpub{}+sjMLJ3vyl(ZBFL7g(OF@p62xvA2+rjt!CUOIihU~nZ2*2yP%j#3Q zkMFuGYaOOU9*PF7SE#5KwU@c(vVznLFB%}Zd5|ZMCaJJ|x0bWFcXl!w4qT9|a9cvZ z+3i!tR2naq&G}+U8%U~I($(xHd#0S|Yz~7~nEr7Xqt~ZCz6>tM5}KX4MeO<3D~($g zg>>Y^h4SsRx*Hin0N>kfd_!l7W1g>=gx`A>+Vd}~Z_`HJsk;U*?`tx(Co) z%IZ(*0k=A!SvWgUu?Yf&nBY%Mo)njbIt&*(%z|*QL1i6+2d9x>|wQ2*mu5pI^$+Q~r^x+Y--^PHhK+@$Y z{*uj-n-_MP2;|?^C1TISm8eairUpK{x_VA9;z-}V;`KAW!pTh4@e_8$8;9eG|G!oOf z$u5q|{kA=%D+Eg}2lA#N)wpcn)-}#BV=^uyzO23-+J2dCh2)lnJhjy2AoZFCH3e5w zi-q1w(1!TQ)B;?}>K(e-cKj?I_c_)O`G5Ig?ds!vxsD6uLfsj%$tyD%ScMMBVp_6F|wE0#*H zNO~2|ZN68f2;g@sEfs!-vb>BBztegaCGmXA>c5xX#(FRBQE-OrVyVl%r!EJn)-Y+42Q2*FY7AdrS^f2T#$oeaIkt~6c#5Dh4=Sqfk%a-Hmgor4y81}w zW!LJ9LBUl8Y4#T7S`F+bVuQM|pC_(W^C+udg$}dea{O7noHrY;5aeDC8je4D+zP3~D2)%!K;>p;6l?{LzU0ISV824oQn z+qZu)pE}*FSmYf?dS|a)Sni7{A=uMx+?s5f{Yy=5DFXQ2N=v1wpKorZlF2PadcI}# zM`65g)NOe(zHiSEJbpD1$hWOaM7E?GstvEE20pSVh+>e<3>}jVZ<;Z77f|Jb+7Cy$%{&A?IfePM(9P3?yF?;-=Ibdh?zvMXf26Aua10e(wb| zZ7E>_A3@K=yJ=V$czsaTeeWZ_qIhLe1n>C_DlkI7TWVKtFMK* zbde*NR@?ECkxN0cl?Z6IpIS0DksE+Clt`A0ibGl5g#N}}{BBn-t_eXG_Tsu!ESz|@ z#EWYL@MABoONF1Itl`BqQd;Zh(94k{q_(x1i@lsL2AL?_A0W*JQ(n%%ZX(vuBJpyX zM_GLzwAs>#ZVDFW?u2Fc#VEUiw90N^HxWBqcFm)#o&?$7^*K}Sx4S6J=fdNQyuetj zNt^O=;Ke()1hX13hMe3+;rCEqS$!{z`Xw1D4)W1=4AgL7-Nd ziWscdx`N@Rr#Xf~?DdyeX{OGB+-9Nq-12O2)0lHep`MOyrDx9!4`z) zLrHeP?(3uJ=~3T*K4zJpd#a)VX|_~>2$U$KoU$SYF4t6na5237{7lRb5 z3exlrYC-Ag0K19UAZA<}BnwK-qpaSKK7uxR^cu|63g7AFG>bKWz@aSzP#gHCK*wLT3@1Gs>2inD`=a!f5+bm93P-k1e?S9PA z)Srv;s_BZAkc* zFGqBqG3VD1(Rl`^SdQq_kY>ZGt~nr&m0&rd6R}34CS6nWD66jl*(Ktey9>>3pEgVG zd`y4c!v>RxZvZz{QEorSMIyeMi=kBF_8Z*FY7HF5!rrhjLp|L1t`G*xav*Oip%xMi z+`7gYVkZlUh%c)@1uen7=uUetx?}XB8q$PcQn2<)1T+O#i{d771CWN;$)Z?sD6205i(kpCG})J=3(X}VZpy0`#VLwzn)}5p zp$u7*MR7ov)i%Temub1|W&(EPiF4uu-?|)Z>=xt!)Rda*_LI1U-b&Dh^l9AHS0_`) zf8cHH4>J}9CLn*zl!OTCRDv$C;`7MzY5-Hx}>)Y!t*Jsd)g%Q-KNh* zd0tG0&RtFW)3XzoBE>#BufN;OV#HX#Pd6hEQF>03-dfCl2+SVK4NOHR%-#onX2GSN zw7M40V6G4>wj9WtZc;5L8#rpI_%NVhWp1hPdoSY4Y5?-OCabl|b{N(^p#v?hC56)b zN%!HUIsZliL9M{;W>P5Jf;w??%^%E#-)*jC^+C{hOFC6Ph{e`JGLY~pmWhCgy6l2$ zb?biYs{~#*Y+gaBs4TzA5Pt6=&hsp*uapI$ck2h_Q)t@Der?BYT@!(9+qxv9rE=?< z8u;w$65$gxi5ezuU86+5->>}xxw-rbrFL_kz{88`SdaY8)5*hrNtudi%X)0iqP+M8 zDq-}eVEPOlVy_%bN|#!bwM>@ay!w)63zT4~>y2VDSJJuoV^-{3HpeHj9E}EG2O544 zT`b{Drv`d*eZtL1<%5CyvUq&#E+SF>;M{!ZpBBjg#JC>^<1S|1vOh|3*&D!!D-qE2 zs%qEBWFA>oe+VYf1(*NWYD0G8t`KTm4&==Wl^bv1)-^8JJr0P(jYoW0eL2`@hkT}6 zzYXNxjwL&VMT;gugO9qU`B=rAtFX6VBK?f9Ca<>rM%+ z7qY0{1)h9)O7W&WJ1v6W?)q|2aZQ7on(6JXf!<2cMw_MEUCpJeUIGn*-xwZu^&5c_ zvBnH zONT|mi&86qpM0X;_PN&dyF0&%%5A{ zasO~bT@wnse+&Albhf?WIZfi0h&&h9-N{oy>+L|1_~68k^NONwGT+GzPS;INp%G%Y zO;X4JOj_hg&~n91aAB2~j77gisR=;0b$~T{qK?E^`0W&LD3eBFfKORng%P+RGuJ+S zxL`GwpPB0E%@Kh<+YNYAC$*E*)WBy~mq?Qvx+ObFjgofyW@x8nitdo&OF@yEABj#q0YlY6Nx!~sWwME%DG18doEj@&!+_n%@#_1{*@?J-13%>;87W)dzxI#@de^_nD_FieBhoe zv6%6wtjj^^H4SPVl@@v{K?i%p&XtTx;8Iqv)%}7Mcupe5KKBk=#wFIRvm&_%Sk5S_ zO_!4LUFR8hL1s=qV$T0i1{+JWbX3y$qZyv|x9zzYjJc{HOFj5<(euGE=HRrm%tRrb1SR2$~lQ2 zWM{{d;+)=u<1{ChZoHNQDv)ajibOKjC60eJ$bcL;U56s!WayX-GJuJee-~WnDy_4W zOHR5c-{=SwAk#+pS>#DH<8TN6MiW(C2XNR4KMMy#BeqZYJ>^6%-perXwa~Kz+U)O>o4R5mm*=89cX<+d6~piUnPHh*ZW+@FElu-#weymr3B72v zT7}!YK9tb3!gLebduxAuHW^ZEw4~|BjzaJpf@EO-t5_yxPa0Jn1|vQ2x`AcFD>PMX zLiYaQ_a5Rr&$9Z5u##A%@a%AKII_RX=HVYGK&p-Kvj~(Zr-pwZ1r9smXWQ^tdf0RI!uv@l-1WAj!J?DuN`cs1<`y0)AV56}+KHvSJW~=F7zG1W(eA_mvmb1dYyXZ*@1EwM%A>xS3FdU?jhpP^Ds|ywTH&fuG+@82n}%-R4_X z{|l_(R@__NgK@cU>C1yg2tclN`8A`T8Z<%)c*-uRs-T;}GgIeph&|3+5w)KEZS^ZWW zv2w{y{WCxP(}ySa{Q;iR5<2NjFM~Ojh6lybQDL4N-9R`h?TC;J1Xm8yyMYiuP4RIcG|+A!Xtbd~b09=6Wwi_g;ktWL(p}-F ztW9(aX_UQu#S1Wt7<9X3QDnRxPkZd?dlm}#-nJ-&uVI2D{fUM4{HaBuH(nWx%?~K} zV-+d`spwmx@YzW+WvP!?UGo%dUA)Kv6rtT{;t< z&;`YQ{pugR1Y%y=;MKT6>y;|1AA?~Sqm;S)rra&U($GNA^m@cPpXr42tSIz#L2E zgW=S8BAAxL+?2i;)L2!J)}}PDn}{{^PnuHmD64DG4HvV^C%)dxr6BoA1T+O#*L#~t zYJ6F#5z-Kwhhg}=r#O_=ufPnjdPoKzA504K_9C}gpaAJN!q3uu@*Oac0*9UOvv3F! z$H^?|fC1t;Q36uXX334Umif#VgB0uv;x{OX5{WB_U%mKnyQugQp>(yTzfZ3X_op-iQMl3!6!9w8A_h5Ko+g`JQ*X7(wNSwKwnfomhh&v& zp~W8GEfX=@<4PtKJg;)845V5T;-+#uPJN@Ms5OOpUiOP|d?l;gfTr&?Wn{6W^Z)^8 zWn?QP0VdvI)#V`Zng%tcRy!;Uy_KL1>60B6a4DBtPg@Py@y!6>T=(zJM%?8<^ z(9_`cmQSO-uTex|f}emfy>>7epV3pknOArDo^B)oQ*6fHWppL}m(}qdJJJG=tMPZ? zVVH&eN%*}NF`idh{S=JLcMYGmIy$En96k;8FV>{ZrsO!Jmp#F(Mof??4oS9q_`N4s z`m_gRq_vWJfX+R?ope3TgTB^;KC^N(J}(Pe z>sivX-Gl&SSeIX=rIX&G;L9iQ~gS8jNz%B3JNWttK|Q)IPNZ6fI-5`{E`PL`^QLs@+_SlMls^MMDRCjtdX zzY%^GH<7p+HBSUm;6PVlb=718Lz85l2oTSS-VB%PxxDb+q&J@FZBt4sk#nCM5&8*Cpq4N9Iv3&u6|EWLi~_rgha^ zY+!j#sH?LFKr$C=9%c1^gN@yj9&|M|vxQ=B6(~Rh{|Hn7HkDA`%I4tThSVI4&XRbm zgcDs!fmPAAn@s34j`8t9KNqWExe_|i>{?PN-6iqHDy3Ee0B$#vLg8lUnxxc9fSzkv zZDRY;>qF<1W6Zul&FvQ`K(3AOvq+Tar`j)&0*9UOvv4qUO4=_#M4SHx+HYgzqp~yh z^oj^1+HSy`-BR!Ab9{C!K8AA19#W%3zaIckadkT0r+giU6w;?R3FzH>GyO3i5i}@4 z)9a05X@jH{d6w`qYXbrtpJ)^dM?>)>=}ZGE+W%H)-LT1{PYKE5om}pX@_Hv19}2(e!)COT z3y@|HSF?ww1I=hBr?Elg7#T@s56z>jz6rd~(s}zX)E7hjs|wO8yMf(A>}=UJ4|>J~ z?Y`G8yDvuB6{J;m153Nma6+!TO4jb0M_K(Mj3lyqXvAdbaG&wTD7%8R%5GrE?xDI) zvTGh?_272j;f;;y%IZxR6KloksB~*q`@I2P zIY$!EZ8QEZt|oC}JT|=(i?qPwYW!Vz7+NLKrik&p%IeQUf7?1ab6>}{EvtOA5Xew2 zgGICDbhI$f>xRwC&@+t|8a&JDozOqSEaj&sH&M|H#I{U^8q88a4Vph8a|w`0<0K7i z%u)aY&S9DX65(u^BQr|@TzbF{*Rhy*)n}a&l22zoKon_2*6|Tt^w~6LSl<4;xeV?vaz4y?ET69H!-n4X_4{J8mS6NiIz02@bZh4$bCYej9#~uU8gw?;+ ztmp=b%3#N4Nd_VZXMjo=z1KIhmucbrs5r6k9RF~I0{er|J9gYR07tY%p0sp+_RJ}v z=XcXrznhjy3nx8=Th|YR6aoDBgNcS%_WYd0HEh0R^(D2}m&b&zQL?eKQTZW0v6jyU z>&Ju!bQDjK!PDuRkFI*M+xp|c237r_5O>J0EVphBlScePhYk^FCi|+BVUvz;w44mV z6kkoZ?wgc+C5=julyXF5NT~!!7mv&PE{f13_aEr^QV%JsXLX-lpzEpTApv(aSLk6y zwI-7fYfPEhC=l(+hnY;q+}D8$WTwn)DTAh?RpC}32Tqik&ERBsqa+XsFfq;-OHlcH z++5Jstwi_sZWXC?w^}Xs3c93uTAHJrgCT(ebY174^I6G#dJV@M(};7M-7FutD=B6F z{_ylLw4E8O>*)lP?*F)ZXw2_~am_YlDYwmNM`q7a(J($&gyo76# zf*t7DxRZy>%i_Q;C{O^fw|7Q+Y`Pjw@oUcY!})OfgTsQ(uPk0XC%1usJw0=^SJDG< zWE+ba?@A*HKq-^m)Fs6m9@AFHF`&op^Vxbhh@C|Mso3*-U7xuf1-1LzI zpxg5Mz84`7Dx$!&HBmY?6~ZgM<=Id zDr%mc6b*oPeSxc>wc~S>8nnRdMuQ;NLws<71A8VD(pD554P_Zf>03&`U zKo#fYVl~}|}l^By}P)xLZF*PVIM zwm6_`w5FHgyCqx-_UZcmIdkv+vL%zx|ArpJuFzYs)`(&kM`a-Y0{vjVZp%9oR|w=Q z^b0Lj=6Dd-n{{}6Y=2nJX5~_-r|S!k%zcTDf5{bCI&;|D7X$x`zMjhU`7`bZE-AaM z6o-ZQOu8mA>!#d7<}D_6J2l$T0N9_7KX5Mx9Mktd_L~IW`TMtD10k?kq_p<7?A#z+ z3V`mfyR(Vj^*Qt218>qlHv!Je)6w`~&rX5G8|u0oK#SAy$j+k9@^dKwuF$KPRtMoh zL1jQZ@2j1x@ zMFZeFbpfp_r>~dy`_qRy6tC+>MLNQ(e|9S zOOH%P_-{UHc}`ns^pv&i-q~nNtz4Ibtrm}R5FQ9z3IKZ0q?im29m-A_&dy5{0em4> z9nTl8P^|nv$)!!6@!Je`P}1a3j9LvQG}>SnN&dhcdfue4^>$$XtN=CeqG?)L*vFj! z(_28&aam)@ryZ*kdO_>^l+X3tl)L%KvyYwqthUGHGe@%$m&+Pe%kp@#uhh)uO#;Sh z#6&A@hkucLgUlu-e3?Hjb;2N|X-Q)79Aq}Kveeqom-B+_yj-?VX7Ov6|Fl-~*EUh2 z*w!a3v4$(p!M+#<>qRoMutgtt((77_RVQvNDhN1s+jFo}RGUgWabP zK#M%?r#otC!kcyBRY*%L-t5a$Ab}F(3yi`uaWfeON?>%k7hSpCC<>T;HQ17>jsj*e zAm9A2F|$k?brxfe#9Bh|+DQ{Zt(SiilBJNm%P!JFxt_Daa7d;WM$>{!mwj!RCF=gf zGLz5yNURJxctI(dnt0F&0cd#9XYA@)FZZ@w&E&fEx{uX?_@a|V3@Uv-p46))z4)tA z+_V>a0g|DYd2PKG{&By1TeH3FJ8LzY6@G<{-t@8>p8Ky5Kx1F@1M}@LeJq1DS=In4{s!#O*A2}x%^v=wPM#@HT+ameax1Vi3g}f z403(GpZlz(zSuLLHF%y!oV}ONJ(}mY{&W!vY(Pin-1ZlFO|bSQ;SEY_#P9)8T?a*C zq3(I#A?ErX|C5%?_M#7w)y*{TGk9F*wmXugcgoJo{3BNWgD0c|BhqKHZry!io{h1; z5(0p&y09H3s4C0|FduaX3II|zk_$fmUYm-(b9E!rpOfbXFgul$5af8umv((Wo$t`) zA;6mQ)i?=dX`7RgZxl31fz@ShQr7mOls8TqcNufWE8u+UXi|eryPm`?HiO%@hAyv6 z4O(DU+e-U>i*ioY&*IR|(%o>OG^*@LLNVBL<&%D8VdD7cK@oUlS$$Yv z)O?(m_loMv;qd!94g1{f*;b8{pC=sF$u_1&j|nM}vrK8gmw3r87QSwB~Z zF+wN+ z-3IZ+0HI4?W>W3?(ih%%SqN_-Bq0Xh#njsiywtiv)2B7yJnxuhmx&j024dc>5aphp zntjn9TA!xGwjDk3*%5L+x0h#3Ol6+9tX>z-#o}N1BK1bNU(Kd!UOiV|l?PG~cqjZU z9E_`@Jb#DZdjTTa{5*WWajDD6^xYEPY;Nkr+hCrcdWsmdqVJX(T!Q@Z6VS$YO93RB z{TvMQCtGHi0cFmej42)4Xnem<&zQdX=!yI^(;(IZera%YLf=MNo!^gLE(U#9J>+<7 z-Ztg=CQtxyWuM-d9gWB4RY7)qLIAMk;Xb`UVqcPB-&~gih!QH&KIFlmJTax@xh;|) z^!_2ef0h-Lp^?Nx%j(Zcx8#%Z`qqH?aSa_0?v0P$e6*EsvYJFU)H>gjJRToW8a}JF zc*a#UpwhBqNOycKAe*o*2hgUMqW+-Qg7Q%!PyvIjx`>isQp1|_17Dj*GGMVVE$s^q z>}y>ikS|XU&-VB2$Lstw?#n%hG7#%8=^oDpqo}@L?)%T|3I2u0)}Bz4=$^1fPrK7< z(!J_tH4697NCNiRw>#lL8empr_Q_y-vP(u-88-kNRV`?=%JBuTe7ez;vsA z7t1lCtErY!+)t1USkMhlQwE+2sSJo$=!ZV#nKj1|`yn9!*i-V6T=R`iOJoiy*Ec|Ke%CwR^47Pw|8&=R(jCLPuN++e;SkHTr2+Z6e-;4>>>Qk& zxle41^I|x1VFOEOj@qPzz~=TL`6=?foOFa5fqDbIUxH2P=&-{e%+LeV+b0v6 zAi8%BHhl{Qm|t@tDjdF62jMVKlN4C_AV2M^YHyJ}c!)v%gc#WI83t#-=M5z;FmF5KdO&Z+A15epmQ&4T78%0(?p=&wp!8UIB<_m=zz%*CBDhj z&Ra!a3=oy&(XTcv(b==aY>b`|*lfho)3L>Zwbw)dr+00S$*tO7NAh?P0)Vai7fEQ3 zU6>mu?um*9!1RVOeb+&smC=VbLwd_SXE}~`7_`9bhB(8)_~>LrpL%B5@e0DE28NqL zl4ZpH2dIF-t`xC#^762H1}!kVDgADqe%*^7PE5jm3%G* zz#9M5zc;ksi{o8cBmwB+K4qsc`!(0ar2u%++E%z8X0A+m8J|S}`ya;T; z0Q1FRtD0O2fL)@eye!gE*%skWX3zq&&EfHkp~zhxs1gR#{=G2;-Li6c2AT>OxSNAB z2QWLsln~f#QR$3P$Gc@D0~S}QjPAA``l}r|*W~Y-rj)>l?^3o6T6WA-TNsZ3SN9gP zM&)UVIMg>Gm=2h1Qepdemv)I%$bdrjM`QXnKikcj0Z;*hTTs*=@4LGJXSN^Uph$)u zn6A?vm0luep{yy7XCFla;3xGaYG$8f2a!bpW4^03b3lf>V?YUvZt41FbZ53%h8~#S z&_tojS=Qru(xe84H#JG@J{CvbJlN#Ga@X}Tx(w<z*x=PR*bNX18(sGqa`HU$>oO@&z0aD&Vves7Tj+CJXrcWSId&_ek!W;nDuFsf( zcuXrA0PnouH;m8wHQ)=bZ!~s)+!h8Qa9XViY!>XYH3eX|>XMh-s@P`0qrX80TsG?B zmya_%*y|@mz+tm4{0ud?Ee6k|DV66@R=>mVVExyl5+XP(Xk_w;%m$Toh#(>Ntc&Ug z^c9rHaaXLUzOCNA^A__)%ef#ua#zx8V3Z}wo&VPt1#TNxPk@j&nniV8+vGASkBVx; ze`o8>`}l6C71d3NJn&KWrBZus@yW7Erqz1*tB9c=UQ-3^9Er>9!(RoG9{FPDQ=?Jw zu$<75Z_D{%O`;)@9+B`#nkxjomfSCQ%!>>DT$qaivg08gvKpj>z=mtS+g|fs zJoe+7@9uT1SrayEwln(%ou4skex_^9nh(8U}~=@ zNFHHL-t5q9a$vc$M**@!x@5-hG@je-!!9=^1UAcilko{9rm#fe1KPSAKubPFjD_KL z@x=gH7)?*j1845-t`NxA-7hm!+(jAyU-ub|==lTsj_Z_iJe&^4=4~QwJc}6ET{%87 zxAAUZh+ z@AGjDyQtm*zOpUm>Qf+aB8Qelrjbf}%q2?Ikhyc_j=JipM}=-Z$6^8aNT`aYpvnR zwO!ZhM^Q89TpTHjBmkw0&-GKWXOx`Q(w(>JKm`ow!aXyfFb~b4W+a`1CrAb?L49e1LR9uS8_n8&Ai~UH&`a}6FwD!T5j5<422dz zCO;|$$Ob{^A}Pgxzzgo-BTHD;&J_ar2Ca*a zTprh4Wh|;D0{9Z0{FE)m@x=gHcJIK@hQgB3U%B$-09v3+edggWYvl@oe36fXtr~bd zb149pr}RlgX+Np!???G^04-7*56mQ2z7|&sfR*X};-q+B4-R%|LIAJ@cK~N8!^*ot zAYY~}cTO{UvVh_t`vLbw!jOshb!|%O2T4yC(qrL0{4YtYR}wWdMX6+MMvHuy(9n3gO}fxHUTXH5dZ~Rr?V4skQed?v<@Ws@9!8M_pu6(>gwiCoh{2IHgBF+tlRmHo0h1C9 zfENa(eI=1Qh${s0E1AK@qaht@wEMS*n&(Z0z?)Ja9o)@ix@O;6mjh@i|B*1SAbc@E z7R%3_+1Hu5lXEEmu9TB~tFN-sRF)7wFqa6P_yMjE7HFkm4mY-tD+Jz)^vls5OB64; zD@6c>yzNfG04@c<2LD70mh;R5fV^bUL;zpd&wSIu`nbZBd~AAwnmqle@Xe8g%~UKt1h zz!vF!#$&Tfae&+7g~VOxVMDjP)ncy;9B_Etj$|Ycw?RJGfVd^U%zdNRy0s=0B63`;mJtAL<3+a zG}mnVED^dU0cfbVZ4wmr=_I&J5treS{Sh4din<(XTqbYU4)WyyTH#3C$ta&0K?nf0 zM&r}H8%Ec(t$x6Ui6j7BIW8%~8|8Dbfb3#~0AQ=sHu(X^9WPJ-aD`F}4_oUK0)Sni zL>!icJWLx&I%t(}msSH7fZMAshZ+`g4vk%oD+Ka2_aQh1DQO^B)v(DU2|!mTlwl)NS<2hqYSg@sarL$^ z{oKS{N_%oD1nx@|6e#Tc|2)C?Vt}kn&+gH&!oaM>@9=8^fL)%L zi^guovRKVc+l%7R&Cq*s~|4ex-VzJy0 z>%)Y{kxZnhZt1h>$CK=&sQwbPaDCKZMu`S)EzCjPI-9Z;C<;WnmFaLHmspm^sV|0x zSmfIb**?yt09Y=jSqQuHx*R}j{OU~>$No8z0CX|?ZU>KAE(O3E|I{B1UpHq_t}BuN z^h){A#IVbyG9X^xryE-Rz0pY~^vR1SMFZe9S8$KMM75_K7BZ3mbYcIjB?9aUfqd2d zlC=iUZ-D}UD|Bc|1JC~2l0CQ(B(U+p3|LKoupTXX@OU>v8}s(2r)wlcyb52;{5om-Yq-6bN+RVr9D*w_KnA-~uJlH`hUa zUZlbXc|Ms8@xtsWG|3I=OHTS)Jo8W!n_Lq?ZHq2^ZkmtBGnWEjjep7-kcUbn0qFWC z==+Lt?==b#l*fbST{wuBxqL@G zA`*ESwWd(dQvwHCm(urJ^a0f2c#l#c@thidk7#;>S|%4}voP7W1Et*lt`KTn4&+T? z*}7iX25w#Bf>=>pwr=>n7x88FD{^GQ^6v1*yhn73O)1LU`o@}$_~uAT2zuAhFVtaWl zBQ5Xw+{HKA==HJ}lU2m_>}} z^pBzCwx;yWAYEFbS7#|zj2VpKUVvmM7nWu8L`ya0r3m16D=ig%hQ`U1mm)>)UDTU$JB|lKj&Zv5v1YJ` zr>>L`OhGCNo3Cm(@Q4pSePBrO`Kp_5~^*zN-m9?sb4QW#{^9Z(`xMQ@o)ApZ15}dx8+V ze*{(&J9LUb5BT}9);i8oLeOhBEuG!pQUvh3m6i&>pjY%PNqMSAkCaPUb#ccw}QG7YVsf?hT6r zM*y;{%dcYN#7C$;DU^WUmR|*LXp;0vL5Lndub0ScuOGSvL4Q)1S97^(B8g{FRR0G| ziS&XC9ox{Y?lqhUAx+A#dy zYe2<-Uk@FDGKf>;-F*Pjr_pcq241!T709>)MbfTGzfj9oAO}v@p-4Cdjp8UymaPC2 zEq?*pc)8fC#`Nu)rJoP9`f`wGO@o@P$ae9qSQ7%8K6r{%+AYR?D(FYKHyI!rEXnJM zelzI5WXQZJ$(zAI0dj1FpT(j{+wjMKUXMTu9O}ojrD|IjZsDj)!l|s5px5ml()BM| zhmI$7R!E=!xm%M~+b~yy7Ua8W5M*@aFI~N^1_-!5We^D0pl9rp+wQZ!@O#eyd+ufR zinoN{<5ReX9%ZFZsfKjeKo`&_mKEx74H9~GMfK0Xuv^~n^mzbXzP4kr?4ywk6u*jP zqI1$~)LsVZf!7Tz6JEhi(SFHZ261A#ZvkDGM|ZNzeIC?xIY_joL9K(@LT@E#Ly=@q z1DCS;ZF=@veSJdF>fDUOV>(cHC5mbtyu$7&y+u$zT0HLi2XCz&#N)`I1=HL#2&Bc5 z)>q@m00Gyh3W=1LOuE z4IS8{hTl0@Ti0Dyzo0w73dQfTZy5Vyp_;%8P*nddjDYKh6t*b)<05B|U&w(%wQA3i#f(D1>jYQ}hKpsV{9R>G_w{mUgCBCdXzE;3G#W6C?h4 z=s8z1ev(mC2C6IxakI~;vxpS6rcj2y$yr1|m(?$Vq|5b7@@%?f&CU+5E(eL-IS73g z<<9|{Qma*rh2BcghV+TU11@EC4gA%D^JkX$ymfblAp3G4Zwk(9d*1;YxOI&)L{7Hu z5l>zP1{l3FdvNGxXSWL(AKN#gczR9=L66y(|3!V2_ZV_)vcSq;ajT}*0__z9Cl#7@k>I~m`!CJZ?DOcLR27=)ia z55L=RvC0ngh8yz9`0$v{66HhQtW`{EkeyzQW^fDyj~d4D2RiLqo>tgU4g|y{CDU)n5dUxmmWg!v zwnTd1bpy+USI{WimWUHwcVQk~lcQrhGlUOGo>KC7N{Jb>cW@vfoOajHW-IEDq|GCo zc1IqDUTH`&;YGO%p#3%{rF(_F}Ac+z+(5(VVI={gh%Cqu;~5(O}6 zxjh(#D{WhIe>bb%yMsjTga5drZ?+ltY(MgZ67cR8EZ_}glEAAVM2|aOk9dh^wSGzB z)C}G5ayU?UCPnq*VvN6aN;iAx7PoyTn3sdDP?TVDdTXjCZyG=?2OGF`jWZNamV*&r zR^KU89Sg9^mw72rY=&uA<3ItDZ-k$vGbPpiIaM%ey3kO4yBnTHEo>N&p>9wg? znRiq1UVm^lJ*BIc2lU~<=B+4SQBnQp(9EmH<%82=Kl4o*n=Md) z(i`DtQ95t7Knfgo!q38Cw%Gzi%=XvBPqEz=_a}1wAh8ce8n_f>Sc!mUzg3ZjCUOIi zhU7`4L2)RnACp5!mU>}txNm+q$3x8(g3QZ-yeYC8Y7HD65Y^QX&JZ{mY7t*nUj##K zoj$cJDAmRIzCGCdjo?TF(r=~UrV_ks^$t@J1D9*6pr!Zl4k)PFQy|Z+tbQE&&*u4f za*wj8=5L$uJO@-D*L5grkt~^=04B1107fc(oj5T+xZ_^p3PFLm@_y2b_5 z#T8M~OCr9k{u8hzb<>05=%`>LB%_fdB6T@Py{17;!Bs@WLT@E#L;NHn0$j@K??69a zDB3<8c7-7Oav*OCt}Ncbt!tbia$@m_FRS;1yo(R$(A@mmg}on_g2XEk&=gsDzb0}6 zkcQBS_fs6o>K%T){OD~b#c=ZGqdT;k$vq%S-aMpn?8OHG9zE?bw`U}DR1p4tq^SNL zSnN7wMj21|fVDhu2VL}_k@+zrua_-iu&2wwYO`yaR|RP;6!3M)ZL@q0<0nB{3+?&S zGqK=f==Bx)Txq!fu;sjhTQ;EsX|E-P;sulS0sCg}B4 zriyL-Hs#yww~DV}fLZ-E@Gq-B;O82@T)tABn=>OH6Hu9Nz@qvtFyi9j!xQ@$mYbeS zvFRhAX&2S>P2>h34b79LR~+arvsP7}B2#1MVz5|V|EjKS^Ys6sqSiFWi2LHURQ|n2J%*U8#s5h&{spa z=et}jtm`eSKMd=i1)8Grt9n<6@&@u&c^fzveel(Ek~iYZ>J!i(D6^Z3@mLn-Sg|h# zndzJI0BK6CV#Nlw4k@*`^CVWRd6d-;q3o1rATx8b?7kRfSCCfO4eTajjb4(-u6fYc zG0;z3QfQpqb1ydYjA>GXW-euWhGA1tb#h_CfOF3zX=%dbJjaCl8p`TVh*e%VqwrI` zz%xG_hDBlcK={$Ssc&ZzZ`z3ZlVaY3Z{Hiy_pOvdvSshbPCB6j`>fEnv)K>$IDjYw z0NXmGeNu;y9FPoHtkctvZKCt+q-X%V-13nl@6_sY0QFukD3#u%e~&WUl=LYREz{5G zqGEpM%xQDmK)`;prp)u>c@C(6!PO&@>b^Ttm1{VbXXEW)gAy36Q_c)ZaZ*m`BBsTH zO{-`CyzCwurWK|IWYgB=2s#;$9@4#lET}FAkVJe3=1NFMd+J7)0}*IUNi&8c^K)We zJ#r}k9=o4^%$tBFyUdJg?=Yp6NKkO;S5rwIAt>+hFv)69^jovpO-R`(@tLf`d-mik~HV2fZ>eStda!C@bM&~gPRA2>q zIwNJ!G^IMC26Es;Z&(fUDabuU2tcBB`BhptiN&cNB9wsN zmR|*LD3gp#L5Lo|3-nkTWzPn9!{&=YhE)Y=HjLVA8rV(58qy~lHqE1~z7V|1B^M66 zjdcfUV@Q-}!G{YK}5fI*#YpVEVMJqU=9+IxHogG-b#*UW&%GleSzt1SoerpeSy(ZH>1oMEhF zril2mx*?a0cxJn@KQ#9g9Py+wkakIko5J$Gz)#63YE7XGQMqS?-+KXFR=*Q^<=pG! zmAJ5O%B!NR%@sBeOur;2WRNWzU{@T<>Jdo2M5d>F-quiJ|Ky9o%Bu>}6kPcy1G|Y> zL-fQyX&z_smX>Crlw|!g6UB15Br0|M6k;IFHYqU9~n?B=_{Tdv1 z&`2UW{OxlJ;Zjl=fHs{XE8u6JNDDkDsZ7elaE{4s)`$^fyi4?&_sW5+V&_whspiX#eiV&s@)nL`bY^%uo))E)&J@<_MQOE$hWQowXyF_mZBk zgI1s2HcL!C-&&d>UAH$(e9`NuUY8Ivwd@r`q_w@~xnRuv=MUI0Y@WL*445}a?rVuR zk`nFxa@Adp!a)!&hbHtq*y3H#+FJ8Pd03?GwhT3A6y@1Dc&T|jc3mF2~mXJDL{kLVO$@5C*K(9R1+%?dPuQs!cyYy1@ z3GG+uUGj66>S{c)vx)K|z@UYG++=2dtYtHcUu`9l$-=V>vq+nfObG0SH%b<1f!Pi{ zW>C-(r&~CT-Al^WWWe`=8}6Qnm?rVUpqGe!1m@rd8+$)pE89Vm*xcu z4y)Vbz;e#*!2*3-V@BTD4z3WmFS=jMYzsW|aw!1jS^n2^$@+|e&*2+I1NDV{zunV$ z^oiHG6OuY|mk3b1uLCsc>;Y=`c7P_`eZxs}cATFWI0CDQK;PZtl6)Y2lB*12c}w=Y z1}!jKa8g)k?hLLF$S?DCtsjIg>rJ*kR|xgZlaGh_cT3(%Zu3u&-DYfPj!rW!)vv^k8?ie_Sb4730QyafSyb`X@^DJG%nF0pFalr>cC{F-ql6)%mnV3n)!cWz$dVZ@x0cxl9l ziM~J%8~t!32QtSTzZ}S$8n6ei&l|(qfW9x4`sUnL_y?dm-yd-)xZLHD%hOg?{xXNGmn zhUbat>bo_Xco#=y&@nEbOO5NCHwhkt9%tq*X85=g*fO)nk%5{ST_hcLy`t`(nU8Cl zKXqwc&-{U&_qtiN2Fy>G2k|GoLBj=bNVmH$8hdWxLqL(j6RK+?`9$+S;B9ZpZ(tJvM| zmT8cdc!iE+`EsQR&Y?2|q7$D1Z z3YYt6)qmyY%K@~?pj=g~Q=kB#JM)t~0*S+A0evw*oPhLfws{Ln1a##9TA|0Fk57jq z^VEd9j}UlRS$(L!bH%&ZI=D1@P}94IwDx_nZ9pOjxW)}gBoMAfoFcaYiD0q(PeKqTT0(YDc0AeMiY0;NXo-YbH%mlN z#uAa>0+xtiu|x@$nCozBNlwC=n(=V-aT_86P1Y33Xv5^5ctDrcmrKxxd+*#QA}jF- zr75qvC*C|u*#M*=bCQiiaVV>w68rKX@BGQals38pmutQICkqjx=fcgi<4JK&-!^Bz zD`txWmGq70^o6p=bK+4{UjYW`yp%a3&pJGP*nKG@0BwxxW4aRHa)0;TiC%pX%~~XI z#M2@c(>#P&&Lt0%w%xFVv#4edRrz=|H4Lp?UDDzml23&+O7xq;RB_=$<&FAuI~$@_ zH#q|-=(H1lZc&IGa~PPt01<8e2xt>x?)H4g+rD(lsCO}QR9uHRg3 zFV|soOCMgD*5%Uke?)B0ljd9(U6$llOlvPmug9z@)a+go&}H>L7^8FEk63ndt~dx@ zcf^sT&X61x*neH)3~|%j)&XBu-vaVp>hi=^dWoQEasDjQFQ^nT=yFXJh$#$}k{qWB zBz@-pkv_xYwet+^k_hpFrE9Q30D8od66fWFlEs#jqcay1u-_Qr*|13p_MnWW4_p=5 zp;DKN+Fu6^8m^YKOcHM5bhk6aDa#}gf0uShx}=&UA}t6XK4h6^l1O=#)xR%I$-`f! zar=&rcT18 z{pMgquQb!-<5F$idh-#_F%2@{veJg5Ql zqiEBT2GA27gJ_Pp9zQ==k5_i6kMkaBQTkQ+mI(Vb+W@d%6CUE|qvRQN)l?j5LCdgTYgI0B^eL~h z`cctoKF3Qb28So~ny6a|b$7gg(vJ6H4`6eL+)1Bww;U{+GbIFbhWBpTTC;v%CTYz8 zZCR7W*L3V!?Z~e0Lv^i5KzHZfWL)eG-1|H1p8fNC$w>n1of3is8-qi7AGGhjf4858 z<-3%c2;fVD!|`}(&JF$)h>HQTF&K}|j*jWoa!OTcHI}bY5doai61mr;`}-5h3_LAA zcUIC(Qi~0DeTx{_E$vNDD1v7(ULZVQli4WG7b{C2lC8a@rAt9-R%K=1ol z2-YM}0FW+roR`Iep*hO=6i)~McIBin8-@>osSJoWXc5Lw)#X};2c{+hczjx}e&B7~ zKQGM>Y89WK z_@JL_4KEXr0gJ`S`1Av2kKy1Nmjd9bO99dk88RrCVJX1NE>BmE(O3EU2Hn)yX<#nU*{;YK_ zdNT3ATr~15;R>N<&L<#dOB@0_Yd?Y-IC?U%u7*@K1WwL4BEGD?4CI|ZHyW$Sqkk&t zx|-%rM!%y3y?OL&yrF|J`XisR+7`de0Uw-IYrt+I))1dtHT>Sw^_SI)&=Q}&hYq;C zo~_+s{v8E-lt1A%Nl}9~F4Du^33^es%(LSG?UTk{cGNmt`h>|04w z10PCQ2LRnBK0lzK3 z3VyZ)1tAu^0`uI((uZ@%I*ulKCNGM5muconm%NW@^oO zkp$$~jK7OKNed~RA}#RXoi*CUXr)A_lvi1O1N65z@mwtFv-Y!UW$~q{Q3Hbi~HE+9$=wS4;_Op6wUQ`42!U(LAL)*@_54& zG-dTi!S!A&tF0e!w7#YlYePe3-gmrHH`>*HnRUF;q$}SSgUS#4?5h=E$?m+N?xCvoTaS z05UW)as!Zt?8)X;aVV>A2j@${)ie8?r4FuADOhhM0@|f^d;z%u$PQ9R4rTQQ^dibG zU!1(bjhD=TK1k|Hp>E19FMw95nGBG$URKE2QY#K+wF*6?d#-eD<>ioCy(zL9tBwjJ zUe`E7;AE^ud|7=f`1322r_i!7ABIpF)Vd_ZO<_4i>Sx>(Mek7fDhOqWnp{Q>=(741 z=*5?P#*giNEqUWld_&@4*e`f(5&+oaW>P5J3@wufj1!>eT2_A*H13*6pEX;Oob0V_ zllG%Eg)*d0+9sgO>fh1(k&C^fS5)gT;3>vtCvUG~Y)Pb=Vr(^eQ)4xB92GPg#n>Xw z&^Z}85nom>!O-cR2Hy|$kTt(u-eBZ<&AYB~9pnx8vieTwP7Bk|**9#xeW?)av>eFW z3ewU#P5@1L)tZ^f0O{kN zEixx-X2qebUWGnG?_VDk?mJBL+7DYTP@oLqXOSc6Fe*qNNP)vn_*pm@oj(cE2Z-lX zR(}zC3r($UFSew|I5f4^gAO)0i? zR37!m$F4G~tF!yg&ei0iI7b%Y~<*G{1)(e(yE0o_AUO72jIk{yTJaoxZZ5iB(82zMm-0i{U8O@tIvpDC~Z}?(LiOPHEf73f7ujUO$LML4Q1C{@uyLXG3B+1f*YEbXYNIb%HclA_NXZK9^WZz=Ds_$Jr z-JO+{mG}Fts=BJ8{EzU6@W_bp$nc0iGplEMW_JhJVUib=BUpG~A6PU(BOzE=c;g~o z5D)u;1S>8tNUH%M#DcVF#S6#G+%Ct=+}zCF%=6F6hmz_KH?!|M=h(4h$8MFQ)6n3| z`ZcfkB^BYfw(yD=*@y-Q=zXfEo!(J~H}cQ1M(SSjxeP|Sg{_a%;f(&uO4bFwAPbls zOBv40lCPnX!k%OVqzz|E4f*mPsxtrbzTCq}dbf{awxE5;g>a;r)@yB6O4k?Fk9alz zJ$6qG-jcc}_zlVN^Za8|ii&&EOTD6$vPe*KPogwj9Er643h%@AUP%W<`3b`PMfrE` zGBh`&gpl%ERLAegzw!tk>A+*E)P6d2`R zRm)jWYe9i5pD+Jsg!i{$uPP`A#&R2IY6Id6g#0z}XD&QV0ZK?FK1DS^|52L;0a%D= zA(<$`rT=fMJ#sXI7?&Irfy*SS!*&aYUm=KK^sL^Mjw!A}teI^2&#ON1OCGTaWv_k5 zD_g7G{u|^b4sZ8LGhU4)cmw|{>Sn){O`Er7!*8sVh*#>5O?y-vf?nzs-h^F=nnMt! z^W}evkbW-P%YO}LnSSSrw;?NhJ5+&sR}$b&1czR#Y19S zH=?}}f5uhyFR1qWH85MS2L2@(cpGC?8vHhV&ny2cHTeBvCQgZR_pMEHshZGNyrR8| z@*B9-*{Xy?GL1N?#Wt4U4eZngzDh$eWtIV_6s_)w`exh5yxL>6+OJJkVEgxY+~Pr&c+S+k(H}Ie_4EP+Pyk% z=;dBj%UP^mA2&q#eEI*Vbia-@dT^R5oe?w@;Ntk-kT^a^Ml44_C={%Patc^m;VIKw?0Rt>p)F@MQZ$lEZ|0Mlza`9v}jUCEo;b^_f=JX6>FwB z7@)n)_AyuCf28)dFF-|OatD>oA<_=PKj6jxnTqN(Ye>yCG{3{QpG_oyy0wZ?T>bgFH0u;I&>|B0#va@>{7+ZsGR zbrtdxF0Magny9M+Le{*nDJ5m+K~pUvk)hOLk&m|UVAPf`e-jx3 zopxGZY7o;-@f;IPsL*LAD`4_ay$noeaY;Ju6eTU#_5Lbr$d?z?c;k1~5TUuZ(xi_0 zDOd4L)k@$MJ(?ha=oyB`m95ME`Ile%wU@}hrxd7GfYXt~)K*RS)PR^9=U<}oU*dn|2(P8?+68?RAnKP1f7~Q7i239IS5qRq77|7GO8tCzJ?fxi0`qz zS5q6~(G`4yn23mv7dF`_Hr7;&i1?IREUYveGiuA1{}%GBpDQZ3+T3Pfw9nID5t}c_ z0wxc|Q<)`SLnSTPHBY6~kT3r`gc|lg+UHSpJRm>XhJ^9upjOycwv)-Vn52qNCv`3DYaNAY4&5(mM?#TGy!iN zSTj6yaRq)u7(UNGHW?_nRK3(IN+}CsEte`v=gWTw_2DnjcT~2kCpKfJ-jsiUFu%(G z%DtgBJSg6je~HR}iT{Cz=ty9DMJpb4!alOyZ1{Iq`ECR;XNB)=lWUyub%$jZ1%KSL#7LnSSswQ*Ic zAz%Kx$Va{mQQ8|23E6PdNUi=Iwf~A*$i%KhYPQm+w9*#*TBL?*$(I`>_b<-j#1K4J z-|TlN9`qGr^JVlC?`m3irJjTNAM`n@>8t1`UXz8NcD)5E#%j!${}_z{5QNQ&O|iEw z0@1OIe}E9Z%Kys2Xtb2EjDLyBe~JHVx5>mVmF)#jlN z4^E;C=k&iLFZWyd&ibMki=cKh#NzY(V-vm-v%*KH)GJCU3t(;36Q%Rz8yG3jxAhE) z6n;Z(ex85qM5>n}3U-)_hE$XWkA&>xD}1K8E9MKw)=Ju=EZ-s~r!60Fj9Rx)E~m8= zLbZO=@&T{aq9g5cT1#P8d%k?4>1<*R5Sh*zzst_{P`Ovtau&E+OeM?b%l`uT*O%e4^kQufziD(* z|BhNG*Y=A-CU7b%Hj>*)pVCTO;A_zdswH3k$H+Dy+fr<-zNgN%z^@2B4D`H!iCu{b z>1U`UWLuPy7Tj7?sML@z|4(cuvxe95sGX1>QOhrj&rQgRofzd_Rm)ibYjz^b=gU*b zPDHi^W^^|5M%fnl2B8-jVP4oIVac}WwTNtsQj3LBL$*cKmM_1^4~DVneDh^H^cp1g zGvWg;(TMwbOe)GXNS3l+#APi6=m;+UK2qz*m;V>C{m;%|zk*F2wH3+76Dd`&qWW_a zHL@bD99WSoCy>eA%!U>5^7--uWJPRYrR{nnx|~vfgyjAu^%p+OXoDAxm6`KVzee?Z zMg4`>W8tM;Z={xD_2tWd9r62YvCgc)1=R=n5#e}QeD2hTQSMc>oCUY04_O`-qmdW- zd{K$3BeaPEwSD$8!u;Dx5fimy`v7IHGEKSZTZX{Fm4pjzOiPGmWsg&e(gQy}#`H85CeoW8fd-imM+!u3s zEa2WR_KP#J>Qm@7nNfS)@ZikP$(@AlUyd3Z<*NA0U%?ifd*keAGA`EJ)v42cD?SAm z`tORP!#)R?m-^N=637tXF?pE*o;-)gNae}cKH@l~AMn50AGrb%frqz>7(#P?x#7Ii!lGQQFuvV?{(--tHw2(bNa*BEJTL>pluqBMq-+cAd{ z0rWy|-P^{F+vK=atT7`dR?8r9hhU91I0`wJG02Kn-9d~*F4WRiwnlWqtr(Bp+q z)z_qb3e>M1(kbCpJafFNyrt+jUsa*N2=taiI_js|j8$zHIhuFH#Lziq^{g6AT3z1J zv%ZFDYsSNq3A{JgG75RNWK8?6_ZRd?g^8pt;w#9JzypVgD7fM)Pq9b}6euE52zu}? z798n2+nrEBFmbsR>$XaFCrfWEutfO33-(< zk%`6ZB?KlSAPfv{7+XUkETuwX8kh)c{gek#mMtNR8 zlp3EzOjD|nA{tT?;-SX)B%*3UeYBW{sUitoJ<7J(*Ls=D6o0gntAV zLV73aWI|wd&BuMaEJKFSz7KzkJ!=q{WAsoJA42|~5^zTf;RNt&5e!3thj8DDI1dnj zV_32g_`k14(6L1v!!}fWNXB=fM)pF=G5Vk-l)oD{gcopKYY)CI!xppOiWsX4urVyy z2+nWQU^lkux^m9Gay6syyK$p$A=nsJU<m<7olcwOZzF3bp|H zR>Z(rppDVTj7a%z+z45KjbXR8koX>tFJrrf7`DK%vC#~kY~mXz>6*#cV2k@k z8i;Fup`(t5b&oqdK@CM)jL1>Bkz9AJDLLv9={5KU$?$y+Q`{9D5v&H#|eET*fY21yk z6MgsEoNf|ZzzZc0td1%knGfQVk=RkE$?4yfr=k*B+53qYDbHT9+&+|;Q@$od2 zhz~)I^m7FJ`3n2uX*@FKdT`&mM-(<k4oQ}4Qn*!s}NuV7H z8#5t9zMt5wC165fBPI*w1@OdtK8)|w6!3^uroJGX$VVrL1PE%4NBXfQ1rL3knUnpX z_)*bBT1nu|BzB~mIT?LkR8A5*;xyYYNOHYgu`{On`glAqonTHNpd&_W@n?8eW`N=6 zD87@^8E}5#Q(#!PJkEC&yuk&BZ9}HOYQcsn@L5@Rk14Rykna>&DWXh)8{lx+(dajH z3LMl@_!Ky(dUFa)&EdNt8IcLOo)C=T+0*X?q(ek0)e!E<U}6|BFprzfj?P7=`YMy!1Gy)7#BY*(_$eBuGmT1Qss zh}{G8llsNe6h7hOwB+PnZq(J8+^YKiy%&!gAV+$8Yg?|Kz~koBO{f>?;2TIB{R_s* z?*^%(Zjr;F;luYr!Ux({$g4)sazOkbi>U#`yE1@yo7@yb>g^Fhh(ggK%v!}0z=$(~Om3~W6I{mee#%Tqh zZgWG4P2KcsRo6!QNYNjLD!RRXq++i@kFQ~$Axo%a+3{@ybc1q(7E1F~PR2#JH3xcj z$ShGUsH$06C_TsOz7KWx(6!PKDBMeSN)bit4RDa^LuZLWEg>WD3bBK#H_d^%tsI^a zoUF>qJH!rZR0cm@%RWJMk2rFqqAY7V7jNnMLG4K{UTM;xx<>@H&ci=i3u-Gd4=qxg z9Tl5wSHQ+G-)T=rG6{N&fQ~f-$(dzhG6^hx%4^Eswalqhb>De2yIP zSx(9WOyM@=hU`*ItRV7OZ)-drBrv!LQGt(`Wz%BDZs(5OXi{H5P$M4GX)({%>nyQu z-ixoB8aQH;!Se`{#8eXa0fHLwn807)MeD>&-i@ymh8uDDcvjdi6O1?bdnIzidOma{oNyaWvcI z^#e!gh83@TMWB5V*oa9!hqt#1n5QQ8VF@A`jvVnhT0Gg-Pei;>nxU`}lW9>6F}X}I z;@7|to1>L@66}T23x$oCWUG8z)CtF+t8>&Q}uXgyBY9W}E!+KAXYAjfsbr1lbD#9Wk1c89zK4mY7chk6Z&sY%+LE z>IIyG5!8sss@i6-8Ef`rywAy+bYksztwaZP%#lU_u{(MUyTIA|)-Tk!Nns-<*(dov zb^0Pf>`zd09(0AT-sELDscRYk=Q+I2LC)sY>w@N)T}L5x@#l_Q<2%pl?6L4uqk=^r z^V*AMJj#NP1p=25T^Sh%uJhG^+%2F*9`jbBuD}}>cYd+Ur-zC6(vBYkaf;QvYpgST zhLejweE$KTM!{azko^a;m};iV{)6-N#IovRsJsr}{RaY-YD&Bk6$qDCr~L=stss;2 zn$LSzZJI4reZ7^y&pVNq*78}Na|Ci9C&hb0eW zeXZ!#Y#%8$bW4dx{YbT5+af$FHI++U&n%l}TX?%GA7{sNNL!by*S!yoc(f`feO|L9 zj~Yi7z(^q`qc>hOMsMJ3uVe)IY^tLdhLHr^pdMcKjzjPT~0VIEDZHq{k@|CzAh|{Qa;=I8pRE*6Gs) zRHTT*$1G(Tc+}RTN!gFRcA9zAI6_bni~GA1@AU~ng!x_amlN*wDMW-it5yYx8dDmK z*UFKP!CoAlE^Dy8Nqn_zKS(p=vvFb9oA;?o?;TzVZV4sW9&ky&KZ zWeHJ__k1H*meRX_u$>AO>SBcbUC4@L17GSkNw%kqOziYU7XPA+E znTWB44&n>D2#bA@t>AF&cz>8Y7-nQ&Bw}ljL0o4KcBTKEuZQ`j8r=zg#OTpFdjQYh z9Z$)L)$t~u!~JW={t3Yz6jSw3D2T+7KbC45hr8fw_fkVMBqgD-+Qnc zgR}My&DvX%S}>ndwuK4pHI5iYg!}!~>*<8qS9Bi@9(fo7L(C;G&~NT(W9imixsxrD6H4B6{=)j1}>ikcTuN6xz*;7s0-Cw44hK z2Y$#Fi2YWV)kk-qJ+1HJ^g2+9N~)p3M{;HPYPKo12UszJoBVqO2x?OhCV1^9Q_CpB zRTCmEK^ig?fosZvZK3eND^3h-pdpkfvI?F!g+-LydpZ-?upGv`))oS5A4&X3U1bKt z!la=2$}v2<agCBr;;b$Z)bL9=9PI3tR40>NCwCjE737_$7SFXoZ z{_v1*{LiWfqL97KYyB#)cCvTFV1l^j(`vi&zjYZGp9q5Cz0;Ms`I(`qVcg5ZJO*m)B}= zVC|zCJYtlSRg0DP*1W(bC7~q!iD5VS9MZ?V$@m=bUcAXH;334$+VM(=1lB$x$dPUq zi#$6nDwvlf?>|XqTLL~}l`mf45td=s`MkIz?1ILth)-60JGr@erLIEzPw{QUV?h`2 zCa~!$Ih`cEN5Ds{=Iin}&mI@vOC5nylp~PWvPWR;BaR+%I@)IG2OzHtkwWPJaKz*R z-}5lYD3oLts4_s@_WT#VGoTzF=iYZZ21-_%Vd1mCA+Yw5l?r0J=ARrkgXq%h4dSje z83)8qXcKfe4&LJs2xK5_A}WaOdVAQzNwE@+^$p@X(`XZMK>Vh=a{r_B!?xFDv4OTR zqRt{#WDom_lZPfrW-0_Z;<6!s8M1?U?RpE< zmqr3HobJo*IDKL_Ne`pY5t{;5yVhg!{8IWjGRdlm#E*C_V5A!;+LMXF3>mozIJ#={QE2j_~Vi zH|1^(+e1UHuVqElEg;JEwbw{}J@$Uk%3;%o*Y&mZV`aC8(Kym`==HU&wWEz4Ui;x% zt8CcH@e6wH98PNO*1n-tYg5vRcwMC3THi=w#A2WC%ER`AW0x2acDO4G`WGw@ia1h(U~_qLsYic-V>#tVU8L8;+qrhn4qub|}k!w(zmUmmT4Rs#gjMf**noYlj3{RNTsoZ&8+g=@1{JTv1|F3*3@abNw){D7ci0V?;iy`h7tta>nbRZ8b<^n!u-Ls*cFq-D)+ur#iN-75*IKL z`gem~I}1YYb>XE)jUx&Xp?<&K(w@Y|y}~{p+%-s!oI2m{g>3Dv;M%YWIg1na28k@D zx?trElH0uA9$r{90*=^A)1rXli>*Moyr?^#1a9Q^ZUs4IuO&C{svBJM?6BEo$N35_ zP=QAueNET9Rp~OkwitQWJ3_Fza;P!?^)O@JKYI$xs?)!Mp_?e@;eI!Gy8o}?TZO{TkiWIzD6mi8tVs&&yk<>F<4m(7_Fb| zWD!*-@~^V zC-D-U*9t>W-6M`1sVJY6yWOPBy`Sj~YE$;o1bjGh#OLEl>3yoYBNeYptb^)?!xqPg z#bk0=!#&;J9y7$SrB1w7yaS0)+$I-969F`K3#^rB5*kKN!Sb5ypTErQKrjxS)FRQANZ1N-GJ|Ox&B;JL77!D_O^ZP+o;u=yuF2=--py>eOEl2!=0T{^B=OU;m93 zU$5>`efIS0Zg-D9Rz3bX>G7{B_eHfkeYHmL`#)|FgZi1``qj3OdTz9Pe~&8B81Qy? zXbmI5r3swRcbJY3LNOHltOq=T1BvenyL%)Swx)$P4}$eACm>@Lk%Kt5qz2 z)5ih{4utG-+rbDA%F@j=#c>{$j3^L*QQ*!660Ui}gbbYj1LqYg1gPV3su zADskmLU15t*T_M}m~l%VtK(Q0!hHGPeny=+e64Zj0P)uzo{Y$MBen_h+0#0sWbW!R zK2>K8XU1oFP4|oa;uhT(?wT{`wZV+x`$n(RKN{IuK}xyenk{%$hh_??W*-SKrgBG|D^sxpVPI}Io&XjqzY1oLlyVt88Byhl914H12nN*7d z+`wm#PrX_*Q1>;H8WDnfHBKiKvvzaf^Wr*EU?6-K`}a11%}g%)VY79w>*SBZe0y{& zfzC|F_@fg*knC>M82k4h0n$u727$D7n2Y^8ih$Qu!>DKE%a8t=8aC7$ye-=`CHHzw z?NL$X&z^p(Dd%YaUJW2F5JVp1O{RUhzR`0 zeEcTh7cIWgt1UzF=7ThW@(@Eg#facbvzgkrtpqk@fRAW4Q@lS#nhiXAn?&#t%?2PM zxl6NwUrxN)5R3@Els#nfPrB>@A_6aE55K&T1bxIVOE5OWKk=pm@UiL4xWhau=vY67 z*fNO@?l|VgUXEC}O$8~^M4?kDHph9xL7l#S)I8!CSfjy)fklMK&K8=j;EY!}Jjzrp zikbcNQ6L0ka4>h72G(ehl7JC0cvc$|EA1Dn2R3gIGIzHH)@TqacZkSFC$fVV?o+DB zyqvc$BLy*{W;lk&iIf!IF#u9TMGTLVyl6}JdATCP(Bg$A1R?@2Lc&zhc)XBM55}e3 zQ^n#DdzIp62s6V6$41LD9Tes%v+yQ6dVNpimq)Jth#?o?-ds^$vkG3Kt7+ zhyh4MK!k>5^Lv_}8!t4Z7!iEYb@QG5Kw_Y%4B^M?x`40&`eXa9suKkLG2Z1Ojpp%o z{d$sa8_{S8MkILwf3_+UjkxjPQ;Z1yockR56L}RlmFF=Jt_Iqq@H{G1L`IAO^BwF) z%F_g?@y37}C8Dt4`lx>#r*oy|;~rfVg0Lbw6Hce7X2qu1x21iCWeFcAsS z#o>*gO`4G*UKghro8ZF`#ML}qgdbkF zKYY>G`s2Ayim@4fn!q|Pd>mTK?pw~&Wa=Y!Ux0{YKjonVs3n`iopEX8Z{GJCXpkZ- z6*v(Mk(Yy?$<0hJK*C-@>ZYQdVNo?{t ztjHao^l2xDiAab65S&-S@HO55C~zVg!l1TgRlESY;4l#h5rS_^``L=XpdsNL4iF;f z!Y9F^$Q!WikfcAybE`EO*;@qC1DY7w3a{-5z(c0`5F$9OcSLj<8^6) z6VVW}I(P^r(e{&g(;|uy!57n_s+gzAhsB!~5r_!9@I;V{OwtMBB?AB_dEFM#aLlhp&~NZW1SBX=a5`yxx7|GNBV(~8_^De2#~I`T%I8H&1N^_o%j$i zU8f%XVd8QBI^>?CxD0_Zg2uJ895=Jgy!H5~mjLA1=m@eTpiu9*k;MvHg)k#nrXHr= zBq-wyasp-qX%bMHG-JgP0%inh>XF0E4E_>l@kzjpAWZ@aNt5C{d0GdYSnK!s;euEP zKZI2KPy7^UNVf0uA0nRc5U~5tJ1{zg{3HIGJQ)#pFzBChG7%yM_xSITR=9-R&4-x+ zqfmGfgdJhhxBv6MD@PsT3cdgOq6H$7y6B~`mg9uj|qgwm0Apk%y89lGIO3+>UutLP+yM?{kB;qY<|vZcG+X&8rYYJs3lUdj8FL z8+HZI{_&1^*x`DtLkyluu6hO`ZgA2+5vpQCR&Zn1^j1uurJ#4!SgWPGDoXK{8b2m$xER)Ptkyu*)-#1*Xhple_k z9dTR;?ag>cScFjfj|1kJ6~GzmtV&dz`r(vY5f7yZp#9@g%PExWu}+@|nEm5D{kX}E zXva(h$o@UvI9GB{9@B{1=lf?=Br??NufvwxxKJbLUOOpr6EH?PAtIFD-!oBANR||5 zoTCVlapJQdHvsyHo0kwwNSb%yFA)!S2#NN;Cr|)Gc<+fnN0x1bzRx9zC43(cM?H5U zWZXX!sX#+g7MNj2aa_L@4>LeRn2BXjIiI{dyF`W%3n`z#95sim=csSTJR2e`x&OS& zb{OO~Ol+ea0*Q&$a_Zv_KSmL^yY-*Na9qf8??D(o-k0M|q(eeNxc$AbM1~OG;U_#! zntVAfg!V2tw}>ZBgn0Xp$^sa|dxxLdIBC-5xDeXwvCfbPx%Q97^+O}KV;&X}IQ#oq z+v$)S(XNFMK>N=c2_~fVd-6y~Tr2JGvm`Qv_^vqo5f^ZOFCc&+yf@>WMiGY4e+FqD zKe-X@*olDI-(HP#CfB2H)$8x2^qqPj$=Dn9Vn}j>cWm9LVx1U?sc-#=$gPM+Lj=zL znM})B5PmO2yiKqAyFmSy;P_qr#unI*>R+O*8td5m&u|rl$iH&v(H0StK{u8ZKdd>$ zT3OVQ_aB2LK&#B7ErsdGqnV4bFgC3z!Bn1Q_~K;DbOQa)x*9l<1~?5lv5OK7C8Hs6 zA{xB&MvIko0?`b~h@9{6!*o#uFUF?+xe1O73Hmzh*p3Udf7}F+5XKv1S9x5J{o^KM zr~A!#$MuBL`^WR<`8>cG>s($`occk$chysEakbw+U{bL$Tg{grqqnub>G34z9P$GN zynbqL!@w-~*d6j;zYKc1GO|73ew!(_{0tsOi)-ayt)dV`}I5uwAv5t1!{0j{p z;&6MFt&gJP?k8^rl8$v(oj9xl62kg!x!o7*0^Vef4%js`ag{eZo{^3Vp}vb8NWA{% zN|3fgMxYqpeEAR2>(*cQ7)lTD@OiO+^6Y8-6!y0qgBkx;9Y)XMVe~Gm&TkN{>w_Wm zhwZIugGSvDQq(oS;j?bmULhJfT~F6KYiSrZ?}?n&s_kYgXZ6NF>6$w@YZ8NGw$j!y z1k_F2)qu_hQb652L25q_*jsv~8=@EyU6Gu#ijgk9^I1=^#lXbnlrOX2P@k{$@eA{O zlkZ?{%f~P9ZykQ&Jgd&nFVyw5_=Wl_tsB=3Ap`OB3(g9?{erWW2EXuu=xnQ%*MhvW z5u?jF2O6dryA)OLz;GeCii?i2-7b5Q0JtmJ?%FQcbs{jhxbDt!)+AJ- z!*h^0&L{hFcVbB>@a!b=VpDFbF{C=d3^((*R@Gk@Ab_GoE z^39~2#TJ%il>QQDpb%gYG_c>stv9rWVeTI^2wVuZ zxMFag@5#|2F~!2g1G%SBd=VF@lSaMx0mQ+Wb7hlN0kWNjVW zK;~-#TdN>77u6j)leJ!AH}JV>6q}PxL*PR+grnqa{nDc@0UG|MzoW$95CPE#ifT*) z|EN~fzYlO&2(<7z@GC^)34r(aIw~{-UR>=CUu@_*2MO@Iu6FlxJ{meiLCC+FWP5nB zaXec^j>h`SUxkLif5^Q)|042G>)KZ2Cwd7C0lzPRL(V;FH+Ag;@PrJI5LhwcfGsCS ztK9DfS!Y{@U+f>TBWwu1G!h2CefNJD_6SBIfFa-ygpp`Dka~?KZjAF@?_7wUs^KsZ zsrNZ4I6kz38B|o`cP`|)25J$f)u<3;F|M)`PusS%dzkt3A6Gdn1X@f&;8$=$t85ol z()}kP0vCcUhNI(bb;!qb8~P zQntb%y31C_gV5d-zxK|}3aHNgOU}U!foZ_mI|&;Tr;&BN6d~Ix0RF6Vq+?01-oly7 zIDM#lS`wo{y1o=4e;PrCmW1h5k&uidzV73u0D>fULrpuzf!KYTreZ-TukajW9E4{& z_Y#f+p}WfyS8;Nj!VtR$q6Q#4UXd(}Bi8iefB z1;*}n%5flcH{h>v@{j^y_r9)TK`3v-FVPZ?0%-T?vjzuYy+CdkjMI63zq3yw7!ax} z#XetGeY0;ubUm!F#(~h?;CaK|*;s+FyA`Tf5Xx)(m!4@?f$?l-{YoSV;e~h_?rwVo z144BZB`f1}jqbAp1P0-}R{zvDV;V!h_7v$oK)5d^kSFTtVpu)$ut@jBhJpwQ^L_q9 z48Nnp?e4iXR0#5W^^X{DCR_;pWk}cdPS*>t-6dPYK-jLpA7Q^r&%C?<*L^7GI1sw4@K+d}`X=B7yzY}* z0R-W@p{BFr*kbokL&d^S=F1=dy5AOgI;R-HE#1fYt}4n6oI!0oI%9sTZjpb7%}?kJ zclo37Q8syy*CEd46g#?e%J2kAB;bu6&FEzR=Fd zK;@`yaOX!bMObfFr%s1fgiaUzIJ9)bsiM1l55!?pJcL#5_G5BZlEy9?*Yw$1gV^>U zfgs7fs{x&q2e{jTn&|P95gdBY#*-CU8Lh~;yUz+Znl`ewWMFm8SFJVZSQ!=sSL_t8 z>Co3MtG4}B*47NXuK9|!1|4q=1_9RPOT(WNB436D!F@-XNhcc+G3=Yc9Z9x~5M8YQ z-or2jsGoKPWwFFd5iC#ubFEj}O%Jzjl~@l`6Tmu4Otr0i`5&MFzrHu-O*6ulE(W%j z!$4hbo;|Hk%$gCW5R~ z&>?AyFmrZjz2BmxEyGA$VP;ERLfixv0xYfrAitzAZP#@GA*d-f1YK<2Ulp4Q>?F2% zyEgCpBInQ=fS2_2s3O_6+PXB9$5$f-T%3{Ma^k4aFS89THdwuyBXumy_xa1vUg- z$Ql+H+pbo69@Rl0V#zNU=bXV~pq*o!ViV#{0W%n6vYA6WbbrJT( z5@Vk}Ex;g*{3Q$NmU?21EUy2a* z3)6M2Dz$l1Bg`kr`iA$hkl}d#RzzJ3gnfLIiU(=;hK!JVb|`_fPt+mNFqHZ7Cup6{ z=dRicZtg5LbH_$JxlG5uRafb>JFIWB>iibz>iVp^@QhZqCAzvHq@HVjD|B_U_6pJZ zoNMfG*3z&#CuXi>4;M(P#fY3u7|A2o%+*ZtDpeAR(}qV;F_-E3W<9Zh$r`xVR=|dYP+0=G>A1t$;VO zcg+z6fn;_=RecsMC-}2ZAseG@FZI|&5l-u$%&+$zbfHBV5BjuO6?aN<~_U?I( zb+UMK#c0fPtwB&lGr>03)-d*oi})sR4rEuhjv-#ab<1;I9^(m~RXMIvBAJWjEBLWG zwA~Hv)t)gLx|XlJY80a)1BnQTWtDa7Sv;?{4D_yfp;wIpJs?ETMI4gMcARmDk2MPH z1R?@2jHl+Myq}UQgzw;Djav2odz#F+Gh4Uz}mKmzmgH%dLnmML>1UfxVP9 zviOi&a8*$(GmeOqp+fq#@eAhyoP@QNDZ|CFJVEuFj3~tCAendG_>l`@E(8R29b=JY~5;EAyMJu-agv zVjc~Y$vF0r7W}hTkPTh&o1QqTLz5EM+{sZ#!&D^aXQqydO}2Y7p1?Me3Lf3q?_eW$ z%ZTA<%?NF7JC3V3>Jf3I4IYxRh$~YuaK)8A3=l2^UFZOIUhb;=#OlBX4-vU%(^3y3 z5`M_F3)3Zg8yy^+&npx>%2Xs zr6M%4nn&eZN;izCKWn-!rKLLQPs|XtrKs_W_|KYN5pSue7Y6xi_z1lk{=1E<)(lOt z&gS{Er@zxQA5gzit?mcX>MoKh+9N#L5?I_fjX8kQhGK8DT4Zf+wa0U`5xo**X=aYe z(Y$VD`SM>xdjkG?qjY8BDu2AqcLjO4k!%X6cM*Kc5JE$NTIPT8tIxdj^v%H5M%iRv z9Mj7%V9NL7CKcOTMuk<)Pw*`8jA-MWLeymr?d^e;xL)5@C91;ICXaSx$f7nbi)zQ| z)gZFIBTu~t)6y;V^ztu>$vol-$4S0w+k@LntVRklPsfzbQzv6W32F0~lO3AtG&xtD z>K}5di)=To7Q158c1c29?LJ7(SQ0}z{v{$_3~bcJFtmYIGwFS{S+r!B;_7-B(u5Ww z{VT3%azSoB9S_cXm0Z~hGeli@?P_QPPw%w}B}7)ZvZ|czKb5Xb60;L0mi?(DE{P%H zf53b8ezAjlM9Nj$#)P>3Y?-`Y3tou!B6$oZR`5PdM$rhm=Ba}%LF$8Kr1a=&BZH5m zBdwq|Nk&aFLAJP}e@{KS2!2^we)^C?*(Hw`24Y8eAl((Ka$d9@iRtGu1+|ZoDUOmr zyf*Nss+h0K)@!9AkxSR>BooB2*zN}NmgzJ{Nnl=t*7t{TmFaj<5{Or+1n9%COP5Jd zs34AuYA};b7nKkW8mqy^wuG$oacv`K62q8dIu9wCAiX`Rb9?EBIM$F{b4fSzRVg8| ze;|JuV%*air<(^Eybx`!YyNk z`0d4?hp=8jGu?uM&WE$@wtNl?!1B4c(B*Truw(iBtZ3t0zvXkKy^!T|rI@ywZAZo> zN>`V=ET4xq*lqbdv=wvtoSMuJLw8*8%dwt4{XyV%3sF)vmXGjWi?j7hBz;Y#t_JMH zbx;UpSvWl1NGynui4+}nSOm0%tiyXI7SMoc7}WABv4jDa8V3#f0c{(5D!kLE0gZ?= zU*z64Jc-^Mt>E#6b+#Elg8T5wMY9DDNkaf=CO$?tqk-K&UNzHrl zB7_=8k2tLt*&23N&xcZ)chC~T40AyImWymNm_?3#BkVA8f&gOn%LiFe!5N~X91h~H z##7ifcnpErK%LKfG7&=6#Rzd<)n5)oHi;)i6cD@Z8ua-nFXoH=c%6Z#ZMz<#zr*p) zb%dzXpn+JC_p5~6*mzv1J{ zP<)e&{~8xW^q2LIc(@sguJ=5+gL*L|MEbEHEry|?7|&94T$2u>`=|BquAyis{*My! zckx34`2-6j?TE|Tl5y}Ny#yE`MEO@WWn=srO7Y%%Njr3PgA}5^uc;>+ArbtI#xGkhnT#fZGNJBG31}yl8wJpGJ~x303@QNNg)D#%Wyj_2sHhUpl=W_( zawtQD5akD|M@Th%iKUv4Q<%5P0CAg=Uy@~01*!K^k;3WIz1e@;uUzcxm;}2dvkEH} zq`S)eB%K!)WRvtk8p%6LKpa^**+WZpKRgG ze7!j6dz5=5i>ga}ALAvyw|V{N`Yi{G#$b`}uCKong|t;ZD=02Ux*qnR!!ln`YiOa* zJ1Za5gt^p5P2~H*CXye++fmP+elKtZc*@GD#__&p9Q2F6mO(24vv6Jbj)oxyOt%RG z3o?kji$TyTTiZdV;60Xml4vl3;Hww%RZeDOk6=M3{OSd@uxbudY!2sG8~34&o;IO0 z2!`P;Q>B=uwFYR&M9K~(65Jv(7VrFWa5JXaP`9{->u4r$4`tiS^r*W9H!ibl-dUI6 zHpneElnGK{ku}|T)-clyZdY>iKKK#b#)z=cd4&b9!EFx2OG_AR=oPI6Jl_@)$n_wX zu*V51SaV=_%Yn!xv`E4N@miC|o#B+gW*}|}Jqc%m`0Xa;0g{)Sazox09EhZM;x@Pk zj1V2fw3rsN*+2vnS}0+Gc&(YH4_Jtc1J*m_8e?Gxk1K(xDSG zd$#B1xsKDP=yk^F4cbW9bC<=l-Jdp>#d#r@^~ZJhM%nLSnQweIyL2{gL=MsC2A)2{ zKfHk(`F_6lc968c&ewb2UuP}b76G_^)2{{SeA7EHV`YG!s2E~_K&P8~owPRm$n;Ro%t^@(AP z+xwt>=KxcqhfJK0$&cY$_9w#XQv$Swy^syM=$aQly` zMp#%$tv^95;WiRgWAs2`eY5PFr+hQr^L&%<$m7HHQAY0*tGu9k2JHiU2JJkn`&_@% zs&zwf_UvXLDec^u1rDG(anAD~@Pv2hiE~+0?ZMiK^Yiug)~atG z=JkY}I2Q=@-o-0ZK_Q#ya^gIwHPoBE2d)2@l%^VCM$P^|WoVr&l$OP_3CD5Sy;L8S9*^_(+ zt|9cYfx4WkeC@Jwu4N- z`(V6h<)#s^Q{#L@pUr~y<$Jbj4CdaUif032C2Lh{v~@{%KN^oUTv#`;JU z38vGB9{P=o)Sco^Z0}1DBQ1>K%8RreJ3a?p4<8c_L6^t`_X+Ro20d#YQOHOWaAgIY z$b&1*vwcv))3Zg{zoSo$6yS(a&SRIvQ-tVapu}zG^P=Gi$%DsseWynEsNGeL|vd`$lGg863(8L=pERwQW%=DqalYhM^U;>EW( zS@I$&IO^L2ytg=cQ>~Amnt3We+G(8obEB>Kd_&vZmwrlUOFC|C^Y79OeS>RT(m}K< z1|)H=R%h#d9YScAwx^DClEYYXYLZ&N)kzLxx2Z{LNv2h8u8F4Ax}8R!H%R!X7YbTw zX4-?%(!#o3O;@CMh6oqDH|YfW7C{1OZe3GMmFUq`7kz53;I|V?G`kp#m_FCoaK@>o z96Gb;Q$dvg(iwmCPD!^6(c`@D?hEX33JpY)k90hwNs~O%)tG9elPsJhU+kELlWd4t z_|GqP%pzGJP4ahz$)*L%{AQ`8X;nc^9Jsi3)`93N#2sGf7sNiA$TKYgEvm?rbRZN!J__< z=Ieb{zN11pC#1{uH0;XtZf#3d`cF)|sS@a5et8kL@v2j^!|?+;h~Fphhs7A4D<;}4 zH`!`Pi}ikTyPMUFbZ&_GL-_SLTUA36PCdfZln~E9T!4o2-MHLM;lJyWyyiG0=biU< zwoYAVWTA)n|FYN=`yyMxDeCe5FoAc1hGg%3-$6$cH^?FGn+LlxY!cW>2hx3|9%%_5 z#PE;S*@Jvs9Z$)NYvWBm&&WBIAvFx`Jz-BG(?ex>MZ$r727=s;a^*DnsH29h1d$B( z>kJ(D<1w^0BysPX(>fF9tPtBB%oOwSz+p$~*ot#POsn-_wJ(OIntHw`NFlC|*`K)_ zhP2~#>JCh`$eCf*+iXY1rsps)rDlzpA=ZCXXPt+e;_Erf)Z{TiME+l@e?!yb0nA+& zL6z9*Z8VV}_@=ahk^wq@|1F4}LZVU4-$)Jco8|dz`Z=iH`)2u$19wfGGelbFm%R=% ze(Oq49kOudS`vYihUwXJQ1?KjfgIBG->!uLe;+!*psW3O7+Kx_2l(f+M$3PK* zk;3@bYCEt_^q+$*{Bjsuu+l~Lz%MKvG`*o)Md}2eP`)+U!J|b!dwdS&Fi^C}86pe# z8(caACPH)rNWDm*Q$zyzm(j0WM$f?tQfE1>JguU@iG@$EC@@bX3hot1+IzMthRFKr zy<#A*z!@U?e^MI@doUChFCp3f9PA+V!j^?45(Cd9?RSUG1nv)*l4X$RAcui6Nr)yA z1fN~(_v1QL*q0q%lkJx6FfM2tXm(*Ci-f{o#u{wNQ}+<5_ZRW*L6>w9^&R&b19S$l z$1?Q_5$A-M9uMpS1=|OS=Ljk<#P|_%14Ak}wLK$Zi1Qy>`udQ}Qx9|&dWipaFdruD z+xvNrZiB{%G2$%g7V7XDbIYpAyWE(|%BfqX^&4~P7k&3i(@KJF%%vstP09uqE;V|^ zY^NJ@{n|mhp#ASh^Q*jJ+w-sZ#j*>y@GT#U1FGW{R2$Ui{a_f;i@%riYd~BtYa@g- zxfj$AN3c8)NLOoiTe+7p|C z{aM=i5c)^e*$JDiIUs_c2!bWK3c08%*mpLRvHI`L31zC0u~X)BH>=f)Pgy5}D9a1J z*JZh1j0d!4|2@KiI<62EL{}JfRnEvHdN(gV1xBrtL6l3|fRw@;idz*oy@ z(R~v-E?JsHc-Y}&b%!=lLcu%3)S;n<N%E`o9^F{I#~Q|-{0kOHQtis8@Sdg<3*BLAL>(0>mHsY1ME z2VjORc+Y1$G$y1#h^gG4{xLTJ*mAQTf0FOY!PW1*eBO(=poi%H5vPCHkR$4_)H1Z% zy?3JaVK3Mr@_$>BFCHH9G3?K;^2s6e&|n8(hVgsvO775@F#f|vr-{VzFsncyaQZtB z+Bwhxkvt>no#5!u%1H7-JRiYxf90g0heOBJBuj4cV$R~7Q18YTvqGF7X8Tp1Rr_(+ zWqKWO45eGa$IdhCKE0FAQ@dGD=rim}y_3&VyAb%%(XPy<6Joj5BHQN42j^k>s?G}8 za5X7chxLXGPLl_zhhxDvY51iwLR^0dV=nAh8_#y-dR*l&3U9(*`|f4Y-ut;bv_ek) z8_W>*^|acqilF;9I^dB0*n4%eLn|Z3MdvrD1t;c5xL|&8$3hl%c~u9=4x~TE1@YUX ziSuBN$oq(52Vss7CB$~9`Hyh8-q)ja;>jj+h~b)S4_^h{c+;Wjf$WuWG5H;ao4X|S zH-z5-UnKWnR<4F)=bg{)U?U^K1nF+OfcH|13g(`J`I)3iS3w7{TrWOFBR=Dz^ZWFS z_zN0;BYs8k?ZM2`d!?*P|0}+Ycx~xXi3!|_HW z+Liks4HrguKWo#$hDMYMV)vNtTG=mld9{GP8~9Rv2Mp4VlP)A0v=Hk*s?Q(F1*gUrQ5WF%vZ!l3Lkq$CUX~t0Q28MN@VmQg3qC^&!u#&7UV>;@*y2|l z4zs?c`-G(H2duHNWwlF^9wG(yd`KHhV4Uw1_~r01b)%bJo(I{nhp^CGP+G(F)~FhKT2r|f-oN{<1|SbgI6$s^R9rw98l8xFic)p zufqfl!|2r#Cai~v4~F7rLerWbjAFZ3d>O}Sgc zMc>~IyuphVQ?KrN7hm0VjnsQid853;on5pMkkwURS}v6}86ajTe%Sf?DIly3UKH9|bky z^N{5S#?o2DcW`U28iIk=8t?zdXC=HoFFA45{PD1(^Nf8 zdY0aqhai?J2Rli{{k*Uw6%KZiicflBNh%yT$!^aA?cjcza{cUSJ7d(IbFGa=6cu@c&h!NkI)*7;c=&vwwH!TVVt&&nI74O4g#XHyJA zTy!=9Hd4;`DBovEiQMs>0C|dNL=Ynm(`m6QCW}=bbeETBa|tyfU?Vmk&$IP9txE33 zRtbfSSRB=w z8cqHvH1%BN*=|A}8hZBhhk@y5SyYWFKgKEO+r0jsVWnscB1`X~MikP5ODia3CJ#EK zq=Q;RQKomEBdCdnSd$-hJ8X8@alRTCn`!SmwxRXM8#)PB=j zdaQ`9dJ_&(KfDEVG#MA`?dsI&=q({L@D4|7A-5AT&4Kp6ve+EwyZv~Z@74zrwv|C| zA9yz}=MmmF;Ca^#%Un7Kq_*iQhf9cdK~r(>#w9WD^oV!eqZ&A3!w++rq=QB!-wt4m zz}}ky{b|-gwaEw(=QF3I+SH?O@0n9DTTQprIoFS{`M=>t;Z`u&%2v;w{y20jCjGrG ztUBqb=A`9keI2!|37oZmf04y>KPP`tp&_#=yEtuGuV0JEdHaWMq0KZnaq&pkL*n3N)e-lw2CMfVPn>dLb=%3DQ~jP`cp`m(L$8hN5y7R9yVb^ zcd&lNq|1A;Ioy^x6U=W??sk(hp9KxwCz2m$g7_^aHjfdj2Sd17 zVUzw5NH{S%T$tQaJC~ujX%2L=fM}dOYqSrAVh}(*c>-k{hymwLs8~&&!g4k{79|u%kLZ2e2Achaf zpFa&F0^@AE%AofVg6&3*2Wf4S5JBwL4-eU9U#x#HKb z8&<*o>#JP}3u1^izhH8R09IGB_XU%*AWN8fX0U1{Tf$jRc!;QWc*2$#mlGZ$)E%C% zCGh2!%h0eYb^NO{PMDRgZMvp~dNFri^tbduu}(U@^Af}mZAH`Rqe-3gAeuH}OCEdi zz--u2Dt+w5d2u~=+dFZ9=)2fI3Ew-x3#!X<+TMw~tZsGPtHb&1x}lK06Lk@71hl~6 zvZEUfy6m0sZV4^FdGDR@uD)T}?P0kk`z5l~c%JXa`6^%MVJj8h0OYL0`~DX1x<@t^ zNOk;C7u$y+{oWgrvBv2Akdt>4e2!(~#K`B%{cpVV(udDZpI*|=|JBBgQ`v5pJsH&- z0G>VlO4Bkt{!Z=MZ;sE9I_?+y#cj4R!_}2hJpN~l$ zQdP^(@TR4Uq$-ya6`~u_x z0_o+F%av*k+A2ft^rv0m=q@#1p8sp=AXbk}mJMdie@ye^Vgf4o-6j>F&s6#UNRBdZ z(@I>zS8D;uj|{5n2g>-xYDO}D+a+^nHAvb`!vzzF0YR7Z=_L(ve;+<~3|kGA$>`2> z3{D0ks1OO`EZlU?8tH=~R2HI9-t+(SUsrAJYaTs+l|9LKaEDdxC0u*V>rYkNJA?cF z6k^w&+zIvdNzt-NLJm2HU(pt`j#<$?@yMACj^ zDk)jLNH-&iA#D{}v$R{^935KP+B2a@+TS_3(pI4%X$u0=e7j#fDyp0WqQ_CKysx?F z&=7%lxp$fF%58bD&osN4xhsZt*qzwwTq8no-`C(qb>0_xdchj->v-#d4mqlAM1rh2 zK^<~bHxdc5=1IgLvx2#8wu|Vk`wlV;5VGPAxD~Ie{d#=ZPP2W?(fm?RJ62F3*g1#2 zKCJe|7@o|Vjov9re0}7njU-flYOLC$lL>r%#{M6|4dCO15g5-Bg4>O-9QXLCIda-|~D^%^uOuF2oEw;TZ;>Q@G>zXkUAdt*B zwm1%^CpOK;aBOipZ%=Gm|Gm&V92KV4)vH+I&#Ov=7sJ-x>Nub&Fp#y~vqf+*fL`th z)P@HkzK$Zc7*OBt2o(WA7(a5wVlg0hjoV$g7=wKI2(8_Gt1*wx773Wm!&7(j{Aiaw zd-_fH8jkk4noqwV*K)4VndKQ)rz@py!vJY@vjf{cRMuBegGiOPUD@@JT2YeSjH^Pb zYRI+UoGi*!UOjkXwXl!|`dCQavXA$)K?(;Uyiy(8HxYHi*E41VFbLfZ_ydWFA`X^) zwafq^l(%3V5%y5SdR9c7J!iB65<+^1{W-Q(_8iw0Pzdcc7;+{jsP|Af2;uc(cr7RD zAk#CJV|X--`6RAs_Qgo?AdGj8^U1#4ov?UQ0fo>m>K|aoZ1o_2G_IbkA=M2p#f(`% z6448M*e^h80m@kA%m3pu>Q3Lb-Q{d?sC9RF{h6APRCbqNY2Dph4?y%g$L?~zRCR_Q zy<#;Zg?a2QZ>R<(8Jl)gH=eN zYqC;1k$Sg++?jxsMdj15Sf|=VWcg?-b5uU+iu=&=QQJ1<)39KeP(Iq~AeE20qCT{I z)V7g)F6k@iLn71LM##>%R_{GkXC82H7981D>(7dX@;;&o^@gHRBomIMUx)9AMeFk% zOTW(55sTKpe$KL#eH0WrO0X7@cFrlw+^{I6=hF=%m#uw- z@SbZ$xDQfu{omd3T{sxxeEILAmFfDlVB@Jm`e^O5r@!M~kY-=0QQr^bI`lPotGsGo zf2MUn%=gWPxPtz!jQ_M+q=vWJSDCGqpm?vz*IG+9M0;;h6K|W?SZkD7pC5$CVI*7R zdcKEF@-?5~Wfmo#B66JJ)xT8r{WGcW+x+3LcAbk>LGR`nUadVv_o4};f9DxqkIIl8 zm^YG|;Bci?`4rpx_3YLzzeW`j)#Iof0d`vFMnNK_P2!_A-rA<}Mmz5pm6E%Kc! z_2Z-|rPQ=>#aWz4iMEgAbbeEAKFN2b!-+d{}ubFCB`wMirUjxX<#Yzc|`O#OHIa)T=a?*P#>f*M6Q z2-XTTq3X{ama^~2y2Yt$d`W~^|H2+oNfi% zKiRr&<6tgceyR32Wh8$ac9q?MnmnR6QI}&R7vCs-P&9#r?lF=(D?`1qX(V^n(9lEQ z$togR$8g}RRoZ6LNbW2?Vyz=l-8kBn*>nQGjHy;#ChDwQVryD0a~2=zI1tJ!^4Gm< zFm*N|5jL$jI*Tg^_a#DiVUlgeM1=kI+7x@Zk@5Bss&msgrq(phyCKoWF`ikmnMF`u zH$1d)jHh^>cxdAY&()$DAC={597%6YJ3HKZLm&{oYw*)-Rc8BG0GskCtpF7i2;mh# zSZt!<>*gg?35l{by(rP~U*qn6|BNv?Uk3JbPN-;$_~<#ijx3w`xy1D`(2**af+y zy7um*)CYa4$)J_5lpdipgjLf%HE*pD^|L1D+geLQk2{|oxgzh@YGqezvgg(+MgRc` z?LsywBY|oPYdt^#288M&LFGE{&|0UIRnye2wTcl1fpDFN>oFbie`}QzRSykL@m9!- z*=FAG29VKr?Y&5%>LDuv0?Fz^RymW$0mABGS%3kdx=2txf6F2u5UvZ5MzKE-7p%k{ z(gF+!)kT8pjW`zH!?p+r6W84j;q`!kNznzmH7_8thY1QaB@Tl@!_ z$#kVNTHBD0qiIueYZU?}LxYgs<49NeY(K6R#ViuqrX_QKv=R|Q3^6qmdg(eK(b|lZ zYg0_!T7{5niH}Fz=LmOj%rL4@&HJG|J(qy0KtfU#z3Oo+vG(s(00m*ZFv$zof=sKz zq|UqhZ-N1#Iv*{#>mIM@u^n9M6f3mrAt}IsBz1Y3&)?W(k-TLUDQ{dyc(^{^@e0^@?5bgU7mJ1z+*dnwIz4y@ZMdp}a6_dS*DdQ+BsCf&rmAKc7VM`Q3XZKtPx-&v!Z8o*F5H>^>IN zFc7wz^&iI(J%7_>6z#@_z#yEkOa!ZeMZ+Dm!4}uFOw z3!XrH-k!Ip00hEysi>e!L<%&zM?ee(LUw*NS;vuAcmDwp5T*-oH`Q~`=@JYG)iv^$ zm~Nx{+*l$(2+zaK0nc5RCBB^KB4B#`+i_5J_Y@Qak`=`jDW2_zON(d$>T{212?ivs ztMC_CI)Jz~jwZXWObH+e-!<{)NV4nEH@T#+1g`_a07IvwfH0tVFRsL>l?KN9Z*SB)`ir z#W@k!7z~8%3Oy#bUAgv|1ayz?Q8~wf&|QPDa}0MkY+@<4d*6^q5W*{)e4gzK=gmQb z$dBWA_UFI((yzTl{;9h{u7cNz8R>N&?gS7lMtEwhI0<6pI1sw?a4}q*FroXD0w5qv zmmxL&2IQvW;Og%1Y8VLHg?LlL?ujLW0in9K%O?fAVgfNs9HDi0CK3rkcy*Vr;niIC zHAMm5qy)lQjVm%y%7uu)p^J$#WA$*UIQQ?OdzRP zdu{qiYJ->hE>sVlua5_qd=FHB0m_LDfUy8BZK0!a&S!DH*s9~Xc?xNcBf zCuCVo#lleL%eT;W?@{B)YPivB4+DL^qxWmUSy_164$e)~4^Eg{zU|+u0sdwDBJ){z zWUQ{%we{OtFKqud!$Iqp+Oxk(qeyM{T-(3{D@NPF&0C)XYirmRF5X*(sVAJxwswTT zmW<~IUGJ?z-CTRkA{Gx3GLT5(Q~rJ*nL9U6Py2GXWgJ`&tWo8_a3UJFBFbOf$Y*Yh z3q^`MqkSWJ&rFrVLVNdN;@=y0g3JE zBHK+X*huXPqFU>fY4q+=6F?9?Sjx;EJQ?qz$*yT`-^y_$ksyR5i9W8%+1`DnP;32C zhD}QmtyPQ^C^RZql%~1?x+X`gz7TP_t$0N+N#v52&qdm;PUM4qZ)>W zEvB9Iz{X%8Y*$Dh*scz)?GOQiYnr>ZRx#o@7`lA{A$zHNHVOT zAF3nb56|)mz*|s+#q+!r;bmP106>xxfY4G9<|6X7Rrn2_}h1lGx z*_4|J*brO|Hfx(nn~FE4&E{a_;#`X#J`oTQ#CI4(@QUMUZhzm$RlO9cc`=l$Tn(#k z79qNzAZol4#8tP%WClB~aw;a$a1*L(ku}_;<*GdbD%vnYby3QS{@ABanCVj&9Yt8I zWrXW3h6{SxDf3E0SGA{Lb#j~U_D^7(4|Um0UGMCyQ@1SJ6=cpox& zTgW!&DFzu=e#-PUwNl+^5dII^@b?>PZg%n0&F}#XLSJ{EYE?|A^at-gvSozpI+JR3 zSjV#2PM%P-kHB3ZA@mro`-BTWNzB+Ik_bhG8%C($R4IwnAZ(by6I}LliB88Oaz^G- zv#T6gzEIjln68N5Wcb)aTINL0514Emp?gQ5gLRxf0t+1ZQL{Eg>^8bSeX$dwx>9yO_K1pW)u;$DEr{O@9OEEGKxDn>v+Oc?IuR!6G{h?uDe^~4S3&MU^M`;rY@Z&tV6!q-AF8W5P0$| z4xZhHOIWx~b9;w}XqAaILU!3e*2f(L&X~-$5w>&6?|o32*NOTH44+|Qqs*jS!`*cq z+_-LUU0~IXBQf2hVuD}R2$9yF)E2uPz(A?oa zko^(WIM!feK6~jSHo8ee1JQ=Ihw~HOq&Hdt0-=4YmTkkOk}iqJK_qZqDw;${uCYJU zL)GJA2070PM!E3bAtcsiXq#xwBZOBO!o$9t0X&i(+V1UZpMGL97d&0%*w{P4ts{K3 z1jQGNoZKEXv;?*05kfX6ndbQx!h~KX*JVy3+C`YoP_06$uZN=xTyx+pA{=ZK1so(+ z>Vc)pa8 z3d73$Dw{-@19t(5F(8mE)>%LYf*~`!{|MQ2iFN8$5gwLZsefVH8hW7Wl3hV(SU)V zzDxVE{6@qg{f)r9&CBJjSQu;pg5a{*9ZcO}OG>rxAW_k;JDDhN7hz(~y7q(P!xkPr z>EI3pur7WOH;&M;xhLeadrWA$%srt+go6zla#@To<`f(IS#p=H$h6Rf4vBgz285OQ zLo(=&mu16gS|>ie-*z!J(L932f>`<+G%|V6znccG2UC9`+ehHod>&qniV#&$-Jl2e7EKXx&GXc6IHgFpOLOpE)tt}cT=Y8zo=E)|Xkuw-KoH_^q)MY{+S z>wxSj^-kK0(E&yC2-^F!1Bl-s{vFTYz$iJY)W0uwac5R22r^u>4NH!2nT_kwN59U{ z#aYOP5h}LiQo@PDM?2Wkf;RkyOHy>#E+L&A1VYOe$L$~X>C3K@c1_dA1{4S{bH!{| zR=(cu`%HlX_uf%!Q(8v2*aC;PTdaq=yDV^Mts{KQ^Jri6QE-7N zW11ea?2;F5#DOp~4WrT|b70R!2;iQk#=@L}fK_Ikj zXGE1XT;t~#l69FVktPumHtfOKuvlSOmtjwD9wB5CU;UFlO6`(NGulTOS+9`a^g-99 zS12tbTx?mJdXXN}yDrPxv`vJC?fYU0+#X=Mj9aWxgr@F+i-wC96ZSx85+PwDQU!k& zIRbiBPmg%6%ZOwGKqzn0;Jzw8$;agmE)2}4{pXZj^28Pd2qz0T=NiQK~S4U$e25UpCPrk%k~YI%=?Y6UEGP%GQ!0IUFBEe>iWcK zT>@Rbd4y0{9+%wsI9na^J{UV%o(2G+6#6ASCxhDo!d|G{Nv}pv11(JsiT>_>n>3!Tomp~G=ZNo;lK@e!L^QA`z z?1W8i8)0L?B)!#Sn$NPssy+)>u6hknUD88#5C|>XGC@CtV=B8MugHE-;?eqOyUQA* z6$8S`##Q z*GZ)=$u6UPgi+CWoCJDjjVsL~glthlVX=b4n&WDlP5Ny*>ar-&fCAyYFnzMg*2RSP zo*wD3z@&xNFhX@@@xAe^fStZ1=MwJ8^&lZ|f~z);U|p{khZ$T=HLkztk1SATTKfpx z+ZCMJVV4*5an*rwp3*2n^W$+*jd`?8<+M4)ZVx=wvV9IN1o~#nCnL3T)a-ZQUeqmn zyEdS`ue7#DYGn=O%RfQ43OC=L$gZ`dM=xQcj^p-3?L+nU#NQvE+3m6?_u)>ov*ZjX zROGrs5!VEge8XUdKT&S|<@FL7p-+~R?hDEE2knq#>lhW?g44W$+gh;{R2NjTb%g37-S046!GLJrM;ZXj zoWr*k9x2TuT<2#8xKgNbxx2MuDXcDbE*eLe-htSGL=N^5FaVM{Np3AX;%#e)%K7s{ zRJV;0tzoCaeCNEJn7d$$vy*D;A|u{5LUf7U?jOe=nEBCm&8h7pWamlB6xC%Uk*zcN7za%M~04REol6*Ukh%qX}L^!2BVg65eL61 zH^liy$L`wn?T@`ihoFDJp{EhLD+}ij+?4pWNF7rwZ@TiD?LaL(ks^%H10y2Ty4;Ou zT}@zgtzmmf(bV+ySba)>bY3M^VGLcv7S zOsy7-38Nu^I7jYV&f$$%*VL%7QaMix$0Hg>0y?@@2hcw<&($a{On7P*1QWP?j^p08`2Euw}vMRP?xRYpCJRWc0b|C8z-_nucy7!aTGQmU(dmp(;|;jBu%yyYk3Dda#u2W!92bmu3#uvO;}8_R)&wEB zG%F9V_hUECHj>Ff^K1|EseVceml10fAvwqXHg4E);;pdoF;O&( z@W5-D?7;oBSlbtXy&*Ma>6$gBwvAA|O>ThNWSgFd%vI?YG9%tDLUWa0S~JZdeY$Si z-qKRHbeLvj+fsC70I=gLHqRNK0D$ma;_w|e4z)-?3NPF*;MNhcw_&>hZMmOk2)8rd zE<$qw{wfl;{SbxsMYU~&>Pr2KNIUgI79REK?IU!T;a7F(svkIW4`+*Aj+pV9V!s9#CIKuT#{nNJL^;L2`M{9F$atpOl z6Apy-ESx7Gy8`=ZG<@b&H)~*NJm=BERyu`FSV*%7%i91DE<9?uc-|XK_}ItWMQF~! zU!h~JvYtVDcw8(RMtCmJqfBJSAcUd)OefrHs%^hFcNjPETD?-v=vIx98!(v0%~ieDCg-~Ky9t5A^$1Y zAuFN=s})&<)g%OCG0(LQ>4BNAHBxX$!gIbJcC>?g3MU!dE=m1?-NE;vaMy@$0%{ZM zkvdF7W@3`rw=GV#O3%=R>nY0C+AKu&B_bhKh9~e)DN#stV{)ww`xD^s5P0!cGe5}$ z?=5ZNspc_#N+LRw_oLX96)U2(mpG_qQ?g z0TKZlp3|7c@7r-;Q*21uaK|d!?!m9+g!@$JDiE9orX=J0+mE7{Q6pYNZ)ebhqnN1) zejJyei5O87hF6?m!=u;`Y&XoxTcK1n;I#0gV$ zn1~FVS`#`^+;jBN@phCB0#p=`h=_={;2UyVVH(?t6K|;y5ec=29MZ9f)5K*`W!ETJnlh{|}+T_*_m!Uxj-_@rdz5A@d+Ak>AaUs-q z9BPqwaYdhK?=@gS5}O@p^o}d>KZC z5Z{5{;spsp#{GP$iV2}5RxIO%c;fAC#S#?4ds_(&;-NLSNQU@U1ro!WFaIl)ps)81 zH*PY9eRtDx{p{)Qy7w5@pQ$PNAIUAow`e7;#k{kGRK87*(*(s;J90*Ki!MOqfSC`z(^A!MKytg-EFz)9$Z{0D*tN5q8deuh=>%`G`D-~PG-eKC!Lim zMb&`@U_~TEifUS9ZTA-XH)j}@D@EmBtxyI5i)e^GLVke@TJ2|rq9`PCAK`!z9if%H zm@lkjOB5=RwL-um8bT}Z3+zUz5>kn*6%H8D5uU5qz}dcZYKiQ*C|X2Bc&=h|oQ_6h z&jnZ!i5VXj;V2md)aiKKi90AVxQNOFg^Kf3T$En_UUWVjGa@DSYt%>mVE<>zPUG6I z(P4y9K_gnau3*w&zf9}|>xy7Tq{JSAn)V*PsJ3O*w%g2Kutr4S+C$)9t%wM8;E0}Z z+~onbu&47BksUWhi-?H00PYk@=(!`u1q3XjAr=%LCRB!NL9v5@J*@BGJiYu&a`BVc zHBha}`Tx({b%se*WNpL*V#FNRoE;U@8dgOR1WA%qMBAR8o|$es*AtYBm3LXB&ERZB$}a$@;tx6U zvs+TAn+pK2wIbqo3OZ;c{jaR*ySY=K>4rolnfObyO?O8HbgiiPdB!-`;;$>!x;f7n zoUKS5>6L8N0BQ%&q$J&D*qNod*CHKjuiK=5T|~3pTi(@(hZXt#y`kOii=97VJ)(P} zkcQ6>)v5xpKjEufJW%L|8;{n%q@`SG~!9T@IzJF}7C{k;Lz|G#$j7+Q92t!@CPg*i0j8!Hs^bevE(&i43* zKcIUGJ&~>zqw(E5c3M~(LUj*lS>;Y12sR( zCni=$&q7aQo3F;dPrRG@%LYk{{ejgVx_N-vr{7JZVJ1t9zi0jK9ZB}-cdzx?&~dyP zufJf(*pEUtP42l&tyCD_&11tp`EDu~`C#z4?i~d733pRli;en@>CVw!pKa6%%mzwD zXLxtNZXee52}iAYZh){fjyt}aN27es-Q>f3z_wgnDI~UAy05M1E~;tnp4L_rd8=?4 z+pXi#ezJ5^6UH5Y-j6*RKtd zmR}cYjEDXOF-mq%wN!(+j%6}E8t2)kPsfgv^cniUGxdLq>HmJ$|2?HcK834~(lPzl z!TP^v^~af5g`V!+OD#rEFQNZ?O9#0~OUdZJmeRkium8G9Yw-0p4 zA^NYY^k4mTkhxm>Q2kqn{%tw^+m`yTlK$&m{ofZFaEu0gum4+D|M!RfZ-4#YdYaPa z`mbpkK1|CTkH0FFQ+lRL(+{7%aeAEzi}W~r`YDU+mGtUc`nZL9^w_&c<&;IJ+tF?Y zT1p)cs}8hRH)?A5{v>uL%WiSX|sI!I#hQWm|;&67Q?Q zO2hH%DG0e9p6lcJIG(5D`5nS60qk*jo`LThLc$ODau&Y)i1(lHTnf)79TF1G!TYm# zE{|XP;r$`-*$-b{!k2bDpT?I1@w|+_bfp)?_to*G7i2DuFRyAW`LDN$=4$Mn)JOZy$0R~ z;QLW{{~Mln;>!>`e+AEn@O}#Y+LitTUzWp{{SbZ;Jb%G+EWU3Gy}#ni=6F7e=Olc8 z0`Jd5&NFzvf$zQW%;UK|!kmZa+K{;;-e19UNrc%5- zUw*^$Wqf}e?@f4~t)B>)#jiO$llZa(etjO#_wc<1@0a4&LHN>&FR$Y{8DBQVubbeR z!S~Ja{s!I)cn(9zW$~PgFEjBRhcDMt_^$L+d^rJMzQX(0c4G`vdyf2C8ScLC^XJ34|57_(hoP#gp@Z29^p1}LXkn<;fp?rrguj0$! z@mvgf{2IJphv(Y}GYQYW`1K!pjH{<k_=@5awpcnS$rucwUX~%i#SpJXb*Y zL3n~;F55V`$@LUgH4#NA>c*gPk z84^a|`3s)s<9knpAA>Ka%zb;1fDPGFL-|m?~CI7T)h7c z&o?1qJ-ok%XA07ac>fsE^7wKEp10%6K)fG;_aS)y4B=PBm(TF!Iy}FF{5kmk2%a0^ zc`SY%4AdyRpMdxE@%}qdf8zNwzU+%%F9h~6e4mIfPvU(Wgn1EPUPG9x@l4>$D|p5c zrWNo1#jhniU&Qx!@%?fmPV-kMCFF z*&AQB!*dOU>;<+dy!XNTh4gDz`gO=$7GK`N`>sGOgXi1$G70aWK=KFpawp!mfwceN zxjmk%AUg$UOYE} zgop6`MaY?s@4qAbcKGrq-nYW{#qi}2JYNR?ck%uYJlCa=UFi)FelDKxAk6N-zKv&J zJU_v&UjnrkzI=uERlsKzd>Mx4r}XSfABOiMfm#z`ZpZsqc;13AYa`5TeEA;F^>s*m ze@ZjN`w4hHh%j5=`@MMI0O3!?dkcNkhwp#Kb4kd53Gcfi%w>4rL%$>Z*?2z$?}y_3N($4J{x`miz?Zx5+zwx6;dvas z{D9{}c5K6tjpxn?{|???#(NUa zWgy`-y!QuoS-f}Ry@c>H@$8E)``~#Wo;%?CVR-(CFT3G=8r~Pe`;m}#7v9%}u3wP8 zci{V-c;18O19+Z>kPqYe6TT!NZ4qFf1NKdP=|jJErI$jObr8OS?;GNMPrNUU=T`W# zHJ%^gxg5T)2<-cKj>MNwApawLxdtJx#(O88|G{%rFgYIK55`4^sB;rRe~o`EnAy4ufYK zo^RoKCFJDr{vpB-!258m5$~TOOg}t7#FtLIe~kBg5%MN{`4V5&#+Sd5S9GPn#`lT% zaweW9BFsEIyXe=h^v3X?arm+f!f%B4jq%(B&&Tln0DA9Ap9?t$;LGEP-9ZR*FrH82 zOB}!MgpmKj_gQ$~1*Bm8WHoQ(I+q465L zkH`1_A>@sCu1?>((vRZ%ZTPYWp2r~kw|GAe@9KK?Y3Xn9Wg4D8;`{x0o(Bn|>3bK( zJ-aaM*_A$%e(g#xhUf1H`4qya5zj6Rcy^@^#uqi*IW0YtqU@| z!Mhsg>`JeX_nQ!24RUs+cSD#oo`doI1B4lZ_p9*UAHS->&93xNeD9#|)6&b~`<4h( zqW5X(ckxAyYIdcMLCEj%T$i5H(tqH6e>~NAW>8C8^NsDDtlakZZv(8+kM>YI1QuyUn`2KXipyptq zZrishE9QOvtfg7#jZpjqliAff>z7jWBh8B8f zte`7OL6;7qVFJ$IpJMP8XVTY>0fT(YAs(5EMP`-SWPHH*2}I^+E}4_DA-{3RvWh>k zuF$f{mQ;d#$4uzeB~q)gC^PU`BZy!-*VbD>)m`DXnzbY~NCpK|j5kB#hH^cTpCf4VtMYGC1JqS(`Ot)X=%GbLau0P^ACfx za5qahB!Z{WI04a2@Y^IH3Qr!bJEgElGVL4|V%?GC8F`*TP&5Ue!7)XSK>>}BvF23S z&j0sFq!0mp2&@^|`=qc&1T4gv6Da~Kavyafz%i?E%$h0%y;cvqior_B2PKYwv+%;r z0cI@cND^QXeeA3m_Ax1}VG#@Q;b^kR1w45ii*U@v9E03IHyhCY3C}|ZPMRKfEXL)cL_Y zch~b!RC zqD1#)dxc?m3GhuQaTCv-=X(hU1DiM@FT#y}l+cK{iI%h1FA^5{#Kdw>g5uvLF#K2L ze6{%w4i#6!0k%i=I7H|fp(dpYv@TOGEJ=V@Vf|>Vtr#z~d%5l045jiU<@e(FhTaN8 zmxX%aM^2&ecT3?>SF3|%JH4kh^kjTVK)Cz8DjVH?aV(L)3=}E87 zZEB8}e63BFk)-D*qBlX?7Kx4?gW+c<%W|3q`Qpdo@D7h61iz#NFA64Ax%^J%I^{OS zD4(awv6!XcRn0s}V@xeo4g4m9x;4a`6R{NC7iXz>L#gOZ_Zk;d&2%!<0>^_^|4|P- zU$&II&EvrjAg(taYKNXB{XH&y{;foVU)ql>6?3_YfpxkfbD<_uQK8$_GA+p#OUcJv z$!-gxgx0`X@;~G9H?Ko}qTpEMgnKDdU3SnSJ<`9OwMY-0p|)#8P}6`>c5Z^iD@mfA zn|7Tqp)4yw`qfIhJxE%Qas9~qoQ)HTtF;{DU!&x+d{mE@3o7VSB46;!Ln!z!k3c)oP8F=cgo^vQih2r6 zIhln56G|T9O6D_9E4}%cQD8#;BV7J`7D=L`KF-C@ryogP`jnF1iyDlDWU<^?t=D&& zzY>)>>9d^rd|F=i&=j7Q=P`X%?X=39k;h3%|UMOTbQE?-=s0>td^Vn%r^*89>oyT?L zf-7&OE_%#u;6mR3u5ZYK>vPI}Xd0w6xn=*@1=rghy~pH!7uqu#};x zbg#_{ox`}!?u@9X(;sVr(vg3;QoGcG($QS$`0ll?+bf0Iaa`>_-K*AUc0uEQTw^zs zL6nk$Q4ip{`2PHc%RAB~+VUW-t)3dr&vrTjZgEH2TocB*q6rJ0XnyVO5VA643s+sw zC_}mEB+uzrP__Cq2{WqIdPW(1K}};v+f^wf{-)?zRcSp1Engno?e5X!l^l+U{R&OtvTj13M|J#LocPl9*C)@wIuKtav3!A;Tq~`ddnJ& zoCV=abK&)jE=a;|l8O|H}&GBv^r~sHbxts=_VnV5pV3lKJ%`DjKXJ4)Ryy z^6Tl82$ArMHTuo$lt9gzTunVib`3RlO$0@2b47KPn{*esH8Zi)8B}h*PLn5%mYbfS zrmotiJtf^P6zXyoLA+aTLjGJOpLI3rDt81G<+7V|q2yy8 ziMnzw*FZ}~lT%`q0?l;!tzD@2jH{@t@aHO=q6gByRMOqTe?E;=h|`2z*~(AQ@ePl` ze5N!j+aUjYE`L4~!LMFubi`}nK*f(-MP2m^PXxPIgYaLt@cHFW`rI}zRQ%3W)K&Zo z{Gq}v{-LDDe71zblo<6eKtr?#&f#RY!}xTuDr# zMP;_Y-)B)3a0}HZMio$3F<}a88jHW|ssNI2S2dMY71U+eK@#LgIICk z6L-)vTj^m{!ve<09q)&x`+1D`Ew8+KSy1GMv^Vy4?$0+pq=8 zNL3<|_r1)O)iX0uJ8Ep62$p>9uTm#_{F_|esBST3nB%|071lEpR@WZDcfDp10TvmOS%DC}soo`8Q{8IBPDd%#^a7p#K6djZABwwD3s?X@OzR7jZBA3-v zR{|D`rS?>-Yp)6yw?%#8BxzH)v^pbNsx&)BJB-V!&;DH05nNP#HY*n^$(B@y!|Z4- zu0Cc{@llC^OizG^Mshp4k8QGAgGH&sh#E}o@}$0YloBMGg?{;6!-9|8is ze@T++$w#SjGFvj%<3ZYmlC%x#uv^xyuP>40)Du72q3$nn1f$F6S5h$<_t%$0(p8eA zdVGR*JO#VBA?n|fsCuHu4E`TUQauGkiIzvT1bg{G>pDpoZ)_#}(-{0WFC(sSA+`68 zrvV_Ny~j&GAJ!DS4e*3oqPo;rlGXOxo;gz>BY5+r(TI%IfCIsk`3Ti~h&5|Vh&_#q z<|<{86q09g$@5_ht3?R8H*mR)ryUo2GZ)*qjaj1;jBn$j8)s}aKq2-{E|ynSbU0C& zw!rE3kokvKG4#EF>X-_NGU^!4&O|m@e~f^F{%YT$C31>lXVo=)I?obh{b5LDvjAXx z7?1p5=C_te>km^t7G@Ty=a)(5+RE+ziazK$g6rW^0G4R$4^dC4kTH&LfSRMZ8a}XN zNj7&gZgCf-;Y3=zY@{J?6Ek>|!EO(uCjoIWwHDe+zn!D)s|dLgS=vE#Ghb%S=Sgd_ z<aowv<=^`R9k*MFyIqhwNy&A)g1khoL$cKkgY29n zo9}q7L$-O^07M@miRKIFYKzu)iCS%ZC@4z`=Eve@mj;q2OOk7pRidw(k@Jc|XgE}9 zutzxO$23*>=3qI*A1+0JPwSfWuos$T)?&P^jp~YQykOBkiqoH;?Bq$WWXdU~<5;eP zFS)Nj2A&SuJ00`Ro3Y|_0@ufc#?*nPc>3IRcc0!#Fs;cNijWh&k*60RE=rX zPeY^YCxc~(d|sm<8abtj)hK%}u(s+Ac{EOJS?v(s6zHXNwIwtD;ezve(vf$U=9Lrp z?ydJ*FRg;2HD&>xpF!!dwHlDH%b~t1c+g8QbpWz0hu|p4_IR1Vx@d*IUAqir8|r_Q{uN`kemYUo2!Z7Zaj&clUTx#dvGK?E$gQ1wGuVM z(@elaHxZ{lxn#%F7^EjpO^{*fII9L36R@&!`;BUnVUSHZq>oAo+8LkCr~Leibh|;~ zgHwLAUpbgDcMzq)JhDjXz^NqEP>#~91aG>z7AqUG(5=L3buQm!C7{;gs3l=53R}oj z{2CF)x=o@5*QgrH0rfeXc&*BF(n@v#q4JZd3$Qgf%qM0ZaR6d>O2n2>S`yhpEak`I z!d_JJ{v-uPxu^r@f@4k){#PkHxU|x=QYN4G8(awfhZGzsoobCGGeIqj&a7eJH^&GN_H8LF zA{sC8(C67F>%{ zvxES*;y@TUnJv(U{_0LvF#A|yhNvJcKj-%|31CEp!uT& zowiqfDe*#eiqRY4Sn6*igi)OexLYovsNBzu>r|&<$cH!*rdHvbE3I_Kqm?$_O9UOO zacJ^J;`kk}o={h|Rxxpa5C-(jzghH zH+`4rm~q1b?|m;<_7Rka&%4K6VW zwlRl+STGiE%!v5Hsnjb4j^)Ygsww;JP;wNIbR5R-VI%ipiW0&PvczG3}4(c-wU<1*WC88+e zETRr{mluiYXEDYUOC*C9vaA>2FF6?HV<{P|9|ytJB!aq4-A*NTa7rOUuPKE#e4=Dy zZhxQR@%+Io9*$2)sFygZ+TLn2x{YhDOU`hdbT}jOp0;tkXhObFe)=2tI8^b0Z3WPu z9OP3<`NxHU(us9Y3LvR(iPG(HW+s7>1G)aohtD%oXWxM^fS>~nP)}EsU*~D9ED~hx7FzqC$zS- zPg#i1J|RX;JjQ4?1TMufTXPKBOH>>jQc1?*L0e|XdgSQmN~DaYDTiJ6Ffm(3+vJUrl*`xw?eU8<= z(qdaFU-Wy^Yks>>kMuutRC2kautxr+0>Z?+tBRE;xgDJRE1{m@DCFO)DIc89lsFmr z*FsF5M~uGWvYq_PG2e0w>YY+DUQDzrQbBDCT4zhNj5ePHJn98v_b$(hPMa?j`T>XP zrhuD{=Sk#H9_cdAH1g`N5vd({9gTb!6nPA?3x~k35|u1%rtn+uOD#&p-Tl%akl|Mj z=Fjhm((61$9KVuKZ*i0!_^M<}6@U3BNIfKxG8!8s-hdqQ2yt4SCxBD43!t?)2$Yi4 zGju3DQiGBW`SnAhv>1=DLrDPj<{*qz80|5b=y8b;y4>22jPM6OLu4-DQAH{TZsZ~^ z=LooTHW~NZVW9GqM8$Av6R?{y%x~O39hYX1KRHC3C1|UG%d-*}(=0*w(#J$)HEwR# zEDmB#j(}NM&U!(jVwlAQ-1HK0>B-~hn1w+WZ%MusEEJpato+c`1^R#!& z;v&xD2+hRFN3Ydl5`^DUwfNTO=60Dlh>bV`OgiHJz!+TR%^FOM@UhQ{$yhGeVd5h8 z!#cA;)JQpX6t&5y+7XD-)a;v#~^>1I7l&V10mx$qZEU)VYv70KfZquzX!KHXs-{N5j-a-vx5wBQ9HU{Nn6&}~+_#ccs8vOEs7T;uG3)vyYq1yhzg}yFUez4^pL}n<3TG(6EFGl}{5VIojgwSGEuzm&8Zq89}_dUPVPfRL~+R z*tQ}5C7P6>qS12&@NQdRv1INJwKm-no0h~jWR3*w>Y_87k*Jd z9kbxdXzNaj7DCdhQ+01uyqs#LF1p4R`5`LmrD8?kEE}!u1H=XDczxA%L@KCLz2Ar zd`hnAAu}ayqvlszU8cKMQrS?02KU*u#AumaF?mQORSX8Ok%MPR3K}X|C(~7VL4D_! zA*|_igQQ9A2n#D&+cNp)c*ZZDcYK{1>H}#I%4n#o?Tj_xO#{Y_9=+#?v9Up;M~)b~ z=ZJx^0V78Y8Zy|+`w%-=jcqN0olAPndA~XY525CGu~;e4oWNM4!h*n|N?>ojQc)E& zTB_P^R*SA9m2EeJ_~CpkE~@WSwPcf`InX#21F}XbS=O$DsOG&ZO6E6)^NVUEGoh_H zx+*p6x9!1mJWT4|-q)zuaxrO(-Cq>DT^%XqS+j{QcD2hU@SP|Mj%rFUGn6WY0_L3P z@=$dGNz87rKut_k(~wzoJ?Ynm5Zf$@-MS95&;^_oYK#_A@N_GiC6!ROGaNNKmX^U zD5_ej6{o6hb=kLHqd?OTNz(xf9?NPP=`2g#r`CMcyk4q7`!GrShy~Y9JK(6iD8=Ga zf_45-I8su$U-v1b``A^GpAxL- zfVTZ4Z3~`=bZt9rr6`cc8pD-Pcz~pE*n%XYpC9$Oyq!f3lGH`Dduv*g2Jc#8s<{K!on?*{*m3Fzq&sZ7oA%rL7Sv;fzlL> z1$eBGL(-DEsE%jNG_9&rCXLZzx1vAW2ZLrMefunkL7Bc7Mbk2ALDJa`an$DI1zbte zH)KKLs26QW8KgtfwLs-KhAmS?n!YUMGaX6l4VM$`w5y$t0rPitA}Kp1)lp*zHC@M5 zEhwETDP5q(h*C=D+NzSMMud-)bdOn(bY;4Q7#|~PU7+exO~b_Ut#lc3a7ivw^ms{? zx(p+%vsyDntr;Ka=#q3SPy%KvKH`tG)YB+jc{F} zIgR_fUZF<#-|WVHgI-|Ctu}=5&9@SitSj|M8fxYksL#!0+_8JaebG&R^@ z3f1J4mQc8Hw<}aRSVa%*2yn4txS6C-owC$GjWohvlE)U1~76O=8es)^jux1M1ZpU1=z~Q&QAm z(JU!yR`W)7F1$xl6*X&ImsQI&Y#GnRjOCSx*L{+*2I~PSUe+iNG(9M3T0rmAEh#$Q zfa0YJXDd6*krXaqnO3BYs&ss>({V=p9+T9m+guu`1zbz2##wTFI_1gv$o3oT_`IaJ!QmX&j#Kmk3N%jaXuc$Ai&_C9m@`+QLbB-A zs6VM~px=^sqehLI5U44*sg>5U2B`%3KS=Z&Y|PvAn^MNMFzEP6(y?GM(JDQ^hL&F? zEt^L8TUH&CMon`X`79Y@W?!j=%sprWlwtO$>1Rg_oh*m*?PE%^M-Va>R-3Ba`Ha8U zPq4|K9$=yulSD_wy^ty-X`qm{ePiLV$Mfn>Del|R)TrKZnskPixA**#P2)EAejjjardFN8(o!L2+AnnetX|>VO$}D{A7n z3U3-zUCBE*o7F`n zQA^}8cdzcKCy~_Ppar49isgB4l7ALSq~V`YLsF8grh)pBkwGNbE6*UeqNrM48r86^ zC7SsvbWBk?Y+qdn{~ekHOcPvUWk8lGxE zU6>V5+1*Ce$d){d$17?&r6Gl3wmgUHj4HfkosoI_U(AY8 zBQ*6XknMLNk4w}TVx6kOEO!al7S+`gwW&ND<$;$o+eMAa)T=_a-c>w4Q8W8>D+{yV zzq!7sCXlEv%69)@wu|bA)gxZE+jTr1Q7y;16ouLBe_U5ouT|7FR;+<d`G(3LjNn^+?Z*tF-cah^{Byt@KhefOV#7$V%wZ(wphg|VL~Pp2y_N#T9L!JfMhL{Ki z*ZGYwi7K@&;!M^Fj}u8UZ$3epaVevs`XzFeIi@N=w#pTpOSqqojpzLPpul4W;}Pzs z3M_M&$vNNzSic!Zvz2tlEzRiot+>H!Q!DOa!lj?Qz&r0~W6J~qrimt^E14us+)6?o zWl>Olv%r)Qa@2x_tm<4(ai;sg?g<_%HR{oTyH_K5j&H2qLz&};1b*v7O-5eJsu%ZE?zEGm&1E5Ws+qxTVP~_`*6W_ z3)d1nk~UddsjxJQXN0*FT8`dwoP}NaTP#M?AZ9)*SbYV?Mhyyu_=G7%X0n8P0Le zBN+$L4vq+!&oP|O>Qad@u$V98E4D3;XFS%AfXe#2xPGzr*wfpSX?euSjDc8t_+XjC zX`F-T3xfuYwX~nXw2Qt#Fj?<(uGgOHtUA*WSMj+_vE5)aaI)s}xn_H^)RWLcN8_e~ z3u=)CE@IlncF~Y3R%UQ1XCTIX*qE`yEu&w-w2N_9I9c-yuGwxaSK|%|YKKL&^{lpA zmhH-FCKn|Zsl#a7QgC4gjCd`JhFA<}q#Ti1T)UWchR3I%VQSa+H!uQX*73nIhnpMY z;1p!HHN+vTqP?>*4o=;6PeUBSs<-<%2icrz1K(cBcuRkEM!I=KFTCPGM#kB zlOm_i9L~z=^5p6A4!_GYa7!8}Y;Li-JWkd?_@+Hlxp=X20QJ;Ld*;eiGjtB4S1+4F zOp?UdBQN$KUnWWtiw#7!E0OlVp;O;znUTCEFe;D?9{f$?|$5MXtbBQfK6qr?b6Fa65E8j z%*Ef+4G~9jw$U}VhRd++Z}ZR>di#C~8pkUUy=ZqT-DN}doIb|ZuEt#rZsP)?3P=c`SrE%j?vzYoxAbk3bXf3vB)B~Mls zEW8K<{37FEX9ou>GkAqFu=}HV8gR~9bG$$QgKW2^J-2ML4lru4*=G&l+H6+YX6;}Z zYY16S39$=pJKwlc==c@8PX#d>axr$D&cvAAGKknjiEs-7yKCeK+1E=%;5TRHh>Xa- zvOTus5eZF^Vf}~iVNvMED1@en!paP`;|xM00x5Ee{GE#lO%W}IrO3`ogqtD}))+m; zvc|5BSYz}U*&6+MG$O1)Qe__@TJY^!65}L@6!W<>0B)Hket_n(Y=ZP9f2o^rvI*6)*>j`O8qqc_z7&^;Egx{zX zTlKc>5~2iVOE9^GTLG)2D&5gp z(J|!l937zOuLXjrf+Q-EOK?9c1e7EJ>WYb`5H8dlrJIe4#bkmGc2Ub&%4+wSm+>L9 zLy`&a43nA4CUYh8epblol;ohn6e1^?NoHv*6n7n3jHXJG(AEu;bO;@5Yl%2g5`oMT zCW6i?47wtS&@qyXC>pJF_m1BOhlt}P5$L6b&}fU(g%w4zinSNkUW_=IMyC$#g`# ze@v=*NFzjEB#Df&7A_XH23jEJQb|sf$6E(fLc|r42#h(0*asp?5s{lANsO|%dB-U@ z&6FfynOz7cy75q7B2-GYQCU~biR2V?Xpo(l*Gi(73ku}wL3m!-^p9n!F4~sX4H;D_ z`VpE)H8frSTy_sae03NhzaVV}(lD!lY#NePS0Q2MTNVAmS#*%~wPJ47$c9Dg6341% z$o)>qwR>%QFngFW7Pdlf_*qa ztbex&>fQBzmACs2lovmskticC8Vy2^OBJQozpK*#hsSgAwjfRr@(~-(G8%Kya#$il z;HOHUo%@7R!ef?b&(m_L7_FP4b+_(Gl92a>lIJ#lu@YXiP*b8pZA~gLtK2=uhpew9 zS%Qms>{|3WYMv}=$5uDzSW>@}qzXB~lUgVyI~2osLY;XU%jDHml7GG#h|ZHlqBkr@ zT8T{MD^!W;qdzTvKTE=ly4g)-)en~B{3gl4HYAypAxGV;t2{r|no7iIf0JsvTO9wC zWJjd3lAWd`@mq5cdc9iF?fPzi zUdtE)JaW2ziFd?P8C-B-1hIA8DCyX{P96G^Pjy6V*2~C2&UUTCI;TvH8R9l}z#;5ADU-cb`lu7exn5grH`C8sVWrA8B71wtDt zy`Q|q0HgOMd02L*qv2KIb|e11UuY-9rgmhEvcv|d&H!})oYo~oG)dYqnyIx{?*gN4 zTPbLFeX$N%@;x%YVM(LWWnr4CO%577p-FfuJ35lpffUaQkTzFJOryOZ%Ouw*C5ov+ zFzN(hA4|fFy4V(mRxK@~Rl`MAXB@IVlVlm?e}t^E-`a(wFC|H#QKXv#VwGH_MAj;G zW}A%*L?P@ONtiL@WYbbBCbbmH=-*31jMk(rq@8v$W0WaY{hnwiuZZPyLDLV^ew3sd zEd*OCU75jzS|opINL(h_Mk9XIAg^jkPAS-_@Vg`~)Ol$uL@Cuww|#kDOwB;FjVy{i zq_&?iCgI1JDs*T6@iKc;R(gsmbR#Png_3}5O3>{oEqT8?4++moO#*BZbFy*3fHG#5 zTwaeK#+o~=wHpxnf+W-!_>;&XGm){>3Jh~4B?P`K2{d|rqQFePK-RD1>y+N*B<2Q<5cROhXoCtmr&3ChQ$an9-n>;)v4K^H}SWPVjqQ5^1#7 z!bMiyH>uoLOpy;I(KY<0dTD~X7P=UtduV9gtKU2W-%li=#{80hLA?+AU_HtOi%>2y za)Hre4**R=^q}{+0^Q@9+;d8Tc4QbmG00h5+k*!0m4$H?!gk6C-n4 zmvaiW+rV;XAvub=G%GTELEs_m|9PTh7O9oOxj6$RRXLJB1r(2a!;y2Lw`NMmupvp=HjH9GYa2 zMa4fvdSjW9v{zCgo0y; zNG~*{11U12VVseirSzB(9e7)~nZaRf7Jajf&v zrDy9?L`hB!l|Ll^Ay8jxoQ?MRlYO^%4vso)SeE z=Hnt_G^AkeK7pKPl^nZ~W@IE^h%tm*{idQ7%#lLY3rd!o1B@CWT3X&;J_lhhOTvtN z83@DKTi&0Dqh+brBtcTL=`n3z5Rc!RlB7B)mC8=s-jM`ho0E1znlEWqM=<+SM2`(7 zr@hn8Z`kJKgl|f~<-GU>wNuNvJ;X+zlcJ+@LOQOf5dBpdB;lSL zMYv5uCN>99XNookB#WWQ%{day$tpuNmozCkSq;h13C=~DQL=Ah2kYY`*686{tZT^{ zJ(6OwGUtO4OBR#5q^-uKVZ0K19Swjjo+I#zoSy@dE;yPiGLbBaPjVC|lcQj~yK z4yJf~!!@Ir4&qT$#P?hT>VJMBE=<0-b9lI?Eb#EXa}xBD72!#lWt4 z&{{GGaZq0lf|f+}yg#*w&dWj|_FswEN)|D-gs*G@M>P|@MY$%FxE4Jb+KWR`-qP5r zn%ht}fmO07UeA$mvsS|eV7?nAYKEJcfW4B$X)_*o z$ITd|i9?X4v>q#~##@=aZjneCX(|Cv7)#{#=h1f3G!#0KLy;GX$wJb}3%5)3jJ#k& zc5f$Q`*0IDc|ib;<)A*wv8z{ITP}8�llNE|VS1V`GTaNFHT4W#C>CYBWc|wTk(S zzg!xwHCv)&xRwbxVgm8Gf=hN>i$P{^NN;7LQXvx@xehk>OKgy9wSg?eBdYvbm75<; zxWGIdvj)c?$x5_=A$h33j2Mg_k{B6D=3q|Shd6D+OQ0At-GnvSVZ z>laKB%7v{a!H_Ep#R}~}NoEVd7zmiHDIs8SjR^OrwIw8)%M8gIglfD^O*WzRQ7oO3wFy%?2P(RtyVWM zcf^R<`&_cFmlnn|O{$DiBYVaO;P9hK<)!WDGMm?f>CpjNrS8RN z^R>v@gCuY8`tBXU>Ana&L<(&5R}$)+Rliq#{BcC&Sxv;eCCurs2%r~2KssoQ)?3&| zse;@vi5%>u{U!{&c!6l%#_N2H=M3-%BqQN>a=359;51^;94XOsY#2a}JcP(S!KDi} zbU;ssfK)vCwS?Gkv_#Iap#G23aS~0(h5=-sV~E_1 zT)JRG2XspaNZD|kFdObCk#lS)fp_dAn%i=Xf(=9AJ8(D(X+=0j>mKROlnjlMWT+Wu zTl9cX(iT+Cc?U^gShvMH))lM#0uMzh#wD0xs4(z>N06Zo(6$w9_!%^h7*yp~2 zXN$zsDDoXlXPW30cwTUdd}-2o=2w8q-VLtg0s~A&iP%z+HB@vMs0NRPkRluae#;~xCnGna={oexRxZY=#CcisTeKcZS%KR zA$*4v9$mf?Z9b!ZC9Q~!(OhRsg-&UZ&C@A~z;vfJPd$RZnM7tfj>mCR)x;U#SHpFS zI+2UQ@B-~Bq)qRW{LT+%1hYH&m--Op;=mh`H^GbS1n1u5)`Z0JWD$p}Ag7Ye_5iOF@+%SCL- z5lAm}aH2;A=Gj9skC9#`;PEV(=0fh1PI@uOB^-kEqJXqMu4EJ1QzB%fmkT=MC?a)U z&GZss7jPKzdn!lGG0RMQNvw?gZXvc)<>jF~(oTNon8P^+{*wxNhDfx%B{oKWH^TpZ zJaL)JBXfx%^d;MhlBKBMVuCsOtA)2 zV5EH{UPc>6uRgJGOQ{0sZm!2^!-OI43LauMS=LZ??pi)u4iHBeq+W2Tpl zx%~uU^c9!yrk8;FmZK1By|UKWp9m`zC0XF3kIIaV;4S{RRxDz=J{-Hx# zX$^K2iJeif3%J#%5Wfw%9;aXrLvF&6@OHIH&-V5y5;w!!Eku9S#Ce^|cD$Wq-r^WE zayn?Dz$v&7lL#4&92@eYO2^ZwL#HSG$vR(7rS9cg)2B4)H|B;XUL6EMfSPfn{Q6nY4UV$rDr6qBt$SicG0o>8@rJtqXMrLtAtDH&^+?8{5GK&c7 z&tWL2C@?iR1#-VhBDe}jc%!M775|io8l9Uk@XgbS z>?K?y+7nffzl4NJ5=&{%yf8?GI+c)g!Xg!;f=w5dP-q`i{aVJ3{US`8 z=mR+#y&iSIs}-?c5=EoeV*<`Qjd+dXlAT@;gN)&jY9>*mXgmmz7GHaeB zi{ML3!OcA7fZn@^;;=NYN!&ao!ItANkwF)m%z-p2JM3Rz2haGh;5xk%KEs`O~ zf+4_%I1nzW)=0tp*4|N2Tu-8?uVNsOzd={6hoA$W>3SExj{x|F5*#s9I=!lw!8Va# z$ZUX7Ca{uvb1As?4$_h(pKOi?XLp0xmJ-BYFs2}MA0;iWqB1n^4}t*MPeP*g<1IDA z5pgU|+etXz6m-gDLLCmoV1JijzB*dXUP;F2dY2@PFj+R)S;E0h6iu8a6_)0^N>F_* z0-$udp;|%}n@l$|(Ke2-wC^v8LH|%OC}#`QE3r*GP(tXj7Io-`6~Dn!Sflr8otKq9 zi?YpW-1|}Yu(EroB-*HZOu)}d^4VOnQ}-~)c^rbl5L!{*Oe>gMQXMHLD-D-e!DFk1 zg@oKtRV$0|QpwruCu#+DagNm`n$||c0Cp|j0=eOx10gi6BxYf5%U8VgJPA|ldIOcmB(P?{U!295rWX^XLcDiQ3`FOh=ZAM z3B_z(?vPH3NT>}s3hf;VTWuxtxWpuOsDuu(Y- zqe`+6SKURNE}FzfoRBU-HszR0IR+W5ps$Sed=iY-l^7Wr%)!jMfjF(o0Hf>-e%!(JLfV=#W$q&6-Ip~BH#KqF+88Ah*O`1V=v-ZWH_32Q(I;9u2kwb z2WMz+Jd?-{mJEqSUO`fYi}>j>Vm*LsM!IE^Q`CJFo^7CRsHDzFHwW|O$5Muk1&}rGAxi(_(gjKm=q3(ADzsChEKhgr`aNo}nl7<2nhXpTznh3%&2>0c ztc<&c<6y3oRr`V1xe_rW1#QTaHxjFjxOB%{0%%hX0;Oz{78UwKm7sKf4N5j-$t#J{ zM4ovZN&+axL8w4z@++HkI9()hGAa-UGwmiKwKb2jQ-MgRZ8-{lg|N(4mrA@0zhbEK zXA-k3dCVQZl5tma91>B54zdRl@d}BU;a4`K^HyTDKaaVShyrLL2YHF8)`(lh`3#AZ zoror;<$pw~7njcyk)ir<6lxi|d5LNrifj+2xJX4+D#W} z25X?vb-qNJKQgigLyfteXdc3KI9Wr+l{pS6PICp+W@^oQ#ssy?C2Be<6g(HtIwLJt zN#W5ELW@p_{J$jx99LJ&0&ZQ^6*!&yhqKNl40#quq7xA>Vb6SZw%#AAvF!05i7ifb zt+I`laoaV-{06Qcr>h6;iW*EHX!L4+smV>Vfc0^$-@okEp7-m1~p;hrv@Ejy#<3=8R+N zJY;*s?^cN~aSBwOQj{JG_}cT1s-`ozJktwsa-@^S(RKqtHB z3u>{B%3rxQdqC%2Ns-|(Vc^Vlr13p&K_>ws;d410QS?Ey56fozfW#K&*ST3l9(NT{ zEpT1VKtwpU#IZI{^Rz3t^~3e@G?C}tMm*biB8Kr~*fhtY4VAR6)CIvuC4xp9%7%P$ zCowyVOLy8(0_YqLLi3|FU!hxdigdtZ!kveFLZXJ2gid1_`gb*M_#jUxXC+Srcn$|| zqDCvcBM5>8JT%{^4sX{(6u7+AE+n3oVz8Mdi%tph)|l0j_M9XQ>8kH2w#tncrNBnI z+K{_dFMcFXA}3u1&}a@qBcpn4vNL)9ip0ujFEP~Psylx?*Wt96WLy`=!3$LTv*zlB z*Cnc`rxiTqPG`R*1;?ygyiC^=(K$ZBKKl=6QDgUJY5WTIuC_-QY=<|=7UR^xKlZth z&a4~P2jG4j2yOly#(Ip+cVLjbO(N-(>|p|4d7kLLlwow?g!*E4djK) zyW>jKxu7!8ujN4YL5VEP?~x4`aQ<;bcmujK*Xb51d^l0I=>He=SXyoGRKDe z^du2Hf%}J3<_Mr^98{&mlKZimluXFNuM?#mLNZFw$ZxUS3ZR`h2$b{@qn6V?S%Z=d zdH6x1v;>c^Vv9?^;n;^b7Oi2m zIE*$tShjm!VraC69ZcW*h}&!2ft}G63H2sNAwkvotQo&S53{`_kuu!ghP1svoZjSd zb`n$oy~9C1rHVfa1xl~hK`DUT^b}D#ol6%eIiRyR2+MO?^BJ4a8xkR7d5#G<{ZXPb zluJf?G024sGMq!u6rm$3)ZOC2(j1uRZHbZ56k(_fULsn*ave@nM8^HWaY(y%UW&da z5i{J$hMfE=v09IpK2F*Rpba^wO35q|VXL_{DVdO6RKY%#N0?D!pd&d5TN+baS*5_o z5*;+nbhQ`+UqY3hJ-AeuGjJsburLR}k+4@akqSgQU*cgt)Q0u)&q(0(097mFI zpK=^xp3Qe8R#52N= zznADd!wX^*_(AHqi03&1=}q&~Wjc5-W)>Wv^u0vMXcJ1nVUH2Fu{_RBn=ll*FNb0f z)C1_Perh(HMy;$w{ZV3zttOrUbu>i@v)&@wDW3CjpM+`BS~4t75*qqg{qCEHO0JU0H}- zA0}dJ@nl3P8+a|ptiv&A`<3#ow3@kHozPBRYHXT7d9awo4eeQ-!$Q%^t0Z5B+W;;T z@QlXy<#@EI%JE5d@36N-(`ZwffWp(n?0jwwr%lBm7jX!Tt^$TR-;xq9W2aIG_H9)y ze#7-SJC&l)-*YtFk8T)>`G;>HiIKtyn zy6!8HLaRyp9f#dAhnV%_TAU%F5a4zkh>DoXZlUkBqQuT<=P=aA%52wh9Zow(#{G}u z&^i_Bl~p8SMuXXgY;`}e`j|HnoYtuT`iz6nNT}peGa@b!&pPWW?TR)*}=OWYe`fMOWKgxYP6(3FRdI)3ZQ`;RHbBg31Gc- zYEm*GgI^;`TX5-&5(90;LCC7j*pFvk0`}cMY4rA~$wCDSEjm#-?5HP*T9K!PlT|~2 z6%GWwwqm|QXRsT0l!4x}HRy5JhzE$?JnrERy%6Bf9Ee6b9Y#;r2hk=o#_$D+p)uAZ zBCmXwNZ!Ux;fytfWAEfxxOZl2Frw5)fV}tgPzh&oD2lWI=5ULX`NZN%uO~Rm9!6t$jHaPfm z30V1XiUcu=6$!ZcJCsX~;AMkTtb{_3=1^qa4&&|*ko%`Z4kb{$C7!h|%Q<*1ae7b* zb}yGTN+5<>e{pKXe4w=0lgUmAB;!8fIK5I(akI}x0lPU8J9DKV#}(Eje!HkMmTi8> zc0pGf{A`Ut?#7WwqvRCTL{G*hr^@XyT0!5EqC8McL-6^Zpo`J79^*ljxQ4?QBj&r6Jv@|k$H zS&HLJ62eG%0r!sb%rCizIVm58{Dvc|4C$OI+fxvyS8Fn4xJhr5<;&b=jG>I2%#o-v z)!O7NH9(6J%{L^PaB1D)2m=@1Bd+Ihjm{#DNcaUDj^bF|-0Wu}D`UJZu|?6M*^0<3 zKOm}ia9vL8J{)^D$D(T2#j)B(#&Ym`5>eR3TkTc7a3)T7(|2Hxpq(A!k#;xp z(i!ya9k?1CP#3BC;LYEs$X-g?(=W|jq{p=K^rNSrvZz`a=8y3q#1)F)A}w)h+37Ht z4=ec1PXwCb214egjSOCzAk<7T6s;S#LS5^I(mNfJlg%+^$eZPc#K1O>H(lIJb1oUG z{Auy2r|ZIAWV;{8c1HA(&Mux7tC|}-kKBQ9uhLb-1`cUFg4$8ZmNCvM8U$Zo9ocPN zOTVeP1h1OFbod!GHPw)m{*ltF3+W{#v`Q*07xrRW?n{i%pc|A7#zteTx_&o?)q@^p z_7{YCWh&8jt8@&8>SmCKB-7F&A`5@n`-DG8!o$Wko^Eck(Qm#-=^;Y_BC8V#P zFirKyORsp1m&#~GRxw=pDonYxR4@uk$elpDqQrDp|gy+7ob~Dhgka1Yi{0OQ#r>O71#pPsE#VlZbwj2$ZJY zYG9Re7_TTf7QO5p!tW&E;izqeit1j*JK}W56rBU)sr~hHf;}U_Fdf)V?GbhDshWw@ zi9!3_iz!pWJ1>!h2c>cm&ZACnOOSHf>K$xO8T=YyK9?{^AB7>pemy)#c}rR%iEN;P zhuUSPQuVc@3Vuq*GU%R9N%Ygfs?dK#Lc=`48FQif`@BvPzLzAR7q7;FLcIMm0^TD< z8l&9`XeNs}h_tY>SF;3#F951;&yKZHgE2US?ATWc_JKqdwF_oq9LUKkqb(+BLeX4> zs3W~-z}3%hZ>p%>FQG7aK+7ELjK7Y`8yidE5ub9tOryEHkl93$>lqFU$r5vw89tWG z0K?lY3!CWdj|h6Yq|qFoGBT5yYR9Tl=sXDwTUKNb-A(2D?IjelU$uf7XceTW8amZ| znO1{jBXVMY|A^Nn0MKiVgosIB?bl1lzoUwIT1gw6p$&agnLaG?_R2M=J zpX}fdDeP1!tQJchL(inUsY>HvDX11pLHl`OXMajzZ;A}-Q^=~a@+T=7&?s+Cl~uy3 zqgFiW3oGf@NYc@c@DTa{9S<~DWwZ+=5Q=0Elu1&hS87kS`g`H}>`DVZE`OBVf+gk2XRsqab@bjT_G{n)vmNM=e32`kXH2H)Ke`jvv7AqCY` zrxdbVdw#guZxr@|(6H2H4pMi**A(_wDO#wT5!N}|addBr-$==7VBKmQRMET`1>Gnj zXmEbSIlU<8o>EX)tu5i_&3?;J$V;SaS9MK`P|)6zP?TXR zsBPqj|0K#!O0qSJynngfFDgTQCWV9{=-QmE{pFQ=sN|k3(eT6i*>9z9h{2+gTphc7 zo1gtI{)&QrBV`k`EQvzArG@gVm(EM5$UPv5*4FUC`wEWfLA+m<0DAmB-!~uJ0|8Lf)j)ty0;F?_QrO zpIKg#uR~MTF+$(56oo!n3XQC$4+78lhrZqLBTnk@r+rJoSCxXpCCKi!zi+C@igX|Xg+skGp7t1pT`M9ib;`Z4Ltmh< zmq}sKxF{D@2i|UyZGA66&XMAWff1)yM($) zEIhc7_OTn?Ie0DR?1sC?Gn}brzN}s@jvJSCG=k{y2TOE3^4o4dA^P)9mJ%UWPAyTGO=f;|vz9nm%VyCk- z{6e$GWjggyHBUT^OD#$oXWMhAXwesw>bx9U<3hIZk9yy88il@1T1tro)ARBo^0Wzr zythob-Ck&dQQlxFPB``fj@317YcK!+dUs0nP}5fF8Gx1kL9Djtw=rXM!eHe>cH|IU z)lxuz7zS+ak=US!3fTCFT}LT8Jfaw2wCUKG9XST|STW~^1DpFKHi&GACRE9zr1XAJ z0wJ^MD9F$Y_n^2O#qETw6T~F~d@Kj+HcHt^@i`JfBgIPwpnZ3u)yyS3Db65C4neap z-jdGK?4p;QaDn)S(h-EnRN7z;rtjWF>02%zv$uhzB-9Ta1wGgRKr<$J^Nw3^+eG4K zWL^=uet%+^;kum68;;F$ERr&j4_c<6x4A^mNJ;umdK)1om31iF+k9vQc$B*H38o$cW>q9b4pbPNpT2@Bo#2pEInLe zgz%Y)Glz{BjFQ5m)TZ#(?a2r}MhcFsmsNX?={jrLRFsS5oUtfi$4giv>qSaPk0a|H z%1z;9z1lJk=Q5CBIM8DX-M{9Kk%IL85@{6K+H*PV9aX1yaF;{FE^yfpU?&G6HPnQ8 z%&31rZlXlas6$=Q&;y9tW845v9V)_}XR*w`?*`UtNvVu>Nf*T&J3KSEx*C2}3 z4LrFW4;EoJbC@3HOXjHCukPFnPOyiMP79`%ge|!Q40{VXZ?Z%dK2vo7tEKavY8{@&r6bcANzXxNa1e?j zHRzR$C9}=R7K|ZeXgJZ!KAWCJ+J2Kd=xE++f>8n{?n43wa?Q>Wlr=>R<|0s`wpVC_ zY>ZLX=1;T`sKIvqo~;kZX4%TKjS7PI3#N z12_nMD%x|-%(bY*$>>u#n3fSlYAv23PM=Cbt;11>3e6qIs`ry|dc7oiM%Oe9yvShU zc^9{X(>0BR&*pFt_Q>YwBu!?|J~ar3fmawvgr{?j4&g}nxg3tFu9VH^X~UzFC~(Q8 zCAvm4MTV}lKastbr>9f*M}TK>Fl>vJw^_Q(yugeaLG(*^F3my3r-HZS9$EiT#Hi*g#aJrKxm^IDe{RF=Izyu zk^Z1ENM0+EH0&7$en$D~#ayFf&q(-X9IowIJ@|TS+n%!|s-`^|?6h5pZBLIo>N)q7M=@2=sCdKIS`#CJpmRg`$M63WJ%2z6=Crp%6Kol)nowX zYY9`GwNBx3NOknR*H{4LI|<^pON$)5$`s;wU0Tu}m6Y9scOxMruxS5riei;&5eg4IhP|7WA*4FT`9 z5c%O;b1m|&h*4Yw@>)l}*i1Wx?0H$R?x}pu-RtS}ltlCnaiY8`*N6Tv?F&gz73wdv z`QNb=crmGUZ1jg+&~YUKt;zF((;pULYjYSzIpfA1k08}sB8B3%T3H%^(J3NyB9AiS z5Ojh}9e|v~AyqPg|AWkuHOT~kT@yrRTP~TAaUeTz2#RmIPn0%+(HQ_mc+;CmpYhZ znu*e;T)xvUl~7x76ih@r8vKQPptO!e$uN-#_-7~aDRSdGCSs5ZhhQ{;0@7X^%c0hn z=oo`XHsk@-5IUVpM;kgQHwDmH9E8d3)|7u!FU+%%#0SNiF2#-Tdml<4dF3%3Ud)QjKg54_Rd1EyaI;WUSee!%0g`0PLw*iM>vM!n5i6t zaxzuo4Z0mAMn*a5V3t(A)SJiGDJLb=k{ksqWz2mau+lCPC&Nk>VnQo1it`vdR^pfz zjzM0d{jvTW5a{eC(J}Ix33ynwsMqF_oxH{%>v0Im?TmFFHt6gj(J{(x8!~Y+5gNly z@08mDXgmkOJ~UlvSN(fRgbe$bfX7rr?gAcJ$36^lF^9lDvv$A{yul$z zjuOo{mr|{r&W#R8#IX`DRPDM!5Q4opNfh_x?t*E>pivNop1{#4Jg3kMgui189QTzt z8il8Y_(gRgtxTEi!G)0Vk+m~#IVT&1h`Au>4a7x0LDn}4R=xS zw#eY-mag<|6nrZwxNfx2ep0^}-RVvWJ4Ol%>Xb#PG|c8x{+R!WhY2uO0zf#O%^O(o ztJ^8;9-(1X(Ct0PS?*B^yM$yz6aebNOd5GMqdD#oLiCUjx@0zpjCq=Z9uywbu=V|F zU*gSDP#8o_l-X%HSEc2{p^;RFANrf^X5L3(uaUw+xC&|ue@^YrJ5^$X`r5z9#k1n3 zYDeK=k^^A? zSF*$$0(~Wc;GuM^mCNdJwHdT1vC@5-T#Gr8w3*5+J4y0!;Mb%$ol{bbHPdGLB(1NY zy^kG~iuRED<+Dk|KP3@p6jeponE%{Cm|+qI&7v$Ro2-_xdy9{}B%1In;X0+r!5p;L zm-bgDi?puFLu{wE(TonW5ie2b*`c8e`AjFBsOZU_{SbwIONs?DN_Da? z;nyjrDr4^|g@>E{A92?mAX!oLk0=O876Hjfz9pwqgyT4Z2S?6fn4Ov3ow-R&*t-MC zN$^m@f+z@r1VNIDfCwKLKoCqI2#P3*f*`0UNkqTudh_1v?qBzto)`A~W942?*RQ&& zx;j-?_kK_FsXXPg3U2BjD^PxIswJa@&)zR1ZtUJ>`hDMi6(mmdTX>f^quEpK5~h2g z%J`?IlDbE1sqUn9&AvmZA^j20jusQMqa|sz)1@>*UW(R@`*m~e-YrjSPNHc|<={Jf zSJ786{?sElfaQtA^P*KDmA-;eZ>;h?v*V~i5(!?cP?l}VO-xw|^W!2?r%?^h=IghS zFfTS8ew%BC$JjSqMK!-+n$4*-Y2%DB!3Y9=@7te%Dl!2L`&7o~N4~ zwDO~VC3V@8FQRHMTIazimCbIa3Rjw>!XuntA#BnC*HMN4nHW zlOK?OAGUGgtMvOft^5R0i@tC8m6&zED(1AtS+{f(blL0amrI*C=SdU&GH`ZRTueWG z!z5^qb@KW$Wt1<`t22}>QDjV#Z&jaiD^)+ogv4aB^wX%qlcq-SB2%!` zt*bupnQN)at0p0_C#%!#a=QO+ax6=Vn!h*IWUUDpU$}pqpr5X4`sq-=@y48CfP}HD=>|A}@LhGl*rFddrrZM@jCKQQN#eznO+p#f! zEKIrC6=6!541OqBpcsCgqkWLo{`Vy zkj8_>USEm#?vxs*QVlgZ$tU~SrHnq*pL*p@nyh(w;Mu#`I5`72*=Zn7qUcus6Y$V? z0&7Sh@wC`aJ3}>;zKRyvoy(m-KV!m!y{OWVE?e}QIbJHHqXxQZmo55HxEv`&;fEsw z&p+=Z&IiQTDBO({O!)p#7S`rj>_@S-t^F1X>mY?F{BWS-x$ysC?SA+gh3_E+o=bcC z>HbVN9Km^Nd^IXf4||1`23NcmD;m&3A@jU?QLJP^(<&~36%A;iKzLIAs+cRPCT&5} zD!z^td0y;EQkv`WjDAz(O$(mTYixlvWcu1V;1SfTPG76>7}nrjgdYFK)x*)q6VI8# zGZpiy<2bB`SfMs~<*|uad8mppV`=p^$9jkr>XKJ2@1QKqSX#aJu%3ivUh%vxCaaO{ zGS~YD)|2c(S}^cxX<3xGW)FIe<*^3O>OFg)U#n}ZH_`m1pTk<`9pqj+Wr8a2VHFuc z;-8mD+amuuf?j0@sM6hJ0Z$LSM&sJ*35&wR4uEx@!a6)9>S2V-Nqv8`hNEpg%5!E}j=@C9I^mK}*FktY|+)Unb(+mXmH%KBNrILXnH{X8NzhVp zE>@Hrq&dIlZDRX8(m|T*eFN)BeHn9eu79bgg8T0(MG0*9@v5FSYXsmV*R+Ds22dutPaf;M0Ve2)W>ovZN zH6)G5XT6+Q^&I@UrV*%e9#)b19_C|R4}Y)qJ*=}K)=@C@Jg(Q_?*T)vb0gM~Jiaym z>laahn#Z?Ry%MWRx`EJ+&5=P(H&A5=t4P)*1srfh$UgXM&ARj&`(h1gM6tw?Jb=yC zMifiM?_))&R~my*Dp*D9mBwl{tfnE!-GJj)w#6z2B&fCnR+B87!dbM?m&5S)nq_01 zBe9O8B}>T6%UDU%lBMFSSW#*b#@o!q-)k+xI(uUs2?OJFmP0$$FtE-FSVx+>+v0l` z!&=(h-Bxo+tSNZ|ilGRu)^c=E9)GTR1E^BODl&o|RCEviTu0EWd>5-omS%}XdK8tZ zS(>Hd<5*Eb6J5;^oOB_wsG(UZUV;_bhP*jJ5UJ#k*Bse&3Ua7zE|}|`j`es@(XdQW zQBPu3?XG_SX{!D-R+oZqqoSF1MfvddW;oG`s=YhbmOQR89_p*es^)Qx)o#FQS}u%; zaH==3vevzAVO3ph;AY}@Ary~uz|_Uagm%f$9yqnXrLJdL(ZN%n#wKXF7o+Q+iuKu} zh9WQpNxgs^OLG_s81j1@KX|#Ec!fe;L27dty~YYyL+;ncclb8PI(ol0)*HflQd{)L z*q%grX>HMKJdHIZ4-Zecoq+6U9v-T6u!=PD;>&O6;qSGP7was*IX=%>y)2)X;*EOM6*$}J9t)QO=VZ8jT-KqF{ zy%kXB46Gx!f<{We^YL?dkK)huR_Ik8$0~9w=;y)SGryvDH~wC41=P70>u4B(r16W?Yk8@(}ojU%{#CrPh&hk?$4KB(tOXa96kxfFAuJUENk;UOT{&?qI6vASF$}@_>OqB zNF9f?QoS!de!K(ra#uHKo1|PbcnyKiB#?RM`uwNPb;^aq$TJ zwdU9L8b@Odxdr+=jhBn(xl|SDEzql6fmN6%&;IGEQ2g5il@y_~?GYc>T{zJOI^Ex==$SK;qnQ6CxPmrK8i zR->(D?XRAG8|zBiftOE@K^8UbK$V=Oiq|URgQ@o+Q`)YCvDyPzP3oce*6O;z*`=FJ zS!9a%-vX_xV&x5>vJ(2xrW^RaTjs}Fry+BIq1V|3>qtYG;gQ!7WJ(*t43)}QN$NiO z>#&RBueI)@*H{8;NG1kv$}WpP*GvqmERR*BNv-86+MlCvwMng|;*(fWmY4R9?d$k! zU0zy^e_##CjOoNcd;RuAY`tb#Sm$J{qhSQM=J?gzrI05BhFWJCtRw4Pe{J_)I9}>{ z*Q>mZRhTQ!wNR@KkMur_Txr`*=6a7}J=w;5tY9j`5B&ZbE9o|7uJ~K5C@oxwL*whf zD`72d;bN<~D%LdM)x-2a{I>9RXhjx0z2=TsQRwy~n2b<$#vpEaJ1 zGO@HyuX!NWFzF!bl9v=7S>UV#ut^5oY2Wdegdjv(u(_H-qdrbAY}2FF0g1QTM+q(y5ff_e`1SXNV|VBn@z(h){rP~^}^i_+m0t4;EwifB$j@^Q2}(iJZ)NvW%t z_tTO1$786J(j(B_??Q0&#k9{#i8f`91KQ`NL%UXLkB!p9LyEx9N7}o_kcsDn4Ayu7 z(vQ=P=waF1Sh#n>BEJwx$FUV6-9}rv1c~n$LoVW(7)9QfrA9Xh#ARW85$VS9DdG_V zgEX#0>Krs-==J=mGrt*hkNaPy8P~}dD87F?iztK2lF!&9-^m|B^nxiI6FiLws@~t` zh9YUA|7YrF3hLnhZO$SZA>RgRoFmAq1HjBU5*Zq9HS)y*A$UDc714Q!Vw;Lbw;)96 z1TR#um=+*{&FG>L=$)~gXolZanEL0Dy3KV&Q!j!7E>4Ryy|FN&%H-0tNSA^1E88Q97v({7OZ?{~a_*>he%u94AJ6j~R4Utkkt!=$* zp@u$|S=?UG1s`i$71(G?anww8CqY$pt%I^liy#k8k?6;fux;DHko)nzzmifOAeB07 zJ4n?f&CINp#OraiZx?8qiGE+$iPP?8U%IF$MtDddfTCLRo6sXOt{}-v-CW-ycNsG{CfJN{u#I}3m0H6ePGyTPp zetb8mgk>}N41|IlOICz@x8MecFgp*M*8uMREjxf z;@ctd`29gXrEvs;#2-1ecwlbD(WwHcfxrxK90J52GxY#qM#v*Vd}U+UFJlxD zBYrFNa9>6kMTGc11fqNyqJj|d8=*({GC~az;*UU5XfG3QBJucrL5t~SfHnfeA0#M_ zB{&FY>f=Z~zL{e3PsW&!81an=a(*(zrx7ClJU~hJ$>dK(^6_;br}|{-XCU?X_Nnjx zo{hwluwGZUI6sprbt%6m3+A&(J^svH&FsnaKZo?=yBh2=P^`?~YF(@%XAG z;;L%DfYjr6DJ6?1OXf@Il9v*AGWjnf`S`mZrlg&W@)bncz_!AdUZC+$G4(8JP)m$Rrc z@?3$eo@^hQKCE=}gi%jK)ML^|#Z;>delmg|l@Yj1+I|1tEL2z_|^triQ? zAl`~`&q3S_R86?r#S{iV55Y5Nw35S>aTiPqu9DZ4aX*i^$EL4jLzY)YzZlUoaA9)l zSBAZGa$xnod^y5qVAz-*mfL*Aq<{-2qNbT;@T(9!gOM^w<*H0Cu0ibK^esHV*3!sw z^RGh|oMt)Fg({^aLy{j#v)9BGd|Hg_UxI0wAS>rcMgk-7pZo^nb_AL;Z(-g_)xet^@Sa%tP<)$n9 z^&Yv6LzbMyY~BW&BPI2T`iTxQQ<}{iO1Za`nUyQPITJ;YGpRZO6 z)kYXh&*u17fv%3FPV1rpp{0}+4Ewi9g4I0w8wi_$o`=ize5*_s3l)QY6R|UpG|h!8 z3hX-wn}KbKo7wVV3oH3OgwDB)4ujcNq0yz;L%mTKH#wE2{}=Hyka&@vpHyHMISsnh zk?A+PSRT#SYIy~DaYW9b!4!5{P+&iRut%idV1lJsc?I}`2<)`_8O*>&%0apvHtXdO z)oCR#AS&M_q$6<6jjVv^8R&RKci1aW5^R{Jmu3B7gms$p4Jhjt&Ds>pS{-pS@S39( zgixlnj{^NsgwCMJWAmF~asd|gI*6Nr+bXwl4zfNXXVBtmQCITE5I2LaR4uhs+u8(S zGjNwx93D1D;0)SZYZTS-a0p>DXfMTW>C5M>5jca{UcEH0lOO45ZhAY!&Y(AmDHq*V zQ~bw{h@63zDfUI31WZF%r~RVAJT;|?q3mWOl$NX{_K%c??}8j;;6~=rabA$Qj2-80 zh?{}HPb_uR$=(cv-P~o?HCn2dT487!H(^hrCGFwtGXNcFp}m(!*}BNyM{um{-yED8 zkY#bbuYiQTn*-8=ZIz1MFcSd_bAMEf)ApJ_8whfmFtvkJ)i`ah1(amv^yV6Et9lLv z^*D7OXE2M3jxegomR63&@bKhCyc-bY24HC&txC%phXhn4N$n%3TBURxNNIl;YhqTT zKrGV98>Qp4`B=@*r&N%Ni!7?*aoT+J$Vja3%XF;*8U+D4?cF)RSVUAYipXiCcLB{8 z^G!;#Tgv6fM{`X|BC~anPmE2jCg9Z_wCu3AQL&qoflW(6ZnuWro=og*)pm~~_CYSa z&`IBBHP4>}NKL|@o&-ouu%{xV)6unyV2cHHqIyP_SR*Rd*@%^zS1Q$pOT}WjKB~Cd z&mdxIk{r=m_gTcUCRmV1J{PSKR`5Or`@7F&2v*i@w?bZ!5j~fuwY5Us+)LYl&=9cTl#$3gQZbH=5oJ~vblD8mOYF$!*sa^7R zL~~lny9l&hEsHV2B++joY-$p1ceJtM+X!aMK&Py=C1w{OAY`riuc7 zjQCDRL~-!7qne*g9(1X!PHTUT(4!fd9YK%fC@@h-zfsqAET2R^vg&=r$9TS~ZlpYo z@YRgO(A%%2#ILk(n`^e{xgc#J^(-<|$%vUT(g|_VXcg&itsw$8l}_;-vNDztE0k)W zQ_fc@&L-FC(&HqmXZjs7l9gwg(`u;Gh(929R>o1w&ne~F<3$nwLJwJtD(|51l>bl2 zjMKSH3^!HFQ*WJ@qiKU;6E7nNSvhJtdo1OOnzwuv@w1vNaC!=0;B{o6lu@Vf7%+s%6y}-$wjGM!N8hC}{-CYf*^*Mjo=7y76^t+6AC6 z`*C&p^gc3?)u7R#;C|0FP@-wW!R?gOVF%qQpelxoGK>_9A-db~N<%#Hr+B(0iIlVu zaywpOGV)S{KUh~jOAB_Dm5x2|-EM7qjA1vG#+BP&si{er) z*h9^UI*L%2NBy|%S-F6BhiM)IkSihNY$qq-06B*qAtuZOUy30hpf zCAZodEgJ;AAp&pZV!*Y0z1-~5N|zoGR660tL{RcpqHoo|awWFvzP zJ)TMr`e+9SJ4`aXc8IX^B*SY53ZFoDr$x)47EowZyR|wQq4X{tuN!wo2Ao#%gELSs z(4#s0JYJg;W|!((IMwdRh|@mXpo|pT&8ikkIdjsWLHv795;QH=rDqOU^Rp1zX~$qt zfsd4Fs5Wly%|;HKHg5*zfJQo6k0>MEfry=nxrvo&Ro$~XWD=pf>VR`NLOab=29|iE zssbN{z?qEnW2O8!rNb_&=i$d9dM3&qL*H`zq(OskDIm1dY$G!3J2r^<4a9Uhw&{;aJMH2}9QvVj z?mM%C+{OZVcXp7T9~vn~k&(LdK}^@$pC1(LD*f5% zywU;2(xZPM0HH^x21*Bp^+vZ^Ei0z?Fe=33irHK|iM$tj>D^{az@ z>ejCHjNn`8T27k^&R~`f_8S2U9n5Ki)*ZTAZ{^2JRf>9~v>l3kpGR$N?4~W%re9F? zG~JPgqM?peH!p&2oNj-$OC39aMISF2_2HBYK&0T*?e`T`F8esi#iJv$?tQV!=QWUz z(~P9Ya5RubPJcJb$;orN!B$K2#19o~{igs`ZwGJbB+(9?%C4xDRQ` zf(yS|we&7%$*r4*r27L}wDljOwwxAgG$r+A=KxRH`Z$H0BIf_0+A@GHG+M1fqok(G zS@aCB7^hoZgSEQQP-BpmKvbvgr~y&Cl(J5B=Sxi*uoi{63<76h++);<8>C=RBdCuXoB-b#re6gm#(*(KaDPeyB;EHX>TmEZ%7r)T1MfIfr_b zt>f#af@5U{?=%Z?06YFgVeCDL+L zJ--Gi<%tUw&Di1^dsQW6^wLxLyfCq+h?uH?Y0<18J(M$3enwCRIS)>qvNq=^EGnD^ zGWFjG>gu%e69Y4zZ?*FC4aA>E;(HHHoI<}_om{)yY|@;#O$)hZH6Mm{aVuUxAlov` zs?MPT1=9HU3*@a-->n8K2PXUq5*}PQrE1qK*Gt!kbMe6S&{lWRBi+*$uQ=$7Gq&v8`@#yBltJW-%{~_sJ1{R4J z4(i<+Mf`2$YetMmJVU!Od<)_yjI1tO+1hO)1(1@${JiYg+qBJ`&xq17W+TK$EnQVfNPN)w)J+#X zSJ|!DBC4X)oj3=v&jk}&f(WTQ6*~+<3wJ4)>QaI#>{6^{q3q>3^Vxdm1!~_1FHqVy z6j@Vh;J!+7VkWg5ky2Y|8`doO*07CCcLhNg+Gv|+*=W-YaXh@C$b?rGgw;(L+r&JY zs>l&hZ#Sj4xtRWkk$xPm!;6hfb#v^y6?H-iKta*FmarxZc*r_4>)_ z7fa2~*j##LPDG!MYf}Fh(zo?ro2?XEjV7gFQ@Y8ez>s zwnoB(+MSnBL=o_INYysMwCSzd?$orQi%oh*Bt2s=_c`RH`=PsS#T?&cl<(~`#x%sR z#i7{P7gJ-(A46G{{N!U6tX&Z6W487v`Tu-@@AVuFC^s!o1{B+r+b#EtLirY=td1|X zfJZmtINWdpZWk~x-0bNj33-5I5%uz54i&~4)lz#-u=ru5Zwe%J{IMF4B5*rQOUj(V z7~e(=+a`;n)QVwjAtT&_2(}rVD*`19R5brxgh;3l{n|3O7?r@_PrlXixC z4&f3Swvu+2F@A>_3EeKM*D11j)O3Eal^5oPQxs!mjV(pl04i zq=ee1J|D&~aBKdJ7zu}fak@|w9z-$7`{{#}3c6mV;QT$IUJNl4+?>S_>DXlBObyulkwiFm<-S9GJj#Eh8E*Mdw zzpQI_Gc{a+FpJ+5bYTTzwR{V0e#Lx#t{|2K6vxn^-G^ZL!7$%OIoe{7ESUp`?8NUu z;)6DT--@Ko7;6K*ix?YN%uv4k?(6Wi8DtIz(dMvZ4z|4kxxTde+E2=br;t5V>^Uo@ zVRI@Dl+jF>^&_qYwOTS_bp!xRxFi9+P`$4q||=_e5vy~S9gM(>gY$5PXd*-sWwaXAU}4Af+eqIw$98Fgl5&6n#t|TijM|i0p%kW7 zVu<+&k*E!F?g9q*Gy>QL0w*EO%{TM&!o1ClaVlaYQM4SG&h*bf`bqTA6_@S{!77&_ z&PIqNO&Bkif>)oI{%4SW5;cg-DBxp1ix{?pR?ZUO4+Pu(i3Z~7G?+^RvF)IhD@r5q zY&pdR6WT+}3Y4MOc2Hxag@Y|q-Ahn~!PXY|X{O9O^hyLWll~M=V{G$T?}oH5xAitA zk$sf{Q6#z9=CfW+NpJ@#=>(Y64I-vRk(_NlYoUg+W4bp9x*$8-RLe%2&r0fz8a+&) z2;dfs#IY&dMp}HA-e+Q_Z%4AW*>M!vMy;25LgD$FNZfW%(uX+Z%NddKlQ8SwM(Tq~ zq&?Oh841J7nCv}Bc3sPKJGdwAxB4B?#b>Ks+!pc_RFb8KSNSbK2 z%+~z5wi6h?yB)x{!fP-bq2``c9j#5?0%Wh(?rWmbCq$2PY|7v@=57G#r zi85O?K@mLbwyxX_^|Ecz9VK4}Oty)FvN;gsG|1r9t%o-=m~0!#+6GW7S=#5ON6`a& zWV+)>cVKoo&@+hBWwP^;?AkWTdf5_uA>RB1namQj=O>wr?Vg)8HGx8GDY1d5n2xnm zc&x}~=zq}zJDJU81Z6NG+rV$-c8ENjoIHVPe+aidt%~uP3<5e2?tQ5N*%gtj)w@~A zdd@@84s-W2)2kqLTO5k0P3bobvId@4L#pfBj44ci;M>5G=aNDF_#DNctSSnt%Z!Cz z6{0^OqN-upRyKWaa-)x8wtp@Vz`$&a%>F0^3L=*-Ei=ZG0z-|Yu&th)0NUN)zCY7{ zI!*d?<4&jlEYi1*sG%aw>K&3M8qEB2NZi_8`V%jOi2<1U?~r-|*28%W6aNDekIy<- z&7Y8ZeAe5Y;2u4*{&K3sHG6zDP2%I>#R=y8btG;Z_j)(VeUEbddE}zDIV%sF}>kj3_f8|EH^@1Fc$fUk1?vgGQ6rICB z>R^hQKjWf})Q8e z*7Cd0DYF(#WUJO4n&Hn@cGoHWfheg{6uh(@MQkW1Qb3hErCKiMPY{^JKMBI>1Oc~o z`cM|HziVV)MzRAlO#6lghF?X>xbYaxu)cT3f_Pofg{c|lI*ukSO6f{YZcd4!wZc1_tSO7qGh+k@CXRFL0Bkr$^}3bJuB z?e~#3?pwIh?#vJ4TA2Ej&qM!wCOY<24;x6ZyiLPpIuV?gTteI-PUrTlia zOv`)nXsYs8Me?yMm-bH$8v00b>Y_7Kl$6N%LF1lcU~3|E+%1eWFSc9Z2uJc&ZPZ^I ziDSH-8}V=$QP^J(5e9U30sEa+H#mS}m$6|=wA;DiMx&~l%*IGNYE^0I10LUAI>Vj_ z>DA`$Fpo@1(kO1sX4wJKQ_ zDFzrcq?=l_Eu!IZj6;j0Igw(^J0Sf5=LVilNc2^s+Zh4yyw$Yf8^>!slxg1Nt-cirm9ZUB+j=&z5qbwFV$M-b8O7|18i*2S zeCWMQ84eJNz*-0rOJLsfmm!EcigpntR#U_~bkx95lrow4G`_KLht z$^fL&ZUos1xi_AIAb4%4e{UR-Thc5S=1^i8r7@=?PMl>7;|Md$$*Cy0C1<6BFh&vI zwCkiLHD`o#5h0Gd6$y>Wr6}S#A4$iVxAsVTn}rI%1qcvlqzmTv3h@h(c$_&?K)mO7 z4SPhFAX1#(9U_rw(`-|9A(tTt-U#g9CqfXj)BPgC#8Syfj&@3=T<2`7S0eE^{mqggCPreYfsfK~|sDM4d6&2G(%5!(Yxzu`k?$>#+rK6d*iNuF?nt)R_3!kobTb zTEfEE&57;t@KP94|2k5SGdZg^@~WG@4e7>FYAqk!7G`$8fn?*jHzFHMmDDbKCj!J# zB?V;|Rw8!`;<`!3B2Ov>&k?Nl(#;OV) zMCx${fd)nK&u!5jt8(zA3^zYOq^O_-n}aYTsf~IVp$6Rb=3eaW?3ZfI@GTIh z&mdZyEwffhexijf>o-U_P9LF1E2x|BTB};BkJ7npl`=M~n<&pCRGf8P531Rs`<4cj z7Z4@R&T%gr00GQVw@6<^`f++X(Kl{vb_P--Woaw!ep?2|qB1jxfhaf8Xw~&0C{VhCxe^(IJry+6Ng<)Ow9~13ZW;50Z z(hIO7`X7oTj(2Di-C*vAM{|qfJ4SJqY;8(LpKG)zNf+hCHOz6AK$tjVkL3(}DWo1} zmh4dMORaYfsGI&rXu_%|HlSl$e4NmLy(RQUtXHl8>{CM1rc*yoh`%?AmUL z2yuoqLTKgHfoB_}94D-Wat+qNk#3K)V{zRgCt6S>z7tZ8Gkd_G#*ZW6ID<nj5Bl!czG18oP*3Ax7-Rh$Xpo9k?F?#hJWwW4u)$9gXUN2L~WXY>C;H zng=6BoVBym5RvCNM_DTi`WEzI2sPk@vN*qnOfly3ZTs;w2K=y~P<8;x~%mb>+@=RKIYdk5^l{ z88-{0f$mQ@qV;ZJim6)|CeDzzVq|_)6!*Y*-czBzku&5S2pM(w?gnXS+P4rVx#Gm6 zj$c1jnsgUJZ4l8NILM5Q*r)N@T(aRu&sJTRn?wf2N!kyUU*Ip5};4@D(UAym}1xND45Vx^Gurcr7PU#`+^qS*z|1f&AWYOnFjp8a z#HUJ=m@q%7=&dgzT%;3ow8D{Yn0kzx^%CMl9WpsLi*Qg?uOL{|Wn@<{ng@zmpsKIe zGQw(%BG%ut!KzV?<C+-AWj;ih{#K+YH2A1 zN@EmZAXL*bh!(X^-LG4jM*9yTMAY78KM2bxzhb&5mO*zFL`gE}+D5_E5GIMp1k5lc z+6`ZeVUu11QIgDI#TbhQwibd!ZL##zzH!W3H)RadShqpC7{)PfBg9DJ%dBJDrihcI z)0@V$Ef6A!ZJEcIEfFNifYw_ZS$fMh2$p0b>~9^k%3TVvqw_;;u-+cwq7KFS^&1#B zcS@bUI$nMp=_j#e;@>Q%Pa;kdS7{k0rz6US5gQT3d?%liuN2K#k2WE8rNrjaZdz2# zXFxz(UhhGK51~8_!IXgs?=CW?D?4dXgHm7GxEsMJGX)ClMno-S9FY9|h&D)TZ%hM! zsEf#L5({=DhFcV;T*yly&bqsw7LLZST^aur@)7?+7q{9(7YANR~VT3v=D=50y zH=^3ju?TfsD&q9dA1FYo+2p*{o=jDrb3DQypDsKd4o5LiKnBv$Y8ga5f>2SL`R)cp z2SFkeg~4Xa2$_!eBS?D}ts-hve$0UyYU`a1#7xKIQcFefFLu%vBBrL!t{Jk6kWtx1 z+yzS^ymSo&=Nj`6FlyP=ACLwTDL)iD^pg-H*~k@+k%p1^6hw|cl{zFC03Wkt6qsvQG2reyO7PBUX4KOMNM`}fa7T8m#n(DYnGp%ey1uzX)bwDerMK3x4B!BT8mBYeVzoAysci`q#U%v_75 z(QR5`5)%e|3jw17j|K!Rk5ghF#Rt8McvjdG6A z;3@+v@k0oBSZX6h4={(lVnu|F+LRtly5%P3@3;RWV2Zd@zV2Z)k2W5ox#>cu=EDNYN@TRMK?gS^yX^<&Cne-Ld+D! z*$DD8vp6?Ju=IKYJ(#xjR!Ya)B5OExRN4~ZQZ$yvsJdv|2GOF9x(4%OBujd4v7`;V z+aqLp(`$khIp<;Fw$o&Q*2B1MHq?(JXo@|t*HUfR|0H6jFI|1{G95wF8}%tmUbz;& zJIj*YBU3;ce09LR5HP**o^$Cnt3i%dZsMo1M68!amCJODxE~^>=L@KB7{-kQ5HdZn zHXH47ryS;$;zk~fi0O?~%`h7ggB^xo>Gca*hi*gbQDv+;5&_fmIIU8lOz#>=PkL}8 zk3r1z%!bmmQTipykfby-hmh&b09uW%w(B>HaOn-n^csQ4Il`pS7~SPvfhZ|722M_|$_hp`=4%ip`DkG~DZLKCk`KNkEhn-lUewRQcih?RU@?_=3cLhnG(^ejf-MEDkhCGXO3@_84cB=_k0==2=~ zNueqFN#}it5)~KcW`3p<&Ib@E>Z+b25FQ?VA90eqTRgjY2w{?&fPRwsNG2fKR_bF2 zlHAT{zgFEN{wboQpcXhE{Y4fqcrN-&gh{@Pv7U$i3el2lXr!ivvHcoRl3Vm>L5+R- zErKL>H>M-q-y=}+rJwyM_m2pdTt($tUfr4dGonPr*Sq;p<3aIX5Gi?g#RKBMW&@)i z4F3&bl8-%x1K~FiCwUjr4}#xBkmRNY2f*(jO7dx`<>2={#7aSI+JWzX5hS@q<3aBt zXF)trIxy-1@8SrPf)VHkyB|Q5wC8`HIALXuLv}VESS4 z$_SQ<6!|z@TTFf!vC@;GzOGvx!IIA#OozfB%>>AB7`zSwB_GR;hrsJ2QgWl9AvPz{ zscL8HA49C~=9|`pX<*gAUd0#ReByWd6$p&1eGlbm z#7a$yu;p+Zf+Y{k=`}1^38>Tae1?#gX-g3yQxho+SfdD*d^%wa?WiD9a<{9WZ`Keb zx!Z+MjwYfc9}Y2uqn!?y=7jrL@!9u&HnJd!z<_0z5Zp- zRqpj~>qujWB96-A{J237<-zopSLsFNX(R6*@FdgIk_Jo}dC{=^(nas#X1S3jTj0MHaxzL$d6PcKkITK^~R^d2y?F*1{VziI2r*$lbJ z-elX2k&eM+r!EX$gkB81Y=yj3GB=gZ80AwMYgB`CMz-2*k(FaJV+9=R4u~F^c|aPg z1|Hmobceb#f)_Gty2X)x0(r=1%Y)uWcb#kwz*p^#97Lr~O*F$95~mMASU2~8nFybq z84x_}`P3TWb1KZk-pE6CB51bso-k`N;RX5*%1m=M!e=+VvW=JrA`{s;!nUq~Lnakn z_W_3^dUjpFGCm)LJY+Xx3HMbrXK*ZXk=@7~a$)ib$0IA53j|$5VIgpV9%2N!$k0P{ zXbE1(K_4w66V1%V>Yi-`lQx>Q_2zPy!Ru~)AnFy1TVl^_kKR`eR2 zx^Z^CU_#wEbM{b!a4=k@mn&-&X)%|sFNfE{d2W3H^5DG29E69`{F3tC7K2}i;O;%C zXI~CxH#C;7QJC_msr{EA3*vp`A^r`Je2rz#m%)YHiHta(HpH-)XisuC zGLy+D*E1TEL%A1O7|l>I;sHPXp+Fw+??*l|8SQ$apjVl^H=)|4QE?ERtChlBf6UN> z$WS9g!5~B7?J4Hx2Md{>b{L4u{5*{OWZ9#~8?9k_ti#ZwA4Nu@p74r2PqUit+=Qc(X1QgmMC3=C|M=UYa3I!_e`XCq&&7OIW#)g3n7cLf*frj+wxYYZ0X z@|2>7|4cHxHn98;;WM;@;c`9SD$_I0iU=0{%w%eS_O>bt{1OPCp$!%q&H3^@54ORj zkOk-E%HTFwpd^c(T)j~j?`bQdSO)pXurCzLBSGGC7Q=@S-g$B{xEPA%QQ9WWD*{*% zIml1|l(!^EO~(RQ1>v11{eugD;3=7t(*D(u0p~-C!5J9QwjkF)bmxuG80h>WHQn;l z+|gRdMTRyoq7Mk`PBMH$jR4#L;hpEEF?7%>g=uxT3v7h=8G7SUx_?=wjS{63Y>F&o zD1x#1%`kO2i(m`H&(IB)+c+oM5;@3F0#!LpJxgF4#Lut`R!glQO9aDjKdJDwMo}FG zcS86KM*+Ipr7!Y7jtpctDXf>~b@C$}%?p1LdC0I6h#46rRezC zgm>Nr8{84MoB39|JTgDmDTzH~MG$*UE+<~Rm2s{1DdZ%>2|{mEJ+F_@`z;(Uw3XWd z$c6KnX$<@Dv|?Vs9gM7GuNGLx9fn+F*dTgPX)_B9nNcQ4@rCtfS$Z*Nub7h7V-x%`Y97`KpE&9T54l?0x+&%lfa5 z%w%sLunat5;c%g?20O@wbNokq#lWI)F0zrmYd5Y9Pee|#7YHs9PewMfcc!M5;%Uf8 z_VU05ZoTBS0NV}ZoZ)uu0i|^ z_dTHb*CG6tu8XJ962+`*vBftMJt?{)@>M7~G@(aJJ6hk%L$DsJ-z>OSB0HResGR{V z$LY5UXo%`?-Z>lqzPFlam5SX$@K7@MpgT}`&R3M&8885U3xS=Zg8Ye|nq}uMqA1yo zb5u}3O}CuhQA68mJKqs)P;AG!-wy<8v7h?{JlM}v*S;rGpsB|2fGWYrOigmnV@jIz z_7T*rlKVbL?(l)w?gwU(*h5B%Imb~|^YcqB)#x5kMdlnw<&n~wu`koN3hglvnsexp zBb-HSKQ)TY*-tuy_uSOTh`O);3jwbN{5VfG2E}ey%SFpYtY0D<&W9|nY~+jirg()l zmmeR^H5-lU*6LyJuNDRm+o(MJdNO&St$db)#=~zH1`pe+a`-*+aFnYPbG8Sw8T@e) zp*6|>c@m*Df&T@eo$mm<3cMIT8p`vdzfK0G=I{Q7n5jGZQf;_Y6rN5wID7+S$@Wr5-FFM`WcFE%z0MLQ+3u;KJ!1 zob{|BFIuD=Z8^tZRAZrAjvk7F4>;p;-~NxsOTJiX(9ojnjg6v?okJdDiexz7DU4AP zv_@CIY*9gG+&ybNnNaw)y8m569-PCLVhW^K&X11JE|a2|Ci3Av-H0cPqILnSJ^3t9 zS~x`tvQ_ktGspo8Dz>iiaDmHygZM&l6J}Vv&c!-zLvsNOF7-q zeGd7^dS1X!{Q@HwAtSY{?WJ4ol&M1-#4<7Y+|czu(WOoO`3sZJO>Y%unm2t3xoKyt zsUA1>>C=~yC-?pHcvFTRPcV!63bNvS^(>~3>9Jy*OnnvE$=c=l>}YeU8x|TT`qb(s zxG{$AD$5DQ^X%4KUvS@6@H9D z`q4sTDq^1YV`OTQ3`wkdMyh2siONrqovfG2J;iw`ENCl%o-k0B%0EYzCTZ@-Zwym7 zQ&FrC6`r0%o+fFa>ri@Veg+`dX_(S}JdK=Xy+i3M5H}T`MP{;Iu^O%VIpo9n4bzyT zzhcgpt}|tkDdK;X+b>>x$|e=wSoj?>m9?hq2K@(QChLCR&yxRyEIHrni>ov=;g^vM z_p2fe@h*$vI9?@k(rJ$SRS_nopW^UG>+#L&f_3Hi#yx`A4bF02^A7#3uDOjEr^ zlo=yF6ZL8p8CeV&aX%UvP$KPGqtO}5nG~}mvXPlQ#G|1!d1;N74T@PB8F9{N<7%OO z9mTT9gnPJzqf*Aq4q|zPKFoRb?Femf3@ah5^Ce7Iv778}Rm61<3Uq8PWeTu6f{#oB z1Cb73O=KYT5h0@EuZ{4jD6LT9kxWn< z>GqSbh6nQA#tRbxO~rd^u}CScliLL8ww${-l?N6IwD8AAZ3qMDr-7O_Or zn}syH9SWyv&~u9Ud1ZAvxD~SGJmw`~sY7SYiq&k3j5zQ8Bx0mhuH{4;c~veuAUn=y z2}#)L)L@Y-n-U zvyhEUEo8XW$QKJjE$y*RRrdLy#foy@@ys72D0KmNNVBNoN7na?~WVK%rH6Et2(EWWhP;A&w&K zQ>NpQ6X#I8SezI}-vaWGsacAHsH&R4d}JZ8&{ap-GP2;jNQ$M2Mpb2?iVS4Buox@l z$IES+Z75E&fm~#23}fh{T9eKK_^2+j;JjduV+`f36eY|<_)JZKPZ+-&5=OX~X< z=ORbW@l5el<3+&I8d4X|`N+zo2!}*sIh(%#Im%Wz_C1gbkrn5=v2pa&YIJs1{n;hR zL8iM6ycyXUYn9q#WGQ;mqsu0nn_glK^XmSK3yB-^y86n6%Z;|YzIx$uqph;9MQ)sf zlj8KF-tK1PV*7gJ$vGG>0Z-O7_t%gg=h)js{PbCRe;xVCbj8=xonZxj+rr`mCb{2O zIGh;P<98w_nGTjc?U=Tr??zT8!%z%s;(He!C)(2Ze&obCv@b!YhFRW&$VaBzoINu! zFO+|P%uI%%7}m=VFDy>Lqdbb7WV&wcDM(vAKaN~XhMAZb(LY0GoWoHQ^c~|``U&JE z)3ckNdh{jrQ^>|-%vt;eEx46uke_*39;63i>0RjL_Z-DCQeR;I1{uqARjV;(SZ6bH$VsNBG7z`(E;5km_#M?}{)4<^x{-&S z<$uUQrZWhNhA~AiE&5rA?9OzaX^vW20=dZasLbFpmO>UXjVkNbBLk+EL3T2gh{1Jz zXwq2#pS2>guurV{WZ!_2RRq#fBi(v|qhrtOOq@QkV5%!tz0sF) zXsgj}BJc(X>>MoZ*5Y!VW_%RwgxDJ)w(~6uH*C6bAb!Znt`vE1nmzP37U(UqhxYW0 zt=?(IymknSXTx|=gYi~aF*fmQvw)< z$JD{;)@;4etyas5zupfOc8Kc)#I@PO`ctk4AZY5%EtXs5!dSJWW`#T$k)7W$ac%Bs zzE)E+3?GK5&J!TXVrMKtqmgs z&UwiPY&@D=3BjFXDF*~MS>71JZ|&+<+LWlfAZ`*XwmgR@N<)EjuMMbaqrt&GigiG! zi#8|&g7chiAW+M&aDsq`VZr%?elQk#y|`O%<;P3aT)AE>%~QnRL4`Vp%n!zjork%| z!{+Wrr49rq5-rJ`oVN=T$Y^_{`vY2Jcb-vp&f(YY@a6h=sny9fORZX0#3^c*tQQDA z)J+TL`H?#l)zUoiW2Kva9+90l-rbRV-lmTfE=FFQ2k?P;F$v>RWMEro+ZSqWcgh7V zVf*DoQ}R3RY7Ob><{g$;`_vVpC5j(%citg+H(*QOx=OGBe#!atkxj;vrz;yhD=Tzq zI<5|8*Pvo2i4iUH-gOIwk$S#f(-^rC8FAjg8C*5P<$9sf)e`pKJgF=c8m(5LQ5sRa z->t~Pu`xQlqk$G0Y6_`45Z&G14cto&-Qru5&VXixcOe5A`l&JU&yCSmUfpu~4)Tzp z7RtDCyKhn%s3HRoOezDl5@j_}6H|O28F1dp9o!iSZ&=becnCSj&=8pekisL#LxzTE z7!w{t2C`K{v(-?q0sa&@$Z%9Tp_{LF%2o9`<}Z*1=Rl>wZLv3HF^-SFTo{}fhsj?d zC+=&cfd{IdO!U$6*T{tX-bh>~%tOX+krn4i{n$2Q7&(5wF!(SGAb(sKd>F=&KO-L* zPV;+qY8p=df{bKutL9PVugJ=z$OL@*-;j~)9jnpBzk!@MZWUR4=u{ZK5BJE;gm|?Xwgc+Npna&208E z5WRo-!Zl0b zW3Ak}ClPM1GcjzTi z1?M@$N$$ivoLra{jYar7go=s)b`zl(C+poBC5#PYjT!9^h!%D9>4r8&DKu%eshY;0 z5b2=ACfM_jxnil%Qf2|%xR^6(^HjZMLuOnV^{gvA};Ua@s zEDQ4=h?Lwe35jgLfc7s$J0Q8W2(#pbs@S}@5ioi4C~qre*=^CIPntjeH=@l-+&mvm zb13g4*39HsQkpV0k11!v+$;I`NwdA-Dm{l=9+wj2G2CJZmx2I2xMpLn(#MuWtf*sJ zHy^1_@p4}0R( zW7bO@$+mvkFioUj6=7PpY>Y^I#Bo0A=5@%<2oZnUU|oNF0#T;NR=9E9u`43PA8`DcxOu&?dlpdUb;eAD zif_n%s|@Rly%8tAevIpiS%?td&aCT+*@zN|T$sV7iJ zr&Md}^Z3INA-+2N6$z|=jzW|fv8CjrXzQM15hK1PKu*Ua_4wnieVtQ4m;{0{uWv>W zBmT6qw?Pk--`0a^$Uf1lrJx!Fa; z_)Rh`Gv^^deD`HsUY>*q@h3*+W#uUd5#K{vmy@R>%7#(q)yfykrFys>Kd(rqh9}e3 zk96|<2^RwT36+uXX<|=FIb@D>em)HwZ9F|>_Rkb3aC#WIYuq0x=+cyfih?~^YW_l= zQP08svSf|R7xVNKO{WyR`_3@uAxxx0?AtPiQKxVWv;cvkZuI&x(cholD`3F?1?{@G z3uJS>tt&-{pGVMSt*hp1!zQ4M(+6s`O+c3-P~>h>ATIS8-%yMqY@kNdua*hzazu+< zwe&@!&}NIhUx85TMmUOcEgv48p8ZSmG9RPx2Fc58*RQhX1@-}gn}~P`#k+hm4o&nb z%&~j%!*w3h|-_a~E4Iwi?Yw zH#k3GF&>LBQN!H;Fk0U_J~JRqaD~i(Gz%O-prm$QE!Qc=$Dfa|g35>zHJ-XCsM_w- zw4s}!st6Tz$=e00)~$BRIm&=u%<;3W@&#eWY#?S-$;~P^(3vZj!>r~PLft=e&H;no}?Al5$W9Ya3V*d^ARU%RvTqorV;1@Bp-MB*dwov zJQt=8pqcF@sRL*hbr}N0wO7Lk^F^c{weu9EU)#uXB|=06y+lFu9Z{}Etf)=lC@lL( zaxH?y9V(qikn0h1)2P)O&m|~-`e5ov3yNA?^iw46f9k6GR0u@Gx*Qu>W zJ6OUq<|Bw1wZHCldEXG6npzB#%`xI*h#0k*83(bP53*!2@N^D<(8Jpqhku>FA*~3mJ%dw*SA&JUm!sktx(v)9s%TI-5q*R$A}`2RHgJ zh#Zw6Fn*(97mwlpits6SB-*smg#99MA_YR__tj%_#Iv(r;vjx3}m?^u(_IQwwf)W3Vh-u4qyeP&T#V;;$F-(@Cvd6~I zsQ215?Zzm$iz9BzuF1ni&3*upQ?@4ZN#PAW*6jxoGvy&~obpd=4r#gUK}!W)uPY#E z%6c_~NwbVsM&w$$tBoGAh~$`4nwx9SuhmKvYg6dmbye*9!^ln46_x?|m2u6pI>JS+ z=H1sk1z78R6tSXW><4I??)cY1q{xkS_g0C8hN7?a5h^8p8P_x)L%5V$25Xs35GtjX z8P_nIBV6Q$zPrwPccJJWJFQ{-t$js_Lx`PHFTi!v)`*o-FVJUs+aXfqd5pV64eO*G z5iF&74?m`ASRYM8#FXaEJw#j=?Shc$HWJoDyCGsq8w$Nfn%6-y5H_U_f$N_=5i2E^ z2J4=E5GwM7+`UI=>z#cOC@M~CfT7N`&eCLu8sv%-2olZZ<(x{1CLmUKaYSE| zA2avYUEf}r`s1soDE%=iR6(Yp^~(M7^>VXI*-fMuE13N2L|*NiQ8w&|fc=!Q{voiS zpGJ+}&UpUeF=a*(%)iC$Tnus3G^AEZPO-p< zOCn;_+I>)kwo2`>d^0$hVaTNsGEHT+8r9(7nDLfHyr?s_L7UiaQi@llb1sj7Y09*H zLbp^pQI+XR2$^ad<@dB%sH-Ai)J$Puq0Y@W^Yg+ai;x zXf6b&?hLs$LZ&HJx?a`*pS~VqMupb8s#4_MQM$#3h!eG2;EaQ#4n(Y|`^o%vyFUy~KZlmO_tTQu@qV)P;dh1LgJKQtd_UPr6PL5h?hgcY zSk6YJ53?h1SiTb9$Pf?XCPLJ99vzKI53!%I7s>SVXDBj_+RpQ8Ya0g#A<2u0q$<^@ z?Ys!8C|73rQb8Z&8r4H0F?w4Ae37EwsFlMAXhyqSps70qQ5R2Lpu}&=;Ujqra|Oag zZM3+;G-_-#TAQvyu&6Vc0l>QT@`#jmo||?Jq9v7Jd#pP$5;6^*iMsIO0AkYl9f%TFQYKx03&}?%)d}9I_PzgE zA0e-I^M#7*i%O~!5YW8e!Tww03gKIcu<8J#?7c5-bc4+P9Rda1VASaCfYft_`PQiP zv?{}WOTejqFg>g=J04@*g;-JkX`pt^r6&P`9T-OY4x&Z5UU#&5qb?>wif!D7U{NEN zI~ca>0fdT5IoBV`U=`ob0zz`0rS%A+L^fQedzF%`kUh^0sJK?tsA$BnM~e4D&67iCS2a&iXfn-(U|D>@dz`q@X5S$BhmidGQIe;( zsmk>r7<=1O$pOq%7uit{l(oI;x-A-r?hOm=NVgY77aan#J1{d$QKDAu(ZVwc?QjH$wEW0s z)IcXkA^G@Hvg+bkM2X5g5iKQX!|_NxK^w$VxO6=RPzs2$QIwAepVSRH!Rh2DMv06x zQHV5_kc93l!V-meMewLh93m&lAr(7)gWnL%s0k#PNJO2$a(``;Z1dG9v|hI^(8DRx z>(|=~%qD6e>U3scz;-uy_K)$}h!?rQaT8~+fwge9&S2vR7U>)Z0s~RbN3`^srpxiu zS%Qs+iOyJ#ry^M7XyznGlQo`!K#`MAS0G(_XJ>&!51r^ZpFy0+g`87+q}>qK&Sw!M z(p9^Gl)|To80B+_l0s9o4to)TByS3I)CojM-jsGHoGJ;&`h`qDG;jK)EI{<$|78S; zn#lK_I`+rVc_So@t0^6@G(bm9ghDJ>z^0vn8hhQV&AF8RY8-61B}7-4eY8x1~y4!rQ};r zk_E0w8M-73+{U5)P)<br{rcLUE-b9MZc0q$PwQt87= z>6u~a?z>ZIp(NKmKP+8$87h5AY42-c>1X~!Ty3Y6-udMKcaJTp?r>42{Ijt1?X9SE zzEZl)RYBdKFG;13E0kx3rSI-SrE4iXennq_DKMJ(WJB)V($={qbH@`dy{&de;WH`<+guUm24v=c${5(zg~}bV}vR4Y~B$ zuyl(*in=wq^zUKml}l0GHd-SwkXI#ntCb6C2@KdD7m*5$fyho#5=iAukxwD;d(=@x4f z>a^@2yekgI&4qzG3NI zMJnA>DcwITy{Aj1J1LY83QNCnCY3HWSEhVeSUPeAm7X+DE9BOOOQ`f+rS7v~>7Q?>(i`T>Ts;?-o_H0N-l|akU0C|w z*QvCs)cr$P`p?f(>0=7+pTg2duBXzKmAWs7rI%eprOzt3uZE?+zm-bQSL(hVmTqzr zmF}UG{v#~i_!cT{Dy55lBe0yOg^tcpaF+;6$F8N)7nRbV-x<{HzDG0vdp{>ja>}=Z z(zn`FdiL3J>E>bSORLZis~5_p^|18*m#OZ_7s#bIg{5mfMWtIVkW23iOYi$Dl|G=< zef6$@tDV=R(mAKfbzj#?>q_a)cdK=8R7&^IO7Bog8(Qfvl+qKm(qAj3XKST@R7#h+ zN9AhI)8rPdrj;I~l&-Ip9<7v4)k=#>>6KdPJxb|f-%+_*@^qQ2A+2;{rSunC>9tDf zzqHc(mC}{(RdJtEO4rv)UrcvLvHW+Vd?X05Q9%B*1r08 z1D@B|oosSjrS5KF=|SgH>7wV#lxKyd@4P^zA5^UU;;?kD=cx21rKhZTUx54NSE=+C zrS2wS>1#8n^dN<+xnb$Hf1=XqO5Jn9()Bhbkgr}O^L%|+`i`hOTdDiQu=IqNsB}~* z{asjk^Al9MgwmpahowuNOQk=i4YhDpKK1^fy~m$NrEe&uyM?81u0}unilU=gVd?A3 zQ{9_SkttslmR|clmHtlggttBr;BNYFD!ooAeIzV>Z7!8Qs`$w{4+eE-tVjR3t0KwQ z!_wDQr@DtKo?+?l1$Cd>hf42OG+6vWQ2L6nt7R3t8r4ddS4!W|O6Mu1?`x%}E2Z;( zsNz1al%A=TzND0XPAmPpQhNGBD&-qLBkO2FE4@o8y;>`MKqg*$_qg+9 z+%0~jmcFW#&ecjcJYTMR?;~p6)jlhizNwY&p_Fd&s9JZ9Qu=YN^hBj}Pp$M!r8KXV zUapirrRL&{oyEC-M7z@TeRq70nhySp?CpP>c3%W@N!*Px>H!n@7#zt-onx! zgr%IjQe^)ROYeF-zzx!!gr(1hrF`jABwq+ii$4kK2KQCM(so$N@#^B{MOb=6Sjs`E zA~-oLeKsuRKrRub7nUym(*QRJ;R#E(luE@Ri8#0qOHT|-gHwaB^wO|2*wGD2yOpyR znKEV8l2?ENZ(JCzMmw0ze4(crS$#t()SCc?+c{w z7f9dFl)j%OeZO4#{zd8grPBAyr0*w7-%pXgpC)}jUHaaXzMmj{zghbJb?JLY`rehk zUnPCNTKayg^!+yJ`*qUy>!t5=rSJ2k@7GA*ua&-^BYi(t`hJJ>{Tuw>-33cl^TQ=d zlq}3g#GC3-;Qw z*eJBO^bb4o)h+4#V#`9S#2H$|KZe4xA@NVYY^YH$wTGxfZXo_+qVoLyB#6cNzkB~j z64*UCd5_}<}k(`yBBp)z^Tvx`)oA4jOaUyw4lc*jcwCV|j=pLAi?Oe4yrxZwg zs`%GL<(|Vy{8O@pq`D0tJs{FR(bK@8X*ETdli=Rtn4431TIfRjp#~hC zCQ!cB$|Kyf0#5uPxLlfW!4V*|@Hqh~{t)DTiL8y~#wK@+EW&~?JT?pOE8!%tKFWk$ ztTrhN1zTUIG1dFmMCF>iu)gqv`0w6N6Ix$DM?iW&WPR<#)~C>AClGw`P%8V=;J|+p z=_a5$trx;$YEK{w6@g9|B3>#FRFK{agZiLjZ|C zLjJM4xF9%9qI$Bh9Z$VPH^InFG`qgpbSEl@9n~|Nu4gt~VU@|uhRJ)B$!so2!)!c` z#gHM`_h?t%5`q?gh~p$a&KHOvADE2~@~!|8e+VR**@SIS%*F@$j{p*Xg#443O;?zW zPj!KBHmujf;}3FzCIz$<%Z1*=Pkfl#`!G?tWHy=6vdTB_pMD)-R-Z}_-a{nwy3#YR z1hWNbnQvwR>)g6ZNhnDCp_Y`=YYBTR)gmXyz|75T|9&I)(eja;eSy2()&j+P24*z*olh3B3<0+ z=^}yGVRpmzh@KgK@^C8W3$2JhB)VhMYJ)U~kN_`TYYJ^f(f_!Gl?w#2_(RC~RFOk} zAfbDp7Yb1Ehd}pFW`rzQ&l3GLgwR~&Tf!baQwgl&NMrko`A$C9ncpm#HVcBnp?sSo zBa7mfY?%4>RMO>C{y;l<2Z_N$`6m7u))9lpzG*VxVUmgdz%x;^-2@F7uys6 znJ4js^Y8V)unm? zoyhitxX9!rsXZg?%vV3rHxF@+%^7Yr^2Gwt&+!t=n->Njr+ObJDh~>iTLHdHpL+F$ z4>=%-83q^$g3-PBh)oiL+_RA3e0n!D2gA{2_5B8jWSzEKc_C z?0V&*9_(QPR{SB@(RA#%r$qs4vSDARl_LeT_(RZ#reeRHhHSe5&|AW8LksGeOrqhl zkgw;2du9RCKc2;q8{Wd0V)0vr16kxKow0R z`p0-$XM?CLL26P>A-~50Ff8RnHWYS%^y8v&Qh7hgF#_)Fu8zI*}ZT zrICEM+M%njwPv+6PcnsG$<$tnZw#NEMaHnIxiI*yk`o4DK7esF2rH8l6~PXf#O9t! zB%1wNQMmIPOFjI`3}F`H4>fcwfms+aruDv(8~1b+n1*P3Wiw$KzCQe)^tP0UokUL1 z=O^?Jy)V8oJbeTi!*c4!;NKw=iFP-DiHVAUC8h7+DLv894Ad26_jcw4UgbrhWbucj zdUy&-X4;{0WvK0iPJOY4Voc=m{f6?`Z0P3v-Ph~S*yHM zFhZK1?rAy|Pp1n&czgrChg~^VXkGjvttavL282-e%u>*;MVl+T2@|l%I?(L|J2l(iRA3BA|@(=JZW#((_W$jqmXrW z)FJzos&LKX4>6u>dg(LHHsQq)^@d~7kV-=Ui9ZCCXm?RP6HTbs`%$bW%jXTS|60Y^!~xW7XHE|wZmARijMK5!@{dHg`zwOdY=g_QTHDy*GIhV zZ2qr_%EiZs?(hA>|9=8W)cpexk31>m(v-b(RDY@5n`_s2?~JQxMGICo5E9m& z=(NN@)AK-r5i-j=JhM!+cV@xxj1+}4Q4!dcBZYFsA8KNfy)y&)H2y}O#XG(TmeGuR zyHLGN)``46J=vihnDxH+nK-MKwgeDQVp z=|fqU%12^Cu9jSvGBvN;3Ru$R!)fSJr|#)e{yI?+c$IsFF2x_xWulEnMLeEVX}a4R zWemXg3t;hwfD`TVnSrHI#{mAI02hA<{D=foA_aR|nc}*I9R()L5`M@tVTB8VO%$0) zxOi?`ZtF+3cZeOC72v!0q}CVaoG3C=C+JzUz$c4-%CqRC=4EIxS(uJIQ4y$>b;UYL z{Gpa5Ivm#N2d1r9n8I6+g$)D?;t#QKTrwk5$g`dGz67SmjsB%DHKTG9MGuk);OwmJ z1@`zZbFmy*+K0%}lp{m>AlDRDHap3BNG0dlm_Q~Q`-5j=NqZHv)3Y$?GleV?Vr5IA zT=9q6lx&Krh$yhGz;Pnm$dS9PkYX99vVGtOD!8Gbg5bs? zxS)ursC@jzKi~7bXT7)1t-4jWyEFaG?>DFGo_p{6yxV!telFd5+u#l6Wk}GuOU;B1 zP}KfS7U19irv1CDt62fV#*cRK^qsyUu6i78%>=@gnF$?`P0Vc}oy7(7Uup5Ue#`Yr zvAfGoTkB$m4Q+n*^BY{=vfOw1vd9ZHWoneplPJY>duGr_Jgz`-*7l z2DW^dK$@~;$k85*TJDyCy^*j?09)3F9c>4jidgQpfj&TJCV(!pg)cOpxG#X5=ZbFs zo1Q!1GvzvE>D_DAZ}k>48>QZ{AFjIvuA9nc&hl>I%h1z4OmO({#y?#amkKx2IrC<4 z`-+(A>9i{o*tN_Sz6^CSZDtFf;BA0}QJt3UjQS-4*1XKI#{C>uWuWsp6=X_h)W62a zRBm9Q8>~6dW+g1ldY(3GSs(VihDPI zm+g#t;tn_!pZt9Tem23G0K8;p)YBF>=A{c!qTzGt#2m`-PttozxiF4!TxjYNlZQAJEn>HR(MBXV4D<`9v}59@bM#Anrnm{!$JX8Q-`A_&g=XTSi?) zKe6Unb|Z8eU2Y>_QI~k9uf<7lz}ao^jE!NIy^T=e5Od#~#C8As|P8E01ma)@*+3`;*L+zvA&{+1l zw5@57QhnZ#vY!k_uJax<6+Fv>o3;(!kUYnnei%%Z8aIkE)mLNz-f^q;j#7Q@D8hhO z1fr{#GEOjoaAn4g29Pse5Mmyt@u~Ac{g!GHg%pDU%Yncl_iWgBEGxeA@v8HT@V4A> zYz9P2H;INY+gD@?E^()JiDiqY0spQN$>BrupgvCbU;_6j(AKOV0e=bl_*e5J#&hwS^A>+o@*SIw96hDfYM@*u`-<$qPwvuwvTTLN z@gDUOcUR-9I(>u*1Z^%;h2k(W9)f)59~53G`UedXSNuYmNvx2n?}ZPz2XEPE(&KK+ z^Fsd!?#d0vr>95{xou?_MF&)G#5|^5c@If)0!cnNPf zH=zR565WJ$$x(l)T32=;*iN7H1oYqv^QTO{JA>&m&R(1oyQOn$X+rdkQftq0nCmMt zg4po_?HHxPXby&WMdY5wR@c%cm_WobYtJGGRp#AcRq4+qqRi^~^aZhieIPiRs8r(| zD{2D|ODzSEs3G@V&5`N9JeEg{Up(v)bJw|W3V@DMsuw+ic{B+0N#%)lnCFyfzKo%`Uz@9|Jfib}KpO z7I|R+=BnW^)9p?p2C{ANMzU=W9v%RA*eHMj4Q)zkE!mXS%n#)GMKyS_GT;;Hb@aMn z=D#wRFl<%{h#Om~H;`h~dJoSfrL7aA_GVJcv(v+J3DOcVaz9UUahp732(hd=)Gw0G zfDxv=S!WuJ#o7!GW0eSpLfJa1izq{kzU-?b^C*=Yf}CW-b^bQ|{lTLNYAPsz9|22v z0dCh+RRlq3WD#29Sj#B@Wx+=Z1et(kcUB-N42#%da!-B)k=QOLDDawpk- zy`@rls(l(`x!c1RTc&!Q`ZNv%77i{Q{a|wGo`4v?71gMK zSmh9jRqz2U5CeC6#^8=(b4$_G@lJhl5t|$qJ4^V~)=|UM1-bW=3#c2uS~IU!ZZ@xi zg}r02Aa2v}cIl#RgW_999cH+=c-SM!1D>pJ*PLa$mFpY@F!SUwn1KPqWv|)p zNYg(yQuv)(TrsM;tcs}4*;{>_!62uMKCT#Tcud9956YPO0}{_GQa2Q%4imW2RAFh7 z0wATS5|k$ODPk2XE_;h1Q!dn{GmYw$?42t2~dAYpnP{P=zY$gC46{KS6?Lg9M67ytPsyOPt<1XP1Z%V9*()w zH7s(cOzxEA;>h)BR7l$fZzS9IHcwRcY7&*hBvEBKy0S2urj6?8|A2Xxz`}3tT;V%v)`p8^4*HdplpESa?Zd&{O#mC5sfZ0YAlt{Sy`Aqgp9d zZ65V)DFbn@d}JZgX$P`&|A%yAzEnt092%n=RjeDS`+o-XGVb%JLj1u)((WLRug)OB zsIOd8h^+Pq7q93hYCUNV`bM=7L9u*jVeb}dGYRMWK(rqK&swO97Ny)J~CqYdGf#@>uhF5})xNlOYU)hPk*_)DcNYTa-CN_py$;SP7pt6U@ zp-T5V9)umIA{RVmX_3Xq2s#lee;uKLSJRjZi zg@vY3MzSHuNj4ym+S?!)?Q(dwMV4dSVl{&ny6EOCdzqYd+aYx6aibue#go%>b$;Mj z)3KMySvQ~DBR4=N+DgsvW1?QO+g-vpMUOXob7-$Sp)~ae4u2?l;2s?+_X&{-iJ;}) zm|`{*2TmRr4GGSmq8YRj5D%8xOR|8zaTLvUX|alc=jGf@&fDW&!*_Ih?lpiuv;b&x z<{G2I)A)11J+CQ1L;TyT)zI6L%}%z6>w90MVq#ruPpayFYN~1{qeP}8`{9&WsjQNZ zN?0P*^(2xlh>wm%FlQk~YZN5UPbF0b)f7n%Eo~zt%{raBS|m*uFh8CWmGoE_<1@Bw zsYj7OSgc08ZHtijyn39x9TcWmTi2@tO=~tOD!Lr$A}}D*6G?M)VTsns-V(kfpfT+o zUbDTM5JSqu)Nm_{uXw49)9oYCnD<6IqwLDCs|oJ$>La2hIr{3(#)&$QG)4_39IkWM$-3+9Es%WL z7$g_l-6pkCpP#}Y)zn>$lgHbgnLuO>RT=qQQn}fYs(@7GX_{18QSrubTv}P`>E;1N z;!UZ%WYa#b1_c7Xr!2MhION+)JtwA7=%!R&!b`_KqvG{rC{`Bmh)!o3$MBs>hh?pI z(U2z+eN*(PU$1!g1S3x!gOS$K!jVRYmDf}o!(JS0a^o(Rmj@1iD0$#PO@!U#n+y>* z8Y7y2!WbM$c)$Q$7hOUOKRJKiHh3f1wvVx-fssG=FytSnfa9y)JsFX-<=G0oJ#r`6 ze$YIg7BAM{xAc5Kafby3){^q0<`}ASg2%2{>>DT&7|99?ziN?Us@TUycOpFck}U3J zO8fxF9nvpUrlXyfLH?!a0!GTJ*2*zr3>4ym^jJ7;q0r@5-6Qm}rS{3i^ee?NUg9*j z&n5K{1#?d^EK}TAoNSqNBSgkM)e8wXy5L1S;W6#&Vw5R!>ZL@97qWsrZ%fgD06$97 zIprys+zpycmTj&^$kfh~)mQT~sF}~UUTwDFBxmn6Z&nWTO@``tBYOZqQ$%h2OJEkS z#mBS;Uc-P^bD`eR6AG+8VKiZF+u)64+s*pnbVP|x=2*e>UIx?sSnwq_4BUc;dG7da zPILx$(%6q48mztc7n&y;GXt1gvf0U&1AH)zQB=OgI;H~9`p6R1`aD1Hc5?pB`o&5F zJKlL8v?3~o)=YiA-NH+Odo`LRZ; z$vSobk5fF6n=+8RuxT<$B4n&IRBZkFFA%Gn~Qq028Lbq4%mZ%ji zSFyPpYg}Ed*eCKuYJm28Nqbo7xq39;;>-h-KS0W{vQmI&Qw}O|${!YJuQra@hVx;spl5KlUUgdU9GxK3oEAdGdtD_K1lSYN~w_qP{4v#D0n>*cH z*%W$k4a_JDlUuUc$rd+dT+t5#W_W`-1tU7|bW!QqnRLWVfjTF4D>+9@ATMa0pff_9 z3=d){NI4l#qL^fpfJWRNxsz<)$K(6>cnWWLg_ObzyMgw^UxT8u|JiO!VeP-@-I81CxU1Y}XhStk@9 zB#%1ILbE&Fn4hn=8XTm~6p{0C?k49Q2wzJTm7%qT)upfOZH_jX`YHo&JPr=6Dl8d% zPQomTG4V;ty81_wjm55^{S-&kdsapATo6&;AmO|yHMA0P#9bK5(*8Hn&Iw3EYkfzW zy;xCpUvqA|VHYv@T&%M{KZH0GY_Hjm;I zpQR2aYsCszkN;xwh{NC!V7m-hjgzA_2X@7kt~p)ta1i6bXfg1$UavK@e}~9q1o-}O zUP-2QW2u%N3#}}15&Td&sQYMB-^r>+S(duJ_JVf-t86qhMaLIT=RS~JxJT}JliMyp zels@>KGUF%hq&QIL!L-3x=votbG&E=B8}f(!eZF=d=m>n(WrO#jOgd*-A>NGX{m#W zA--6_9HV~`I*)cJ+!La6d&TnBrS!9%`a%QKPgsGWwSMuiN0N(gFcF7ktV{U=0$}0x z(Y|`L(ZY<#Jk}_8mZn*x$i@*YF>YWkth?BlZq7ERr<$B}p$?*l~;n=SQ<3-syGG zv0qxo)jRXU>z%RaDlV^{OhzV+&NmNbt)7jWqxm#izm80eA9rKj2&?;URYz18HJnOJ z`BG0M=A>fEU9i4p)nc&wJmQZ{b4~e)^qX1?Jshi z4R0FYFabt|!CQtpg$ZI67XhiSYy=z#MjHMZgr7W|4KKNa0g7$=F!*RD?jRGzLREB( z0MnB5*iBMfTEyqt%&e2i!%AYw!*QD}w05^-vy(0R^vhUNtRF-?ygXLxL_joAw0~a+ z0q|aQp>yQDo#6nK;Viap!S)&10E*7G#b{5r7f-r{3WoURbY>#gu1iYt(FKb!^6X2Y zc#AgA&=<)W9BGl3Qmj9gp@L5-h_$ddH?WL)0ev85i~_bm8TK7)&71lW(v#I6p%!EF zA6fpWE3X@oRK0@K2DKJjc$Os>C``SIWW2Vb>xNL})Mh(ad5HFloWd`&HJ$7W3PRU7JW!maarP;99;O#U=43Y7bQkm!WP5!4BA^9y3-tCT~Cn5B>}-D zC`TKygOu43vcjSn*KJP2+eGAZVz-iW*bB0PqX{N204_TAHVAjTgQZjG;5f*j*C41D z4S6ED=yv_OXCT#YxUP^1c6R6Rtvb&^w$-SmzhuNy$t8zK#&fbS)8d6rqI1TBI$3Hh zbunjb%Z=6l)`9$F>#g#rTVN$IAiA4w5XF65Z3~>?T@i6A!a8amjS6y=TZ9~V zE9kLU`+`bFI#*nDXqHh8v;_7Wk`3oip>+G73O@)35N})HmU?cO8q7Q3kIRl zN|ne`G4aQl3xOjQfz&5NsYRm9Xot6wb}KHxm~Nvf?!Qm45rHH+f1T23urU<*zENOy zh8}-D+J4(3cQ8Q}1RA|Jl%Xp+BanmGS0sgWS=-IbX(ZSvIb+e*Ms)-1(=IhYsbkoZr`H za3Yf^OZ=Xf+VAm8d+1nUZSLe^8_g0NK_NSrWe#7cZ;#wbwm;Q9Ug4f)J`P7XJdw)% zc$9U13`gk$8gxfi__)F;ebn>G6;ADLoL$_4g#^Rw0cr3YTPqMLB&oKf*@7VNP0*Njt<8R#to{(L|Ltg z?~-mh_Ks}a8GcF1#8yq~et!m9nUK40R2$0>Gj1e%@;C;i=Q5ewt%T85olcN~(KI&X z9y6sx%pg8$an=zj7CWymD3dd&4V$Lvm~zEUL@5v&4=e|0)~mJ>e2j=Uj+g0}rd7Fv zIO1h4(iJVkK9p6s58nkjbpdJS1ht#SRhElSVjBjXNIX*yAmmt)Dt82jdpKp@7ydZK z3t1R|ZRdJsojYXhUV0Jv#a%R4A5!e$((v)9!t;+)v6oa+b*}P00yE1G%{S6|3Gq~9jLsC>x}X8UcCz#YmT9=+?KzSQVvexP_2D! z%1ru;$jPhuGVQUVRTW>CSmzl=dP1=xA2xZ-sUOR zC4*UcYk$^=QUI%5IfJrdW@1?a?M`~4-$Hk%w1ZrAAy<9%x&~aHm8$86CF|jrzAqJBbVxfpVwwa(`}4pFn9rTDa&PS9 zFGl3W=3)aH$D%voV(UOY4gxhD-ka^CK**g*^9XX*hY;0geQfaE7RH1^6dqyN0)p`Fd*%N4xL6$Scb zfalgngW$gPWBb~IeSyUuxSw2Lp}pR`PsFFbL!aQ`$pYmMV?-B3K;@`RvKZdd=lUH+ zu0MNG`jxqZLW4qDNDH*hO6PAR+pJjoLLbi^#qc0ONZ@idV}~Xtrf{b%tuA@k2zf=} z=aVb;1+^j8i5$`<25BDo(Pq=jYd*SK4f6TYxD!od7Oln!&bl;vZcKtFl!Yu_I{Lxn z(%nJ~!xfsC8@J%OR+<Be^)wkAS4;uAYQn`KZ zWM!sZIo_y{kZH^NKG(G@+|i>t(n^x%5ct7tabqg${ZozE*#>6Pk2QGglsN5`#a~FS zlol0uB=JhN{8U2X#gs=iO0>+|)hjGMXw+lLgAUtRn!n38cfQfv@<j$=4Yo+$?DToaS{nyb*>y3 z^%#R*R_NK}vO^?^>e-N#=71{=MxTW%lt&qGR49+?r6eD&75@8ByZwYUaK;NjwY z75;>Bzi!uyBvW#FZJ-|AWVuxd>BJfrdBaYcA5*zi2Ac*FvDB+cc6b9KuLYk5@PgX` zCt)@yo?(N#2t+f4OqR$g~~^{b8j^TaJyS?3KS8wHN4UNzn? z60cBQ96LY9%O~A9TT^BoEmc!$+;G9U<8W#}QaI6{0l@B(e7i;yF0mj>u9^vyvLl=DZHMY$xY7QlYR^+(H-7-DBYzaIFlVq-_SMW?k%H} ztpoYkduks={UDF#HJtLWU}U`~QAE)bso0{JoV5>*W%d_F*S6;owCnq2|BDda7-l6K z&2A)1JldYkBknaY*mV-Di-tUrT;#Q-r)<+_&_vsUd7PMyz*9>toWr3%^&kvv8@!Qh zyA4C0T+Vo_dzg+FiO3POs?QUj_k~3L{}Mh9#>+&kRpUvyB2mpauM|IZ`sYy8BW@hq z6cZ!rtbk^X_h7Y-WTQSC3wANWj7iS3)F#pkJvFw>KSsuQWI$>wNo9RAR-MGid2zK{ z`i{6Rx@rfhk8rpiP{*SGkJ^9EA zAM0U=$S`{Gut%_&NeEPMw1_6ag~pZu7>V}zql`3qglFi)5y3JhffLE)gJGz@L}d>+ zI_#O`K{v>4nIzfu1ViLW6;B21JUcd=6k~_4dv-iaTqzC~<*R8f*Y>cj${s!8+sWe( z1tNe*Ef51!ML^!AzvbrhJvPLP71fM%Rd+4lC^0OntLf-54~%sp90~1!RqY`a=R{l< zYJEUVryfJ{qkJXSo*#fR3cB-7D#NMa&N~A;YskkFvWQR2M(T_#tTt%1qG3~(AvA2G z?_{ild)_{pt!v3vSvyB-RqU}ql?bOf(wIZ_g<*Y}jGAh8UgK9Vw3%6Fj zwA<`NHH7^)w7uElYB~h^SPhJ9W5xkzgkjWNyy1$%&nH(r#gaBtZ1aY+K3@HLPa0~A zu7=2Ac>!PYb8{euug&SqWb*+$_OkP!I=K2}Xy5`h%;N~)}Lzgtk&)w2jPv{c7- z(O4n@j+MlgO8bbFrcR*YW%pn)o4aCINf%pPwz9=mH3&Rbfs8G7wc-R4v)Bb|2N@$& zlVF1du%KkVEMcjqIgLV>Jy)p*Wlt@LWaE^oi^J&19-Y+JwsZFnuRyb3hXw!X0KBityUIUV;g>HQAsv}Fyc~-==Bltdt`GT*_ zo6>oG^^)W4$YisVEl)8oSDqp-Gw5BGWjcnSDME&8 z&;~|W{as0%8ER~h$xhC(!aWs@(|H`nZ-h#X>g5V0pDVP)&oo!b#>4!KXQ%S7Z~E!C zQ$eFlTD6{02^~iLIGr!%BVm+|u~xMs3|`;*s13>{icmjE+M^5`PJTskVAG(86GPOe zA>KfUA$APoRg}7w!k921{brKRwOpn|XA4kOn@L+ov-R>uw= zbDoo1$A!&1b?i$s*?qP1MeI1x=QDToRt0R~sbf>ReH=cL8o(HWrb(mde-J$5y>O&0 z=QWwe6~qjK>I0Np_D&2klv-AmL-{Jv2tRz_6~U{%`rt{(FALh_y9n4DvyVf%auZw! z-vHO~R#QspHcecUgxtTWaEgj2&a z#o+J_-r19Ekm^3Ne1ldHw@26` z99S^+I45>1IR~*E18IB#qf_Puh@9GpSWINQIl`X}AOde4$WOLr_Kk_K1My~A2&-#RT){3#KlMoo3EhtcQ4+&b2w>d_dOo~wv- zPG5cDhY?RUr!)2OE?5_29%3{sT3j4y1};q=vE}a}#WLiQ#!0h`!6L!-$Q|_f<#8Dw-ESTTcHufMEfc>2QSUUna6JRM zG0aLf@&hXN0l?fmnN#S^70r9FCN1rG7WJYbPb3%VeN244lJ--n3MTXy9MQw`RvMOt z^*$q6e`^*+c z%MBj_SmDY%?MhrNmvP`tsk~&9tjM=M4y3{@mNZhU(c|tBtWItoo$FcqZOLXQTMp_6 zvHDm)2*_|usgNn9?cngW{nX#F3X>DVpgmuu6s;Z|Iqop=L0$}`zE0YkK-b>@-$h#x zo^-mP8OFa!;*nq*nJNsD-6V@R349%2p)kbg_{8bVC}^o=e#`B zh9D=|aFf3cnClA0kPtaUD^Y7|9~~=d;DM3JoJeJf(!Nz|12KuZiNr%|6fF)Z znkl7g!iPwBK>bC7M2dQ#XHENd(#~jnNRI>~kge__c4PRyt_&0U{J#45T_{+xPcM5* zugjMaI}9`%LL8*JBEMXF%DTf#>L^Zg;2SRv>1d>1+-c9j$PDGf*@fQ=a_=V(+-nb= zN)PLI-7xu(5yuP{oi>)IVuqJPcesVIc7wk?awj?e7CdfG%RZbQnjg|G&R`nO8tPXoFePp^L!7VfFdG(!D>{l{L6}z3cou&Ijl&7-=3_@ag38TMXHUi*;q3 z;8<6d?9R(FSW6d71+!n4DJ)%BloO!SUv(Fm&yC+q&OM}G;*k_?_E^LJ-%7FN;NoGABp2`Y1oRQhhwOJx1ajw~ljs34Ga-aE`4(u~;EiOP9w0N* zLGmyZ6)6#{1pWR>T_RF>$)>}Y*$B^WIDe2eY2O$VpP?_3GY+x+PM6&3qAj#n#ee;z zdI@8vje1w69tuL0{p>;|9nRD%`1Z)4by13}DNFcxlZ#jCRirZ*r2GLMWSRj;9MODE z&4w9?tm?HSF)S2anBoEv$A=hA;q|025PKe&dQHL$b|tu2qF?DrE9Phd&L53bk=S7jNm^qIhc&xx(2NZ%z5_q&!YYcyLN| zQ{bgw+Xjj$J?fn#onQ3*X)xqEDAM}u;cTf_?5~!+hSC*oXKcj@nW@_6M-*E)SsaUzkfuzm8VTKLH$12CbSbsLUJAUISgw}aE zcd@|5y~Y!{7b@m8UevIQ{N<&Tt~h*%1h|O>RTib`0w{eUkNw}eNgl8ZIT$`rhfl$ zN~j?Yrs@7S={^wtBB!S1y5fW49CPJZ;DzdYq?Yl%xUj~xaQK#Z5FAfDNHcZXpHtX; zC(E&*cb1HQsk2Bh*PDV4754UYyY-G<31u((>Noj;rFHH)S$BhZjxK**5RHP@^;-z5 zmjN7)`4*6+!<|HerXN*1$z_Uk(E8-(ERIQ+LBhYk?5q26kZD7ZlWaKPo+gJEcnQLq69g1%Nj3xTFJ zQ}4`}%@rbDCa%awz>W#SDi1hNEbzkn~zDX>iER@E3P>?`mK)d0Kjb z!r6u(C)sew-v&Ry@c9U`oZ6Xh%4B-yfX;#<#{X7i~D$Hh3f1eqGybpX$n4owA!LShX+$j2$$+7LgUF#WjfM z<=joqV@FP}Ok~AreSuEkSJUPrS1pb^LVzk(PonR}9Lw*E9!AsKUM!}rBe{%A_%Zw; zlv0+aDVbqSscAozv`5<9uOl3Sh6Bv3I=U5_8(Tg^9s7xqV_-ieI)pMC^Lia2>n00g zsNYQLL+tqQSirpsXR_5~1)&5Bp3o*&ef6cg5hm9AjAR23XOq>0;*r7FSHN+KoF;;( zFay@$Nx`1UyjOO%+87_=p&j_JbLNX$nx%_|Jdr%;U>n0g*oJb;!0T>2JUI0>mkWHH zp7T77sV;WD&*J3QSws!d$T_iF$pgRg{5R|~?|kL?Z>$`W*Y@KzyXxQf6=R@P=nXsH zv8)%qLL4~ILl?_1-ro~!~in$H<3R)CtGJVB&;fK%Be&|~i z{<$iCT3SDG{r&ELKmL>V)IDN~G*-~1@HDQHrm8T`o{wDd+t7=1ef9cz*1Fm3WE*mJ z$%Fio_~M-Yz(X(=7o)DJL7o?Dd4e(X*yB5O3tG>r3m+SToMgjcJx7AL&v1X04--*h z<_jmm{Fsp3I*^YqILX&b7_>AV$p;OWDES7qd39J}&)4taI^6|KW|~21!MQO1f#kyL z`7+}>UzYmXz6|6b{zZ{>r8!+U>)Hivb2>BGtgA@-5U7sQy*Ut0*63^92RX@x8|1^* zJ>CYfV6ZyMA|k%5nlSFP&Rr+#4%u4;c)~bkXL0IClZ)XrPeBeUSl+J4?E*a6L(42r z?mAf)e*ULGfeFijrl#(C=IQs71dQbSWmWI|7bmmD=*~M0i5Ic-#*3LB#?5Nm?&Lu= zYskD@fKubK{dG$b%P_H4;;l6))KBu}p zVLe*2`4gl#=<7rD6*#pf@l&F&w0rx3*8v%wC+oN0$hT8IJp@~vSNp4e`z?ZDAX~y*mi7?>noW8p01j4=SDuDe>ri6bwxxUt+K4?be(bm)u?td4Y zp&$fXobp~_$k!+x9rlHvvopEL*@xX@b|F=;uy<|tKDzL9WmfY$< zKO?HOTysn?7@-%D&W+zp&b5+pjMu+30pfh~NC!*WIdwOP=x?SG_q&&X7&JI@RT_$c zi4Og_QNcSWb_-vUG?t@$m`Jt@%!1j-T&y72YmqhtIoa?Z>{iVs=nIf=yv|*xtAK*V z$d?eUarGOl1ennGa{`%m7he(R>npBgH9)4+@32&}{pHE)0_YEQjmgJ~z__bkrY6Mx zki;T|#~=O^rIo4_3{}J4ACqEkDaorGjMSFLw6ANqKTE>-rC|)p-q$tdKOdl+^7;{$ z3VBXBy!va>>>Hjf!eGtO~?ZUna3ki^iW!9HrsBSBv?#q>yUL1fyaB0pE#cBj0qQ z-;l5q?K6^%^gy{etflX0^%W@~^q=+@;{KzcQMz%O*Gg4?%CN$O^2EZ5 za9~1;{MO-wOsMaJJqC>FK5BGTR;5*WUq=vme;waXTf|Ri48ART7hh1D_@=i+v|Xe* z4-12UZsn_)!Vqm2>G#umS3CH2svrc0>om|yYs}O*+$EK^$uPs6@0>$9*p$jkHr=A% zkwH#6)kVIApC#88;ETiQYl;x;5n8aIlREsxoz0o64Ldk*{_1|RU3X1G zR;bjV-!+0@uYP16qg*248TukQ^Dr~zV^KRgv@K2-2u2>QLd-n|9yj9L?ML+DD}{V! zsu2Wr4b3>HXFnc0j2^dgr})-Vs>hOOj^2FVZU|-3623}Aov9~~TA;9CA7F}v?!YxV zH4LA1>TZ#Ulp1>v8&ku3ef3NZex09pJ2`)k43uE-1EY`uQF=fy3s#g5jR&thsJ$|; zxLAH-qKJPA+uA=*-@pI11LS8iV%HcQfY>$tFTc>M5FONnhz5qzGf62hR5e3eyHN~_bD zZ@^T!{$ogQPG@q5Tc?2ubn_4(&NrpZk~H6WvoTFw*__VAVRO3=@8A8Dig^gcgYmLq#JkhYMeH?X zYDjMkvyzR6rkgjPtmp@dlf~Hn^c=pRZ{d?4e4sel*3tsFmDG|AvyzPm zmlnXSegI^H1q36Ma2LKRHs7ds@GZOPrn@j87lwK12a*e+pry8oE)Kephl*Q7EzLLU zQ<7SXgjvbP8~H#*KLD~%D^yZ&=n`h6FcFP~&v#8NVA1LkG_$i=2Jj(+cVZ7G57{jg zDu+n4a$rA*qJ2C-w7Bfkb!;HP`4~v8>|qx6o%0rUaPt9>&8rgAQDP?oHYb0l%wI!# zOEx>%vPVByu@3^Gpu^)x({8)N_3l$wZ0NG%Ec3454ZuRb(Vq%D{_Zi9hJqHgzts*yz+hXyg z4qN80wM8~N*>dwq9ntKA#d)5cUpj&9O-pF|NIkROXC&+QA|Lw_a1#WBVeVl{Q1ug2 z_;1LaWiOMnZruHh3U7ea_z`5CZ(hbOk>F)$V4G=<`NC&Nnj8M~LGy&5#Tkzfw4ljIPcr_v*iB(opN__0psDsh%ul{QZy;}&G3b&Zbr24GfD}OAR z_lnAN^-3yFjW?6MCt`?+m0d+D)rwTAm3s#(KuiAvq<>DN&Md~V)Ou))v+}bfKP)Wk zT9H(8`WgYtrfLHnUDsJkA0?%AwgM!r(H`TgD%4x|`m3p{E!E#9)y=8;t(dS+0--2_RIS{k1ujWeX;DyA<}{lMjP#bpV7TJ&WrsbcJ~+Ns>j z)KdA3up@O6N#u+c2IfO;1Fx++0-q;=(^(Jk{jp4TP0D1~SeE{Z6ho6;Q;;<311y-* zHB05*uy(Mdza*qnl?b`c8_AQEY&FdAVe7pfeUTiqD+vwnOSralb2>BGd;=H2RSxUd zNI!2BeSp5Ei0c7dMow9Z{8__<3sA}4vH=z|1d;zbO73AHoy zMRLZCk_kF_W3hvDq-L2?O>~uo)_R|j=-<0|6Ew#VR=T3IXb%}-?KOnu&t13$f_9`| zm@-TEtkLX9zua>Mjo2<{q(3ESHG-ga!h{ieIWZ$m4f}8rY!x9k?75_JKuFytq|9Pw%meN9{VBLraI#Ta zg#~!kte`Zup#adz4JQR?*QKoMeM(JRjCmfO&oHLK;3XUpEk^@n>?{ zGxqOh2`feP==8KD%Ad(;H|*I%qLHQSrKV~KpU7p^)-P$x*$`oW~+oC~OXg`Dw#;C%iRdnOKa z7aP+}d>D)8&FKhW%D%n9MGnnEpJ#(I8gc zwx`!&Uz(OsuOr5Kr+TV9XAw+H<2b%`rjCv^QcLisN$?C&G>IL|sr<6k?7D=w&%3*Q z^%u{B<6oH3nyVQxqIltLy0UcM&o(B*t4zG-HR*=(qft=~-lfYyu*!U>?j76GSeCY? zu&>*ir|r{q!i3bO(eEndb(| zihpi|Y4*iyr(DYn6djKwlBjpm6^FY+PKz-gvuX9DevQn1D)u{GtKE>_e%k>!sef7f7rr^@iZnQ5^j7&3o?4ZEZAUOfPK6E z#I3K(-=c zG>TJ=+i1+|#uWp$c0!9v&?m3Cg9C62IAbs>A;vM|BErM?BU2ZeI*>B!$cNxrL72q$ zdLem%eqf3Zq~mB_xXkHR3}_Ww`Qw=Cj~MTBf^p8s${=+_O?U8vv61==2@fugF3z!u zh1qzfKCd~BhRU4rmO+jOsQwkHW+s3O%P)b^4@%RR>PsU34PY}hec(TtJKX;wD+7h> zS4lRyGBBsVFetk%O#`cU1>heDFl_a1&P3)QP8i$b9ex4)IsprH_;V(t29Yy?%XG#B z?VCi)?GEJ(DU3$2I5$D^)$sZdHJ{*t+(WNIlP8eyF zsB2${7Th?^mAqvzhIj_EF92x6UHVtjhRbatC2=vZ@T{%UH;mTY#i<$9jNfRz;X zK{OZhMg`)G?!-xpSf(ebf!P>lB^#f{2XHtW(qVn59P&MUxo{dw43S#$VHTET@)njC z@&Rz4+YpT_N_XDpaR7)6qReACsaVzwqJ%f>AjNMtWyzuN#k=I1v}nz?UqwT|!Me z8L8z3+d+A)N7-?qc`h3giLW6|GcE*gBH5fN*oeq2`pY8xMbmn;XfJf41)1kY<=XVV}vg-&w=%c44Wdl3AvPE9$t6gt_jX!e- zBtHEqph01uwW1tqNQBOtp&FpQZbi{{7F0x_Qmu5Ona@EpiU~M<)2Yent{V1?HG8$1 zVfin}G83@;=2MmB`jP1x4<$1^|227Latf;%lco)f9$_3`%FLI@G83@;GpDGUTkQ_! z5QW{ZkX5T!ehl^w-EW6L9^;Qyla?J!>uT1s699)CObep^Xgy&x-&rHDcFPyUO0iI{)n~ODm zeakTZt7M!B7=PQT%=mn_*S(tu_MsLMmA{vqGXdv6e=2kCn^nU1`^h&G@cq_PneSGO z-%mmFO4$Ao*=7Q^Pw7&rn}oviN60f1@O(;_O7bk<>om&#C>dvRsxuxmXhq|{MaG$c z@wcDK&Yf!23hSRB>rBAS|+MDVnyz_3x2uCgA$iZI@(1;3vs66EJ=1#*%dW z`xJR*0-jf<)3Y3{k|6l~2^nT`O8av*@_m+EGdZQX&W63ulWQj6`qXWU492{_B;QQH z_sR_ZEr(O50^S$MG83@;Yo}}tqeo1*rv~F`wYxCO-)Yu5^|p!HU#1XDAjCUPSs{+0 zNrF-NMh!;9$)-3RK&qUtl6fXz{+(-r`BYE-@5w$Buzz$V27{c-SEt>eiq>3YsAXkZ z8f>^@3gw!~Mu;+RW1{Ev7$L~WBQGkYit6Ug$OH6)AcK8Qv3QVJ%J z;y2ci6gG_2OhcVh93s#@3d95gePk^PgjQu2-y65`?58|T)~bQ5JXq=`2D*s?FWwM|&paU;;Vb zzlN*=IWqqBY)ZlelB`T;+0_qPgEALgU`0~)HG6HSKoaj(bqc`*Lj3j`GKcFvTjA1P zHbb$PK&#NE3;~$*O{zO>fYmDe<(F6URm0Y!uf-KVa^e^-}Hj;^!zDplt0`;uS?0|-<(%)I|Hv7L48 z9b}vd7+;y`^W|gQH#Nmo&L`_k!1}2hwJE-7TME|~k!vR4dSxbJmP6sLB?)4BB1V{h zAemC0hCtw4|6oJuB4Qb;a( zxIN(oCz3Tp^niqxVCLKimv}ZvdrYv)-}ZTW81>` z|B!JeV0?vo7|Wq+VchpHg!TJzT!;x+KZQ%Bur6I_;rcXk%>-PpP!D4n6z+Q%sX%xp znP&p#SEz@v%*?0SgX_sY6R^KBJq*izwdb1VxefN8U6Hwq-qJKqADFP05x(13|MPD2 zG~SO68NLi4cY@x=?CLPDnLv-@?7tSPtx(f4l)LDZRa(*d%6gkwu z6Xc)CnsK3^fg}?A9wlG`34V1=SirTY8`v5tGJKLUFo6s!RBfk%O3`73)Jv&IWEL#CBiJ7$e)X3WgvnYHBpYYHKtY&5kPoaSiwuU_FH;mI5M^anD6dc%Nk!eS zQVJ%J;zMh~AimS8%Zi>FlVbAs6ov_e`S6+)Ce^k0M~cG);+(QA^V*SSS8qe8b=uhV zHp@|Le1b;|^3Rlj2_$H*#A>%x5vl4c+kYL}vwiX?_ZV2tSnqV|C#BmczxwJK@4#7{ zXXuOMjNQD=V|1#MQ`R)m4}QGv2ai0lZU~b(x3m<21nMAd#00$8Cg**yQyM_+(!X*3 z50$2#PDmzzY^*F~4d={sd4`+-A0{x9RRNxvalp3|m=VRhvMMU?E*){keh!hD0C~l|EChZoftjp^t$UrN#!T~=lllb& zXR;bnpTI{FZO!~*0y9~8;3IX+owP7&CQm3Cjeq3o8tJvQ=NeC;rmD z^*S=ZWaX{gT&QDVg^2xAL}dch6|Sb5y~aWpM|vCNHxQW#kndbsg)i8?#G8o8WaV|- znrY%(Jkjyb5tYfxqjnl~949TPzd%$bKwaT-)Saula`cOYWwP?Z2F~34k9zV$dR9AymWubrpU2V0hrEW0#BRcB@x!wi+E7d~jENwc`yK zfLQM{aGtMylmih@Du<-$V=&^SdN5-A2a2E$p{lL(pznf=#d5C<2B@i$$i0x9%&Fh`s9PjeZq(I zl7x@flMg1~^KHf+^nA|6Pc+0$*d@#8$_|W4PqK~(d z4<_Ja)nl0%#}G!|Mn;%`kyUq9JFX#|yn~!D0VgL{yU+yV9Ky`I$P5!Ob7Iw*abqsR z%e%=7ll#O(W;jAPc@H^Z0!~)lYePofM@E?37rqjVlZaM6NM@Ma7g{mnCc?;v$p{lL zvS-}Js%z|2-7nMbddXjN=h>dHIr)sSi^SmPoH(%VbIsS!`s&s`ze_xLBiXjseKg9> z>Os!E%fpGrMFaP}5Ef()jjKM-uvv&(^*NSZkxjja>Wm9>aBN{(jcyMg(bDq~)Tqvw zGM$d?KLcfMO64V+4$3{71%U~q zdqHXG20IH8cw+*6N1MY>2~j)hIb@0nn0onr#+00|*TF=_e4}-=H-~<%F!x+C#{|s1 z?7nBNyExzMS>9ei-k5;5edCtP&{S1@VLV?8{^7qyX&fjLKRikWA=$xi*M)aSf3|Mm z>Asr!2pr}PoKWk(Sa)azSkgc!w|@vNK)Wwp0gMr)M?UJOH6W!%kBf`^H6GK;1f0F< z)Zi>wFE1<}A&X4F;;T;;7X6BN;juv;nSjUFpCUXS>9p%J)AeqzCS!{z>B8z9S!DuN zUvY}Cs;5kZy}QUB6R`JVrwV&!ZbcYukwGS4aO5{Q!?05{gblBiV`X`lnS>Gk?k0as zz~7IbA_{D_Fq*2}(0E~wTrxR@yiiX!h!T&JJtko9wWo*@LtiplyoYQuIfZO(*wm{; zMVUWLE}4MK*PJ5C?9`7QMVo%1zGzhWd@{)dOr9zc+%mZ|-)jb}zKE zV1=Vm`Q7B42{^Bh=+nd$ zJ_5-uFGyRHLzy|_3!;$%uT=@{u!J3TI^G^+;%ZIJR)+O?DP;a~7p0YPT2o!33cBsr zxzNBq)9okg_qv;2E_*+hq$UKp&en20Tr55GwW_^qxKNuZR2u$3OronWaNIlwH*2@L zF$sg)yN)*ImqcX#=&R4X4bq-2zs(=WXqIhQcC?I>fN1(q!ueVWPhU3fX*e%|+Vw1y zDJJ0l_GJapL!ANC)r4XKsAn!Kl$)0bC3_^{n9wc}9~##z)j*Wv z!VwoO($BREx_krrID#?(Xk+<7y)$NkpFm(H0KTQ9M>^V7_sfX)5c+1|GXVR+vQo}B z>UW*2b!-Hb%PC&=Rp-rc(G5Y4xsa#XY&26>lgGp~xJHDRK1zG3+5NU$Jw~NpDw@6AApo@X<86XAFg=_ zvVd^umZl{vKItV;-=$fY&@5%kR|-T&&j9Lsgkl1y(y=53<^3*z`##p|OlX&q4o9-p zfc7n4U`tanK)tkUxhh;&-sejvMt&!!%O8qR);JcVuSg%Rbp%3yaB0`FgvGUlT|rQn z(cVk|QrfjrAlkJ8sLKh(1W=`2D+T3UD}Z|#;h4}aC0&bTs{!r$7wB4&0qSNI!Q^4O z+dR6^Zq7)3Ykv3Dq5p;0b(X#KzX15OvThatY9M&p-H-{iOFKb8Tb#{GAOflDSm2oe zs&xA^3#DBy4R`|qnEC}=P#ENdfM6v4c~&JE}(gsK#cNEn1M1*m;$_*fJ^{b z-U%~+ffJ@cFCi!sfR=VbO}T3Aul4vm?SuvuFt?TtOrW(mztq*C&|LJ@#-D&2t|K^a z_Jf}Q-M^fm8VjEID(#7-`~Q|{H?m?gG?F@xy+tOFq;%iL(sp3p8AWlTNOd70nEEpZneg>{iiZDrtKvP^~|X)#oQ@kVDT$plioNl0(%wC8KH^H^Tn zUW`sPWS`kJy|7qo>KKBbQ%%fmeCxF^*O}%@e&7j?R~(K;k1Wa93`h2v09NC{Wbe=> zix=!HfiXeEbXru6r#7>MF@aps?t2NuDv<7=&P0{!7imB0)2K0CtChfOwR=+Hw8?PQ zSMT61hV?!}egmI3De-b!(y*X`Va#9G#*7aKErX~st|%IH;;QX5DH90ztXR-2hik3s z0pCl*QpsMi%jmtcIFV$&-Ch*a;$n&y82RF4%{q52Kjk^v^|s}+YY4AVVb+gov&L(} ziPRgyNGY`$8dE))0hS4*d*-qk)q+&<;|{GoQLOskG%2;~R2pyeP9$q{w$_+8OJPAleTun<))O zwK;o-R-6X=eHt=U<}&(huXD22I5FK=)L|EwQ~I*6KK*f6b3>3L7v^c&)a+c#41i2z z(=;0z8)p48ZPxfq&N2W=DfQSISN#)>%LFpkmd&^x1|QHn2?LAP4diEOV(Qvv19};) ze0;8n4dgBY%cY6Izx<1|a*$&#T+moXE2r7$D`LaSUtV@Ar-8)EK1<`Oz0ZP`nJlZ7 zJxo=8+K5b1)tAJ|{t*_U_;|`RPN(4-n`qn6+{0vjy>(QtTGT)L>P_sPoN2Dy55Qa( zuT95;(ez=luWO6NC;i6dT~CWq6ir|4VEJPLzV}AUUvai^WK2N$pJ)K99#G#`Mk|?P zYhT4lQg>{v^uTG~J<9;mS0oO-|CiQ#d{U#J-Ywg1Hd0epk9`)j&V=4lLhGP!&*>r8 z>OZM-qZg1a!+TecYj71^UH|T@-{lz5S@zQZ0@U>-RPUiQ1eAaOFN$vBb27!0@2N^m zvRsQ0s=_uu6R@7ssVU_5Sr9p2ISsXwP)q=o(*d6ZiZ!x6Q7H}gP{J_*Ty#!m9PL%p zwC@M2q^uqv5if+mFHQvezjcqWo z@^s1KpN7>~u*Ji)ElL#sG+}QL&9um*4$>-2pt=&pKLVwTzrUdcQ%@%#69ASd{+_Oz z^zg;s-!!0y3CaYZlNWzaRy!ct_Rcxfm0x7>_m9viN;E(kCyf)Hg!lc&d*OYjA*-)b zklsCc+s2UAWZ`I!1LvSvCRQ0{S;3G?VOV{e4N4{;{^W^cF6dP~&Bs#9q6rYq8B;1! zd&topGxLi$vRIEvcG?S5`ns>)|0bw=BOkF@`l@CgD5tCpw1$HjuG40S&pZ}tM`S2V zfe-RDlKLpCLM9L+XNY$a4Z7~cu0hD(A|w+)=8S4g3h4{|AnYdy%LK4bpV$Edx>f$Z z!@7a^iP}St6lbydKr2xR5#q?w?5sJK)L-^hgJEDpkdwLqY>76gr^@o6vEY=4v{RO- zgwlkaPihf0j`~+d3MP=DM4b?UO1no2^jidF0?_C>iNa-0lNIMkA>2aO2<-)=8zzt2 zvrF^yI#}UHU;PZeFPogs%)a>p@=qyGUQ>qc@6@(0F+k-wW^fQrg=_U5s-6isp1fc} zbnIiZx==N$TPp-~OLWso(>DWoWmJ0fV9qn%D^(9g;M`cI3|EAQ~Ox5QXmKylyrNq{}Y?qT69tOz**2i)Qqcp&Kb%jL7$Ti-wz_Db=yssJ=&O?-gcGiF*TGMS zWsdO6PRSIhT`ff&|A_(*yhnRriTW%gE79L(Xi3z=pADlh0rw@^K9;KU2i^U!*#_(? zf-wPDiQbN->cG77*;@wi8Uiu_;EfZzoF!VdKMeJgUxdGTR{%yCcWWOF+|69{)o*Yq z=sIlJkegV8=Y9gNjJpMJ8U^n5atH*nW!x63LQaX3S>iobV=iN*HneP4u|(E+U4 z<6S~5b(m={#MX@HJG=Csn*I#BlwO@PrE~h~x&H^AwmF??ugz=px_D1lzcvoM287>z z0s?|=yowy3u6Uk)&2lZGsSQV9B_;ricRwct(;gUu+)PL&fQ%1*P6+8eF$TMpuuK3O z9sC>*wW=S#BdyMl(=Uy?*gL?Bm+Yc|ORXjrtuBP_X|nq234aFvJX=$mvbi>+W;4J- zd?<7R7BnVY^t0MUPg{JUYZ8|IzgELG+t9r3OeAY zY2be$FcSbrYw9s^ou{T@K0{YEo)bDseExhSX1CEW8+Y-euRi~m@XOPgiNRR;18K~M z!ZP(hVbYo^JnyU8^Ck?sj#G}332VZwdh(snI}>sm8=5G@Xf>et6{^@tAD>SgO>_>E zAM<+9tE+$a)rY>y29Uk=b>uns0QnW3%!o2!pYMTkYJlYT* z8$cK4G|XoR!vruBMqxwHwe5ZJO+$T-P)q<7UC&WeplX`#H|Ryq)*v3YN4HV$OwTo2 zM`P^`cN1%5kJ=+`^v}Nf23ylu1j-wI_X9xj;RQ#lD3C^gKmCvPr+8y}Y_j51p$zIf z&xQq< z{nGB$)O$n;(!>tY=D%C_!j%TX4*->RFAby-;9i@)B>E}sUWR`?XX9m1@2|rMOu&0Q zmW*MA6o_>%t1k5+LNNhUY4-}C((dKpK0-JqfGg`>&6c>AqrDMU39Vk%Jjdr69bFs3 z!Q`T^9`Y@?*gAI|{G>q9+NHRu9H7R5qg|{WE#BvxfUu2Zfi&u4GzpVs@Bk-)0W$6u z!u>Ykm;f%`51dr4l*@&Xze7kSfZQKzZ;gpaw+rcCM91?^0hIXYd_kC2yLC^a)0Sp{ z`Q2C5@30+aFa0lo#apN2gJ}?W-NUrk#T!fG(-mK^oQoi82fN5jzVL}+)GE0M< zPcS9`ix19E2<9Cw4R{d&nE)_4I6od5g;$Q*$>ib#XnSk+9u`>;!oht;|MIa^sD&@y%An#Zq z*wqAM0G(e1pMYj#c=?%BMrcu zNf;)8$!qqF1LNIj0BSvV#b*Yvv(H79XJ)?OPsLL&3dnhg>DB?KGWH0?QJY!3nE)m) zmW-h>-Kk&$EC#lfU`zm(S0|1MHsEb3>CPb_697JKGKbUjoX@4m-$u7H4iPv&UKe1L zXwBBKM#r47V7$y^_0@;}6TWwLCf8=*t32{1BU^k$=xFZ?z%?4&Z&tfsUS&3pJVAuB z%!*9vD>M-k@SfKd92Y1R>C$k2M>r;c%j*b?3pe0{X~?e;k_jLWOy-1!p!32sK!a{* zd?R#)Nh9E~`utKO6#;clU;P*R12zJhOnY53*N}432-!h zY&SCj|X%ngsm|EG-5RU5{%7Gvo5F|snM;7@49||XQAn5ZP~*Y3eop(=#6>$xSbQMN)JW=!HQ0s; zq{wM1jW0#ua1qGAAtVz(#@Egi@Q09YY*tey5&DA;BU;x^ACtWdD2>#1hmVME?n-{z&r@%4AJ1}5w)!) zs9lZh3CHTuoKt23;uBZ9DdM{6B^uBWk0S&VK;(>~jLE-`WC6?*2*ZSWk2dm)q2K^j zr=4G=%Q$Q1Fwai_cJUR!_}Aj(3xWFfuIZ(P#ZFtVVllt_>U;meww1l~zaU0V9u}0?zOvsb~E$9PTt(geEBfa=Ns|3y%TN#NlV((0-QFmKvL`IGJN! zy`cvEGXd+RUD>cM5Zb*w(3=Rv1VB0coXKSIj^)9Aj$ljx79YYG3#;lW|MQm+#;mP# z<_O22-Kgu8XAAhzSJyIroi4x4AMl^k+Z-Q6(}zcW7cziw=?F|lU2n`wpuWR~GZTQ6 zZWX3Lj8i#fsqYes37|>`$P`rIRvzwqgkwUxM7spznFaeLt=-js)3dbkLA`vOGHd8$ zL1Xu85~r}j4Ze#M0OjM92IwmihgWU*tS6X&_408lfG{q_#eWn; zT|^)z04g7+0-(U59M}U1#spxc;}n)LdVOtxHJq(W$0^sz|pmdxv0Gc?w>Pqkrx~1ck zWt@FQ@+!=$AE!?-0YvFI6+&p2@<2a9ASM7R9j8Jd?@%7>Cke&`U}fVJs8&7YE9gzu z*5#eabO@!}c@-BRp2nX#1@GmZNdxp1iNl#5yIjs>7#C;a2ny+|OIbZISr%ssAdE9P zpvwrvWLcak01BMRfn828Cd=VWOAA$JZ1ouJOh5wZ(#~|O-jUWV{`OVvpXp5esZ#)y zb|wR$iNl$0SSDw(jMJGM^XlnTI}@;8Ix>Y2+L=7iVFED$Q0d4N0(ochV7C*D3Bbxm zCQz+<%6r9`cn#9=MF~s2=6thvGB!YJZtb#5S!H44Bfd>1;!mA|@U_vA<>G|>a>&2*3mY@rK@*0NzQQ%GGxX!UQ1E zeX_+cs-EJl;vBpN$;q9grH==%w@&tz`dx7j{DgBL1>wn^Llf3S;T(;!&S4m3L~+cj z&1@Ag0jrZcM@U*bht-DKN&qGRnA|x6fWSE%$T1hv%PX~`dP~wN@Sp6ln%Y@vWuc_xyJk=)-toQtMwXPtfyyMV@NQ!cGbJx1{MyqTY9DG zLVIRuzA;tk1%#^KM}2cSJSEw%+tFbZe9VOSnj}>Ja;^H-gmkF!0upQCxmBSyJ>TZH z^hBbEu>dfEB&)+gx4zJ*^-eBY4yMQf6L4^1RdnDusNpoDT6eDQc=-YH!UVh=TUlPF z=Ni*@;h2!_(&8c(U^HfGGmT@-X{(h-kP{~0^8~WO1gy-hEGx3uSxUOWzLwZbfc-?Nyv7QG_{@=whlXG* zyp2&LkJX#=^&|KU;A{tF{CK-_SK&Y#d9|;e#E`oa@+CWV+XpJ1HiNHOKwCs^OCiIZ zhCvv9iw?v3B&!JtR_hie8?2!05Ux`x@56eFN%!CaUIS>)xf- zG%Lmm-5oTk+9#IcNRx+J-=Wp|oKn<=)p1$DWJQ0i*T(iJ^Q|x=>a*DtVFKaqS$%f! z?SNLV(L!5U6kjJdOu)^(tH}*kUU#XU3_mmEhY9%UtRg>M9Au8xn$gNpa=~PExqz!2 z>vfh;`HF26xnQ!owvo?4@C4bT-P&Ep`N#0HKz^8jpSxGjHna2f9z51Cu}CJEfQeNs z&4vkSjKFJK_^7wos7rR3fSpw=&6b@^={ZJjn1GuXt-6I=S+30_I!U&efUV-K z$bpF3!RIiC^fCsX&nhX!)4k-0$?6*JXrt%V)M;=%IP1UXksBu9=4GpAIC29f#H)?A z&;w{KniGCCZ!aWoOjenylTJDJEcQ z6+?pbqioQuSwAoqd<}VG0-m0`dWuT(w9x3yarKCVg+4iA0*+SEy){SalJq zP@#)h`6_%f*<*4asL-)DLWOT7k4(U0@v$FU&QpEWaas~mAW|jsZDfQA7`sSc>)1c4w9x}!RjOo+%3ycXlLiAgVqu>KxnSm88b^fT!vkQC8(fRg~`h3w5 zHuH2}J?^j2>b>qxjQX5)gQmd2o<~jstBGNZ=j(cmr#%UgVI2!A;`CCd!v?8qKcK%p z+dOK7xdFl`CXnOkO0m$y*iEOiw1|Ov+SWkdNN6U2E1#TwE0wU1?>ch%4^Z}w_6 z!@~jczyv(pxl-a&=9zl0ZZK~qCKF&bR~j=b@F9XT0eJBtcdN~UO1A><*{#`nS3<@eL}vo@;&TF%YCStEREw z=nA!2w08yj2(g&}dv>L)fWxzvFcz@bG}AqT+#oU&Am6pJ$S%+Zv2Kp=OaQ-vWxn2- zX&-N8WxtEyOaNYdntE*SGvG1tTjYQVICxCa$u`44)%-OsG*J8AQrMbvCl}kjxkeYI z(=;vLlH=A0qr~i{&xvA4qG?knQ`LEqEdIoI%V_>+$b`Ab=D`*HrvAq&&|8J*38Kc z>l7byAH*puoaPLcy+B*`&+bb_59vM*N{-1u=+PNUUvbsPkq#DYP1mutpM#rb4T$J} zFK5-6K3gWGliwWfV z-8C&2+!B$rexhMr^BEM4$(k>C-5Nd+S6f8<g9V$I6eY1DfSu4|gc-LIhjDtPpwr0X5~ytcrPVn0twgb z7zHKlHl!_+Ys%+QP$m%c(`(t3DM3@Vd?7_-0uk42_m4}PYwg)uw|Ng{aikQ!gmN)~ zT)(kaO=p&Di$E`$W5NA3gNoUeBGXqN`E!i!KL|5O$>!_0 zne9Fr-A{2v;WTF$-M>YT?yq9B9pGiyYLHPHHe>xl6J=J^{b0`8F@cY-;$Z&r%Ef7l z+H7+kD^QGB52090Al535aIctHu0bwFyMod&S0Y(wR)9FN~o$_xu`lc-maqJF&5eA)aQ+h7hSIx33eGmeRbiVph9^Y zD)3~>4I0D=4=eoe>iJfNGhL~WJ5(w&x>8xiC>7ym%xWb|!3~;Y31AyBSQP&bHlLV4 z*Q?kE%knm2J=LjEBC5;xSq4=4&h*Y0S)ECeF1J#C-3gd`uwU7w*$& zS2Dh293r-`K?MFF1!e+)SFx3zVNW_l9Np{+Fj4FyREz|Q{g-a`bV9X>#iF{-%?9O1sUHdS`!C%uTWO2i(vA8js2vHk zyN|p1(^9l~dC)vL9-ubVS> zEbjY1)RP2y9>VAP)$6%mw=9s!DCfk#rg9`u?yf^Nk(|-3VUPU~c+Bwl4-Q>FV`&Zj z*Olof0MdL0=HEVx@&CWT?)_u069}(698vt`&fy{Agj4!yxpeeT*)aO=>*)W!HTGm_ zIHS!T?Ci;OCC2_&Mmh-$di-)g>z$uvDSSuN8Nve*8SCKn2j1(XR+M|3$%{a@c#T3JqeU5zH332@tFFSz1+V& z76@`A1tEbTR~8M)4C6-Tc$^oD2i0xf)_tAT`Ltx)DH+M3bYLI`mYuD(_hSNC9C#(AA%Qf-ceR_+PQ%g!8vuw{ zS5qt!h*kWx$SK9*1enk4Fq7;*A>v$1aY!Ie;oP2)rs0lV!W@%Ki*FOs!=^|x*bSYP zdVEL0UOh0&pF=J`8qah4>uypGlWh|cz$!E3?hpMxv5_fU;{qn5a<;q7xkvXc(CsQj zkBxjdO#%<~4jp7}t7Oa*p1jgpW+lET{# zSV8a|GpYM|wYm5<9MhDuqb*XU3Zs93!35oJCm>ZA7r z0tM+w+_9gMk=*x^A#l;Tox_VmBH7PVG7?Bud<(>={$*_D(wE!Ji;Oi)RlMg>JQ9dE zD4f?1zIa&&zmRg0K+f0wEXk=WP(qWwgrbr_)R*6PqOxVkdi&)RjRc|<-|(_>Z>L1d zdiobABMD@@=V!!xcAZh^JARNg!zPv1E1C#%{!z_3|%MEE0&-zYpw}6)WrCH&Q+l$oJ}>1^I?O`xc5w z0uhVPhE?WSCc=0P{xu3l0>SP+^tOu#mi6v`r-USs@HIah5)S+KHz*_tge<;|d1d~M z`}Q{}6bXd-g+p(-j8Iv>{x3>L0_k3L-%B^_(|1!q5(rp)3av7qX0z~bQydbAb02i~ zyf~3Q%KIrA2}CRYOuaHo?Oy9F%*ue@aCxA51=04v<@Q#cX`cONtb zZlIf^8m&J95Atn1Jzf?b@)(uYo!D>iZqmKSB@sN8HTQe7JN% z*15y}x}DmLQn0g% za8eGCbel^0Fehmax{C|F&s;{~L(r!vsEYwE|4jk{FNAjX$`_xqJ%;Et1M`kk?su4Z z;tVi0T$KsPp5Wds{&Avm=^vdG^pC#5J;$U-=TE}6Gkbw$cz^!P zu)1m@R(U3FFRWP;UIG&u5{UWKs(1%872>CD1R(*))s=wEwdcGFSCBgixZhMA_pA~- z2txvx9TmZN9j+mB5-_(L^%tusxwU8xKF+FeJyA%2a$O}V%;RGQy?veDybY%ti9iB` zTdGCKDswZTNGeliq20RUz)Dg#ZY2UqWy*MjtTN9a6bYcNuf%Q(-ML<8Zn4`z+b@;y zS%e?~#H|%WWYuXAi=J7-B1pIHVl7Ci_*Aa-M zIz>|L-5bcCq&h|7joq6FL;|2|tFah>mKWAAz?b&!tpp$ez|$%P$ok}7B9Q>8nkH|x zwdA_GZzFROFt4V`BlD~ZZzl=~P%e}a_}FnlBN$9ulSc>2k1WV88P=-*c5-B&9^j5N zF5Y9<+g`zv-u$6`a>>A4S;NTwPoZ&t{WgCmN6`--6)On`U6e~M7}vi|$Mqw-Rq0zf zp`Xk-1m|?^c2Zy^{Wu*&0tsh}OIR3YD<^aN7qBcfQrRV=WE* z7X&6bsK9q%J3D+FvOBxRCnXXSe??#t0Nalu#_K}jBbjI{>QJ@xa%&bZ;iZv3OJtIR zsxr1j<8JDq%AY4N34mt~hLcyj&4{J{hOi`ny`chFpuh=f)&4IrNPsaa6D7`UBtJ)F ziEX3gjqkRbRCjxRU@p51Noc0cDa@w-$XoA6`uUKipOIt6P^MIsTG(!TZ9zG(E+q)X+yN47T+0OGpd8f62jbcV*@bIF6scnGyzPTIb+qfgRn>Mtw z*zuYha?w0aPB7%h)R5PYazOUxbc#)#MI=FhC5*sD(r-ahLjw6mPK~6P*e9Gx^rX%@ zh@e3itZx&G1X#CMtj^XM{dmvb)=GyT?m>@BF#m~|B)}Zm<4S2TTE9K~4#Yz10D=Nv zTE~ZL1?hW4A^}pfBJDCrS%dz7kR*WISrH^YrMl8xU0dql16_+&wI30O1USz;7&uwQ zeoR0T0FLZnPT;lRQmfWai9!ODkxfi+t9Im4$tra=ILHghpJVzbsnBb8v^tA;Fu4Su z@oPB}kVg=Qq(ZNyaI#)Iihv{l9N8}mj5N-kX~3LHzJb6b03P|QZ35sfzKmrJc`VtJ zROm3W&)RP@aY%qOvfDm^8Y|dXp}UxhixUY$0+?MD)#eZ;tJW#RBLUvXVM0l@^6J^C z#3cdl$oZ8CaKnWEAo3>x|B>@6lk(3Rutp#f0F8WhH33jM!EYe~2@pm;yP6y!tIXMi zA^}uY&7@T(FA&ZpBncp^3Iy~ByDmRGg8WIqzp6kG{#o0dPaqNiJ!(YPH}p~?Jg^BZ z-aWN11joCl+TD>srFP2esWwng56oRZ#@fY4p-Jr@d5v_C*zY}iRFX*;>)q(_9`@Do zu1ao8_jPS~YqqtFWfkq#-Z_3`^a4By6ww~bCZA-St0v_ixJrN;1R?>@$e5c9=t8H+ z6Um>XT176L%_?#Ufk*(fy_h589?5uO8~Kue@5nLOI0HGpS;4O$07*51d&}=2Uy^DB zAGY{41R$wK@QYl?Tu;6v)d+skP^jEU01^NcO(u~nvXzq^zQ*26rX*lGax!5|oG8<5 zklae{B$aT-TlGslEEUDHog{&0kUI&ukL=JDlHGI9D)B7BkW^rIALcDGC8@wN!!bTf z?j)6P_m;7CpCfmY3haL2tmmG!yCDoo1$OtfbdgL+DzMCO6BqY-0N%U z^U0lLN{eT>XO(ynVMqXT*);Z9=`MHqp=q)DOUac4Tt^Pu$E3$u<(d`xF0v;9`)PVE z{_7Z4>{pU63HVOabMbt$g5OO55&%pS-+T5rOTUI3Nx*TM_y)(UumiFt0qZAE5gMID z+SidK30RI?^gAXl$TBPL8_1gkyhlDS8OM9Jy|mg{#SS_W%5NfD60n`7yWg>FvtqxM z{7I&?@n;Tzxs%LEz$%&X}Rahko2~b8>7O_Y} zv2tR1WM$F$+}z5drw8VTc&W}DfIR&puhoS*5Nu>+Nf_(hs4UOZ%2HIGl({w-~@md#=;t=DS*tEXZ34LIRMH?bU=J!NOuu z=3e5ERO5$UYp)B-w~;dmIFEdITucLUZtiP$=H~f{8r6XkpZ5`f1OOGJ zdH{4VG!WB&fUHTtx`O6aSYw%z<^Dl(Cjs}7b1}sXzt^(;5ZRJ|?d4NvOKf7%vW)+b zj7h+FRF6!>ZRkIHZ?@w!a;l8Wb@E3qa&}<;@<{Z@K83+l|A^~&J)g8cbdY~%!lzboBu(&F8%)tPzz;0XKqKA))qJ)F4QYIIK(w}N5jm$skThs9roWl$S+#=G|xYnBlQjJ`VAKX5) zb~iXj)`4#XV+%1zfHATk5%3v{fluPtxk^>!Y=V#gWMs9N2t+1B72sR~kN{w0&vpWU zebx()Aa9ZiEwnG|hVuzR0+1@AXrZ;Z+sc0-S(AWu6;VXiS@9oD43dg$BpBH!dK^JW z08&L1DM%1S7ZZS_GAD3AD%I>sWKB|;6Yxq#Q+J}ocwI0qB?d`lP5?&M3EK%mQkfG7 z5;);X0+0Y;WPiF~RrZ%zD_u?gB;Y@CxuU-@vPe5P=YMA1aV>#J05o!9*>flgl=aCC zL?QuF6*=4s1jn?Ot=(=S2nj$&j>7%jqt)rnq0=OB`!sSU0q5(BH@>+oC^%<*aT_5> z08vE_Bt+H=yNE#oj4A?GFoKHFB!3d{ANAf`V*f_+)0#Tg-x=Ad>b37&pBrA(GeuqdTW89W-Xe2*JSo9LDDY9*xY^f%{wsJ$g6+Ye? z8bM{x56rLgT}K1a`s*+Cx6xZ?72&P-!%s(kO_Z}^*f9dpfLTel&dj%G?r37}*~+v? zn~^{k>;9?OHoGhMu=s)I9*pco>16_t0APB#m#_{(*!IYl1Z-_om6sdSD9xGf%1V0% zp9aKO4G%75@<5RG5{U#zc4}e@q|Rb{smGYHdK@5k5^%SvtUUMjLVFP%mF5B_7%l(j zkUt6d+c}CU_}{t430*PE^U0V5jBO(|1>^mY*qP)-#&(tVOvk{;niiU zz?%p}QiT_K__AQrK2j1dyp`NZzLdkt25BFQLGX0n`kwB)ogB-|vvD~dS>jU_wgeC#>@*#rG2JX-8fea*&p?9cc zXzy>&_??2J{v1IuNFc@?2VIP1^qu!~mJ&}KMR*dxuN^}8t(2nKTW-(TXxuq1;%SF>Rg;xJ>6P^U{?SrKM8YV%|drSlW6M;zp zJaJ#6nBMkl)(#l6F?K>NZsT0trM|I5@gvBjLT&y)`p~L0EI4%N3fKZW7o3fcPZ9 z-*fQrJKZ%5LTt}ik$*&F5+Jt@4l<|L)1W^lC<#C(&d0?(9)LEnl8HIEv!^rD#5R_k zAG3DcAO|VtDTu+&k7*119Qy_&0G_y8QrrTI` zg(HD*_Z(v3mYPeP7?pj7Z3~w)d3*G%wc+njOcIFsmY+c}L(^K3|2IV@fymE2v?4RB z1>s-?`aKFn0)bw0p9&Q3+el^kFoh(6kk3D~LTYO;Y_~t6NF)&HX%pt=fSaq74U`R~ z!2)UW2|3o_+l!sy*DdW(%AOsV*Q`e#{t_0!_K&*E6+)pi$8*(tkyqcMdDSj(92%d8 zf&}Tw73)KGOqMp~g-eKRh59m==aN7iyEtZI-pIX6Ys+}Zj;~3#u_`)?@l|4w07I7m z=Rq_w(hZv|M}Ie3)5*p7WJLO!f%(e6<1PA!L#+O>+YcZac4lgJZW3~y6L(FThcr*bC%~}am%DQs71*I7JZ*u^tOWc1qMy?v_p41 zu*OSH2-dxLDkV?Jt-N1njv;}NIZxr!4AV0v>2nSYiKaKR(plyr0TwIw>1kK|7J8?*=z*%U|VGRkU{;X*2{mU){enK1);7naRv1wedvwPuy zn_*-BL}mi4Qisg~j09l1^l@ahX{fj^@2CTEGSaxpj*+5$NIE9@B^M6Nrl%kU{y9dI z{Sz*CDR6Z@eA-$c6LASQO^4)&bogmahdHZXd;q2IjwQw5ika3@bGD16St9kPIS?j+ zsqHTHxwa0NrGLW zMa1~>cYyU}VvzvrSrbL_m{^pag3C6xeHQJ$N<8PC1~q8;MBBe7CJ8W~5FPPElufc;kZKB~qDyidxPJzF?&U8e zZu|2C^R+F=cZVZC_t#&Z6hrv4ityI^k=_15vs=y>BmtC6oQ!aS6LwXfn%0+F0oOr5 zLju9_nk+BvAvm-_dP_@t-%R6%T6cyLaWFL1Rw!GUM?=CNERTg%E?3`0n#)f z236d8Md@~jZh0UvNPsa-h($573Y|_c5`g85iM_Q)`$pf`4;49syh*@2Z=_PpEdlSW z0%sD0WNMGd+RkOH-{~@Ag^E0s7$j4BB!ZDu=p2HP0L;FfU9!@LDx62IB;Yz-DiN+( zp|_Gf3E1aN0u*z#k2YJkFCb?UaLyZvPRKbc{G$j#0*IXF7+$K;b$}~>_J?MFELoF) z^>q0nVVxDfK@1XLOqa$xOEUhjS9Gt9TR}hc{fYSvW?6{U{(|3?H30O}Ta0%2@GN*TnQ8m_PFxkh4<;nShIs4)0o!$(g z`s;W2+eWNJS(D_tBVm9qr8tw0Fj*tsp~psnb9e(K?hAWzU|w)F9Ptqh zYx?W1(HrQ6oQ3uQOT7~=xIkTy^TI=LM__+f%4c%+x7}_{#Q7-1F(i;Ar}c9j(x!K% z`qV1I`4i+!0?zSQ1ME%Myilx{XP}%1Pw4LK>0tF_-01G?z$`u*R{s+OLI0>5>@75V z&Vwg+pN2l~h25X{bvzS#Y+qI`@&Ndh5qrghyNqFOT0^TojrOz6v2 zBdATH=qJgY1l)7FVE*p3Lw<vA6SV%k|I6mE`4vwR7_FzQ1oA-{cKp5&6?(P6Cnb z9%Yl7I9NYqrJzw(FbyRLpCJMX5OPLwAy(kBw$`LV03+xXCB(-OXN;cndrS$Z!%yk*OecPml|e@|oooR9P#` zhaik0ffTx>ST^wejSc@RUy;q{OHW%20T-|G!}DjKgg3m7v`76TZ_;Amtxqo2tDxL& zRqmwZ)E0hRt<#>Zw>p;B`k>Fuj5w1uypcLrU+$plibN*{tdev6 z69a})T;nZZdt$&=uTR7}Iw|NMeKUb-J5-nl1b1OVbB(?E7Q1g&ieu7+{bRPLE&}ce z0f+Yf7Ka4Ry+`@u{!y2^Q@AAs+SyCJXWMPO7Ue-xg#eY~n!N}d9vOh{n{O}Gu|4D3 z!fd@$$MZ`1qu%P(TXlI2ZJCX+<^0fM7x&M;1x#zow6>!LrZiZs)vL8?3DYOj?xzHz z$SgJI1fh~e+?XosZ`{U-YQz|xj?-&wO{%%NW#)KYrcRxt*V=mHYl%p1?%)lv8ic6E zSdo2NTY02b=uKVTbZijc3}8rp>d-w&;Om_|-kDo7Hd(DC?#WYc+Q*yHwc!N4G9B}J z_0RL_;pj(&r#?Q=_2TFA;#9~x&Z$7wi(jmqQ)i&{Ba|}()&*im0udSv2coiiIay5* zyT>a=DnymjE6HgnSgj?Ku+)oR&5P3kYVG1zn>U>{wr;5FDjqA)19H#zA8@k( z2e;Pjtq|h+5<;}O1qn^kS;RYM_3jdV3Z?4vYuMgTJbR{!GxEy*nJSpO2rI(CuGU?$ zHmY3(b`bH(i9}2}Mg{cmCy8jMj<}+KYRYXYkh>kCTw7ighJBrD{INL7+RNIimJ%p- zUB8wR3nA32Syn+jJw95ehpS}6;Ykf6o(f_<%Bmi(e^->|ZNnZgzV?_uBT#`Fa!FBC ziMCoK!X+Bbr-?VR8eBaY(s0PCel=eM%x8&NFv2e@ik|XZIyzO;FA#N15MNaajd9|G zF6GTH5wlQ)UY1jRe6xdPz$@*2t(94AH-hrIEgzU~or9L+gxIP63EN!z)m^FGsEn9F zwoZnt7-&Df56y75=xRf8=Fa42F#|4C|{M`ILlk-5^|TQGbK5 zuI-cy!2gMH4+l1LW=>jsSS)2?^F6vX&!Uekj$ri{YnUIAX<&&*Pspbh7{UC6%(A*a zF2}a=5KULxqv?_^mK4?HsR4=x=2^!hvX0G^_K&@sD;#Q9@vU%P2K$~{7(kaa;PsudBMzjaEJ+$*A?Re!98mW@N}=cwt^RRMQ2-z>SRj?<~>*@-rqcY zqQChnWr3>XE{5`XU9l*ha)RTY{K$&?2WffmVnM_Q)KsbeFM~ceT~K zLoL9=x*QISsl(&zgA#7LjUmTQUQJIwv=C2a1T7z=TISX7j3j$H`{CaD9=wRf|Eq1; z*iB?QF?z0l;uUgB?Fzl6wo`6_oR2Le=N5d%p}yL!`$T{ZmIQ9|@Cg{XyRWv|t@)hV zra>+$286e_@L+TaGgQkRWI_QsCSBM+<_ddJ?a~`|h_$aO#vG%ryW^>8Cb0Xrdfs(->2);zT zxw}a^)Re%2=8ar3F*6jUcD+R1dC}_pkntDxA2JlpmRTy8Z!Knx8SZpQW3-m)_~6=_ zjP+=gUVRQDnYG<^XpFhWHl{wYaMVhAVTn8Y7jCm~wboK?2jMstggGD9t6kYy#c0ru zC0fXP77m_0FW#gkHpYg-Na;bwH>a}^$z=MRo=Ct(Q*zCw>spYm&6#AFo18BkDsqvD&zbRZH@gMy`1b`Q|0c0x=Rxcq(y&oO3hcc-E+QwJ;gdtybtK32P>v zSn7MsSabNqCJBr{3Gd6uJ3qzc3|#{k4n@vTLQ?x&L7-yk>!z_9x%|UaBAJV+1d1V* zXy)>%B%Qg;)s*51`s6xxLG1-B;U?vB zb?s((w3XKdP4iSn=z{j30J37HOoT6NLWCUf;PdPLg<$+F7g4p+9W9HufGAO`49-F!Ly#zer2>uxx(O-_K-_F}B|c2-ugqjSBzgkRky_D6d4rLLdJ6NCqkxvF1#nzE^dY-;t| zb=_bdFK@abqnysLE@DXnnvGd}4@*SYlr8RW(plEz!s0$rUYKykXS~!WK?xp-$-J_h z2G6|d?2OntbySyEUg2T9_$srab>|!fI%C{r{WG@9jACsE-W+ zke;p2A6VuqM!in2j&)|eVY$vJe0~3%Yr(p<-LkG-|$fhw6@GXMePdS08i!36lLH#vyZXt@6Vs9$Scg^aS4mZ4Z?6K$YEa( z8`g`C_vg?4{cpMH8tRZYw~*1njtFM((b(QHHZgbAVDs>a{$|^s-VFpzVy)eHTPnk(p)-B4Wx9dOc^VbSr3xeCWSXS3jen86i!@*3o#&b= zHNZQ_IBc}e9_zfIy)v)o?MY+xu(3CX?UZ>J?+)6iCyl+`8m@+v$+5I;S<<$8E4hwu zgLaGsV{?KfRNDO1lIEwz=7()W8u!ASYLRg!!*VP)BvD(i1_%OneWzic59d7 zG$me3^=Gi@F|(LeqcT#RQIi%@MA_F8H;h?LjGh#}#H+I`$1 zNI^CVh%4(KBm6JZON4dalaUPT<+X(cJbl9l%;ag0C~!==uz$=AxCl?(>_w0}uiKho z-dn_?Tsw^J)w_EznQg^CA$AHmhc}3sI;*|f^>PE?t|%6^($H}ei@iEmZU=3g#>Drk zz3H?;9Cck^hjDs|EH<^HJ3f3;R*))h4nJdrm9-_E$DoBVys(=Si=|JBpX{G>qu!)X z)G%<+n*e%2F;hr%xDJm%Z3v6{8zf#-D+c1F#n`&^0u}3vUE~L@9_sF?cV=DipEl}} z{%I~DfkBN7YG6?7?y2qAe)**J!MBj2p4JCf)|bO@SeVo4N_^FzNSfz0M$PxwOk@&z zPJ0uuvHHtCHkQ$kq`h&fyIg!hyy*&9G2PafhIP)+reX6FvWq6(oC)lJrOT`}=3EX9 zZ9X*j`zDwkAJ4JlZHHva$#|b$%@JgmNvq?fV~FCZgC`)HPdGZh_ zEo^P7bR3T%$Kk9wo*8o^mH~tb(`*)ILs>GX4;Dx!Sx_`)z6%nhIf*Ru@?p*>C}13< zLe4YWv5!2_2~weXAW;e>yPR430Me#1eGr9yY>?;7gNT!#)E+UmDu@fid}ba(mf1A+ zgt3fV^@QN51mrWAc_4P?s)=A-|CB{QitXzo;c#ncVTh?zET?k|d}2}~&=R!vmGq*5iQ_JpxAj-+; zBl&9xm}io2*7J`mE-yS8I#-2lk!jS;jiQ{@j}hK&^3L(-V~cW!*CMPtWF7P0Ly}10 z>sHtfZf{$%0FUZC8koyj_m55r`bTfa$r|3$k{RDqa#-k%sM5~`I4a%gUImZT;ICSO zVxB`e)9izxlE3eKeZ?NnY_VlO`n)2slyUWnTUYiHepPN$wz$9PQoj4o6)W2JWkLwv zOBo3=Fk}jyUZy$)qm+^NZSlQubZhN83K4Jf@QMCr*EMGgvQtJ)5HT27kA{+|J%FrW zx{zOF6`W%;rTt@ds&A*e3<$wvxIzeAFT`HC032fhY+?Txo8AZIHC z$f9mcmGw7XCzsSj1ZKl?MoYjK%2WJ~P73-*@4#5Va|)hEM}-rqf(7Yflw&ic{bPk+ zYC(E_GEpmYbb=nOtmT_o!&U%`Sna{@mg*}>`VP0CZ7FhTf6I=9VNDrg?T0YbhwxCF zrmGD%a@KcR?XBa@yBR!z(~}1mSvxh#!XguW(Lkz?Qvl=IAP6=fZ7>hfz__1@YtKk{nLbylHk`)4_EI2-L3eLqcE)^4&a zVW3!xnGw-_w6~UWocU`8Nz7MCS3K9`ep7x6m0|t2WIf8VS4Qeup47B}GiuEmwU#of z`7-een=E)KGf*)5B61TuMYK7^rLk{M`!|xg_k^4tm|x&)KdAMsp4>D!3w^l*9Zm>amlp-GvoMxO zeobEeK({1dg(=aRu&R+2wA@ibMD%|-wjO$gSxkO%&e{ISJ0VJNTk!gF@FGEB-*fBe z?h=|FL0#t#`|GZ^C!k!g!m2P|iVuVFMQC|7(*hhfRF1i1D1@-VrTWq{?HRm@T^N$C zL^FZ)_yEQ#svb6WSy`J|MV}9QyNG_LkG!UTI$e#{8Vh5|f?f_-K&)W$q_9}Bu|gdi zPFWd_P73<^o0X7CM>{U=EmyyZK)UW?bL`a)mSQ3z_Fy%e#n_ZB?z<9hpS@=*E(Bii zvRq+pu+T;%!Zs@wYeQJn_eWcC0Wg9UrG+tUr%V=Nvz2ktxq0|RfAco!!C|d8x4)8$ zfqHp~>S&p_)>gatoXTQr#ToPX$eF$^Y=)NuIG8;wtnNI*U?)IY={vTu>wnE7o zszTf-Ig)tNswmr^l5MofNp?Lb#Gjr)FvXh+#k&9B0qeoGO_8@H;;l+DQCZe zVXJZb?Hb}{9ih^#N%EMkAXnRFxE8|m-ay{5_9Hf&%Wtk4x8Lqs3bYNL`zCVFwi-{K zEJ`&&N-XokwgrSxoc~PyP zhm&k?GrI>kLo79PURvw}X1`fdJd3VCL%W071hJvrfm(aUWR2e(AK1nFDkA*DPS z$J&2vhsF(!7TeezXBJ%_k?B-_!|)aTQ@xCMn69_iuC=#Afan~E=Vxag@n|Fm`b0i9 z89LWLkq=2?aM6bm5jgpBH+rsVMNc4F_Ei4_g5AVVeYX}u)uN9jGFVHPpG|c_oK269 zoarBboxQx~-Vc|F*VqhLf+J5b#ebH!xs{=qiJj#6Vp3gWJg`E{Ix%G$^DOcl6}L zMv@zmCcBwJh3LR{gpKh^Kh{CuwYa4^_b0R_-IOiH<72GjU9NA(g?PCG7Xs_4c`Zhc zQg|ML?RUA$z${kA!kul|6_xWQi!J-WQS5kTfh+rG-K6Yl=WwPm;dic#Dz3E*A?D5r z#dPn-QcT7kMaB|miph6fvD{H!_@<=PR7>{8hug!47!>71>VG$&1&aZF6UbZpUXg;G_m0Q5P7((ixM!wgz0I@ zxev=W_bhZ>E#P}3qp$1pbws^HpSerFmD1kgSV6q#!;leXTg1oMI;hy3%*BcTG!5dz zB^$2A?OC+1lAom}@en{bO&W`M2Q}WW5YP6XzPPKna(sh+3QU zxhFeEHg(39s!VD_ZYI;6?aXA_isOdL`^Vj2FAZCQNh2N0fAQA%0_J8q2zGpe8m*Lz zCg;BgjlQV=AS@CVCRk(SnD{u7RwOzLJ|d82I?2NfjiC);QUCaDJ8JHMM(rza{?+e( z;MJ^7!5a>RQV^4*jnTv9cmHsvII@aPagC5Td_lsp+?XosZwyxh6JpXvd$!e^-`&OD zgO>l%NdeYi`IF$Bya+hX4AM*1R!?4nu)Q!vFwbS5ZbY~0n#eFTZX@7mKZa&Le|ZIM zo$tr6@~|Hxjy5kQX2EVxvf6O0o*0mKHK1Zq(W9}hb;ZDl+6U0E!m0%nM zU5RY}#Jr9|6z_Z_?^lksaoTt2E=a$lmhN|$Um<>xuEhk%w!=`9UPaO&u+~4-^Z5ID>^p8Z#YyXaveQRW_!|;CH=*O30%4 zXa_Zit(Ve0AQoet;t;Z@`=>ZCuSjjDJXwZ1(UC|7cL{5{@|dfmP8)Se|FrACV1x|O z5lTje*2I2JO)adX15w%vugRJ|Ju1YQxyy8ke>Gu-);-qt_A zh|sl5-50P${vs8}&GFB)dcNYM%K97Kg#R{Pf&h-bQIYYQU1*p12#?L@oc1T@ob8`{ znO)WC{eUgpaT`F3)K(u5b!a2&ikS`^>M41rv5L^Sy#^h5qa+EzjZRRIQ;^T$Ow4?= z@d*VNk;#HgsVAq7xT1e5JS(>+(HAbhj6L#5@EiPD3)&KMINE@08xm`JV?6LOWYQLx z_2d-I{;|gpQGPx#YQiwbl4V|=e|ThA5pcEnkTTjxHOG_PP-2g*cZl%uvSAxmS@c6! znUl$KRQir}DFg07TCT+rP9?&)1Rd*M1}Hx7CW+N8*0JGk9!!|A893Q0GnRlGh+D2J zZqG`l43ck+!ldHvOyU(zt=EqBbrIZJHmjPmDMFb8QSJRvv$;>|i3^4c$$V6riw(d6$zA>mM7J)o75gy+7?a7O zZ}90y@Ac`o{XH-j9*IuzI(OJ#w;c~(xOp4efit3QvYyw+{=6A|;oXo3*T?(g$@N*FM#y8HTpJyhfdw94~|=S6fXjlR>K}*;V62G?c z7x=|ToKaDP-%57@ue}OGSrsbBvSw(j{4612YZjB_iHJN@5%~-Jq8V;T!iF~jma&DN zG0&&pb3Bo31QCSlFmGot5!1Ys3_~MEdueeliT%tg$c9GrmYYBtZ#45NFO9WVOTTsN zx)rU3^MP?bUsh?YG+PUE?cFOa7Hv(g*viB76+w=H>(o%Otx317*>{84vkpJoi zg#3oE$Q{WIblc4bMGS>TeRwm}21@&&pfJ=!11PFFdk?V}{%=4Izm!^Cm{O4KyEGuc%b{)o!zQ zM|)qhcVH1quU0xU&BYe}?U#ISLmVqJcun13gY^ZxW?*i-9yQ^NahJI(nt5QXF`YxE zmWqv9^iHisuR3JNVa>|5g&5VG$XFwRY3@0+0;X!<7%@+wm?RMMb%$2Wp_)2I)Ke)c z2}HfC%G#TU>udCCcb8N$P*=-#*=nY-Xx_n!ZtKy=S~3&2ahLC(N1HV{vsE?`JgxiqAn+}A-|j$n9tviYJFn#oGVWAVgs zvna0l4x@zxnk^m#Xsu);1o&qPKmq~oJO~0L)n|kd-=`2H5aRY|ohcJ}4Mp6gF|^AC zq_zA9Sr=^Z4M$l{$7-Ay!;zl}`Tx8XA%9G|&>nmFV1z5nd145DUVlDV6nB!LpmD#0|6W00>QBnco(=B*T4>5{N-nuKoZyw!9-SQ5ZKwN%WexHjY{ z2vR!Ee1bu$;Sz>NNj0&|0u%A+U>9xmL^eG)p2hSWJ?DzkyrxLcd7=#rr9c3GajNv3 z$6n$%c2aT8pVP@CaB|7?9OLdoOrtt>i51|}6o3Q*luXYt?p}Z-#$%URAwEMPNFYSH z^c-W}(8A&LOplu{NP3Rl$0)l#np&_bvx6muvd})(O9{_!omuGUr=9p?V9vS)!G5^> zw*LTgb#*X`fI$9x4dk1uW39>9Yhm`%T_n&Tp729M6gL!eqD{jI*a3o(0PLAn>*NQ? ziI2>42uMQz#PaUM$~6M+f5))XFaZB5oYY;KX{}0qLtVqqf!R2NP&?8d`5%D0rULtU zIK@H0{hJ2dEmbntkPGxN8|UB_l8WNM>mg7!>_Wgz1SA1qd^T>fKu7~7c`@{wIi8>- z0KIPd;1f))IQDU2e#iiH!2y(bCu&mF_^RG&bGbF^0#OR;C>WRP1XqbL9g1b9XjLF@q-%5tzv;zmNt90~Uh2UG=Z1wO5bg-qD-bx|KG>M`EiSj2`0=42Z7!$=*0N{Iy z8qdKQ3;j+)lK?tCUq3Z;63xT#?;<=2;BT8cm;?R|{k==WMdHbv#89?D<-@3gzUUs; z7v+zExvI^+sQkA7pj-ugQ3s<42-AmZm{!ouajYdi6D`a+%rzu*&-C>z1)~uefSpG$ z5`a~ZUs7O635F5@&eIg5O4P5`b6G z5eN}HcoMeZX)C}k3P1t@rtb)Z01bQKvL_vEE@C{p`0@c&LGr=7Quyk<=&U~n=8}2D z@{#t)|A3wqjIk0p#X;n5)5xu0jFm8#m<{zY*D>9YK#vOYTLwzgX$tVE1SA1q1$~(e zU=o`t(47P&0qFE&EM?tDAza2lbio0X_+t|F~oQ( zr4d*~R(Be35U)$Rh+*DJkB~rvDgr%(v4Q7JX6_{z3BamIxgl5(atYwu2uMQzOdoGx z+z4!UJ0s2ezk&g9Z+W4kEwB6JyjwUJisc??G%CjhD<3$EhL zJZWt)`#FQ}MgD-Zk4NZ%`wyrpvY>-f5QO2~)n!4)TZ2$kdF}Cs-S05|iB9IX=^+wm zQ$;#VA=-2(xC-}v!jS;3igcKQ3!*T9{9Qtl0J4H~NY0HQD$J`i9SR~KDi|{M_O+H< z`|aEF?qFc%pN1Gb${zvSD)4(ePCIRq`(>KzVdBbUK)q5jjGYJ`BRWK4+ z?JQ_h%^w3ZXdx^Qm*4guU@91iI2c7hD855Ov4W9^V=ZYh(Zc*2ok9W)D(D5IU^Ev7 zVE;id5`a}O5=nt2VHW`YCjm+5pQ%HRj2i*>-(;w17=V8TokF~R>$AK4JurvwVW-d? zCcgk#L8mZ)R47E<2Q}&{2#0{X1fJ7Elrk5x*G>XeDrgzAU>bgD$VU^B1dtVU3bT+& z5T;=tM_3ZTPTwiCyc=nZ-(@uVH~~-v&GNI`D_y_jf(N?X;w5uzmi@8*bjvI%XqH1* zeDx7%h{{iBR94U|hwLRRU4dem?erE2j95Xl?6_x|WmjxLuOui5Kr3jL9d{3!gr+-X zfv+Yo34m{!I!8L@4gRo8DCj`*afYYFj0=>U?A2b4zIBLKu3B67bQfET3(ekYTh~46 zF+M-k#v|veZ$wmX2#eg2+`#1$m&W@$6F@2q!to0ljyWT*2{=jw28t##_mJp3bnQ^2XUQxpC6o;F0yktxfpi=%he@d#EQ*2{kYTfET`|UMLYt zY0=qR_9e>Q{4G5|0uNk1u?IZ227fv0Q*859T3?Lg4U*GG9pz#?4q{(KSV%3m1=a&^ zJC+Vwhi`LrCC|r%ddSkRhL?(Rj`+ zRKa|QZgCd#CW^N=OW58tw(6MWTe0ex?TWDSj|rNOk&prrz05jV|>}rNV|B%2unthN(R>+r>^ZC z1j{g)j*>%VFn`JbAc3Zf6IaYp01ba~mzqK9X?s83ni2n50X8vE5+6k@MkmClpGP`D zV}+M!XILVGhXeDww;?XpYph6#J@9q+lF1#ChEoi9_%!u!yrG{+e)u!NQ2yri^d1RJ zbmhd}OW5J_(5N@A0@FO^RQg42#|ADCIITyHd5!MWtQU)I(stN>$o~;gDEE6Fk_)B(HZDSgVIm{dBZW1Us zU&7rv`0zf@uzvDIeEJhrR*vB))!aOk@nHQClMo_RXA|Ff%JIK!8fJd|W`xLTqb_l0 zhXi)Jj>X4uWg^;%JP@%EC>Lm;+*w(mID}E5k{HI!GFV99nT4u?h5Sc_OMw4K28{Ji zuKk}lxplC`y5tW0ADA;aC3S!PR0>@mUz(+|gX^B4u8U6_j0_GZoDM9lfaVg;wU9u( z$4%@C@Wf!!@w%916^+3xK36+V!blk0`JxuuMQ(p>4TNFJqP<_h|cW=-Eh6Hc$HPZ1fnX|?=3 zyTd2MPDyDfklX-~N{p8>syUIccLm_#*BjNZ@fp@h{OUNzJew$NK0)7-K%MAP@kucw z-VNZMO8?TxF>}V}=0^*_k1HX6q9qoNn)_I22RpobVE%xQi}d46VYw{|?q{G~Q6fb~ z#86bY^qK0?5_2Z_;dT#{JQ?4lRdoPl(- zU5Swh`C?M2wWK==>0up*cy`To*6V{3cfhL&S7IcRhEohUXvJo!i@Vb{=~=zlu%m^u2w+Q^wD{?wKC=1$K!jFq{4^Z0wR=2$j* zo3h2O1cOt1A+)@F@=6pDK_TIup1P+*iyq;c@{yBSlrs;eqe!4abn_RoD{92VTWOFL zy3Cp}Wwi3O2N^YV84d^LG7bP-?O};Kz}{iY)72gerxmOm?;NKW*X3es6+n*M%@QKA`& ziGk&Wy3x)n)JG+np%~kgr=;QV8k*13UnJ0C@@6QDmUxXY-1rW0L7mK9be=V5+IA&o zgO~BqrgpQvxV)z662KUyDJPONl%JNd3H4R57)sz zC&W(K(y+UUNgFCYc>|Rr(!dZNetV1htwi5FhjZY+lpz$+9LIV_0(BA>ix(slJXc zN-0o(0)IN*ac?K8n|b=11WGk0?%qdrih4YNd^>%vCXbo6M1Kq)j0ri}scwEoh9(K7 zxL?AYyLtG8l%-j)K9`tbiHd>+Kmdk^-=`ifk-DOM#k)gi6wTC_kx8J)BJ4^Z-Tjx_)%Uh8v<|d`t?cE{ z?qvUEZmzdJD6t2Av+?*^8sQu5U_<~1hA42{C)IH|-J*$f-~@D{mLixJ&`~6;gz?_N z#2~udb_nXlgd$-~R0Nf*WgLQg8R1A+qoNH*QNXLMR?sk_)|=_}4M9@681d55fI42$|3!XxMwpLCcMR-q7ZU(|q$&!$YuRkB1V zuP9`mMAwkyMnWkdjk{sEO9@8;xcK6xQgBJ^4MT1xBncp+?_EuTsB@BGNSH4${<4t} zZ#Tvw@d7;NmEpVnjkN?^wztQi%Kw7h6t8_(_kqj9A(GyKjmfaorfVw z%IYfYI2%n}&D+S11nizrLPH7Og)Xo?d6D=!{xXA2T7ka9c$%^usQl4Me+Dh zsko%HQ6jDR0c}b`Nn03r3#m%zB(gOx}A2gHs) zM=B(@LMU&T_(U~ve9mD4hEfr%q$0QZbDEh1^2YmDld{(wo&xzaK}Y}+@Apg!0`~TU zNGYJt5Qqdomz55h3uYy3oNvtu3>@cRaE|w_3#!muMcdF@?)LO)n2KNbg#)v08R2x? zP`N8g?q|M_zX@AP6h%g`ZP8$hcjQX34#F-FUomNEgf|oF(x|3$n7( z(xeieRz=MR2uuRtPQ}34@JwX0;2$J73BaRMGZWj{hU~5(s52S8HlBi$0G=WRUYMl7 z3y}h!f2T`DKI>3f&Y`hBmkZw1%{kG za5g-H)FW0l_hVa40`T%FFvOM=c;Rd+1=6AB5}yLY%NaaVq`-@k6nGI*;8S1ZQXq~r z1>y%FrbvMbp}Y~5H%y%Zt;{Y3I=Rie=nE3aJ4Ff%*e5B_gS?j@BmkKr1qLAL81q2C zLm(0Wl}~{eX$tgQulFesMc_O|3cM(m0xwFXz{ekODKJ&8DKNZ$$`lx~(iBK!1Y2|J z6qsf0Q($;vV2Ecfpvy>L*eOzA$k}J2FciZqB*2d%FbROCNP$t{YjH0Jn_9b3iUsmbM2+}N^1eTGvhN#?Ia=A?FnoZE++=&zjqPO zC$gy@I;X{1UKB09zeQ=$R0_oQlE(I2`CflkS|4oGFndyQ&AZv!l0dWgcd__LY}~9) zmbrL*mn-EC+JVK*BHb=#cUSleAVn1h@FQ0-LCV4Y)WB?``%lg}t0%mG$!!qvh6;S- z8ES%~EC_-F8U%M#4dByUL?N+*c_#yb1p3XEo~0OOpA7}Cx7y$AXE2BphVPxCMVrM7 z{`31f{8XUyQ9 zF-v?|s24MulX!9`0lcGJm7c}-hr4U~n9lwlm;(k;yUraZzW@_|OgFZ53Sg8yLh~LC z&G=)wNjPdmsv^qWEHc}WK;-yix`_d7{H0))2}459PwxObL~+rUg6a{91W?h(bVU_v zIKPUU%`Y*cysyE$_NTt!A19R_Qgwc`q$o~LD$dKRj2-7- za4z}WZlSljsDXnY19Q(^2%E!MII#b~y5w^^$6C1}VBW0(Q#Qz*q^zkTp-5{E@4&ny zl(bamhRhlP$9K`RY6S2s8-QTiTw9*SFvZ)quEzuOtIvg*HxSYl>5;vG9g@q-r8M#k zU=<3s|2?&R*+5To)f$_WDT-NSpp!uSl9Lq~@de1%-66PT!jS;3WFIRA7u4b*$Q~g{ z0C{ccShN0-klW>4E-_&~$k3C(aOFTMIbfDGOwIXr3vVT^uC|v}JKZG-MLALD39M7L zCkE!dJ;daR(Q~#q!)uBGbDn4_1;X`{8m=YBi+SuNoMI;x*L;)hJPC}xSg!uXxQo%5 zwKS4rmskP5MFB`4z?}y{fF!m@2=Q$SK>{JlO&i3RyVr0Tc6=!#6?f(njC&2fNR*ZA z_%7KGZ{q*JymJBJeSiK`3gwPtejK_BMJx6@l2JiU=HZotM7ig%&IPqP<#)9-_S_^pFe71|P zCa-j7*Jk*7S(xMXf;uj!+Y7>6|Ic^8W2cY2#+{C1(63J`SAE8bJ}{IHuKp)=^}d4x zBiJ+FCsQL?!aQ^`p-$5iDh($ux!6^{p^w@8U`Qoo!mgg_&JW$E}Gcytil&Pvx zIAsLPhG$|$^L;{+05WIHR^DAw3H@w%sOb+0O9I&F2MEepwGm<*1Fr?qk< zo&0WNCDgxi0mA)Jgbq3>w8`nHmV{9Vgy4fT1S_ghP6;}Qa*HD7Vx|fbs8Lai69Q@Q zC2&t790}kmiuMpL$%qN$rGz8_Wb}ooiNg-O@$ki2@N|Zpi-er#2opy_r!^;|@mc&B zn2*00A$Pd^w*R0@&KiKSP>O=6dxS<^&ZCO5>?IW?+L({fDCHqz=!FYgy zCtsF1${zN7fooG?xNY7XP$2@-%;(`R(p60QMKgCU!Q5%4N%rrRB@j`%+?KU`rm&7VpE zQ&BT*VH5( zOL9uIF~3Z&kU*1)n&}jj4?Jr=^F{)a0I;HFIt7>tJqP+0f|Af*l{C}DWbiqJTN!;C z8o;Qo2JdYx^n3`)!N9!c1#G4PuE)VoKv&dEJMP*{6A>XfuOV4o!br5U*)Y)1yq2vc z3AC!HnGUrInrT<8rZul8FbRMwYNj1Rq?vZ7EcmYwoCM(2G}8`%;Tqa^jvWj2*ij0R9im zPhQGCBY!FdOhtW03!@MS!Ix!sHms4*jmN114)1Sb6~#7w>posNB##O zbJqAzItPgOo`e!1nfiDow4x0Pk0i* zcdMDS40Me2HiNTPgg>ANBoN`5m5hx742CsSb{pK$(dJ$Tw+%EOS{3zWEc9}BpY4Ha zL0t+4=8w6<$i`HeJ8bGDFhb69l9FNIMNxEw`Fl0YbCwiN3*!G(#=O^2a@hS58Wzx3?@zEX{ z{yhwL8*@pJRo7Ay9UJT15oUBA56sJ#f{ZRjzS_wVY*1}RcVZ|sLj8{pMn-oiVWf*b zqOiG_E+&C`)n@b*a4Mq*@NXkL3E->E=qdQ2C=Wz<09jE-H4T|WZV1~XED2z%nRFBGjS%DiV_e!O0Zc{D&6eFf5`PTLxm=5S zxcs*N09Da*GY6$8h{Nw{99A@&jVNdS z51S+ss8mr)m<7~OOvC;)VMzd6(Y#3(HVMi!^cM(C0_f<+*Cw7Zu>2cooQ?2eDq}M2_UPg4c=YM{y|U%uumZ@31F+~7mA_{q1KwGF&u4_0H&(+wO4ma>+Qw9 zk&8c%K)gSHDg{hM4`abo$Kr%Q2%e`QSXGU(O3*=G5pzAALIO1^dg^A?kVv<|=j>)~ zBpeCgs*3hNuORR|!s489To#m1jnKS|te-F(6ewj4W z_7F+e{sL@uaqeIh4nf$^Agri6Wn~t{Y#=7enSZ3KNT5(36R%A7x+{3CR6OdB2Ihg!N3b596okK_ zYegdt&tLNRbzCJ@PO@Jhj_Ozyi;*jVPvheW^^!x`TZG;JTB#e!Xxy+{Rdn{gDK&wAxt2I z@SKKlMZF`>UxPPM$$XwpBY`p%buZIkHVX%ke?v$TKvvXeNkazNH-P=Wge3uNHG?TZ zZ3xu>F?$%2Hc9|f(bV)_d|b~y^3k6I^I3Klj&otxp98ar?@k?QkNginRu!5aQn3)4FReB-J%EO0pqF_yCkaWQPgS9rhO?m= zg8mXgNdQ_^Xr@7f& z*#6ya!-j%73a~{#_hb9iFCs8Erpn~d-@~T{S4Hz@32?^3wt?Qp`OJ zONL7-KH@{hf`BXSJ?)hhd;p=j(w2>UcJwWRI9Ddnz1GD>$2-#EePRkjv8e+;o zj?WiNC#VX9n7&tIIzG^t4#S6cOfNBr`4Rn30yXDj1C8<$XefB-U5TSqck^qE3VI~Z z?(v!J0us%)dd($#H&Mn~IH>brV7~ZPguqe$SboZNbn^DH*(wB640!c_saNAuqmydD z!Ky=11apCb-$)>Ny#G-KM6*){>QRIu0aU!lS_Ue~N*TDv5{?9L(LEd|Kx=?EvXOVb zc_%}T5#Ze(U)Eg!qqDTUfZ=RYY}RY`)|QvMEAFc{_GDd8*8RzW+0Ph!K<;^eYKSjm zbZ6NZ9VM*FgqZz(joCX728g7hJSkKHQ>W)ips6XDi}E1w{+hT8`wsFepNNW#Pt5Nz zG@N6i)-T-?a6-+tXI9#a*vnbxfK;NoFCCa`ehI;`*9Vi>7(evAsF@Q8zt zX&jX9g+#fh0wB>sR5s6LD?|dN;xCU+P$4~YKhvgZZAdIt*t~$?Bmkc}8w`Udi7roo z7gGQd2=I(4)WmQDD=cY4) zghzybuA&G}aZg3KKcgy}chkotRYbUFo)h8zyaoSlf|FDc;hwn%AC7Q;jTPYi6o90H z2=}~`2=_%6?ypl3o}2}G>7k>myun8yY?1p2ggK6b;$t(Vz99G{K>Rb@6QsCAh=HIY zq`#pd9e=V~ighZU-M25OqiNBdBrxdItwf@W0H$+w3U-#TB!G=SDKD?*a15uQ=Lk&# z=$ofZ(aJc9-W1T+8M-cpf{^J=+bP@ITIsZQW7FfLgH5z~6V!41~eg2w4V(a+u2*AS6(EdCCBZXq-fg zKbh*miVWXp>^N`b`J;TFv8SD4jhdbgZ3gB643VQc?wCLIx~az0j){7j81VFA-xc$g z9#e-*HMu!aMGJE=eMmA@*rv?n*ZeqaHJEu4p-2E#dQ9zjsz(47B(bz+mlBQyaAn8T z4z1C_;7PKy)#axQyOi5Y&pHDGa~^u#!Y5kq$AI4dDZeWOO&ZoagpjvA>e}~)?musm{Bm(+yx;@Xp(=^{p ztyMg?N_$<)oX2;*8Xn&SkEe=Rf*I`OW_tQ5rF+0>Ug~86!^@9RFHh4Pg>w4lAuGQj zp1FnIC4oBer}M=EHwx(+!SL)rfuBxb5&)N1?M6=H#TjN?kli(x(kFH~#Txp4C z)zgQvSoqNlUQ|0*KO2lqs^WL}6fgn41VgLc5pFkewxjkmtFb zQKL=;*C~dO{1lY^)^Vq&2Lp50YY;LRK-lBpC%{TSmUa9zoe=}!vs1%oiXmjEfrL<~ zg;}HVNg(-ErH!vF;eZtHo9KkZOj9{xwY}KuJX=@gcI?5xeC18z2zLxH_j4*o1Yn8* zM>MB(M8H(L3{F(h!ffEPL=s3|ehMlJVw;dO)Ukvj0aW?UKo%;f+iAGXgd+i5=@7Fl z8{WZcwP$IFIY1zk9?D}^p_%#S9s61QsBwd@nR!=c5A8iu4dt`o ziifaU(y%K%l+QAj&YXH;s#4&x^S=wbiVqsrQ_tW}OGnZbGv%Jz-!nb7?7KYeLA5u=^JHQK(c=!kt z^r<7RuqUJ385{8(K?|5~w9o@X$q*s0)(BZEI}#WTBXN>{iArIl3 zDMZb}LOgV633E3?M;(>xi_)z)I-vM4@k(>gLQ5Ad*@8L?2IkFgW-Fd5^M`WJRIPXx zT=C%gH>m4Nx8hmG;_R?ck<3X<1|)EA=@uvC>qlW#Ww1-Rqg1c zpnvoY{v;GC{gf?&Dzzb{r^1`ZGG0gkShjnf#%tivwzcS?c^{hhGjQn0z}WQL^<|?p z#i@~)Q9{Q2KH<^^Exj_8LbvzNw3k;q-6ig#iZ$!0fb}Qqa?*zGQTHHpAAp&n3-dv`hy;?CUD)LWx32LfGT)#_XeV!+^8H&dS;REd?p819 zDWRawf`NI$>*0}&^oTE$Lw^s$p!C8nY7l}e9=!7}>Yb^2fFWaFnOvbFnUB*;B+#Pl za;H!U^%OvMi9s#OKhs?_qF0tyD?f;|jAq+QT|l)~yShQJ^HNYgFxy`X2c8f+C8Z)! zcmo8xewyZ+1`haXnxqi$>QB_Gr5C0+3ugGIoEw}|<;}hHF$q+=eTw!kqgmkUVay-X z>QfHkx)=^mV4)Q>H5W02Nnpuo`jjDSjbK~i0$9)< z$XJp-Wq3WkSbCB(W9Kk@1@esH@SQ3X-?`RaYd2Rri*0;?!gpk)v~EkWf`(6JB@?Gl zXyr|@m^u@uxM>U%9x?m~jp3;h;t+S=?557B%I5zunn7Pk3fqWpUE!hjR85 zy;#Ql8S4`XJn`HqhEAiPT;1yK!y`$=)Gil!nHf&n%v{BAXKalPoU*SVjN={FKoRM> z;Tl+a4Kcx27niX?S2Ci``ZwUcD#MiO`Y)62Z+Y=>QTqp!|%e6Ii@#pIrwacN2sJ zAeWU*Cgj&pGmFhln|`&12jk02o7*kA=IZN#`4Rnjxcs*Nz`XR!5^hDe@`WpV>dMkD zOE`vFp}fTAmuO=WNLzjy&zXW@V*Qvvyp|9ofGD5nLWp49K?3u7!jRDJWupb`8i_y6 z3S&i`3a;gonohvYcJ_AM>H;Z2nq~=BsB*RbF*;A@3f(bMl3WA<%6mU6fI=d!UZinV zei2HRvj$jLI(Y4Qhu!Zm{)wLEeq5kL0*(HE=DssPmZQ2_p!A-ygg_V&pU4I?Pbd)v zkN`;tBqV`^L|QS-+nwE=db2yLnb{X4FbE`M!IOcHmI*cnlWl?wCK_b0$(^v*(_=b#7I4cXfC5ixs{H*F_oa`NyQD>Hs>W zfz#^ecRsLl>Z#E`ZX6#>$24$!aaCFRxNVUMhpJpW>MAPLD99dx$Lf8vxWtFNWzf>Q z{EU32{+(AS4l!b7iQVDXy*a6{;BXAiI3&uK(x%SV1Wb>&(e@YUB($%{St6ooAEkoPqi zm6?MrbI`mC4DXtK?H@ySw>2-B#2ZV@YnIF(XZfKbE<3~O>!;QsE1aOz8%3$r*DtN( zM5MdM4}^jGFSa@jYPzd(3a;U!*om(3GehOaq(TEKS0ZTJPJP(+WQa!O>u$XG zshik*Q&Fotn8M+pKQ^CM8@9NesVBaigDDzH?{Z83h|N=ZF!daX1GLP?q-81(rXHqk zl)M7!|FAu1YD(J0Cm&30Ky;+ko#}`Mj_Rl^aFq8Zp|iWu84aABQ*kggh+1G?z&=W8 z`Hfw9whIU5^&3H7AZ2p93-5^HJ0y;T%7S8+1bPm=veTzQb*jGpqkyd2Ppaqo2nJRC0~@j|j+NI~((~%liac7%CgTp?49DA)TiiZ3 z<#%kf%4;kwi1gz0f!6xAv{vP_Rv*-M7G5pXacmzNFt2fn7SQZ(ZE%$ z6mu=Yo+;=s{F)t4cQkNUb@iyNfk-ZIeDy6#Eok;Sy*VE1u`dpRsAMlwGuJ_7Tk`^L zcg#W5sq$r7hay6w8wl;kBDBhvBLh^cG`}k9a5e}H$k!P!yl4eOQ{e0lCOhaCj>^q=Ccpst-_tsr44X|A>MM1yDU*M|(QG0alGI50~W*%w)8u#gZ0FaFvPg ztT{X^)cg6Lv8Sti@fFB9lBkd_p~74INC&Wb_fSL@CHkdOJ++7JMT3fzejYgDhFMS# zeBTdqRz?vY<#1tC`=Lf9u`6G|+uM!h0$7x@Jn0Tj9N}wz!=!z9rM!V?sP$q$=K{zj;f7bB6&|O;U z>e;B?%G7J#3*jFqJNAD#E+2ZDa4aq%_S=it%hw7v;YkbKtEPJC4m2wbDp<~$d+Pv8|KKm!7$>u&4%Z~NYEM=={+!C~XAyfVbQ(T4IOJhPpt z8{Y~sA8dE?Ef6RlENfKRBOs0;>3fN!8y~hjUs}|*hPuM)Hf&g$6v`^P7GZ}3euo5T zK%nu#qevhZcSzz6BtZibPj0x+HlEs{$9q!ZPHk`-F=mZ>-O=nK-mSIajK%$O+v@VD zyR$dI)!4b-ZryjA65LWiNv8h!^_+=@g>GN|j5E;)Svse6=m{aD!viE8_G~r96GgXuXWIXh7@o4U?#LtF;XW-j8rf zR`+LKSvlwOy)q(9`21c}ZprWPQIDOy5uTdqjh0p?c$cynPo%iz6=&)fygzYF$q`%V zqcGbRH;b-tL%Kae(k({e4aJFXKb;Dp@KFz;lxPr(>ozMEx(mo9z9zXdNsb2Oc5STl z+Tp^-Td1^|KqOjI>Kv-w2rD=YYUL}Af=SDGAGr;ByZI-27%|(K`oSwXZ?e1j7ATZo z7HW!uxQ2Ew5$#6I%Ij2^SHf&9b*0sL6ao#ZI&5C0ezfz;a3O^YNPz|v#_1{K*%8us z3~A7SM(NYbO|*GC^!Zq7-{}sHuZ^fb9t*-%IX$#)JWKI@%vZ0Y4LW1L%=>_cl*^M= znflTjkP`Mg3&A1x82}%MJ$_8%dA=JVFGP_*bCN*My;%atabP;Q!cE;oVbLH&*KFL^ zHW{J(n-0=e=9wx(Y?kV?-*hN8=JkmKY41FG)zy7+{+)+FbZRfV=-aGuln2~>Q4f)- z+5Vq3m1WrCOZ?BKp5&Kmo8S2;d(I9SDhxD_PJq1F;< z3-^i5-?Zd!TKF5g=HxG41p%KZt^#eZ`)Bqq0&%ZLj=_4~|7XF<6f2LUxJHuV1OK1# zTPtDKjkB(kx`fF@gRuYY<|fm6?8*}jkD_v2pU8T~=o(45Jm(hiu%Xn|%tRyAeG*>G zIS#Lcj3<38x7c`!n*Vm&c6?=dxN5#^Z+9~Fkk=xswzz$76Ae=SAar=9k-Ml&M_54K z&lh>e%+wojt5xf2t|Os#QI0gIeawZ?rfA5e$O4%wNQMSv%Ae+MyeV`{@^jDvp{J1$ z4G5L4er}XcyWstK%&J_f;E*s~W{0EE?65bl$11y%sfYh1)5Yz3o1l|0U93ma5f(_7 zmnTmb->s2`ghe>0pHmPtsC~k8nW7=-Vv7x#Uy%$A$Rtb`>s2d*SB>&?v4;$y-;fXu z2&GFG>$Gh*jQ2m)>Ea5(A?A8z#SU$DxYK0H&P?6n9Y~V>QIv^=>+&Z;8|f~LYjKOL zc(Y_h%(cpzm6gUf6;==99ZnilH)+QtkTFV=0fmHvsBP?`_$`e`kOmEC zL|m(^-U^Vs_4y{MU26_bBUWhPLDx#tsM%Gl(2?7`vYDwP{~B^X$n3cd(3p#urq`w+ z{-OJuME5DBm)Bi4z1|i7YB$@Q2KA1)(O$dWdN?xUfKTK~5}^T+ltWS>7DFs|>@W95 z+k921-zOOwkeT23?50*w+JWcyG9Roc;XQFmm~UQ^0>4Rl{NLD=z@E^+252Ns3HvQl z`bSE9a#K>m|K6upfAwZIJ`L)fI3+v^c}m!ZP;Vg-8W2gG5*`t6TI5INZ6rejGHFu+ zUr6=!s6OFRLbMpM7OLtfv4}JD;Q~Izp(jOdFH_x{kQiI@0)HC;iCF_wv6FB<%V_ku(tiZ}ceAc^&D{fKJR}jmGHY2~(u>7oi1XTZTc(A+%FOXp3mOT>lfGW4DyLUw&FZKAisOkKz<6RdKqKLJlGDf({Uclc zJ^6T&JJkv`71jRLU8w>Z)H`9q7AVMg5)iouiO_&Z!tta)Bu|fk%)Lm424vEWC*ral zc>Xs%o|qzdPnZ%*y}5o@R#VGnrVe{GQ^M@I4bVuK5;+a=kCgaj@|4J(>Xh*7ub#jw zEHtQh!jvdbkdz3B%#a8Th$Kvj0+Bo=0x}(vp#hn6DIqS~f#+Z7lrTl`9`Pha)hX6; zcX_F2a>8t9>bkcfDGs)~`4*@oy!ho&5emqQEkD-bPdLZ)yz0cTwbnsU+t@AApz7tX zaB1Y?TakpMMo8r(QlSBrg!8*1l{`5@I;WBj4d^T;n@ky>xR0o1D!NbyLluE4Q|rSG z8=43AGWF6w=Q&7T;BO-)3C}^CPdNu65v0m-k}3)N@4#=KEO|K8pRvoN*#wQcHpwsH zI)c(V>eZw}13C%ML7ZEeYzOx;+%ZGxb)-ZCO6kr)oL5O4uZ3>I)bUgc8VM&{54Eq9k}NqCtzcj{7wmy%e2btyYf8q_;+!g`mI@=?VR zc>;;hfJnj#S0NVRnBvIHkPHpTq?>RF7o8Z+^WB&gR+R9bcEYtX8p@}fL516yntO|x zaOqt=wCOESNju@PRD=TZ;xx&Nv;(U3Y7;}(RR=*GNDa`S>S-rj0ST8H9+fSmLIWyk zCtLxQAUQlbhmsBr=p>zR(I?Zx^L;AwgC_*K3*>Lrr`Q5gm z{?2uG&{@Do79-ES(@Bs9 z1fRO$b%G}NwJn<&HYVT0^A!u$eys%X95$}KM4hEeb`hkJYLF~2kUZyU7 zHxh4aUZA(-r%bW48*wOZkUiTadoFGSRVRk4nD|i3Y)=}He?o(9Mx!o1k71)|oLx?5 zG;mh_jP5=+O}N^s=x{=ZG;mn;)ol*5jV;KJsxbBGQhXFcE`akZ$8fZOHT3gC5!`42 z&wR`eGxck|61{8p_in+a{vFkJRuj&|2gG){i0v^=fQr^ERb2~p6-RLzFt7UBMqB$f zHu%he4Ut-5Qv|`Op8KG^++8v+nkIsEpfTp)Ut(W^2g>5fx&>T;#oBKYh zYY(p~YA>^crcQQPFVZ4D{FRa&_6H16^^T1FiQgl0-}cFO=Bs25)nltEGJAPio>N`a zf#Xck8CvIBX`RY%YSe7K3c0JEhO_pgu4l^7Aa>O|%tGv(EBSm;;PCl$NCSuEtCM4T z=n{wdHVzWIa_(PplvW`n6`Q;Q;zTomP3N@JXj$9x5geKS4! zA^l={>ALl?mOX}UTp!ESyZET-aosfz+apt;_0nc-qCyBt{v%Ox`6Ymw!O&7G=OF&o zjcj`ww0-%d(FALU<%G*hX24qSv4pryUmN4Ma zJo8Nl4x^q#)eTG)qf_@I_ZtwZJjI#q&Mx*k^Ri+?@3iJ|3H_G5TDryUn@#+#))dEg zCO)9`*NE0DPjP%uJ*3(K@t|(O5tRmEsyfB7kZrwz&wiQ^saLaMBu*wcm4}4cL4T#Q z)WxS~cH@n_0HbxWH>5_S_+M*KguOyB5J?fkn#S$ zzNkGgncCAgME$-dL|p*SMeQBP6g{e0HZ4tUQG3`K1xjGu*(tc-qcXmgQul|_G$E;_iyk*K;D9_Ys??SuYs_c*} z^?}&Fm9KgjFFv01StNlr{))75^)YdcitDjy`j}K+J%w#egQ}H2G+8a=cmzf_!;Gyi zro%Si>dS0&8+H2weY{To%=PBGs{`{6f7#B|3Hsg7=1{ixV7moJXI4!n&yhGl<9$aO zud+BiOr4mPr>=lHl8rGhX~ zE91@x?@Y$`8y4igw-mNqVWtLe<}75Y+!p13UuzapMn-%?6h9JCRGwOwf$OF#9uSY} z>l}+|(0Y}-ks`L63W#2chmGrR(KQWRSDsoIv7Ku-cx)^F#JK-1-P6GR6DsPq2;G)~ z8BZx%RO*M6vQd_I5UwjW=W>5eht)oxcm$%*M)W;9P~a2JhE!%FhxLI zLd5(1L`Svq{Avn0RB&EBwZulGK}G8441t}13flFYuFxqBoR%*gix>dQ>sX>%&+(X! zY2di(r@RBdo?bmSzol4>a6F;ZSL#ZyD`TyYfGAm#sTXldl`B;j+IXA(;)gp&V)y#GE)EtLNnnsiwxGN~tbGksMG>s@Va9W~N&#|IonkJM=Tu-TOF-EjdtT{%xewxM|4F4S7%inxiw%rsKW77lWl5XS6+HCKU^L4 zd!tSd@3EVc5ycd>q$pGO=V!u>D3rPa^Ou}vo?Erarb&ob$gL%Et2~{ahStp$7K=Ca zw;Z!*P?yRl=pnMxxpaKtLF4v=bV~!bmFKk~vU8iuGW>yY{SmsRf$K{u$}Q*W*_*W0OIjLJ8n&gECT=FKndE!Ey!%luNm z2UUKVsR`eGez&+E=f7LmJ#(V+OwTe|*8|&Gs3TP#B&qV;^daRnmneS1O}(2kqd`EP zT~%f=4c@k_-0jI8ULtCm+q_cLZ*cWM>e99Py0K>Az1IXrIP(!-d?+h zt#WIFpXa~qc)zs4(eDv9p+QBfcYn5-*7qU8Wd$JIb40k$t1aA(eM;va$1zjnr~ZxN zr9oJpQ&+s}GxX%^{ctS-YjzK(fSm>+TDI~z^g?&Ch&OTZ;}No%shjvp!h_77+d!Nu zPdIZYf(~_DBs97l3NK4lhX+0p!!_1Aa`kh`0Qy%!mtm>qbOtd5w?> z19c6DL>knz^r`h49NPLJ4TRi$hGES0Wmp2Do6PthQXOoXHRE4>v;b&-(vuZUY<%uy z>irbM7PqfA_3zl&m6y@82G*JQK;vF1jazw*nGY%>p7A0c)OBn;8ZfWA#?1PV#>zva zu3*bBPA)j*i!y`Pq%3up`zxyh{Vl=`A9(YBysbMK^t$6o=M))D%x>!xbR+lsC$!ih zUWwbmui0u5PqX>H>JSq)XxnE?+m^2nO%oHQa~>vPqAps3251n6h=&oIii4J;3}91~ zE+HivP`7k#{>+z&T16mt@9JGl*wGD?E>Qu{EUBj%hS~l{%DrJnekA~g3 zS!ULFv1^wNxkCAN4A!`O`SZxJqo&HeBJ=mmx0TH%Ec}plH%Qi9v)Kf+++B2RD0I}+ z=LgUg4I)#1;@gnii~ik2G8cXEClWaIB~qjT#ix~>_$Ff5c6`kDUyRaJ#x%&~W&;X( zNjp?5I-lLq8ROG1U9;AT1uZGa)PMXPlHf4?BU@&6&EHV`gOu7U5)@7l{wqcJPuooA zTJ%06VWa+wCk!-*#%e+}`L5e~2P)ESXNde6RV3|Y4}enn*+oMNpIsad$8vK;HZwK) zC{%Nh*>f8p67lYe>Z43fL>NFLZxW4^pG!1fe@;jI7^nxZm!U!3OCMEflmisOrjXjJ zH&P0=5#T>WoF5!N~1S>anCp@bQuu>BRnfeM}?tWNMW_RUp(sv^Tg2D+BdDmui zBL(Nujd+E^M!lQe2o0Jm=`>MV!fP%)k=74_`G*Xx_mUP3XqDg7YD&glNJ@tC5^C=w zH5yP$+VOhKupXLX=c-sIZuL&-c)g!d(h;xFsL|gImuI_^&irV&)EVQ+d)$*W-LO8; z;(?YufLHRp4>@=&CPw(9!ZBMMVzB~~q@(K^6%ek-&5uZKUVn3tFgZFMVqvE~K;_XO zN-wpq53gWr2*B_8>x-;GSiL9XB?0hc%TqT zgUmMRWZL?}Om34pg(!n-(%IGAcm=OY(w(7fX6hH8;_S-oxeX9WI=jk=2m_?&mn1!t z&aQH|IwAcSsAq9@MT5HUN~!Gv2}!zu%Ckv@22`%xL@Ie=1$3?>9U9O{Iqwvw?ZEdJ znJiYG@Siw6+>CS149EL_P0~XT&LpBYKqPT`SR$Ds1Ej}yHzhr+TazBTvYLT9l~?y@ zQ1`^?5s`XL~=ABw=3b5DdsumAly9iq5^^dL_b}yj zb{;pzCp~%TjoHrBF@KA!JJ{~#TL{s@CXo>m$gyK2$HtrFSF%fjA{^8|@U)l))lYg2 z*KdpbdZ29v-74y%H#4>H1 zRxzb~+ox@MU{8o(14NRihY%44NRRt$QhJ#Bv-|dApsuF~Xi)d$>EV&c)5A80dOoSp zfJ*Z8@Ti38;pn`ObZ9^)b$YDM>GW{EPju-as_ZA7Wef)c&U(6IiFN$ zsDqSeB5;WZDXj+8=}ZC~(kc$9?lCu-nVjAAbqSur)96w?QgtUOKNbpCT3H z#s!iaNi`98)>A51A|X+~peAS#grw7b=h&S#ORBhXL+F1L%%0l-k)%_toQN<$=3FM3 zlk`j^cPnY5!yydR3B0*LgSw|p-@Fm>({;Z&)Llr022_$xwF>d@QpJzV-ARWAbW%>W zgiSjL#SAmV$`k$*rw8xu=$>QI-1~WuzG-jvNW|X%Nt_;*NT$dD=`q-p^ssJCdg#h( z25JvGOPciQ5s)zBiPs$JsiZ=aK0N{|etLM3c{=IPBu@`IMS6I?cbN3hMeyHCc_Pri zj|{5!$Gm>pmoM^cBQNl`K`N;pomZxyP(da$x45@!7DH@PUdA8yFw%wLta2+$q(=Ui5 zooz1-clNq?PnZsl-O1E5KZG>e;`Y5w5L!&xuUemyL*#)RdWqyv(no@Q$C5%OG!hMU zG_^s42qc~GPZ2Q*6w*1CbZ9^)=_-XOI$rvOl#U}M8c-S}JXg1j+IGXV(2JQnxoE*6 z=`HP*u3YoQ|Cze<{YaSoxhWRT%U^}m(5P#ii(_QS>m@^Wq)bg)VV)7YN~=$C#zliF zC+(_y_mUDhiO-M(4M-&IC43TjBIHCqPa-rRvOQrAz+*f2`Z_9Ks}F9IE@W8gjwXG4 zEtnUX^_XD_T5{F-Q6EPd92S(hUHvzl876(EwMZ~i2=O9QgkB^@qHS~kybp@vWJ3}={ICXydws@pW0PM1v?NmlWt;lfBO zMVb2GCy?bw*eo}tt^jXz)V&r0ySy1H$cYLwB=i?0p_887+x|LtAB?#s2s&1($1#Kk zG1-*itw1Ww-GJI6snLMiri>*8YSY;o(AzfV$2ro;`s z0|#K~FoH1{M>qh>kxc#lm;Es~JeYSX0o>{%@~8H+)E}0#llF~Z`~+KZ#O%yI<>s&tJ`yKMuUncJ%bM^NFw<}?nojuAhKt3 zWWdolPaB`iok)fTWablQi}u;}J>LRq@U)op^4@qjKj};sN4@bP&Jz2}3%WC5Y0EFo z)U7xhJ$m|plm!sX;-uH{OGyhwB-7E7Oi9OvQU*G)rj7_Nbr?He8U*M1l-iym;D!fD zxT)iY;E^Oq1A;HOc?jl-xE9G{NRkF5pPn!&r~J2Bg4v~)DJE`5FxfZjI$fk4tHMl1pGjl?@a5-;iEP3u(WT3&PYBKFoasP#CddIJKI zQ67z#k_HWEBweo)(8%+~qw+FRp`i{ErV3rQJ-`2l`5;1s=cEe@=+!$*(j6Vkf)lK- zb3NCQ#bPP({+NSS()m{j*-VifGUr6eoTMXtiGP^#iJh24T4_bv}9S3xidG zv;<83h~#KMF6mfWaPP>43Fpx_1b<3`G$8oY#JT5r*J)Td*P_DIHs++x0q@tzPqrq* zm5!{l$5sn3n!WdDc(Nrs`v1-jl1O^8+!U43IfHBy*BpSZnb_)WpxbH>AcrMgSsaj?+PR&&jKnBB^4S_ zNjlyYsO0$+&^e2AXh0|BFegsif$u-i!<;FC|HSFRR}SbNaHn}8!8u>$bkOX%4G>A3 z9+pU^$N=f_;!Q~p>(-=)eglJMpzcKx(4g*#(<2~Z)5D|EA{81?Nt_-56+b;ZI`<(R z8qi6b9(0QI@O;0>q=zno|Amc5;^pCJX}sY#cJ;5eZSPKI7dzb6NuhUJ+|AT8K8eIQ z#49m7`q!M-&7`Cv{*e~1leCCfMOCBTJT1vXA->g+GYcBjHDb`J>0Z)cio}Q{Xh0(3 zQf^HWc>+ukStSt~5SiU@o>h%UTYJT~>zx4AYpH)xp%Y%iIj}GquCC-cpm$9UT<`(r zfLCI69F>N1Af%Eh`bQ4DBS{W~&h&tg7m0866P^ImG@k>xufiEge!!6U8A;GIp98rs zM_C%Z6tUgOfCJcVJ() zG&o78i7v?07x+Qq!-6vI=6}NkesZ&-@!{E(2@5337bH<4RtM~hFpBQ9MEyeXuO3V> z(4fW*PhWg*uJe{G@edgy47inT=NmROQkhoFuv7$x?lu z2{I+drt{_$@`lW`QgD!evk$7X({O}GNG8d2xP4oHTIcpD24)Q}c$hRavyq{5w zP4^hXS-da?&nT?$ev8f(NfVa0Y`K|veVX4Vy49fMkSPs;NH<~u+CFtE<#aPeYDl3U zOA1BYcW=O}WYRPvVWYmuDLM_pu(Q$Ghi-u|)@@xj;|lFmgmFXz(UXwV2v zPe?p(uAeg#67P^9av+J&fJoEbi|5S|@j6`ZupzUBWN1L9;R%W7tUbUoMRoyZLZTbw z*V5s7Kcg5UF7b@;8OPz$hSxdeXWO>-M$5z1!Jw}L;`TDNh3^d6niu%nAadEp)ASld z#66PYu%GGJM|2A{yy=|CYpScRp2WE*4JsRPHeJ`fxy)%>Ljs_lOcFF85s{U3N#wau zj7FD4Xh3A+m(^9|(Jp#D6s@0LcayHs{-m3!JA59pKVW+g+vY#i`0>q)U7U(P==}Dg z^KL3fM&h=H>SJtA8q_X9pJGCquWHf()xlMtq-z?uPLS80YhTW;=6_H3G;G%mCqnzG zj~c&#>LHNUz%JL&7s;Bwa-+O~?xFy1dQ8g=({mWJlL zIl8c=3tKGA)LBR0a=*PtO_iG>@9#N~JgQV_70HNi$oO9C$+#l8mToZw;!!(aS&G9(uvr zD~P)l95IC*ABFn3pq@T_IMD?eKo<`YU6h}USFdxf2j6q1=vCd5I-o(lo?J@@KDcdv zQ)Zi8dpv{9F5#Yv>=WumcB#MI+1?%7rKoIB6t!5CsdK-H3Ct1F%&ycFbnIWUdCzT* zgm^{Mo+nLPbELB@^|UN+R$DCI)O9>Jqd{FRt<|I!*fuBjXLNv#r*qkq64D@o+*x9Tr>0k2w{0l{U-JhC5cG|Eq$r9bom6X zRtUld_xwv3)M-p*8dR|KdH1T`gXW+1dkIw_ZBQ2L*?O^F?%_uB_QBNHZ_7<5e*FC) zgjaO5BYu;J9*FWI3ZM$0hSP2(1w9=XD`{yGlX`v)jZ{*44;i5BJX!bki z�b9Hby{PLMSg5p**QEWN-Mf%ysqD^=y6`ROGR>&MOVBZE5VzFtAc5^&+;Y#L|!5 zB~@#y3B7}_=inRucBKTxV@;N zK7H7>-kE_4a1+`pMZJ>h6uEf%IJ>ewmbxnJ|OGv+Eq~e zsBaF@9yEyD8rK{vyW&JWubgrC9Xh0e!!^$Pt2)eczF5nDrBfO>y|7eu`{=Vx4>QvI zS{v%U6rmP~6Gi=|TV0v!PUIrBmY(e6Euy@bd8l6`dmZxwRP(&rX^=Y?htT9FMU!hx zA@(7LId-l}zjEpUJX@h@L?%UdxiSN%528~VIPEnUKV8RyIs?aN&@l}hUtCw8f@~BT zxcLM%s%7H|WsQ^3xW?@5<~u!lon8IOVkhrLaS!t@=1_}=TJBJ$vRm@Re2t^-Kmn0` z>>4*)>k<`45ck(a+-uy3uIol?pgdf{K)r;W6b!g@w(pX9L{G)Wg2Rxr^R5|Dnof)k!$(K(Nu6|00cfeiNX&>2l`kuQ-RH zA?q3qMMyl8XCtD%%O;Sp0C`xKI;T6hJ2sx>|I!b*HsGB(OasSt=DZ$q zo7;KEzy?%@p!ueRQd6a)aj4SK*r{~K*U>pZrFoI;HK)?Rd8X(PD!pAJDh;rWN?n=w zQkS!*r>U<}2kiu7RqBoyrxQA*sjpH8?VS25bw`ckU35%STcr*eDjnfMp`CTH0oCsq zmAW5sQdO%D7-BW-5*{KS`BHU-POmGxjCj;kxmRR~g3zPu40FzhM+g@d;2-k6r^vTf z2UO-jYq)qoys8`6v^1#M8jG;ZRCt3qOA+4*OVnIEY}~(??rGq@)?B}c@7(9QF8;(& z_+wI_0fozI%m<3_ZC8-XoDHphmom@Q=1Hs8@H*xz>Fvx>SDz*Bq66Nm!4uBI!$R42 zf5wEXb+$M~Lfk^!_ZM-maZe>qV^io_*+HrJQ}1M>(x5`M@+km!q7qF9$Bg5@rehj7 zUSp+4ox0{~E^~epozuYi<7!Abz;1Idzf@xCc|VF+izyIKt*hs9Hwlj&YDgVyUDQI6 z)-mpQ-U0L9BMPOapkx1%DqdsJd0gzLiHK*&_#BaOtx;(jUh6n47LV#AUKFK4oywm~ zsZu3-uMQEDmNniU&Q_K12GJ}(wc~kJ;ZdV5o;%vv4|?4ld+-3fqx@PT(*U{rd_OV_gW*DlU$I;2?lz?VoX|9Yt`*^>JP>ar zCQV&TF9bIdlLnZTrOPOd`wL6MJ}%Z$y6UZjrKt@YMD^{2r2%aD_20+_V`HrhR`HQ& zP4`{IrD*~ek-*{)jr$(r(g64LvQcJzx^2G$5X8r@+bMPh#}rposob*B9E z1pf2{{uDLZ7hy~}7he$VRU+Exp~8?0Yr-1OV!a=~P|rH3U$B#)0nhR$#A1V#LoW|; zD@3FJ57B9WUVcw*U(n}=qt0MB!~z!${=WpL0eJaBwtWHb&v$wQK2WEzZ^6~*G{7#u zP`fYKlhGdYD5!xyfbcYp!0%e@<3S=XG6xf$hLMR+r$BqmDi-8QmdHGVV?e3Qo zPftDdnZvBv$<)*NtkV{^zjw=-_7JLZYIIlQfeR*b=Z_?J&Zq*S`};0l46p!kkfZuX zKA=JaUZ>Z9#EK(>_;n)E05N*PW+RoK?T+>NuEG2kF=>DqJ-M2~oE@(0k*638>~{%E zQ>*g5rIm@T{P&1RQ;VoZ>xryd#T_gK6i5RV3U(bK=Fc+QW8 zOP#sF3SMw-c>ajEG_|Tv-0iFL^F1s#*46(hVQBzcEiNf_Wif*O-2}%Rd z==0VoQQ>)Fe5oi%(}M_11K{dC%5b^YS>$N0$!;Yk4KS-q3YeIDXu!h=NCUv?k|Lll zsUwL>Qww!64Ab-&qSDl=Jie)D^Xb+Eq^S#tYalwBwW3|H|2gSq~!Yo^;1 zmqR894cM5F;?^|47K`YnGa!qNaXex6+HO!!D}Z*JVf6M=XWxC!oE2~7j& z`^QeH4078htiig0Q>b8e6Fo7(3fpdHvS&q>*>bPNy-ZDx!Q^RcUa)uTSvYutJ_yRu zC(MBZfyMmkvoe2*z5o`W$OLNK!FbY{%h{@ovs4=Ji#|ChMK=AP5B?&8(*QiW|0@Ic z2)~q=G{B5LSDMD$J{orCX1inaiYIi2Y&`WcqSFAqMxb-_$ntI`}>~-V=?r)_78aRkP z_g$NNp9?#^EP6ZPX#ijTR)>$Txmi}>#%J`M0I_Nye|Q+^L2X#g2L^)I2!D0H^> zCpP8(hPX8KsLtc+oXz#WB_s_X%O5U^imts~)ETd?tPDpO52Xz)^AFMu4cwGJ!MJa3 z@Q7)-qmR%LO}!BHy%2qzkTig-(Z2u@>s4$T`EvOb9nio*jpXkyPj_9PAv8@*=y7NJ z5LY>U)}JRd4WMg`Zg?QItV8?~(P@AleX(vjg@8WYVSRX==vxG*0eBr1V)br_w{z)AT#c%q~gI++sJk@P|XFE#q9>1o6<1f~IS4b_@H z%5+hFTi==vXyBm6m}wmN$hRdj4UlW}eFj;}$A`Z?;b{P0V@Njekc|(1M}pG;yv7vE zfKx6$`kjbQ1N7LN=x&D9=9XM8lFJdF;YF(OBGLn*&y{;Sarsc+mzvX?nR**vaCVT{ z+k4PiQVgai?>nfV;j&cw7rL_1cX!0S=Cy)5dP}_tZ?|h z>2U`Sijvz+<4`FNp${7Ph(GBl_*lUWh;gU8v)do=WXweAOhVHDI)2Cvp%<}`7H4-{ zfMVlXQ7?sWXd8%noseVAwyBxHQ16s!if9tZ?0+md&FGNdw6E z3u$3M2)R~UUPycz;8*Qe@P0daqI+D{uUteAH1JThNmoXko2{qGOX!6LUgC%JFi!qC zK+uCdp5Qb9kDrcAgZq-i(nu@%ClQ_o@Ky7P+{Y_}{-iUHC7nYv;;APSng-C(_u!=N zZpBFnY?rV!fQ_H|6#^n``I1C@2+sD!b3~>Aa{Miw5Se#%b&1KL1!B_Fi0@=L!B_02 z22Dk1nmW+sUEva;X#ibSbm6H-5R?_d(*QpH>>v!Zz^|d|F&)srK~;^cmi8z+iA)3J zs@=DlsRSX}LtGl*R_(rVdOweadN%)_N=O<&o*H>aSva)=Y7f99*q>0}Z{M);d9REr zXAmx&0Y~=^y+LmYuRXxy6EgYt_A~Xb_rMvzp?=ZcL(k6tV4t2U@le z{fSNk^ynGudgy~5P87zA{dw!*AbOyIhv<=OJrA6YX&rARG7XTUuZORPJnAnjhU5>U z3mUj+q+NGA_D2$$2GF&-%Gn;zy>AtntlYxU@P?|W-P($uCoEns5C&WHT+<8T-P?#od`+;&{_@E z8{sJ<&GW8=q^S+L8;^@<$a@fy29UKR+S|QiyWe{elcsh!cdsm+WQev1N>djU7q?x4 z-iM$x0FA!?UM43Eiq~3uqB@1xG<738k540+Al#RjH1#ouHl-dwOd4R;(&@sig?tbp zX#iO(`4_lWl;;Lot7j0F2C&hWEXrETz;^s}eHg)M>V~$z)Lk%y&n6}fFr&}A$_V$z zSk2U**#7Df#H9glt^TTy*`4iN&Lb#IeNg?NrEand2ucIcTK#o@3@O;I^)W=H0ctJD z4rZ53Q$3cDG=Qwt4-R@`dsg!}V$uM!*0hM2fmokNWSZIm7+S4fMo1b!*3uLnyg%ta zCaO;%C`}WfcF39~C=EdCHPvvz4q5ZWqyc91y_~X4MeVzDa~KRw1o{M~0dPGHSYS(e zKx7&q*P6G2avv8Iz4MVFp=p|e*3Z7`4q-%Sng-&bS-Y`(mB=(rkX^+o=DV9cNKAIfLlw-7#=#f<#OGL`)iB))E*$CW!0G=+q3`mk^l-$hCwp z>MeEg7?_)q{t1C;09iNL*LU7YOd4R;5Ulm?)+&haNB-g*tr@!wBu z8eqr1Ovsxxw!Lk`_F25qRJ;Qe-(~H_(gJ+UaT)hs_3da(L|s9q&fxp!4hzcm9(K0> z6V&7Wu`7;z9J${_eB5uk%P)06O1}+Mvgpdk!6y!igw>q^H%&A8HAUu&S2`SKJ5#s& z3En1ou-)Bz@HxHZ-U!15>VHaX{XJj-MAh#tRgZoS+{3twch6DNTYK?c^n2!f`2HL& zrD@>(xmmcISrHN^BNp=Hh9FPLAx~)t^3)vi)P^8W%OOuILPqz8LGy5NB-W6bYf_A= zdO2VAP6Js+PqL;!M+#%vTbV2AI`}0&^KFMRBD=gT98KGysjBWKI*st6zfp zzn-u(fQ`QUGX*;y<6fA3WRH&c@yk1H|Z)y&~fLaCOv&)bL6Qy*f}Mf0D>FK)$TPV6NA@ti3#0zgkv5 zVPLEB_jE`Dhn?CEOO`56yZjto($r}WTq{}RnXHc57l}v%#LDA>Aa-~rt3kg^P#Sv6p6f4J zrF@gPG{CJqppomShsUf(J$!2b*E&{5V|@uphvPeRK~pCjc;c5|LAA91m6$ZZtlW%d z+_ekj-Fke}jQ>s_H1H99bFUb3>tn8mm&@=p$bkPR!D*TR?=OeoKO{H}z$^D;mbv|; zgl@~95Sa$Z(T_l^6%)Ipe{82hJ)5OJqZ=ByshmN4Hi6${G!g$LF=>EVIfM9cxP7F; z;QpGpG{CJqw=%eVm!qDl80_B?n+DjGCn*M7UY8VvNNmC0Gee@WgL@_OP1TkrVSy^S6WX~>k zcI@ho7Ho%iG;wKwTe+#^_6aUS?gtMT@?vn$_i=anpn;FdT^@bdF~;M6Ph!&myKsX&iTpHk3?w&2~TyJ>@{H}iTN5h{?cpAW0o`4XZ zUB7-^iWle82u=g=T5Y((ds|pM>|x)Z*fe#Ct zD`fDRr>O)wo%l4se|*(*C&9<7$$8e+*@Zg_xQINRNDrki8u+Swm5RP5cvtvb-wteN z5tat9l`j19nz#;+5&Ag%(cBv)&m|rW@G4(!Fq*cvKXl5RPhc7VSMRMQS@a!i zjrwS!(g3yc#T;B4!uno2o?lEz8bDU>rsWA@cLmXW`pWvals;(SqjI;0Wf7e5`f7Lr zacSy=1GocRd@%x>AtVhTD^G8@f$B|;ng-C72NYQxvSQCAwiA;En3XS005h15 z_6SM?(8@`nUty2;|Umx@?9)o*lItRImRvMbKF6MAo|VL4nbCM5EjcAekRKp;@iji)-*Yv z?apE z=rll&pGQxj2Olgo5&1fyX#gERi=2X%QNn#%RA_&T*fhY7eI=Sz+PLku4AcMC-P<|V zHJ4CDzY=ZG-Gh5ry3>$Ne5>q^d?lLM+k4QX^e+f{a_oSgg9;k@vs?d4S2lXhSPr4n z3^xk!(l0Vo59d?hG+-2+QzdXGp(oIQk0c-s0HZZj3djo{_}~lP?{1(UMQECuTu-)K zFC-vMO|B=;O>w=5&@?rmPCQzJBUxLUoaUt_@Ja0=-Xng-C(BV~d6+-SI>FF@*O%n^|W zh*c8~A40+k924FJ0@47mYKJfwPq0)#^HYSQ0bKMoutJRq=SCKdxx& z>~-flyw9@Cy9&o7Siof3{C8ssGe>Dqb*BK1@c+_>pJ|N=D4Z zAs$-Yfh%}qukOP;>oi~)ea2f78lG9qj)r`~R^y&RTpHlUCto?`xgIW$YSjA@l?JHM zr$B44o$K>ya1Hwa!qNb?ZhQ$lT;}sl8u~$mrfDD!y}l)U22p7mhyzgZ=!ho!Fv8L_ z5C_0wip#f-Xy~&EO#|qJfUJ* z;A(oLfyc8VFT#hCY|E~j)k+pUl(XxS32*#$CQKQ7<~oz!%+!CLrmr)}9;WWH0pju3 znH;E~VfK8D%%0;%MF*j0&D*gc2_Hq*Gh95=fDeuH9ypn*kMK!T8iqEyF+=z=+>aBN z2Dnve<9om(+ygIz{}kbA03UsRrCGP}p+dBoss7b+ekDb~iq7w)?s9)+6_;0V@~h9T z{DMq9{H}Z=HYnSB*!kYy@XBNK6R|!Hoe4g4k%=y%hu0#IoKxY6FhNwW<7q1m*hNnT z%0Y+AScPd||AMeIfQ>$bT?-ZqhVZP`3U7HZ%IZx7rvZ5MfK>{PXM}l0Tb`@X*ndfE z8erE8@_ZiTzal72?Py>%+7fRrd5qsda2kNuYr#=Zp3~BScsF5b02|#+lm;0u>F0_) z(|GSCE=}zKkA{48xhDHQg3a(5b z@7!zDj}nyzsMR|)y@GI8ccr_VJ*Ec!1c7M)TrVZ?-47dsPZN};c5JaO!i&OZiAz&E z3jF%D*XewLz%&4keIJ3Zu(rQrBKty)MN@-B^c{Choa8zmH!}6wqcH*l#3#FH%BG!i@YUN)<1f#~MsLM}bA;6|qU-^0b)1N8RZ11@0E zzBH!=6C5<>C#5-~FBe(>-JE=#01I#p+i+Df_U7Du-OFE%}ljs#RffE5`k%9a*A!z^^y=JWd zsb4RE&#hoREP!!~fzj^mHXeRU4>a%)y*?$z1HKn!19MBBchSH{^kg;gp%;DWARkC9 z8em0VxhZ0mMq&$*X@DF(0bCE+i@>48rU7>JFdAa>Wp~nYzOauVFb#mKX^viyf!$@C z%IOFnO-LF*M$gd#t`>5%unP}xV{q2E#}b#OF4bHN#}SgIa##&jxfhuO-;TgE0FEB3 zf*7peZA`sRZ)s&><9a+XX@FTxUxGwG~?GR}5EP zz3A&-xB)UZT+-7N+04|>xAOXz+1q>2Mfw+vS@iX<98}N{w1fUfS1|fyE{D)j)4c?r z%j1nr5>!WUVn+jF(euv&Dt9qF8^oiDNCU*^-nRsCxTKrcF+G;JG{B7>fy!}Lm;3Yj zjXydB#}SwYz|ref3c%wYR~Kox+YyeYMnuPptMl_bDb$F^6OjgpvDf&7Ut9h&I0r&J zz7V5_+c6gR%r4>)Yb|iMm#O3L42^Hi3-)fk*#4ACkDlW@1i7e3Scv`hBKGLvD?pJ6 z`e*@f1Qwp^YW5H`U{({8-wPl~buBSzfEk^Xr990 z7VJ)p9j6SCfIx%WM1#>?qb0&np_{=4E`B6Z;M9v4FPeR8SE-tZIE#1L@;y(isCp?u zX#lzp5}X3npETmqR*m{HqSDl)s@F$bs;?j@4M4X=j?oAxlww*{wWtx>sL`D@?!8W2 z?iN&N^>aNd+^2P0Jz1=E(aDsDCP`NOni#v7`D$MDZx|E;~bC%w4zsM`t_x3 zmOQ}!OF$X`Mi0+LKuKMea@b=e)eXd@0dDlOQB$~i#a~Q38sNn~Z)D)w=6}QNbZW+L z-ssx_xPm&tL%nPUXJ=vqS630KAlRq>N$WW z`UyhP05X0KPzKrK7xpyfr-?~ZnfcxdM5Wu802My77_VC2aGdfWU5r{yoj zsZ)RBRQw?so+`=EeEQkivE#^Vs7@K9acNMyg=8V6Q=@nnTyd+V~W7JTX&HZe(ilA)JEhZSx-@(D)S8Iu(D&inmEtG(H8jjwBac4ONHj zOM}`qJ_QY&8r|ovx6?HZTsJ-i4P1K~&)xUvo`&t(w6fs_S0Sv9)L&7=A|`l?Ioa;> zIeq(F^2XO6f}i7+Lu!coy!r}++0N84=Rwd1+ueLCGWvms8ia%hl>Pxx`mTt6t|{MI z{5AqQAnL!U0vd!N=7hglDtt}6Z7m6m`Y{R7fY4Q&9h*E+!YKVWNzs55u5HbZPt31| zQ41%AXW>l*sU0%-J7$nmFKEP!kF|Jg=gZKsTuncCs#D37w9KQZcYP=l>hQ48?aQC> zVqVOIuUVp*A~mGg=Oo3Rm0CvAq2g3KC>2hsPa)ADFxTBYv}7DABR3#98j!pG<{_6S zU>U(73DSVzm5I|Z@ZUCjGe*{0VCu8XNt*z<;A2k3YY84fn$ro%jZE!5n=>`NZT>@e z7E`yMB_aNiY~Pe*OP=o5u^!Cw2&mUk95kqX@K3wo zNlLgNU4AI(5_89=xrlIBvTTHj`V_@MgGeNwQ&``+c}PZ5#}*q(pCKh0P)a^_Ti=cn z#A{N>9x}8(Pg*pfwURiEtn0SjFdY7i>68l@Ok&O)>j`LRvWYK+xI$kR<$DYE?oSH> zF=x$95D@3coZm|3#N54Z!msXE^_v=4d37N#o6?}_>AN!%doNXNE2xV|ga$;?_aYt< zFF_ocOGt(WWad-n#&Ci)oJNf5f0+?hi^-D#Z<*2^g?=^GB@e==vOhP)qVCC)!4Sw4 zog*2J__dCC@?@|TrxIP|)jioI(xB?elfkDT<3>*8-XuZ;BFU4%Cz2;aPUb|Cp#hoH z$pEkI-1Fg3gVW+QspmEDyNK7f;`WQYg3e~fV#_Pc)SDlRG&zbt4$7s-|9g%mlbeII za6~p8FWHp*%)B&mCbfc)3Ny9D?v(}+dfv?uA-Qs>FV_{h8;UEWNCS#5yxAxQ=~x!Y zF=^6(=2eLYs$!&=sEad!;&pPUJ1}i^h6D#eG5Mu(P~xk^Z0gEu#qN7CGWK9|2rJI* z76@&|2x|#tibRl>_m;Fwepc@X!(?L~5cLE~hX!FteyO}j#SM5Kp&1gQp_VrxlcOEHw^2PGDlkaNXxu?I8%4O z6bW|g@`J7%kD%kdqZW>XWAd5JniUbsNW}+ADkksY*JPr_S9(-9s;ekK8U*Ymsk5S# zh;I4(l&$nPhV0cOO9QemyLrjxL+5&guO(p`5Z;@3{4C{RztJ-z=`rK-LnoDLGx=?1 zO=r+^Q^$A_Lp+ie@6d!@8uH8IS`Jd)(&a5F&(w1sg>K+hWru8O0K_gJ`53rH1%xa* zfODk-NZzNe!9%Bi$uZ%l_NP2)5ULw)uC~roe{G@%kthv_Chw(6Xt+KqPy3QznW%0h zSsIZ2gTzT+!lEr@xcSDcnlWi*xIK~yZ*piVTdqwlf&OxTf_D_)JLH|o>gY3N?( zXFG)VoBxB+p;;MTS7OKTA+wbYuN@$zBFUU$h=&b8=3ksFQgoxx6OZu zO7f){mW23+KE|St!D?r|J3AT5ta`B8lD$lw zdj=(w7jWDBl;d!6$vAJEBM2Qx=K4*NOyFHh#+3*c^%xGqGzi8xv1FX@_F#3!HiB*; zwO4D#{a{m0Y~W3QVnom0pb+!Dkzetl)GcnGoANu7O1=WjIup5&3*_=*kxTL!t?%5b z#fyr1F#8u8MB?)FV$rU(R(ujKqEv!LNq&WCsk;NOj@~(kxA!gMMXw8Zh0e~NmJN@z zaHNGJEqf$W>Jn(^*5wDKd25U}Le z!%B(hmd`KUmHx(%y@F(EKsNbR`%)r~Y(A?j{hcBFG!mu(;p-EpcqtFOJ%2}UhUqcG zbb~SZW(dBL>914k=1L))^zZKAF&@(aaJPlsOnrloxf~*&r_&{NhreciCqL^qpT;xf zgb|YZt&-Hq&-z36CX;QrgpC?=!a;+0Bww;yLP*Z@@&ks}PSTo8&bMK|uS%}yk zQlkO2)YnOJX2?VGn9KT1oNhiPjyfmD{M{vxdQtq_$iq3PN#95l#mred| zQ)X#CDNLln1zGmDl4a=!aX%s)hAbOlqCUbdoCbPHzE0ozc0xA!WjGp2A15W6O-cG< ze7un_r1dG%q5-Yc^I03HHaBLpQnhf@`bsjn?KUTwW)5==MR-!s8P)K$GihKlMqT?i4Hmo1NS@IZCCee`bzK zG6dRBo~ZZ?DVJqJK(4QKu(6#tkMX+ZI5i4!#>&^EjIdJCq3 z`cIvw;ZHe6B_AO46<|K|&|O}@r+MW*k1ph+LZ%QOTjZd6)Ks}C^8TKrlRrUJMp`%` zV}BzVoBRo)G7>sxiwA_6I-HuLL4;C2_fn*Q*W3?wVqhpXsrof_C++GV1jXbRAb8!M zU-;EI%S-+8x!*@T97@~b_VuRz-KJcC@JVHgT%f2eztN4B`~rmUT$E%&BuvzeocGh9 zd6Hj%m?9%nGh1vZy_J+`Kq>iEN9((!m$!!ut+$gF4QQpl0AXFXv4Oj<`kU1hjyf2! z3FVvoLh+=xj1O8Mlkufa9VID1SB`>AJ@N6#t;2#cyDNXg99u~}w=R+tUdXfKB+ru1 zO^XC{uK9(+NWGjrHVvYZ{Mxne-w9lD&OcuKrQ*Xn(yCH%V${rVMFgVq(=jK zdlJvDeD`hH;XvmEuWrLUG^)>Kp1cE{;G>xQhVC5ir%5u}65iR))TQSl8xMCs(}mtX z|BU&Ve9fR^V2KJfB;?&CA(MCPQw$^{ZMbwKbhy-a*|F0gFv(|l<+MyrmXP}%$Ty)6h{+wJK)(1y<4n3#D2Siz_7&n6vnKMvoCmL5a$ zbJCLX)@0a{@=QIGYa?$pDLKT_DIjKS^7{-Wepvw_i@ZHe@;3QZvNd=}_Ljs(2UFdX zg98mhmHgR^^(dN5UX$p(Nt6aeldp(bkEl1+u1WSplBEIJ>rxN7(=6JP2_6eGx3(uk zjKF#-Dw0&EGSk;em-GW%{#=-S$mLsn{QDrY=Qa>JmAv0}WHLn-NY}F@U6Y@2OLg5? z;m1Nfm-3-O43ggvED$kyXr4b}P}Coi4h`s}pQ*Vf(LI-!Z9b(JkP;0j4N@nVcH9nH z=uGC2l`J^KoJ2YqXE4uHcr6W?C{Vt5&{dgY(~sNP`A6Von3<((n?eNacD`p#ha%)9K=zwRKC_%+O8IWoC#T zodmm0OK``aGuPj#ho>Eb7B(~WMm~~sklEt~f5AcLiRqk+S7`ro(S9$TD?PB7O6j_) zOW49RsN;^rjz#Z*`^VEg4creCyU%qVPDfCdC&PEz-&GcOXz6&{kf6G_m31eV!t^z3OB4(-87wgYE_tEW@szQ|(E zO!v+4aG|p@?2pHI?#s<-2E&DxDKxr2;2h}wsHt*Y6#PAV`MJi`Swb>XmM1p+FIZu*#Z=dN+GO8bl!GM7bFAj>x14=Qs4w|9l{(2*sd87;v45W= z$;wD(iky&Sf0`)C%AD!}sCYn_s25N=G%1p-=+j-FlO!u1Hk2|_qDhftMW2pRo@B+J z7+NnPEt&*LR&?1m1$dNkfJvI1n^QUJWje`K=2=xn|up z5lO02I&UN$8qjHcC=ET9BvkkV6QLVPi3XG+UgcXOKyC4lG;(u6Dn-4Ksbs|KYqfdd z4Ci@QX|&Myri5b@;+`xE&1m(x2XnNVDwiVv?~{yH^y@oeJ7$WUkW%kWG+LE8m82@L z5hm)v?1O2N=(yn1DcK}e;jp3f5K^K6rN*a(YsM!Zt%^S}w9X_g8qjKbN?3G>CAjnY z7AeJSM=L5vy+@B$#otrE5lObxUGA@7;r66IT;A|TkN@Ls-En7(^}usIS)9}zx6E#) z-p}){L%b61*k6-a#9dO~R~=%)2I=*Q==5sJwG0?}#dTcN2PhgE#35psXqJq8uC++% z!=yw5N)hSRD5X5fJc&r8K1NzJptbQT+$LDHyJIXc5><{8Mubk)Mta z64fPw`idR{y`xV0X~)3Hpw}HwIwzSiP-A~fbEsd*_!@N2fgg(csAvTp-C~-R->>x^M=avC6VS~K- z#U|#JiHW}H>bFgODq;L}TU{n?%@;bj3nfu;*Gb=%!g z%3(p7?ApI!-w|;?y*@GF0+}2yGKrY&*LSK_;)h6Bs3-1(NN7;|h*@nzMDjtdgwkcC zL<34o33Thb#6wzr+(!#kqV7P|YN@ybpfbDhT8nDYS=G~g5?RgE!B;}22g;89AI>jJ z>RjAHk@pfsMl5=&Q&mm_z3QrGvB7EB;7KbgXLfqh=M#7~3DAH*vc5^0nRO4+*wndB^;bhGWm2L^qa2;7u-0kR}r50g^Bg4>dFyI*O>2n}kojgCjo;0&{(e zgerAjxLQ&A8$=CS^1UQU1Cq~3kdURm+qM*!3MDV_h@ndib$_O; z%MSY!mjw|Q`J2$8dC`WYnrARyxN(~WB=E7N$MWKwIsOFkjrbNqbHs%sviA{^y%87s zn{%#*ARC<^3_5aZk*cFXR3a|)H%v_KXs<(W2kFs(Uc`m|hUu-BxK?{=nG|V2apN}< zHp8$qZ5^X?n6)k?f<_0&%}Ltv>XPoDZQHt}#Q{8(J6D>tJXS)S#UQ>pNo$A;Ml0feX>)q#lO7G|ZBEkq^wvq*oZ_QNkp>huC28Th zENOE_mzF0je*lh2E_dx5j<)y5on1H`9q!WEDkUu`$<+P2NYlf^Lc4GNjO3DB?wTSe zbdZtrl95R+cTIWKsThj(xnDY-DEdccW~U0`W=#@0jXhvIb`6oEqgOo z30f|yM;#l@*dt`K@wB@)=<$?oSAX2w@Vd44+il&!U=}Nr<*P<^CsS9CA>J)+-`fP8 z`OTptETGx3Xf`5^y_!{zg1+-*!Xg~h?RdUVgW5+tQqvp_x#tyqMPELNp+xHcXtleA)%?Bj!vlRd9&7BvzTkQg^rRPP*90)J1)y$pL!X{0H|D z%jE027tctIXG&^B+|;YVJ zAbV3|JsP-LtCQH!G^lY>+57H|>}}}PsU$%I5=mw6k?>{jh}@4vXxRPjmgIh>r$sjUTgJ->?LVX zkw~a*JY}Ro z?Gv6*PtmYx5s*2FWN1Jp;R*E=8K}{vM?mOQ5~2a2bSKo757H#?eiKtAmul)3TE#*G zeDD{utf3h$P{QwOvm{gBSw-R;K0EXa&A$CJo_!=d1J=H+FUcd4LLPle@+hfhis6w( zDPF0BNIi&}p+PVrR)ty3brry`#+)Qtq|KL91+|0Tc&q$+--y*=RdaE!ztCM;>Kf(iZM*<{JH&smIh5sFpwdg(7LJNgKo)#ovLLAp zomZ0xUJ%qh*!nc6dc+OFCR#yXUDJbyZ2;XK>RzNm11bqGCisGofz{5)LOLzdp#h!6 zgn6M`1F7M+%D*!^oIXJy;keKn&ClxW;6|pNw}<0`-ZuZieZq0Ux);yLh+ici7pzO2 z4tcHBkdp%%)Hq>62JU5C@JNhEf(9fKjtc>ad|dE|tda-~+drB9>9Fm2{iPlkbOHP( zoE*SKe_3AEE1Q}60N3^(WcJ(!Xhb}AQnh2uX^4L$z}DaDm?ykmkvp|1fKZ5kbv>J% zCb|A>`1A3=ZwU2#5}^T+gqI5nu?SKjkID;4h6ZHjQzipkG97ZyTc8GCiwWl^^L@F` zjsG)s-W5oO{kbU?6_0pwvuYX`*WwmAa9hcNh*#Fv^r#cSRaos|JJX=L2@}v%S38#x zAgAzDQlJ5agjef)3c2WW8c!z;8qj!3GR4DRJNJ1UwXQV>rwIqY`N6O|!OKo}nY(;? zAMg3aex|N`3WR^CUu5>=4|tZIQkEe#p@W3Dha^P8j<6UMcFSIwFj0qbR!oC1B)rAu zIo5O2e2nmp7)nQy5)CLNyb9(yc9gut$=l7)I)=1pKx^Z-Y*g;Xa=&fOkgxc4I#zdQ zMv0hn`6fJ>n8#`r9UX3D>Z2o`Oz3U%AA*taWWu@^&q$m5O4=lxM_QLMkhof_qu77` zKkB|bK+>W<8{FksKvD3%uf*${l?64X6Gc>1P(iu8R@&Z~o|&%gW9aUg-31f@FJwj0 zm#C^hw zJ-@o%dh4ZO@u!>9CeDzUNGM4kR;$up5Dw}wtO;r0 zeZtzLiZHB|t!Qr{CR@h;tfzt^Cv`9e0 z!l$u^G-yC0VVhB;kq3lN<$O}10hM%ZhDNOTxI1*4Ay)vMum{oTUH<4hgFQNtnj zG(Q5BgtK2B6`_D|=t?*w?7w@cIv}jqIuq2vtPW|?YH^T+1Vxd`7E+-Bm4r{{2C3wM zQKWMO>Ck{qx~Fpnvr@!9hvDJ$2?7aQiRPRgS?HroJ$;_7gq+yFppdYYa1;a_VR2#d zR>EQGpzvH*XR}VEfzt_Fi6Q|B2%kocG-yC0VJlIjkq3iMWsX#6KqXx(p%E)S?sIi3 zAy)vMa8{{V@5<CkYymNI0uhAmK?rCvqy_C8a`2jbj2=awHO|v>= z`z}cTU~}dUKqKKJYC)4>H1QDtua^KwIGK=xN(gxVt0%GTr%9~8Jp1#<4}L+Y(@BH| zL=ukW2lB!T1wU8LA{iQxN%x3axKs++a1{f>iW2AvTY^?+P8PB9AXA^$FBs|Ly_@wP zz$a`8EW98i5Z;r#C9se>477{dYxOGDeKhbmVM|bemzKaI@fwn#0f~eyL4iare~-vj zBtpaTPu3C;u;QVRl{$nzZ^GpdevTAaX5<(11w7mSBKL9ts6A?i3XI?y{GLMRosy&p)W9U zJk^3m!f98&th%EiPan*2rryRK*blL%`4OljoObo72nB@9cO_&J)*c?J4jAjT&IDCs zSDFT{C!E|FBq704q%ub;G@z0&atEp8fl{QiKsq#_lWyA8U{;FQ-(iS2eS$#3s=U`| z%S#bF$W)7;G})|=%^$!g9A{W~K}JOUR3ai_7t=zTaIjvhZ?a;ffyYS$(qwo()XuYB z{R2tRfJDNEw2%jW2)Nw%9*NMf{F99{$OGbcs6V0dMSj3d_@KVGRO|K{^LwiOI`@Uw z0}gv_My_S*syc$<$id6`74x6DP&Q=~HcVBhAzFSb(K5y^lasEtvfld{Mdc1$7e?v~ zcF1XvB`-|37H|Mum!20+#SAmlonSut-3uv=Du7x8-}?n4qZAd#?JRv?i}-y?E=5}{%FCu=4MSn*JAOWlk7fICLT zyHLlzSheP=+Z3DMZSB_QmS<&~W;x8%3wA>C2b(i@0Ql{zH{O%O3oZoz$0GPKLVR*C zEp^{t^+r}~H1Knbwk8l-WL_Zf780NVfia>jkU%c+0*SYi1Pw^6{sF4VI8+LVe?);> zu>tjpF*Iftf%jGyx&7r<>{&Qhon7wr@i|euBDXrf+@9?>IqMDVnaboujJDnu-Q)Zcm~QU{!Lw<5|!;cLA8FI9HSuC;n#YpDti=@=$EL z;xw=ViQ;^G(&DsEvLbMfsxPy5MU$*JfmO-zPS(ZA^YQYPY;9vuYi{K!7R}bX4SpR1 z7iwroR`l1c<-@byd8RHnA4Pe%e`)XGC*=Qu6rQ|#?5vT3z@j+MlHz=NbOardvvq#5 zlpd-pS%x(5=V@usa(2ESyN&iv81u=m(vbjLpYjr#Rxb&a~QU zNe4%?hZyhPOE?<9jnPi6u~yMB-vL64HSZ%R4L}oBG`&1WKS(s1glKsTewb)9 zKuc89^g8qXLQV5AV$uLJQ55#P;`;>QXwtbzw1SJDA|?$mt7$5l{$jV@TkJG#;D3gY zG=LoAt>8&Q!$BfGygK0XM5Y1qQ&;V+t^v5>_bQ}HJ(FFV!T!Z_!*du@2GmSnIyhL7 zxZJGItVY%Sr%cUa*FUurd9ZiOqij;_`kWe>njoR$^IYlpoDrPg&I#`PE_pE8ou@=_ zr(4%uN&QU5ew;K@A8Mf+d8j+zd+4Lg@0g3H#Dx_!Wa1@~iDS%ouPO!KEB<&#vo^c4 zRcqTX(rE|P-*R9_1E(TXeKxz?lgj#@dbQcuSr-r0b%dh<^(_P+>81IVW) zsA&m_`5o=vZ-_+$ti=Ra_Os;q$I6 zt-n95q5nW=8bGHIapBX!#@(B7s6qqG)55#XrqfrkVm2r*;vl8afsHUinXC0{)&8C( zd7M4w2*v%UOuc^&9f!vtyZ3H+G?KbIlZrG#aVYGE3KBZkAB{CaamiPBB*aI$b8dL- z&ed1Y-P3*QakE+fk4$|KpSV#E+2>zwLho6{#oIBDp1TTFNDq)e8UzV(l(77By(B1j`%gcmQ z2k$}+L<40+=visJ<+7_bGq(oz5qS1~Z8V%4QbP>vY!;@?Ix~PFXl8`j%9K^H; zKED2}_eMTjg6e8tqO*qXAli zs)kOw&x2^dyAqHloqO1W9`C(qw0jVZ251q+TxDTlcf8kl_a+_<@FF~_EW^`Vj%%>{ z5R3+35vG_*!SXGdO^)85pfu^qPj+vX(>?dMYnN0TmB zW$C;|dpgl*fENDD)oYR}-m!_nFL63!a6EQq_^8&bu-3ytbDXL9*I+1kh&|nV$YW*6 zKZk%%j0!1G82;VrK>ZF@gb7C9A?nz!1*cEyIlEC}H1Om}!J~EqRk0bR^G)3nt`xE? zLif-1739gdJImC~E<{Of$uI2P@>shfJ<`0AOIwEP1Vnk=S;}jS*9catOA6`h!TKtT zx5+^LGv^R#P>>OxhYyp`>vA>J4+uq*3QDgT)lfeo6b+!l7Zo_C+z#P*da7~mM2Qxa za(Z}NH*0(9T~VkUX6nRCAkTx%+1`VnpnpMOMwpMw;RFY&e1NDj!jsWFahX4wt1V&q zZM|AsS->Y~I?ZiZ@k8fSjcou8oZ1h#$6DMu;?ktW#VnTg*WoS@muCOq9%ubk#H9gl zgdy%=`Qjl0o_k>jH(&iTZl0ZxPw=72cnx}BxYa^KZ67Z8mmC7P4QMMR@X ziRP5?e4^1LL94fR)aS6;W5MX-MMR?kT6`VOJAGVA92($6=%^3q12|Y{p#^^#foK3U z#wHG{b;t&Qq;uP^SL+RK-&n1mv#gg68t}^rP6O}=kIjd``+l`t#Y%{F9m{C6-x;B4 zl4NjW&ebTdBoIv+pj+_|+GIZ1wdqBGCXTejDCxTbxf2hXyziW}*iQtJiF>Us5csPZ5$P zNon=^u7C0w0?_~{di6d~gE#1p@a(+VUCmuAeROda?a zm~*(rz}3CCc!K_)ceg)_B%C2Sf{(d~b7d|f!lJqopV^12&8ZF=S^-pl%$ZFZI2Pf} zqY;=pYW>+oEQH6%glkfn)#`pkrU7z{CSoW{^$ZLafM6;>1O6WZ(f}~VR6sf4T%)!y zkGTK?`apux05nD~W&~)*;vGvonxuGG>TmpeF!5-B7h@1n?jK(*sA9!0Gq=;`f_Pn` z4<$Gaz|#c`z_A7&bD$dY&xlC_%yxvncDcjm(EtW9*fgoS)Wth(99C!s4<`c}FlZ)Y zu!t-Nbf=4#SgNfKcM~x9ClH?o_$nEGquuB?YR$&E^{QRUuDyRW(P@C5reR1t-6_BzcKyeXtzJ)NL508JOjt=i6dwYM@?ZFkz$c6|YJAdbOVWIzK3 z>7*<#WL5Q-xwYd@BP>nQ+{QYPdUejVOWO%b1JHDGZY?+a4G*yAEH4tA2H@#pnGrSLY~W2bE$N*E zr2%M!bt)q&OW6+>F4wqfS_8KUOatI_-RFK6`@!My(j03NgM1E=X@H!r7tpsabXNNv zw?apI-X}f{@M8>d%R{Ts^zR}h4Io$F18~*(>H=a#%G{0fq+X4<{%MKx5Q0MNfOJPN%a)j6OdklWO`7SJFhtP3(}-SVGh9b}IER zWa@|4qB=XGaBc4qPxSr|X`B{5fbW%UlDqnBS3qd*@hlPRI%F?`XL(nU4*6qbTWVY&3X+FLHGzugI-Hen*9LE2U!~Q zy#%G%51@RUr9t0EP@04#yQABw&CN1{dyBOt?pUIsKS*dAKt~uPmWm2{p0O1KbD?Xv=ZY*kTlFJpCFGX%c2F2iZ-G?X`>FBp^*< zz-3#O|3E+*07e)tl;^45hEMzVJ;KodF2eJKQnZKcseufgQ$KM|8AVV*AfHNd|R zkR~ahR|DKYKpFr>c&DK>R~yHe?EEpoXc88oo>85}lL>?QGh)&JGex(WjZUkxQm^f9 z*j~Xe2uTCT2#ZKd^K_|Z!|<0xqXAl~K8T&koX^AYSA?YjY=kMU5l)&3RQ;_h&T_5P z@$R>-4*r|?G{BEAOR`V=<+kVe?+8q@9~_6f{@k8+{C|m0lhX0!K9*y2u#Cl%^#SJs zmF4Q(IeXA|4I!B5WL0il;~XZueEao>*t{!NjHkcB;0mkEc&Y%v%UY z1Goq?)upZyZn#j7ATmwDLhW~!sA`QA`ng;2PfUgIHBJZ)&Bv`on2)pHsT*?xu9p6s-MLp`2JPLL z0o}X#iM)V3I5{4dOfh}T32wcaeqs3J@a*OH&_+^^kd19DIM%OMkC~19eWq@DC$h1L zrhD(^Q+OdxHd-!{KC#tDD`DN=%QiO5z!Nkw$SY?FZpPHPc#~! zMQC`6zTtHtZ00^&_W{37KpFr>=oc0N@%V=q^jb5Mo!=rJO%l9ghw#2bJR0Cd7+?+f z*TKXt_WbWHu}$@}^?Jh6Bym$D<7eyliAMvxCj{5P+RKWzrq~{iaPvYs!c%(LOjlRK za+s;lzJ*We&Dq|APt%(wvj&Oqls<b4y8(ZH1m zZ?X)b@td{GJ9P&F(EunyT{QqS*XTB87n^mog&OV7M56&(gqKSO&=#z$q5)R;^J0Oj$RC4nCS%D{cZ8X{9$vwi<>C+>Pwp&JfAI!{)Rz3h z-YuuwpE9sc4R6p~+VX&yfQYSz#8!ksVj+DUUd!!nZ3Wxno9*I>sJ_Ri{4{VXe4h@7 zS#d{_m1>b?SIonHj67UZf3(LC{QkS)_KTs@y_-(QIs85;8WBky#n_W#d|Ysg0?NqC zQrZz}#9jwejaK|}oT>X>1L+@PZe@E9Io;eqPDR)<$%7Oq`mEcnVfU$C|6X!oMqkL(eclD398tKo_lVOmYu>BhU48<8Bdn$wq#?-A z%_X9n2yc80LWp>JRg`7bzbDYD#{#8+gJXOEn~K=i2QhsFozMIajb62F7S-r1m0~ai zR!D#b1X8&_8hsDZX@LHM2$iSjpL4$ioeu@f7agj2{b{-0tD>hXYg0_VoKI#nU>0Ha zytH71ncVUsL0v#>8em6wpP&?b81*8e(f~DlhRz4A$cYJM9qsBxtYwB`Ji>q*1MGgI z*Kc54C^b!fo~dtg6Tic~pJaOvKi&HQT#qm<#UZV@p)#t9lU;X@D4`CCtmk#qw+iOOiF%r39k^ScF-VvJ9PF z#`p(cL(+Jc5sxM<9$&uDc$X8826!F`>0EM&4-dL{8_fR~`6VN;7Odt3VRIoiS35s)Tb8EQb!$EyiRlP*sQ>16sQ;?X3{ zQ@$f?MEX_&(f}|~wT8`{+Wkfo50`Z*UPDA0AcpT~>s2%r@7Q3yj;-QgixgpahG&gf zCMjKSbDXKgH*$DpPxl^jru>Kl*$Bfk4^p7e0DeLmzzC1%z0`H%*TGhle0jdQQ14gG zPQe1Je#G*lfnVWcCIehCe+|apu-yC%Ja6^RtZWPNz}33+W`C60@NS#BRkYVY7Af@cE@-{Gk6e2d$yAJD1?O^!tuNND;!Nmm4>6u zEcI8cvuThO>BG^dR346w*#9Fj8W2k#jvldngrg((0g|Hux#Zz^>|9wmIxgQS4@cYw zxpd)Zw<0t-XDf^uT-U85`JH%0AsoG1UO46nr47d%N2Ur$4&nII)Ztjf)qNV+dNO6zFl zu6|Ms$NYcopKv^GpmhYk4oAL(xa0Mu;fPx$;fSlq&2+7!%@`ppvtPo|r&MemhlqWQ#AxJubKvp>S|IKOp7K1nz_E;p8k zqo{j1dN+SyCx7Xw;^ItUd;e!&jzGL6HiIo*mrMSZ(+t5e9mzh6Q!Q{;sBJ9Lv? z*}7-H0B=7_)OBWU%#v?1XT%Xk(10ry+3CLvq<6=<2l`0Mo$VUUYFf zw88$6yJ2X&o-}AcW7mG5;Z?VTRNhD`G@w$C9U%^^QW*bJ2BgaPWxdnS$tZ%}G;+xoBmz&4g9Wjy!chG=4@JG$|v(qcI#2j><1c zg$7howGixn+jwxm#}wiLmqB2Rms8i)Yrq#$bZf1@l=7>$A_6w?P%Hq)*r{zIz)TSg zVt<5)eT+2&6XEE7kaJG`F{?Kk7G~_8hs{grkaOu^4tzfX(*QVnrRD?YO3uOm55Z{w zepcj84p1sN((%-+RuG`#i*??Jl^;O3>(yGUI0PUp0ON~Q00j(UJvEhBjbl^}ebLUT zPqTMI1J~k<)q|92%N+Q#1f~ISe6f1Ko>-mNUm!RQz@v+G9%6M!r-)cZJJILp+}Gcv ze$BrHckw$Q+%4{Q<{!i7F_!wQu_m<8B$6q@L&|51l*ia-D*#PuUyCo;>Zz=aXyEJ^ zAD<0{H{u>3@eGon0g31nSgvf{K-d%d0Fkpvga$-*#IBnyR>d(gW$;W&-_sz#Qw4w- zcNhlj?Z4*(UI5^NBO-nNQ~@AF1RepT>xOXIamfwKLA8`sRFA zI55}ykN|Mk4T)cn1Wk$naA1x^9sus1A@WNSp-B(`4y)ph4C;$@0OVHz9(}-y&mC(2 z_4gHz;ARDzcqkTt(Fd#sFjEAB#IF>IN1t7>j&Z>1oKsuam!*Mg(Fd$PqzF0(K7znB z0FFLj^?`E{=io;YoCe^r2dqG;xGgVf>6Nd>h()Z{7&8?=K;mv7e$pg72T)7O&!z-PJezWi9p#_8>pT8|Z75 z;3)EF(&a^zPlx~$gzzY6U3>9GC2#qa%>>O#T}JWIAWxnXU3_K0kY2yA*l2r^(ce&b zEYdR4U>UvjY`BLo`f123E@JD+i)cOdAAm-0JuPUah=R6MLNP|Qw6@uiD?g03GM zILOprzD-M)#{lJ@B+@mYf(Pk-HH5%~ zbaVKJ5S}K5bOBSzb)>!{(j_?1qK`v~)OOm%oAck{Q{jX3<;?yC@EH3$tgWGTzyb;V z{#5ik#+H#2A~^vYH`U*9;*bUoMj!P$2Q_RiVGI6Mg3|yz`dZc^cu~Zbz&A*M1_V~$ z|7C(a*D|(fKcS9|t^gRnfo=Ee-6c`7KFrjq7emSiOP?!q2lO^}msv0fE~rrRZ$-`Z zbWkE^&sX&aHmNl5aeM40RRdK_ZtA>MH?mA^1_LvGFG7QMuu**7D_MP>spi{JyoY;T zYV7UfpMg;P>as{kNT9SgZ`SWCbkdZzmjM{Z`abGRP!+aEG;lfkvv?0q$^aBhZI)+- zWQ2MciO_&Z^mjMPh$r9)yfAKs;>dI6FX-N|qMSbzJiJu(u4AUyuq7s6^jM zrZhi_F)~2sm!v}jI*rKV3ZIR{$pHBAj1;QWsfMuaFM8eS@b&Mb^jFiPYKZ=D|SVePzfr&Nu`Uk z@Vw7ZIfa6F=>3o3XJ!_!3!(dQs7kS_h) zLvx=M4)O!>AMrC;3X#dnXEGioKGvc9F5TNv@hG6@Ir2*`SW;h7e zm!-{PDN(hH&@_N9|76f4$dKp&PLD$M_sB_pK72WiEb?fE~&FD8E)-Cx3 z{}{j#s$dUT;GootMX3?06fbpCPZnHL?>rBsMgwO?G?{BDwm~>6(<1152ucIc5zo*< zKz)%Gf&YrYGypy=xB@k4L!w2Li>OdfGXNX$VX!rL*;#JOqX2y3vW;1uFMSTeJV;LL zUjUsHTz6U^fq)oaE@B+&^2c6hPpM2g$53Uw>;JXt#>0p5A1dXqXAfWQ&0f& zgy#X?k$^M+EdQGC8uPH?NkCmru^AlzAh<&6H5O#a2oEy#n-8;3sE^GbfCTpmEr_HK zjlDrM7ThPa3G1@YJy6eN<3t1Y!Hq=$LLb28Jid5)4XZ2&>%cEUSetMO@B7dK;IW}~mjRH(p{lM6tCNXmGi&S37-fPI8|$^)_W zl+7&l6hhGeDndQwK^0_WJ$pLgXjm@cx>}^LY}y|)^^}x)xU|mc%8K6}4l;G*SG2Tv z3~BLC6loa{NgvYsax7_?grx~2UG0HdWC74bk(Li)q?JSMBos{)Y57o|v~svM;b>w= z3&~dUa#vpxX%P&mhxbqL0#H|$yY=*8rhfP_$m?Kp<_-XMa&U9#zyt*%yIw>V-dwq) zjm+qlps44wM?w>)^j(H|O{14}>P3X30o;fsfoo`ni+=fX^E|wikTifS|2q6y5g|D* z{qIq9RuaGnFRtYs{cg={X4f+(nQDC!(mT|hdxvx^SbiR;U_pRC7XgNMW4y#gf(5VC zds##@QB*MqW@@}5E&n3c8pLRlu2^^}H}x|L zG8YPvf(HZrnhXZ;H&d5=4MN<+L$Lq|9t;=&NgT?%Nt72n7_h`yD2}{(CEFkxP!A4Q zA3~&-16@fV8UO`Hkq?v$EC+iX!Ds*$Iv7Bzl|1F&QBk_Yk#um64e82YfCrhn?N`}j z)5qoyK!OJY7DUpAq7FMquL}?E6xf7yJ(hc*E@tl2fPL^_pa9}TWim^>fKW7m3LXp; zpbE0GaF-B{hUF4C7$6#jWz*h*Qprm_JlwmrrE_&Hj23k1+)Q2ad5G&EIkA7?M)1U| zPLV(Y0e#&;^c6hu>QWYg1aw_ksd3mPpK`3{N<{tzVg$t*#7sj# zarcd;IFqtb92sj2^#+y+4IGG|I3LDTYC3xa?9BwD0aygZ`Cz`{a_`UUA{JHI8>2IP_foyv;A*B?^MM$?Hdbok;J~6H+TZ_gdYTwG$0IJ}14$8eTN- zk$3<}(1679ej<^p-y^b>L}*z4rK*or78MWmM9N>}2i$tP46v%#qTll+h<+0f#R7Un zy&A)31Dz?tLh)yc;>UOg#*5oE#kh5r9Z%=5dJIdL2JUv!=XBod%_*Ej3N)ZF#%qc( z{LjUn(|7`D(16CXl4%`yl^pX7DqU+Xt?!Gq?p$xN+i369wS0b>sr&scWPg}LYCNX^;oc-mg@oJs2YNaT1~dp$qpbp*&oM zNPUu|Xh5o+ENXJtN`7d{X_hhM3m8li)?^yLVY*B9BvbGG2*T)4ckUg6&V1t1GIWFm z0;neel&~_jj_T@!mAbtk9Ml43K?Cpi>>uyFuG9b-MKUxXlRA>EGMFa=VS`&HcUmMw z141fo&;V3ICP(iwU~;K~L*j68bDb;~nT1pzwBe%9g^oT1oy6f{>12v55H1((mvFJL zuC>wbY7Xic3W5gSCk~eajl8At$Q(y9G$4~WTnc20;o=c`2no@EP}*=Is16qo{X!Qm z`XV?a?4&n43k_LUqmMFG;o8!J`6NOdTAa>*{ot zJq?^r*q#*$NLctZ&LRyO&`8)XEz-yX!l&{yQlSBrxnzxpMy&X_FJl}SB_=NnEU;~L z8nT!lB+O~1PPvYw74J&n1hf*4R&rDst&j_%<7$bHw5ss)gI$Z9i{y#AfvTWE9we-^ zb6nT+bHP$5B=utwq5+|Vqm>dug|I1-`WZ>lfKZ$W$NGmn(c|4*uS8Vusv}U1RN1_ZSwZSVe0n8b6q`>3ZQ}03EPt*0SOVG#)+gs z0~!fyjv|dbFnlVHBNZA@N!Ole#EOsm9^IbE6+kBp0>;2YbP(vHOx;S}3*%)xES8I) zkT3`w1p!A8d@OkoI7}S`p6lu`PIc12>4ZU0Bp^ZH)3`Zl(11q5ASlwvgTSY9OH!c$ zm2^R%5%DS{b*DwBKB|L2t^hjW!=4^qGq2B8Ifl`pAm=kO&^hz7XcZ3kFWEEwANUYE zVSEly%M|G#M7|^;l5jvgfUE<>yCzK30Tc%fvSEzM=1{=@2;VBFlo_%);Y<>CLV4@j<<_UwQ$rI8B<2gPQD{nE5sNu_iPu72bntk z?+{Cy^|ASb%t-j~+`e|BH^K~;}DYud5~~&s)ULOlR-kCBOw|PN;o-HLdXl5K~i5NDH@PUH#wDa zs^o{JoPNt78qjRYet$j~kzvR+pWx(FPoLPo$c%*Ja*ZVsLvTdQmV@;RD+wQVI7|ta z+;#O1Du4z~ryGT8{EFnVqSxwB`0V9(!rGJ0dbMYMnyIhyg`~s0D}@u}NW$7PM-?rQ z3$$=+(L%!7vk0sOkzbNLQ7>VGN`pK|SbOHUZm1`es16%7($wj3QsaV3M#q*k8m3wTqpmJS1~xnYuq;mfwmsl>O9u0G{}JS(hW+6iI@-?pz|Ekp#hzQGfKmB zyZ{=YbRj9xfKoGAx7{(SxFb_S_hj^Vs@+dHgDFwYzUmsrQL4|)@M5Ok@F|4SEr+fb zF6sZzK}UN(=*puj>=0kaN_-`p2J|u@&n*su2X6=`^%ZJ~2Dx&{{>>E~{R2T~GR=_t z8p+Xs+)LJhTuBHP34W6VX+ZG2^pR-5^MI_+Z5K^z`KxUVOg{#k;K%3}&0@1$zK*o& zn+o=aTX!^TvpZY0c6Ar_8tv@TfoZSJ$hAy;lpCWRIe0n0V*WFua*XEAVh52FQV7Qr zBpkh1ox`~M|1Actx(i;gjUW(ZzOw_+qBQ(&+7#-4R zWOC7#()v%*q5-YdpG$|b!U}S&q`YQlDXFt5V=Ep{D`UKUF$tq~p$oNGYqy<@zrfuZ z5BD$0nMZ1jIoDuPnIaLWw<+pPQq9s!KcqQq@vaF6)n(&P1A&Y&#}@3mjv!yOj-(;9 zOhPmuv@=0(#LEK6wcXCO$}&+qsa35IPZLSH(&*(kX6rp^e&je)58x`*L(Hu#KSE}V z*uKzT$g%d)@kj_bM7c*qImR-IAUv%E>#25JRajfmz}?lKpiYdA@Am4f7mw9$7P-rF zKwqAs*R!*RZ|-!fJL)~GS*YS;5{(rMK)tb^{9s0YFk^n;YOXha9KyKsK7V6xmt(L4 z+g}gIGDYst)$>GGSF8sKEw+6Xfv{9Br2=V?Td!X?qIvx|2IZHNG7TudG(m;AFA5d8 zx!p((ySa$2^GcOvuP$bU8S#!*XOdRXupf>yJEQW>4ukc+8M!(mS2OkWzlV@-HGD%~D<;9VAjzys zDOsTgQC}sZ9^<*s+MD)LWL@hI-4Q-&4?CJP$c!ZOaYMjP;4bBp zG4m>Kct(-CfaGXEZg+y{8^W#N3Yrrg0ozRon2dTI!;p#}R(F!2B|ZVxUT)R9wZ2Rn zdgqyXFuyTzxPPg5hWtu0wDb_EFCl_pd$$Bzl16m^Q-_&%O*p70Q7SZWef783*DhlZ zvEm&Y^mkDlh4KK6Bm+4NCIBz>vN_JwbG`{V9AZ!NBalckkn>0gI3(~vkwB7xoQG$M zUuS|~tB(ft*1{vHPeWV3E5#PgUGYo#vhu^J!FboT-n0n#FBT^P^P7?U4|0 z6!+gIEN%}^7q|6PJFfnbT{0TDn`DN15I%3GibVdIL}(J}&Yg{6y)!a1WY`2~B7pR%J@OEGdOkP!+{;8#R}NgCe*qSm0h zBKYdzEPNU`y^x@5;_xbRw4E8Ob6@=(6<~_MWP6gKo1w5&>(=ILv&Z^Mu-7v6Ox8t5 z%1>w9WqYOSt}vStYQy44uY{zaknf5@l8ltfGKVAEf$Ne%>N`{m4YDD{Q||#(rx}|q zmIjq$3ad~wDeI8F`I4=!QD*wxOdZaTz1TVg7wmBr$BF9@AtMx^kRPV6LyY^LHf$EC z_fQoyY3q=F*XhAQ-{99FlI`W;Ialk~s{K7n^|ECxrx9054yh4 z*D=4Wug~b~Xvh8y<$rY9EpxS)5H)dnY2D%QCn6_Apn_kD3d(~Z3`4gaC7C1G>f7f- z0W@&2^i_n((JLC2lcYNDalk?`xc|Z8mlCi)F!w>Ed=xhkllf++Hd+q)t`)@_{uQFQ zLs1m|56nGB*GrlLd0ISycqvPBLTZr7|AkEG{{jWwuBf2=wz=czxMZJp2JW`XI;>$uGo%{eJI!bU2O|siSqSBC zaZE&O*?C{m3h}1Z%ndg{Gq*2l#=CEBInm_lQZ-MFrdq`g z$;dqGPAzw@zJk>%rJXu`XKSrjg>s>V6&>HT-V9FB&0Ikv`4g1aVcr#<*k3bh9~}cy za8OM5m0}vvKV73Aj7E>F_C>vw@kayhrJwkO+vDa|rPkZdyg%$5L06GM;*%&8_u=zhpelrW42kZb*r24pez+8K`AYVnj9`I}U?Avf zo<&as7Z)cg`Vr|@^mWYt=@P-!W_-IdQQ%C_#Wy zW<@EJ=eSGK%0*~u4^+k+rvdB7PMYI7L1z1QKj|IJeCCi`1i*;djnzask5AI^Ma^n& zd10%HLQqa!xL^~rU5LeUAJ~6a# zM*cz=s0vj>!*ZEOH6sx!xU-$vYR2tSD&7EqS)eYaWLP+(3t+--^1{+`wb85AR%(rA zZAVj{>fz!{qc`I&X6mM&Lmjsqx~?x3{y(*F@?=#>85Kc>1YRle6`A86%;Lsef&mP zs84Z9l?Lv1Cep_~F!&}R3J_fpl#p#aw!1Pk6kbi)n1YI36j+#yg-6TP*$y_x(xVAn z!Sb->8GR*FkNpl*a`WOveV+d}Dq+HTz9D!4MA^SZ%6`ImzM*t=X&0^vlKMHzmj+Hu zHqTc`wSqG)@InpXWuSU9i;%fk%(V#z#7qaZNM2q%$<${!lXoa?&ggS}sDH--nsD^z zLkR-P<}ameCLI0wNxEXmJy41@G7V)lQN&pUDGV>^Ygr7;A(t)X?`N&r$}kBGWvavd zF5D^Wb6vwQx=r~_eSJ7NmRdj-m(s&?A`n3leprfd!inb5?sI%sdRLIue=yu=;9U7K znboTG($uA-0ggtOGel^7-MlJ2Rv%)?Gylu;dBS|am*i*hA^GZZZ+ODp+?(OO!i4){ z`55wcqi(x9gNafO6Hd7AgC=T0c}RJk2x7vq$UYEsh>y50=<2f+1r1!BY{Gp+`W15> zQ$Q$%!3lSIu0Bm+*wQG=^9j3VOZa&7h(5e-X7&A1BecW63yIumUq3N-M-LJv?3%4Y z8_O+04fV(0i(Dq`nyrE&k{O+W!b1IuvY~-&%GXb=R+sF92R^-|7ccB%yvD3hU!i`a zs74pYgkzb)LQL(8mJTkXH*eNq>dScQ@G~gpsFFMSA_fO$Ij8&_8TN$9MsDSl1Rt{a zp2(v7jkQ%<)$+u(8isEPrurCr3pDU)`$WBk;iU0-2;CdE%PqY;R^MfLGowrLG{9|t z2-oV&$>1C)g|QoNWNH(;dABaTr!NQPuYfhQGxXY*s3l#W|q`*h4pVAq(k7-(F zV_EX|;%fI+yT!BanA3q}KP zCYyX3bjB!&P}^-*>0DJevMiakL-{!2gzk`|#iG2FkExF+Tr;PZ7o2{~gw>LlmCWNz z5e>z+`B1$$cfv&yLmug(^RNU*9n4CA1|FO`StZ~lTG6n1Y0(w6362bB*Mzen#xFdv z#F~<(JTx{1gKJn6)Woyn>)C@ia`3XbQsuJ{{ht|lCk2(7O-Txluqe1ArQn_!EoJF7 zNH$wUaZ-Jf#YY2I&I&0$o31NCT;S>+o1N+wEJexFVh%oWGC%trGtH|jmVU=f>f*6H zp9^luFYws>lm+&v2yg;|qPn9L)r4bF$II1??usC&`?7dwKzzbLc1b!AJu9%)T{ln< zAQTOtCT!STk`5|gL*nikxUGbv0o+Lw3D2ci>33{b!6beMYOPr86T8%}H3!!Z_B*&( zn8&yuEBIRuT{oA!{~yp+>(srZn8}$UGK6?P5#oexby?E7(iprUc>JQ@_<((w>#a-gnad?3+6jk^qp0DXMX*3IA1}o`;oxml^17(YZVIk?8AF%`nf|Pa zLbxpPp|@USp2J{1oW(BLUXs5-88A4C^a`K1>=R!ZNM6jPfw$HChvyW`jnd)elP2ps zNKTbe#MlR1AcB)c1S4M7U2OzE8o-mmAiiL$S5XKw5JKtB+^bGim7`lJ5Y{%&sNeOp z4V_jeQ4LZGrI|fp2fyt3!_aewUK$kdQznb^V!9RL4>r_vOr603)tNewh2@WS>&`EoskojGAzO z4lUo6-CX0b`2&#h*E%Kuk@TUcjwq^pq&PvsA}QyAYBSDhz`lH>I5CKbDu+6UP&9xl z?}ASX<;g0C>l2QKH`eCnpn!kY4I&OvNx}jkyg?KINgVQe ziO4HFLJVXy8EI5VFH)WaJ@A42Lb2Xq2~XaE$hVGqa?l>>V;!Ds*$+#t@)Ra{}K zy_AzJ>+mvZFPIh3H6CHGMnN4UC-yIV2(Ps)kU&6IuZ>k}*_5T$%H2?pVT&^T1(>rAiU?*YqX_x!~tF~{zu*O z;xXD_{sBmM&&z;F`q0=rMPuPTFO#rHjC8dJ>aHvU8n6%Vc@;oJU^&!12t@;^@Sc|s z<;g3DyEoxzST3P$B9g_6|1Q_wL2bEG53j?Jvgvv82#e`{sOvC&f;vq9g&W~@m<19D z=<7qV>M)zK6PR&BozHThfdk>KRuRTY%z|A&FdBe`*I@;)qR1@ZMFgY)U~nBqJS{Vu z`d>>O#_OzJ!s{@6#arqy9AJ)xZwPJ1Zi2cF;~#*8*I@=k(uc-A7po3435&!?S9_qY zV;RtZeRv&K01<)ZP@f|d4WPp7Fdxd3R}S|@!qKo?LhCRjThV1Lx%OG9!w81d!|O04 zB>T}4<5+Z(eyZy*eS$hn{{>KZ9cF<90{Z%PtUAo5>;z`qQ2&qRKm!ND>#!n>lb8kj z0KsSg7G8%Hz=|TXfFB|t4FH4dFyd*M+0?%!br`Ql6Pjr(ktS-&7S~v7fh}hCZ!Dpi zX$nF>Xg`W5G;u+XBy%^^jhu$0i6t}-#tF^jnYxK!G_i!1gB68l0e??Gnn*%JW9jAH z51r6-V;NjM?`Y`h{VLw<(`}|XpTRk17FfF-?q70e{0~u-K0rV~A;aH@49k~GtYKzp zAbnlydDjF_y@Ry_4GOIu`bfb`Ugv2(f9BmW!0#q74S*XdfOC-!ga0MLX#igO8O2;Ct!RPWtmD=B-eP0EsC8bR(Uhk$u{V)l5;S#dR&_M+ zr+k6l#Qu~B+-9q~9bstzTfR6f40c%14*HISrUCSsk%Zjo<^py=_oQyEevD+IwWnSE z$;;syU0=6V`ulIT2_H?c3ifZgt5q){YC3p^$STZBS88>Vfw+$qaYt*}2XG42x_2*A z#8>i9GG8_rsuMC-+NQMSvN?%M5 z%alAeG_i{|Z+-(|ZQ`L=00gfxG60e|R8ygHLPPXp?~tBiaIBPp9p z>Zt^x0Z{PZ!w2#N<-ndnFdBe`t}+5vCC{(3sU}_GNIJZpvP&ZYfZ6PoTcF#ySs$A} z012Q-zHn@}CXX1*ai&iGFVt6u*wg$7fWZ}`2Pi;L+OtJz z!6NX|){Ua|Ks%)F#b~F28^L4$K`4=25%7-*NCUv&8TCQHTzEy$`w^4|pr-_C&!mjq z&$URTywv$rpi>86f_pM^jg^Mkt40np^_@dd#~p0W+yTJKck5Wg04fI)6zFfS=r6co z%aa!QX}1JL{Tb^78u$=g1q}ch@%eBMCmapnf(JnZaGvyh$P)-j1IW_P60NzADgtbB z@KWl|N&*iL2_dM0w{RVhyxM`DDE|)xZvvBrK|<#xuLG- zG#m{a2<}J~VMJ~|*!KxW1F+z#wFs7r%?JEf0@465bkT@Tx8kRMC6#7$0D#~&uil;4 zg8}@_)WZ)%&9;e$VgV357%%{mIOO#Xkym(x7~<@?Ir8eC*~HL*dT^a-sB8TiVcA?# zKOhhdfWkHG`QnMnf&GYJGyn@748W;Mo?q8cPP)XAbhwyyFNv6T#N@y_1fv01u$Xo) zRanBhu+;}eOgKlpA|&~_Zw}(()c+K z)aA^58n6!@R1`p*s7z+5j8HUy3hvewpbE0GaIYjB4a+64cTY45%clJqDoY9}bkM3RZGFD0g7=Hm2-n+6u0s(z}OY{}qyRs=;fmt`yYgi66a3Dry zVseUAqm!5eyNX~m01NM36?`g)%mKcEfHVLM?p+a&GIObalRC@GKUiq^8o7D;q>nQ7 z^#7pHASFmnMeLiZCKHAME!8qlqE3B3LdoAMij5 zjV6N7bh;Hk^&7O%|qZE(lWCM?=?9;o}UWN5%XxZ_sPT)FVi%BhM4&TOGWs@E3=Qv~Wxi{D~ti0g?0}t)rt!%dlr(EcZa2$O52= zBP|caO3P-JdK{r>;z-Mb@}=eA9#1%$DAMZ8L0T^Dql~nq)Pv_f7G_0R_?xL?kK{xe z552*UMdiq=*E8p7Ks|Ww!-o(_C61(nM|TU|dJUfj&_h&noT=X*0Z|=dPxB)HhO0LR6d(v} zn+PnpvGSeKA`>jZQ5UjEXy8Wh2yzh0h^+wlJOa`HFt|rL2LSS#LNE|gV~!GFS>L2Z){M5yHrC&GDT=e^bsP_ z;MMCx2)g%HxGI?HS`G_o;8^gg#sYv2_I#G5aL<6hm*6x2Z-ovn3IGm#NWi8Xb&jj| zkpK+{JR`8HSHQPo-d=z^o|?7-%LNtO4Q#Y(3*s>jGIfi?*bU@GbOZGtxEDOaupp8? z#CocTH8>n>!dj!6uJ%AZjdctS*auhI1rVu5J*e%3qM;5#g;;>f_2AzUi|P}Len>NZ_!TCgCuvqf&f zeJVe3k(_Z+kkntZPN0D&!EMeEn2}x)@*{+#0c3F9KLqJXun7Bc!qNctNue?{Nmneq z$<1d{j=4~P6x_jYV3!-yI|;_Ah{fpLRGPfq({EqQT()uuItp5Dp23 zx(llY8aNO^>Mp0;(+)4s)ZGb21F+z}YSAZObh&r;A|MR_L!WkNJjg9iy-BSZ9RMJL z(As7frA7}&nffH(vH<{3>|X#y5SjrJ2ng-`XhL%?Kmnc`>Q5N_G;kn-(0mwM$1$69 zo~a7KXaE*LXg-)Pv>fnZ1f&6AxX_R;gqEj%o)H?a03f^v)WhIPKJwJihnf03`)~)F zGj~95g1aXUOi-Yc7 ztEnel;z&Ap4BD*s;b@SV!Q;ddz+96B*sl&M^&FuZ~7$h2IugIT%X>BZmU@iQXE@CMcp*A1*CuYShDpkZNz zc0-W`GG*yTrY@J%F9<{fpzun=1M-ySy!s`YE~~;Asz+vQ%%m8)_FDA(}`fZgMJr{2_@a0Te}O8b}}@v>PG{OZ*T-%r@&|^9Npp4;c)Iqz{e#N;DQe zWU%aw#Eb{(mt5IP1NPxV1|P%;%tHN&P&9xFA2Rq*1$kMx|0Wy_%O!NA05porru|>k zmK1)Ze8YEWuoT`lm~xh>!#GaZ0$_8&KL&94FxaLn4JhHDxlM=b#h5Y5$aBjG&v#Az zEo%T8I1{`Y#ATCf-<$*spw|(U2B7r_9m4@13t}t)e~!R306r~Tk&-rLSwOiNN^d|X zF`5p+a5bPg&D2E)pkH^GBXMk2IDx0(Ls{#f1{XxA^e9njjF!sxtsqmxJN;ANV#(3K zpYWkQ+>%FCXB=sCXK) z_{6;3A{`mabJ-&OtLz^h?q70ec9-iIol>7brU(kn-a|ASJjHL=I|q$uEvDe9BUy$t z$kP}VolSnYezkWD@KFS&0dONi4QrEkzy;yjy9WF=1g8Ob=;m`?KC_-BlG!4i1*+~& z@meWa@kCQ^yCZu>TdCqaQ+MU|Cl+#sm)u#EXK*^2dJO>qg?f*PtX`A89bW5lqz~Fj zwT;72nwaYKAzkla0Qf-!rirOuA9z^3xz~R}aGHqfMe4bFbEpRv)XVF@jL}ul`Dxy~ zwBqHCm@hcobQSo68C=m7zxg%6V{{cfa6yD{j~C&_=qh;07j$d=Q!N%C4g87GRTu;; zs@B0S5tat9F}ezau)~^l&^+MFxa0X>|8WnaONqhzAhw%9sUH!oJO zdW+Et_h)pqEibvVs@ZEaT5W3xWQw2=?J1FKTa$i4we&&bsmHU`q(PoW>nr$>McwAW zrx2J1z|r~&KJc(|bMPk%a`2qi)r9H(JZGFv1*X>Zg2~ zeTY5Hj{q3_kjMiRASm^jqSWB&BQI^OQtN?sNFB{;h6Zi~*W`mxqRt}VZ3##Nz~IS= zLBL#%oC44s0We&IIiLVR zgw0qY%+nST8s6F=bt#L725y9lZ~)4PumE@&0cijjF2VsoPlN@~%Lz&Y&|nct$`xDw zl8-w@ga#Eb!B1#g%gugcskuit;`Ss{@BMGI;D@?%?+~EDOaE=U1QjeO@jOvta8KG# zT%>4R6eLw;<3$5cf@c(lz>FA+kUI!T1IXac?GU6V$0BTr?h5Qri*@9m37vI@G2sbtthQ(^p5T zL;b`>q{c<@O5K44MgvcR>(C)EBhVt`oe4<;$lyA32+|X05%z9`r2%Yc9coc4_Q2%k zt8^XeE&?fdOn_-AS>mR{4`+4><^5TMZpkm`<9sz-@T1WJaHa?cUA|p(89eJyNL_?! z9ThCqV|mda7lS)~!*E8L1E4Der2%O0EWj|RC(Z%jJp`r!@adryr%k&825#LX3sAj{ z0;Onjp#)c&OPyZBRhsrBQ~$y(qYriG-XUBJt~71BQfU$k;`~6QO4CnVYtvp3uhfsY zvVsPl1Xr3iZP&btGVNsp`BOsD05Z7Jv}rrYT$lEif&Dka(f~HJ(zHoe?18~}zpgah zMIZ%_kC!^Tv~T#EsW<)(Lfphdu>c5O$!h>4aVYOPQC{#|s3p$lnU1`AAu9(OP>&F< zk~f5~QZu=vUQ8ew00sB{eP4WmS+JK7j0Rw#D|vwhS=p37O-1PvN7BKwJNO95vG~q| z7L+;8)Hk_h>ml|uKLTK|dObh^g228Z0t@a=cxmgJ&3d36Qg30A(7=u05z-)(h^+|t zb^_7>Fu0K)1k6QO1brt#X#g5JyJJ$W6cN5o0XlU6=H3sStG7D62kvStJ+NEvwd?)r zwuf$QEbVFUxR;#IY6iu_*)JAL$*1Q>^>=kgw^nrq?rQWGz05N1 ze-!R38hHKEsUQZrJ7%km))L+e)+O{eq(}pbFP;vH3-#u*VfVLWM>9PcxLE7X^>#J* zl`5Tq*O4L(D86huGO$^%?c7uC=Gpi;a-;#r%cq26XQA5b%=hsq$7JLeNs?xIl-SCP z`R~Y%W_s9p1^iXAqXD~@Oh*Ct8VjvX1DjXsDES5n(o7M-g8IHqf;1p_*_7lU2rf03 z@iw>4!tatH4H(LdLU;>W8E&&mo9wV&1o~|&^=@y>UWE5+eDbr0Uc~dC&tAl%@>Ifm z5grJ~0Rn_x#9>G1HwD6a5d(?qez{*(rgP>0OnMP|>bt(Hx}!F`v))GRX!l!BZ#87inZkr53T1+{`+0pO#vu7NUDOKFp{6jmJAONb+BJ@2&d zf%L5TX{LU3Yq;Bd8QQ-?A7wAXbMx-6->9r%2yK&>mX8o<`Tkg1zVqYxI7<08AM%m2 zC1m{Vz+XiJPhYT}eEiX}E{QIg(SX_W)|FYUr{^6^jxCcH4S2n9U3txRmi9=&8fv>q zjb`1c)muybJ=JDoXWdXckJM;D?M3UFYxCVst2)F3&o zWJUvKf&FA#6YQ%mYJW3aTWoDM+C5~MEzakW7|r?<>n!-hUPxjz>rSjy?=3ELIV#uH z*^5bx2E;B|*8q@SN1@_)3CYob-1^qFop!yt$k(`ZroD{3XuxZIBNM!Oeq_Fa%xJ*u z!gVdqez$=MW}RJsK~gl+KnnB9n$)XFiUy?Cx4k^K-t80$@wKEz18Psy3r7Nbd6j|Q z)o^dJ8>AIYufJzW7TN8)W9xpKsgM2`Gds_I33|3$9*u`ncV`Nm*D)KcPUy4)kiIQJ z(6>EB`nF+n1cjtWO`YUF%G)bmqj#9d(@sAZPAeLC8&>P)X!~eE^B}gLNg7`9LtzTex6&cci z;kwr($ihau$nOp0M>8cwygW$o%_K+zf|ss$Rg8r?cmb&DRVr^IJsQwEHKd#81X$sb zbfZRgu9{&PQD14yj@8Z6Kg`r!zJWg81NWkjckrX-61+8QH8t}lP^xw94j)9B!# zWJ9x#IfO?F;)>z)XXHc!PA3ILp)Qh2A@M=shY8gCe$yCF5WHV!>LWi#7=9de&ECUL zY}Q-#b|34P^k6G&DV_%+!z}_KATNsX5Pcx=QBmptEDufZs&W65tZ!*h(qT*SytH*e zj0jTyXQjmaaMdOBX;P#C#jtUqkG+rXx&O0rinSdW*=TZ~B{>?93tK1XqlS^2?O1kS zAUhhc3v2A7vcnodoq1m-J(?*h**Q!CYjS^2ax_zvckP8HX7x3_uah3l6bTO>y)x{+ zMRqh(lzCuhh4&rOqnV=2>+`czx@fN_JDMrVJg~!#k(%E3Nsnf_=-IOUSJI;ay|6{S z(dxV%4c)WQ8wW}r{*WYTKr##J7Dp%9;F=FiKIyXl33<|h=c}fRXR|)vul5!j^Ooz+ z$(06N!zMzb=P7sJ()s!C^2q_iy8W#BufLbQx-{jyDgogza~irljwh_YQ9&IhrZTx(;6;(OLI};gbfodw5H-qnRSv?OtkaGnscZ>CsFNJv`-b9faGG9u4Tdd^$P^ znqGCzuUhUvmNe6&zCsFVJ==YL6zS1`-n0aV{^FR< zyvL9o4cJY|138qfe9Om_?@6Rc1B%lUzm}pMg*<^AX~1zx=C17b3~GFXS(o*xBuO)U zB(Zg#A$b}}(o9up+b=^%MxIHIG}D)n`Ap?gNs6pT;|A;W_ohb?IkM=7s!wX45y?O%r_Gi zii#9zrY95K-jc$wMTRtBI3+_Ay?3FGlO>X)0l6uu4c*>$nqZFvX+UsFx`~*lu@9D3 z$c_f=rlb$nt#bU&J?AF7&L>40P@IyHRJXJ2I*1pL z9?kS<5c^lzDVmGOjt1wF`M+1IS(hKY@@91~2YnZ9}E+<18Fr1Rm$k&%;Bu6tn;sZJR-2atiM+0_K zQYE8gm(DdMdnM`7OcTB3_N<}zI?|&7y(xKq*zbZ~@%iD^WJv>-LAw=s&u%K-vB`|m zwf(!po@wn~s&^ZFSD@A$=Y0e3=b8G`JK=?cofqJRgCkD#Zy*<*7?qVk;gy5C-(2t8 z_xh-*k9_CA^J%NMgCbV+ce}Mc1A75u$$-mAlQricYZMJK>J#C zT62FcxzlVE?$Wu?+%G0~8gPHhwC6h?7@$L`iNAovX*Pn~LELR~tl3{e_B0zI+m~bm zX-#}DiPLNZ;^h4hqnDSGI1PxubJ~U8!<1ToY1T;~qqisZ^LXoyCbo8M zVZ*Ckcq+s1n(0dAuSuQ;doq|x_;TO zRl|mq_|A-`|8df%0sZx;1;?WM1L9Y#Lq3;pT2+$6*OMp> zh^|8gZT7m#=kn!(Pjo16zfa0E>qFUlBIL=!yXuoSI{qOk(}40ijK(~2t5Y7z@1Kx7 z4al#*P6}QW(ON?NqzToa;E|Jb(r#5BX|9MK3z}$J9*P=4BoEY{!j9z*$6`4 z(P-DY4QvW-#PVyBr`ZUZj?uC*yl*6L8t|U_0OdDJWVx3X`c33c1MctM{|)8Z0(2Iu z==#-mr_GJzP3Hfe4$y1_(abgGu^EBR_yeB{-ZbF-wrS7!xyC}R)v6iln@OE!BV;+Y zf50*to#ls+Hw}2db=tEWys>GMVSX5y(}4Lp%vY@~O6T3|!_7&X2DH~<@??#)^|sVl z%kJ8vTarG_M$q|u-g!BiylFND?~Z-!a9i@G0q=DfZLU!+U5qnKc;11;X+V7HI{*uK zBcg!`E5rTHN{S$u@DiTXxDOo1c}pZ1kIdV@7oddqsW^EykEKh zN1_Y$cD;*N9r9^^bERbJ{3KGP0o6B5Db=AV^Cyrr4M<-#t)#p4xn+LORV(>aGNu9J zb$Bpn2L(M}6K0^$D^bOnq)P+3>ri8iO?OBcPbG005D(l4&tHDDuWvi}ziYH=3w1A# z^?6DDo=uuGp!vG}FW^;a4&`f&glRx{9UizgYkTTlU%YamBxe^$lmq6eUjdG#`9Z1gA!nND=j=psJ~`7&KWC?n3&@!UoY!Hg@i^L; z$1qR!gO$d+b$**5Y(yPRxkrkHK6gp6!yz;+$Rd*jq$SgX*t>w#ZMx-_7> z4zmDb(QRWI6sv8q>$%bIl_X6A(o@=pu$?y7U49)o(@Z~S*N3>8oN1nF zwN>-Aq)P+3>+no=98L6^4ffcIqIfTP(@d`@dVSY(dmq`-tWz#G+VxtuT5B%UcXVss z1Y%R)FxN|_yFN_bG~m4suObP(weTLA{rVU^pn(VPT8BRKnsa_@ZBBI>Zh_4w$e#xM z-@76B@2K@>7x89WXE}ec{3&`t125KN4sz|KfCbuiGU+oUPXqGnu*i9WAed{^7Ut2F zH9gtS(*YVdunr5%CUL;6)A|y*(`*>-c#qcP`&Y=F2HfAbA!3*B09WxkEd|tRyY~*i zMn`Di$i}Ed;Rs%v#Mfo?RKz#Qp9cItv>^(@JW;PU+IZGp#TLqV*lWZ2ALtDYy!qgU z@MaORf*YMKc3G~rI(*^Tl+5?&3k`gE|Az1d-yY~UYE8U&RP8U%?sUt&|B0T^z>|&9 z#O>^M>?q)0NSK8ya}C4r{6=Xzyg#g(`aBCN6$V z7ii$Z#^`fk^=7>~=i2R`(E%DburWps`lB752fv^PH1Od6ZiuQ$JQyg5U(yYl4dVtD z8M1~gRC1ffE~JG^%%+ z#-u)WT3N9Jy8opYH1J|$bfEg!AVzP@Q|)((i*FCO5WdjBmvwkaZi2S1&}-U6`ZS=w z9t*!ZyVny^7uC7O9Q^^uugOw zg*3PM8GL&ZrUBt~coSmAYb_e~?n0xWm3xyp4VbUPatZ9c*jQS|^l_up_MR2_mrEMR z`;#;cNUuXj#Ai1K>7mAQhV*Gbe;uYc*Gj+EtM)igTep4MW5}Nd{MVspzIOh-&TIn` z!=i6&^=-!&$I%O#4N?mIX1&(ySKa!Xhmb$b#^UeR;`}N3(`+pMZe7lwlRpjkufwd< zTBBgL(_C(~5y{x`)^y2^rw26fU>zpJ*X}`kw$`uCcRMX?WqQtXz3tvfdn7%ffhX(m z)N!qz%=MOoBfe zvuN^{bnQhXOce6#t_Y--$*@++-WuncdwC}C3hNdUx!JB zwF582K3iqN_ef=-s-H>Yr7l0?24HK4m^PWWIa!l zZqUGub=W^(t!^yUY(3v0aT*Zc0OJ$;Bz8Wp@4NJX1|EE1|4(tRJ?qW0WW8YxpPsGM z?bbWXbcF`4tiyMTCUs@G?G?vv`arX>iUWl(^d$2H@AK#e4cyoOJ?TD{v6;5{ zg=9_x=IgLPWUU22=EDK-Vmd*yF#@39S^EFnop*q2XF>J@m=H(^5K8DQTm%B_O%GwI zX{0A4H!)Nvb7#)(&fIC4viIH~y@ay#g^!LP9YXI#5d@_x3Zf_oq9{mF6hTqG=l7oX zJ?A~sc6R41=N$9Lle;r#&iOrW@2BKO-kt+GBJ={x0BH2TS>hyfH(~yK_!03JpeLqk zEHU)(BJdI67ht$BQ47BWc0}y&%YUP2(5h*qwxlgCy`VB+4#pNiFT)2?j5t{Hd&94U z9VrUC*BgEf?1R28$Io593-(^J|)x@}b`iG$QB>7ME=ft)(nn zWcHcZ!ufqLBe`WhafJDUFeABT4%4z9&L4pp5pxDhQoEWBYd5_mEa3-ZisMfJiU>4= zC8;xjjugnB0vX9KvX*qV+Ji=;X0zRAKt_a|!RZsTg!10_XyDI6i{v+etF>;evf2pT z7Qionj0ib{12bj`VE;({FN2E+H-kpdEVy$cBBaGm3FsVX$S7zJ=cG-*b%X3aLU})!oAXV zd!Y^m8xeK}6GvOb9_W3VuI@e@a-=Ba(RSh^AV)-=`|@Q~rDt2Oj&MVDM*)u%A=ndd zV7)oyND;`Jffm@h^{Kan91(d2^Xps7q0M4Nd5M8%RWu&&m$6qRmL|l%8-#-_U&*IwS{lT6WuS zckM*Dq5B?mi0Gb_UD#EFzaYdT0s zd#81VqGkI9Y)H1@wNmcu=$ATmT`PtJ~PRi}mUl5!hfheCyj>e<;**-E@r4JzFrJQCPM=i%TX`M}e_d;;$X z@DSl;SZKJ=8+6nua)riGup!x|w^}cJHMC7{H-`!lRfhRfRO-wm$ZiQ4BC-ryj+RX8 zvHLn|Gb(P6fesPfGc(Mm6dvK*S?P$|NWC3!h~OTdB^)DtrrfwAL`b&DOs5&?K!vW3 zevR5b3y>iqdun!J<;bFna~E8QxH4?XYE*r1LuW_V*37~!P>7&1Y@sQn z)O75)!u1rW5K(2=&=!@-j7HhD|4#!85mts3xnAs{-Ak%8)uy%4cz?(ckzFv)aIzi6 zTuP2+jtty(=ga!tamas%pi}1!+yj6^1UF}2FA4w>?Y2VBz_|{K!Fw=xi16l{ zCXC}}+j#C4>XG&;%AU4TwIO*1s7M|{vQcjCP2!ym9+D5dZZC;+C#dB(sd}l;6%@5*c_o;k zo-@~N)GvFM>bUD)t2*w`^Y|sRqz_F8AiTNiwugjun`W8kn0JnSO(+V(3*rjIH+ZNF z))BdTTm~5ayr>EB!vR7Bbk5wtvgCUmip<7bcJ1q8H*YqD7jD#l{%xhF8$U97mS z2ZL^p1a(eI4B_pSqAmc@w#;BXT(342u`a6B73X54xk|!hZP4;o3OewKuE@6b<${9-4!$>L$qqp>96ju^~|9oYf%dOP0$db%{Pd= z{oGjXwmW)Nv5m)jLWGDYt3uQgMP=5#VM4NJiehdzOi1=jQ64-2CPYm0wW_wCn!@*C z*~D}*K!||m8(f?NsMl{s-5gU?-4`lERPzl9Y@aH8Q=tyyt(MI3)2tJ(WoZe>XUcEbl`9LrcVV*Zni#eoR3jb%rV7S5hJM%RxlW#wtq4Avf!AAX@ zzfmLlE$eDTA9bPmYN6a%3HEl&G^Q^}nJs*r8r5rIqk6uc_|W_5ri={@T^V=W!Y`cT zFfiV(z^Ee%fceI)h8{aNpx*>H@%Bzo5uv^$<+z&IQAs2qZ(uhOmb)vf?MBesr&$j} z`W{FTkCtE!G!1ULyF`t()Fr)8=QX#B$B^K7v!p?{39rl{6)GbHM!Vxq<;)4BGQ}{ zNVS$(CuGv*=fFhrmo{rHZLcIJ8L18}&v zzy#`_1B(cDzO$)z3RWv;SkGo?zXmOm+o08moK6Eauzv+CBG^~wF1>bZ2mCQHL;N=o zBO=aOX{GU%C>4AQOhlMDYngQ7;_5q4BBGpczB2Wkb+yY+{{SN*#`z8^Or5dUXs^VL z(SHII$zRIswHus%Y%&b@ZzXFN~G-q98z3)ut zGHGNQS}I(|gjG+Gdb=DA+y<9wNN? zrio0bEro$MA+sKstEf%90BG}K!@qo^{=+j>cwDBXiR(vRRBqKe1MPldPEWQkN|h>n zlnRnBg$2ocTQGeS(^iBhu8Rv5|6>~lSFlDCk@NYwxBkuNWb+Ff6H^a|5)tKdQjMQU z1#-g8_z>L92^uyS9|a&Hz~|)$u+7`fE#hy3hzN1M?sp<=rc72PuA3BwdZ~|IccF=E zUOH(ay9_8I(D|C;34l34bykzw;dZyY;jF@m9 zh(Pm`d%8h*9*BwTCWwd-=Nn*4Gf{Sf-fFp{KCEHvz=-53L3Y~>O;#Ad9)O4dpPQRf z(!Q0;5UxRpg$T8oebmCU_^2ih-@|&n`>;A2u|`_ju;pF%`ZXZ1WD7xo)F=(m$x@b-H?(>xW*!|y?v5I+YXL_qT`UEd~< zSukpk@-sx|LxhNEu031^Xvq)#q2x8+z@&YH(dG#}yl|s_mwU+A?`d=Y`eB!;%g}Dl zzlSSk2yd@6e&d^&9q;q);fn7&DUsVN;#3}fU|qhEa|{s0;d}#=+a~c-x(WHWz=Vit zzE$koXEN)>TkU3zBU264+o3|{&VSpd;+M6S#sdt|J0U_uG~Wp6d_?W0eGQ}KdJkNP zxaK=tc5W`cczD^o>(m6;`vF5TjKbdPV0oD%Y7EhbAVNem*Jy1RQcL0g?9GQuuxE(*d7BLBDVRq8K=P3YPaYgS+uJ_LxeV8b&vv@A7&N65P@AX&zyV2 zwG{o!dLL8pEzeo-^-Uqrocb03y*hBCe)acM@~+6<`VIEzZ<#zRjYo$!R%v@`SlTwz zxap+E>&QD0t*tsyhsf3bUn_uLl9~{1f`SNTzWGqhPMPBv35(ro-Dq5~q{IDfuykNS z#PZl*Z?ISv^G-Pp(3zm=frAKVz8!_z4H~Vl)e#&jBn{6RJV<82V@{HD!E+ECL^x;8 zSN`->@{G;$^SyV(y>)Vi7GLQJ1=4NaF+8Sayj40iGE;DI0eOBG6Lh5N+t%501FY;d)pZ}C;Marg#6`iTu<$Zbv@XrB61h}4N%Gq}0?iOHg zpcjf7zOTWD^RF*jEPn{f&gcz**NBDiPeBXYx+e;T@PL5Jih z=om;baNhwA$xqOEx%MBRL-G@Jy}m0_{s}lFM{rSj@&n+I{J^bombgiDKLQRB+@865 zTX9*kx1>Q_BeEtr3k+4UP<5x$v}@t^s6VID^K0JU5m zpGGgtyYZxo&0P{V4D2V?>VFWqh+NLs3v*AJQcJi?MqvD2n2CX(gM|odzC{G?ncKoL z14IVszX3ur25M=ShXMLufDi%A)u*rlv}FH3DGPMws;T#P%N_06UYTJC)?K<$|Bqv2 z@ptvMu=T^Qw7(}ao|hU)_z303=Z3j)zEMaAK5Zy6x~9axO3Q;*B|K2gc>O(IkA}$Q zeDfsHbEYKw=$dl18ozHzZ|qdr+^Pg6?Y3KOS2gBl*xm>mBDRa>sRi6)m)t)lM)amj z7^2rOjlOa?`f7JsA-ra`xJ-YE!`NSJ)PHnSRS0i=JYCw;<2#WKFW)R3Mt9r-Uid&I z$(M&oa?|Y!+j+=nWf9#a5nQF{V|tWcK-yq=hk~V!C^TNP6QMCTs9&*|n0z%~G zQ)JUNs_0eRje!m5_d$(_`c3(!UM+X4J)Iw`lbK9_e-Ly;=x@$9dLtFuYI z7WbBW)88}|;qT_sjr!~UN4@ZGJy*T(-#CL06ap8eN)kRo{qE0&{q9W{fklMVYUar2 z$kc80b7OFK^rvU{JF;6xWOmb)snHG6$Jt#{SF~U22hCE+#>78>h6rub4HP?zR%_Mz z5!XM#g=8OOT2___vLAqk2yN5#3OgEP@k=pHuKE#Rh``dRX||W@cbm~By}hBdFVMk8 zt9rk>UIX9i4Em*VPe&$Hv>3_&|0}?VfM1zvAuz4wY)nP*V*Z*6+zYO@y#Ed_BHnZc zZ{`YMy)dJp_l{~rR41vKA>I4MCi}WKByJ^I@G1a-Xu+f zn8fg35F#SnbfrTSeLGP|a&rnwy^~ZYX&boz0S*z|rU!-nn&A2eIW)uI9r8TkA^E|x zXL=aC8-RxhZ_`CUzn;)DcrJ4s1|K56Y)f>L^wh+#@p>b`kbDFji)#{j_DJ{;@uky2 zpQ}LZbO)_qvr6ZtFe744XB=dQnB#iqXpoV7B!ga~rb$KB?Job^3O+=9IVc^qdM=Sl zZv!5ZIUbdYwyS8v3N1>T$!`xHBD_sk(d}gEXbKt-cwb8duqz3o4R7)Zr5G0#Fg5X4-|d5zZOrCb};M3=vrN z)nBC>lyz)tZCM+sda42~#H^xNNe!3N}P+*%vI; z+VZjms{n=wY}0MaJDz8&-e~MHWQfSpSr;@m9 zcN^_^I4;+8KKZ!1xB(`TFU;Y3xD6&E%N3t+KDd(G;dx`y@aSfo4A}YCy^CrACbdVhrL_K}2$axTrgZ}_Y#$EbF+!S^iK5V2)Hgk#yl)fATSIS?Wu%)YT5jn-MZ=R=2xF8h9d zL}yz;iTU3bfrfijVXtlKre$6$w#tWE@?GPukS+f zmCzxg%f8^Y#bIgCsj7u;bIxl(M1+`qH#J_3@H)5zuur68`T1MLdE_d$q=F#DE*b~YwPHa`d*k`KB;qhHgTXXp}A9RCn7L}1z1iQ0rWuA%l5AQ3@kKXNw=>EigOP$HttKD)$}j_+siA>zw^D&5~X z^b5!kk!4@+B?gUu2^u1_9Awl_Ovl9#w9KbLj(f^Cc42R=l6+0QmBu3PFWtA*n& z6FLq=M2Oipv4z+zyO!*Updmubeq(39TWfmFhEsq;@)2%bHEAj~)tv?!BDC!LbN(S8 z_lFD-S@x~f0S9DP_L=nquHbtRgh)OJ&AJc(;|)}&Lx_kl`@t=9;!HJIE^FG9+#%LR zRMnjYDk9YE=S~f(HvM#KL66n36oM|=&w&&XY4(+}A=Sd0(q1Lcpyd`ooDU?DpWr0M z69erpe&Qk5JB0tj!HA1MMueRG0G$cfaJ*gn4C4J?4}%iPPwbD*3hV(A5oGogEnZMI zG^$hTb;^}^0oHH9iikDSL6hpiR=KJ3v630-5#S-h%d|VadP-@zre)C#KiSIr(Xb&| z2VHM$mB2%UmuYjcr)^E)VG*tj-wPTdv}=C7t2RotUTLW5A3%eMruS>6 z=>{Fw+gt?$5yob3`(Oo!8KT|nRJA2`RoDcPJj*kkH+=|%mloIBty$mn;r(Kxe(Zng zjM3NYw6^sl&W!Jr-kUzWhlMY(NQuR(to=!nqMIhix{AWsDKd*Ma$o2nUn@q_pSAR|If zKd)l**y7TsyLyL_Ym!~H6!Kl?OZ3w9<4Gw2=^ z(wC-_SL_|b5}HS;g#MSXgidEz*csWh)N>?5MV_-9hQk*W4s}E!kWODYB|g7AHZk^P zND+~yvvw{uQdt&Zrc{=>2;HpiaMz8G_}%XC-g3_@l(xKIg%=TT zN;S0ONQsvtHNr`9i~Mzv5h16uG&SuMVOJ!Z1n~`Mk=zEbp|uO{4DvTYMuePB-#_&L zKIrn>w_!!Zn$DrHX|sm=x*Hm?(4Hp~zTbrz5%bGZuYRVs-Cf??q>NY|G;~;>f&Ct^ zh+xw>wK4So7ObCqzYj4Y;&e`?Pn%d{Sd3t~H2gz=k^BO;SA5`~0F2}oxEb_TSGv5f z%p~HU0*nYao%bZAog~86dZM2D8PJHJ^VyVWYbbWLt@Z9EkbeO$BHnx!YvR@Loq_!& zu!vyuS*!u;7i+(Q7|Ct$YOc%G8rSDF(@36S^_onGhKKt_a|&g$E=ir-{s=qNZ5ai%lbofhXvC+Oy&BDq5y=}z1dR79xx>Q0O{ z&5wZ<$z8C*x>s{#ENM5T*6lz=gqp7*9C{Ca_P-;fh)7eKu5kUBImZ}=8sZCpBKZSN zHo$iQisTM-sNsEgKoNoFt4%nj!F?>Sh+y+oO(h%J_kj};XTEa&aGUiwND-0dtCelX zZbwSh6Cp-KoUidDH|f`{4RjobUThcjWln(^5pz1r$3Rb92NDrv zzKSb_bO25V6%pzcX}p5gCD0}J58Egjo!@(WDg&%KFs)qT)a4nc z9i!_v>Sx|X-XHt|%{$)cEZt?noZYN&xGa6J@L`&HJnLw)HYA-*0Fjr?rXJ%9lf%n= zj%)Q`O<bJLoz*unQfi?cv-jIJNnZ>%BJOmW z4LiVH(F+v`a?5-v%!rt;%WFDui~aTPnU3BxTe3&ro5XTC1`ru|Tiy*U>uf>2W5dg* zSAvfSKb?819Y`}i@FM|6@(ipq{g+*?d0&$cg?blmB;^hx!Xog%uHNI@35Qvie2ZwSXdd1ohje&jJ+5BdFgNdJdq7Ky%ks8P^7SKEQ~8 zb60jvX#2bfW<<=n8)*{rXq)FH5F;YaU1>X}t@AQ?k(?&ukv7gN0Y(Iz&gO>{i`>z+ z&1=9#gnMNg!~7BL68{Q^&L?D$UUZJhTWMsXfKP{rr(hQ(((U6`SVOq(3@FHIJt-ZwT_KB8c$BT5zN zEb{f9vDrMXf9XU}zi>4%`EigDA*Zv)!spmz^3K0>3bLCn-K)WM1N{l05kbE$mHOHz zNf)}p5^zKPDX0-qr!(}mqttq-yutnq*hm3VNL5>h4D@G#MhcKZdc5_`P=5hxqyQ;I z)Gmd58Em8gf!!~=!2SxQ^rVqm*8@^!EgVZSBcMfTpBX&jaGHews* z-vAyF{M(BGU*i-V+j^>h6MjVe?&i&8jLE)!@)*`{nmUp5e>H9F5?v@M?jB=KIf(P3Y%cr4r~(nQGg=?PiHaoj+NdP zyyTaLHwPaPemV>Pb_~DP(;5!FA;bp!Eg?rlp7ZLbrlA&Bk{<&$QUvT)G}dxEun}SB zypdAtDTBJ&{*G`X;?8+(->5Wg(p~@>5p>S`I*p*`M#pzSjfgtu{d=er#o*mxM+%Tk z+AB7h91Aoe=$w~;jrPh3$6M_CfQ=Lb+qGto0~--`-ZN!;#SJ!}2sI+=bdIOqvHD$U zq+G2AQTO2#&=H~Me7H*JwTfQm7!Np~20T(6_!cM1nKteHfkyi0C068V(@bSM+Bbp{!ddoT56q!UOZqj>G_Z& z`6q7$EA~))Lw*tDh{$tZC#g(Kv=bi&I+FiD@3ech@MRAs(Dy)&h&<;Vp$>03H_*QY zG$QDnmxmh9KT+fQ7W@%_BLdHP4cZMVwNAIK=8I*2H0+4jbDllBK~t|X()-*kdI@wy z=sE8Zb=!kzb;4e-5n<=NYtgH%xaBti)QG5aUZTVcv{r#eiV)P%`mB9WBL$$oI$E^S zf*KKZ&c_UUnjq}Dk>#u5M#P=-HeqkDx8E&ST*s{sIU@3$XUTXO-+rKx{3mWfyX6Mg zK#hnx=T(hTNaq?`Lp}~{qzKqLp~Yf95o|=*IiK9@cZHpt++J}5HMmH=aa|$yT5u8J=CqaR7I4QC zGOq_35p+&FBMv&T^8Zb6BjV2KNRs0oS@Hi?*b%X(a~eqMm9t}y=8vv}84+_%XB{2$ z=nDUL0gnhi=Q%T;^m;GQh@f-Y;Ph7Xe*juUv^j0d$F1WJ1B>K1XyX<9AA=SVZ91nN zrCwYlSML7-z=(j;Ifo~GV1JSAC*eiJo72vczc%&L;3C4!X;zC@=>G|@NRDBnr8S=i z77=Vti(IV(a%-5r1TB)|Wb5r8_%m>k{Nnoi2L1wEM7TMfd>XS~;4h&@@|%K}o6)fV ze+?}n+MJeTD;2jN?Qela1e?=pIJpJm?*K*woYSHBaa%9`9&9APNx0T5yA=)p2rVMo zbWTZ3y{$8}LFAtyMns&`){eh1CI%h;Vb-_DyUA`8RkG@#eG$jyHh( z2e61>bJ{-hHh%mZT12!t9p)L?@bTX;BRNhE(MFH|1r`x(PD?U>gU9urDqJMrxNc*| zZ-9#kH?Ns3-q3MFXc5uo^n|+MjT|=y84+?`%Lljj#PvCE0y84!oQ|Z9ZaTRc&`AEF zM+}TqDg{V!;IuVpyP4&+X9UUI;Z`*Zu4KBMO zMns&`4qm*mlT12!tE!IZ1-7LY3h&iW)#PD{T z2ZD?UIj8+nf1Axiz(w+#hP~}IXF`jJHmBuTyqfW$z#@4L+Gy?mdC(#`rj57JTnH^9 z+MJHGCbrL90xu%ooK7gZ^XR?R!6~hNpc8a!yg;kmnDKRkYH>wB*{Fa2S$cog zk=N?|Sx27jf1!}MVn+zWN9qk)e{qXL3IBKO$Wx}iLd)~HTieZRYdX)T-RkX5zVj*m zW=x13tq`jta`2&IIq=`PWn%wUctPalqeb&#+gz2PF|djGHrPRA=OYER6T7)RZV>#pJ)bgR%UhXH#heb>w1vW*JOPD$yQ;1A`qM+HSzpD3j zueKXnU2lqrlkkMd(|Zf%$!jv4iVZ|I-cv9eaZ}-bxIpCM!v%9O(nNRwW)PYAU=hv4 zMf8KQf)vz>S9zX+6+~9vSFl)Ng`tiXGv(IV_&^GnRpdhxtIc-J6~gCY1}R{qbh>f* zbpbw*0{XzlsWx$4j1NRUiq-)gZ7*Mn8$@o3R>k+?#C16~kRsZM>yj(6fyhSD>iCgn z{v$Di$V}0?V)0yGRH-}$JBaKQt$`ogN!Be_;Rz{j6!}$51v^M_?f5m#GIkKzDO^p{ z*Qk4?z+%qf*}?c5-@(Y-+T-zp z$V*BGu=%r>-Clp@na&Dt`czyDO>?@BeH%7+JQa9E@EJG#9pw!0BXMvoHW1m!cqnO0 zHe8+3jhp|^!U`fQ8CN7*v9h;OuIy`S>(hR{--7p{m_eB5UVz_#Y4HI%eof)PYUGHyz4#mK&L ztrv7ld-X!kpi$DBU}|fs+!LARWjI6RtU!gCb(XO5N~|EVl5zKcE0NSx)a(yxE35rd zv)u324%mX=HP}I9=iSB0Je_vq;2N(>GNsw;FoDQK#$y;;i4$8@j<09lfG0$r3RG!Y zPeawsn=ymPOvXKyZA8%6TIX$8LS*S<#mP7}epbuFmCrlygUHVp3+HEsI_TXPL}c*y zi)t`Y6}=Bfh#Y0S)M*>JYEq5#L0lnnRiLJ+%~;8b=_7bS_>+#%V8DVfA^b8I<)ZJ>%>XI78&@(}jzwQD+={YK(mf zW61vvV?7QbF~&ZFF+|3SSD>%8yL)TBWH;%vI6~y;1I0;$W6Fsy-~^GAcNWWuTao`| zEFiK_pf>AhNf4KDU%?VmtQ<3HDJtB)iX)`pj^a}7>o`K>s6ay{ z?pqj;{{Dycd{JKG~W&zh-_p$alQ>3jdrmt0Ut;)eYD+vvR(K<@Jm(Gxk$Kdae6GTo5H{#U_4)n{*{ivbxAj}{#Q@Emw&ad9JZmW~i zv4Rvar|6_^*Ecx}ABcQpJhiy>wo0#4*6x_)gQb4Ja*B-?pLWRg4&lGB-*pb&kV1M3 zxAzT=v!0J7M3xHIbFoWb%5jVTBJ3cAwiAuIJ`6jE>}0(7cN>{0OmM@4uY2%>6gY~! zG1%Y24kA0nEAPT68XAgy1eOq4`lD>;wzr+?#*N568ed3(Q=T_4Tfz<^I~lJL+jcZ1 z$7lEA2q|y`dBd~;b`aSq+?0l`TN9(Ts~AFLDC5%&ww>bQLEC+}LF6XmCFa|AGctDD z!WB~BJmd}GUX2~3&~~Dc+&*>?*~xfk&GyrrH=w&8KZyJkwe>SJu6qrZkOD`MKfL=m z{2=mE)Mi3*l=q1^LJAy1{$TG@@Po)tQTyQDnD5iEgA~|~H}v~V>>#pJ)K*+#1b7`o zhzu2VP+@o=_<49j;6A`b#4^rTScTLcDYrbBM9Yl5tw|2shm)Bwhk&(hp340OpdVC=Akw#?{%(7HmDRyzJJ^{23+?naH^Ly;T#vMy)z> z;@@B32a%tQ*JsV@r(7*}^v=ehR9;)rI`Veo1h;VcFEN7@*vyH}%wJ;$DWDmxkTEe6 znfY7HAO$val8c$Y!we!b@5;6woH@@7XO+Ll15!K>QKI@sJRrsM5T&Jm#seY`8J`b5 zYg(#STxIw#z#|2Mk81KC1CIzk;}a2P4f&wCH>gsF+Xnf+VF4*l_{S}&{{S8l{9B7r ziq_(!|8wY(0@24||KHFfqR)6BVAiy+9m0Kg4%`2Nj|jgYJ&9UN+X!@`VY%;yldktn znLuQsAgu`3tcx1lzkvs&cpjow#0~L)6wgD{inuWz5P8V>B>h?QGihniN_5|Df(t}0 z3Q{9<<1+PT&?BNRNSO+~D^qU)J|g^#=X+*NLSqLsZjBE_J~CczFtZQ4Rc7M2#%=M0 z6yH-+?A`%SNO3*6>M-(jXFMUr_Y_qvcf}JTPZ{rd+-iOr9`pE3tRRK85~Z|zVg)Iz zl_-JT8!L#c6r>$&X9eQk;BGu1#q$u2hn#>1L>@ApsNZ5nA08Gt87GLG6r_7-QOy#WNANiI*^e$V5T#D`-7k%@wg(s}fcf*uil*27%2R#5Ji%8iv^Z?`z1k93gU)^~$R4IVxA{ZMC@UOvW-{Jux6LT3*2*i(npCuDu7e>& zhO+LdY%g}I(K(SlydZ`3qIbmFcv-^>A}<-g5pA0ZjrZM_^mZx|T)P#$F7_bC5E(0G zp)F&2`>lH^-|yfDk)J=wcu~ssGSI3bO0SS^clGw@QnSsw`D`M50^SgL%Xm-ZHWOj3 zRqNNv4ZT{S)E`v#Mdva;8E1%`6|+*>*KNB_!qYH=$js*onFO2VeL<leNXbBN4kz3gUt4JT{P>mL3to)CG;_+ZLy)>YQiP%rWK@P)`%G3#LGE9xx15lcwX zEyaDtw_pj8r7sk@xR}s&d^`RS`736fY*S&f2l-BHA+q)5B1hZgj^ul=h{)m>i)?XH zfAakpL}akgm6_MA{1BcHdHS;=N7}UBM~ zg~(SiM@C(Y4RtyH2xEwh6>}ITVQeVc{up;i(cO*hfPM~lNYOJJgK*1@nj5M5BEAs$ zD(2|6O_SmKQZye?j^17Ir+7o;tupOkn;Kb`aUg`e3qluNRCQOlCeDvkdJ=fFlBb zXU4_BY~Um7&i)k(h%97X@yu$$RyC_S3M42++h0lz{ob}1{vB6{TxGoyXsfOUd$n}I z^YWi~LF6UtHJe-XvaeC9*4*32{|g_8d}MrnC80Y*F5g|UDXnpWA0hvP5ky9^o*>?; zkv3<>)p|WGP4JS~AUm7nmY_XNbzE* z*IuUE(_N`0(%g-3gve3GueX}DIG9r59Elr5ZnEB=F=KjL9j<6@iU&j<-d>E>OrnB0 z8h%9l86VI)Yl=!{@>^j5k%6rDAkUbH^eTgK70PXJf)vNego@<$I6>s3Ag!;l708|N zffOf3CR7}E!3iQK8ShGLmRq&XKpPNh?bgr^CjYB3J;!@s0+ES~d+Hxu_@{2=m^@o3@p{PfzD zn%R(1>Q%}v6`p}Bq@c0XZv^FDzZ4w}ayEXDV*82C2RRo%NU{AyhlE^!AEcPMXm7V& zu2x8Kz14Cja8=aBxI*NrfQ^YtyD@0C81b#_v$fNuI6~wogYc3YMbZSM+ZkYc7a7WOr|wxnLh3sPJ!1J}l`;RTVGj7NdD zmB`u+=cIuXL{17g$h8`j*J?fWerzIZV+Sc_B3tz<%`RS$qI&Tv%>iBzdC7Q)emfba zcDzkr2k?OuGrO3TtreY4VeLE?JBaLLJi)u2Xlb_B0&l4F@wh?cCgasB+i}w=yF&R% z7(ryDfZa5=V_`Y2W}b>8M2-qL`QRM6mAUQGT2Qfh=vu5HvX=2yyzQmB@O%Re`^M4r zEIc8_jxI$~X?PX?bFhXKG`hyk5j`JIh&*L{Wb$^BV7J}BpQ~VBgcU?q3OI>k=EM7| z-JrLs+!VhD?CpLjF(KipJ<)gDvF$gso_({&m?Tx+?av;H)9Nuv5b#sn9JD2@%y)75Rt(Gj;-2c znHa`@2bPe6Tk-}b-i;-s(3TQ|`tQRMB1;AAkhpbTiGlDB;t45qG$qEvKY}Hs@Rp)s z@sDE(k)@3H633Z3#2W96U05>jwWUd{AbEFrQ~ zz?m7F_M(yVFJK2LbXFQ3K>sqX5V^|uuz@*ByrFUQuV4z1sRFKuv?(thPX8)?5cw%? zAIgnEd)3p|F^0(4mx{NfKZ+=O!fw#&wYv=1#)IqMz#$@s1)Mh+a+nxn|0dRu{}Yin zZm9j+I7H;IfYVqu^8C^1@8SrNql}MCo1?g&G)VnD+#zyTz-=@(zSwCpx{c=hctZ-E z7W?f^$*p|-A&w9^D(?7FqDcG+mXJbQTJsn2{1i(_!7X_mlb>M;k);AIe)D#s{Q@V5 zoD{J2KE9;;C8iLWD&SvS;-xO*MGMBAo5edF8%P%z(cWv$W8%w zC?u+$!|{U1O93~f4q6j-Hy(j6q?mD(s7sH+3sO`sUL|^Sydd)OnjCfAr))^NCCG@7 ze=l3)R=e9AJ^|2tHs%;{=hDjC*!lb`s_25+;zsMaOW)-is4NPTo_DjBOK^pT7fKAaarM zcK0nNs$@1_#RnoE85gs?pxmu+y7y2^Df)a&W2pr`BK(XysS)NZ_#;iGt1*JeNXAS0 zw`RoVjX|qhUJDwfTB{lyuvJJOPl!Bad{EEUJdHE6A2W!|WIUYT3;H8ztUo4mJPu?; z$ZyHEq}>#GBttwActr4T${4<_<%^@mQuyhZaDO`Jh|n``aA>*ZZ0IB5|4d9EGLiAY zA+wvPwbp`eztjo3%>f&l+wO4Db=)9wlX0hdb~laS02kZR^m$l7WFh0FEVEm%wZp`C zc_F3{naa4Av1L=q=y@?tkQ}5il76pWtCSnV^+f#5m~!hCSU_YU>-stdoz22X`Sohd zATpEj(qxkfwh|xFE3Ya8jVQS0)N65s6x~tuzTDU22r06oR=L%T9K8ugh#X}+MYHu( zx3|`+vRXd@*(k;7nJRimkQp9Mf`2%zx!wFJECk@}pAK(Nj zqLXHzH~F|;*e7v<$VtYN{#&mdspo^p%BQh{$V%aIy|LoO%b#EdDPjssw7))&6QrOi ztkZ3~BSOD~6+~7F*Oa_^P;T{W4R;FdpWy|OmyCC^Z9U_gUsOs%t>eGI5>jAGLyhFW z#1bM)Sr7Sbxpiq{DQ+wOHEs~O$$Ca*yKaV?XMc+)M4mD}erMbHDA7v$I}9NOHk4?r z{XK?|0vk%S+5Qnjhzu2O9L*LA$)?*s;|P(Xq81FpEx3Qd6H@G0@|r(C#t|Y%MQt(+ zwSxW)ONcCGJf*4EBkJ8v2ZzSi?Wbd=27V4YBJ_->G-pO1nG*PKOdv9m@n+-MO|&~q zW0o7Gm7re=8bLFN25A2mKZyKfe3JI;er%CE#n$!KWebt5$5h*u-f`7(zg(&`%DrAN z^oKSx_RFYx!UP9e2dZ`A*2}KLi*Na5^iQ{Cv6HG#X9QQZQ-RNpH~UXuU>Hi{LtqGOu|wiQ|ue zM+E=6{DpQ!uW&1wQx6Z=t)zzfkD*3#Osyly`Z`aJ4O}*?KL<6EPwJr7YIl02u2#Bg z)$WQ*Azy?V5p_Ci3sX(r5p{JCCF(x~8Ob?vCn#$^+ob3}2N@CaOY@fxg9Dn2(`$SU z>(^jK#QMAWV_j|!y0xHN(#veyyqV81{}s$gKErpV++Pj!s!GH9H?SgN&0&QdvX*#@ ztHJ#ixQK9HoxkKj*Q7OQma4U8Z{x+cKjeCc@L!1j9ncY>zdV2FtL0uvgDEcG{R6a! zXwx|XCDoGHHY`fjpwhKHL6biI32Y?a*jitd!2SW)h_G{5%DK=UbkwnQrQDBTM)H}S zYrPU}i-We{_*ZBV(dMw=5Um>D3F3c;7!mPn^H*MoxTV##YdV0`3+Dd>8p&rc_w)w( zzN+hGy>Y`PjQ@fd5%DYY7tD@0ssaB8UPQbv$sw zK2uWM3SvaWIU0{09^kwUn20c6oS!Uanhc47&D#Tt2sB5no#_LbcLEv_bdJh|2?LpT zffmUj?dSmJ-JnJCMH>wPCI>F>0WBih|CgV97SVbGmiGb`$tkKgP`L;yBGl*SC{+Cc z%Hv@~#F(SO)UgATC&7y3D?AeelBdFmh%rYM>+nG2{lG+onWJu4VgNF1sXPEuM5Hgw zPbL}~Z+tM6h$wT^V09y3!{dx+fQ#f4cX)j9Y;Y0b=BSWzp_>?2JQr3ZU+HydJn;f3 z5mDwS|Bo3*yckkMq&ezkj~_q06j(&C&&^L^RqL_K(RBPShY-nG^6UrAUOe`8C6q|M zlBXNZ^u}Kw2`M7djr_#8BaOyg9|I?nuaxP<`Be}iBFs@AWZXDw1ym$wkv=@Wx(p{G z&KwP&*wt)asZ;|L5onGIc?X&-oEpF)g3VED#KQLUE~9GT#;Dt{B4T|(j*6!QWEV(8 zkU3gdx5@DT0BR&(L7N=*KL8{m$Q<>ahKBne3ne1T9Cez9hxs25CL+unHJZl^?>`Ar zM5KGtSbA^g)t2o4ZDVp|Vf*9LDPp?iYEA3+d$X>#ch_&!4^*|@{&AXKUcb>f(WeT8 z%hCr6AEq_;FAUe*KQH}9OkH*F>P%c-? z%~G!)bS&&MfkgzH(qL5-qjQI{fpsG)CQ+<|iwHNJ?RGBm!UATlMB#3wrF^}L$}GD^ zz=rhmKu7Wz(v5O+ZxZ)~;3E0N?e>zmF9sJ8Zc57z(@V!}jB9E{qnl)YDa?qNQ`)kV z9<$Dn8Y$Uc0Wc!qD^qDoINl|fchp&#RBx}PQmNLO<&|K@#)P?cqyDtNP($K3wRv&< z(DV2;+x9L_7bbj&8W8UY8xT)P_x95&yD&hKwX$#go^0Jj8xx`8?@Bdwz^)Y-P3A)gM0zVNKV7{L>IOf1B&D{Y)`C?gzcpuBRLJ* zlU&$d4k(h-usvxsY_9|v$suwz==4|j*Lnfv?pl4(kmUR-FBxv(3)mb zC_DyIM5O5q#HUUgmAO~JisY9yN&yvEk^HhoWx_J7h*0x&R zR&;4RfHAyXcoFfY^VY8Pc-i3)R7=&i-ov8POb3MT2PT3 zp-yPIJ_}StsL##E@Wt+Ai}g7WA|lMoFoq?JTB^^75y>B8R2IDmMkIfXQ67H@jEETX zQaL7Cq%Q*y5nwuNL*}m>M_Zz=gc1>DI+K<2Q%-4tz6M-Gxaq71oga5x%ky<`BI3+T z1Am4V=NrIAgnelm!){|vmrQ5gGHGqIwIoAV4^0)Apl~4(2GSoW zkm`s6=1n^kFjMC=lF>Z{*q=x+@%u^85uv{$=jd*JVYS@|di%70-#GX*4iGs=sb8B6 z&dsK6l2=a+eCMFs?r9?0;QtBui15=nrgA9xrjK6@G%9M~KMy=2_;e1{*m?L`dBxIy z33{YBXa@7>)_9DfD|YEgWAffrT+`)k>Z5E=(Pm4=N$Yc4iGsgNZC_s>2PTq z0e=lXBK(4sJ$fs!h5uXN5y8K`7&Vtp%vE#V^8X$Di1^bv9)HKn&cunorULkTOdvAx zp29>zw|1bUlcAz~@Q=7a3Ktbxy0Fitr+>x-A`>4dR8)8iFifKQ7n~q+Qjk(r6U9+# z`Z4&3@C(u?>cqwBzd?_P{>{ZmMpwJ~>_1>f#C}~d*n5rkO5C3QIR=p8r2JmHv8I(% zCgc7$_=xZe(w^w8X~mC$|6kyd0wtccDy>m#;Ce5V0YnDgS&Y=L8TDSft7%_r;Ww~= z$U;HdM4<&g7u*mNh)fiu`ce(dDg7oN+!%aB_yuWKua#TXsQSGL{78ZLgG!tSZU#S6 zoIH>?lFlTeTVMi_iBA`!EV3rph`TS?U+NufHUn)Puh{pT*xYezj3F}i#(W#AB*#f_ z3ppb4lxAU)BcJIFG*-Ov(K~>R2s@qAE_bY(9Jk}{3^XF>bWR!AIp}yi^sZ1N`A^$J zn0S!*;Xoq= zNb-rn;YR_E2t4OY)P@Ize;af}=s9nJjSdEvfkyy!?I z(TdYx=EGpj#Tz<`Nr%C__UYy@nD8S7NJ@vnL_FbRwBq~e;fn8+4ugsAKXu`Bc-7FF z-Oy_2{`GQSN8~)ET~zau`D?gM47~|PM2sobG4nIp7U14mtK2bf`Drn)h z!G0^)h_F-IK%E-)INs~vMRFL-y-vBy;TlYw33D(=?p*Z2({bu)2Qi8Tm$~^fFlA=r!T&v;O&-P1#Qv) z6LduA>8!BaVRVJQ4$AG6waU+g{eNKqk%4qpH|?Z>;6O)9oAl!4rWW}b{{Mj=DMX@Q zjuZVMPY^g#h?LU_x=k(V_Cx*#7(iqo|GBmsgfE9QiRLiS5uvBErh6w7eK+W>mOEOG zXxMKAJ5q=Q-)%RvzsG_{;} zy|J*ATl4@QC2kIpkp{k~{AQw@LhN03!lU=Op7D0rp$#_W&6Ya(;8A zPSG1~rQZv1MBwR6KkYJG0_S?6=X!n z=`8WtiA0@jecumeB-aVrYjr;WU_`*L-jTt*Y4b^m2$?+Ww%c!QKNw;p*U2K;%02^T zB;TRzwUy3>7!h$gtBn$Iy~*B}#I@7XMY2_WF3^ae^V>%9TGJN*jO02kCtJ}M!;IuQ zWel~RF9jMA^kdRkq2Q;`CI1iG`W-)gvX)8-+iG{4vo1|A*KX8Lf4Zi0KCbDk^+PY_ z*Xg}7DS`Fe&s_2g}P0_ZrgILyCwropY$?58BbJ z^(H70QKnOU&QHl5;w<%62oVvcvq~!+!ge#6m9B#m5obED>`9F?nT6g3D3YTnPiCF> zLWqbkl@(-RNG^r{v-xwlk&@0!-g|mAQf0N)TA8uk6kWejf9h>W=+9Tv=|+3pU1&XB zmP(BmJqWPyVQN6#=C*uBah-q!8m?hbaiaxi2ah(FAjwlq;dC7b9gw0lp#TQOM z^qW*B=H3M?BG`0>17n6w#(d%nC&JpcRk^#;EFZAJ`(B8Vyc5^-A}kZeAAlGUaXRDL zanPk1#`{-;uG#^H`NJ?HVoqoJUW8z{|T&!SkrkST8ga6y!Cld5uv8jOiU5g57RFJ ziU{<|G={Ar&ZX#Iw!9hB=;@}^BI(cE4pXD(hXV~>z3FLcf!$z_UOXV<7p933K0vLm z)52EQlk~OhlOJyhdr;!8wv5KL#5jwr6LXA}w1YCH?_;i15~PftO5y zpM(#|P4FdB-lxGsgm*zYwQ^tev8xRdmESe#L{Gch-@vH` z%#?;|Qo)SJJ#_lFQn`V>7+6HGDGk-62^%(#;SIEx%n)A+F(TrWI=HD4$6(FnHv;rw2(mknE?_n4%*&v-%uRb}QoQk2IJe3=>cDv(W2<=I# z@>gVj{fIr@=L(9;cLFbbpsM~(SoNng8WWRmI>+E$I+TXvZ)~vCNf?MiBc)N~_!+5y zCYl7qWD{gW$mwheF_pQOzNVE8p1X-*8+Gd|gJ!4Orm_XR12`h^bhd=-BzSM2g=U7k z2R9<_bQT`(7G5QM5do*O1T6IgE#Np+JPlqXzq~=M74tp=UPQbp^)$U$ zP9;H@DRz^3pA9S`*mTxerk)s@LD`kX&xIDranME;#|wZ(@*A{Xg|PuGlHZ{1^<4w# z{{f5S7&dD4yc}30zp!y__9|cz!9FUL{#{&lEqO(QtvtterqUVK9cV9Bt$%RFexAL0 zqkdpn4eZxEm0{g0!aFd{n$EDUhZH_YeY;ntIjrkFVA`;*yDZsau%Fr>c%6cvj>vsF z!@BONo77@kouie2BG$M%N@OpW7hS-?(&WL z&;DE`=k3>3avpxAy$40-rKwYek5bwBuCVM(=V(o5WV5lR=(-aBDlHFM6;9){{_iCJ zbwtk7S(Fw%Z<7Kkx~^QUmNf7bm!Epymx`lSB`E1Fj;rme773WRx(lp`Sg%NMry5M*V&lDg7K8{;_`OSzJUSy4mpc;gw1Q9}m;O z;_wB#D!Mm=^o!-iR=XeUZMXL=YM;&`_qNZu!_;fm?{KEQ#X@=EVtb1P-C_YOsE#(A z*2I$eBfN9{W1{l#k4;?Yo~qkAGILulvcLZ%zu)xvCs@;EooC+f9e4Z*rGC)t=ycd% zcdc`(bO&$^6Q1S4^Fdps|Ivpii>bDmh%Yw&J{{mLWKm2(6@ZdmMwt`+s`)*3+0Vb2W zj~Df^iB=`-2c9o`N00et{phppT^4k?i9(aI?l|=s;SFW)YoWb+hxXk4W1uDXk-59M zD*SEztN5Gn@CQzO_;KY%aG(|Rja?g?%G8VYW1EUkU6R|Iou|)F*X0)n{qS@1(SrSG z0T@#2eYWzjjXL+1@o$C3@3)m7?=l5WBRr-!ywm!T=TQi`&xZaK-PVGlTJDz@J4#RG zt};2LZx|G3@%h8N&)09pM+^Q(de{Y9bK`}3t+lL`^D0XhYpun8TU%-DqwnO$LgK2+ z%~k7M5XDJ!!9uOI5MCgx)3<~bzF=j!(cUi>OJ!khdAWI+_(PN5t$QEqx$Y-=@Y0qZ zTrVFOdE!mZKmFm}hwJ>Ee8!`;^bEB@0&TK8uy{{WeWhIuOyTX4e~t2>sWbFV>>q1w z?>;^H6|oWh%4Lq>U#&+!Shy##!w*bJ?6S`A4-{0VPAUNsId)0ZdZ&fS!eIt93AFxA z3Ij51loDL-JaNYR`nf2)=Xbg1k%{azJ0}@wVI(8f|H*KU%Q|Px$m#iyk{XHK%QN+V z;VCoZi?C`v&K0q7shbS*I74_TFASrf@T7^!|D@SGDcz6U_}{tlXkx#7wmZ61zCbFE zlb=gC!^to7@^c=!jg&j32;UoY6E)4QMe!{1sjX=4`CwHvH{G?Ul)HEaAD=~~qE8k` z%X|_wijJL}&xanfQRlX*V~)O^+2l8+_#67At6&!UtAPk9DuPOl)vpHh7@HYJzFv3V zEa->Im+=pkV;(Rw_%20^mMxguH`~>LnkM$iN1r$P&AR>2Jkwo1z0e)DOD;`TcgClw z+h(Zlv^qi2)f<dNBMPef33f|*bB6xoEopvP_wSKtkn}?m1`L8MUoi$#UA&I zGn2nq=i)dEEpYn?}`XIigZGw(ubW=jqkKxwS3WHNN&oN73DUit4;oWb~-6!Pw$#qT4 zK3XZ8@VGO#9owG0XcpShtmks}!nmAW-^Js$m}4J0Bgpt9V;ZeAXv6GKzXt@f=EMij z^XMoG*6+(RgT6pdC+sw!uE%4l6}9ye=UeZ|}W zl|irHZkpyow_OQTWw%zW=Ubi`en)pW{%+lVY4PA-ph^rw`S#?&%k`Y15n+b=KE!YCc(rKS?E;YOPvd$63{`VZgMd_T5?#j&Arx z!=29auevzA$_!rEf+2CiLU=(qx)Bu%gSn$Af$9pcuqabMRxfVV`z5Q3`-9rbYQMMm zowr{br?Zn223&y_{#IGS{r1Y_Z`Tt)GaViZxvmV5h% znRv3nlqtv9>^$=Iy8ULsezOq$P*nA~sRqg;^t{3}t3hU4t1KRD54vIQ=_!l9{E0Rd zAA7~jKUn8l*Q5#>8ZKC{H(%i9VUFu5kV`z)*Wk0VU=Z4b4 zpOIH4{w!=2#J@1nr(Z0Dzfhd{4_at1N2S3dw_Rqd@vSo2r47>|4Kt(+F2v25`USMF z!Zyt&4VKAGI`gP04J_Lcunmj)r99GaQ=Gqjm!mxa(n$RZ9x=8jaPjt^6_zz-FfeWe zn6^^=5j<~VE8*eWerFr4@>EhZls{TTZ zgJ4Xk9Ur*;=S9_G{c$|N)rz(4-!ZBV!(wMzE#*}sPvYs@so@?mx&CfyOHbJ5EcM$Z zIkg@2a-|Y90_HW<;)^c|TU))bwQ9oUAx!1p<8=S>i!M@w^m5w3iOWrsB5~zHd}TPI z*b8$cSE||JRu+tza*2r&*c)|l)Lnm0d&LkQ(TMF3Gagi`!&zfz@{_L&5 zD`RP8K-fvq(iqydjq={0;q2U2xn#lx>+U;KKIq4^SM84#zvpiSW3#~z698!pe%ya6 zR8d>UjdK``xS3-=9^3Gl($N`7-n+u?VLUe!UUAaNHcj2eG%o{tkQPRf^&^_Q`fZ@aaO`3+9NdT=zMi-!*-(lu5@B`QgzCLS zV4IF?{MJ@Hjtm&s35SDYMhuLrdyR}3O#a0> z7bn|H?&7gy1}UWBQ;wgWhV}iVG_0@EPQwvRB6*HW!*C@o8kdGc!ZgzGDaX&3hTZQ~ zT2C6Ao0Nu6IevyTeB4&jaIJcRjr1Gv&#k7q$rFlUL1fw>OQ!WY_CW|n_jI~nRV7V5vxEt4$# zJH^A~ewUv%Of4M`NNAC+UoY0b#@(mZ$LGw%?pMUg(TJf3{xuKWw2%s$0*~4HqZuD` zPuz46!i4WP0h(0K%v4uiG85)V&wp|)_Tobhx!xiC7pCcdgK&$r;5>=LRXFv3oRT=g zY9yV+5k2txGbN7j(Q_pZSAVEDu~pB=2$e}3Kbn>}+)d*8Ys@6klo@B!P)+o*clllA z#m>R7DQmK@KQeI673#9yEip3iu!CV^*1y&a3nVUEu$Lve-gZo2%KGt9(2Y6_>f7Gs z_GUO>@))@P+vG@qwU=Nq!vNg6zMvZ?Jx+t4(r-JkqP-!##2`Q-l0@+Ayo9DnRcQ2I$F?+b*L&whI>3{Wa)OWu2(D zPu$WS`$3PT6y|=1UT*$axBsW=+0wnJN*Q%At2tHk+uPpkLho~01lk8=KQh(3`A832 z+0w%*?WVf^JWk--gsGq9zQnRh$qu{`5 zSqo-Z3}FXCZ4x-*OZ z%LN(NGLg=AT^*;));<%@r=A`E+6)JC#pUkT7e~J~g%;mk7XEtO`{9E7;Q~Kg&|??E zA2K55ez;(ND0@>@;EW02QBTX=ve`-5!xp^*>t&bYhz&f{zcefvqN`%s=qi9+VR6Qm zBEc3Gy><&IZJ+GcDlUv~WwWyV@*?}?y7xH`cAqPRCU-3S07_PZ_M5QcFtr~MTtAlD zZ}Td~EZ-ly@H_Fua3!lXRzHq=M|Fg_C+>PXE^!yHN~oX2J>vRc@~)Z09c)ElO7}Pg z)bGp9#uojn6I<4a``T!1tt?!1mA;rz>R)x0DR|8#$&&x7tHQKczds~%mf@4T>AjFVf*OW!X++c7hH*?-Kn;?3rkrtu`6X4{8F}l2@rFXn3I}1z#YG?wOB8|iD|z1J^6oaatX&ys!Zv)Xarn=T`j;+K6Z$aw z*ZN`Sm@B9xZ$9#y@M5)mpQxwlid%%-;cu7x8`hryk9V_2CvIjoNb41Ay^cRM?7XUTMl+>Yt^du<$d?G1B<7DO)Y9n>1tMb!rVc4wo0EHi`mR`uj=sh_yE$oQWm zuGaqVM0bnDZsq|CZT87^2oAReI4)qrVP$uk%;0p%cwBHE>(AwJ z33rbiN;xN%JQGSetL56h!IYF^zK<73CezKW_9)#Pn@l&;evr6UAz`i!yTv2nHzv(& z%Dz#DNNMI}VVc>KjM^!`ABx&(VCEV1mlD#x_08=JXX2BFqN2Y%B_85>Z&GCZ_;N+Y z?qpV#@T#FzZo;}q?-;! za~!A>+#2@!Yl&+=WM>Sh8J&8W7?1Tg@wh}LcAI8gh@Y%UmbIYK=6Dkl`v!eTM@*7RiYL+FwTtSj} z#DaaqLO2t|<;u}+uxCp~LN=wK_k=0PF1DTV9@=B)f@%{+ji`r@s=u2U*s{5M*!Zq# zjo|@vut$HOidowcdS)EPtwGwT@4K(U`qmS^UBC6^?q>_9>x7T9?QtK3-_3>}5#CE- z^U*MD?lOGAu7=)ls%lWRmU+%ODxYhql>XV=J2 zoOAzx6GO3;15WN57Um{&m!hyUJso%d5UTzWqHjtl-od|<2?yV_iJkfQdND_zYRv$wa= zH16Iy@J#Z^@)M^pa~D9-L=14>j!4HU!`4jC;yla z%`!GV+^FB}Oj$hYN-i~<_|2#G1GDtQd?4iGw)mv**0TJa(6Sq$9QHhsRK=g_6ULGa z2bKOnQ>XT!H)TX^aZmj5y7^?m`$P|O!)-G^43}=Vl4{&?r)HmbG$tQvPg~PB zr$6jGoxp|1_`?N0)KlH&(=9!fBO8O|f&WZ%w9+2;xp|^Fyv2Rwp10*hANR4sL_eXA zb>H#j$7o*CiEGN)X5mPj-|OF|JP9*>B9GeU%1x!0CC@i40Y%m?NKsEzv9AF8_V##eAj_=)|)9JoVq;TCPra_8`Ns_%9Q zP``Ce^I3lD^~wy>q+Z#?n!z`^WGsdrjK%t039`^4m*UN;oY>k+D(#=&6Lgde`m~`$q&gIqXO89Ntc0f6``QKl)oQ>`<&1W0+>Pd>Bn_Or=JevzQ!oM}` zx)A=YvS#q+*B{Qk;%J%q9$tLZA8qatMaIO8G0dTR__0vGiu)vk|M*F5i{X34 zd5mzcSGiRf_;$kK!if=iYH78-pLKFtLa8CXN?V)f+TEVbYx<6<8-1s+ao=s!KhGMu zTb(=hOY=EH>#WK2ex&3yxfL>%B7C0m;sN>6Z6+5OQ*Yz)q=6sJliR(kO$*^&!(`y) z&B?u~>8xJrFn9J6#!w=e+$Ej<1e0dWRF!$aq`Z3eq%=6;?n_ECV`ASVnfiVbCh2C( z6^hu2<-(+A*-{n*^~Z7VI4^JcUS2%bpJeV8My9wXw(%!%4aHvlY243?Lfvy>e`nG? z<2-KcK9gI{n8)wywROs^gQZ4oZ@1h%I5ce=XsGnyqWx~8ehUVSZ>2D>Eg%0&?{keU z9$auglCQ~md@4owJmv9M$(L?3IaN=+jaLI1{w=5K33vAzN4{SZNcC3|6>&%nhsea3 zp7g9ZrtwgJ-AGKkqY6hW(9?!u+RPJ=jc4=CM!iQ#ev4!*hhKT08b{%$ikityp(#%f zpQQM`E{xyF1BFv=;>E7vwy~?JXqOZ8PZ8SVNM;P4p}6$|rv7$2#R#w}{yQ8Qo$)IQma$(nDp*3y0x4lBkJkCiulg6J+{c!xCg^U&UBVC6`FB|SKyt^h zu^9#b5?R)a%*R=_{%P{R$+wAoYUgU>-zw)Vn1CC~dG*h812ddEn$yB}sT`NQi(Q-< z4`*Ye{$*}6X*m1N!%jv=?A2w~oWZWChlHMp>c$Eq*g_yc}8oQ`ih?sr}SuK$={B~z};Lst)Km3<1~t~)w5 z{$QhiI&0T%d}(yaM&b_!RUS95~Qn|NABnn zWmssN`yII_F?ksMx#_(~oJ<~vqv+wiRCvaptsiOsjD|DaNcsquf-kJT{X}bSxwYbY zqH(23ue=Unm5}4lM$2ng^pC)DuPA++TTL&p?_vw=u{W{_-rQz#iS5e#kz2&W3+4`! zI$}1D#y?+*{~4zG`Yn~_hcn9E|37zk9-wpe{*Pa!R1zT}X+lB>QJR#UWM2~5m$4kn z$dVM1Br%aploU}?sYFp!BrUX;EG?2Gi58VM)%Uv2^SYjM&oGSl=l9pIKXT6Focp@Y zIj{9z=Du-=X7o*#JwMA%%soF8*9h6~=60@52$r#b<0Pq52qiVjVfJaeXeB({cjkl# zm(m9xvI`&jP}_I0W5yFkC>tM|b&oA`$O_1OalOmBtA+|1A-nVIp<~d~q_2Q&gUWFX zvR`I2$oaue%?UHthi2LXLp6P5)-!DJLk6!8OxWYXCHk<;r&v2JCuGZbq8v9+vOXr$ zOCtXI^~nB1E~?Tkevnw7IrSWvDko`?DtPnLo*z`HTqRk)$5YyP+C(Jku)Mbp*PMqga zHZRAS@Ir%*Fbq9pqxfrU*$pn^GwT_frJ8(~tv@SC4 zq{vC!jH5?K8pa>8q5K128ccqlkRQdAN|nRDHCk2AU|HTDZLc4)E*M*~yh$1{Niowq zX%{7&oN|&iJ!lHqWOrecC7#@J@_2t=CJyw__hk|f&>V&1!4w1L@l!<_OR`@k?p8Sp zny~p}*n}7Jv%au@jLVm>!^X(j?XdParlao*$-1rOYxgp}b*iC5n(krQZ1sdQ{*f2N z-$0EK@6m`EZ@MI$qmB|J(?$w2HB936NjQp*5-7`t39~g+!q$Z?R7l)zUzT0@$a$i&Z4Sb*4Qjx`EJeW;Vk`pRngeaSNtlq zWjmTOUJR7);r55h#Ex*J9bq&`D#z?1_+qc%?9(4*F0-#^BM;%*Vc za*xQgZzNv6j$ynBJ4y_mu#aTfU;INu$2j(kJA)WMyW`lt)hDOHm+L~Gd?uIgI#Wm;_JBl^h0{c zub(3;R8{Yo>gu}z4gAv-@;AAvNpB;Gq^S)RjZMix1+H_I#}fWH-+^P$_* zf;iYik7<8PDChCG{bNLK`b;~4|9)!DqbBSIF>b;hkY#T;!e##OOPFvmj-j(Vh_A?a zesq*gBge07-T1m@mfaz2(w!~4t)Kl}MAnh}0jmQJpKHvF12+3h-yu;lZL6?d<8Xt? z&Sby6mV>R7@qQ|H$gopmC2S;#mi_hpka1-kp>cw{HCU!2)W4qUFhjezTklbW<>k;` z`WZrfRi?kc7g)9O#mSYdQ9n$G#`JJyJvmN`#MTCQsJ7}Wk^Otgdx6@JWDR=LYz?|T z*>A9HM}c&5z#f!INsJ?0iL;GS+9qK`&trp=U*__X1U|wsmVMw%OLCGgffpp|um8i8 zGxVrT(&A=N z__AD5|6y|HF&9N`Gh{yyq3$566m!R``{E2*c` zgd;Nh)9K-YWg6#+8Y|&2{3qLM(cwbHh4sG7XyGaz;7;Ql@AKC_y>*aJxq zujw~2$aamJ&oPDox_76+ev`L903B`1C#Ni|i zAn|_mVtkZo*hLr1w1%V%?Uf?m6z8AtzgTBROb@N}$2Cun+RD481ClZz%M_240U>3I zr7^{X3)$fxmaNH>vJ5Gd(pkoFWgbT2bB2U?RrMC6=RoN8_w+xWmr4g7)fuC2P>e@MWj43|Ynd_g=1*^x)qq9WEJ;nwzukCr8o z0btZgSww()W!D;v#YK<=@UsjGT5?-nj-hUoE2Xl{~ zGKCexnHn^nqqSu6IGuc!9+DXmjd z^JWPzUBpf@z;+48Fnsk)!K}nHchD%L~VUuFm_)TX?F|6zZ5>^K5Uk>zt z7%Z1Op0`ql>Tli0efn7&chzjheS`<5$zu*X1wJO8ZY-G|Fwg3265lL2+71(6=ZH@m z`lSr2B*)=-vetJkwK1QiJLagvG^epezkgy-l0H!K%L669e|$G5t0`~Q<2aF%z~J6J z2I{_=<)BLQgX(-9R0*BsxZ-Na(4}*l_QUH88U6IoVm}$F^plbL-=ySZr272JKK_=G z(bnnAw$kWdozTc%{FY0TIKMn0!zJ^voYds`g&w{3p@4XPIjsS#xg2o=<)nsc5~{}- zzSqzc`O1RK;p@XZJgOPt6Q73lj87(EO8J^8`e(oNPcNm; z@0HN~?N~C%6G{2C19?I}Fjc=LFfLlYc8<*y(^yZ6b;*!$&ywwiNscW^88;HR7mz~{ zX+m|qXTjY>c6SU3FQ;Xn$FKK#X0q#jNY>cA=%Yo(o$!9y5#l9Yy5ow3D>d99*Yrji zPXvz;&Ce2g4wOrD(x8EvP7!`F5A`%h4lmZtbCMZX>5OFAUq~^@Mmm6FyZqWWH3Djw9vu)Z&$~JcaO8*H~g}g z_3DP~Z8ZClu7LKJ9!H+L9B+qQrLydTe(4MCHDk`NYxZY)N6xRWV)^H}x!`sNxK8tB zfAz}I(TdBKf0j+pU!kjpJ>+7QqiDE{WQx`^M$39_N_cT9`|WGdvRsrxAB}j}%TSJ@ z#_JDW<4d^ygb<@1?uwJ6v#4HbGCpjGJ#eswJoNgKqj-K{Ny@megrPB>UtM@LNxYN8 zyCU(KX}8oq@@^ki*FPRC=rK_};sOE9EMEDt~VM_%W{-4BhI*r>+^-&cq)2 z)S`#nM#+=gOjpyyw*?dOWeBpgc;`+B$du{*gri@6HnNwR&%n>ESjX5*;rOQ1|; z857@j%2{ULY3u`z*bii0^DKWc-w_V&kj6IqtYCbw+(*cRWi0-;>w4n(d; zy_>f)qr7;i_wZhm49C7PhxO2(uCEl&4wmAywuvSmhmKYG{VcgF)oCc`SJfUIzxvWM+CU1|$7eh2fbcqJ_E25tK<4d^- zPkwV2)4u93@!A)j)6m&n>Jr{$Jz54og&lgCiYKJ-g628$#mv6BBL}-ta>C8LZQqwP ze%6cEF|0bST6Rgokk`aj&w8zDknxoFXlsIV5ckBys|+%%(+qZ{I&8N)(npj_v)}N{ z$+}=fDVZ-S$n}=y%J!;r410aN-0(_*;5#+=p+|9xoUau|E*Fd=T?vrv15K9WOUE(n z1Gc>qt{GvY<~rml+%d$or(TIMx5SuPFAT>J)5e)_MF^iKj+57cgeS&F+gE+hv9D6M zqiVZ`J={6JWy0M<@064wgXF8SGv3ba)<4yrAn6W}@fRd|Kj6JD7?$x)Z-4n#hUv}a zuB}{y*k7KR#lN}G{tYC0bBQkf`Ic{!mg&}&e}kcWPDa;^w`HZPT%!CBTJ;$60UTzy z7=^ssSLEFIj4AO2%p*LkG~T3*?>G7PGRNth(N5o`)u((JU(gKGCwVj(VB!ZBkCZ8H zdR-R%l6BjuVyc1-^d<7lEosDfLO}OpNERO;_to;2rGAgGyh&@DsbKR|c_BV?OBztl z{|VhCS>jWaBh74Bs{Bk_zm$RUb}pYk%iV08+?j0;+bA#Dh$rDeJbw<$`o!o+S>@FM z?rB+D!|R(JadVxj(ey_r^$Ri*D-!gg90v85Z7k%; z{$h=M;}44xF7Y!DM_O_HnKjvr7A=qd_NG?TSUQHGWqjU0&i3Rs`ZIus{?^Y`85h69 zj!b?mLe7nuK0)XGE*O^akrO{RhBM`ylvW|0AP;-i+cEC`VOh_639pcO>`bSqpxK<0jv6(dj542H5VdrS8qY|Xn`M(G z+)^HXta{ct^aO&y7ii$@PccW0op5eBWGOC;v1L#8vrj?~8F#{K#D^cZ{~i=i3mEc6 z8uqZ~jH5=hlSRfE01+>a5f68IsBqN%JIi??T&l6MoDa$!EsCsSysqKU4VP<-Os4?* zy@+ft?a7&r{ZLy2Bp&uh9YMwi(e-!__2UTQL2rK?R`-bKw1j&h+$Sa8_vp`}^&K)I zJ+!GKw?Ah$uv@9bTOIAvxYafCwI<%0c$DkUo@uM>H0S4N7)T}eI0I!K@+kiWlUratWoe@l)TS+h(Sj(IZ%wC2_9F~2^Qa-sM zAB)!^Ye>19iUTa~YnU*PY#xy2ed9|9`sr?YjP;c_bmfEI5MvB`4*~ekUcw@#=~{FmP~1Jj2u*PeXRbO&x_I_aO^&Cm zBc5fDca-MM**WQmceRqzPDVL6Um*1uO?_-=?ID&$0>cbssjI9Wz(>B%Nbj~wjGel|GV@s0#{YJ#&RK|HY>uAihi z;=Qvhh|eJL_(u4y>5P6 z+pYiLgs(f5F8ZO__>X@w%zIXnKPr=JQ+k-(T5hCDH$+$c$Db}%YGu#1wQCdolz2if zeMS{;Gn2fRycDc&{l-1ye;F-CBKKL($x_Ia{kwbhOd&JK;gsc#w$!2eRMo!UOa36l zrf9F(XKwOW@BDmP`+S;R1#$_twLKD}&TC<}( zvfZIq$TU32e$7|!D?A-Ou$SovLldqTJ^rVujg)V_9-3l5N;zn7|6%w5w!U1_Cv~XY zGs)i|`VarvidVcg@iEO?G-=x|erP+>WBm6N<p)wCZD5;A!Wdce@l?_UD{tBi1(#($nwoa9J)m_y^twKV5JuL0nzj{HpSDsG$nb{ z|Gs*D9??$+;SWgUcS{HMAD;0=e15={@l!-4{q$*eeP#9hOrqVe>srXnFHyGnpEmc9 zfvLme`9P1y;XZo)!g$=y=d?Ovr!=<5b@U+onQ~do#1CZTe9I2&af6J>$EANSlB%EA z#&#{zHfw8q$wvORS{pJ(BA-k}gAAi}#{EqWMv*Li?E0Xus^N6bbBLVIWoN@+!ZN)) z<@EGl_t-|kQ+C1`I4(hWFGYhRY_B`EQI1SJ1;(@Np{KyiXW8(oj_;Vyoo$Y7Ts&!VIC_S&lct~HuwJk0cyfG7 zO!z2vPWD(o7slORc29n+0=d^~?jxS{j&cba<8!j&dXCD-svm>TI7fv~H02S_M~UA+)UQvsjAKl`3#Pw+ z@o&Eoef!F6`p6e0C*B}wkMyvyuD;B76}mLiE(v!+4O05Ilb87tS`&XGJ+{h8(Z2;& zZzQuD1QN;3=WjA2c}(IxQg)9ijW0Xz)njm_o+Uv(ci+BWE#vAZ883BD>j2XpA&U1uSG z*q(JBaWTVRI+XwWiX>jl&*+krsf%o^#J|Kn%Fxn-W|m$0#H6@OC%z_kl!wZ9kHlZH zvRf0IcQPW%k9QxwRU6`OS?Sd=V>y!b=~Uv0;Hb$nR!CMdWvHGQEOp_GrP0;1wzLG+ z6*HE!iJ!DPYFhceFg>BlEl=EJr?ex;ck-|-Q5z-Ph#oC!)yn+#75Tec``&r|!_V~j zmgj8g!fEl(!>mi1wDQf%6n?yYn0%&90vzL5swIvEUp_3)c4aIxX8TyAOU785#a};S zm$b91C60xyG8PFSW2t`(>vD18SmGr`2aTDidCV%|5GqWLkgdE$hJ%ceZe<<~qXhlW>wg zLWWG!Njz}E=^8)V!$dw~G$<9XAs-<+4*?9hpoYwRVARe@9ND3{?io+;utOtq5siGb z9Y068WQWbj#XTN7EOHf(xsI}9+iyDS4Mg_qBfDirF6`0REs?0CCOXo-J0k7W9)nW{ z5A4x1W#F*%G3n((oe$*QQ~h7Rl@rrL6RlnCwU%1b|HZa;TGRi<+O=BS)-qSF&_PP_ z&`u7qxr^7r4cEoyZUpP!Q{jbcB|tAJNq{~MF+e}Bg-r+$2wMRI37-Q76D;EO3J>>? z6hoyXDMmQN6eGPBT6T)fqX^c2w8HF;5@3v!B)~X_7+}2D!d{GE0^vu%M8bZ+B!Wep zqR{?2Ns%TcNioeKrkL)vZ~y^j5dH+*OE?IaMX-po6=t-M6c0#AQat1kQ_S;PNI`)4 zgnocW2o~Tmh1{(r;vy+Y#3vnM#HYL##v{Np1na+4;VliYOiB`9xkC)_g4e=i1XxM9 z3-A)*Zon%9i}kcu+n_dg)2(X@D{ohfT-&O*=D$loSV~Bq{!Mh$;T|T4;-d=pRCRz<-2}fa5;Q5;3>J zH{B)0iBggjCp*Lxr+O_kM1a!>R{>5ZGzAnOSj0jKw`q#PQj!#BIm8sjycX&rz}W=r zUs54&a|v*+lq5hYhZvxY*TOYe$Fc+s7kQ@)fF~% zkN`ELBmrtV!~n@&3p){@7Qy=0R(M~hP)AARL56zn7c+Dl0SbaaRTI(aSRLVzv=>)&0WlwNguNJ#?pc8CG` zcr6UX6#5ZT0f8_SFpyvoQx#ftkrYFuBq@eD#1tdE7D`}@BMH|3CWU)COMsiDBmr)5 zhyliVO%@_Hk0+c7m_R5Bm`JdQcPgBxd-G%|Ns7B1Vv1>A3s)e(bb|FySD4>Q0^BPl z32>i73^3bk;TEjY9D?<5gq_MPIw6LB*7v+tuRP; z*Jq?8DV93K6wi4rbVPvV1nd8zLVLZ#SSck5@UlY;u-a?kBLsMrVExxAjJ`$!ye=gP z@Rmaiu)%9#B?7!dcp2~>VGZB|f<^pTVTtZ-8>J*EHao-=TfG*Nuq8hulm>i3umIZ? zPUt2Pzmk$f-02V_?($l=2my8zssZ*8Y5?{UEaHy}t2M<>Qj!$EIK&jcc`aOq0KXHg z|6dCG^j!G2lqA5v4lzKkkG#1tmhE`L)qvcD=75t37V#8?$D2utQ>7#+@;Ss5`Mnle zBfuF1>t9%5lb);2l#&D}>JS4I_gXj^lPp2V3n)oA9gsw@h@};VYl<>bk`xy>#1!Sd z7IGuNg#_zgS)q;|#urIR0#tK|0jhf~+=NM9La_dqDa>v!0g|O80j_X}0cv|KyoCUD z32y`H6W#+fBv{0&6l&{5qluIxMKgz(qJ`JO1(;+jg7t5!&`0kT+et|RTZ3Iy%yFXKp%qj@2^l*Z=i#eB)}kt7$DVap$7t7Pq6;O z6^84jdxVrEz>N+uz)fBY+Yw+i!TOI?D5D3=I4Mbh+ZpxkcraqII zA|(kh)gcDB+iPJr0^CEe{`V@Z*4x0DQj!4oJH!AFcrDC9^IXC_zyiV}fX4`n08bJu z#nS`}`YgeMK1Z;iD+m^Jr9#hvGVWDUl5xM{5XZg7Yu@~t!raNye;xY2=@9#`_gdJ1 z=64D20X`&r1o(uo39yy$Dc}pjHo#W|8^lh6rTvy*Y4;E;?LLB~{fS^{e<4`f0}2y* z$=rXJlC0HV4sq@Wy%zpKbFPoQ|8Y{1{<#S!0!}8J0yvG34^V($ISUaiOA&%)DMqj? zB?y+~T!LjOrO@wonOSKm$w@zS}2d^iiAplDuk+l>Vz7AnuN;$wFp-L>JaJz z8W0)+t|Bx6G$Yu!TN3OcZ3s5fYX~;d4g?!%CxVT%E5SzEgJ2`=O|XIWRcLdkENDL| z$$}1WhzmN%Yhf^&uO|!zj3C?q7)7`VFotjo;8wzT!0m*IfIA730e2B>n0FIwU^56d zu$crK*!=_>*c^flY%akDHlJVvdz4@UTcj|sx2)geQj+ys>=4)QX|IK6(7cqe46vNA z03h)YHHDE2_HNYE$Hvt<6HmY|CHjWPnHja-8HjYgM8^>0HjpK8IjpIv#jbn$x zlvG)rucaibv&$i_&Tg-T@6f!Lun+JP;b*|Fgx>&v5dH)lB>V%&wb2K0oRnk`xd|r% zP9~fJIE|1GP=H_)DMYZL7a`ctixF(-B?vb3a|t%|QUn|N`2-t!If4!SLV^vwGQoyk zRbkQ{vJI+9Nv2=JA#Q_9y%uVs`Eo)nKy5-DKz%|3Kx4vHfTo0IfR=<-fVPBofNKdI z0G$Y(0o@2Tk)8w_dJ4gY-j85IA3(674<^{quP4~hhZAh*BMCP2n+P`aF$5d>IE8(K zWgFZoCD{fO9O5>Z=(TVMnkN&c0HzYA0q!AK#Cr)A<357Lcz|Fr9#UvGRYo;eN;0bX z4sleEcr84N=0$|Z0gDMw0hSP+1w2Q19`FL;MZimhmjP=CuL9N)UI)BISPyuIU=w+t zU_<|iU_<|eU_;+Ru%UlOu%T}w*wDWs*wA+pZ0O$-Z0LIkHuQZ8Bge@$_(4jt4Ssfr z+u#?kgdpaw);)l1#9MKkb zCR?e2lw>P4c8FW4iPyr_Xl_nu0ccHV1Gt9J9?+3+9iR)LE1(CVCm@Ajqv}VnaSR~X zI0h4J9M=>q_c`^z5puasnuJ8qLf+~ZF0TF5OWY0g79 z8IYH78X!NR0H6?|FyJggQNY;*8$?Nhr9F>eY0D5S?F9r&TY+F{D-kSh6@@By%iOC< zNhVj_AoDKSF=NK*Auv5Q2?r7{SJI1Hr~IieTdyO|Wr{CD=H| z6Kou}6Koul6uzA%t8=H6WOdRU;_6KGnm12ZxP7GbzX$#Ab%_0Ec`e+B<_8FK0CNfR z01F6@03IV)iYEvb^eKV`T|%&+%Lo>9xkBmNWZWyHB=cP95Xb$J*SvYP!V9CM{~Gjv z%^~)G-D}|uG_NOY0K7|h5AY%3BfuvFORKJ z5()u|5Y7S=C!7r^NwB$}N3hwJA=qp$AlPgx5Nx)U2sYa)1e@)}1e@(81e@(;1ej1Zs`_Y3oX&yhR_z!o^UPTI)X*)La-R! z2^OOl!D94LST{gM)mKU~s^AbuHPCBe5SoV&t_KV!i~!t7u!uJkEXFMai*YN#VoXpN zs7L?pQj$?ka)_gv?6oij%~J`}0QV4P0A>09Z(P4DbZuNx;*D zX8=nH%K*y>D*!7As{pSMZ0@fTY_{tNHrqD|HrovZo9(*zMfe-= zFX2DH@moCS2~v`rClT@hP9@l=@)2wt1qe2dLIfK}5rU1Q7{SI-f?(q~mtf;4rSPi0 z+EZFeGSadRadpah&6_V&$fZYfMfAVOA@;B8HE*u2uwKteHPFANL+qdIHE+H`Va8q3 z|4Q_)>k#|b_gZLx=Ej7p08I(a04)iv0Bs4DqCLTab|hHP&IAkEjbK50DtvjpjJubV zWF7lB#BulYTIi4FfrLSTAp{FBj9?GBfnX0ArBFzpS==Ng$vMU$<{axaZyv8OOW&5f z4gDuN#Qu}K7VboI8sRR$-Gu3Ybi%!W`v~^~<`5nP%p*Juc!cmMU=d*e-kpDfVB>y@ zU?W{Zu#qk!*hrTXY@{y|Y@{y{Y^19RHqx~O8|mu`EpLeE0%QYuWmg{&a$#R|O5SJ^D*TTtY&PzBAke^ThP>4_%a2DYs%)J=F za+V-imU9V~r4+%koKLVUr6j`~>JW!H+-qS3nr|eG0*oe%0gNNu3Yb8!6n79T z=wyNgy^CN$?^akbT!uMaN;1rJhd9icUJJ9(Je%+U;32|Xzuo>_v;WNNC!k2&@ zgs%a+2)5+k5p0q75^RxwB-kSFC)gtYMzBTxgJ6sNH^CP9UxF?2ai99WV2hlaV2hlG zV2gYz!4^3m!4|my!4|m?!4|m)!4|m~!4|m$!4~;kf-Q0>g_3&PQd&x~8<%y6yKyv;LZ}L;PN)H>Nw^G9i(olx6D&(Tf@Nt)uq;;*EK5^`JriXj&7>p~Y3UFr z(%NgG4VteZv! z%_9jn0&XUZ28<<)1KdWi6cY&+^iF~WO(R&)X$npBF8^*R$uMU)#9`j+wJ;OS_Y-CV z9wa;jc$i=jA0b$b#|ReV35Bg=We`tFNe1z>Lmb2suZ3sP{2bwVzzc*I0WT3=2CN}i ziq{Ah^bLXqT~Dx}?IEO0rQ(JH(B0zSlxoG?yn-08}DW22>?f1Joc~ z0=SHj47h?|gQ!EWwDk#=wh_V7HX&HrW&}&yQlaw0GS!be$Emh)h*NFnwXg}z?Fm}} z9SENTt|NR2=uFrF=t}qo(4DXw(39{zpf|yW*;irW8X5P)UE{ceLmc-&uZ2g@Jecqp zUECfEx(Q05=kr18yR`2pCOx32+NxHDDZJEnqz1b-)C|TY!m#w*iv~ z?*S$gJ_Mu@HUg#+HUsV^d86t%~l;7cAi7r zZ1cSqE=BVrgk-=%!WDo;ggSsH2=xJr35@_x6Pf^)5Sjs&5?TVDBeVf5CtL$~fzSc4 zlF$k85}_;L6+#cd8bWWtT7oUt>k4--koEf$J>GJN>$kyc;UJpdA^Zn;k8pe!TyF>` z0zM*~4A@A>3)n|&D~;x0DXYhhC7*qla~0+>pe3b>mv z9dHjJ9gt3#1(->g4Y-f+AYe9O9$*e(0pKCRLcl!2!l?>WSrA9yWvL-R+3o`8*n6u>4zKfo5k0Klh& z!GO;R*8{c@h6A<}Mgn#aZUXEii~;N-j05Z@+y>Y~mvnxS)S|Eet^OLBe3bzl7@nxxUB}@dSnZdU41tCE2g?IK&jEc+Hzn zQ)vI3^v{R>1sr1kf?o6HGZj8wDE*6|e=&#H|7@>?%3Wgma|l%d=Mt&|&LddFG72?b zloaPnNv2TFA*QI{wQvcRxgy~*KxINLKox>TyjWrAJV{YqN|NGIhnV6ruZ8tk=F181 z0Inds52#JBi1ieHeoRu-my)Dtjg%zC zH4ZVwwO$JcyTs;>g#Q4Y2*+cgx)3a4cZIWbbN7&vr0DGsQ}pp#DAOf2_aj^Y2!slN zfdq?~s?c_&q!=P4NiobJrWoP1&;Vl`NoWihMYtMpGr=O>qHx>_NikMRl486=OfkW0 zp(p}OB%BSHL?{WEOt6S|DdfFZQcRVSq?qmyQ_S#MD1!avUP3XzEJ6vu{RE3RN8yU) zlHx%rNs4(6F~xkZg#sAkBLwUJn8GhJB)}pmNq{FEVt}W-7V=>P&k(HtQiaF$qP0v) z5@5MQ4Df>2LO}#rNwEGeEBvg7_A6470Ixd40Izv1)WH;9Cs_Zt6y9DX0oF@N0=(l8 z1H9+8&;bEHAXxv872aPb0X9lW0&I4O0k(QA>_LFf2-bg_!c&VRz?V{z06QFFfSq0o zjk?606%&y6vhaCCRqPp6{hK#2vCGj2~diU55G*1x~P#`zK;NJ#<=a)<#^y%v7NoUSMA2Mi

KdD;5zYrpCzJ!sAXvni3b#HlDP~DYQp|RUDdu=BoYXZoKSVeMFpqE=U_QYj zKB~}fwWL@mB}wtPLrn3c*TRghvH2;&Ou#dQ`vK1qEaGztRbQ7B&r3;Cyx z^@*hTSW1#&lS53g#cN@Ax7hqC;d{X6gdYIg2o~`xh0UKziXBpt6yG?+6yJI+)af3Z zzav=xy$UaWEdlmPNdo-j5CiP@TKE6~ekFViI6&A0_=8{(|5n(i8}p!)B*lLYF~xCT zdh?%MWAh1wgMbqW{{iw4EaIsO{r5|Xyi$@Br#r+H1-urP_lV5}2`>T)6J7!oAy~v> z3g`bKDT+%;Qk>%uQ=IFyum%CnBfJJEO?U%vKEWcEQ%L?(Qk0jHq^Rf+Q&jd^D2yGh z3gIk3H9~Pfb%I5_RN?#YBt=arNs7xIVu~xg7B0jXYZEF1>Jq8~>JuztBZa5mkQ9xj zBq^?Th$)(RO}=?6Hn$+01ZYJ#1<;0I5wB5L@vWq2FC|IQ(IKYj^}aUg0aXH~q?qUsQ%v$&*nlxkCcFzsBYXguO0bC26-FMA z6!%C;QrznhQ_S*O*oy%76Mh6dK-dp>kYEw#DU91FDIS)RqMV zwp&u1DkVvg&mpGB@3n9imf;LSaX=x$Ie;?>7O|+pbDJbZF)2xk5)Ls%Nw0r6C_}J_7braZzN9E8B}s9iLrhW0YvCTGxQK8speo@$z{LcMc!|PAdP%xe zN|GYkA*QJ1wQwGm;YvaoKpnybfO-Ur*ifO{UP;kNN|K_9Lrl@sYoRp)G$*tJv?N>$ zXicz)?G!HlT~b^lB}vi2A*Q&_YvBL_bSC@>=t?*U=uWVRy%fTmlA^biBt>6`n4-Ve zLO!hY073!4AVMKPD#0QSRVb-v+F??X6gN1;6gPS;e2M@!5v>0hg$MN{cZ-xHz^x83 zz-?X&8!^e-3D$p-LRc>WE7T^=YY`|v1gMh7sd4SId3jkjb76QH`JP!DZuo&<);Tga; zgr$IQ3AQinQMl|g**O|?k4Moyhq!b6=(W%o%|8>a2K+*34)~4G3h+CjE#OZ=d%)j> zj(~p%odN$5x&e;+%E#RkZ~`F(a3Y}}AP->x;1t4OKwg3^#_0+lZI#u@FC{t06m*EI zQ`l?Xe3n9j>oloe38L zx)Le_x)UsCFNIXc$5e;7 zes_B<{D$Ux2!8<534a4-5-j5V3P0+-SuQ+Jp5qWxJmfX`?S^YHaf&nZSqYKo>$2KsQ1&Ko3GoKrccYKnmd+ zKwm-!Kz~9fzyLy5z#u{oKq{d(;Cez|z%W7pj35jGj3f*Jj3NvJ+)TIuForM+FqSYH za4TUf;5Nc|!0m+F0e2840q!JB0ZbuG1>8lL4wyzr2TUi-0?Z)H2HZ<{5HO1{4{$$W z0pJ0`LcoKB#{qK*wv)~$*k1UkLgOUajo-jS7CFS-_zACt^=Mv9cn9z_;eEgo!bgCm zgiip^5w-x96FvjHK-dOYNw8tQtWd9>jJsD#JigXA#Bs0nTIhr3bp-4Grb1F)3Gi*t z7+`}#4DgQE!X7lgN7x7WfbbLGBf>9$jf4Y$O@u!ITL=dMpA!B9d`>tXE3u7mB49h= zWWWwWUcgSm>405?GXT2@g#mjAX94ySiUWQioCElYkObIIC=K|PP!@22P#*9Hp(5Zf z!bO0C1lw%?DNH&j*M;gm<90m$YlFBQb9*gZisq9D$$*myR{%~W)B&7Es1G=u&K*O&=*ja5CG)}g8&r> zLjV;C!vK{DHvp;-Mggi3Mgyu7#sV%Oj0e;t+zv=4Oajy*OaWX;m!ZU#Ogr$HEgy#X*5ncdvCaeN< zCAW*daKKFj8^joe-}Uxw6nczvh@%?swJ;jZ69{7g6A9x1lL)s1CKDzB(g;%k zQwdW6cN3-q?jfWD(h0KwGYPW+_Yoch%qGkO%poiQJVaOsm`8XVFrTm(@Ce}(t!5}WdR=$$^$+kR0M1!Tm;xe zs0P?Vr~&wtP!sSu;c~z>!j*vSgt~woga&|}gvNkfgsTC&3C#g}2(18n32gyC5ZVKN zB6I}oCv*nycL1;dWFa&TqVHltQ;RZlK!YDvt!e~Gd!dO62!gxS&!tH<(gh_ysgeia| z!c;&h!gN3xLOP%=*7%_)REfWCx% zfc}J^00RiW00t2b08$Bm0ms40?q_4Dh1Y!Z&DMMc55^neaVeHQ@)qtAw8cuMvI)yiWKX z@Fw9ez^{XZDHL!iQ+yOxOt6O4tnejPNPo z3&IzGFA3WLUlG0rd`;K|_=fNu;9G)?dym4-(lU|Uz2j8(ImC(l=(Ugs%|8=P1^hzD z2l$Op0Ps7Z5a3Tj5y0PsVt{`LB>?{s&IKIzjgPw&-~__?fD;Mj0C@-(0!|@R2IM7F z1>_@C2jnMQ3OIw13@Ajn0&pgw4&W?8eLyinBf!~&CV+DY%>d^TS^~}^*mf+VP_}|> z*lW<^0*AO^%X=+!K=Xx!PJl`T3s6O2oW54RE+y_N7dym=HM|zyMDwMD4S>rC7NC~G zpc)eKb>yt=5F^(0T6hc1^$BkS8WP@%AYYWwnDim~G$CvRG$m{XG$(utXi4}2(3-Fv z(3W5$Z?CYSu}o!EN?e?d4sj}-ycS+Ta~Fd3@2*hxObO6KN^%3!+aU(%?tQR`$bB!5(gaO%>M9N_!G?s3I70c?aC711cE)}B!WHU z6osw@CFiM9lAQS*V$S?t^X7sIOZ66~5c(H!i2aLt&703w2$dv$3G_eLA@)DdYoQdH z&nJ`xlqXaGR3cOcR3%gc)F4~}xQvhtxPovcpe~^vpdq0Vpb6n>Ky!l4tQEoL(w1Oz zX-}}ZbR^hZIumRz-3T_9o&=jq3c=>mk6?2dK(M(CCfHoAS9m**Y^9-6lD%MrL)=Ou zy%ugn^UZ|OfU$&efZGTY0Cx~30j3br0MiI}17;A?0ka7A0UjXC0n8=L11ums0(gwD z2=F9fG2j`(62LOTbAT0u7XYgWF9B8)Y(du&Yzbc{*b=@)uqAw(U`zNO!Itntf-T`j zf-T`@f=%vIf-T_}1e@)4f-T|K1Y5#g1Y5%I2)00b3AR8#5^RC?D?G1vTfaz2&vg!Q zkNd-G;ZHOlB>V%&^{oduPD&CWH{nFU$%In?rxEf23J}f!6egSrC`u>>C_y*}kVH5S zP=;_mpd6t*pd!KMei6ZDTa93|twFHa)+E?$FDKY+uO!%P>k@3X4G1>d#sr(~)dZVu zbArvb6~SiPmSD4OukhyIa>ck-O0uD@bBJ5Iv)4iwGCR%$9pi z{wy*!uOzGjyh2zFSW9>f@CLzBtS4B|cL)~reS!u3h+siKQD~`8F*Zp_#=X@cj{7sO zh0oFaC1E?@Yk~#XMX-l_N3e(NRhX>zQ~RVOIe&79Irn=l{DS5Kgx>*w5&j1JOZX3P z{BBQif|Ml1NrXIrQwezirxWr63K9wdiV)5M6epYwC`mXMP>N6*P?m53paQ`bqY}ZU zUxi@PznEatzl31Zzl>nhuSKxw*CyEX>k(}F4GA{=s|YszrUaXQ3xZ9*HNmFej$qTj zR-vZ80oFlEvY|RT#C@TQ*Fsk`_aO8Hq!9W5`V#_R5W!LmAz0911Pgit!Gew=SkTc5 zHz&)u$4E)WJtEgav?w zgvS6+5S|1)O?U>dl&}o2oUj70lCTQ!3Sl*1E#Wo58-zCj8wj?b?-FbYKOoo=eoU|> z+(fV?+)A(|{G4D*_$9%Xa0kJb@Ed|H;ckL0;r9ev!XF5>gg+B(34bNn68=uGCH#wE zOZX4LmN3_Mz6;tCo}f_iD%mG31tE02^9d92$ca<3Dp2K2$ujZBiK}H5o~g`2{yTU1e;t#f=%u!f=#X| z!6w&&V3TW2u*tO}*yOGy*yOGw*yOqpY;xTds_6$2dPqsOV{eDJ9s77K^hI+Z3;+x! zqymN#EaC`)#ki4RF>WSUj9V1msVJiwDR0Q~tFdgtQAsz4u!6I%^NbV{rwn|A-eC`laZ1Y-p z4*|9lJ_PI_Yy|8iSj2A?%3Lccc1uZ8eD4rb?DJZ<0Res_i~{^j7!CM^U=a@}oYqTH z{4OO)@s~qPanNhww7#+VUqXIBu00;0AmDg{MLbcVRZmHAl9VLHDGo73Uay7Y5g;Go zL_mJR$$&Em7O}8Gawkb~rj#T_QHPkKxYxoHScVdWrvN1hO8`j(i&$FWsuW34MoN<6 z0*9EQyw^fGjPXLkg@8(g%7BXq7O|Sb#CDS6Vkt?AOB`Z~nqCX-F~(# z7&{PJ0EXycXsmKwrWFK!3tQzyN|p9IWt`9v7)n zk`zN7Vv6Bj3q`ODHxP;eZX}cd+(fX5V-%*gmK3*0NmAVE5L4XdwNM3Pyq$0{;10qi zfIA5mF-_rs9v62>NmAVH5L4XaweTDQq!U&EW)fBc?ju;l2Ne3XmlSiPBq`=P#1s#E zEeu3}1%y< zNQ#wGk`ymH#1yN&7OG)mzDlS8c#TjK@H)XFzNIjsucTNnB}ws)Lrn3W*FpmX_<+zD z@Dbr^z(#^a+^leQ8%eQ6N|NF;hnV6EuZ3hR!zeAxzHwo~ylqA3|hZtbD*TUxr zu!ms%_bJTL>+TOyk^nzD!~nl|Elfs$-w4+K4~4>AB*33ik^l!CVt{|W7St9Bpgr45cmy!f1=MV!_@LHII02K+=|00D)u8{y$q$B|@ zc8CFLcrElsfJ+J1KUtxa?yHweNdjEy5ChclTBw6Pu^z$tH&hs+H>!=KBmtT@!~jjb z7D{0R%?Z}OmBJR?3azCi0opml0PVdNHXuL;g7xpDuttyQ&Qg*9-5g?o9$pKzFoj+O z>)%JApI*oMN=X6)hZta>*TPj8!C->*zh2>VU4x-gk^mzdVt|oe3ndX?6v6tBR;Z_& zag3BCz&M8(V7%8tcLbO~u>N-_9MD_TNm7ykQygM|ySx^*Aiy+&^}k19S8oY0LrM~0 zrb7&HpVvYeEaGf}^?y*|`xX-5At_0KhaF;o1zrmUFoH)3)_;-0NqTvCTuKsPu|o{- zwAVsE1Xx0_{>v05=oFrlk_1@c5CgpEwUC4JIN%6TuOtH;t z;YtM9PN)mmL1+NjNwA3DDy-B?!)_@_itim_ihW)S+Y#VL!q*Wh32

_?Gq$GAt_0KA`US?QLlyf5TH2WLqG|_MnFk|MLbU-&k#vbN=lOAe219g z0N-UrkoSj5^2 z7mkn=b)+OI>N~^~4ZRlrMu5hIe*sMh$6=wG5-eg1h1TOGMN273iZ%{0MLVyBB?!=- zunf?FupDq5!6J51xNMZ9=qe>i(ZeC8=;gIg6#-HR)d778mje0|EaE_gM^h!mASp?T zAr3LcP_Kn&u`a_2)_-ZsI58z|MKENjgi?~JMsezJWtCS?g=MFK&Hm`*#2(X=C{l8Y&e4_-|DJ2Q;twRj( zo!3GoO!9kz_5VTP=K&JnM=42w{SGm}uU-qcVgv^W699h@?g0Enu!#RCd^1{7{3|6% zaoj$GnBoMlg3!7Yn2$DHb}!6pOqTRwBR? zgqHz}32OjP6D;Dh3a{y%;!-I|isv0-iWOc9tFh8A64nA%5nczpOt6S+6z&)-DPEP5 zq*&(=Q@r7|umAzxA}j=KAUqCuhhP!kS9rO+8h4Om6_(4jN;%A4L;uo)l zj@X#L5jq2YCv*e+NwA0q6}pX-6#qy`Qsnx8Sza3*0Z;4FegEUxhEO_JhlDM^Zw4lzZN*Fr;#u@vDd zKp8?)Kv{xCEUz%=W=T;&N|K_ILrigz*FsAKs7h!9xR`Japa#Jr)>L?LqNKP?N|K_M zLrig{*TP-|s6+S>P>--5(12hO8!HqWD=Ds$lB8(r5K}bwTDTPfS`sDzS`+R7v?W-? z_6ld~jo7tPk`&iD#1x&q7D^*PS3+4pcS3nUPl82EQK+jY^FC6N6#X4yiUD2=TM%Fn z;WI!gVH@Cjf<+vz@QE(e2q{U58y#Ybo4gjLAi!wCRKP8S>40$ri+Gzte!X^2kdmah z!y%@)(`#WG_WCJ=djNM4?gdOESj2l2-nm;+%#f0#nCTEx+~>700Jku+34;N12-gE1 zB3Q(S6?)E*6!WDdDIRr*DIW7$_!9vhCs_Z*3ZKrC08dFt0xWTe0hW3#R1LBDIYM>7 za>Av67YG({mBNjh;w33biq#G=#j9Qml@Q=Hg7tqxq1inW;7ut>fDH~Yz&l>E3D*B#g`yhZ zKPgFo<9{@W0djjST#f)I5v~NBOsESum0%I`DO@r|Qk*U&NpXflOi{>d;d}%*lTZ$D z7U4obF@i-bq40dVq&P=Pk|N0=rYPmLFb4t35at5P5-dP@h5b6{3R04Yl^kNki@X*t zLV&6S>t9`=-82bMLrM~$rb7&n?6q($0@Na02e^{Z1yF}z5$h}5H&s$JkdmZm>=08l z@mgq(08I(40L=+)0WAp@v5mr{>5`(Ylq5xahnS*+*TM({xQ<}`yD02n?KwrWcfc^xFI8dSI{gPsklqAIvhnQlh*TN?l<8XrYAE{7wwgk9Q zN)q5^hZtat*TNSFFqUBb$14=k^WAMyk^mDOVt`3r3*|9|$pq_vm%=)o!c-|qfawk~ zzzna2tr)?*1nYmF!b1;9fcvE+0p>Ww01tUBoQV<4BNPS9C!7sX3pBSTyo(fV2^OF|!5-34A(x(=u9K3a=;9Dlbn{yH5D|M2tbcEXpa)%w zlqROj7Z&t$iXnp6!W4uUNSF#3OhAZmy~3XwbEuSLP$L{-#F1VL_aMM1!o7f-3HJfU z5G>+2g|d3>x>ZV&VuC|VG0|(`IGi#k5pn}26Y>Dk2o`ag!XDkj?v|3InBfpp-0QXQ z4aPW&up4kc;d{UX1dI5P!a_Zk=SoRZ%y)<>9`Rau3;`Aro&YQ&JOy}yU=g2+@PMRv zT1t}QS%;Wnnb*RP2=F{%KVSvnH^7Soi};el%!eh#%TkgQYaC*VwO$LCW2M&-tpA$| z*UgmxZ%Ii4yzLMJyz8}aE&{wyCag#h0XiUYnUoCDZLu!uh?biPwk{46C&@vB2jalmUK z9|HVAC;<42PzZ34U=jaQ*rWH1xqgl*PLO{h#1tobEsR2dJOt~1s=}{}B|u&&$rw*} zhyeKoNpPET-`2OOm3vlqAJD4l%{KUJJ7a#OCt|4+2UP<^j$p zSj2J)&n%S`<)tJkDmugzmAw{d+_y%w4xKqo>AKo>%5KsSO#?5VKnNlDR5N|K_FLrl@nYvE-C2n6dtNFhzfI9N&& z;ChD`V3^lJV+0sMu>LnHw0}YZjFOTB80`=P+~T$HBm#^hSpVA;o>(9OCP+yF+~E)d z-08J&4FXIdSpTUCbrwp1X;P8^_c+7=>0S#X5nv|aCcu4!F@V_wi};{Iqa~8!At_0U zhaF;y1zrokBfz7CzW|RB{sBBru!xHlj$1A%o|2NJSmF>jE$Y2o|)sySux)L$PAT zW#R5lad#+Cthg5|?rsepoFYMs6a1TNjWx&jJoo;Z^F6y`?6c3#$w{ESgdu?A1fO`y zLh^l5aaty+IH%w$F6d@9ARw5q8E}cP6>x>%6R%rnu~#ZWWRi+o3a;XgZe}?G?h#f3 z{w1sdJS6zUPzz`Ol8PrXNyT#oSMgFelMVr|2pIuy2w4E{2tM(ng`nk95hjyVd{J-} z-*hv-;C}f*XaWfTMgx8YL?HOYKnvrxN=0Ouq#~Mvs|eD~&;S;PbR4-sNgCJ>t-S$peP{YQc+LARW#7e6v8?FLMRGoOeg_pO7Mxz zE&TkqRJ4#uDq1VJinh9$E(mB(=ngQ1UVu&npV-yHSNmq(O(v=6so*Ml>t=@IGV~?* z;|Ew6vs(fN$|M0p6kNbC-ONOs!3css{x=J0>_?5!GD*NV1s5tKHxtKoi<3~E14wmt%6H@ zuba7pi}I0hAMlCr5b%ZI6Te#+^`}()kVz^6-g95TDQvkdR;ii3vV2nT03ztsuEfQjto*Rix3)OhrIC!VEwL z!fZe$f=|q9p^*InE}KkJkyF7{AuNF?*kEYFKl8ROeuA+@@W&{G-5q<-7AdCfcB>2QG7MiV;imozA zMGpm6(Mvb;8!kg1f;ew2lRw;Jv@<64=|a~5HOYC6K7bsc2O#3$|MzY6kNqT-OR;K?&04FR{#qMK47th=Z7S5 ziA<8XT)`!-(9QgZ>%NNMk6&w{#|a5oCzAwhRB!>Cbu)!=27eL!@!Kt2w?9+tkVyh| zDY$?=x|zRm2Kxwm00#*B0fz`a@u-FQ`=#QTOj2=D!Bw2r%^XI+S;8^EdBRD+KLnq6 z$wJs!skkhYR9sVV6(PErk+=*u38MkG3F82F2|n>(3lVNe#RHk7;<19Oc%qxhhr8z) zp&;M|p$OnVf=_&7;n)$Wcq@}sd{A%|VY->fILFU~Xn?PT7=Z5tpBVm~R5TBkiU66U zB9eluh^(90kASFzLxAXnqktF$pBURh+=EgPM<%I=r{F3Q=w`0s#Y{v90VE;Z0wg2& z#FQ4=U6P7aGD$^R1y_+?Hxq($%t*Ke$V|8k$V%{uIV@~FClxtml8QVEt|FgqW)cDl z5T*hO5oQ325PV{B3sX-@MG2XtqO^jmD65;Ph=B5hDu9ZF>VV1wpIFVp?^mRvx=d10 zOTkst(anS*pf2GHpg!R{pdrC0HnuR~x>PigNh*F-a1||dGpTUbw<4qkv>{{wv?KUL zW1*P+>h36$RCG~r72R|*{c(;x2!jB<2txsV2tKjDg=qFmZ-7ivF<8M>4Asqi!!0?S z5DtkW2@wFl5q#oU3u!M)#W(5fPkrl$AIaCr+}FRpE$?Dh@(<5S0<_W zUBOi>)Xl^}z#oKofF*>4fMo=qxWYpH15&Y4CaGAX;40SXX3pY5Z6I6#Y$99)Y$5o> zZ5FDXl8WszNyXm^u41=trZ&!TFQG1AKcNBOAi*adv9R&BR2-E_Do!Z4ic`9owzwtF z5IO+P5jp`b5PafA3r9{%#U+`f;;MqHxUQRNgLAw=Xb-qW=m@w&@QL>=oWCX&|H>p4 zj}%-*sBR_!&haTBG2l5N8Q>+sC%(4u)_$sbBa>9TS8x>{bu@QLs%;0vK8;2Xgw zhI=m+C5}l&c$uUkqJpak)XgNtWr#vZ0f zCM3iHBqqcKBqjL76c)Ojmx`1!Nktk3SCLLPGY99GfiNGCiLelmh2RsjTexH2Kyt_= z6}c5$MPA*^O9bR6yap5`yaN;__{3rsvR#mh;xb7^DFs(iMmMtr0p$qG0Tl=<0hI_o zv8sjb$EBj0Oj1!(!By1O&E!PD&xAaHdW8Id1_Ynj$U>-n7L8?+ie?I~qPcEnEdp8+ zHUL@^HUrucd}0R+x$FmbBa>8gR&W(vbu$m~CfA)13g}6A2Ix)jiTx~mwqFaTp;JU<4s6U=+b8jPa%{BOe2&7%pmy0 z*%m5>NW~nPq+-5;t5~3$$%24IgzSLDgj|571fTe)g<)r;Vuegnv0A}ZtkunQ#bsDe z=mFSB=ndFR@QGV3)Ho~^+hmf8oeHjEmu}`QUd%m&4}g7yPk;jipLp29@_(e_h)hy( zT)|bG)Xi+eIi4o$1e_)82An7O#9#}T><^0Dg6(4jn_i&}d z2>$pl78+cYfUh!1zz+o%5dMQc9Dp;3K!^m0M2G^2Oz?@(EJU&2{G-bx6)_cDMQq(n zV_e6$gl2$vgcg7V1fQ7LLNfcyh$J#eMREmKky1Bv5&@|RX8>sl=K<*nJ~5Mpa&ZFW zuO7%G71E})xk z<{t#~Ao$~ZTc{IV0{X}#0sR$Rz(CzhYP^ht3I6zD76#f^VYo~ZFiOD%jMmMh$2AyB z@W)TE5PDZ$g^4mrz!U`+Fikh}8(xJO1b_T&3+wF5I7cQ4n6Kah7U*UsAz%@~AHT#x zHhTt3Ws-nD63D~dT0uJhC?sat!A0|8i93?yk94Gk1Qx>|}yZN+CQgKefRb0@`6vitV zOehApL?{WkLhy;#EzAs%iV&Hk;+BG|xTBkyhjY9~@W(%}Q09SL$A>aWK&XNXc&eNE z3)k^E!5{yhh4qgm;FU}g@K(VEyw}YI8p$Eejv)EnizE38<^!0_y8#7UQLANLU7FL|6f6LRbxGMpy@EPS^-&N!S8tP1pu# zOV|l$PuLAG1ph=jTgdjWT>Ztkc-<7-GwY$7S%!yu5mo^D5LN^F5!L|)5Hw+M>? zcL>V>_XsNh{}NUM9un389uqbKo)ESGo)NYIUJ!Ny{v+%Lye8}eyd@k2yeAw1d?XwP zd?K6zd?B0#d?Q={{2*Kegb&jf{GM5qR6LZ}I7 zMyLa5PN)ZHNoWXYO=t{gOK1jYPiO%!gw}vggm!=~1Ow*!QDP%bu;&I|BWX+1WY7^0wxol0j3gO z0;UsQ17;H50cI0E0_GAv1LhOH0TvL#;oIyYLIl8KLLgu%Au3=wAqcR75DT!15Ern9 z5FfCPkO;7WkQA_qkOHuUkQ%U+kPfh&kP)zxkOi=dkR7mxkPEPnkQZ=(Pyld{P#$oGPzi93P!({2Py-N5s13M8s0+A4XaKlIXaoo$GzHuwGzZ)! zv;y2Ev<2KJbO1acbOJmgbOnSGdH|jhdIO#l`T<@N1_E9Yh5+6Wh6COaMgcw$#sI085WKmcJLAR=J_Adv6}APQkAAR6IMKoDUSASPigAU0tG zATD7uARb{WAOT?qAQ52~APHeFAQ|BRAO*p{Gp4ps(*9tZMkaZyOt0YHDl_V)4`;EE z~{6HWr!63zhH z6V3w+AsEn!a2e2ra1GFna0AeTa2wEza1YRj@Bq+{@E91qRuHlQRuOUn))4Xl))DdpHV_H{HW7*fwh&4Hwh~GM zwiC($b`mNAb`h!o_7JKA_7Q3U4iJ6@93s>Q93lJyI7Vm!I6?RoaEj0paE8zZaE{O( zaDmVf5KQO-xJ2jGZO*{(-AY1@MBwPdp60QKE5UvBF5pDv42zLN63HJf93I3V=WFcD$`8FC)CV8p} z72H!ztedHT5B5n3l>x~K)c`38H36v!bpUAz^#JJ!4FMSmjRBbn%>Y>mEdbdGtpPa+ z?Etw629TG~8IYgQ4N#EK6Hu7Y2T+vIA5fg&FK8(X8K29|R9Ysv!sQg)6|SJ0$%VK4 zN`$nsMuZxGCWP96W`w$c=7a`- zmV`!t)`X^jwuI(@_JmddLud==MCbtMLg)nOM(7IYLFfVKMd%IaL+A(SM;HhgKo|lT zL>LYjLKp=YM)3E-NDD9W%a`9MndIgequ_3iak`n~_!vBaa0)Pqa27Cy;1j1?sE|%7 zX2>KJvlU#$T;0q{+`#h*YXA!f>j8@hn*fUme*u;fwgZ+E{sycd>;bGI><6qN90IH( z90hD3oB(VhoCa(moC9nn`~%odxCGcq@Rw`1g%$QMitLd|uHSwIcl{3PX2#&RJckM6 z0Y?dw0LKYF@sx!Qq4E}SS|+JDr{F3s=w{yHT|AiZ0dR@%32=q*6>yF40}w(8z`c2s z5D9Rb5Cw3T5FK!z5EJl#5C`yx5DySaNCONCkLBNDFvF$N+dp$PD;E z@K^Ygg}(MTZJ%Y5Oa4v4UGg8gnH#t*!hiXn<0D%57*zry$s_?$6kI?w-Aqip=s|=y zfS81MfY^kDfVhMtfOv%DfCL185{WG&Pa|iQL?$__pE%b-qB>GBPbR5Ypx`PN>1L`T zU@^fTzs$mdG7_*{CJ9)n-~v|bW(MO)t|bfutS5{FY$W)^Ef(6Bl8V1%l8WsLu41Qd z=2rylBD4hTA+!PPBlyIF7UEWwibFC<#Zd)Uaa=d^9|BGi-T+P$-UH4OeBuQQ=}Jq* zKQc+hB?VV;MK{v{0oMqf03n2~fSUxLc*nxT@=|eECaL&W!Bsre&HRag$AndYCxo?t zX9S=4(!!uhQt_WmQt?K?RlL*9oJGI~!UaGW;UeHO!6$yRFu>lD-(`}D@LxT+iU_)y znz$t+5$XUU6Y2q?5`1Eig?h!LB8E&-5nI7k#MRAY#yQ3#WCJ81y zpa8)q7PgR~zEl*ENh*pfxQddxnc)a1O&A3zOBe$vPw?%i}@?zHlPLJ9-tM$C$_av$X2wI zNh*wjtLUVgxr%@;1b=*Y3vcX;*+V7?=&j%a`s!v{;Ys!dN_z4!Ol$3ypGD*M`1s5<)H&Yu=at6U4Kik4*`weZ5OcF3( z!38YP%@oHOEF$>hmsl|MBw(pb67Z*j3s|X}>5G8XgaLrHgu#II1fRIc!d?45y;&xy z*s9VejNhll-;1rVFC4G@>$6XRQG)KDrC z$Rrhs6O2`H%PRI!;N$`nfEZn!>uFA?J6%`a*MJ3(L z1O!weOa@dVOas&)_{7>4n$(txIx++Z7%G!gj8JeDqjWP#aT!JvQUJyhQUk^leBvYv5i3f?WSOL5nu4pCp_};| z=QxY72QY`QA25&L6Bk&BS57Jx$|Mzw6vuHuDmrXm9VBUAyrCR7K!CHTY-7J}`|{ZS^V z_^jY6zUpTF!i)KxupJQYy9WFX2q5^xNEQN{NJXGbQV~_bRYcd#1S22@!5<&n!mIWY z5Jx5nh^OEJ66j`z^>z;@BKYHzT1eDS0+Puj0Vx$+Kx*AgqdxB8w1lRB^aLM}$wK6T zl9*X0NzA6;5_9NgMj{{=VKg8QVH_YI!6z29@V%2%6p~3QiYmB@;<}mbc-AEee*;Pr z_5jKfd}0L)3ED|TMVX|cih`@CrkiPxfEt93fLequfI0-9SkJ=!)>2VlCaL&E!BsTY z%~U}^Q$lsXuY_8F76hNz+Csq=Qqe{xsc5g@DvWL>0RlP^5(Byrd_Z>#qk2kW51Ayf zw}MOTtD8xJ*RDSyIba|m6<{#ICl0evr-M`smq{u{DY%N!x|vZp$FYPlfboR!fQba3 zIK@JVR#GulCaIXA;3{V6W^yB74j~_49-$!McY;q`WFd1?srW-CsaUGuDwgYJ?&3>( z1>s-7D#9bc8iG$;Zy~0UiVZSJ#byOp@t1C9GR|=uVH#iuVJ6^jf=}FI;cG9c*ejD% z98ho-hjcSJ@M0bzdonWW;jf~&Zzn+d>WxKD@#ctD5(ctr4tPb`dRDHTs;l8P4!uHrx4OhyE} zCS(D;C1eM@C-}rL3sd?_#V47h;;VwI_^zAjipvo0haTSp5J2b+h)D2>ku4my@7+;k zl8WdGt|EqRW)cEo5vBs-5M}^=BKX7v7OD=Aii9#rMG^&9kxVz!9|0){g8-=rLjh?B zJ~6$8fz72NgG^G9S;19g)y)LqN@pj;0^}sb1>`39#C#S`^pJ}DGD$@t1y@l-HxnD@ zSd8!!padZSpcKI;mbDPU-n8Xpl8TB7uA;JTCJb*6RS91J)d}ALH3>ekj)ld2q~d3p zq@uopt7xd3sep5AM5qjCLZ}94M(~L(EabBvP+H0)6>St;MLXS0A6)4Ug#Lhzgh7DL z1fST=LXdqey2~ULy%bzUAKgqK&aodMDqsL12r!7?6Ng%8)K)5n$s`pc6lG4Oj0pj!Bx!E%_K*_Y(gr)TtZsFe1cD0XrW18saPbF zR4h?&70YxpwQw2!B>W6mNvIE4P4J29ES$36lGe*46`K@X#TMPnT%6-p!ta3Xghhaz z1fRIuLK*wvZ;wn;v0uSe9MsLML%?CeM!-?R7Qk_WPdsIzVl$~YEt6E7Q*ad*bTcpU zg%wPA4Y)*j2e?A;iPtTxw4b{}WRi+o3a;XgZl(pU^gTjrz`ulcfQJO17;2%j{o&$? zOj7Y&!BxD}&0N7bz9L))ydm5Kyd(I;j}{iSk%};xq~eQ$tN5mysf#Q9gU|pFK3pUp z&Q6L1(egx^uQTZAo$}eTeve+0;XSWkEh*hu&Q z*i85Y_>1rru#NBou!9hQ*X(bCe^K^W*lvGuPyzqQeg*d`9n?)9K4M{~{RyiO5|1mm z<4@|Q51+BHd88bFRwlU%E-1L;gLN~3echY>B|=od6+#f;8X*=Sgb){SlMo+pn~(@_ zmyi^2pO6CZfRGySh>#8tO2`O!O2`6uPRI^;Nyr6wMaTZjSi6nIZk$&5@Ack56JDV7LS%l}Q3pD7b)Bx|w^pSn`wb3nVZlWkeAR7ke^@x1qq!2g$dmNMF~9t#R+`?B?&CgcH(CFBQ;ClmrqBoqZq zCX@h7C6oqCCzJ!sBvb^7a4WT_?9iby&1EC9G6QMg`3!xWaE1@r7JHfy7e_O~hL+*uLGReKLSHay2`*ky4 zaWfqx`~Vy#1fb$5Arjy?AqwCmAv)kRAtvA~Ar9a?!JlTZg-09Zyf4Zm=Y2)No%c1} z%3v_0th2q2Ye>n1bijj0emOi2ZRgIOa2fLKnMjyBs>EI5?%tL5MBeK z5#9lU2p<7437-M63Eu#53E>8~7dsvy0w4h)5Rixv6_A7w1V~1R1xP`N3rIzX4@g5u z1V~3n3dlf60mwv14ah?9_jPs)0~X1Rz8+r+xfI-uo<}!*IKPE2YvuS(xH^Rt-0?+p z(}#;&csoUoFCmkBA(d8e$CuU3oWs|9dBQ({iiAsm%7m+cs)P_gb;2z`O~PG3ZGu0m zx)x6SDW_RaCOOT93hp!;>1Gn(SvMgh1~eli12iY31hgci0kkIg&UO}NFOidIFO!@^ zM+J8hopm!e@ltgq_~Uz6xVv5g#-pOQf(z)Yn?5|iLZ;Pn{6LwcaEO9Cewc2iBH~66 zssKh2e83nB8P`eTSeYbof`Ut&q?_r9fGLDNfN6yOfEk2AfLVm0fH{N_fO!Oe5(_L` zu^-$Q$|PsCSizmuQr*mNxUkC!V*x7&69B6SlL2c8(*WxTGXWb2a{!wN^8s533jtdR zivimS%K$qGD*(F)s{wlm{<-hB(0-|0i~};s#W<|sF2+&a%wq%`C-~z}S?IDs0#3^$ z0p}E4zy;mRbi5qFgjs+~gt>q#1fO`_!V3GY6e5#U+){8AcXTtGagO&0TLJ$Pb^sm{ zd}64D^0TDkiA+-QT)|bm)XgMDz$-#Bz#BqJz&nCZ{Ai)&A5sw}lT>_Ba24NlGrJM+ zgRl<}K7s}u1VkYC#6Sy!r%6R*nWQ3`f~yG9%{;&xUrd5OK8}Sf_JdAbnIs^-f(uBf zn^}ODDly>?KvKd|KyrdlOl6_ga;ZoylT@Tra1|MJGe7VoGZ6xin1v9@f&6CRf2|lreg?B5YqNGexQAWX4l+(>*z-dmZ3S2Hvu@@nE>%6k2|xqFX}~W8pV-90$Td>YR3@ot zuHY(K>Sh|^99t6_1KJXr0ooIMVn+)bc1T4hnWUntf~)ARn@NukB|Qn50KExW0euNR zae#%H%cNqUOj0pK!Bq^?&Ai8D7(oaFj3Rsij3)TRaTc!HU)GG5Nh&5OxQZ#dnP>P_ z%rwGFzzo7`z$}7KoNFP-e(IPflT<8Fa21PmGf{D+7ZZX2O9`<6%LzVlrG?+8OT{Xg zq++dtt5~m_d4s!tBjG(@Gr$r}7J}^ej{`DE zz+nX!a8x%l83D%${`gZCW{i-4(=tiGIRzJRK{xXr*FBgJ2Dn7{0=Po(iPtS`S}7GF zGD*cP1y^xLHReaOU{J>@SLGZ^1M3jI|t0W+TOcD^N-~yuPW{TiRMk5pl z1QALBViJ5}91A7w4-|1_l8X2Wt|FmsrX>Or6WRch650cj6MSMS3&-up+|)8jMLGpn zkwG_80|A)`wE{sDt^|@+(ke=fvPno2mkAkb{r<>`HfB}SFfI)=5fFT5*INUZl)S&++ZR68L8MPlT>U`a1~p1GkI{1+X?vrI|+pV zy9hpUuZ211q+*{;QgKkhRUFpM)J4EiLIc2YLLTu^Wo!Md6D z2)IP(2)IJ%0=P!-i8m}f+9wq^Ws-_J3a;XwZss>!>3<1h0S^fi0FMbi@u`K*hos_} zOj7Yu!BxD{&1^xy8^SigJHk%D2ZB%hWMT3}srW3DRD4r#6+d({b8s2LN7Ccx10oO> z0wNK7ViXGrf~6v=Oi~e~;3{J3W=0|)Heoa%E@2!X9>FIjv@q_JR3wr~Dv~O=isZVP z6bML3NDW9$NC!wu@QE2LRJkM-8D)}+EDEk7n{H+a0&)pV-~PmOWC@Lnf){t>7y9>So#@pg+L?1`;|01`~YZFbigz1@Jq; zCoZy3n;5Ew^VG9Nh&rgxQf4YGi4C4 zjZhx2gHQ?ZH^C?Fu@J|8@7^nuR2)!n6^C>)(Qr#1A;bV2Bg6)rAo#@77V4dliZe1v z#d!r+@sDmM90D#9A^(=gHjPiCaH+7;3{J1X4W7e7Qr7M*Fv!Up7xVW5|BW_1tikV zOu~~)LYN9jMwkIeLGX#GEo8BuFVe^)73mdRMMmAsK%8S{!Vo}K!f-%#f=|q4VaXAx z$Sspp66_0hI}5 z096S-v4({g_SKAXhiUdO)W&TKLa(BNh(?>xQbS~ zng0;bhVTZ^j^G1~h12!}YDbwQv5SIB?53OPfoI)=&>PT;-~;+v$ZFpu`^hAU0~K82 zVBJg+oYGK&KYoOTrTZmdq)ZYpTEPX3)y+&nz<9!Rz(j%%m||h=E=im!lO)biaEY^Y zGu03k8Wl^0`?L7@dqvJKPmx-WRifR3NGNd zZssv!y*JLwB#FTaF7c9XrUU}65d87iEi|>K6e5!Z+){7>cXTr$ z2)OtEfa4!nh;DzBc?bwqZ~;$sGaC@_oZyfD&%*u}67WhUIfJ(fF5tax=Gq|l1N=vV zKmN0YCI3pm7nvmByMhY{7g--}hJXNqKR%L$TlXa(P$mh8s^9{m>t^aBAO^u7AKSvi zhY}D+CJBhA-~tlpX8Iu@5y2my)WYhk5|B(L2}r5n0#fT{&fv~UOYp~Mu(0Hb1Z0#+ z0xN2E|Ub5Qg8uf zbTe%cP>$e_uV`VQeHALnBmq?wTtIc*OdSN&B>3a&Sa@+$0)CcB0_rQcfQGu6Xb5OT zhyiFqhz)2)@QE!fqz;vemNH328wFRb5uZ3H8B%q&65-?D~1q{~B%O~D1s(9K*xz$}74ey)YP_HA^YOcJm_!38YR%^bnazL?;TUuL0Vhy*N` zNdi_XxPaBVndb;tOYp~UuyEYos~csKfGr9xV5@G%;3;e;_~ZY!u-cx%E}0}?uYwEM zubX*=GdM`_#~-m!(SE@nl}Q3lD7b)Ax|tIQI79HqpSKYGh6G%YNdhh^xPZ&LnRf`d zO7O>rSQz+B0&d780k;)gz+K(UK3s$Q1b_TP3lZ!^d?b?uJW+4~&vY}-@$i3ymPmX} z@B!}#{vY{hVdQnG2$M-Fz9_hgZ@QTWc#=N|{`i0>5-`EOB}9-(0s<9WKos3fAWkV7 z!5<&P!YzB1V#*`|aTHv@Pr8{y2#8Pc$0xFo+J3zzmPrDVDY$?Xx|vJ}NJYpBNJGd0 zNJsFA87*YCPcoBCQjt}`RbB+UE^`rrKfbty z{f{M}giI1pTEPXB)y+)B8I&jZ<11MhY2Q~X%OnBS6kI?J-OOAB)FSxff3{H4zN^)h zNdg)uxPV`DGX)UPnBb3ZW+D1D3HVhe323R{0$S^4F5nupC0qowCtLv-f=}#hA+!CI z&_yPx=&s-@dg^An;2e7sx&!(WdI9wSSG0$rr;_@=r$|$;c)JMW;BvU z=_6(wU^HPOU@XB$PjGNgx+cmbT~icX*EHQs2?Wd_lm^TqlmpBm_{8}Z_S=fzWs-_T z3a({OT`+Qq+-2-tJtWUNr8aPgw%k)2-I;2gga)&ss1HUYv#{h!1L z79QI7vWPNCMPvn65mh&{00Gene*j_-mI7iCd}3S+$L*WdPclhG0tHu*NH-IL%aDX{ z3y_R(7m$MB6H{AQeM>6R$Rri%6EA$$Q8BlyIU76RYNvnVB#RFqY473Fm^*%45YkPA?mkQY#u z;1g?D81h~!YRV)Pbrf7hUENG+1k@*#12iO51T-S}#HJQLe2|J}GD$@X1y|8ZH&YJ* zZ3qnk?Ffwl9SAt5a1}jtGqZ-c*P<6;E}#$LcR)XaPaJ5W%3FCB zgJhD5p$e{IxNasb&T%9m1K>A8X22MNPaJO{B(gk<2{K8=WCd3-RX0-<=Qy2E0x*+M z8ZevS6X#h-{ZgLAe3_(Tp@OUULpO5^cl{E=UBEKJzkojpK5>bC)+xA( z4Z4|oxD1;J4***Tj{#c=K5>VIE@AR4cFH6byA@o;UfoOw1neht0vsfC1so>$#A6nk zeUXaeGD*cL1y^xKH!}?Z=Ljjq#{tkRYcLvWJEwTLKZ*}Av+)@!6(MC zFguD=#Fa@Z;w!j{gu0pX2uMt*1V~D#3P?`yiK#5)i6s@OWs-_?3a%o9ZsrdJWFjmD zWFhAZ!6tB5VUxA^61V7Gg$|XHi2Ysi>{sDt^|@{DO0=M`!|QK=>8#3&AHg zu~6f?Jd36>Nkwx7SJ6^8^Eb}1HDM2+Enz>PJ;5h-w6G$QJc~{;Nkvx$SJ7QJlN{&R zlaLC~n~)aJm*5izSU6-q9t@O8DuyVyieb8$f;h(!gd%`ZgyMkF1fMw0!YTV&jF(9& zCMmdzDY}_fILB#(wtyLg4uDw%pE%b-j|fsRPbR5Ypx`PN>1KZ592XM;khqi(39y{t z6IWWu5m72u$s`qP6CA!6*J}A;D|8P!D91ipL7B;)!l163+1%AqwCHAv)kc zf=_&7VbOn5@m40O_@Lk_!gMpQ@lEbC;T_;B;UnNX!6$}~E)~)2%N-z-R76s66_Ir_ zhjETk3C94@2`2$D2tF~kg%RQ8wTL5=RK!zo6$x}RR}qki5CTX-xCKZ?@QEoc1l!jl zl}u8RR>4)I*UiL2Kt@7bKxRUGKvsfJ%wZvg{Y;xvCaK7y;41RzW^&_xDL}{vC`2d- zC_?aw#Vw4EE)^wYl8Vv_uA;1NrZWP{6S@H^5_$qE6MSMd3q|aYFx6#}idqV;qK zD3erlQE(OAbTbnW(1S1;(2Fn)(1+j?`&-!ZQ7+T~nWSQ{f~y#+oB0)&VK|{BU?iap z;5UL#9BbjxC#e`GlT=Jpa21nvGlLN@l`sr2oiGwGli(BQSeX1qD(1>06~8OEiiNtF z#0dC`CfDME`fK7z{fGq@{xXr?S`?KD5 znWW-x1y`|KH}e>8a(f9+0s9Fr00#*^@rZ?`pQYlcOj2<|!Bw2n&5Xf0o*|3}oFhyE zTp;+wix#ffpOP-gBo$W`T*Y3)J zP=qiBP>e7hP=YWCP>L`WP=+uAP>wJgP=PQHP>HYrP=(+xS9J?}L*>pGJjq?ZS_h353qvp2C$0o932)O~lgnWQYgo1!8gd%`zgyMh@LMgyaLRr9VLIuEGLS?{xLN&kxLQTLU zLLERTp&sBVp`io$FA_W_HO4V73C#en2rU3_2(1C{2<-qL2nG;F=nVKw=mz*o=n42v z=mQ8BL*Fg>0|E$x01*j80fB@OfGC9D0MQ6z0YQWbfS82IfY^j-fVhO2fOv#CfCPm3 zfJB6afFy*)fMf*!-k8!t;iU3r*>R|QgHEI1-YnDUX1e3y41`{QOoYCGEQA4oY=psp z9E4$jT!fK;JcQAJe1vg;0)&ZxLWC)RB82IHVuV?M5`?*cQiR_DWeAG^wv?kmFv?bgHv?n|Q$p3w{zvG?&IuV`&x)A;YbR)b0^dP(k^df`-`VhVV`VqbZ z1`xszb9eqALPWq2LS(=&LNve#LJYttLTtcj!cTy)gam-`gv5Y}gk*rpgp`1(gfxKZ zg!F)!giL_hgsgzMgdBkRgxr7ygnWQSgo1#@gd%{YgyMkZgi?SNgtCBDgvx+5gld3w zgqna2gnEEYgoc1Egl2%PgcgA9gm!?P1OwPb=nU9H=mywF=m|JL=mR)J=nptT7z8** z7z#K+7y&p%_ziG|Fcxr*FadCZFc}a`mrECbvn ztN`36tOh(FtOGnEYy^Z7wg8?IwgH|Kb^~4#_5ofI4g%f~jsV^fjsrdrP65IQX91rH z7XV)g7XjZ1R{-H+>RaD+Kmg$;AR^%oAdqk$5QXp%5RDKD2qHWK#3Z}~#3sB3#3j4~ z#3OtJBp`eSBqDqRBq4+w?%q$65h4Im5TXK75rP0|2(bX^2yp=!2=M`#2#Ek$2uT6i z2q^$L2&nGV-gCytqj- zDY#oOi*BX>9?nK649Gz!2FOJy3CKez1IR}x4=6yW1SmwP3MfLT0VqcB=Uvi5o$>NS z0>-$zrHq1mBIR^5k??Q@LKHwHf)A)_A?%(cM#JxSYbdzHTDqASc(@KBHlQxyCqR8d z0zgATVn8E8GC&hTN(|>t#hY?LSNlKsP;eJ?fNo};|5FdbM*pWCge`z!gl&Kkgq?s27gyVq8gj0a2gtLI@gbRR~go}XLge!o#gzJF$gqwf`ggbymg!_QSgol8o zgiye8!ZW}M!b`v^!fU`9!aKk^!biXc!e_uH!Z*McLO9$UTL}>W+X;byodkck?6$Db z{&D^~9I;Qq-986&GaK>nA;K2G5yCdWF~Uy33Bqo`DT41jYvDy%If*)WBf6mAP9j)0 zQx6YcA~XbCAv6YDBQyhq5Ly6k5?TXp6WRgp668NOX#b|eeL`oz141{zBSKF=D4`GF zDWN~$IbjgsC1EJw6=4M64dFMyJHlAN2f_qE7{OoRFBbAXluKS3FUofXcge%W)`!dC z;Q&HKKtw_nKp?>3a%oiZe|4@j!jq%h)Y-ph)386NI=*ENJQ8M zNJ7{NNJj8ymC{0(y%II>MA9g@(@dwEsf~v-5b6Rl5gGup5E=op5t;&W5SjyW5n2KA z5d2x?x6u8uoMt;5QAoj^W)a5K7G##9B@ zIbAoi3=hvFtN_d=_<(s9UfO^EV-5cD;SAF>;kMJ z>;4fsq*2lz_J2>4FO0tgpJU&ri#075Q6L_%IbAfW&t3ZXC{8le~< zh)@y`lTZc_n@}DQmrw~1k5CnmfKUUFh)^4lgisfdjL-m(g3t(%iqI60hR__4j?fB_ zfzTF^iO>O%h0qC*jnEa4gU|zzi_ja8htLm@k1!BWfG`A5h%g*bgfI$Fj4%dJf-oLX ziZBUKhA&>i1#pVc1aOA%E8rZVCEx;~4Ir4%9&m}^Kha#ZkomKG#95Ay z3Ly&aBhF3T%u4@RgRsVb)*!6+pEU@Z01pU%0Ui;y140S@B%WD#(O1suB>t-XO9gjU zuXHnK@bDYLdB8hDFyI5>G9Zj_4e*(81Mrn_8}OZQ4-hV{p5_BU0O2tpBH<|@knjQ! zh42axjqnx_MEC%RN%#baP526kOZWkZM+m@AFbN2e0Eq}u07(eZ0m%q40VxP^0I3M^ z0BHyb0qF=y02v6$0htJ?09goW0oe!{067Sm0l5g-0C@;G0r?1d00jv70fh*K07VEz z0mTR<03`^e0i_83HZE(SY-;&2u_S&MQ$fMq*OhcLW$ALRCO5LJdG2 zLTx}@LR~<8LIXfULL)#ULQ_B!LUTYfLMuRXLR&yfLI*%=LMK35LRUb0LJxo;^agYy z^aFGu3D&AU=QIoU?1Tg-~izP;1J<4;0WO<;27Zr-~{0n;1uC4;0)md;2hx- z-~!<*Aeit2aETBw(*2U)3Lz5U8X*cGgb*EYlMoYdn-B+Zmk#o* zN=OBGN=OTMPRIawNyrR%MaTwtL&ynuN5}*CK*$dWBNPIBCKLsHC6oYsCzJ++`$@l8 z$^ilh6#)?mRRDp6>VPPOT7YPTp8-LH`hb{(UjVTQO#pETzXIYBS^^Rf+5i#}+5?gh zIs%drx&TrTx&u-XdI8c9`U27s1^_Y;1_Lq?h5@n=Mgp=CMgwvX#sP8>CIa#hrU3F0 zrUMEPW&sKj<^qZkeg_mIECQ4uECG}vEC-Y!tOS%JtN~OYtOrygYywmv`~|2+*bb;c z_#04*um@0wupdyDa0pPJa1_vxa01YXa2n8ra1PLn@DHFl;S!)F;VPgtAq3Eta0}3$ za2H?*{{lJ@9s#-#o&dTLo&$Oi{sZ(PyaDtfya)6ngaHN+z5oUhz5|93!jE!q(!&T5 z0V4>J0iy`f0HX;p0AmTU0pkfj0VWa>045U>1Evy^0j3jD0%j7@0A>@?1LhJk0p=63 z0u~T*02UE)0~QnV0hSU90+ths09Fu+16C1A0oD-80@e{K05%XR12z$=0k#lo0=5$B z0JanA0d^7^0(KD^1NIP_0rnAE01gmZ0}c_|0gez1;25DZ-~^!?;1r=J;0&P;;2fbp z-~z#aD74%2qH8G#3Zx=#3r-_#3gh9#3OV9Bp`GJBqH8S!P=v4+P>iqvP=c@-P>Qe>P=>GrP>!$*P=T-)P>FB=P=#<9P>pa5 zP=jz1P>XN|P=|0HP?r!4s86^IXh^sQXhgUHXhOILXhwJdXij(vXi0bhXiazvXiNA2 zXixYAFodswPJ|zTE`pkCKp|lixH+Lek8b89$Sd5SkFOQrDficV_N! zf4M&xlCYD|iAgsrN%EDfC?Tr|2?;AnvXUe#sU+F5YVG&)ocHs*XVA3U?*7re=XpIp z&gXf~xzBmdxp#Eg6z3WrCR_oC5Gn#IbO+2O z^aRW!^aji)+yz)b=m%IxxCgL^Fc`3y@H@Z~!Z5&6f(!66AqTLW;03H86aZEcMgUe5 zf`B!Ik$^V{F~B;)Xux{HSinZYLx4?$34qOn-vhQ1CIhw+rUJGTY`{*!48ShJOu%l! zQ-D2$*?_%-X8`*M^8ot^&jSt+76J|umH-YBmH`eEmIICuRsxO^UI!c_tOFb;YyzAh zY;i#S3lXFpD07mq3vi0?KHxNAFW?N}Bft-Y1Aw!HPXOl#hXFqmJ_np990MfPHY<=X z0hbZJ29zg!3#dRi4X8-?8=x}bET9VECqOmAc|Z+9xv9<+n@lJVs71IEP=`<%P>)a* z(11__(1>s~Acar|(3nsk(1g$k(3Eg3pc$bFpatOuKubakKr6ycfK);%Af3<}kU_`- zWD(i{+7dbf+7oUCbR={EbRygi=uGGV=t8&?(2dX+(4BBMpa)?9pci2fpf_O%pfBM* zKsLb*=tuAX1`zTA0|^#jFd+aKLI?wf5~6@%gi(M82x9=l3F81cgognh!X!W*;SoRq zVG6(^JO=O+rUQb6CjenW0uUkm0T3h10gNI%3n(Pa2aF~BA7C6|5nw#wkAMk;rGQC< zR{%wX6@bZv*8o!pYXH*-YXLT4JzzTFEkH40Ghim+9YBJx9WaaVXTWU2ZonME2Y|VR zeSmp{zX0YF4gwYsJ_Rf!904pM{1vd6a2&9Na1yYT@Ezb~!WqDF!jFIzgmZvZgns~5 z6OyJmQ}7zX<$yN`6#(l9l>qArRR9|a)d8Cb$$-s-+JLQudVp<&hJfva6u?fxb%0%j z=78OVmViBkn*n41HNOu&9ZTfhNA2f#r>C%_@XZGgjsZh#|%I{-%sy#U7ueE`P^ z*?<#-{(!Fu0|6%q_X184h5}9#?gyM93yBlHB=gx-MZgu4L6gnodTgnIx9!eGEG!tVgH3Bv$$2rj@} zLJnXa!3&sAC;%)V1OW>PBLRyDF~DNNXuuM}Lx81(34oUglL5;KQvoXoHeeND24FQ| zCSVQWDZm?qX8`L6^8o7!&jU6R76LXAUIc6=ECFmKECXyKEC*~StOV>NtOo2Nybjn+ zSO?fc*Z|l|*aX-|*aFy3*akR2*a0|5*abL5cpq?>uorNI@DboB;Q-(m;S<1d!ePJ( z!smdm3C92@310$E5xxeTCVUGxLpTlifp8XZmhcnc9N|3RXF@srUEX5NF|&Bq!WGw zWDw2)vIzeGv?V0r_q6Q^mjgNyDgZhWDginZssOqWssp+ak^$WbwE;Z{^#HvH4FSCg zDS*C&>j2q=rhtBg=70f&mVkkTn*oCf>3|`GOu$e=Tfi_v2fzb_PJrQr+Wq6auCY9t2Dyj0f0+iGb+@Jw-jCpwJ_8)kK$8t~V*G8?rYN?f`5e^a5-q^Z{%oWCOMl z`UAET1_E{x?gi{33lz#c+dz+OTJz&=7Jz<$DQfCGeX zfP;iP0EY;@0EY>E07nSffTM)|fMW!Gf_ts3O-o!ciwE^dhJ84qZMr5BNybU-_ z*a|p9&@KL`U{X)n#SHxY%{c?kE`ByCYbLVK6P^Mj)i({y23$sX22h?b4^V;dJfI?B zA)qqhML-q852TceSp9qI$AuS%SYyZeYOadn1#wmLWTZupH2s zuoBROuo}>m@H(IwVI80aVFREgVH2PgVGAIYunmw-*a65O>;hyFbXVIc_$DsL{YBhx zbu{4gy^~2V@H(IuVI811VFREqVG|&mum#YMpgVGp zg3O1dXLsP7A8f$s*$|VmdLer#p$}jfAsg@jp+8_aVIUxfa4*0^7z)TE+z%)q3mXV*r~l9Wb5n1fZCZ0L&!(0gxcf0n8#i3z$vN1Nw}D!aNz_=Ww$= z&ww++^G(WHfb0c?7XS+hivf!WF98-4UIr{7yb4%K&_TSS;D-++s)o4zT4BJ6YL!V@ zDac+;xDK#}pc`1Lpu=72c1^bApH$pnz-jR7};SAtM!dbvi1RcbAg5GVp1}03s+wugx+baorx0MNcw^a#xw>1>BxJ~+AQ?}%2 z)iU7py^cv)b&=hG&=8P9xE9caa6O;U+*TAq|j0&{4G^=s4OFbR4%3bR3-t zI*zUc9Y=S9j-w|*$I)BCxVvR^`pA}yPPPGObo!Z;)gRdd34;Jb2)_diBis)dPH+P} z1TUa~-~;#x0YI2A5)dQA0fmGyfN_L}022rk0YwDe_eTl3x6=r^w~rHaZ;J`Kw@(su zZ)Xv7Z=WXU-p(cH-abdryw*4 z)h1=KUso`qos@qA<=-^ml;2=d)<$H%P1p>0hp-K>gP>d7MbK@$Pta}bCFnLjQgG`n z64id$k|X)C0Vk?YOv+>*R?zfzDgPPDA2r~VKW0+a7sx(A_zG~6@Gamp;d{UjgdYLt z2tNVN6aERftdWW8a@mqzR3PXuD-m>HRR}t;>I5BFGC>Dco1g=$N6>*aBElrHuin#daoTwMX_X1YN!} zL6_*NV0UL}u^Xz~VZdpzr%748kllx%%V!gGiT(;anbP6_R2gKzY4Ki@vW6i0KEg17 zi!dCJOYi{l33?Y6K{py8=tjc?-Ds4c8y%%!hq`)=mMuA2V+}ZQk25LjA!JV=Oav4W z9sx`tOa<5ky^9$H-RMk$ZuBXFZge(5H~Nf%tJPdHSGFYX=L|S;KW|dj0%X5H(B&5s zbcvS~MAb+vMU__!I4!Mr~G!4vUVVQ7vVj?9>NEJeT0ty2M8Yn4iP>D93gxTI7avaaDwm^;3VN&z-fZ+ z$lnM$^s@vV`cDKM`gwv5z1%fsbad$D2|DyE2|D!31RZ)+f)2d~L5F^|g0AYSTT8a& zysB%!IR^Dj%4&e@YX~WT>j+H%HxQZuZX~n>+)PLXv?gQ#+7Q|TIuJSnZYAiryAX7w zw-a=vJqS9|I|(|{z62fV-2@%!0D_Km5J5*egrFn6Pr=ykGQz`TOGembz!_n;Nm)6_ z_7ZgY0)j3vLc!ze0goS5LI#``N1BusL3W&=%NG)Ki3b(zQ8A7~m4^*DElxBkYZ9^_ zA?Wf`2)e{$3I?mSl#MDg3^*-5VN%viWIsii1$de;2kOUTsp=pOF0qVJ%=iVFO?j;cdWHg5Jfu1l{OPf^PIZ zf^KvVK{xuLg6irDzfZO#?!Opt;{MpAtb@q@lyDgEIpHYa3&L^0R|LI_lLX!9cLd$& z8G>%~M}ltjoPy5XB<`PNOX5Cnz==C4#blS0Ey*rVxB^g-Pzg|lpj)g?&}}3WbQ`q^ zx{Z1Y-d6V(^<_(T+sJ?uRf8{iH?55S#--hjIZ*?|6p0f0e-!GPZp zh63&7Pi00BY}Fp>}f#0h$I3JH2V9wg}T7*EjSF_EChqllo#<57Yh zk7)!w9*-0BcoY-#csxna<1ve%$Kz>&9*?;MJs!^y^mr^F=<#?#!CG~8Es`xcd;e&_ zIa^*bDQhXRUm+|9tR$=g{E4szu$Hh6uz|1<@HSyH;2pv?zz)JrzkIo5#9*=JbdOS`M^mu$v(Bts~L667Z2^bIgM;v}8=@I!S zL668~*O~*TW4(f)N2DS_kH}R7JtEZzdPHgx^oZ0_@Pzt?srBG$S+zv?SaFNF}5JG6z$QEnC?-4sNDy?~e<0{c=MZ$H&k}T` z^9efA|0C!~7ZG%%eD={=>z^0Fl@UTMH- zv64wym62VQPz_L%kPN6zr~{}^XaKl|kOH`lpo3^i(7SC;(7SC((7U~vpm&>2(7Vkf zV7GCrs9aJ~pCtQ=m^TuLCLT((uq%drVXxm8^d_vgf=Nl%;``K3jqNJFQDYkCxN}E% zgPy3)nue^ZDl0D%3dTz1J&C+Zc@cNOJ315@q3b*ducqq6BJN-`?DKmgI&*HR26Lr7 zw}fHxijn8UksAt>uJ*WYGe6=E7c{;ovj~}$^$v5{;M2%RcA}35b7Q_x(Cu&R4*PU8 zvrwQWyU@769rTn$J0AJf^{8BwI}y1J-0@f_;EwrnB`}XyUV@{%k*Ms;jN(YWn{dPz za7Sb$bu1?TCFIvt{R%~WI?Rhp#dR3>J*H}<8}oZsC;iUVP6#u7x;pOsqvW4pRjB6kW(orr`w>QZ)A60ZY=R+ z;>L-I7FJQ6q@)@0K2rX7ti^UCk2esCx<>oLu821p^u}DR+q+t4y3$j_!Tf}pk#%wP z>y%>qW)$}px&vXqH|mlBbb;J{Z=tHLQm*z=-wHeRU%Q}w>c3Y%vrS0@pX&zHk06Te zZe=#$41+7`%@26xv!YH6=~b-2B}43rI~~g?Y4phds?m(LB|~-if7WP+l14xKUp1PU zRnq9u|5c+|>8{r1OnFf^s(zF3YiEi+&zuvbwF*j~Da&pez{>xqfvl1S{-_&JUo#Zj?QydEz3xcR6)W(%a@^?hEF-%%Z~O3p&$NW~oVJvu;SO>Wb~AB@GqixnxNZ z4Mp<&q0ut(zL=|B$`F0jK+ZsS%&k&aMZ9?~wMz09##FkNTnXHfT$%oZ9&e#5=8LHYC8O?z8EWt9D(U3a zzA!J~4u|D%sag#$%yF7?mCCPoVZPh%FSW~yDkCDfNJV_uZJi4%hjOggm~dHH47NTl z_i`pgefdFGZZzu3l_goe*OQoPUlkZ5Go*}1o-bee?4-i(NYooi1*Qh%Tuj*2?(+0= z_;wU^)(C3hTU{1dflyG^U?W_ipnr_CSusB^V76<@pvkhxC8I6pq_cjTA+33QQHP^r zyc%nPgaT9c5=uW2mmkLSD8ic)q~sUQ~cy8>Q0$t+oaB-vNz zg+j4lDCWiI$ytCVrr0%PQSXVWY0xF}VLawd^x0-tl~r6+b}kDtXMsCdHBe1Zj+x&V z@X2k4#3&0nX;zJoFK>+OckEa-pUY@Tv&kM=EEl+B0Ocd^cjtKhN^6$ZXxN?Wy|}1H zJ}@y=^lB9KgyQOG`GU@^%v8HtJS-m^ubjcL0!t3m6uY|KbmjWp(Wsn!mZjn{$61b3 z?ueXFp=3-gXnlXeu3g~EFYwEM>MSc6@hSFIK3UQSWAd4G&fs{C9GM(_s;Y65YqxYw zPBCWzYS(vWsx-Nnq;dV3>I;tv<|LdST-zxqpn{4;)6!eZBq&Qy3Eq@a3sXJerCqu% zO)I@FHC5EFjrC>hm#WBVgw=&9ua=(nZ3yHScJZ%Pp1K*kNtrG9qp^UT6oF9USHfZ; z6PEh1sGVMBqk%v;;+1uRTx8_jm&0u8sRf$dvdns=)@P=M`mN!wjIkVTnQ1TFiCV?| zN|n-!II|b^TQ)llaplK-GO;2bmU&UNSl)$o)GyQQ%nR#e$$=Z?^@r4@LN2p1y^d0M8|L1_M5%t>r5Ckn z7cb~kH%CWgK5$k8>hol3sUJ0&Lv?Ab47ssUlSb(p>PJgu*Kj&0vuEiV>PJasN0!AQ zxv-Y{;gP-_{DuCsk=aV-u~9PR%gt%TbVvQ_$8Ll1yR;Ou_sK;o=8nWnuKLM>`3$KUGToIE_xYU*7p`z3 z={N^W74@40b6Co%(pnC`^T^0lQa?K|pP;fTm3*Rja;o1Jm=i};lewAqD3VD3<#RxN zvu|gi%fC>owTn-fWLe}_7x+-n1ggGWFCFMbd(6N}m#2=YroP;^Gs@g$rpq%%mQ}u7 zb-v00kjGP|ruqWfZdOt=L*Hu2#Vt)9C%8t0B0-Smfcgg7zOf`A=Z?@7l7)x!$U{BJ!7~rD7xg7%=^?|R z$Mca;o=jM1!8}1T)zqz?eM8B9e(_Gv6jnEP`c}ocl3!Zb7cynl4U+jFs>AXyh{L{-&G?}$uEbr)26l*+sb(iP%%H7-(cKk`t*dQuiZW}V_Z3pV!(iGT6b%)T-f z3i)Hca3VYIEMlZFwMx0Dk+Pp~lwPyA_$=Mi#npG|>!9Lk%z#>tzyXvv$p49T0ipfHr*{;b73H!wk|ON_Lt zE*J8qrhR!+6TG~snOxq~>@06;zLhsMf6AMh5amtHZStn(DtS{AkG!cFMc&j@A#du# zFK_B2EpO^0%JBdFhcYHy^`T|;fB9g>JnAsD)yJ5%|I^1ErZM%wW@G=}BM(zmebQO= zH$C>yEyV2_{OFJNdGh5hLvANq;Lm07z^gh7xZ{O#)0wc_r4@t%-n2+OC|}8>sV{WW fWQuYA^MrDvY0hOjEmgK-5wBb-OaqB{PU`;yb@fMT literal 5622810 zcmc${37jLxc^}IASYFFRJS0*CS3H&!7no~jXGxJFMXpGSr+7&eNkKh8W6(1I8bkv# zJ0#b(V#}6n_=b*$#SPr|oz8qv7HA z4T4tvl=ah>kM8{V=*;No@LaFk9X&NXR1a(Yp6}O#-e`D@hB4>|t#Y;N^_#6=eKfqN z`dq*F4E{Fya(sApWi&jm8Mgh=@Pgi;)A8})c{^cmYcxDJ*xnsAFCU%QohS%9(dbpoGe*eie%TxJL(E|`yxL$1Ki2rUw}ExoUE5ga zrgu8swH0)>YGEB+-(dkD)X1;(F=WeI_gm?2I$k$y`C(@?yw>_=Bj`5=>s<^B1YIu; zRXx3Gf4A#n6Z>eoQa9DY?(X`a-zOZ6kSZ1&Y~b&gw0EOEwy76!4=(Dg%QvIpjl_Ss z3WStvgQy?2)dTS2$$t+)JYW6)9S1g?^gvD?+U z*Y`#~raS0%dwvvEcf4LF=xlHgh8K2w;U*9S%6JTvF}#?o=>;22lIGIF(!w$PYx(Zd z3!R{W<_my_W{4@AuYb6(=eK+>0@}~5``e@8<$b^1ZFzk^QpBmY`A{|faWuT5+U&Pm z_Ai49Nwp$`S|OQMFm3fuc^hY?0t&BmcQI~fxxBbgiGsd=tn1abxI<{*`l@;_`b{68 z;?VZ(UYZfqt6`; zUugFG-RPc5r4a%}<&7}h!0vW~2q&>!!B_8Xc9mz^sn(B#{L4 zkJT=}kHDPzJQSBjzSpZYkLgqG4R37vUfu7h0~l4;{YKdHtMy*kt%p0E(c|^ubzm}K zr;f8*jlk_VH&AI?9kGkZN{;ox+q~gujHdYrKb#G;Hb^Z9s zrCOCERR=t_K(U zS3msdC>m%2)w`%ZJm;>vNEKJe;o(jmqdXpYkzpZ0zXcX@B{*p5;jlKKWCzEfK)6&< zaKqas*^P$SY+1hu8HHlC4lk(a|CV)A5LVW)E0wkvbSgo6qe9`?!-877A_(eSs%$f) z+itnr*?4cy+qtjb8(=cm7>U*P+v_0Rum=Lhe7sh-2}uZ~ctGY2Mg&$ha)`@*57J@u zsp0i;V`tFrLXgC5pB%n3ZVNiK)}ZcJgHF(|;`lY$4`1K1rw6#rHYCITouaN^3%pj+ z>661-V@QL@uX^=%h@mJCaSS0rJqR4|ID14#zfK65gig2b2dw8e{GQ*bsh;2sq8?NU z4pZ;p^Q%%nLa=-7(I>}#?NLcU-vqgkyO6U08z}{X^LSefh`p;`D}WS@pzbAKdHsG5 z)QXuaVu~*V7QL&uG;j-z4+S=p@U0 z=e~V3pj(m^>GL#$>(t>b}zZ2$sk1b!Wq^A4}I zVIfe!eRCx$ZZ-L5u3``4IVSj~Z}*0|qgo zB{0q=I29%Fr)+pQi{RMcP$1!J6P36Mx^H*;(DzP5qdf2a`|mG7LABcb(~5n7PRkGx zeka7x*BL#z+Vfu<1U(<>0_rglgrD?YYQuDCzg*dubo(0Ilcm^eCwXiz^sLY!J+k^K- zgHm-Tz*WOq-P+Reg*AMlHfdXw{0 z>$=+fHE;NKN2d)RoDQ~{gAPp4F63?Wyn3MSA=Y;%mlju-mrsDM7KjHI z@>Z28&qLsDdt1Bc$7t-5aC+OlnFh<2I3u{X&YoMytlgAhF>2;3DwtZYz6QryxE}-+t zg_V`n<3x()*1tzwzx{CR&aY-&h zjKW@je4G<2iz{o3Yrs2?hwETPR4yV>2dx<{FR!kg01+>ONoI^k6BO@`_E%sVI8uwC zV~(c~&jEZ$u`HH|y;?eXVrBUxaDs2t{>I;cr9rWWRI&F8*UghBj;{fM%Zo&x+N<~z z>Y-2|gV)DCT3lW_u>ekZ95*I>bTx4vf3){lEiHiGg3+(8Duk!Ix5N4X8h^5K93U`g zhz4>pK))&leVo{qmzIyOf#WTlIJwN-Os|<2-S(d8FP%8Cc4FZqc4g(no=+l(NiY*E z+n&?HiM8dm#g!AwCr)Bc1Gy4t6H`^#R$ndR;-FLaPnUZ*MUW7QNeM?0I#`u@Xn?!0 z;sR%Iho~xjq~o>yYIQWcwYt;uy0QJK{GL{byG3+=x#RD|zm6hrSmKq$w#Gp@@EgJD zSd)Q*d&zD%=nvNYSfn4W`|U8QKn}W`N-Bwr$Wp->%%3vHk*%Ldc1e~rS~0M z{BW?}N6XcI&#U?7qsD8U=BeP=YY(pM>@&p`e$?MQc zXM>HU#|Iua=1%!~V?etx_t78;+^yshhztPX~*xYzhIWnKj$}JeC?&`dV66syiIyI zKJr@rY3r*8U;4mPFYUg6{h24QGbb~@67x*tZ^YIExdW4Y2LOlhUk_e;VezrG&6fs% zls>%D^o;;G$Z{=#m!0dvaX zSS|NY`!(bf|>?y~isx!3FL+Vk{#y_A3MN$_A%xkjhXZh7n^Y(KMdeNZxp(1Zy!J8B4q@ z9Myjzo4UIMrr_WA6imN&zKOed3n%sH5kbX~yGuv#&*Gh>GiQ#Jz+pE0{(VQP>n*Rd zb>x0EM>S8FU`p_c6q%?P)hcQw$JV|2hBAU_VDG7T_a9Q2c|f2|BGN7Vd;6unjQq=dn(Np!S^0GK?C<@ zzqAw7`_21~9A8~HQfm6N$KH1Y;{3?iAnPGqJnef*i)xgZE>a}1v$JDXqbQc9w|Yer zX5MN+elb)vvvp;&yYC3*1*>1UbKen|rh2>GzF$AqhC9%^x6}=4{Xx$^1|;Y|>b^7^ zM7Y@b9U6@B358-TUf7>!-n{xZnOnWXa^ynU}IHjc~eit{M8sZU|80mt#231x4J3**#7&QP&c}Re$~Sr zcr+LcFZa8H^=is<(tPX;OlQp}`EU3yU<(D&()NhSC=^_%bsE^%pA%nW={C&$0(8UP zz{mD}5V`v4{61ZEuys7o|Eix3Q8hV+gIoi5KJ)}t@y-TY2E(_)~7^}`=I z`GF5?J$N4^O09?69nJ|(5qy7MC+zID!vP1sMj5Vgb#6nKhO?w92JExng@tWg&G*fd&3nwBhv&mJ?7?jvw+=5>zf>FT{^+T=+eKj68w2P=AUMA>ihsXEDWuSM z0=Y(9D1VPeUfkt+*(+#O0zvuBC^=wndZQPH{WIk^Oxu|^V9Pp_fG z-q)d-DV0U;zciFxsQYl~!yBze+Q&AOS5{lBMxTl&b*SyZCDl{*^x^qRM^8q*h_g~n zn_mMo#vff4g@YdS&}h(rYOUz=Jf+zW4`Uek1{A}nbHZ@0l-qEDTm&|{r94@~3(7%v zw}XI!!#aSksY^c%<4j=|@hOz^O_?9p-uK+5Gm zyymXEWP~cbbhWK+s9fpEJ{&gQ1p6cUUy?4DY7=D@iiU6P{`FqH9$z_XgOt>(a7)r6Q*uEUsO!DcjKk{Mi? zbW8Y#0pGm0`JNcy6~;qfT}QMAPEaz|Wm~@AO=1S(=`|OdO9s~PS|C*sD2{s@{uzC< zgG7jjIE3qE)yGu_+F^2L)vq`M>0hr>r~`M$owHwUv^)eWB)bSP0%aMlR*muDIo;i4 z(U*1*Dg%@$&-m!6r+DHH%Wt506Mk|AEoitDhAI{5p?r(Uv@U`X0RnYvcl0UM?{fWj zEqJgl_4769pRvaq5R1C;0+AHfhF+~@2jm6*gj+=yLi6#n4Hh>89^_5?G~d+rP6uuD zWjKjPQBU6={^fTz@NF_-C8Vo>N?#usku~a-6q;54H4vbYTFG~ps75{01jUE?t*8pF z%%G3t*Gu?o4aD1njX8mF2$x9=3X6ixjW3C?NB!3Z%I}uIxXSvuN-H_tqUXN$u%GPU zHFg)xMa1uavEjkW9CXg62YbauDilJDJn5T9DuPp*Fc0AJtL^~J zum!KEedaDx@}IW_#r>Nr%}*;jQ9m0o^~eJksfez#hUf8j#nca}9xCWyw0YGz*hv11 z-(HopSV0VNv;I)Ikee&<&zGpLgei<5R}D0opuxjvb4YSAjiS9^O06Jb6omDiR%{Ys zyc&OXg&GQ4Gb~8(G2uFQ;h?kCVQ53#N2U{jYeOb(-fFM!BK0{g>-u-20m#Bs2-oON zL*s}6qk^UG_SUa@;vjDmuo8bDv+IUr1Ui_-v~AY7__~b&LADV+;~xwKd*J2z?44^s z4P}9B8FVd@k3Wc@$6)0@W}i-(8ZB7r@@~`7HENkSz0!oMJT4id#}hd%D^{EzVGWcY zqDUtwmmW0Ki0J=hycvfTa2Q8wy+B39jO~cDLt7WS9pbgpJ9ee|p4KtiMQBNZ>WQ$f z;B`8?TJaQ`4>TW)`S%q{Ayfn|&bWlPH(zMJX!tF8r-TJU`!k~WY6VUt5jP61Ey^m>EHg>e=%i_Lm!$MM z|7AK$*p|KHrbWl0!4KQl)bOeJD`}&eT@}SF8AEIFipr#oy1dnXt(tw(WYostdF4J7 z#CQx@C1-|H&=J!N_3`xlc-#zxM1hd`ap1je0$0s1xhEvpyI!V8Jxj&}1c{JL`e@Xs zJ|gpzHi^FBL7=+J`^tAU|NZbC97$)Mga-HCmz@^bmEcfa?ex4v=a=$&uA z{K~7Zyz**gdr#-Fkbe?ZW_G0$VBVKpOic=pzs^bq(wgOcRy6 z?mASutMshGa#Yg1y`AAQ!|D^-HxDY?r0`^m5ATuUz0!MtcF7#HRG|)Le1p zC{ZVG>?+*0f^ENqnX2uA$>*rXq8X%w{{e!`(afMOOOK6G3Vs=$rrz#znxGzRwPH|Z z(9S8Z);vmtmF~M=eGO{h;W&Edo%bp@XKaEIfB^&4iGh37ZdXbVL4RFGd@m>hrem)} z@+`@DEd>#l3B}y6mrEZCTCLK$U+U7{3VHwysiFH#uV2~$9(2z`SQ%K%pr!hBO7Oj} ztKN!&VC=`b70JS!=7W86(^ZoKBwu#!=yND=z&efDVl}e1QCWi?!bD{&v6_d-bvpgK z)%0cd&!|`!_P84h!BIkN0`{~4Zy8L~@75b5Ey=G$%qg;#bZ7Du zj&4}WL*OWYL@PIW$irdnVR8`llOX^^w_y-YNcM?;S4Z()G1CKu4~L~4zohQ%C2Vzx z!(egAIB3(XD=HDIM;<-(?5ShMMi(7*z_SWo#oH1X9K(;)bU=x?pVPX=;S_kD1hWwa6Fdrn2@D4pCK!)md3SvD=pChZ zJ9iU5-*M;B@?Ce{ai;1aA`2w>{bHY&$l|X0T)RM~G zLDW2IeV*>i*$7V)3`C{dZ?^{P2&uTO1s49Gy9+u%L}GN9>YX1uaWQ?=0PS-+iS!?wAz1obH(GJVxa}fsM4FhX@kN z0jmV}X{gf&!PF^jBFl$3E{U}r5xSgCq#zm;$H%H1AtUDKHianug{dkjZ_k$UNgpko z9vds0u&K&9lM@XMiW>n2{;U$k5UBL>V)PBNH_n0#)7uV%x{A;^#!MWxD)9^9%3ESQ zPitT#vT2$+@=E7O>R4O7Fg@#UDZ!Be@Y{;dO{f(HUC5Ny9e*Urvyf=2r z*E>k6;KgIRr<}f>ZX1~is_z5K6+b#&!PXsXw_C?*oFo%@VxY!>=)%j(Y5$8U5l@d{J38X4uS|Soy3F?doh=c7c<_?%@6Vp{;Yiwzrwh5G!=n< zzEW@PVbeq>lCoYVZI_z10j*)5iodza{LTQVs-#>d7SXrIt%;dI?gF%O#s;eEOgDH& zVNGG&5d2Fa?sPZ2|Ai->C_VMylc!4WIrZd&k3I3ggAYIa?5XFTyMGi<;cdy++QZfN zk-9Lv=7|TNdgO%%AHk$6KSgnt@`4Gu!w6ff%5VT{Kwpi0vD71A85 zc-$7{jv8Lb062Ekd4(ol@B-Lp5zCG&Q%^t~5)fkWk)ICBPso0yf137`SM_-BkQUk@ z3na8nip3Po?I>KBr-ifdyZFzd^o0tUwDfD=ioll<^t7ZS<7%xJG)6+j3H1 zm8n7ucIR|LJ*}(dL)AtD5iISn1=kc>;XsZb^mOey@*?X&n8K`s$JbwP3kC2%HTPDPbv|OKzq+1e%4A1%K zEr!M^>NUdB{Zs}Mnf#ps@W!Mg0`utWft?4IQ<>@`5A=Re`5mP5#W+gZ9vL4ymEJwP z@G&H!F&!5>x#m57c6`__<0lCTYZ84se{FkPu-(a-pr>5fi{is`b%b-$@lCTw`~(@;3DP9HOj4cNRbKyi{x39Gou4C3GnhfUkwgJxRX=Q^Hwf|lV$#%Zh1>e~#64i<>;^q_?py@5I5 z*PB)qOaWSsbI3HAaEQLaE$_%Uycgbe-?7g)^6rl%{QWZ3OKW84aUQa4PAAP*t7iJI zW8H;njd8YcifRn)0!*njrqiL*$h>BhAELICPp_yU5i%X*8-u-yS;tna0LLEMUZaua6nP4x}O0G$o!31g8S5D^h{mwD4lepXUNjE*5 z@$U}LUQD`Oo^(?oP|k6-)@lB)Be(`M4(^Kp=GUQroDy~;WgqniQK zP?Aq9bj5Jxn=9jQOhfWjDH#Z)s>*4Auc>Tn1Ve{#&nDPLLc+GtXc8pA*cpUY-D<{*`+;r8Doa)FXt>}o+$R1g9-SY>Y29!bo0VR_7pgejfE2|aldjjAuDW6i z;#Q#V_pG(P-Sh}Lu*yMKj8S7N2RE2rko^DwUuB%;oACDQOtBrU!|FJ>QJeVkKSnz)<^cUEub>=|5Zc$m22is-w@8rI|2$kUO7km&q-2iEmB%yld2 zAW1>IG*AgOsyrO68n{wGm=K3t{SX6@eDZol{W|XwTHmu^p*jzeH%Mz>%-TDzB|4nM zW<>g~+W~6)AQ}U*5s8VqkKDAtMlp{lY;7YhPvK(oE?6TH4NmQ^*4u~{K5q8zlm*C&2LS<`?jRRw*g2oU)tzLbE*0B@NJ1RNt+p!98932mKZ``z{b5D5EpX!l=Z+;4X;tf zt0bV4A;MMK=dJe3RQpDwJ>GDwYCr@X>rzpW>Y86)oUpd5RTm>{qg~8`fsQ5q)mNu{Hc*)dkv8Rl?H94URIxyw9p>=PT1C{s4;;eEx_g8lKx=OA-_)02mf2 zS3^6dQO0ku76|Sl`a%pR`p8;?^wAeCDiuf?g2+k98o{Abm&i`UR$(nd+W9jNztQci zI5EMc=@7MWYari+DrE%9psXj^{WEmtdq7GBL z9{7Pa$+&oUh)i68{x}_D< zo4^p1)E)4s$@vwQh(PgHhPWrtJefey zVZx7013K5sw?(hslThik@dO~zt&W?YIL|`6wQl(JP`yu7IQv{Qzb9d}n-OQ(=f8}9 zCYcXHLt&iP6;2Xe{rY$!rh}yt8z@)Dolvu|z1{()AZQ#l6ekjCa~#O}crNN{>>(jJA}5-nLct z&7Z-AKAy#mHaOAhVL6uSR*Cj_Q>vFrCo>5jRMV~F3)y4pDl%XUK|x&en+P$2 z9?oc?riZAhCL$hH5uVZpXt7g5wj#nwN?gZwfbb9o3&HLC#v9;(l3H@+Oey{|0(~0l z69o$?(rZ{~ z1J-9Y#L@8n@z0q_p{N{^f4#m%(6tc$xV4RMkV+bsj&PA&>O>>0iV&i5vIu0yunF7U!wv^6+v= z3@OLf<_n+Ec4t$xw0TYQ+RcB)!M=|F`g;EB8}Kh$mJou@G#1h1&AnXp8(su0U){N( zA{-r3=Z`AphUB$WIZL|~O$Aa5RYAdxQJ_c_txGzq3PN^gM9(Ch%SZ$vSG0c{4Qsgr zS|y2c$FusD;hKYD+(vl7XsC0h9ZB!-rJFqY_o=DaWtb|dza&exf7Yd%bR`ay5O5$6 zMwIbFOQwJR`gz?;s^H|JAl<#Zg^InS;Y+Sr**jH{`Q$@ab$rU+_C~b}1JfdKThE0J zKTTX!CwBz9a~Wz%FQ}oY$Y}V8YZz<4U4X4-gr+q5yeN%^o(ob68TK4paP7{RW3sw( zQ^kvohL5?%uzR||+U@0N2en11Mh&+WEE>+>-s5*Ll_EGqMTN0SNLe?Po4ef*d=+^@ zP}ryFU9KzRkN$Qv{D5l__S#*Gu-m1k8G(+5>$$)rZUy&=T(EJ^@}Sd$uxsh$g5d+M zL8ShX3#hb|l{dZu1 zEy^}KDHP#peHS49UJj520*;UT-LT3Z;2|``)5@RZOsp8ea2>?nU?-z(@Xd+i)h|V5*;=XHt*lkl4Nny{ zj?Fg^s5(oU`ZA<5gWZuBoUxDsm=zgM+#>1$x-f3*q!Bz7Fjr2Jl)bF>2jGnuQdi;I z3Az=qO1dA^e^}y;i|htn*z2KkV5(pc^A(hhR?ux>PNEo$oo^kp$Kt*&+OV3->w&5P zj5)*pmPP;82YK-1COc`p!dG)QGj9r3QR1@Iw+xjK(Q->J_`IPeh!Y!;RTbII^)1+W zsMx51X};ez@+3f5OPa*z24pSUIUTFLELBs7r__wHHHv+$NwFF=(r^+4a{Nkx^GuCh zjiC!AJUkUBnuU# zNs3YxaOpfnEG!(xa<3Bu$QZ#*aFme3t=u&r7C8fBpz@UzPEnPNFpA1?*J2%fB`u9d z!&zzGtAz+UH5GRq)?+yPl8UL%xMrE2l8bKAJ;daBx(d0E`R8V2{@F1;;zRp z3r4ARa;=z&xJHc|%czQnIBI2F%3yy5$SS@V>*&}a!{_#QB&65vnq%rjrMs6|@DgMj z;9PAW8Ze94a_`z?Ny|_&fN%J1sZ=_zskuZ8Ek*i_hWELa&JYLJ8u>d*Pv8oU8&%(j z2KTJ%dm9%M-cag{?seX+a#sZtOSRS=AZiknZnU6m<{wjmTB+U7GPT6acQky;wbI;4 z!RyRYVX8p3*cK4TL+ocLzbVu?xQ5+sD>WHr%QPXn_B7qYoM?;0GOl>amn*!OrZlH< za{@+8+bgmUs;8;P%l_M2lD2H^tB%M`do=uf*M8aPJ6P`^RexQYs4BHPRf%hDEl4i< zbyoU=J=n+lZ|XG{Fv$#A8?!yvzQv7Ygie7_3{#Z5VK(jxkv)sech$tEHF;8WGt822 z$spuDs*IbCvq;9$PF>5kH?VA-&V0w7u`lOBH66=s_-b}kv0|;xjD{b}B`WiE@nN>Z z-a7Qe9Z*k*`s!jz&E7!KGvH=~AVAPx*i$3f{mXm0l;ygrKPcp4oyf(3w>+Vk@#JOL z)%JCBbm412)C`NPjD~(LhHbx9E|%@iWe-ot(a5`mOIW@yTfg;@JB02BZw;@@jPGj? zsD0Cy?UZEuk%(z4Q%1M=0w=Ar>I6}-YBuy9^3g(w5&Em#*ZoP(k&UDbUNiwKPfV;% z?K~}TT-Z(bC@UM4(^(qxKo^v_vD{$RvxY$}V>(BKRm z%_$nwYjn*&-2)*33{4+iozQ~T=NH$ETWS36!Z%yr!HM4cz+H87uL9^S-sEZ4Q+^IWKZLvhsw}V<+w7ov;aWrJ5W2cf`d~^ zDNi1Sw?vW`Viv25RaI!8o>ipPvPPcbj81pm1Y8C*i(NFnhpV-bdzx=6sZm08?w z9d*2EPjf~d6+nfUqxZK|9Ee_KW?jSrlzp2_=}_8@%djm*7_i)Z4^MK!z&ILy#6{Eg z*A-n zAcE;J!&PX=-bE3nO@&aZR7@QeHMKNk7X7~BC3}bTVNz*f^t3R8bDP`l)B$ph2efFA z$Br2eW<_<66|+V|JV%gY^|DW!3-_r*Zg<9=Gz#&=u*A?p@Q;S~sL`eh^~><<7Nk{S z&W2)b-N9|qDW)~0p=#A>){TJ?WDzzsCp*h_!D_Fo{6`sCmC;>DP9aGr&ZLbfg$w~g zqD3M=%sI@Z6VtKm?=li=3;f%8OUgYRuzP6V3c3~%R%YblQ-mPgg)wI|e9?7QrXoOH zoWn2}rz_t+O0LP;?PVN7^_E(Il-9x#-DY2lYOQf_)3kn)4H#yjx}(4b-rZI2^Efqk zOVxEP+-feP1`hIN5Q36uo{Cpu5N#pXF?@)%G0|Z&o(8S-XIzmBD2l)U=NKP7&Ynzo zTu#?_k>!92Es}yW8s6(7zXG=txte4IVkBC6MqGUQ2I|_6bdU13DriJYXtafQDWlys zJO+q~kIiRJ&NhLf20aZfuA-iMD-Jkg%WMJWTA$rs7U4b`B9k>oZf1vpr2#4%8xDz1uYc2xmMrL8YRaryR5VZcE8&$k0P9Jh_lyHLJNYIRO!TqoLD>NZQ7g znl^?jqlxPVga9RiU z6DOukzlvT!?Y9@`PMxU2A=)KqS3N z(aBw})~n^Bli~QaapD4Kx0fMEXjygB$Rwsyv(ckr!*yuwU902~pEa)S+JifC0D~8d ziFj@qqHKPFQLn?ln<3zB?B!yYfoNICO`@q>U@R2HVQBOSIyLKkoeFe7SveD`#HBms zrhwc=%rF9Ps=PG?x!atFDw`(K30X)$WkD+zcs)!#13OKr330Cpe&)XY(VuCi{S@dlPRzsykv&sLnpkx zMXaLk;#9aJJP(sw3GDXr*;P_5H3RP$jE z>hXHcSw9~|qw`EkxErqJ!s`|NfY-Wf+#5YFFa?^ayb9&9}gw&V=qHI!Wpv5(z9O zWZM8TC}>~xL1Gg2C=eUD6lC*g*N&vluHCsT)t-&$buxwm9MTUuxOL&2QrLBvC+HM4 zMsIaZ(X^Q&2uf@giI|v{!Kie1Eg78ap5U;fDhLCFv%Jg&FlaPKD}B^ywPo7)r4q`=z!9T88GbR}K~gFsy(WZ#3&if-!Skl}T(&+mk>t-Z!f z*Sy``aK%9JbiOibWtb+3?-hyeg?W55yd$O~Wt0o>G8V2km2EutfJgvP68HgbV6d}0 zw||1Oj(KH-*%*1_;ufZ@Oxp*D`Jgjm19c|nnZAzK3{rc z2|;FWKKCiNL_i$F=DZ(HOx~h5)Eguc`SsG6(=L4TOAE+9Jf45QFllOi(|5IW|s{*i!i1k1{;2c#J5(_?#CN$fo z7iO)^M7xMH z_!KQSNC#J?dj~MDfHG#~Q_6N$n=|p?5QEP!V z#oWD?yDGchnQL!S6k~TT!~Czk@%GOd+dsh?VKM`i=d=CEsC->nx-XS;_Ux$#AAa&w zhKsO(e$ER6?3pzN{771&v+7X+NIEFf7%F3P5%fK^b>n_wIb*6|zp0{?VG=AbI77+Q z!zy^jj2Fn-0NJmMId-Z@ipLd-E*^_`$TvGoeT`JMsctTj+qdpqBDXuo1|B%N>E#x& zXi_%DZW;Db!82}2-L=Vvtm`6e&YO%D^Dc&g<7)4)j;_jB zafbb-wlDj(WOvgM0<<@(f`bhFb8-UvBiG*9?PF@kXt<;3yMW7L<_ded>b4#Vxd-uG zA(1e1$N=Rf`L=i{D+vK%7w~g~+Dvlu$X&B4TNFqO^2TV6aXR%2@Ja19$+*jAlZtj? zi`H3$t}SgUmrAU@$Xk;H{<~r%rfdYL(^`jdJ?cVYHTVovH-Orde+9CJm}ok9LPmM8 z-^${U>K2lS#C&ybTA4!&mT_vih&GP67Cs8i|$hWNl+#vWZtY*xEE>J8vk1Fq;uJW9fw)4K|UU#X-NeV1e#w0LA( zcZ%zgCfHX>wC3lgn0sXI88RK=X_Kc==NMvBhrwwyyhJV@7>_nlXB?fFN?dc77DP~( zumDFf7&DKzce!h7lIr@FHWA3Oq#1erG62N{gGxwkV-C;J-bjjznAOgk&1kw_an zf}>NkvyEv}`Gw%4_wXTXYAVK{NJ{^-iVrN6u%1KHbb4TN4|qR>1)q^h@u_y!QH+Zq zxOhd}$l_5dXxBZLVo5K`&sc@k2@L*LVPWHC9V!dUQWOLiLMCS33(0L+g#?3; z4*n|9>mYi>nYv*gseP(;+T9TQjQ3Kba%)jv8=a>0qT;NBgi~Cg8y+6lHn|{oTY{A} z^SGfB%MiQsjc(afkR0^%#|%79 zt7ck{bdhShM>)g;NiaI(TZ{5Iv*iv;Mb&!hI5@4vIS1Zq=3Rg4^Svh}=0FPjTKF(k zQ^yTIvDpxhV*tluS{m<^Z5?6>jo2t~x9|Z+;`egZq_J!>LLF2IG45nPc^a_YUS{#B z3^)a@ACkA1QFI!`y*mXKnoY3x!LM7cQB0BSjun04E1gmeEtPnECSTPg9K`0fYyt_b} zHV7LU`&6#s(JZ;OhysJCSfmrQD7&1o3fWqww(s!LNXws7AItq(1=pCn@qI4gS%Ap# zPCVY+7!BuLSzAv9VcMvtpFGa&jMpr9rX&bXMI_rUtweB9CZc8of)hF{Ej>T^0Gl_o zYNyI&=xSe@gFJ&LjFGv{rbs-c^^p^1mMHAt=#eG~jO~F;y!Tdy9OB2rr zNez^5PJ1opjw{7|PLFgjFx^=gwV)8BRmI#5Q^`5Wl`rMd!HEU_@o2btA=3(rPh52s zU`xHo5WKE4s+^%YxpoONGwGNSTpu$@*S^G!Wr&A1UIGAKASVyx`eWHOGxAyYJuMke zE{Pg_S_#JjqGo2-tI@1tMs;b-K^xv{vt8S5>Y@o*C+j+I!nv+g>7YtFF?i9L@sh{& zk^ptcKfEL@p|qJ#PMt^++97+Hakt*{n9S$4JWj%PWHlLuz-$IJsTQQ4Af)n>pF3r1 z1g_&_Pb8f{nk22MBzWk@PF*}ce=g{8Bf=RF2V@SX2p+}2oaJQpjr-Kk3^;v|d8@VC zkqX@*7el-i^)1OS&z=)cIzq=Yre?R=mZ6M94IArI=Rh)jZncP}V6idRCfSooyI+0e5)+xIrzD$-O8j-V3B^lJhAIdm{Tiw_^7zn@eBMuMcRY z@N#edc?TeiUtr&AaGqd{{F}$LW8i6T=9eV(1RyC8ET+?0;=ds7sps#=t7Oxg_o&}H zb?3a_L`Rty$f|W^G^v`FFuQ+-Ff|OFviUys#OulViR&-Edx` z8m#@X)+CG1)=)B36ZLah#~2yKHX91bJ2xc=Tc2?&Ri|Upl1;UC7X{r^j6=TZ-`3%B z`Lo>_)tUPz7c%ZUX<_Jso9OSPCWc{qhr!aLb7t4zdw~QZ^ zjeWVGYNt%hBV>z-uy8Go*tF?XEXXImWFh_;DJ+fcBC#*_R=f5uC9v$yxCpcc?GD|F ztmBlgyG+f*0@k~5ii!dufT*huQQ>6rxtb4)zoKd)sH8bJ$*fX!@X}};3?tU?8RXU{&62#GrQ;=z4u9))~NH?sqYm0xBBzyM>+1@XY5Cp)JSO zF$)JMutJj zo=WaiHGO9UYV5aS(^h7beUnkXqJJFp4)x<5$`9wx=3h2aOop1=`D1_Ga?Co%izvm) zD$%KexERV$(P?rjvKLL3Yq!#PE7ugnE-JcrOKwY5%eXySJzU#tHJ94~AH~eSq2v)^ zmc$GqZQ5`;9}4hL^;)VfoGcfU{Np&iL@*V~q`u_r_IP>h%Evn_tUi7qr7Pldx!~Z9 zuI-LvoHM8;Z)+_%6uri$d?cJ;j7yQ4lb@VrjEmTN4exL*Bz00vM_rcz4iAZ2FLJFi z-xeQa54%>Hmt0TnGdw{Zn&b^ZXNXPuvgn#=x`#?VD}rI`^t+&@kZkoW$5jq9>S&3= z<^rh$!*$(*8tT-ba5Sr6ccDw?Cl{;hk_&EXs;XDHg@Q_aHnOGaVBRiQ3X_qoBJUA& zCZ<1Bz-yQyA)BtFWP_hUo#}g9^qM4DXg4Pp9U3LmwNI-oewxpYC&CE}mazgz7tTRG zy2dA`o!;yM>=;(EY9FSpdI0ZM{>3{@qq&=y?p_uHkyTbFVK4-hTQJ(7(#pF35r#UT8P}%K_K9lQ;bMGeL;xG@GqH^O1wZwSE7;T-l zUHfp9@^d@JRmog8KY7jk8AC-JZ@np*7 zo{&#QLp#+Yd;48$wcDvZq5@v*%P=(nqyQoxpUb)wB&WnRhDBF=-N36OP7Zr~vpNIg zIS~x$#Tyr@n2s~ZQpw8vswm_#CXC8{k!aowXA6PTehqJgWxV)dQ++P?vCdK|JU}AW zy5SCoc|KS2Oh#O+p$JY_IO4M#bbWGN9r9^Z#3^+eUGj65JEIqAle^RQUw~Ol5Oge~ zTtx>^HwaM|ps{toiG;9lfQ^`^iPO}pm*k#lajR;jDpQ`b;7|e7&}6Q#%gXU_jd!Q{ zeLof1w3XpN27jHObD^gA_d>zjw{?AXn#$73g^SmvdtiAgJz>?!>ax?nBt8Ko73Q98 zn}NF~Wb>PJB%5%1W_q+?LSl79#wg^Q<RZO+P=NnV=f>fIfpykuz}>^CNEJ9o;vdm(-#9B66#&9=Vu<{397v}% zs{ll^ALbETg!YLS4Q@>2V3;b%SIGSXmY-TBtVakva*OJ`IGlJmaNI$+E9Oi+Um0i98$qWY53U$z^SB`*qCFGpl!7U zc8PLFMW4#f>xy{OMuA9*jVdk(ioeN8@yNq$@U1s<;<5$MRF?8uH@3s-!kms|*Ck2R zMo>VA_e%I=jWhqRpnj-BvXhdIim*&HQ`q%8)xH<8xU*9d6dc8RKv8O{I4?F9-*Hin z)m*Oo8%rt?YI>0i{S>Rp&&!CfWX?I+s%hM_yuFDtmT!BoR+J0e>I(yvjwH&LQu~As zqBz}9{uh*3ZHm!0RTM{Iua8`l>F)e|p%)uUG zM)n$JFkl4>8EKwHm|b7J5`fFj0hk5MyL!&klN&FB4pq`ihWT;=vjS>*Z0*9JM&rW# zbQpv#K{Pw<0=a9Yj4}6T>Fh3tL8n!mENp^3-W}`P>1Zv!yM^KW6mK1^4 zWIf1@_qwd~nW0o#e9*}=6B`WF6)dZfdv!=_=1!nCmrr+RU_3Mj3^c9Y0gZ#iqwnhH z>q=ctMRJ0*n}W?PAFf0T@20nZcYUff8;o zg%fqxGb$YyRDP7(7KKbeCV{>?6xj>wmX}MDR$n}&(@}Rer$mfZ6c@<25k}kgdK_8o ztcX3;{iEO8MMc$`-vu$=k@#*Fs_TQGMRlOM-U@45h#RjiD$b}1usHKD3gSM+zD4z{ z#Jn-Zl*en8nkd?=lRW_;fe$rDU$Jo3*=O;8?w3>fz^-dg_F~80>HM_<23o6-pSN)PbZDiec~i9W2ba&j%ky3 zQ*`Z{Bt+6aWb>ECUVSqJy%}X{OpPyqU^0xcvL8-=;{-~sdW~{NMF-8(G~R>|V1&Au z#>ZBky1+OBOzd{p6!|#sLHkqq{tXN($71%I=zcN#XC*nF>Z)<36iJ&i1n45p)VfT^ zGK#NCJ=D8I2<`RoRoZR5vjCn5>po&nH(7gae!y4!6NCRpHZxzcJ2> z=rI*TAiOa9s-l!x1<&pyPn7Q|Gk=HT<5XexK3BvTOuSX3b9D{G*vGn6p&TPlACkN5lQH3WS4aSbwwGyEd@!ZATidL%tV+{Dc}TbHX7|7!=`8K!g@afcnmToYI^@3Wn z#jLXj)$Z9umyRPN>$6+;KIfMqItpUP;6sKb_jQy*Sr&?RGk^z=}{G zvq*%3+0T5a$gU<+MOmsguH74Pr27@Ih>=M5409I6UcnS4b*p!(=N8#GC!7!+1CN$6 z_=JruCm7obX6e5fx0zfSg$>zenHu*&u?EYX3@NgRzh&}W)d$5qv+cxwfm;QgDGV8r z;PrW{7+XybM%`-9!?|%f<|m*RM5$$%_4efvdmgps>jPp($Y#|0YK_*Mi-eR}^qEUO zR^PH#oTQ+DGn_n^ucb94={_3fv+*2OU>{GrvIrO(_^30%VnU_Gjt_KNa`Tryu0c2t zjJ1`{y|LI;Loq$e87^iy#d51*1FwO>;enThjQlDRDl|D4*z)k;UJo&DsA>T}1|GfL zhNiTGOC-H!aW%*+Ri4XmC%g$x-_Hx5Ng_RS7x2XBKtEf-)KVb z&@V3MGbb}I=Yh3k^&TCw56O&kQj03)jGAOj>#K_Wl4tG^c4xi@O81%l8xsbzv`SjP zeUmCGY{a}H2&XKskWO=7>Nw}w&vYzBM!fufm^5vwjCh9Joq&77M9-of`R3xx7=C-* zWgXDJWZRXT1YY2@1Q8{z2iMv$7jZaHY|_}B?x3`t%0)rx9(>J4+_nc}7=u*@_n{2y zdCmc~n(@>UUvY6dTV|L#(5&GdxL94tGP^i>$X^8XVwdu3ILn7j0S^! zV2;SRvG04M(^emp!8KK&ro71E_!S8#G>piF*%WD;j?AH89NDZ_4o`&*9Z^y#wM5D! z`-cp}rJ0Xw;-;{3QLU%9vKp1Gsgoy*|D^eD_u(J)Dw zmx0Dq#C?MztdIz&B#5I~T+50ZRluvN9UI5H%uGNkL-r=Mxl{!u>r?$n7qsOGoRtr> zYKXUT#&6<)xt5HdP2fHFHnX-6L= zi5trd+My3iy?>-EM3|S;8eBkF7ahYr01nA&dK(vmtB|QDc0` z`3X&F@Gcys7(lu^$P=d>yg)Q#gV`CQlFjp` z@T|mJS;X#c$;{j(TYX`D@6{v4{>2wjK&dpmMg{9y@uu0!-Pb-Tmf|8&0yY=TU8LQ) ztV)r4uES*00$*R)&!=GbO&JnVN*WGg7Nv4(um#Q+3MRE9RWQQIM6DfjE!=8G&0xy% z{QL$RKQ5T5#oC?ArZ^T|5F5ETO`osak<#6%Z>tko42c|c2UyLtyT|ug z#VF`>3dRT7HLJL>j5qthva@_liEY;f#kwq@6aqYJxb5lWz?+@&)UFHR)X@tNt=v%6 z;npc+^E8J+;5e}x-%nh4i5u19s?5l|+eNVstBJDNWJQsrE`_df$H-X6uI!g^AJc&g zT-;dZ9o)o9(4^nOlR-LWBA>rmRN@*Xb>ywSadC|U3K_7+$xun`F1b^URi_MxdagsY z!^&7rm2kg%glSXvr`ckIjG9IUfEU6W;3jxD9+T3sL3@>t_j+?j?#mGm) zikfr*JrH*QgvVh^ZggCRFo;R!a{8ET`Rk%jyIloH%X2bC3(mz1vxu=^GJ?UYAs)!m zdPBl_*|YekYkgL88CMPJj`{CKOyX_W=!FBRL^c}sTy$t3hDusqIVWs+oyHBSQMMD=Z)o7+*s?gw~a(#a7Kja!s`XRkkpvMlS2RO0{%Hj3o%n!*3AD zn<)8V3E8C>?enhPZRMyPhW%!>wTLPk%s{kbIE;A>B^6M%fhHEJ7U(o9+lBaIdh?}X z-;oN9MZ%5p=+S1BR^KuneJOIZjaup43mdlSh^!1B6i@6xia2$ceH|3_LAQl`O}wiu zS2>m9QN?qWD5aJWDHC6-T$79&%R5b@A<2N8D6K^#Y5+T$^DvqtJ3E zXp=QM*_hQc4^Ui$Z)r5VAy)oaYMXjQFRJLWRZdgAAzRlVrj2F0Bb^cF^ifPOS#``2 zKq^7ux9uYpcp370*jP*A2^mi9Z ztY*H6D{&4^K(Ws20uwjl{my96LIqW2YjRo}CqOQ!9W)@fJp0s6VeS^}GtmX;&$ne* zcyX=QK87hU2}N z%|Dp1mu&p+Yk#*8nIS!FT)JjswI5B z)=@yK$+V}WaG;GV5y}=&Uor8nPIhRa--TPN8E@Ic&LdjSlzVOXYewuXj^O0A(RP~f zeCX}RT8|}QJ?ze2yMl<{XhB+O@Fy#f7gotlb+ccWIt z-?_F;B$ouZ>{iE~Cb-$+9x9n3&iI#tFGb9omI!f;pCTKpFSSjTM3R&^OzF4ryE9;5 z&ajdxl%mrNW6Y1en$23N5`LkX=Y)_=rctQ4*ft!&NMsNjhMNo~^&Fx~76Q?om->7x zqA-_-iO@_QHaMFx3$h@^2C1qxd$U9*%xo1GSmDl}V zCmgg|ct*)>szc?&05MU{w+UjGr1G6++_(#@SUgK+-QrW5cgzJx!SR4zbX*;hY{^D; zYPU+A3V1DJuB9|eQxrAkU8Y(|5$Nn3qY%{8Tu)N}dq^oT+2 zdlPcI;u>aO%b}_p_Wt|~xOeA8KpAvm4MR7DdEGv0!5TGI=ssEt#ry3l=ezXO= zJ1KnveV6%#OQSCt9!69H_7W~j@THE|_D5$%M~4?H4@|j-+6!ZzII3GXXC_nEl0V1FN&;{tDks;nK`TgfCkk&|lOOS6DkmK=2^5O05aqT#E z%RzUyvp(89dJ$URDXokygkrRS>WDsK)Zkk(y|y^1cV|t!g5pc3kxYsZw{~bg`BDz6 z?eTlpT7jOH?*GH*q5pd`hsaB0HN$?4Xv!Y874=b;!kXqcbD9g8!|thzX2!Xd<7C%U zgSmbjAy;suY#iDF^Jb7Q;vm_d*d=4kC-?J{imb;xU$;-SOY_;)j?b3jv@n`OJ-i4V zYz>qdre!|+QLgFk^k`X+<(Y53owT%^{$>SxvhBA*7DC2Il(9sgVVUOBU*~WrhR+f@ zUkl z6V}e{MdaGp$Gnilgz|SB_e9pDGjlS`$X~)WzfC@mpC2)ezsYG?H8V0Lule9zpt5 zf{4IT#1Y{yV-8_6*l%*Mm1NapUoE2QJp}$v*xN!?g_b;7XTE)iBU%$3`*!>#6Z6@B zBdOpu268pWM3<}eT__o-`hu`wrR>+tmv85n`mIuaxuj1l>g(gr3)QW#*9kn+`*X&6 zyA?*$`!*gDYpbl@dy5>Jj~3*d(nv=lvpP{9VQke#@z0bz8< zo7Z;bFq2vQQ!X#>im?aCo+ot#*bwcpD_$WCU_1fC{C$q0jlS+1lkV} z+Dw~bU1tR36I`(r5t(v=sjIWX;&*YHGda+-eL<%9BLp|oro>lp0eFO`Ht)dgOWW$Y zA;9h+u$gvPyWte-euM%$FSKsosg1b@6x5^K!lCe!a0`up&?wPhk z%JHb>evk}xrsZmHfr2)gnI|N%lM3L^ae87Eobt#qd0l~egL9kdq-j%;fcq)VY$pDq z6p*OTmqG;O@69|zDgt;_QNVRM!As>FyDwzr&3>kmA8;&PB@QM7Q(N1egwm> zaJmOV5PL-Jb=*8D9yKE-_KMtZA~FsnVlyRrzkyRekj)zt!M{m!pI9r*z8im;_g2YGaK{E{ZE# ziThEmRxG^<9c2-w%Y<^-L?c_)k_MMs6wiCLt^dl;D+Teao<~#%@ik7j=x5|Das>Vl zj#jiBgQdQGJ-;iuFSdsEKlx$NgEOXteIw6nxgcs{J?j#FRg`d3s??8ju0_w=9&PCX z?nu#bQwq^>ekn$tG1|2_sEf^6&8mW!?D1D~8Df{19$fs2pTK-4VLIcPtvTdP5k6!6 z{Ivl6pWG?A8cjb@!;-3?uTz;nC7gGXQK<?5R9Hnfh-NxY(c$V(LMo>bHz>vd@#{ zOhTAy;>q*KGWAPIBL@dQ$#4|#e?;)kSY4y)Iniw%ypjhh1k@`8<;)8$2nr<=1kw&s z>WoV)1_^K7$FP2yTkqslg)4gvO@-D?F*wPfS5lWd&qnKS7*1lNk%G z6Sb%X&S!Fg&U)~L;51OAw_0y?@%D?rdv!Ma6W;ou(eU+^{1lfdk+tI|S<~dc^oplQyEg%c~N4QFH5xhN0Rc@<8gac3f%a>&5gOyEt>aXg zjsB5Ws_Fk*IIZci#ROGZ-!Bkb)6;~V=_&yKo->-f@B@?w{v1n zbuG4SxR_7eh^n|M3|G}Sl^MQ^GjuBZ@mIMZ^{KL;{(dF{DGW6+)ckK;wb;AISX)70 z>%Gvc*H95y4!%BQ|C!=%7Gx%1`=KE7%QCmS;7n^MxyFeKxO)lCc_}FhuIbmd@K8O z1PfrM%7)8Se~Dn7M!AAy0I++w%1Hv9g{uH)(?eBdl^mMj;B~^CMG6A$7^Av|TQ!SH z0g!uDiofDSXC#1e&i9^KVWvur%kJMq;&&RU3hsUiW>UUfp#Ll4b{3VuDp)5F|8GK^ zg(6LDZgRlg@aT+#^X54+|wgi#PSj$&qCyB$a~18H7hZu z;g1nah0vWA*n$L;hCWU*A0~2U;VFAA16L8E)25qS?8Dqp{cWMTF4yifg%km0#E60R zQBKUwj8wXZ^QtR}AQ@FiWR};^GvU1F=g!ic2Rp*xAs%998Os9TG~(_f;+*D{A~34- zgv#3ff|GGNbaDZ?^ks!jtRDsmc}axt>eMOC$^>TP>?9t5hG0IUOD3R;ptx?oimw>oe-Q3nz@{$IP+rbI>O}x2QoW8 z*CVU_G~vyRJd}|YaF27bPD+^sc>t%8w{swSi_lq_-X{(Odn|n<@b01tI`eV?PcOH| z`8fsj1n4vM*`cJ!EPsZZ;xuAU0aZO9tUVillc`Eh0l4KibTxUI^?AgFQ=U!%+{E^O zoTzXbFs1-%6~LD%|L#F0H&=_FI|zOhbIY^1l}nBbh( z;tAGT_cxYM+ElRjKQaaPBoNix8v^hiPI1;VuWE?v?LCP7@Ouq`_GvD6R%wF>c!Boa zoZGCs3uu~M{^tWh-RW+7QKomnLBNAu$(*!^@SN(?1hk^y>DO9hnhzfY78|H!E#RKz zEN9)62JRRF?mG{H{x)hF+W(?RnDqeb_kU%6XK{W`^U(yGl6p~C;QrHtKqC`!1>98x z=e$u)FwG!>=M;6@1msuqEYHem0w`0OH{5+N@bE;P%z6zWvf`?{V>nS%)4x0>WTg;CpxQIkBPF<2#OJER{Ld~ z>Onz`Bl6EWAOxtn8o_$eK_VbljBh46%_?hc+3`12tgnDvA~I(^o}f#cUtU6(v!b&bMgc>TWtx9Mkh2P% zZnz`RP7{x_(j+b~sDY@N`k!*UXJwj+jBOqS_3#;3J|JWS_ctBHR`>ii3I*0p%>Uz@ z=&ZsFPe>bf`2y!SD;|@StG}h9J1g15cC(*4n8_JCQu{!_z1Guqo^Rq-%&O=`uMP0< zxSW!g32@e991Yg_8kU~p*K^6U?ni7W{P&#Tti+Po_5LL%H!Ce;vEA1Nf4^}s@ZfzB zct1<7HS5LKex_8w{yM?BuWr^ez)sV=)xNjd*u#YD)_kn*a^WIVFI826P~EEEL{LqZ zoO0lu;ZDsy)i~xv5c_|U`MA%|BvZ9rM6{&@ zWAzrknfpIGQte6%As6oqfbp?|K|-oDhR3;ju1tp%Gs&r)VE0W) z)>>Sb;TJji{HJoJ9Vi~>?@4(Zb6b!q+tEZMkj_c|Vh$%&uuLGEepJ)ONoCq)so?@s z+v3Z(S@Rt%Q7>QMhUGsxIqk}5dD4gbKT`3S-kVRXeniL^sL0|Q|6;zR z!7GUNez)ekFb-rd><_rG#@r~e-$Vo}9vsu=>Tl)Z+VdX`#Gf4NuPC;}{puLl!XbH- zdcB2O7tnO^E>ov&jDH{IQOke)Z}QPlr^Cuff0c{Mmo1YI)AaaW@tt z+o>_>{Okfa3?783L3w+9=@(aY`Jjeu8g2D89 z-ZigLx?yVB^nR4%%;VhZU6LZYg1bjJR&5SEf;C`}G;DFg&*D&0BYMC4(BwqHp|no;CdX*a zVL1p_mrVW0-)Q3va|G<0u#~^ym|Jhjm?k9at4Q&0$&it8ReuYIoCi^EhrM-VOWDHY z&SDCOW&6!FX0egau%-!Q$eW*UWn$Lmj`$f%3WUv@2QS=LUgP*ux?Svgxf0E^W2A4NKI;;l` z9hUbu94P-JPrJ0bJZ>(F`osAW2f~oGNAaT^C|{0EyC@8VL^pTk&Hu62K&bO zE~~lQH8lut<4E&6!9iq+$FCy_=eJp{Boy+8xT^Uvz?R?BRB;!VG(TR^+JIR@I}SVZ zJyQs(*G&EIX}O-?nh?GhYl7!CMKU$~6M*^Fi;9KUqTZq2W z(&{fcQ2sS#TE3+GjzMEL^-juXaLoA~Qb)JH92^J~?7Dg^n5 zTwwl{*?c|8=$qS`8-6cWIG-`LH}x3*568%784}8pyH7ge#jAT=sr0*zH`-D5ZBbkP zzm`~=`)Esgv?t~|8k8orHZ$4}%oUSnv}L`vGDpjoDiiJ-0@heg4)Qo`#b(y;p;UP_ z_n=KU)EH&_IHlyg1~FT7!#r1FcIGMWj61Q|j-r_iU3C-OdOd0Sz@ay^nEjn%Ty4U+ z_rh*C=o=pJUg9U8t4%eA+2}v#M$c&sv(Nv96noHP`0aJS4)24G`2XX1&{D(f_MZ_; z&cbH4T&zsC6M(LBon9dLd{gLT;6)SY`&Az$^HGV2>C^on)Om>ii}V{DFsouYDvK#r zxBOnm*KV69Ip9H~Fo;k456@$VU~baK{nMPivo7BZ1VHe5J8t3h<(WRCJ-OnnCZhn^ z3em#e-~#eJfYS_M2|$mh@StUr5$J|3emikBuR#o7{4L^ZUV|9M_@`V+e(b|!n?iIA zI<_wP-^hOtT9@qj$V@?jb?dwfr9C>2gU;m$_&?xc@-3H>;jE`_ODX@&*OHVEnqT!| zhVrlH!B7ZZGnAj0hdk_cH1taeJ>SeV*(OA-fbu-G3x6;VwjT8jTmKUhQ@)2JolB5^ zw@W|c?bSC!oDw158@ZrvzT8cLm~_N-uU~5-kOsP>F+p9+ar5K8@W(R{t>Z-JkR7SuiE=T5y0@?LeBpBskK@ori&;1-djPw62MuF-LrSU6?le^%*Q=JvxqAwd*)3}s(wZ?=68{VUz;;qk}=bZ zT_JwwJuqT1$q!S^@T7mf|IvazQr^AuH_^qHRo}or7(B6%+xxe9@_qXpe z0ujqa%?gorUr8j-TOC$O_At`d$v0%&Um~lRw~X(baPKNAEz8`P9rRFUm=2yG zNQU}N4pqQ7Fwv@_b{O`X)fD=EhGcfoYf{y`+g@)Yu+et`MQ;9ywbS@>kCEM(4_-#R zd-<9{ohB0V`LPXS(gCBe7RWQR$bZ!Q_(cvo*LC(=J|DO=#@rE)z*{k(G3*|Dt5#@? zy#JU~I?tUc@$un|BMrVVKSz^%)-6wWXvOrX#%W$!*tZZl7G^2*TC z_msb$_ug@^ftHA0Q%u^=fX6uP`YMu1e$@K(Lp6PG8%2iAi#4nB-n6E5x_@fko7S{W z_sv{czAiXDCW8f``~R1xY@S=D>^?PEOl7>EAQtm)RMRi49d7$5v#M?4e?pd=ANV@` za9vaT|0}p-^OUQ`*3yWN+t+jN@=e~eEKZwuwEZEhZu>fl`5%bbe3SR=V-N7UvnlKF zIUMw@STL43ZhQEZxi5IYSHwa%auf3XGY*;`06#sJdtv{iaDuNm=d82O;{P@yl2yKK zY5GCcRWYvE5r?Avz`O-jA0}|&LL~|+)Y7O$mHonore7k5+OwPgmWZ9_ZuY}&RTrQt zajbdX4{_;kSDC@6IqeT}_vR@`zzA%G?RswEJQX&Z@%${YnQu&=o?Zr>0M`~g#Mp`a z8Y;0F*U&E$tMgptwx!{GHdi^{!IDei7jdxs{0&v*FxNsOwGdVK2K-w+U19xVlE}dh zv4JAbU2BN%<^JS{2TrmIM4h5|Qq8wUd5mHp-!44KC@=`JyYgiVPrRK=Ip9H-#s{f$ zkbD+6(Mnhv9A%iIE)S1|wSPwnJKzP$-dkAvHV%>>qb=1pa_LxC;Do`x6AoIfKz8O* z(s6!B-K1lf0;fMu>N@Bp)Pr77Yqm_G&PDEfejM;*OR#b+|D4x~e4oQ)@U@vE47bAg5 zhimz#`H3L#7E*C9SLd?prsl5;mm-{buh;W-%P1tmSA%T;GIEu~H<<6p`XTbYga0g1 zJI`fjj{Jk9p)Z=_vK=Gy)}#ynR1ujr@bMHjG98tHU6TRvk*{Px2KIxf&zD{DsUYdg z#7b3PLk9c(`3{D6vwOAB*J;@Qg=Cf=VLk22YN7V8KFx9R-FH)uGe8Eru1t16rQ3Xm zG7$~ukUbROugP9dL>EmEQ;1wyts1^MUmV(HP~ORf%@2odA7*oH#Qr^!d%kuxEoGn( zKvMbYy7}&x8Y@}ZMO@kZkjT*tAs!-W%oT}@nic+Z0ngX`m?1LPI{m;rzx z*8$HxU8Y`mh(v6LJy)5i&qUd)Os__Q}dOiTEhgWk1IB7o7Y<)57X)Kq@tK z;Oy5D)YQ`gsE*e*-r{q(#P?43j&J2*g3J$I5~0aEkj>h)i9{A+h<f-~#+4Ik{N$Maqr^rG0>{C^Rh z)2_LRP(0{S#vL%r&S=qPb|xlHA)xP6N8`qtoxm`yiC)KvPOEePsy3)t5HH|7-#aa>$4@?f zf?%fKTRT|M=NhL51)dniu^?YXP}7nL;!0}G>edb-jy20^lj^3$zC3%2XGT#{KlVuf z6({I?s<6O;Bhywpxkt48JSY0Xl$+YcBSZVitxs{Qr$s6@8X<8#stx#)Rc2I z;EcHbCE{~hj)+IU1fNLzG-}qloZYnYp8);SHDBFdnOp;(TLStoIoD~K4nZ4+n}GZ` z1Uc=|Q6OWL;)|3MO!j52cUqxJsN}Ge zRo1rr?_BsS+k$tPY5{x($+r9=LC!Kwc<$l5?+0xkg#%>iH*x9HatJDCbg&$}S-5(-0rnP8rh<>{ZWmS{FcXGlHOv^qPmM{4H?8 z7aNXIbW9>fcCCic=k16pb`C_Br)7@Ah`Iny;_U*5Ri->K*GIExemdEWF_4ufpPKWa zBYV3tVWrM9YDrkB`LR#8t<;=T?>xy&&4y~ss)wNU$?7!uyt*A;;O(M6kL@1lbKFX4hk|O4Q0{5ekHR@ky|{Es z{JPd|IBkEFhH~wR!#(BD$Fo{)j7!>EKJKf+<PD_tc7m32`G`t#)o*rGY# zx~T@wEivNAr}YVT#go}({grdYC$p=r_!zFUT_w!QirF!Z|g_UB`?vCCHadCsKUGNV7~(;xwdHLWO(h9DEg#_?@QM z7{{+`?KdYsgmX0WYWRtlE4EFr!wEbbBEx+n~D zHD@sAG;U}Ow;uSem-6_M=IuPrxd!29;cVzKG+O%9tMhNouff{%sR7&FlQ&X)rgAQy z8?}lXCb|x zpIOg-?uVD9&wx2XJW*QDajk-}>7-U4W~<*S={KAuI~1CLnutu7F<$D%-uy8ANS$eP zbhKXlBs$FLL-kRpBJFi_ikGST1Triak4N$Ja))6UG>v26=ja#>YmkT|z(#cBuPx;3}qvkN@S-D4s#D$Eq{<2~h2Bs%>cl*y@N~DhqiI*_; zlCOczCoeg!(XbC7tI_D1yHjF{3DF#p@KwyAvC$#XQ4ViS@B1=_X3o8?jOhrXO3g!VsH%HO!Ht#sy12G#7B%2 zzsryZL4NnnWu-1#Bd$cXdtOaeHB?(RWzArd=2)0&`QqXeV{pZGT!O5pn%?;W>p@m7 zJ*X?}(wyquu**T8-Mi+&Ld|7;sv2?p#zCL8hi8U+dG7lz+U(Z74eK;#ffTQ5Ax04G zraNqft%qTn4l8z@!egVg<^kpe(W?ax;Q_P~u%pnIaR14z>P-csk0a*|%-C znP@ejjTt0P>)S3D$d(?;tiRe`hz_Y)>$c3(w9H{FR8n*aH`R%+tYB5g^I{^5({y?_ zwK-V!8+2*VlBl6y@aaQ^oO*S(DfQ}!fym)G>3(>_0U~3*4Ouw zpvX&u_?{6i*l83@^95llch^W3oYQ_?O^Xz}j2oJw?RqYtWZI6&m-1+~nY^!u-2=+3 zJ^53ZrMYf!!z{a1MyS!8zr@o`Y8S6Ku!F+H0ax2q1}9NY&F3|TB${QlX9$hrle^rM zdYJg63i%tptZ*9?YR<48SZEu)3d7U1+tps6w90G0PU8=#dt&3PqhXtroz8vZ>}_j+ zx+gWxlpxQvtx6YdRyUcH9u+5k6v;mF7i`mfs!Zit4C_r8w&C?KJk4t@*0p^DluWa$ zyJ1UItn~=t*e6kA5*L$k&D=nl8q%{}q&`Y)`kCO|;`2QC5k3CmXn&AoiO+K20aV-z zA}5Of!3ZAT-AO$nL>w!^4}XS=8+-I4W8;TOJ++~S50SW`$M!>d*k}7y-*mKbJ$FkI z5fvM1`^4f-yL-5iedOpk@$D78Nu02?)(f2v9f+!Y!CeD1f0?Lyq$17`r^kCQX$Cjw z4pgPv)gXRfB0lseTj4uYgWIi1&LJ*p6D=u!TWI^mCiJ*n5wa1T>#{LQF~;4xOx_}? zIdO7nu|&X?El#a@8BOu*ETG#ToGsXm=b*9AtPZS4|D0-}BiiA$XJ&)=Z4JI^eW0Ta4@Xd+)7XC;C{!ora|{k!Ih6!X23<$H z)JR3z{y9-=2Gx*3rBsse=`^;cR+_^6+K&dEgtUaC#iv}Y&v|d5Vk)L$20z@B;;m4e zS|!?!P0LCgm{zUxCtUDhK`!SyG;9U31~VT`JVAt#%`@|1Oj%7)dG!vfJddU+r!6Ob z!Yb}_k;YDh!YZ1A;iJVxP~wfRAsQDhv0ejAWe0IJm6xJon_t{mDOVdsQ4=*amD{An z&kLNKYJbX=Vf)RLw7o~lqGF#qPF$HJCTO;MGc3`rH*v5;eA7#wz&n+4y@}4?yk^lvj|z=78LV4#hat&}CD$sGO-8F|Zf|QN;!{{o)lv*vnrh~kvX)4(3uLqS zcWB^6uKRYF5<_iwIyq@Og1RpzzC{r~!k`}+ECv#BIv`Xiw$`MI?4Gv?gzNSA*{pT7 z)ezi*4qTJ%A7sbQ0Gtg+zGL_-vP<6bPMbZBH&n;%80rJcl0@*WAtr0FFF}0@vSJej z4kONHb9ry0o>P!T&4?fL8?1FR3^t@-w!QvErxiaCkx$&Kk)*QCY@164^QtE#&LEfj zH159*!%L+kZEYb4X{nT*QYVYZ<;#KgtfQeaS^Mj(OIl7?9==mfBO$ziZgP|MybpWq z9%C;e1Pw8Xv5B~?BS9}J#XdMrLcM5d7gzIyI9?Gq8D^B$FhgG7#l|*;x@uZd!m-6D zAsSpiDkM5iocrbkXH(4Inm`IZLg}{r<3g8^EVAx1Ft z4&fPM$!PV_pP^sN^~B{}VxAC_QK&vrWF>}4cIuy@zJf#fFvHmg`p~G@FzXPR(Y0Af z6a^Glj)mCw2w3p|SW?ARu}zu}Alnxzb5Vh{QxvytK+uCC4TPLcUf5sX&2+Y5h|~Ut zw2j(Aie zDI}v;>?6eBB-T2%nsBvq1T+L`YmjO22w@m1o`6K{%hFwfx%J#jWzAY9%?oF-FIb#P zIxEm)21~4wpO0Cy=D3c5c@DZCuN>Tv(WB&WBYb?(xNi^>N~M%B0tmsv0v3 zea2d%fsA{Flracslc)z{Fwn2y)&_bAZXKY?Ky`tt;!i#N8HN<~fj$7Y0nksvr;H7O zhCoXrpwGc=3{(+uO@Q(ut|`!ah~0$SPuEdy!~bP)D+0O|(0jzIq+t`m?2a-D&WgWCnD0{(QxpT6LB1NsKs z?m%YP(gWxowDbh3jksPwLxFk&H3sSflpm-sP;Th!2NaLE{y@hOHvp(D;syd;KyHJ8 ziUYj}^bXKVK$Y-kF#gm=+LwXuBJC?cQy}*$&?dy`fZl-I5TJbc6M{eUAQuW$7u+zQ zZ-K&r?gQz8vOvpFpsR?B0Lp~8NT3Zs2B2=>8iBq;+%TZcKv6*D@h2L8s^Cuy{%l75 z#R64D+Bl%HNHH8}54iC_ydC<$^2K))g`5$H9p&f0!5csyAZ{Gc%ZPgus0dQL1@sxXZv%abxbZ;8Ve>mc$ABgP zU5DI6pwWI2Gt$#7zMzj(p8P!@->j6oI(+fX*S0_kn&yoCT;N z&<8+Y08IlrkF?W)vH&Fk%>f`x7RUs-?|>E{?t7pgfmQ>p1NtA(Eub|(BcbI7pdBdNTA=6gXC3~;L+(eQlR)c% z5|GCRpj=415$GDwCZLyregYZ^xy?Ykkai2uFmSg5{ej%J0d0recA#4>`m zG!SY30?LCFSApUYcMYfym0X2tQcA(pc%K@|xHJKCW1mbc5m4KGq zK;b}nfI`8|3seko`G8(WTz;T_h${fp0C^My`WJD9fbK!AFwjfjJ`a=&+#*2NU_ntJ z9ps7uJr8biAO&$HC=RG3P!DJ+1r!5R8mKo=8K4g!R~G1X#FYce1AXOzx*)Cs&<{Wr zfx3cQ31}qJRtA~?ZWW;FsL858VTh{+v>Pd^13iHCHGrN2wLQ62v zui(}O$^dR1pnO1efiA;>dO%GPS0Cs(q-X&21Go)={)f0mK&K(s7$_@H6Ce{%Q=oQ` zdjY5q;+g?{i@4@M|H1keKp7C%5@;UeS^*URY7O)u@@)fD6R0gvFQjM(vK0u2JX4fG<=D9F78^bgVw28slF8R#>} zy#mw~ajydPN1P7mA?kDp&`!jK07V0Z0)2)QVL*d{!hsfns|WfXaYKQYA}#{x7*Hh8 zFR;o0bQH)4)DCDEP)ndFpx2Qi8t7-(5(AWkxLBZ)Kyg4HA-CZ`pCfHNP%OA6pp!re zKt^yAf$AV`1W;MTjRfidGzusqxTAr(L-QD*Du{axs5#=s0#!s`cpc~x(!K#S1l(~z zA&7euXdmL<0(t~3Zv(v#G#+Rg2XqB-?*n~>I1A7W#C-rX2>PZ0y@I&uK&=p$1k?;EW&qs> zcP3CjaAyHkMs0iuR2AHhfcAnr8>j-%$3Qx8=K#HcxVb<}p?MzACy1L5^eWH-ppHPF z0KEyc5NIsWBA^FAi-BfA%cnqJ04)KkhTJ{_3P;@MK!t#o0v!VS0%!oxmp~sQ#WJ9# zi2DlY4a6-6dH}Qn=qk8h1HB5g66j5!Z-Dl|s#QSS5ce(6i-`LUNRPPhftDa{HBcp> z{{ejh?i!#?i2DJkI^xy>#Q?1XdIaD25hx4f)&tc7cLPv4pp8Ixfi?lX0rV5lM4-(; z<4~e4Kw*g63Un25+kn<0ZadIlKs$iufV&f@8_+JG4dCtu3Ih5WXbr6T1!x;A{S~Mf z;`RXbfZSf7qR_Gr=nT+rKrO-D4|EGDeg`@WEeC+EgL@F@Cb)k9^#?ix^dGbw2I>xU z1n4Jlj{^OGxMM)&5O*BtHN>3&3W4U6KwpD<3g`s5r-A-K+!>$?u;naJCveXJT|wM= zpgGWT0caVx7lF1T?h;Tgpg)1GK;LDczmfI|P)Wr71@t`7RiItaa*gB=cO57T`rF?? zFGJryK!qT811KZpZUR*S_ZHAk;NAwhi`?!2b%xwspsk3zM+hnI0}TiF0nluqhd>u0 z_b*UQ#61Ga3tJuoeTTIF0o4aLLk{uhL*$zg=zYXx0?G)v%s?~2eGcdVG-m-?2f3_3 z2O*~bT}E6spc+V#9cVvNZ#ASXu(8Ff1qu^cZrb zfZjqLrGf54t_;w}h${OM}0@{PLt%2$wMH?V|A=lUzXe+qwfbf-BV|$<=#B~5F2Q3|ebV%EYx&r+P)D7q?QgjFE3Dg6q1?=kylnI)90lfllZ=lkM>jQKVTKWPNL0mteY>4X* zlmjUS0A+=~fj~16Hwfq&;$8&0jkuS9<^T-_$^`DqKu3UH0cs7+uLA9WoDL{E;)Vb% zgj@(vLBxdunIRVjbRKcxKnsBMKz}2}P@vU75kQrJB7y!xS_9BA#2JB>Anh<91LC59 z#v?8o=qTc1fHos-EKnz)IH2DlHymgqP(09YKqjC>q)h;dMT$hA>)?(6%8A+?2{a0F zqku9&ZZuFN-UPabxVM1zAnt9T$w)gM z=qsRifDS-z0#IheO$54&xOah;15E;|1ny)Ye5k;v0u2Ut3eaM3%|QErrUI1$_dTF9 zu;6{59N=1jzD3*zK)6@lI1R`G?sT9ssG%gFn~<9UG#dJ50<8d=1=I#9J_NEr?jxXg zfo208h31ceCPHowP(z@(KntK{9#DOxm=BZ(`7Qt|iMUUIaNV`e+9}0vt{SK55aR-1(0UZP?2rYjAO@-Vcphk#041}AXj7KOADUJf+ zjwRzUpa`Tm4zwQJ6F{?pP6F+RmQz5h5O*4=3R0W_N&xpPP!zc5fHI(L=YepIjPU}{ za>!i-nhLo~KpPSFCr}@t%RnLEUIBU&=r5qf;9do)3v>-A5!~xQ&4K;~st&9E0qTOd z8$e@$ZUW)v2;(iF63}uRXbsREpw&ow7bri_J)rSG_koH)%LAa2DBDAzFA?`I&_2jL z0;&gnkAd)8dgFgU9T1lxr}$G0X)^+SjkKA7%7B|0=mntXfW|;y7NFmOvI4C{3I(Vc z;<5qNL|k^Du87M4G!Jn(figp1E}*v&mm6q3;_?9DN3zDeK%>FU2h;`J{6K>dR{-c7 zP(h&S;1&YP22>bmA@Y45NP%1tphUzK1^NxB7|=^dQ5>id;z|Hb0xAh~8r)JqEuf_| z&;@YI0DX$MvOq?lazH1+Ef1teTm_(QKox-sLtiDJKY%I&wLyw1Kn9?yK&ybN0ZoEj zb)dfxR|DuU^wk7v0B$Xyu|PpUH^2=B`XAzI1Jwqq12i34>H_Tqss}U>De42MKn;L) zAVoup3SP-AeL09{6kra(B0gPJ!DTXg=av03CytmOwaeZfpfq z4RNi3Y5}zYN&spL^cK>#1KNtX_CNy>*8yl9^5_UOAKXqrI4y1L3^WmOU4RUb>k3p9 zX}baKM_hNH9zZ>SHiO#}2xo_ly@1Xkt~bzOpguswfcgUc4%83m2(4Enj$V1=qyki&?BT64)hn|;(?5aGXa%HTmsOGh)V>z0evHY{zKeIpyIG)6wn={ z7!6bn+%Z7+fnEce0`6F#@1f;&pnTxI0rWHC#t}l?n?M<%`7NLU;Jyts7h1*x<%Qfk zK)(S^ATH2Epr0Z4E>Ii9O#;GUBjaSC!_cP!eGj=QK(~O*KsfSaoC<_9JjVBcT0_hG zK$&5c1*kMqd;s(S+-X1~fTjao0yhaLFLIj!bOLB5&~k8R36z)^YJ4YSh7981h&i7r zF47P)Do9*lKv%$oC3VegF6tUdCx^sQxTLNb%|%?92K+EHHU_)`uDrOoq^{Y`gkr_APpE?jX=Gcu`bCUaqz__)ytk;wnKWclL&p-A9rmiR%Z zh>ol&QeK+Pr;@}q3skJh<^oRf;!@wpS z#xds!Nfc*u4B_IEWxY6#nq0m~eD_S37$22nE*hDT5NB!{94w+u zL0khtvGEbXN#;C|q%Wn4@A`_gJ_=$mYY<|Rw z3KnOlqlV%f{xBh$BQhi^K^LVTp^r-Hn#KG)eu^PZx5-~&imdQ+%5YHw1x?Z7M*+hV zW5uyvQH{9E+LZK4lJRw6LS$y+dJ#-E=Z+GG+!9gII1id+G{e4Jlv2k@g{J)Y34q8l zCPMs1B}#l5At9+thSRsRB$~6~(k2|!r&Co^MBh=B>z5Tv#A0y$e>A|LrM9R4?L9 zpH_;fJfaV(%ANidi7HOKg>eOmdPG#|*7=FLNRp=#%M#T@^hs6uzGfAoULb17N5zQx zlO-D#B5ELM>3O^YQO!s)x^Fe2I+Ns!r)m;afT;DkN)Uzj^r~|8eTAqol*Q z+DrMFUd~6<5Yp22JeNHWNtUR>?Qnp2U)8HjlEFloUe3chNz1I0>;;7=UEbboXDi}u zeV4UhmRA+SXALMF<^)v?nGgBSCtlTG$RVD7twRF4Im2hv#L~D+mR^D^s4gT+!icJS~6B;otO(%Wq&I! zEoMAbskw-)#wtlwHg)Mo=`fS3iaLbLhgF8ETzl;W;$amaYA{bHqOf96l@BwtB?@Z_ zRhjc;E21#Fs><#V&H*#0s!aHmYXa*FRe7+!JxO8(qAJZhwI=Fk;ywRP52CP&QI*Im z&6!8k$r)@X);g+^u`TnkvQQQC;XWjZ6`-orJ<4@Gmn64VVjk8nsuI4ZD@kJYp(?${ z^(G2y3{{CZz+QlvUsVbZWUH~#6lLGbmSHU=O1rWprNf#-Rdzh)I>RbLRhpgVvSY0v zM!r*_B#CvXs*H=~GMpsIytSFa=`&S%SLHFpM3Q~~?Lz4ih-&pSOX6IVs>J=sB`Qs} zv?#`{GLj^xF5z}xM>?D5WZ!+6B(Lvb@A;8H{IAjXA+gQ29JZYi5gcchH`&{(&=V%y?ji(#QQwl}i)Xn%G$G1(R8PElltYn^xwH$2`dY_h zNIX&bCUe=ZQMxU;xTSHLQB|JbT9~waLHSJ_l8q=l<%-_;{vx9Abgn8jR=qY*8r_XGnu>YVc z%PPD{6rSBxrNkjFpGs7j=39t|r*BdAj=PD%K7$ws=Ua%nOOp9R_7R1>4^>$*{57KR zbT3BzVJnH+LHS*Y+C~)iGQ`NR)JzoiM^xp=*RKrOPF*LF`GW%Jt@42JEV+%Ep;*k>o0(!atrv6m}L=WkAmDL}52YRc`E@ zN)&b&RORu}y+mQ}LsiONnoksVR#YXr?=+&Y8=@+sw|znsc2k5cuYO3Bk$8qH?-7MP z7gf0wGLtCm@~Fz(V&jR*M!dx1qlv=4g&6tX-AojAnpCCAHZCppAjE7jnA;Ce)WTaM zcCaLAnU;SIQFszol}sJ}AnFpAs0p_w_B2#w_Frr#p1f7%Q^PMLi6?SZNi6&`QFs;? zyz##hg{N>;S!>{W!QO|elqs};c-4rv`CQ|dZj%?VP8bFX5;UP!VZh76cGy~tc*7i@4!Ot@7TFf72Q$xC6#ne zU$T}Yrw}!=6-#2@LiF3m%$rQS3wPI%Bz6=;4juOsg}owG`CuH6VAyw1m4j>9%dtD7 zDwlh()z~dkm6;!KOJ^o3TUO2iyCbTyd@1L!gL2qf`A5nDJ4Irg|CmeEkR%I!$u*BX zD>2*uWF$%K@`zPX^Dl_P&XLgh;WtEKmq}H+jsA)#>@>=1MQkC}2zNB=MNlWHj2Z_S&m{`G|jwK3vDXLO1=Mkc?=c+1ex@TX6cEGN-s#H97 zn0VOL73=xNnTUryXjQQcxlTOnO{>b*DOZUaO;q0l#Yqyo(5muk>D$CxLs}*#+$9Qo z)vA*1ubV_+hgMZ)O(;s~up6!_AN_lYc-Y5PmDpFFCm#0ERb}bEbHu}Lw5l}v=0Bpa z4=vU`{WFr}@5Gy&GaFIZ7Zxkr=kgNOhqR2%eu2_;VP3=yqOh|r#)91c5QY77RT-P% z4pC)@DqcDZX(>YKzFhY&@vzsgD%BU9B?|lBLd!m`GwgDUr?bOZDINCJRi#wP$0S*o zbhe&zg(&Q*i;=;Ufh6aVPGxp3qOeCV=9P~hk|g%VRi)Z{If#e14`O!ebCh_iiFfeS zJ)*EXF6OF@xk)mFbY>cSk$BiwSC!D9oW#Svycj=Avz>U~p(-Qm@@VrVNzS;zR^vT| z7)`rhCM{9K3pvY@c&nf)b^1LZURR>j^PB_TjfmC#tz*Q)y8$tx6nKtu$Gam{`MU|X z^eK{@x`h1&Z*^2<;^);!vH_(lP@TO1Z?jaTdqLJRm8fHHR3^zrB$;r$I#GBlrYh&Z zdPKS7{gtXL=vRPv-w-eFf-*#{A}Zg_xEY9N7OaaQhifFqSg}?UObp6ybn~BevQtPEqE^_o}G#W5fAUg#FNdRC5gg2Fwy(> zmM04D=~Shv^g+C@v|V4K z@J?S>FG%f=Ix zjdCckP9>@}Q600fo!N;hIBq8K#uHWKvqePBAuY}4P9v%y@y=)Any5^N;Y^yUD2s*@m6dpE zp7)3fqI5S_#1Ykkc=PkVM${3aO6N%;>L^i5bFnWSBPy&H=XaaRFufGpvVwR6FI}f} zIPE9aS(T3xwTh_4>NTQp?og~-3vD9`XBowKR%!!LII*ZI_1bSHstn~|c*N8UqN>*2 zNxYAU8n*fyqHw}eJd>RLmZ+YT-xpu6B5FKQGnStwsxqZ}CC6Vx-5}oB6+j{5VhjFpNZ;B)P*INiTaq*EoiinD4ahO^LwwWMB%)l zs+?_qgQ&8U`OG?F>CO;^Q=_W#d*L65 z!pTvw`t7`yD4eTQl?I1T5QVdqV#jmyNunN84%_s*iE2o8M)doMD4bnYl|S2Zed6S) zs*HI2Bk}eSFSyJtqHw}fwBNqNM42duW7`fAb%3Z=|E?x#Eom9_{zak|5%1xkT}0sw ztk}D#yN0Mgh^n&h7os*$y6c<%APQ$jRppJ?<3x=iExlTNPZUmS3EsvEL=7h`cjGMEaB}sC~IOgRhorRY@qI5&a&hRlADEHDNx%32=2&d{) z<(;9WNirw%J}E$0~xQ7eh}Zf~xaZ-}aQN%lXY3S{6_-v5ZY^iBw+ z3#GEx*YU^~M%1_2eiU5~RE8y#` zcZiy_s~AbfP!6lIa7#Z=yhbnQCSDxzUeh%tDmUp2U)Y!^oUd1voNbE`g_HHF^3&y_ zM3p2h)fVI;>V2X%{ZNsp??}ts=eUhjL?R!Z~*FJUzT6QM*Y? z&gWVXg;Viju4>$fsM*Auvb{J_IAbq*{}1e~HHmkwdMV=J6u+t*A5fa8tz^r{54a|N zB3mvsXMZU~)Q0~RAjy|WGX4x(Hh_3Fg4z>rIOWi_CFj1KB)>bKg?Jf>_fS`ms4B#J zZ8*1Bed5iWRF-%jlFpVLD-bo4s6I(mh}uO|?wWasN+K=8-|9eAMxr*?sZ7)yqUH~M zK<$p-F{sL!G3*nUDZi2<>yzXaqTY_>9#DgFICZ%J@oEvZXh%n)){$h-pQ;hHjChwm zc#f#Qi8r`#UZM_C?zQLCBQ$l!weCaI zIMNaxHi@XKMAdzpb00uj>J|tm-d&=CN=+bYB2nENy-QR%q9P8BC+bzA79HdgZ6oT6 zK8AP?D2LZC8Hh?Es=;b5Q5LeS!_v2i7f$KEDxf1uPgFwjIHH!2WJJf|L{%r=8v|b_ zsuoe@Zof@b7*S`gPA2MO%I}e0Pt;h_((cRvqGplg{o8|xsz#C{@(m{HO_FS8?oU(< zNj`2dj;K$FTK8N6QB8^ZJ!~jZEh$~kCew&&N7VFxKOpK0lFW4RMWQ+qZ)@+qL>(gD zn@2;5+C;n&7deMwL^ayGoOu0-n()_8MB$fSs*-inGNLk48De*HeyQ2t8=7syk7eBDN4^q;yASvbPo`-WQf{h*y%RMscl(8bbMvXwNx> z5cNi;pNSVlRLve=5cN6fEY-LTQJ09Ce~GOfTO1KgS?DECYg_7d+TQEzYM zk>MsuCU#y+yjw&aU%i^BGbA~4%(q0Yo7qV^G$sSNk`S18@G=BJ2Pm8e;ZE)b<7YH{OB zL@gxh?s4{sMMPcb&VKy@SzY2WOMXVY>D`x6x}`)-9k`CDgG9|Wu_w2pbX%sLCSEhL zY}}`3I2}<3cl=3IG^Km{CVSRr#M?EO``9t!byR;ON&JpktZC<+C+aJb+#Pn5sP2^C zgT}uQ)q|*c-{t%iPa!8ra%r!BiPxKWE#q<#?{(tsyZDHBZHc;B`~gw8c|n}8$y$iekFh$P=S z#5shL?#2ZPx;SGuq)rHb!?p=^5+~Xm3(|#;Y)E45cxl@s-KAgiIu9t5q_ntf0&qfdx zm5W>KInr`}0grW;DZjEmT%odOAj!RLxju2XhSHbIQ z20ZwOsON~9nQ)z`e@ODx&uWmJ?T8nvu$?)Hy12Fq@qQx7$}e%*|DgP`e#l;ah^Sv8 zxCZADbuZ#E<WRm`W3G7E$B#urFmL$*YBLkz`HM^4`_VB&iVZkNMoTFHyQ-FR{O5 zBi<`_xZjQ`V3_A61DsQbj* zaJCG+P5PIpYe(u6uQ5sH`>_b|aC@70n>&wBi?k4mZh*z#k4We)ZoOmC8Z4*&hh_|3*1){1_y61y`AgVXz*JKr+ z=qW-}nKDy(FM-lEEY*>0*+5kDvNb7PN20!)RgfefQo79pG7yEk+{EtrcAlAWpPP7d zH-uLgQ%Q2^J@)J3q~-6UjVOoBL^bFKenRM=?bXUvs8~(B+IZ@%$1{X>4 z#7;g<@flHN9$Cl>ex-DIAM^Q_*N9hQ`A*8=Wzy2Fs@(4(J4;+{N48WX-jKOm_QsTM ztcCk+9O-#7q3N zG3EXq@p=_qLFwYjvSrH#P@UmkO7Y(QXglIvpmYt^FCZRnZWL`hvOj6Dkd^|yKBqRq z-H_t_dv|`T@GJ3le#5h{vOAGNT-As~A_pncVKvd-UAkwmhsPWbLZEkH!ccU{u6+9%~3%4?o&Jo1h z)U6v)%ZM6NJDjLtl>6@o^O4TVlx}~wOvKwuRMFyDiIuEc{a(MGfaF7oqwDFDqKG_MBFtS zZU{?Anl66cfm__gz0rb|8NY&=o-`q;kGOSpipb%8@q>@@K|#1=IoNvRcL;sHCD?Y! zy7+xYlDV1`qS&w~d}qo;Uss@8-h=7ZSMieylC7jAOIJ8M$yw+(32s|ZIc2TRrdHPy zwA}>lTrLaUpy##?Po);}h_>~u1;wQ&q|$I<@p`_l8qQEo*077mILV|@RgSV2x?B-e zkj{$DsT9c3V=Z)hqT6lYiG!I7$hy*rUj-QwbUO493*DsXc79LE^Is5Sk*{s|)91cF z(34T{DYZm1KWK^0K5vNvKDXeCv>+XZA;;mx{b6W~CytQD2k0*`rlqRS5Jh9=abjVYF&>^RJQVUP1CE`7) zho{mK(>eN>&uJM(${@og(GES`fT7?CwjXF;1^-+3!`go*)$4(1< z01dhL-f`QfUmtc_@w>fx3H5c)x#KrI2bU(nD||MH;GQNJV0|<1G;hgyG(J9LG%Wz0 zcbJp;``h9^L`>G2U58VP8D8EBiQ5;&>SLH}{Z!n=$*t0%Y8>@h=)-*|vd;`CFWt{) z2E5{H18|cUn!vhRa#`eIRhWF)y35yAZ^qp6a$A?dR-94*I z16l;f#w7$t#$vUZ5E~m677`Yz5AH>mF9+8Ps#80tPQBn!4eJL-8A5~kMqTv6lZOcXo04c!-Ft>*VfV$R6rx2kY#0 zkG36_4GswngSVKQd#OvNx6p?x90y0ICA-ZtozB0S%Q~#wak02Oc$=7Dh%zMbpp(j~ z#(8i)EnD8YBbGw`;`}d_x1@H~R<_kLCoTNwAVn5M~!I7imViO|uCWA?5jf&96=;K48tTYu%4udIai8I9M>GE{e zK}lW^83&Ef$Bb|t_)UfceXTfgy}Y=N-O&I#^(+>`NNu4Hs-PCEHRiHt7F)IA&~#gv-Zln|dN?(X;28&Yr}s=%S~;t5Ecx;Hr$!a`r5 zK_j&HvU^{ZZkecpZtda@gXtd z%Mw(M3R;rv#12wrq?EO>h!5dd`|H^f@e8V%;KhwL~8hA0|Ex!y|7hZyHTbf@!QUorEp)`7K}DFv(@! zcdZBKdP{4g`$<~FAQ!B@_l=ia>cnXk<1pc--&*K~T*6ux>nY^uxMWLd#o*QIPnG#U zgV8No{Ibjt7auFW&116mFK^~?&rMA}n5Qv>Vb&HVI*#2I`uZC>t+z`iAI|a}J)T6w zYA7T@A0d7u=(1)x={KEqp|r%81NlJNecE`uz=%l{AHj-u^e``0DaltD%{(^5XX%;_wx3Uz`Cx+d}0#Eg~TpnOn9*P z6kd1~zaO;FCqOY2`sUd+(GNQQblE^Yc&OPX#~j};mj+8qd{7CsW&Niy8H?{K8lvza zJ>5|3VT_E8AI4AkoxJSrhUhr4je?zibPsef3w?wZy}{ZbPHQ-R3UOSUrO;^{MKqsh z?CVblQ44*xcSh+9;(LGMUy5ef6I*xc(qSWSmEWudzLS=uv7O<#$CFOWF$;YK*>{6s zWA{2jiW_+z)L0seX01szjU*cDY%^X6cs7HE#m4iA)-=lEw3+pn-}tWHZ^rY(E|xso zfvk<+w1`pGLkc6c<9>S@BekPwD$|35n1#NK?l_M7ZewPWON%)9!&8}2vdPiRm(O&k zWb3EPGhI4u-=32;S=Z(+K4IVUww=LBp{<-YlH7hrxK%nrF@CxX#%`Z}Xkt`wbZmHH z6c4^u(`-E4T4D%^62Co&=QUSR*VHlMqshdw&^i~-xaZJHtw+Np_=2MC3w`4Q7 z@pAQ-ppTA&LA>sJOFC;Bd%w1hLJwr={wl1vYpu$+36xtYSEevVoZl2L2)Id7X;6!C zopicXgv`k@FzJUUij&f!;klBkN!Ll!JuJqevOcXk*$4FE{;9-hop=c;UMaH9fi8kJ zmlFqd#8<7Y4rehIlY#@iY;XH&Ul$r1n}AKRIGuhJzh9vWesZVOSx*vld}1T5n!G-f zVB&ZDt-Q2E)Q@#z*ZK;N+t9j+5F%dAJGiICxLG!kw>gTpbk-cL{eW{6P7}xXnz76D zkiP6Jr5_ch7cL`TQ(KJlrL#IqIls)d7;CvP8m4%*I$39m3K?zfjc)XjV=`}RAF;W< zOUJgVa;|@;O&okb5<_kgIYzK(RBS|qtWxn4tCUI_6^m=!s0Sn~kbO?D7&A)+xkMg) z+P7}ky?s!0IDWGx^OmoY>0#Qw*JMfz)k&ApIhbtQZgMV^(*~v+<(@BnE)~PgrCrC( zWWPT9U25^H1a6qOUwW#wg}JcFMnSW453}(TBAt8KMA-t)6Kkj;CL~^L?o$imC5#(S zTnWR&qs7c0&K=4i&9v4On;AYjCM4PrrsIK=w0HAzFmV`roi0E-?9zOkv6$3CW5vN6 zI{aiY9+B30);iAJ-gR)m_ejxStWvhF=P;sqc+zmCOIy1v>u~atYa3rUMc!8baS?Rr zj#jsDTL1ATl!H_nJ9c(Si?M^OZ>vALWNo*xxh#xzRp}xa9TH=RON_GL1*myy&$d_! zPA0GUij+&{Dr+$&`jauEr7>yLy2C0yl~#0+O2HfK5*8yqY758li$+-^UCA$u8S76T zf-efAnS9_OZ~9X`td|~Qeg4-N#cU6awn^G$ps@>Rp5C#KFg8Jpaic$Z=02A-o@@DR zvjV;#4X;UaX#U+@jc-e5NK<1Uf2y!9{^Y{dWnKHlAXmblnyHL5CQaumlDZd)v&bR5 zESl<14UccAyVV=VxZ4}?<#o3-*7c`muIFwu&r7|T?JLXisaKfYADX2uXxE7E&!c8j zSV7s>zqZFLjhVwg1f~_kb>5BbeVGT(~ppN zT}V`fJ~W=j9_t}^=hN)+IV-ue<_#0}l}K{^;(|1H3%OX@?iUkIl(gE9Dl&iSgMxkZ z=$g8qee_r^YupE;$Jg$9#SNDyinKji9vyV{XuFT>K}UpjG~7k|LM;e$=zF z`JYJz{m;Ft_}`Ft&Hvncz5ki?k2ERmQTnMYLL&UnZzBEAq}%eq(pmfZuH*&fEbN2!uIRR>r+a%>@?F-Y{BOwl$p1`Q z?0<8`Z2zmJ2;aGJ3EzzyOWmHLp2}eTm2b0eB-`9NCi=l1$$tMcsfquY^q2o_3$}OL zm95^EZi~HY{`d4>&;JJa71AUhtj-Gi-wa$tn&io_p2Ci|yr+#$ky>AFIr%ofZgYGA zU@_kHasKywoc|d)sQRk@8_M3`tNcs(xcw9*8WlXeCV5gH(8e5SDqj1(=pE?OaClp zc8gEP*GxXG=RH2|;iF~gpG7-Y@^Oz^?&HyXg-<;#+Q*)DNsi`TdYZ+!*vIa(&&TOf#g)#d?Ri7nxdblvu*(~>gHtWFOPVI~HVdcC zbNilFYWayToyzL2?|~BgFVMBWFQrjVha}d^|5GcXUEE?c`?yKZ`*s}u&!;2d4j)&3 zCbkC3e2L2#bIQkYd7(^+RQ zr`bqjMsP@DG5#WFA?pt*Q!~=(V=Lx*TJx4hcFw69X{Ab`a84;L#=m{qUtS3`_tQy( zy<5&@3$)>(wKUi_Pfgi^uBs-s_fHosgA6D|9yoI`z(>o<*WP``m}GB zlkVcqGnT{00Ic7+b$-UudU&ya+t;J#GKajxaW+{+0kbm^Bz?-$TGcFIN)LDTnibz{ z4zwCN;#03bDs%T$pFif~{BO${**8NnzS+`}<+S9S6 zuozcL^BQXHv}g=*u6O*Jn`$LY!O~=j-C5wdCbAe;c~hkp<94}u6-Y(BAAmOR3_zR9 z$T1?2d}Brc+Wb)f+Pv0-2c+bKRZlrs`CyzJAAn?f1-|?*gEb$&$Vn1F_1>hKC z3cxYuKmgjj*1sQC76o9H9tyyz=8pihc|!nB78?W5<}m@-2aC#j_SGBt;j%xa@Ci8k zw|KTmLsR%^w$r(lv$7$4^P2sRd?NH!m2UTOleUw!Z~bJa%Q1t9_>gde_-GJ+YPx#r z@9dq0H9z0UCj*=WEygXf4br@V(PDfotE-%}#KqjOc)jfl#X?x>wf-d9MOYuD$M=v% z8ccfracN8G-YL|DIGi9p8ZGO>Vr(U)Q_zm@OB+lHhOm$**51nxYPy58*;n44TdvtX z$=}VpBh4wanv1Uu@`F~$<3%l`Fp@f4DQEjgw8kkO=SwyZ`FPALDciskFG$bw=a#*| zdgHFkxRCtoXcps8Iqsx1M8%p+dKx1w#?oGtE`5D`fsf~uoU#T=Y7f#TeFBe&i=>^U zwdEX6o9*_ZPSew4&PhwH?d0My$xm;b@uG`am8a2v-5ltGeOzUAyvRR&YoNXt7Nn=s zLd6+5b|vfrf{K(Q$Io8Y(BV6lSJy z{Rl&t6b+N2?l^hNiG!aLH26q?BKGL#tEL@7K}goGs+M$i+E zEZ*}{wRM}`rB0k0Dfzm_{DdEkZ7f|wW5!A&XNxgTmeif=V(cH_Hd_nolw}IX#vPK? zcGpsegrCykx-kxc8sPa*Odh*&hPW+eXQ;CXkLXWs#c% zfmhpErRDxRZtj*n!GA5>FULp!wQ%+mjwS~Jb_S^VL?!p-nk#R>jwxH8XzsBXf08pm z;Ekq*0@m`EWt+LZ&HAKW!+P4^>DhqaI3<7fu^0yg;HqHw6OBFMx2&E#)7U@BYwb2p zHJj2?mpz%=PhGYo7GuUID&dp5(33pTR(YZ^%ItmCX3gJk+nYzr`RfO4HGdee1LDkp zwR~5=TAn03WgtEJWqh)M#D|-DbG(~gtSf{Rrk5z&^x*b=)b=D6xmk2=tR*cBq#yqcQDeb}DtMEaz^Jdicx&Wmct1EOZl0oVT6Hvc4{-6HkXEi}7da!tPWs4L|miKyS!Q1IC&51e*633N#n4 z6lgX4s+V)Q#W*g|y#J~+*qxs4GL#MoG(Wr>Xa-LVG=s|pn!&FIn!(!w&EN-tHX%?7(WiQF?+0+3-)Kd`8G?ozNb&*&)Uvv(gD2QoAk7RVw+Dk;WNxKMz)5vkEFJZ z?cz^dwXbqwdT#K%KqM2=uKAJ{QiYu zMmfh?&kLtE`#4-e@R|pYr}kF17|Y7KxBkRCwe0LyD3$ZB#h&5Gn(K00@n5h1!K)T~ zmi=;r-`8Px4=i;2C36oC(%E~3}lHZ3I>s9$I z#!Ygxb!P?bvbF2>ivrhlo@_h1q_r4dlcROO7~D_xfM@vj=b_6KnnEvf*=99sUJx$N zzB^y#Y);|&G#8B)a2 z-tk+YO#>CY>>U>4UawR33$&@Hf1nxsZlH}NNBw3j8SFP>$@_uUi2YsG&c2%vKJj{N zx-ZM%>1x4ZoDpcv^(fE`-sv~~73tj|Q9$lAJKjR=_9H-)_mhytxX=51|9N_LGD zKH)}-1M7`YPsb?=$hz>I1<$+PDN{Lo zfqXO`$N6@lQo^^Duk-D65aZj*A0#W^cjI2DZ|nbG-+JE%vh==R6h0>%(f5`#@NJiP z(dS)ax3s|bP4T+lIK`{J?WaHZO+_?!yLY7fIx*b0Z7{)a+CcH`oOR8&TRS8DX3py3 zHy%-4F5!JYWN-1CI_cv#mV7G*E>C^~;c}|p?Sn0@>D)cEKf-S&{pb9~moNLxNRz>D zTIWB%dBL&EZ~FHSe&Z+q^BX^T&TlOF$8TDvo!`_+PQS6_C%-Z7bESJt8Dt{EZh$6ZE>!knjk7P=p~NGBH%dR;t&&Qloa_f0DVW+o{81 zqe7e$Ta26K)^RE?hV6HJS&Z%78=qWi-~Fl_C-qm-x>7TF-J2_?F6VHk`3JK7-PLTp z3onIVp*WpCwHUvXF3>tSHZCDJGS-x!4^N1VjS341i_{1A8l4as8xveFs7~#mI`x7_ zHLM>TWe5$9qiDni$0SCF>f=rDC%4}!xmL3EzC|aCHNKc^;;R$Q)}IcgDIXi3V2Ftz z+dRJ}-)y}`Ev;-EKOt>)J0IH>%WhYj>&rOJuOw+yoAAC7qKORRiyTxH&r8?C?SMM^ zQIbBM81=M#QbVDW3z^+b<#c(k+o_x`Ep@x9TyAQ1yH)H5iQRTGhik{p)>~N9@)$#O zh!_*mW!&{Kr+X6`yV*|3?|XE+A{=HD%^x#rc!leYf^OG_ZLD*<&YdplO_JkdDieXd zG!|nfIpApyz+5aR|F#(S$eAWRhR78Ap5|e6HpjJMEygUe45=(5TspnQSXEY&^@|!B zKAPNLEXLk)UbCL5)ktP*KZ~)5d$X+TNap6$W-EjZtbB4uuTy_F?O-*AJ z;xrjpjK@6GuGx9*6=54+Eyk%H)?qr`Z7~-2fd`~ftxmJ0SR<#Sh1R1#8UujS zaD2wYw{i?mqu})b6gUACKDIyALtg7r-9Xgv0vC+{}Y+p|z0wRgT-~ zF-U4o|GZds@-=bSw;Yx?#$@N}wQgD> zzFZ+qPh)}Tcms*W*f<@hEjKMSYi{+}`=RT2YB9#8J>5Hasl_-vHFDxzs>33<`(1i)H1af#=4P_}#rSDD4i1_vWVh5-S!tBWVHU6$tH=_i@)T@a;aH4c%F<|B!oK3%6Gx|(K*My+ zeI~n{*6`a+x{_w8*(R5H$zuG*+A40m9thX#?{i5D3r zLs*(7YUng~^iEas(prr7U(3 zx_S-eYb5d2MOo*)(@-6y4~dU)XbfHLM!E#CwlT#SqQtk|Vn*x4+lly)_|dvLwXN@{ z(otu9o54e5ZyKD2!TM1l(Q#3FldvsZM_!<#aYAR(N6{=tJ}nC z`qR)}&sqrc)6ib0uCU!0CteLc4efQU9`jVR*RO3GtJ=!3%0I_|cVusI7*^^^$2W*~ zw_d!7?O-3EJkX>yJ{9-t(KD}X*AAX{TlxAM6{V|#J_Ikf81o0ntae-uSpMnJW?74^ z(r6c)LrA{R5bKP(wo%P{6}B0}dlhx%2x9hLMMK*l^nt9Dj%iei#vBt8r5}ZFpC{GSpniI3 zs^28NG&QJa>taKt!?a7Ii(%Zsk~Ksu`38=h6G(BG2q~!nI+Mj%@7k7l^CuMPcm-LnIVI5m-sUw zsZUZ>;}r6GV|^;6u@_T$XdPlK&eS6gE^=fOmVAMOKRI$Bi!|fN&Ky~QgDV`2Vcr@J z_R^D>aW1DT#UeeKw}q)A%M>Q7lb_}s?lJFE=2c+o3#Pv0 zAUg+pIo%Kz$-|KcmTwIzZ~4+bdQ*t!qgoO{^Q8fOr2mY)i|;^8~8I* zDe$R-@j;{*#hi09xM^Rh7Y z1*aR!)M*Yna?pZ#(>cLT4*tiyE*xBDk=ekVabwA)n&ep!HDKODPB4{&MjUy8gJqoH8>Uuqpm4#maZr#&s&MjaEV7=1e>jL> zUL*(kIMU4Nf;h4;N1kBI`Z86JbEwFYl{hHHypK3o%*kgn6~Q7UINeg_eZ@f|=I!U8 z2?u|1e(hPL8mFtr%2setn0ZAwxXZyk4$iQahAdf%BfsUy!Axal-YllFGS!BI92{Kd z-~fx<NY9@Ier%IXK3_ZO&l@Q!6=G#ldzi z^nDI?a!`g7%;4Z74%Tu;JvrTY4k|P622@+Ec5QLf!jH<9Y=2A$j2P{n5mYWycGw%Sh53Cx!KM^9GQoyL!7Q8 zN9Jb9p{%nsM=oG0CsT`<+RfBCrp~aIV2-TAL46K#vPdjbE1CL+gLgRi9|xhFdl&~l za^!jrmT>aVIZ!$B4hJ!u;CZIvn99wPciFP7vY0ILJ_p~i$S6*bg)1a02fJBhKc}0` z)B&byGL@Glx3ZR>SW6)eUgpRFObzD*+c`2LQ&pI%&(w!3Ig^8393;sE9L(Y1A{%j; z(_P`91}CV+!8(py#?;?T9pvQ4IkGcH=Hke|S?2?ee1jw3u8Fu!JM4 zGgXU&Fb+QEbYod$7Dra&$TvAMh9f`WpeY9}nb(ekFF3LzQ-_$^#8fd3`g5?2Dzw=t=51iAI|n^D2w}-iEYgjG?i?7ISCpxe91M}^I0)k4bC$fs!5o%s z$-J{{=YJge5l3F&$SNH9HK$v{!4>9JepCjKbCyRk>7LVG>#m^!4*#T3sYTLgugd#tiX|bIq1i{|19khsYz3Y;@;MQ)~&er-imwgg$wr{C~id&$L~D%q~pCe zuem%egoMkW#dXVu3}?1PWn2w-N44%Z0yB;V>z)K*r;Z|>)7@I+xSW`>lSvL!SQCY z@ew=j%eLigo4^KN9b_HAetdt9)rI|z;iP@+SHQO4+3!y__F=~&Hi8_o1KYZ=F^`R5 z?AM)beEPpt!;U@Kv6RycvEzR1SjLWjvuy?2GC0UiZ0yf|FS4pKDz@#;Mmam4 zz_x5oj8B%e7PD<{_T#fnt*6*FhmE^AdL0{lWTf>i$4g^JKB>@pfg`M9zx(46*!Y

xgV+qUMA=d+Q;jyrIWY_=W1emQJg z!o~$0B#n)=>^O#vW7&9x<7IG=li0C@jR|aYU}GeQ+`zWK+1Q00c~fqDv#oU$C$@rv z+`~Z{*w&71ytgX8p((ycDZb|@zL_Y#=O?~BC%)|_zPTm7D(9n?4tXfsCU7dp zv*Y7zyv^}WU|SD1iaBI^Hu|yShnz}1JFZ~kDK>_)-$vUuu)a&;`L%}nZmrF&HPjcd z7f;jCkWL*Zc{3Y}ScU;i_Zl08>~}re_F!8D+xqdVisxXg_t|kc8w1%dkJIeP@jkR| zvHHS@KjQb6mwJPXy-TAFXVRPkJ{PS!D6WOqlZBVPh2FUJAl%T!u`p_5;rq@)U)n+k z&{~E+yj-o95$-rxkH#N9X)U}`E$Dg+eOwDKObg#p7CNgIy7v}(TNe6E)SfgMq0Kz-YD#PCou%ZiZ?FL`G#H{vkLucJWSKY#!-Z~6_ zli~X>JZfP*9DnFc+AnSkpM%!1u#Q9!j7wV>$g(hgWvztAW%vu)LS{?4lJLQBtli-LYyfyL(=l-iry8P8ri2QbA zV=X%_&ro2V#8v`OWB6GCklBfJKoEw ztY#bLp2)A59mlcp3mcewBELEgc`GOODI0jo$?r=xqU?xgjvO)fL`EM@WidNG#32u2 z$A{T=0o&eSV=g=X#>OO$SH^zp*%5P3lr-j^$XLXF`*O&>9OPg&@PtzkJmX}%z>d#y z$nDv-n1h_lw)5Dyh>auJ?_#zc#WrXrO6&?wWiT6ev*WI8tmFunvjNRP5un1z$Yk4% z9PbFWeaglZHuhk@b2!5DY~0U&d$aK^2f^GErP-Msv)OSqM>v@s18h5hZNG4kQ`x9y zzmM7YgB`DA+d{TI$ML>m#~2&uu;Viv~f%HjZWEKK5(Rw!R$wA$ADKhYqC1ZDXjIptl4a`cB z-vb=v2zJD*6geKvwny0SF*eXEAV2hPV6YAEXtK@WAbYcIF#GjnNAw&hNLThdoejLq z$q^kRGVoR>V{4;ikk;pRgllrO37u`)%Y1r?as$JATE+%^cxQw%x@BW~C@P zW~IpJ$U(N_=s$3fN7(q8jY{^bVxxo|>p9*~cI?cKn3bY5=dum6Qe^ATA-83tH~U@4 z#?>7CBDPg>5X?$Zyc^i>7B+Tfzc<*}l?}{FQOHRg1hZ0P8^wv;#ztrM>&nI-Z2ZZ_ zXPnAt4%wR>?`FpX*_O_J=d&$~ZR6RDe$gOOhH%y~#!u z8@I4Al~ajvDofbFtQ5t=X9gKha*$bUU{;D8>)G}tr}7`$o?`>EQWWHC_PdYMT+6oe zILHs|h*>EL`4ig?X1`K4ayY^`HgefGj*Uw=NJq8};OHaR@o9GaoNbtuB8F|)F~A}7 z*zaX_yqpcpN>Rvm9OPPdypnC0l_I|^whd*!J=pdh8}GC60UN(F!)9IXq9AXx<4+vncs8c7aWVUqvw>MD zis0esn3W>iuN?AUc07X(%u10TW~Io$tP~k9v){iQVKk?Sk0A0phHbC14YN|@8083W zvGE`Wxr%LTIOIEQJj#BLv9XMUbYt6L9ON0cea?QEl_G{`*>NH};yaie@l6MVZF_R` zz1Wz|At$p9vr-gtKX$~d6xlEGB7Je#tv-5tQ6TWI6%e| zoJuD)4r0dzY&(o2Jj;$-v28oH?Z~zZIOKV3yue07JOUe+uz^`A;`^54eaFW39AO9> z53%FTZ2O6AZ*%ky*>M^>7O*2`r6|q6*zrhqJem#6N|E3G?6-~`zh~n?HkNamn3bZC zN3!izj?jsNY|FMo*f@%Ve9y)L4)O;ZC$g~(8;7v*3>$xOga$S;Ik9r~^Rsa+I}T>s z5H@^lT+H!~;2`I-;~;iCnjJ&zcm*3{*w~Z(CbDrOJ7S=Na=V6YkF%{i8}r$~tP};= ziWv@P!^3{tu<;{DU&VfpvTX(%GuiNR$f+D;IvX?Cu-LB~+j_BaXgnSpL)o~VLw>`? zB^+{3_QR|c$@w2UUdWD^l_JOO*ztCb_W&ChLL)!SN|CWUNBEijo?v4#8y|7>kJQ4JbDHxwBxa?^@m_X3n;rLK<2#P`GTZjyAefb+2>sX*qikfG z$A0tKIEmxE&wdB86=z$1!Xi z%f>4lFN1@e#EvCwOkkq}8zVX72Dbgp#xCrLSt%-|Nu0`2Y^>lQ_i&H~wzXp$W~C@X zCff$G-@Y8LD;p29-=l0yVPhlv;jA=@jzi7JIGr7PaF8e2_>9whp8Y)R_%%CT$Hpt{ zcR1S);vkrnqBQ%nZ5Q^d;gE;1@jW~K$VMfH#HyM}|{I0LfX#I~huOy>xRMWn3baFU$Gx%rO0*`2f?fq*SFb$V1sSfm1o29Uo@{vr-iA1h(~H zqnJasXQLlGe#oiRv*QXjo?>G-`)y=f9oueZV-ZImz<#gUMr#8*dv4WYV5c1o>=beu z*K_1O*jB+dOgxe3n0O-NeRdqq1}2`!F^{=Ba=Z_1TdY2-Hc(5O!!e{}?_#MhqIn4W z_`RVa+DjL0sL!-R&~(F~W9)&a+=zE^G#sN7783>v)?f5Tth1@C1=ddG{t9m_SesTFqn%u7rR69zLx`L{Iw6XvrUfB7Q_lSnB5#z% zEk$Rg6g}jk$Y17hEv z@*b;X-Ibnwq1HW9ESr2(@ z>5P~}kDN~_!9uygWd>Z@rbfv+Rxa^kRC#NPX1S7onq2PP=*+7YYNi#9cdAm54zeI! zn^c`IjMGt;Bx(ldE9Ll3mLnq^a;TfDm88q$R?rcxpvoJq@|Fb?w*NbnGCUy5kZCJ> z2g(|$fG)c6EsFQXjhd)cl4B8_@KS8wq8S?B==}Y2j8cL><+jis9g^0&<7X%( zxJIu3Ugj%d6P?0~mBRFsi=zl%Cv?_JBF%iglKw`yEHda@IA}D&dz7R%$)r8ZZb@2c zxB{Q!HL+T=i}Hk0lw4Vq&OSQX+z+MPs(yS`DaC8DN`J-V*iFj<7W+AyhtU=0m&8V#aENu4XV z!hE~T(@M(%j_0tqlDm^!`$Z`ER=yGjE9v)=v);pOe699UcUFqBy<8GqCxq#gFN}?c zBcAEBPsAT73wtBwMr)X8%F*WWb9)54anzp%vB$|pRWfObugV*$^m`_UBh_9C{^)slYNC>*1nf=_dUwU+ajzyFe(V`u_Yq+#0_xP!aHX#?78)X8(Sr5L4ysr%xWYuaWVmm7FCqXUCb|xaPE1-%=)bO-0e*My8D<&V=bmQlSqoEIO9t2C0PR$&!Y4A zxmIS_Q_3wTdp0VoWZfpK#GcsgKyN3$N6s^q-Ud_-l}5SeY@<`c*xV)Qp;;ln2Ne)8 zAH>c|>J9QkVZVYVN2miqTER1qzH3Yo`YJ`(KM4^g$4A{sA6CY2=DaDwFr^6ZZn6!2 zPAx1x>)&#^zkU4i^7%{YB9NLY$HTa1TqgTr?A-J)HivF}9IbVfekxC*^(#e~Y5ivZ z+sh2b5|`!~#12BC0a6dL8W$8qJkvrI5gKuf#C)}}h^ZduD(m4dxhZs>F@4DVP@rNd zbTnl0hUmO_<8eGxDaGHi6gg9HcNyK$U=UX;iGSOqDr%(}=A#+LP$G^7xI8Y6-2jWZ z0mj2^#-_K7STs%VAGxseCWd{~-l)ROdS0O{?$b6|+_vT)IIV8!km>XZImSciv!gGJ zdM3o8wc%>JYY_ifq1Ux3*h-~f>t(@;r-f>QUZ3AHzlJtGn6b<(~`BQGS~ zSL1vm-mjFPk6Z$UQ=oJ`^CDCVj`Dw6$^OwMUkBVJSXkw)^^}MGQ8WzCxbpHn4OOsO zDZ(JR3JO8o_+B;};KxdKYyubF2f0-I+6X#4q7sPWOj5Eg$J`5&X?zErM) z66Bw_YyB0mAU@0u0j4MgxL4ME_OOKeD`1|Id9|E%Tj60KlkVd3o0aZWvg5o8q0;jf zRxS0|Jx^29hm_RCa*=m;j>k0i#Z9e$xKfgFvLsm({n0?BISP8RlJ*ywwy3GMG0(N+ z=v*Z|jw2DOzK|X>JahIyuvz9;D%tDgX78Cn>q`PdxDD8!JoaZ;D+80aDFwP!R>2+Y zE+2gfwj#nqN)bMlMaY{Grlq&;5&7qp)E~>$ky{a_h3>&{xW>@DZ=1}UZSv&HBqW+p ztwX8JT)kG!j!*X^rBL1Mc zU}Ik;=>>9LGb){=hbT$kNP={{*YVgcQj*SGdVb8RU83avP3F!{q$5vI z@=lVU+q??eJ69H~pv_sv!+W-px-5x0rtcGT5!hu)()DsV=hNMIi)h)K>q)v<$&C}@ zgx5l*zq+Q@91wm$$%+H%Bv$tf@iR)+MRMil`@%I;%^mjv^?NTMgIOv!wa%$!5}hG+|4 z*xWc9RuUg6*K)x`I*ZuTxFf&iLXIPpxEaH(KW|sE4^D!8Ud*?M2B;FetsYjg-z}GW!Ax2s zL+?s=)?ZMP?<$kidEe2h%828m`5h(k$|Rnx#3S=xD48#pnKP=LBO*U5Nh308Uc5^Z za;VUMmDE4TRh++=PD~-~?HYs3-&WTX%apTSJe$TwD!jgtiJq-)O8y(=Cp*J6a%f=pT?8U}- z+lUYOP9zHr`A(7Pi>LT$^35CcRQZFLhBsa;b10dXqrR!~?~y5f?`C@=m2|zf*>5RT z@}46bwZd`u_Dk5%FITeTn0;Yjr*I;6lqY1rMakY-F8Xxm zgw84@XSQ74IrL~RuA*yf44v|BCC8P{Vk(rzvR{${Fu4b!knQb}dB%(S&b}1xgW~%Mzcq;@N>3KX$3a1u%-h zr{w=iF8R!ASJ$vc$r_VcvqRw!4x=)1yIje8j$GQ=(JGqR3!3WfR3+~-azo4V(+IKS z-F3c__CT4oxUn~gO$^i_G>ZFbCI4`_xI2xjqm{2X@ytUTV0bUC*(JV1Da1~)5b55K zImP&hl5=OdeK&n^+II(;S$tbM5_2W?sKk@?Imi@q(z| z8}U^^i#e7S|Dq({B}>-c=r&+wccM@G|CIdeN5JoNTf1qmGoc8^chjVLr)%~Bz-zt z)RUPrsrO;N8qP3TH`{nHE+G`giSp+9Yi+GP-&~M9Jx2Z2*19wS$K_C$Z3>zM5amAv1`8P21F2tuBD z-smE;`kzx$A0ty|(a8rfM_>OfCGD{?Z8495VgrPG&(CK{{`=&b?%49+B5H25)86d( z|EQFqy<7%ab{Uv8{qI2S<@$545N8^V)dcatG?3w}<3fARR+fPNCX> zV-UWJl6sI_3I)?b0r1l5Gsk38KP7oLx#kNe*L=rG1)`cZi(jtm)pRPNi~zlJ-=& zeHS#n(wtKR*C@$PlgTsZ*9IJO$agAPaUHerT(x(-%8a^xR4KtJa=wcuMIvc+TE6MR=G#s_kX&m%GD>(q5%$yZA1Gvx{ZHE-ND zRokyhYTR@#w7%@=;mS(qvz9hU*K4YkOFL^ioe|_%p;M@&O;3Urrvo@vQTI^NR>&1> z^wj707h|iU@sw|;l;Jt~F>61S7A4_aggJgbq|TIJN2LT`Ceha7JqRP`j!oYMwN(kb z$uXr2C(4g`&iFvc8*!d}cC3;(AZNa4;!?UCk4^;*RO9{|qrIJ}q+cY{=gp(9VOj+m z@R`l+5+(J!a&yaFfMb)R0mm-C8aQtzKbMQWL(|D~bmo#5*L<06?n9*rcgP~-)BQd)7noLB z?KQ`Dzcslx+mLfwj@Y5aP9sAR+7D`If`3f$tY64Z!_U95v7U`T z+4##g;=|8>lZA$#C(DoH)-*Unomu;ccRJr51w~s@ZM*vt#=OC1e=k*ec9*LvBNBEj zaO_P$*pO9P;%mxsR4}oKX=Bn7S^aBz;7# z-uxg2gLtXA(WZ}5az7?>XZgY*pVxep>Xo#w%P;h;=?3IrfQV@`iM>}1nzS4@S<+n$ zq+9J`I5#bAt2F$UH}HAi7b*pNQ*L~{H=)@5<~c*xYNe5jsig4@oN#&iT}lCtm7j+$ z_B|q-e!V@W6l0FuN(-r#k}kp>(>0FmP%kUl_m&GGJ4!Q9{$=Lp?R!ez!E)_qM(G(b zAI-0otUcwj&Y)3RGpoNTNw=0syHFQX>PBs~y{;S8Rj%p62+rEa21n}nn(u)kCHv_z zdxp>X^69B0?JjqyX}67;(Sb_NWpcxA`mk`WDBVfP-Am4ICtCi-Ee&5biSA4vuM}dW z+}yLMo%tPa-C0W7Q8I0Q{2dE@ZgeybQgW}98+W&wNGwDT)~4Sj0i__v$&D|s+FMO6 z!1aLFDXGWG)EydM=XMX*{at;WQiQc~|E6dY-_2(!>F<+EAQzhz+%NG?>j#Yg3Dam(8f;|2Ny3Y!GN=d$(T>Ks4O};e^^tw`n zT3LjGI$GI*15~l4*HC{SDamh=3qOxfEput!@08S6%lR&(;mhh6zO-De?oTCqP|kS2 z#!|;UkkLi{#q__lnl=YU0zPO!GR@Db%pG*yy!NsdDyRsz@)GEvB;Q9S?~>?6=ukyl zE5*1~ZWUeVpeP?oSSWc`xCid zy3wa@U0P`+A9X=@tJ_x%(4D@9#@gQ$(3(kh8seVK#vC^0v9Z85;zQi~k%fl1f0YX* zJ4%Ngmix_)Vg*HSxxhMA-kszYk&R_S&Uvn=l6PYg&t?1#RYg~nVl1ByaB{7aIa(>k z>9QCZbfHb1QP-y{Nq3gZJTn>&I;QV0QnG#}vu0ttu4CWTbxPWsKBt>hlIM9!c$*Mn~wN9J=AMwN8kol&7;? z5AD&`N0B^ zy|T+`H4D8+j0bO}lDEIy_Aw3Y%RDQwJjO?a`RyYjJ;{USNX`TY8Je{QT(a#zZY&2Hl(%tv~I zlD4P(NZYz}WUIO~YpAZXc7t5y=^@8pb4MlTEiz{pD3lh%80B<)jq_X)k5Y`C=f#9ml&tIIw{$vnPYty_Psuq+ZdvwYJj$f? zDrpDFk8zH#Dokr|7nw^$S8}Z@cyU9Ys!+*-M6x+k4^r@2QpvfmFnU=%Esq%j& zE4;3DS=j53o0br|%HdU|9HZq&rI>Fzpt}Guwihz%;R7XqZ@C^i+T}nC)Nn30?b-J` zzaG{qWw=|ei$Yt5T3nP<9xz|H>y_*W$|ca*W~URTh~1B6!*u^c*pwoDn65ph%k7}V zmLk5E)zuJ7lmeVD7eh{<)?Xc^BO45D)murNCFi_7lxFL9ZVXmRFkY6R2y@G}+IH_p z*jY)RC)00hSADc9Omo{6u@FsbFOGO?Xx6=T1wBzI)sM1N#eq;wkb0sCKd<*y^1mgw z$9x*oqDeHYw=g?vhbXy!l@(GxEf%K3GHEC+yx4dg7Ad(OlgpiMO0}N{$C>p@l+5{Z z7nRno$7`HUGYp^rNRVi(23sW^N0ptRl;#Av95MoQ{ zNqmyr;@U$6H7Y^37P?s}!HIHt=h+Kv+?jtsN&UY38JKHlp3dAhKaQSJGM^%6x=&4n zHiBW)o|bglFJE-vsV7kFuMS5{ao$jh6PBA_ho&bm5b{OrD_@N#;1i_?XUQd!;pzf> zuO*dRe-0WzFyL5K{Fjorom}8WO&@IT54G&!x=!D#a=yEUVl;d$w7X79IhM-BkR7FE zbmfkXiQ6c7x0M@PuHExN$J1!$LzT?8$~o@9%#ANRSBHByr3kmlBJ_yAT5XMEbhXUs z+NnxWs^xZwL499UTInJ>`owYF!h9wBH?sQAbieP)l&n|FZI3^EF;2r>Jy#P5D`j|H zmVsMgO~miB=L}sU9HA6pYq`@`)R_PBKpm+7<2gJ zz+z4(KdfY*DyzmKyDIFLqifCi3rhN!tPY#IVdefr-LQ9*A}o#d84L6_*qH+m`vZf=_4q%{t7Q0Bw^%!l9Km7IrqgC;TRo_MZ;eH zkk2_UGe^n)oXnr=^ZKf29M}F>dL*7sVh4X`wd7RAL-5cd2 z$6Uh>MjPCylq6S{qyx^WXxzJrS#QU7+MJQPp3QNx2zixWx|zT|x71lleTm!0VzYb4NMTB~4$GG_gn*^qRv=!;}IHkd;rCe+fPQChb@y?T92woE8-Xd{sfm zUc_li=BMQn&#np6gi_e-Tr5!XelF)Y#}|%7d|`iu@o4*$#9ie+T(+&=9KER;CGR$J zL61)O)kw`86Z>@7A1yL!ymg*Ft8s#Yd(3gUQp`XS4*;tjqgGB;(&ov{Aq%zQ=vkky zq>B<+3F0n>*Wh>xU}Mj?W!R3HrznMpnT6E&Yg+ww>JI^6Zxl zoq6m~_Ae@_ua(Pudn{!^kDC^d(4DLCRRmaLW#4}le+Rpe8f9Q78>!sOO~K>FifkFFbx;2q2oJA z7?+-2Mv1i?15Z_oXXWvlTzkKp&$%x4Bqj3(nK=t*2?x!A?*=99^GVQFxsMIKLP@)| z`~YTE(L}V*+_ZhGlJ;DgHr;t1?1M_q3uVrHZ*9=;#fk5ZZAi~4xgV5Y!&$Tq$$1#i zTT0ql^0VB&EE4vX`|M2HUtXp*`AjLnak2zib?#>Uqmp)jT-Sv(gVBm||69rai=63p zf#HVM&fQU`FLUL7ZGIUqC35NNE=umV<-+dRc#$;?bVX_L23_uBe(3d6%J7r?faO$& z>-?_Q*2(w57#g~5@nJ>TU@_5%4~%cc9vL*ZC37%(35!<5V(S+iu-hN;(TzOIi{(sqzD zoZ)KOrzuH)m0Na6O^n{vt@VU2Pzvy`T-Zf)Q#n1?3C~QrMoE8$Oi!;)SJ&)LCGE#a zbVSSDw2vxjJIhUsCMj^nuJJ&-arj>SdzJb^PQcjz4cJ?zAEQBqs(7xE-KqjN$QawuM7-l7%gi@C23TCvN9v#+Fi{a_&6o& zTQVz-PNA)nw1g`Xrrjk`8q}htWM<}PD#dtEZeID7k#HYq1-u^u5ijT=A4#uIEj#l|zX5g#{xjx028{ES=z*>h>Xva`*-P0?G9 z6sOAjxm@o>bkHUa(coEcvm5uhl77A1UG7S=tXS7*uiS6#Ad8=ray%;+f2X({t?z33 zM=8Waxh@L4<=(^x1Llp^HH4?+n#h`t`}j<~(^X0PuUzms6C!jc5KXun`o6!GSk7<$ zBwk93gD(y45lZeoWet-%A%3%)S=@UlnfH>J^XJlC^|YLgZXq-$b@x$n&rYIw(+LH% zpeez*m-{KnC(9Y%F8+Y0bYO{JDOX_D>GpL5 z9&fPHUluXHaPLymSIFu=YdT$M?O5jZn3A@STCEVjI_k@SakHe7P*r=Q@@cf34)aO3rrXOj&YkfkVz zf8y9Hs9mqyos2ThdG3Trw6)un&~N=fdNCCQ$`*IpUjusS90@iK3F>@BRO zHDa`*C_x<@rZygpQU6jle;}x6YT}v2JNLvTAxgtJ0;%bHs5_W zDw!Xai@IRa5?aGdC#BNS9OjqbeM<62Wb%xebYP89)=w!(ua#9z?p(TN%U9(bQ+r*> ze7($ELZA1wk#Nvc5ezT((0*wn>mMlvI8`q1JRV4L-S+#Pl6t*Noi&GEvtjdOtUr~s zA^E||A4j`3>gHsXWY{mDXu+J*9ikb`xEF5;0CzvZZQs>FZD zon1N$CxB&T^m3yqotSTt;uzGNt|aXxH^ppkxfQ0fA&rXOU&(u> z%-i0++k}dmPGAjH(ie`o0K7se!98+Q%Zp!R>AWK?s-#{bKWOn&> zhtkrW`8{39nI&_^XG*JSmmUrsbv@q~DMffuZf_;g>TnnXHwhKYbxHx=ke}}CMfTD* z^KhfPmAn_p8P5&IsI9r~Eqz?c{Fa>KqS^>;jl^{}B!J@rlvkAWJIEQ&Z@j^Y7P=YQ z?R_P8vE1Nu@l{A4td1Kezfm$jEo-%0yhLcVmE-mGyOQ|{S*dldqH9d?Wf+doC93!^ z#;1c(^6hrjy~jJrQqUIYN_xt1&TGP}H+HvTOT*>_x_ByEt}Uh|GV$NhjSmE2p&+_}_+APqx%MU9qzlal!onYk$9 z#~EUn`J;gf^P-IVmGocB-KcKW_6}t``*d>>ZNu@?@hZ+OUr#Fq`Br}7yI^FDiosu9 z<}b%;#{@n3)k-nGlf@{G2I<`n_5}6uv66p#`N_+#iqUqY1bJVl`r}!K&M=F}e=k&2kZB;B9ZHfR0MipX9vT_qe-Gi1sLn z-yV0FRDUYqjM3w<_U6Bl-vb!si#Lm zW`A;?lJh57&1Xbw9qrnyB>hV+WGtq&Z#|-q27e{K*XR-VJH8%5rW~7XMEXd%B1-Jz zv;q}0&zeBn9AgS*)sdaXqnEI;jEy7MIMO!anyWFcaM_udzmx4Ji#etPbhgG zlzG#wIy0}YDmj4jkS0tYLp zkCGc!#xmzNpPiMY-^-*PI>DSie0?!mflaw?UJccF#+cE*Cn^P6Ah)$#5{T|iq({qO z-dD-|hs;cOwuQ_UiH9gjPn1bBm(Z-Zc|+bJCF?daYj!kH87d2yO?-)x_Yj#kgZevW z5uczWeMTlNpj9u}$V<17IvUm4O7g$t=PRQ;P+@kpE>n^=$fSuDlijSO&6IT~4#(`puz32YvJnX|CCOMoH|Ki8CuA&dI+wl&sgvrJU2KqYeG|iIRA*oZXC| zKVo(;zgLnDkx6qy{w1~E3cA7A$nIZCW}nQQ#pALDZT47QU+ZG|*~Q4aWsr7Kk{%(q zsZ1IQ3C0Z8ZIrC%%O%_;(eQv{u4AZDj6rgV7uAI$W!P?KI*%zYho6c7^ z>R_spJtWsbR?vN-_IxGn6*6shAnI1xWlG*LGA|wJU$YdQAETVZO5#1`T5e^B?GZ}m zi86DmD^X8Ta^ENyccLfU*+V!_DaI7J2#T6M>f9?YuTs*lkxPL-pB-B5b|vZKa-K7T z<<8E@!%EifGHbrK&R*ji4mxI#UNE^g+bHjRS*8q{(HUtx?;o1NSgXlSBfD?1@irT4 z*m%!2;v>5skOjwQ$m3JZ1>u;>{+5zxIlP-H_g3-?Ex~5SKa{M8%dApC2zy^?ernKY9=>Kto=`Y2g{l=Vn%)6}@pnzvUnuafIF1Nk*bcTti)DrdJd zZ5p8sVOVlT!;koWcWISLN-1W@QY6|xGDk@}Q>Ja!ACA+lOO@PSxpimHr<(->wdSZ) zP{})0Ze^W9v_XnCW}!0-RT8F+$>vA>Ql${nWg%L$y4K!hCn}|wAxqJXZ^&&f20A5{ z4ypB}YU(mCXOiCEtTrS>wDH zx>Jq5i1}J0*D)N!l%iZH7k|Rd{$rKAU&)1EXg}|<5PEfvs-LE0-%hT8R`y~qP%_^x zKk>A0DBhQK%FTQr3Bx}wVr|MHuT(bC24Et9xT}L@Qq9pxDRv*o!>=@>HQOW(W z%)O}t($*;Hf0fHS-8mBQrIPbEnX~al?I`SDl+2&Wg`HmR829*3$vHyiZ2eTOf<1M; zv9L^@=+xEjO4`Te_d*`6f}v@d>Ttl^bu_@F-fY9hhs)ZVmIFDaM0YiXv4)bJhK+}_ zF_MiP*%)mb@nPd#$U?)$^W>Jk^&)S8?w3z1E%QgCer)NcGji&%#W}&`=2v{-(MLE`$$7S1@Hti9NV%)VtCht2$;2gPLAtQ7+DkjH z5>)Xrr2yZ_PkbJgc2%@05(t_15S^r?ep${tEjyqs{6B%yf zuTV0tmY=3f(sGVPceg58`^lx8O*gkwZp~H04=Q%rG!(1$N1UU$&nda*$#t9= z@dsn0jrx5{$vR(VwUr1SCxiGiCGkn}Gn`4s#5-PAKPp+@mn)c7uF&I)8@1}3*Z%yi zWIs?Y?5rqV1RXKw2Xgn)y%Eopi#pGKQMlD*7bW$4nVK%bi8*#<_fxW7A=h&Aig;6B z4p&ldkTaZ3dMn^_oW{JnlJ{Jhw|E9iN-9<9BV68s}eknVh(7b-cQPlA)yzZ;6H zT*+A_Kg1a{AZ3mR9i}7=%A}cerHn&IAE{)0U1rVjIqUQ^CF#L(o#y(N(in3v;JCHx z0wwc6nYm*%K3^8&yquOqB;5?QBOS>2-3hGopt@Og%DAN&11DQyLTS)+{rg7BtJ_C#49-$givX zrgjlFhe!TVa{J^qkx7?TIC=$n<8?ZqK+bUoZizLtLO9`(oL!Y7{4UpfEng5iTJBjbB5lSKUk!v8s>l~@sLrGdBlV*B-;ix&Vy^oSLC^zw5&K^R1FMqk~ zj+XtD!gP>}pn!%F0`vxUllztAU1ah+oQcPp-)Qs^CG|X+y1V_>57f~yS@t?r(zl8F zA4e%A874P}9?s@KOP3SXN4-*%?sB0N+lAu83&*>vC zPmR&XmHCc(St&tCu8pRP#O(XyTkR~qr<7zrxoUbkAJ&T%nbV4?W^2F`cbK}!Bra;7usk|M{qYe31myUd#I z%xRsHvs^Ce4m5bQsZaLflp>rUXFCI*%|;75OG%n7tJjXTVY=sV6Qg&RDrNXV9=j=Q z?3%dm(YR5`zF01SOnkMPACUJcS@)JJJKbAus<5Y&oP*`AxjimpP7%GXWPM7`X#t(S zM#K2@l}KMEM)Us2B;Ra9=yPPD=+IxsqLQCYVXUvnP6OrNu<)80gHsS;2Kaqt7 z%I}tS43UP-O8=MQwj3Hym9$PK%@5LwZQjOb_W1KB>bNuH2G{(;Ug8*q?4~6DR(`It z%l(xj=@wa|$!)9TO_K{eyOP!pInRX~spS1HBQ4GPq<31{pko@AHw?5sCs?)0`hpB< zq+gR!pI+%R^SY;!^9A`a$_hkX3#FzjX;;Zrn@-1d8r8bLlJkDKTGO4U7F8%YGi1(8 zKP@FSpW3LB^=G+sv+1E3Ne_=v!bdB4C(5}kq%qVmjT|LdwtKpgJzr+e3x(-R&t2db zDXE{33p|&W-&1$M*}$$-GQT4~zuEK_3{*Q_%Xcez*T}rsR>e6syCaV)saML>MRE0< zsIFg8($AKgS!N(g{UPJgdSA)*-vIWy=% zGMiPqNxH61R3^=|m6uVk#Y)z*WzA85jXN}!OXGEp5s_X>@-O8qcWxSviSS}t_b}NY zr4(Cdirt>(B5?LGM=QzCm&vo~&;*zMoS@{*l8Zi*nt1gHqqWUevhEzklFD% zSjn0#=ar6kc3jAAnWX2oOWP_9zm&h(4#*Un7q-TYFjo#QHtADl&5`q*-}GENzMGC$ zaxam&)9E~Vqh+m7a$X>}teilU?i&g?PE}i}BuA*H0^HkCkcDsYx4IU9IGNB~yHOX={sPDbB}A(hRvt<=8jG)&$LC3fC!# zPfDhQedhSu1|?^S%t@!hI~Lz$P1g0bCL}>hP08%wbySjeNP;v_?KK;)M@c$TZooMS zFFhTiB;FwBw$;PA$C%ukZOry>S*AoMp3X4EvBr~~2E-<^F`132Z0v0t@lo69WT8>p zUF15*o#T&&{I#ADyBO;007{_c&~2*BPiBbfE76%Jl}g%4St4z#bziIGK1$|Ja76Sm zO4b!}%WCD)wlkE>_sET_VA2wr<`3WsO2LKrLbqk(Y9Tu1P#l6#jNeIzFDG1N$^y!RkC)KSzA3f zcfFGPVY#vs9#x$_Mfb{hROU@|!&Zrsc8W}!_`1#BO5%-j9cPU9M$JLZ!AjB(Wi`^u zvAjDgnLm)3GpA7})XeWhCF|*OAtyR(dtW7O54lmbau(_#O6DhJ=7eX@E>iM-mM!YZ zR$mcIl-$qDm7MS}(i4=t9=WU&HLkOjv|lGt)U6$CewmW{I+?rmPT$Q+@>k?~Zsn=GGEENot)zY{mU{X>rHZQ6Kkxnl6a|1 zys6LPBb4;h<;SVj57bkX+_%eFA3BeYj)~ULeM+H9kJmHLABu(}w1#1^2fO!!p4zad zEEWisd%_{Y<^NrDOXr0nzACQWsAqAYw#u{jxcv;F zo>U4IkyUxo@S!7{i_83yeN9RKgxoJH?&q0Sx70J94$APL=8WursO0}jZY~{1Ap7H@ z)NUvGX?w1>)-k{Ttx|?RJ`J%JEP$S9XTlro(q zx7Dr-BQ*I>rNYW5M(a!}U2*hP%VpEC@j)h8LQ7d1qb%AhWq3s{i>xUzI1Fi;lpM$87fi&Bb1<Y)j$9VP$M?wLw@u-w4xgVFgJ4{;Qt*)Wi3j4s&rF|rAjGIkP9Mjekf3})Z=p=ymX?Hx`#~NWyH`?V>}a=hUhYBpQkSBv4=j) z!}HHkicu^-4<+*(-x(g7uXjF>mn#KmFAI=29M6GW55{9~i;}vZTm?n^_Jk^OwSZMh z`VVE@*kJ^6KHa-)DXM=GO;ALP5_ncALcLu0J<;i=y$t0oJKXqmnKFC6A{}L@s8D|zUqEZN;X_>DV;~*r9}#Y z4n*@zq`RA`qZc+eLu^z^u~9CcF7sm4?GAW@QO`JPF^%sKqn+gJt?O&n$%RqWSWSNS zQ`=cdf3r+q*!lz8SINFeR$1-m&GO8dG<*8E36tn^Fi`6_WMG(5f&p?XD49;j6w%m5 zmETi_Aq4ZCJyt2eYq9{D_y9Forzu$r$B zr_HCN-b2oJZ{zc3zbWIx;b?8*VUQZ7G!=3|*rO0$3e= z)sByrY=wh#pkp}X4SHx5sQs;#czEJ!rEtS#;d)MuRaTN@lf6EF%OTr|{=ht=pzcu0 zGElCkynSN<-=b)(*Ky|TBTDK#`Q?#E4-FN7tFQZ_lDea;Mz(K!Ub%f3qpF)6Ghd^W z?L)a(3TI86JHgg0uA$8@b?mWv+OQj{v^96sK7Zge6xFA6?0~f+n(aoQ*>KD0Lw`jO zwlh!Gs?vwaa`EYN!hHy7wH_#O)MH&8XuZ%A($&_8fn z0dyMNRsyXDx(Vn%_}&lH2X0RTeFToxK!f1>F;EZWavji1aN7XX7csK>!VRb+kOf~4 z(4}x20@NFE$JlQ0odR?(IOYMZhMO1YTjVGNR1Dw4fyM!y4D<`oxj^3|+?7CehUDrP&Ry@1zL?%-UK=szMldG;PwO10dU(0^h+lF z0LEK+}cFCf@|A5xPw_rQ^^TW40 z(7QkbfX2gj6p#hCy@1|9+!;V8!}kE79Jo~ieS&bcKwkhI1N3w@{ha~yJIekF+ZQoz z1sa2J4+4Dyx95P40eTDQSfI~j%^g;f4b( z1lk>_JJ8-hPXa9j%FCg@a-f+=wf_o7qM{(8!K%iKI?xuS!mY30wQe(`sX0?w7{&t6NSD+YBf1ss6BY<8&dV2spfEfD#9Rc6{fL?*GALwYfMSvbbxTAm`1F8pl z9r9fW^d@3lYa_Vb1#~RpJ_a-gFIVr+{{Y@9RLdKpz3!1mEv~u7=y6KtZ@=?m&O-k#Yy1eSo$Gx)tGe0JT8UD}XvemX$#L5%(sbZGr9w>Wy$u16>HT8t7`I{4vl) za9amdi5MGzdLq57q4akH!gU0?1;_)mGr|o4dIM+-(5^sJfYw32c|em8!wWPB>4kts zf$eah+kj36>Wpyb0(Awt66g=0dw~7~dIIP(aJ&jM8gV}W>J8tuKzGA;JhtuDyaO(uL6mHu9 zZHpK~fo_G{Za}vIO$Dk(jQK#{fVT|jYQzWwy$*B)(ALPuDL|{?b{^21Kvw}(0o@LC z3(&(rQ^D~9Pz)UJ04)Lf0_bP3{S5RN(7!-WB1ZcW^fwEr572M$-5#hOZo2?|364oX z|G{kz&~regKDD=Wz1@ zbwxgEfVP3}a-aa>o(hzQaOVTP4BxAPE(f{;s1M>k0@MyMUIe-pzH5N4gxi-u+aTO8 zKv{764`?XD6^x?4J>b?I=slnTK<@*M0{Q@GFQDHc%M75~;C2Ae9YEDUcL6N}dKRU7 z63_;q2B7DGt^nE^soV;5F3^KO7Xm#8^dO{q3uqS7`wZwfpdWz-Al%xz` z8lW?P?gaW6d3zM7Gh)01)D7repqCNuE1-Xo%CA79!JD=d{apsPLZD;d)&uBOxNQgI zK`J`}MUl!lptpc#0zHTr2LfFMw<@4Dh#LcX2k2O!M-lE!pvQnN0a}I_Hvn~m+r2=C zA;$AS&%o_%pwAKRbD;Ieh4e_z0@2<@G%PzBIEh!F)^f>e$M%0w-k z4wMCS5zvc>aUIYbNbhc-i{SP+&|7eO1!xDjy$@83xZeOh4UXS|o&ZO?UFokAP%+R! z@a+Y(0B(bT4nr!Vfu4o$1fZ?pHXCR=xE&0%Bit;Y3lMiP(0M?|1HAyW0;mBoRswAW zbQ91eK=%WE4e6f-`WES}2Ko-@W1#Jk$~vGSKpTJ_f^XIs`nwr!9f5v=n+ND^q&x)Z zL->vXng-t~Kn3uf2lNwoy+D7#Hw1Jfe2)P-8t4q5e-Q3sp#2fs!C z=ntSnfKCKj1hfs%5}-qXP5^oa=xm_BkjiC14L~;oWrFPipmKzJ2FMTe2GF(e{RC(* z+`b1I0`wP<4=8&q{auXoIsqMl7~24y58t6cgW$Ux(9!Un3KW9xe4s0U%7DfIg@N`& zxFdij0-XYMBYe*TngX}0fY!k6cA&@M_ApR)pcjDV1APee3~J$9psgUwA3%o#W$aFW z9)xQTv<*-npdXR)_CTu;ZWo|O;Wi0q2GAU!nLwpLUc?OoO+}2QK+}Ov1eyVK4v>X# zmjiW!+bux7fK~w=iu9fZ@&dgHG!*Dlpz9I$2cU0&HUeFOxH)^!-<}B98R&E5w=d9t z@ErzpA$-RIeFfiXK-IZZM!VL%70Jq(N&IQ^V=pUekK+gk} z163it!+?T7M*_VLbQ;jX2zLR{K%i@YN`dYKx)SJ7psRph0@@7{ybE+4+`a<30q9qt zw}EiQwY3+*;j(FKEZA`KvvmUyu3)yR5f1kvTi3x2mlazdzzr7&TlOu$xXahN1-`gj z*P4O!aM7(b69{+BS|7m|*SYeYthiOxS`Ihda%xQg!hNHbeQ79e{ljFY+aN6;!r_KSs{n4eDAD>I;c#)G^(PQ+5484yFRt{nihyvtwvi^n}E+Vp4zzx>}Ss93dJ9@00fN(>OwLik)mKy6t zAY2(^Er&1eaj_188*WswR>2LooLIX9;qDQu9KN^$#5w_PxR=Aq1{-e2u7O^B#?a+JkEBvUO*~1Zrxgia5x0rx*y?iG`W=lgyX`kpW%xGyse3FI~^z=2xnVc zPrw&vO`&X@-;D!yQ)>0ts?X;#N73{RMZigE-HCl7whHZnq_Yb@DtTW(-t#MWaY}ln{ z*;~!9U(EUnalZw!w_ahdlyw$jV7HQGZ#lxAA?p>mVH=Ot9|#*~tm%l0%`4WSaKo+< zYXUg1ZNoYqzSu-zJr0Du43@ni0s9H86X1sB{Zzpvv-W@+R@Ye-aKo}Tt6vWNVOg1FuMNWrFYA5yVmXyH z90-eWK8Pu*UijZdl|JtIwzn(^^j4k#QQlKk7|aW8{~`fEwA~`wP~YB1ds6A@qS6{~ z#9K*+FI2S>nT5%X_$&Moe~9jrZ$%XQI*-n{VJ)q+CK9d=*An3CBaKyFo%b;pDgQ`$ zrTwixv+*k%zq9d&ZPe$`<$nGMEoN&txju^oiA4ep^)t(<$c8mupzRF~3)C$gR!+B3 zl|lyChBkW+g|*3ZC_*#}*(hUuo;T#Hq8&lBIjNy)6;H3#x5&4(j-;_lNc>ot*ZQ6; zs4rRkcuENhoKwuRQ?xS3NLa_Yt$7r;=FzD&kIy}=a5Pt*qgVzGGAeHjrQC7{aMHQY zrVFlVm1eMk^Sm>qlUgYzYy?(+O2??U`fmMD)rl%NK4Ch5qOcGJmn!xDUV1w<;LdL{3x@GL))5?p*>nQG=IuX*D7twSY{i=u`29{yzVaL zmOju*y{X$RI+M=lt}ypYA3=ho)`AnZy!yQq>W8H=+HIr4v6`Fb(zcd$b33f#Qg5xm z2U=T9w`ALSc4(8!Qm%{mlQxASa+|&+{Yxnjg}0>?F2a-4>3EM7;F2#k1z9;g?91)Sfn14L_f9fh1eQC3X$B5Wc}x&(EYz zo@6~gnR3ei=k?s4&VsF_qZj;bni^Z@he2UGfW|4M{X>muOov67K@c#s^MoZ=_b0R-3y3otkccZtc4CU8bk1qY^f{ z`WcEIL0rgE$XHsA-fM&LHcHSv*onkWtqUD*P|e+gk#-WPS4JDUW1If+Xso0b`FFfX z4ota{;<;_^D(shXfhDYGYYL@fR8Db9h+Ula5b3);7~CSr(8`g6|*Yk5=&Uq)(w=7sbY9o zBT+57bj*FJ3z4LbxjW^QT{`BDwkFZ6W4KMJbj%8k6r^K%Y}r0c{xW|gOxIxt1B=XE z1AkLKHiu@Jkf`h8!;R3ihd9wtYNOv!TQU~RXs`)7EF0Qd=*{Y6y`4m>>SPO!XB0GN z+@VIco{?&uxYS55N+PwcU1BwoPw5!7QeSNMRGMXXe*tw*ojXbG(Iw@SUD~6gokXi2 z37h?`(SZjCn#;>k*V9R!)Sf?AT~AB7RFbXh&Mk&FnseZ;@yV%6kYtTdNIB*I^BV8c zJVel3W{z54s;~9BluIVrTJP={=xEM`yXK>*OOa&F*QA_sD>dJS*L-tNfnOJGNTPYP z*lb6#m(=J%z&BNFbJ0N@t1%e2&vN?@zhaCTw!`liJ)@fNV{o8SkY8y@h+) z+Jc&U3wPQ{{4ewtidtsfp-tXTxn5lFkTofnRl=&Zo~3k*dZ}-3Ym=7JyS2z$sk0}k zMOLSrvP+A+YA3PfdJNr~-ybbY%~9t$Gu8cuOiE&N^by^4-qZ00X_*gq?YB!^jwEaU zzs*(qZFm7Rze8Awv>}P+cgSsR%}D$m^7WP-(aLm>U`k$%0G zd7`?0N?+HHr(7t>*0poeyp{TXBy|CjtnUX?PPvu(Zo~V#xeLHAgf=A6+y&U9tr>}T z0d~cb;w?9+RT7}lX1Z6$n{YlWeO9XaDPe=FpO)xLvT2cSqG9JI&!K@R%a`O-RvL+% zT5mbtkea&%|JYU7Y9(yJv1h8CmYH|-4+f-MJMpYG&y@E|xwH~iu+@RmG5ZG{?QaWH ze)l(pCw2ZL6-w`vQ+6qo9(EF2uA|U}$DqwJbJY1uY~`%B7QR?e}(!CYU*Kw}54-OOj*@Se$aot+aqP z^aPqa6Z{%!LlVuMiNBPciQTqrXCl|<4W*U(ytIp{<*JxRQ*N~hn_PXux$CBm!lru> zBpC~4yrmM1MnBZnw$t2yc)(8Lf1&@7*O+a`TjaBpYsA%a_&DWqN?57ZE0m5=C-sH4 z9%+=^tv5bMojFOp@ovf~yY$A}b`o2z&rrf|+s4vz)N}D{b#I}7l1QyTooqdG57Ct0 zUE8^-^Cwx`St+Ode_q?2n)?Z@)c9C^jqjRrxg=ZTyn5E12Y0QHPF;p1YkgG8DYsJV zZFsRa_YL?J(S{_N`v&*6RawOc8rE*vxrX*$8fXa7GP63`EX>18E&B+Er`&E6HoE$~ z6(bGaXk5S~hZ>f&wJ9}s6=HT0t#%c*+Tz`#E>5|$64tPFDy3s~ z7>8NN05&2T-x?oM z4pJK*N!ZF%^Or1@(MA(|XuQ|fvToKM@7PJSsy(*gKxMX_XNS^A+c(v^a4C&{QZA%~ z)oHDxbc_m#Z~En`iqj5gn!o%jb=o9V#UClB>{1oK*-31bni^@8&K5zYyAxMDu6Gn{8E4@z08}TXx8?81t8{?f1Pfn8rdG*4bWkaA%qtX}JSO2_ORbZDHs zY*BS_`sPl;y{XeDsZ8!lIc1kJx!q1;%XJbuH_iGr7n!5R*OEx7b7j#X+B5>%M z_foDZm#%pyLurgnxf)zbW7m|6D6!HQNa+~WQJ-sfQ0#h&vkqvQ85x~AYmz!*RLUv4 zbj0wsCef@TxYek1M2SWU(h3m-QmqJ=&iE(gGD@s7)=@e}eZ*I1 za80@N#9yh?CaEX>NI7Mfp7^b;Ni^#TZZ|4D@uo%!(i5-YYNsu?3$sfPNP8sN7ipBWSyb+l&{aE$E|zI=&%;=fUinqCtDQvZ zRkPU-%xkJLS1~yBOj*iR=F&5zDVJNqTDN9WIz}DU_p$pXt=Fha_Z*bEC`sy`{Zmfa zrF#~%HHl{3!|h9@dq!)dAl-B6mR&@eMcdVI3VX}d=vPn{Hb*CAoI=gS#WLD!f_}=% zww88tKjmUOiB@&W7FkhCl)+lGohnzBAJ|J>5+&Ne1PKs3_Pd%77?}D<}xU z6Gg>cpZq~_#fJ|>kVQd7Q4j=u>i^Wzw{G3Kcc$vxdwb&VXLmwozB=`Nr%s*Pz1FLf z=YKFST~q0&jFBf?>A7N8NTAvWo*7x~r2t`;OX;f3ZqxPGKvjH^xdobv&o@R6Q5?~a zi&TJh3kV3Y59AuG>k=y<6t|6FUKEkoP+fu zkr|v#Awn~Q_H`ZIQq_I=!9~W>D1FC;##{xe>l6V;&JWmDQptQZlw4q5yk;obV~nhX zk~$Vbgc9aQkwVFiC{{oyIjy}jpFQp_kC5GD--P;@B|L#1*Nn2N(%KiGzmx21SQSJ} z`3i;D2VzP~BC(Oq7gruLmPm;!j~Me6sIv1Tz>(t$TUAjNIuGl_gZh~fPdB7N1 zi7oeIAw+Cp{uC*;+!4hJh%Nu!-ZW*gyj_*-RSw!icJNv8M3~bfOk#L?`&V%ipBJCo3fdU?-dK*+DjvQu9P=wK1 z%O!^Cy-9TumU0nNE~F5lA*GG;q|@Dc`@+Z##)>Fm^Qcs0%}k3LvsT( z_5Qvw@`UR>U(7g$X+G)f$eRDtm>6Bn*$K*kN~pU3-P{OG-T!8c9HKj-dlwl3>nIQq zV&?P$Y(ga0 z1CHT~im3YEVQz?~{OnD4Hcgg!{}52%q@ z@Cx+4W?#^ZgXaFv)|@*vQZu1=5vzoleR!TigeDYi>|+85@Wq(}UvDatl2t4P2(uI{ zP-&+NaOA9l^)UgJP-Dy@b0aik%zR^HCC1FfLWmf{d@53mc^2#0JjVRGy;GSps&=hW zg!K|-&*x5{Gmg-*AwpLDl@z<|b%r{wZVR3DSOuPo6b`v_ZaZeDNDh!&RWqH8(~` z8eHp$aZ>jbkTom-gU!-v?n5GL=%En%Le?F;{`&Ix7H2(xu4` z6nL#y-hbmgx!=0;a}wsk7F9;*6RnA@SL{^iEVA?hPKevvz{t^)xf za);U2ityZ_+TQtwS%uPWt5|5AW|vNx{tr~eEMx_GU9@#kW}fCW=FhO?i|paY6e2Wx zXkVAo&6QzQ_w^<(8cU;O56=g1b=Auz?Kg@1Z|A7}FDX9M8KQ70wenc;E4ma0k&+F@>tW(+#r7+HxyeOL$)gP4y+ib1_mtbiDFY@72M zcdb@^%khIym5I)4TFZOPI>~_pW<{>Xk}vX_D=EZ25N5iis`~=V*Nml60?Sv7xe5*} zp8*_6mnKVRB=glF(jDf-Ylf2Bjggg5avK&xgc9aQkwVE8QLKPavZB4m*=FR1?A)$N zS-PJ>8X)}xDiTK^iLxY1jpMdS?ivtAUc?eF!pQR!Vjl=2Gd&ge1(5^aXex^mM3w@C zSzZ?$M7jV+QiZR`dW=^?$RhK?HABdJV`L?S%*8^85W;*YQV4k#>&e6l2qBNQ_x`{+ z?)2cKtW~XABfh&kfYUhQ$mR&6AlJf{fs)$>1e0^Hjv#``*%Tr)n6zS&1uk3emplwMG8b4%RMxy59m; znYBzs_nVBl(bb*J-3Ql0RsYlGc4(^qDP!abSO0*Z6^}p3CLEQE+D%$Fj?l-W_Nfbq)p?VUY6K)%6e zjECUf1Qjz&kOG}A(uL>Vi(kwhgWHRhMFg4#h1drI&C*aBd?DvLW66||bFDFNfvP)~ z0gfDU*oEhzRZ)Y_HRh&h2A`{pk(J={ek_CtKFq%&1)pjZD>dd^ zs{bpfN*v)P%6?X>My%6JWgf(GFCxq@D8xPxVL%vBb6-%Iw9`}=C8+$ysW6e*7UJc<<%M{a6w5;M78Efl5onv;y3 zG|ySc zvde)&Dx!8Vi_8tt3_A0Tk(Hn`7YiYR4)d)@LFZYlhx4G*+1{WtKUXZ*Y;puQ^gPW@ z;5CkT6XkLsZY48Pa}MJitUriYb2f$82VzZ2CNBZLICGJ)OiG-&(3r8{I8y{1InJ=l zfr3=zMjYx6RxU6%LNmtfF-BHmOdSg$Vhr=CNHJzd6e}RH`AK_sqLLYnhBTw`O{hQ| zAtlm`Mq}Jl{a?fKEF#EPC`4!kY4eOm!xu9iGuAN`r1 zc*wj|%^>lBF|raQ?xzs#OGL$thF{FBw z30GO3(eNvMLUg5%Gv-9MB?ruC1gO2rynIcyk2OXPQ5(@~i;kal1qcW+qj3i|IPt;7 zdF@>iJrE8t+T;->d%&W%1CF&L!`OiXy{{SNNG&zDWo_1QPX^YVDvGoy)zs=atKn-)&2_V6USgA%9D}aokMzOYahg_AmYt0D8xPxZ-_*0*rnC? zMVU$GnM$NYnSUDd6&z)r1{^ucugdFUHHp^sA0He)DeB7BtWI2vPghrM&&U%1C za`kr@&val0!{u-!(;4xBP)U9H&_S}IGF!L z3LM{yVg=--o$Xz5n@$H&ld}B<-`=64tau{F`Urc6sBO$N$x#D>M+VG|n2H`jA@+gb zF+u@_A#fg2Twi0Y?ra>@1VldNq*TYF@f#Ai3EXSqUUJQi%5Dn*3^h zFJnHv9|McbTB4%&BgVYw>g~On-&+S&^@q%D&{X{aW8?`}-E%d+mo=aA-Tjf3p8*hN znU${c{;T=D^-$ICG`B-j{i(*tA?hP~evv$|t^)xfCM_<-x-p-$IJv!Jk0tVYTj-mk zea224=z)=rF?bhkOx_*cjP)&%Q=CE}LUW4tbu^1ZNbtp+^Nrf}wBwxsA&5q<1y8~ZwgeeIxMf&SNARNie@cNgqED|eTRjZ)pV ztJ$hm+7)u|ezUV`57jr)l{_m~&sMCeHCVMOLmcrY ziWnMAVjZD82~}v$-chck$Qescx_m_KXYnxYd=qfwmOdw4FIO@-Z^66;eH(t3(feac zhUNSb483r4g`-QabGHj|FA}2JSuE7**+ShO=E~edk>U*Jl>eSH3bjIMFkFHcpxhXo zJwSqa=_)OI92K5JQs`0P&sd0O;1`)MBt-w5wdJZEPX6LtQsmD~=b+?qs9ylZdy{)a z1L(m*Bu@Q|(5Q1lVyw>u);*z4i8#k$*%A?F6&AuzxajtEWp7UJZxoBL1&hQksY5Zx za)ddb#=z6!e2W>{>AAI`-gd9|3G`PDW~=Iy*?!+Y9EM)Z0GHOBN5r`N|#Hey&3Y+ z8WvmvKg9ZqQCfA8H|Ub-T<$`=4+){>4ey~y@w466w|;}n_E(`KZ>BJQwF6x{knK{* z9>|anmF+Jhsq(P>MJ&V@;1`+Z3DG=_yZzH}8SZAL1+A?43YKDOt8;QhAe~3~i4;iZFpAsP4RvkbWmoEjT%k5B z5&PH3hJp>IfJtV+R^LKWd7SO$d%AHqWTML_iXq|;_OAM0BX5WGBYVdv8Qw8Q{uinfLzHbUce97QT`LThR+1Zs;R0JLJK&Zp zb%FuO!~bBZ6>j!33K2RR?#zS%X>(e=oU2!Dd-TdtKG0<&+}3#aB{I$J{*XJFJbupF zoC>q^(6fy?Pl6rIY4FEt!LE(M;JL4P)c6ch(#U+1RVdlj(Mv}An#XGX7R1rIJPN{|*0Z zPRm)4I6*$z405yPuAu`*nbDVQF+|Vz&Z2o726fQ7Gog%EX#t zIR{H(-Y|0%2o^_}ImoYLKQA=f&k7wc#$<@+^hX+?96=#MnT>y*Z0Q;}24a`;sSS-% zjah>MLt=SbJS;mW0ggmub5XjV*^p^HK5i9B(oj>Ag{{#UJ{1cgy6KG+ zBGk*VPQHM2r?L!+3Nc^;cja5~qIpj;fUd#{c}$4}Dq+J6}nR@@eThEmLLs4lGTA z>D#doex?zg2OOnn>}-5<@4~vwlfW! zkgV6vC!Vp8d@Lp(OUcJF@^KLPIGB8-$;Tn&<1q4ZIDFVnC;UDg;5l9Jr>5Lqof+`o zE_G(Y=ewL)^v~V!xp|T^oBm}EeC`}|df>}>1;FuP+8Q=YdyVce&Fj6Mky!^p#H8;c z;IbwfDd0W@l|x$rBeVV6J2LCq(3*mg2W6)MnK2})&GCbSG?)mO`Pqn-RYcx(6e2Y8 z#y={XwsrN6Evwha3%yP}lsaz!9EmhI%MCkIidKJyeW@AIU~~@iSO}4eSQH}mao5!C zxx%&)nd{4;s2JQgfa@9QTCPwT$C3P*32%KT79x43ca*ESA(`ph5@Z^-ZRdtE z^iyT}7A#GI>6@?+$ur&8820=0eF-uRQ?20B^iyT}Cs>*U(?7&QB+m3qh#s2@b#gqQ zT9RG+g~SM7LW0PyLOoL?rIJ|U{zaw#IV^XA{y$?O5~qI}EOT0=vP}Hq!K9-1EV8Z% zWS@{A*%ew|hJC4IABSa1ki7~EkvQ2?Pi+(n zmdtfFF|KE%9a3C|eyU8Li=|00{RS*V;!O9fhSN{5TVgw`ut9*YCOP1jKJ6MRs`JTDMF4fA_ z4aM@F)X_5Oe@KkW{zaw#DJ*w_{@-9B5~qLa*4Ovhb(!~BLrEoz zGt$F*OLjd&KUJouL%|VK#SSb);!ICj+qYx0O!U!-5#5!}mFl}PpkgK{EsKb{hV}x7n~X91uMi~hha$$ zINW^{qK!F2C!6~{V~3pWzZ4I>&QpLR(bk;H=Y6YnKG3Sx)hz#o=uAF`g%FMA&lDo| zd|}GkGuN$_={~@TCq+={hFQo)-pY^7mLd_ZO#_Iv={BchZoQ{=WguFfq(Z-N>z*bo7BPWjO(M^8R z@GQGpgM)^0{!)*JQzr*Faui$!n_FEYGOeSAaMvm`Ldj*$kIr)m3nALbE(#HQK%BX5 zq+|^ja;fcw3t;=d_ZaO5pu{-FPO1X4(s@>DrbbIuC?Cc0C0zS`Sct?aU$|qWVy9pu zQ)>H=1%FyQWaoDIhfa4UM*gBSd2A&Eh+-6j(G>BPvN?}mDMwQacwtCvu? zB0vf(h?ov9!$Kr4z-qWKKC`X>o65+IEd}*ny$uNpV3ES}zQPp&)?(QcE#PD?{j$YhpqikhX*k8QM171J?m^+>GT?$Z;bU zB5^t9tZmfldFXs7GGZP& z7YpI17%`_Rre)dG9s)vGu^Bs};nT9S+dD1W(`W523_{lhx5B|`Jhbzb|ssKzH(*BEjtTk!-X19wlwV+ux7Ot>nNf*pGqOxIDtEBEi}@>ay963@Jc-V zI$6MxxP#ZBb8@jtXdI5trGteKEoP8H#6C$odwZiF1_zBI8*SAU_+5a^#h4fJ;S|UFOcs0v0Mqd@54eQPWKWKPEN6luz4+Hu>F6DvA@(4 zSca$xV~x09!ZInucmWHMxEOQz>SyZAQl(HL>!MN%IA}Pj;669ampn5Kw`8STJphW2 zm<}(-Linjiq9&pzN2mXxE_Z~s^yFS=o47o(7W`)&3L66xy;V@ z@a{R>(a1Ag&L054AvcpdPm@2jUbr0pQgU_yTOYlDt&d&$ezvjxf$u&wm${oG$|W1# zkb^VBwUusd#!a?&7@NTxg9sw0QwT(|jlSl3){d51Rk96FiVPQlHF2bUWx(-g+b*ru z;B4f==wx0nHkone(4OWXJu>Hv-zq+7OfvVHr%Ah^uke1%n5#hlcT}Bbk#tcsXfD=$fDj@veK1N^IL8kc6+01W6L^8|Mx*lF$ns_NOVi%AbqG|6* z=oO_a%)Stv+2^njqJ{mLi4*rrnvw)t3jI}!zB}UGI(9%QDc_bQfXi`s>52r4!GwsJ z>jEr9;u7?DTLG+M!_1J}22M&$fO%3IV6##I%W@}Rxf8MFI4p#penbZ$`WP1B5D>zO zarzkS^AKIIeXv?d^%s0^2$vGm9-a~;MP_J`N{ict)k{b|goQ|)?2h$&EqKPy*Ua9R z7}cF=yH%h<^n0)@38LSPh42%NXc(exu>lnVLRis2Jyh(ZF>mb6%zDpt6Nbb^&@B|nMWC#&+&}4`8#)XkUf)(R8OeEFMy-z&pU54u6Zb8AY6w}&FM;6b$BhWzv0_(z$#%9kb=kRs$(om4^q}LP`wQ2AtQ`X zJYy=gHqz5!`(q(Qbe+UFi*E$ca-r=(E_5Q47VbiGh+_bA*lti<5bsBhpVA5(9 zqG`bK6w*{^#ohlp#*q89RFg;z<~3Lde}ge$inn}`6tRGgfDl&v8r!W1D_G|p$%=19 zu>zXc(`{QXp?$*K^?P&VY4&m{MW1_vj!J5lH}GbuzZeqOH#84%*D=KIA-h#{);${} ziz zOi-(0EKkE>AlDLl?t$*Qhdr6OU1Z7{EKxF|-(q% zgeCGWvb5ey>~1AT9WVleYm$7Cl-10nZwZW~0j+#7ZRMo08BPrhznB4vKXp<&BP9$| zu@H&+Q^*i(?#Z-ov9oRvln2EdyneHU`;GcL<9m;DARysFUh~j z&(!*p@SX$GjG>HR2(~@8Y)~BNWNK_A2YMYAB0&dY?9Ye3qE@KE)!@02RH2kwU#bVY(HmOs%al(7(rOE7nJtwtuVAR*nr-{O`U!ZnHU z-;;(L3|Z0cDyP~ZUxj5(kpF%xgr9tqaKODtjCEKZjDQeUd<2_W@M-7=CbxAOy6d!( zonl+4B$xV0JTBGjamP4fuhzIz&OgLDgYc*CQ;5(JO%gBSJ_1FG7jYK{RGe&5gM^m6 ztUAsfHu58Z2=uB+>ABUvl44&VA1}g({~6Ujy@yj-_O^KudoFdA?sKU^Q_o|mPl6e! z^>)z?nR=1h;s1+b1!S!+X&za+YQIVQO(OrJ)7C?GI&88VyW+QrLSWhj!E90L>;hb9+^DD6CR*AZrp~g84O^bF_;z9vq~WGiYD#7gGbO{f)RNvYvzwWs z#F1}cnHA!E6$_ELINht^ImlYb3gHupDKQ(a1A%hgacIC^!$+~43ECgVLilM%WUnFt zW}OHELRc|QSB_meIMD6MeV2|0Aks&cs4!i-OLt z4jogK;CyRUV(J_=wmM_vU&mr877h3)3K2S*2+eJ=4T7d$RzB}b3eHN5U4Aw^pI38& z?a}GmhJ_GLz7-20;vW-nUyOfqPZ_C{;XDmYN~hSFX*m;lM`F77q=($1GwiH%K%Bc6 zOTK79Z^1$c7f7h{S>cAc4P;a0o-#bj+{zT)C2eI;|Cz)jIa~y~ftEqE1A^2w@6*X%A9}&`ve}NsZuB7L#i6B$UrUbtKlB zW1X`2XLSDlj)f3yPi`XLY>z-#&4+k)IxztbPFGw*=v}Dr zmJ~50Bm7(mp((H?Votvd3z4`mFiBm3i4XczpB!E`Bqjoxq=rI)^QtuxkX)?AvLzzP z$ykWw2`BSRt$;4A3KS9~913+^TutZ)uxts!b6AMP315;Y?+?(Zlec#l;Q2Dq*1d;x znu*cBG)+xlcP~>DTrC2;|57ZILX1nW5Q&SitgkWL4;QJBEk5jMTIkiwwzOUtn`08o2xAj?91?zf7==I#P0^F>T|3A&F7+O+v$#+Z&jmT_ z0Y@UPIh|a!0YwJi!L>a)iQC2|G0sVIPa_DpgKM0&Fk(zG_m`*Pa00u9Yqv35fnFb= z((KkPTsfOHWHq0!nHR2k4_Cz)nKL5-=`a>TgmdOck;3^_YDK8Wptn?u~GZRLGtS<(lPk972%YjfF^@ z><&1XTDM{6ofNWPlNi;V>`f3-phEPkuq+9pkHJFtiAMCZqN`>d1_DA@F-}*F-BA&C zo!MYwf{%TjSstsGkleyTBu;klLfd7DQ9af|+dHu=38LSQh42%NXc(exu`wwELRj%~ zY}dzUH6Cp5IkJT;|AT~ZQwg?0xbL({5&JvwcvUmwo~^3dkaF7jEZGUNk|lt4HCvEP zkjByhlMvs;`iyY9uTcoZBm_1_PTsQRtgRBckHtf-^Hac)7;8>W7xG7|J>etKX?q9@ zA==3U6e4uEh~{_emQ80!{7%^&Pi7a)?=dRBFM|RjrgZ<_XZf89=T80i*sn;G;bT>X z4~fq3ax8@3gAtvD=xf(%}GXE%h5=R1cPo1n}WznnrK z@(}bAUMJ1?l=rW;bDg5DyRQKpiMM7~nz9+Z?7l5JgxT}~KtGU!ZY>dn~5kb?zLWusC`A($%_f%>{oL)xn&z*8+ z4HjmlUh-xrDUL)|^?|9dyiQ6}7HV$9QY?DM8?X>U=!7T^TO#>!Vmyz%L~<{dDM9u< zSct^Q4qhU8HZiKlS|WJ{%aS1aX)J`FXhiH0;frMt2nb=t!PtuM%=4dZ9X@oeE9YQY z1g4ARt;9#{jU_aCZj=+ZiRVR;QeqP@m^ci~Fw05Rgb)kikrWHTC4G0>1{1WWTd@fq zCfEX-<&RInpB}sDgSFJ!My*~RhABz7Q+q?XIt(v+z^MwUGdwFM#h1E6Mxi()MC3)> z`nY#2ZpSh$0?9TCffxXwN8qQyL)E(r_8y7O-SN=r*nlIo5;zpvVpvTtYSHYa zq{y4Rt^}#GVGlv=cu9$e5>sMPdZ@gIzRT+>kRh8G0*)O%fF)6Q`u$i4zYd6eO{9FR zy&)ik730J^Y{xR6p0tDQoaBmaatdA@!A>7ZD&Q?(r|nqj^eAe`h_(Yvh?t^H!9pZ1 z!3?;+g+0XPzmv5$G3IBI+vP=}N*{A1mMzipR$w6#C%of~a)Wq!MT&T*Cq{N>x=ISn zG%9LW(}!hA5WN`-;U^jqpG1gbDKP>L*uR6)wkHh8&G>K-t_y#(tZ!pGi5A=)_LnL)0kXkCgRwbL8pVb-|@a3tp7 zqUy1)q_`nEkDtUsh*t733K2T+!6pJTbLGlNFyr?^iE)g0RK{mPH&hvMZ=O)Y<2_iu zgzMggg-D$8DQCfeUJe`2Bu4erG?_jKNV1>C@*^nz9Tvh*F{1krJrIjg2nb=tMc9h) z9_Zhwc~$gW#hlitI(0Ujp0B{LT8fm1T@XvVZN9uU7qn8$wzWpn?D;iPvJ^`LdZCwt zH4$_8gDFHCd!cUk`K=V4HjwDu7!SS9D!`G*YtBx)Pi|#cxk`e*E;^g5u@IuYoJb*J z?~8h1L|J zd+ogY-d|uFcp)(v4oX*;8JS^XhI+MTab6D+gTvrg*iT4|^;vX~m~kIqS0ev$SiXd> zufjqkPWfE%Ec+?26at$G%{PKSuKT7A%88gg0X${30OcI>dAd8%!f0gcS#3yDdIla$tKW z>}PHycMPW39d`1(+nw=vR@2=!vr;;rPcJvjvYYH`dBESX{0JBQ8x|sQiaX(MtK3kpQ;^5qsW&G@b61*{m?0%9R4;>KBWAfv zun>t;-NC3H*eivNwTUqeVS{L!fdUnxPsXw&eEM}*2tUz?Zdvr~EchcJgcbjVZJfMk zf4FTo3)9`mbI%^K>ZyF$u94lysnz-XNs>doDISMv9_FruNZtD$C_PI`&yr2Z@FLo{ zUHo3GqX=JXP>42m@iXDpk`&xWSIS$}yqrE=8xOzEWq>31^KjQfOuWQ{Hcxqz& zFM=g*a$hvWcHeb@ivMrKawtO1IxIxuGNiUPiuFR~EW4D42Y<*-T7;9Zu68&vJq}I} zQ$u!BL-=Lh<8-_ZmQ^9lAQmEVVdgPOGTSS5t}sx@k!vsH;B-Y|V$4r-8EU+6asx&{ zfVv#Zo)F+NEJWf0EcOe~Y8?j zT+GmWU|=bX1}1jbpwds=hviR5@DnVAUjoFuhnPBHgK7kXu%e1h`1sVx;qBc+I+IM8 zv>un1+xM*hj3x1IrrcQ*v450Ilnhki3=(vD2A9-gtO*mI01DTS8tj^%SbK(<7tvxB?3yTF4<3BKFCWo*m>+EBC3?8mm^w$^Lvg zlpDuviOT!DG#sdfnG)vDnSNHbLVq8YI}s)~V<8f!f63WZcukp{n{P?b+MO<|P)|&S zr7&kjO%O`7wy6iC4d-K-6k?RH5Q&R%;PxTdHY%jpG+Zg#pIK_uU}t0NrDa)$I}?)u-r=GJyXUL|TEmyHtO?@3 zfQ3k$_|_Iu;C`J|w^BRc@#Pvl?Y@paeJl&{tHgvjIL&wV!oE^CGHPYWE6_F18_WU1 zJcwmg2=fapMB>66u(oK`YFvv=C9=!|hYq&d^`WwFg=x}TlIpvcrE|;(szZSrks0Pj zC?V>fST=3F357X^L86bYFo8DT&DL!oY5%yjyb0jlO+vnAv~ROn@XnAG9^=` zrYPd1z@CT$g=JWX#KlR$L*?5>Qgm7jw#m1;kyIwN7M`8)?^fNAm^25Gx60wzE}bH? zif*?858^R16j|0{ITdZ@WGqDDvMgz}nObUHqf#v7;4*;Jwle%dzAw9wm>^5two=RF zTP9>G%mhV@0W6b3j2sriF9u?!MNHPPAw2>@STO|~iTPyBk`8!WH|!d%&=D^Bz;7pP zvCJ1Bjh8c)kH_O#%>x1^YG8$wmncm&1RU_a4(k-cudbyKp@gmoWfXhsLC0x9_v(E+ z9zLDh07qhN%zO2|5uLxUVj)C}_%ekEB^vFz2e032kyM;4=|nLSPr>Qy}A5&GRt!OdEvi( z-l+2u{G>x~Mi0EJenoTg-l{z?+I(4MWVAUAk_&=4YCAc2y?p1WW3#V8`qglrgYQ1) zuk`b2f;{;mlJ~J{_oQ00J}G#*r)1R|RryM8^24=$lYS%kT6Wd9j-m5_KtzVqm?1Qh zed>%x&uK!}GNpgskJiO<0*MMCgwiW~?O#}T6>;Dn%w6NVeULlloYkciZ-A*rjm#HH z9(n@RCc1~Nr8seVsIvedvHnS_)kwtUUXiv+;BBplMi%PA{ZHNWd>l0_lC!PCLL}&H zED|i{R}#Cu%mxT5WF#x6Pi3e;GJVaGbdFw%>_z}L00hkR6tO&tc3;3k_@yujjy!;g zyqxuP2nb1n?jo!u{EA%w4gkqH!EPs@VeQa9?6?Nh|# zJ)4W)G5Xfg3r8KAJ3X416bF#~wKVggyQqlEdu&kTco@s2aQ0tfArhD4RU7S+U4?18 z?e!|`34olGNV3Mt?SdT;Y$}axb@Q)~d4-z%)};EWRp~)y9h|h_))BG#eb#0C)+rM1 z2PQ_GfBn}!E8)TJfdHWwT#QjGz=h%g>#Bz(Cf9OtPQbN<+?3(9M3Ls@(WN;U3*m2F zh}=M=7py}=KnN>XdVzotRYCC4#hR5h5NCWlEgg&I?Um#!-CSuB0RyFY`4NL+zMt5bcDxr^1bR^*Wy z!cP+uVR72Zl)wP7mez_tst`ZIvM7Z30Tv>0Ar`lqLaAIIqdELFK_yzv0W27&N&E#% zqfp{cSct@xSh2=}tC4b~XW#>g!UgQn4l=`>T0a1T2Ur;NEjcf|IH@>wc)Gu3P==2k zxIt{n+ZF~Xndm&QD&inv4i+MDp=NF^!_bZ|cFFUM$0w%7tn@IH+L{Iqm|J``mM_sZ zUWtWBobnZ0t-Xce!Ud#p(C2H&$hr?&$8OjU&S!kBVxcZ?$Jm*e8i%KcU4z6TBP>LL zLGA=FGe~J0=U`bDLY<9;@C$_)+=%fJ%bgJr!is)uH0I-@OX~<(yS4%8~Pbq4YRL zKPvf)(=ffzsI;Cx1OqZfZh)f1|6pkp{`@mWV>`BFusQjzZO}`@QPyGK)nYFu#_05P zMHH!U_0BcaN`@cc1O@=eaHmtdlJuXsvydp6%7Lo^3c=2$bj3{1do|j`O6e?UsA@+p? z^tQwZot!S@k5Pl$Ez#M#2@4^7_|r^)xV!3Zn&*d%pYBVH>e(#U_Y9&Gr~L_*GvTy9 z#6tLKM|23HPhm|50U@kleF_3XSiwe+2nb&!Fd0}WmdRsQ zQb=C-_E<7e&+QuIl-_O{`&SMZv$k8RG{6m*8JGu_L`+ZTU?GIAv#=0cSEtRZ;TsBj zQyZ)Tc_kvX!>-kR52&w=N#4N6_X>Nn1FYyQJUk1hfyR^gWGuNNjJ=LRw6X8)hQzXJ zpWi4{>CFZ5`}DbZ=ylEj9ErSUHyJT|%2m7K^P-cv6AK~Q%Q+MxbPfm`u)1Ihh+gC2 zdmj4|C@zjkAC>UwWYUKe8Tdf<+ptUt&%Fo>kvQ42Pbu$7)yt`Bqm*I|**nR3V`7xg zNe`9xWa?!&MqSFVf|bnY1}tlW_)lUX5+{BpAIGk*R?Ag+YWd#8SSPO?({ZcKN>wPo z2g{eB{4Oj+;*`U-8VIYz+pXHJ6y)5gQ|w|zN{OCHjQRzztp-XbE)S)X`Q^+IDP57^ zX)J$2g5O~w{1PD2WReT9UEQp^MnDKFj>lGnSOKT;K7z`$(eofZo8Trp3+{CxFZ`5h z^fp(?y$*XvEM1uAkso%HVQ5xc0CKbziCNQ^bP39zJp~^ zc+@v3L>oJ@dGxNaBAvTohtMkpITig)Je)c|2ONpP=6txL6}Y8^!|pIL?j?mQndoED zd3^*6A==186e9M%YwEf(9DI|{k91rTPgkWL&fyRiLU^^!WQcpgc7d2BrsqP)({Q_Nd7I$-5+i=0XU3Qw3L$UA zk>V8*-h*XOIP$x(5Q&R0kMF`E5#@B)2&3L?@`c1CfGmb>zJbCs=eva~0{j=2Jt4s7 zun>L$5Q7CV-eBN;hlQih90YVg9LcOK#aC@zjZNTobvbMyUJiiFqRhlS8)89f8kP2W;r$M%(- z`Tv(F*TQ39etD5N(VQi(79?jlc|Ms=TL^f_us!6Cadk91eI_QhvL{eOiiG zkO2$GO=-*mC1xxJGa_cL3$PHvn|mlk>@j0eO9~M?0y@K!5>sNatHh8Syu!Ayoq%Og zxcYHeh{T1U+g(V{nObM(%HWIsjcomiX)upYe3H&HlNV(x?I4TgPSAfY79w%_=d{{E za5ngk#K@oPHUP*9!#w|DEN_DPx9CG$HEGg*lgR&^!4$c!oqIy!8m#afcOx5N;A%}0 zk_&J$5l*6&Q^C@FCNXIahY_}W0FLa8;e7-cM2^Ol>CN1v*#z9sa=kv?GRs1-PhcSu z7wX{Ed3vcGISB*z6xH4PamaR1Mu<26{6S(0El*q261XadS>oQAL$-#7NOL!qS0T;! zun>t$lRA57B$Y3x_SmVC4G-jzZLzSCto4LKO}_Z{}t|`N_r^kER4s64Ko`+ms*9d$7C->hHorBu@R(Gwe)@eR8xMdZ}O$o=HrE1JZCxuB8JxV-DTZ81oEI zW4RP^{0?ES5n; z^C-<-HPGL2E2IUwfWrna2g@RkBMznzZCt#VL2?WFtcw2%kd5*1?5qMDiMi%XawbR= zs^pdHqVu>K3n5y}i4-FCC5l;R*l>kI4RSg4A}j}rjALn2rMw#=r&O#$`XH7u5iIjq zh{Q>sa|XN{TCI^gm$%yWp>kdxSY4hN?~pdMO3n=Pk`?MN!}2DmeH9NJ|s@XF4*~GZ-N;hh7Avi5j@%wYJJPE4b zfQ3k$>Uk{8)Q3ry4%^_>O#R}-Sf9`1jjwP;fVW`T69T*$3z4`0a06CppfK2g9TWax z>Gg>*Pj0~Sma0(x2`pcN@{eL65~q9y-3QuAE4&*X?oN#Hnd!V$x8M~8mPRRre-F!+ zApAR6h{Or+Ze7Z<$1V&G!LA!G=YL3y^V#XvEiA2a722P|awcg14Hm*rJ7UsP%$u^= zGz5gO;y`RJ%;!yiKe?^*rd?#i%$cRaz=*sxCf$rBKlVKH0mK))ezr;c$PVeNtvwZG5`SPUrosur?&gE2s z_k$86rda=qi(o`=Avzoudk_#p=Buz3;T_KE_I5Z^*TG@eLHQw$6XJ28X1CkBuscM? z?LCf*?nkRAL}>5fJO?*1AO6-i68J z2bcTNVCxaPS=qgY1psYlnoWy$&Lg(;laD-n*iI+>_f!83|8u(FPtBIv&J6h5rOr(F ze3vte{<#}IH&1eA)4$AtPoSm;zMMe-YB{1v{M$E+MG58ErrrYO6*l4cBG z7P$^)C0r|56G;V=y|-GckFq%Yb4&Q6QQq6F5>6JvNFJaEW29ErZ>TzFH3mOR#Bgil0g^rKh^(V=~qLc~t}LNc;} zN1(`LJDd;+7T|6uI|la-5MU8q@^H%^ONQ@ZITVil9V|rRGIWo1H0KYA(LXyq?ophl zu$&3ne}jccoc4t}C!=P)Cpqtj-38=i*7zr)rh^fvE?daZfrUt1hIw$0UMX)C%OyJ` z0v(;02J_Q!cOEZ%tnkx|WlsojBo-oZ0p|9>Q5LHoo^1&30Cprse-Erlv7*N!|8y*K zg8V)#MB?PnhZS#_>MPi#Tp0g*661dXS@~|2K9&S^EPq0R^RW+zqEdoMV z@n&p?#wQp4I2i_XlQ+9VU_SQcBjK<+k?;Gq@@{bxQ&#& z*8t&_6fEW50YjIYvHl@k>_!UFMsDY>Cg=ai{jV;=(k$zb<007j2H;5ig-v4L8=b^^ zkR)QCcAUC{bUpGrn$IN0+tf7e>D1}dr=v6XJ1m5VEx*M=hzQ5@ixlDRif#pKijl0i zA&M0+L$tfSC)ZM28^wAd!`2SnCBxK)sx@qr={b2;a_5Ys&^t_Q$?_${ z*2-blovs`|8XpDrMI3QtC`4#9j(;MlYjwrS4cVz3XKj_D@b-APcGdun9EGQ+Em~xz zzI#{=DchoRxD^W_LdvNWBKE1H{a?RjwZ!snC?}3-B9-OI>AgiurMHIVMkEXsEJX73 zZuBiEelS6L2ZPoVuf}pC=)DpP;inhTkBAPD#UTWQu;K`8MR>~pxhZW;`RATpwJPMk ztdP#uEImQ65I2xh^Nz0*`ASxm*A`#Jm3SL zD${eI;E4IrEG$IwOz#*flyWlDuTGHZIw=mGOoC69=~rTD5~1N}EJWf=ckZxDwQ_Zf zFNmCz7};~-IyO>bkzCTs{-9ERHkL0z`3@{Z;*@vv*^O#>TUmas^uoj#57};b0hS=a z@g6LMpJPOBB+@I^?;;?C6?bF%9G+f1+TQf4Yik+qxKvN5eK8&%YWBEkl{jlL?)2&B zvCbg;=~fC6nn5M8ZR@|GNU?1z6;Sb&!^JGQY7TY@luLBq*0P|V5=T+wtzCk_m944h z*0E0SmaPYf9ls2|wcv#-b4*AwjP zxAd#oK`zp+!cLjdcQvP0;pw+3Jhyf_-EP;~r)3rC7Ccy1tHVR|*@0qtPqtjCk^k5$ zex{fF)&DcSU?($E%KKYOCCyGK(XNtpLcWpjA3hz%uL0Z0*PKIU1g%^>3mXuuK^UzK zal{uXVt51yTbx47{XY(y82KJhc>(N6*!kJ)YH_jRa4FwUzt2=OUgc>;I5SiQ<=7s` z6ySIp()iQ`ito$>97!#>?PP|4QF&C2Ccw$vEzhnvyf z#gP}d$V-foIX9g}xMMU6{0wt;7Gja6_cw|~c%_{HN-ibh&G=07ik;$C?0KZ0JEzfl zIKOFgyjfd;+v7=YExE1@#>5eCcG7r5&QE7^MXLtaLadbjG5`&`TqXBrz~fxR3L1O7 zKhmrGNN=vfe>f!15dPbb^bJQiYL>~;mL>49!%WB8Z97z@-es&5ciE%h7g;NRhcQdR z@udzpa(r1u11$i9*PW%}vw{L~o(Up}k0~3qND)+taFkZ#GL#jb^jH{^avu zs#&8{q`uXh$DlmIQKdc!C$(GG*1%q9ezUo)nwsBejI4zD8z@Aa(}rU^$6VnYR(~!_ zj(AG}`w_4wqHjE8%!+OpI2r33ZdH|l@PN6on$B^*G4ej-9MCo9%9Rmc;F$6L$j;FT z5OL(7YT!5#=^VVOYTTG=ZmOnh>~D-b;jXdJjT^w%K#`>8aCpz>AIC-ak5$Ih=mw9q zc>i$gt2)WC=Jskj$x+706YeC7yiQVtx3$jC!azIk^OAw+UXnBBM%PQ$;k`suSap;0 z%njCblby!M6YeGpylw)I&fD31x$bk4E2BHf6~@fyI>{QmleDUfaXcEdgo`Brof`MNPNx*oC`?;*Uls)O8VZmp(+e90Jj!W~46V;~JNFSaN0Lq0B;nNMig!Aacus!p=n++Iy5Infw- z!kuKXHwyvM8l{195gsh`xk){`o1AY{GPhXMQFa+4Pq?GZ^Et|H zJLmI}k4N{B>x_BP^%3m6Dx_ZEBT!k@J+3u3R?|JMF-D$n_Yf;Gt>K@~JAM@1JAPnH zi>`NIS7cgsRh{E*b6Yi?<9o))6Yd>UC+RdV_FsE+>52U z=gm#kbc|<>ktf_Sx`kt?it1+;V*UrM^ zQPnE#@;S|_=uUI2F+IBRWh2sQ{B>5HAK6N7~F-Qso;_z61v|76 z$%=EMSOMn-YwbPeJEK@0oRqDV2kOJtUTJ6e=Zu?LU^{7^8gz6Jj_>fp#et^=J^$Pb z2Dk;okK6e2WpXkUlY$t&&aMlLrNM@bqkGiE7JUuOhxBt@Dt zXgF!9#S0dR-8;<-)(jwTH%3+h$Xl@xB7iX8i4;JrC{{oKxx2kLws(**hw>oYy-*3W zR435Enj3=xh-Xw06gxcs-0K=Ad1*l0xChI+h#PlNhj3mnfFi=qUMr;TX} z)YbVV;7F42t4LawtEtED%uCjc9KSV2RwBpaSO^h0nD<1A9N&#%1w@Vm+xtpg=MZ^n zVNanpB;_8xABZP(oDwl~2otJ62GL(Ad$&TPUWx_4Y-N(~Wge zqDP-GQNhvUb$}y@(ws%p4%c)wd~7x^S~Gl{VvMYWkM$IyeTn59Hq3YF@+tkFV2)Ym zttkB_V^VaLh8OMOIx=4cRK53_8=$Fo!x(wO^(N0Y@mY#6%|9Dm^UoL)qpSHM-yDTo z303#&&5h91{S(H>A-W^_c#$TsjsgK8W+)E9R)kmqX~LfN&QMIT$g@RKitu}=fmwhG z^t9%QK`BD6YSY_NgN7EZf9qv7Nqta2V(=uEX^|K_K_NmDgZA|q(`c1_J;lsxOodQ- ziY|aKOP&I?bY23YBt4p4G-@!Vc(L8!!EBv!nt8FBabmJDvJxlu!$OES!TcstoOl%L zy*y5Qt-UuHPJ>B^;c`K~DSHbr8Aqhp5ELmq6AeMZ!t>9)E!!jy4Tu<wv4KK_ zMvOKNB|3SneLABIr39^igYg43O6q$8(t#;ps9AE%okpYsFQX8l=|KB>iw;(2 zUpH~2u@p)-vBH?7KsB9(fFlXgoX$rOR4ZO?w>yM5#JpV1Sh3s~S&0<~VIf4UV4f2x zR{T3+toV9+hY*wDS<;3y)8GJ&W?4+2Z#CBjMGDUVAt+dQ{<)VLCOKz7v>3!{E}})A zLWD+(HVz)($%``=`&hSEK3Fy<&wQ0G;EBk94r ze<~C&Rg4tYnwP2>Do!>=Rzk(=C`8-4{{Ve=gC!BW|C%u$y83#%|6r9X=4ETDJZy|S z;VOH&{{W>w8C~g*8FQkmw7>fgR{JC7Az(fPfI)|1xYvc=vx_ zo4fxtR!yEKd<-gJ7LWpctl39L|K4Y?;_kFv~1pE8*Y`#^mURgMeF(N}j+^ zL%Tm5^k&_9DuLlFb4xWHWV+kF-y9h z67ZPO_@3gguo_X`W^S;i!(3#HJmC&A&+jm#pO)5s?uhOpw;S`K>mskgbT+h#N*uY( z+(=EgxWyQG!rfwl;uiMq0z6{w?PVU1?ijx|W=7XBjz>8LtEA!@zcM#d(={G6MxJoj zn6J1-eWW6L#_SJA&Oc@XL^8vX<4~SK>!>(Jm${Xijxo&`dBPoIsoyaQCAbiTTtI2u^we8Z#YtXmZmXt~ywVtX!kt9PH%j@!u;d+1bnh56=0(># zQ27R}qT&{Lb0am~!ZJplaJM+nA3MBl&NpWHKy(KgHD*ZHK>}`w_f{o%bnE>Ib-eOE zb7M6f38gZmXt~eAO6v!ky%R zK6$RZw`vUz!pg$1Rq@4=zeM+vKN<6*>m>p2(|99Aa4Zp3RU^qC%uUsFlBbN3C)`Pt zsj?PxjbgnJ;3@}xB=VqUDL^DMs6kDY`75kC%p!AxH63QYG4g~vj4~m{gZ zH&#c^z1R!zQFALb9pl5s$P?}ui~P}~QR*+0{Ez(pEV^&}*q9q#-#|^)vudhQ<6d(! zHJ#%gW8@I$Kx`)yJJQ&86$FIXk@k}DUK(BzVFlY570HSRqF4bJ@N94IskrIui}tWx zs>4lv@@mJj>r4j*f$gGsW_;V@Y>%nZW~_i+a!bH`vq1@W2C++SA%)l%cFB3yEyMIW z*;p@LVX;~6b;g_pO76S@a3p=2tH(*EJj!~zDUx}@Vu!8lak*t^(#R^EQ{@UKeY8tui+W%bBV^9aP zh8EaLnvriTQ8X6x!QMwUasw+v(fcF*O(UFR;^rJ7N+?d%uUeL{48VS5X}*tyT}h%FM)s% zS;_<0Kt-&8{9t{1Z$9oCsFsKO8v_G&RhsU;&e&fAoh|rQg4PvfK{pb${;k(znA8Ua zquzHO`tZzCc__=Yi4fwDTc0FI;sKrQR*-GFF6b7!R;Ms_he1q| zf>J2q2)>xH%~%E{W^6U4C{Rh~1i+Ex;P=;1 z*WsmhyEk2)YF?^ljM!+5ti*_QSO^g#nAb##5igHo1*DcQw0G)hdeOFajZDhYi|o7$ z1n-4J7S_VZ6&p-E4`p9X}DCYE{;HZG+Qp<$zq%Q-Vd#eLD^ z^Tx_3(c@NQrUJ!vt^*uN6`o-V+tobdX7jQ&W5|uh$Vv>kfkL#ecbLnrz!ZG>w0;Ea zF>8g2)(;u8qO0|MnqB&9pep`=xdobv-*1dO;fj046rrlm_;_U1I|0Hhh0;~sKc*11 zP?eu*ZiS}u`x_&ND39puMZUng3j~B1Q(S^|VLqn#MSEZQonjAH>hdF8n~l9S(A6S5 z!o_ToI--E|;1sOOi1c7Rg$PX#+ShMPqgD2G7A0dLl+I$8F-L(~I_Ch6qz8Y5iz&s6 z72}E_^I|pQgl&wh#EE_^goqQ&Zz9EsHBqd9amDNoc=2p<*dkfjdK=~zH@dDig{B44 z-8s5~ zKb7ufK)z&<(xKiiNdI%MXXrH=4JlVH?Y65mI0;l6ZLS+fvoURIO)QNz*GGY&jL=&w znrkBAusc$svE$jrIND?{R3jC$_g3s`f$YnLZFPJp2MIN3!*vw|B@)krRV!Zrb3pdh zQFty4Tku>@G_8u(2>9S=^VBGY6bmKWs%EX?pxs}!qFPk0)u5q9(|p(}6)KG)eV#NT z%cXL47|e;(BH-wGzC0Y!ZEC=AZm3Wi9Ocg`A)UBp*CRHATDe-Mc5IB|HFP6k4K`6m zZkCODp;&;VJ6aUoQ?)7;QZ2hV4O(Zlz`Bb*=RWAQE*b4}e$K!DhkxJCzkk8M|CfJ1 zz`q~l-@oMF5Ap9`@$ZNE_aprK*ZliY{{0yLew=?l!M}gQzkkcWpXA?9(Qmui0XyaL zcBMWvdg{O7f6d8*#d7~>UvpZ{s*r=H@W-yIwMW#k;XId`G^x+|EB$;L`c~(^0Sl6% zIMbfT0X=ZbQdmCJ{Rz{2NJ-ac07M+4{I3BWQhwA-t2=3Vfo)=26DT%BUmeY05ccN&-hmjw=6=I`Z>+sZMa7xm}u0u+tcM zA98|xUU7meqdUPB#+1bE1f*W76I^a?m!=b3W{f=HPB4pg0NJd4zTyMlitYnnH)cfF z2aeDS1f*K33*2dLmZl4Q$ryRxae+Zwae+TZcY)syMdbz6xGh49^DDfH)cfF2{a=Csg~*jC3CYhU0|0n z@;>AOY8?1@bQieJn31?$Ah0vI*4!*j7r4e4dEaq?k{Shm6x{`WV9ZF&ENg=D4>ITcr4byakgN%_U+zonKV}ok7HdGi;(}FXjd%_vU zwCKizm3qSiw{EI4oMvvDrZa3YMxJnI;JduD*$`j2IJz&q#h4XcU+C5J1@7jmE4= z8v3o=F1wVMb{OTNyTEzIgv9Csty*!G#p#co=5}eiz&Xaq6Yc_CEf=WCcPw8KUH{9C z+0fO0h0YkE--0SB;$LQNl&1LaG)CT6#3wtSrN;mD=;GgL%tox@(<&+Af63e^P4T~A zj6C7u&tNS-uf8+<`{?pNY0QVN{93Dsyi$q-JYjB@rUN``j6C5EFr7Pq@|y6%8zPSb z<^e=9xA1PVGaP@X8UGiSavM#zKtTrY_HxL}F z%KUAk5fC?$Xf6v?`P2s;|j6C7O^U$w64*z0w>7O@dLsxpO&>#F5{Iljp zX^Q`hG4j45e$|Gv!`}SwkWWV*2rLJPWCj9S;?pWAE&m{Mqcp`oz!-VL#plC7^>xcL zqN{(JF&(;1Uuzf`@|xuqbE`Dv-(-wD;qvpqucUl$iLU;ejoHvuU#soYDk*J$#M~%N z@pl^|Pq_Ge0jLJoGvwiZ25;=YIlBHg8WW;6tAnxuG z*MG6g3lI?Enm~481p-1?!EUEQKnN>7MX$}U4DP4mbP_AzzKvbe+Ik7u^jx_DcN<&u zvI=io`Wv`~*?IlIh7jT53}P8KOuBd@;9|1BVtrU#O!gNFu`k@7F+)_`cZb4~&zNe$ zeM>x?u@E5Q$Ze+rj-(2|)>zoC4qoS(m#rDY<`^R@F>DrvXy0WSe8a2Y%cu25u*a+YmG$>RK-`DTcD}5*?*g$XN z*B}lwN;z^rnN=j0Z?0_JY8mtZLhIjpU9+U_C?H9=4eK}}Nw|eV>n za(XZcAmT^`Rh@gN&TLtxWxuNSKaDlfePs3T#>f+{_B`E>3#sC2 z9aPniFtmm>kA~CoL>%KfOSU$C_i9r{62y0TdSlA_}24!Q1 z4eUqwy}OvyfEdQ?lKP>5+@Of{9g!OpD8#;y8%%fW?F%9AH&#SR4&G}_RG_HNe*%sq zN^=$sA+G6aviTxRAMBD=?2f$2G)@IN9KZG*l_S8r;VsLg z4k;i@SOM0WjhMLqh%Dg{3b8L_2{Xxi&AjHmNYZDl3a_VFXV`2^RiLoW@qi=A(wxom z1Yx`yK~6C*Tr+~KH%3+>$QlaKzD$81p$=F3O<+*OTw$*#YzuuS{UEP=X^94~2wY`7B+zd_aKWdB|qCKL!7a0TVG!PIX zV_1%@2+tUfnby`hg*hAGm926W_Vnjdb-M)5%}8m(lTaJ8kQL~6<37HmypuNInw8~d zNu5(b&hP}5c#$(aN+CjXhOwVabG{E7QVe#ZI6sA-CvT*^ew>$m6e`sB(v%FPNP;w{(~OO4#mnu6 zJ&g{1P3&~@ay3)5K4WAhMca&p5W$0aPNd**WE3kPcznOTlRDF^n!0QBYN$gT!Q z-~lIN$nKE9puzvGw`G;&oB?^+l~}e#UUmhA2#ppi+Be4UgYij)~W8?|fx<}021nb>%b7Z||1B6+sq^mcZuT!d^&e_Z~H$hYLE@R{n z%@Mu1NC;TxfPfHlHkV_amskM_!T)RT2GQyEaHS4sNtBHsXBazdptnUhN)VCtPvQQ4+zKPxT*1 zSN&dNW^`5eA0-jBP?f*O+zL(Q?=nUXQ6ACFi%fxa7YGQEDQv=4gl7szws-2FqgW`Z zM@eSgVj89by)DX7l9pLgcN8#rFda-a%b&U9h$NwdLhK7kLRU)-UjRAUSPx!Fu?wWv zn5RHVon?R{Y0^4M(h`i9-0jXc9%){(X3$t+jI0EWLnuW15`@-K63&)S=l=j}BBlp# zH0DHCXXz+OsM@bLFJDvbGmViaTy5`Bl3>N(9bNHv8S|p6xN?*vRP}e5+n}lX#m2}X zsv~-Jkr=Qp0s$csgDKdG@WfzGd$)ab)XD?(O0glYNPZtGVHThQeXY4MXi)(+bQE^e zWre`SNY6j_y2eReQ9yd||FEo!^x(fK#6FQ8w5sjvHvVX=3U4DKJ@~ybPl3WZ4*-s& z2~Q7NmaAimC(TRN3>{AxBP*ffQ3}!a^q|F-Pv<3{Gi`l}&I{r#E zXI{Rh+H;JNCtPh$deCCbr})O`imx-~MOSfudeEwas`_ek8#Glv(HJ>IbwuAT(gW5- zARt6~@NI0c;_1Ov?VUI1+`#XLkn@8}jQusx*_z7(@`GNnfvFdEgO0li>1|lo5MBR8 z6e6_iPiVX6F#(ki+GycPh(?=7Y5r2KT&mTrQXMvNy;}cQq@7};&6T>p$+v>&n@3(= z$pxZN`SJQlZi)(tLij zd8DRw!!|r7r2W$+yH+1lM`SP&7b~T_iH&iGMjy8|bw5Vo-`MS;o zJMZfhUDwf}o!1MsdLd`xvW<9*8? zfnPIAjd>~|@&MLfM9Kp$jA8}sG`PCWdBBcp(5aB;p%!t>6C}N{zsoA+hRRiV!^R#B zm_2wFD~3oRo}m!oDMZ*l<`qu&=1G$df9vRlqbr=pmra^9bf@zKeC-@{=7s&kJrRAQXv~Uk7&sa08*WvVfKV_uR?|5KjFBhYIcB@gQOc6Db;HsL&ksj;jSm`g zqU#zbB3+|ZQN=N?HaAt%F|IU5o^Z#Q=Q>8c%nvL2CMfTT?i_a+^P=k<*tp?VR_#>2 zYi_Kjdwk0ndBWXef!946rGauWZ|8ju@f-yB6GYhvfIx2yd!;E&au^)7~RmZ8tWWxZB++3)!bT52ia(hJmC(q(CZ*>kL+`i3!}Tp1;*6qy2x6* zi@5bwon()>y_!x^H%6XtCt2)sl2)(mbCa8*yUC}G$H5K_qbRYS-F)zA4f*#4VDyzE3PtA?hbdMhyBTu+{EOq0^ZmU>; z31>SC)5@>{xXTwwCjVFDgmpiFNG4(3h>RruI;+m|FJnn{9|-t|G4g~v%d$XcVV98k z+~w%#?$Vo>yKIWVUHH{&TobY2a-_M{n$cy2F>;8*AeL#xN-taXK|qKlfEn1)ys&~T zE=IEAY3vdwu>#hcKh)m!=8kg7o|GLb*QF`yH-k@@tzHCnyiNRFH((aEN?N}RSWzCq zdaqbf-c2F)g%!t6UTa^_`>3%RyoHMG=pQzwDNs=7-GC!W!tc6i$)&`t51JRO8Mm%B zMpok1l@y|Vi-!EJn_!ji1!K(GoTBnQ#+2x)?7izIRO`FUi`UfpyT-^9uC?c`n_#_P zimvwy#3{xz>b^WcuA*9hfb833-$=qF!;%QoLH4jo77_v^gd}VNb~-b6X1eL=ZhDzy z5JgZ>eCh_#d)qU^a zA2yos-E+?O-E&UWt;LiKksCh9AcAv4n5#@TYgU=wNM=fD7Oy8qNlSL>(|{un32>`S zD|E&-R~+1w{;-)t|BuaP5zm4|78sc~1$9bciFiwy0HSRe3x{Hx?<6Uy+d`mxt&-AYy!F9qhRGDP-)otb5c^0MVQt)wKVp^;Z?i zE_8d5B55HbM=p{nwK+sxM|hCEJoYCC1)D%{TN=~`1mvOJ(y%YxQlv0C$jFfkqb7Sm z1OqnAb=u2g3pq4cc^GGp8h_R7aVFhfq)6URMvh!0b42!FL949a_7#~=+sourO-Cx`<7DK>6;so*viPYb=PrA(+(C{D zRxHLnYsFbLp?rsKEK(ldA|ppGk6o(?MJ(gi4t-y=SIGaI>( z+KIWL)wM`k3!z!D9yb-OSeIee(Y}yOg7;2}#p)N3Bc$aqbvEEg zY?Q~a9Xc*c-a|!;d>;Lw$Sid(8Cl6v1EvrnKXA=h<%iR3tbqJ5A>8~hzL0{(=g5K5vYh%A;7FvD`5lhJb~Ty&f&Oe{GI@%OtR$1)nL>zU!WCqdOulDh1tgQ} z!@U7^Vg}Cs?T4*$>c#MT-qx6Oa9Dn`fG&RZRkE2XkqI2v0#GfwVD*zyuQF z>d8s9uKRMxS~4$64p~i(l|F|Y2sjciB2@I5zlw|;z`jA*7o7ty9R?6$vShxgBd!(DIlL$2&S7(@^DIYu zs{6Cx2`yu3MORJ?u{TRO<6GHpr#l9mneClYI^?Xz)25_|uHs1sVbE1H{%H3JoHNbF zn~~q4Ql=D{odJT@fN5Dz{SD$JHx;<$khQ$VBu70{TdNyz-XXJ!J*MU@Q?eU=jQ_0K z5L7p&_|BdID*$`m9!?C3KsS)o4#LvQmxO8ANy;=uBBC)mk z92%@rY%@y5XEmdIlx{OpC?6psM=q4j&3$mE~ClFk;`RN}L@DHY2j1#&Knw{C)fUloT*(;@o938AutaFNRTg@q5bhD9iNsy5v zm&*bWR*;b+7tg!^@u;Kj?e@AUk>i8a z&G8M>jdt*zryGuxOqPrsxn$ZU$%wsqd~BgPj^`$O<=j9H6IMB!ES014U(GpRpxciW z&^2V_$OW`VT>)wLDL!H^p#g_Y1r4VF;Qp2eThJwS@+r)1;+5gDwZ6U*@U@*4vP zu?+7`zJe#{B;2os0ZIB8FYc5sDK&0GD6|(G?e2GGW2RbO1H-3TbcrI?X zA41y0{UNZ#ask~r%$Wp%dF|_wIt_3nk(UovyAO$N>3`IE=p_=duyz~WMr67!GUPh% zOc2QpFW56{B2Zmp>MPe@0&6YlzL6eE?cw$+-I|kjB!;E`p>tL()7R6DMe=?v8CfaQ zS2Kw47St}Njahd-+XsE!ws_jf^b~swKB4>?Y_k-~!{i8I^MazC8ZzEG|FZQgXLoyfyn1N8)6)o+3(~F+_>W#VO-_-#=-Ks zM!>Oo^5Q@aCU=i*2%giQ>;$leM6Y&^xV)he<~iGQPCn^QJSWnF<>MLw+2g>~#4cJx z_~^+ex{_cXXnAcTtV{MKdK$%TIxzrR9xQKcgkfp8(K(TiC(=F6)_kHt>Pu$}1qUo_ zh*tU%nPje%W~rq?Y-C_vE11`iHw_lebY=S*B)bA|(b)@E+6%=pe+>>b3i_(k_)m9Z^&OuBc36%{w=!4kKitg%9C_|xsrungbVA~vglFF1 zptX7uPMmHVa^!LbL$1?A22tDa4|db4{=?_G#MVMQ?wfbG1WdK$xJ-|u_G_KWvF78f zU{?H-;-flBy_jwzlIx4e$jT`7qYNVOeQ&ZTy1Eom+zAF*isE*1ShSSQQS&Kj$9N|Yu_U0Y(*1)w%5e-Kr(b)R3)*4ZX!|=&ybOamn3=| zMG`abvQ87z0D?AS(?m(QE~=84Og9lJiHT(7VJ3;9B8ipuk~oSSm1ar;TvR1-1l>fW zBn~AbM=pt)FCFoCGLuwAk+T;?A2}{qQ5-@q9o$J(7Ad-sNLlodkt3Id)K8?<;_-QV zQCvli3RV;b{eRcB%$Vs2ka&B6LM6VDG6=y_%Yo?q$GYwMjl?0 z$f#N3b$dztgB+D6O2Tzf%@Tj3n~0Re|B;a+mxMHBm4ns8{wb^7zi&P4SO^f!8Fm;< zSur0~Q7oX_h!n-HWaP+2AvKxsVNjj3I?-Mg>&bD!W(tEQlRK%(;yAjINLd_1Mvhz- zvuY=;^7%q{Gn(zt<)9Jw^)a#AR5Rho>)?S=6uIWAaXn3NOdq$-O?=td%C z@e49?0W6UsVNt$Mh;+IUtE4C=!$RLKpTC!2D%f97f zKPR){y`5rv;sfLuX$ei;4mc7Y<*{u1#E9~qDi;6!g#J`y!ul~8SxHzwWDwyk2%F$- z?Nj;v7g%Ds66|$yJh1%oOWTF*YFYXR{n<#C|3*fRoaM=4K1A~-?{&8|)4KyiBZfBW zo6I+$%J!>lFQh*o$@T&=asb-~wOf>bUJ48#MESqoRJN`auqHhpZuuYA*_UgHCkvTu zQECFZfe%_*(&iLz|Bk5gZqZ-b3487G*>t=+4IiJfxq_|}@c*3{80y(6)gVnz&}phA z(GzT85P>~Gc!gtp)oov2a50%6?}ZV4!A0aaX*o`n07v4aJc;!MRnyf(@=^Muk%{CZ zWMn0ge8?0+BoeM4t3-09jTMkc{x96aPR4KRO{SfecsiTSNtxt+@S_o#WRq?<;m;DN zOu{VXhDx&4q>_70Nf4>zM+{;Zq>>53Z(lC?3z;G%m;8wwD19#Z4d6(mlz9&-Y*&-X zAL-9VCX;8$$VxJK+7v=06RseuWby+WDz(h`4paC%;w=zoUS;xf+d&Q!(L;`Uy0>B!@YlHP|~s{!R!Uj&^mfgVIslo&LHRs zrt!NRCsk||gstyBiqky%r6%(3KH>2u67z>#<reqzeta!b`PXV{&Du?SN&Ft)7f;pkt)cLk-eab z!RlEIB0Raw_RA%)wKJaV%cZ4MaU)n|sg~=>vB9Pa)J-lqxeEAFMGW={du}U9<664m zNV!~1Mvh!Ad;8=9=M|&};?>~h^4S!>+rWR2>BII4dWak@tb)#LK)wl%gqndKqF@krskMn;ZYI5U01 zsoXYNJ2Kh(N7jXFF+kA916aYJu5+&DRzBkK7p{uaO4-_jZZ=XXi^#~4OQqc>m1m@L6rcg0y>ZG08&8bl93}9P+$(K#LwR{-(s(zo5^9q zDyX43s2TxPLSLhMfRxZz$jHN5LOjj;lF-xk5_*yxrl=&uBcMv?3AzVJ2|Y$ej$A@} z)G1@7Om{Zj<#hQ(G~piW9(pW5G^d9?rNNb~5(8C6qv$>$WwZ+!IdU1b)sc~U5%e;9 z1sz0=5jG8NY_Ni~*Fo=3Hy4o{QCTPS8_vY!^FFJ?(m^vEOzA@!fo3Yl6 z-yJi=jXei~2eiSkr)aUjY(EAO4i7up0?1|rOq%#w6uJu z)&P#Y#B3QRL%NK{6dye+#mcgi=vE^0-$sTUNOg!S%XamLp}NM(*MwgPCR?r+x_}-} z?b%byaO9zXj~Fl*!HH=wOq> zO5@~EZ!Ou^==LIY@)a_2q< zx)aD-=oTZ@awZu$a<$CSsYRVazRX@IpC$(fE0m+Ggrc1}{uJF$0 zWa9&F0|+tIcYCE=!U=EFaYk>QIbG;to;|wuy;wQZE{3tgLzUsKkeR8{vc6T&fm&z_o z=3#3AoZ6myXdErYsh1&G5>wtmSd2n1OZ*l74u9%@$Yj+&>+_#g$Jv?NO8k&<@${0@lVN|H!4JMT`$+Jsv z_yv5zD#4x5wewC#gGIITPD4jStGV*wy0ijUAL~*I{NFKdQpF-kt(Clz5*l5>;wEm9 z9okBdGa<(J@z4i-tqF1JxK;AqmrHude0ZKthJTT((;){-OKEB|;7G)jr?Li0GQTp& z5?pPiKfZ2DBq)rNk(D?134A`y6ppT|Mr9WY7H%$icyKKaX)A;E2lqopeKx{NGMS4&dLQ=(`o0r&V4+ z3?M|`aJZ=>Uf-~0RH%JJ>l!EHwx?~qPCDo0<;G#BpHS15R(Iv?ta0$3;C2hJ{IyUl z#N7XmyJzlte-!H-$YqPYP9a%{8~yEA5BH|>ZwH)xBMRBurfi9d^=}3dIBW^A>6o-4 z4+EFZM4@ge=UC@vA-pF1EXRC)dzK597tk$7rmbDc z$V%Fp%^*T-SNOpVg+#Yg9Ef+b)hxbt9!-aQX(Tqu9YcW z$-Y87k?D$OySrf$z?WIRYA=;9lY@el3frz=ky(7Mt4g_vZaPvaH;|DdSIShUZ>!VQ zmCW>b-I`A-kK0S-QF2tUQnAe{e&1ECJVLh}sg+-lkt5eiyRWa0cNGV64qQavoz;tH zw&KYiS0>$AG4pmXqGljG;6Fy z!+ln@u@Bv5WTsg{Mvhz?6I^X<&6YA0uAzg3M~M7JBMk&lv*BiG1yS0iks z>}zRnw-?B5SP=lIdYwhDZm{Og}ATW9A&SMBgnD9W)ild+oB)g9;>=Ilx{In7YCD(BiF@P zxceI>Vf{myK6_!L$icu0W3^=;;<>CUqla!XQW;%jD$kxYVOpo(aa?gLUppCKa$h$uYmv~Fi#db*QoSmNwY zGC#2w%#X<-!3u^QW@aH6$#GRBKcpLuRLS?r$N?%bSmY$uN%1u=1`uMM)ElNNZ@hI< zM~)12oz&<=z6b7;l5Z#-^#HX2*Xpx;q;_F7JPkgMX%|=XKZ;dsl2+4bmR9cqcG9|h zPc&kcQwxI_4y&BTdS3gQ-6do$JRilP>OIL}($bll0XPyRDv$uvnkePJb{m zU9^#rm2@$mL4;UT_)26w%O`^|mMfDskwb!InJ=A}%vVdp2KwWXT(2V|N6z&$vGQ2Y z_ebsd{s=iNSiWbnw_0&Q<@`f*6Of#rLq-nZ+@O|=c7PWL0|?O${KvGf@!EmQMu*xC zOkQ2ebQY7@4BQS{aLcr`;p#_Z)oLYIJ_NgNx^lTW>u6nTr1GQb2!3Fy8_^Nm$smS9 zM=;IJ9dX#_-wBtxCz7z9-ParZk<5qpmWbZqS#rR%l%^gA9EqGVJ1ZqrU^$?P) zYPNZrZYna{JV{1Yvdt3=BD`*5YDF7x(O3o!HT8e9o%*14L(vKlwC)-!jU(z!g#}8Z z;;E{P33N-5${0&Vj$9ej6Zw2%faQ%!#C&PvefHWooE#UdHr_|nhTm6J9n0vpBGqva z898!wj7t>QhI0R`R@z<@Npdu>nmCZA3C}}S3EgxHkxJ+!BS)_U=qmb)`I7%T{gw7g zxPlyw<|v`!p{j(-=oTWC@M$t~665(_L6vo91N@^4j>f_&p}lOFVhV~>fl8(a^yOg z=7ouU8iPS;Cg)Q`+s~|r9P*-PVC za#XO%f;JlUd#Wm94c$_tGFFk1BUi?*{&>Z^x4H8?O7=L%ULxDb;lWCz?%Ew?!XnUR zRVzih$w;l7O-7DfE3=ir>4fqnd!gJ&jty2Q?Cf9kq^I6rRVCNc?M15OS~7CvDw*o; zLa5Z4cwX6x{cC%DJWP%XRv)xlSncb9ny7GJDqgXk=ofpMvh!Ni{$|Jni5At7C(WmM5BUSV%GIHc9;u)wqiX1uv-D5AHyUAg~3dkS>)pK3d z&RulVk=nU~j2yXkcm}ElFz5~Rm9SUr1@tmGR#*WUWS}AaS5@>P-F~EsULYe!uA+&o zj%f!>^M7GIV44dM%^5HqLN8X_NmUQC=td&-FrADXxgHkQ=mF6YA8W6XHRK>+(@EU} zA@m(F*NDz>RX3~Xh9h;eoQxc~ZuYFz4YC$(vlma194V}LPBcw0gkJb;y7fo}Wyr{p zD`>9#aEuNe)ZZl(wPwZld14L7H1IbOAeZr z&D3syBN0?StX>1-aT*Kq(z8<>XVgKr6PaAzLq=AT%U%p3@Bo6vsn+9KT9%wY_@TkY zsU2|9dG8&m=impfVV@rK2RqsV{*4#lUo5w-g>wh;`BDxRxon0tP?9RPfHjuq8J$Uv z304*RV^rbyPEo`A>GmPja0;g~=(^`XjvG$#Twf4kaabdnEXMr@@_y2u?T^!=IVR}} zFq23Rexf`o?{t^)$w5sHINX5ks-tR$@iDrgNZQXQBP&VZ!=@0T!{Fkx>M%l2MPuCj zvno+cNIB>p2!>@2x|mD>=g)MWS65ztO_^N^B!+g_4ki(v+jR&_Iw z`y%@kae%!d-b)WTa#(yYUJ;Uysw`r38`53UD<7!pfr)N7sUt2 zVZqie)Le<;p(=^f=@ud-aVi-(a!J6hK~ECWi{wid|81{}|02f*tBbnZekv`m-c3~; zpP-wG6vu^RU5Pg-nF^Vu-Z? zFO%b?vkf7(U{*yHM6`(w-K3HULYeYndLbK5#AJiMH2;>osSm>a(+$B z|CRN4WiCK8V!UFliK>sPCT7uXL~3F>898!I%=6x%YP{G9UAmj(kF{6F8ghKF8Kdq7 zbv0vXyj69wif%1ZC(Fsmk?Uk`XRp(FR$MwghfUV{n$~UhDk+kqgH=i0MbI@W3G!9d z$k}vTks8U6kt5g0?m=;5IfWgzJ58I37A#!lAVySzGd3~|CuBr-okZvkcA@`G!BUi|-?4w9+@u}>v@FkSD z?KSdma(J*BISQFj0-aS=@&?^lq)J{RBS)^13H^z52}U;Ry!+n2wjS9m28ia2Y~G8M zh44<*!5(z$kUCgIMh?({!St7yLE{rE1`uKf?Z>7Ac5epl*l=giCgl^Eu54dRJd@4$ z!9wcV)iNovoV6*cyh3*gIDfA04siY_G5%ArOPaaS%&PU6>PO6~buozHFss%o`R=Pd zpCYs3y(wZ!?UUqSX^Bk@0FFdVnO_twnXhJ%kJBHI%pxBnBP&_tdYn68!_medhC{=#8}}Vr!T8pEHqq6YC=?U!9SFJ^`n65(yuaQkXDHG=2?T^eO=v6WZXgrdQDkH#p&h{>!fRwEat&?GX4C$&?)$+M%Lb-E z4hU8;bLW)t8mW&yGIHelSSaOJzW5$C6L)95l&QXEYUYdv zWErm#sew>+^m)1?NF7~8Mvh!Z{C0a#P8aOqD8v)nlm2w`OMB`3oE#UdbWUi1bZUK9 z)$#z{cBEQ0Tfe z^bay}Nvql-Tb0MRJP0NH&v$f)z>K(?M|}5ss@mIgxHSQYY)l$dT)WcP@o^cQzl-!7wSA z>G3taAG4Rr`Q*4@rP6@TMeLZ&sC*-m2NpwDPJZdN3N8aomr?nU2ytQyvNDthtp5ltL1m($Y9k{_mtrwi;&KH zRWXm#tw$>6Q8IGmifQl6JBgwLceG?W;WxwPdc7`2dt2rB-&i-gV*sK#jqV4mlFg8z zP_;CY?g~;%JCl(k*U}6xfEid1ig+ zm!)Ln$n`RnB^WkX(vGPed$DXKM+GYuyS~QnxvG>n-EyQ-&LAU4u9RtByx4cyvrA5X zz?WApwU^2zc> z8?EY))_qkox6{o>YUVaFa^#xv@(Zs*x(@;`+3V%ceCOd=R9sbI+_U(%^4jXYn4|dw^fZyqnnM?$Ye5dg9+Fmj%$q~Y)7Q1ha^`f9E=qS1uNCh21Mvh!Tv;DEt zYNueYog6tfSnbrky>iI5SMR^7nm)SyNY$js$dRjNH#cephs}cynRu?V7tiO(A;OBs zZuMr}FsK^3itYwdL!TuhN3NkcO7OI)=jZn7d4L=ota>(Ebvgk7P<8VYx&uhv{Fsa! zxo#$*;PFHFO*qIdTn+%H^~EyK&FAm&%99k-$o&?%`oWj*MJyRYiP|ZY@#~ z+sViQiZIv@DYjJdEpi4BVoT+G(p>gEtPjLh~coM(pxspBH*uRJIF+O@0Qp>`3yN$S}ml00XPybWolzA zaqR7&i2Z3k?HEUWMm~>{f0q=xM9-WWefAgX}H7EH#l!@oNs+NQ4wjp-I;bZe;jk|l3H%fQ0P~tq7g%(Uowc{FccaI z9{aM)n`AD$mqLty{z(pzmd?~40Y{>vJjTs3j3)1)f4vu`0N4ehuhJiiOcSq=k(D&@ zGJ^X$Oc#3|~}sCoy)brmLl(js9pP$Mea^k#pR-GMgzT zk{Ktj;dzri&l|`g!M?@(C`!qEmFso%$0NBumW&+0wL#4mWuF%T0|-&}e{PzXys|$! z+#~76B=SAmdY!y{6ZoZMrD|nXUa33EwgA_xb@sw;Zf)hS{2@$@d4@^VMpOJRF_n%e z{$&O+9E$(Airc;#@oh3A-uodsfLq9M(vq6G9&jX1$`e_Qs93J1jhpFDMy8Fgk&%_O z@f8LUUK=o(*V0O~d^|r3)>xkX_B1&rSe~cV^a2(8Rkoj`KOf2V6J+Gb*`6*cY9(Sm z##^7XW_$ubG@|=c-|Sh8an%Qv^|5ptkgSg)BL}c51xV8r9A_#T(G(oRAcjLzFq--7%Nu8txllTS3^_gM#IHx~~fe;QL;>0Z6`oL`Dwa+n|1n z7JwH70|?Oq9Bt}|*8+SZ& z5e#BDv;ZT)V_yT%LFU5qPfQ8Cha4g;ovAs1Bhle~6mV(s9xBTJUi60|)5Pv%WF<{3 zWDwz%fA6D!%I^EY5X<6!3OO8Dc56QhXgS_Ye>9Tg6UoStb6oRLK;`-4_B?-#91<+g z{*MA$uFt1G9?A8G$;bg*8`Nx3_IVL7fDmPWCsRkfvY!lh}EbiecKd%rvU`5`Ni_vS~Kw1vpkvp zY$VGQ$;gqjJXwtUHB7IxXZk2|Ot4Jz&popJYCC@f{rO0?4<#c9ux(JgMfvBYzyLy& z|GP|+lUM%VAMU7sd?}NJ^8;Jp>JRyb+Y88Q)k>|rOh5f!)Gr7q#<)Gq9I4i5YX5nr znh~}CTm~^5YX1b`xUWLoL}o&%5I2w`r6n`<8NiWPDf0>;Y*%x}7wFGM=8S8|$V$$* zl0k&m2TbLCfQXlm>qo#ITJNoJ{R?tbuw2im=>~)cD&s$+TYzNzr)1>F8J{U?s)(77 z^>^%9e~TO$EbDW89|VLKD)VpBtw1vWPcm`<^9IFT^as3L7(j^rU?A9$%iCIZYH|N_ z=3wf`J=o7t{AUIG@jUVxg};ZpcyL4^(JwC?Jo0I3uF^`be3-67C>4|GWN|>(C3t@n zV+KjpNYf)621e4xMqZRfk8lWs2<#EUD;}dLD4`#^%af@}I&lpLWnndw=(_o84aTS9IOcaa5%M_EgCOXe@ z;N}~b4PVB%hs=bMG43YEN=s(yX26knDIelC8$lP7`zVdoI;r*|chQYRCYU?O$V!6w z4uc3!5Ut&L*sKzuh*!WE+PkSJ;$?D3u!>klQH12BDv1~ARw5d%WURT-|?$@j7o8fAmwp=2g=yTw#khbo0qNgAgo~6%F#jRCl`EYFEDS}1u zszq^bk(A{$)n^~D(y~om!XON)&*D_;aV;%N&L8~H;NsMd`7JHIcch+!9~gy95Bh^0 zZ2|wr3-B+N$FCa5B>Iw_tAP!PjE!V6luUC1IZ|3aQ%3@h#7g<_dYMMYYOK~x&rs3e z9#1zEnQYcFWCNxfPV~&02*l!W!Bw&tkNf(KbHQ56>M}qN<(MRtyL={*9{fakRNm<> z<&!X|1{|65qir~^daPEOe!9g-@(W~SrPAaWM0m}|^jeh^ig~zJuV+BY3ts_?EH&~! zT8o7>)9H0?{Rzh?mJWUxuh;C#xb0koyjjvpDR(pN&>Qbh& zn9OF}{=zL|a#Qgv*k!5Lr^y^)^;-8<6Kx#}c3KhblXSC@qJ4sMJtCmx2yyhhdtf}O z8Q)jqCj7x#4`Ts>)&XMmQ1{vinjWhDs}*k)-F~Dnb|E7x*{p>@1m=;3_eFaJD=3l6 z!P(AiRNxcQGBDCIsT@QO6;?zilN%*e2vi;IPj>;SqkYN90Xi}$X`(9fG-m)2VO5+_ z;c_iB`1*>Nw-;}g%nw$)tBu7gJFHa0G~HyRSd$ESIE?YywB%PSfiH<&W3PiN=|M$~ z_UfLyS+^2OI;i@tX0I#gwj%{`85vp0UY}+V;Z?zQy>fyp;7`Fo%L;fOIZW6jQuh*4 zf_Q4&SM_rb-F&2e?j|D#=*OURiR#DGngK+F)o)fs#_OD7Z?;Qc|8{=XTDtF$8Ny1p z?y=N$rR#TDseo_MjYbOgO@=%iD&V330aWXNuLka8uZ1N5(VWrXiN?KsDwPd89+o>38&Pb6}{A6wwI8(!OFJo&1HJoDpSBp^()iOMT+!dhCCdq z-#mr%YUcN)tvl`cznvaXnit>f)Au$CTDWUX7* z2n|#{SF_e?y5&eQtRy2VS?eeU5ni=hs8dZ%()S5x0L-(jcm3obVe8$7h6ty|c~v_F zy75Tu`;8$d1B}@I1L4;S~=KJGT zli+=V8T*`dbsGf`&1sE~w@nuHXDoN28;;aW3mG{;GX`ZzR5qTz3?L$`Y-2ZT*Ke+{ zm+AY+oM3C(p=6l~CzWb;INeO7D3>whz-ks=dYV;rzxMs~C8o4J<4Jlbk(G?TK1u7c zTE@ERCL`JJBqJ*+X^Sa@NJ(6S%}hxRUm7}LYblxTVhcch61@rHVL39qfgDn7QaX&B zl!TwEF26vx6RFE<$jFK=SM!DFV*?hVH(U{Ox+{BgyS*kxU1^pBXo0-`uGqT zIdXkWsw0hC?WOSzazwDwID(uvYCTm|@&D+SB31FfWaI!<7z~cZ_?n+7VgMng{PrYo z81@`-t$;(!o(}gwnbDo4K6cW1?TrY3Cu>?O$nt94NrwgejR+Onq%$lur^)=)R6OD= zvzHh|;Ot(AyRpZ5Ui)TCW;}1*z)l5-Ml`TH0ggmTd4ii~VimePL5rhdTIml)ri}?? zWF>8kWf0*_-?s82k@YOE0AnoY#NI~^iT349sVwswb0qWC5^*^F@kp+hk&z?kdYU*4 zS;wh$Y}Cp8kY;98Y1eyhokC*qP1rJ9#+x3;y1sI)BeQ zKX$OZSDnA)jtY~Bbn+Yqx3JFNOeY40{ySNwnsPmyzHC=1?F^RN>O3ox&G!uvg>0^v z?DNd77p;N=H-BVY9|xWCX!xgml9RDM^=pvCMT6^8k9xn4dB4B$ejoRKpYVQv>;3-D z`+d^;{XP42%47Nx+q;}xv3Ky;ci=ze5k2Yb*1`4V(VYn}Hk*Ne9G6dQ6E>7mueP$h2x)fN4Ho1Fy@&hwauE5%xEyxh;xzMMlguL>=xokW(;@Q zH<0Ndv*F2FoZ$W*a+I`$rse>S#7KEOYk54fyyuE>%wF{8BKw@($;e8dvyefAH;$Ra z2Lf7--w(D}4r5LsM+D396vlC_^=e1Enf`Pn(Y}fjhJ$rPW;dP}UY8u4w43+7qwXBUK+wKX8v}$VESJH-iZ52kMV@QV&A=M;Pd& z9)Z8_4sZI+gW@()L02NEA%xBH%F;OF=7 zuNgJMBI9x4TV=evY^;F6&;6r9owaG*kjy#hWXAFGoiqw+{ZnJo9r{L^oM()umLX?$ zCV+uPl#5(9mO%vOy5O--<4;zew1Qtrb4()Bm3HzH75kB?@Hzr91X@ZCmbQ4M766V^ zgvxc73jswE6Lkm~TpLA%K@h?R0(FqIkiF6;3Pe$N1_X+4L+ z{Au)%YM14!%-7vuR-bvF*J^uxGTmyV5H^vKmG*jrDTF9CT#i=7W>02Cpl})46+pKrR2zB)6|jfC_bo7tS?sPsFJEKp___SXqgi`3{HBVuQDFnTz zS*D9WlOu#p7j-X*7&=|VYMoXj^E};bq-1uGkpm=SP?VWxj&vBP-Jae zLuqX4_^kHeYw0#4MX;KTtfZ-xrVt`caVa)4O*Oo}&ggMqS6gL2BrNCXPWJeQjGutO zSeDfb$+5*Is=6Cf{AE?+t18k9=(Zw7dL9{B5h<@?1_~1*z|(@(WAHzUaf_sRFU`l7ADaqBOi2EaK?GLE z;0eiwXPVK>XJ2l4k<5elN{ETb7sx@lGEMw}jI5-I zrx-+dqqK>9F@uibSua{wkLdu>h&ESccyi53i~yde&>xQEc@h~pa-OG%Wehs5SJ`vD zoE#MF+dQ3d?Q=ja|3}gdK=OSU899J&gW4_1KQ9Od5Tg8l-!wsa<-Zhe`5&FhW?)Hi zRvLYOlq^-P&dMv;mv4UqfLoGTu}i8tnl|7gros_zz=s&baA*U@dS3e)f&U@%;k_K9 z5%?lGOj=4)mjaGNiMP9~LYMbo@s061`h$@vC1qU2Ai`?}yxnDbmVX7tSPmtB zNe&5?<=Wk4fn5Kb{&*zU50H@~=elNhnV#>KzgYAAA97f*eEWBo1#snr7f|u#z?y@+2dgfn^M0STqBk*S=<8E13z;N6`$#$zjrxnOYAx5+zrqK+pG`_I%$?4hxoVe=`us`E7I)keuI2Mh@WIppuJbfENb?2+<52Wa^054BQv) zHjPnEGE*q^Nxi_o!3A1w(h9A7w03#`e*leVnpA-_O~D(c5f@FtYYbvIGzDY0)4rZy z!An#|ythO21iJzRt##6pni>Z<5+mNOO^+<^xuPYQO@A&jWy~NWD=A|tg9xuB@OEu# zIX(_-p}lnq$H$N(g5|h&*JcpYN7J8l;J9pGib07A3_e>W{oUORAlxa~kIACR}iOPORhoc$s71>YfSRx7yj zN?l(tq8zGbQ)(G`4?K@5kkV6yDIuRHiHnHQyU{DvGYEw!op07qh` zJdJ&MlXcwNFwzMw#knUC|)FI#sDBLJci9ihtkoSKyd zvKK1zJJGE`GXM6wkNLUc3%wjSANvQ`v;SUt+_g(+Rrcrm)*8s3s0xVDEkP<^Z!&Vg zyKm3}h%SPc5d#R(MSR^<%3c?-uhAC=ZxM#FYU*4ZcrW0G!PFr{7AUpX4y8>Ci z+H&K4Z9p9Ukf>M$%YD70_25{uafwW4Z#JKS|7TFsLgY;4BU*?)QwYI*$`r!m{y-z{ zP4+u7@^?vO2Bfa>3k~9$AN1i{Y*H#F)5+q1?$eU@M={r)p_snLG{%DID;dOaXck9; z$G&>;BQgg{hxh|>h_tV4>g#|b(NP}5>V->__fRo;bSM3x$kK2-8CfX}w=szD+QRYP zp;-#Me+5GuF@<0Im)CG|}quB47X^%Ka6lqV>xC!Qrkiodgp_aIR}hyfa(M z6y+}Obh2KxNkzY=q~H{FRUiKE7&ob6kyLCnUEZmt$`Q5yBnB}YYJaQbyRQrQFqseU z9T8uVK1dFhmeN!Ta3o^NJby^$tNCL){qe~BQ6eKN`6JID!s`cS@P0rFnUC?Wf=QO0 z!I#N_!7@I(rZbS7PeQ4ovA$mN20@jd+|4n~9lI#B>BL{G8P_sqZ=S9E(LX`bUrjB@J|J&h~ z{n49>`BJBEp5RyD11%wGRaRb#J&3vB86g!GO`ZRxX>diI|2cyQtn-28z~uYO4!FH$ z$@zosrAXeDN!|rY?8D5|)!soj>)1Wrs}jY8)PVhy%!2nyh@$^0IbK>KQ_lj9#7+4i zcf1gE-lRuoOyi(uqG%Cbp__HV@a=j zyiqXeRbSNxaW36fB>S_-$Vx$(&L9Fag2C7L`UzpNMkdv-<8gjVHNPUPcB9}ru#%Rn z6~!D&juloh$D5^znBHwAd90xuj+D?N~}93QM?jxv;t za8;2>k!~zfCTEk8BbUh{olKyX2j!P9*^A{ya+I)QS#2s7pTmk|uBV%fl+3kc|!S}`c*eY63D7!=pywc>jVELZqR=Sw#gUWi6ZUd6_ zZZdM@tj`vo^6M~vjXm>Ml4FBqepkl4-Vc@iE9iD0*}sg89KgOo%@=J0FC7LDqIsEV z>WDX^e@M9N{aZIX1-F1}FZui(_(IEBTG^G+x84=GG1V&)rK+Uq79KYZw&)ffWe~%m zTbSI-Zo7*++Y^1cwBxHEZP~$YrL`Is5^`f5QooQRU~`R%|(i2 z5g9phk<9dq#Eq&?BB$C*p+{dUJ3A%HUqAk~oiUB~lXSl93~q#6(XLnpAO%y&!HT2LvmKgAD|s&k$du z+lZ9ISIEeb%V7pwP9D!?3&~nFN-J1fx*h6?qUOfp3wNJW{W52 zwj$;67#TTodCb#<%p0ZoR5IaJ>sE9uKs2Wnt@{BGp_0mN>>eLtUD7DJ$w;y6LPj2* zV$rr9%k0H+5IH{BlwvKGpgv@Oy2(hf>`O+DTr8ssj^p3J&}}b^PI4r$ve=i>fVj@7 zrDY4v{CYBe|YKMh@WGpk|A*&x?Qoged#h zn2Odb`%buvu10m1`uxZ5C&)V0CKK!9_dV03YNILsA25}UDE_B2h~ZHD$8e{8_5WjJ zMwAM1J~>KSQd2p=kr?rg-}lJ!o-0~_57VEEOc@^}BP%ImJA(+X1@MmF*K+(#u*I?q z_&PZvSdMFt-w$H?tMsQMnf@{vIdZ0Jj^Ed^{ggf1zavKl%eMdc{UF94r(1wz{82J; z0OJO=T(kqcEEqtDcHmS~N4$36iE!J2T@vZEGz&2QHELGUimYsWcq-U)`A#i6wYdM0 z>W-!pmxNDxQmP& zImb2A0P0(Ol|9d&C5Hsdvws>u%k?1r@kp*eLq-nZ+MsBQy3dP%0feag(@h=m>i&w5 zXaD<>8L93+0ru09kyc^Wv;VGLQk~J1{l`pWEz16{7{stB`{1#!?7v0k!h0!1*?*H9 zA}yV%KLL(JhgbGpnv|08Px?cVY2sBfvXUlVVGyC0eU;rM|D?WY3cGs(1g-DIvRhmB zwH&w8AC2U=jf@;Q$2DbN<@scLo;Q(0g5}v?_O)DZpg$hT^*S{nT)KYh_5k-@Jjv! zZ#%Ne?;pVuT6eAR`z$#gSbkd>zruF4v3r{SY$VH1l93~4d2-FxW0mQtuUj+S3J{Ix z?$kG#UyUi-ud+RX{(L0cW68(?Y#Y>UQTBN$Fn|zczicX7uk8OO+%3~1`kaJ3+&_^l zQ*Aa0IAH~U_&GC7DmR+)zur_fqWmAnAcjTxcU|_C|004)r@evlj!EYtq-uV?#y`ty-&-%CagVB4T}i}KG)fdPal|Hqg*;+6kTgge>q z-O<$oM_~3l`GO-&08D&?nwzw8D<7eq02uPlw2Dbm&C&D#Q|xI+^Z=t7#Bk^V zCVRIJdCvQ~fqlu0c&>`+{|<7rw4|oy0gl8>ndcDMesu`(9{Tfs4DE^{<;AO-BLi7(KOdaw1hcV$!AB=*d75Wm} zrMBUx-~ugSY4uiKu5TL>`Oe;;Ls}j04`ZHLQi0O64)>WxTeJ@MFo@yMI*j2?`x3}Y zWHywR;m_nKX$eg|4mc7c-hKg(EbqBu3gLPBbCKy{2N_vO7tb(=@LC0LzkrtGId4+m zIECYx06}Y_u^iX#7YJf{8vW@=rYDn;BWJp1zkrtQ)%I+!Bu53ywtv4s5aUPDEkH7U z1Q|Jiaf3Q8S^-`b3?M`+aJOla@>+ps!d*ZxX?>}0tCQEBy?P;8vRb{Bw_$Hp>mA5t zi@i=ES*RSp>R!+ubZM9Rw_|Wb5I9r$mxo-2aDl1lL?dw?gBTW#M0YxyDEd##`ZAeA zrO4bwj*?aesX@Sz8;Mo!NW_@l7noyogd7R1DC(ZoI^;VabKO-X@e8`SNJ;#Rj2yWn#_%-h8*=RYFKbb}LyiSj6qcES zJFLp$ExN%-S-eR`4v>XGGa~vKUY!geL_c$`sUu!L^IW+7%m{YeRqfqz%gMUdin6>+ zH?fh2^U||@ZkH14E@e9T$(1qpfAT+xF>|DSZ_3k zsdbSlQ0h&B93m}?sSSW5(NS3qsXZm_1N5gN^TX+6WFCp16PezemKO&3b>={ z-f%yij$EJ3_Z6g>&o6=pwcXGad$qKjIhgt!|GA3)T*H5^Wj|VJmD^Z?D8O1Nr@NG9 zIid1DVj1>SNqCh!P#&9ix}Cg}>2wBDFU@ahNnPg)>CgsoZIq{UX8Ur9&SE^5$R~R8 ziCnLT_<4pHm>q&|7H<3{(&JYoik-bK3;V5-Xt*+#4WjySAaDft4ixLhDO3!Ve|QET&t6)Zrcsc^IUb=~efu@1rltoNCYLN%T05 zf%yg}569IHexf`I3VA7?9MqJKJ#|S&bxBPz8|fw?sXc*=th~&}n?fvrf00*6F0clq z6axrh1@DgxAVgxj$}rESTq~dter*JVWW;eTElbWHbPL=LD0IDdq@IHxXhz2d{DDcn zd;uWK<2E@(cInzlIVmrG5v-x*MQu_mw`E~vVt>-vwzM;wDdv+~OYDx;0)J|}lna=g z7sd5DQ*ntV>GM3aK~W8EdsD3e@lH(-`U4i#d8@Pev)rrfU|OK9Go8)2{|sL=+VV~= zE5-Sq#>6>w3*g9I>iqU@ZbSzd(cu}<0Y-E%Bb4HCw|$)NGKCPY&m9aRQ0JzEjN6cR zI#y=;`jYZ4+2`SL4UoAe{Nvkm@JJYlxsOzWy~8w8Le$TgLNq`nL@t+8)4 zE7D`ya|501c}kc^!9!`SnFk@lyo)IWI?TqoyY1v;zF116+nh{)5-#QIbKsjtTSwda zY}=}A=UI+?4E#P#BVf07c)V*!N39_pnQRBlgt%rXyeu&ds^Dc$1`${(8=uo#Pb#=s z91c`SLMiJ?NNN1|rUiF$d&zxnhj^|M&9(N?Tx|*=RKAiE64ap>XKo($evpv3QQ%{-3M+o$H zrVvdJ@u-uwmNLbX6yp*9X;$Aky1m37r|5Vmc&26B`F5j%Y>?nZjo`V+076hbM2#?Q z3+9V?i?+?)z46J6wm|IPGzBbZ_vSG=O1Td2&ORs>!R29Jdtr2#LNuL{#p|+pr)`x} zOeE7zSKBewMVxKNXL|~50qmUIG_klqjU7kT5V$E1b8VssS)F#s?i!`~x6ar0@ zaep~dxr;_M#}WsR|cNl(d|B4$)NqF!4vT>Fo>x8s4JTm$r0_z zu7lLbU11-&%S<7JazD+3-{>AnSK#k#YJ?9_BYeAQc!V}@Glgh+gm*b*)A3UO^mG%$ zyRA??e_V8^PnyO?g!c(kh^B{k%9>>Hn9|m^mDw(*084ZndDOM@+s$fLr?&UNz_qj$ zW~8f6R{d=3n{ls?n ztIyWTLlxR%@MO#3%HF0B{(u{BCTQp1`3xY06<3*lRdKC=&$rKoyMueohJ3ag+HHBN zKiL>5mFL6!S79l9u}v4)GDh}Kv0UYm()Y&7GRBn1i*A7#h}G#X3~ z)Ms&e#eI-5OzXzo#Z__*z71@peG*m}y_FtF?fM~=QNBnqfKkaMh23w^jY6{f|H#Om zaU$*hFN0|0XaD*#m{65LfASou-`xS0SknItIUd*-x~<*|9dlh#X#YLk7$oh#B_l^p z`?Mp9Jw536ti$pRwXs$ zS+Vj-;fwZCxQ-kctQ7XrN)>DHz+iQN$p@}astjJI+k}+CKgh@dGBD^o zMf1vMxC|gf^SZ@!Am+_k9vbe^45L>${Yn3qkHg_+Xxgw_E4}jE>VA_h$H~RJlKsxo zF7J8LF^F&`y4bAbL>|nxb=j^`TKmB9)M@6ZoNa+&NYpukoJHnMAHdr_1=MA*yxmower$@-VIIT zU~=Uxs6JPD558a;GZFS{Odl0g{cD1&duEJZCk z1v)y%eVcM=SfSOHXsbBcR_U;$4kOvL@V2*ab4_tyFJ?+d0+!2imaEO4I%4j&k9nsl zgm~MwaN2@&Zc5J7s?0lkozAn^p)|Fp{FR$V#x$XI@n|L0U2GaTA^3|-A^gEN$WtQK z@z>4(LRitPR5z_M+G>Mi7WxwG{0ixf{9e;UFulE!0y<#vdga-Q3chPfp-{oM8AM>( zYj_7SUBt3Y=)3mS`d!na3XNGcm>uHbN?0Ga59_0*5JJ|Em_mq`i<3JnU#{tE`v=;N z-kx*vNq3F|P8WcFLVCN#?cA(pl3hR0;nY0bZ7b9YHySLk>?cPsh``sY@y7?uIC{I= zow;Kkm@#T|qwEjtdzu#5ne9&H>Ffj;IG9!+*}d!|ySpibc*7QQavI$`EL0l1tqC}v z0$S!uQkQhTu4!~EQu{j3k~(eOv8HhqHD!${gr6FN%q5Z^fAtI?gcU<{7N*VR0W0%P zf}Mty$h5636iQB87XG1s;MtE{S!naNZm{DxU{J8x>4T=cC=ayHZJK8GZ}0SsgY%p^ zlCE(bS@;KdlM5Z*-VT0JNCM_HJkyj4I$){*A)!itAYr+Hi} zV5$H4;Z8`7(tP6iR%7H=UdR^uR}Pw#k1Y1S@kmo?n%T&2n#w{b>+1}{peCD4n$%w( ztPA#U$ienrKe5#R*W@5+zjCJT0UU{t@~&*bO@+Z2CoSelMo9w?)9pZhRDXye8*pfl zv+Gkhg*y+&gmxy^lg zkP7%3898zVOsMAlWLiG#_gQ=LpC-oxOa72=zUCC+C+XH8d4Gb8969e3J>L1!L}@0k zb%b@VKLH?`)9Wp&m-0PllsA4X-5ezIqsYjSGhcb*yNUxjIo%&_Py8}+JR0)Gb6*tR z529OxM-gu`!k@hutNqgeE$pOI<&v$X_=W1fEGis05NjC<``xY|tu;Cr< zIrcaASJ?A@895*g;oWsc<^9uiW01Umii{jN?^C@B&l_Xd+tDfaclX$ne>XWQSn~M} zsDPKg)*~h7-$l0xsewDl$dPMcwx@x-(*yUB!5!~>Ld2K;U$Ixh%jDQ#mB6=22Pnbk zmzoh?q}zp5!wY2O$kni`Uk&bsmwoPe@jgM!A89=TmGNjy)a4v*|`5b&w$=N3Mfu6&=9FlsLQm*r$RU z?Nx9+IV@Ne)SUw^R9#Xva4p>=qz0}gBS)@*%2xo^WT^v%hwT;c5IHD~QGk1^ICsbk zve!$CZq}$k&z=;L1h&PL@b%{ z<$zP|`9Fyq5o`{q`#q3(qcXpdZVi(86UfMsGv6xSe^@W&I~C$Wd+IMBhXhM~-PK== zdehz`{<&o2$k`v`u`gd5d5b;mHej)PQ_=#2zu4>UPh?K8y4$Ue?wBV^ruie?7Nqi? zB_k`!f z=2b%eNz-_VjPP+&2!F^8N`|O9{3SAg5LPU24)Jq0Iz3Lt$@9IjZUSTHca`$KE3EEp znhJJphwq?O6WGCB>=Z9%f+C6AP5Bg(xXl!z>10e~@!xb-GMDp@YM*Xe{3o@$#iOH8 zd8!ifCr#reLjHs)gg@j4uaI~Pd3Rs{A*@(v>WJ6-eJ9-Wc&Akljf1OT;er(SX4WSq z_gP~a)Bo*N?fh+ zdI50cE?{DNhCQ@{#Z_$sUbBzm-%TOJJMmWr(eO54EIVh-onw@uz3bS<)PFVFOIJ$Pr5vK1*g!q4K93l4=kQ`64} zOk*qPIo%Y(Pme)W7mWcgCI%3~ieH%KQLiyrG`giFu$l$tR^!hab62>BEL6U0tb)73 z+cqR~4xH;R@4~&ZF`6rPXqp9fECQGihgs>kdx}{+S1~~1f zDWb+PZ(|4j!vUh;YX@^4Zl6gO+O|3_5Ad}|dfRVrOypBv1{^7z<%Rs*f0&f7F$9h! z>|lm;xP~ZmgtyrT{MOI|K65h!8;0}!PA2JO;5hg~XFi#eHy%FGv@p+V2VJ`(tIFd$ zyvHlSeat?%zp5YHzyxACB{uqmTrru=$Rmq4n-Fr#S}sm zAx@!H5&9*wqTysucHbkY5ofvisxQ$amx#sV8q<)giE0XagCI%4gFEr zi%cN|{XFmn+zI-5dNhC#R(zvA{ly)Oc zVLmHc?hviu7OsL@v1*J^l(E^AR?#Dz$RG@Q1cS6%b0Xq%^IKZZ989qf_hXZpE@yiz zUy#ezIbN7|z+Wv-+_I(mx3+8omof~Zk*PF* z;8xfiTudg?ap)AfV>x-q_a(5x{n){1p0;I+@9#E{>>J4;!;(F@-Lu;5g}OVyLxu9| z$q!d3zt$8Y0?Nnd@(%0&V})KRdH%YV?pB~%{JjQJ{V+LHSgI$qS1j%T&lH*;B0pH6 z`9V_%Kg|Y(R@7=<7YrbT70s&EQ&#esBz9#*L21#)jc-=7HnrWGH)7XS@Fyz@7!8lN z?AAsw2!onz(*6YG?5W(~fv^{gn7WJ<;@O6FD?&uIu%c*3E*utKq;nAn*T z^9$r4VR;_QzL+zglsEf1@>3Od|6mH?XV;)Ah{D1fP6G&G1#k8ZAcPf{vAI112w}yi zZRV)q(xf}XUE4fvlXG?nt}%qU5ve*JIH4g!nDQR(B;wM_NgeXVNd@s}>D!s+Q{;YN zj^&VMDT4?c(gZdnmLnQ>bkciAs&=+9DCVcu#QgFWxO~g~4|ZZvOh>Y5#goVZ)2E|V zfFqGp_T9cANQ~7;Nl8>2>GmLZ#Gb&A>Ac#_9&2cwA^e9ch_rX=TmZJxmQ{O!6gOm@ zM-Qa-P9>GtedKM4qU09v~xoQ4?9Y-xNaB2Cg%!+HkzR6+DYsS+S3e z6;Pp;j1F}X&4jg?q+6bn=lCxv`Z+j4dz-X5uDn;B8s)ym)rU)oP*bHIFpaGEsPYpA z5tz*yyI`hf;!Ts!#;k;;2gO82{wDScIp|6Xdzl<2EpMqO0Y{?5Uz=*li&ec*YSW8! zdytvy1%_P3{1@Cb%H43f=)ngGQ7!w+A|$=Q?KM~^77%Q?7C%Bkn0ns`!l8eA97H!si$72BfF#|pD)slLdx(u zh8&oDf~Ra7KD9Gjia}7T^DBFXe@PD}GVj!Db@bk;8RzG8>yT7GKt@(F&QBObcw_E1 zIch`Hq?T6exBoxn7-8T3Wp!#&eJ@pw{EKcSQX{XEkpnbhP*Oxy;z`K>BEpHk5hrAP z=VdOlm*YVI(VS74?^tlD4`!YyHE4gjElAPr%a8+WPdDBQAl3jPexXf$tk7~BAIY?y}OdhgpF{{PPR|e;a&p)vFvcKB*zq6<9xRo zNl8WWNJ%bN&}~AB@G^!Rm|Q|^aA(zqASlb+XV33F^jIRZ%)WJc7_D<^wz->b9Fpj} z$jC~zxr0H3S8sNcf;L2V`zjb``R2bu4iWavKLo1`zmuv$UZxv~RLF~Dj6cbU8 zctSFOh_JaGsea4eXR@^%mjFa_x?A6E%TgiYt|%2~Pr5Nk*|js|zzP&zx|z&e52`#T z+Y`Ep9z$g1SyCsz$X=-lWdq$RB(v+t$Vx&v))Yb{6t1s#S3()B`%Zlc#KN+|mC516 zR=7oV6j*UaNh%l9%|S}Rm&515F3Y!k2RS;}x4ho^s38ATT|7g#52=galaT{- zVNfna#o@`v03ym3_We#iD<4L<+Z1ah&I5?>TUhRjQf=nYjX}z8CPNOaHsK|i$;|a? zO7^9ewf2OrrpFLjYU;JHvR7(CSxL7F$?Q>NWF?^-VG1D<3fETy5{dzYu!3)2GJp_i z?Z@QZI9@niD`0!t>~JrCn0RzD1E&+U!SQPa-w7jwz$&dwYin$I5!;_uDkjqfwt<@c zQw+{ChUdn;=SusaG+Wa?W2!K*HSNC{L|_IBv0vV`(>?DuUxZDzaMNVkN%T8i@XxtY z(U;A>LuSC!lGtziEpp(rB&NOyI1)+a{aE9yAu|@}o|@LaNjDFf*1k?gR?^y68AN!c zZF(heh0<1j477hw({o@E?Uhsn@dt8Tu!7(tsd|DCeyK`$if$KD3BMyFN3Miv-Ej74 zJX1H8yFoujAxelgC0W0Qx zDmc03ay+mK;3w|r5`pkX zW&TpSJxJy+AtOi5{QTZT0XDj)lU;Fd+|=0%1GacJlOFI%;a+SNtQ7dRcbydK zIH+pl2Xq6G+PIU99Jw}TCN;;8YTYvpwf;8+V&#J$RT05X~7p1gk;knW~04bjy%xm`O&CTn)SCvT%U#*7SgT zaRi%kDrV!EQeVzrHIBEJ#9DHAun8h~rYX=pRTr!2<{@>ll8hXn3xj!QF?G$SHw_@f z)b)RvPLz04*QbO#bv@3#UaU_&SM9&ZTGk4&?%AL2O=I4prCCwU)b%G!-@c;uM=N(=9<} ziJKU*0f!CWX4&ex9`phAaWKmoVxs7uSsppvS^zr(L?fC*RRF&2C4K=^eNq+h4wm~DnZ6X%bZ6Z!llZ`_+1u43%3^}li2)T%yQZ2c@`KHV5>AaL4 zLu40GzlaE*R9-Kk+l1t`Oh#6c$;GA+BAIY?y}Odhh~t;9TOs9=haeD^E$oBjSYmTY z@PLH*q13PY>6RcRcP~Q@OeG<%hiY|Q4@xC(*t7W>J%-3s5;Z}Fld6E-=r$o0FprEJxdO)VXek4djrQE1 zK#m4Bl?M+kmRlt*Un~(~4f{Yxw0-%R*qowo^tuw8; zp8yce=^yL$5LIuKgg%yT50dv$WaI$e4H^K^L-4X<01;siG4_PYCt<0PIL2OmN0T|h zW**;(1~pUa!Wl(;E9mAR#rHmjJRG`-=~e%OT8g|quUUE^ku8PqOamRSRln4#lBU~* zBsfV%RX@p9E9r(IwQvO)IdUyb zuF*o#$@%7~er7L&pORyOl|gWiDf^@<;6A!dNCn(OMh;MbL8Bmg4PJB%AR_EFcG$Vp$dU6umIX_hsJPgk`HRTGz%m~^R20rAsr;jKbC9fmgp3@(x@}b%zYqlmj z&vG(dHHX-E|4%GYD8?)HNDI(4`vD#{m9E$i@DPJAXk;3{mT$`1zFan6+?-Ej3huR& zzB7bgCllhmr($!!KgjXYa+=x!I1)EyewaDmjjCZXrn;tNxWCbjLuR=DW5@;^H+;Xq zJS7g*M$gx~ESzoKyDR{RMhrt#w)yot1h%VQs_o3KbSsgx&n6=)g>43d2(O*pQ`JYZ z&rQwQ3@k8@!#_iU@F`_I*l5}19!HK8HZQDXgB*%dRDV^?97DGkshOk6$dPNNP1Q_) zvXCss`Ty@z%Lnb%vYi|wtXhsBtEJXcRVO97rAVFR$;grGWcT_yS)I@J`Lyz7d#&6= zjuTcZ%dNEHdaLT?2D-IKy?lX;9H1A2v56So@J7f0LJV*I!h5N)$F;O9Ie+j&gNsu; z=C`!;-jR9^e$Isd*&6UCsp&y~u%k_nm3jdn%VXE}4;-IObosjBKiF&YDKaNmZPuRG zrR|2RE_p1AU9-QV8-JLvr1`rX}pNSyO4T)m!YB)yJSA)*Bmt=;_3s#bR zwL;x2RpXXYht8rKhLmD2Lk_G%;SILuNX*9A`JjcI)9I^4SKG7vIeIX)%ahcZn1hDu zf@{SqTvSuf<#ZE~d|ygNR#ML;rVt|aaMd*+^%y`1EBI`)0fb0^50a-zy>Pl#!1slF z!u`H5Zf(YWr;5pJMp|a^JWxuTwbCZO@^0GC3veKQ<)P9%wdNbb4pVK3ZwSvYh`@{% z;`YxeiLS1ABA-tT#N7b+Pq!UAml||WJK__3?Q5G->F3M$75XKARPy(w+k+&( zgNz(NzCpGZ1%sy+0|-$tes7xKyn-=qOiN2(ZVT+zOeTWZd{65N{%N>vlT$1vGd)t( zD3KMcm0x*L7EW;NPdeL{b~#Qi-j(ckmU`p1IIJdO&y}*1rf}p<1tJPZmO%stx1oiD z1$Wk}flQ(=+1XYv$d@-J$f=J3jugc5?Dj7H{0=YJ9hG2v?~a%UyVO3qmzY9`cc;uC z0!3~x6T)cNy%K)7n7$3BqT%iu_=l6>J0G-3ZJSCt_cNa){O^Jx4QQ7%ob1tF;R1~5 z==O~1fcL{Srla5)qY(6M)94EM-(m{kC&(Z_iWJLVLIVh4McUL6FU77O8ET3hcl7p7 z2ew#cGx8OFuQWzv0X?}R9x7!8O=^AFG@e3RFER*&)M`?=>VLtQxi*taCpw*za$WEd zzZ!e#{hqcf_5Jo)pcmDtA#91-+sJG62CJcZcmo9W9v*V%LYd3rpNxu%xu zSxG;yn?i{6!)5pGN9K?UlK#Y03;5fa%>*lF&hP!;nd6 ze}+5^lF&ju#X)(f+n()CdQg!~P|yHO%XZa6H5F~4TZp9nOfs^Pir#MuAyN?+-@7Xn zO#+>+a{7~t7|qw`EnHTTdhL(+UV8Cgj+cbP(nRKvyg?n*Uo*R!fPkaIS` zUWcqZ+pl&#JI}XHIq#68i%mJfU60N!CH1^THw>xCHyQFUNIh=XqlraO3fjk>?Ii%w zoY7Zs*Hh0!H5Khiw-8BtI~iF?MQx@KA{BA*y}MG;7|^Mjd>jbI|EKOsz~m~b^&m+m z+hk7&Bq1G!C4e)5uT4v zM^OY96c-fbiBAwjK@<=KQQo;#)m^ui+f%2i`*!Dj-KtH~umn@jgsou5f3xj1Qw>j}!j>K=etKluPh7 z8B%)@8d;H)57|O+Nude0V@b+HKNl;Vs<4*)5Cp_gR=$Uhsi~~cvwyU*Qgud=mha%r zG0eYj5#$z-7XK5lDxG2S@{&8VFXBUKC@=J&*qY2%{Zb|7dAwbQ6hDVXRwU*bTL>;O zG|_e}iSfVuS_L0{ZC6{D{dafPn1uk*m`*yllUjU<8t_IDnZ5A#7-rxe1i1x7X0||R z^=XtAYEE(Ib^|_^hAI<2C+6H%9aClIop{3xNnV3SR%B+CEd-Ytnrb_i%Xp zs}HTDM)$e1eh)sdhH4Z%2TZOsTGp#xs?u~9-bzFI??59f()0ye2rf-D33ohcT9+%r z!9f{sz=N+8lGPqvm~#Cc!s94Se?>>wU7EsNQ>5uHc;gIn^G^i1MWiVt9@U3dlBPNH zomrm^5RGYq!=-5?FI8!piMP^_{%L4rMVcntLU3uKNw{N4lRr5-HIXT4-lK1Xh&Zaz zN$8-Os!{mlEZ~hIKcj^nUm#GULU0b1T)rFGE-ywdQ}&ku}wtkT)KR zPiiWD32&2OD&CGpR#K6EHDi%SJQeBJfff+_3!-Ojzftt9fOA+r*&gjTpGyh_FRy;{ z`6@brwb>W)&1ZrSDtuC?`R4Ow+r;4CeEy9d`Zg1{{Hu^8COaKh9it)fZJKrsHif)QKr*WJM=B2t?@Db#*TmGpm7$=koDH zb|~JPmFPbnOmZw2%g}+*KCo$({@`~mI{LX+Y9hP?Z976tXNOeM2k^ESlAcB*H=Xp|>C>O|w#IvM`8*tX7WXglNRY#1q&)bPdmelO z9U;>^2z~~o$bjBGH8pO)n`f9B*P)S{o*L6wYNTKd)jw24K9=pr?&mXf1^9|C!r%^`s4>UEUHgFaYvQ|$Yn@&A@=6e&Ff_$d^ zdG5@giw=k>^EID&;*CoDIe2RfiQkS!ZaVS1(PzF74v+WpQ1u5(#rRf#n~yXbxZOPq zZbL`MGz+?GDZlEPni99-O*2f1ThPc&PlW4OT2Z4iSaWua?=xIGE0oS2S)_vC4m^bhjVK<8Xy|e8U|lztEoW!QOSQB-X25p z-`erWpF_!q3gI6U884*H_6picafo{&EXD_3`}SL1K3-I-QfPcrlVTCxHp8TNI~uv^ zioh0);3mgxp_s__$i3qx_gsjhqheYgYAzaam(&z^58foh6nGaJx#=mubYZiX&w82o zAl!ri=b;mMkP5^V?zvD#hsQJ*YU+Z6N5Djg~WgtPx|M+NJU~+r}Hdg zIzTjL7E!Zd;4Y~tFa>XtVG4Ahk(-_ZY^kx}A8{zLzs#Necc24ess%Nd8i_Y5@yFn; zF(m#-G;-64pG$iI5~@PYnlR{|2LtH%nC3z7D?(*0LFb&B7HPb3hH24g5>TYzhXyd>Oc)#rb`N0*df z9+^)J$Ww+NxaY(7(Sb6}hv2tdiY(OhQcaZa;;l4Hly9SvLlVVeTRPv_PWM1tK=7UI zFWBzHW;@%z9qnyK?Hj#a7US<%k$Ql-Q zP;0iej{!q)Ei=mszO8*{0uj2cJ^gaBt!-cboPdStr{SQ0Gl$bp!LRrKIoeE7`ah2_QMo>k`c zqVRxp^9OXee6;aj+L}mZ{26S#7sScimdkI3&>n93*LzD@a>Fbk$-gtOyvX#g_GNOL z;LZGS`AE~h(LXepgEzW`R3TnXg2PPz@<1t5ObzC9J+RP03^o3ngQ-C;lY&`49TeeW z0ZL|15nME;gJe0W6CS*ciuYy`eel=|R9cr_1POi7@VfK? z?Dv7}_hR<@AolxU_WKa_`%w1#F!uX!^4lwq9Y}0X!i8r2!zaE4|5qO6lRCVv+}@KQ zx17QM9G_2Y<2IDiFUQ*2)}>z|KgsDDF~G8VPPz2b=hR7h+gz-GkBYk5BmJmo%$mfI zFM`2iN<44@_lbjEc^8mJ3SNB_z1~vBSDfz3KXhm4up?>jCfjIo?Tr(NQ0)!>q^JRR zH!Vr}>AcljvbAr0E|)nlDa8F^blh2?;Wx-#h>n+*x^xk61a8W7c}L=}TXl$;#IFH8 zA8(RjyY>Ns9Lj8TpAF4b!VvcH^Ic#v?$J^xz5^dm?dxBaV)~kAM2f4vsjc}J@U|Ip z{W&x;3mk8XKWhuY>jTX=r~2?dVnt|fHePfVi=y)vu*WeY|AY=~T}1~RQbgyEc#{kh z@eh>07Pv1?5}n1#>VqjQ9M9a#nc`^xf$ObIDK-+FfNv_-lkv70ay=1^tccDyTL>;X zG~;$G(HU3iaFz=l&N_&Oqu8uQ2h=nZ>3QKw`D3lxay9W*;!QD3ycGnw1v;As+(M#qP^hRJ>rUxW z_&C->R02M!+#Zg%$&lMa(8!9YEVhN%W~PR2a1Za4MO4ArWDc9G;LGn zkS)D(qs+Weqqep^+7_`KK)e z7aN*wJC@jxu0>j0ImSH+k8D^HhIcKxm6gNrb{I;_!34Plq=j@Xfh7n@QTp7;OyYy+ z+_eN8QiUXeH^`9Hv(U(jkep!)!G(n8){Z44q-$Bcyjll@uH{n@6UVOQ6X>wIcP&A8 zl&<9lyg`OZcpX7*0cjy!OCSi<+Ae9#58UbfK0ca;8WY~N=sZ)!=DT>y40--G8d(vW zZ`wj|v7ysqdKr}uJvG@ZK^ooA}pT#C2MkmnDhkrlDI zz!rjw4b8S4OKf&t-cuB&MGr$990leE*>ntSu0z_lxKKgc9c1IDFz3~PaCSfN*ZUIr*O$tJoz?|w%@5%UR8VZbl zeI?8@RczMdEi>eKEgD%7n-gszxY*Ea+p)x^eR)1Nm@A3h$`ud`$8M#J4yS3iGFRWN zFgFx&xdd;BVbWbhkXt}prZEn~MCB{)bl!`PqM@klRg2E5N2-|Ijkm~<*E`Y3ikN)S z7J`cj&8{6wOvbGk*yNEzP=(3QOArl5Ie8HsP*XY4@3!TRD1!1l-W0>cdyXKtfS}B% zx?g<&rB&Ox`#Dp(D?l`+4b^`ar23?a$}GH1hTKj^BP*gZ#TJ5#3eB(`OH_6~{`if8 zoSXu2aFmk`=un!-7cjApOOtv)yxdnt|5;z_vAs=w3@qPFR8g?c6wUnSY zDxX7mYYh3^ibht%qhJfc#e-(mjwK$WR>|sd9|XctJ?=rr(o{Wm)i%S#2Sq;a!dqdO zZg&vm7Lbq0zUN{3@dtMzpTvjIP(SFcZ1P&H;EpOFPvFflWb|<~vLYal*+Osup?S4q z3CP%0NjR1)RU8spkU9H1i^yz%XiWP%PcI@BKNKOEiMPZs?WPgr77&u@6&Az9WQ9AS zOYvbe6chd7T#8Gopd5!c$&lHj(a4IR9AOK=1%>9oDkR~j{G}(auAaTh4qatOu+9kk4^P3FlkBus@ozlqpVm6r zcRfr+Zgpq!7JLj1RYc#C2=1r~ax>l>LrOo1MphK$MgkFf*jnAWpG|_*=fMHP*;Fx= z$izv5CoPTr60CB3oPUOnjp^gOzqU8f`=w^XPw;jbX2Xxr$RXKaQ4DxJp)z9u!H*$~ z`~bi)Yv9b`L|&*Uliu!}f)fCuG3}{-gEaF(sVQUeb{MAIXo4JCQ=*fVsnqwdqH?%9 znTOzmXjoMAJ3b_bR3TZ6H^`9HMQCJ2NZxJ>!G(n8){Z44c`yoMYAyEl@tSwD@ z{^L&RzwmLaho}U6QbpyTc$*Bl{RbLZ5tWy0A-Jf}4BIh9MfxoCur6m&IT#=sGwZ3@ zsp!58JrHk-Vd8ZY zGi=8am1%4Jo1a#CiR6-E(SPNa%L;2MH$Ye%TbAq4ku_~uLYijPBV|G~jJL@!6|W-5 zEg&=VRA$3wM&ETO`P=w_8tM(bd{y34P{TP@c)p1@&XDb|p^+8gxz84Y3lGh?ItY&i z1h<0TNo4`SmyzFtzTt$0)3*Zd8M|~$r1y+XgfG?L{F}ZmXBy zn)0?S>In`d++wA<-Ekrek89{y9Qh4n;|N5!j@7)~F}*hsiMiNu4BYAm)n_=pI}DpX z0{%8!?zpZT)4IQ?;1$V5ex<=-xUVnlPr+q~@lAE8o`gT%-CrEY z)G{hJ=w;)@L;>!R^i2;jYHKc2$`(Di;}Gs-?1QT($sgXgI$kgtcxL4C@w~S!kx$md z_HRFgo9p0@7ILLLT=+<^_tay1`8=TZC$hVB{3y^Bn*=vS1DF5R!pyie?@OoT-`;kQ!F38 zs6RL0Ey|a&SuelHzsb|TyN~=oxzSJSe|NqBIY};J+}lUolt3hPK$<87eWaWOa*T@= zAdr_uE0Cj4DW>2O)8IXfo52HIL#bEBNrW~3`bAJ*|Dx3KiEK}QE}w;aT8A}~*l!y- zE{Pt2h)5DE&l$VwmpDmon9b3toP>ys-8kD)v|JUJY@}+uj3Tfx{#O2%WD5 zg8>IUa;xreS?_oz*VpHZRfyxDsQ&fAVD0YO0ifV+$`$;rk6yJ9rLO?${i|WGWWTRs zzprM$uVKH3+3#!F?~k(I*RkK%v)>;hzk}N7>)<+~kn5PPX>Nl(AO4!72+<^V5}{2l zR)7di9UEzvHgzd0@i8dzvE_b=4+_$Ez?*sqQb;LR`-_p3>RYzq1Vy6MWO6-;3``w@YP7Op zq|6c3h*DB9K_O#>Z6rAvOKl-!GA!Byz79n7&;o*6@pxmN*O-tJekTyymMZqcIUu?+ zwXI=^u|P}=Ql^+8p@phw%PmijEw&IcF&5nN^q{?o1q8R^E4CGZEfZd1H4C;a*OONG zizu;`l|_`G_}o#S94nhG-w4f;W{&&?+XUe`_BmS!&hBSzAsD+CkB)SDF>4vD%%-xX zT&WOS1&emDT&KK6`)!?Q<|}~J6-ToCM~8>~`F!}1xc;?mlsVVGBoG#}4BIDZk7c=m zfmAWJaDA!Jzi9o2ePbK*slGmcaWJ;gBR!Z<+W%Fbu&4hFI6^$j3p#s>z_rAsQa`Jx?y? z^8PZ?Lg=1ic@JdP+Y0}@FImf5n;0DQS9*gT)rT9#MQ3M$8q)=~ba7kAQqur4MR_VN zu#GLJ=R8}8hSRgxvP>@P)8n(_7iIr{7juN14IbR>mx73i)9ueUjGw(bd#E*pAHOhz zHSqKhe)8NJg`)qqjW4I@Gqw=M6j`s#&KJu?A`@GeDi()gC**rLw&1#_^UrUBS9z@%zlA=)oA zEZVyhtpYo`3cej(%#5y3nfkMPte>@o;LpI*l&*TO)5ey2MK3=9UyPC#HMY!u+3%Bd z8f*jT&E&*tKIOnh^{fjzlNCcq=i1f74C(UsBM?KBhoA$jacpJB+d?#)m?>l%AGDRR z4P;-2C`Jc0jEJe71O6sa7`TgW2+_Fm+fTNQ7!Ue-TL?Mm7E6?Tm6H}83kYsSgJ$ZJm*n$_q1cl3t2FcV z3me8g%w+s=yAp$`uvz>0w#;$zKVS>d@UTx=@8wguWU5EIQgv&?;y$%=kPRHZGIfh> z)Og@;wuNYT;ODJPWJ~^AKiJO+%}}wYA65%1gprQ+*z? zjVGt%d$th9lvvM6rY&0)Tb~;AU{k3V`@>D2e(}C5gvR)<4I^S=XHTkYkPWRaru@Y= zW<2bFA`lTyIY#*tZy|h>7B{Mc9o^~AtJSzofDs+L)Umb@JY7c(kk z-;{&>^aAJaZ5Zd{JCoHB6~fQ7Ws4L3Zd(XB)D~=U!s%N>3kYt-&um|Vu{Xp|v`6}e zcs$IrV8H>FAjEd#`ub#2c`tth$)d^^a%7Wu47p286Z)^AL(d+_U%mmULp}((4;?P;hYace1{{H!^1k9}b)3R( z#V183?!jAS_^IPv1lfXHi?{u?sqK`*(A}HQ4a9phiS6+L!n*W5{U5<}+!k+z?LXk- zs{OuIW&22DwiP$kKI}=nnTGT~fktLAM3Vj6);0YNo&!1Brq@Q;u`bl%vscYE-5K{ZupM2)vz! znQ|x^x#^j*mtIo_6Uk)8)2B+tJylZZK$)h>(MVAd9946r7jLLxuJoXho1QBn^#@)M z_w?&i{d9~n@nuV|9O)|{FSJB8y7E=B#Qix|EUAD1+;8}Qu?evf>$z5UfNsi63 z5!tTpFUb`X@b*bsk~{Wb>;zDoeC2u7<3z*{HQ12CdXHu)?kF$=H;H6v!I$C=ClJvr z*N~9zRt+h91_SGl{%6T+J@~o~j-v@~F+8h2Ax^Ia93hV7Iq*>iW3>y8i6AC)4KNc} zfcTf+XSm1sbXy4i+?+xn>bWLD$e7`8@2E+`c`z_;O-!5V8X9JH`g=S^Cg5D#=q>UKHs&C91s4tZ6V~~Thx8tI?ys>0l}>}#MTkk zI{bcAq;K=u*Rb=2f<^7E`sC9{CmM}##?_m)k>pwRI)R9$ZK%C^KMhX#i?g$w{K$)|eCU?_QRf+R@%9+bGj>HIvtaSZ zbQXcAXQxt|{~4vM95E>a-U$}rS{Nk*)}Z5JngM%hGC=i6&4E>Tiwtw%crqmwTD+rTju6dblTJWNA zF@dls8aDIy+Nv>Ysei8F(6T%@zXA^D%?%Fu;TLA0UqT08(T&^DLDTY={siC%1eN8h z3JHnbAzm@N_@wqWyj_OsaVtR%e0Na zSxH-$>J~zlm5M)#_)NlEWSE8%2yzRE&m1`l)u&SGO^pJGnREgJ~!=Z`Vpqh-0eId>n6>Ay@T`(JEqos6#EGO< z;mV^^*`&99#0v?Yv&|kp?|#M>g7fwife7u3ZR0!s6u2xU1s~cjStU%pCm&Xq7^nXQ zW{dOY37!5KCop7JBBkocL>L#>EVHMb2YZ|?gmJKKCLtu7C!ats#EC%>h0lz{@6{GJ zEaX!<`{=k`m2s6Sy~s9bJnnBN5TWHbTpO&zIf=YD&-gdq#9*hBkiZ)n7EL%{&)>5^ zhVAl)Rf73W_h7E69n8Axz>GjB$)WKv`1V=|Xue?qof!-$J+a;&TnTH=J**j92(Aq& zTL@mpDY;H%d=;^x?rAWN9+baIdYC>9qt&6}YO29_b{@X=Il9R<)LfK4ZVSN)r=hlB zixW;9kvE(Y{_1Al9$bhXW_!yBb&klbX{E;gzX z^XV|OV~ab5K!mnhbuSBhpVseXV+FW?A(M=)f(wJZ7?g-uq7X~OiunZG^yOdFb)3*I z9NMr5@7=i#%;}=$bfw_pAkXi^x)OyhIE1%qj@m#R>h7>h-S51GmXG;9TV5wh)~51{Lse{!#ldqlRnng3-RXVbLB>PSmF( zDxtp6HcmX$=i5RwJk(>Cr8FnG-`225kAowy*nmo)Z?%mQ5A-dz5K5rydc|;hFc=UteiN^(-T2oLPf20Qf)@mdGLOF!%9O8VtkTifbMBxdPf z`D2jtRicW|Dt}5*Ohs4=CWSgKUfl+38?x3U~59s z_Hu{+mCgpQ7j6)O&(%=AAH;n>ERyu2_pY;hm@A)_Br@ccFqqkD!MqP>Cx$wV;`@5vGJ?bh*`P4a}ym-nOj`p9=ozF1fN@6LLlnC zlr@0_Ikqt+e^Gu9j8}&w){28e~?eSpF6I@=~^~k!2MaXBQo7jjW@i_~ua4d4u2}Ed- zOV@XegLak+%SV#NjC^%TdP@5JC39Q-H{A(n$tvww`B3Cv?uV&Ayqy>>FGc>vLTOW+ z*%YsUc&uYzxGsGRgbwD4>0{aN8~5; zuN&#Fo5(L#LHO$cN}`kSPI0jUTGB(KZAr&1hgW)VPsCPFcr4!wUeuw6mvs~Tksih~ zZ6nCV_1y#_s)v!Rv*uvPYD$;)uC7#67d94U6I)Y#u!NNDBa3c5@PRj3)mWhUvz6&> zyf`$-*5UTj{INpGpIE_?<|eNn(4lk^#62{BwDSDHpY}~4e{NUJpCfnH(3QUtj`Z=D zcXWS*%xk&byJ-eV!j+bOk@q2V#-_4^8MrqoUK#{2_UHJ8-#nz%Fm21T+bF|~>doZ` z65R7S8l(J~E3BdviB-C2S4T_a`^ct?@G$uT2{XNHAN?abwCW#;SC&>o!$CNS!x=Ml zW=;Ow+z=1Q+?)J~SjeA%qod*0>?}+@{b1=b)sIB=PX)%*x#4Z^@do`HwWzXJQj5<( zIa~f*RC8~)Z-veqxK=!wf;)f1(=*ezF7|(1>i;PFKR)9BxYGY|wf|$-|M5}($Myb? z8~h(P`af>+e|*aSakKy9Gyady`af>PuDIsrsJgVg*#+PexmPCoF-JdgyBf zaUtlJ;72{`@7|Lc}av2tMkSat1^Kr`t;MosJHsY4Xhv7ZU1;A|7m2lOe57qLCFTdBPTgO9@S`9ZO2at@O7RY)eVEq%JtxSx|gWJO+%vxVUDLep#qlb1DKV)M`jPn!H(0MT%4SI$ER)U;ixAurq;MPAOu+hdr0 z=Mdypke90a)u&LBm)qTWy$v5ncX?4AQ|0AWykUj}--1R~y7XWIWy!!<=g;$SoiylYP&_wB$&4HV?yx&`?Wiyd4sJQl;czyiJC* z9*9O(q@>#xf=dZat{qECMz2?vZVM0z$IfIB9n3m(Ce#x}Oa}0_7-n6XAh&>+Od+m^ zsmUkY`Md!iLqj#G(V2)&sd921-Y7$2htbH2oLprK!R3Ue*N!D8qZBoH3`cLoKP%nFv0qQt}4gCPP|Z zLnA9v@`^14mlB#>JC>A;_BlILSTi}oJ^Ky?h{nuvYOI-1PZTjZ2ycsF)*V2QTR=>v z5ZA-hq{p4l_u^w{s3tW!6VWMEPR_&|Wk~G1(a4INoMsEb<%Fi!jwL6fPL{W*+z5ei z>`Xp}j%6J>6XJ*>CLhI{VwiK+5abpRlgYm4VOsK_JDU&SLujZaH98Z)Csj)B$J=B` z>o?HIij;iS7J^F&O|BhHN>b8px3?e=j#Ba_I+pd265kO;N?ymCVwiKU66BVU67W1s zO7?w+Gn;z@L}S{_T2d19Nu{+DZ<8UdF*LFwCG%_{xRlW3+OedhUAMPw6U4$%P2%Wq znySfy@EuSUUlc)k58fKX%zGC>ZUI4=#+(n+l(IXgm*Asl*q-b+BBxciR9U$QZl^?R=$G{XFX&kY%|-p@YWb+-q#6oOUR0}-%Hxb z_M$td&*P(52U(HaQf1{iyjh0iK7&S9WaTMa2rer$#da)N8GAC&Hkgraj$OFKSy%P~ zh{m+bd(bLhPgMNAh&?9Os`N`t?ZJrY;b4wo%k>sD$D*Ovs(2_m6kPl zyA0`Fg+^AS<#<~NE-f_4b}VTbwK0+H7hd*U27z#FS1v}!(zIQv@#2^`qDabxcvB2> z?tFsW0+KS>_q_VpNpf;CG`Z>^ zB^D6e3VK|e1q45q>PP5<&{#NqE8sA|UqpKtVEamTzH;zq+l?THG8^4_fxC(^2rF1?!CuGq<3xNg zwFOJ1c(F0XRrl1|bpqZzL#~&jk(JuD#1?{A4VrOIRbv-oMRd8j3&?A(;Kkuqv}A6e za!$U~N?im-IcDaE(9zXalC+wc2h_++t#fK#eh_b*VP3u;jjZHl)EP0gr<8~5+2B-n zdVPhI3wOKc!ky@#nC1d~t)MSNl3QvPd=YP!VHSKIjokDsn3EiWrYqG`$$~f>pT5=0 z7rnfc55ITMhyO)~$21=fuAvQ~4yu{)8@z#rnei($a?>+o_F&%I>gz+I2QE=4#51{` zL?$yNrA5aw=aMlVAR5!J9#|tS^xmmC(T=yyFegT#k(-_q)BLEx1t5irTu9k)q3PsWZiCVG4Snt@kVFT>GzI9v==u~0xTLb5 zz?)>q{#j_`rnA2w5UO}F7cUHYJ*i&kA)s+6z#T1;C=9!2#8v1ZnP$Y1HA=(?ZmL=G z5xkj(S#lW~x#?Ll)em1fu|1?zeA_)MzKITsX;##lUr27LS@1QyS%z6~9~!yoSuouX z*TD9ye|wm=Ui{TP5B`DJh2WT)34g*HW|#?oL?gFGCS*$kgF_*iFlV{* zRAM$jG-fI>QYHwFshKbnZHP-~Sz@12?xIlOg- zIgvplH$5jv&rrpwyI z&haPiS@0utNKCVUe&ek#5`t4|20V;6$}j^SL?bsn114=t6~koUP4@(N9UT$V1fV;= z^a&93N#*}lyiJDuzl=r>;osubH-CFhcj8z;@I6scfM%5F1Ps`(yoH#=lNm*pYhF3hdNJn}+3uTH;74#ktH9ytvz1DhOoy>)=cAFEo)go0Q`w}y&!L$2uZdFLSKQ~G5BH#>Vww+&M#u-*H#HaT!rNw; z3wNNAo1P03VbNg_a-o!!RpF2BS?~vRJWR77xDi*U3fwD||0nTQ8S?)G8oBBGcl6~w zFF8bdBdI%>cD!?0m<$lOCdxDcf-k6a2@r5g&47t`vkWs}92&Xl889g~SWFEhGP)Ev z&OHT=Mn}Xn1%lgIbSV(@OU;2J@OByIz@cd5rsu$n!9*VRMzbiUvd}R~VvupqgcLe1 zrkN02fYxP#>YbVoy?E;k^PvZg-1K~yOCvUzD-=?j;3ZXfulO8PjkuOxz1uP2)zEHW?wk2i@l^3-~x==ZGX)2q@r#x|Wa`Xw< zPFS0V<$2oG$xW3Zh4nAZlH}XK3|u$Ol7cTuzD4q?6_zAt^z?f@o8!H?e7q6>NkA5& zqt4vrtCM@7Bc>%TJp*tAc7)Z*iv8WHOR8q$ku{4{c`j-Tr9%9Zl5<8%4VLcYJJVWFSiIpCk@14DNW!O&eWx!bH} z{kv=<$Af>WErfCKt+zUjKdnC(+n9?jDTq=3K*ORwp>tb*uB({qO2Cjxs=v=RR6N>4 z1R_GMo^~4Sd5kT~4L~|2K|-?LkwON4vSG2D*6D9e?1D`*{?H&ISx*h=jqV}+m@NcP z;Ez&P#)a(&!|x#@vfV*qzcioQR`Bv-*uT@Tuy@d~Z=$2B5&xELxOftO-4;TQxJ4_< zyIJ}uSwL_r8dR=3)|WDw*amM4RO+JGc>cX%yie*Jgi*Wll~EP-`l~H#ocO=kLNq+& z(@%!i?ir$UsbV4a&R+NoNYJ?%s~XiL&FC!nV-ul+vAf{BW*A!u|5Px*u|b_=3(@fK z$5z21gk%TYRxh?{>riZYu4l8C2R^dJ1PFg#;Nq}`aRJwUa6`IMTZg(}T?Y&Saw>)> z#2joJRsLKYXbWLXjCBt+b3-Yc^&8lYz81yS(1UjbI^NwdI%aj|>F8ZWfAlVP?2r0z zoMsz9&cQ|k5!zYReNHxk6nC2ELO9QESU4xr(oR!a4dOQUAQo*Qcp`7Hh2WK)QrXDL zZv8mTsVsfK5>IR(2NUvK3I4w~wrcqbAqzg&uq>EcT?qjjx_leDzy>HgU8$s|!~U!- zANmjwj3g05LwK=4?+V7qeaTLDYak4Jk}_PA5M{H9zXRU8sBy5q#U^rhw9p(+#> z$zN;1>NFcuSWVTeLyreL9NW`&0uhN!)c!8GZEl>AiB^&(!MrG z&jlQTkn)_sYws#)-P8}Y((i}2!|+AbK4@eXB>r6PX$!&Cfo77EI*f9$0@UF*(Y~mf zesXD3jD4COW5=KiI*|i^>afUPUaHjzHge!QPxf!R3#Cn!Pv+wlyM)x$Xi3I4_Ppgt z5r|MNsp~tf+F~-p-+Ypf2jU>_&b%5;jUp^ppd+RimU96|V5c11w_Af#vc*R9Qk9)D z-bzE+xde@@$j(IsqMp;d+IcaLd>xnAnn-05{=V)S3Gyv44fpIS3G#JxfJ_r)X`u4d zN{|}vs+sZ?yt#&%axWUW>6x-mZ#M2jLl_5|fe%A{RaJFCwufWS=-Of%{9dS+5E2x?YM z$2(z|Ra4N&P0uQFplYCGNjY=8d(JFF2gNjJ4mHdf|Foxoi)u!^18<^XMjV4iZhA)S zC56l2Fy?}LmJFf;Wtt@?+GUB(Z8dWS@MarkP8yBe^vsz~&maptYLc3K$~{j$fewpl zo*ZtNCyJA5R@{I$(l9HoLnDV|g~gf*UzVYhatjE)IMi#~fU!l}OQQXTZT#{?F%jE1 zG$?Jkd=j0}+H@?>tL`68dfp%$D74jE1Yd(D;zcr~FqPLVv^-&(7JQ-QaRL#|LJQr? zS`BGzE%~-USmt`GK7mdD6>x;;m8W+4f$j1G3op(5j~dhm_)YhCzHSS_pOIGyMCeL} z^}EaIJo4*dCYtk)D-wdg#~SQRL7UZ@;LivIf3P|>(|_n`bZxp3id$L})(O zKdKYg=i$bRg6C(mCxmlp!@}9o33tr+gZi1Q$>ZbP<9KxKIM#ImmgvGRl{i*&Gq%xR zSQA3JsbL|VT@7h9Kf8)#d?icc?$LdZEd*DIcTs}sy=QgKx?Hx)go+CrM#bFDEZ9)V z@Db@a-!_(9G(KPpA=6>e8}asvK5`Zi+=?S?9pP3`0d=xsgaT%9Bqvdbxl8hWr2)7_ zt`JLQW8}Py*zu(-Id)InWqW_aa&um1qGCi>D%(Yj=<2N+p=iZ7Yzg7X`Bhs8o)#kz zV%<^fd2(sc|0LH-#{91fPJx4IEB{>WHAH5fY8W$nbyf%O^1nBL`C7%8u4?C3P1ev8vw2mX`WN%{{AOX}C)#dt=NMwri6=ypoV-*rozk+0$(y zctSRagk5;>K?BH_(f(vmWZ}Gqu`oL@xdu7#$0zeb4Grho#*ou+jx9vPY1j>_BD`Gp zih+lL6-r?e`I&|>F~=`}#Du^D0so2|TcSJ@pSF!8C*vkt2$>8EZR7Gt*AOirxD}7t zE}QvQz;?YCM@4$JS-XGofqe186ZOff@*ZT1UZDu50``_NWKUk@AG%GiTzK3zF?eo0 zMj-HAtwkxTz0;}##1ximbs>KX9dh;*@;$w8q9dhW^!y9ph%3&WW5y@IN7 z9!KI#22^zNT-zw|3U`hzM8gA3@)<5Q72^DvhQ*oYvp=2^=1<$kh==(mTL?MK7Da>C z9jZwd5ZsDGY#m`u>X)LeI}@_-(Y2Rsiw`8kQ@Wmz66vLV$%R<2&|k08U;m`P-XOoU z4{Z4;(x_HezZ0ZYUE~i+dRG4LyM5X4|2_HPC5b_TqE^aKd0gJ>_3~b}#~Y@{OFb^d zd}Lc`3YVw)w>80?Ja897KGBy?4E8g`#|UC*ajK_i*6wR3QhxksNE@bhdZ(zU#!k0q zQvNv%8RqJL(81FZo&F2p2z-?%lirp)P!Wz7;7?NG{)HdAW*_@X75SfNWR?=+{DaKm z5TOAUpMTgQP1poyt-$tDA5cgut}mvXrS}H1X~=$VX->KeAfT^p8yo2)cosRIcc?Ai zlZVR<+T!qLE}t6|KW|-z&SY%{mRISdCIiEI1)bQ?|I$qjr1n+K6B4;1JZYY|?;ycU zq+fv3?fhECL|0wlZFxR1q|K86e z>>4mJ*vK1aK2L-z(Sb5eg!v>9!ktnp(B*hr4AbFKG;-6^fgiomQ{o3@PbUgUKG(E`(*c{KtdbtHSN$CAaKC|-!>14M8YbL3j4Gsb5_(vS<#d?*@n9y&&P z4H*O+fsZm-*rr6WQTZ(9T>PkpVsQ={SrLov1R}aw%tYGoYxw;VSb}@r6n<|<$HSCg zx;(~hS4+Ze_^}OHz7>t!be5;^W?sYe@7$UGEjlKqOiw4>fM~zU_OJ2d8?yaNG;#>r z7S)?K0JIcXK=8@O>9&rr2A~ve1JDjPb@nF)#SOpnPQq%EHqFW_-FpCLoltf(ZNP3| zF|JK!>BHNAT?j-gv;pw)h;Slx0`EYxqEw1w&|%UNn|?ds2$Ym368)$o6C0Q}14rTq zHWZG-(8!8#984ghYX&B>f~sYC0E}_$2h!+}n6f-Auy`5Dbsv6sL#~r(C_jTy7nDRYK?h2S3E6?{Z-ULI=uRxuXkBBFhXHc~x@7_SU%LHYzC}Xi(KG{(*+!Z-13xDatrVXehFr(c$W7-u*bHd-KGmJ?lhI)@_uz=vrz)x+3iZug2i1s_7v4w4k!NhjyUF5asY}KZkep6KNRe-K1 z2>$o(s(C^k(zFIw+a?fi4Xz*%tvuQlx1Q*4d^HZx2=z zh*oG1#xbv@s!>FQSG^Zi3~SWNkrR}Mls ze+X}aA?M#iBZqKqQPp{4K#PL~1aAyh+B(7-gZD-I8ez2B7IbXHN|QFv%E#+oA_SKO zMqV}`EsIcrG)=*Huou@cv(({DK|6tHg{GjL@FBGX2cQ{Y9`ct7UFaZbNlniM9D$JX zc)DOfsA9wNhG0MZu!e%M4;on!j6DfNbPYiVn{E4{k{CV{OmS=n-i;23DZ^6;!vW*f z8RKdA!3}xdh(>NY&r<{I1RAa{b?5rS=%AQ#Jwsk3&_CA~;0-Y3`#dyq2;UY}oHqir zAXq@~Mqre!Bdig4B-&R969!5dIMOdS07r}ps{{{&A2?~!=34n3x^`g1Jq1Clgu0_? z1Rk`FIBx_VAP}w42y_HImx{&nXhzs0!rOu8(4o?jn*KH52(*-Gu?QHi7K>-_gByy+ zQ)pyGJbq6gqH7AK)4Cc6n8fz3r(mByh3#1Yf$NY>*`_l`#RZk~>39UZ9>2emHT(#%`oKt7&LMS_ZF3&Hw(0ASU~V*;eK1;V$H$_ zqg^!^)tgC)XFXkr&Q@)zmEAu}B&G>9Nz*EvZ<{#0RrmmbXoXf`jPJ5kHEu=op;V1q z&@s|dnjQumfe-dsA|Z;6%2y0-#*bO||kdy43=IH0?QT zjkFKSvHTC#PwBRk7Gyh5p+~cxt@76qR72((;S zK=2;na9c-Mk8ppqJ;IotT(&16exUeoZ~-S$+FUE2plc6MdkdIxLP^pz3UAoPoHq)u z5r|f36vk4gB?*b0hUG+Q66OH}uAS1-nw|(a0wd)Kq;N2@*tmSLU^o1@hN7_x8d(vI z83ZD_24NCy5VRbx1zT{>ox<^n=!lqdJT=f9gfV>resn{om!pxJ&h)fpxok0!%6j>3 zE!$_iv%L)+6;rlpD=2%QHUvey1%`}oK_iDSZc)v7LqN-d1q5#hUa>7stRZ-`J<@~R z=O;^pnH01H9-N=*pBn8Sshae*!^!Ubkj>&fhF?MFur>k9YjvGM&4W~{R#GFWjTIAx z>ZIux?zPP=-Y?uuAVT|v=nBg2wIU%k5l^7$QVPuD=+J2yPd@}W0!`%wq`=hjMwOq( z@YWd0&(G1wiv0Z47J|zU%`zwXxzoi8xJTj_(e7|!2Lo%*arU+gtC(|6$F@t_R4ku} z7N3ywe!)H=r8UYk8*Ik);4H1U^2{UHPpl;HbPi zk)2RiRLwaYZ;GMj9D+txG-t6b1lJszUrw4c&BY2|bE0i|rudzPe>YYl-?yzFZk!Ti z=KbIdZdRsEJ^j|onmrCRi(4fmu0~wWwhcQMmu&>11;k~l%1liFBw2aeyRhUavho%>VtQHmE8vK-GMjWN z8Yfg~c@uAhp|re?MpmTdRa*!yEi|W`q~$ReD?nN{MEjnm1J)4XtHUhl%V0vh3U&!P zX|)-rUxdNFt|2xO6NTi}bSuY#*^X18qXjRqLM(zN=tEi zJ>UqulhTLB%!iP26@+6!Aso_DsmxbbiB0jE{kbgRSZQWfij@}y}S z-mr~2pOL&qAX=eq7{|PpDoE_zSXPt@G7lhd-IbQu^hCfBC}F2dRp?>^2X=el2R0Or zUC_viaLgbO(KQR~bSXW{Yrz=Yv!}3pB040dEC)}Q3g!9){P2ccFGnLco$J8qQhL76 zcISH=IxMDq%co0)a$dxnV95CvG;#>%7FC@$2DCU>K=8)k726WU8iW0!ef=@I02@BU z9iU%9r>Zv3>T$Xhu}!Eznx^1h+tlGr!QBL+6`F!}!iUrnJb`9JDHe~TgQO)j{Se>? zgj7zKB2=+qc|-6Repo}n_&FL`5saS_i0B%E%IQ*ms3eBRo#EULi~)#xG<_<=!s$|a zo_EF%Zpd>R8oB8_2TzyMaDAvd*9W14V)`^Ir%UPiJ^*ikA>UnSV;EITWyIxy5;{+{NmhpgBZz52)zP#8dE3O{Z9tAdv_cy&#&=n& z5!a*nU{3}=RO(uEjI@-dF8~~Y4|ZS#A&QO4n}DnFqZ*3E6=-BdEXo8Tx+Z`f7@^_! zdtiyh2YXcbIM6t7P?pgZy$Gw_U&Uw-W&AGNLw7XT8pRBT?3xrnjUS& z=})5>@QMlT5%%!!yO~YYBq3QflZz{D1J0%7astr;QZgy%xuhZYqUlgH2 z1{{GFwp}S`y(%7e;zu_Wk1wK;74i7IEd&=2nnh0HajATs?m;@Y~#(f<3$1ysvQyTbsXcnEQ!YKGqHRqqA?R7aIKnNG)4iAzz18H zAVjfI`NG6B{HTUvF&T}lh{Z$#5nYGL7A7?Ot^iAL&zr*UQgl2_`3){i=vh7vKei#u zN28IO&T?R3Lc?_4o#`ApCZzrN9D$FHAgdTaeho z#I9o_J(OZ+m^BI?Wqt{rrP>rLAB_Hr%C|%)FPd_HyKS2Aa(^3v2rc)~)r8UDuvF}S zfeyY>3?4;CNXuXPe!vmfD32xEoPCzqpuE;Uf*;gS7k-FFR&?PZTL`WTG-sT2;Z_$b zU}A7~v|E=Z(2s24%kAutpbyi}!uBiL{3;)X)`!YxzhID%m>QXw0!HFGUY0dnCOQa2 z3&_Mo?zf~ChoY%a)Z!p?ptNkJ_W&G$6n4BVw_O#D1Mp)TibfY2SrLu>Y$3R4&Bn`d52~tMjkm#2RjxoI zE2>hqh2W|}Gs;O-GA>qtsw|H7-RT%ul=h^9bbkdd)I&$y57K4E3F)fQl3&=yoNLLW z1R_*RB3!2&OP!Vk7Nb`zg0H^9PuQ(pPK0(YQ)`4+V+l0K;Oe}Gw*hoXIF zGJYU20PCO1Hq6r?nDr2qBXy!ua~q~_kl7y0jkbhyAvuXaw1ALIsJbnQ$JuBi6!F-G zj+4GA=>;57JSMT%s};uB(0q}ih#%TeFt(tP6~V~bLU6&L`Qs!Q>s+jWp5*9g1!Ee0 zJ=PW{_s7F8X)nfCz@2&s#}b`z_+#t#Z~Ongn;J&#B4!D>s%b>-wT(R2kGly(3+M-< zg?lf_$P;K<6d8FO9WK3$JOnrbHD$UiqVT7v$zym64Atc4Xk+UP$%>9D$fJJ*P}CU!BApjvwAo zMGiqDD=M;>Kt#71Hj^Fx>OY2+Y?m0{3?|_!y25xrIxwb;)6WPsPN=+lcq0sX--JeP zI`6v%j()Ad{q^qLUyBZoDfe^bGi-y7sQh1zH^h+tE6~Ux{9BZM-aXI)VgbQls!X$W zge_itIoi3%xU;={PCWwuSKtLsu(TOhUZrasP)FeV_8A?2{|no|^Zwyc0?`Wn!}yBZ zQXzQ*&5KeV!xUO@E76j8 z-e(i``BQk_6Cg^P66qJ_wY9x}cwzdbecRg398SMNf4xe7{geKBgZwh(nSL}R+OM*` z06)GV+q^$~*56Xo;|Z z;2pvvwqnIPgq@?^b}>V}gG;(M^cr;PYV)qFU1g}bUMbz(WN=^Tm9|;LyM)ULL}-@~ zT?v`4xGz2=^>1Y%fKJMPEHswrTZHTu?bb4sU`X=SQQFo6h+zyoC?vJ@3wY z4jmd(-sxT|ts5%$8N3;W+^5jUA>3P(ecn0HqG18SCnL|>mM%6Kd3(g21KZB&4Gb2= zSDjx%XRS8n%17%uhnkZRy77-%B$Omgr*OM%-tbQ0HUbgaDMVL5Is%SMrQ;W9GL+Ks zC^}MFKGXLDj=&0Q6avPp!tn@xa6{qvAsSf`j)!a^xNy)MauSYPU95m9$5GL)VoYOu zt;p_wx*c5jhGcpY+w5r5t&HDuMGW(IetX-^z9g9frs7&?mO@-ZItWAyXb7bx;JqXy zhoWgwgybM}xU|fs_W&GGNa&s`g+FEi-@$nR-U354=|UqbYO1WaQ4dteamc~sc`4mvERYzG%H0xqbWe+zGdA?II5BR8G% zz#>KKFC5sa0#5L_^5{x}K7LKiDwy78H4 zryCuEUVfldgwNQO7pB*MC%FDbn`h;lbqb9S_?2YM_wgm9W#^nSeR7N74Y)lHe zE=kF~Xnqtaxf>lTEyd}Z0Y{V)dU8_GdR0yC#E)*MCSOD&D{At20uf!sm_er-!H7wG zKLr-yo=1i6-=pJV$~WD{r~06>{=aw|3|apT8oBAL&*rZiYcM~h*O~bafWS3Zrp(Wg zzVitBp|U?7Z-*iK?P%l>_ASak?;vRDuz=uGj!SLRm`yn{(M~x!=@hdqUWAW53Y)!c z@N;MY4w1;Gdi)R2;rDi79rK;&Y}Te?IjQR_#8pb&*XZJ(sH|fabHsLTdc|^~tZCLZ z*Vv{VZ#PyEh*oGf7O>@luxLmXDUW7SsYp3=__WE8J_~RJs>*v3T^hk5RiH9>gA4^K zg+^8cs+T|nnv!eV+IDL5|1bR%e2dZl)%4Tw3qHk|yt=Jz-}8q3k2A#oFeB_gJQWN1 z8_xn_c^_dh)G$3h3D!C`EH|QKW||)Rk@PTfOHGoG;mtBkl8>U1M@|wc1?rs}`|}=V zgr`lCj~}_`$HVAwndV2g)YgpPnwldI;!QKmkq6MoAvt2vrtnUORxJw%-sv1~>j>*~ zrbhcg>%`t%$a!27`mjo;O+)<-v6|;`QIpJ0Z+NRRnm~lMDuK$>VA1Ia zI4;RbH<}FQCcjvDe{`g@e5Q8;9I-2*Tgd~)tHQAmKe(ZA?1e^Fgkuj|2re8nhn$4t zZ7x>8BJ1jCg<}@mTI#%q*%LTR&Tv}*O zIY~>>#R`y?+oOGdGpjI|$QR)CO^u_vegZDlLt3;aZj5+T7d4RDS2@FI#3RjrWXl5A zmxl>NsJ=w_5{GdlhCou7m(Uz33iBd5W_pGB9pH!xvn!bkX^CW3@ExholWHU}+E?f}z*w;mYGW-hkPBHnFWNFYMHjp$0wbj5v1 zUv5Veqg0yP(DBl8o4x^X#7={5TUK09CFNGU35Jq#3mRFGl$&iKxTMg0a*~wuU95na z%uCT8HoUW!>J#1*zX0|Jr!DK=PF`)Tr@uDPUmNMKQ^_xFmX%l5 zagYRMS_;b(bGJQ{Dth@uhB-MIaDx5o$YIm+oqiL7B{0SAnfDoFkLrKmk5H~A;s>p% zBclP2B9B8Ov#^ZIq+lryLNmYuGln2VS3)MxS&Pc_5-ci27 zT=UvKvd}SQn6Rmo$#})MFAzdyz+OE~)uF}_&P^5n!?TY8@o?LcoTfEQ9`n3bL zo#hkR!eFl83C+XpU>h!lwfR?Gt!*9>Ltb8gJpuVI-M)zx3j+oURjJZHq9Jc16Img)3207oFGOn0`1aLMf8|^u{J)&6en7xJLSSDWyzYNM&|b{-6!RV|kyb8^7poeTs}%iiNVO3Tq0@zw+o4_-mq70 z_ix}!(HN{tzXViVG`ueTGW-1s`~45{+bfS9NNi7fgT?;g6W@aWE05~S6hW_k9Fx+$WO9{{S;t9#~s;paWpU_Rr>Lpu@93{>DvJU*Y;|k z$MkO@8p1QimX!UpVuSLD;3)i{hFZT98d=f$=y}Z!NxUBB&g;SGKp=UACtl(8K>VPF zymq6Jo6hSPU)LmJlkUVO(2+1Db{v_25j9qrJqtgoA+u+ok(%0FI@wXK0wB3F$ z0k?c4ibZH+{GR5*VgGYix>Wg7bh>JDO@GB;W~9Y`dTOh0U%)(}d(d>~KekOL-l6}1 zK-B2aBWvbn=|Uh$%FAeuSlaP-$$vw~OiOe6Nx%{KDbo$lIxp0=;03%Dh7$87m!wGnM46|W58aX5zEP4jscFGeSxOo_X)5Bx4y3M`#3rt zruqxh(8x{a zc`7fZx~KVj?p%Kd9TZcpXOO2^azN$#TX+Ku`TjZ@IfQSEO3s@BS`aKCcr$REts|@% zcqZCrU<|F!LN_ofi&Z6Un&~&2jQHY#86;F2P5IvmjKuZDEMa*0{|}+670Ulu>aG3A(Ee-N}@WqKWcbVH_Bqmi4=^fX>UwQQf~&i1+JsF<=%Z|jsjP#Hf5 zZ-F7>+tJ7&j9XN2-UQIHU;)9KfPXnQ0bhvrW5iL(R6;zp;C^(XYO}0PuLX#CLiy1& z1mCbt9^Mdql|ZyYLomj7S!xHKLUW?D1HVVdNK0$_Cx9dH!CngxqS&Z>HQ;~oqZ$gv zZ_vn!VEl?eMAr7qT0qbCVfgV4**+MJ9KyCm1?NowEd>@3yb1WStvIojfV-ky37AMPxzSwN z{XTTMYIChlS9Vh~YhBsRE6W{CnDQ=P*&T30<^E;78HU{d4UHVay+!Hg z-2*Ke77)C9DA+o}x`(@??H}3R;dY23s6^gbUFTG37Y;ULlO>^YNn_GW`KGa?_a(yjRe&eUCfa zccG(V%C`JoA&l`m@D>;{{slC02;&wNoi_!vELcGBreKk+BdjTC9}5TjqEFRZXmJrI zxo>k69Lm`*v;?n!12|dIW?7xyD-iR9@}p@8{%#v{-VpqiK!gT9!h?^;_%2KBz%E;` zoUo^Zw*xZ(0@pNYX-)48I07H+y#gVMjmn#WsrXS11!EE#SrLp01R}a-fW24H@Vgu= z!98;dze~{ZFy%M+UO~_DvG}nKSw0Gl+;o-$?-evmZ*gZji;jsY)AD--J=>e{;~TQw zk46q*+oFQ=CV-X#3kco>{Kd8)u_j<_v`xTRAbM*eQxF@0JJG4C&9m~_x_og^HBl%& znr7gOwn@aBfzK0&R%iysSKO8wf}f+gQ3}RS(Q(q!oBkHy2%MBV$iBmhF@5K*p$n)K3glAKZ6d6DcABhi6MMHg*U*E@86@5L-@9+ zHv>Jkj<9B6pJ-1h8ne~wN#?{0OBNQes-#V`dhI2k1`5?j(+=zfM&o*A zmO#86*n>c{LOU>)vLf{ZtI@nL7x~MBmFOsGsZAdSI07S;y#$mjHZE@nR^Z1q6pp26 zWJNfRBM{Lw1eLu6Bvul~+rbvcj-Z5&h$+XyUV;#&^Z3yXna-h+o6dA_FM*EjTin^c z866cH=>b47`LeCyeXh%!2*Ie1@mnkVNJnbqupRQ*8dL0zcNHv zBzPK}z)6!f)9UmZp=zQ~hBS@A|JlZ#HwM2W5UtP{jIX#Ym5ufymK*k@@YY}yK;RlE zExqZNAy@(@>@`Bga&?JuC;Z5U0`ebQ?)jtpFUoynCtZ{Fmf-XqfFqDn zo*4MpUuXk< z7L}ei3$##JK=5YaI@<(h&BEWKZ5BrLcdtv zvZ4Vs0Ye_l&56z6C9KS<{NlR|}$ABYHQl3Z}jS5|gc>ESW zu%UST8jY-o$1e#)bY)>O?ZNddPuhxo{uGuc07O07NtNYkgk`~ewUHc)AKsAb(P-qR zb3J`oE?Z21?B%=ld>`e`_u=TUm_F6?tQ*AzmGeXJCKz(Q7>yjlxkY8?%>gYA77%>$ zaF4A}vB^V!w9Ua7INt_t(Gz-uv(dS#O|&}gQDO!Pbx6}1Y_m-u-Wn7ML@TrgW2w_p zXYdI$FG|h00UaeRwdqR$M_`2QQDS7Varvy`I{dhX!ZD0SR)pg!0ufzf!1gFX>t-+z&u=1qMw)!5SN~{#B zk)}U52rS3VmRK(F{@?%t(F*-RZbE!#q7n&iZfSigBm6qi63cwL)DGNua6580{ zyi+(CKe(ZqtVbg&YOZN2qGpz6cC*Y!^O+4vQ(1s47vY28aae}i_*`#2U;{NAb9uCW$Os*9?H>v z13f;UOSQ!lnN(j^=p9}HH*i{|O}O&0+E)%Ey_E!`m`y@S(sT+h+J>8V3eOXW&`u$` z0y3fMw$vuf+>RxKJsf;f^E80KbyQkD(>no5WJ zDled~HAxDF5X-FL6O}D^YYa6gi$+#7XfuI`uFmYqUKZAfpp*}v0Sj@@u#yj-M#srC zANC2p0IlJZTA6Ob+hmv(A4elMJu4OlUMbdyqLdkrx@X2C=vbL%#{MKT%=}Wb= z471}QG;&CGSTr5HZ=t2h0)kI=R@*wl`j(l|E|pI0fxUkRLEln@>1|;!SMY>6&y*po z%4rj^yuzwep|%A~6RMu3JLv#(aVhClIaBolKM6mvrVJG&f2GIshFnExqaa zfFp2IrY~P)4^&0z!dqadDEpz26-C*HKt$Jt%%)w495spe_kvZ9oyVEz*qHJ@C(wDw zeyHrf8*hgp`=_Cio6i2+Wz{`ca^$28xZFJhE=9-3Gy~>K9fs_Sngt)m+hUjn7od?t zvcRGx;9UhRDHagCt7x}%gmo3a8x`$^6PZGBKxia>1Pf9oBoLv^Lv)p7jPJ3e8ZV+LQ2K@E(IL{ZnEox`2z0PdItWi}RK8O29DYz$YCiM?C9DdV|IOZK;CS7WeDJ;-nxJ-DlTFEbL|-Rog12 z37M)9j{U)0$63ch0ud@45w3|&liin8pQzuJC>iIyR=f2WK6!A1eFX@pc%pUqT}{o&CV9 zLynx30k^qlz^&-`m}Y=H>yUj>v)~rIErwZeGa5N03oKd!-c`_&VgbQt9ede2!e$-Q zqrKs#J(RCP# zjKMu`3d@I~Lt@Hu@Waqht`Ei!Z^-q5Xym4I9r!R*&v&0Y-$`^>O!<~S3=QQxfj7aB z^Rv*%A)H%Oa^4Kk;$Q*6n}PqcEm5o)*fZK)oa9gwXt%TKOoeUVtrh2z5u( z3jCLC!thq$Qv{+FT7j|DX{i%<7|nxHBOXLYNlRt=9>5V8VIP7rve>x15qJPUuAxxe zk49F6;u{1ax<-I~2&(1yRj|de4|o|J5mSzXAA*K4{WtvRhD^VJMs7OOfe%5oY+tvd~~R^q^7q3jzA0h@H1e%x}Nv}{NRS_@jf)Nq8>v8BD&6iefSv&n8fy7V31>b za0faprfdg4{0z9Da{dLp35J}14vpM&&I2EQ27)H>{-itaPoP6%%DepGXTS}W`^WKS z7;^s@8aae}i&D?K1zI#LAb7X%E?Y-fw=gf_T?uePNItbaY%lcg@5f4(Ht))(Xj=yC zk(1O`#NOyRU_P$DW?9Aih}i_975a#2vip+EEJ1U{oaN2LvFLbd=}vb6j@V4l`H1X+ zsxU|4EihD=!_ml!!W=>%qU$KwE(JMi67N~C%CW83jE;>d@4;OPvL7n@{dhYJ+4n|7 zzV>ZxJGJ@$cjj<<c zhUsuM8aX5jEP4grZqV9d0m0jinYNCwcH?8wwi`RAq+{=Y1NP&@OPg-xm33(_eCvd| zrCFQ!m2Jd%Pw@)^(F#4qXz*Clkbk2YQQC+%&>_;2ntl#&1UkxN$%hs`O>9v9mf|)1 zpoU`c3L04vi@y_y=sJf9^s6eB-TltRK5q)U`v3&4sWxSoUU*bBUFCRB{LqFRFF+$V zo#V;Ns^3njJfG&y^G0+?OnIhTQUvo=u1~@bZ^-pJG;#>n7L}V9e_8}AAb9bA)K-{S z@&8P;=f$uS5aFnp+%_*S>{$FLI$gE7R@R>mW4X>i%@hidrXRS*Hk)`qa3z6gg??ZX zYs!i1Qe*HHG)GG5xECEOEzRj$07u}ZOy6z?tydN0Zv5zmigG6!Sy7ZP5{T$Jgc-EV z1|uf%{R~)yYt0qDpF+pQly7>|s_KKv`tR{J7_$DqXym4|KARWa8q81sfHU(`0HPjE zqWYxM6(zkND*GLHI}F($k46q*-=YQJT?8#177)CPxZF04Sr>6bv`Yx=F4saXvsK*Q zumPR5TCu6qIoI?$M{1=|sx&RcJ8e^mw-9RxL@Trq9Rbg!ic&%|q*RnVI#gPc(+R*4 zXkptO0>-OilEV*fC?**+vLYra0ufyU!L~aD0w%G2GZ^I9KYS7$7E`u^+Z_TfsGQ%3 zH^GqekD-y9&Us+FLm+4p?>}+p{YU7~nDQ=fcL=zla{n;i3`6c8L?efAZ&CSq^FWJ+ z1q5#%R@pkjnuoqVnrS;FuZVJv}Y zg%*K)A#q?*(v1VrJTMpe{)KLIl(bZ)=K+quNZ<t3qasHXj9&UdmMYn$!>wi zm)XI4#Tj@z4B4NGMs7O$fvt^lu9ViHU8ZJU-tTx@shikVsj&ygHZ;eo%G>Zx! zvP~7M`wD zWhEEBfff6z<_Q_A(T_jcvcUD@4+NqG^n*|&M?eyk3Fl)eQUqlzK-8lPeGTF!&{N)( zY>n3Ps3^>6ycLED^ENcHqA+jSW))W$npI8;^Q4OvpfHC;`(op5Tf_~OC!$kTTe!+6 zXw?L}p%RP}l2xN6C)g$q*OKJ~B2-HvJWzVnmb@e#186=J=}4m^q@^_dF2E7kD7O>o z0Fo4;=);d`C=^LFvLX}-0ufz{Ii7AeRJgqX?7&rSh1=`U(J1A*>c@Q>=VqUFtryPbfB;(!Vp(OZpiamG;-5eOPY6kv@W`#W5<1VUIdK&fKG@@C*k z{IG_i@dO%K5sk+QMC8qYj^Sw+I5z{60Rq<(n=%}1210nAh#%aL=W%G{rt=(V26S8> z=g#%f=%AQ#EjI%pd>?@~z>x1l(a0fuTU2u14A6pL0l}Mruh6|6sI-%}p8i8|cQ-?PK+X+M~GyA&%<-KSYPal-=MtOInT} z!Vhi8@%PZkP3Jgp&XUUWzubBLCpsjiJj>@SX}SIfet1K!UqT~?aBWe!dGV)3zyg97 z|B|gEtoW~pcDE7v$nhYt{vUZER*$qv=J1gt7$npfP02qDjKocPSiizpz1 zA_#&giXxx_0RcgF5R?yo_f=JQy;@$TPSwoo{`tq(`XxDa>z@10J+EH9dJLi!T0VQp zaZ|nP9|rRvrYO7qA#j$gR7SfIj>1UdB}XDlj4K=eLHM|iLU90$YzW1^3?jS6pLog9 z;P_OEC9wCO1ZTvRWBnyZ8`Iy$M|WiUSQxqKOlvPW8f@Pl&i1WvR$SS(z2s@V4LqAx*$s--!qluwk|@IktE8l#BW5qN9{20`JizFln+@T5Ydk z*&fgcQE5XKWAL_b?xit!gF&={F&JB)wzeR!@`)%n;!2U$U?xFe2FglrG>UK(PHKD` zSv_*o98AMUb`+4wFtQ;a6BtBx=3p}4Cs5Cp#`De;4R#G0JnsPK#Fgi1iLC1lBPKall5La21nK-7&(P?j}9+Q0&fu> z5Yi<4+qY2(ldx&FXDP1Go$put!Od``TFY#h9uvgTDQ(DN4Q}u)9cc}&We}}k4Mx$7 zHSKsDX2j?gkHIOjk{aDhI0_x&F+og|7*wtnJc9UH$c9)v$RM&a1mZD)$?oze z1$%*y;dHpNn|w@Q<@iH60g;s%0&>VR{XL$EUO`%d)~JC}zxUi}I0nVm$`Y3U*=)o3o}Qd%>)T8A=ba zJDemdvC)=38o3?e(@Al^x|F?=+I66h9=gcIV* zaPl>T6rTI>!5w)%0!D5+&xzL%Y+PR%&h_PRQe3&#UqeXY`v-Ucj(lGNBd74~(aEJ5 z;0?h8LYjfKeJ3K!z)IPgftiJBTW4YMQEi>2e3cG7YwOHaDmisa!ar$BNtL>04*T}{ zwfyIL{&OS$xtaY~%g*i&#EEMgQw(z!43xV13*}O-I4Ay};*aJOs&RxOKoOtPjOy;7 z)=|kX$XD_uI&vX;b@jHkXsO1=(4q6Ps?pL*Z(pvfzq2n_$t|qp`g#Q7GYm1+Gi29R zW?0gq8HjPGpu~yUk0}=V<8$!DoZAT}X|;yVqO|~`cPV!YakW|OVYX!^^&64@&_Cf+ zj>3ajruKZ)Kwch37HR4z7OMT7l&W5lsE=83Jch? zQFy~4Nc-6KNI3`+#VNz&QSu;_;;ySwBx`tg&q|AAvF^gDS#giHwhfORjEih36P^UG>iTruj5`gZFc=RlyDS^YO6E-Nt=l&LJ=N`qX;d8 zkwu#1<=*WJ5nt{+)4aNZL}$m4DCk(m_p=q9NxcKb{z6}++?B6Z3#En1W{VqWF2f-- zJ9`R^9-C6U7Ja$aH}_Isu4WJ|;BTgAlh%>#l}M8kttpKmv&VCu?ScnFTV@;Z!c=*p|U5K>ooJq78?!y!?SuH2gKP0$3UEB(EF z@n>|@^DaMg+VCjK_5q4Qfw8!hdbMcDW)y4S9nV|_(E?f$Q_?9WuBpf&FeQeH90X^| zt|B`Vj>1Zf??FfeZ|cVZ_~4HEu`i5l=*Ql^5K=#Q4F&1PoRBC;KfaQ!FPXvgqqjg$ zfV%UgGX0lae_7R$@6wEh!wQvB|y`a zyI_h8UHKWDF}to@MK}sO;<>YB5~jZV1P{VdUv7bs4Sl)M7eeX_uc;t?IV&Uz(w7yo zT|b%3^d)U|_J1^);gFV{0xSxP&23%wec#+mRe6^|w1BF_#3a_FH9=XUh7w~4%Blo` zSvtF*j3pdZQ240~YW${_%)-Za)RGx6vY{nYeIcZl@Jb5OlDB;8IgWy~5#U4%W1QaKzNvW=&PG=fr!)Z$4F@#S2q$3YAtRXsBNrr+55v^C-Q7R-hr9LK6&u|4(3P02VKAK6hdj)aj7$>?Vg+3h(J$M)2-rSW_nMT1>+2G7^PIdSDV zd2CNTev|Dh@$ntmz8pqwI@^h3d+Hg}7=JRH@xQ=%ab;XTwx>P^ll4F0F*vgR2N*ep zb&sAdZ2@l)9uRVG+X2245w>7-wzn8l;%)V`Y*AQT-v^@XD_i+=RH>{*SM%LhMjNhq zaLd|FpV+rLlj6mEvnV5J6Q(hURK6FMGHn8; zplpE$;3z1Y!pMf8Y{DS2GYu7WOzykz zFdVr*97b+B_p8cN^R&ci{GS)j|2c4aT=`#v@t-;svj)z>LvgHu(_!S48t`xf(opbb z;sGHI#bn=!2t%=bwuWM2e_6bz$98TiZsKv83Z`Aw!mI7zx!TZQX7A_mz?6PvS#fyG zH}BF)Jjx(atweU6g-DSz*97H#m=wcCybGtw%4_sI;V87!_!0BT=uHiI3m@H4LtclG z4GnqK7eZ2KP7=8WNy zmV-Q{C0+l(djRJqCUdCFvU@|wEb1v6u)%g^9! z+12GL!cmy1@zr)Ue$(Ro1Rvi~OKyRY4K2BmL1brUXNqMKeld!I*EoNfV#2OQgY$pF znQ`TuzZ7Mgg~|L4Wj2L}n0M3+^)ToT#S`cmeh6p9m1}+ywmt*1TYMjnz>)Fq z!N^T#e5UNOsjNR1&ibQpW?Wh4PSG|Cllh17C>)u85Jpa6-lNG&pTOIN2ZZzqd-_g9 z_=LB!eLZblwLdq%Nc%GS%10{CQKp=QDwVb1{Cxt8i-o0hB#Td&NTFgrTGWp83F8<< zYxso5#5JF=8O(^7raU`rE}SVVsnJ@5qp(u<360oI?U;j)?Wi4}f{_jFn9U%v_X&-B zXZ4N&QyBBQy(4r>x~x z^L@92qN0s#6qM49EFR$@-*iil@Bo8o1&=VcK5b1u-hkOK9KyfhJXr~io+ccH6Y*|G zJ#tes{)Lb1s2MN9$cAP-&mgk%2jbn1dbTv4S3euQ>I|M&AqdPfyYifTx1%1v$@WV4 z_>OE(hmo7kcH-TRdd4)ycMoTL7dS7jjO*`q)aPKbz9SxkBkSA2$SJIQGUs%j*sdn5u;#aLn4-E5ZT>^j29b-OnyI4 zkziMu!S83`eAqjK$uECsEn_!X-W(s>k>zF@rt@%4T$$!Kn`-ZBTnyh?AKOr22lKMe2^&%1@ z%NvFJ@R1!A<6aoqP>j2MA*5pP>IqVeOG2Wc8-+CS<4qf>ItuRSL@gR$68rY4IwbW|c zdM-auDT=6+LbaHX9^ZsZ3CS~vR0+v&4Psnl-kN%x0rO#~$7yh)tdvGa6OKYkZ6aHU zXoPO+#>x25j=FIIjBMz}aSS3mr#Xe+(KphiF?}b6gI#$B(?5li;>tAd6WRn!zHh?= zaOC@D7`f?u&ye@^X`H_l&iM;)Vq7`r-*dK1!sPuqJP1eL{{bVX@b1yvr9a?}!UICC zP|Ww8h*+U`YQ;<+jCQd5je*`i_4Dzc7(_+NT5aA-6m%h#SWrqMvbclwDA2$gjI|j= zE4TwPYkb;T%h(-e!)O`1zGT=7l|reXK8#!}imxNn&Z+n_KfU?haz%9wOKEDDepxH9wy)=+0t+>c zlpm2>r8w(hDm}~MBcAbPMXoaZjX|XPi0qooYUz2phjE<+QDaU#+3r6=?n;?ec#$+<#D13;0*^DSLs@##a20p5z zM63!U8xk>#L1bqY#J+3`zxz@of$m^$I3LyvH8S~4?#s5byaztEBg?zO$W3QCu`k=g z^f$tp{u-PUSEluS*><*<;Nv^8Jpd!8u5LvG9EFnF`1*b*Mwb{^dVnYKfgSbYFEFy97k^?9*?E9Tjm<=HvNV<_oF8lh z#uCJE*gTWvsfk5``lV@bJq91%k?R#<pvoXx!5R=Na_U;=_#VuPxKgA)_%56)E3whZgroWc{;95H z^rncMhmY;mH2KVdNC{J-WU$4!m`EKuF`z z=Q|N$93IVfAz>xjr99-esLd}xwaZ$5wLLu76(~l0L)1J98oRF&6(ya-#tb6WNo3bv zX4*2K$;_8wlEi$aq4*Mls9LjY2F| z+F5>)g2AphgXQPpl(@2-T&zsx`dNHc zmGg;s2#%bOgOO7>_vq!)4)EsS0U_@>&hRZ>anG@SwtJR3*eAgY{rO&HopOJ;T&=a{ z{mN$ip=%bD(ta$C;ETR>BOSqB3?kJLWY;jp)@Q9bg2gZyMz5&CX|nPe%_kg%67j}n zJ#zC7q7NV0Q8IdAWJ59{UkE7~yn2EpWA~6K=nmrgZ0{hZa>=NFv%9z4t$wllHkuA* zZLGCc+r@K*g4LqfP|ku=3f7__H~Z#aYRC-?q6IW0CWqcsW8YKnjAyTD$rCU+hL$`I zr_0K3bRXd;)YSM#mh>5zn(`PPfup883L_hu@~|(2)D&J#L7H-HNEDk!FIanzaDE_j0kw>VYY}&Eh|P@0)h%KOSKass1Co z<})!lb4^&@gGn)3&D(IQth`3g5spGjjc?^jMsG^U8~Ess67p{t*^rQb`9equ;Z+nQ zArFN_LH9NG*>0ZA?$DFF)ix%RGuQ@SbI329c^68Q!yuVJv8B z@nx6?LoL1pC&{iBI}(nn7Gs$W;l(3{l}}pt!-sX0iG5&XLniiQ5ZN_^3F2-fu4;|p z6DSm{NgE6w2Pedp;mOHc4|Yi!Jbx1(+>z(6!^kN-duX|A2V5XLAf%(*$af;bQC^`Mi{`vTupg(P#Sl`F%7WtYoeA=6wuNy#87bk4LBIlEqx!>&t*Nmv=LW)JBn= zmc;a^)7KQ`MVKB#QJ#nMWo0<}BjG6Ah*OA+DVR3%Sv&+sUHLnVZ0O2Uz7SGZcs&K_ z%AFxmkj?x+S*~%9}Y6`EWAWd04Bnr}$ zHM9NF^~AbK=`Jj$O~c9-p_6GU!(mf)^u32={;5+$rc|uOqMYEHcxh3NV-TrglHtAV zBub}2cZa1>%{d}pZ=zNsTW!iRU%ksrdyhK_unL1gDgXNY^- zWVLIIKS3d3SE9lA<8WeJ8Rs7au}s3`{V_ZUN8TTWk(-eVcM8sOhW7*!5tRl9_$hR8B zv($XI;w5&3tJqqCHQ#ML_1!$VN+owxwNnPEbT5mo*bcsSL}5u=u{DE8wH4WQnmSqa z*E<_o(Av#Hm@K2+bi--0@*V9@I0{8#S5GRRA`-cdp2H(?>^WbBkqyoHiZ6uJ99~^P zn)CUPDCnN$PuXhD$_w-Kg^5ajLB3MSS7<{at%wX%s)fbs?aLK3E6g-mOR%=L=j{tc zDT7SJsFbrsaW3;^Ln_Xt459@TC#K4l1Wj-rgsCzF=YBYAR<@(t2uES4#yw8TL`;wK zD?AWKy}1WQHuUD_z7SGxcx?sg&BY;6klyrUt2a{{$31nGOZ~Y*DPK{%P5ULoBQ(D2 zuHqCC8JtqT7KIr_0b}*)gcJwyZ=r z3OC|?2z>^osH~4i;3z8Vz{rNEtjQpfZd8&}@>K|uC- znC$O|$KlBSJ}`0$`yTy3wiGTV9uV@j`QyNra$UA9WdeQ8yuUwRY3p22%&Er;pAXlq zwdlMzor=hKV2WB^eo;W}-nKh01>E91#ehNWg{@Rs!{Q$w_JWTc{;&C{#KMqDtVc(I6j7jYxD?KdE8j`ukeq|b`o(w*j;vn@BR8G(gmFk_O=JG|;mkh*=f;(J-8dxY zVY2@a9)~0Q55UMN?0a;5X&iX#@PLrUVRzq&2;(r2?OU$$%gEh%+n13iU5d(1mC-4k%Hkl#Q^c6b7L_C&LK>|*T5-of?R7L?aRoG$(VI;A|8xm9UKoMr__OmIgtK> zHx>^F=`Tk6PDJ>NCE5Cmj`$fl+gztS8viZL0uwK5)p?&XO3w&+P)ftHxQXBRrdzs+ zUo(hSa1&$e)7E6OE(g^`=i_H?LU!FFCZ#cRO-ZhS zNillIm2j%8yhi5{jzUX)qeCKkQ$sGtM|aeaAHc|lhFszcAvJ_oQILjwBP0rX=y^}J z8Zx7l>!;2AZJpJ=TqQpFfLr<#29F&)W-xkn^|rR?Wtvg)K4bLUwzk6tqjvr?mj8_B zKNH!Hwd86g+g|_tlD>SU(3_{dzr~Gt3_OI5=}W6~77UcS`U~Y!t~e+DpUJ;GC;6A> z@L7mSEbF$U*1_Iw$d|hEVtW772pf8Oyz**Oy2`zMxvu_B%3N+?CD+#@5SKE<7SJL= zu96l_k|zETC0ERTOp(4YQOOm>oW~JP($fx|MQf2n?^EtnUE;66+6Wd3@L&2Tyi(io zAeJdl%Ml(&9t9(dGKEM90*u7*y!NZF>1i9O?4 z{n6*xJfdG^yGNsgo~_a6q4f{0e360~4vE^vCQ%FX^il$;lSPokAI*uM_$}juE3!iO z@?<}frMNp!{EB^?Y6b~WiF992ywutVeOk=GrLB&Zi3*-=6w7}>a37y3fP7c0*! zubv>u*d-(iaya{BD;XmH8XHF%#YD7&VZ9-r8qi7}=1I z6BtBxc0imoZe#dv3I#Le2E%v432|jOdD3_a&p*WncjWmt7`f>@Pmw*<#`P=VT)zY- z#g*&n%=~E+Fm1sLcmR%kKL;bH@a@slr7hqM!2?3tg1qlUge|CLyG}5J&N-^kbBOq1 zYS*HCshggO^s9%FeDZQsq^wm}+uddp9F`eHg!KSfd`d5}n1fGH%$R)^J%jtpgD!TV2X@BvOAnHE6dTAgrl%i+0GY2 z>I<)_AbnXoBnn!Gd?DLoDaLf?7vu(t>VXtBngeEgthH9#+EY>LF)4LwQIS)8b1hZm zLM@?YVUxU$Swq?GVY>-lGVct@`P2qUL(?V;-llE)^pN=@<62!pIAiuQuGfRt@1fhZv|K5H?`!m`1p=mvN?=wXvsVVkzL=I z$%R+Vna24diYc&t^uU>M<$UGDgDZ6wCi8hb3Ptcj!~;V5h^f945kBHK+4_i%u3T3S?crTe zQl4)8g=T?imbK)(Ule3f#X%_@%HkdVbc=Jwwp$Aeai*Pk#H17gi#P=iE*V-n2L|< zC?=C&WJ65GGlHE`G&tTK&WJ0=Nu!X)^fvhDj!b_6Ms7OO38P?TyAsZJ z8P19;+qzLmW4wq*;K+CZMowYeqsvR9z}tccgft4T`ZgzF6mHM z*S^1U6I`;^daL<<^_+)BAI)QtDLu&I3abWurllTAOK{)dMK8)OS-VPFdKxMrpzjIB>w)0nehz6?ikI-Dmf<vqt{;b5pM%Nz^LPx7tUn7Qr?BqP^`&v(Ey4pr8i#J*i3sCxUbefR+K(8> zmHG=s^&r#@uSNyRT5BU{92#LOP0C^%HlV3srdt%2G!E-Bh?X!8^=WJJvM0=!n4~;C zY&SShR?4H#5{|-&Fb?&|O;OnyAK6hOV{l~sVi-Avb&swu zjRS8H9uU$vtmQiqVH{q|_KC&JavwirxUG{NFPbmr;{%D6J&`ZalrXunR$eVXvuyr&-pSWt;9bVL@QW{27k#EXyVg;4a%QkD@G9n zX1}Z@5WPc*Q~0Uz_jasAiYVk}h~@Dp9OdU@-G<-&lWU{t;Bk7(bI`*7nu$G>wz-&1Xk$DU$12zeMmCyI)>W{U+>dC> zo>mF-!z-Z^&XKDUtgF4lWt)##4Ts|KI99{KFmg&Yc=!ovNqDRAfRM`cw6C}cOY%sz zXB18xC{=Qc^F=!AywsgvqF9k1zy)lrzS{gDtw=SWt911gN(+ZHBaOc~M+7e7R{EU9 zhg{-YU($zM#2{M1hfGrDuF1}QFl&YZxff2BmH6mJ!cmA3TP&3DO_jMDAKp=A?u3yI zmH8=y$Zl~%Y_U*MrZN5|g@oNQ7>vILC&rcW1Ft2ufi-j@~lmA(GAddXcfRR)9_pk=iUGN6t0U_PR1-^wW+{GK& zE_fuiXm$_Khmhj0J)OH;+j4F3f9juoIt(shtM-KN)np+m{mNn_4)HA|X(SF}5G`RO z8k?Ttxogt$EtnUhtsDa<%SvrjBpihpeXk~?P7E)XFpkEDcNCN(VPr#4`WZy#Mq*iv zUq>MY8i{M*#JDn^G!n`r%tmr09)u(Bm&3?S=RIL0l(cDA`;+0^{{>EtEBCsQP$pvX z|0g^UNB;i+Bd751;R2+Q;0?qBLK=w!d?zA|#9`TPx#;Mj&l{EL+lRf%3dPFTqJm|u zIF}U)&o3;=xRw58F%~mvE|?7$r6rBUGzQTM#$sG!-kQvO0cK3hQtrCg5>Awr^k_EW zD5TW*_jnqio5HdMKD48-YziYA!mC%`kP&k2RVgZ~KSEl*l``QFd zzPs=M9Qi&RMs7OaGvw2cG|tZp=lmQvF|M3*18JFr$@^J&5RSZ`4kM@V?$Q0Ff#8k8 z140^z$-Wa22BI@t12MBeFN)HKRhRYs>BnhGm||H=Z$!U8U8u&hP(HLgv^g4`eh|sIP z5K@GAO$CY2!y!@78F=m4zH!!3%9X_V1j+B-f9AU3(H)29te$rAm z$gZJ?yO>70G^S6Ya4=6`F#T;fDXvT>?_wGgF!??f55SS{Z@|b+=R0v1(@2@d`K{rc z-vlSdm2>?rrZEYV_v`T>9C`mSjGV%|NB5Tof;S2e2zeJX$9E#)E@r!I4aCa1YBgV> zFUM5}`ufV1{`j7z)K|=jN2~QGs&CV*FwwGBUu|#O#w~}>$MGl|K{jGk`jo{yyy44+ zyixf#gJ=cwAhrt+Z1~ZKyFwbSBJ6fJ_6pCv6xl0mEhh4Eo6>JNq$h8XAN$eU=nU2|fw!*`4tcB0P$W5<> zb>*sKN&>Zd=nJohUN}vz^{|1qcRXcEW=%wRNRBnJ5Jpa^2@f|R4GC{P9uU%y{L8lm z3PaM7ts$A(RV?(ib@t}^D}^O(ouzU`eL#ByT*uZTtnK3IMB?y7bUZkvzgaBEwZ4TU zEy&djq7^I%V<$O%O=TW~*)h7#qj0{g1V?uhj>1iiAM9xmC?b%i<6%4kM^SkYMm9v{ zeg=`9>6pb$hn_W!_m3&6K)3NBoEul(S53GLeI8~@`2df@k^T2z2oowU;{iB$0}GCMoy^$4_6?K1#c-H5Ykv&;akqaSR9|N zu^78B*WVL=sI=6r?D$#)7p_%zYTJ4m3LaJ*mC~&&PNK)Ra-@^UGl*7j65|^4)`a8? zm=AG%$o*WW!HKd`8XZkI3Mt}ANF#JpH%`WfcGQg%U}Qr#j$;tnc?a<%q>(O-={qT$ zK-2J3I4Q17C!d5gCSdY?8y*J8+u8HRq7j^kO{rFkfSl-?d?_HuGl&)tkSW^aH66JYrpC~btKn=} z*^MqB9EF)0cb?h=OgXs%55Q4QE`yN`Il0sqLdprRr64)^R!9^iCmUq@Zu{u`5_%_1 z6_HnH3d12HTX~9z2uZ0>i*~%^n`x;XFEEHy?Z|MGW;>s>rWq4&LYXi$V;n(X7R|01 z|D{wZjEJug3bMqw@_|M>KCYuwjDnF3saT#tWall#=ZdWyf1YB&t~P_?&%zmT@^#k_iq@0D=1T1&0=Wt$VoFX_uy3h~jwx#Gr^T&cU< zJLJK6{IAWC(JC#;ViGR*EhuRce!w7F!6b}p%v&s6QC6y>pAe2higVmR&s%&S{}e$kkO$@?035RSaB3L~fR?$Pt5ZQzZ< z147z{OMDAh*oI$cyBIm9uUx2B%OzzEvI{O(tG?6@9A?u{k5%bT7RzwBZ!t;Ba2SJV z1+s32$PQ*rtdgSK4#~1LC9YtkJ7}*e&Ef_?0ra^q8xSlPI=Q2eT=o*S}PF#6Term8D zzsYt1AK#Jf1u$~c*-m_Fu%0oE@$ZE*{#`gPu8ixS8m!O3Wc@rm21nMK_vrf4 zIPezX0U?dUOy7wJ)dNZGY0RvJXIG?qVgD|$^DEYBtg%tO1foLp&0<$8U5ct@_+fsvcebz-H#&i9wY z`Ti1|7FWLYm4;N#_rpVQ>BXj`Y$-cRWQg!+3&XeoEW3IFUi$dX-M(YzC3)M6zpCbHU_j zt?Uk%exsG$4rkL^LD3b2qcB(7j4h&q6EyFXZp8z16uz5aWJCC__l1zc$7?Z2_|6E4 zg7$G2GTz6{-y2jGSU;dC49AU=r3l2XAI?Rn2P(^7lhW)P{`li^)ZJD;?sDXZOv zGGS=S$^!+byn*f`hF&0y_AAh+LFa6 z-0WLa(kR@(AX>sGaHce)@C3}2(L^4Hvt*?^x{q)aMubri6(+`&M&U7hTt_i^6h=10 zAG=}ae#f|c!g;cRa_Vr=V1 zA&v2k@CY0k-w;MlVcet3OQXQsf(L{&3fKCUt}qIZWV=wha{MJR>td<0gm460z1C(@ zJ7Q?>kXYUv@-;AJEtEb(Wmym#(oK|nD^I$KMGPX_R&)jkh%0rLzz4o5*c4MsKu>11CBDM-Asf&{52Bnn!+^ z-PT#j$InAb3)P1*f27%9t1H&R^FD&R@vZK9a7y)BZdQKpn|>)Tk1&W-dC729bE-al zO+>+#UmcIbk^NO*u?lv9kyEO`!xTtg!CQ(4guKyt$XCq7jm{d`ZXq3ASeWbW%_(;^XTn8m zt+)|f5fwozjm%;)YQ9A!O~xqBFgL?o87<}pI7?Q#qe}=!VMMHm3bMqw zaz*r7d|XE{xf(_`#N-MFk)5Fsk4~)||AS(|%)Pq{|qBH zo$17isFm&UKMiKPgCK^(G@4hmz9O2&_-H%=N5)rxky9A==Q7OI0;s$p0tsLnFc482zZXmmMF|ILf z%@34dI*eYi2+ot0(dZDuQ8*DtT{S{C?=O1rp&ex-4fs**3ah~>-cjp)L-R5kUdAE5~_jNQ+%=B2Ru=Z8kqZNnG z8`tAbhFy=E?Hm^|D-~{0oojsglB#nhgJ=QO+0Zd5nkM}orqa-)N8l`4t0B6Ja1_RB z8?i0pjuSH#>mfWaN5y&oMm7}dK3@o_SiJUv6zlSkC`hq>n61$fUprl#@9HndpC;44 zb~@>2!y`;VUpwW|xqa<)JOzy14TwUL3e>?MQWYr6M=k7|hl%NHS~Cx3$IzOM;e6S( zW(~qowT9n4=`%1zWg|QSM^V`jMm9uc0|t?u)lGiwG@bWOiVCv}2JeT$xpCz^`KV=R z_7BG6aAf~L7`f@}CmyxvnbWTPT6hJV0_VrI0`x~M`dmy6I1!JPJyAf!?FrLRy4qcA$#6^Qs) zuf9rI{U-WJaIsn|ZDf!2Vo@vI$zmA3?ORsTFdWMuTEZ|0t~A4N4a}C&O0I;{WF^T~G|J z|9}tg$o21F*!nsGcmxh5i z2M-8o7{1{<5n&kSWc!eHTA{Q!U+Hh_q%Vf`4#aPnYu_B%0WMst%GA1S4^x#7m7%K) zJaQ#)rCC}0!?y4xB&tmMhpiYyEBJ@$W&$)Tu>j^yOjo{^)&*zGN`JH;;VA6X`02yu z9L)91!|@m#JI!G*vY|SMFo^72#TxQc6=v=<{?DP<0!_wQaE4s@Ut9ZXg*h9u5>CgX zajb+>VdRub@Ms>g|8Q~ffRO#?bG{Q1{b%cJZ&*in4bVFTOO%%g9-}E>Woxau5qyb2 z1g!{~rQJO0%Y|$=4>O2XXgBSA(wfA)3v*?(n7808S?P|RB^-qj@e+X`ON=XTR$s@* zbrh3VVPr#0US<&4wH5IaftBNR?n19egX1*`VmR(yOpcQ;5u`D_8a}!s(<{TsO=mjs z5`mTNeZtw^6V8h36|KKSkjD6Kcm$4&?+hcSFz(UirBUE*!2?1Xg$I2_N*IMFvo#9i z*;&qQo%tgMaz({1oBuw)?WcL|jV$u{eU$e5*$~f|D6UD>#A)iJ5D* z;3k+8qh(wVr^-rebTQ#5wA3cEJC8*0=8eXW@xdMS<0=^0(2pN6i0r(nznFK!xBFgbq$55bZ1$6@5AbH0*XW=Q9K+|Pq~ZzqW1Foxz; zzKXWKkeG(a{U|&PNA8!0kyE($X!g=C@TTDbA^pM$zC|qj!c*D$h1C}3X;nK{EYkmp z<%<(A4ReEasc=`tlG>%h*Nm15=RJxYMOzh%YTGCAH$RJY9 zM0P!9m9#8qt)>?y%V;$boHi@p(ZPhHP*hu;Nlw~KOx0P4N8+eD-7vDDIyqkmsXDy6 zf>dX_kSOR4pr^A{oyKc!^!b~CzCPLy>-5IrwKPl2Kv_$&cBrQWHQr%s1nu*_;?=%f zNjE zn|20~DmNLvoH(vAZ%tF?!h9H-G6znST~k&k9EFtnsSFLu#L)5?%ct<69d%z@N);+Wdn0?~QcmR%ke+fozI^Q!AYbYt4 zpBB#f$#7y^IiIDkpwuT}@_qsygd^|A!N@7Rdo*|H4|t>SfRO7aqkJbK)=zH8_D*I( zv5%i%kSi9BR!@w6h-Q)$s`;C;4~}>9p9TDvK6!RWaEcE9q^Z<_M?^QT|)=G%}N;nE-HU3yXIfc6D zJVk$(kNz?~`Z7i5xd!q-VPuh?j$)zO-$^;@6&YH}kh1d_(|L&P|JU{5dJ`a=qo$xpu+20;UPGMh~g`qDG4pAF7f1p^Trvb5uDE$P-iexd~>nUc@ z082%5Q?|xqN`GzA z&wx*W$FH=ux*LgPBRko*=48h@fpfLu9&K$K9y@r<;OuBA8JwOwqUY)7F#4Yz zDSr}8O8bN9X@9VEE&CwRi!@e^@t2sr)_$&s`7=c5$8fr=B@kUmI0`j2ewVA$CjyXs zU4;kWs6Ib}kq!0vA%n<{@0EDB){>^N{uBj;U9|@5Pr#{hWu5O7uujA5JdfjHICB3O zjNEkYSC##G+5ETP6U_f8f*20dXRLmM!9uLK_20k9H8t`xoal7aCl{XU) z2x&Tw^PPw=9k*m_I%X8hT{+q+Qps2Q%B3p#599F0UEmV7>W{-I3ec)Y9Cst^Wu59M z+t-e8`3j+tc4IpRk-E&0UH9R{sR__}PXrTZ^qz%q#;n{&2NI6zIQSYXt3GuSrs{O# zK{%>T4n{UQ&sTjRr0VdR3R0b|L!zK(un(+Ai-Kt$I<=^0dw6JOl{pw^)@rMDkKiqij9jT_%gxOdzMM$4xr{-i5|iQ0&A7(AHIaE3=FAY82jN6nX^(zN zI0`A^F>NDsQ(ErFhjx^fU%|+RwA{lWQm;Obi*JYEvVD#so~h-^K%Q++ zeRUW)g?EqsFD(Rb6dn-r#^qAq0v0zeA7pDGMlUE9`id20i8K#at5sfVxe@daB5b8k zSnJDR zgpmz7`8tEh&NhfQ=&c;zMzI8XhMVDxxN@9)gFcPv8}QK`nZ6cAZaUM6H|VWwKNrsS zKj5smvaP>CpT_vpcm$4&|J4=w+|AmSYm5JL*kHu>5v5S?(eR~b;Qhe^LVAWnU1y|E zM0kb=GxiKU)jrzCqj-k3e~BuTwctk7Gl;O24rTESYtU3Mr!C4#dWKaQL`!%EK55M} z>(+SUDW&4tFwl9LS;>xz}8PXWP0FS_t@pED16vjRJ zytE3uEqFjkt1!!VBEl-HneAI*qkF3TxvoWuRrniC0TU)`osF@PBZYtb|9e5{|-1!zwVc#JJKb{1+eBQBM8?BO7w^ z4ufcdRj_dU>2QueNf4N6cI8;L3U;PHfsgLU^m;II)0tMRf`#ov!r49u&WbDBrd6;r zegGbUBjfwR$SI6_^m%C&cw6v*kXGSOz9J>8!nxU6g%$d8>St%Z3)iW&$n2ltR$dcJ zZobBLYR54vEy-dM&hsrOX%fz15UpSmM$wElhj16nlel1{L--k-A}iI=RfMC^QEO*= zGh>>>pwb@v1RvB%HCc7_FAedV>*!?G*4p(+3Cf+Kya=a8D z+L7aDVC1HAJW1}hHhG?TUog+p2x2%qpm`PZ4+<&ao7eMXe0WE$C&0)lTzm9$X$g1} z@PLq(;4I&w6_((;*;;~ex&C54SEY0KHdU>`m*8TxDoQOsf;$vM>~ZKyOR_kG{e0_7 zI)r@~L@PLi@p9stQCI@AX0(z4I8#>Qqi(`cSgB27twhFd>PrP5+fiT2FtVX9MFx?b zUzp1Mg3Oo3^^Yi?K-=&`I4iDP^P5b41}5X*$0KlL{ChBR(;1&B+ixoCkA<`TD4ZEr z)>qbE(~`3=nSU6M!jbt0VdNC%J&b_#61-h_Ku9mKr|(3Bm$)M572>OnM9 zevOKhwbn-TNrVVnX;u~sF_ET%d2dlx(n5@55UCa-yWY~y=d5*<&0w;`4COMzTsTQq zzN57WMFb5ykQB6JtBO7Wm+ZRHr39p&vT$OjKz$nESC7T5Zt?-k&sP&?zRMRJ286`g|#p64T2dQY9wC7qO=5 z)7RAIJeWa4ZO(!7Wi5i}IKol5sd4|R&%kssXWdxsfvY|VtGKlQD%4*WT>Y3BH z{}n}sUA+eP_rUpa<$g`g#p-i0tKjE&ERI!h2aKFj1s<(Kb{{S(9uU&YM!pjfUiSEG zyU*yw<_6s5??;Q)T5%)lWkuMEm{}Ul$G&XHM)M(qXoW`8&L^!&%=$1}hQzEx5SZh) z5*|$<9EA~KW(8SdTxn+4#K(1%lht5kLrzv^5ZN^q@zRc!z&5fEoDo-!le=ot znBEf~-I3|tVC1GVo!C`lW&4}qY=0fjiYwdtu9`H)kHRBxWPCA@3EvVl1|~L45AgB!o*@? z>Y8787UoJ^K63Hv?{KcHbVrX6j_Mb9FG)sk-h@1bkM5`}Pr%5AvOLZpvU3gfLzdI| zp7=npcNj+y!{HB2zLi6k6LTEA7g%;BcgGIY}GQ&mdaCMyy!aM3a<@VU`T@a3P!_E78#@grl%g8^hK!i6k+m zTxd8SAJb7j24Q4FKF($k*;$6Me7B0h?L!nt;3C5Va5h}Ioxr%QM{Y8FA3m}p!}r3- zO=ozbd_G~Y{GV`^-+?pY$}+eA$>>d{-^53EWcoE2IfZGDJ}#{QmwyikX$6k(ortgk z9qpN(JvwfFuD`3ta?bG$`E~ zEKKIF!=rFy{u&rLg?W$GFWm!g7akDOJ$%}CBEmiVIorn)(*{a~BL?U*30?8m61oQZ z3yamQxo^>YFvYSKUafaX7vcZ%FQ0=l1*MBwRvKRSrAc~=R~bYrc#G*~0yG7h@gT~g z;W4HX1m?!9g%B-AI0`#8zKm_o!PK8gcnpsEGag1Z^rwSCWal+j;rH`q-ZbvFr?{{y z*x-H}I6JP~ubx<$FlS;`z!&gH94lZ;7`f>cu!g+XH*=>|K{>n%ig1Qpt6*(yFQqvf zvl0q;G>(<907g!!1P>!2y$EkF9uU%tyzJZLgco@u+c$&Sd&`US#&;sGhYQzQb+xV$ zG$4(@mBwbV9Y6LhEonQhVi2uhJI2em6U1=bMwnMNzl|{GV6whG9)lz6>%hn2Lj2*!fzpCh13*lpXzx-as12Y^cjt3?e&cF@yJHC1o1piz%c)V^M_@4rFU5tEdJrk zhBOsVGl*6&73}-31N!mnqaH@tGTg-S1c6yEE8)?blq!W0ag>B0ON=Yu@c0;Jr{*Xp zAHv9noP5A}@7SZQZNp;+j~SdDEnU5>t>=#DdHSIbF-}VRgXw91uBZG;XX=Y9&nVzMZQ%fox%kS zq7|IN#A0IVn!4Nzb0sbxx%zN7oGUBc(RGBQ`UP>6L?U|gCge_hbVp_RDU56=%WVuI zyTyn4Q4)!aX?(v%5n*oL;QJLgFRpwmM@b~+V6y%a9)lz6FTlu6XFYk8L?UY%^Q%4* z%=|2Z7>+vw^GY|4l1R+MWPb)8ha>w_VdNC{J*x`B^-s1S_kVMj3_axv)mY z(n9)KQcyqJcm`au)_NP+H#P_QdHg(lr9oK?!)d;SCJn>M45AebL(E=c@|tzH31-h| zE!V@@vKByeG2tl8)Zf@t;x`57$N2b;f^!v&YzWSe7({j^qW;FFk~59-zf(+@u{St> z3eJox=gJ$K$}CLgpTMJVWd3m&x#`R&-`G_0rm;Wn_rdJ96U1ut_#`$n!Tp3Tkzo|^Z0i>X+Frh?gXQC8Aav@wWQ zFctJE@R%!2Up9o<5>u2}*8iQ{Wbk52RQE{lornMqD{gzP~9hOM~ez;-fn3qr3W6-7f&2p> z*HKQMhLH_9`749S+$vZ(p88m@RhUE&m}z$9IB6Bqm>!Rh?#OfpjNEjl6IQ{>_BP>c ze*w;lE8DtNNMn3UJOW3?w}6pT829M&(kk$_-~l16!q0p~N~|i($aV+i==_pCdOcEk zV(|^QRIPP3qEtilgqw#1bqt->X6maK$FrxT9C zh_DKREHSQJRk#Qr*HKO`fRPP3IhR3XZWXK?|Bhk_TvhljoDo-!lU5;(>EGa^J2L%i z7`f?8C#-^%?f-?d{XU!(SGIMlkjD7Ccm$4&zXc3W#Y_K~jQC!k6Y{np3!7z+# z%v=1nGTI~ zX-uC=;RHH|li;MdGMzlrp)moI?{DJ)IP!fgjNEj-6K6U!Ql@c!dpPH}!ijO^TtCyH zF$t6RoA4kUdA}Y;PT}37|4R$O8-)jiv=DQBCn7AwBN^{uAhz|7XT3*Lz!b__Y9qSZ zAi`Gql*K%}?aPKV4{tDtRxl6keA1e>to$dGEyFp?BnZr6SqYCu5st!$SZxqwiE-s> z!!&$cM>&}cBO7uufk9+v8^j(4E5|!iEZ7xkaJ&PY5m%0rs|{&PZ;Oxa$n;h)a?_bk ztTtHLu7j+xkA6?w$8=*E@koIX1I8*l~?N2zLp&hIde{I)PN@eEiy>VKZ#W(h(xqJOTiC*-Y?1Ak zGCF$lxy6NQp*yeGk`i3JRuvl2XCg9krPEog$Rgk3l2)XLL9~Ju8P}M%COBuqoEi4x z3^-9%+M{C#MuGYG(0)~S{3V$0(FB1RD_6c}YD=AUIX15E74Q%oId6lJQ#kkN z_tG-(=HLM#?@W&OEnabF@@TeqCM(X*_ve%wl3n3SwU$|J{~`SX`prHHROv<*gRqlt z8A*e%J%eZkgD^VgM(Z1kV0MhY(F5nmN^o=#;V68F6ZKg|8Pbu*M|G5r`7p8}9i0p! zJ8K|L)VJ_^0Ywt%3(ke};mU9FM14EU-@(UrWcf@Ox#=t?PSm$B{p)b1e+lQrm1+G% zeLLH~z{huF`z{zcg>8>sF6{ts1s)L64s7E)5n%_`%J%)Q75j6G)W@7FK7k67wZ=yD zV>>Kpr4?DM!E!Va%sz{flGflOMrKP`gLulCHTVR~l$fAgkX#SWk(KOd8sR8>2y4KI z5~IphgSGKd9c5$<7}=1KRT)I)*1*E=0TfA~HP{!o6d5= z8d#VlJ2pl}lYY`ZnK!O1YP|J>`!W$d|g*g@v!fm1`}# zT6xIl486Hhp>Kd5!xqY=jSGv9nzLY_)D{1aTyakPKk0a*e5KHvFZI*^Bl(x-@M*AF z$Vn(2%VHsp@+~@PAr>=;RuS3k+^XSiJRZktcmqaGsRj>c zAi$$M0LzsdbNXwbR_Z6)gi42 z`&)BZv^-d)vss+S<}?B9u1!>wbRP2kQDm+-M26=gpd*-(^y7({k1V=8wUGG7|kCsRCu-r@u}E3RDglS}j&n2aBX zN8rf#H(}(aGd@!~id5Eb3upaiI5V!S^E(RLEKKHaz@uhnFu2rIx~(zWalZS z^NyU%n8x>x6cKi%8hmdD=f#!pl@co!$vK#;Z;i*`$ol7Dji2xqP1s zAf#2e(zkSlRrpJ`RzV(}OULE%b94FGvx<2r!o_RVnM{t(rFq2X=89P;oy+1S3chtG zy~F|r(F$IoadfVd1I=2T33Dl~H2Kt{1}Dv04$;>LMAzcb@I35tvrF8jDM7We+WV_X3 zYPGz8c7gWyRPxmxdR$T{EmZu;?7yLkW-Y;5amXDP$!(oOZoEkTxmO=Cx!coYn@sn+gDVW-`6CQ%2 z_G}L$8``rCgUHU4tjr&v7-`d(UqWF8`jG)RIj+pFmUxO{OvL2Bf(PQre;Gz@I{&N7 zM=3_?v>NzPcn$mzPLOL2a8J67$(VKUeLNV)I`|%poKgoK210re-dH>!qz75kcOt@r z+>@;b8P`wmcC>XKov)Ouiurh+=7GtVweD*95i}oh>>_lfu~}Tlv%a)Q*YS4-(F(3( zyqvfuIAi{fvS!$g6$t|KXIA2)w<%o;D`NAfjNR0iTPX3cSO(A&tZenq_jVnp7sYz*GhqUkq~QQ^QX+0#`R|5T+hYx-Cij5 z=PUGb*x<>v(Utsyfl6V}!gX@lLnV{*<#Yng0qNg(LG{hLKa4_b>v|OYnB#0U;IVDPPeNUgGGCH-C1OivztSdZV>J z*R@D-6PLnOYc07E-TcX;7r`r?%i7mnCa13H&97kQ3`cPfoGUB& z(G7&7@KQg>pOu{;PK+*hZu}e{-BD-mfRPQIxt&2|w{{^me=dXXHz*>^_Zxiw8_tU> z-^tCN$vK$aoZlsIscQ7Ep@Uiv#cwO_+WU8Z>SH;|XW$RaNt#X_~elXBB5GBeGn64b5l}q$r$5wJjO00qCZCd@?J9>xxU)Cj_>p%!`@7l97zwWO{#mbVsJY2qUL3?O~r{@57~%cWDm@sVR5(%93zk_h)-MH)j8G zrC;Cgb^%39)zkx%jmpnpbRG0n`bbqH28 zb$^t?2()SsvzdfjwJQlnxtPQkG3(_dv{Tx&2l0U&h5ddQ*%0=u`5nV98jal#X&!;> zegLP!Dyxyn?pSWo*mY)b`yM{5Be!qE$W7;VVp7pGiZ^^VnBolxVmMs5Ninx)$>>dc zwk|%pBhzca$W3Q@bbK{v3?CTI@cwWnTrc7db`jgJ;V)|15udq|@Oz{yG zQ~n*_0+OcuOa`$GQ=XZ%n~g%_~_gVj`>I5E03 zc{k&uJBr8+FtQ;c*D{FgOuX2Dk<6IJ_X`wJpyPWE&WkJG$qg9EIhdy4A9xIotUnDS zH=Xsw28?9ZH0Gy17tH)5f*1}XXkO|128`r9O!mj)aX7Ny0VAid@6q+8ap0}P140^y znr|5k21~C0&Vc@&X>ycUvmBBisB&lg)7)9 zJheS->qZU^g2fnzs6?o=EQ^)c+qa~omDqzp;B+u#2u3z^rpFgT>I|=|Af4GYBnn#Jd?4E=1Ji}h z^i}d*g(}^t^p?BTPb1wz6T%FVwe)Jc1&NG^kB6sJuti~R^yNS*%ykT+1r&x8)R~;W zCNF=62{Pp6k8r}Q97n$-9EF@3cd%Sul5;RU%U7}?O4hkPNVw(yDy(w1vN zq9ASAG26wD@wx6Cz3e*B*PZKEHD$)q;n9?xt(sEFbr)#okM)}-w5gN-;hZ?QdTdI~ zS_EY(#f$lTQ9)8rCNYRqL7AOuA&1?wOi0XJlakNEyckllIh-oHl&nWM3N2zEQX+U$ zL+0UwJ8H?d)VV&Jzdp?{NSGM_KDaI5`&O7lC963J} zMs7OiE6MXE(s}<*IPYh|sd43f7503@It`Qi8Xkrt_ou+fDcpNBeCZi@)9`?h>mK8M zClW_Np5eZ1*F8q>nL8?9QP0Ns15E+bDQmISK5cUgmW@h99)i++ET-UhzL}M#;I|B7 z8Kz*F`^CNYDQ#&>1fR8Sn-c$%_>+r^Q+5YA{oA>;w`eEtk>_@I_E&PHYG1jU4~b%4 zP!#iqDT+;lqS#c4!g^!v#7L)Dy^&<-!|?{{MhXsDE1dR zd-A#N&Rjp8V$9x&sD0KeoKkOf(7v^C$Q)M6h0a{Du&^{(+t+LCYFDn9@9yj_(<^zE za`ynenkVOz*lYMM32D67@ICSSAMyLX`29fq{#X3|PyBu;e*aJWek6WB7Qb!JbKK>` z@ABez1@XJ0_#GvFN3&meZ{tfeT$XzqN5@x|b~msdg^qPu<8EMWg1~N*t&KW*hSH&Q zU-1GV>p)`EUa}{AJNFv+sE#IZRT$YYfmt)#9_MIox5n+h;oR;G=faiSam?}axJ`?{ z2R^PNySu{3O=ov1&ysXP8qePd=lN@JR$O`JXH@AkFd1KhN8rf#0F2yp#@Y2ePrsgj z9M1Dqa4uYVme(_RH$$y|gpcdU?hj$)rnAeg=j1(wc0E54&hz7NR$O_O*K=|PCgYFc z5jZmbD2&{6#@Y3}seV0=dLh_*El&_5$3|3o|vNA{10k(Gc_yjNgJs;K=xmFmlrw?-1+B8qxm@CweKI3|FGZv!#{#Lbynw zTseCNAJ~!Kzrn~&=eM0N_-ph|`)9B-pG*)V>CDB03WMDV__&Vjj)jq%&hF^=p^C=s zw&C1v1!uzb(&g`ovd2gUv!BC9b!7H4FmltGosf83rV-p5PH+S##Fb!vtX3j;v;Qu{ z2Y2MT8%AzA&ogb$G&RC63@7}2I5Vz<^E)luEKKGH@hBXbKO07FI`gCG3A9G^1K~v9 z2PeXn=yvA1;>YHOa^H&&>d5QeFmls*9oN_%pt1W-IJ2PJ2AC%V!-Q@T+d}v3G zUxAUE&hZ+{+QFgGzV?g3UV9CK7#Xjh-ntb|!Ga!Mt5>@AhsQ~CBq z4+yzE^*3zi3vw2gn26Y(`cby8%eC)N$>-Q+suKp|k5cg+D2Ky^YZaT?#hxwL?+@g92gUEb~>Nd7i)aPy6q+0(oI!rHDT1Z<&t%vc||JD!)mE2J& zoA=xRs<{e-upZ6g1kqLQJE~Kl_|GKY+t*Js@ehLm(COuiD52I}m`;<)A4UIsM{he^JO>Vwm{@3+Ph;gEi|h)lPF+KnJ=H*0%Sb4E=kN(CxfIXvwEa>7c9z zV3ZdIWAxIOv=>$iX`7jy5=zG!6c*>}wQk)p>x5G-SH(x87okg{9fi3}QlptDfwE_B5i^%pSyq0|5YV*s3!#CG9tQ&Wq# z3!flU7J{9Y)2FJiy&_TnSypJlndxSjW4&EEflq6pkzd>5Mt;uft&D=HI?;+<-I zlZ)^U!eYt?B|pQ*bu{unfsqX(pEbKANMa?|-8FYhZfigymD zcn3Hit{3nm@rpp>p2)b0x5dYHWO*wXx#=vAVYh7>!PRhr``}c#63i8v->w?m_Ts}j zavQ|7vf_(vV1;_+;o;l(UOTq?<3*#J_IMi zm0teHD_-X@uHFamK^=L$4@Pb}uM-k$SsK6p4d?eia6(-972g0$EW{Z+zk?6%$n%>p za?^PpFBcm%nm_S!u$5kqAV$VYbCs5{n^*JN_}GptuK^=Bo#oN-Vz9>V0pa}a3unUh zGUl7g*b=sJ{qBvA>d5RKFmltG9T(?_EgNd|9ve>YH{f)*(#y9dG(tD8-ml?9J94}P zMs7OCW9v^*G>Weer})QkHe4y5!0v?Wk(&%(g^%pW@Q+~R7GPLBLxc&rEW4Qfa!7ghQL5z&c;@5CJa`PHq9v|6};gA3SV|Zfn z`LM?F=HV>Q!*gx@psu+r%|GRpjNW8=V|;W+rZ<9-n|>{Kh$r|O$@9ZW?u3)!D%Skj zLw)Okq1A`t13U72FpS)Een-dKBQ$c)3@5h+XTp_Sezz1yZC<&j;G;S+dm@b7bY{oJ zIkMd?-4#yn&){^p(#!9b8ljsU{{$b}k>gun>{j@wj?8`zMs7N@6O&slHHQ1b8SaHM;>s|;KT1Y#G9BTgJ2Jfx zMs7OOW7u9+jpB>LDZUU+g)7B;R|nt2Yv}X&_^^)L4#LPy=XSi@r>qhDP&mO4!1-_` zm_IL+v71-$efZdpEZ++wH=X5)d*`ck%=-TMBL?y%dV3@J4%vUgd431Zh%3+2*i#2B zdgF?I6CdA^>(^l96s|qqRg|wg@>k(JAmr?bkTQ?NrS7(&_Q>Y5YpH zZt*I5S70r*+C1AUP?k3y^NBc=jr*3D9yg`fu-gq$Eb^ttO&CPxFFjgc8cIyv_SRzJ zkLTp()5|v2m;DldYe{I zi3tv-KQ|n~5X!t^m=nR!oOZWe%mCT*3ruJ_b0s2uuVDf!losbJ^j4tt`x73)74r-F zJF7i~1%zq+Hiri$eb%|Q-!RR$Qdrp22ynO?ae=}tlD|5q;;(TR6I8XT{ec>fTAj2R}gwi`VJi7~u z<@hqNej*7Vo59c*mpJ92mArtyz8;?E1@zVDaLN~U5lHAowJ<*0B7Q~R`cZly&jP4Z zToj>+F7)OW4%T)FROv!>L7`Njui*w?>jm-=beV?QkwUc;8wu-|x`1RCszlo`NKdhg zzM2(ERWV;B2OHX)W0ZRFgf^{WnQAALDgv3i$?(7ogEUh#B+a`9UJrzl>+WW~BABl_ z6onP)dnl{|eR+&K(cuCs#fMW2!z@{3aVHwCz?i!W)$QKgl0xqQUA@6TB#;a!RBPEu zi+x2p|0Xo)B$1u;47n6fFEpxBejz*XB>dW;daCPFXi)S~%|d(%OSlKH4 zV`-#%M0~#=>S(HTFIAxnBJ|R#4$P--Lv&F@p($o7KA|b*D>b2|M>Fa>I=q7WD+8sj z@H;97Q@^81obq!Bt>VU~{Cq|H9x8qh6Te>-zn$XuaPgZHzw^a!m-y`#zj^VyK>RKg zzdho&Abun9yGZ;N#c!|pEs5W<`0W$FM~L5w_^pcHe(^gXeiw`1BgO9$@q3i`JzD&J zP5gdc{2n8Izaf6VDSp2tevcKu$BEzL#qYPp?+N1fMDcr)_&r(to+5rv6~Cv6-XXkQ2d@Ne$NxX=ZoJ9#P4^-?}g&`BJuk@@q4lOy+r(e zU;JJwet#f-e<*%06Tg?UU-{@es*CzQG6F4)bWYpTQIWmL@{e#N9SnmQzLfvzk`WgpCGWuW!6V|kx4Ay!xcwu zGP@2wsw1;&!pKc$c1)b39*x>Bg;Tp9oC;TJ#fe&R*e198;KMp{yC;m?bZ$q{`i92r zaS3M6U9N4pw)j8C49<@3-n^~tu)*ja{_{)zb07b?pZ$pGoYDCB^*7;+xKb=+nI6E3 zLFLxkuj7L{5_}Yl+;oD+&~d{>{jioB5)^wfdo7#_S7yb<%btoG++K|j>&WdDFmltm z9i5~5TJ7q6I-J_S!kKWTREHZZaTALVrKQ0+woekn;K0JBjcvT zRU3zGa=QXPtRuH=Fmltm9i5|94(+PlBAnVy;Y@&6ZM?u^T(z6vqdGGCX&AZb%#Mkf zou^UT6;AEpa4KA>6<2K>w#n^b_^^)L9s(n`2DiE*pB2vS>2NA=ZY_#@Dn6_uwKEah zxKhnuaZuwo*?t}$-;wQSVdSQ>J-wbSxhGa*e5Kce4fS+_7#Tyo5__q|oP){w6g&n; z)+fTqO=o?4J!9pH#`cckY;OnW!}a>+ud2z|O_sOD$981-^DuJLS)NhPRAN85M)win zbeG`7xY9jKxwsRPFnM2u2jR$j4~*P&-WyJhHic?rdo@%!P# zz6&S9m013q$@-A^EqqW%USEfio6hTK%QNEj-w5{C>k!1q_-k>+S|1UwiI3{Y>}oJ_ z)0yoMFOq3;yk9uE`@qR?y=wWvhxIq$3`O1(AJ~!K-C*RV^V`l}_R{G6W;nfHhjZad zFaI2#cuCD*_b7Z^M|Ky($W3Q=412*$Blp^Ha<7I{;Yu!lCc)o}Gq}A1AJ&oE%V6ZD zb32M&h1Hn-YdEuih7;k+toRHMy}xVl`bT_FM_zvqBewvrOZqfkN52_trB)z_k+D*O zS9+z|;I$1O)REW!`~Q#E(eVr88nK&(6T1nXW9uQ|X8d{474IBeQ>pkz0Y;vi=Uk^tXcT@)Uv?8M|C(mJYQsn4O4^ z>d5Rk7`f@pj-n%bv`cooaALQH6XANv^829poFRkP&*OtS^7>gAx#_%ih{KOGZcE|Z zE`pQc$}L|}t{?wo@Y{nA?8t8(Ms7O4la#})G?p(4XZZp+C9W(_W&1Le@Xc%aTzq&( zuD=5#H=XOz@yTNv#lH!s_}6eITq)+=mz|epT*be{M|EWO7cg?unH^g{4NhbC-Eel_ zg0tbuF8_F8J#zEfeH|a!k>OWiM zBeyHV$gRLFoeQRMyH7Z`d%~%3y>#o`#wR`+-0p@C>&WfSFmltmZRh7%YUF-BoZO?} zT)2|UpV*6YI1P3eKxnv{%E9;G&gxy}{O~7T2rr zPMKVdbh?qWpdpT zR?eL3MB=*r+YPcO`jdS>>Kf;AA?973@rJW#sSTy)wyu3s%mY>=Ys^_uV(L z@+1Cu{|38*i&q}l-ZtH4{1?1yCgVTB%9%5s+IEzA4bS?Qcg;MVBu2GnZpEkLN}huE z&7?dDR?eLAG@{%(s=~OI-{X&YSJ)xkYgvA;8#3O$ns>%KXL8;NRvtT?>C^{<^GW`k z`(TG8<4nfeoC|p8OwKD{<;*z;Sz8_OVqpHPKjuqde{eCYCmn6uZORwpeKRRv1S@Aw zxt+D`T^4@qkNHm6AzaMStnJ)o;YWDqOwPB!%9(TSQl}yrm+}k#jQ<_PoJ{lgFG}S$Y!QEtBm8SUGdH zoxvgQ2HIWy(e4a;f_v%8`Bxl0Z;{;z@0Ce*2Ut0CvJ>nB2>blO7GOtk!OA-#=lO#x z@J^XrbFgyeTf zC)Wp8G-~;7^V(hXs&|RJkR(Q@M3zsNTbA2|=i@yy3D1F*GbcR3J{I;sf4KX@j^JLr zvX*k53cC;9DU<7-uyW>HJIO`n!J(`C!Pa35iVl6>u=b4oAfJq?@ZD!!OAhD3#DfkcXXUKw6t{F zP8}U54wY_~&7HEjTQ>KIMoC=z*Kr-Cr|GXsZ+|+dRuf2E-Imx^NaT}QF}R|%#{{xt z{J|X^Tb(%+jN)OktMBI0Bh=7fx?+B?v@|2;C#AV@KX{BJn_c@jzdjLQvdZ83DSW^dOqw0 zF4BntDOqe?W#{63GMSzQD`(Dh{b1L)aCW@OAL0f@lL`sNdhZ7xMbyG zyO!A&-D!BoOuCa{SbMW%VI2ngr4Kyku*#LE2!k&Gu@JV%2ADcqgZbQ-#SMU z(2;PMI%BN41GDI+y1#8lq}Fqk-G?O&7F~89A|%#PcE8xuu9em8j=K4IHMlo>D5!Dy z_jaYn==V>sGnaT?A2{Dta+{r)SL@yZni(r&v9zXk7?N%tmLIeWTtk}~N2)1U6s zurDyWYI3!%-6!yVnRFk8l{2S1fl3Dh?V{JcFWiMBF%q{}c3zf`M1p$9;yNGil*x4t zteiR5&VH)q46q0KgWVtY1oxVis|f{b3?uY^6p1uL&uajRyLy#nu*N%k^WIdifT=tk54 z`+z^#`(a0L!OAN(xO=v^-iLR}JgeF;|1 zo+~}BF|OCG-|()9w=Ftm8dIYR@>Qg+^}VjwZ}ST`8e;Be1KSXiIBICxWG^_CgI|vvSC} zc<0OIh<=2Me+@O6E8RYrc^9I;0T-x)+Dj{nK_Pp^u+yo}` z@4(8LGv9y~RyOj*N};w6?vMI&e;9TRm-~i-yK@*e`-gBdnC$-yE61=;FyZT(K~5S8 zBy`R2p`-&*HN*btE>qZYuu?BHI&$^C>gtYMuwJ(#x0=3587R~`a>3Vvg^pZ*wI^Cm zy!F3mB6CJ#^LW>5>6Hb#n&cW{bN#UT(K2DPFj-jKGFaLx&5cZDjtXNl8Uj{wt9a8D z#wJ1{w!%nn;@Nz7e;6~-0Wd%{dR=$y2RqOi1En2FCjzUvrN~IbkI7C?d*e1S)6*WX zvX!28ODdt$lZ-g8^t8yw3R)R3ZBnYYG~p3aC3KdMQR9^*PWQ2bvcz%eKKPhkZ&U|5aslq(K|~~9JV8SliF|Q@ zN4^Nm)7C{I)sZ+JP3nA|I35-fv56zaZ=YsF#%`pLsc)ietQ68k5?CGQP9gs$k43;V zXNxi?s^ z2swcykkAi89!ffm1y)cEF+JTojk)SUNU<_dc0cv_3X#Ebmoxa92RbVW?o$tCAMYv0 zmy!mPE+xJoBw|a6^kx?cC>I{TkzjrT1F|NUAHxoFGA@0ebfV?N2BD`K;W5~`CnUx|c9Dp35eFFQWosCbm0q@lJ?2g?^GPR~US#bmADTu6 zVdt04aU+=dWm8z$$}bxymC*S`#*|ln`LAbwS(NVckC`gJ(DL7o+=_fX`nIM>E**)w z#rb6<`)v)`CQXaPt>f`WZ_)_RS*2S@jDf5o!Q@(FHxfz{24f|Z^I>PX6UrLWiGXR& z3Dqkt`|VtEF5W*gmz)JFTe;+nq!K!p$Vl?aB_Hy!B6#DH?hE1RhtO(&)?EArYH7mX=26>-9rj4vCK5 zwYV<&8_Q@zt#YA$(%PY>vkHvUs}Y zQO(s)Dy+`c*Y@`p8nt3~jxsjo*zgu8|D+l$*aGD_)jqG<7gYPAYF|?Azf}9OYF|<9 zzg7FHYF|_Be^mRrYTr=pe^vXYYCFbBJI1MYJ=LzS+VQHLpxRE=PE_qA)pn_NvTCP@ z7T%iW?_?I;4y5+k!sJ#tY23B$NakZV0oGmX_9THlICS5&{*hb~xhZJM<04v?+xM%> z@Sd6Xt8asqt^3uq2~X?}3VZ`^-XHG=VOMbR%FXA6**4n`;N3FW9tSID&UONoAO_hB z{mEVcJAzAAepnpTP0Drse{HSTI}h)a$@LsqIdiU^!40bc_J{spZ-hO;1uIu#23Ff- zug803lD!UA&YbMz)}si6?&JP+{{ef0OIOafEz51ff5&@f68)gl`yAdclkPLHa^`fW$tS|%>9c|OE$e$%%S%XNbgE^! zT}sG!`zl_Hch2OzA*`G^=jqB-;#H^t`fz{Hhr%A=Ud!?by|DE*>4WgznWWzfD`!r+ zbwvj+s14Ak`GYp2X}zxT)d8`u?G%<}F@E<>@d=3n96GTHtDR?eJl zXRy4+Ks$cCcL6qzBu1wIQ=1Mu@1On)`@hK~`yW_2bF$-4Huo^y-kjIq!mZ&gA?~SUGdf6U91zgK*iOa1nL|m$0m_#KfvYkc_j$CKTX>RNKLesUKhBP7a#hhasjT4fFh~7rycp;Jc zHX82F%EhRi+g*sCEL%~m;NoG)efX-Yh7zPze zPgCHYIJ9(m=`8YY@PX{vsy#=v@CT)&RaL5x zPUKQ)E)>b!H3~a}Ux-`5%-|Qm%2ozXoBWK(Wnmz{gT~{D{5IGnT;y^S@QC>~>mTCX zGg;pVD`(DnzAJkf$e;B`{uJyPE^>L5yGCJ?e;l`hN&X+Oat!$dMV7A9 zCLM^X(>6|bE5!wcHHB{4q=rtxDmMD`nG(^;ZQF@x&T>YddrzU(F&4v|r>P7TcD4_f zp#4}T=PR`TL9LSSFAO=VyRFG|>|RF&magu$6cVx3U3yzov|t%NFtW|zFf272dj>pk=JzYlEvPK6ZQsVAu z<sCG)f?&rqI{SC0Yu7#fc!=p$j5xaV#gw0!IoG2do= z7~VaT^&zlw=B#O_eUW8Vsxx4J)F1XoV4rYdw|3eO+i%l874M%(do8S-IqlY!Ehi=e z_P70Ee-m~I7k1>zR`aTIr@qbqI^I2#_0_O)4C@5-v@XeI;g&!`KURD^Y55pfL8Zo3 z>E7l~SWbJ0N1q`+3x}yQ#+uu>YC=a*9_(U1{Nur=k_Lz_%O4jKDVOE$(pZeyRhNq& zEGy^N7SuM!dG&gAd1-c6P}=58&r_fr^d|jNdV&6HdFe&*@0aM`CsKBPaY+aLZ!d{| zKfRci5=@{!OSOd6#vA!>6SBm!vRNbs<6pwQL80I(VYTh{M7I#{o0<64= zny@Sqtd6%QA4nQPIz1jIBx2KJdT&o8mVinybR&tJ31d;$ihgNwI_xVa*-}60M7XG< zx#gqH7CEbk`Y_%-Gmor+m90E7m{daN5gA8bdE^)$D`>KNB;6uv>Y@2cabU2VZxpMQ zND{f727*m_&QNQlJmy{vP_%|aqJXN=a9PUne#;jz0)tMJd4 zb(f0+L++PP;oloxr&{UG(?ezFp--q19l}~^m$NUqg@YN5J8YVmacaV>}5 zPCP>CGFTw{57j=Z+Q(G;xN4tJ?USl~O0`d`_8HYatJ;66_Bqu)ui6(>`=V&!w;#W! zKTGr0u`|fZM!h#uyW>fr<0f3wTr>H=+C$p_6V1; z+%Yq3y-m6s@105dL$Gq@q^E_dN(1zz{-8e%JA?~be(D%9-sb#CymKb!Pr%BVbM6ev zeFN}a{(x_XJ;4PmXJT=aqMX-H55(mvqg(M_nPhKn+RPTy;DM^e@#VpU%YgumBRBy$5W)j{ER?eJoXYiWHpnIG@ z-D6-+a4%k2Q;C;b*0p;i-Yb*rVX$)MWV_UhI|J@H{%}7EJA(^X&bzHQjuzjK;2ksh zo(d~x&UbR_ZK?tII)A|5hP}ZBEOT?qayvJF6YrTx`0KE84B-T;xb#9Wxi~0+gkDhk z1MvnLS?{X`q860?eSE5$sjXkicSqKLJrBpHGq{@XaV;fb?#B_>6nSm!SPJ%R(ty!R z!JZNlu}i_yTRu9025h8>xzoH$xLG7I5+z&*=|pHW&L4*gi7}8rB%-JTjC`^RMx?GDy$HPy zd(1gAlva>VgidpT`WV}$Xyumy+z4iV>4%lA{8CCPq4SH3DX;u;kdGC#cy9Z2^UF-} z>1Iccmj22;!Xl~VdK%0~q!#DmPi8qH3=HfOdxH&InOv9D|2ngLTS$z7%p&2m$8IE* zKfrLTr1D$XS?;8AH|a!^iu@MbU}xo%U*r8V^T{t^Whq!RIYhv()n4RJ!z6dkT@{vcdF`NiIit)h%s9rJcOJ!RC_bSaGkS zODCCGLShUgnMJaGbNRtYIPZpmSqbM|u;bhbXA9DaCY((|Rg7ya_RZ3cxGl`&vpuYA zC7)$UC3NzU5$2VAru$ey$!AK+-_@1#{VO_hg9APJMl{!~rGbn@A>;fUhFQo2#jYC560r$pX?hP>riDgsq?F5HE>=qU9PBE0N;!{oB3PPo5pc+OJBM6~ zch1ZqpN5sK9P&vaksjwcdj)%c(q7wI9k5?DbsLp9wSmW8d^n|Aal)Vt}}6lVdk(+o6qIpeQ+r1NH_mhUN2&%&Ak(c%*ooHdPNTi%NoXU{? z_V*}9;)XDj&S9{!m2?gf66qBgo5&eD#(72*oI}QW791aiUBr!o%|Zo7%y8@p=p(o} z%vd-TR?a*Y-lAvi7zY~haGifVd>eKXHy*Yy3Xzy0*)j1=+$3g9d>vMfiHQUig)U0u zc zY^LLOFq6#`SlLQ8lafm4WFsTXE7?4rG`>}`xh~ygGx5E0jYs6=%u(dYkw`7eT=zSU zjmT8C88&wuo|Lf89ft~u*xWH%dywtv@&qHv(s2v9!pVbq+8}C=q!P82xniZaI@C;T z1Stduana^W&htb$;|M0P)<~8o9SNO1TWjR%g98KATBA;*8Yt7-#pJH(&Ug0}a=n$9 zz13!_2(P4;+kBr8?UEQ_;_vi?pqw2S`X!NjkN;-w4`ghx(91DdN7e&L3?-= zXbDEWQ5%X`Tsr(hv7SP2ey~jYlR0;BV+^ZMtW*c;xmqD8h$<@yd(zEP+e$ryLG*ab z$UWtpr%q z$HJ^{CM zR^@BO{E9MN)*+WAjn5(_hhSExhPXmc+4J}UX7r<5v%dV>;_8l3yh zKf~uikT>W;X$kF`@G36Wi&Ui~r&RCGm-Cby6Dv>-suzPjL6hboDw4YUawo0M*H+R+ zpVXoKR6-O7YE_z*$RjIohhnjmO z9A`@ z=EJw4=KGRfDnhNgIu}&Jxz)A&0PPCaiF?7`Hdvqg^~>(g`@fWK)p#P#iXgaQ57|e2*uRr_hx4ypDM)n2OFmZs{Nd5FH`ORsP=NzUZL90tM&`3y;8Mb zRPC2kdzEUxtlF=r_G;CBRkdGJ?blU%jcUK4+Hb1%TGf6_wcl3lcU1db)n2FC@2U3t zs=Z#dH>maps=ZOQH>vh!)&5Ymx2X13)!wGsAF1|s)!w1nJ5_s^YVTI- zeELC&{*2Zyb{*W&u~l$n`O?zEbe>+{&80`EIdP~oBkl)t<9_fkoyzBwdW;mCQ`&Ea zjJM63&qCkbS#O&+C5e%E+q{B&5`Eh|U956xn{K~g-Wczi`GR>PSlN2PoHpah^sGd@ zx-$?T;g5JZ><#yV0voa1$EIbuP55BEXC~nTVCBpSPYL`aUacC4PxnXsVb~p9#Of+; znQk*)gLlnjJP0di&Ul)<_YiOK4a(o}r~Eb8AzaGx1E`SkHs`P4oijOq30BUW^TND) zd4j?G5B|)53pb zHsLp64oxQE*J0(%3C}iH`xvBm@F%_9sF9v0N^f%nHt}t63z)>Wf|bVz@zAO)gLuxL z_zAFAxXC<3JTwBE`0=;}OybAF%9#_N)m}m%SI-&1oBqJhhn>O&K387itu+v8`JZxW zfBTEFb8!Qhyw8G_Gv__evB=S2ev?1*8(_z9nalm#9D}g0^Y7tCFu8vRR?eJzms*c% zuzu8^^~10;xUA(K(5;2E)^+_5-Z7K!pJC<9`Oa=H@(u1_X}Pcgdd?j0s(dC%j80W9 zXKr%@_7y!1w}44}GOV0A@fmG@19N%vE*a^`erMn7LMDBtT(`EJ-JT*`8n)2RJ6?K|-PnY3?%l{2TkCF>(2BM4sd z4}#}mS8;=2YcY4ThGoabv$$Ez*mw$7&OA1@YCDnEC#~ZPF(W!Qo$Fo5Z%h)SQ^;=< zjgEB>%#M$ZaKo7Ku>e-iJU%AL5A+QD%l+{m4Eutc9Aq7!K1@^&)X(7#!24y=-49mI zobHtN=a&ZH5BmdN1G|F@SgwR23i2{Qt|04rx60h3$bGaJNz>redGus68G78;yp77{~T7%obdF( zPp$9G4a)1y^DfoiggwHgJga?Ox2(5GzmE6LB>gI^oH^-*0cppc00#8!{Go3{5~EX} ztGzhg1F`vUg&V@;zXhzEIseJ6EgTHsC-?(D9`*+JDwnyuWw}lGSiEN@;iF*X%n5JU z`Yuf@0uAjKVGuvxpZK}3ceuo5y%skTI|9zaEn!B$8L)EZ5iqCaxAvAO2KpQP(SHwi z3m3iI)ZZF{&HOvK2~6hK!pdWZd3)~~gZab$%pZc?l8kwK2sZOS<0def{}EQsocYYw zMItvDGJwyV?_IY~BZ<)|;pAJGsQotW$$0-v+7n^r%xN!fdCRdCl!1PCfAsH$9mKuX zmxx=obqvOigLmP^FymlHSUK}Jm`vYpi_*@3Uh;>&67~icx~$+^mfM7T@Sd53^RRN} zgr}?B%v_W|<4<`A_6V1RwB-X{Giymuz)3t{EVNzYckYA;_muIan|Y2N{Rg-ctm zcQi*}6Tc0&fJyv^uyW?a=P7@McPccXKkpCyS=cdL=yK({V-Pm?r*I>f+#iRPGv_{w zTo&F`(qO*v2HwT`MkFyh#k%}L#TbCidjW0$llMGWIdk5f!QP(+EK-q+Zm{A+*8zl1%)r7Z8T!q(f_ z`saA>OwvDvl`|(j%h-F`fc>UF?AKwZaAC{3%NT&o`&HZkChwPF<;;1{cWn`FK;LG8 zcd@+{NsLahy-?I)u2I zJ%7&Mf&IbdJVRXH+IE}rwRqo5%GbcknNyw_?7}ZzgovXM4AKwzlm0X86E11_jyr0< zP5X~{|4iDyhm|v@y6bjhHzCoA{2n1x(`G!^)WxpDg@E&#es7EB#6LIJ|Mm z_>OTM!9TRU_w750=1$q%Et`8p!$mG1thR<=qs}`_7^Y_?>JP%onWLT__^EZ&g@Jp> zANQwVk8mlg;yh%%P5MH-cP8lzVCBq7&uftm9Y$gRzr!E+ZLnjwz~yUh#~^I(Kg5k- za=#H)&Yb(4z-5tBV+`ug`cr=jb_O1{VJ@SIo}QA4!1Xe|Jfh-A7SrsfveZvau3*g`yH;_ zo1kvz@!#W?FeBhMuyW=RFuhUD6<4j54_FN9lNWhcWfMtabgDA>W-M&IO?o`uJCpP{ zSUGdjUF55Bv2LzSe3w7u9bsp1FKwC2mEktu?eUJ8e3!w>ne&}RZc-n5y6&EP{5j`g zr*JvT4-Sk0*t|c88^GlK0a!V6-jf4&4fYSLHL~`n{6Sv`dxHyFu3BkXZWF!$@0m&X zJXkq%!c)jkv|hKIuNjDM^GEzc*d1KNa+B+}={DmV@vfPSuZNX0XFQ`(TbnDC>xEpU zS}`AsJ>}2&ao8nX&hnW_#C)6eKk)9Etp5%xXU=*y9q2&sFJc#!FIendZ_gu%(W$rP zdIfU?Hu2fG1x(^IVCBq-FOvRZEG*y8pZ(sjf4G;r{4^|nEOr#^f!o52g56-{%%fng z^xQfYm)HF1S7E2DxjZP{b6sh4pZnAD4~a^}=$N{_{?I{tz`@ylVKaEZ$gh@$q} zv_FUU&!l}RteiRR4Yar7S04Y|ANo&W*Knb47`n`ZpbZVfW`7TE29y0=uyW??=SlYK zT7CSgKlzto$8gEZHRp~&*xX;ljbL(r4pz>byPDU->vxSC^({8`uIS%F5~EYmhv)V1 z7;NfGa2uG^7sJY#Q&(4eWC^c<{V0Fzhr^CZawe~)zMs{Z_dkwIWq7YlvTuWxGrxwr z_NvwLYY(N}J%-L1I&q0-ZfJ32~vf4Conox#o2@_ni{TscvHUGM?CYbN32VCBpS zPdU6+=q}a^7UK*38D9XqgUeWc9~3s-qI@3SIg|1^uyPFLLg^X0nob*9TDnc{XtIuN zPL#y8e;wB$ufanps|~J5AaQkD;vgZBPiDp7iqhE=DHn`CxT9mMAT=y4JxrtNySelT zHMDa|SIiHVmS)8Kq%=3~2al0tb5?brQS7IWVQL*YxmY!ll&+3^^}&<4 z1SUGe0 zi}tBj8u?kPW)+g&w5(ov$WKWv{#Rmqd5KAboTX#i`gIR&MXj3e>CV^HddK>Zm!q^=qdL^w$75{W z`ARM@YpA)uk4j&m`=nfNxtb@TCqQ`T^o>m|n?jhJy=*T+I^nsNZHJ72ZS#sy?O{smJ~5|08!f1aCCiQ-30Zm_A;01b3HuDWD2MD5u%u9^(OM{ZQK>7y=VB^W zBA2?CR6Vz%S}nKY-X~krTMZ*&9Owa*)JE(AC#}9by{ukQF0=;fGvkt6=+gF?aY-pU z<9ebDryL)tfm*e{+9-&!i!RI~Jvc_Ba@F48+v>p}5BW@;wL(3ZpJZb6$wtAq6s-%> z2wtBVB`mA1cOM^y+Fz>n0oDFWwZB&FgR1?FYJaQR->LTZ zqAir3CkG$&CjC=-f&OcG=|%DHmxS8~OE1!c?&YPI#J|NW&nxNA=&?lHON|kKmOedv zt7|+@oxZ8}^VBIMF%r*HKTB?jJgR8Q)e~Xs?dNBc@ZOov&nCdi*7LKpNzWo*g$pAC z_OAZ0cZQwfe2P`FVat68i~-oZcft)|^4I`{ne-% zwD0t%{Ug{TT-tJ`4qI=Nz6I}{N%|&OIdjsJThGD`%K!AI{50$hE@iocOv`ec@Dq5? zOu~=C%9#_M)~(-D7?2lj=3R6zB#F@}y5)MfknuL>`FQ6{&U0Yp%sJ2NwqGL|ybtu} zy+7<2?nN!XKy?hl=DrVZ1e5!ouyW?yH*h`*Gsv&b$P0tH3XaaE4T?v<}bm@ znKPf;a+rP*V?f{fE#9U3mLxGcrMui!!XAT7eRJFfCiP8W<;`*0iOx`g9})mm7#67ui(@1zL}Ii z3@c|&d7@ZgX8``LKj3e{uHXWeSFl_cXkEeIz`JF#{Ti&CIopk5S3VlN|KiX4Pq2Hq zyf+rFy<&%AU*CVgO<~5sZ(-%kV_Sf*-3!IaIt3$#fjF**g>l4umzgR$da z0&Wa54%UN}GmnFbVpXw0d}n{+JHf8tUiUK3%f--Ep5FoQmdSQISUGdH^Bl{)4blaF z(ko!ca7oMOERI3g*K`gyg30{^SUGdj0=2!f8hJTZsA_w^8JW41e^JuxCu<=yTi(vGoMZli+deb_s2Z|dxVQyu1^eG zZ*rzR%vmptI7@#=ZcyKH3-985bCMXH;(U>KY92EXoByV`Ax!=o!^)ZSpBDP$-(Y^U zKl3AChj6cSxe7gGyv=zz-Z_)=!LV}XoHq*ZA+WB;E@%2vKOJ@tm%4mQ8aos_20o0N z!i<46uyW=xFemId*P5np`Lq89>=rJ2c}H#y!Djw7+yo}`ufWQgGhY~XSp37cKlzjY z1MD0wc{#tw48-RDTig&P|6jw(ne*Qu?6$Z^Gn2OTuI?s~#OPFa@+%bQFl_eg;bt(| zzxjWU{erO5VsGAe@`t|z?sezs8TO_Ra>r!%IBfdc;dU_TZv!i5e&x?|?C@k%_$&O; z=U~Thv%Xv};TVL?{RG?yCimlE<;=M+j&2#Xu3G;hfBsF_L0tZFE!;W=W5>byxG~H) zI2TsVJPy=Zn60lpT=o7f{`_x(9mC}>um322F$kOc4Y(0Z?%#uzGv~fh)MfEC{}cZ7 zABEk+r7!RFV~1kLz{9vH%ounGR?a*I7DgQxSNG3f>RtEGA&Jqc`{i9<%s_1ZGjT(h z{HMXnne*Q;>bBV0e;@w<*c0{+Hw7#fkM-k5Vn@L4xFyU8csHz^c?3)gZSiST{R95c z`(cN0q08s`A>(b%CA@Pc=asN>=A7s3E4M%2M;%wf}O&JE#KGJ1F(ockDI_G{w%DVIq@0FVFy+myf@# zc*n_gpGX=a`sBKg3yIWEuG_=qh#oO&=h<%JC+#!q3af^idnZ+BE$a?M+=sOcXGV9q zkgw56ZnQ~gPp-evpQ~2rG#HX|9}YL1Tu;$;}N~zK}*wp+RAX6E9uOhe7P)6J(T;2x4F5`NE=pg zU@%9^#`CN4#d2^))KJrXuFh~eefdfcoiJ6e_6COv1-XZgWU?@?4EE=`$-M3= zEg>9gCJT!|WaYph{k{9Fs^P{J{C#l5q~Yvj*W5s%)=h_o=LYM>HJ8li1GV6xaZEV4 z5BVByxZ$_>65~+QeUceRDI5*`)gB72WI-BORUar98@b+mccWSxYPwJ79M-0Y#=eR2 zgtCKHg+p+d()FsnLA5_n?TxCvNwqht_J^vyMYXr8_BPf2NVT`C_72tFsoJ|# zd$($TtlE22d#`GLqS~LT_CD4AOtn8(?ft6#g=pc!jJ`^LmgZqbQ(MOY6;>I~z5hj) z)K?@ZvoEBBno8nirWeFu5D90QTlxa&L~7Tj+|W(iZa?<^C*C*nM(Sx;*}9QRoAQj% zIY1WZ&9?Riy$MN-#A6a0wEP?`V!q9K5#BwM^+H%VbJh!EZYPY(`!Ij%hrrI^Uf%L$ zcFaI*{s-cQF!}EfD`(DsX7v8gz<#Pf_O-B2xY*^k5mEbX+N<#XnY8P$a^|!rPs5HCOs-eL%9(SWOfC`+Q4F}h^N0H&>^=f8LzYe9?{_^f{nTmn0Y8w0YUTgPDRJa92?3^NWcf|WCm zgSqws9s~c6{qf%k`-O{N9)4(#!KVHr+y*A~TVUnPsm~V+q(V#Yg2h$__ZR%R{}c8M zm-|BT9M3fhoBY$b6-@F^z{;7EpDlbATGnPz-(*|w>V6SPj81hgpWT=vu!%3kEnpI# z4=ZO*e0q2xq(S=-f7%Da9^qc&^25Tg^)~7K@!pxF_koo&Cq2tpYHGk<>koSs>=Z6+ z`JtIH0GoFmH-O1|09MYN_muXUV1xA4{-m#h-N7Y2T}<6=({09A;$1TtUjZv;&Um)D zY}-Knpg-ydV6Sjd%lXj*UIB?4Be03ThFicS z{tB#|Iq~_fPa%x!d|Q9&Ta(1-)aCMS%ry#|{Fb;CO!Aw<%9)d2Abnzd!r; z!M@>M@p3a)_c(0&N8@%d=^p_rXHI{X@u87{{bT;v&xW1C#V+f0V*obqGjRi$yibRf zGv_@`ZLF}b_?#`Wq0{&MS$`LH2$!{dcOErfIa9w~`4-+ilk_)W<;+P>I=oixEtU(l z2;{%{L;efw3oc~&=DcmU#rIEm&rH65fR$tTu4})JOU8GM>j?fiaj10nPNKO-G)hbF z{UP^;SeI6egx>q(V@bcg3#_2;D!bF&`=jfp`qrchx`p?k1V$gM6m`f}~R8EQIrIcfiV-NpsKHq<=QV|cBO z=xh19+&e)H)%n?d>$mIcHmj8H_H%kU-@hW)a=H(_a=u1~9;zWZKbB_>sXEXo_7_hn z)Y@tXczC_us1CGaAZ7;$reU;A=wKm7yMqY5q0q_N zw{Hz{c-PE=;sjXPDk#!sJWV)CUe^ZYi)l2TlrMrE;+)A#Hf6c9Z^(F?a})2J$@zR( zIdjen+>@q({73%CZ-IToMJ^xsxW{4BzX`X4N&f~|Idl4*!4zn)e%hb)6R;<^th>a! zy1;6i?4x+EOtKHd%9)d0*eY&}veSUQ@a^8Yd_GBF_dZ2nOr@{aNn=JA%tvZg3FX)+pEM2YGwqoie%Z4l8HQbz11g&EQ-2=Q{v9gv(df zWg+8j&i#1jOwJ`(c`R^l-&Y%)uk`191?&)%bK7{E^JRGFOwONyl{4o&+kEU{z`oxf z_IhD4s_I^Mu_ zCk+?<2JS;bBK8ej>BXLoj;+odI&Ela>5;|ah3&)C^xa%~m73B+!S=1s(0>I#zfHc- zyGh@al@(;z%0i`3 zqbtw7+dC$u-(UMXtejt4s8LKf&nAG(DimaFx8u)+SJuFL}2 z)}OBw2L{V3W}W+yV|s-KjnH4GQm8j#Uid=xRI0Upa+H5K)aZR^wSOd{v`)d$-B+xv z9BMijBS7P$Pw__LBCJtT&3Zb^l0=G&pdi z*jO8WtNn4B2ZOiT7pS(W+E1wVLe*ZR+E1$XQ>wjKwVzh)kZLbc?WL;yjA}ot+Rv%> zGS&W%YA;vq6{`KbYQG>__-*-V^k-PftO`qA70OD%t13Lv#|nDce_Og$;rQi20y<|X zD1YQ8^$*eju(!bOYVd8Yob9LvWd@v_uXOiSYn6O|VaQPhK9JO_x(d8sNW@lwOGl{; zbe>rhjM-JM1^@f9;MA1hKj>?o|sb@%0qK`FW`Y>fQ-pv#zvWu4Ygr-fRBjG#~Xf?v$#ga3ytib=ak#H5>d zgh$q&r$utkLxk381^t;h6z3d?h{z#0kDpn$%wV}uREUFLOaeIgJBrtQg{HziVJEi! zy0&t4U!g|THXdP0Lg2t%(E4lP38AqYJcxnXV5N{N^bgRa>n?bLUSh9$`RBo}gu>go zeh-t8QGrKju=jys4IZI}h_EHJ%;+KwHh z&N$Vsr`q*ZJ6^RDRNJZAiK?BX+Ah(;g~yX*Mw-j?=Grra@c?ou4FsFRRVk#;s(C9( zVAYhf3@H7boD+G*)08{u*kiCCLT-lJzybn@_X>UnUr^hl{2S2TU``#%ClLY?9aLadxgtd&erA# zY~m;37BGqT!OEEvpB8#aYh2i$_lNyIutT`8a7F&3K?))-g(TX*uV(l;ZC(W%nqb2e)THuFtz6PU~w!OEF4pJzDCakU@m zPyI01G2E+N=6S~;Z0?8PMliV_2rI{MPq1!UFTIw_a}!AD5AyC4>#&e5#?(O62YFX_ zruso%*HP^cB*N>jKLrP@GuqgjVTL}_7-kXng-HWNFT%b+NTj|9+qojNJ#g2W%=QnL zEabdF zwLehpjjFv#wD7{puhE~Sxv+AQWNp+9_mLHziz)9F13@yA^O`PQNjlNRlvBi;8Wp1| zo#_{`cjNssCyhH`Woy#Ngl@57(0zpl;z{=<*cUim${rTo=kb1-bf1NlGp9S5t^tvk z48EJc)0^+6Bry_IzkT(}txLZ09ANX4DPa*V4UVo4HT5(x_F-OM1)I)k~@a(L)Swg(KA&X3clGzC3e$H%r@j z1jgh7V{(Bpk;2gN4eiZI!$#k}{Xj^he*5O!n!+5v>+Z??on_tq1Gyr(%DL~q`P+bE zrAnVoI*&L=B-&f8<;vA6eOh|BD;g4M7JGAra{eU~@j%}8P-?nZ3D>RUaL zB7=lxG2R64n#p((teiRH$*m-9AU@I`@nNtxoTWs`Ml5eQTbA2|55aq85{-!_TufzV}B9?1+we9v* zd^O%Tlk!!ta`u#UJ!w$>Uw_KKgZ+U~*0$S}AH@4+Qhoqdj-j03>41K~Aa6DkNazO) z-%naPss{`oPj@q}$-(hP9rEP8@GId3JEK*jGs@h%(zK4@80KI)eZE%YuE6n}VIEnF z6{sqD^mB&ULSh}y8M+Q`Z`rE$YE?V8&WQWL+_)b+yd*~IG1~LB8G9t!t}qidO1;I( z&ak7LSW8=yP6W#EN22Y7cg@TlJHX0T?$}O9lu~0nYp-ArM}6w0F-`Q5Ii5G=1=uNE z((>yLV*vJCu>v=M$vX!tXU==xKJ@66wz4bKVwqp!&-`N8F{m%Ws|$f&2#IwR0;98cyK@UeIcnES0r`_<;ya>BwZ9nb;OpE#a9D}p7igc$ zm@Oq)e_rj+1)D(!HaM4?aYY6zMS4y|J3;T_ii%-X>V*QGubj*a^}fO0-f|(lck#a| z5Q4}5ud4Pn)&57dudDVA(ZY}apQ1lY^YQ<*P^=i`#*AIii`gnHr;-F#fjjd->0$Cp zw6K&PB87~%r<^XlbLN!O2`gJuPTHKi)CFxY-p!x!F0eDWjO8OlWw_1vop{GgzVCpQ zGv_-)=0TNl4a!A-%Du2lxRm9YPZ9HN*4=pbOx7QQl{05OQ#ngbj0WsW{b7F^_6ZlZ zJo71PzfJp-c>he=pMaG!r`;J8Fb3nh{2AX4dxFbYo}etsF6F%b;N+sGgENe7#d~Fv zy%|={oNSjWFAccQ`NMq%b_N%&oReF1vBmdEykjQc$6)0cz6tKp^=-bq4NM@RZ}Wd9 zDtu&Jj2ei#&96*I_2aN9dxZ}F3g7E*_ips|z!_uB9b9*Hj(h#cA!Nhc@NYx5VfP)% z$NGkUD zYQn68T&NMP>dIWb+S?GH!TEZsUkuMzMGnk)JOVJVdU0icwMdUCyoFlcah|`0SVTet zdxB`;hb;TkpQZVb zr8BrHjaj}%HeioRRf^KD?W$rJ$V}qQz@_()PW0)DEa5~hQN8LCu8jA}oZ^eHvNBFj zu4$8<($16y-Y?KtJn>!*yMv2YuCHvHZr^}?4)2=D_)=IobH-Ek6lOsFxj*Ee!v5ew zmaDV0?Kb6m@V=Rp?}C*xr#!8!iwgtutNxf@h8@DiEFXl2jJG+zh6axNCts&by5i3so|%My z1uKsY!ogD>gYd-Nyeq5mBr!Ubl_o5nPg&RSIJ{>j;s1^l;RJ6Y^vewSh&zFVe%`W0 z(i;HvGGl(aYZj-k$TzzC3OyaU>R_W#iySw;zY(e%?%dIF;!tUkY&Mq764`7f8fPYH zmR%3I3u^`nwPJsPmiv~sE7OYKd@YwRuPm&n!@s^P`s>To5Yz}F&+S^@Ks38* zg{I84-^d z3Fsu4sv7vja*-m07B9*d*L|=9ozYP`hIAs#nsWV1WDKpz=6&?bvikzw{W??82iwXk zU}fc?u5yu%h$biXD;MR2QhHxY%#$A*L_BBEzl=-@KZWIneQ8bGKc9j9!v!x_&pQTT z;~&C}VB-H2tgNQVPqsajHur`4gM)Rkzn2X3WPdm894`AsV#B7Gf!O@-zzt#YzYSK7 z;jhaG?nTy|vSP4YrqkVnL=u@*aIKOK$K8{T=y~ynrGa$USInkIw;j2GYO!9gRyt_6 znR;|Lr-{3xVeE{-W^VYhgt{&`Kfa8XBjVSV1y7un)zaw5tk$YTN_q+#PXh_p@!T*e z>A7m0kQfU!M?ftyd}HF-8m6W$D?RaS3H!?lzBHe7B5a!S#1?Y|cGlS(w}6>-Hiea~ zth2F@NUz#hASY_mYX zmA7}48F#^9>x{YPu_Ik(Y|pDMZciFby1KYkNQ{N*qN^-NZA>nY!i=n<;$hfLPRylW zlTNg#kng*c;dUN*2=ADgNB#^eTY2PNfKD8&7~|KRz=LW zSx>{eXR@9QD`(DnPN;Hl^4`;*_wKM;xV+_QP}UG^=I_Q$U^0IftQ^BU!6dKi1UWe* zkkEC)%}EoLdNA?I_*6gqm|d(C8?=K!@svVGt})nslJUOeBXHb0gRVI+e8u4PzC;hB zHHyf@<#F&1ixIo9}%s^Uv9N2{v%0_-qnD3mTFod}$!%skJggj;-HvgaEhA{cx11o3F zf3cphhl_#N{bS%&*g@PFSYkY`um)qt!OOTY%s6-vR*s2-1Vx0dL*&GgKtk6ctC9{x z)geDlw+WH%1FqRU%9V#OJTjj-ijAFVFxb7C3M*Y~>?9<{Lb1^q z4B41vJ_yrN1JtiVJ^=g33A}U==|p%m<>Gn)O7*H=SRIG=%1kB4z{*xCIZ{ZZS5i!s zGqHp31!Re56>%Qy4=!K%5tO#wo-oeA`({%9D6E`0WpS{O+>p{i`bK}!*TX*Hl9oHm z=)%W+O<#xi&!qirSUHAvg1KFn2XZP%Afd~H9g+@2l?RK`UD7!*-&3jvI~9iarg(+M zfaN4-m^FJxxk6~!9+{LJMZ!x-ndlUz1?tAelHn=U6~f;ePNeyDTm)~ z#IoKC@1Du}J+N}-tV3@%+`Jq9yibPR!sTtg-H2sg!A)Q?KM7WjVV+>l*JXp891=+A zvfAx#mIGUCuZt-AOtTG-?s1IRg9s^a0!gX6m^g zR<=^leMu#B>XFgpm3pr6v4Zx2x<1_nSd+!B)g81TJ9^VHZ!feoa>iP-ZTwleI@!z+60ylxB?LpYwo4657?&rhGG29ar0lJQm6GZ|EeG4-+=|I#i z%$jt+9GjA_2S@bPiam6|N%-mKuV@@tnsUZlvoLHS(Vwpr2k7RhQLI*m{f<5S%ggfh zw&{@x%TY!AA}JPKMf^-ijD;# zZ)SdZ3RbrA%i}^Ky*gsHeB-G7Ww73KZ}bYaSZ_=cSZ&Q^Ek6%5M_?1*2)BSqd;zSS zIq~`W&0{R}<^I$UhCRcjzR*}}rAJ|tKLEFaNq#?AIfi_KLO|CNa=J($p=*hsBu!eX zmY6Up)y3ZHn-3#C0mrH{(3&fTts$b@+YDPpM1Or*V0UDyaug6BPa0IZfcTh@7z+i& z1RAk1n|udmWz8nn!Y*>+E?rJK5gg4)BCiCPRHyo_={0z#%rx>tuYC`)e zmT$%*=G&~tSSS$$weawbdZ7$cvu2bc>@O$y(s85{ ztrz6orv*@1po@oI+yZ8@>4uf9Wb+{*kzVnjHm5PYW^n%;S>;(tTnhV!%RRg~jX4f` zs`)f-2b2CMVdc!}hc>4%J!eF~J^m4J7wjKy1elxCm}9Y{;C9>=W)$2CE5}4Zf@(n* z9CAuYAfXG6J(CVZ6&ycHcUjiVdVjUr=%Wp4T$|KP*cVM;&e&_7IQ&BiXfHfzG}+86 zHrAtIU}d@rE?sQADX@-(VnY#Y4ct>al>G-@wOv65<3)5#Vuim!dh54CKM8s3A)md^GN~;U1_}TS!q0&?q}r_ zPb$+A%;KuZ%85JRm~{qR^OzAXFit89QzO%t<3-19Nn=SD7C#gcW1+B^BnNFwE|0*3 z)a9ZJiod~LazZXWKspg3%_$@R3-gLO2bMR%fU+R}Nnx zcnJaNX^sGmaC9)cJ_B%&Qj=Km!Hq?6453W?Yxlj4V9Ga_R*Qq6k%qx`H? z^Cs*pX9$#@C7lQub<|kId^_K~j(5+@H?P9VR=#;zNTfHTs58bQE;ER4=TCeak{F4* z6`OeYjIqcdZ0=j(MliW=0V`+DJ#@xc#BB!q6a3j94?Bl@wVP**MFwK?KNdHH$^R%= zIfj3NB0<*~aso*pp>JV+mo$N?TbOOqy@i?5pQo?G)^z0P{I1AN%>Te)>x{W(ag=Xj zr2WGD$VBF-Fg}|!#&m^oiI5lz6~6fNLpl*E>LW32yPach z#QSFEnCoF>E5}?XB+{!b)JJ04Uk2-^$R6xgz+(M4>=iES@JC{L1UB)1;1)26{~cD& zoOtLXG3_&h`hxd*Q=dl?BT-J;SGf6+m>z{qel~6ell%-=Ifi_KVnEjua=J($q3el@ zlZLRWCuXF(8oaB&+Cy7r1>f?7KR16L9I?(MGwP2-1M6Aa)*PKQzH}{dgpe2uwZ!Ds zu#G%(3QWzKT~@<>a)K}Ql1{Xekk3S0mfN|df%nYJEhoduR&J>XiS+7-net_1%UcHL zuaY&MRm7KJpKv+L6?jqmZQ5VN`)AVrJgl5K?Ya78WDN1&_!IvX>=!Qa4UC0Xtufft ze}UV;r2aElIfi&1nR*r`eGigLv0j>f}7ZB5gL~H?(-t01^J#1rQc_)lb4N|{UeFy9(C;8H5q!VGH zw!LecZfBRb<6See%eJtxm0h+@DxtHBj32M;GTFxpdaHV8y4zvR>npD8E7Ur2)ml%` z^jG@}#<2i{G$O1Pa>iS;HpTo{!RdR6GfxDm`mbP=pKKYW8T|-1g&704z{;7&z$W?z$KgC94qot&gMY#<;>N*d z#=VYXICd;Njhn-ag(qO;m{>?qRp`P*PBIB3^leW$=|I$N&)jqilUW5SOvFh8J;nUW zY9(KeJU-q2Ks1#(<8RcD8VE)aoHWoLL}bcyR3yu2V4inDZxa$@p(2@W4&O*bN5d4Y z3F!#fU(P@%?MXTjHtMVaa|CwoS&m!4%smIg%2w_N&{Os^T-&m^ln3z5@d z-*CBy_tY@QVblLGZU>Y88dy1V`k_5FOwSn+@Gbuc_y+7BZUmTnYM5iOqu^_}EzBtR z3alIx1qq4=U4O_aC4q#lKb9sPh^jwMNcXYp`UE{vaXdrzV>!ziZlk`pXJB_^B6AcO zPbOudAA39|B*sFKF@Z*GWS5x-p{%UBVj4+cb(j-(>2>l`1c%z&Gr*)e)sHnM16yaylW=o9bx6n8He`vv^kgj zIj@9W!sTr4?dfFQgLltlorjfUSSOg%by*-Mfdmq|EO;d8RHVv+V^e-Ck+0XQ-9;a{dhMA{>e1Bgsdj%wlRq_L)}g{y?b zSg00eo5MFsho8d)t;yx5u)mx^P`Z(HB5c$n33CK?9dQqC0W74#7GpSHsP6}C0j9^XW^YQIZua`Gv_=@FVb?c-q)Y?Ua(WRSF=1Q z+Zcdd7Q6>HfXRDTSUHAwf;nB61#&`2AffL%ZcCb=)LqB8bniMQ(v$5~`Eot-obxO= zRGo3w>>a)^@Y>L?WqV|1a+C^ZBn>WIDx4-H#zLvkrABQO3s=L;tf}NG*iBCCrHe@? zf}}ZBOeHN`s$*R)T#0wgOeyXFW&HxNhDZhkEmV19l6S_k3e5ckK238g2rU`75w;4D$qYzAhW& z?4Y)zfc=#Ty91{-- zstjGI$O$Kbgf3LxnRFnkP}wov=NmKo2g{9O@a4N}o38)RV6c4V48UgpC|4+A5Mm6h z&AR@bl#wn?{v{;FLTMriwg+!yp^cZL1l4t=cih;BB(Orx83d)tq!X=4 zm`^;+yWSX25+hM#+RVfCMsyT5`Ej@vO!EKzzehe)Z$$lO(BILY{`R=vClxD=LM_-A z<-BHRtL|DWw<5G2zVQ;9CPg_C>C_RA*Yc961v{_R?<*b^~R;? z)*I6rg-X3jZ(tg=d@;JdvkphDbE08{^Xy5eZwU$KTdRy z!>0cvZU>Y8W3X}z{RG8DCwHyQ`Jxaje@NjwUK+tTnqw z`K5_4JTh%L%86}gFxZWm3M*YsY$YVdLOIbH4B41gj)ZBc0qPedhrvE_0x!LXbRs;O zUE(#Z0Hu1>uSE{Qdu67Q17T$=mFzDh(kmaP%Bk1E_akJ9XW4Kn><=#A8KET^Zpv%% zzL}I)!OEFap1Du8(xAJzLT#CY^f&!Ue;xJ-m$ZEJ7`5Ln53a`hXVSh3R*s>aU~bpt zft(5wNa*rli=+cl<-t(83qhyk8|6a2-ss3}AFUFeqH$n($r)9}SKQRse z@-k(6V0vU;a?}ZrC&i-cgntN$u}~*W)dM%Gh3QA2)YN69tA!~ffmKva@TJ$tT@fnk zELCm0onI#5eKYgR1X$V1FY5`3^lAomma6ub!FpG+2fIQo);q&q;j#{&rK(3@6W@tRh~5eZu7&K1;P_zfJpjyniO`XJO^cX@|~IZF$TfzWI^f#5X00k+?^& zuWa)y)z%nn>Ko%WFsW|@E5}ezF!}5HK~50~By|1o`J~~i>W9nItskb>3iJ&sZQQ%M zSm~**j%;bs4F|0=$23nE_HhKb*Of52WpQMda#RiWat4cXY(gV6jPUX=%p69UWVpIdt04($d3= zJ39JqE*$FcdwK$OPx8JQmUDu!>#9o~}F=3W->5Dektpfzt=Ze6%;rQ;k@^3fTj8nlmIy z%Sa~zNbPpv9EP2dcEinJW~5zUWh*1SQ%J;KvF#iyInY4XGB1iO!KTr z%CLjD5fI+(!Z{c_4vM%j%sA+Ul{1fn&~6t__ZhKpxqmEt4t5eZ7R=o)oCC7s;Zocn zW;}cvR*s2>1Z9SH0A4CCrD+5Uf%g{+zMv$`4_BgC7&0BM0!QZBKc&&`+hnPa{SD_c3{TS6kex- zFv9dC^&ANDW`e-@U;c@lq0a0_iW?vq%o!I zibI9OSg0$e3Q%I;Muu4hld|TQI_xPY?9vL-iPjYI14eDTol^$zzL`0tA6B+n}|p0&i4uvfUO!=Ie!5!l49z%5`BzYJE+oOtMy6YVpD`UC#d?}t6Z zrEY$5qDNtqzYn*9N&a3~Ifi_K$zRtGa=J($q3ef(k`6@G58I|(Kd3K^I&wQiKVO}3 zESjmD0hh|>t7Lj))^fZjnM%XKYH$@_x|Zk?5@Vv4Xnhv8gSpwo4lp$}Ouc4fJJ?fB z@THAOCql*ee3hW7zV$niZScOC`DH6u*~%|l2#M5diCES-vd6QQI05zwmvy+7&?B&k zACFtWBz`QcoH_AOEunp8)Dlg9>gU6r;Ziqi2|Ws%{JFRlO!8;J$}!{<6au=Ikkds1 z30+HcCLM^XC2mRgUB~?0@O(xs#m;i2~I6rfbE`T@q5 z@m`s!~vH972Y?K@-JZJ%qfTV z>~xSGf1EezaU?MkRib?*n|pS;Y5x~y(qz*953C$RJHcG8%KOM-piP<3XMQQu~(ZG2=}a+C>s!WWJTFI^_=E+oc6nJ~FEY@<}@ zg{fInNjK~#C-~Blq!VGHw%KY~Zr^Eq2=AGhT26$Ot<>^ROp?5e^s?FUC^4&W*n}iT;?86`=|qS$r-#%YR@dR_dE*IpqkU&D03oj>~ zoK(5+=X75_%pRx~>vgehR+&ykx4zW)Asn{Om}};Se-#0JsiDlyRmx@F_Zl}Q4KQ6a zTrVWXLebEo)*ikwwfqI9W=$=Bg8k(LU%HQUqUD23HWol-fi5KefLp*!Hot|Htz`3S zA(37ou|Q76rq>MaQ{L}gQcNO=ktiE&?((ck_c-jSW&&;plm2?Ja_00G>8W{`2-w*_ z0(OG^!@ct54kYnov7=xI+!kgOYzHgHL_vaTK^GiyN=YE03y$lOCNouV9GLFwjVUMf z1&c5{aq9M z#o&t4)N~(#u3xKEBB|wn$$sofi!;2MM-HD_u=P}AXCz!5IplXqeXn!KgF<2qJf zu(Fjpjua9p)|c|ZfP?P^WC=EVTYS%h{lVoMUXSUfd=B0>lk!Jl<;*FE)?+$I-{?>J zde|pi(&lp;J zJxjgyi_2Q}x6GH;N2aM(+0g8&6?zM`LZ!PfRC=0DS1G+@z#4vFGU}SMx~u&I`R+z; zAYaR`tmOy#l;ZP3aV!)QZL$&17}dq16Hv0s0Tau`MxmB3t6?uBop2d8yd#|vQtBj~ z2s?G!h?}xX0h8#DB+vP{8SBhXGup~?U}fc~u5z*7$dR-9m8)h7rSwVjB%W;|43<(PQTwa4%&RArbcD+bHuLL(O>n#e4KYn60( zKAUiAEPYA1qI7z?Peo_eX(p~0d)GR*zPOQW!h+cuiHriKP%Z>T)aqirFl-GI`rTzM z^VhxMg-&hPCk;3~rCldMjgL8hF2&~_vy9OjspwBIJ!@L}1MDtm0F>?}ooIbBS3Ep5 z24JV2-{J-^Q_rtqWh?dkQb?p%l5C)!hNw$c#k@g%(uwFbYf+y-5+hNS+SE4`)Sbhy z*{_G2!DRpD|2_5_=>-zTMPu;a$)EoYxZ@`kD|BB|p&Og?nw@mJI9MwVIj(xS$w}-` z>=@V%H-#Ak+rY{(*MEX?A(-psotKf~o{yAtd2w>mpwi_LU~dOZBVid~I2qqfwqSL?#rO``BV5Mek5J-B z--h?jB>h8JIdjsXk5HVnpZBNzEbJ97ZSy0PIO0#?7BGoF4lBnHPcX~tLP1Uo2_$r( za8lBNs6ye5lviBzS9^LRWy0G(h^8fHlrat;OIjuflOt1-qe$46hJoE)sesZ&!q!4! zEEEZy!H|s-;V77sHGLco`^bs9v_UQeF)!XHGe^_QFB>T7S~lz&_!UHrHObX@3>( zpGo`6uyPFT1hcv>4CGXhKtdM=TP7WdDh!TKckRXa-v0cWNMZ0a4FF3>&KMiT!a$fD znTQ;P!4pY2=)&MpAu%QjgJ8%;VK5_ya#B}}eo;P^B(UPiiMsS3a#VzeDhvcD)vGQH zy6|3^Nu(22wvx#DLL&9Tz`=JnvIM&hExx+v_AwZ$IwnNtLwr*P6Y`hbYbvt(g{fw22ZE^YGM6VrGZFY z@U{O>-I)i-Ra9+%fMh1gWFdhBB1jNL0!Y{tQ4mBnfe@5M)-ZH>dS<%Q(>-+eOcG?5 zO>6{VKu}Q>MR7q<6h#mO;RV5kMOHx(6j6Bb1yNkkuWnU!SJ!gW=c$^$cfS0Q8_49T zQ|DLroOA0|)rCi?bBNWCYP$fFt!3=bvjq(8Pt9)r`|N2YLz*f^5lx~J)~*G4ee4yI)VlWkx(Ie`}zG93*`eI{S|(!gZ}l&$cFi2>y; zu(B0U-oz!6OB8d&0wFi$W0*04&lpF-E}>GM*RsATmi6Iy^F-Dkgq2fgy@6T`D zIPbGyw@`U6;JmFa*agEGxCun&r^3oH%ssNbDi}m^@Q_ds8|(OXL_Tc%Fxi4(y~3FO zuyGf&9}7&*QP!b{jmTOpBRPtMJA4VKBH=bJ5nCiAmqVtq4jc8s^DrQJr>NP-KfoSx zGA{gz>1Z_M!$w3&HmV*rp1~U>#*W{@%2w=n(pN&o4l!neV#h5ZR07 zu?3fijTnmyuk?3yZGFc0DdUR^&$7*@%f}1Pu*=X*g@3S1y{A^r)+#x+GxbIGpV1Gs z-vCsfnJ;CFqy4#od@)xYUp~ILzM`$q8a`>eY_#!%OI8#!*_FeYQs1h4slU8xynbv4 z8p*B6u^mh+bK~_)2h@kyBXPbo*zCda9ciPaTy#ta8erbfXBp>uxdY-WGi=LJrEf*9 zTFn*v`q@1+mg{f&tNnw2W3djFof%$Z<;seDwUH=t^&VDvRq~=5SyouailTGImlY0?*AK|+2j%rpc|A;C z50}>?oM|rth^p4ugm52czNxU*AwJ5Bd;suHOsHL`ZTuIqdzxN z8yY|GzwB3i%3!g)VtiS>Cz~0GicI#$8I{Z`)yL7oE1P$9Ei3$$|IQB;*^_CpQha*M zzS_c^xWCvi?k}EU;<9p-C8I1LpNlHTxki0vJT0Ej%)uV#t*6Cvd51N4ooD}kVIfW6_K7O+9j;uDMw%WcBf z<1G^jUk59vPI!I&amC>LY&hqqVV_VrizO?%{Wk5V@b-zcpMaH9r#)*Z(|m9=P|sZv zd`r(}64=ZJ74`c3mTocL=G==nPUJidR!*JsbXg%AjQ0pEc*8P5B5*ez7v;=RAs1)KS;xCun& zH^a)QGoRHm;cL)-Ih^)OutTV{Ma9-)yv_Lqym2Du=V9g4IZv1K?gryU+2E>tQzp@w zs$5iTjTZ*eg{op(h&N2+y8u>BpRauNVenlV&i4S=8Pt1N@NK-avH0$XH%#QaH>{jG z-`?iiCxh^saKdA-JE(+b^YXiCx*emdc+*72Bd~JnjOQA!01eXDgp>@RxwCF7*6_^usf)vwR@VqNVekk&+w*+jDHF%PaekR$8fs( zgDbDsVR!g3uGx(Li8oDT{C8M6b;fgK*c0m#jC*;zaL(H>iOy8mVva;J-)6lP-aL`@ zTVUnXS0UKcavg34k^R?T z<j1(EzzSUGj_bF`(M2J+p)k?#t-gnF}!3SBebX8jJlc_QnbVC5Lr z9$U%OZZxqU$wNZzWL@ODm`d(sz0d2QU5^E_d>!oceKNJo=Cw5=Ic+!EN$^N@4zv1! zZI@}c+l|)G?Caz9X^UVT8(3HQjv%#xwdO0K@So@_A@QG@>}JH-+45-g`N~qcbW*NT z)&{{f6Ep}0+71HW15mi}P21ZIkgI*sr~z^nmsrbw#l#k{&(ZpBB$|6*ax$2z&CYkh z&T>Y8!graD2Bt0&jb^@`Xzsw9CnlQPU}Y=O+`=W2+pI8O9Eqa2%pm?ZW>Vlf_E%uX zP>FBMpCcTdu(|&QH-gChMOZm??hDn~B5Py+=7C`Ln=^@tc#^R1_Dwnan2y-|--sJR zcVzRN8=&C;J`u2R#j238{R50i0le0TS4R2~HCOcCwb!g2c%1bBi%8BvMmWICcdkI#tfeAHY4C_I2~`?A#3d#} zY0$&_Y}5v?!=&U*qiTbH!cKC+Evb!n}L_+Y8PzA#Mz5z-W2*)Q|Ah1*9qJuHJ`f7TW za2Y&WokNZAMgc#*u(9QV9aK3ZQ_2pNE2YeEZro8LT;e;bRE=;Emx!$ql1n4a4QJ+N zq#wYjtR(V1*iTN{g)cE3jY(bKaOT*I^c}ouVo3QGtZappZ}>{6kRrxUP)NBT#0qu- zj zEx!B0{%~gsn{Vr6q?_{l@V1GR_k@*Gr`$3b=^#BCPPzj7gi6|+jC9j3$F9EYXtfqSaWp>M+SS+ibc!}lc>_Fz zo#U@wXJVd`FA2^FTqI136>UkkBV? z*~Jvo*$Bu~@@(&h7LOJb(BjEC?g*bB@qKTi?AFG$BmQi_`hr#Ia%idevp$!IjXw!K z$@Dh+Z3LTl!Nja!vkUAfC-lOWOhBDo|pSGqZA`-Y4J&5P2_$l~dXch1 zKpmtH2`9Z2_6e1=IRWaXeE{A*k@kMDatv*ctgZ?JkqSH{RAF$BZ*Y=@!8yqm22)oT z%Y$pQ%HZShICT!P4z9)&HfyQKQ5t;AcSxzy;5;rd8A^j5-e;pWxE>~D<&NuMCplpk zu4FnI5V;ytppwn1;^1p|v&2C16N9 zf`^1E5YF};xUxWaQ?dm@Pc=VST9Mb6Vjc(&RcA~geAL_b#Y4ktEhjmOg#CSol`0bU z;S!UfNSH2rZIlVaFfA*I6ksI^~vE4Gz*D2`7Cz>=P#2>cDj`;LiOEnxbVpq_vdQORPFC&kS=dKT)P)O}j>bbyHE>X} zRW;S{X}ncp5V;&ywt~o|Tq3!mK~6O|`2L((5;)axFYFI0-`1%HH|4wWwuzMQgq2gL z+%nbRApNg!(yzfjp^`SI8r-yB#oH&+ei>Gdq3w~?Rbe1ffro@D3`TuBA`63Yufo9h zb7$TAiu!oR)JOHNZQW!PwK196PE8c)PEJ0>7iL zgakh|*|WpCOPNyi`O34$&lo>tyzs&sySfSk6GXnREqUMBC24fK5s~#}p+>|BTw*d* zh0{c*jk@roFe^Fe)tu5fu$P=SdSR65XhiD0d^5g;CEHb%;YaXxiCN@ySlP-Vr*Mhn zD#O`gF2>3Dd(4)=+VDHDN2rX&XYE_9w*j>tlxKiQX2(=x?kwpgy}MdB7C zXlQbdw0fpvr9#teEj2mH$3?6wf#u_-Tw*d53o{zsHp+#4VP5j?QRTw>U_UvL7j|Si z8k71g9$Xrh+i7G^yk%lg*&SB4g37zNL~;eg`Xc2vyk&5%Flz!!hBE9EDrYgtpxbZL zF5>MIY3E_()M;<1iiQ~Cp9?4c8Q3pW;u{%dL!%Ei^($~2h}18Gm1C%TWPMdQh!o)= zp$dnEz8#T;LoV6EVd_97w|YdIV0eo40EmCy8z*w!5>`%~bIXR=R@RrU+qF(t^s6z$du%xLqhRk) zp_@BrW56GQ8$bkqD6AX<-XqPcN4+&K%{K_{{$x7jxWZy+hYaHUM6$_t&$EtIn zb#RKIX||T09QDE{eFv7R7sk27WT+QrG`ek+47b3%@;w{e4!9JmKZk=Li*l*K*7H^+O z`)OD?b=oac3=NMN#5bx06W@?YOhl<@-`VCAL!%Ei^|`nWMC!9)gQ5SMdN8=%vwQ^9hRW-d(#akr?kr7zg3L?W?BDq3AE^Br0y@pv5 zSR`Bx`-952by=&M@>O`-M9Npf%BfRsS=QGl)H_IT68 z!16X&*$OOMbBW}N1^F3}rn?N%E0{Tf6+<8F6e{V~&ww;LVDml>H-O0dXjnOQ-YuU2 zX}Zi{eqlKCI_wxKbMrGG%}&_dKZ+YcO&%Bnl4+RX|Ml?T9QOvdI<@ z-IZMbsIf8T=d24@gmMnG`jKtdJPzhcxk{$EeY*`Z^5>RFW3}w$C>iecWuQuiySc<< zC>f@SP8$*B|6oQ|z3{)Vmz)$0i}wBv$(`$C=$A(E*mAnH(*Xy`uHmBBPZ&@6--CtAzwXkP_k83 zAbc5bl^8_62rFAbZ|4khjS%%#`kc( zq}2-Rj-gS?Iqd3#9jFx=<~OY8#%r0%Q9AtBmys$R{>>#OL+Q{Y*y;kKlGqX^DDN({ zWMK;?F%eHCbD56Dr@oMH$aaF1R;a>a5pD%B0Bs5@TLEYxmq@O#*i;-_;PRZo|4?RG zV4ZOY>>p8N;eqRnHTCvq4&x~%vbt%s7RVeK=0M-Er83O^Tw*e0nAxpe zH$u$_Ow39!!?3TM&g9gRy}EWc{C-i|K?ymexH8HAOs_|nfMlFKg}tNhaHHG}z; z%&Nd=+E2m0p)%jZNH4AZu<3siw}VK399E8@?~xi*b`e3uLqcVjeSAA2vr8%2Y1QuH zU}ktYqotK!vo2r*);Zb;X~p*_dug;5z8q=gF<%xctvt*nCPP}8COT~dm;b`7tc3D! z*h@~_g+DVLjfh;cEn&%a)fDMJ@OFv8&HItZ# z=M$T8>zeI2(r?9ECz5_MteiUOmNnZ>+DC`e{t)aH>K$#a*^VQA7;XWP_y=I+7~&pT zUKI)=EqF+%Lg7K*ASDZh&nH_b^yI7dN%oh+W7Rp(2y>jil|sX6EipMtg-d;hl`0i3 z<`R>kRG2P%ZPW@sglSoMH(!eDfR>i`1@rH>3<=e2b6;Qs( zC6X%^=7@KYZpwdT#$eUEMfvxzOQ@8^9JXe@{gnATym=z)-@wYLv)(|>F}QipUlYuG z9+Q}e>d?Nc#V50^F4)ZH;3g26&xDm@n0sVrrBD4a+C}o^c`5LWLU-}CPT?EqtR`nW>^LDva(4H_LCEN zA6@!pN5rFr`>WeZNp;*@%zJx{~Y!UmAH8@ZKDr1^?Pv}h}7?fm1C%TWPMdQ zh!o)=p$dnCd^;iwhdsSsc>8V+pU$eqYAsW$>F>JNKM4&`&aqZMu=cjD7d2mMZa;{;saAqfb#UE^Q-BkET^kwROGwXI0USxlY z{(kJ;{O?zb%SqyLvbdZoE=$?ZFCSk_I7^|$4{g^Tw*2gpY>sX6tRL5wL(9K`^tpVt zWAa0pN`G~zk}s_sCp?Gvc7nGO?S}1e8!XfgjT62K=G%{Ac`#oauXhdyYk)mw4wv)& zo$SU)g^#M^J2t8!{awcE{T*wdn#~k*{e6P>^3FBG{nSByeou66I91C7wZ`4uIoeT$ z!*09IbtBSmbYn%wVAqB!x$024$ZoxS=Nn<8m*0iCLchpS%L*s3+<4CTvO-2)SIBEt zUi;-WC$9tYIw-G0@|u^|g1oMj*P^@*%WFwq%knzHuerj>%%B7R%YGG3VSidyIFyO9B^3ujSYIEd+J zg;e7#pD32dnpnLHIu~!1_{et_tZY5m3RqOm;`N(#2mcapmdN&JuyX2bXR23-2H^Eh2`;X>m_%oaD{%)a+wD8}b(lq+ zNco?za_W?Oo3C&U$UB5X-mYViXY&H9X}ZmL8@y>E!j)EUofI!eAlH&8DRM|}+J z6>7j1TaL{h*u;;-Eg%v<99E7Y?y-tjEd&;;06iqsO3&k;yz zg?cIW1KbK?0Qw%RYz3h2aEas=9K{{^Z1aDCSr)ij<$2gYRQ_u{^4U2G{(##;90kw7 z%BhcnwH^6vkA#J%29JaVOkyG)E9^+n_Q+@FXxIR^hd3J6hm~VSgGWW7iV~4(JS0?6 za*6M-mPN__$!<@XUCFSco`<{oYNOeexr$bd90dwItz|h!6>@~{ z=u%b4pYg5L1Db ztq@c8l~5r@jH93sb4Z94Y?=0>$v*c?$(SFuxrucEtC5^TjIgE4_nakevNn1hQRPNo z4l1hLz$Id%%Hrh0N_W&{Bbq!3bF!kzzr7d}o}7-iH?79wspn6{^iwOni&8mE4r4;B6BruLCQmPPygtxDL|q z3@80|*eBFG+59}NoA!=)`$XDHVC5Lv9$8%#1|k)BNT_Fz>wSZheD?Tpvd%YKGp|UnVk{iSOMce=)??1uHF}yvpyDAVwLhz7K z1;VgzM`VGpFxdj3H#0Wa)i+Wu7kBE{%7mRx*F)0-yYpjU9uk*_#pO|Pd7NLIW37I4 z+fDw(%$i)K+V;2>@ncJvy$y4eDN^fm|h5%I3xkeCPc3tS7C{PwjgmhE{!U zwmdw-4l(H)$y73fmCVSHRD2s(oD6ltOyv%vcsLT~Cwtvf%-3?2Oi}jraM*j!aZuQc z>1e>};^|X$pfORoH~UFJ?t^&SYYjICHkFsb%F;X2i}`A;k9lZV`sX07lw372Pd=_U zZv%t-In18cl7c$g3;j*!d<1q56}ecMWA?xXe>!df5&S8zvdl9lH{Fvo@dfHIWOcI` z)W5^53#9%n*fUh>;w#v$UfATnfm=Z&|5aEyhP)~dsP|UAcg1M2n5*?g!9&X-xK=?8 z#I1dM^d$d>g(H$JHKq&<)OONpj8~W)*r;_5x%y!fTw`!UwPe+(E($6+{l(Y&Dhs_R zI82FIDwX7`iKxp)Oj&RSN=M!>DwAx$B(T!U3AnH>)6sayR}&nRY*mq2A8(ZyLuSFs zRt%ZJC6cQb-@Tb7*xhIGeJ|_}D&N*u6K=}y!P_QMemATfL)jy`N1<61zaltz zNT>wyC*Key6U1Fp*ui6Q(J6Ka`=8^=${X=4x}*LqdL}$lox`kS&!Ws+Ejl@}#c94{ zN@a_axkN0F1hYl+sdLAEBWHXGCS}ExFTkF1!Y+J*>1b4p2Tle}wyiS9=kT_PG37I` zvK3RV;1aR7oyY0fYhQ|OJZW02A7J(b=8s>%UZJvfJ!!g#--la3Bz_O9oH}vGlcq)e zzv0yX4SR-4J?=@`r+^Tq-2?PodaGxMcvakM`-kT2${kpvzK(EmHc?&V5Xx5MOmdQ+wCg-WV~%+=3WCUTbVm? z$|`~xl)uS36G-{%us@vXGnTTl-KKmk-Zqi)HL!B(l;>#K!~p&4aL|vzE}?=J-*45- zw^=`oH&0~!Agr7^>)EZz-9SD4BfP(mTT*0ZF%5Z{O29;H?u$ZwD)88!S7I}HROytKmO*uGM%V=x7c03DxVsQ?w`o3+$N4pvL z;m9;?bUMPt5@s&;bR@@(3K!e@N~pB4*jGZPjW>Bg_g=U$HP4pllr-$iCkXrDZLxz{ zgIn5e6ddF0e>Dn@dgx`Y<|R^UmT15P6>fE2qwTzS?XT$NaKz=9j>Zp)wb*8yuamxnG1ELF9e`tQ^DL zBj>BKK_m(f2~{?%@7obsHr$l#B=nT1K-4ORU$G8g@yR*RCVZbDH&n|@j$+{fU+=5A zgkNxp$xtkGM_o3u$7?Vht4??o_K_2C;aR4m@sRrjIVjnxT8r>9-YPM4yaX#-q2mQE zkz9!&_X#@qZg~!R_gQ?mU=motOy%3UPtZ+y5#BbD@}{tI>XciKFm#YUG@SGyuurI@ z%_9umw3p)T6KNj+E633G$mOaW5UIdJLX`ve`35Ih4&0jTEW-Ruf3(JWEZ5b?7GXQj zD*6OGZk>a!zG8xB6dIOChOhO|qLyO?KJGirRJrgmE-@L(g(kZe4;au z%!$8n71PnH2k{)@!YGYU#l&^E5yZgrHCWjSJYV4w$rTfu$RmE_of}X8X=WH!*<19V zg55)?PD+R=5g%jD}i8f$Xh2zpvslj=h!r z?4KpMx3af6dW=MN4l{%mG?#XDt*vdhJ^LJP`0t?q~!JcsDj)IMMIxkovt8KF1z*{Af{VJ@SI@#W4 zOf~TSHXQGhusf)D#ogO9-Ddna-ZYW%Bd~JnjC*);Gx*LrFZlMI!6YW)dBeVaXYkus z?tSg!g)+bqhcIu$e>v<fwMO-4exoP8ALyPr2%$~r?{w~-nRMxIz4PC_Vz%3vWzYSJSow(yzLyP*~ z!l}OkdxlCq?pQ+?`M=;+5Xrv?E60%cNdBsR5b450Le&o=z8#VELnhhXbv;Ma^6Z-| zYqW{ycYG9$QqI9ve}CI4zjhPPqtZGpDLG1ootVYg^O77ss#MsXORS|-=)}x(J=fMn z(gkg2p5@OiDf2Vq*g<%M?3)nsD~aP7IZ3*#a5U@YIqbi|InbrTJBgJ`3tZhWp2P;2 zO@YZY%exgm3%U=}(Z*<9gjH8B>=Nn(+zMh?T@EW-VO5a#h>0q!id)M=LWR}0`F2Ex z)%Pd6%y`36F2fF@tabH?(+SGOOf9Fy*e|gTVT0ElV<&o9ku+ShTN~Mq==%jVMmOqps@3q5G&X_!==fFo#v9buD<5yE{snv_MAUC<4$uKPh*0J*{zLiN8Fjh z`Vv_6t-~c^<4%GnDKyzd=;VS$HJ+&ImEH>VOTk4EO=BAst^%L#zR6q|NJMg5IH#6 zLS$n$`Jg@fboH%dOX6}x?HT9}cqBWAAz=~)dq)+`oU}Z*HB8s?oueGN&3CY=$Dmud zL~J>dTvmzzI(%S+qCda@t(5c(>@?>XC_KP)G(h!D#7YNeKkOLvTigy}40;k)wqnrZ zz7i@1iIEi)gKi43f;|islAYS_URthJ*|#~)9zSFJ6!~G?EkB0VP|ndd0ZXcj!Z>Zn zI%3Ke%;3OBoJCwBHl{2tbYfzAaXs61W?Q(R?ZmeDu_Z(7sGnS4^Tdh1=zmkbP6M_w z$`-ClZNj0l93r&`D~o;o`7z2$Xv}7Iq`z=R-vqn7SdJb<`7-Mcwa`#66^pWkTtPS8|v$rkE-Q?8ryQ#lBrJpQkHQK65cUO? zus9K1CR*u0HShR+yj>#Q@50Kd)159;qJj6%;duWDJA;Z>EN^b)a*OZp@rH?fe+Mh4 z&Uc?H^irF|13H2^$Q{Q4FvVu(zY@F=7p!NE* z`iYxQ!Q<39$m)l-pDN0%$yKWD=jZs3Es5;ZCI}q!u}}C8BK3~vQ7*BT`Pjr3*-m9W zHe$#+7X(*@|AAfP#9Mfg>1a6W)A$>m2$Q@s)uY|N@J5MY<26{>3LCF-iR511^@?Mq zY`ROr>2Av;CZguI>584_P19}0i}9w3jJJf9Q)fI!9T{bFJ~o{5QLsy>cd__rvu3`{ z`Ut#vBI`q8b5cUhf>}YbM{dsu;TIX(xTxB3TUT^>U-*?b5{d|e7 zTsW>{P8!IwySl$~^2Ktd#?~^d>g;_tz=PBAo$E#=w|bwi%QjzOr@G1SkqU_m8xattRidYiodSYB_J*E{6(C-Qoyyxt|R|0Az=%j-Sz`crwmS6=Uv z*PqGj&*k+O^7>18y)eUZ!ZzX@$3J0ZYmOsn!rd8G zI~jC$2&cPU$LNZ4P$R2tvfJRT63K1_D^CWp`I13)c{tf)U{5%wjSBXC+aSv(0;KcQ zdxj(NR*7T}hm}(&+uNMXFz}uqj`v*H9aOyXeCp;rjK%mYylEoiGhpS^8Fxo>Ne12< z!|~n#dxDBr+`W7T%p!X|-YSvob+B^kWM?#H@eI1phSPl-_6C)%sHqy3+wu7+yk#Qc zCt&5&3D42yPz}s;FAOf7XETY;l+NNEp=Q3#x)*Pr$a)&AoI307Xd2rGB1F0e59M+#%Q*RJdZHe&fxD#W#mHOys))R!*I7 zcl7qgfO~m3+)H6kP~nO@m%nqe$X<-MN+f$BteiU8Y2v+^!S>E@wztE+pt2PksO0-T zi|(y>yF|J-!^)}Coyy)>8fae*NBa`&2r62!dNO*^YH@u5ZkYt5!vP-vdxClci@eL%7+81k zet4@yvU|hIsgvy)h}KCMXxD_J9fMs#MJv9_#Lc$v+A7{Gk?jbqoI2YXjU_4u-fP0~ zUJZMLidW29H7vIYUxl|!Bzz^ToI2qizCg&p`(QZUU&5}S;uUwVSl47l=AYrs650L~ zR!*Jmbh$RmpxgC{;JWH{*cnv1VlJbxsLbN~PrP9w-@n7ksq^jO3*!vB+lABJhDmg$ zY8LmdSkGs%-3o7($o4I;a_Vfmqcw>J+GE1e9tnGbdgF?EnXja@$R3WjN+kP1SUGjF z)5K~}gYCKDY|nyyL1ioEspKkFi|!eCyF|LD!pf=B?T%LB8fk5JSoiQd z@P>(ecY>8u=i43ay)fVog~QFko}j`NxtH%4vB<8#TP2e1gOyV!JJ;CtVnDt$9P-7m zQ>c(PelUI`1C7^~j)ndpPA=VOLNoiM+gIfksqu_x-}6me>XhlDyg%E87 zGPQiQmd|GN@8>MJ1bq;24zLM0Ii=cSp|%OmadOJG%xdh}Lk=T#a>`;Z5sRQxpR{Oy zphk-y+Ma6C^0Q0WMjF1@nX)!Z7Srm@;#vdlHhs)~`^7Esq&+?+=IjbJ!77xMD3gGuq~QFWxAT>)o(&>RhK~ zdBtd;{ZBaBf5E<>q7`q*gxxmX*YI|UbYF#)CkI{YY>92hgQN0dCV@So;&ff7OKgd^ zOQgF6teiUC-sY2%ar+(>4)_Sz9aO;L{b$p3`wl)7Z<@&X5Lh{N#?!=ussZ@yaKLB6 zzMujY@mW4#O9!g+VNS!_CDJ_^R!*O;m?SXhemk7*H(_63bmioRMfdA?yF|Lz!pf=B zoh~P647|Sy$NOv88C1Mt?LuQ_$>RGM-Y}8x!?1Gde0#Z@qS-Nn@XSkt3#{o(qB8}S zTz?eJ9rB4ii*YyJG?DRouyX2*qZNc~a?$|&u5iG+z`mf~!p#+g(WI(HcW1m^BHbNe z<<#j$5jvU}Ht-IFi*K?N-K zLN+Y7@8ApYmWhPVhm~Updn`Us>lehkYYz#veql@BsT#R{A(Qa>1^!B6q+HC@^e?|W z0FP7WAgdqK_Gs%O^dY!bd$rdlj@1mm@EufYHN$;eVlAr~68j+Btd^b|G38a5mArZS z*+&NpFR*nig_mJhIdK=BW;z;{x;Xlx#dtfcyo5JS3@b0d%2rr;o=e289P(H=^vvcl zOO5!7q7B4X)><59(B9&*;1YiklbDDS-=@8QFJHB~U^CwoH-X4}A*`G_^NrLO*W$S! z63%@o>>BD_{szw7*$tch0k|1N_WQxgG3-5R098haq~Rf<%7}Y>1D7l#mLyw7%+K^^ zMr!%7Tvs1k1lGmA=2I^2+&_Nyc(kHYWSEb`!`C_X2rG`Tf}&x0WO&1FErU4~w8L=*{im2=flFzgfZao-zgbJc;pmE;d>+M3A&!Ax!OE$Rfki4~ zJDg{XgWgXDkArDUVj>DpI|^)J6d;c7*kfTTZVquQtP3m0j0KM>LKPw+$#_VpLgZ}U zK`jfBuk<9kA7lFd@+)~&t@t<)9=gu>Q$MinY(~59*ftIttG4}|{rJ85dYdoXq~8 zJ9Y+HgPTLlAY-tyl|hmo3sc$MVi5m2>qQ{(Yhgz?V|T$OE>`MBx43kjdQ!LsZ}4k>QSz#ice&G4+&NA?d97MS@Hcb z*@|!GVbLc}bDL)>mCPEg=-c>mH1;?LSpDF(l|{Rvk00ld>k}qwS;sNCG@qG`JtN71 zr0TwTTq5zhuhiC2t&V70`nCS>l6}-Q2wzYdKXSCVLPC6Srzk{80 zG}u=w_pwSlpUqYK#xliGcFC~9yE>E^(RLW_&c;|&uf9iK_mI~;`4z5Pw`cz>$(@1o z9Rte9afdLI0&AD0yjS7X>Q+ogiyLy*)6oe#=N*6>LCksk!OB+7OPc$}%w>*IZ=gS! zbu1A58rV0^>{GDOZ^Ea#-2JfWkKuL@=~rRp)alP}kN(Ivky_xnGSN zLF9fFteiUc9UU%PTcR_1ovECKI>7k2BU{yYKJcuPYb_b+W)f~s`Fqb-!_&;Ig)QR`TvECt^^>!U& zEf&|cnr>0v25+25c`H~shO)yO23(76l=F;n@Iv@Fcpi2UbsWSlwo%=&$HE_Q zbBJT%8CW@HEO=BAst^%L#zR6CA_Kl1k%h>f$*%gH-d`z?lt*hu@v-fv&=BSvcZ6jZ z*h*hzt(MaqCC6gc1MJ~U4k%S}Y{?}iL&?$G?6(nOmcg84FIAy&5bP)?>cYF3js~SJ z_KG)6x5LT%@urF4WM5d>3McR563LYpbH!TTrn?N%A7ur%*|Y6Yq@<*t|z^ z1BkpUuyX3W=c{$Qam>FG&iqTTW2nr!Mi9Aw4pxrg?ve9V*&q^yhlDB{ zw(#wUEE}GglIZ+JqiirX2tCJofdwh&XzNtjz^v6Wl%s5T)|Z1S8=mG8lc{Xj**v0R z#-~wER@ui% zob=mar%*{d$_5wj9dQGQyqCbrsq?nW28(%rIP(nb7%KCavcbjuc-#mg_hVt@815c9 zUzH6aQFutGvf(M;bS2A%|0es|;|+tkQm(?zDe3CVy`0Z26L1ZSNRS&RaRWdC1T5pN$*4N?7#e8oj9Picv&Ic~!(A;zLxU}Y;7-Q+8wVv!hKL9yslAy%+;qgNz5 z^VzdMk45??pQe5WEsUK5uKxbEfv4Sib1^iFZ68?HWfo&~xEwwzviz5Wi;XOu`P@_e z$hIz$E@->RT>jjWO0Iu2n;Xv*R-U;o`|Q`U!q&_;=dk~-vHw2szwB3Gl>KR0VT}L2 zivQGT;T3k4&$7Z_`S1K7rA@g@lMATRgyBZ`+yx$rR`}c*9vjZlT-cE5=;2eG5-A;S z1nN9rRY!?<5kfpLoyL_ zKF79=2Ux8Zodwf0SR1{L`mEwRu2d8)bBVP?(Zr?%X18|Th$@%Ew5+IdDeNnER5^?3 zXk6-Zc~RDCy*>GJG2S{cwp<7+Td}3iC6db=8;VyhtsXOY-^nb(?oNyM?XX{{yf@;! z?LOGlZ^dmOQolJ~`O>4i*6E6Vu}_FTygR=`=Zm zsIAW5@k%soIS1SX9QIOe+Nb3zM-8!r*&O&Jwk?-fOAXP9!(Iq0gqu!i`z+S{$t9zu zN@grqj5ea?R<}Hq9l`qO@lf`D;hMyXs5zSbMpj+Hj0w!DeY`*6+e+WdbhMFKpU1PR zX1*OskHecMM$)5UWh;^j)*fL{MN)Amc}S>8y4bfPGLn8P*+Ue1Sqb3WNbq^q4{Wfy zW9iWyctDfSliC1wgx1gcqEL@#pXL&439X4mmYGqlCOU3}m7l<*tYZDgu&11`3*TZo z8kPE-=EIqUCfinX!pc@m`97CO?$K{y%09c2`=g{}=WOmGyk% z!7PsWpK%L_#Qz8@r%rr<{uJY+zS(Dksc*t0uriZMeIcjr>V;iDY>Zn$BtIWkjv?=n z{8jxR(uIeFsvj=*9m2AH_(8Ju!`w_Im+4~VdM#IRd`x6HJaV1GuHHAnRYYX9X0(>I z9JRzTzT->P5=U~0*jggNBxCm8C@4;cp;<}h6xdx(?u8=L(a_XIk}-Q=hnkac3y7g+ z6|8K9nwqbK3N>Oh1%;Z!L#$x0-v6BJ+oUN`Zq(*`Ze<<7sv+kns~S< zx!KqIDx&;=OH6`@(jE2Kh$6p(;aE}RH?WJGd<#EkIvS4pbY8S@PO???K=Nz6Rbu3L z3|6)x$HTr7DsqTX6BIeV7h(mA9B-MH=)QxV!^)MKIa&Os&rMA52w${QmDXuP)DbZ@ zV-{mIyc|9%Vr;@CVk1Up7VRvqXWIr?>4Ww&#llxh@};p{rPeo+s|=6U#8Obg{tvX3 zVs3TxPg+mw-j{hWI{k1zeuYmv+*JTbY}#l;+fhcGKAc&EB~dF*e~@=7d{%k~rlZ{i zb@8s(?t@+LEyHafM(u-OWh-hYO?|o?xCZJoSWf~`p9(v}osw~7ui06G#r~&Z@F0q#CEU~ho`L@a0CN}3P^e(l^g_%qOt7Dxvdf{KpT^beRZIf$v z*mS&YVjAg&m8~?g9+yaPB2a(ZWU=0z*@H!7i}kx;uTWXL-Zr_2?}A%EB)&7OoH}vG z+a`;8KAidh>=`QcxVKF%@>$#pBKZ?w~+_%2w#Ol}jX7Cd?FNf`jjC%#y$Y;Z@ilRK8;Ak+R*M zGkO_sn@IU3SUGjd>#HRk4$@nGKA7|tOkyI+e)~?|z*vIfzNZ)A?GtHl3MU` z91y9%Lqe4UpYt8IvK-jYs~qs1L7K8GSJkV5et48RgGqhg;3=e1WSW+59Qi-vJ8o3| zKi*eDK|j`4LPCEk*}WfX4rwQS4(Xx^g5Rk*BxY{A0davZ3N;|k=Ms~lAZ*Sd?PMM# z_8pj%jF;++k8i=Aa^C5M&oLd1iZO@8pvksXarh0qZDJz%Dy(cJk}q?KGQkDEhsk?+B+ zAd;T~E60%csQ6UTDAI+8gsLCT^&P^pe)vtY^~3C?`4Zcmxp}5Im|IcFXs@A`!o$`X zY3hdr*N;VRWM9KbEk!vh$pd@`lPVnc;}UBr96GU!ba8#4t*dlbv|S;j|M-$jf1%7) zr;pc*9d2kvrj{Mb_4l!3@pF}N!jdQ5P_$p!a*5TGgrn-TfrPfwpU(^q6f?|yD?04H z{&E71T-M!WtRst5x!m@5-eNJB+K-W1O|fKG<6wuh%-e-vi8cAe)jutc{mr{&m$dfG+)Zs@|j}(q+DNZG`ljor}G_da^+Bl zjhntorri1Xv9eMwjn{`d-6PgYPB^dAO%+G`1~S=NnQ`iLRAfz6%f+!==Wn>-%u4nd z^0EHDQn}Pu$_?_5Q+9qJ4oBl~bzg4vNavk7T<*`Y?Op7S?(_&59xc}LqN(8yk9*OS z>RPAUW1lOHf>kq8bvnoK;U6WrOlfemm`UKCi*AB}VxA4il^teR%az!oZ`Qd?o<+z` zmyNZ`XerCiHtvsZ^UkNzTCGps+_iF_=;?Sp*J+Q6{F#$SY%X3_7-0_^(JJ~A<+UQO zRe7z+>!`er$?Gb4T`jL`#6d3n!KJauV={XnezG(c|A*B&z9G7 z&6Jx^XgDzE3u>&N&N-W8B#|BP*mNo;xFboo?dysrNaGb3=W?pwSk;adTYWjfkJ zZ(XbpZ#>S~ld^cj#EF`(!phb}P11blXb+58f(~>=alzb+R)Wvo8kS zcZbt`C+rRC4Lpml#b{V=-@9+eTP70T5mru}@KpBPW568@huaT3f(mz zqj-)^*xcWT8$sm0C#;-0_YJI9dj|EGX!IfAKljvk6)->H_JOyu>$ao!CId#VC>uXdE(C-Wf{dU+V)O%T+ z_n_Nv)7}wppGbQNteie=eTA?=yFZ+E2KEU?Tesh)eLUVik@m5$a_Y3_nd`F+-k%8P z{c+eURNmq}wb=uk_{VSyh{Vr>l~X4^qp?2TApN6o(m#Z~K_x9}vWDe0;qT)u6A6D8 zR!*Jp?ACn=2IW78Q~o3D5h`WzefC!CZPLHTTPKqK9ju%>={ee-5CiqbUkdh_IAUHZ z)5M-)19c@Fbs6>r6?HFvnI-o^O9!gAl|{T=BHcW!97EURloNGOiZ~v_LqZ*tvbXQ% z5_wR{D_*DTE%rTLZ@qy5{dB$S;nC?FTJ=NQZ#T@W$yKWD53Armwj{Ds+biZcAmuvW zL8J~y`5Kp4%K<5gZQq;9dTd0FhhR4HCQ(PK-4DCSiMMbY)6sC$#kPS6lNC08jyFmS z8~4J>R@k_kOC+}~vsWBeYtvolE5SwIe_(e|>53QNP19}0|H7LlGJXwKPMz@_bs6Ncu1%+;48j^R+a&OO|}e} z-d`z?utTlb>3FSQ>=}lKsxzJtKH67=iUDP_-hjrVeinma97}g#+T$KSL33y1TGGKGxj>s}#$7IWZnFnV|`4M(R zWG&Cmn{Ayy_&w_g7L}Yst$uLZw+Zb&_dMKcqLzCcrNHle{jW-a-*AbwlmeYOX}$d^ zkFAbq`|_prhnHlkeO0!4zCXu~uxx)mXX`&j+o_hbd439RUp1Ry=W}+nSG8g;Q?2#w z$aP~gJL{~W z1a8J58OD}(&|Uc*I*WsEY0R?EKv2HP;6JX0%VW9B>O9Mp$9K?KBN;Y$JDI*3+cXCF zZPNZ59sUk$wA5HwT<#moWhtLV2yb$#{#zgZV|uidXN7uSwp^;_vZJ+p^bML$ zR#amN6bWOZNND*w#PqLl@^C6M5ZKUf(FMo5|}UdEH!I-z2YF$m^Ts^)2$crM$jXUbm9h#qzqf zylx|}+sfdpWFZO=Blbd0wWf&)FHQF9~OT5$qKz zYq1yA?14@E0^9;3@$+Hj)QQi`H0MnX*0+VTz6JINm9;npM%ivtz6o!eNcl!sdGb)U zKK}e-IORXV{_vyh`sDL-c-utE&%(-+hw{$mH)h`Owcs4R5tHa>j+SwVz3-5YR7*!T z#M>rPo(n6dPI;dB#>R--`-ijM2lfi}jutuE?14>uFWdqm@jYPW)QQh-eQRdWu7%S+ z5%vg`wm40o)q0zB32&W9dL^u!I_YWIq3Erp!T9sxj6Vzeg34IzG!}N-bU%%^OQd@_ zteiUC+1Zx&#RlV_hcmtx_6U`+ypLO~w@KfPw@xH|C#;-0=>=@k&w5{P5dT*=@z-F_ zP>C<(TR>dBu*tuQTR|lMGOV0B`DtR^gu#08*MsZtEty1T>TeOj<$4e4KvjEhfwxPf zy9idE40NLvD+b*o!s#9g`+|BWH|X+}HWuAO@OFuGm%_^F(-mul47z8A(>)FL1x8n{ zakA*1jJHdqy9QQHo$efMm6iedo8geZ4!eX3SuDrb%(t`fwRrPH*4Mzwsk5FgUm_cn ze;rQwG1wVY%Hm6ajkn*{z5FoVFp=+ruyX2rr->Dc2Hxr42(GfanM5b6EV;7MqPrg6 zE|G2*tUNjBj+%4WyM)u-8TJMB<`q?zT+?dN-2rcxNOwC}Id!_-(Rw`N&dr9iJpuLv zm96;h7hgqakzJ0rN+f#>teiU8-sWm(1MfxQcrSq6LB%UJwKh$+E35PIriqNtg_Toh zJWVV`Hvr!f4)`Y67gWF^Hp?aS)*XB!-Y${u4Y2ZLpzE05_)|FD=U`u;blvkC&*JS8 z={^lBr%rcDeh1^e-RQdDig`mO(V2?5htEN?EhE-FI~Q-0NOd->oI2Is=B5_|?mppg z_k!I)y=_I-ZJKT~-UDx%$aptcId#VDD_&y9k%9QcaKt6p8&t%NuXxG5Qr2C(5^tGE zcnDTbo$yq)+slCa*>Jd@h8;nLD~<_{wy0TLFUK1ta=jE*PMz!Q#@08-Q}4aufbWJq zLIo_|`L|kclfDygok;q2SUGjl8#R2TZE`g3>DR)MzY4pCid=k4)!7Z3{mZx+MD{Pi z%Bizozu`2ougrkH@Ao?XR2)ReLmfOoAx5SeIo5mVdd0mH}7<9zpnxP&~WI7 zz^?JT)3t8c?3dzZ5ZNC9E2qwW{Sj^BwE_LKaOfw)KA}RFce-Z3O?wUAK9TkqteiUS z9=`S6fc*7v$k)QIphBL(Cr!kTed#{6mg^e4St8r3Vdd1>ZeX1`U~qmcob$u5Td15D zaL!g2?ECpa+yo-?U&6|%Gw+U$WiT*ze=E2;TaQU}raBYv9{F(<*4^BNw@M`Y`u~4q z=NboY7?5`khr9#s?rHf_EmvWOT8*Dq@2=zqMl1Po$0l`g-oDWR`%c~tH-N}{8(2B@ zJGqCSd16pLA)NAZ*cH@>Ei$t>s>QmOkHMQIvON-3PMz&cb=Zsn_=0f2=fnP>0v3DH zmF@N&d@kNLk@8uva_W?On@9Z^kZ%fyd?V}*DrE8As%g5-_y)XbBID~}<-d{&eYZ$@kc1T4>tAL zxD7<=y|8lX)TfDa#thPXg_GU`_62rN%k$Bs1J$g^Zg{&yy1T;4lYy>d1z0JZ?n>Af zC|&moupzu%BHbLU97EUR8x!g?72*R09un#^6~FfVOoIGOMLF5eRCF)pADPrXQ1K0T zfI3H4egC#cg0}lWh4=zy+pko8)pziyPg8uEOC7TWglLcaM9@7c}GpOrQ&4;s2q$6|_ zEu9-)k?R)+SWh%S_6hRw`e73ckcsX@Ib|NZsRwhVT!n>;zFfXk9UbmtUn~(Hl_H!` zjkZ*4jZb|m*?fDhIPreU^Luily`Sey51(MBkt+K_$Pp7Q8@Mtx_(-j`7#-%89=nBjd;G$4#(fD!KmAY_4xr zzSLh{HStDQI&!y1s_br`=xkFdG12zlg2AG7wV01`W5+yPt+5>0ayb3{>=Egl@nwYv zm%~|sJuQVuaC>?6Y~0Nd3{n|pOV+#$m?(A^=WzioxDCHug}Ws z@8$Im^7@>-{!w0^m)AeZ>!0QI1$li@UjJ8KUy|3q$m{>f>&x=`3ctdK&Hse`v(XjF zeI0kcru(^-nMi9AI zVdY84-8#Aa+HmgIz>W#z&T4k+e!m(wg2??USUGj>^Vk!DHmztR_lLuwKL~q;3SE9? z#OQ%d{Fk@|MB+b#l~X4^Q%&w0tk?Taa3R;lBsx>b$q`VcZJb5Tv$$EJ>H0V|j+(Hm;%I<-LlV!Tlz*9&3g z)VX#u7wu$#y)zu_?XV}PVCC`E(K;`S?5%jKM6x%-%BhomL)@x0gZ9hev|oa~L#6#j zzNsm$C-w+<0k?!W0-lGJQy&2v59YLWOL8@#!GF>Cp!jv0wn9K z#;SO$M6x5Wa_VGz_*!S+sfzq`w9$r%rmlW3Qe8{ONGuPr;6%0vG#i9G$Sa zKY<%T8uXWbp`{522{g(J?vo}eNYcQM}uZQaEy z@K%Xr`(WkN$@cI)-3HoA!_i(0yMl^Ves+Kj$dY~6UWhkKWLt-oQ)fGsZLBxQ-X2c& zR@f0#vSM9GbQ*wl&)$qTO62+jSUGjB>+5G57>HjANBjcp6DnfyVHn+hoA&c~`$XD* zfR$6H-5s4YVKCnG`@t3TLMGA43YwpfVco|I@K%XrH-MF6$aO1XN*TpKEs+Gx~cFiyReowjQfk{*x%P@6w8Cv{NQjo->)5$d8{!+m+Z;Kb`Y1H z#O3YcvJ1aBV@N&Q_TZgNmYwOy&-|)x-|ooFmY-eHVz_pu#?Vc|q4nwPI~uu4u9VG< z7hYg}EgWTxvG#qEN^`U2;Stt$AN%-SX0VbO8Ip=eaK%_$i(`3t;Cg2B7{Hw4Oyv$E z*qjcNl)dgL=Gie`?2{zId#AwObB>5Yf$3<#>SAtPb)b<^itHyv+b7{|uQl#eo64(T z<;LhL=A)ylYPn(QpBh(6j`+O2DwWKdmfOJK{!M02b%hE<)X`qJpy`~i!_J{17hB`a z9@yZo#VsI$zXnzo;0s@Bx+iJk3-&ITYMDGcFfpF`ubFj$)E|RAL#4iuzY%x!!Y2PP zZUvG2gRpW8c~vJ+@2z_8iqT?`Egg-5hn7Qdt(Jj!sBe$De-KrXg%5WpT60XP=8L0R zwXrF)0~@u@AxAicuBC#2stsih1{JUAy?(21%k+wn4&GgilRH}vXN8v zggMDuN9B~=VIMhB7q(?O8jre|G~}RUtBTCK@K%Y@WEWW3iY7aAiR3DWnIi8x_!gNZ z*nMd6&BOkn@)c#Gvfa)Z19;m+%2`-Bb;|3jJnJBRML6lpV4qM)i)kj^ew+3sc>6@! z7s1Lgv^}zVl#<0mk4Oa`5~@Poz_%l^FgUy?(ZXQS%1pkRt913P$W^PkVpm^(uEM_e z(BIWK2KManXof?$=TX)-ELJ&(U%lLRh9b*O@T%p@rM3k_;|G_Be#mY#deP{FmbDyJ z#IJmzsVd?DE-@MAB{o}|D~#&mUocTC`@9DG&N(Ow&oLd1Q~gc+*=23Lu_M&0xHZHG z^)jq%MW~m!L~>QfVinKV=0#&nEWQc7%dIi7C6j2KDsTU=MjaE|8qc$9>z6$`w!rNo zj*dmJa?I%PNIoimi6G=5q4L)+e22NrU;j#WGMzox4wkeB+d+8vI>%mpZ)cJ!=7w{n z+A5YaovBIv^%8EF7SJ4tr{8zjsKk@u5|bhEu*cUy^Y!`pFbyl1oD2KN3A8ZAbTl5# z$5%FjWUK1&^(?$qVyHL+R<=ULsazttMACeGwfNr1EWt`bi|-AvKd5~5$5$8S>+!aU zl&^!8Q>UywzFMT84JZ9H>=Pq#|Y4B@b9;!5Wj7v<0(qKlT+eUq`?#(DKdH1MS+y90An=Xk1Dp8gaSMpVKMO0TPP}CopYoYO{h@H`_rso{Qa5+; zsb1LRe~w#0B!4fg97Eot3Q&cFNEaRws*qUb+Ywnv{4Ci?i>bBBXeq1J5F7jmjZw~_ zR^P`tQ=wKdI_D?UUoR1sY3ayOB&^S@#ma0sa8!{ni%U#~BB6)(*@zyyz&vCR)vJu1 zVJA6}7PeqI8j!j;|4E>d&8o!?JK)U{!^L*6vK212;S$M}2D8KiyNhs^nG#qPoB%t7 zN?4qG-eSC+7MA0U6FDCPE2qwRu9{ za=0o3L_+Y8P-Vaj-;T&K;GksJIU0;`azq(!=-I@arC;Q6E^q#a3hG^_lA{YxO?PyRVIi;;US^Qgu8qLmMjwDiF@}?T9Q8-kj{~gq~7=G>foWD-rgGhpIEC)Q@RfA~aSsI$tfc z)DmjxW5Zr88#&5@ec+)g1BfaQ_Tmz;UHA~w(TLP% z@-UlImQSN96r%R*{qFUM?|^CmxqcdS96I;5K(5ez%ruBeK0O7s@wy6%1ONN zeWs&Psf(Jl#dv!X<1V~$Vr01kR<-u&?PGTI9Y=OW}fQXjCYBj?Duufoc$vMzEd;$bFTgyt0GT|q_JXD$RV=gfn$^?D_ zMAU7gQuq_h%gQ6q!G3ZgFFee2G$t)4KyYBPWmPOZi?>V+Do?}8R#170OC(n;w44Cp z;Jnf8=zVE%-jGRPWiyqtc>;u+_FTMuBJJ6*a_Y2=6CfPK_X#Jy7wi`*an}hDZt8pB zHV~=r1}n!<_sIIHa1bfNLqZh}Kk^M$vT!&z*sBM+br4j0{#jeYSfm#xBR0X>;qp=4kIgV6S@GdSf z8LEQW9FFX|Q5>v*=~$_w5B8N4aA6tK(YVy-^0g7I*4wW!kHcFh#*(99Wh<6^h)X0_ zBW&2Ro6*htLS|85sZfXgLgg(UG3`Fs)IW;bK%{;SteiUajn$@w)_cXc({BzZ{{z@J zRPvh`CqK3J!>0c|+zulB@4(72^gWWlsvkt^@Q_gT!!EuZk@dr|$-bHBuAVrWspy5n zzgQQrP~{wL^?d^i2Wgs?nj9s=YrY;=CBv&+VltEr(?q9@5VF}%P$E{bunCjE3M(hn z!VIRP5vlj`5F%m8cGXnE#(2BLkTD-twnD}{E|FZBFk7TpC*y;dE!bUWF@8Vn5h`O* z5Vl%xCx?CU)`_Iw2P>yedY&o`oU~Vm(;kJrLZvN^?J|2{6R+SF5Q&#zz~ZBJuzH|3|##6iDSWgZkUUsqcvUd|JL# z%T-F5;`n*>?n-W8w2~ip+~MXakg69p`6aj&MDp9h$}#u4M-`w736U;5Bvc`Bo$nBq zg~Sob77|k{< zeQ*ivBq!3snM_9m(%AUG2a#-6%_&@jH%kl`7r@F^xHz9nBv%?VHa(nObMJ) zxD9p)m2m6w1aV7RoNvJ!Cvv_CR!*IB%kl)*-Taqu)-S?Np|UoYC&cjn6K(*J_j9mv z3~!GduF3$B5IiJQ8Bp-;h%5s>pX~C48I??_zdYR4SJRJy-2N^!GC7A@{W#|~ zw#T1}q~NFs;AsAMPA$&iP@esa<- z?7?(2CXJIJ`5=pk$);7QuoQ2a7*Y;^m93DnpRa@pDPsHtg_O63Siv@1|0CHaiyn3y zOg@{dYR?v*V12+U9p?z^$bm2od$p14h$bKR<)EU;$GF5Kh$hozr;S*01B}UvCD+4V za*{4w#dI_x@<5mdEh~~-hc`@&BwvG-tw{0}UkMdS#MlXnB>?-V!jG7ahNC`> z$CU_^Y*bBx+=n+x3?TQw%2oimi%TR|MD&W}Yt#KNGbFHX_&4khDqZmjl&0z9qnCDd zt^BAbAGi%f*nfkSQ-?iA)eJW9x7{5Kd}}5#5f2FV?L5yY6P!2pTk+#8yk*}y|WRR-7i4q90m+>>x+P|cULna!2(Aa#b6`um)-5NexdyIq`- zU0T9%~6_}{{e#mZngY*gZZ6PK6_iJz@$&J>Nze;`al zc2H&h{b3(DffjaQIvS7qbpEKoLCIEC>fZ-%l^81af|adMu?Lq(F7?k8&(99NtC%H$ zxxWVcgUWXf=c{bD3%nEYwuzKWuyX2@*H_Q{4$@x?C;fTYCsfkna8KQSoAzh%_KCDV z4J*gc_Q>5T{fkuKA)(U$X1*Pf>A#q4`kz|m2YR;V|7Tbau!!UwWF0)_QP`}dB1dWP zTVE2YGdT#v5v>cY zeP1kcleJOnh$8QUhpHUyDvIpMC1RsUf(w_rqb?g!WC-SDMUforBPZ&@;Y>&4As;X} zC@YApz*{8-kv>>i8mEHDaaXcg^FdU?B4<~&q>=PHyz{#Vi&EYq`i#8~n!?g{lqy#U&;~Z7`$J zZKFPT3rxz&A8%q36Y-R>KGV^d$ZyXyEVm~tHp5#c#*XusGS8VT0jZv8!)YE*^cM z)GGPa+T6k|@W^!zyLx{Ist0DfG`(TDma-gW#7(}#OqCHga*4@MMnvrN{u@!}w=g@a zo_G>=m=k~DKBl9=sW0F!ysR$RLFaMY1Y*#61Xi|!&O=-xxx!+hctdEp%^*MPzTgUD z29ubGO4263Y0Illt0Ol59^4Qj|0%F?>iplR-Wyu3GseKX!^gloVFyv~{>}LqSW9Q@ zaqxEB7~(kC5mt^F2OgD!Dn3MF@sLo(#|^##O%@-0$rc|yBjw_nF=I{C8hF?`$6QBF zd1%DaC#a*ylsH8<1X?4L)A9vs;5SiZwE5|VR zi2W*kh=AcCq0+~QZ%1VM_(HPjV@9<+P^;SKm{0o|I$oWFt%K*7w-~O)Ek`Pu$~uFU z;c{@PRI)CYm<*|8rs}wnO}2%Z$!@9zHj80TIk6WuVmcZXd5*cV-3~5W;%yUy%NDS* z6cg}nRn{pe*X-UaZD*V`Y_^49hM_ghulnOH%OpGw{98AS36rP3s z3+v=T-^^kyLpiF3Q+!92 zsv1t>60uc7aw(;8zIk@Uh%HycsI02tD%ej>+Jy_5j>bek-<%PXO{?kZEAgg@A>~uB zvK3N3=_{c^iWomZA!SvF6>JaBmy>i>_rFAtET zs=6N_dqN;#4g0>EkjRe6zVG`^+nMRfbkoy4cJ~Yk2pRAe$(n@&iE-1Vu$r zK2bnW1VIoCf~h-*;cVEri^ImsVhd;i28aZ|EJ*UsT_3G8DeLe3vLg7WU zYVnW1xmI5L$6qBxtbZi<*3J~2xZxmUA4ZuW4zjd>XvIAGrYKj06}3RAW2YAKKbWOD z(?ULik%@)8AMihM|E{i08;4_TQdlfb$LPDe@Vxlr#6^YW;{IaAxW8DuP7KtG0$>%32-eA2RfO62k6%8#JlWR+VzYkigwJ{1gqJgMSth8^ikmN{Vs zkqS0aD}CuXVR;GB33I~o(d3PZVSAW0m8#wdy$xI~EAfR51x|#Sdf+qB`04uNC-Lhu zeP&A-nfS~nBt&wv!)p4~lxW=y-g`w{o|8m3Tpcd&YZ`BBMl+!b_zWHiQvoN!$T13V zXcM~A1ZLs@p*zj8u8F8l^QmMHot)B_EtRZo=6aC`CS0rP7-!hJw3$+g+heYCB}Dg_ zYa~P`^q6HEbg9e@qxnCWFVbLs4VTJFdEs_}6KycdOQQ(|Prc=r_{Evt@^cuOc*{>E zL~`9_m2h{7WBhFq6!r@xjQ<-h4VUrNNNX8RgL3~bJPaoHufoVN+&eS{-B$twae&Z$ zzmbgrlXC+p)m&LEoWP1{f9K*Il@7C=U z@55l3S~ce1{u_Zs+KuJ*;b2$U==Ohrgy@X+FH$zz{~*i;X%7{+Mpi-#S%DMbqq$Y0 zK@@2WW&Em4t0=je-GD$%QR{KRBm zDwsQ2jim}B6Jr^W5Xm)`Y3jbN`O7qz{+Qh$1F}}v>Izt4Z2a!h_mSu{VF0#R9aHTIjMJy*FI$?@fHk7&HG~2=_E4I?NpW;!KB`1tSxO*+N1jH%Y7zG~!Uf47PJ3AkSH1E?gEa+rj6u zND7qm3?2fL^Alj?)Hx5mW)si*MgF{B0GEc#yZM?;C=JSe9S?)a{kbr54EGM>fSxFV zrr`jgCyFVqiKvO7`bR)$jZ7;@=6Pcmt1OMDuxR z82L3AS=DJ`F<-4^M6LQ&rCxSLnml)~Sj^Qj4Zw)hv>9>5TUh<^X374~F`UAB0z$lq z^GveqqiZ!CperLJF*q<#uGAWLJHd~>8Zo8qM1-v{r9*AcPz4 zV6|a5{ki_GOj#UjA&em6I#-BvTH!j@oq?meP9wNRY$7xnSwz7Wqq)qr_}XX|Nr(=Z zccvN18{TpcObqdsyWwitz2$oXC&G++v)D+Wd3UAz!ku^kOgp(9MkaQ0t1E=IlR!&e zc5YGH+loI=g%%vS@{i?Bq1Nh?s(qA|kce$NR3u*7os^gy;bK znAFVL@Qt;fK&c?Uv4(&MFIJB}&e?rqvcQQ@qP`m0jGP+A4E)MW!&n(cCWf(sD}*+T zKs{cD@s_KG)g938$r{FTBdx=nBr4hp+t}U7HdJKlE+^)-MBU7eccovO$1xJ31I%Oj zXzqrEEQDzx7IFq$EW3sD3!JEh1aCD(xw-k;DPlu&S0-N?${FuB|3c)_3L`ntW+XZO`%NmwW{45xTIP{^Tq)3& za<_ztwUh)mFE1ZW-td&gFhj&so`tJr_mqbPPJ|hC*lRR?>M2j-*JpallQ1&zl*c7R zf~)nxgVkuw49=JT3;L@hoG&XNS}}@J&Vz+|TNaf0Nq7`Y=EuXxsWTrs=66K)ck*X{ z2e>-iU%YwDZ!{CCfNk+ema3b`mr@^)?sKs24N5Qn1OJQVUF&Dc+Xp0F{(nUPyW4Lg3&v{MYL_KHi=yTs;sZI@jz13)rf@`kqdHBZ3pLg+hx6 z*fP`XB*Mk+0+o!k%j_T_I>2Qb)I_p3yrmnahIq?o;Br~nEgURxBGlA_FS45%&{^h0 zJOZYp90wy4M>*ORLOV*JCND?X)+Y+#C<~K4RBE!iLl(P8Dv=E&*NHq@F}mz)vl54; zR}o%BvlctK#LEYJug&z3pTfw*L++9g$=wN0k1kXauKz9K!G48=>wm#j;c^{x4KoAE_^WsXOvYb= zkyB@UW&K*O{*@TN@U@@vW_=9-fsIyN)`JChTNaf08F&;-=2wQ1W0-en_Ih3j+Jysz zUS7T2RlkMa(FsGsc$u@| z9t&YUNY6L}E|QhfLchR?5TXvD45(6<)e9D<;g@CF#e5i<*u|iPNNzMxhfvxWzFCCg zIThRp7lg}j_z=n%p1+GxW39T2Zyc4fpz?`p>C!D@d+9m*;>$Aw7w zV6G8cGqgw#vJ3^Qh;XrKS;qfGOOLflxqo$RBHiQ;jlc$>DC zFGiLjKPR%lMjflv>TYkKh?s(qA}X~Q$O6}5YXcdQ5FKD3lbTr@#&Hcy1u>2*;WAm- zESx8BB9y2%P@0ib!?+y3GSe_Fg^`J2TS+rLL;iH&4W`%Cw5(U}RzyM@xw0?o-ugb}jsVO+zYU-3eok2qyyk%nU#0N!`4x4w;dM?!SM z05D#%VN3vPKZEi?I>Z_R0-KVololonoCqP!N1T!>by+SX8!wgC77Rq+ zy7)1yU#s})M_AVx#WVFxMV{9sP3Gy*K6sGw+3L_Kqc{qT$WK7pm zU5$V6(`2;^1w!+3p&z(rq+DovvNt1BhO)(c<78ptI;;H+osg{htMBFEIx;w>&#WTi z#RhIACG9gSN{9~dnPo$X8_u#5ObcxdMUBsiG_YGNtIX=3wi?K2k4I}|_2TlV zuXQbOEw?s~Aqf#{90@+pm^_@f;TzY$Y!KhL5-yaL(875FC+Zthg2BDpEF`K89D!VRW>FT%locZBKR!bRaS9r;pYGXcu?Z}0$^eE$kYPMz=Y zml~TTGdO?WpYwO%!f-h!UutY7L3w`*4}!`28!&PV?+&e9PX|GxaDdRu997pu)D6ZF z$xa6|Vl9E;GRMOtk~UtGisu86P(hxwOJ*cC$LoXzL%1MkoSP zaYb}%c}VlVYu&Z8ydxnxz*!ok=+q5AS^GJZ6yhgq2ncNKv-`3 zGw{nZU1Vh#nYhRbt`OQq0v&m|$Xl*zR<}qiPDu0<1*>-#bJ>cpkZgC~h#y@$NmREL zj&gvLqsS;#kjTf^j(63B_LgHLLtF2Xc|iYV4HuiWEWaqTI0ONb8e6hTKbZ^K3w!*mcEc@{2|-9{c3I1y6RNqjnX z>Ksqw*Je7$lQ1%Ij>lagv~vUs@^X$leWDP~v3j!iJ8R9$iA9xcv8eoGq!r!u{@xld zImpRNM4*j09aeSM7I91(b;xxO#b+bFoY=IMXnqa?L zY%0`vcE&?t8qcR-WMVwqyFzH=3H0S8J?3pu zxv0mi9(qJXxFlAy3?2v5YPw)#Vm1GDRhG7zKv`Z^^R!PC!fK95_KqodW2CV^wl_Oi z6gN+UG0&yh>LAd_7b}OOjHudjD|Le_DcX3x zEg?F6%;lA#8)DIN^dfHs1Wi2<$e3ZV@s(3qD2E#nh~FrW*Q zoqv|e&W&!zD~b49G2~dc;{hL>Ys3}Nt7WV?*|pZ%Rr(}Etg9sWO5#|Nv0)zAy4lcXFtER)DQ;vU(Uz*ABk6`4~IbKeGhmG?5ia*c)giFHZIoL}Z37>NP5B%~> zuKx}r$8hb?vvu1Knt%g@e%&zVnn)uG(e}qA`)Fsy;qT2BbG>4@wc3~Otwr{@ZT1h; zovf0pA8K3d0Oo+^*BKjesxTvc$TAjeEJF9Z+1Nlrbi!EBWGbTzU`z=I!c37qvL9SA zE7^tZ1x|z=b%48tL=}S`8urFxV4BPxFfuWjT_r?vL&Iu8=cRQsxIb0I=mtbWa{t1vmJs;M;J8xGGpz-Y1Nd4OPN7@o1PzxEe-| zQG&y?pa+hiy*NPVfn#0QMAX2sb+QA;>I1n-cdqfS@nChtmv>$ed0~!b6=L1(W! zJo&yzq!mMq^_V7y#gj&S5#d^F+q`EInHzrcAj}Q%lLz2Z z+5O}$ffJ#n9-Ist3ZBj?_v065`pA7SGVzgnB}8(w>I%`-17u}{knJ!w6WF;Uy2&^F?Vh4fb zx`iMml)5nx>i64j47c7tnW<+U(d;6!*)ry)kdr<1|X_~n@{@+laZxXAXd5ZXlo z9eKIP44){(;^W=P-b9SemgW_sAHX|PWPr^zR*m_89#=*dQK`i}7P{73yT=(4BGx?; zTyGpN*)VM52AB_G8{dYDWTmulvA~HC()>KGq)J^@-$;BDzbw-(u7;6`U3^1AB-a|6 zpT}*K%3%0UA{6WwM;LwtE(n+5$menGJU@hAoXPX=VC2+!4u2lk!u3)wd2{_STof+X z@ZP-CVbVB1FD>62kLO09+X$qf#OJpUnaInCM(4pSiYS5%E zs+<0a_(hrKa2$+G%;9JWkzCVPZ*5U_za|3lZ24b>%fV$g{MMG0<{_3bcn4A%~wS~vTk2{=ILX1}d#BC6TtUIi{yZsk3>3{H(3Q&-_xo0i{M0Tq0l0o$1(`K?^=Dm0`QK6h#dry z>lY1bBH0^5!P+mQ)Tp0~UP4?$Kwxu|mEFQ*ffJ#ozLMOBVrD=mgc*1QOh;K6MkbE3 zf-8h}lt4{hj`EhPrj?_dmF(@q7_m*c6xoV!k|<*P zS9=BZC#&Qf?`QokOrl?DT(h`1sh$1(z3<|-OJ z0xXgcoiGB76-*fI;U1U^^`p>FGw+5=WTmt4J%JOUqj@m3ph;a+xBolwi!yEEb{Lu1 z#H|t{x%S^Yn3}NrvIqnlw+Xv1!sXzy8{Xp7un5BO^Z2Ei96tvmr_OO`ixd47ukxBV z&npUuRt$OcS8Q%^vT{8QzdV!csW5U3*A6{fxBZ|AI6&yOf1#^rRomZeLZZuuV;c{_ z=S1%QkAh`t^%DQrnq*{=USnzfhr0?#xBf#UL?^WV@sbUr`7eO^AnjoYE|QhfLQddB z2x;E^OR7j~sN$Dp+Qk5jOzfgxLL}Gzn|J?>QW*??M}*=z0DKEB2$$i=-M^jZYw?RS zdAF)uF2iMo$m+n0GNC~03*ln?a;&Z7!WiB2M9d|9O#;e z8UyZ2_U?a5DO>8w)XL(Zgu(vEG%)@3s5iZ^dso+qiwge?{&+d~G>k6C*VfA2} zn@*s4OS!)IUk1$0#;-l1zic*)JQGG%)tOk#S8Ewjp?+1L%_UNDN5CZhL>O5$mJ^1{lQiQi>jMj8S-)6B=gIol z;L31WpJ9B7LT5pl|0*5@lliZ}$T7_8d4T)ds!yIfSS;phnTB~pdI*kH&_bN(n$bP- zUo0G!>})Znw?7|!=i!ec4otOH$$1~YC-xQXM`->Ih{$lYu_KOr=6xXVcYou&+j(1=-)DJ{= zjN$FS|tyLI~yT7d(EZvSVy%2u`ip=8_tg+_cTyh!h{%mVwkYDmuldrF8-m<6Wj#Ek`k63h(g7$?J(vXWak zPT)jXQBMza>~t>Z!>`TskQ|ImJY=qfNNz4rj}3Ia46eT+;_;jgz7AJ~%XRp%fzE(3 zehD4{lktmST^O18 z$XXI2xtYQE$RlO@Xc3U-&~OA?7B1Vik33pAKNJsv$@xJra_XF0KJrL;KhvN0g>Y%O zyvKdy(aQZ9co~cX85e%xDjq#9+#?}6VO*G~vNlGA7hq1*4@8d&i{Ua^X)Qb|a3Yk{ zr^qc!O}f;D^_cK1eqp9qaJQ>bspW*OWFJ3_pI6Cc#lH5)qleGKVznyGdn{+qhIhBt90{ zS$ox{>3S>(nu7y`9t(zC6H#Nq|B^j5b(wkH(UpQ7-$ISasxt4>jv8@AdXHrs z*iOWX-54p+=y70c3DF7Tz*v#7F$$anbD{FnqrmZSiL7)M_7gY}I@D=L4Vu(N^%!sr zeo>}P90?;6n>b8DBsT`A(~c;+=ZQc(M}TwSa&XxVpLS&B_$>U=Opd<@Bd5-B=(Hos z^N;;`{t;XfF3;v^M^>(Xh+m$`^$%d=7_J?9wr=}D6L5ggZGVnyBC72_knF37biOaSP{Q2(=w*P$iyyOra;MJ(8_ zj&QsOToEqE!9n=p=;^SxD}Hq*)1QWsQ)ha*UR$@aUGr!Avv5_oYzMnc%?v2xB|HKq z<0r$&F^oI(ay+@0*6fn{=)-pGT2+hCnqMdrN<(16f}mKk6Z5iNG-qlBYpfDI)?C(HojWzNPFa1hLg z%1}=M`@==DQd-zS;6w;f-#iGYQkT_pz&`k8NA-=sF7||xiCyd_A(EQ|)He@o44)=K z@tg$a!v*0o9RB7(49|o3#hE-;VC2+!4t?{$#`SmoxxOAQ3YTm1n+Gv`Uxx?4%ERm&v7ex-3Em?Ku{c1onwn*o( zi~`TQ)?AMQ&q;_*7zHM(tc_t{(z_@p>Ib5Sf$;(Yo0zP$7TyuHicq3n4QSG(F099a zG5Cd=MFtxj|D+bug>(6dthYZC3j1RN^_vBzlO)aWc_6rId#@o)!Xn!V1AwVyqRB9K(yk9fd0}~ zH@j+GFdFgZ*f&f91sUxaxfZRGQCp{&#vN&+W3HUy8PheN0S z@j3j`O#fH_BNP7^k`T$w4AX*sJ6tY<=^u!2JO_sV2N#9Qbg&F1B9Lvj&e;z z%?ZCu_VL5SVtHP+r^nojxcd93Nm8BCun z!topv`rx8)nGTN$!wFEnb9ewuzURWosq-Bg6NXD>aQ=0F&M$!r!{yu@6NZzZykCR| z!Q}k{7&(S_haRuTgrHG4K0T7n)fb+ zW^9peWEm0u#-nc4h|4{EO^M(sMJ{SM6zSS zq~RfOPGmB;7}l#*Z2n(WY%Xrh8TF0EuenM{4+meB5S=g_Owqg;^T8c3Go*9e23N{T zZs9tC6P*u&@9^r_>7B(b__di9aubY9EadwVBDoQv`BlYXksDku7V%*7IpO+QxGG$( zBVSb<&VVxhG#&wy@h4&A)EN(dRdKjx2J6dz=*{}F0-_bOA^nAuuPP2_L7AU~N5N!% zJd7N}yhE?o<3i9b93b?#@D*1Ht8wA#WXFZ6>TGM<#)N}m*;<{Zet_r31QjB4bHV|x zO43uqz7nDnriSGrxf`}pf%zfLqzo6!N^#*NffF4Zf?Li=_|#8|_~n^?l82FrpY%$I zkrgJa-=a2XCC zoe;zGk@&@#JRb%lr_OWe=mZTIv5*9&48 z-@~8rUE#WL84q57r8!X6KaI!0WPL{%IfiwI-mb@kphY-9=<(oZu4bjigRW$sHZ0R! zu13}fz62}PDl_i`mK$+J8jxiu_=2lw^iXiRgy@8!V64d4=o8<8xgdSwTX2c2bQUfW zI1xJ30m}`V)J65`z_s{AnKp41j7)6e3JHvdHye45-!i?0n1jdKfo`~CvHI?wD*`gGNT;zh{!fWuvAZ878{PP~mk^!M z_{TL;Hah=Ym<`e!GH{Kogcc4GI1xVT6XhMEBuZUXxBe6Gt1_+PSQwdD#ZeL>xz;}= zxQn*%dx40=v-j8GdT{v-c9`ne>40}Ger+bpXT!*;v%I{%bG9)3Q-7xKf@{KMI#}z8 z#!uP41HV3#?b~4F7`7dHw{HJID{z3&?SC8BL{$5)CfokU%9E}l_x&G=3@}Hsip+a& zKoD7^;aCQM_gw3(2Y|OFL?;XY<7Ljq1hCfsP(IX8Lq7{xT|i({l9kfJB!LqlMC}a- zs8W~JBfzToWtn!d5{yjjV!DJ#ZUj(!18fZMFG9h7afIQ0;DT@&4(|wdJG5}f&+ve1ODyWmed$< zQL^V6HQs>BcV~-TnQW;iG7a1b>(wf@`hK3P0V+TlU!(2c;H`F&0_A)uJOn1^A1`^FucB|b<9Xl8pZD2#(I@0fwOpl? zEiO8zKCY7M9jxRRS$^fK87~)v(xBYW#KT~6zd4K?^Luw_`g(2%nuY^}o*Qm<6|tHd z{*mnR!Af)UwNvudTvw)&pVudjP_Fjndux#aq6*8`+F|O4c@7XN(jZV3XQX3U28jVz zS?NKdUqW=kAkpM1TmhrSTnckV28xT}l3D34d{N*;=&1+qu-Rx-LFk2tui-&3jpnN` zGBKL3NQmSHi`9d!Y$=?<{;xz}p34xwfXl;Wf347FL`y2P+1!JN!qmXsFmmb|SX&Po zmf{&Yc*9=@ufZka>R>%%;IO1aweT_?4pR#+!pJdNaF`nO;1M(#2M9fQ6kHQggU8y* zzRaK(EasOhk$Gd*QmBhrrPs0ri$;8rMrN5awh%F6_hm{&dd}EXLUh8MF}z?QGB=#% zFqj*ar+$=iFkC7ty@gK;oCqz(f<=Qib#Xmc9DrY(=_C8X$izqXk`T$w6~=-EW&86Y zAkTT?b8uO>Y}*zrteh{vLtt_~1S6-;xn;qE^8Ww)dH)_<8ZPf~3l>)Hzk`Rte47D>Ib4ng~=briAE(kzl;c*=Q9Hz zCVp`y&#%MCsq-A#25IAZgJrzAUROZ0V!WrnW^)^44Bu;Gq{MuwH!=ov!$P$>iuV{0L>B2fmNDQnuENn{z=;x~BgO!k zvoQvo4fCOX8hTyeOK_2_lol!iCql^ZNr?>+smtmy;0yR=nRanHj7;p}R0)yz7+_=g zHW7;F7;p<*5H7>vF(CL!5}t3uFV5uo`!I6qJcq^r8`sbJbNw`26fW217!bqvlXw73 zz8{B?WB7LH;d%@R8iE6a9s`bZO+<|WyAv$3Q7}rSIm;rW!*-#1U8DM9)Mpi-#GX+kB4|OJjBuZUXj{u*- zugbKF?O|kM728ONCW3|EvWUcU0w}`u;PM+j6T!}M9=|q|G@uZ-*YP$AF+A zI6&wz;89nDQe(h`WLE(u3#NlJ5sWtsE`#N2)mke)*W8FN!+619k*kLEL~x;m=!A)& z`R<2E+!zb)hM6Hv<4(9zR&op95jfGYVEA**P14l0^=xoEer=|Q+zKNT54l-FBsUxA z&o!%h8C<_8;=x98!u9iTRk&OmpKFd~{5d=VCgab*$f+|P{amx1^%ci?vp!8gv|=oz zzi`Xvnq!%tibug@elm<4!@NVY*YiTqE*v2Ayl}p&gw?z-KiPRq+3+s5?Sdi%oR8hI@AXg8Z@bk z>XBdozbMlt`e9^Z69oy8+(@84pg`IEmI%ai7PuBJ2bbOO2NbLvUxiS|)wnLv)Y*x%*yzbBVxo};$jGLcTZ00~&KO2vM z$@-UIhW`W?gv+qG z3DLsyBlyLcJU;{@r_Qsn3DM+w%tUXlml6=I7y{|9*|rJM!uQ88D|IH{AHv8nd^_}T zJq82~!2v>#0cW@-qQ-z7k{tua_2h^0J<(?iyTeMgT1tIS&o3&d&?0@uvSzRg{HsvX z(SyKF5~33ZfeAs<#w5@SGeY`AH(VtvsfEJ?PK1&AWH|{aveb3;O2KFF>oP6lL>QS^ z#&HrNxlv$h@TmkV#}|uOJZFKg!4=_hJT3HfggBS z_@9U$b0w?Dy!RM3;)=8#%OLQPYpwMl@VrFzrP(KR2yI^er(TY2W zsRAcLhuUMcZ%#L5yPxe-9^F{JDsECRuPX@uPa;Br`htOd$$ zc#ol#<9+clm|^XL3|UI3Sb%d@%1(8~1?et9O>RTw#jYloh#+kVgl z93XVtf5){IskZ-6vL_OZ>CWYgk-q;ESfy5pc^^n51B-MTOXL5st88@R|B-~~gvLLv zk+RYGpMlvRz2PaiMpi-#4+xwHAL>9NNtC*(Zv9W-S7lnoV=ywYibo|xa;;w-NMzx6 z@?`JcKS4mWVzQ(Bh7TmNvpg2RHk0M0VdT_V4jo8jVR}1%rniP`!u=(i2NK!Yo`YYX z$@VN5IfiYA-mTkz&9It2wFmKPK5dgcJG)i?#efaY1ARI0crfRcGF>7z_s& zX*-rNpynzcJqCPMLUh6yFsYfgF$!D(v!Z?@dJ*6^EcnnO|UxAThSa;~{dOQePgad>g4@$0ysPW*- zNk0_m?vG3cpPYhvlT~K^4+TVAkp^TL3bqunV)sQ#G$T3_y z^laVsgC^hrq1*muu8F9&zkIT7e@u6|+862j{}KscZe*31|3iUBV3AH^Y5cFcR$Djz zmn1|dH2!f7E{x7UeOZ(Z^}EoWe>nkx4M$c&3m=O@Mfhkw6lf5ouBu!A6#S}8tC$EQ z6RQ{}A(CtT&4&V--%Gl>mg;K!bNZsft7~?36?PUOVLv-U^rzs$aEXpQ9k9~9J$`K_ z-P^#(snZ>PI-n_UGF|j%IuF-`%QSg9U}d`(zdn=gZWuX+ZHFeV=YXImI6&w*;04#t zq~?I#6P^RaCXhLiIp9WErdEx4&jB*9NZ+x{0pE3%jh+Lpmk=E>2Q*SP=75J_Hb{H; z9b6+Tp@q8zPK1x<*NPenQdiY;!2jV_Wm?6rVPs+zzmyP(&jA*GKNOL8w*U9wdT{v- zw}1I_BrLy;Uz^GDzhUImSq`;-3)7oS^=5iQ0nv(yp8k@}_HSo&YJw|^N}q}^EBe~+tdbomFg zjg*b{{}q@G^}Eo^0AGe{WF@pPByb{psP-?3B8}lp{Hjc=SO_B%t2jeKB;Nil{N5=d z@ofLM!}Z|u8*cx0mT$$c&1Csz7&L+#(f^z;5qKL^)@%e2}4?QB1TU!TeLQ!sK2 z+YY^3xBs9OI6&z3f0An=s{PMN_SJw1rQE!1Ek6`JB4GXHP*bw%%zJO(aBz{fV;KY1 z5dmX!v67D-1J;xfoiGMWYNly*XABev8JIj&&!Zh(O1~uKHZOrfP%zP+YqJd5Ect`9>S_2!w$m+K=v6!#c zGUE5tuYOJIOQhs9vxZ$W^K!*OV=y^UM26YCB0vk~IJit)tN66LU>d15=NIi4N8_O~ zwQ>ZEtm=5U_!om8UeY32*DjL2Y^A4qN}g<2`-%wEQz>7Di^NrmhqVmnOXYGV9xqca z3t{Bc<+7e#F2!8-RC0C9YofaCa7+Fcr+Lc)(1-+zcb9E|~RW1XG@u zsg`?d{n`0OFM8fzG0(we;wolO55?$=sbrqPBW6nGDHu6*$;8Yp{j?iRo95k(rV5Dm z+~Ro5Esa#ENG9WvY{G@g_Fb}?W7SpDqw*uDRi26=u_$gHMNmX~bRLkZ|xe9$+HT+jID?xmb zM;^_GRRz5eIaS1r-FqnV_3HFw2@(5*B6hL4^^c`i%nTnj-*_}-p=c|ZB9*RQWu6UJ z%*t|M9f1>Jr@k$9LX*##)(lmQn$?+jj7icCBMi*yJfCs(H_c`2;dkzTBZPwgppNny5Srq zA!2=@!H{tnlRtDXZ}p`PK)sfPZBN6ysHUt#3bHS`INh6YRdULhmHf~K$F z-M*F+5ZK)TS40Q3NJJ`is-h`)=u8z&gppHM(a0UF+BewSTg(~q+1Xz{pMopJm5+A^ zQ#n)JY>&sx)Xg?9a_YKS&+0z$6LZmDGkLg5T+LXv=J4*bLitj?^y2X{_0kO^r>+kGqZ5ZGiu$2s@TkH8La$VB z;<{ja*ye6TDO#@ECf;ELS|4Ros$*ZNjiEY}BO(16JW3|%Pr=A!Jb6Mw zB=-n=22qE&!5o@x?jN4ElD9af3W!!ruv8q|fIcuYNRi$aPsT%JDq{kSoVqeXFE<7D zsmhkAiN%HLK)GtJ>wnr`BRj%n;`WMN+%%$-rE1v@50T0q3$R|x7`L(}BehC+cs}Uz3`J}~1evXI8RK`zXLah>!7|nI5{%q|YU#-h)cVA!AGu6p{3nyi+ADkC;jAGb+H;2ktHn%~ zs$~WqEK@Bj!^o+tg|3nGRLTS8L38u%0sbP{7p@N1QY>$IjJO;&Q{_mtu@@dAQyaU( z$f;{1bYg?L4_0*}izEyD)iDIuhpP^F1#LJ>s*frjB~u>*FmmVWgS43M`0L|aaDCdX z58M6kwRn_FeOv`2cdkCjP0b(u_3;O|KJC_r?Y`zgJW8fM9)OWk*9X1hEs9rgvlU}i zq-z!L`SibVak%1u?|6e0X=nKW50R;icVXnzm9Z9iHdCzD#Qv-S@kHBPeE)>MJT?;$ z?YVu~5nX%_PG+ZjK zm&6`i826~xmM~S#5qQ8%)f@^Vr>>e=L^aj!Y%$l9=_!lT!7JsSL2*iWoO-_OubwmE zl5y2@0BSWOB~Dee5D%QGqBCIR7!^6}2-KSjgKaAg5PCD(&90jubQHnvD6c5a_lZJm ziQ98rqFdr(KT_~0{A08JQtAhfvM+AR_X+NwTR)cj&?d9+M!L0E^}bVELqN1*6sIZ}@pKQC3PM>EJeLo~fQt>U6%^3lE(s zpxt5Q)CFW5(GYUt;j?yzkM=k2@D}*1Xb3JCS4D@@8GU&C2!9YMz7x^>sg$aC{7fkg zz{sgfiBU>@>c63-@Azx!TX4m=S~{Y2TG9oeV!9SjfGMV{VC2-rG;8$6R@5H^Fx2!% ze>MF9E*V!%N48K+x&l;A58@dx<@5lIoVuJCbCTur2wgM0=cNC_wc_fig>#bqa|s{d zp)&>aE{wb+2*~p3girVjXfpxPp4+q*3dsH`g^lshnF87XMowKon~&bm?4MOQ&R;`E z!{y?d(4nnsX0e}HI0BEJDWgMStE0nOXh*T1XSf*;pDCmpVdT_>v`&0mvn)J5=P#aT;2Lqo zGvb*>yoE>m_fnt2LuLx*2^cwb!5AlDg`FpEp>gVJ-nU_s1w?zM=oUQe7|xsC#81HE zW=dx)jGVf3jDujq($VW`#!}FZ{@U3Nt`ygCEE`GCMQWWm70=dq;7sw%fss=e&&KhM zDt;lc&tE+`xKv#AjChneuU~~Sr}CMLN6wT_21ZU@J|oOImW9Jh{B?5?TqCY-S}^C> z7Yr}JLuLx54kLH6U@QxTzw{T(&*2&+C>Z+!;ZO09nS!|sMowKYBkTdPFAV<6Uo)@5 zW#VdPU;jJt*ag9t@Ti%xc>zZ5XxUg70@qmG`)+E6fN0O%R4Zf?w*a^@9yL=oE5OL9 z%f>jwJbW(|v+%dCzi#$|>%_I2{aRo*u?v2?<6$#}vkQzIBOHf)?0PGFun*P<|`_ z3Erfu646lvJF&f@_^nSAVnhDtliiR%_8{@yqv#Q}i{Kxb^%qj#w-sCQ8(;UTj(R-t zg{~UboAA$<5V0GvW4F_`eiQx*(NzLU(48gCv|_fV zO0gX9q*t5cm7U%Rkqr2Ph*1mqlnT|Ie&m_#dVGmpVu>#qh3o45~tJD zgLvRf`8)t4r!Jp4v5upvIJZ*H_H>I{X5+a%?(Aqs8*$q!-=jq&iAQrZAU zPF+fyjpk0>*;1xqPKJz*^Ow=laJ9IuG~x?Ed>J)UrxH2>51lEYLt*69CA95m66(qI zW(SKkag=!fKruHz(_ln|x}3ERR9p-3JecA-14d3=Tw8O+)mtoQ zYgTF9?k}xd;lgpHb!=;;6{-Ri*3EbpOkv#!Bd0DbV;e2KtFyV(bN*6#1}+s>N+WLI z=XX7sHxMdFcpQ}Il|<7SFyER3AG zcy=7ErS%S$x*G@4W~ze&1LaDsanxvIWHMI79^-HKR&cG1kb}Slj!CZ-#(q&kf&*XF);+6)FIg)5>@POgXIpBd0E>QJ>ohIps_C zRm^?;#k3b(F|Iqc=($}ueJZ8h@$i{a+66{VT}qtEX)sPpL;hN-!X@KssdbZ+&Yy~D z0FR$3rhXVXbuk%dXVWpflB+fz;8~vAeal};*TMzkN@>JH{rEjDlsy&FRe1DFAzc9@ zr!FMpB?B!a>lV2`_-p4uxJF#KUose7J8@g%9>4=;%H@6-Id!?jZa&c)c&uCE z{_8KC58!HXh2y#T#7vz!&bxT%ObPu5MowKq#!*_@adaKY7P!sU@xCwHSU|MrzHG!7 zz(@C;aN1Nl8{lCxrL!)KoVs+@i@UjR?)x%s=a2T6%@J^wxUMteSxBSHrkOI8%%OP5 zOvxMsBd0Ezwc{jX+bnXXzg`x?CF1I3cfaRmF`Gorz~g0#-o$*k~f`U#^P}^#j`YwoVs{oZ@NVhM|wQEoxgszhO5Oj9nYI? zGj%GVIe6$y3C)6$QGv zqh<hb2TsXSOu}hY7v9=NsWB0{M()wJi*%BhQ{_!Uyxe%~; zovyA;7cM$|(I$n(f{VVp3(t!`PFz%w%&eQ)wNlA0I67bJ3!SDMOV@EQT`GBfMAp%8 z{j7`^_7XS|uIiSJX_VjSXVgbcUWKnu89f3IpXrr{N@NFBwEPgH%|{hQ=scdw>i2Ea%$9|IWK6-xe?ESsig11$f+x7vg+swJO!qX9)pon*U`+;btJ!V*jLGyPBwgL^7`JsG(kXMQzTbTC$_-i7 zLk(CyNBXM2pk9KD#T8UL97+~}YUu?$38t17!^lg5mKsvp#u%PvY~X#1x3Yj}&n;d% zv?Pl_wX_1B1XD}P!^o*?Y1ZhIQ?)x=6i2vO#__%U6}3BDGOjzF)Q0&fR0^uAUGP+x zy4ndwPF+`w)$uA_)U5goY5=YkS5WO(9dFctDybjOfvKbdjJ!lBiLO0e>#wA%;98}s zB-Q%on7OT%T?R@_=Em>dH}8%S5NJ@v(uHJ{&YW{2~$<~!N^O3 zsv4t{RaGDOtLk02Vri;MSAweQKX@igRlNx#r>?3`j6Rpw`os>%zH+h0xX;^oL+|^% z4Fp7c?(^EQV`aDyR8#BXi7+*_7L1&_rnUk!C2sgE%TY)8OY2a$Zd||WZo>`Vu(VV? zsKO4y^IfhH{mvIE}sDUoA$fX0fV<=gc_8$e^q659C~ z-T->1zdCNm%iGcoppZI3Wgt4a6;Fhzlbc~=VsvWb^SS>qpx>b&0o3o`&wEHq1I8(bXO5|9Ni+}f_irZRJGG24A| zzxcG~Dfv=Q`4r<0bZ-%@r_JmE*Nkg3ygN{?po~J$`-5HaM3}PrG>n|OtU|jWtp1c+ zkjoVFC!60Quleigvv9GvdODJI+sV~avjS8|B|HPBkWPk?Qy0>lQT(YtSInG}%g^hp zW%{$VN`AiKP~Y@d)YWj+xQgOEx#lX0l!8j@8+a;AX?-0=PF-3XjUp|fCbHB0A%8jj z4z3hePRtbq-dsIXrcWjGe|Y#z3H=&IPF+IVj3OcNk+$Hoh}GP@#tY<`{#>?XIMj#! zl6nuW99L3vTiWxi<)9LK8&8KRv46wJsY`5YSYmloVVi91J*96bAlh@=XZbFo`(nUM zs<3>C3T!<*8>Yb4hLM*%fmH|l4GTNcUtov9h2vUSn*}DSK?Qa&o()rA2f)ZN0&`gV z)XS&ALYM;t`&m)TSIj03l#2_7vPDC>=le_dJeU%$bhpO3ugZ|h@fBEwdBWwVi(eX;;)Y%!!_dS!*ZCYrFVu7*xI#uUXDF+#f^Sk_#-@Yrf_~J zkz<$AlUo1{tyEcy5?Vvu)05i+>kP`*1C>uzgp;(ceZx`1fUoxwh=?$;wT3_T>=gQiSWyDASa(Zs14L+-S4>?(Kl8B1-RLim@8b1kdK~YOH6)Kv8HiA>#}i=+QvU zYU(H$Idx4j`kZ(%p$UK>e%D*3&R@>e^!Ty`Fq;uOX=wHuJu}TV6mcIrn#s z8c-!Ii|4>p(j*u;btN%YGkfy$vi<#8LrlB)i)kmgTwH%Tt_}XA%0TtB1D*y`Pus%C zsq2a1Ou0&Lw;`r}e=!x{T5-kHj)}Zc1FEEXcn(Y@^}xufD`~UQ=OVf7=}ov~Ts`q#2?X_|OF?z@I-Uws zSFgaxsq2a{H}%pdcI$5LeMh&JfLLPiZ2P>=0(mE8ORV*o$RUrO`gVsWL!+n^41xkeGF zmIm=8m|Cj9$f;|I@qA@oCEJr1dn^q(eb--3*TePV%BdaCSDJO8inzl3S22h16a1xgEL;(wZoShHK0nm1* zcB~JmGEhBji>JZV(^fEY>Uv_#PSt$L+$C4=7t=hrR$MW)V|HrPfGVj6&w;6=ER3AG zl0G^5F1hMJR(zePcR{9>Ya9w|JYKoXUsQ|WvT;SlI|LScT4$7l>gz&09j3m{hmlj) z7h@%Jez81nfuXAV{8e=?Tr94t+Od);i$JyXGdu~VmVN>wr>-SN*E=;=GhZ}#(_c!j z!?of{sU2OfQ3I-^SMVH|O8O^^9HS(M!=3c`P{9E|4iM~vU0Z+L-I}`j?wu>;D%oP} zd3T%5^uD#+SU|Mr)^b1AuJn09ilK9%Y)LC^=#xA*z{6$=cU_6x31>ouc9&af5;_Pe zd>+&h{*pKpuPyUDs3Te@iBS4P90%bEFvYPyj7(f@9|@7%IZ&a46KyK0Wlw0 z?%nZd~cP=vE4B_TMOMnTGbHh58?LsyuU7< z!;8yokGxw*wk|>?APRW~PlBnCr(k4aa8I~GXoCxMx?~yL>U!|sw?8{C{z%w0XL+~h z)dWO)#{Run?K$5_Fl1~rVItX8@Q|63T~Q);fT?Xbf&xOn=CGmd?XQJB@WL_;?U2@J zA(T2%#jbepOjUduMkYqKqbr0qvOt?lmXU=H>^~s8AXkYW)4m`I zzbG>dS(zneqS{mOpqZ*YMIy&~S%ODehi*J+NkTvAu$z6~Uk^9nrDeJq@33=*9zw|z zWqcbCpQ(&*!pOwWu9gtV4f&z3GrnA$ZN7i{xQN%&Uj77E zjcYHwtv4JwSqedyG#M4 z>ysA8ItEXKDXb%5GKm{QyQ@LS#g`+duqe^mn*e>B-2})c%IY&y>+$ zVdT_hw4Po_w=}h$Zu9((>9f7>=av%??YW;jpk>`mBu?Ad6g+UIa3;dYoi3bSQ#d>O z3+GdCmAJ;!LgDmUgtI*!I8!*=z{sf!C$tUO;yAhfxw)R6d}*GsqrK=apFCVEu6$az z-aVW?b)Q~5e5Q!HVdT_BG;-VOCGK;%zkDu*tHhO0>)b~qPK9$Z9yn7tUxSfT7tZ=4 z&O4%ha}4A8jlXh!1(%7doC8}n@H8@~()k4*Ia50Kz{njgojjeD-}0Bv8*rJDmrf&d zDxKHx$eGf48Ak4O>Ck?)&K&RCtThEhdv3E@=Q`p8K^Ez(hDXkn&MGi+>eAU@#D>)< zp!r3-1O2tLA6zG{?eKPVa~7Os>eP4k#zSX{XAc-Tb@7Cb_OaY+#Y#^`wr5`t;qfzN^g9@N36T+b_O;X}y@%?L z;bNsHBipmD5Apb!GI|e2PF+T!W5q1fQNz>+OV-`8GyR3MxqxWT-Pw^XTN4UbfHt;G z@C=wz+7L!gT}q+vYgnWdygZ#bC12_(pJJ>p9`CQEW8ivmO^NrBJI<&bDFGGJk$4JB zF&zdYr!Jf#9<-D_!L)ndN!T;ATr{_d}$zrh9Ls)%<= z7^jOxYe41nS3C!%oc;nMr!J?F+gPj07BK{{at=S#V4W!K`o+}uhw_L#YS{1v<>%vOtSP$rtm2APK6 z){d=!l8ZibZZ|v!rj~b>$er-gcDPx_RVMWMa`@ftioZ(Ac!inoZfAMR2e3*)wIF&a z;@L3ul82Fr_w`DM?}xUYl@#w6e_eE@T8bR`!yj~DOLaB=Iek&#)it}i3QzhA?QytrT%omX%|R7~>g!Kt1-t*$l-K?QXVo(NM=XTiv+3yL+J^=D7cWvW9xnNqowDdpy6 z8|O$H_nJTPSJ;o?@^KZ`w&~1T87jFS;h8Zd_d^&tb;)hXX_x(3v8*valbb(a=r5IbA@s=LWNF zPm7wxpu$=XPlhS1DKK*C!kWc$t-)d~Z&B86{>s`JE*aOf+P2xNzgZ0`txw_EFr~FU zjGVf(w&F{x`C~PjV%c9`MYwKUef75M<}uJ$vm{hxc|0Yi$a-PqB|~Hb*-B%P!oEUr zrN787hwGNQ$f6~oBD)k%i7B#+VdT_B#+tqwH)9_lZR4rG;^YComT>pBMa6VHe#vDIMY z)FsAxDp{*#)LKuioC$uvhR_c27utbv@wisjwx^Pox=^|8hv&tV+uks8>T(O8MiSpL zZI2>P_gC1daJ{$+JE?8WQkH^>>J&T`rl@K#a*U`PUZ~aYnM_ z7yrrRJN&hL8%z^d%gj$E%M8P}Ry1WL4E^@)EqKsO)!rnLJK^oy@F$Z=NkXrhhF`mV z)?W`#0y3CVst%(k|)Y|5)YrLjK^VQ;%9%75Xrq~8y@?qg!;r$C%Me<=QuJ& z@jo%9v1PaS9{VQ=i1v*AC-QnFLr=C!&{jDf&x9$hF)(uK(h9#`WRce3T(RxYBB&kw z1+^_)EN;VMo|elI)NuY(MqAC}tE6LFrzE2aR8l{|vtUZ<$1rk-OR6cS zQn6^0)a(9|dIc_7@{%&EKqd80JPW3z{sAMWE~)TKjMSy7{pE74FJtd^tMA}_2e+z# zXwMxS^VCYlz#XjtmD5Ui4oo>shmlj4)5uM)TJCK;rK!xzTbtfK{({;QE?M#pWmbVo zYBxL!rlfX;kz*v~u|vG*{l$C+Ocqzn zypKTjhw==qqQ|DMq@vf-Ps0;n>Uh3H?u51U(9^=W!h{x;!z=1H`YYtSc!8NK>b$3g zph7~0AX>Q|Plc(K>tJN!dDlpY1Z8TO?*=nZRIKd=mZm4-e1nYT@4?U@6p@BKrtNPF-Xy_o@|h*=j9AK6*IEUtY7?Ca*TR*KjSUu(rT+VG3(g z7ux2ynt?qJhu)idR`E2*e#slfQ{H1jVTr{qrvsSnov>o1tXTucN zEiiKG;tK7Hj~(X4IoaaHi%f5&+@GoDK0BBzb(;r}yx=dg#c=VsBI6yPgo}(;g^KN2 zJS(Qyo`#WA7hC9aud!n5sSXtL=IMhge9HTNad`pJp8G}KvCpWyf;vz^EsN*D6x1Xb zc?l7er77;>FQ}d1a&i5tU4m-VfeLB|JP)RzwuO+a-z*SD5{Sd#Ag8iE?M ze3Wc;JP)RzR)vvM7gXrwuK1a%Tr}l$kiVSvhl|DaC*FQ|xZ{Z`Pj^ zUsKn^<>G3pJyTRr2P&xR@I07;x&}sGLIh=5>U_*!P>;gpN?TC&rOt=(JeY#|J&c^X zpf+YaR?cr}biAcM?LCtJ4=xo~OuYAX&>1SfC3U8c@En*zdLKqkT}Ye>N*=4$Exx~F z=xLU}p0*GW?YYHk&jdAG3M#8j@l=?y+6YEYT~?vD3S;l``pZMP?EJiWF3bu3syY@f z7}uqE=fa>a)vN>+)lqmROi>*UBd0E^O&CpYAZxB1oa?Wrv*B8C^>hsDO?p&Mq6kz< zU&51MO6dzQa_UmzY|Cq&U*1bsqwet6)NOFlxSDFuw!CmPsJL#yvtf$sCKx$&aqYnJ zDfPVob@FyOGnDH#=Bvg2Dti{L9#>_BHaVB2EL3h!<7qMF_9Tp)y4*r1@x{(s&0p_e z$>L_q@9ceFxU7I^&m7;~R-Fa)paPqO=ff1(co;c#fgye-Tr3lJ{`OA(I@bSP_Nm&Lerwj2km~uKFMowK$+c3s`dE`&6 zuac|wiMvU0II=P7-{&u_d*RA)rN#RU9lA(CNs|+KjE-cOt2(e6P zeGlh)e_dS%SB$Hx_UwQdE(MjwP>YrqJGjky95M$GL`VyWh9i)%%ukQvuPQTf+7@S5OBksEzPEn1Wg#MqWY$W!e3H ztiPa+g3HBqt9A*>zWe=fJP)Rz4uO$l1m$p?yFL*id+zE%jhrTgKDiS*EJbdc=PyNMk z7hYNBsqegRgpDeOQ0hb$ci_P@WpNvfOq}c%36b16@1ZTtR6ldGweG%5qu9nXotH$E zo(H_Y0N0A^Cx^DiPiE@u>3FpmkDjTaXJO>d*3i64d2qm{p_O;@*3b$9qCLZUt2Csu zry5!wkDjTaWntvhH59t%qdt@`iKA)7v7t5@?d~t5UEp$Yt%&!Po6);jqySV&JK+g1 zm9ztloVt=ikNv2U#CPNx)y@{_%Y*~|Lh6UB#T63o>&>GJDV#smQ2~#isiS!?a);|^ zPOOfu^4HN7aJ3TGQ7C_^qs#F4nL1hoBX_utg3-w4M-TYx=zh3biR&noKh@EFc>GKq z-3uef=*VHgNUu2s%Lon-DXuxKq1T)a69?Ir`(wX9xXkX}1Ado)XwQJZ59=neA~OuF zI$2Uy!qCf3|An>1{Swm$61fwWokHKHrzHt3zJ%AEKH;y2&Dy4i!&;?>Q1V0>8{^?K z{cHmmnfTed5+aqACyRvU<|?J~V6m7tR-TR%QF^XC9Szrt+Z9_UqT%#uQ#=9>pDCh4 zVdT_BwEjrlXy)8pEoQp>W;h{6d^8}2Xx_Cw&q6f znJRfIpb2>JOaYCBkz)kpa6hk?1cF;U2Z$7x1lHCjcz7;b>FyJ+m&UFN?Cme$Jz%C< z>wnc|lA(nGd*VtVdTn4=JandfKP{0vVQnDvo~X4dp*!U8^1x^Pg;Bz*%iNa2J0^`S zj8F-PL{7$&U`nJ9MkWrIlMu-*5`$z6&4Y*`n ztKog5hOekdA!y(HI-UqqRhPiXF{*NCdb)20_U8bRV&9w*?whsPj`_I1jQ<34#Fg=G ztUHEkt`_N)(PW7QK7xnK6zfA0IkrnCXKbN`tHX1Va)f$AxIHelr?;7XjF*+!9uM$W zK`3pahY#_(9f(XKLsi z7&%5m4sA_$#=zzrAW|Ib*9~>XTDF$2*7DuiV(fVTfWL_Ehq-F8h;^Fb4ypg!NbmudtE}UBHSte<1ddl@%l15C36u&Cp@}5LS-OAc^yxLDU?@W zWa4)Jln}{v%+SZ1;}kVFU+OLomdv)f?q1$)b1ebUo_U=2R>~*y`lca zhNpp<-Q^)eOsDyaX+B&ku9%MEEf?ry8TKSfKy@^Tr@+)v1x8L?N1=DR;(A^8pxA3; zJ^}i!zm%?rtHqTP@9bHu(*;$aYPt^3f~lr!VB{r5O?h+g&13#*dK9i!+G@&|sG1(e zvtX*}_b_tmY6^X6FwUF$#2P?(UL|WDqpNdh%Jb-<{yEreoo1 zaqX!cY6_}A)pQh|1yfCj!^o+tiLsJd%9i?bL{8`W%js;mTwFQv&Q-^Taa9JYr!V1Y zF!l5W7&&!4G3F;(NQ*(;;jgIM;DT`#)sFdTxDZrRx8R8|HFXn=oVunM^HZagH&7{?U;bWxAMg9SWd%fg#_=|Fyha(Q zo+jaGF!eMZMowK%j3;-W9n6+$`J#Dx`cD3W+5xT?*Pq()oTXU@s;F)8JeZ2w3Pz4m zl*6_az4Im5y5Inj;?9@Qp3ozOdh@jf;YU4-!rK~#{FPjVdEzRWwU03a>45rweaSC`%Hd^ocmGz!PAK z<1!eTxY{BKk=zcK&^H2YDk=}u^5s&tn3Qc~C^`xk2;+xNcmR;eB?C zCn;MkXwSSK&xNV3`(Wf4bvZOV-7^CNbbv5>rUQhIV)lBCk=+48M=?`EWDBpY+0}LW zqD>0B?bX$F;-bPH!5@1Cf9wM)%GV62z%J~B@ni-ObGkF1Oj1?gneskx@%^7(#z1@Gg&kWvdaj91Bjv^ zJ17VWh@c>XXcR>dMNt%41Z5Y+H;VAxuI}lozUNlYdFoX4o%#5~yc&JpbDsO_bJx1J z?+s-^-x{7odpv(>N=Petjj@`4{MgVed&A9APj&UxMpE4acFWkZeOoJ?rj{9+9(K4U zc_3NxJ5J$IGF$&NSh*gYU(-+aBtnaCgxcG>4s1d&$q(ezcY4Kq*2!r{ z?k-ocwMJ!BLN0|J;#P&dQ9=TF(h4zz$H`>mB3RivBeaxMD{YpHqaT*@@qO4GE+4z2 zeAIKKYxJtVpKBH54LKoygFWIBvTqbZiurn`l#{>Wkuo`X z30AhwN#Jw0V{12i)j3h`UUt)`gVsM>+|{h3B(UK+7nJ=Xf>KYFlCmZqDwCAeU}fv1 z(B7upJJ8)tb~z4_BXSVz4i^!)x2fky**E}?k;%rsuyP0+5f(B0b&%SODT0JQW}Y6k z9QskzCg!3jCQG7Ft1%y2wymo%D;%sAOQuv7_Pb3BGMB->D&tRLXqIF_##^KDLTj4& z8`fkliOR6QCUdbT5jtfLor*S>ocb@;pQ7Il8)j_Z zzU!1uQ{xQn8rCZ|S~IW*=I2+B(BJvG6OWKt@V?#3@%Rqc*Wx z=?F0;%PWaE#>uL!n>$tXP2EVRo-)N|Cp=^(Hq&8c>)32=7-|GOtQ0k5TsbmbuuEKI zLT{JkB2y_+TvB+rOk7Tbm966v*d_3*Oxh`=szpXa<#IVHm%~=IoJ>Gof|bW6AXx(->mMne@T{XGl9}*CtRP;V6p%IXIGKQ~ z1}j?!Byc0PKN887Q(eVkE@kR!4v~X$5Ns2-k{lFmX55r71?B)eUM4X6!phcx3B0}4 z1Wb3X=v0ivl;ym>UJANKboLbt<1w>jfK_^^(@ZW!7`y>JuN6ZX$O zxUgr&R_;4a=`^*^Q0Rm|*rtJftEMdLar!49y6`xe^)KZqhcFq5Cm=fSz%ouqwxdz5)6j$h?y8%1S{8r^E;sPJ&Dj75&Kbyz=@eA zUedX2zcyZaScN8p<@>Nf+)8nP1eR*Dbhz|AJXj_t_rc26ISITn+{{U_kaqN~$~WYs z{0+8W(zvAICS$PRow$93y=3$4rY`&nb@KcLD{f>TD)A~n?Ys)%H z0vow;iJ2{`ErFydH*4ZSGr3s}R<_PfU`e^D#<&am)u%0~Og68dxH?3R%|WnFTx<@N zU=zrhQgZ+vGn1NqVP)&ogpFXj=?JDQ$E6=Oh>MG81XE3xa+1e`WpdI7D_iFztXJxH zOZkC{Ybr0-$$9xIY!sIlQLhwCnsW1HJZL62SHa5Gxd|KjmfU`qjC_9~C+26cMO!-HjVvI(qgos+;R@uqoExnJFY zsV&kSCkN%@utVIM61u6$sVQEzl$4|KXqluO0V`W4C9MA`pE=;Vi}a7%&X%+CY1kt! zE293Vo-d{4lX$#LS{A^{)@cc?D-|a_Ppd0;%31ja>=2g~SzW1SOG&vEkCsWwO|Y_c zQUWJyntP!6PQSCj)tBY|Acy65ut{84LQi_KI-z>Pl$YP&0W*1d8dkQ>OW4TPaH;7zmTCrB`1N^0hC5?O$SX42Z5iB%CUbC z_!&=PESw5mw{~Gos!~i9-1(_4HMVjK`Wc-6!A(^E<@zUq{{x$5Y~{YcDV?SU8VbFr zJkX}<&}a2I0xe5g{Qiwc$t-^Vgq2D0d)Jd_-vQ7Ss&=Ud9JB${wjUQy%eGb$aZJl7 z4BLgBtZ9OwmKSaQE%3OQ&A%C}Y`ytc_I@qu%Z)*Ob@)U%0ms39aLYj_mw4U=AzTzfAFv5_3xV7y2H(JAV`6YCtZW^F)kdtU)ljV{{7Fv2A7D?oB<#c~3eD+J z7=DL`$AsZGu(EX+)^51vmr;#~m5vn;8JAZQ$qX4oFOE0WhQJ(&VzDe9BNK~{!OGUL zSl&2!*h5ajuCN!}+ORFBHiXR`cEZDAHvV*2*?Qxzq+Bxg4X(WXyI?!G?Y{%F{ljJs zDLgVJ0;j>s))82(ia=)5}H%8|d0{c}$ubR9c%tup=#E!OqFEUh)ufreK4C)`T)Uyi?y{Vr^pv7!53 zP&!QwG!%MKa&xl=?zCu5v>vK|sl{7(sLTrVx~Cl4>}|Z%BCw&`+ORU|jMnfZLTg3r7h41_8*FAqJw=^!%k%UN zk0Vrk!rLuo!!B{FM(C%+OlU@OrURH+c+5;@X2QzWnF)OAr!iA1mi0rf3*^8Iz!q_V z2|YH#1*V!XrKN-i%%r6VD_f@}aLBcpmW-=^m2;DvmFr=HxU7VJ7RqErrAtY<77v$6 z$~CaEby5N!T4PjpR(3ISY@O$;@I{**Y_!Gw5ug;Fh!k^Bp-bcfl5MfsxLj zy@V+(ci;gtX}KL%woXgvxFuT{)L3~z&dT$!L0nd(;}(@JCFMChTqY^c!phc334AEp zJcG_VmHdEyTh1!SiwC(YDv4wUxuMruGw0B?j43aZ@Q9hbOoWxK^Afo1kML5;E=U!M zrMy;Q_L4)hJ8TrU!WbiBMNI}RQMzgX5k(t1RW&qJ_VTzrm+r}8v%rwl!a$IfKvepuN$L!oo; zqPpH#pL@S02j_LzA}%=6xwn@vrR6m|U?wfEz{=KX30(>9r<3muPY}9J6%%`L) z!PR^zD{JHNGFe#zR<_Q{Mq$0vnR;27Ehl9b><_oBgkBTKoJ5^jqMXdcqh)fkKdfw> zlhAXTaPU%3nG#dPLuL|_gO#ll6FO!o7jxuBg6rkHTnk&o zLPx%8xihUV^PVGT<}BDEE;G`Rua_{TWicKwla@uWvUOTQ&p!;R zmodrW?p<Pdvw+So6q2^^;IejuGWXQ68xVSk_^6VkC1 z_J>;q_6Qpjnd$J8q@$hp@gSLayay|X;1OYv;EywEWhsJ$59!rW6Y-;{b$y~J7D}Q} zqn&lzJK9-kR?f}4h06SF*=@SV@6eOcAC~b~F?7r*V;*(4aK%yA^_8Zp2R1r0PQ^*3 zb56PJmOC4N)#(O;Z0cwYBcOv-;Mjz@&a*!PI?$5{?IT0$V3aXu>k-iUse?xRIWb%5 z4Qs4ExUuRv`(vRV*fwK(_nn}0nwn_HaHP!GvYp|%)}!^uM;Sa?W;t{`<dXZAO(S}2@jXxaWi?i7*?(a=XXpOdJ>^kBlgkL z)-AwMZ-!RX`jXS7AMbcX1u2B*A=oNz2|0=mq+odb%<1UrK|FFMKKH}Q*74bffls=q z^YfORpVwipxcnR)BR?v23eanK=uCiKft9TTG>r$4emBa7r-&=idP)Kt`*8^}e5Vz; z0x5zF_v);T$Ie7(4OrPaLYyuvqn~G;EeB{8Y!w%vIJ>Zn;b`kjJaQ&J`@_oC@!@n~ z7M2~ZAJwhj=d3sWxYUD)+p)&z`99Fgt5T^zy7kAQn zu@B?~ErreE5)@|*s^(4+dLNISiO_qn@_0c=@5ZK`DxQgLr6k7wOiUqU=*Fhvu`>~x z0xMfbX!_`r`L3+DeUwtithHKnf*ho|uw~p@bbNe^LIDS8MVfc_Y7wk#9je{$a@CLW$oQWD7w&rgq^s(=%;R!zh+Vd6CbR<@28 zFj!weiq-CNtagDd;})v~2J6ZJiqi}{113(Lu(EZW7)zLGH>=+)o{@9pz+Q1Vig5|E znmPsO3_NruK&QgW)&XK{D*xe!*ijt{5)sIwH> zqSHfiejbFq;_?$`{V^URxgQUm3DCW;vUPyA8-2K)aeHvD!(gYDun^zrzH z*!ApbH}(o1JrkoBVP)$WZOgzYJDAPrSJJF^x_F|twvtF@qBbW+ioE10L~G!|Ga;G` zD_e(%v7PIlIY8bnoh4^zCTteB62-Wk>*Y=n+8>XdiO@cF*T7cUz-K`}#ph}~awa}k!phe1;dEdN z`tvh1fS!;8v;;Pb3s9ULST%Qw(BpXQOoSeVmB#}@-MJ!JnO-VK=zZ8M3kZ3+Q-t2b zV`n1t4y#(d48rcrm5LhXNad}Q2eyk_o?=`qs%K9zItq`TiP7P(vUQARj9!=O zMy5>j{j=mSErw0w!gOMMg{jE{iqs-J2PRVUVP)$`Z9h6v*>ZQbkgez|kax&wx*hh5 zOVhFO(KM1i1?d(%d?rXY!phb`Voc$(>eDWL3F$dGMbE-!aVd&%3g_ic5qbuXor%y> zu=4mos6f7Jo0JldwJQJerU}fudh_M%vOXszwhj>EvyiHb#yS3ja*XbW z9phpY<7Xkh0TiZt@dTJKeH&J`4il#{EB0ue*=ur&UV*LRQWR%rR_vkpyog86#OKej zvUPkI(|Yx|^o$)ffY$zmcuuy4k{I)IGB0~wWE4fQi$gu(EZW7^fif&Vp=yK;K(iEJtY(Y!?@$7*9dgv!_*QJ{~<2qYA7% zE-+FD)+k1|%Q3nIw#x=awd^TIH{#JVG5R{JY#k%U$;bRau9EG~Ez}mbpOtg;4D1(| zqZm&J7(p6IpMvxu+}uM< zkp2rRTL+1;NU0{k#%=!@a*{d|BPqs3%0~VarS0(enJ8@oD_cj2(Yf^(%UMHBIzvv< zsjy!bI=7MZDM%;b;WI%x9#*yv665$te{sGxK)P7Y(1oy7T!vyiKB6+G_?(AF&cx@l zu(EZ07*l?AL)K2}t|$$m`{fAT3){s-D8?y&J$s7LxAEwi7<~&?wvG{FRlDS-v;C!_ z+IG`OdPPpsi?Cx{l44xd_6?vg{TWYy3DX~8W$Q38hS?=IuO5!ixca5*Yox^!w#iB& znF(8r!|X=>6s48%_?alJ04rNZiE%ozR2(30*X%FHXdl=tZb^#qXq%TiMQBevb|yl* z!OGSVVjOKNXM6Ow{Bm-FvanZNf?_<{R!yA()QyME1SkzFTL*|SLsQ>fYlEVz<@{U; zTgBxk#u=K*oZ|CEJaQ&JUx1aZya+sAiHFVv=c#pOX#_nZC+I2IEG|JYE-8As(;D;(K!Mr@Pk{;4mawvQpf(Nv0Nd%(@4`A&&d*7(Mchg>Oa95V%9!GEJRUI< zmt$dN>$ps5feU@s^Flc<=fNIvc{wBoUX1T~eijdz3Cw3;W$VCf)*2Xn!ga5lm~X=- zafvxJ9%2j|7vI8TW+L-VSlK!jxH&ap?0>;PuL@F ziHTzrV?2zp8y+$fn4Mu|>%g?CG0HuC6qA(`(+!)%B_@s;M$QZh%zvD48k$DwXwvJ4TV-#K4%KU8EHQbK4 zagTV;w1JXHX3iADF^WLuwBoFbN6y4&Em+w)J}u4!j+mG&47%i4>EUvM4u##~mYx{S z1U4s6Avzcjo(a)`u(EZCT6{G+;$zP3uB6Jn*>3$*;Cwkq71%K@NHKghN)4beorx#F zgsA{4TZd_@@C}9$FUf_PH_9RUI_wk|q9f(I41VGip0DA7GvWCPtZW^g78hxbcv#Bz z^qNc2Q*w%a30uacD26+u4GvJ8evW6r#ObH7vUQvogKK&p>xXiT{tH{h#VE$XwecR- z|HC6^;`1+9**ZQgmJHKwR=+=EyI%36Y#Sw!%%m)aCBtgUwBBrqhs*?Kb6D9rFfDe< z>0z9c{8UgD@PDrH(< zK7)tM1m;t)vUOmlhR?0k&0ssJJF>K+>fe?#^DWpWE;EP8Csy^WDK_84qh?}r8?0;{ zo6TEblO4=v^dmWcmQ(Xb*d;DCvtyvfOPWISdpu|+G{1$FtwYmd`_ollnd_t9m9yf} z?+QvHnbB_y+n-*}6q)7ln3>2d11nocrp55rEp=;M)1Go*c7rYA7MU1^zba#j%g%Vj zOk8$^mB%zLO_|o0&*LF8f%zP)Y#o?ZBbWvK`59V=^g}r@KY&f*5);P=rkXQF<^eorCNkfJ zmB%tN-MJ#!w|rBM%->;?+K7yoGezcAJZ2^`FT={#k!f*}iD#er%kK^P#M7m9l|(Yr zr5G+U38qc~S_==I3DD}WvUPx3jBC2{vawcpMmzNl(*(zg-O979ViOW1#**Y#QHVt}8u2UhG_kUfE%-3L> zxX8q?X;9CaV)GR|Y9=;cf|adf)8c-ux`DYdGHt*;!8U0sI&i}z4amk5cWK&I<0`o6CWF|2GfR(KSvqktuWwzX{UhA#s zTb0|)6VIczR1(R|qYjsERgR=h!Py)Sn+eXQu(EY_7D$P~!U#h;ZU^BLHrwj!f)rpSB>kC}Zg+1aD6UPu(rA%wg z%Xr94VEzItTL)&#@NENCqMb}e9hTMV%({8;#Az)hk<7&D2>HH2BX5e%>Ui8tbXJ9x zt)tUw_B4WyUU3eVvvVNq6u08UF?(txPT|=P51a|l-mtQDcv@U9qJDqbw39R3-FK#( zo&szYm!24|7YSre@tKE5&cvq|Rvr)d6pH$NYhRP&^A*@C3;3waDL!AqBWL1s1*~ix zpVnQMSAEC_3qP0B^HbOB%JU_+*XTtL%SlK!}jIN8`jP-wVdj17l#ib|4 zuFH5c)<5vbnfSa7D_h5>#hK!~vml!v&^I=>EQse@n=6TA=36nGDXwQttIno))J$wP zf|bWKHtKXA#pYN!Hpjp=aVt(7*wnJ7*c^#R&BW#~SlK!@Eslle2Xd8ce{P|+yz?13 zH=lxi;&KzivCxsUDL4!9u$kZt!phdcX)#1rr`=MOVyZxTs&C5Cxea!Ti%twfWIu5V z&&_z?On7d9m94|mqUsdf9;cEW)DNToUXIRhVV}6@#87oc(x%}28V{QZ&aYr)>)^E5 zj!>%_#sfLa6~)8jWt2oR!{ZpXBN};AbUN_3ndtm){GrpL=JXfKSwqd)Sx(N5cnd6_ zEvWBC3r=qM!lC6#ZudYbJKT4|$;)&Mt>_fey+!p`d3SgyhMF^yHU(z~JZvU7+rrA$ zYfg)UT>ZuQ+UWQba%N74E#mf5F&yMl8B<(N!6Rnkaw4p39hVmCH|i4Eoz%6e8Zw`k zBl9`fCN45DOvLM1Q*184qh?}rF05=Fn-(W?44=O|AZO;gut!{GVmO&oO_>674<0fT zn7d(R>%g>_fS25Kw!c(Vo8(%lc~y?h%dk^iY+{&z`-xL{{(=Y2gy&DNvUPY`%%e(f z-pLj+q|j@?B}O)UVaRF#N{QH z`cg1F_VXh=WF{~V!^&eCm@~*S- zITH4YTWw;vzB-sX1?Vt5bS6NDz{=JEYH^ad?xNv!j!((?SqNLjJ->8ZnqX6Q-1!mcRLY}pNZ0Ou(EZOM(^DWXLdd( zhv)*>DlSCv^={^)JLlq&Gx0eaR<@2$i=)Wpfv!r)N$Xb=d{@rSJ+Mz)c49b+Jd!r8 zJ9pz@Gr_qNR<;gKi+#}wxmNvUIWvEOE#fj0!@j7>nBwv$JYps;e}I*(_W4&%Rbw63NWIV%Qh0rc8lZ2@jbG%<{0ZbzoYY?NYr`{~~Qzyq}zyy5hUiWHX?C`C*eqwtXj95ctl6X zw6lk+UcRI}?R}u{W%Y-$bcK+=*rsoC$lvs>74{deD#@Wq$5*nsY-Qo_dBfHJf3;=9 zm*Ah8@pm$GM5dT7PtQ0NCzZ}Q<+7{&n{=^IQQsQ4rRmwhg`L6wUT5R4ItS_jHhuou z`#_x_f35R{s2u;hv0VDRC($1FUz!rq#9p(k-Ms#7YNX{V;^F!-N+OQo`ahI!P0cg3 zXRCGYdW&|Nb0iJhfk(+KegA9S-rI!!+#>wiTDP}0v9GsxXUgeHr?UC}T+`2UM|sQd zfO~5EE}gdgL6KWNkS$?gTRdJS16#w&_2B%DXA4iFeXwX>7&l<4?+iIP{jknl%L|A{(R^P{NE)kIM|Cy7E$ z)gNx}RDHRF-N9_yZJG*9A3#TT#$UzI%u#0QPO0Q9q_cGIKkm%b;%b@!8Ybx5t5~tw zW}RMtf(zeDNwB-%FxUx(14ilDaDb(@MwNXE^uGu$GuGgt(wMV^j^Z@}YY zGI1TOY@LaX2ovfOy4!Ej@5 ziVlbyf7O{DiLhz#Wf&H3qM{ZKi#PNnLPt%Z-C~qo!`Ay4>ohMK8Jp=~xS8rdU4L+V zAncj3rTcbNI!)~}v^VV+X`5<0SB)&|ary)0{qQ)M^>1%aIkd^!I8fFO8IG6{7)l0* z%LNs;a8NW4H`O>?rj6fnD`Mma9n$!Ld-Z?)m} zPv!9Z81{+_PskDE!)!?3b-dbTqUP8!?D>0Myo!ahpAk4o<8Xf0w@X(nI9Re#`XGr^S zlvbaGIy|3}!?O_fi3?B5PjuL|XQ4}}8N_2|Qd5SNty8o8DC3^)QZb*(Fg3aPtP4oBtW^&U7D~|_m2DBdQOLA_mfQ@Q5Hv^QL z%kiL@+*}GPTjyr9Ga8HBQc)l3{8$dok6@>`;KXu9!^@hI^DrJYlbr9v%GSvl?Tm)! zp=q%54>>+>!*+4;iRFxjpE_me4Lo!vLw|#ntuqvM9^NsYP2F^nc#5@=l1OHX)$%T< z(KadS`BGZe$Kz$vvJR|lofhpbr^ec#e;`vE;T$Ok<}lbMZl!5?OY>;J_$gCn4#7ia zGIJ2DJZ72kkI`w&ER-`d2;0;aX8e>XGi5wvCNur8vUO&{P7VgnKWWh1EQjU>*e5PD zqLYJxoGCTe;W0C*`6{ezotm)Tsp??YKzFxW(xCaZ9GYLjHgTa5^-g}ul$l@PAv2lz z8LVub8SSa;#)zhRRL(SY>iDF11pGhPB`z|eFG3p`Q)2#uN6aMV->|ZEVzgH$8pMno zZ_;Ya4su|&RT9ZenGTlhiH{^qdD$8dn90i)u=3dD#e9zI6ge*^!X|MGjEtAi^ION^ z0W*2|IIKKoc^Nsrq}7)T*B# z9yF7izrxDaxe42y^pC1(1L2Jpi>FZQD~V*LP@>&QKV{0yI(W!TX4Zt2LzszhceQ{0 zb?qwL2onA!+s7tv2yIfnJj-5EuDL21H(*ys$j3sqwb{rRQ zcU7Zny4=}t`F18M!Ty^xjwcb}Cg%8W-(KaQkq322(|itYn)*-GzjXTo*ehe}_6;hX zrgjvpwYqtsDEj$s0C#(3wj0xRq?h&8JdYFL#d$ zS$J3S-MF8|E4FDoy ze}cW?)`8t&IBGdkGX8+a$Ry);u(EYBNaZMpRE||YErw$yB@xH?IF8EENR#rhJRT;K zk7Z$H>wK)MRSx5$<9o~5*aNnPTR8SW3r8bGGL+aA50Xj7PO!3dGG=IGq}BK`2e)UMNoEaB3jmu2S+iU2cvokeX^0dly;lVRmO2Nw3 zS=td`sqCJq4Qj8DqjWj!85gCN`%frJDtAiKrFiU2l7?Vq>m==MA}Ot&>rU18^73w_ zx0p%ISC6x%x^wP=Y*)@z*K76Yo0>n8L-jCh9~Y`q&_2zpPb?cKU*E^mVDj}nSlK#X zn;ZEm7SgKc8z^ME_4gg#mSgk=>=GBF1EXOS$d=ObH#}M%=ztjCg*vzLH30ezi{|Q0j?NM%KXtWiqlRtZbc;O+y)}EbQ0sEj~<6$sw>s+;XyC zbV{nJQce!SLuGPu0IWQAIVtx#gp)xzCuP{8$DrJVHRp)xti!^+kO(slJZqNRwgN5hLx?8qOa|xt1CF!!G%o^C;v(g$S+`PxPZWG zdyN$9=KI@(Kf{A$lJOH***Y1<8j^RNf^m-XKRF`*fj#0P60L^#xzZZ)Z#-5eDgT6( zt&_5gskiAb4XDqWmJ zrM&Efhs)$;I;?D+7i~|m@ms5u2K1uh%1P;h4dRl5?kP4UN*PJvfif964OSkTjFeMd z#bQpM@LVouE?*M0cpljsckn3C@ zmV@(s*flOVACJ@xwaT8-^gTR!CQbLj%HxKnvg)SNm4TApRlOmn>2I)WZKtV`J*DZd zc=Sw~UV@da)3jxHZOUfcLM5w?GHRpZ^*<|~K&_)Bl9@oYyvfsW2)H)Zsg;-DJywASSBldu(EYlwA0|VvK_EbpKM(xhvloVOI%pc z)8I5)O3Rn=XqmKJ1uI*pWuwr_qI2>KIVV4Z{o!)5cci(M_p30xr~DH`;ybCK^CuA!_4N=bJi-o{>D{Y9f^*Q3H z(H2S~nW<6B+kwM|C?sP_&1QJSOlmfPm90~=zLAeoM|{)3#B-@)c^X+gh4 zsrOF(3n?4F!GmP7@ieS#oek4YfcIFiI&9aSa=OZDH$WTiE`P3gxVx;9NM^VjX(vEW zm@@M*JYXg>AB{g|wlIxn1}epF1x)qR`~FI=hRm*VWOl+^fO#!q%lCFdXGqQYQevj# z@iK|o9#$TkRi@!!ubb`Z)vHXG9GMhs6t_2uR%Nt=DKn?x0W+C78CJH=jOlc5#&!GE zff+J%xl|6z5bO{amPn_28<|o{F2W;aQgS}5Y@L#I41JNh{H1Bx<@<6vz6U$Qr31Zp z)f?DWGpt+huescZ$H?U3JFv2KE;cZ8QQf6)V&iXeHvS5`!(}7VPLN{5%aZW%5*{a$ zj~8HN>wK8z#F=b&w>EHH=REOTXH6xM%v>kZoVc1KtsSf3K{DA`1y;7shIX5Gt>St& zD4jQa_VD82zBe{jk3AeDN8OHui#*t+Ubm8bW7{je&mk zxwBKL-g8-U7FIV3YZvrt#iUzV3q&L&Ot47VI<XVdd? zZbk#=cdfv=qN8I%NA;h+Lk{WaIDNQpcI}VDy+7(H`!9O_26l~0P|GK?uS~ z<3TeadJU|{jkXz14>)#;lB%nN6Vz;99Y>pEv5r?jmu9oQobiA1w3pfKhML;*7-3l{`y9$^AhTNQGL%~%?rg7 zqt%o|G83anTTLWmO3f;G#7t^dgq5vRvyEXv#`mzX&8ziN2gteE7xs!! zC1)=@W+pki!^+mlF^+1wQ|jU2az(E*c{wkAutQv4qK#@sGNqLC;E^&Z$-v6iDKV|p z)fZh-1N|9wc26rUUzVeC6>Jk1l}KxK&FNBJhVgKjyj%t=Tj#~}S&9B~-%sR-JO(?% zMI_Q^CDjb;*8888Jc7r_dh_^&xtls63NVoB8^oVnNmtN#3N-= zvL38#of7SttZGg1b`#ZCT~2zQR#=XfV{!y+5x20Q&tz$-Qch;$p)xs{1uI+U#PkVU zuIT887CtE_WC3grmyk%GuvL?!Yz*K*GTA7>%GTL1eZrP^`nBS5s~nA+U~jl+L>j@W z94Q&s<1sSHxE5BnPKIgEP`TFl@@+2NDla?o7W$Uz< z&LHHS1+`0lnm(le*yqIK)sJ9*xST{9uljk`o57zGe}G5IWMnCkjppdR)$zko&33oY+s5a&itHDwC75 zU}fu^m`<-02i?;Al6pG2dOKlb*;1Pd-6v<}JFs0`W+I(lF{e%WxeE`Q$~fQjns?IOLBl-fc@eEbVQUD{*b&WLC@oHGYNVQR<=&i6azv1rGbK*a`XKa{p9v) z7mH_2t0;+N#>4wZp(cW17!V~Gjve3*aMVH}`Gby?RR<=%&Y5v{tQpe^oIW~{L7ICqOH2?Nf zrJOv3hsxySL0H*3C#FY&ee+VS%gwuTZr*||<8l+}k>K#uDMzp4p))yp4OX_!(T0Xu zRLRW@kZ+_n84^#RHdGSHOrRn?sa8vq^06KsCXFX z#e-$Cat*9(ofXqsu(GdG8c0_LN;)b}%Taj}_K1s0q_yBcu9TD~@K~9oEP<7+lVaMp z47lfSTk3P|kL1vN0NcfdCeps8Ic>_%Qao%XKkviJ*7-4=1ur{;dWqTo^WxdkG$oPD zY$?)N@M@Bjjjiw?nQTmjm94X3+BGPCj4$V2RQ(R~w-QqzqrqrB;N6e&VF|2Hz8q;{!_fY5MJ91v`f<5B$ z5^1~}$d!_E2OcYvl-prt>!g^zPx9u_P2Uu}ASdK`*c&b(k)GJ9$DixQHrHXs>^#^SR24>c&T_Iw4Rbk zW+D`A9mUU;lCm})E0dHpU}fv1n7$zy*ghD{qWx?+Ewf;sxRoW+HzZoVl$e=# zyi8*Dhn1}pW4h6!QdFd*^^gbD_^L zUN0x*TG%HpDUoW5mM*-WGO3C@nD&(Oo5fHvtpV>EBn+%FeRr_)VBdnkfSme_J~_tBF&-$xl&T* z;IT4EISN*`PKxP-T)@5R`kcO&dyX8JvtXmRxI{W3rzcFAS&RqFWM&bpY@L~q5zI(+ zNew!=0avHyE;%)Kz*cdoi8_MOQl{M8j)%4N%zNNq_Q-WOl-GVy44l9EVfv>WNoqULld zFB9=_nY>JZm96t)`et4kSaS5UQM=1I*#)+TTT~*QoU5ft`Iv!+$>gIGR<_Q^#)dl; zDy3}Ru>G8o6XL)IaS7Qc%C&SOiBd++zyoD6aw@EBoe^UVDXCrOw6^JdnVgVIV0*ZP zM5`fQnv{==@i3WuTnH;$=VJpy4H+n8yY+i5AClwoAnXnok4Pu?y(}pm_v2AA>9`kG zwoZrXl+!@Ld$!7Z8c&}Nzb>cbHP|ICC6P`!HDya_c?FM_Nz03{^4O%sdyBOSi+Uzp z>vGn+Ts*y5TS+7{y@^IkFk4E?8hEr!S|-EF)@d=_kT5^1E_uqh-Hv)~q;^F@F-I2m zXUVad3ERajGLddbFsDuV*&h#^$dE9(mwJ}dE$HtqUMmOZ8rUcDYQ8T1=iJ<)nY`1iUj!b4?J zG9Om9PKoyAQSYv)?rct#7WJXMHjcSN4$1AXKU_%AFOPzG(mHYr9w(EK8)0SZglJ#W zmwN}gyA>gI2Q^5ZlSA?>Y!Md{w32A4Qcj-1LuGRE6s&BW6K$8e+@H%gQsr@m#_Q&Dg zA9cjuUVWL4zBknWs_*Q@)n36so>;>FC1E~H(WzW|YOf@W_}f?hY%HTGeg}CZ$Slzy7gFUf%qDuoc|C zYpcg_tr8A&^*ujP)xwEk^(d^gZ4;rk zc_nOxLrYF3s}>rYuU`BnjIWWsp`$Xzba{HlsW_>0&MB8&?cbumg0XHO%pHg;Q7ivB%$qz}2-lW0#1wC-KjO*M{Uov60K%?GmTd549k-=?-D#xX8C#CQx0wQZQ3`c*et}2&Xm)Y zPG$4`xu(^Yr7G}pSA=roxBvUNtHxmlZU2^6)Q#Hyfs6?W@8K~sNq7fVt_SB2L*Miy z+K0^aP-N7>yoy?;D_4sBsS&@maq3oAhyj|aB;uGrQGn)(3P`6)oaRqQHB<2TnJ{e( zD_e(YY8XsT#>p!~-F^+AxpIK!z&3GvAYlb+MC3Xhoy&Ec@Jb!fJ13C)0a2vWo5 zEIBrdVWYU%v^)bbQb@~T1D8$@n_AWsoJDxlOmODI%GSY|5eCkP$?EWDIjyEADI-L8 z$RWBNHjN9>@v_bW9%M8(Ta)_RVjp9NitVDsVDLBvI zQ8U4L3RWJ=;FQW{a3)mK$z4mM!hES`CyCdi44A?4ex7G4!*2u^v zd;r~)H-+a^JZ>gDC&9`g@QAh{YO9eEB>Xj~N24xd`I{lNm2goMH%OvTn<0N}?`Fud zhvl6fw`qO#oA9s9_!AjAERKzktQTI>8oOx|Br3y!O%P8abU8e9X*0?;RO?NUHJeK# zZJ;ON2CDyJ{RQwRV8e`U-1nf;X=RyX9Ey1Rp~LVsGuQaE&Y z9Nk^67GKlv%h2B)sA9(E&~=La{%$`{0dt zbedXcX!lkfUadW~9?hYXsepy}JP6yyts2KgtQw6Cev<)o+2DRW0VYxR!phc(+P)=Gtx$Shj?!ze zUtE-qlA_d!8ERdX)EA|tvfHvMt@kByRa#p~V52`SO5&-^;-b^?PK{P0>!yq;GdVnBCNo)B**Y`ks$(kO8amg?(YXe;i;GU=s$)u= z5_B~lIFq0&VdW5lBCO{5%aXNaf(R1+Eb-K+Lpnc-+RBtDioGRKsAb6wmTl{@e0~r$%X5cY1N$7-?Nq4xNClOjHVqdP@rg;z^ zK&HN8>6Ci%&H`;Tl~GX&*C-v>D`PLwN6Be9nqrXClsFwtoq-3=#OG94d3@lLEok^$ zCdcOz*eeV8WD69Zi}Apj_*@7pTgOK`k!!3z^LyQreks*Ma)2I$-Qoh&@+Jp!L2i9ssSaB$AmrwLH?z$0wxvtbxbPgl96WY#p8{Vb#YtY@Q{jW+vXojQ19J`R5*L`3Pg=9;OGt-wH6Ah(nJZys>&S#I0h))wPsoW`0-MAorsa<6=){B$ ze;>yqW&-mltZW^aO~Y!8slY6im@*W;96P9;i^b_| zmbKlB2onD0>4d10K0k`u&Y38RzeL@?t45(VPakdX=INwE-GW46)jo@?M!4%jYZ+xE>>I!#S8G=mntrk3oaxz(fdw?`d3I%b(W!&44z z<7Br-uUM~RLPzzVk&C6ht5i26h6MHtgTKeiRP4fiu1j!ZjXR{Y*$s~$jMD6ZEC~P? z<8d+pxDZyZ2j}-N=XnyLn&m3@a+CuU}Dl{P?55fjfUA>vBk5gDv7hVz~Qvv^wJbeJxXp$t!rIOiW&cm91m4 zodFZ|EpMrkDi8Gc7fY3LDqHB!Ica^1bG>WCb!BZOfep~O$QZ7y8WkCH))b#L@Ti&i zOoo-M78efGNp=DZ)M_4NM?i3QP_UmkCT3R<;g|VJ?($yPbiY{-Eu(a!#&+?cs8= zCtg_USyDW%#-n87aV4y59S=hX#~iO>P*=~7@G z$HQd;^C+xr9hlANh^66RW`GQHm&$2*A2x|gi{XZ-(T2HAxl&Z#!((Nl@(!##rcvp4 z9lZnE>Z{@z(Nrao%#28aN;OxC$`m|SCMp}l%GOcYz))2dWXqMZHv5??XJiiS4!4}_ zfe%t#FG&i=QFxF{I1Y!Et;4Z7g`>Nu-cwZfIlF~)F{6)A&XPm27iFXTL;82`%%ti2NxP4S^HY?>}L%nF=l2z!Bip zc`-b*FzQ^WIa`WL7LS&ROE;`+9hdb?xR5XCuaPryHS7(Sk=^i}o^09l&HR;kh)giP z2rF9$!!SZAr=3bgZ3cGd$eDsAazGx3J>miqVSP53Dy<-o;-NA@`5~-q9h6OI1sQRV zZ1%h_$K*ZOAucBS;B~}LltS_j9w-x%H(_P#kQh$0sp}!Ta<1C!8O)NC1yipRPk5#% ziDV``5soM||{S$_B8qbyQ6Cq=rg=alSU!nIq@qDA=JS>q#R~3d!MkpiD>( zg_W&Cvb~|x(Y^z#zd^5W5-ye_vk3N!i_GB>x}cD>DM0h_u$cf=U}ft789vvj6jR;V zoPNmdb~!J%!1i!?iSW5bJxhwmjd+wyJiZPqk5N2w>ZGjJ13fFp;~ChVWbvqGN%43J zkCKVUFJWctco_C~)bC22T_UegPW-xfBs)P#Br}qYu)i~sCI#d}xEY6-fczI$whoBl z0HktGO&4>HzFt2=PDp2BghV(1*~pV3vK<~L6OnCTW$TC-7T5-z+<==>8y@O#o7T^q zA*bY2*duN~6JdcZm?{P3Bs^3mD96LfA)rLKW6i&&t#+4F1PT8tpHrjW;o(P7yERM{ z#om%A)MarmPHO8*TPqz@EDXA(a<*6~H(eNa8~pP!{x*h=8Rf#b#-=U3G_LVio$CK; z1le>$nc?!do1^mVUmkaZClPwFSm=3)mcvIq<S&cVqMCZWn4c+1B956EF932H4#_f&f#>!DGe~QxKc>GM14uzGiqoh4H5UfYWI<#2M&m!0*EMm%mNI$wvCL(qvZtM(`6 zwNZHl34eLuhfxP|eiXHNp(u*$BvGj4fhEheb$MXYTy>GC{tWlO;NO|?M^o_DPicqKK|u^z+LjDhFR|h@c@2pB@xE}exlN8YMSu7$x?yGOc&zUq1RJRzc>^5R$l`^Y664lhTF#+7)C zOfgs;#bm5781iA&*_V7eKcR9~VZ7S5S2 z#_cpts%cY)&Y41*I*=o2^b7GQnT>uPtXvPy?@&JLNre9XW1muQt^fQxyRrqRv@n$} zsbZ+^`mL0T zQCC<4odY*e{deonyv~9xGq!PGQRy@_&rs-aJkX+n=~pnvdX)YgY%v}sv-BBMC=X~ws3TPJMO7*B1T(2^g`lMTRxC2Vc-@#UM2%K!pfxk`?@C) zS{-7al7+yMR$r8siuzW?b1FC?EYHFgam$3^`-l2wmftIx%S2~ATRKvD29K7B%2Tki zbyNcPqXg@UGOs+KKVm!SW-%!fl|&rFYFbu8FCiYitkjaFpiIDnWrFhI|2Lqhm-Q$p zyU0PAfqT#Fe*~b^lBJ+@;=wXO*$!5=UQvQaYyw3(?<~-c*f?@Z&VcRVc08erI-{2p zl_^E!R6J59A}7Jh))5I@coFP$@-F#M{SrAN7sLK=83{i}5#Zi9PwT9vN+G!r50weY zd9bo|NW$s}xlZ;$IV1PO_HY@I)DhFIviIVVG7XT({bfl3;Nwsw))nhw(Ix+ z{PQyYHiqVmvg_EmAA_FsZ2VQH8;r7Pf6K7__}!>P``eHAcoGq|qvGFx+@kpt^8?fB zMHsbDTr7mP-1BhD)qm0ccI0!gg~rD3TcUKDnrrA}dgRO8%$-gn)3SEmPKXEfEd1@t zXYnkUMe`X?IRYQC??ADv3GC+ucP}U1DjtVVR1$HF!zn1~#6StSL6Dh%=fgziLl{QV z&;GYY-3mu^bWA&Yc=7NyeJ^d?(b4!!~SBeu)la|N{G~}N_c2zPU&e}Sd?~i z1KPs#E^@$T;0t2)k%M+IY#tZ1T=Jm##?Xp(A)XkM zxAS0S>%8rb^Ohw&=Yw+E?uV`8($?1|+LSGnwR`cjn5=ypRvw3}Rh&YvR@q*Yv-S#X z-56u7Y71rUMLaDgYk!87t+TclRM)C+Cb*fD0k^ep6VE!=P!h?^I`hewwtzE~xXE~C zOyX9Cm8}zp%|FYu7o90bZGYG{Ze?r3{IhBaWo#cjB_?Bg!phbe!)6ENVt2(jJ1ELY z%faSxNo&LGz&D2Smch0or<`gB7%slh-QMqo(q$zU&6}Psp5^cl#}IbPrjJdmmVg5 zLp+S1pd^wR#wR%1@(rPUeF#&)ezP4`w$2x?YW0`s3~`1WtIO0a5qUQnvG!*gL) zt!-fCaY9uUs@=5d;TdwOPKEs%1AU?A1*PgFJQpTa$HU6jsp6e>4V)0r*t%HG)`hTZ zT(%NC?HX`|5_TS*5tFdb!phbOlHauFT!?>1*VMaSbxS-VKVhcSlK#Lyjh`ttVHVw*Z8J*RybKnjJsK(ZwRef zE8__<`C0*1w$2yt>|p&nEz^?L{&K?hfol zGWG>nd3-TuTKsxk&e)@{ZDWVAkTtL$;wdp1`vI(MoiXMbSoLPlbjq+$@tz#9cVO4J zh$XoO<~u@r$~WfJ0^MS!phdklC9jK@D1SEG2tu0%GTlI%qQ#i8fm*# zPTNheYh2ornNK#^F+6a^+>Qwy)qnbysuy4S{MG&I@w}LvT?;E)=WI7dk;|*nHs8(m z^j1=Nr&7x5kFftn&f3$kb6nQ=r*DzUMl7M_>`6Q&CT35-%GNRCthx3Va|;KZoHn=o z*j?fYz(=rOT)0k4WQbNbf+F<+o(L1ErLeMfr1oZ1uKEh2wh*KdHeF8G_DUj|DJK6b z6{LKbeWAcj!}DSSw-u~x9XQS!Y~9$A)gg_v)8wR`4Ex5dWy!3;YKBn6PQVjlA~qLR zwvL$g5Q%X$qwZ+)Dv<`-MRL&2hu!0X#y_bRp`Pm77$S+KHo+_Y1Xt#NBC z8)>ZFCui+DuytJ4dJ-9+HGYB(Pbg@2;W;ruy8~9X4%%$~SgqBXkw)H2a`Ik)z2uU& zAW8CCnM6^19#4{q;&ZUFbriK%aaz^9rUfO9z18j(PfJ%(63I*&vTb0mw(3Y>TM^HS z3EL!C**a|d^6MU1QPP0hR}S1>uz}oS$A4Qc!jO(QL!sLp&x{G(F0it7=s0`s^%0DD z$*oV0S`Ta+7d7B~H?Zg4><0xbgXhBp%z>4y1EyUL)2a(qy9K$FI*yi2yJfAQT_vY% z81{}!S#Od(XwVdj+GTiBOw=xcm93-3*@LhDb_WXOVyU8b-^*@K-YuxTD%UA!%snP& z?h)8TE_2E3!MAdU!uJrK9TUC>VP)&^9l#&GQTVbtd+*BGdkglE%U*wy_0D7tMelVy zIVO6q!OG(rz4Aa_D|?%KTRd6aP)Q^+S#2+R${dQ`dU$e7^wx%zt)mAlkPH?}UD>kv zxZ4qO=4Qj@am!tz3nWdhP}pYSSutUo2`gKNO}kabIF$$vm$kySKn~deY#J9bCy_oi z=mv$WglEHqs|YJwhf8~2GZZfUVyv6wR9z3d#ii<$#Hcdd6@M+B1{0@iU}ft#aW?1a zP?t_ZpO)kGBvUS`z<1p$gnRb38r|kpSJT7g?jKfT> zP}r8@SutUIA66cpu+fR;_TLdtG^Z(vWG0$zg3UO?+zQW%3ENay**a{TZ(EusQQD~g zWI1Igz^-viS~B0ZG}%FG*<3swCSG%3-U-W-0_^Rm=S9!;GP{5Bpuli)WzT!x26zyt!x`gj^lNY;UsNts(Ss)S$WYN(E{ zGPh-OnVXe!t7Ezo)qN15weBS4l(5zv51Y-cb$p=RTB`F^s#?JdGl2koES?4v=wm$P z(5lzQdnTu|015o;gSGFoa#TKpd(0f@@jn%WQ3=>Vp!pP@5EGh(urjHFgPuhDCK1}j zMWU0y) zC{@egxiG2ffR(LNrJW%Pt5sduf>X*aa!cB7!ftZ3c7{#k7OW&kS`9-eUpwLnG5Oj7 zR<_O;voBQ7N%U!GrR8XS0``lGR+3e#>IJ3hbUYU(Rj0tp)~RBS-_ynZh3au_{bPbJ z$jSOV>=~D=B**U~eo(qThv&nj>jGHWI$gW+)*jNu0rjC&p;%DeVo@tzKaeB#0Bjr= zG5+^?_&~nN6w29m@uZlX-2*FI=Zx7mX0qMg8eV^w)t1xDz2p@l9?*?f<5D+mE<1Jh#!=$g?K(px&~oo>vS=zR`0_8qK?)#F?!a{T8;2OIDJr?{zyUTffHBVY2lr zSlK#T%$k+U(2>@1_lpPc%P5It2JlJNEYA$eRR^97ldJ!YKdzXo4LP@@58!u}W3?mR z63h=RlAIS-y`WU>fak)bYFk*@dbMIwl`m%W(+!`HQ*}D*7q=TslB%i~l&VwkT$ogy z2rFBsin&)K-ozKg;`W);Sm#ZZA3TtjqvM#{0VUl$&tZbbu=1KU1yP)E9SIDl; z19G^&3!BD;E6J1a4MQkj_uvUJ`MMicw$2xGW>`J1+?CbW9A1^v^)hT3m#!pdhIKnA zTYtgRVY2lnSlK#T%&}HEThPyCt@SDFd z8Md=i?srP%Z1=)c#jU;~qAkQ9Cl{5BZ*tRjnnCaX7AK@u68G9I3w$7OLlwj!itkyX+ zzF5~f&40;3`v>eD7qoc^-Z@e)W({9xMSC01i%HuXu(Ea9uwK*fLI36th^LyHDv4yK znr-Mc&ENHJgr~%0Y<*bSI%C`!XRV@*e9o>Fv}5F)9SK{x2;jGJ%zh0!$Hk2Q7)^v_+gc|YdLO{A z@T{1m{Q_3DP8wFt4A%lI^PqT6(4i#8?VP}TJHY>75{8(J{RdXI&KUDHrusO|cuByH za>{l{jItzeV`?&mj?A{jlVWnVHLPr%GwormQC8FFl>w*AAv*tREw9ZtKPM;c0@yt+Y56vg<~u`c+PQdUOybUlm8}zpjn53% z34B+M+C8vsT-4ey+ce)Qa5tV3ld(Ht<#ERtxm@67Ib(l;Z5vaJneG_)6P^;2u|L4d z)*0IcTG8k>Ts5%z_r(*Pb0R_k=Y)2T1?hkBsh zfq1I9k&;Mes@Vp{%(ob}RmD zb;kCC_MEh@{k0yn<00{s;D4}#T-?q~e)maphxViY!LwtM_itF)I(gVy+JaoMXQ9U1 z4szbMRT9ZeLEEsF=6OOX+ZxY_N!b>#vUSR^K6H^=(ccO@MGo1Cux;F;)`mW`Y6)fR zI6NgLV;_f=tuw~FvDj3?E|Al8E^HW=t|V_P4yj#dImY+8?uPe;n@p zQI~jo^<_Hx-cbLmzGLpGj$$H6%w26n;;CDz5`8Ni(a|yO?BQx0FDd2T2l`%Cf1IxV z?c|WZ>02x8FJ78r*6MpzNe*q+Jn=ZxEx08oH)}z^Tgv9uOD9fl_`Kn2B()UZloS1T zxUINEAIqLw^wiSS?)Nn%UvK1hCXckxt9bZKh+p=U`zD4oQ52$_K=!6c*;Rwe~*yQmU=fva&kz6#uwW~7gF7P_VIVO_s6NjUY* z!#;C|b#vGx=e#Vn5@$%A5Zs3c&m_3VQx2_hZCr5ECa~0&z)w6_<-ROu<0{-~cZny_z6rvpzp}>iQg^rh_|s2Rtip2h80;9g-0+uhndK&E z1YH(+1W$ws)kCndb*T0nt=DRJSU;NWTC|}K< zP}JVSb7G?QI;?CRHSKJ-p*wUkPJbmk=%$>(o>YIan46K&INR(IaUI)4NhC8dL$&~RZVW)?8$ux)z!PFZR)UqsBV;@4mF!kIWH-UijUmW(HdM0f@r0O=T?;E) zhfLdaGL6Z?hGM^wv-LD=7?-V6V_&84horP_J&EVRMCu7xc^n}{`oxd@NIbg#2sX?< zQl|0N2Y4P#q?W?U;|M9z15TGCwY`!^X2O_Ul`?gF)9^f)NNoixTSscEQP;gPX?+p( zG&xHr!%lI_({Zu)c*+3U)t!JRz=UWntUMkdA}jG1$ssx)cFH0|-3Exx!4qIYbQY{^ z9U|>RB*PHg&3Cz(>e{=u7U)4Vl)X>9uFANVzjRuqrG6OxWy;|jEvQ2cRT|oM!Ueu z)-l><^lGF`ENBCzJ~>A{uvc7;_}@@)ca5`E3uryc;3+Uca$sfaAdP;QDqEoANrI2NS8+VC8Xy6xmJL9H>s1f8Ir-z+>6 zCRQ_HW$RdtzV=k2iv|niI1Rv7adC=&(V*%8#i)d5z{IEsD_h5C^hJZJiTa|!O>&N| zhrQx*6#t@uX8{H2T08|NNY}v1){9n*jad9Oym~B%GQz79^WvW=&N4?>VH$B4dK2c zC+#lSH!f*iu`h`cJ7`V215bwu*zK_L_ydgeo-fD&dmi>}%m8K@r#*+K!vySESb6*b zM*7NC9v9CDR#Xzn%m@;%V5Tl|5}pndu!*p;b-+eHDN*ke=-JY}mk@NE?M!PK@Au| zp?VNcgbCICu<|&9iXNSKOAgiRuw(Y2GM=D#4Nrs#)hn>Fb*M%^-!<|BH5{ba@F(J_ z;Cf0TnW

=evSV&|0-No(U7HHDG1ySnbN)^bUN2ppCF*%i)>@8^7-Ul1Ab7% zX5#rU5!)YDwvHHkEq-J}jeMCgASbK@`^F_Kv6U>}4hmQiPlpLu4ptt2fRVNM>*au5 z3;Q-^05h${UxTN^1ng>9dHexJ*5aR(1NH>$+n52&v=+YvPlpNE?%)v8ZVs#X(Y#l51=5(o` ze>8NC9ICTm!?;i-wmGeQpxxhMJP#&Pi(qBzNU^)Wa)s0r?G3~T z5*A-Z*J;icT&HwkuE*^vIiU{)ud_rvHCR(gBr`PtKB@GQO*yq}_0A&Hi8?y|^{1=h zxiGn2#Zw*&uWITa;fA>rcvmv`xaI+JV)n&dW1x*G48?62&y0!NWw5e!+_-~^&UCS$ zKO^=NIc1N*j&UgiR`;Wov#KE!u1D~Mm~cG=D_e(aCvGjvWSyRFb)~9S#{MY>>|NM3 zE?~V$m$4C3C}eNpNiiXN9agpunZ7I=+F@pjI$xXpOgtXjL`ftwO$1JfMJr&+4~o`? zcs@+D)`OMD4_af|aeKwHLQ*R95z;Dy3|- zHz*dIoYqBtQqI`|*gY<1{YiI`x;YfO0X#V-bR}5XI&|#i3+3yelPhbi-7078CfGDC zYl$yk)IFhyU61F)MC@8v**aqSg>|8$v0hcz+)}Do%BX+M7xOMzE&Giex2ItPxww^+ zE^P*XD0)xg`7zOZ0#>$;-rn3UHCxD5vQ93$$W2uS((}mb*~fk^o)&xr+s6g(%%s61 z?ojMLz_Vjww-i>kjvadiZC|WZ!WBC9Y6gu zxzN#E-ceK31u1tyzcy#MNY32(uy0)E`jTgE#1;zLIe1!3(9VLDt%JtiDaaQyZi=qt z-Y3WGJFsh9%o5)z7%_!Hb{C!$6S6yCW$TdX_x6NWvw>VCYoP2UIb|=vws9#-{E$$7 z#1)F!^LSQF%$|dltz)(ad(7q;I`ZSyI?mOe5Klr^Q4+~a4GM{OoK4nH;8w&_V*)n` zRvtgV^*g2N!iRa)V_!LNd%@mui(BHrHCsc0+Z|7h3EVEQ^7sL+{z0tyG-RI~xE|QM zF#}w)H59lEo*EN42UfNY+tH~e=-(`4$O!zK= zm94|4Uq=->ZK!)|I4Sx6xO)>gxvDb#zkxs?5EGU_SP~kVC4qE@gg_vIkd;6n0%4V< zsII!*T}5?OQ%e>Q2V`Jis2_;7B8Y-0f+C7CG6ISq2%;zh0|TN6Lu6kBK@er+f9_Is z?>*<->i0S4-a6fXKc6vj=qo56Yxbu?QT3T zB5HTR%EnPU5Ug{JBZ6Fsds`p3H(~RrxRu&e;u_wF$i0T=MnvvqSlKvo zrvFBJrn)1ONM@#*_!6&giwN3OJS`$baE+a?SJlSBwVz>_3G_#Uim971%( zPI5AH)^D{ZwKJJSGLzbNt=P#AXzqdMMMSL&RyK~>GO*rBPa$$O?__=UPJo@H*1S)* zspd(I66@Y7JW(QyN5jg-VI;o+;f<{$Pi9DeKSktdHFluz^(U z62DAB;*W^lWq5u>^e%;!jiZO2IIfm!#Z0=&?qg-oHrLnQtIyuuu!B_g+I8YMWRM8o zU3h{-_vUsOf`NhMl8=R!Dk>HfW3pTM18$ z2wMSGHVzxP0}Tz2xw3Y>K5f^+)=_CoyaNq6BjR=qo*5Cht6*j0xRDo3Btu~ix<~Y( zdl)v53SHt0CK7){^d7?VBck^JtZW>;eW(Yaq*rc!s88DmuxC`-`V#L@ooSN@*n4YQw8>qa-+C93tsb!gO|V- zQu|e4>OiYMEu9g&*NgDXh}c~KD;vj-e`lfvcC}u1WxoWrJM>|@9X5^%8}Q8=6t<=x zB4W4U`4ADi6;?Km82|Z^XvEGeq_VlyTrGQ1AFuVWX;i#`k2-^Rxn789J%{H)MC%z? z**IGK&OtO5p!k&nz z4dXcxQM&?GHjWy-BdwJB>@#iU{+zTUeNZ2^`(gX2uqD@#@~()u-HT^M#O-ca**I?e z=DS$g2rFps>ZA5HY#kLfEB2Xz%n=c@H}Q;!n7sxo8^?_Q0J#LS<_ZzFq_N9?Yfn3; zGl^uTou|YPSJMX(sU7h=h)7L^m5n1cbHptr=?d9OeVkUnW>IU^iLv7pwKBFG&w+^2 zQdrqIN+a)1%E$BP=(DsIc8ki=NwKpOxe`{xlOV!WhLw%O#D76c?CSWn9@ob2AT?;FZ0lfIN9S*N2^znKOw#^(~yc^=E>JdB}B3=)}%Es{; zdH*rIn!~}h;p5ta^^aiFsBp!<{}}c{MC(I57b038z{i%BFi z6O6xO&IRY<*gRB18SNHs)f`q}duX}{2rAMWUxuIHteQLZ^j64B5 zpbxeMHyE{Qo=P6^4F+=M&cR07;9=vRhV8`@Au^qElt;s9SnfT5D02eGL4#*vKd(>A z<+#bjGqLpd02F8m7$R^}$5SG5a|x_0)WVA#iT0h3vey|V%Iz#`xDqfYH=zjS)7_jWkdFe-S8cFdPMYYhn0<^#~sZc5xt>Wm3=I)#ExdC z*XH=6*{|!f_X=zwl|A|kc1oqrdo;uTi159L=SPHZJ*;dTKJI|_i11a@XIfmj+x`jd za>ial`Zu$5m}^=i zA~%SqMno%~uhWO{tFWI`2Nl8+zN7J0Zdoe>!0OZ*5YrO{Ea?zzk+R}LPtMc`Vl~vl&WOOhi)Tgz?rm7vIB?{uRxMcR zN;NfyuWEb#kM@*xHztwHlr`b1*7QV#Y!^HyB4pEH&d zpVXcbY|JE*nG(=HPO38dl({29h5%GEsRyK|o zbqr>Ii?&eaO4znfY0o9MW)jKFC6gV4xqgUnO~&&f!Zi_A9#e4D_%YaGeYg&VEu)sM zit%El3+j=Bb9 z%c{T9=j%b(GAdumc8sncB3$?5`4Hi{7gioaa7mU`-`9uhUD&eG0+)PQ^=&*KB3y66 z%EsZ^o46sA+lT8Fcl(|8TyYmBk<46?e*cTgm@BuBSh1$#xe%e+5mq)16?Mclm}Y19 zGr6<*5!W&LY^{V{qZX}XM_f%yM8sC$DG?D{4l5f+jJv%ma!@~5T5U;QH~)-2Vduc6 zQ3<2pW2{oW8jgs7t;I7U0#<{SjRQ7|*f9>J`PGP<_1U@!_KV6E{p&d@Y%w!LtZu-Q zA!2nstZW=B>Jh`Cbh(;K7gF~64ma|8N}sPMVB@HKC40m$=!yv1V|Z3X&>n%6je|zL z7^q<>dwIN4DyOQY)M_ik5x4Qv+GG6>#ygZBLyG*(0KNGM*k0y%S(%iW!G0$WFAF5x;C@~`2ODr3Eg_N9&;B3ifM=@8Mn6;?Km7WK9%=bGy3K-sDc zu<=^1*w1yJFY05q9(Iq4S+ciH3D$_nJ%^`8MD7__dF&upW!J7`QvQ`T9CBO#UVCOb znMouwGffyd-Wn0PiFj&60Et7T~E7k(&=I zk5%M^8(9YRk;}vGjY{NX7qj%^sS%OO!pdV6IpKbmtM!q)5_WG?A}711Wf)J5h};#h zvT@`NCGM1Z*PQcrl5pMYgZkjz4|_-jubSvwHNqgVlf4&Dkci*iu(EOd4#MyY-crJ$ z_pUyAZ^Qmk(Hm+9dO>qU?B2waBVzX&tZW>+B`9_y-sG~&AGGJP)0spvbJ?}+!A~?v z#BfJENg{?*VP)eOQr}$n`WETEE-UrHTLC*qt$WG7xgN4bL~S{q77?|ju=3bLP4YUz zIr^xrg`FE^sL9_-sNrc5Q7gmBV+}Rwoi8`(qjm%A+^9k=>gt#4@wAAjT?;E4M~%9P z@AVY&YdN0KXYDcAIx1_)ZsLc15xdYw@VtnyJq#-whYcL9NiXTx@EPrC!bh-kRMy%u zT8p}?<3l_xB5EJN%3~2V;mVHL`l!uf63NU++lHF#=8l5K^6d^|HEaPwegw&%|IJhU~s(U z^?B=uy`%D0XvZwHVT_1d7Eg?bTN+k2jvMtmo?d?;UJ-JoK54_SZB){d{lud0i3r&h zcuqvfE`ybgLk6B}YrHfrSzWtdpSF8p|ERRJ3P91**_@#Kiu-32Qf$8IUsl{TDh zb$!U&`ux2K8%gDFT|4?!sY@b=ui;q|L3|ljHVz{7Vuxmj;$D~}y-Z~Kv)Xgk9hpQj zbJk=pc97a5qBj*!kBHtBSlKvwiZw8FcLq1NSfNkga@fdGSp!2Zi6Ab;vm}DJ2v#-@ zBK5X7?;)4n{jgRayc%pA6})6`iwn9Uf>y?}B7#J-Jpx-u#jny1{5XF^ z_#VddBf|F(tZW=Uu$!%xhEn`@-#^kv?nBr(DspYvOa1jz|K*NT3b+aZ4psh zg{MVC?Pyqe?4c$(ymXO1Y8SxHjWX2ahnLR7(;}jFF05=EHR?wq?eQ-+C%sLduv=ln zsDvf^kx1JOv4-7(XF~+*JFv2Gu&5_UxQP|V*mL@fJp+43Wh~hfB%CoKZcpQh5pjDG zRyK|s^)_GGRCD70YEJ+rFo|R)0Lk9w8!^WmkEcUKYaFa>94+eMB=+gG!PMDSxm4kb z*aCgN=EJs8i&(OUlYCFa`ZW*Fi3r&oSlKva)I;QKs$NJ}+2Ih5v3`BVvaoAZ#*#fm z-n2wSERCl`MC^1}**Id5{tXP>^HMg3dRo<%)+TE~yRM1L^ZZ(PCh!yQFJU1eAKZcc!Lr1M>(zVz( z^+9_Lwu}l|vK1|A5%y&~A0k{Yz{+C?F3IZaj?ZgPDW@`tWTuo!!zEvKor32>glj8U zIRY*#|HibAj&p}+0)M}#Qti~8m^xdFBky}1VnDYlOQ5;J*+I$mTMh}_OZl$8D4n8dV15< z%s|S18o5=kr&y$w-Zb8AZ`tf~pMd?M)|r!I#>sahKIMw+%?LJhmLWA)AF0`iA$4lZ zB`RcuNYyMn5n`2^2`d|?YNT;xPhpP3Q@W5lo1c`W^r1Qxc8uEZof0!tK_5h>PR8>f zGIav1JO-GW8_85%pQ%e=$BZ!*@IhqiB0LWwQy0L>V}L1lC?%^?cjz;9JM5S-rUE{Q zOx=d(L1gMySlKvJ+>sh_MCH9{>Q8yNiQkL*V6BI3qk?rt%pIU$hDg_Qcrrw~o`IFe z3|;;Nh@)%kKWR?`Co_p;rhy63<(nbWH4#sSNY?~d**IO?D`%0lD>N7406SD4u!CXe zsO5{kJ!r4UjkrGESq@*$e|Peycxx5AH27qg|o$fFS* zFKEv#{ts>{D$_@kXRc)@OKuHYlDY?pe>mdrc<@Am-*=Qp!{La%Mj|3`G$43vW-om< z_GA*t%sW37HyZ&H1WI8 z42T$=11lTHh>sY}^hIhPqISXGXtALz66J=iZQOYzsGrVS!cH{)p#fw~D+HV)K` z5$jTadT@|0On=me>G!Z#RG3bPy)Zczh#)q{&{_}E{AQSl9gD^YPuoTtU8_z5wA;NW#f2pC*q^KMA>-#XZmRU1h$Nd z)@iYi*S+pAV%UBMo(U1F+hJwnSj`!6{^yw~AHBb>57sNNX;iRMNr4qPh<_2!g^1RA zSUCbMg^fOcuh8A^QIIgWSJ)LMe3g|hX9jY`{>bgZ-Cxq4k?zVQl9`dx7dI-6M7hzf z+yIXjf75VhJOv`kJ2}duVbhSiiC5}OV9PAHZ}>@lNRGrECcafoKd%Zw60kzR<#0S1 zA}-5dWufvdb|l)jd$@p5avD?2TCtp7Z52|vV%A#A%?Lit;?~?tTnD>H?Oo3#_pTUZ z-gqPAi#Rt}jps$=tpY0>=Z%|s%IjFjP!6x1?!*fuI?*@Qp~86pz)4Ll(tVb{UR z5rioW#Qd?G+YKv77#zz@;|pswauoNxKGM&^?L1IqKnQ{GbK#?1Ph(P)R8=K$>5ZTxWRu+m{ zhpL2M)LcTxR#Dr9D{3Y75$G1v)1}NM%|YQJ*l22DJC=^InSZnRaoSTb2q>t7Euw7KN=m!<)1DmESj-X3n?&wcH-T8xpguykn-MPYQkM}Co zTqa$JTw6O;pX-z1_M#S0po{iX<)@+k--Jx?nDHkTC*WxifnMb(kA|rzck*bJ+?&8W zEI1v#NFS98aF2=8QDA4mPnw2GzzzYL^YDa-(3}e^3svxJN5b4})Hgc#-0q_?q{HD{x@!p>3aQI0+v^>e2}7IH-#&E0}$MI`Mzu<}?WEyusD@|-?t&%n-& zHqvrMk+i4rtcavN2`i5^(u(Qgpg`KhSG8-}1SXNp+@T#c&2>d2Z9JY8k+gBJvT@S( zAr0PpdUM50saE8d+7{?DHXrtkTFvNp;yIn5J7ppEn+-oiy5`~e5b2r&D~}brGNp1k zQ?mNFh1`C9y0Wlmqk*o5A0l08JRc%mr^Cv|>Ed??{Lyb{QY$QI8(&>FP%l+tB=*)uwzuLfYn<6IfC2}$+`>AhDg?rVdb$z zmN1roQ=hEYV8=!aS+d#U%Xl_KvR;6djg!T_f)};EI>1)tOa0|E|3S7LU(=o_PGu6w zOcaw`VQm^BR<0>{LPWl{f|ZT)MeGG~vKNP!>%+Aac5F0MF4ql_tVMV>M6wQnmB$KM z1sPd2eX`21W21pA*A0=Z5}pl_tOBe&R>&H(vbi+BMt{9NS=YjjjRvw@H$<|o!LuQf zbrq~^oGjvQw!Qjn31~f{kJiJmWmL52UwFV5Og%e9wjRRMA+q%VtZbYu;z-^xQ&PA- z)TiqM*fc6#Nsi>3hKPKm69xIA6q(yltnj1~Kz>?P=m3Od^?SVv?&{t{Wm* zU3fM`vN~a9<7Cl$#i4R3%dN+sppVun*fMI}O1M|F?GV{I8c&DF)={vsakhwi)MwSw z#cHm=e|Px;eYnnpJ)^>v`*f=~RB4HcA%Ek#h0O~oL zyKP)Ko3GE=JlH#GIRow}Q{}Abi%8oXJTD?`J+QKI+PLrQuJZks)idd4WL6)wG;ACd zwSnYEX;FKUr{hTxIXeYb9%GzIw)_2 z0-hC-wC7=Ekn!bp%ZH4DWq-_$cY@9Z@u1PkY zmg=*%2zG9C)iwG4(;;|PMA8m|m5q~z?GQA!UASeAvOa1h*g7g|ZP+1b*dkW70-hF; zwH&M*!J5K_JpP?N?nNvL5(e+|;jWZDp6#pVs_TLaEyKY}T5i^d`zE-psBqJ-l&!gG za_hvh{ma;b0U)V0jzACv_rysRWj1NxxUO?ZY(!jAGldeBAF>_F#+IOSR-;b z6HkrE-5#)V1a}I9F@HSgcE}16{CG}5!jIxVZnObXknp4Ufg_R5zrpT0KX-UWe$ldy zj?;$oOWZ$}xqmEo|2V?=!?V+lqSl-L?I!Gw^l>XXI%b|fZ2#}qGo67u^M7K0FqzFF z{$fUcQpDfnw~6|TmzZRIv*u@sLSxUf;fGOLy6a1`rA%dZHeF4pGKF-dVsZaZx?E1L zo1I&|t|$1<^f>=@PxA{^!}SU2VrHOJE~W>q;ek6n$NYif8dZkhpR`d&{&i+VzUoM{ z$NBZ05zXr~$=0cbwks#*ssr-I`6}Evo?%-~Ze)8kY?!ot^OrE4P~+716DuXxnmw}o zgeJWbkC0gKh8^X|mTu$cB&JE62n=(Bqx}b2(3+Pi-j6#f9qo&4euz?=2Qn2}|6V*+ zV(Z@xD|^BDCH^i)BC-}Ml;YL}VJ8_T>2kk#<>tFAGEGX}hW(*dhJ(~7aT66sL~r7O z5)pX~Rvx{G2yYzi@|HFt)0spZ!)&pTXdoiH&}2tEP$D8zVP)fpOpmA{YX+<`|9Zzt zeMnZo4pHmKCzR`mld4!rmgAukF|*N#}%-$ zaXdn6EKNL|PhVE}HI@hU`M4i;h|0$SFdtr$A|UtTK@tJE8&)@pu!Dk%-4@uyO<*3bRdr!s?E66(sy=^90pI{3zUclvWh4s?O%@ zDA=_5)Q#IZZQf*wwK|uvLNn(>{(=tIq|ZbBh!JManNqQu&K0e)c(S4SS3OxbzR+w< za61v@5f<@`#f6Kb8h zr0VhQ$sKd{GW25fXIrP@F%qlZ$&PYlW4Cc;Jzdt=fhlNkf?a1(Yfhvt!7Y_eu*GIy zC=P~5%^t{A0N^4#S|R`!z{*~5eus0OBN15_VxMmBDksG|Ajt|PH?_Kh#ivQj?XXMK zBC%MR7C&Ecm~gg<&ZLA5CQQMfZUttj@_ ziGoen|1_?x)Ah|)`B$if=IockPnh)asDCn!IlD7LbH8aj;_mmwsyzD>_X{0~$hlnP z06qSR`}X0g7}Z$cgB#0xhW*+5&9H6K_Re3;bi%XumgO+evfLCtn5!49Kaal&kCs>t zZ*Y_&+rEwS_^!yd4@_`_lliAu=$g~BCvab-lX;PX6|Dx^Bnkpq3p_lA$4%tn5m;I1 z9v^ljBCAI1(|YdJ_P~SGlX9HSq}V54B{#@y{H``Y8#0MF#@-@8$HV|oID2uF^%30I zbs|O|!pg=m+N(wV@r|t1_)l=o)u(87ViX-6D@81M5u#am@I;7a!pg=W+H+)x#IN(D z^a(l@wu(BOIVwJaSmq)=C*zS5@i_rjHjWRs;wbCNB>h-jpPx%$uc-X2jE^7rb!Qjh zp%VeR09G~*5TX8vJ=h)k{M-&(Mdc^P`XlYWZo?xd;&UskJQna-oi1~WlP~JyvmUm} z06r{pvHN-skDQ3lGqAF8d|FK5-{W8Nc7I7KIBPQZ< z1*~iw7jBb2*fB}I5C5P(FZaV9QF&Pw120xuvVLhtn8 zY!Q{0IO>aRx$jLpVj?cD!OF&QX;EJ!%Y3`Mr#)Gk&LonVEX7b?PN5!#{QHAxAV2_``RP&t(im|Bk~QIPN-$-lKXo6mp2-% z*%QuB98XQg<0DqQiLkOz@g_JD?K^3>TRNLfv0LO*O(RomskzE7jki*RR&}71qp1YOAQ924AnzPPxUXVEcrdvryYsN zo+`35#sBIA_rhUhbKL+pm-hhq?@n9~`zCGi{1r?m)JFA|FEt0-mfLd=W$VT3zddm+ z9xt&PUE?T6Hh&x6p4ctCvlTQX@FGF*^@&GV?3!KE!?>~1*C#{}TAunMf)L1CK;j`h zav~BBz{)}gb)O>rcbRQZbXRaum({n>IyzFo`(kP+}Qs`T0?pA}4*3qb@vr zB1fIDvT=^)P-;=hnRHcCLur1`;{<)0R>7uGYtl)r=35Fh*)vba1d*wu@g#^$9R({J zXKEh;Q`Xv{bTOOC<_7sG`~~_*odxjutUS#Myc<@AqZiJPMGeqg>hOF{nt!l~2(lh!jJq?>iWhvI4E@*_v($#iJ)u zbTO=KoFYn}R$<@YvCiiEw7c~=x(oJ;%2BL+nwP&w(vR`@i6s39RyIx&sUB6+nKQYi z?$`7=dKq?$%2B-a$j)A*=mk7_B1O-`%El?`CXBHwYtlpMwZb=Brv6=fwl;-HBr{t( zF3v%A!vK+`t?&ehEKP!yjk81coR5GBgcVHqH=tgKMbv1kTrR2(8jb=xEq0Y61FW z90e$lyGYPccr+eD=&mQi!m zS)s@Au!-C}3M(7urq!Eg@-sr?Khz#Dk7E+a447MfxQ9APk31W+0UkGzoPUlza$1da zBxi!=>0>hox1adJVk{#a`B|VIJZK^_d&A1cs||NobZCAhI|G!~hvszHC2A+t@`iD0 zt%*4Ma|#|ck(!fW<@Qta#SJ<(=&=7aaA*Ec(>gj%8_vJP{;0R=tmKD(F4G6-QrIvm zK(TaIk%xXR#^WX;bRn$VeuOx3S{5G3rs!Sz-251JiONkpg-3qK=SO(dL~4ErD;uX~ z_ZHh%jk7J>r2J)la9)6oqJnc|9BYA%#Kj5u^LXGycAkZmjkD8gcq}>0Gv)uZXH{D< ziDYI~u?&yphj=F8K@*wT0#-K8OsnyY{P4~qeQXYaeWI3|SjIPzhjtFa<0g`GAgpYh zoK`(m~R_x?=B6_(79CCH2K4 zT(Orfm(%NJvkNYJvgvA?-T9QRRIEym^I!MWyud;?wn=W)`%hJV{af|^!;xr@>+3r^ zI%b|feD3g!{Cc)Rz|H!$Of9rMIWboqkTuLRaKm`ds(+c@)39CAw#`4pbV5y2pCgXd zLoL}O=H^A`U!C_P9v!jFJ?h~-vE!3*zW&?i4wZEf4Jyuwj$!mofP#K+eH0E>msn72uNCZV|kuF9CL8frMnX% z9Q)yLunfgfPY)g;5sSTHko#%K$jq?cHINr1B z4~8Fx?UJ@{{w}5yY8u&KIMkBdh0=CzUUdFo_#r$xVwrouQI2fmwho3DH`uo)J_jm9(iS7OttSoeIZ#WW>RUr1uqW2Jr zKu^lM-?vuGvHLSp;@EhPkF;6oViIvooJ3ZZh-2dsSrHNzi$y0MFcF$*u(EMzxbw+Q zRSA2TDbzWT7EsHV%JTvlFD)x(K!l_nTXC2u(EMpio2T`8c@lPr%F99c_{L9EgyeBNP$DFc!pg=W z;g0Coos;LCbUZV@W1Q}sX&jSCW*mHoGAC}XA}Sl;u@X`F=h#DqJ3ksgMLvF+r_ah9 z+<)Ty`cP$7BF8N~c(6oR_J);5ab1y)SJL{doDQ2r?SItkO4K;z6g*ZUDks6p5vVAv z()$bj?rNZdgumTzpX$PrABDT_tQEyKbfRF}4R5sf8<(3dF0-5Q`R`kP7k;>;Pey&o z2zw4K58q@Ok%d;ZWg8Bv1P3-89Er%q=*Xo;l`~JRHypO|H{PX9^9bBD-s2kBae)1j zwr>6|rW0x#+4q;-<2Q}A44l7dX6MBh*mJ<+Bi6bH9OcMnZsVTAPGU0$mg7U44lHKf zO$Xdi`JjmDgd6-|aZog3g9q{yn*JR;QexA;1uKi)oFfrg3u51PkTH_3IR0`cF80_! zn~^Ri5z8b?U_`PpH8LY!p5g?n6OWTf$TV2lI3YVrsz|0Zv@RusWR*T7N5d9TdyY@2 z6cRsGk&~nFP>Gxz0V|J6POQP9>bg`Rcc!q5pwG#N+a05My4VqkK>UNDR~rDHcrVj2_=PGvBHW8-|LLuPuaWLq&>IUib*6hw>dy%<<(A7WMdK@B$16RVCB)uMvY@*kv9wV{pJ?0BnFqO9bGbFj_*l_Yaq$wp~8N-OJb@#e0*K zJz}fp@XNmQ^nsa!H-U6(Km=x)GBBZ(#lcb!9x{=dy8SDR}Til1_q^jgvHT{h7eRE`m=9z{h6|{_JnIICXvj9E0+2b zOkS)%lknh)By9mJk8+Z-)=+g|O|D|4>@l@45?Z8B(jl;A)JmjH5}&+C(m{CeM3N4K zm5r0c-JHhF46%UR?mhsR9hrVmy&&JFiTc{w-2 zBG5JZk*bydQ@9DGi4(wIC*^$k^-om3MvhxP4Y@D6evv&42h?OpLhkv>@(Vlg6GKpkn zUD~sDH)V08GYt=!NX-tgvT*a zl^GxswFXasNK_S8Hcr&6mPD1UY%OD@*5r!W(i#q>@93j+BkUIyrK5CF3S}-b^i4c+ zB12z?m5np>@s&4_Qr!Ik~0HVHcn1-eG!%pPuJ(=6xbkYAEi}a zWb1_|;h_>KIUZIvPDylq2_ARhhRK)e^Kvn46_ppQ`Vvf9tS=YhK@-XOEUavtoap)@ zEHD39pO+uO22pv@sxPuNu@6MH%8rt7;2fn7&JnO()EaZ7 zDmb#lMS>2)11A!+1Xeaq&~8$KLMKQ#bk5dCXASHV6`iH3=!7yBnW^Ft6PY;+RyNLz z{3KtiBO)9^H|itwP1rUnLdqxkS{Wb`^>sV}B2iz1l_Q8!xOL6HxXr!JNkPKDKJHP~ z3xWJ7+#AHSqWFPM6zuxA{*602B5$>d^$N3>rge1G$FC}ttGQx-=>E9Bzz>}CX{oP> zIlkg~srEd#IIkLUmc!%81()JEqtQNdP?hqEX=9e=M!abGV z2`09D%V}K8mJehrFmNCqFOh-$VP&EF+t-nZtj)21Ka<-$_a2<)rC8~5zwI+Oh$^rk zHKEDDR!O^sya-LpcZf%T#=A<+%UT>c_2E$y(aFHd#?j&4f#A`puvhsq1GeE7e-Y1B z`uuze_KV8TO6BgR`P2kc7a{rr9y$@C&%w&ZA>tMR1c=1q^MF1)_rX3<;c59kD6RO| z|C9*LJ$T4OXnqPS8;2%hgd^{)-qGjfE!ZL|FD*CKTk{gxNxgwbOGM>WSlKu#+~!xK zz6{#la-*8g&9z50)0jjulc1L8bXtSr;8M?6ZrRl&l}RQ6H9X!ah-9(WxwfltpO1j)zQy=4-HW1T+e3`Tll*yFREO z;crT8raJucqi|QHwW4@Mb#2^^f^ACdx@lWCB{n;(oX+Ohtsdde+WZB6$fQq5ed!3> z63!<{#ZTI}Un=cyh89}!mTgF=G91{Da3mrZs3VsgMMbhG*-+<}F0!lMiaa`1g$4Uex11lQ`CGh=n4ixGAZ&$GlHBtEzY!Vd} z$f07hX6)?dYS7kCsT0&B^ty{jL^>&}9rRur$OE^B&g$v14$*0tpE zhgn6doGye8xc>rvzN8OFJO|wSy#Pb25|Z`gpR020uP6V^k%(Mnj9fj6e?6Hy;4W*V zm*Gb8o?HJD=`X;RN!vO9IMWF=PwNBjUW;-E+#5N1QTnUO&*M=NOW(7Oa%6kAaaEZ+ z{^fZQSZxiiD{u8N?Lqb=CK1OVTWonr_vhcf)3W6Q*$ND7fyYZ^U^7@*=>9fwBqFOr z>}$(2!-q7Qur!W(7YZrstXjIjjhYT&VQMZN9t4|3Ef_679WeqneBR>d=|DVgB0l@W z%Es~GUUL`lDVNjhqyQE40m{L4Q2~-HA(HD(10X+h5urXjaw0+*SlKv2^GB#am5Noa zrYg0eA$FRolFAi_3h500DVwYGarzQ$9TlgO#Vv6dC%FqET3^7kAfoj-SlKvQ`?N+Y zQ^*aa2GiAYZf&YqDi3mf+ynYd-3NO{W$IXcrug(lnC`*DC&KhoSb0pqwA#v4OJx~M z@94wy7VKHOVG5)#!t@3nJ`tu@Vdc>dla(u$hAOEtdq=RGF81@iUFRh2(f2eak<6qm zhRVdJFT%6~9zGGK?OJFILRAMVBAYx z575Q>09^=sMFr>x{qavDZ4sW&;$aiv`4?E(I6QM&!{hCpv6nkCWowYV-oZ`7exy&) z4`I`&6s^*yNXTEr>HB#6M4Y}0D~}bNaz!~#&+Fs#ENq$qoSONIIQ;>SpNP}%U}fVt zjWEG)Je|^a6(?<}JwMxmNhCAIj$wiyPF@6QGdy@ANSjENzqnDy1|9al@=KO=beuMv zU*`U?-2LMS=MUpVjWAfsRZ`Azd9Ir~NS~zxrKYv=idvUq7%Vl?7Ae{v51UBQzOb@! zct)76F&A^I*GU1&=>yaU`$YvPhUr=`brGTr9y$@CGhk)o5X~N8#BI;ks=3vcl%p@{ zbMyt+GAc*M#4z3tXD_1kIXrqIO8*a5HjdH=^@x4Mq*`VBAAJR3`}ID3j_!f|qH+{N zJqo5SLiAHSbRtA|!pg=W+N*UvYB(vZVZWu1&>OH@RD@c7c8sn}$T7t(;#AqR`Y#gJJIxiQaq0$f5l*Es z7un>tkmgS`?!C44v}^{GNM>3V!>P1p-XcD`<8c%5*%ekcj?W0oimTIwnw4TJ{_Io{ zSAR~@C+K+CFKYdXVOcSlx(Ly+c<4lkJ_#!uhiDi1z&agqJ;;Un;(`8KR< z9GQrX)U^EK3l5)W_3`-wY#9|Fjg8cZ>_wD*heuCD>3?8l<0wVUw)p!lIEJ>^Mti)x z8Iwq6ysR<@cIEkL^P1kx7a*%uF+2+uyS z@@R#pc?*I3I*&emcrvh8ZGeYQTZHEfJZvI7r@_j`;n`h2Xl}YFxxV8I`s92LHi}Bl zVd}%?P|hMY{|}Fuh|Ryl%A+0|$#os~=wtI!*r;}5BfqBOPCRBJHvb7L8^>mPM75D! z&+&#nFR#K5QF%F3qs&BH%kdH(ED@AH!OF%#iMUN6d?N)n9NuAy_FQT^CXvisO5-+# zaMEJOv<)6K5u7byW#iyPR2b>?8;9uwvjldi4HYKp+Kq*HutZQk0V^8^C1P`-dF=#O zT&nu4oCTXiWkq9ip_#8(SBiMNL|o2yIk!IVX4 zzJiBLgyzezvT2zlcpK@8u>2Aamk7%*U}fX5M4Y&3 zyrUg;ea1iZsregh7L^)}6E{NMB0hh`<0j(s7g%|;Rw$+|A?am~UnKZ?K zPcv^3pIz~|iTLacD;virV#3{c3Z>U$9IwyLv9MFr(xWlq4ks;w^GQ5tA~;9F%ErNo z7~?dqgW$@|XZ4Z!7uX{zG8$u?M!F&_pT@%_!m=P9j zjagJMWf7Wh;~^8F`4+5f9GZw%V3>m~Zn^k_J~zLEt)g>9F;7yoBGUMP+s87D_R7FTO!b2rO(g7O z56Zr_+NmWUBdRH5?S~#rd2*GXD>DiHgh;_0GsoSOn(Z@qmfI{2Q!n9GHl4i=;dH zsXi)q!v0WE(HOVL@4xv^JX9hi{{br-ha}?YX6Wu0ZZ`d@J}oc7Mp0?eIJz0iS*$I8 z!eb_4^S`jNacrVGqvmxl95dTZ)t(t`!z7ZK8R>LJ&4fi@w!{M_0`oCg**Gu}?^UvA zuA0lRm$-$w^b&ny7Q!}BtBl5bm4S>!WIlmMOho46u(EMvB9`nL2FhpFXX#^8gsq}t zqp@ViWi6s}CLT2rodH+LcKpGnvw;J6^V8-PswB zmWawuu(EMfB6gaXd9s`Mj@4)7ldwnBI-{}E)JRu^ zoA>@jpO#On1tNgPQ?csrf#Hz^+ zi9a|JX`Lv3rXR&mbfT#B=J(u`xiM}Rk~!M-fFS;Sw=$WMy+ zoBTFWfAJENtZ#hyV7lKLzHr$7HMc3=haWKM(@|fTEoCaRv*~I&l_}V_b8-KVbKl!+ z_T8|a;6Kyj{MS7>C#?E}bTKnfDi_m(*6_fc9(Zp}YBc$~s_eeslz7{bXpiITJ0qIa zX^Kgyh4!6)C+4aHVx#P^gZ2n~J0=mw2z(Q!6Ka@xw>a|;v|)!~4dsgcp@-^nW+nDe$vdkyUR- z}u(D9)zU4@?kA%*2HtT;RHkB)~U7}*fN)1}ofl`*=8he&Shdr_a8GnF1 zqLOjQh-9?RRV3wic&tQH{s&f$AVr}Y@%ux!ASp=rv%8B_6Y+YYb?xnmK6YfTXr;@Y z=|aENTTX}iqv<=Ma7)RoA3H*S)ckm#ILT`MRZqc*Gu4PQR0Acw(~c~5Y!cz|Y~MW;&rps<&Ko3O8?0tAxFf z{n_=$@sNpC=>SJL5`i`jP`J~mAp`<5nBe-znJjqCzG(n=Rys!$VK`dso1&ieRxkuo z7qGDK;E7oD!pdH7em9YFBqD1_>;v4^CVD4f*b-L3s+`Gxv+Bz%R!xw;2s=itDksJT z66b+9`1w4Z1Cgi8VP)ey?cJh6_oNzLmP-|W#QY0=n0^l1MTP0OxM8vl5J~zOo&b@g zpTNq-N#ZVM;(9iZq^!k%gz+!>9Q_$Ki^@^UV?y+yPV+%x>5CM-j)zaA=oMJmI7QrN zh9fA-rTe*E+MRdO?%Q@^64+FOiqWc=%Tbo)FLJa!9zT(zZDD2O9FfLJwvQ#Y4Z*Q= zq&`cB!;Vo|ihG>Y@Id5g8J+`?r^T?cah^zZ$;$N)a4fCUXK6L;7L}#A>yn+n$WaB4 zpUBY=tZbYkQe9#`veP*go~3W;v-AzvF)B-O*QJIBB2U-hIS_gJDy(drC(`^aS1elm zCy4)BAEy6;?V`dI_x#NN~m5oz17ocjW zv_=>>{hK~k{|dWC#p;w~uyTA5xjG-ugUHoqU}fW6A=Rp!E}qF%tN+l)>IblCRIC!J zR<;cyRo}zYAX0TRtZbaB{efy#WqwwMN)?Mk>wopp`XlTd6|Gb<6|3om$k*@jT!?%< z1uGlpi?n`Fs`^85nA z$Mr!v0CtO7o#I|0xAPY{+7FMP$kAL_**HftC_Ua;d^sA>r^tf6qEd8B%zfNhWs#v? zJbEHSDOlM!L){dHDuq(Ncpl}8`XGHCHjE0=2{D7@Ss>DMIi3QMraG)_oF>v3sZuJe z<_F$C*JtTxuw7J^;vOS828bm61W$lS(jBm}ags=TES1$+Zmj)heU4s-&7yJ?_Z|yN zU!>?2JbWTWFT%>kDWdgmtF!hQ0*<7ecGjM?ZOe&^X~-y(aawI)?rH^}bEDYNg^xX0_bRfH4uNjnZUl3KcoG0*x& zutucs7(6v1eJf#QGblkK|s0ALzsLJ=i8HJV(X_kNiG@oAJPj<_lmf%k={43F&;OOn+;)Q z=d=+#5K-obKav0qFv}JemEO8Y-8vwG4j(;Ai?U{RFm+3e%}E4S=LZh-BS?Cqg9ac39as zSuJPovKuL0*C*)}*d{7Tan0N#ZlZV*51dHOdRW;wIW1@I;tM3(@2Wio+m=ZrGX;xl z<}Q72WNSQZA~lm?W#iOvUv>-6+@&{8EYk;PG3*ny;2afG*A;cs#G!cPM0O5_m5sC0 z@?3WG4HFf8fQDeRr~t)vE<2FEIN}+^!zWUdhn0;})bb5T&qmpe64&Wt^i|j`Dn@a= z0U69+ z7T0_};%10l@W6@WOox??lhbl1jE}k-e+Bjef|linCI8xNaE%`8~icy($$Dw5t5(yLES3O0(`v&A+lin<}>R6KMdJtxD; z#_8F!Ro~XU6oc!?F4yO$4qHX#C$6v7Hj@{7txNFWi3D8)D;p=M<&H++3Ji{+pXf7m z2W%FVp}2N50_lqs-HwM(r06zS**HZlXJ@jTKVH%2=SA2iDnD_}&LVF7SdRxzBIpyVf#1T26-8N45iOd{jh8)Q<9}N(uDU*m}9`HW%Ez~^q1I0Qiv}lh!N1xGsdR59l^Yx?gdWZP^jm%|?x}R^L~QxR$}JzrR$yQ@ z9xsuBS+KGfoZs=xbR^mb%Z_qb(!Knh>b)$mN^ctPm$z(oswvnWX*ZA;K{;3*6qczt zLOK<^WZPiQd0QWYV&1P_%6$wjcTaY&{`Lo&ck z%6_6x$sMpkR7wufqhvtDTa_9$6#L3hvY@r9x5a{-Az{V-Iw)v zq(nrXgO!aV5>-ix{RRHc`)&8s9+Pa%B$Ao7=u{FrSFw^z#$zR7G7(lbj!D$0q>?Lg z{mo*1N)Cnnp_USzQ3*>`gydj6R3an`U}fWwMAZ`J96u@<(x+q)Hi$}zPA#!>6*0-< zu@W)qhn0-p8X}*?xRiBcpVSlKU=+qLHstC!Ic&J23hGAvnkVMrI=GC3dbNCimm95;3_KRvyim@LkUP`k1^68`LIDBwfzic&tQB-h`EnW6~vG zFX_!WyJso(SthQg>^4JtuCoi1NM^3HRDIPXkg-@10FCD znCoF>&nV%W^UvDG`wqU}fWoMAeZ}goal* z><^U@ojSr&73;`Fc&J23E`XJdLlSYyHf#0IEvNa#yF2tbxgEBM%E?0Y36Ynrh{|nv zv_w>Hg_Vt?GF?6!%H~$*viy;j7xhV54?9F9<7L>AzY5)qjXE00=4)(&xq4C*72hwW(xB5Q|4MEdbaiHKxjW#foM%yO)?L;P`; ztMwVV684A6h{i0(PE~|t7!Q>Q$rZ4&aY&*@Bx{ET=WvzeL48W@hYg}qqBA0~a}_bU z7mt;Q$=$H>XvL(jP!g8u-_^(DZP=hTVB+K|V)7;)D-n~|U}fW&>?WTGJJzM7)8SqA z)}H1}XA;RwbC#)3hl44L(CmnZOoV1CtZW>bh;d5apzxx{N_|*X!2VE6i^e#`PE~|t zIUXtzlBKY+aY!Pj#Qhn5CH5SBM%KdiP#Mvf60=N2L~3}XL`2H4vT;Nr7VP`WR=R5O zCzx*1$K(dsA}S^t3-(^NA}ZJ8(GpR)7FITn%I@-Uif3L*wjTS0J}{5LMp1z|Onsmd z%2~wb5j+MX*CuPBe}fxXFs3T!05l1m!$f z**GW>6Xil?kXz2bU7wQMV0);PXiSt@rXnJ@;*k;&xdm1>j!49UTfwUE_r0yxXXH89 zA1Wgn3vPC*A|%h?p%Ni^8df$ANyIB*wsX??@#Jpp+0H~Jk<1uY2|Sfr;vPO8s2NbFe-s3t)SwMMbCMDfNqp%*P`oA~FwFHjYTdl(6IQU}fXTM0ZP0l@ZQh-=I&-^{`7+VssYcys|30Ddk!`U?MQrz{Ct+pdxJ1;J zp;9F$sVx)t(H`YaU=qoUay4p8BV7@e@p!mISjNH1#$ky#{4`Wr!;Nqk=yNh3wuf3( zG!8$pOhrWI;gJ#%nFA{uMh214Nm))|+VbZUUNfx$sWF|ivhqawtMNFpPu@W)a3RX6bNyJ#C zlI!O`t-D;GlBKXe)PkZhR6kuiJh(y*A;Y04%>oamK><^U@tvXVae3RoEJX9hiSHa4o7Lv1s@1j1U z56Q!@Kka~or7BjEhwxB|kURh@8;2y~s*DQz$U>Rl68umflMi5rsF-M6mEk5Ug7O|7 zED@AVpBo;g>0lCuYsNM@3wvBT3ySA?Yt50?l_C#-B7mWUy2 zRk)?;1bt3c!S+x~ipCI@Whx?aG#)7tk)vQ`GP74J#XmBw|^O^*BRkbCcm)^(napHi$}z#W@K}kM+z2a=UQBAm z42Q`x`j|Wo8`Ks|Sgs-_PvWr>F?k$THjYWe2N$YkW}W$Jm63Gl>H9oiy zOj(3x93Cc6(bac!-f7teNJ#%N^ z&itR)AI#FtBK~4Vep1BWy;?6>`P?&UEK-R*-y>@c zmMXLRYwTmAmD&63n_~TIBc@b3RqabTu?*KIq>Gt>Qn{EOw1x-nbX%{!S=s8d%2qLB zd0`#P0X=e9p3;_?(%=xAH>ZZu<#azA&kT5qpL7)QR#9z~O^>zrC_9f2+r1_pyYpG5 z6SA_tS(o#J-RuXwN1~7YGj1bSo!rySXPfF~ey}NVmZC&`vqG*?O|gr~2fcX zTPqZ-YRVQ2HLCxtlM@?mCU&G^IQg$Q|HJ&M@ojz9cV5i+&K2031?*ui^|8l&QM!`L zbS`6kt^MDH9_}Bo5G%b%yUQQ$neM~ACO0(Oe!RS&PnG)Elih3oe5$YU^C2i3&v)KO z@q4Ov`zYS*8Xr|(XG9iQ)kk^a;l)ZdT_{vK-@5kmcZVE)G#-cZ_b{E1b@h*RHGZ|* z`BmYe{;j@~zgCs-AD>@360uvp#o>cPrE=AF{3{oP9DkSnU<^!49G}?b{U|e>{itC0 z+p2E)=)S2ck+|VoySaBBzIt7!`;1%Vknh{gOUn0cJm0(7Z+AC;Td;o{7C>;oPp<& z4-OTq&RlV*Rt@=mZeo5<>~ep!+x=0&@UvCj^08f`Dv`M1J1nu-7l5qJ#!$?j_IcGb zWdC)E*}r3#8$x#@gzjpoQP9O2@>NwQ{l>UjRU+}m*k-XaPPRI$1AdEyn&H00nqf+p z_v78{$D3^-Ho!fq?)eSyQ&ow?8(`w%0V{K6XW6Q-OCBmA=U+_B`HyuuzuMjSRiOZ_ zSM|%c{5e$#-g1RmvpwZ?R}|ddTS3B)VuYE4@6^lr7tUJk(Xyf>53$On< z%3gB}J#hOa=I_KtkK_KR;Nx61~+&u+`>h^ssehxhygNx9zfjz1#iu=Bius1CRa=_@%1;`Au-Kss!Hz3IhRuEa7%43KD)4 zAG-Zg+%w}T!OmV@1%H|#2!UU3RS54?ZABl1|5TMoya^^Bz3#YDIWy2XlpC_x!89v0 zwt6lx_qXiwez?2&!$J{!M%6Xn_@`AR$i^#=cPB4NSJM@?*O@J?DHclU@Mh;m^ONfR zx9swMxV!nog7Y2h*ENT-|K~X0#-Z#4JFO#`kKBQXuEd<&+;P(TNx{QTeGjLpO8E5d z;7G(ic-@rMPIjevu|HHUmL+EOW?ju66pUW1>XKh34po&%-01PgS(Pg9b1pHTH|=Wt zo?vsIsz<)f8C411W`)6wKOS-`lY)dFMMC2t`B~&IC)V1n&LV$NwXOW-{=BLLZ?r;N zd5c(=DV_RNJxjCO!c4|0SY>u3i%shrBP(ZqUFlqts}6J?vGAl&#k@bBwyp2(E?!w{ zox?m8`%`i$_rI#zqdWUX{Cs-th)Y=asF#-s)X0*<&E2V)ca%m^vw0w zEyDxow_&$^{}ElJD&e>8A&x}s z5A$~3`x4Hwch(wW$9&l>v{rci@632wBYz^(2|wFY8}Dm4OFqHh7e>4Tsvi2yV5v$Z z-V9rLFA{jmZnXl}0+%J$0$VrUBk(pKoSzoVzf{#Z-~5YJCCKLME&g;KUAFAkAI0~< z67$|&{OJzd0h0eyZ65zQ{ky7!4@pAJvr}aA z9Kq(X!F}?s#M)(Abi3F=2o2K7BGH^0OjDIeyg{Z%Hi)yr5NeWTi8aa2(M{rpAvDTj zRY(1&*P8Tgh+ef+G<*Y>9tHy7BSFT;IBo zv!9R0+5GuTCuCWDlP>qygh%9Zedp?`68X{c!KyC9aLS?_jNNbOr{*xH}HHRb%_g^+5T2TJ9NsT>O-)QL&@ z{e4(inxpP+RSCcG_i`j+@4dY1KJ4wpLaw)*F7peeC&bez`9(}8X)$Ik<&4OYrnX7a+gA$&% zt5n_g8|+J}5{Wn1ZpT^neNyT2x=!zqVkbMv(79wCyM~Zmo@Sqt1M%nd%<*j!3YiX6IFNp2D(F4BJl>A8hUBPUJ_dAz91iZdY(_LQMM1iy21kJ zZUj*K;szZXblCsOe_-Eo>YwC)R@F|wMgE{Fk$8*j)*QPXSt<>=y;7~p?ij7Ei+HzU zrUMA6-dLa1W9>o>`+suGDmGuy68uXeBeag4CCoz6R1p&GU# zv9{Q*%l>)49jt7(`}0C0ELU~VFI-DiCHO{Am>PTY+RwH14CZzxmf0n?Y~kA3PxFR; z{8V;LJdInQ<4$D@R=QjaE?@6+U}}vW23x>(!bmxTJ<@cxs@ho3 zzv@Ut?pZ{7t-7A>tv=Sm_hsJ~kH7gJGM(@;L}T@l{h&}E@6osKr>YYEvvQ}Zg#E0z ztB-CYDwJ41imP>^V0YpFR;fxWKe3w}=G;IZdPx7lQix$!roM$+mEAk;M_fPro2qgC zGx%3WBKjG8C)@nQfcI?y?@I&rM5R8yTFO+*7Q0fv@lA)3ugtA)!VZqH>l%jh6Aofe z%y{-6ou$FkhG(p7Y^pZy_-7ld;XD4FHv*h~Y51bymE=zXTr_Oex5yPUg<6)~U}>Kh zWWSc*mHmExH}-E%f21G#M0 zDh^*)8KlLOH$0&(!&U8$XfXi-l0j zzth>#v0}^oyX=qp?AZhCP4C(4>n263JlnofZZ=y_cK$D0%2Z|tDd{OU@2cO*7J@Eg z_v(`WIJ-P(JI*POsy4n~3=UV7@N4-pRSB>0k8JO0k>+dsY}n04U+!i>c<<<( znA+NVXvOi@{AQ73gKjqdY6KA)Oh|T*)~Z_VH+apFh_3!|-4Z#c z`Nfhi>)ZE5RSExj`Mj!xU$Wgs)GFC!ohaA{?2J|=JNoRA@(`@^@WFJy)w#;*A7q`X zb2!>vKD3v0k7vuOp~2aIv+Uxi)(1vb>zo}4cxAUxas)YY2zv@Ut&RUgW zcW&E=eBol-gJXePVmRf6i>=wOD~&jPZYMhuZRB>F#kEScH0U^5E@dqCh6Q&S#QuqS z$}UcKe%yJD#s6_(d0=0CU-wa!@QLnrn=%tzVo}?{_hH{f0Js{`K^D0BhkhlX8Pg9T$P>6$(?N<-dV}Ur)V}Ra<@{sp0U{#?a0C{pP6W#G7H}@ob1- zp9gUkNbOHRdGp@Rb){O_9X!|{RlNGVP{YhitYP-*Vi7sxI42_eV7M1iw;ho?tf;VI z9g9eKV&_0I*suFxtDU1yK!G+t&DM|K5>kC4c&C1!Gqm!WrIKdL#ppROvA zxXlqSLm!ry(JfzwUZU!gUkethN+fQzd^0?snA45ph{sEgBlfGh}TEM zh;Hduknp2;O0@=hz5Tx`9br+O*K9twXP*U~D@x^JE*+Y1Ump)h^-jNkpX;4XVQ=!z zo}1byb*B5Pq3%i2qhG5^h7Z>@suF&)UZpDGHS4`f&8ocXyVX+fLS*+fLU!k8_=TI_ z#?-u1qYgEUcxK_(s)qW_`b$S5a-f!PdHOUzm8}#22T$`m+yDGC>?iY`>_0i@O?QjR zem48SGCR28UV3UDH6>nCZU3XlsXqIk*Ems|Zb-n0MhZ}z|a-Tt=^*}qx&8SEc(j?Cs~vj0??&S1Y3!_h#g#qO^OE0L$E`s2g-DOHKYEsmHzUXYm0EvJv?sruwweXgoR;#SM2 zkKann=~mOnZ>YND8-1Os1aGuLC++WFxn*BL!jEDb)kM5`#)a*jXH0NzR%D+O&4w%E zAL9Y3?v1d;*B<7wlhN!3$&~ZUq3%gCh5Ws$sXky&ITDdQdhET8{Q3N6JhtZFU^*ew zTE6S>4}JUorYhk-8Gluk@Sjh&5w)JrCv>7<<&1-~KS2|bO?>l5d zOFjE9jAay4pXD$0a9cV1rn2ruMyb`6RK<-TgrDS@-IqnBISSv$k%)X|;~#~O_pV3^ z*?U4f_U4x|osenuO}iSuCkzu;>AQEds)YZ@9_2{HUK=-&K)jCqR2)Nb(dF@7-p>gp zuU2))?^Y_R5(%0-Bma{9c6R2t(vs2wcD#P5V8771I+t!7wP&xj4y^0+9%<(wS0}qp z&imJ0je9s6hOtIhh#>?MlOgK~}2g!%RC z73P`e51-3kvG(2>cf#42y&XLiez)=)UYpzRl-D;q;|%AYIOB|A=Nhc~cy<#M`yyQd zdAr`#BnPuq$Ta8JeX(j|d))2f)@Rz|?pJR`MZn@n(#Z z+Izfc^6}1{r1mMZW3381Lmzq!rY(x48*j`T#fAOQ&P-@HB^iV6z@pK_Y&%DyjbqR) zysykTuQi9fJvbh3^Rt*v$hrE&#;4`n9~A~l3-o=QuPWg`DDxbN*hiz%7n#pszZJ)D zRP?&Vi_E8~dgPBsKcy-`wpn>gyY-9A7bIplDfRA=T8yNp2Y4qh%I=P#dSPC^UzuTR9SK z?0t3(y-yo@$+?+maAJNyVorC3-<}P<=-doN@O(dg&*!R2`1H?qn=S7C=zvh;_*1og z=OHgVpORRU9T;vh`^}(6OTjNapQPFfela~>RU+|*+)H@dHsgL1cwOt)Z9kJ()9o$3 zZrccn@V@Ois!scjwN_PvZ!Cpw%kTNzdaEGeN73e<@Bd@&%LC*ns{fPCeP86h7M4H) z?h+EhDMwBc$VIZ@hGBNMH<`-r&N4Hb18+q|SYd^52y%EUD&B|+h;oU7D2j^6ji3mM zoZkN4r(SozuI`@RnVK2Czy0IYeyXcpy?Rw$RrBgq^^%3g%=eX=^^jsS9|;f{g>STN zOz97w*DU^jn)yPSexPQW?tkWs)A>&-*ZIA+ETs3}#m)9s&3sE1mNWCcT(c%CI`b`A zSoX~Kl5H!<%kzRQi<&p2?aVi6MXgr!gBvn!2S4&#ScnvR+5R?$6tq=5;jP_J8MzQgxT4=vKBYQ6**m&|6WR+?`kQ;S zi=S%g$hL0JQ_Mnk#Ov3qzS*{u%4lIviuDWGE-Un}Ib@Zy*iI2IBlH?;>s9b&L z+Om*Wqsx|syrA5O6}_PAE0Ka;(1y3x2X8EYmNloYHh3=zC25=5M2dx=iG7ghN`>_)HbNRMA+t2-He53*%ZbM=qI*JQ~9J=fD(=*iJ%bbFU%GLPq4{^zO!Jd;r_X>_z{57^(6UAR;%cACrkN@%Z!Brmc zwptQJf8UlxSkV^0yyV9luS_jih!pqOF33a*{(VuA6rZa^3i=88SkfnJiW(xUf8b0! z7&e}@>GO8i(;2Rnbisbk7{Z6Fs>*`V`xzN?8{fiI2bGTVTaGT>_(2roI$K8)Rk)7) zpYHNSe@0gSXHd)~3iGO?ShW}NF;rIk5`}##*W6rN7V?_T(kzPhWZO#=V(;NwO=VTV z2oj^@gnRf_+UiKg=v(INhBYvP*1qa;*-1@*}rq zLw&ZZ{`iesjH&*f>h!GMIdWRN%`H0B?G>HL_Pd{Rr)@`(zIKOZVKKp5ucPR2Od*$T zBl|-p+hwTrx$3A@JxqMei5`bz0)<9?{ytN=BA>KXr0q1mpKCC#-?+Q5E!(xY>2Q7W zl6?4ky7hU2?Q}5F=`b`r^!Vz`@=*=%?-`OCeR1^JK`o9xT;Pfm(fuHjslrw209zI^ zRQ-pWui6IYy_a`nyZCrVhKvw6bWNc?=Gl?2r^6pvqkR_CtbO)r(30qufCM--Dv~s6 zNg_?NpRHbHd}**{QS+u*;JrVAhDqt~kL3AaJid?uy_h!AwKZ#^1N>Jg&_J$4e8QI` z(k+#b8t~TG>RFm7@00Gz*J`fbIM>nKXz`?9ycvbU#Dv7hSHYnNFuP zkRDMwouH@Ei+|MRs>(Hcxh)In(U)@LRC{)sNll=&P%kI`V;kc3nl;2MG=$p{`Wrj# ziQm}yzO62$qu*l7qUOyp$$KN{!iCsoc&cX2u$TWnP}#-bhR1DnC+dIHmPO6g?+-}& zB8}Jv7`(bx>t`8|_!gx1x&to;_@(<%mbK_@v%ofJV z%6t1VTNcv7$7&W;H^djeCS-ecT0xycd<+%$drinTTW!e*@7S`axx$mLuei8oN-yR5 zii>QuCW^nnmPO4KKW7aYKfEy~<9(vKp02cOj$F?6^_n#UeNLGyAFddUz8Lf$e^WX7 ztNJEejY^|@$(BXU8)dI%|D%@F675dT=?dMg{;Qfb#pK`@HKp*#YUdZW+LH$OnJtT& zH^3PB&SeqJzgaWQkHyzDrSnJo{A;%Q5|#hWmPO4~-sFAHvVJ~>BzWW3w`X%QHW^>F zTwpAXW~`~s;y*emALM^#vk_u7Laas-OU9~@SdsT+D#=#iuY$d7S%e$SVlnNmgzrjP z30HmjwSYeF;NOUvuHTl?3j8CkRb7o72Q@jU)YAKNOT(jUv1`w#e-6ei+*Ej~%`el2q%GzpJ+PTA)g|u_VmWA8S|FU|^ zt*!P`ntRB`o1u$$>zC5@oA*&R0m88(&lHA6iE1U_ImlghSgILw)R2|hQR#o{{r+E}mxUgy z>qP4@VXXHv!HFInKb@Mj3L~)R^B?a02Q56r|5f0Wc69s{+m0sVbF*eqbWu_DsV&}n z_q^(;R%M8fxt2)s-rZTb`UZn2a^u>i%U2#*-<&CQm>)UKSEoC9zbMmrIV9vnQ8w9*czu-`wU|-CSZl=C**{^cOli`OYZgV9 zXQ~EfmYb+ZF|(9@8yO5LrG4W!G38?XRBd&CrXpog2_ipgk-FryH4+~bZ!J1#;i0K* z*`29EHr11-jTNUgn@f}NKd;S5MKc{1_>rCN+MVjiwB*vc-8vI}daW~?KPbB7KRlF4 zpB$kqVt%?4?Qu8Ay&(62{1oH?kOx72L4-|GC;X58EUZ!ou~q7blB`nUS_BMKH}lhhdZd8`Yo+>-ApO=DBI*(iQ7g_B#jt#a3@J zVEtLMC_Z3S`|QE2Z7JG(QX733OHXEol~z%GB>9lZyW{gw+i`e4lJW0h_DN-tZkS-f>GbNo-eOm#G? zP9;8u(t4AA>a|y{zE)cn@{*oo%R*jKZp4aS(&H+Tg67jNB+jQV(Z(S@5q;h20Rzt3 zqi*2fQyhGTgU{)}wK2J`{xM0fe)SEPvzNBEI&{k<&o-wXzbu>0(>Jkk^pIR3jj85F z(pNRcf_c1Z^tNi9&)Bk%uKY>OqUy%Z*l%_| zP@M))-z7fgkdg4s&Y#%oNYs3h zsJV*Aug#|0u#&~uaNKihj46}WRb@CzJ#+=8`RlrA`;`0-SFg-g~kwk%3kyv5%9 zeDyrdKD{HcqD$wXd_(DnYNe}Z>U}SlXDK;NQaaZR8iiBz&2(H?-qu7j!gBs1S0;3& z-_dT5e@Y^bXC@ZLPV?o|t}rRD<8@jm4Wp`%y*J5qU!vYkj9x*{c~Dnig`C74xa8 z{*q=CPL6m-go6%hJKP2?y)vaLeY8F|;*}ZEV!m=McH6R$ai)_SqT05KiF{HDR};i) z{o^&$`Xu+9RPwC|SJ-M!y6|PTENZU&aT|B*LxQoIzqMwXAK&1XTl_YJ@7n52)PA!q zi<+x_>bfj_m)zO4E!~qZ&{cT!ZyKkNjLGPUnyG&peS0_OG)npOFP9$~dVX)KLurOb zY*~bxp`7W?t%&^K=V`=(g-B7O-)e`h+>!3+;UCcCHInJVf~z^x>CjckP4(-0I$N9^ zzFn_>TI1QKY)@C4X&E28zEtO&01_zqO^e7>f+W(_jMTT)Z$(7#uDup(to4{hEbS;qWiFVCm z%SVf!sr)kzA9Siu=V_;lUO|22l!i;=M$+IK{=L;{<=zIiIO5o0hQ2(O&eN&Vf?s}$ zerx6Wzhd@Xwv8q2eV%4fbTgv(uOn-HPifB9lLLUZ$4HHjG?p$mR7cC|65?Z88mBfi zXB(+_ZIuZYA9GW2sP(qW z)%rbK7BWVC$CiaG2)S`BhB=YqN-agzyTOQN+EMAGDJt}#Ix4LS`zJ9k6}i#+B}N+j zMO#(NAoV9(7ByG(%!8X`+VH<2m9KyK`aPdAUc8ALYNh;H4F@-2Va-!lqxUhXe4~~j z(j4PRkP27PqitE#zBv{Jn`5nZ70Wnij?1n#nqx@~n`2S1IeZzYIY@>`b1bserMw*n z*|Mm4b4*(tY>stwaSEODfBE{}KBFy8tyx=4Z&(~`3l@MHf&_>(#1>mEN<(b2Wf5)& zi%CW1C0@~4un;MB+K#vG3cg|ZfB{99ltrgI>lNknWw`C2egl1-fvh0-!L0oUXkBmg zv%c!|v*6NQ-*%A7`UR&@aEcc6{dy04)V8lkce_xtD5~e;OLtpu|1s{R?0APSz1`65 z*Q%pibv^Mh7wq&w)-F1U-qC>xjY^HYxL>JUlQ-J3kXPpOnnlsRZL9Lp{0&@a{F)CK z8vi8~SdG4nIV>8vH& zLw6P9%f*G=-FmTo@fVDCI-+Lnw130;Y$L>>F9kGeaT>KajS#0%i$kvoi4$q0Lv1xI zugPLt7Bz3AgNrnh-<#`ktr_1bsweZW8|`&w&Dv{GvG(#MYYa$+3IFTSraR46@6vQ9 z+p?&6(@oV!>s^1f&U#w+>`imdN55e-(0gjuK-2hWKa~#yX=fwKr)Hq?BX7_x$a7wQ|m=6d9&n)QwS zWIZC%U`gUjLp_D0iS(2&**3HElrLx&Z{d<;@@Be#e_6V9J2@fB^3Qk+e^xV1Pidgi z8{N`n#TV7=Pb=5#k8N2<@4uTHr`XP%^>3dQPCJ%=+H7NJ{%EEpKV#xUg7%GU!21CI;mDG?J*5pXfcIPppq+GOpmo?QFDclcNM;&yO8P3oELI% zKCEU+pWrE73Xb&jLu|DsJ^f%?7PVLWnyzm8(Lz&deRDdu)hQUm%jq>#ye?RKKf47- z6n~1X)eTm9<+Onv<%4u(q zeFE2JL${^hP(zh_r8eqPBfb1uTYZVjueN0oR=LH}Uw%FC%G82|NWs4zELeyXycb}> zLZtYxt>Mt!^qFV1>0`S%9J{z_;gRwwaAPESws^O`yl%k20r;cSMsa6hV-H;P>MwES z4+`B8zfe90-tTtLQ?`9oy8Gj{EToAawPoQp@uOCrdA3dbwiV6}rz6`9V@R4Tz+F4C z9X;6JOLve7vY^fJ^j!dY8s6y}zo{zA)n5008Sg6)htR=bPa<;HgG3}p>3e=-NURFi zvLkI-NGBL(%fjsh3#~eVwFzYA>YlAzsgYNaD_ecwsLu)~(`>x;Z?96L&l1nfZS8c^ zSXVxq!wDa1{7j+W7ySrZ?aGUOsAf^r)=@>1zI#q{!ST6t_qO`hbXR=~9U92wd(s{B zYotxDkJ~bNx@v7VP~JSod8Sr)v16Qrw-q|g@7uS!4Wtij4nOA{B&gz%Mu_7b%^Y9f zPB)3*12HYR?9P1XhZPH6&SV)oEvOTzM02zHmRIvQ2qCO(D^d#5x|>5X3LjryD9SZqYz(>p6y?H#tNwOwD0^;|`1J+*Y>8e=kj zu4XD7*C53_NGpD-z-`2M(+;m;v%7_AUzO;4w#2s0 zWI9-6%c5k3ThAMl{H;^cf_tpXQ2ZG+Q~X}CQ5q;aGR~c9t31*F7R|z9I<}oNMlbE! zUEki*r4ObW>U>Ad)H$Ys3T^ZYjp%V#<$CO~Wg-1I$4yb~`C=3l?%jDCTt;43GkuTN z`u56(N%1&k!9t{{(Zn2oIp)hXYwx7XF<-K6D{1Z*Y*~aAZP8ZJ-25xif`v$N zt?ddPQqYh6kyhV9uwHG9#8NBf8)WmFtFovseg(X7vAgl(HO2rikEE$^p}&u2QFO&o zMdKu&&X0dTS64@^>M-JCC@t~w+Le{7Z<#F%c{7f+Wg+h;H)2Ka=iEx9p!ai9(lxV1 zdy)0~d7!rt=glPV)+#;k!j-+~2gTn@^{j@qF7!ch`h$VaU9L2vP6Z|y8Q zX2Xij%k_ONE5hF)_$}3>8t>^i-u>&$f8Bysi4j;a0Nx&4pY~YoRCSnAh7K zRWsF(Z$PyboubRru`XV*;gJd#M!@p~I**lJFcf2u8u znk#=ihH-CiC!+fI)lBsh^dRmP9IyCy+iFb|{|;LgHCOy-_L$K>`prT9Gc{BC7}vMN zEi^LBe9~51qVVf%S%ejCu_%>wEzjH*EJTXG^5kF47;pVEvfoXmU)HSoOWaiYxos0l zFL*$+uvm`TPTj>fm0qoxI{VvHdbx5vzGTZn`tb|g6vg_nt-_0LDor`LR!h`=HkBq( z!4)n|$J?@~xw?yNDjiWXWhZVb9crs586g(ivIwi%Vvv`4g2yQf79s`D6BaB)3jXnK z!9t{X(Dv6Zr08ks=^a~^&bR-)bofOtd8K6M{)2cPI(Had^<<3;mC;`{F#IE@T^XKmxG@V*63Q!H=C1e z;AeL+`W-*p#5^zNXHRnEr5u?9s#BNov&D?&bM~iD!eI4xe)d^@*1+gS=JF+u9KpfQ zk#Dd%hm(xu$cKRjse?Fj1hd|YvmeLkK%gONDQ91XV2C;ykptC0awa7-lhGicz0^2P z@<(R98fdHaengcXMJq|9T)B=v20Rcy;`+)Eg}c2o55wGdI)H&dI2I0QscM|OA!oIuOJw%UgBpvINwcRHdH;uB|L%1 zI`szx(^Q@dDj=v+KSsVfHHUfbeOfsKFM4TKrl&t3z0+A5eNpW>yTlRx`Dam5Y(x^aK0fx6V#2!H$uIW zpFPDXkLPE{Fzd^ZVUD^F!8mmbo{dl^aLN~uWQO`FG%-|7=Ez~3?;#fA0*=fuI-Sug zNK&URL@-Eo;@MpF1SfeDkptDI7@flC$H+HAJ;#wf99+iC?m?2l>I@DRB66Tw!p{!l zl;7mw+X#lK&vMGckz}NLk)Jsn`3MKgI8rhC4KurdBZo73lAk?`pibS5XG7HM(8MJ5 zEVDk6ll&2Aw0a+c>FWImhN|!2*$_1WXo%Ve*~h6{5jjXL0Gh6*;n^s43WBL>I-@%g z3{oS}mj=D08_U!94XV1QXRSkz}O$5b_OD8K63~9l==j z2$IyP-vJF*A7R#i1+zN!3?c`suXBb0kaMtF#Tky~XFVM3=HMsDH&}faNd~KTa^%lA z^1Y01=Vy0t@C%ezr+&rd{fg21k+M#0;v^?+z!Jzn8Zo;=j?ysB)4<$ zHw1NRD?i)D!FYbw%d#|ahZ*uT=4xR>=I&~;g)~VSX`7Mq- zgV7*~d7QUAw|G>=t$IpJuk#$_`^IXDrnCG7uUBM~;!jTU! zvzHm2#m`dAWjJS8%E1T@KES~zILRcSI<+5XKbW)M%}JhNG?iu9n^R^uN)#F zMz3)!iJ-;v|41 z{*v=u%^4nM^frDrj#J(ZE_Lch%w;bQ&ScgnGdh>E-^-B$Is5*M4qoc%G5T!TnjkR!5Az05rS$tmB>Dc{S% zfB4yH{Om=}@De}!KBISm=Tvn+QVvw_<`N#{4100Pd5q3RP^aF*NnS!wr%vW1Z*uS< z4)*5YY!2?>;Gdjt4}yVe2=i>?XATFS!&ml_9hO#z~%iB z!7%j+&TuS0dxquwAM^Y;BJ0$19JxP7evPw#7eSr+GoIC{eenhiQb!}hK=n6H@*@sb zAsDD0=YpO)q+ zV00oUd5AMKAhJ&VoP%b5wuOTabG}D8-x(Zv2}f?>;FFy1A3$~La*q5D2lsKXjq`ON zs8hdSbQV9G&p`^oAoVFmpXT5wX8n0aU*zD|92|#dgVfu>Y>@gQv+m?)pXU;O&uBkx zfUj`mIeLi|_C99a%FIRs)v4F{+21)hk&}$& zpo6(ggLFq9GPOCT^xBTN49X}zZrcDXs{ZLB!krwPI($X z`zeCK>RtToY>xaMqoX-!u!j<01tWV%)2k?-77o$xae2Yui!NFio@&e}@ zz>)uBeg1?qe2<^q;%4CBZydRT(I^gn#F4+@e81)3Iu15+lGiyHz>!aJkmul1&i)5R zb2;Ue91P{iw{enTj85lg!x`=3;3`fsfP+7Ayj#B%e`;1hdMUs_jf1p9?OF)CvZUjfGwaBnmeGRBiZ3Y^zz5z5^ zT?{l(<-m;A91vo-dJfNqsJ{b^P<@=_-#~ThXN>mcU@h}J2WYHX4lYB~`G_2-e#pVE zk#C6lAg7#xV6Ym8l;hL{F17)YBh+KyGDP(va-{kgf??_|1OwGVF7IDJgVhe8I`w7F zu$>Fqk5m2}0j)ea$rpeIsAGUet9GDa3ZKp(72q-@V*M!RTgdrvfdQ31lEt0GTpj}& z)zdo`djNT-m9_!sd!N_>;HdV@)#`?4t-#*wWFua-6}YlSe->%1_K>Bt1}2> z2oXnHw-GG8<$r$lf3gAoD=>2U$SG(dKRBf32IM-T?VK5l1a`%RA?z z6x9OKM#RzPVx)hhkD?w0d5nmoV8KQFFF#39zXEv}!}K*oZM0~t@mQI`*8>2AD< zqP_(3Wst9c+ywGfkgtJ!9poDz-vs#<$hSdm2Kf%iEg;_o`5wskL2d=P4dix^AAsCJ z#8K~dMLhEx6m=HJ*&rz*jy5(!ZC&4^s4NjjTbvQ~wp%Hx5u^#^AdrP12ZJmESqyRr z$P$o4K@I~s9OMX)BSDS=c{|9_Ajg0l3vwLDQjldt9Q7vkVwC->=P2r7kY9uR2IRLO zkAVCRj*yWD&?>kV8P0fE)^P z7|7v79BqL`)qd|@ZSqicoWF-+t+iH>F5=8ZZd<^7Lkjp^!fLso81;~{k zSAl$-h@)+`$p7@=6!k2~t01p~ya_V&2qMElrh-fdnF%r*WG=|wAPYf`1z87j2FRHp zXAyA}%)lt;=p!lW7?5L$INC0Z`129DDJH>Nb$uL4H8QQ7{l7)9cSr)Egjgg8UuiA0Yn(`4`B)LH+~sUy%QS z40x8vK#)3+K_G)chJXwu;%MW8R^9Uy^+AvifqWR`0+5e@TnKUzNH54oK`sWl1f&n- zV<4A;Tn4fS0SJbq2_pAZLM`4Uz&m2P6&B0@4c7 z2I7FUgKP!a29g0$AlpGYKsrIXK(Zj+Am@VQK=L33kRFg7AUi>Jf$Ro359A#n?*w@l z$h$$_1M*&w_kp}0%=Em+{W=6txRvH^_M)?*Mrx$h$z^4e}n4_kz3+!72fqWk13m{(vxe??`AYTUg3dl_$Uj_LZ z$k#!>0rE|dZ-IOp`aiklR3R2l)ZW9Uwmh`4PySAa{Y>4RR02 zy+j;!i`zP1si&x$K)wp{HIT1^d;{d0Am0M{HptB&-vPM=1NlD4tsu97+z#>s zkUKzr2=XJ4J3;OOxf|pjkb6OX400dHPe6VOazDreAU^|n5aj0|zW{j%i8xFOYwO{0HQ}ApZjyu!zV&kUEe-AcH}MfD8p01~MFE z1QAEu%u&v_mr&HrAm0JG1?0O#9BocVil+{xsHZ`m0eKeW4vFDtJhafE= ztsre64oEx5R*-EV84v}s9i#)K6Qm0y3(`%*QLy`hd)xad$^mHy*$T1^Bm<&|I0`0T zq&@e;6qN(XgA_n|h&T#nV47e~`v@i&*nN?F%|-P51dtO!)`F}9Sr4)SWFrwr&2nYA z{i7811CTpFehBg-kUK%{0=XOH9*}!MehhLS$WK6i3UWWl10X*Gc@X61Ain^42;`R_ zzXEv}Af z)SF$UbX`eNS&(ibj)Kh_CA|GAiaHwP7?5L$I11KoQtN_GK&|_0EvYTn0>HYBY%8y) z#H)xn3TA9Xb$^PY&IQSV+kc7p5z*$r|Y$U8vZ3GyzGcZ0kKy819?Bl z2SCmT`5?%LKt2p|0mw%{E(E!Vh@)UXhfpJKq^OY~qd-Q3i~$)7G7e-s$OMpyAd^7$ z0+|dl1!OA7G?3{aGeBm7%mSGWG6!TXNIl5jAp3wcfb0u04`e@({Xyn~EC4wG#pSCjzg271; z3|~Ocw;?4gV1i%@69m%~&|MVvX&aRw7^?)q=mqoyg?-xkB?x9PK`^fY4WO`3+t~!c z;3f!`H$gDL34$$75R7tyV4V{LGo2vV>jc4YCkO^Npj#>I)0Q_uFu@6eElv=Oa)Mx; z69hAzAlT~!!Eh(&_Xc{*K#v>f2?N2(CtRK~(9;Hj0Z>xH5-8{o271mwFcL~iSPKQg zv<5Vl!ai+d69i+MAXwc5!Tcr&b~r&W$O(dFP7q9Vf?%r?1f!iGSnmYEj3)^8JV7w* z34(=B5KMi7VDl3Md$AxGjs?MjEC{A#L9i(cf^k_8tjvO7ZWaW)vmh9t1;G+62qtMkuuThsky;R} z)q-HQ76f}P(8Cn=X~V7{Sa=1&)GG)kWT4w9?9;YnK`<%{f^}IC%*=vdZx#f@vmjWY z1;G?82sUX!Fa-mhM`53~2@8U8SP-nlf?zHd1iP^y7?1_Qk}L=&WkIkl3xbhZ5Del# z(5X|m^V1E|`L%bkZHz98&W0L`JWPj6WW!rp}-Y+?w)ZiXOiYY4*rh9GQo z2*O4IP*%4ab_@hz>p&3p5CmZ}K@fHo1YvtY5cU}aVZ%WXb{+&_3qla~A_QSmLJ)Q* z1Yw&(5cVqsVdFv&b}$5CD?8bR2! z5ro|vLDr*w_(-9Uej0>JfxJA3@ms5rkbJLD&uwgnc1F*dP*wogzWlG7#-o1kp;n?EC_~WL9j3jf~i>$Y|esUd=>;Nv>=$H1;H*Y2nK3Fuv80z z$yyL>*MeZg76fayAeglU!M-gBhHgQycngB*TM%sEf?y061gp3pn8yXdJPvd{g?-vi zE(iv5L9m<)f(cy^Z0UkvR2Ky6x*(X@1;O4f2!?k-u)qs~DP9n4@`7NT7X&N4Aeid~ z!EP@I27E!V2o4Q`;MpJuE)Ig=>mUeD4}#$RAP8;{g5VD!2#yhg;2|Lht`dUaGa(4h z6N2DHAqegig5Xyn2o4s4;AtTUE*FB}dm#u;7=qx9AqZ|6g5aMa2#y+p;ISbHt{Z~j z!yyRH9D?B0Aqegrg5c*N2o4{D;Q1j4E+B&73nBpr5Zprq!GRL!NeXG#%0O_blxOg*6a*(r zLGZQ|1h-2;@V^uUM@&KR$P@(EOhNF`6a;5YLGaoX1ourr@Z%H&hfYE8>=Xp=JfPoE z*r(m}1pUo;_KJaCHPCAYdfh;880bv{!QD^FgWsPZH~1PX$0pddI23WB$w zAh-<*g8!f(I1&niN1-6N77Buop&&RL3WC?6Ah;h2f*+zFI3x;!XQCi@CIWR)*r#0- z1;JNQ5Ihip9;C2OyCMpLPof|=Ckld>q9C{{3WDFFAUH4zf+wROxHJlaZ=)bMISPWe zqae6F3WEQmAUHw_f=4vaLlpLD*JwfTkro7RE1;(-?9*;ng5ZB82##2S;E^Q=u33WM zqa_H=T7uxUB?#_Yg5bv`2o7C>;MpYzE?$D*>m>+IUxMKMB?xX{g5VD(2tKMn{~^a! z(!}A6o}sW$dw1a(Be;19g1?s_IDQF&2bdsuoB`cHVV`zA69gYLL2yPB1g|tf@UsOP zpyhb3W5u+Ab7(AeV)QT?G`Tx{_%p~C@%<3%s^=h`?NQ+Ah-S`3xZd)Ab6w!ok(Gyc1;rmA2mU6RucrTH9>G+69hjtL2zgj1kW}> zaB&j^UpGN;dJ_ciH$iZN69j)aL2!%{1P?huaQg!~jKV(c|0f8JfP&x=CkDwqp3krhQ zpdh#p3W6V@AUG5Xf@h&1xEKn8uc06~9SVZ?p&+;+3W7hPAUGxpf`_6YxGD;Q&!QkW zFA9PeqagSZ0_{a%pMobM&}kHshlPRQn<&rV<_2^tg?-xJO%NR41i=GN5M1E|!6!}- zoZ|$+OHL5nRu5M1*F z!ADOJob?33Yfli|_XNR@PY@jX1i`aU5M2BO!Pid^oc;vC`%e(u00qGxP!Jpg1;KX| z=nM+`v=gZyc#{f(Td5%UmkNTTsUUcq3WDpYAo!pPf-|Zhc%=%0d#WJ#sS1L_svvl- z3W5u(Ao#Khf>Wy?c()3Io2wxBy9$Eis~~v53W6)FAo#=zf^)1Oc*zQayR0C%P6Hi6 zVW0M)76fN%LGY>;1ovt|@Us>KhigIbycPuaT%gy!i1Og4D+ms|g5bF;2rj&W;L9rr zPQ8NQ-75%gzJlQID+rFig5Uux2(G|_;1ete&cTA$7g5XIk2rk8f z;9D#RPR4@ZZ7c|G$AaL0EC`Osg5Z%X2(HP3;G--E&dP$|wJZqk%Yxv?EC>$Gg5cRK z2rkZo;Oi_1PS1ki{VWJ>(1LJ=0B9YBefltgAe<@?gyRK*aLzyw4jc%=$pb++c>r`K zg?;)6f*_nl5QIYsf^a%P5M1Yhj-!yQIOH`Cw2;C+?L#jJ-uOWKQ`o27@&&;^Ul1Ji z1>u|k(9sn3=>r3TaB@Hpjt~gKSpq>gR3Hea3k2bqfgqeW5QKvVf^Y&s5RM`U!kGj? zIJN<_g2FxpPjH~eDD2ZN;ey~BE(lKIg5WJK2yWwo;BXE!lEOaic`gWE<3Kl2*r(mc z1;LM85FE+{!LwWtT+9W**IW>s&VAI=J7#M~wuOAp^~DPLJ(uk1oxnFPIBiDk$hK@} zI@8rg-;05Jdhfti9gNClvxQWCcV|nsV~@IK)PMoKLpL+JY|n!CX-{^1M0I`d=zON7 zgT5EHv?aU4*&}$F(~;dtcu1y=E`X+gMzuMu9qC-UkjZut9M+a??Mio27WHa97> zH#xyHAL$*DYTcIUXv;ZWd(PU^J0_Lx%62W6n4Xs2Vc8btv=(r)ggSp9T{U%22c!<3B+Y!^#JE*n0TW6SfI(hkD zM@mtX=s!~-YAQvoSJOayN9f9L$ZhDR8jmeFo!uSjg0qpd(3z*0(O%5b+*ZPBhR!-u zQ>_#=i~j$JnoX3B$jsFN)p`gN7p$|ohUy-u%CPXA+jMfFcW9oPsl(aRJFl?2+evlj zvYpw2lS=1u>D~GH3+m@*y6WlMgFPKieP+k*1$%m@QqUBWcF(r&tuO3J>s!2uF^vQy zSnt&KOjmn0j?W12(N8(2n_-4zpyx{=Mt!GK*p_Xhvd1Bhj*H1T$H=)n+f|@0?Bpc( zB;@wvgB%=v={QNvLhsw=w5NMI3aOqtJtPp;>= z0ll7Fw9Rx+)=v#dW=Mvpasxd%nsbhkGe)JMo*dxd=)3VnoAsG|s=XtdPUyxHp$RjY zQI7`mnWxjxtEpR=UrjT;!E1l>na3-pinGl2G4pvXbQB-I@`jGqbXTf1oiAv%p3ph-=Aj)<@u5d| zfKWOXDy>d2hKQ+|!~s}8HL5d1G9-4}XwErCPQSJ?5`?;KfP<6~@bhToMm&*5acV}}2TKMYGGj^t#4T*~8 z@Cvxrc;BYc_)}!PFcR$eG3Ry1t(k!=lp-|z=;@9-X-wX^X5N@?si$#2-YDNuvxBWW z*IWFd0Y<{rs%Uc!K0rb2cpWI{pJEOs7 zqT3c-LXGh{woYL*+Z;1vwB_`0$1Ue4H8||!M<+}jdXSR#^RqA~M{SA>oGsaGNAXwQ z8#pDEDHFY`^2n1b)F;h>Q<58;FmTEvkCR^$nHHi0r)2YLd2z6R&GULqKPww8W=vXU znpRI59bqrblf*zA2E& zQ`e5hy$lE>AL`+P7JGfL~vHux}8_|ah2BnHIT+*f{#+k4}^V0z3HOA`SlzU zPRRV+IV{k&0XESwQMYZlpKuO?--2*y3H@abn!)c!P2rr(*U?|$@|${Z8k|a6WQWpu zO8jiFNe>LpH~p@;^s1t04zGZQ;D9%Wmiko5;)A+=frE)WHa8kW+!Xqm+Y#4S^!g1C zIiK68)BWVphSatNZpcW!*};5%!^jJ+e^L4I_$}|2>!>dU^}4`VYNWF5WESY|Da0;K z^dwRwy{C*3LFV&XJFl7@RC8s_BvY1qsM4g2|g zO(tpB%}*Em1UptE4O)R8A^rAUJ>n(g@su()sOg4a5k*HmJv~NJdJG>nCN%uI>sMAi zXoV9R+FuZUTKXUp&dGco{gFO@keNxhytH+6r(3tj^$5MR^iy~h9T6PjXK8JvS~Br{ zUcZBq#AC6S@y^d7Q4`nUdh7@$GIWH2(##(1se#EqnA+eoFZd)u&!Ndbn2Y(*?Uq3m zEeLj*e%6C}j3|=cQ{I7EdHPF=WL#gSi_%|GB!n+1QZSQ~;7f{x#&MEA>JF+_GaApq z&D?8y2Y074xjnu6;KH9mBU#kFg~m}Zs?z|N?#g%5y+HHH#?9Tri}A#|pUZraOTot& zspx-jDW`Gp2sgXhdIs6u_bpyjtCQNAOLuQWVS0@~#d~pHalhjN{>hyGt%Lc2&4L+A zdkVBgRLHc}FVD6)M7nm+Ro?W&I=`oPZo$cQHu@BMW6=4Cu?l*j5k$}Mar>q5FRPFJfFWHQ5LLK5)9;w(n2qFoqg zXEwJTmy)9%5)mqGg8!s`b-Jsq!=Vm}5mmTp`_`&NEY@}v<@LYYS* zv-{-^m=U+_S%wL zhvVX#bK-hh-oWM-EQ;0OJt!EW_k)gAvE7QIkgQm7IYUB-<|KV}+A|9RJ;NX88Ifv2XJb*9YNPOg$2JrhC?ZZj# z=Rk4fwT$qQTS|E?N8Zd_9%A$YkJ95fl0Q|TKXOYM@R3^zc5up@nAuYtJfS0l!+Co) zm+Hu7yW`d=dgsJT;MMpK%woPbwH?CE!1EdW22!-GpQrV8Q+v9#kj-VzgNuRFmCxpy zTD#r<_Vh01Y>gS31xwDQH=60w3z#{MTfVVbbFH7R3#_NfwH#*DoJ-0{-{h6Yig2Y^ zlcF_JrjSZ`3!75w;Bbk>V#o+F0~fZlf@8n6A9Us z>W2SK^;CJBwT!MPhKL&=Vm4Pr`RrdB$YBVFmj;n!gFTP^P^!|(_AiYuOhiojxy_SM z^%~kG-gkTX z{4v~eUiKs~D**R&kTi8vLvgLamH^{84Y=rSOb);QKi;OEL`0sHQn$NOd z`63wYcY^=w{@+RFi(p8$Ht?=iK{m^oHXwu{-SPCGqS3XlSk{2u% zDXHz-(zN1D<y`8Yd1T(}xRc~LA|8RA|Pf zo{CpjE-;J4B0DOte=n0Sv;M6)yCb_bmCv>pI@7!KyA|5E)yC978l&R%fd}4;sf}>* zDG<LaH56mqR8MKN!1i8!cg)m&jRMX%Z3fEUtZD+jw)Y} zc4sEWym;~x&Qu^< zH3rYHD2AZ47Gw2!g3|s}s@-*~uS z+K3$y#t?RSRR%ztAz2q}$g-lRtA!3vTDGzO(%4K^Trx}JsLkFAU#~z9E^P(sbU2-K zN|}BQ(n54$Nej_nmf(8y#PzZsT`6o!UX}*<(&{w2ons6lfyBYFH&Cw8NGF%PGVGsm zeQ=$4LUQNspIebt<5~O`rP6IB^sN3%sSm%DCsr)C2jW^R13^)AynhiTf zJIxAaivD&B{=SaMT_4IF^9wHg`#Q+QQ7aAe)2wzno8QvYPUpz=+a3DpsekxN5~Cgs z67LNRF~WonYD*qZqbnAPE=x9_I=6XJjI>uN|6qZ)H1 z-m6B);-P(h+2SE-4IT{=@A2qg6_UqO#czTpu&H!~L!r3UM?dwHF<$%gkV#Pwi~ANG z7Wo&srh9rDij9Q9RKdZI9m0~vxqvQRZ8a+otc~&xNu``~%P($0N!0`AaA{keT9pRQ zk+lN<4x}%;mRb+AW%}siY3- zvp32;oXWKn?gkxCg;a$d)J9#&Sz5WkmCM8znC6EPHu9uY~uY z(_CLKDq<`?*_ zE@=%O4HED1=>NC6o{Af>mAeD*`3P7-dr#eLpMKW4r%ohLpRgY`E)V2qEX1~J~wJJE0`(TT?3}exZL%j z+%b9xnJx`3j=I-)=VoaWSkca^ZGMu(sK;E1_ZlVCw1II%(i%J(B;Ml@Q=yRgQ}Qq` zM;&Oi$_zRjDFZ^t7|Y{`o4}A|wvjE`Fu`#oF8|)){4q5Nk0S;j@>ny*cfz<^+T(KF9_k9OS+qs9oP&skoXtT*$rb!f zaa{8zn}dixGcv+1iLBwGXD9viOm30;)MzDa5JL+jrl3a0TG0Hw+5F?py5x3MAIm-v#p(lK&{cTA%j(xr*#i(qEI?R*9hnyurm$@8%yd*LW2ve{n^Z zP3oH&%DUyD;O8 zAQNFx#BXSGiW;=cxi7*yG7grsW{9w93dmx#Ycu)F(IweE-83tgdVbySr+!z7NLkY4 z7nL$7j3H)u3)KkYpl!9Jg=&ODQ`|yzb9b69b}5uKgG4w-bZ6PZ0a*;ymA{&fidf!i zI+7nN*5DlBuBO-d3t2jVTIz%rVJ_o}Wv2^DVQ8+r6T2~Qg|D`f*3*%iL2cocOEZe` zv}v!i@QT`2bpc@v)t$^@daJ|g30l%(HAa(KP){5~)RS1$G8U^5_K{cEavt#|F$4@O zR;xYKl(bllR5!5pV}T5D1B+EJXZ4!Dq{XUNtUo;&0tW{oN4W+!CcJGQ3rVS(`)C$i@JKo{BZA~>mkKBc~~*`&;D`- z*U+n*HB+l~bWj{xOP92K292Qvb!y>BYBYgY4}Wy2eg~?K_`ZOK_${73t2qjW8lrb&RrFtM zOgu}fP?e!EEd7bql0N*4yiH8^{6?0upHTWcys0wzeeLg0S8l^)1gAMgK-xL~}z4 z_tXTB-tOsjj}}MIECiDkzX4%s;GA&Mfw`jGNGpd%+Ouftra*B<=Q|?uU%0AqDoQUUd$yDXyJsU$W{VTlY)p5i~vcXxQ7 zPN|Bx(O;Hjipv6do&N~0^Xpy08T9q;ZClCFSC2QLZ9?scauhwtmdLImIU?s+k4rem zTA~jk>R+6IV`PM{cqKxvTh@5+c6vdAD)lQ1=3C?ASQ%Q+(M6W+e%osm) zkUol@lTBn-NvlN8&q9i~yj3FSYDtQs=W1)Fi^zFf8oi32w=GeO@<*@eIb7g;>nm`AHsQE%B3F5DqBr;?W`sCy zsfILYr{c$J6IqHZ7VQ*0cS}9DVnNF9xluW&zxW4q-`f7-7i+W->81F&;1V0Ce7ywD z3p?rtZvm(mvQs*XT;@9*t1dh=CLCtKK=(anXFUgZY+wOH1i=dg1HG2l6{A z$MW)y=S)6((-rTZHwH5MDOm8d`irsqxpNzRj;-kTlXM*2`KHow209U8;gl+Si zD}NOtk{T6}Ht{M_qnEmxZQ_esyeehc=tV{RDZ-8Bj2CW{Dpw`OPQOhgDtq5bvX)et zldIdqJXZswWm-k1a<=y+S4lNFsk$`@?`EA$y{?+Q%6EaS!o=;1W~lvCiuT&0I>VDM zb18fN$<0^vtlnmly7Ya{JAS)r&r#?iwVpf$5A&L z-iZg5@%w{66VX)qkB-O%Ov_jKABAn!Z+z0mTXc~Ce)Iz)dSP;W(xz}}#=En&%-FVU12_@BkO*jH?*ItO<{P*ichPjJaf>SXVV9J z=F;cI&+TziG>G>&u{U$*^Pfg4uL(7SeT+xm8xXRt=_`8Jx@IIdIPGUV@;Lc+HBsVB z%vpYXlaY-%I_h}0mfmN>R|cjXdL`(S#!a9pu-c}-=$>!dw!1r9*yiLj`IHy6)uGRh zq&qykr+0-+MisDejbU1WW0&Qqbz0N;!pdAOo7>Y12SR(^O(Ax{qEc+b$fw(#!tNCJ zJgw(opRq5RW=brW?HM%1$Y*qsGs7S9sjl?!8mvJ2uyBUxXV3>*@~L!JTPoY$o_C_h zSL_QWy<_og&!8zJn<4m_PG^hL)`rhk@>}u$mCnP$8KQTFUf-0yU6Q^~(w?nJT`-zd z&6q7TQtAc-AC6luS?Ow&t_B=xU0_fl*X?ll$DL@~mJc zN)!6A61eatE_Zz>xBo*#exQUdyfL^q>N3w6cW8=!fGsZJhl%$+HLXiph|xDp`~Mjd z$rSu0a3W;F-3G0mJ44CyMwl;Y8WxLU?Ho?7Tf`{YXqyu}!Dt(`i%b`#&%fb6C)3_H^Ys`CIiNbIxPZ@%Ri#9}Cmd?|Cr}Tri5`hjWOCYyEQw-`!JK#6; zmWkmNXo#`4m9FZhZ`A8 z-L(=4;cr}O8#EcE8Uk(cAN6$Qd%C-66-lkGEkqSf8A(5xy#~_a(?U+fi^^aKdlFA& z7)l8Dr+Uq_3tJ1F|hT!Lz z$+zZUeS|xGVOzDN$06}Do8E2MR55XkDzNVTQOf=NQMIHmU-wCp7=p9z{p7_eTghuz zzV7=K$Ed){qS=m+R@KrDZcMd&zKD0_SihqlzIXvi_tD z@e&*5QRNE~aU9bo*h5jV74(?_)3vT2!AQvmmLP%0+tBKmj2? zcSftb`@H77hB80S%0!K*u>o74T8KNvJIO$wlc4t>5>L_It ziIiiALBIE0F)CF`((gU5!^RiJ0y*jy&o5AKOEs1-U8nPTCx_pFG-JDWu{0*MO(1!2 zMq9!0sWg3Lu(c!W9^fivz7~emHA{l(@#vXhIngRw>hob$#*wA_LclTOPQpxq~)5oH>JtvOST zJ0M!oQVrpb(f-Qi&0|ss^|*zlNh8H@@s2vd8z%MQcP`yO*hb$I!38_5k$`x%csPBGpIA@^w`n^(&hJTD7987wbhGKg`W)_dmSI=!s_ zA9ejQ2~HeanLk`=V_b0}ZBeZ6^;agf;b{q-rN8Xt??Bu4`sI(2(rCdgoU|pI?I?W* zqQCM<{G=cD{bhH>*D@KxW{lRYu4k>mnksNc<@$FW`lE6hl{%A4rW-8jM+A9mSLj_E zu1A@kiAHv}A%dbAqPLr(lX;#NIazYru689(t-LY3N|-_#)j64~Q{-4m1@CgwEMDTv zz(N_~o~FfR|Niu@n1eJGNStJ%ElpyP%MhA-dp^~k&Cyj|S^C~De;BBgwRe97(_344 zZ#P6UL_gghORL~`X}o77c$t2JOI{y$fN%46)B}pX%ii9YM_Tmk+8m_#|y__Sg5CB9a+` zyK4x3^|av7do{aDnWyNCK_DtTq%$huYMwhw)z=4A(0o8LL-11^`oMfoXAQh`|o3vkx&uZD z3QsbJ_m{m1!mxOb`sv^S1J2qrf4-{3QpO7o*G93Y*UnOAG6`DB+#l0AK}D@^6hYm# z%-74v?iw^$D5J5r;4*|1pGd1@FffWEY0I>O8QGfxG8w|28F)~Ig^5up$z0}-Xd`=2 zW>+**bPUZ9U;mENS*xk;ibRi!W{9p2ziWxB+Mmlj{BCL+BC|*=s-q?wdj*p_)4L-2 zr6wLmV}BDpGb%XEOB~$|7=!dn@v|wCYgQoFa_?lHxV`AT2tQtOJ8GC`@7KE;Gsu-} z=Qbx7or+1^(J0(>a=y~dG2Krd6?UvBH?SRO~c!tW~U zbV@$GBlb1bO@N1-Ev+u}UU9up34Q>p*ut~3r=yS|-P2YGu9-4EfK_Uq;4);T=fV!2 zkp?J{BlWH%r|OW*O~E3K23_TQ+*BwHE(a`8c3iux4>hMyrq`aG-aDlm#{C5IQS}LI z^&UB{ha}%S`g$`Rz1vDIIEVJXzZ#n{*hH&V>?W_qOzSFQS(-m*97}4WB=^#|EKPxe zjdt2lqO)gzOl2fay0@Y~F7eKw8}sC{U2wMUPW0~UkGJ6+T9J^RIEEsdSGk>Um3s=M zncVNt&iRTOI>~YtTjQc)7}B0qNwXI%LOMZ`ovA#r4a5&iLWm(geDO9JwBprQD)Px~|(N|8ZMqe@5i;|Om#FQ>>d>=Wp zN`0h==t;W>Wr!XS($M-QuWzh#3fr>!ctho*NzzaBM43ZE7?Pe*js6iTKzc~hmTNg8 z$M=!51M07294RV(l5Mvv@dJVy+Fx7U`6kIy8ZU2nx-+B;f9$2aK|0J@dPUMP`qIRV z?+>R2)NIusii@1IaaW?q0pScSug4G-?t;d*G|SODEiaSKXT-`HBY+{{DV2;7G0deW zB<-M=Dr$URI6a_lo4$}Jc9P3N$zlftG_-v}HTy!6V{xpcp~4NxHdoRQLX4#kB-zPJ z5i!2~PY$Tpru~bGo8)m;lDGlE4DGIHuF7wYq{A+;^7+LY(rgTfX`?@%t2A`kt6QH( z(KYz$mYz&UoBolng)GHECQb=7Y9<|Pjmy#`MH`CS((c(Yydwc@gQ!%#vR8jaLi z$xoD_NvJx4mOcH%$Y2P$*-y}^SJTxIv+Uj&D}^EG+UmA=(!rnD9%&YDh_*quZ#DH- z_F6L{fg#`t)s!viinCbF1q)}f9QA}}dSv^2YfmQ`CZqf8G<1xDRoZ=SRBBc*Q`9Q1 zw-R`>DlT_@D7SCLmmxKDnWn+TQEzIiw)&J&k!iG%)R~E1O+)nDcdvO2dhw}stO)HkATes6~pR37>wZqAkW|0grq}EMZ7=%(cnI#&X;k2G^ z^3jI3o))T~wLvoD`q0N4la_+XoSICj42f5pwOL1>%CXg9(hwsAtY=Pp$uWSoRTSQtAVsh2J-$Z-V~6^5O;Op0Y(;QSK+N_@o1@rR40}A z^C?{MC|j8TlAJR7=M(?aX)T;J{MAltwyQl;`q`IIp)~F!En`Bd^&S49l39h0dd`@| zrgj#)*;;!q=%X7DDuGu6_qkbvV5YmPn>$UifXB`SVk{S%XSu9-JR_|W<%$iq=* z7_!&9=aI?pfzGAHI>Kmw4>Orjmj?5hJAH?*dDngxyrwhL8@%>6pLx7u>NpE)L_faC z%*Q+(wUB!nJByaG)t}yx&U9%1ymoB&@66`5m$ua(n^7;h(rSs(-zTTLqDOD2uWP?F zdS>WjnwL1*Ndo>x;asxqV))zwlB_UKjTqCw+NlKH?n!X;+sY-C&ztt#%m9HX4Gh!mpEFFKzoF9%?jk| zzdiiij{3GIss5!<%AIcHi_p_rDD6%+FKzIb!EvixThlsi7%BatF_#%BF6o9THoTF`#)PAgu9A!d^Czc`B~Uj{?8lV}JJ%3TdTCfVSU1T-Zv#9Zf^a;l}nBr{in zhyf{BJV$-jn9Aqm>2|BuZCJ&|+@47-Wb6{Kk$P* z9QBAH`(*D3MM!Y|x!GY}RWQv<92Gh6^M(=`b)6N+6(ej&%YJT0Ei?N=kv$|WDLpgF zoaQA?lr)@cRv=gZlKQzFr3{@;DP}3;Qy{beGi06aCyxpnIEaH(M!wm>d@J8EBWb2meCXH-Jk85t{wD|#MtvT zy6$E&qYmETpCF59Z30HA1YY}_&$J?mS4<59mE;(fH@D-TMw3 z6K0kExdbQTliEA7=@^Suu{o<>?ljOR`JnWhpFS!Efs7tX{u5OeF=-{=zladW5bz{! zr^vYRf2Tzj$a{~T<-X`0%!^ynP`mMv>@Pyn>TY+a=^fmi&gAy=&R`>s?!--WIJ@Aq z_jEMjhEe+YIGrD&Ylfe3hwB}Rvw9s4eMDgyE}L0T`4+7(w+2HwNvJtdezZaEXZM=n zz!v&q>7tM=EW|CCPkyNHpIku1x}{6ne{FiVlS2*qlV6W>rmmX&%!c#}`;p$yC9=

Meta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1472,7 +1472,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1549,7 +1549,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index 94f24a37ce..a245a91d8e 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1421,7 +1421,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 49c7627c91..b6327bd87c 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1421,7 +1421,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 9db8cb8ba5..c89ae69eed 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1418,7 +1418,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f73c90abf40>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f508132bf40>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index cedd9d4244..68d052fd5d 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1407,7 +1407,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f73bc7f1f00>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f5074a61f10>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 2f3dbb6316..9e4b26d400 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1534,8 +1534,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc07c0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0820>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80670>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f806d0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1572,8 +1572,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0880>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc08e0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80730>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80790>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1611,8 +1611,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0940>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc09a0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f807f0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80850>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1649,8 +1649,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0a00>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0a60>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f808b0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80910>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1688,8 +1688,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0b80>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0be0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80a30>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80a90>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1726,8 +1726,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0c40>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0ca0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80af0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80b50>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1790,8 +1790,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0ac0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0b20>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80970>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f809d0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1947,7 +1947,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0d00>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f80bb0>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -2006,8 +2006,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f73c8bc0700>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f73c8bc0760>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5080f805b0>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5080f80610>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 0a3558902c..fdb9eaed05 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_demo", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_demo.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 42, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 161, 164, 167, 168, 169, 171, 175, 176, 190, 193, 203, 209, 210, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 378, 380, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 408, 409, 410, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 576, 582, 587, 588, 589, 590, 591, 593, 595, 596, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 716, 718, 720, 721, 726, 727, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 775, 784, 785, 787, 788, 790, 791, 792, 793, 802, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874], "repo": [0, 12, 41, 813, 816, 819, 822, 824, 825, 830, 838, 840, 855], "hold": [0, 53, 54, 58, 66, 76, 81, 89, 93, 94, 330, 347, 352, 368, 383, 466, 495, 519, 520, 525, 572, 573, 630, 633, 643, 674, 754, 770, 817, 848, 867], "all": [0, 1, 3, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 40, 41, 43, 44, 46, 48, 49, 53, 54, 57, 58, 60, 62, 67, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 85, 90, 91, 93, 94, 122, 130, 137, 141, 142, 143, 197, 204, 236, 240, 268, 269, 324, 325, 337, 356, 365, 368, 371, 372, 373, 374, 383, 405, 414, 416, 417, 418, 426, 431, 441, 442, 444, 447, 448, 469, 480, 488, 494, 524, 530, 533, 550, 570, 571, 588, 595, 596, 610, 613, 625, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 640, 644, 655, 658, 659, 664, 676, 681, 682, 685, 690, 699, 703, 705, 711, 712, 713, 714, 715, 716, 725, 726, 727, 728, 734, 737, 742, 767, 769, 772, 773, 774, 775, 787, 788, 794, 797, 802, 804, 806, 808, 809, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 862, 863, 864, 865, 866, 867, 869, 872, 873, 874], "jupyt": [0, 856, 868], "exampl": [0, 7, 9, 18, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 43, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 405, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 437, 439, 442, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 500, 501, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 569, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 780, 797, 801, 802, 806, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 841, 845, 847, 848, 849, 850, 851, 857, 863, 864, 867, 869, 872, 873], "tab": [0, 814, 815, 824, 830, 848], "ivi": [0, 1, 2, 6, 7, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 815, 818, 819, 821, 823, 825, 826, 828, 830, 831, 832, 833, 834, 836, 843, 844, 851, 853, 856, 857, 858, 862, 873, 874], "": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 42, 44, 45, 46, 49, 53, 54, 55, 58, 66, 76, 78, 81, 89, 118, 135, 141, 142, 162, 163, 192, 195, 196, 208, 243, 278, 325, 330, 331, 332, 334, 345, 347, 353, 357, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 386, 387, 394, 400, 405, 416, 424, 428, 436, 445, 450, 452, 453, 469, 471, 472, 480, 497, 498, 499, 508, 518, 528, 546, 547, 553, 567, 590, 591, 612, 614, 615, 616, 617, 619, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 637, 643, 647, 649, 651, 653, 659, 666, 674, 676, 683, 684, 690, 726, 760, 762, 773, 787, 788, 789, 790, 791, 792, 793, 797, 806, 808, 809, 810, 811, 812, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 853, 856, 857, 858, 859, 860, 861, 862, 865, 866, 867, 869, 870, 871, 872], "web": 0, "relev": [0, 49, 72, 134, 625, 792, 808, 814, 815, 816, 820, 823, 824, 825, 827, 830, 834, 835, 838, 839, 840, 848, 852, 856, 864, 871, 872], "link": [0, 18, 27, 28, 42, 808, 814, 815, 816, 822, 824, 825, 831, 837, 860, 862, 864], "list": [0, 4, 5, 7, 8, 10, 43, 48, 49, 50, 52, 53, 54, 57, 60, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 130, 132, 135, 136, 137, 139, 145, 149, 151, 164, 168, 169, 176, 192, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 337, 338, 341, 342, 345, 346, 347, 353, 354, 355, 357, 358, 359, 368, 371, 372, 374, 381, 390, 391, 392, 394, 395, 396, 397, 408, 409, 410, 411, 415, 417, 421, 426, 430, 433, 440, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 466, 475, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 510, 518, 519, 520, 521, 530, 532, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 550, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 594, 595, 596, 597, 609, 610, 615, 620, 625, 626, 627, 628, 630, 632, 633, 635, 637, 638, 641, 642, 646, 647, 648, 649, 650, 651, 654, 655, 656, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 685, 687, 692, 693, 694, 695, 696, 699, 702, 703, 704, 705, 706, 709, 710, 714, 715, 716, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 753, 754, 757, 759, 760, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 788, 794, 801, 802, 806, 811, 813, 814, 815, 817, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 845, 848, 849, 850, 851, 859, 866, 867, 872, 874], "open": [0, 3, 5, 7, 8, 9, 24, 27, 28, 41, 42, 43, 44, 54, 62, 85, 122, 625, 639, 735, 737, 808, 809, 810, 811, 815, 816, 817, 822, 825, 828, 830, 837, 838, 843, 852, 855, 856, 857, 859, 860, 864, 865, 866, 868, 869], "task": [0, 6, 44, 636, 711, 712, 713, 808, 809, 811, 815, 816, 817, 837, 838, 866, 872, 873], "avil": 0, "discuss": [0, 814, 816, 822, 825, 826, 836, 837, 839, 840, 843, 846, 847, 848, 851, 857, 862, 867], "suggest": [0, 814, 815, 816, 822, 825, 831, 835, 837, 840, 841, 842, 852], "new": [0, 6, 7, 9, 11, 12, 14, 16, 19, 22, 23, 24, 25, 27, 28, 29, 43, 45, 48, 53, 54, 55, 60, 61, 70, 72, 76, 77, 78, 81, 83, 84, 126, 129, 131, 132, 137, 138, 139, 144, 145, 182, 205, 225, 271, 273, 277, 330, 335, 347, 352, 368, 371, 374, 383, 407, 456, 464, 465, 479, 485, 492, 525, 541, 542, 543, 545, 548, 549, 551, 572, 573, 576, 578, 585, 588, 589, 595, 612, 615, 617, 618, 619, 625, 626, 627, 628, 630, 631, 632, 635, 637, 638, 659, 671, 678, 698, 702, 706, 719, 731, 732, 733, 785, 788, 791, 792, 797, 802, 808, 809, 811, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 827, 828, 830, 831, 834, 836, 837, 838, 839, 840, 841, 843, 844, 847, 850, 852, 853, 855, 856, 857, 859, 864, 868, 872, 873], "should": [0, 4, 6, 9, 10, 19, 22, 23, 24, 25, 44, 47, 49, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 69, 70, 72, 75, 76, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 93, 96, 98, 99, 109, 113, 121, 135, 137, 141, 142, 150, 175, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 298, 309, 325, 331, 332, 344, 348, 349, 350, 351, 355, 360, 361, 362, 363, 365, 368, 370, 371, 372, 373, 374, 378, 383, 386, 395, 396, 397, 399, 404, 415, 430, 441, 447, 454, 479, 480, 504, 505, 518, 519, 520, 535, 553, 558, 610, 612, 615, 617, 618, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 652, 653, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 685, 687, 689, 690, 702, 718, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 753, 754, 755, 756, 757, 758, 759, 761, 762, 769, 770, 772, 774, 784, 785, 787, 788, 790, 791, 792, 793, 801, 802, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 854, 856, 860, 862, 863, 866, 868, 873], "comprehens": [0, 16, 816, 819, 839], "possibl": [0, 3, 33, 49, 53, 72, 76, 83, 93, 124, 243, 286, 308, 331, 332, 365, 368, 371, 373, 374, 394, 449, 458, 459, 460, 466, 468, 470, 471, 472, 479, 495, 568, 628, 630, 632, 643, 655, 698, 699, 700, 702, 704, 705, 707, 709, 756, 758, 772, 788, 802, 805, 808, 809, 812, 814, 815, 816, 819, 822, 823, 825, 827, 828, 830, 831, 833, 835, 836, 837, 838, 840, 843, 845, 848, 851, 856, 864, 866, 872], "us": [0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 85, 86, 91, 93, 94, 96, 99, 106, 134, 137, 148, 160, 162, 163, 174, 175, 195, 196, 198, 203, 207, 208, 209, 210, 212, 215, 221, 229, 257, 258, 260, 261, 263, 264, 265, 267, 268, 270, 279, 283, 288, 308, 310, 311, 313, 314, 315, 323, 345, 348, 349, 352, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 394, 395, 396, 397, 398, 400, 405, 407, 408, 409, 410, 413, 415, 416, 417, 419, 424, 426, 430, 436, 438, 440, 441, 443, 444, 445, 447, 448, 453, 470, 474, 478, 480, 488, 492, 497, 499, 503, 504, 505, 506, 507, 508, 509, 510, 511, 518, 525, 528, 546, 547, 556, 557, 568, 569, 576, 578, 579, 581, 588, 589, 601, 602, 604, 611, 612, 617, 618, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 643, 656, 657, 659, 662, 667, 669, 676, 680, 684, 687, 690, 692, 701, 702, 703, 707, 711, 712, 713, 714, 716, 717, 723, 724, 725, 727, 734, 735, 736, 737, 739, 740, 741, 742, 745, 747, 755, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 797, 801, 802, 806, 809, 811, 813, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 842, 843, 844, 845, 846, 847, 849, 850, 851, 853, 857, 861, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873], "easi": [0, 27, 28, 41, 815, 816, 820, 821, 823, 833, 835, 838, 840, 843, 856, 864, 866, 872, 873], "follow": [0, 6, 10, 21, 22, 23, 25, 27, 28, 31, 32, 33, 39, 42, 43, 53, 54, 55, 57, 58, 64, 70, 76, 77, 78, 80, 81, 130, 161, 164, 209, 219, 236, 243, 269, 271, 278, 279, 315, 365, 371, 373, 374, 377, 394, 407, 415, 453, 468, 480, 497, 499, 556, 557, 558, 588, 589, 612, 615, 617, 618, 619, 625, 626, 627, 628, 630, 631, 632, 633, 637, 641, 659, 662, 674, 680, 690, 720, 726, 745, 746, 747, 748, 788, 792, 808, 810, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 859, 863, 866, 869], "attract": 0, "visual": [0, 10, 45, 806, 808, 815, 830, 837, 840, 851, 866, 868, 871], "graph": [0, 3, 5, 8, 10, 16, 17, 20, 22, 24, 25, 28, 34, 35, 40, 45, 46, 64, 641, 745, 746, 747, 748, 780, 808, 823, 833, 837, 839, 843, 845, 850, 851, 853, 857, 858, 859, 860, 861, 862, 866, 869], "nice": [0, 840, 857, 866], "format": [0, 24, 25, 27, 28, 39, 41, 42, 43, 51, 54, 57, 66, 69, 70, 71, 74, 80, 96, 114, 159, 193, 371, 372, 382, 413, 446, 514, 541, 622, 626, 627, 630, 632, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 657, 755, 765, 766, 767, 784, 808, 815, 816, 818, 824, 825, 826, 827, 828, 829, 837, 839, 848, 860, 862, 864, 866, 867], "result": [0, 3, 5, 6, 7, 8, 9, 10, 12, 14, 22, 23, 24, 25, 27, 28, 39, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 175, 176, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 428, 429, 431, 432, 436, 437, 438, 439, 440, 442, 446, 449, 450, 451, 452, 454, 455, 457, 464, 465, 468, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 536, 537, 541, 542, 543, 548, 549, 553, 558, 565, 572, 573, 611, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 717, 720, 721, 723, 727, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 774, 780, 794, 802, 806, 808, 812, 814, 816, 819, 820, 822, 823, 824, 825, 827, 828, 830, 832, 833, 835, 836, 837, 838, 840, 841, 845, 848, 851, 859, 860, 861, 867, 869], "etc": [0, 30, 35, 42, 49, 53, 62, 64, 68, 72, 76, 85, 91, 125, 133, 134, 137, 371, 378, 400, 405, 416, 504, 505, 507, 508, 625, 639, 641, 734, 735, 736, 737, 745, 746, 747, 748, 772, 775, 787, 788, 789, 790, 791, 792, 793, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 827, 829, 832, 837, 838, 840, 841, 845, 847, 848, 851, 853, 857, 859, 864, 866, 872], "gener": [0, 5, 16, 20, 25, 27, 28, 30, 33, 41, 43, 45, 46, 49, 52, 53, 57, 62, 68, 72, 75, 76, 80, 85, 91, 94, 122, 133, 134, 143, 151, 236, 239, 249, 250, 265, 269, 278, 308, 311, 315, 316, 317, 319, 320, 321, 322, 323, 324, 331, 332, 365, 368, 371, 372, 374, 378, 383, 415, 421, 443, 488, 506, 518, 625, 626, 628, 632, 633, 635, 639, 643, 655, 681, 682, 685, 688, 710, 734, 735, 737, 738, 760, 772, 775, 780, 792, 801, 814, 815, 816, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 833, 836, 837, 838, 841, 844, 845, 847, 849, 850, 851, 853, 864, 865, 866, 867, 868, 869, 870, 871, 872], "tone": [0, 4], "feel": [0, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 852, 859], "free": [0, 5, 41, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 810, 812, 813, 814, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 852, 859, 867, 869], "includ": [0, 10, 16, 20, 30, 35, 49, 52, 53, 54, 58, 63, 66, 67, 70, 72, 75, 76, 77, 81, 86, 89, 90, 122, 123, 124, 133, 134, 136, 143, 216, 240, 244, 245, 246, 249, 251, 254, 262, 270, 283, 288, 310, 313, 314, 315, 318, 324, 327, 329, 331, 332, 336, 337, 338, 341, 342, 343, 344, 346, 348, 349, 351, 352, 353, 354, 357, 358, 365, 368, 371, 374, 383, 390, 391, 392, 422, 425, 427, 471, 472, 474, 477, 479, 481, 484, 506, 508, 509, 517, 521, 523, 524, 526, 527, 528, 554, 609, 625, 628, 630, 632, 633, 637, 639, 640, 643, 644, 657, 668, 688, 690, 714, 737, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 775, 787, 788, 791, 804, 806, 808, 814, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 856, 859, 860, 863, 864, 866, 868, 871, 872, 873], "emoji": [0, 814], "don": [0, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 41, 43, 68, 91, 808, 814, 815, 816, 824, 825, 826, 831, 835, 840, 843, 849, 851, 852, 857, 859], "t": [0, 4, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 39, 41, 42, 43, 53, 57, 68, 76, 80, 91, 93, 94, 98, 345, 360, 368, 370, 372, 426, 558, 576, 591, 613, 630, 631, 632, 637, 656, 658, 722, 767, 788, 808, 810, 811, 814, 815, 816, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 833, 834, 835, 836, 840, 841, 843, 845, 847, 848, 849, 850, 851, 852, 856, 857, 859, 860, 861, 864, 866, 868], "keep": [0, 1, 12, 14, 18, 24, 25, 27, 53, 60, 70, 76, 83, 93, 96, 356, 372, 447, 635, 709, 813, 814, 815, 816, 819, 822, 823, 824, 829, 836, 837, 840, 841, 843, 848, 850, 852, 860], "thing": [0, 25, 39, 41, 801, 813, 814, 815, 816, 821, 837, 840, 843, 847, 848, 855, 856, 857, 866], "super": [0, 3, 5, 12, 14, 27, 28, 41, 53, 76, 372, 426, 808, 829, 845, 848, 849, 850, 860], "seriou": 0, "given": [0, 3, 18, 27, 40, 53, 54, 59, 60, 62, 70, 76, 77, 78, 82, 83, 85, 93, 94, 96, 98, 99, 122, 126, 133, 134, 154, 155, 156, 157, 158, 170, 175, 194, 203, 207, 208, 209, 211, 215, 288, 318, 327, 330, 336, 337, 345, 346, 347, 349, 352, 365, 368, 371, 372, 373, 374, 377, 378, 383, 390, 391, 392, 393, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 416, 426, 431, 446, 450, 451, 452, 454, 455, 456, 457, 467, 468, 469, 476, 478, 490, 496, 500, 501, 502, 503, 504, 505, 506, 507, 508, 518, 519, 520, 521, 527, 549, 553, 572, 573, 583, 611, 612, 615, 617, 618, 619, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 691, 692, 693, 694, 695, 698, 699, 700, 701, 703, 704, 708, 709, 721, 722, 731, 732, 735, 736, 737, 739, 751, 752, 753, 754, 767, 772, 773, 774, 775, 780, 784, 785, 787, 788, 790, 791, 792, 793, 794, 801, 802, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 846, 847, 849, 856, 857, 863, 868, 869, 872, 873], "an": [0, 2, 3, 6, 9, 10, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 33, 39, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 161, 164, 167, 171, 175, 176, 206, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 312, 313, 314, 316, 317, 324, 325, 326, 327, 328, 329, 331, 332, 334, 337, 341, 346, 350, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 403, 405, 407, 408, 409, 410, 413, 414, 415, 416, 417, 418, 419, 420, 422, 425, 426, 427, 452, 453, 457, 458, 459, 460, 464, 465, 466, 468, 475, 479, 480, 486, 488, 492, 494, 495, 497, 498, 499, 502, 504, 505, 507, 510, 511, 516, 517, 518, 519, 520, 521, 522, 525, 526, 529, 534, 536, 537, 545, 548, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 567, 573, 576, 577, 586, 587, 591, 595, 596, 597, 610, 613, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 720, 733, 735, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 775, 777, 780, 784, 785, 787, 788, 790, 791, 792, 793, 802, 806, 808, 810, 811, 812, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 869, 870, 872, 873], "intern": [0, 10, 70, 101, 102, 103, 637, 714, 724, 725, 787, 788, 789, 790, 791, 793, 817, 820, 823, 826, 828, 836, 838, 840, 842], "releas": [0, 42, 814, 815, 825, 841, 843, 851, 857, 866, 872], "tracer": [0, 3, 5, 6, 8, 9, 19, 22, 23, 24, 25, 28, 44, 46, 808, 837, 844, 846, 851, 853, 860, 861, 862], "i": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 176, 188, 190, 192, 193, 195, 196, 198, 200, 203, 208, 209, 210, 211, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 384, 385, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 400, 403, 405, 407, 408, 409, 410, 411, 414, 415, 416, 417, 418, 419, 423, 424, 425, 426, 428, 429, 430, 431, 433, 434, 438, 439, 440, 441, 442, 443, 444, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 478, 479, 480, 481, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 510, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 568, 569, 572, 573, 574, 576, 582, 586, 587, 588, 589, 591, 593, 595, 596, 597, 609, 610, 612, 613, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 794, 797, 798, 801, 802, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873], "around": [0, 11, 12, 14, 16, 53, 70, 76, 99, 374, 480, 488, 814, 816, 819, 820, 822, 826, 832, 833, 837, 840, 841, 847, 851, 853, 859, 863, 864, 866, 873], "corner": [0, 53, 76, 371, 407, 815, 816, 830, 837], "anybodi": 0, "abl": [0, 3, 5, 29, 33, 44, 46, 70, 93, 815, 816, 817, 819, 825, 830, 833, 836, 837, 841, 845, 850, 859, 869, 872], "start": [0, 1, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 42, 43, 49, 53, 70, 72, 76, 80, 122, 130, 133, 134, 349, 359, 368, 369, 371, 374, 383, 414, 470, 473, 481, 483, 493, 527, 625, 774, 801, 806, 809, 814, 815, 816, 817, 818, 824, 825, 827, 828, 830, 831, 832, 837, 840, 843, 844, 845, 847, 848, 849, 851, 859, 860, 866, 872], "work": [0, 25, 27, 28, 39, 40, 42, 46, 48, 53, 76, 93, 383, 528, 633, 637, 684, 721, 722, 726, 731, 732, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 836, 837, 838, 840, 841, 844, 845, 847, 849, 850, 852, 857, 859, 860, 861, 864, 866, 868, 870, 873], "shortli": 0, "so": [0, 1, 5, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 39, 41, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 368, 371, 374, 381, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 632, 637, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 725, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 802, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 855, 856, 859, 860, 861, 866, 867, 868, 870], "worri": [0, 27, 28, 814, 815, 831], "about": [0, 16, 17, 18, 21, 23, 25, 27, 28, 31, 42, 43, 50, 73, 161, 164, 626, 806, 808, 810, 813, 814, 815, 816, 817, 818, 819, 822, 824, 825, 826, 831, 832, 836, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 857, 861, 867, 868, 871], "have": [0, 1, 3, 4, 5, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 39, 41, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 161, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 339, 340, 344, 346, 348, 349, 350, 351, 355, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 416, 420, 422, 423, 425, 426, 431, 432, 437, 438, 439, 440, 445, 449, 450, 451, 452, 453, 454, 455, 459, 460, 465, 466, 468, 473, 481, 482, 483, 484, 486, 488, 490, 492, 493, 500, 501, 503, 504, 505, 507, 508, 509, 511, 518, 519, 520, 521, 525, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 576, 611, 612, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 784, 785, 787, 788, 790, 791, 792, 793, 801, 802, 808, 810, 811, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 861, 862, 863, 864, 865, 866, 868, 872, 873, 874], "access": [0, 24, 27, 28, 70, 808, 814, 815, 816, 824, 825, 831, 836, 837, 852, 860, 866, 868, 870], "transpil": [0, 6, 7, 8, 9, 11, 16, 17, 19, 20, 30, 779, 780, 814, 815, 829, 830, 837, 844, 845, 846, 853, 858, 859, 861, 866, 872, 873], "code": [0, 4, 7, 8, 9, 16, 17, 24, 25, 27, 29, 30, 31, 32, 33, 34, 41, 42, 51, 52, 70, 74, 75, 99, 210, 256, 383, 525, 534, 542, 543, 558, 572, 576, 591, 627, 630, 632, 633, 635, 654, 675, 676, 677, 706, 806, 808, 811, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 843, 844, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 869, 870, 871, 872, 873], "now": [0, 4, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 43, 788, 789, 790, 808, 815, 819, 820, 821, 822, 823, 824, 825, 826, 830, 832, 834, 837, 838, 840, 841, 843, 847, 848, 850, 851, 857, 859, 860, 861, 866], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 45, 46, 53, 54, 76, 77, 93, 98, 99, 374, 383, 468, 525, 548, 549, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 659, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 866, 874], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 46, 49, 50, 53, 54, 58, 60, 62, 64, 72, 73, 76, 77, 81, 83, 85, 87, 93, 94, 108, 111, 123, 124, 134, 136, 151, 190, 207, 208, 209, 298, 315, 363, 365, 371, 372, 373, 374, 377, 378, 381, 383, 394, 407, 431, 438, 440, 445, 453, 465, 492, 497, 505, 506, 511, 518, 565, 576, 610, 613, 622, 625, 626, 627, 630, 631, 632, 633, 635, 639, 659, 667, 673, 683, 687, 702, 706, 735, 736, 737, 745, 769, 772, 773, 774, 775, 780, 802, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 869, 870, 872, 873], "style": [0, 10, 41, 43, 374, 480, 640, 743, 816, 831, 866], "stori": 0, "If": [0, 1, 3, 4, 6, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 42, 45, 46, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 94, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 148, 149, 150, 151, 176, 192, 208, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 324, 325, 327, 330, 331, 332, 333, 334, 336, 337, 338, 342, 346, 347, 352, 353, 355, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 400, 403, 405, 407, 408, 409, 410, 415, 416, 417, 419, 424, 426, 428, 430, 431, 438, 440, 442, 443, 445, 446, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 475, 479, 485, 486, 487, 488, 489, 490, 492, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 577, 587, 588, 589, 591, 593, 595, 596, 609, 610, 613, 615, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 659, 662, 663, 664, 666, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 726, 727, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 787, 788, 790, 791, 797, 802, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 855, 859, 860, 861], "anyon": [0, 808, 809, 816, 824, 851, 856, 872], "ha": [0, 3, 5, 6, 8, 9, 10, 12, 14, 18, 20, 24, 27, 28, 30, 33, 35, 39, 46, 49, 53, 58, 60, 64, 66, 70, 73, 76, 77, 81, 83, 87, 89, 93, 135, 192, 216, 236, 239, 241, 243, 253, 269, 271, 276, 279, 281, 282, 286, 326, 327, 328, 365, 372, 373, 374, 383, 407, 442, 452, 463, 487, 489, 494, 517, 519, 520, 522, 554, 625, 627, 628, 632, 633, 635, 640, 641, 643, 658, 659, 673, 674, 682, 683, 685, 687, 690, 698, 705, 743, 746, 747, 748, 753, 754, 757, 759, 760, 761, 762, 769, 772, 775, 797, 814, 816, 819, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 849, 850, 851, 852, 855, 856, 857, 859, 861, 862, 865, 866, 868, 869, 872], "ani": [0, 5, 8, 12, 14, 16, 17, 18, 19, 20, 29, 30, 33, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 58, 67, 68, 72, 74, 75, 76, 77, 90, 91, 93, 98, 99, 118, 119, 121, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 151, 152, 167, 171, 175, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 416, 417, 426, 431, 448, 469, 480, 488, 492, 497, 498, 499, 518, 521, 524, 525, 526, 530, 540, 541, 542, 543, 544, 548, 552, 554, 556, 560, 562, 563, 581, 587, 589, 596, 597, 604, 610, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 717, 720, 721, 723, 724, 731, 733, 737, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 767, 769, 770, 774, 784, 785, 787, 788, 790, 791, 792, 793, 797, 801, 802, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 869, 872, 873], "question": [0, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 855, 856, 857], "ping": 0, "me": [0, 816], "guillermo": 0, "commun": [0, 42, 809, 814, 815, 816, 817, 851, 856, 865, 866, 868], "ux": 0, "team": [0, 808, 809, 811, 814, 815, 816, 817, 837, 852, 868], "discord": [0, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857], "channel": [0, 25, 43, 53, 54, 57, 76, 77, 80, 98, 99, 371, 377, 395, 396, 397, 407, 497, 498, 499, 502, 541, 545, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 784, 785, 787, 788, 790, 791, 792, 793, 816, 822, 830, 839], "To": [0, 6, 8, 9, 10, 12, 14, 18, 22, 23, 24, 25, 27, 28, 39, 42, 43, 44, 94, 243, 373, 452, 582, 628, 630, 787, 814, 815, 819, 820, 821, 822, 825, 827, 829, 830, 831, 833, 834, 837, 838, 839, 840, 841, 848, 849, 850, 852, 859, 860], "ensur": [0, 8, 9, 12, 14, 22, 23, 24, 25, 53, 54, 76, 77, 371, 372, 408, 409, 410, 443, 558, 630, 767, 808, 811, 814, 815, 816, 820, 825, 826, 827, 829, 831, 832, 834, 836, 837, 838, 839, 840, 841, 852, 866], "similar": [0, 18, 27, 28, 53, 278, 373, 448, 628, 632, 659, 788, 812, 814, 815, 823, 824, 825, 826, 829, 830, 831, 833, 834, 835, 837, 838, 840, 841, 848, 851, 855, 860, 862, 863, 864, 865, 872], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 44, 45, 48, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 70, 72, 75, 76, 77, 80, 81, 83, 85, 86, 87, 93, 94, 98, 99, 122, 132, 134, 137, 143, 197, 202, 204, 209, 233, 235, 236, 239, 243, 264, 265, 269, 274, 275, 279, 281, 286, 287, 288, 324, 326, 327, 328, 330, 333, 335, 336, 337, 341, 342, 347, 352, 355, 359, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 378, 380, 383, 387, 388, 394, 395, 396, 397, 400, 405, 407, 415, 416, 425, 426, 430, 440, 441, 443, 447, 448, 449, 453, 454, 458, 459, 460, 470, 471, 472, 474, 480, 483, 487, 488, 497, 499, 504, 505, 506, 507, 508, 518, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 544, 550, 555, 559, 570, 571, 580, 591, 603, 613, 625, 627, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 655, 656, 657, 659, 662, 664, 668, 669, 670, 673, 674, 676, 679, 680, 683, 684, 688, 689, 690, 695, 696, 699, 703, 705, 715, 720, 725, 726, 727, 735, 736, 737, 740, 741, 742, 743, 745, 747, 767, 769, 772, 773, 774, 775, 780, 787, 790, 793, 794, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 862, 863, 866, 867, 868, 869, 870, 871, 872, 873, 874], "across": [0, 8, 9, 10, 22, 23, 24, 25, 39, 53, 63, 70, 76, 77, 86, 98, 207, 208, 236, 243, 269, 287, 373, 377, 448, 499, 502, 533, 554, 590, 627, 628, 630, 632, 637, 640, 655, 659, 720, 740, 741, 788, 814, 819, 825, 827, 829, 832, 833, 835, 840, 843, 864, 866, 871], "templat": [0, 808, 822, 828, 840], "help": [0, 16, 43, 45, 50, 531, 576, 630, 643, 761, 787, 808, 809, 810, 814, 815, 817, 820, 821, 822, 823, 824, 825, 827, 831, 833, 834, 836, 837, 840, 841, 847, 848, 849, 852, 853, 862, 866, 868, 872], "get": [0, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 41, 42, 44, 50, 51, 58, 70, 74, 81, 98, 159, 160, 161, 164, 192, 193, 194, 197, 203, 208, 211, 215, 374, 485, 532, 550, 571, 590, 626, 627, 630, 633, 637, 690, 716, 772, 787, 788, 801, 809, 811, 813, 814, 815, 817, 818, 819, 824, 825, 826, 830, 833, 834, 835, 836, 837, 838, 839, 840, 845, 846, 847, 848, 849, 853, 857, 860, 861, 866, 872], "It": [0, 3, 6, 9, 10, 19, 22, 23, 24, 25, 27, 28, 29, 30, 39, 40, 41, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 339, 340, 344, 346, 348, 349, 350, 351, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 384, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 420, 422, 423, 431, 432, 437, 438, 439, 440, 448, 449, 450, 451, 452, 454, 455, 465, 468, 473, 481, 482, 483, 484, 486, 488, 492, 493, 497, 500, 501, 503, 504, 505, 507, 508, 518, 519, 520, 521, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 574, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 682, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 713, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 752, 753, 754, 757, 759, 760, 762, 763, 764, 787, 788, 808, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 834, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 858, 861, 864, 866, 867, 869, 870, 871, 872, 873], "locat": [0, 43, 137, 383, 519, 625, 637, 639, 642, 718, 734, 751, 802, 814, 816, 821, 822, 826, 837, 838, 840, 841, 852, 864], "asset": [0, 853], "01_templat": 0, "ipynb": 0, "pleas": [0, 33, 42, 46, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857], "make": [0, 3, 5, 7, 8, 9, 10, 19, 27, 28, 29, 41, 45, 53, 76, 371, 415, 797, 808, 811, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 852, 856, 857, 860, 864, 866, 867, 868, 869, 872, 873], "copi": [0, 43, 46, 49, 50, 51, 52, 53, 54, 60, 70, 72, 73, 74, 75, 76, 77, 83, 93, 97, 123, 124, 125, 129, 140, 148, 210, 270, 374, 456, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 577, 588, 595, 596, 625, 626, 627, 628, 630, 635, 637, 642, 698, 699, 700, 702, 704, 705, 707, 709, 715, 750, 752, 780, 802, 815, 816, 819, 821, 824, 825, 828, 837, 838, 845, 851, 859, 860, 861], "firstli": [0, 19, 20, 23, 29, 30, 34, 39, 820, 825, 827, 828, 829, 833, 834, 836, 843, 848, 862, 872], "updat": [0, 4, 5, 6, 7, 9, 10, 19, 21, 22, 23, 24, 25, 27, 28, 41, 43, 48, 54, 55, 70, 77, 78, 93, 374, 485, 558, 572, 573, 576, 577, 600, 611, 612, 615, 617, 618, 619, 630, 631, 632, 636, 637, 655, 658, 711, 712, 713, 721, 722, 726, 731, 732, 780, 785, 791, 792, 797, 802, 808, 814, 815, 816, 818, 819, 820, 823, 824, 825, 827, 832, 834, 835, 837, 838, 840, 843, 845, 847, 848, 850, 851], "file": [0, 6, 41, 42, 43, 54, 70, 585, 608, 630, 790, 806, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 826, 828, 829, 830, 831, 833, 837, 838, 839, 840, 841, 845, 848, 852, 862, 865, 866, 867], "name": [0, 6, 7, 27, 28, 39, 41, 42, 43, 53, 58, 64, 68, 76, 81, 87, 91, 243, 371, 372, 374, 419, 425, 434, 490, 494, 531, 532, 628, 630, 633, 641, 668, 669, 680, 681, 683, 684, 688, 745, 746, 747, 769, 773, 780, 790, 797, 798, 800, 806, 814, 815, 816, 821, 822, 823, 824, 827, 828, 829, 832, 837, 838, 840, 841, 842, 843, 845, 848, 850, 866, 874], "match": [0, 50, 53, 70, 73, 76, 148, 243, 278, 335, 337, 368, 371, 373, 374, 416, 448, 463, 485, 489, 568, 626, 628, 630, 633, 669, 670, 674, 690, 767, 812, 814, 820, 822, 823, 827, 830, 838, 867, 872], "topic": [0, 16, 19, 20, 21, 29, 30, 31, 32, 33, 34, 834, 847, 866], "your": [0, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 39, 41, 43, 45, 808, 809, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 828, 830, 831, 835, 837, 839, 841, 843, 848, 849, 851, 852, 856, 857, 859, 860, 866, 874], "Then": [0, 46, 632, 659, 810, 814, 815, 816, 821, 822, 824, 830, 831, 834, 836, 840, 841, 851], "place": [0, 8, 9, 22, 23, 24, 25, 41, 48, 49, 52, 53, 54, 58, 60, 70, 72, 74, 75, 76, 77, 81, 83, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 270, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 308, 309, 312, 324, 325, 330, 331, 332, 334, 337, 338, 339, 340, 344, 346, 347, 348, 349, 351, 352, 353, 357, 358, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 470, 480, 485, 488, 492, 505, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 557, 558, 572, 576, 587, 591, 596, 600, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 792, 808, 812, 813, 816, 818, 819, 822, 823, 824, 826, 827, 828, 830, 832, 833, 837, 838, 840, 841, 843, 850, 853, 868], "its": [0, 9, 18, 20, 27, 28, 30, 33, 40, 41, 43, 48, 50, 53, 60, 70, 73, 76, 77, 83, 96, 108, 111, 114, 119, 149, 154, 155, 156, 157, 158, 209, 236, 269, 288, 298, 363, 371, 374, 383, 411, 419, 492, 494, 521, 545, 594, 622, 624, 626, 627, 628, 630, 633, 635, 637, 673, 698, 702, 703, 707, 720, 769, 802, 808, 814, 815, 820, 823, 824, 825, 826, 828, 829, 830, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 850, 851, 853, 859, 865, 866, 872], "folder": [0, 8, 9, 22, 23, 24, 25, 43, 808, 815, 816, 819, 822, 824, 830, 833, 837, 840, 841, 842], "next": [0, 5, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 41, 43, 53, 76, 161, 344, 348, 353, 357, 368, 626, 787, 792, 808, 814, 815, 816, 821, 825, 827, 828, 830, 831, 834, 846, 847, 848, 857, 866, 868], "edit": [0, 814, 815, 816, 831], "titl": [0, 10, 13, 15, 26, 42, 45, 808, 814, 816, 822], "descript": [0, 1, 36, 37, 38, 43, 46, 49, 52, 53, 58, 75, 76, 81, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 816, 828, 835, 836], "accordingli": [0, 53, 58, 63, 64, 66, 67, 76, 81, 86, 89, 90, 135, 236, 241, 243, 259, 269, 283, 331, 332, 368, 625, 628, 633, 640, 641, 643, 644, 690, 741, 745, 746, 747, 748, 756, 757, 758, 759, 760, 761, 762, 763, 764, 837, 845, 852], "thei": [0, 10, 34, 39, 44, 53, 58, 62, 64, 70, 81, 85, 87, 174, 288, 342, 368, 626, 628, 632, 633, 636, 639, 641, 657, 688, 711, 712, 734, 745, 767, 793, 808, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 836, 837, 840, 841, 843, 845, 847, 848, 849, 850, 851, 859, 863, 866, 868, 869, 872, 873], "render": [0, 822, 828], "correctli": [0, 24, 27, 28, 41, 53, 58, 63, 76, 81, 86, 336, 368, 383, 524, 525, 526, 527, 528, 633, 640, 674, 740, 814, 815, 816, 820, 823, 825, 827, 829, 831, 832, 838, 840, 843, 849, 851, 859, 860], "webpag": [0, 16], "content": [0, 1, 13, 15, 26, 27, 42, 43, 53, 70, 76, 383, 525, 814, 816, 822, 826, 836, 839, 845, 848, 852], "behind": [0, 18, 27, 808, 818, 832, 840, 844, 846], "exist": [0, 18, 27, 28, 41, 42, 43, 46, 49, 53, 54, 70, 72, 76, 77, 83, 124, 374, 458, 459, 465, 466, 468, 470, 471, 472, 479, 495, 540, 576, 630, 635, 696, 698, 699, 700, 702, 704, 705, 707, 709, 792, 794, 806, 808, 814, 815, 819, 821, 826, 827, 828, 833, 834, 836, 837, 840, 843, 845, 851, 853, 855, 856, 864, 866, 869, 872], "cell": [0, 1, 3, 4, 5, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 42, 57, 80, 632, 657, 658, 788, 824, 845], "where": [0, 7, 20, 24, 30, 31, 35, 43, 49, 52, 53, 54, 58, 60, 62, 63, 66, 67, 70, 72, 75, 76, 77, 81, 83, 85, 86, 89, 90, 93, 94, 131, 132, 135, 137, 143, 224, 234, 236, 239, 241, 243, 244, 253, 258, 259, 260, 267, 268, 269, 274, 276, 280, 282, 286, 296, 298, 324, 326, 327, 328, 343, 347, 354, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 385, 386, 387, 388, 394, 399, 400, 404, 419, 425, 426, 430, 431, 433, 434, 441, 447, 448, 449, 458, 459, 460, 474, 480, 497, 498, 499, 502, 504, 505, 507, 508, 518, 526, 527, 528, 558, 572, 610, 625, 628, 630, 632, 633, 635, 637, 639, 640, 643, 644, 657, 659, 664, 668, 669, 674, 676, 678, 679, 680, 683, 684, 687, 689, 695, 697, 698, 700, 706, 710, 718, 725, 734, 735, 736, 737, 742, 743, 758, 760, 762, 763, 764, 772, 787, 791, 802, 806, 808, 809, 812, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 852, 855, 856, 857, 859, 864, 873], "The": [0, 3, 5, 6, 7, 8, 9, 10, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 129, 130, 132, 134, 137, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 151, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 166, 168, 169, 170, 173, 174, 176, 177, 179, 180, 181, 182, 188, 189, 190, 191, 192, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 422, 423, 424, 425, 426, 428, 430, 442, 443, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 467, 469, 470, 471, 472, 476, 479, 480, 485, 486, 488, 489, 490, 491, 492, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506, 507, 509, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 531, 533, 534, 535, 536, 537, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 567, 569, 572, 573, 576, 578, 579, 582, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 775, 780, 784, 785, 787, 788, 790, 791, 792, 797, 801, 802, 808, 809, 810, 812, 814, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 843, 844, 845, 848, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874], "h2": [0, 1, 13, 15, 26], "tag": [0, 1, 13, 15, 26, 815, 816], "section": [0, 1, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 47, 53, 64, 76, 108, 371, 374, 405, 416, 466, 475, 495, 641, 745, 746, 747, 748, 808, 809, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 843, 844, 848, 849, 861, 862, 869, 872], "h3": [0, 1, 13, 15, 26], "subsect": [0, 1, 13, 15, 26, 814, 815, 816, 819, 824], "step": [0, 1, 13, 14, 15, 26, 27, 28, 39, 41, 42, 43, 53, 55, 72, 76, 78, 122, 133, 371, 374, 417, 419, 474, 611, 612, 615, 617, 618, 619, 625, 631, 636, 711, 712, 713, 792, 806, 808, 814, 815, 816, 817, 820, 821, 823, 824, 825, 826, 827, 830, 835, 837, 840, 845, 848, 849, 850, 857, 866], "explan": [0, 1, 13, 15, 26, 814, 815, 816, 823, 828, 832, 837, 841, 847], "go": [0, 4, 12, 14, 18, 25, 28, 33, 48, 53, 76, 80, 371, 414, 418, 637, 725, 726, 808, 809, 812, 814, 815, 816, 818, 821, 822, 825, 827, 830, 831, 837, 838, 840, 841, 844, 848, 851, 862, 866, 867, 871, 873], "default": [0, 3, 5, 6, 27, 28, 41, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 96, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 168, 169, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 192, 193, 195, 196, 200, 203, 204, 205, 207, 208, 209, 210, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 422, 423, 424, 426, 428, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 568, 569, 572, 573, 576, 577, 582, 586, 587, 588, 589, 591, 593, 595, 596, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 793, 801, 802, 806, 814, 815, 816, 821, 822, 825, 826, 827, 828, 829, 832, 833, 837, 840, 843, 845, 849, 853, 859, 866], "which": [0, 3, 6, 9, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 96, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 151, 153, 159, 161, 164, 166, 169, 176, 188, 193, 197, 202, 204, 207, 208, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 318, 321, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 342, 344, 346, 347, 348, 349, 351, 352, 353, 355, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 381, 383, 394, 395, 396, 397, 399, 400, 404, 405, 414, 415, 416, 418, 423, 426, 438, 441, 442, 443, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 485, 486, 487, 488, 489, 490, 492, 497, 499, 500, 501, 503, 504, 505, 506, 507, 508, 510, 511, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 570, 571, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 657, 659, 662, 663, 664, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 680, 681, 682, 683, 687, 689, 690, 692, 693, 694, 695, 696, 698, 699, 701, 702, 703, 704, 705, 706, 709, 710, 719, 720, 721, 722, 727, 729, 730, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 784, 785, 787, 788, 789, 790, 791, 792, 793, 797, 798, 804, 806, 808, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 862, 863, 864, 865, 866, 867, 869, 871, 872, 873], "text": [0, 4, 8, 10, 41, 53, 54, 372, 373, 440, 448, 814, 816, 822, 827, 828], "paragraph": [0, 1, 13, 15, 26, 822], "p": [0, 1, 13, 15, 26, 39, 53, 54, 58, 76, 77, 81, 94, 135, 240, 372, 377, 422, 435, 503, 536, 537, 625, 628, 630, 633, 637, 674, 690, 722, 788, 808, 815, 816, 818], "without": [0, 3, 10, 30, 39, 43, 46, 64, 70, 96, 582, 597, 630, 635, 637, 641, 702, 715, 745, 746, 747, 748, 772, 775, 801, 815, 816, 820, 821, 823, 824, 825, 826, 827, 829, 832, 833, 837, 840, 841, 843, 847, 848, 849, 851, 859, 863, 866, 867, 868, 872], "path": [0, 8, 9, 10, 22, 23, 24, 25, 42, 43, 769, 780, 796, 815, 822, 836, 837, 838, 852, 866], "correspond": [0, 3, 7, 9, 14, 27, 28, 42, 50, 52, 53, 54, 57, 60, 63, 64, 66, 70, 73, 75, 76, 80, 83, 89, 93, 96, 99, 149, 161, 164, 224, 274, 288, 327, 341, 342, 365, 368, 371, 372, 374, 377, 383, 394, 400, 411, 416, 422, 425, 426, 427, 446, 471, 472, 492, 497, 498, 499, 502, 519, 520, 588, 610, 626, 628, 630, 632, 633, 635, 639, 640, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 659, 664, 668, 669, 674, 681, 682, 702, 703, 734, 740, 741, 745, 746, 747, 748, 753, 754, 759, 760, 761, 762, 769, 772, 774, 801, 806, 808, 814, 816, 820, 821, 823, 824, 825, 827, 828, 829, 832, 833, 835, 837, 840, 843, 845, 859, 860, 861, 866], "toctre": [0, 822], "index": [0, 41, 42, 43, 46, 49, 53, 54, 60, 63, 64, 65, 70, 72, 76, 77, 83, 86, 87, 88, 128, 135, 309, 316, 317, 326, 327, 328, 365, 371, 372, 374, 379, 381, 383, 394, 400, 431, 433, 440, 463, 470, 473, 481, 483, 485, 488, 489, 492, 493, 509, 510, 519, 528, 531, 549, 551, 572, 573, 577, 623, 625, 630, 635, 637, 640, 641, 642, 702, 706, 716, 717, 718, 721, 722, 723, 729, 731, 740, 741, 743, 745, 746, 747, 749, 751, 773, 788, 802, 804, 823, 824, 829, 833, 834, 835, 836, 838, 840, 847, 866], "rst": [0, 833], "left": [0, 20, 30, 41, 42, 53, 58, 63, 65, 76, 81, 86, 88, 116, 117, 228, 243, 336, 352, 359, 368, 369, 371, 372, 374, 383, 406, 425, 430, 436, 443, 445, 471, 481, 523, 524, 525, 526, 527, 528, 541, 624, 628, 630, 633, 640, 642, 668, 669, 674, 683, 688, 740, 751, 772, 815, 816, 819, 822, 824, 825, 827, 830], "mai": [0, 51, 52, 53, 58, 64, 65, 74, 75, 81, 88, 98, 99, 122, 129, 140, 210, 236, 237, 243, 248, 256, 264, 265, 269, 270, 272, 287, 331, 332, 368, 400, 540, 576, 625, 627, 628, 630, 633, 641, 642, 643, 681, 690, 745, 746, 747, 748, 749, 752, 756, 757, 758, 760, 772, 802, 813, 814, 815, 816, 819, 823, 824, 825, 829, 830, 833, 834, 835, 837, 838, 840, 843, 846, 847, 849, 857, 873], "need": [0, 3, 7, 9, 16, 18, 24, 25, 27, 28, 41, 42, 43, 53, 54, 60, 76, 77, 83, 371, 372, 383, 394, 399, 400, 404, 425, 525, 536, 537, 558, 630, 632, 633, 635, 637, 659, 668, 695, 698, 725, 773, 808, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 845, 847, 848, 851, 852, 857, 859, 860, 862, 866, 867, 868, 872], "add": [0, 20, 30, 43, 45, 52, 53, 61, 68, 70, 75, 76, 84, 91, 98, 99, 359, 369, 371, 373, 414, 453, 568, 597, 628, 630, 632, 633, 638, 643, 659, 687, 733, 761, 769, 780, 788, 791, 806, 808, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 833, 834, 836, 837, 840, 841, 843, 845, 847, 851, 852, 862, 863, 864, 866], "grid": [0, 43, 49, 135, 312, 365, 625, 827, 840], "item": [0, 4, 27, 28, 39, 41, 43, 48, 54, 68, 70, 72, 75, 76, 77, 130, 155, 192, 246, 262, 270, 337, 341, 354, 538, 548, 549, 553, 588, 589, 625, 626, 627, 630, 637, 644, 719, 720, 721, 722, 726, 731, 732, 766, 808, 814, 823, 825, 845, 847, 848, 850, 859], "card": [0, 53, 76, 356, 368, 871], "refer": [0, 5, 53, 60, 66, 67, 76, 78, 83, 89, 90, 128, 143, 241, 259, 309, 324, 354, 365, 368, 371, 372, 374, 400, 405, 416, 423, 447, 470, 611, 612, 625, 628, 631, 633, 635, 643, 644, 664, 666, 689, 702, 760, 762, 763, 764, 788, 808, 813, 814, 815, 816, 819, 820, 822, 824, 825, 832, 833, 834, 835, 836, 837, 838, 839, 840, 851, 852, 853, 866], "also": [0, 3, 4, 6, 7, 9, 10, 12, 14, 18, 20, 22, 23, 25, 27, 28, 30, 32, 33, 34, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 94, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 164, 167, 168, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 371, 372, 374, 381, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 632, 633, 635, 636, 637, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 724, 725, 726, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 787, 788, 797, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 852, 855, 856, 859, 860, 862, 863, 864, 865, 866, 867, 869, 871, 872, 873], "look": [0, 5, 18, 27, 28, 41, 43, 46, 808, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 833, 837, 838, 840, 841, 842, 843, 845, 847, 849, 850, 852, 855, 859, 862, 866], "document": [0, 18, 27, 60, 243, 331, 332, 368, 610, 628, 630, 706, 809, 810, 813, 816, 822, 824, 825, 827, 836, 837, 838, 840, 848, 850], "sphinx": [0, 810, 822], "design": [0, 10, 18, 27, 76, 243, 308, 313, 314, 365, 628, 808, 811, 818, 822, 824, 825, 836, 837, 838, 839, 843, 845, 847, 851, 855, 856, 862, 864, 866, 869, 870, 871], "websit": [0, 45, 815, 819, 856], "alreadi": [1, 6, 9, 19, 22, 23, 24, 25, 27, 28, 33, 41, 43, 46, 53, 58, 70, 76, 81, 232, 242, 269, 279, 289, 374, 383, 459, 460, 480, 516, 525, 628, 633, 671, 678, 801, 802, 808, 814, 815, 816, 821, 823, 825, 826, 832, 836, 837, 843, 851, 852, 866, 868, 873], "instal": [1, 5, 6, 7, 9, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 41, 43, 44, 45, 46, 810, 815, 816, 821, 822, 830, 831], "skip": [1, 4, 43, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 372, 374, 395, 396, 397, 415, 431, 433, 440, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 481, 484, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 773, 801, 822, 833, 840], "colab": [1, 4, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 41, 43, 45, 46], "manual": [1, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 637, 714, 724, 725, 814, 815, 816, 825, 831, 840, 849, 852], "do": [1, 3, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 39, 41, 43, 53, 54, 70, 76, 77, 236, 269, 278, 371, 373, 374, 383, 417, 453, 465, 525, 528, 558, 628, 630, 637, 714, 721, 724, 725, 726, 731, 774, 802, 808, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 841, 843, 845, 847, 848, 849, 850, 851, 853, 857, 867, 872, 873], "run": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 41, 43, 44, 45, 53, 55, 76, 78, 377, 497, 499, 611, 612, 617, 631, 632, 636, 657, 711, 712, 713, 769, 770, 788, 789, 790, 791, 801, 808, 810, 814, 815, 818, 820, 821, 824, 826, 827, 829, 831, 832, 834, 837, 838, 845, 846, 847, 848, 849, 850, 851, 852, 859, 860, 861, 864, 866, 867, 868, 869, 871, 872, 873], "below": [1, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 32, 33, 34, 39, 42, 43, 44, 49, 53, 58, 76, 81, 89, 141, 142, 143, 243, 253, 276, 324, 325, 334, 365, 368, 374, 488, 625, 628, 633, 667, 687, 762, 809, 812, 814, 815, 818, 819, 823, 824, 825, 826, 827, 829, 830, 833, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 859, 860, 861, 862, 864, 869, 871], "mind": [1, 12, 14, 18, 24, 27, 31, 814, 815, 820, 823, 840, 852, 860], "packag": [1, 3, 5, 6, 8, 9, 12, 22, 23, 24, 25, 28, 41, 42, 43, 46, 800, 808, 812, 815, 824, 837, 851, 852, 866, 868], "avail": [1, 3, 5, 6, 8, 22, 23, 25, 27, 28, 43, 54, 77, 192, 198, 200, 201, 212, 542, 627, 630, 633, 684, 773, 806, 808, 815, 816, 823, 824, 825, 826, 828, 829, 837, 840, 843, 851, 852, 855, 859, 860, 861, 871, 872], "click": [1, 3, 43, 814, 815, 816, 824, 828, 830, 831, 846], "runtim": [1, 3, 4, 5, 7, 8, 9, 20, 27, 30, 41, 42, 818, 833, 840, 843, 866], "restart": [1, 3, 4, 5, 8, 41, 42, 815, 830], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 45, 46, 812, 815, 822, 831], "q": [1, 3, 4, 5, 6, 7, 8, 9, 10, 41, 42, 43, 53, 57, 58, 76, 80, 81, 358, 368, 372, 383, 425, 528, 632, 633, 637, 659, 662, 668, 669, 680, 722, 815, 816, 818, 838, 851], "git": [1, 3, 4, 5, 8, 27, 41, 42, 43, 44, 808, 810, 813, 815, 816, 819, 822, 824, 830, 831, 840, 852], "clone": [1, 3, 5, 8, 27, 41, 43, 44, 808, 810, 816, 830, 852], "http": [1, 3, 4, 5, 6, 7, 8, 9, 14, 22, 23, 24, 25, 27, 28, 41, 42, 43, 44, 45, 46, 52, 53, 75, 76, 78, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 611, 612, 625, 626, 628, 631, 633, 635, 643, 681, 682, 710, 760, 808, 810, 815, 816, 819, 822, 824, 825, 828, 830, 852, 860], "github": [1, 3, 4, 5, 7, 8, 9, 27, 41, 42, 43, 44, 45, 808, 810, 811, 813, 816, 817, 819, 822, 824, 825, 827, 828, 830, 831, 839, 840, 852, 855, 874], "com": [1, 3, 4, 5, 7, 8, 9, 14, 27, 41, 42, 43, 44, 45, 808, 810, 815, 816, 819, 822, 824, 825, 830, 852], "unifyai": [1, 3, 5, 8, 27, 41, 42, 43, 44, 45, 808, 810, 815, 816, 822, 830, 852], "model": [1, 2, 3, 10, 11, 16, 17, 18, 44, 46, 236, 269, 373, 449, 628, 785, 789, 790, 806, 808, 848, 849, 853, 859, 860, 864, 865, 866, 867, 868, 869, 870, 872, 873], "depth": [1, 3, 5, 8, 42, 49, 53, 57, 72, 76, 80, 137, 371, 374, 407, 467, 541, 553, 625, 630, 632, 650, 651, 816, 824, 848, 849, 850, 852], "1": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 143, 145, 148, 149, 150, 151, 155, 159, 160, 161, 164, 169, 171, 176, 192, 193, 197, 201, 202, 204, 205, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 321, 322, 324, 326, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 437, 438, 441, 442, 444, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 777, 780, 784, 787, 788, 789, 790, 791, 792, 793, 797, 801, 802, 806, 808, 811, 812, 815, 816, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 849, 850, 851, 856, 857, 859, 860, 861, 874], "from": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 83, 85, 86, 89, 90, 91, 93, 94, 96, 99, 122, 124, 127, 129, 130, 131, 132, 135, 136, 139, 143, 145, 151, 169, 175, 176, 192, 197, 202, 208, 209, 235, 243, 244, 271, 275, 276, 283, 287, 308, 309, 315, 318, 324, 326, 327, 328, 335, 338, 342, 343, 345, 346, 358, 362, 365, 368, 370, 371, 372, 373, 374, 378, 383, 395, 396, 397, 411, 416, 417, 436, 443, 448, 449, 453, 463, 466, 475, 480, 486, 488, 489, 491, 492, 494, 495, 504, 505, 506, 507, 508, 519, 520, 540, 548, 549, 551, 571, 582, 593, 610, 612, 613, 617, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 640, 641, 643, 644, 646, 654, 655, 664, 667, 683, 687, 688, 689, 696, 699, 702, 705, 711, 712, 713, 715, 726, 727, 728, 734, 735, 736, 737, 741, 744, 745, 747, 753, 754, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 787, 788, 789, 790, 792, 797, 802, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 868, 870, 871, 872, 873], "repositori": [1, 3, 5, 8, 810, 814, 815, 816, 818, 819, 822, 830, 839, 857], "cd": [1, 3, 5, 8, 27, 44, 808, 810, 815, 816, 830, 852], "here": [1, 3, 10, 13, 15, 18, 23, 26, 27, 28, 39, 41, 42, 43, 44, 46, 76, 279, 455, 628, 808, 812, 813, 814, 815, 816, 819, 821, 822, 823, 824, 825, 827, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 845, 846, 847, 848, 849, 850, 851, 859, 860, 861, 866, 867, 874], "normal": [1, 3, 8, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 41, 42, 53, 61, 62, 76, 84, 85, 93, 94, 355, 368, 371, 377, 383, 393, 394, 399, 400, 403, 404, 405, 415, 416, 497, 498, 499, 500, 501, 502, 503, 518, 521, 635, 638, 639, 696, 706, 733, 734, 736, 787, 788, 791, 808, 814, 836, 837, 843, 848, 859, 861, 864], "resnet": [2, 9, 16, 27, 859, 860], "imag": [2, 3, 7, 9, 12, 16, 24, 27, 28, 41, 42, 43, 44, 45, 46, 53, 57, 75, 76, 80, 98, 216, 217, 218, 219, 222, 225, 234, 237, 239, 241, 250, 251, 252, 257, 259, 272, 279, 280, 282, 283, 287, 371, 390, 391, 407, 408, 409, 411, 541, 628, 630, 632, 645, 646, 647, 648, 649, 652, 653, 654, 788, 808, 815, 830, 843, 845, 846, 848, 850, 852, 859, 860, 866], "classif": [2, 3, 8, 10, 16, 41, 808, 866], "acceler": [2, 16, 808, 825, 837, 864, 868, 869, 870, 871], "pytorch": [2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 25, 27, 28, 39, 46, 279, 331, 332, 368, 628, 792, 808, 813, 814, 820, 825, 826, 829, 832, 833, 836, 837, 838, 843, 845, 850, 851, 853, 856, 857, 859, 860, 863, 867, 869, 870, 872, 873], "jax": [2, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 39, 41, 45, 47, 52, 53, 54, 64, 69, 75, 76, 77, 106, 107, 108, 109, 110, 111, 112, 113, 114, 205, 287, 291, 296, 297, 299, 345, 363, 368, 383, 528, 558, 591, 610, 622, 627, 628, 630, 641, 745, 746, 747, 748, 780, 784, 797, 808, 812, 813, 814, 815, 816, 819, 821, 825, 826, 829, 830, 832, 835, 836, 837, 838, 840, 841, 843, 845, 847, 850, 851, 856, 857, 859, 860, 861, 867, 869, 872, 873], "convert": [2, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 24, 25, 27, 28, 29, 31, 33, 41, 44, 46, 48, 49, 52, 70, 71, 72, 75, 93, 123, 124, 136, 146, 147, 189, 190, 191, 192, 203, 211, 215, 235, 275, 374, 379, 458, 459, 460, 509, 574, 592, 594, 595, 596, 598, 625, 626, 627, 628, 630, 633, 637, 691, 715, 726, 727, 769, 797, 801, 808, 814, 820, 821, 834, 835, 837, 840, 842, 845, 851, 853, 857, 860, 864, 865, 872], "them": [2, 3, 7, 9, 12, 14, 16, 27, 28, 33, 372, 442, 535, 571, 630, 772, 788, 808, 810, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 829, 831, 834, 836, 837, 838, 840, 842, 845, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 866, 868, 872], "faster": [2, 3, 7, 9, 10, 16, 27, 28, 44, 46, 53, 58, 76, 81, 372, 445, 633, 683, 810, 813, 822, 853, 868, 871], "infer": [2, 7, 9, 10, 16, 20, 30, 32, 33, 42, 44, 46, 49, 53, 54, 57, 60, 72, 76, 77, 80, 83, 122, 124, 127, 131, 132, 136, 139, 145, 154, 155, 156, 157, 158, 308, 309, 371, 374, 378, 407, 492, 506, 552, 586, 587, 625, 626, 630, 632, 635, 655, 702, 797, 798, 818, 821, 825, 826, 840, 845, 850, 860, 864, 865, 868, 870], "mmpretrain": [2, 16], "segment": [2, 16, 53, 76, 326, 327, 328, 365, 822, 827], "unet": [2, 16], "alexnet": [2, 16], "In": [2, 3, 4, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 46, 51, 53, 54, 60, 74, 76, 77, 83, 93, 94, 203, 210, 211, 215, 219, 236, 237, 243, 251, 252, 269, 272, 278, 280, 371, 374, 377, 395, 396, 397, 417, 458, 459, 460, 466, 468, 470, 471, 472, 473, 475, 479, 485, 486, 495, 497, 499, 531, 551, 558, 576, 627, 628, 630, 633, 635, 639, 681, 698, 699, 700, 702, 704, 705, 707, 709, 737, 808, 814, 815, 816, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 847, 848, 849, 850, 851, 855, 857, 859, 860, 861, 862, 864, 866, 867, 869, 872], "we": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 46, 53, 58, 59, 60, 68, 76, 81, 82, 91, 93, 94, 114, 360, 370, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 490, 495, 541, 551, 591, 613, 614, 616, 621, 622, 630, 631, 633, 634, 635, 676, 692, 698, 699, 700, 702, 704, 705, 707, 709, 784, 790, 797, 802, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862, 866, 867, 871, 872, 874], "show": [2, 3, 4, 8, 16, 22, 27, 28, 29, 30, 32, 39, 41, 43, 44, 575, 584, 607, 630, 808, 814, 815, 816, 822, 824, 827, 831, 836, 837, 840, 842, 851, 859, 866], "how": [2, 3, 4, 5, 7, 9, 12, 14, 16, 17, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 39, 42, 45, 46, 47, 52, 53, 69, 75, 76, 96, 106, 107, 108, 109, 110, 111, 112, 113, 114, 236, 269, 287, 291, 296, 297, 299, 363, 373, 374, 448, 463, 488, 489, 622, 628, 784, 787, 788, 789, 790, 808, 809, 810, 812, 813, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 834, 835, 836, 837, 838, 841, 842, 843, 844, 846, 847, 848, 849, 850, 851, 855, 857, 862, 866], "written": [2, 3, 4, 16, 18, 27, 28, 41, 54, 374, 469, 815, 819, 820, 828, 831, 832, 836, 837, 841, 845, 847, 850, 851, 855, 860, 864, 866, 870, 872, 873], "xgboost": [2, 16], "video": [3, 5, 7, 8, 9, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 808, 809, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 852, 864], "tutori": [3, 5, 7, 8, 9, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 808, 816, 837, 852], "nativ": [3, 4, 6, 9, 18, 19, 22, 23, 24, 25, 27, 28, 48, 49, 50, 51, 54, 71, 74, 77, 98, 102, 136, 146, 147, 153, 154, 155, 156, 157, 158, 172, 175, 190, 191, 192, 193, 203, 211, 215, 558, 560, 564, 571, 576, 594, 625, 626, 627, 630, 769, 780, 785, 797, 808, 812, 814, 825, 826, 829, 830, 833, 834, 836, 837, 838, 840, 845, 847, 848, 853, 859, 860, 861, 864, 873], "integr": [3, 4, 12, 14, 21, 28, 31, 50, 52, 53, 73, 75, 76, 148, 288, 351, 368, 383, 521, 626, 628, 808, 813, 815, 817, 818, 834, 860, 864, 866, 868, 869, 870], "three": [3, 4, 16, 22, 32, 33, 43, 53, 135, 308, 365, 374, 460, 625, 815, 816, 823, 824, 825, 827, 837, 840, 843, 844, 845, 867, 872], "major": [3, 4, 640, 743, 825, 826, 838, 840, 851, 856, 863, 866], "ml": [3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 46, 808, 809, 813, 837, 844, 845, 846, 848, 849, 850, 854, 856, 857, 860, 862, 863, 864, 865, 866, 869, 871, 873], "framework": [3, 4, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 41, 43, 45, 48, 54, 166, 188, 198, 201, 212, 539, 555, 559, 591, 594, 626, 627, 630, 637, 716, 767, 769, 773, 780, 785, 792, 797, 798, 808, 811, 812, 814, 815, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 840, 841, 843, 844, 845, 847, 850, 851, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 870], "sinc": [3, 5, 8, 24, 25, 27, 28, 41, 43, 53, 76, 94, 368, 808, 810, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 829, 836, 837, 851, 856, 866, 872], "want": [3, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 40, 41, 43, 53, 68, 76, 91, 236, 269, 374, 468, 628, 790, 808, 809, 810, 814, 815, 816, 822, 824, 826, 829, 831, 833, 834, 835, 836, 840, 843, 848, 849, 850, 851, 852, 856, 860], "after": [3, 4, 5, 7, 8, 9, 27, 28, 42, 53, 54, 55, 57, 61, 70, 76, 77, 78, 80, 84, 182, 283, 300, 304, 353, 363, 368, 371, 372, 374, 394, 395, 396, 397, 414, 418, 439, 469, 480, 558, 612, 615, 617, 618, 619, 626, 628, 630, 631, 632, 637, 638, 645, 646, 647, 648, 650, 652, 654, 655, 725, 733, 792, 797, 808, 814, 815, 816, 819, 821, 822, 824, 825, 827, 829, 832, 835, 838, 840, 844, 852, 859, 860, 866], "first": [3, 4, 5, 8, 12, 18, 20, 21, 22, 24, 27, 28, 30, 31, 32, 41, 44, 45, 46, 49, 52, 53, 58, 60, 62, 63, 64, 66, 72, 75, 76, 77, 81, 83, 85, 87, 89, 93, 94, 98, 99, 118, 119, 133, 134, 143, 174, 182, 192, 219, 224, 226, 228, 229, 230, 231, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 269, 272, 274, 285, 286, 298, 308, 309, 324, 326, 327, 328, 330, 343, 345, 346, 347, 353, 357, 358, 363, 365, 368, 371, 372, 373, 374, 381, 383, 394, 424, 425, 426, 428, 432, 454, 464, 466, 470, 477, 480, 482, 483, 486, 494, 505, 507, 511, 519, 520, 521, 528, 533, 624, 625, 626, 627, 628, 630, 632, 633, 635, 636, 637, 640, 641, 642, 643, 659, 664, 667, 668, 669, 671, 673, 678, 680, 681, 683, 685, 687, 689, 702, 703, 706, 707, 711, 712, 713, 714, 715, 724, 725, 727, 739, 740, 741, 745, 746, 747, 750, 751, 753, 754, 769, 787, 788, 789, 790, 792, 797, 808, 810, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 826, 827, 831, 832, 833, 834, 836, 837, 840, 843, 845, 847, 848, 850, 852, 855, 856, 859, 860, 864, 866, 867, 871], "notebook": [3, 4, 5, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 42, 790, 808], "automat": [3, 5, 8, 25, 27, 28, 33, 808, 814, 815, 816, 818, 821, 822, 824, 825, 831, 833, 836, 840, 843, 844, 846, 849, 850, 852, 853, 857, 866, 869, 873], "sure": [3, 5, 7, 8, 9, 10, 27, 41, 811, 814, 815, 816, 819, 824, 829, 830, 837, 838, 840, 843, 852], "gpu": [3, 4, 5, 6, 7, 8, 9, 10, 41, 43, 45, 46, 192, 194, 195, 198, 201, 203, 205, 207, 208, 211, 213, 215, 627, 806, 808, 815, 816, 824, 826, 847, 852, 864, 866, 869, 870, 871], "enabl": [3, 4, 5, 6, 7, 8, 9, 10, 22, 23, 25, 42, 53, 58, 70, 81, 99, 371, 373, 394, 452, 576, 630, 633, 676, 790, 806, 808, 815, 816, 817, 820, 823, 825, 833, 834, 835, 836, 837, 840, 841, 844, 846, 848, 850, 851, 853, 856, 859, 864, 865, 866, 867, 868, 869, 872, 873], "dm": [3, 4, 5, 7, 9, 27, 28, 39, 41], "haiku": [3, 4, 5, 7, 9, 25, 27, 28, 39, 41, 45, 785, 808, 850, 857, 860, 866], "exit": [3, 5, 8, 27, 28, 826], "download": [3, 8, 12, 14, 27, 28, 42, 43, 46, 810, 815, 822, 840, 859, 860], "imagenet": [3, 14, 42, 44, 808], "class": [3, 5, 8, 10, 12, 14, 18, 27, 28, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 130, 139, 145, 161, 164, 177, 179, 180, 239, 276, 334, 356, 368, 382, 383, 391, 392, 425, 524, 525, 532, 541, 545, 558, 568, 591, 625, 626, 627, 628, 630, 632, 633, 634, 637, 638, 653, 658, 662, 668, 678, 682, 683, 685, 692, 708, 715, 726, 733, 748, 755, 759, 760, 769, 770, 777, 778, 779, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 796, 797, 801, 806, 808, 814, 821, 822, 823, 825, 826, 827, 828, 832, 834, 835, 838, 839, 840, 843, 845, 846, 848, 849, 850, 853, 859, 860, 864, 866, 867, 873], "preprocess": [3, 8, 10, 27, 28, 41, 44, 859], "wget": [3, 5, 8, 41, 42, 45, 815], "raw": [3, 5, 7, 8, 9, 24, 27, 28, 41, 44, 45, 70, 808, 828, 860, 867], "githubusercont": [3, 5, 8, 41, 45], "hub": [3, 5, 8, 41, 44, 46], "master": [3, 5, 8, 19, 20, 21, 29, 30, 31, 32, 33, 34, 41, 43, 44, 45, 811, 824, 866, 874], "imagenet_class": [3, 8], "txt": [3, 8, 42, 54, 815, 819, 822], "r": [3, 8, 41, 42, 53, 58, 70, 76, 81, 93, 94, 345, 360, 368, 370, 613, 631, 633, 635, 680, 709, 815, 816, 818, 835, 838, 874], "f": [3, 4, 6, 7, 8, 27, 28, 40, 41, 43, 53, 60, 76, 83, 298, 315, 363, 365, 374, 470, 491, 635, 637, 702, 717, 721, 722, 723, 726, 731, 732, 808, 809, 816, 818, 823, 824, 829, 841, 845, 847, 848, 857, 862], "categori": [3, 8, 814, 819, 820, 823, 825, 829, 837, 841, 844], "strip": [3, 8, 20, 30, 856], "readlin": [3, 8, 42], "cat": [3, 8, 42, 838, 843, 845, 850, 859, 860], "jpg": [3, 5, 7, 8, 9, 24, 27, 28, 43, 44, 808, 860], "filenam": [3, 5, 8, 27, 28, 41, 43, 46, 54, 790, 796, 848], "3": [3, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 128, 130, 132, 133, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 155, 159, 161, 169, 171, 176, 190, 192, 193, 204, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 388, 390, 391, 392, 393, 395, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 439, 442, 444, 447, 448, 449, 450, 451, 452, 453, 454, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 500, 501, 502, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 572, 573, 586, 587, 588, 589, 593, 596, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 775, 788, 801, 802, 806, 808, 812, 814, 815, 819, 820, 821, 823, 824, 825, 827, 829, 830, 833, 835, 838, 840, 845, 847, 848, 849, 850, 859, 860, 873], "import": [3, 6, 7, 9, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 42, 44, 45, 46, 53, 64, 68, 72, 76, 91, 190, 191, 195, 207, 303, 383, 518, 553, 569, 627, 630, 636, 641, 712, 713, 748, 780, 797, 798, 808, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 828, 831, 834, 835, 836, 837, 838, 839, 840, 841, 845, 847, 848, 850, 851, 852, 856, 859, 860, 861, 862, 864, 866, 869, 870, 872], "devic": [3, 5, 6, 7, 8, 9, 42, 43, 46, 49, 53, 62, 70, 72, 76, 85, 98, 101, 102, 103, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 189, 190, 191, 192, 193, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 213, 215, 308, 309, 324, 325, 365, 378, 468, 504, 505, 507, 508, 532, 546, 547, 625, 630, 639, 734, 735, 736, 737, 767, 769, 770, 785, 787, 788, 789, 790, 791, 792, 793, 794, 806, 808, 816, 818, 821, 825, 829, 833, 834, 838, 840, 841, 843, 845, 850, 851, 852, 853, 856, 865, 866, 868, 869, 870, 871], "torchvis": [3, 7, 8, 41, 857], "transform": [3, 4, 7, 8, 9, 24, 27, 28, 41, 42, 44, 53, 57, 76, 80, 371, 372, 393, 394, 399, 400, 403, 404, 405, 415, 416, 419, 436, 632, 656, 772, 775, 788, 808, 834, 840, 850, 853, 859, 860, 864, 866, 867, 868], "pil": [3, 5, 7, 8, 9, 24, 27, 28, 42, 43, 44, 808, 860], "numpi": [3, 4, 5, 6, 7, 9, 12, 14, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 53, 54, 66, 75, 76, 77, 143, 172, 190, 195, 220, 280, 303, 324, 365, 383, 518, 525, 534, 558, 588, 591, 595, 625, 626, 627, 628, 630, 633, 643, 681, 755, 767, 769, 780, 797, 801, 802, 808, 813, 814, 815, 816, 819, 820, 821, 824, 825, 826, 829, 830, 832, 836, 838, 840, 841, 843, 845, 847, 850, 852, 853, 855, 856, 859, 860, 861, 863, 868, 873], "np": [3, 4, 5, 6, 7, 9, 12, 14, 19, 22, 23, 24, 25, 27, 28, 29, 32, 33, 34, 39, 40, 41, 42, 43, 44, 46, 49, 53, 75, 76, 77, 123, 124, 125, 136, 172, 249, 253, 303, 371, 372, 399, 404, 420, 588, 625, 626, 628, 630, 637, 720, 769, 797, 801, 802, 808, 814, 820, 825, 826, 829, 832, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 853, 861], "warn": [3, 4, 5, 6, 8, 9, 10, 19, 22, 23, 24, 25, 41, 42, 43, 46, 805, 815, 816, 842, 859, 860, 861], "time": [3, 4, 6, 7, 9, 25, 27, 28, 33, 41, 43, 44, 45, 53, 55, 58, 64, 76, 78, 87, 93, 94, 130, 337, 368, 371, 372, 374, 383, 400, 405, 417, 419, 440, 447, 480, 486, 518, 612, 617, 625, 631, 632, 633, 635, 636, 640, 641, 655, 658, 673, 708, 711, 712, 713, 740, 741, 745, 746, 788, 789, 790, 806, 814, 815, 816, 819, 821, 823, 824, 825, 827, 830, 832, 833, 834, 836, 837, 840, 841, 845, 848, 850, 851, 852, 855, 856, 857, 859, 860, 864, 866, 867, 870, 871, 872], "filterwarn": [3, 4], "ignor": [3, 4, 40, 48, 49, 53, 70, 76, 135, 371, 372, 374, 383, 395, 396, 397, 426, 434, 442, 482, 483, 487, 526, 625, 632, 637, 659, 725, 726, 792, 815, 822, 824, 827, 840, 851, 872], "compos": [3, 7, 8, 27, 28, 41, 53, 76, 371, 385, 386, 387, 388, 815, 823, 837, 840, 859, 861, 866, 873], "resiz": [3, 5, 7, 8, 41, 42, 53, 76, 371, 407, 843], "256": [3, 5, 8, 52, 77, 279, 280, 589, 632, 647, 649, 772], "centercrop": [3, 8], "224": [3, 8, 12, 14, 27, 28, 41, 42, 44, 808, 860], "totensor": [3, 7, 8, 41], "mean": [3, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 42, 43, 53, 54, 57, 59, 60, 62, 66, 68, 70, 72, 76, 77, 80, 82, 83, 85, 89, 91, 93, 130, 209, 326, 336, 365, 368, 371, 372, 373, 374, 377, 378, 383, 400, 405, 423, 436, 448, 449, 450, 451, 452, 453, 454, 455, 465, 470, 480, 497, 499, 505, 524, 525, 542, 613, 614, 616, 621, 625, 627, 630, 631, 632, 633, 634, 635, 636, 637, 639, 643, 647, 649, 650, 651, 653, 654, 655, 666, 692, 693, 694, 702, 711, 712, 713, 720, 735, 736, 772, 774, 775, 787, 788, 791, 808, 815, 816, 818, 819, 821, 823, 825, 826, 827, 833, 835, 836, 837, 840, 841, 843, 845, 847, 848, 849, 850, 851, 853, 860, 861, 863, 866], "0": [3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 125, 128, 130, 131, 132, 133, 134, 137, 139, 141, 142, 143, 144, 145, 148, 149, 150, 151, 159, 161, 164, 165, 169, 171, 176, 189, 192, 194, 197, 202, 203, 204, 205, 207, 208, 209, 211, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 321, 322, 324, 325, 326, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 390, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 414, 415, 416, 418, 421, 422, 423, 425, 426, 427, 430, 431, 433, 436, 437, 440, 441, 442, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 463, 465, 466, 467, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 535, 536, 537, 540, 541, 542, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 568, 570, 572, 573, 577, 582, 586, 587, 588, 589, 591, 593, 595, 596, 605, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 777, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 797, 801, 802, 806, 808, 812, 815, 816, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 835, 836, 837, 838, 840, 841, 845, 847, 848, 849, 850, 851, 859, 860], "485": [3, 8, 41], "456": [3, 8, 41, 840], "406": [3, 8, 41, 53, 76, 393, 536, 630], "std": [3, 7, 8, 9, 10, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 42, 57, 62, 66, 80, 85, 89, 378, 505, 632, 639, 643, 647, 649, 650, 651, 653, 654, 735, 736, 808, 827, 861, 863], "229": [3, 8, 41, 275, 628], "225": [3, 8, 41, 43, 230, 628], "torch_img": [3, 5, 8], "unsqueez": [3, 5, 7, 8], "img": [3, 5, 8, 24, 27, 28, 41, 42, 43, 45, 808, 848, 860], "4": [3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 22, 23, 24, 25, 27, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 113, 114, 122, 123, 124, 125, 128, 130, 132, 133, 134, 135, 136, 137, 139, 143, 145, 149, 150, 151, 159, 161, 164, 169, 171, 176, 193, 194, 202, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 316, 317, 324, 326, 331, 332, 334, 336, 337, 339, 340, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 355, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 436, 442, 448, 449, 450, 451, 452, 453, 454, 456, 458, 459, 460, 463, 464, 465, 466, 467, 470, 471, 472, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 500, 501, 502, 503, 506, 508, 509, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 554, 556, 557, 558, 565, 572, 573, 588, 589, 590, 591, 593, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 775, 787, 788, 792, 801, 802, 808, 812, 814, 815, 821, 822, 823, 824, 825, 827, 830, 835, 838, 840, 843, 845, 847, 848, 849, 850, 857, 859, 866, 872, 873], "ipython": [3, 5, 8, 22, 23, 24, 25, 27, 28, 46], "displai": [3, 5, 8, 24, 27, 28, 41, 42, 43, 45, 46, 815, 822, 824, 829, 840, 848], "end": [3, 5, 41, 42, 53, 76, 122, 224, 280, 349, 368, 371, 373, 374, 419, 448, 470, 480, 482, 483, 625, 628, 802, 808, 815, 816, 821, 824, 830, 836, 841, 843, 844, 851, 864, 869], "see": [3, 4, 6, 7, 9, 10, 19, 20, 25, 27, 28, 29, 30, 34, 39, 40, 46, 47, 50, 52, 53, 58, 63, 64, 66, 67, 69, 75, 76, 81, 86, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 129, 133, 140, 143, 150, 169, 176, 219, 224, 226, 228, 229, 230, 231, 236, 237, 241, 243, 247, 248, 255, 256, 259, 261, 263, 265, 266, 269, 272, 274, 278, 285, 287, 290, 291, 296, 297, 299, 324, 331, 332, 363, 365, 368, 372, 373, 374, 422, 450, 488, 622, 625, 626, 628, 633, 640, 641, 643, 644, 664, 676, 679, 682, 689, 690, 741, 745, 746, 747, 748, 756, 757, 758, 759, 760, 761, 762, 763, 764, 784, 808, 809, 812, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 830, 831, 832, 833, 837, 838, 840, 843, 845, 847, 848, 851, 855, 862, 874], "5": [3, 4, 5, 6, 7, 8, 9, 10, 12, 19, 20, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 89, 93, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 122, 123, 124, 130, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 149, 150, 151, 155, 159, 161, 169, 171, 176, 193, 202, 207, 210, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 326, 329, 331, 332, 334, 336, 338, 340, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 353, 354, 355, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 421, 424, 425, 427, 428, 430, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 464, 465, 466, 467, 470, 471, 474, 475, 476, 479, 480, 485, 486, 487, 488, 489, 490, 492, 495, 496, 501, 502, 503, 506, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 525, 528, 534, 535, 536, 537, 540, 541, 542, 543, 545, 548, 549, 551, 554, 556, 557, 558, 572, 573, 577, 588, 589, 590, 591, 593, 597, 610, 611, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 650, 651, 652, 653, 654, 655, 656, 658, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 788, 801, 802, 808, 811, 814, 815, 816, 819, 821, 823, 824, 825, 827, 829, 830, 832, 835, 838, 840, 847, 848, 849, 860, 874], "set_default_devic": [3, 4, 5, 7, 8, 9, 213, 627, 826], "set_soft_device_mod": [3, 10, 14, 214, 627, 826], "true": [3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 21, 22, 24, 25, 27, 28, 32, 33, 34, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 124, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 152, 159, 161, 162, 163, 164, 167, 168, 169, 170, 171, 172, 173, 176, 188, 192, 193, 195, 196, 200, 203, 204, 206, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 467, 468, 470, 471, 472, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 510, 511, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 572, 573, 574, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 598, 603, 604, 606, 607, 609, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 777, 788, 789, 790, 791, 792, 794, 797, 799, 801, 802, 806, 808, 812, 815, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 843, 845, 848, 849, 850, 859, 860], "set_backend": [3, 4, 5, 8, 10, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 40, 42, 43, 44, 52, 54, 68, 75, 77, 163, 172, 190, 191, 195, 205, 207, 212, 220, 534, 558, 626, 627, 630, 633, 636, 681, 712, 713, 797, 808, 819, 821, 825, 826, 833, 834, 835, 845, 847, 850, 859, 860, 861], "ivy_model": [3, 4, 5, 8, 44], "ivy_alexnet": 3, "order": [3, 21, 31, 33, 41, 44, 46, 49, 53, 54, 57, 58, 60, 64, 65, 70, 76, 80, 81, 83, 87, 88, 93, 98, 99, 123, 124, 135, 143, 224, 243, 286, 324, 345, 365, 368, 371, 372, 374, 377, 381, 417, 422, 425, 426, 427, 428, 429, 433, 439, 441, 444, 447, 470, 471, 472, 477, 478, 490, 497, 498, 499, 502, 511, 625, 628, 632, 633, 635, 636, 640, 641, 642, 646, 647, 648, 649, 650, 651, 654, 668, 669, 674, 683, 684, 688, 690, 699, 702, 711, 712, 743, 745, 746, 747, 748, 749, 751, 752, 769, 791, 793, 802, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 837, 838, 839, 840, 841, 842, 843, 848, 850, 851, 855, 862, 865, 866, 867, 869, 872], "quick": [3, 16, 28, 816, 818, 838, 849], "call": [3, 7, 12, 14, 18, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34, 41, 45, 53, 68, 73, 76, 91, 93, 99, 118, 168, 169, 209, 372, 383, 439, 525, 576, 582, 597, 613, 614, 616, 624, 627, 630, 631, 633, 637, 681, 714, 720, 724, 725, 769, 780, 788, 789, 790, 792, 797, 802, 806, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 851, 856, 859, 860, 861, 866, 867, 870], "trace_graph": [3, 4, 5, 8, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 44, 790, 808, 845, 850, 858], "take": [3, 8, 18, 25, 27, 28, 33, 39, 41, 44, 53, 58, 60, 66, 76, 83, 93, 118, 119, 121, 137, 276, 283, 298, 363, 371, 372, 374, 391, 399, 404, 409, 419, 428, 442, 463, 470, 489, 519, 520, 624, 625, 628, 632, 633, 635, 636, 659, 673, 677, 702, 713, 753, 772, 780, 787, 788, 801, 806, 808, 809, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 838, 840, 843, 845, 847, 849, 850, 851, 852, 857, 859, 860, 863, 864, 872], "moment": [3, 53, 55, 76, 78, 372, 429, 611, 612, 617, 631, 792, 806, 814, 821, 851, 859, 860], "one": [3, 6, 7, 9, 12, 14, 16, 17, 20, 21, 24, 25, 27, 28, 30, 31, 43, 44, 45, 49, 53, 54, 57, 58, 60, 63, 64, 66, 70, 72, 75, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 89, 93, 122, 125, 135, 137, 138, 139, 149, 151, 209, 230, 236, 243, 244, 261, 267, 268, 269, 288, 298, 308, 311, 312, 330, 336, 339, 340, 343, 344, 347, 348, 349, 351, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 393, 395, 399, 400, 403, 404, 407, 415, 420, 422, 431, 440, 454, 458, 459, 460, 464, 470, 471, 472, 477, 479, 484, 487, 497, 498, 499, 504, 509, 519, 520, 523, 524, 525, 526, 527, 528, 530, 568, 572, 573, 575, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 638, 640, 641, 643, 646, 647, 648, 649, 650, 651, 654, 671, 673, 674, 678, 680, 689, 690, 698, 699, 700, 703, 705, 709, 733, 740, 743, 745, 746, 747, 748, 753, 755, 772, 774, 791, 794, 797, 802, 805, 808, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 843, 844, 847, 848, 850, 851, 852, 853, 856, 857, 860, 866, 867, 869, 872], "cost": [3, 55, 78, 611, 612, 615, 617, 618, 619, 631, 636, 711, 712, 713, 802, 825, 843, 864], "arg": [3, 5, 6, 7, 8, 12, 14, 22, 23, 25, 27, 28, 32, 33, 34, 45, 48, 70, 92, 102, 118, 199, 209, 597, 624, 625, 627, 630, 767, 769, 784, 785, 788, 789, 790, 794, 797, 801, 806, 808, 820, 825, 826, 829, 835, 836, 837, 843, 845, 849, 859, 860, 861], "asarrai": [3, 4, 5, 7, 8, 42, 49, 53, 54, 65, 72, 76, 77, 88, 123, 381, 510, 511, 541, 552, 556, 557, 587, 588, 589, 625, 630, 632, 641, 642, 646, 746, 750, 829, 834, 837, 838], "cuda": [3, 4, 5, 6, 7, 8, 9, 10, 18, 27, 42, 43, 46, 49, 53, 62, 72, 76, 85, 133, 134, 137, 189, 190, 191, 207, 378, 504, 505, 507, 508, 625, 627, 633, 639, 684, 734, 735, 736, 737, 787, 788, 789, 790, 791, 792, 793, 806, 808, 845, 851, 853, 871], "7": [3, 5, 6, 7, 8, 9, 10, 12, 14, 20, 22, 23, 24, 25, 39, 41, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 108, 109, 110, 111, 122, 123, 124, 133, 136, 137, 155, 161, 164, 194, 216, 219, 222, 226, 227, 229, 230, 231, 232, 234, 236, 237, 238, 239, 240, 242, 243, 246, 247, 248, 253, 254, 255, 256, 257, 258, 259, 260, 261, 264, 266, 267, 268, 269, 271, 272, 273, 275, 276, 279, 280, 281, 283, 286, 287, 289, 290, 292, 293, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 326, 330, 334, 336, 337, 345, 346, 347, 349, 351, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 379, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 413, 414, 415, 416, 418, 421, 424, 437, 449, 450, 451, 452, 454, 455, 458, 459, 460, 464, 466, 470, 475, 476, 479, 480, 485, 486, 488, 489, 491, 492, 495, 496, 506, 508, 509, 516, 519, 520, 522, 523, 528, 534, 536, 537, 541, 542, 545, 556, 557, 558, 565, 572, 573, 588, 591, 611, 612, 614, 615, 616, 617, 618, 619, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 649, 651, 653, 654, 655, 656, 662, 664, 665, 666, 667, 669, 670, 671, 673, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 692, 693, 694, 695, 698, 699, 704, 706, 707, 709, 714, 715, 722, 726, 733, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 753, 754, 755, 757, 759, 761, 762, 772, 815, 816, 821, 823, 824, 827, 833, 836, 840], "output": [3, 4, 5, 6, 8, 18, 24, 25, 27, 28, 40, 41, 42, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 175, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 360, 361, 362, 363, 365, 368, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 417, 419, 420, 422, 423, 424, 426, 428, 431, 432, 434, 437, 438, 439, 440, 442, 443, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 463, 464, 465, 468, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 535, 536, 537, 541, 542, 543, 545, 549, 558, 565, 572, 573, 574, 598, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 772, 787, 788, 801, 802, 808, 810, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 828, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 845, 847, 849, 850, 851, 853, 859, 860, 867], "softmax": [3, 8, 12, 25, 27, 28, 43, 47, 57, 68, 69, 80, 373, 450, 622, 632, 659, 662, 784, 808], "pass": [3, 5, 7, 8, 9, 10, 12, 14, 18, 25, 27, 28, 34, 40, 41, 43, 45, 46, 52, 53, 68, 70, 75, 76, 91, 99, 118, 119, 121, 153, 175, 190, 209, 224, 270, 371, 373, 374, 377, 378, 383, 417, 450, 470, 497, 499, 504, 524, 525, 558, 624, 626, 627, 628, 630, 636, 711, 712, 767, 769, 773, 780, 785, 789, 790, 792, 793, 797, 801, 806, 808, 812, 814, 816, 819, 820, 821, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 851, 859, 860, 861, 864], "argsort": [3, 8, 65, 88, 642, 751, 837], "descend": [3, 8, 65, 88, 633, 642, 683, 684, 749, 752], "top": [3, 8, 11, 16, 25, 27, 28, 41, 42, 53, 60, 76, 315, 365, 373, 374, 448, 490, 541, 630, 696, 808, 815, 816, 825, 830, 837, 839, 840, 843, 848, 849, 866, 870], "logit": [3, 4, 5, 8, 41, 42, 43, 44, 53, 59, 76, 82, 363, 378, 504, 507, 634, 692, 694, 784, 808, 859], "gather": [3, 8, 41, 53, 54, 76, 77, 326, 327, 328, 365, 549, 551, 630, 873], "print": [3, 4, 6, 7, 8, 10, 12, 14, 18, 19, 21, 25, 27, 28, 29, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 153, 159, 160, 161, 162, 163, 166, 168, 169, 171, 176, 188, 189, 193, 195, 196, 197, 198, 200, 201, 202, 203, 204, 207, 208, 210, 211, 212, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 305, 306, 307, 309, 316, 317, 324, 326, 330, 331, 332, 334, 349, 350, 355, 359, 363, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 398, 400, 403, 405, 408, 409, 410, 413, 415, 416, 421, 424, 426, 428, 429, 439, 446, 449, 450, 451, 452, 453, 454, 455, 461, 463, 465, 476, 480, 485, 486, 488, 489, 490, 492, 496, 500, 501, 503, 518, 519, 520, 521, 528, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 568, 569, 571, 572, 573, 577, 578, 579, 582, 585, 586, 587, 588, 589, 591, 593, 595, 596, 597, 601, 602, 605, 608, 609, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 797, 801, 802, 806, 808, 815, 816, 823, 825, 827, 838, 840, 842, 845, 847, 848, 849, 859, 861], "indic": [3, 8, 49, 53, 54, 57, 58, 60, 61, 63, 64, 65, 70, 72, 73, 76, 77, 80, 81, 83, 84, 86, 87, 88, 93, 96, 123, 124, 137, 141, 143, 164, 168, 169, 280, 324, 325, 326, 345, 365, 368, 371, 372, 373, 374, 379, 381, 390, 391, 392, 394, 398, 399, 400, 404, 405, 408, 409, 410, 411, 415, 416, 426, 447, 450, 458, 459, 460, 463, 466, 468, 470, 471, 472, 475, 479, 485, 486, 488, 489, 490, 492, 494, 495, 509, 510, 511, 533, 548, 549, 551, 572, 573, 577, 610, 613, 614, 625, 628, 630, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 646, 648, 649, 650, 651, 654, 659, 676, 690, 698, 699, 700, 702, 703, 704, 705, 707, 709, 714, 717, 719, 721, 722, 723, 725, 729, 730, 731, 732, 733, 734, 740, 741, 742, 743, 745, 747, 749, 751, 752, 769, 770, 772, 774, 788, 794, 801, 802, 804, 815, 824, 832, 835, 837, 850, 859], "to_list": [3, 8, 54, 77, 630], "arrai": [3, 4, 6, 8, 9, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 165, 167, 168, 169, 171, 173, 174, 175, 176, 182, 192, 193, 197, 202, 204, 206, 209, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 555, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 568, 570, 571, 572, 573, 574, 576, 577, 583, 584, 586, 587, 588, 589, 590, 591, 593, 594, 595, 596, 597, 598, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 774, 780, 787, 788, 789, 790, 793, 797, 801, 802, 804, 808, 812, 814, 815, 816, 818, 821, 822, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 853, 860, 861, 864, 865, 866, 868, 872, 873], "282": [3, 8], "281": [3, 8, 41, 43], "285": [3, 8, 76], "dev": [3, 7, 8, 9, 10, 20, 41, 43, 46, 51, 70, 74, 197, 204, 627, 815, 826, 830, 833, 847, 849], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 10, 12, 14, 18, 19, 22, 23, 24, 25, 39, 41, 42, 43, 44, 46, 47, 52, 53, 58, 62, 69, 75, 76, 78, 81, 85, 108, 222, 257, 259, 261, 291, 292, 295, 363, 371, 383, 391, 393, 410, 413, 519, 611, 622, 628, 631, 633, 643, 671, 678, 736, 755], "tiger": [3, 8], "tabbi": [3, 8], "egyptian": [3, 8], "check": [3, 4, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 44, 46, 48, 50, 54, 58, 70, 73, 77, 81, 114, 152, 153, 162, 163, 166, 168, 169, 170, 173, 188, 195, 196, 203, 215, 534, 544, 546, 547, 554, 560, 561, 562, 563, 564, 580, 591, 603, 609, 622, 626, 627, 630, 633, 637, 669, 670, 676, 714, 724, 725, 726, 767, 774, 801, 802, 808, 809, 810, 813, 814, 815, 816, 817, 819, 823, 824, 826, 827, 829, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 852, 859], "confirm": [3, 42, 811, 814], "same": [3, 4, 5, 6, 7, 8, 9, 14, 19, 20, 22, 23, 24, 25, 27, 30, 32, 34, 39, 40, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 89, 93, 94, 95, 96, 97, 98, 112, 122, 127, 132, 134, 135, 137, 139, 141, 142, 143, 145, 148, 149, 150, 161, 164, 209, 216, 217, 218, 219, 221, 223, 227, 229, 232, 236, 242, 243, 249, 269, 271, 273, 276, 278, 279, 280, 289, 297, 309, 323, 324, 325, 326, 327, 328, 331, 332, 334, 342, 358, 363, 365, 368, 371, 372, 373, 374, 377, 379, 381, 383, 390, 391, 392, 408, 409, 410, 411, 413, 414, 415, 416, 418, 425, 430, 431, 441, 442, 443, 444, 445, 447, 448, 450, 453, 463, 465, 480, 488, 489, 492, 497, 499, 509, 511, 516, 517, 518, 519, 520, 521, 522, 528, 565, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 659, 662, 663, 664, 665, 667, 668, 669, 670, 672, 673, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 696, 699, 700, 702, 703, 705, 706, 711, 712, 727, 737, 745, 746, 747, 748, 749, 750, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 767, 769, 772, 773, 774, 780, 788, 801, 808, 815, 816, 820, 821, 823, 824, 825, 826, 827, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 855, 857, 859, 861, 863, 865, 872, 873], "8": [3, 7, 8, 9, 10, 20, 22, 23, 24, 25, 39, 41, 43, 46, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 98, 99, 106, 121, 131, 132, 136, 139, 145, 154, 156, 157, 158, 161, 169, 194, 211, 219, 221, 222, 226, 227, 230, 231, 232, 234, 240, 243, 247, 248, 254, 255, 256, 260, 261, 264, 265, 267, 268, 269, 274, 275, 278, 279, 280, 283, 284, 287, 288, 289, 293, 299, 301, 302, 303, 305, 306, 308, 309, 326, 330, 342, 345, 347, 348, 349, 352, 359, 363, 365, 368, 371, 372, 373, 374, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 409, 413, 414, 418, 421, 424, 432, 449, 450, 451, 453, 454, 455, 456, 458, 459, 460, 464, 466, 470, 475, 476, 485, 486, 489, 490, 491, 492, 495, 496, 506, 508, 520, 523, 524, 528, 534, 535, 537, 541, 542, 545, 548, 552, 556, 557, 558, 560, 561, 564, 567, 572, 573, 577, 587, 588, 589, 590, 591, 611, 614, 616, 618, 619, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 646, 650, 651, 653, 654, 655, 656, 659, 665, 666, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 699, 706, 707, 709, 715, 722, 726, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 754, 755, 757, 759, 761, 762, 772, 775, 788, 815, 823, 824, 827, 840, 844, 848], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 10, 12, 14, 27, 28, 41, 42, 53, 55, 57, 59, 76, 78, 80, 82, 93, 94, 311, 315, 349, 365, 368, 371, 372, 383, 398, 431, 516, 518, 521, 611, 612, 615, 617, 618, 619, 631, 632, 634, 636, 656, 657, 658, 659, 662, 692, 713, 774, 787, 788, 790, 792, 806, 808, 823, 833, 840, 845, 849, 850, 865], "imagenet1k_v1": [3, 8], "dropout": [3, 57, 80, 371, 395, 396, 397, 632, 657, 659, 662, 788, 848], "9": [3, 4, 5, 7, 8, 9, 10, 20, 22, 23, 24, 25, 39, 41, 43, 46, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 69, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88, 89, 98, 99, 106, 122, 123, 124, 136, 154, 155, 156, 157, 158, 161, 164, 217, 219, 221, 222, 225, 226, 227, 230, 231, 236, 237, 238, 243, 250, 256, 257, 258, 260, 264, 265, 267, 268, 269, 272, 274, 275, 279, 280, 283, 284, 285, 290, 296, 299, 300, 301, 338, 341, 345, 351, 352, 359, 363, 368, 369, 371, 373, 374, 381, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 409, 413, 414, 418, 432, 449, 451, 453, 454, 458, 459, 460, 466, 470, 475, 485, 486, 487, 488, 490, 492, 495, 506, 508, 511, 520, 537, 541, 542, 543, 545, 548, 556, 557, 560, 561, 564, 572, 573, 587, 588, 590, 611, 612, 613, 617, 618, 622, 625, 626, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 642, 643, 646, 647, 648, 654, 655, 656, 664, 665, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 695, 699, 703, 704, 706, 707, 709, 714, 715, 720, 722, 725, 726, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 754, 755, 757, 759, 761, 762, 772, 792, 823, 825, 827, 835, 840, 848, 849, 862], "torch_output": [3, 5, 8], "dim": [3, 8, 43, 53, 70, 72, 76, 137, 309, 365, 371, 374, 389, 399, 400, 401, 404, 412, 470, 492, 625, 632, 645, 652, 653, 658, 774, 788, 808, 825, 837, 838, 843], "torch_class": [3, 8], "torch_logit": [3, 8], "tensor": [3, 4, 7, 8, 9, 12, 14, 18, 19, 22, 23, 25, 27, 28, 29, 33, 39, 41, 49, 52, 53, 54, 57, 59, 60, 62, 70, 72, 75, 76, 77, 80, 81, 82, 83, 85, 92, 125, 133, 134, 137, 143, 159, 175, 267, 268, 298, 315, 319, 320, 321, 322, 323, 324, 333, 356, 363, 365, 368, 371, 372, 373, 374, 383, 384, 390, 391, 394, 398, 407, 408, 409, 410, 417, 419, 421, 428, 429, 430, 431, 434, 436, 438, 440, 441, 444, 446, 447, 448, 450, 453, 454, 470, 473, 478, 481, 482, 483, 484, 487, 492, 493, 524, 529, 572, 573, 625, 626, 628, 630, 632, 633, 634, 635, 639, 655, 658, 659, 674, 685, 692, 702, 704, 734, 788, 797, 802, 806, 808, 820, 821, 825, 826, 830, 832, 833, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 851, 853, 855, 859, 860, 861, 863, 864, 867, 869, 870, 873], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 8, 25, 39, 614, 621, 631, 848], "lt": [3, 8, 12, 14, 18, 22, 23, 24, 25, 39, 41, 43, 99], "takebackward0": [3, 8], "gt": [3, 6, 8, 12, 14, 18, 22, 23, 24, 25, 39, 41, 43, 46, 99, 838, 845], "great": [3, 5, 808, 816, 840, 845, 847, 856, 857, 872], "With": [3, 20, 30, 39, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 66, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 148, 149, 150, 151, 153, 159, 160, 161, 164, 171, 176, 177, 178, 179, 180, 190, 193, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 331, 332, 334, 336, 339, 340, 344, 347, 348, 349, 351, 352, 355, 363, 365, 368, 371, 372, 373, 374, 383, 393, 395, 396, 403, 415, 422, 423, 424, 426, 427, 428, 439, 442, 454, 470, 471, 472, 474, 477, 479, 480, 486, 488, 490, 492, 494, 509, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 534, 535, 536, 537, 540, 541, 542, 543, 544, 548, 549, 552, 554, 556, 557, 558, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 662, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 680, 681, 682, 683, 684, 685, 687, 688, 689, 692, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 815, 825, 827, 837, 840, 843, 845, 856, 857, 859, 866, 869], "simpl": [3, 12, 16, 17, 19, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 39, 41, 43, 46, 53, 76, 383, 518, 774, 788, 802, 808, 814, 815, 816, 820, 822, 823, 825, 826, 827, 828, 833, 836, 837, 840, 841, 843, 847, 849, 850, 851, 853, 855, 859, 860, 865, 866, 867, 868], "chang": [3, 4, 10, 18, 28, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 628, 635, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 715, 726, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 808, 814, 815, 816, 817, 819, 821, 822, 823, 824, 825, 827, 828, 830, 831, 837, 838, 839, 840, 841, 842, 843, 845, 849, 851, 852, 857, 859, 869, 872], "backend": [3, 6, 9, 19, 20, 21, 22, 23, 24, 25, 28, 30, 31, 33, 48, 49, 53, 54, 58, 70, 76, 77, 81, 98, 125, 162, 163, 166, 188, 195, 196, 198, 201, 212, 331, 332, 368, 372, 424, 426, 525, 534, 546, 547, 555, 558, 559, 569, 576, 591, 594, 625, 626, 627, 630, 633, 681, 683, 767, 769, 770, 772, 773, 774, 777, 779, 780, 785, 789, 790, 792, 796, 797, 808, 812, 813, 815, 816, 818, 819, 820, 824, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 843, 844, 846, 847, 850, 853, 855, 859, 860, 861, 866, 869, 872, 873], "let": [3, 4, 5, 7, 9, 10, 12, 14, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 41, 42, 44, 46, 54, 66, 77, 216, 217, 218, 219, 222, 225, 234, 237, 239, 241, 250, 251, 252, 257, 259, 272, 280, 282, 283, 287, 548, 549, 628, 630, 633, 643, 687, 757, 759, 760, 761, 762, 808, 814, 817, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 857, 859, 860, 873], "u": [3, 7, 41, 43, 45, 46, 53, 58, 72, 76, 81, 93, 94, 134, 372, 436, 443, 445, 633, 637, 663, 669, 670, 683, 722, 808, 809, 815, 816, 818, 823, 824, 831, 834, 836, 837, 838, 839, 840, 841, 843, 849, 851, 856], "differ": [3, 4, 7, 9, 10, 12, 16, 17, 21, 22, 23, 27, 28, 31, 32, 33, 34, 52, 53, 54, 58, 66, 70, 76, 77, 89, 98, 99, 108, 111, 161, 219, 236, 243, 244, 269, 285, 330, 337, 342, 343, 347, 368, 371, 372, 374, 383, 405, 416, 441, 447, 464, 471, 472, 486, 519, 520, 528, 548, 549, 622, 626, 628, 630, 632, 633, 635, 643, 655, 656, 671, 681, 696, 706, 753, 754, 759, 761, 762, 767, 772, 780, 789, 790, 808, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 869, 872, 873], "ll": [3, 5, 7, 9, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 42, 808, 809, 811, 812, 814, 815, 816, 817, 822, 827, 830, 831, 835, 836, 848, 852, 857, 859, 860], "try": [3, 19, 29, 39, 42, 46, 70, 597, 630, 787, 797, 808, 814, 815, 816, 819, 820, 823, 824, 825, 829, 831, 836, 838, 845, 847, 851, 854, 856, 857, 861], "10": [3, 5, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 41, 43, 45, 46, 49, 52, 53, 54, 55, 57, 58, 62, 64, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 122, 132, 133, 134, 218, 226, 227, 230, 231, 234, 241, 246, 248, 254, 256, 258, 269, 275, 282, 283, 288, 297, 330, 331, 332, 335, 339, 340, 342, 344, 345, 347, 348, 349, 351, 352, 356, 359, 368, 371, 374, 383, 390, 391, 392, 393, 403, 408, 409, 413, 414, 415, 416, 418, 448, 460, 463, 466, 470, 475, 485, 486, 495, 516, 519, 520, 523, 525, 528, 541, 542, 543, 545, 548, 549, 551, 556, 557, 565, 573, 577, 582, 588, 590, 602, 605, 617, 625, 628, 630, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 649, 655, 665, 667, 671, 672, 673, 674, 675, 678, 683, 684, 685, 687, 689, 699, 704, 705, 706, 707, 709, 720, 722, 725, 733, 734, 735, 736, 737, 743, 745, 751, 753, 754, 755, 756, 758, 759, 761, 762, 772, 774, 792, 808, 812, 815, 819, 823, 824, 825, 827, 830, 835, 838, 840, 845, 847, 848, 856, 861, 871], "tf": [3, 5, 6, 9, 12, 14, 19, 22, 23, 25, 27, 28, 29, 30, 32, 34, 39, 44, 45, 785, 808, 820, 825, 826, 832, 836, 837, 840, 841, 843, 845, 850, 851, 853, 859, 860, 861, 866], "onc": [3, 5, 27, 28, 39, 41, 58, 62, 81, 85, 209, 372, 425, 627, 633, 639, 668, 669, 670, 683, 734, 808, 814, 815, 816, 823, 824, 825, 826, 827, 830, 831, 836, 837, 840, 843, 845, 848, 851, 852, 857, 859], "set": [3, 12, 14, 20, 27, 28, 30, 33, 41, 42, 43, 44, 45, 48, 53, 54, 57, 58, 63, 65, 66, 70, 76, 77, 80, 81, 86, 88, 89, 111, 114, 121, 141, 143, 177, 178, 179, 180, 181, 192, 205, 206, 207, 208, 209, 224, 324, 336, 352, 354, 359, 365, 368, 369, 371, 372, 373, 374, 383, 394, 415, 419, 423, 427, 430, 448, 453, 454, 470, 480, 483, 490, 518, 523, 524, 525, 526, 527, 528, 530, 534, 541, 553, 558, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 599, 622, 624, 625, 626, 627, 628, 630, 632, 633, 637, 639, 640, 642, 643, 655, 662, 664, 674, 676, 679, 682, 683, 714, 721, 724, 725, 726, 731, 732, 738, 740, 741, 745, 747, 748, 749, 752, 760, 762, 769, 772, 773, 774, 775, 780, 787, 788, 790, 792, 797, 802, 805, 806, 808, 809, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 848, 855, 858, 859, 860, 864, 865, 866, 867, 868, 870, 873], "our": [3, 7, 9, 10, 12, 14, 16, 19, 20, 22, 23, 24, 27, 28, 29, 30, 32, 33, 34, 39, 41, 42, 45, 68, 91, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 774, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 827, 829, 830, 831, 834, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 855, 856, 859, 871, 872, 874], "post": [3, 5, 41, 61, 84, 638, 733, 815, 830, 835, 850, 852], "process": [3, 5, 6, 22, 27, 28, 32, 41, 203, 215, 627, 809, 815, 816, 822, 823, 824, 830, 831, 833, 835, 837, 838, 839, 840, 843, 845, 850, 856, 857, 859, 864, 865, 866, 869, 870, 872, 873], "11": [3, 5, 6, 8, 9, 18, 20, 22, 23, 24, 25, 39, 41, 42, 43, 46, 52, 53, 54, 57, 58, 62, 66, 75, 76, 77, 80, 81, 83, 85, 89, 99, 219, 223, 226, 231, 241, 278, 279, 285, 349, 368, 371, 372, 374, 390, 391, 403, 408, 409, 413, 414, 418, 427, 463, 464, 466, 470, 475, 477, 495, 519, 520, 535, 541, 542, 548, 557, 573, 628, 630, 632, 633, 634, 635, 637, 639, 640, 641, 643, 646, 647, 655, 656, 667, 670, 671, 672, 673, 674, 678, 682, 683, 684, 685, 687, 689, 692, 699, 704, 705, 707, 709, 720, 722, 732, 735, 736, 737, 744, 745, 753, 754, 755, 762, 823, 824, 825, 827, 835], "st": [3, 4, 7, 772, 819, 838, 840], "perf_count": [3, 6, 7], "raw_logit": 3, "latenc": [3, 7], "nn": [3, 5, 6, 14, 25, 27, 28, 41, 45, 135, 625, 808, 833, 838, 843, 850, 860, 867], "axi": [3, 5, 10, 42, 43, 44, 47, 49, 52, 53, 54, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 72, 75, 76, 77, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 109, 113, 133, 134, 137, 209, 283, 288, 331, 332, 336, 337, 345, 352, 368, 371, 373, 374, 377, 381, 383, 393, 394, 400, 403, 405, 415, 416, 452, 457, 465, 466, 467, 470, 471, 472, 475, 480, 485, 486, 488, 489, 490, 492, 494, 495, 500, 501, 503, 511, 516, 519, 520, 521, 523, 524, 525, 526, 527, 528, 541, 548, 610, 622, 625, 627, 628, 630, 632, 633, 634, 635, 636, 639, 640, 641, 642, 643, 644, 654, 664, 667, 674, 687, 689, 690, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 739, 740, 741, 745, 747, 749, 750, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 784, 788, 789, 794, 823, 825, 827, 829, 832, 833, 836, 837, 840, 843, 845, 847, 850], "direct": [3, 53, 76, 337, 344, 348, 353, 357, 368, 371, 374, 405, 416, 471, 472, 486, 642, 752, 814, 820, 822, 837, 843, 849, 850, 862, 866, 867, 870], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 10, 12, 14, 20, 21, 22, 23, 27, 28, 33, 39, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 97, 98, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 204, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 317, 319, 320, 321, 322, 323, 324, 325, 331, 332, 333, 334, 335, 337, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 356, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 416, 417, 420, 421, 422, 423, 425, 426, 427, 430, 431, 432, 433, 434, 437, 438, 439, 440, 441, 442, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 460, 461, 463, 465, 468, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 536, 537, 541, 542, 543, 545, 548, 549, 552, 558, 565, 572, 573, 583, 592, 594, 606, 610, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 749, 750, 752, 753, 754, 755, 757, 759, 760, 762, 763, 764, 769, 772, 774, 787, 788, 791, 801, 806, 808, 816, 817, 823, 825, 826, 827, 828, 829, 830, 832, 836, 837, 838, 840, 841, 842, 845, 847, 848, 849, 850, 859, 860], "dtype": [3, 5, 8, 10, 14, 20, 22, 23, 24, 25, 39, 42, 49, 50, 53, 54, 57, 58, 62, 63, 66, 70, 72, 73, 75, 76, 77, 80, 81, 85, 86, 89, 98, 101, 102, 103, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 144, 145, 146, 147, 148, 149, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 204, 231, 235, 267, 268, 270, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 329, 334, 336, 352, 365, 368, 371, 372, 373, 374, 378, 383, 393, 403, 415, 416, 419, 442, 448, 453, 464, 488, 504, 505, 506, 507, 508, 518, 519, 520, 521, 524, 527, 528, 545, 546, 547, 549, 558, 567, 595, 625, 626, 627, 628, 630, 632, 633, 636, 639, 640, 642, 643, 644, 648, 655, 674, 690, 712, 713, 735, 736, 737, 740, 741, 742, 751, 752, 753, 754, 759, 761, 763, 764, 767, 769, 772, 774, 775, 787, 788, 789, 790, 791, 793, 808, 812, 819, 821, 825, 826, 827, 829, 830, 833, 834, 836, 837, 838, 840, 841, 845, 847, 860], "int32": [3, 39, 41, 50, 53, 54, 62, 63, 66, 73, 76, 77, 85, 86, 128, 133, 137, 139, 145, 148, 151, 153, 155, 157, 159, 162, 164, 165, 169, 172, 176, 180, 184, 186, 204, 231, 267, 268, 379, 383, 509, 519, 520, 521, 549, 558, 595, 625, 626, 627, 628, 630, 639, 640, 643, 735, 736, 737, 741, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 8, 10, 12, 14, 19, 20, 39, 41, 42, 43, 49, 50, 53, 54, 57, 72, 73, 76, 77, 80, 89, 134, 137, 139, 145, 146, 147, 151, 155, 156, 159, 160, 161, 162, 165, 168, 169, 171, 176, 179, 185, 235, 249, 276, 329, 342, 365, 368, 371, 372, 373, 383, 393, 403, 416, 442, 448, 453, 521, 558, 595, 625, 626, 628, 630, 632, 633, 636, 648, 650, 651, 654, 681, 683, 684, 690, 712, 713, 769, 772, 773, 808, 825, 827, 838, 840, 841, 860, 861], "As": [3, 5, 7, 9, 10, 12, 14, 20, 24, 25, 27, 28, 30, 33, 39, 40, 64, 68, 91, 633, 641, 681, 745, 746, 747, 748, 808, 812, 814, 815, 816, 817, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 833, 836, 837, 838, 839, 840, 843, 847, 848, 849, 851, 855, 859, 860, 861, 866, 871], "expect": [3, 5, 7, 9, 20, 24, 27, 28, 30, 43, 44, 46, 53, 58, 59, 76, 82, 175, 243, 287, 371, 373, 394, 416, 453, 532, 626, 628, 630, 632, 634, 657, 678, 692, 787, 788, 808, 815, 816, 819, 825, 826, 829, 831, 834, 836, 838, 840, 843, 851, 852, 857, 859, 860, 861], "ident": [3, 10, 25, 42, 44, 58, 70, 128, 197, 551, 577, 625, 627, 630, 633, 637, 671, 675, 727, 788, 823, 833, 834, 837, 838, 841, 843, 847, 848, 851, 853, 855, 857], "had": [3, 823, 824, 836, 841, 845, 866, 867], "anoth": [3, 18, 20, 21, 24, 25, 27, 28, 30, 31, 43, 44, 129, 149, 151, 625, 626, 808, 814, 815, 816, 821, 823, 825, 826, 829, 831, 833, 836, 837, 840, 845, 847, 850, 853, 856, 858, 859, 860, 866, 872], "postprocess": 3, "routin": [3, 824, 836, 837, 843, 851, 866], "feed": [3, 209, 627, 859, 866, 867], "other": [3, 6, 7, 9, 12, 14, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 50, 52, 53, 54, 60, 66, 70, 73, 75, 76, 77, 83, 89, 93, 98, 99, 122, 137, 149, 175, 236, 241, 243, 259, 268, 269, 333, 337, 368, 374, 464, 465, 473, 530, 531, 625, 626, 628, 630, 639, 643, 696, 706, 737, 760, 762, 769, 774, 808, 812, 814, 815, 816, 817, 819, 820, 823, 824, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 852, 853, 856, 859, 860, 862, 864, 865, 866, 872, 873], "carefulli": [3, 274, 628, 787, 837, 864, 869], "rewrit": 3, "easili": [3, 24, 27, 28, 39, 808, 815, 820, 824, 830, 837, 840, 843, 848, 849, 850, 851, 856, 866, 872, 873], "out": [3, 5, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 42, 45, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 150, 159, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 419, 420, 421, 422, 423, 424, 425, 428, 429, 431, 432, 433, 434, 435, 437, 438, 439, 440, 442, 446, 449, 450, 451, 452, 454, 455, 461, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 536, 537, 541, 542, 543, 545, 548, 549, 558, 568, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 780, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857, 859, 860, 866, 873], "quickest": 3, "particular": [3, 27, 28, 264, 628, 773, 815, 816, 819, 821, 824, 825, 827, 834, 836, 837, 840, 841, 862, 866, 872], "hardwar": [3, 41, 98, 102, 808, 815, 843, 856, 862, 864, 865, 866, 867, 868, 869, 870, 871, 872], "again": [3, 5, 21, 22, 30, 31, 32, 33, 633, 681, 816, 820, 821, 822, 823, 827, 829, 831, 836, 837, 840, 841, 843, 848, 850, 851, 856, 857, 871, 872], "speed": [3, 7, 9, 10, 27, 28, 41, 46, 54, 77, 565, 630, 840, 855, 869], "up": [3, 5, 7, 9, 10, 27, 53, 54, 76, 77, 371, 374, 394, 407, 464, 472, 553, 565, 630, 632, 655, 657, 808, 809, 812, 814, 816, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 855, 856, 857, 859, 867, 872, 873], "12": [3, 5, 7, 8, 10, 18, 20, 22, 23, 24, 25, 39, 41, 42, 43, 50, 52, 53, 54, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 84, 85, 89, 98, 99, 164, 219, 221, 226, 230, 231, 234, 236, 237, 238, 256, 269, 272, 279, 282, 289, 290, 313, 314, 345, 348, 349, 365, 368, 371, 374, 383, 390, 391, 392, 393, 395, 399, 400, 408, 409, 413, 414, 415, 416, 418, 463, 464, 466, 470, 475, 492, 495, 508, 519, 525, 526, 527, 537, 541, 542, 573, 579, 588, 602, 628, 630, 632, 633, 635, 637, 638, 639, 640, 641, 643, 646, 650, 655, 656, 667, 669, 671, 674, 678, 682, 684, 685, 687, 689, 699, 703, 705, 707, 709, 726, 733, 735, 736, 737, 744, 745, 753, 754, 755, 759, 761, 772, 815, 821, 823, 825, 827, 835], "repeat": [3, 4, 21, 31, 53, 54, 60, 76, 77, 83, 371, 374, 383, 400, 405, 469, 518, 543, 630, 635, 636, 708, 712, 713, 801, 816, 820, 821, 827, 828, 836, 840], "previou": [3, 10, 20, 21, 22, 24, 30, 31, 32, 34, 55, 76, 78, 183, 184, 185, 186, 187, 360, 370, 371, 417, 598, 600, 601, 602, 603, 605, 606, 608, 612, 617, 626, 630, 631, 787, 805, 815, 816, 819, 821, 824, 826, 832, 837, 840, 843, 850, 851, 869], "trace": [3, 4, 5, 7, 8, 9, 16, 17, 21, 24, 27, 30, 32, 33, 45, 54, 58, 70, 77, 81, 560, 561, 564, 575, 584, 599, 607, 630, 633, 769, 780, 790, 792, 806, 808, 819, 823, 825, 837, 842, 843, 845, 850, 851, 858, 859, 860, 867, 872], "befor": [3, 4, 5, 19, 20, 21, 22, 23, 29, 30, 31, 32, 33, 34, 41, 53, 57, 58, 60, 64, 66, 70, 76, 80, 81, 206, 209, 214, 371, 374, 383, 399, 404, 414, 418, 464, 471, 472, 473, 480, 519, 520, 627, 632, 633, 635, 636, 637, 641, 643, 645, 646, 647, 648, 650, 652, 654, 658, 659, 662, 673, 674, 690, 696, 711, 712, 726, 745, 746, 747, 748, 753, 754, 759, 761, 769, 788, 797, 801, 814, 815, 816, 819, 820, 822, 825, 826, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 845, 848, 851, 859, 860, 866], "13": [3, 5, 7, 8, 18, 22, 23, 24, 25, 39, 41, 43, 47, 52, 53, 57, 58, 62, 66, 75, 76, 77, 78, 80, 83, 85, 89, 98, 114, 164, 194, 219, 234, 243, 254, 274, 283, 345, 352, 359, 368, 371, 374, 392, 393, 403, 414, 418, 463, 464, 466, 470, 475, 495, 508, 519, 520, 536, 537, 541, 542, 557, 579, 588, 611, 622, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 640, 641, 643, 646, 647, 655, 656, 667, 671, 678, 682, 684, 687, 709, 713, 726, 735, 736, 737, 744, 745, 753, 754, 755, 823, 825, 827, 837], "026875037000081647": 3, "14": [3, 5, 7, 8, 23, 39, 41, 42, 43, 50, 52, 53, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 85, 148, 161, 164, 217, 222, 224, 231, 235, 261, 265, 269, 275, 282, 290, 341, 371, 372, 374, 383, 390, 391, 392, 393, 403, 408, 410, 413, 414, 415, 418, 422, 428, 429, 464, 466, 470, 475, 495, 519, 588, 611, 626, 628, 630, 631, 632, 633, 635, 637, 641, 643, 646, 647, 649, 651, 653, 655, 667, 669, 671, 678, 685, 687, 689, 709, 726, 735, 736, 737, 745, 754, 755, 823, 827, 840], "overrid": [3, 5, 33, 42, 49, 53, 72, 76, 137, 383, 518, 625, 820, 822], "behavior": [3, 5, 53, 64, 236, 243, 269, 278, 384, 529, 576, 600, 628, 630, 641, 745, 746, 747, 748, 814, 822, 823, 824, 825, 836, 837, 838, 840, 843, 845, 851, 863], "prealloc": [3, 5], "75": [3, 5, 39, 52, 53, 75, 76, 77, 80, 85, 115, 133, 222, 224, 236, 238, 249, 311, 344, 345, 365, 368, 414, 528, 543, 556, 588, 622, 625, 628, 630, 633, 637, 639, 646, 672, 678, 722, 737], "memori": [3, 5, 6, 9, 19, 22, 23, 24, 25, 49, 53, 60, 72, 76, 83, 124, 135, 191, 203, 209, 211, 215, 374, 383, 458, 459, 466, 468, 470, 471, 472, 479, 495, 525, 571, 576, 600, 625, 627, 630, 632, 635, 657, 658, 698, 699, 700, 702, 704, 705, 707, 709, 802, 806, 824, 825, 826, 836, 837, 843, 845, 851, 859, 866, 868, 869, 870], "temporari": [3, 5, 585, 608, 630, 802, 825, 842], "fix": [3, 5, 43, 53, 76, 93, 94, 368, 371, 372, 417, 447, 632, 659, 808, 812, 815, 816, 819, 825, 831, 840, 841], "until": [3, 5, 802, 816, 836, 845, 851, 856, 859, 873], "handl": [3, 5, 39, 41, 47, 51, 52, 53, 69, 70, 74, 75, 76, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 189, 190, 191, 192, 193, 197, 202, 203, 211, 215, 221, 233, 258, 260, 274, 280, 281, 286, 287, 291, 296, 297, 299, 363, 374, 463, 489, 622, 627, 628, 633, 643, 687, 759, 761, 784, 792, 809, 811, 818, 823, 824, 825, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 843, 849, 863, 873], "o": [3, 5, 40, 41, 42, 43, 45, 568, 630, 632, 659, 808, 815, 818, 824, 845, 852], "environ": [3, 5, 6, 9, 22, 23, 24, 25, 42, 45, 808, 809, 816, 852, 866, 868], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 6, 10, 22, 23, 25, 810, 813, 815, 822, 864, 868, 870], "jit": [3, 7, 9, 27, 30, 845, 851, 859, 866], "img_jax": [3, 5], "device_put": [3, 7], "15": [3, 5, 6, 8, 9, 10, 23, 39, 41, 42, 43, 46, 52, 53, 54, 58, 62, 66, 72, 73, 75, 76, 77, 80, 81, 83, 85, 89, 99, 132, 161, 219, 226, 230, 236, 238, 247, 254, 255, 260, 261, 269, 278, 279, 280, 345, 359, 368, 369, 371, 372, 374, 383, 390, 391, 408, 410, 413, 414, 418, 424, 466, 470, 475, 495, 519, 537, 541, 542, 545, 556, 557, 582, 588, 605, 625, 626, 628, 630, 632, 633, 635, 637, 639, 640, 641, 643, 646, 656, 667, 670, 671, 672, 678, 684, 685, 703, 709, 714, 735, 736, 743, 745, 754, 755, 769, 811, 815, 824, 827, 835, 869], "warm": 3, "_": [3, 6, 7, 9, 10, 27, 40, 41, 52, 53, 70, 75, 76, 78, 94, 151, 239, 241, 249, 250, 265, 331, 332, 368, 371, 374, 383, 415, 444, 447, 488, 518, 541, 611, 612, 626, 628, 630, 631, 633, 635, 637, 643, 681, 682, 684, 710, 721, 760, 816, 824, 825, 828, 836, 840, 848], "rang": [3, 6, 10, 27, 28, 39, 40, 41, 43, 49, 53, 66, 72, 76, 122, 133, 134, 283, 295, 303, 315, 363, 365, 372, 374, 383, 426, 438, 473, 481, 483, 488, 493, 519, 520, 521, 541, 610, 625, 628, 630, 641, 643, 745, 753, 754, 759, 761, 772, 774, 775, 787, 808, 811, 814, 825, 829, 833, 840, 845, 848, 849, 850, 866, 872], "16": [3, 5, 6, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 54, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 85, 98, 99, 164, 230, 259, 279, 286, 342, 345, 349, 368, 371, 374, 383, 390, 391, 393, 399, 403, 404, 408, 409, 414, 418, 453, 470, 519, 525, 542, 545, 567, 588, 589, 621, 626, 628, 630, 631, 632, 633, 635, 637, 639, 640, 643, 654, 656, 663, 667, 670, 671, 678, 680, 684, 709, 722, 735, 736, 737, 744, 754, 755, 772, 775, 808, 816, 825, 827, 848], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 53, 69, 70, 106, 371, 373, 407, 412, 452, 453, 641, 745, 747, 774, 784, 815, 816, 819, 827, 845], "note": [3, 5, 10, 23, 27, 28, 33, 42, 43, 44, 53, 54, 58, 60, 64, 76, 81, 83, 93, 130, 143, 175, 243, 278, 279, 286, 324, 325, 345, 365, 368, 371, 372, 374, 394, 425, 430, 440, 441, 447, 470, 488, 626, 628, 632, 633, 635, 641, 643, 659, 668, 669, 680, 681, 683, 702, 706, 746, 748, 757, 788, 802, 806, 812, 814, 815, 816, 820, 825, 827, 828, 831, 836, 837, 838, 840, 841, 843], "were": [3, 5, 44, 70, 73, 164, 168, 169, 243, 628, 632, 659, 814, 815, 816, 825, 829, 831, 835, 836, 838, 840, 841, 843, 845, 859, 866, 867, 872], "function": [3, 6, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 161, 162, 163, 164, 167, 168, 169, 171, 175, 176, 193, 195, 196, 205, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 380, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 571, 572, 573, 576, 577, 580, 582, 584, 587, 588, 589, 590, 591, 593, 595, 596, 597, 603, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 718, 720, 721, 722, 724, 725, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 770, 772, 773, 774, 775, 780, 784, 787, 790, 797, 798, 804, 806, 808, 812, 815, 816, 818, 819, 820, 821, 822, 824, 827, 828, 830, 836, 839, 844, 846, 847, 848, 849, 853, 855, 859, 861, 863, 864, 865, 866, 867, 872, 873], "calcul": [3, 10, 41, 52, 53, 54, 59, 66, 70, 75, 76, 77, 81, 82, 89, 99, 216, 217, 218, 219, 220, 221, 222, 223, 224, 233, 234, 236, 239, 240, 241, 257, 258, 259, 260, 261, 262, 267, 268, 269, 274, 281, 282, 283, 285, 286, 287, 293, 303, 331, 332, 345, 355, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 426, 448, 453, 480, 497, 499, 525, 565, 628, 630, 633, 634, 643, 670, 678, 681, 692, 693, 694, 756, 757, 758, 759, 760, 761, 762, 772, 774, 787, 788, 791, 814, 828, 845, 856, 859], "dog": 3, "18": [3, 9, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 62, 75, 76, 77, 80, 81, 85, 89, 109, 231, 236, 278, 282, 291, 292, 345, 363, 368, 371, 374, 393, 399, 403, 404, 408, 414, 418, 470, 587, 622, 628, 633, 639, 643, 650, 667, 673, 678, 685, 735, 736, 737, 754, 755, 759, 823, 825, 827], "19": [3, 9, 22, 23, 24, 25, 39, 41, 42, 43, 46, 52, 53, 62, 75, 76, 80, 81, 85, 222, 231, 259, 269, 286, 371, 372, 374, 383, 392, 393, 404, 408, 414, 418, 424, 429, 470, 519, 628, 633, 637, 639, 642, 667, 674, 687, 725, 735, 736, 737, 752, 827], "006431100999861883": 3, "258": [3, 632, 647, 649], "104": [3, 66, 633, 643, 678, 755], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 824], "predict": [3, 5, 8, 10, 41, 42, 43, 44, 53, 59, 76, 82, 373, 449, 452, 455, 634, 692, 693, 694, 808, 825], "down": [3, 20, 30, 44, 53, 76, 371, 374, 407, 472, 815, 840, 853, 866, 872], "itself": [3, 22, 32, 52, 93, 270, 531, 597, 628, 630, 637, 726, 802, 812, 815, 816, 819, 822, 823, 824, 825, 826, 829, 830, 831, 836, 837, 849, 851, 855, 859, 865, 866, 867, 872], "version": [3, 6, 10, 24, 25, 30, 41, 42, 43, 46, 47, 53, 76, 93, 106, 287, 336, 338, 368, 383, 523, 528, 610, 628, 630, 633, 669, 670, 769, 797, 798, 808, 815, 816, 822, 824, 825, 828, 836, 838, 845, 855, 856, 857, 860, 872, 873], "return": [3, 5, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 779, 780, 785, 787, 788, 790, 792, 797, 798, 801, 802, 803, 804, 805, 806, 808, 815, 816, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 859, 860, 861, 867], "20": [3, 6, 10, 14, 39, 41, 42, 43, 46, 52, 53, 54, 57, 62, 66, 75, 76, 77, 80, 81, 85, 89, 231, 235, 239, 275, 279, 283, 300, 345, 347, 349, 368, 371, 374, 390, 392, 408, 414, 418, 463, 485, 541, 548, 549, 551, 573, 577, 588, 628, 630, 633, 639, 640, 643, 646, 647, 658, 667, 672, 674, 678, 685, 735, 743, 744, 753, 754, 755, 759, 761, 808, 824, 843, 847], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 856], "sourc": [3, 6, 8, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 34, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 770, 772, 773, 774, 776, 777, 778, 779, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 814, 815, 816, 819, 820, 822, 823, 824, 837, 839, 855, 856, 857, 858, 860, 861, 865, 866, 867, 868, 869], "21": [3, 10, 39, 41, 43, 46, 52, 53, 54, 62, 72, 75, 76, 80, 81, 85, 89, 98, 134, 164, 219, 222, 224, 230, 254, 269, 300, 352, 371, 372, 373, 374, 383, 390, 393, 403, 408, 414, 416, 418, 422, 448, 463, 519, 573, 625, 626, 628, 630, 633, 637, 643, 667, 678, 682, 720, 735, 736, 753, 754, 755, 829, 835], "modul": [3, 5, 7, 9, 12, 14, 16, 17, 18, 22, 23, 24, 25, 27, 28, 29, 33, 39, 40, 41, 43, 44, 45, 68, 70, 91, 99, 364, 366, 367, 375, 376, 380, 569, 630, 644, 765, 769, 784, 785, 786, 788, 789, 791, 793, 796, 797, 806, 808, 810, 815, 820, 821, 822, 829, 833, 836, 837, 839, 840, 845, 846, 848, 850, 851, 857, 859, 861, 866, 867, 869], "def": [3, 5, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 45, 52, 75, 118, 220, 535, 624, 630, 636, 637, 712, 713, 720, 801, 808, 812, 814, 815, 819, 820, 823, 825, 826, 827, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 859, 860, 861], "__init__": [3, 5, 12, 14, 27, 28, 39, 40, 41, 43, 70, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 770, 777, 778, 779, 784, 787, 788, 789, 790, 791, 792, 793, 796, 797, 801, 803, 806, 808, 814, 820, 821, 825, 829, 837, 841, 845, 847, 848, 849, 850, 860], "self": [3, 5, 12, 14, 27, 28, 39, 40, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 632, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 792, 801, 808, 816, 820, 823, 829, 837, 838, 845, 847, 848, 849, 850, 860], "num_class": [3, 12, 14, 27, 28, 41, 43, 45, 808, 850, 860], "1000": [3, 6, 7, 8, 12, 27, 28, 41, 42, 43, 44, 46, 49, 72, 134, 625, 808, 848, 860], "v": [3, 4, 5, 16, 17, 20, 27, 28, 30, 33, 34, 39, 42, 43, 53, 57, 65, 72, 76, 80, 88, 134, 234, 239, 241, 282, 372, 374, 426, 436, 443, 444, 469, 628, 632, 636, 642, 659, 662, 712, 713, 751, 769, 788, 789, 790, 791, 792, 793, 808, 810, 815, 816, 818, 822, 830, 845, 848, 849, 850, 874], "none": [3, 5, 7, 9, 10, 27, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 98, 99, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 166, 167, 168, 169, 171, 173, 176, 188, 191, 192, 204, 205, 206, 207, 208, 209, 210, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 514, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 574, 575, 576, 578, 579, 580, 581, 583, 584, 585, 587, 588, 589, 591, 593, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 793, 796, 797, 800, 802, 806, 808, 812, 815, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 859, 860, 861], "_build": [3, 5, 789, 790, 808], "kwarg": [3, 4, 5, 9, 10, 27, 41, 45, 48, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 99, 102, 199, 374, 480, 568, 597, 625, 627, 630, 767, 769, 784, 785, 788, 789, 790, 797, 806, 808, 820, 825, 826, 829, 833, 836, 837, 843, 845, 849, 859, 860, 861], "featur": [3, 9, 10, 12, 14, 16, 18, 27, 28, 41, 45, 53, 76, 371, 385, 387, 388, 395, 396, 397, 787, 788, 806, 808, 814, 815, 816, 820, 821, 824, 825, 832, 841, 843, 848, 851, 860, 866, 867, 868, 872], "sequenti": [3, 5, 8, 25, 27, 28, 43, 808, 822, 823, 849, 860], "conv2d": [3, 5, 8, 25, 27, 28, 43, 46, 57, 80, 632, 649, 788, 808], "64": [3, 5, 8, 39, 41, 42, 43, 46, 52, 53, 57, 75, 76, 77, 80, 81, 85, 89, 99, 160, 230, 240, 274, 283, 284, 342, 368, 371, 393, 403, 541, 542, 589, 617, 626, 628, 630, 631, 632, 633, 637, 643, 647, 649, 651, 653, 654, 675, 678, 688, 722, 726, 736, 755, 759, 808, 815, 825, 848, 849, 863, 871], "2": [3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 145, 148, 149, 150, 151, 155, 159, 161, 169, 171, 176, 192, 193, 194, 197, 200, 202, 204, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 315, 316, 317, 324, 326, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 387, 390, 391, 392, 393, 394, 395, 396, 398, 399, 400, 403, 404, 405, 408, 409, 410, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 437, 439, 442, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 500, 501, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 593, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 775, 784, 787, 788, 797, 801, 802, 806, 808, 812, 815, 816, 819, 821, 822, 823, 824, 825, 827, 829, 830, 832, 833, 835, 836, 837, 838, 840, 844, 845, 847, 848, 849, 850, 851, 859, 860, 861, 872, 873], "data_format": [3, 43, 53, 57, 76, 80, 371, 377, 386, 390, 391, 392, 395, 396, 397, 408, 409, 410, 411, 413, 497, 498, 499, 502, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 772, 788, 791, 808], "nchw": [3, 43, 53, 57, 76, 80, 371, 377, 386, 391, 396, 409, 413, 502, 632, 645, 648, 649, 652, 653, 654, 788, 808], "relu": [3, 5, 8, 25, 27, 28, 39, 46, 47, 53, 68, 69, 76, 108, 298, 299, 307, 363, 622, 784, 808, 838, 848, 849], "maxpool2d": [3, 5, 8, 41, 788, 808], "192": [3, 43, 772, 801], "384": [3, 78, 611, 631, 637, 714], "avgpool": [3, 8], "adaptiveavgpool2d": [3, 8, 788], "6": [3, 7, 8, 9, 10, 12, 20, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 65, 66, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 94, 98, 99, 106, 108, 113, 118, 123, 124, 131, 132, 135, 136, 139, 145, 149, 150, 151, 159, 161, 169, 215, 216, 218, 219, 221, 222, 223, 224, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 259, 260, 261, 262, 264, 266, 267, 268, 269, 271, 272, 273, 275, 276, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 290, 292, 293, 295, 297, 299, 301, 302, 303, 305, 306, 307, 308, 309, 315, 326, 331, 332, 334, 336, 345, 346, 348, 349, 350, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 379, 381, 383, 393, 395, 398, 399, 403, 404, 408, 414, 415, 416, 418, 421, 424, 427, 428, 432, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 464, 466, 470, 471, 475, 476, 479, 480, 485, 486, 488, 489, 492, 495, 496, 506, 508, 509, 511, 516, 518, 519, 520, 521, 523, 525, 527, 528, 534, 536, 537, 540, 541, 542, 548, 549, 556, 557, 558, 573, 587, 588, 589, 590, 591, 593, 597, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 664, 665, 666, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 714, 715, 725, 726, 732, 733, 734, 735, 736, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 772, 787, 808, 812, 815, 819, 821, 823, 824, 825, 827, 830, 835, 840, 843, 845, 847, 848, 849], "classifi": [3, 10, 12, 14, 27, 28, 41, 43, 44, 808, 814, 859, 860], "prob": [3, 43, 53, 57, 76, 80, 85, 371, 378, 395, 396, 397, 504, 632, 639, 655, 734, 788, 808], "linear": [3, 8, 14, 26, 27, 28, 39, 40, 41, 43, 46, 53, 54, 57, 69, 76, 77, 80, 106, 108, 110, 111, 114, 291, 295, 299, 301, 302, 303, 307, 349, 363, 368, 371, 374, 383, 407, 442, 480, 528, 545, 568, 622, 630, 632, 637, 659, 682, 721, 772, 774, 775, 787, 788, 808, 823, 828, 833, 834, 836, 837, 840, 843, 845, 848, 849, 850, 860, 864, 865, 866, 869], "4096": 3, "_forward": [3, 5, 7, 9, 27, 28, 39, 40, 43, 808, 828, 845, 848, 849], "x": [3, 5, 6, 10, 12, 14, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 168, 169, 171, 176, 192, 193, 195, 197, 202, 203, 204, 208, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 270, 271, 273, 274, 275, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 318, 324, 325, 329, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 381, 382, 383, 384, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 418, 420, 422, 423, 425, 427, 429, 430, 431, 432, 433, 436, 437, 438, 439, 440, 441, 442, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 461, 462, 464, 465, 467, 468, 470, 473, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 577, 578, 579, 582, 585, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 609, 610, 612, 613, 614, 616, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 717, 720, 721, 722, 723, 724, 725, 726, 731, 732, 733, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 788, 791, 794, 797, 801, 806, 808, 812, 814, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 859, 860, 861], "reshap": [3, 27, 28, 43, 44, 53, 57, 58, 60, 70, 76, 80, 81, 83, 356, 368, 371, 372, 374, 390, 391, 392, 395, 408, 409, 410, 413, 422, 439, 464, 470, 610, 630, 632, 633, 635, 648, 650, 654, 674, 690, 808, 836, 837, 840, 843, 845, 847, 850, 863], "bidirect": [4, 632, 657], "encod": [4, 12, 14, 27, 28, 41, 43, 54, 59, 77, 82, 545, 630, 634, 692, 808, 848, 856, 860], "mlm": 4, "support": [4, 6, 9, 10, 18, 19, 22, 23, 24, 25, 27, 30, 42, 51, 53, 54, 58, 74, 76, 77, 81, 143, 162, 166, 188, 195, 210, 219, 236, 243, 264, 265, 269, 279, 298, 324, 345, 363, 365, 368, 372, 374, 407, 425, 434, 488, 534, 546, 555, 558, 559, 576, 591, 625, 626, 627, 628, 630, 632, 633, 656, 668, 669, 670, 674, 683, 690, 767, 773, 780, 792, 797, 798, 801, 806, 808, 810, 812, 814, 815, 816, 819, 820, 822, 826, 827, 828, 830, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 847, 848, 850, 852, 853, 855, 856, 857, 860, 863, 865, 866, 869, 871, 872, 873], "googl": [4, 22, 23, 24, 25, 41, 42, 43, 45, 824, 856], "type": [4, 7, 12, 14, 18, 24, 27, 28, 33, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 535, 536, 537, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 767, 769, 772, 773, 774, 775, 779, 780, 784, 787, 788, 789, 790, 794, 797, 801, 802, 803, 806, 808, 814, 815, 816, 818, 819, 820, 823, 826, 827, 828, 829, 832, 834, 836, 838, 840, 841, 843, 845, 847, 848, 859, 860, 861, 866, 867, 870], "choos": [4, 41, 43, 51, 63, 64, 74, 210, 236, 243, 264, 265, 269, 331, 332, 368, 374, 627, 628, 640, 641, 643, 744, 745, 746, 747, 748, 756, 757, 758, 760, 772, 808, 814, 815, 816, 834, 840, 846, 850, 859], "librari": [4, 7, 9, 16, 17, 23, 25, 39, 41, 51, 64, 74, 210, 241, 243, 259, 264, 265, 287, 331, 332, 368, 627, 628, 633, 641, 643, 669, 670, 745, 746, 747, 748, 756, 757, 758, 760, 806, 808, 814, 815, 819, 825, 850, 851, 855, 856, 857, 859, 862, 863, 864, 866, 870, 873], "pretrain": [4, 7, 12, 13, 14, 27, 28, 46, 808, 860], "save": [4, 8, 41, 53, 70, 76, 383, 525, 585, 608, 627, 630, 644, 790, 806, 815, 824, 831, 840, 851, 857, 865], "some": [4, 5, 6, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 32, 33, 39, 43, 44, 70, 78, 241, 243, 259, 371, 395, 396, 397, 611, 612, 615, 617, 618, 619, 627, 628, 631, 637, 725, 788, 808, 812, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 847, 848, 849, 851, 852, 853, 856, 857, 859, 860, 862, 863, 865, 866, 867, 872, 873], "mohame54": 4, "automodel": [4, 9, 27], "autotoken": 4, "load": [4, 6, 7, 9, 24, 27, 41, 42, 43, 44, 45, 46, 70, 372, 443, 644, 790, 808, 840, 851, 865, 872], "token": [4, 43, 817], "bert_bas": 4, "from_pretrain": [4, 9, 27, 44, 859, 860], "base": [4, 10, 41, 44, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 103, 134, 143, 175, 239, 240, 257, 258, 259, 260, 274, 315, 324, 326, 333, 336, 342, 349, 365, 368, 371, 372, 373, 381, 414, 418, 443, 448, 510, 578, 589, 601, 625, 626, 628, 630, 633, 635, 641, 643, 674, 698, 745, 746, 747, 748, 755, 770, 773, 774, 777, 778, 779, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 796, 797, 802, 803, 806, 808, 815, 816, 817, 819, 823, 824, 825, 829, 832, 834, 835, 836, 838, 839, 840, 841, 842, 843, 845, 866, 871, 873, 874], "uncas": 4, "eval": [4, 5, 8, 14, 22, 23, 24, 25, 632, 657, 790], "evalu": [4, 52, 53, 70, 75, 76, 239, 241, 257, 258, 259, 260, 264, 271, 273, 280, 284, 318, 350, 361, 362, 365, 370, 372, 373, 374, 439, 448, 453, 477, 621, 628, 631, 637, 644, 724, 725, 763, 764, 789, 790, 816, 823, 825, 833, 834, 866], "bert_token": 4, "sampl": [4, 7, 9, 12, 14, 24, 27, 28, 42, 49, 52, 53, 62, 66, 72, 75, 76, 85, 89, 133, 134, 288, 315, 365, 371, 373, 374, 378, 395, 396, 397, 407, 417, 419, 448, 453, 483, 504, 505, 506, 507, 508, 625, 628, 639, 643, 734, 735, 736, 737, 760, 762, 788, 838, 840], "test": [4, 19, 20, 22, 23, 29, 30, 32, 33, 34, 42, 43, 52, 54, 67, 75, 77, 90, 121, 167, 171, 250, 251, 252, 253, 276, 371, 395, 396, 397, 565, 624, 626, 628, 630, 644, 763, 764, 767, 770, 773, 802, 808, 810, 812, 813, 818, 822, 825, 827, 829, 831, 834, 837, 839, 841, 851, 852, 857, 859, 860, 861, 866], "did": [4, 41, 814, 822, 850, 856, 872], "realli": [4, 39, 815, 823, 830, 851, 859, 871, 872], "like": [4, 7, 9, 19, 20, 21, 27, 29, 30, 31, 32, 33, 34, 44, 46, 49, 52, 53, 60, 72, 75, 76, 80, 83, 88, 134, 152, 175, 220, 240, 246, 249, 262, 280, 337, 342, 354, 368, 371, 372, 373, 374, 381, 383, 414, 416, 425, 450, 459, 460, 469, 470, 510, 511, 528, 625, 626, 628, 633, 635, 639, 642, 668, 702, 737, 750, 802, 808, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 856, 859, 860, 866, 871], "input": [4, 5, 6, 9, 12, 14, 24, 25, 27, 32, 33, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 160, 161, 164, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 190, 192, 193, 206, 209, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 437, 439, 440, 441, 442, 443, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 463, 464, 465, 466, 468, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 572, 573, 574, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 598, 603, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 773, 780, 784, 787, 788, 789, 790, 791, 801, 802, 806, 819, 820, 821, 823, 825, 826, 827, 828, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 859, 860, 867, 870], "pad": [4, 8, 41, 43, 53, 57, 60, 76, 80, 83, 94, 96, 371, 374, 390, 391, 392, 393, 394, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 545, 630, 632, 635, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 697, 710, 774, 788, 808], "longest": 4, "return_tensor": [4, 9, 27, 44, 859, 860], "pt": [4, 9, 27, 859], "max_length": [4, 70], "512": [4, 5, 8, 41, 43, 81, 632, 647, 688, 808], "input_id": 4, "101": [4, 10, 42, 632, 633, 637, 656, 672, 720], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 10, 53, 76, 85, 393, 735], "token_type_id": 4, "attention_mask": [4, 57, 80, 632, 659], "pooler": 4, "compar": [4, 6, 7, 9, 27, 40, 44, 46, 53, 54, 64, 65, 66, 70, 76, 77, 88, 89, 330, 347, 368, 383, 526, 530, 533, 630, 632, 641, 642, 643, 657, 745, 746, 747, 748, 749, 752, 758, 769, 808, 821, 827, 829, 838, 840, 843, 848, 862, 864, 866, 872, 873], "no_grad": [4, 41, 859], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 7, 40, 43, 49, 53, 54, 57, 58, 62, 72, 75, 76, 80, 81, 85, 93, 94, 118, 128, 141, 142, 143, 263, 309, 324, 325, 365, 372, 374, 378, 381, 383, 423, 438, 442, 444, 446, 486, 490, 504, 505, 506, 507, 508, 511, 521, 533, 624, 625, 630, 632, 633, 637, 639, 640, 659, 662, 666, 673, 674, 680, 682, 683, 684, 687, 722, 735, 736, 737, 743, 808, 818, 819, 837, 838, 845, 859, 862, 866], "ivy_output": [4, 44], "logits_clos": 4, "allclos": [4, 6, 7, 9, 12, 14, 27, 44, 46, 53, 76, 368], "detach": [4, 6, 7, 9, 12, 14, 27, 835], "rtol": [4, 12, 14, 53, 58, 76, 81, 330, 347, 368, 633, 676, 679, 767, 769, 812, 830, 838], "005": [4, 8, 53, 76, 330, 347, 368, 449], "atol": [4, 6, 7, 9, 27, 53, 58, 76, 81, 330, 347, 368, 633, 676, 767, 769, 812, 830, 838], "equal": [4, 49, 50, 52, 53, 54, 58, 59, 60, 62, 64, 65, 66, 70, 73, 75, 76, 77, 81, 82, 83, 85, 88, 94, 98, 99, 128, 130, 131, 132, 138, 139, 148, 228, 230, 234, 239, 241, 250, 251, 272, 274, 279, 282, 283, 287, 326, 327, 328, 330, 347, 365, 368, 371, 372, 374, 377, 383, 394, 415, 442, 466, 475, 488, 492, 495, 500, 501, 503, 521, 530, 533, 610, 625, 626, 628, 630, 633, 634, 635, 639, 640, 641, 642, 643, 667, 675, 676, 679, 681, 687, 692, 695, 697, 702, 704, 710, 737, 743, 745, 746, 747, 748, 749, 752, 757, 759, 760, 761, 762, 780, 787, 788, 822, 823, 825, 827, 829, 838, 840, 863], "els": [4, 5, 7, 10, 42, 43, 45, 46, 53, 54, 62, 75, 76, 85, 154, 155, 156, 157, 158, 170, 276, 280, 371, 372, 378, 417, 430, 441, 445, 447, 505, 540, 544, 626, 628, 630, 632, 637, 639, 658, 724, 727, 735, 736, 737, 767, 801, 802, 808, 814, 815, 816, 819, 821, 825, 826, 829, 833, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 867], "768": 4, "fn": [4, 44, 46, 53, 70, 73, 76, 102, 162, 163, 195, 196, 199, 374, 457, 531, 546, 547, 597, 626, 627, 630, 637, 720, 721, 722, 724, 725, 726, 767, 769, 794, 797, 803, 804, 806, 826, 829, 836, 837, 845, 859], "finish": [4, 16, 27, 28, 39, 42, 808, 809, 814, 815, 818], "2f": [4, 7], "sec": 4, "89": [4, 10, 39, 52, 62, 73, 75, 76, 85, 99, 164, 231, 626, 633, 643, 685, 736, 737, 761], "43": [4, 10, 39, 41, 43, 53, 76, 85, 99, 230, 371, 372, 383, 392, 424, 519, 628, 639, 640, 736, 737, 744], "procedur": [4, 822, 824, 827, 838], "60": [4, 39, 43, 52, 66, 75, 77, 85, 89, 220, 254, 374, 485, 549, 557, 573, 588, 610, 628, 630, 633, 637, 643, 678, 717, 735, 753, 755, 759, 802, 824], "big": [4, 787, 809, 851, 866], "jnp": [4, 19, 24, 27, 28, 29, 30, 33, 39, 41, 45, 808, 825, 826, 829, 832, 836, 841, 845, 850, 860, 861], "config": [4, 5, 7, 9, 10, 21, 24, 27, 28, 41, 42, 44, 70, 637, 727, 808, 815, 819, 822, 824, 831, 838, 848, 859, 867], "jax_enable_x64": [4, 5, 7, 9, 10, 21, 24, 27, 28, 808], "ref": [4, 5, 7, 9, 77, 81, 255, 269, 272, 278, 285, 628, 635, 706, 815, 836], "initi": [4, 27, 28, 44, 53, 57, 66, 70, 76, 80, 89, 99, 372, 383, 430, 441, 447, 526, 527, 632, 643, 657, 658, 758, 785, 788, 789, 790, 792, 793, 806, 808, 811, 816, 817, 821, 825, 826, 830, 838, 840, 845, 856, 859, 860, 861, 866, 872, 873], "fast": [4, 22, 32, 53, 371, 394, 866], "valu": [4, 10, 39, 40, 42, 43, 49, 50, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 89, 96, 98, 99, 101, 114, 118, 119, 121, 122, 128, 131, 132, 133, 134, 137, 143, 148, 165, 169, 175, 208, 209, 216, 217, 218, 219, 221, 223, 224, 225, 232, 236, 237, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 266, 267, 268, 269, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 298, 303, 306, 307, 309, 316, 318, 324, 326, 327, 328, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 344, 345, 347, 348, 350, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 382, 383, 394, 407, 414, 415, 417, 419, 423, 426, 430, 436, 441, 443, 445, 447, 448, 449, 451, 452, 453, 454, 463, 469, 474, 480, 485, 487, 488, 489, 490, 492, 494, 497, 499, 504, 505, 507, 508, 514, 516, 519, 520, 521, 524, 525, 526, 527, 528, 534, 536, 537, 538, 540, 545, 548, 549, 551, 556, 557, 558, 565, 572, 573, 577, 578, 579, 582, 591, 596, 601, 602, 605, 608, 609, 610, 611, 612, 613, 617, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 662, 666, 669, 670, 674, 675, 676, 679, 680, 681, 682, 683, 684, 687, 690, 695, 696, 697, 701, 702, 710, 711, 712, 716, 718, 719, 720, 721, 722, 727, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 767, 769, 772, 773, 774, 775, 777, 779, 784, 787, 788, 789, 790, 791, 792, 806, 812, 815, 816, 819, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 837, 840, 842, 843, 845, 847, 851, 859, 866, 867], "demo": [5, 7, 8, 9, 10, 28, 35, 39, 43, 808], "milesi": 5, "blob": [5, 41, 43], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 6, 9, 19, 22, 23, 24, 25, 41, 44, 53, 76, 194, 372, 443, 627, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 815, 822, 826, 829, 830, 833, 836, 840, 841, 845, 860, 864, 872, 873], "data_load": 5, "py": [5, 6, 8, 9, 19, 22, 23, 24, 25, 41, 43, 46, 89, 372, 443, 755, 797, 801, 808, 814, 815, 816, 819, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 837, 838, 840, 841, 845, 847, 849, 850], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 7, 41, 53, 57, 61, 76, 78, 80, 84, 108, 207, 208, 300, 301, 304, 315, 345, 363, 365, 368, 371, 372, 377, 389, 395, 396, 397, 405, 407, 412, 416, 432, 497, 498, 499, 618, 622, 627, 631, 632, 638, 655, 659, 662, 733, 772, 774, 775, 787, 788, 792, 802, 866, 868], "is_mask": 5, "w": [5, 6, 9, 42, 43, 53, 54, 55, 57, 70, 75, 76, 77, 78, 80, 93, 263, 345, 360, 368, 370, 371, 372, 377, 390, 391, 392, 394, 408, 409, 410, 411, 427, 447, 502, 517, 541, 543, 588, 611, 612, 613, 615, 617, 618, 619, 630, 631, 632, 637, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 720, 808, 818, 835, 845, 848, 849, 860, 874], "h": [5, 53, 54, 57, 76, 77, 80, 371, 377, 391, 392, 409, 410, 502, 541, 543, 630, 632, 637, 645, 648, 649, 650, 651, 652, 653, 654, 717, 721, 723, 726, 731, 809, 818, 822, 823, 824, 860, 862], "size": [5, 10, 12, 14, 19, 22, 23, 29, 30, 32, 33, 34, 41, 43, 46, 53, 54, 57, 58, 60, 62, 63, 70, 76, 77, 80, 81, 83, 85, 86, 93, 94, 98, 99, 130, 133, 207, 208, 209, 308, 311, 315, 326, 327, 328, 329, 336, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 385, 386, 387, 388, 389, 390, 391, 407, 408, 409, 411, 412, 418, 419, 426, 429, 441, 447, 448, 450, 464, 466, 478, 488, 490, 492, 498, 499, 502, 506, 511, 523, 524, 525, 526, 527, 528, 567, 572, 625, 627, 630, 632, 633, 635, 639, 640, 644, 657, 659, 662, 664, 667, 671, 674, 678, 680, 683, 689, 698, 703, 704, 705, 734, 740, 743, 763, 764, 772, 774, 775, 788, 802, 808, 836, 838, 840, 843, 848, 859, 861], "neww": 5, "newh": 5, "int": [5, 41, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 102, 109, 113, 114, 123, 124, 128, 130, 131, 132, 133, 134, 137, 141, 142, 143, 150, 157, 160, 161, 164, 171, 186, 200, 201, 202, 209, 210, 219, 226, 227, 228, 229, 230, 231, 243, 246, 270, 274, 279, 285, 288, 296, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 331, 332, 336, 337, 341, 345, 352, 354, 356, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 422, 426, 428, 429, 430, 431, 433, 438, 440, 441, 444, 445, 447, 452, 456, 457, 461, 465, 466, 469, 470, 473, 475, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 495, 498, 500, 501, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 541, 542, 543, 545, 548, 549, 552, 553, 567, 570, 572, 587, 588, 589, 590, 594, 610, 611, 612, 613, 614, 617, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 659, 664, 666, 667, 674, 675, 680, 685, 687, 688, 689, 690, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 720, 721, 723, 725, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 745, 747, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 784, 787, 788, 801, 802, 806, 823, 825, 826, 827, 829, 832, 833, 836, 838, 840, 841, 843, 845, 850, 859], "assert": [5, 10, 42, 44, 46, 70, 534, 630, 780, 812, 818, 819, 830, 833, 836, 837, 838, 840, 841, 847, 848], "too": [5, 53, 76, 219, 236, 243, 269, 374, 488, 628, 787, 814, 815, 816, 819, 825, 829, 841, 851], "small": [5, 10, 43, 52, 53, 58, 61, 75, 76, 81, 84, 236, 243, 269, 270, 330, 347, 368, 372, 373, 377, 436, 453, 497, 498, 499, 628, 633, 638, 676, 679, 681, 733, 787, 791, 808, 815, 824, 827, 833, 838, 843, 845, 849, 851, 859, 860, 867], "would": [5, 6, 9, 10, 19, 21, 22, 23, 24, 25, 27, 28, 31, 33, 35, 43, 49, 51, 53, 72, 74, 76, 83, 109, 113, 124, 210, 371, 374, 399, 404, 458, 459, 466, 468, 470, 471, 472, 479, 483, 495, 622, 627, 698, 699, 700, 702, 704, 705, 707, 709, 774, 784, 788, 808, 809, 812, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 827, 828, 830, 832, 834, 836, 837, 838, 840, 841, 843, 844, 845, 847, 849, 850, 851, 852, 856, 859, 866, 872], "pixel": [5, 41, 53, 76, 371, 407], "resampl": 5, "nearest": [5, 53, 76, 219, 236, 269, 279, 341, 368, 371, 383, 407, 528, 628, 843], "bicub": [5, 53, 76, 371, 407, 843], "zero": [5, 41, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 64, 66, 67, 72, 73, 75, 76, 78, 80, 81, 85, 86, 89, 90, 94, 108, 110, 111, 112, 114, 125, 126, 128, 130, 135, 137, 138, 139, 141, 142, 145, 148, 149, 217, 218, 219, 221, 222, 223, 224, 225, 228, 230, 231, 233, 234, 235, 236, 238, 241, 242, 243, 250, 251, 252, 253, 259, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 281, 282, 283, 284, 286, 287, 289, 290, 292, 294, 295, 299, 301, 307, 309, 318, 325, 331, 332, 335, 336, 337, 341, 349, 352, 354, 355, 356, 357, 363, 365, 368, 371, 372, 374, 381, 383, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 414, 415, 416, 417, 418, 419, 424, 426, 434, 439, 442, 464, 474, 479, 480, 491, 492, 510, 519, 520, 537, 541, 548, 568, 573, 611, 612, 617, 618, 619, 620, 622, 625, 626, 628, 630, 631, 632, 633, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 659, 662, 663, 665, 669, 670, 672, 673, 674, 675, 676, 677, 679, 681, 687, 689, 690, 697, 698, 699, 700, 702, 703, 710, 733, 735, 736, 737, 740, 741, 742, 743, 745, 746, 747, 748, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 787, 788, 792, 806, 820, 823, 825, 826, 827, 832, 834, 835, 838, 845, 848, 849, 857, 865], "int64": [5, 53, 62, 63, 65, 66, 73, 85, 86, 88, 89, 138, 151, 157, 160, 162, 164, 168, 169, 173, 180, 312, 365, 381, 383, 511, 519, 520, 625, 626, 640, 642, 643, 735, 740, 741, 742, 751, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "enumer": [5, 41, 43, 777, 808], "ndim": [5, 53, 58, 63, 76, 81, 86, 98, 102, 372, 374, 440, 441, 447, 458, 459, 460, 473, 481, 483, 493, 610, 630, 633, 640, 680, 683, 743, 823, 833, 840], "newaxi": [5, 623], "transpos": [5, 24, 27, 28, 45, 53, 57, 58, 70, 76, 80, 81, 98, 372, 420, 438, 440, 442, 517, 632, 633, 645, 647, 649, 651, 652, 653, 657, 673, 677, 679, 685, 774, 788, 808, 830, 836, 847, 850, 860], "255": [5, 24, 27, 28, 41, 42, 43, 45, 57, 76, 80, 230, 628, 654, 808, 860], "car": 5, "full_img": 5, "from_numpi": [5, 848], "fals": [5, 7, 8, 9, 14, 18, 19, 27, 30, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 124, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 161, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 192, 193, 198, 200, 203, 204, 206, 209, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 413, 414, 415, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 467, 468, 469, 470, 471, 472, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 510, 511, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 568, 572, 573, 574, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 598, 603, 604, 606, 607, 609, 612, 613, 615, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 654, 655, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 724, 725, 726, 727, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 784, 785, 788, 789, 790, 792, 794, 797, 801, 802, 803, 806, 808, 812, 815, 819, 821, 824, 825, 826, 827, 829, 830, 836, 837, 838, 840, 842, 843, 845, 848, 849, 850, 859, 860], "permut": [5, 8, 41, 60, 83, 98, 381, 510, 635, 700, 707, 860], "img_numpi": 5, "cpu": [5, 6, 7, 9, 22, 23, 24, 25, 27, 41, 42, 43, 45, 46, 49, 51, 53, 62, 72, 74, 76, 85, 122, 128, 131, 133, 134, 137, 138, 139, 145, 189, 190, 192, 193, 194, 195, 200, 203, 205, 207, 210, 211, 213, 215, 372, 378, 434, 504, 505, 507, 508, 625, 627, 639, 734, 735, 736, 737, 769, 787, 788, 789, 790, 791, 792, 793, 806, 808, 812, 815, 816, 822, 825, 826, 830, 837, 840, 851, 864, 866, 869, 871], "torch_unet": 5, "unet_carvana": 5, "when": [5, 6, 8, 9, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 42, 44, 48, 49, 50, 52, 53, 58, 59, 62, 63, 66, 70, 72, 73, 75, 76, 81, 82, 85, 86, 89, 99, 137, 148, 219, 236, 241, 243, 259, 269, 287, 288, 296, 331, 332, 363, 368, 371, 372, 373, 377, 378, 383, 394, 407, 419, 426, 430, 441, 447, 448, 453, 497, 499, 505, 525, 528, 558, 574, 582, 589, 625, 626, 628, 630, 632, 633, 634, 635, 637, 639, 640, 643, 645, 657, 659, 676, 681, 692, 693, 694, 702, 725, 726, 735, 736, 737, 740, 741, 743, 744, 756, 758, 760, 762, 772, 775, 787, 788, 789, 790, 791, 797, 806, 809, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 850, 851, 852, 855, 856, 859, 860, 864, 866, 869, 870, 871, 872], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 8, 14, 27, 28, 41, 43, 53, 76, 361, 370, 371, 394, 399, 400, 404, 405, 415, 416, 785, 787, 788, 790, 792, 806, 808, 815, 821, 828, 835, 840, 841, 843, 850, 851, 859, 866, 867], "effici": [5, 7, 8, 9, 16, 17, 19, 20, 27, 28, 29, 30, 53, 58, 76, 81, 372, 373, 436, 452, 581, 604, 630, 633, 676, 808, 815, 816, 823, 833, 834, 836, 840, 842, 845, 848, 851, 860, 866, 868, 869], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 49, 53, 54, 72, 76, 94, 123, 124, 136, 371, 372, 374, 383, 416, 441, 485, 524, 525, 595, 625, 630, 797, 801, 814, 820, 825, 826, 829, 832, 836, 837, 838, 841, 843, 845, 847, 850, 853], "isinst": [5, 10, 25, 27, 28, 829, 837, 840, 841, 849, 850], "len": [5, 10, 41, 43, 49, 53, 58, 76, 81, 135, 312, 321, 322, 365, 371, 372, 383, 405, 416, 428, 431, 441, 447, 528, 625, 633, 669, 688, 808, 823, 824, 829, 836, 837, 840, 847, 850, 859], "uint8": [5, 24, 27, 28, 43, 151, 158, 162, 173, 176, 181, 187, 626, 772, 773, 825, 840], "elif": [5, 7, 824, 829, 836, 837, 838], "bool": [5, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 125, 130, 131, 132, 133, 134, 135, 137, 139, 145, 148, 149, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 184, 188, 192, 193, 195, 196, 198, 200, 203, 204, 209, 210, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 325, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 355, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 390, 391, 392, 394, 395, 396, 397, 407, 408, 409, 410, 413, 415, 417, 419, 426, 430, 433, 434, 438, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 475, 479, 483, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 502, 503, 505, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 568, 572, 573, 577, 586, 587, 588, 589, 591, 593, 595, 596, 609, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 655, 656, 657, 658, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 677, 678, 680, 681, 682, 683, 687, 688, 690, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 774, 784, 788, 791, 792, 801, 802, 806, 825, 827, 829, 836, 837, 840, 841, 843, 845, 850, 859, 860], "argmax": [5, 42, 43, 44, 63, 86, 374, 485, 640, 808, 837, 859, 863], "fromarrai": [5, 24, 27, 28, 43], "interpol": [5, 41, 53, 76, 349, 368, 371, 383, 528, 632, 659, 843, 866], "mode": [5, 33, 45, 53, 58, 70, 76, 81, 92, 93, 94, 95, 96, 97, 206, 209, 214, 219, 236, 269, 323, 361, 362, 365, 370, 371, 372, 374, 402, 407, 415, 416, 428, 430, 438, 440, 441, 447, 463, 473, 478, 480, 481, 483, 485, 488, 489, 493, 574, 575, 576, 580, 581, 583, 584, 598, 599, 603, 604, 606, 607, 627, 628, 630, 632, 633, 657, 680, 780, 788, 789, 790, 805, 806, 815, 816, 818, 823, 826, 827, 830, 843, 851, 866, 869], "bilinear": [5, 53, 76, 371, 407, 843], "torch_mask": 5, "squeez": [5, 41, 60, 83, 635, 866], "torch_result": 5, "to_numpi": [5, 10, 27, 28, 39, 42, 43, 46, 54, 77, 630, 808, 830, 838, 848, 863], "give": [5, 19, 29, 39, 53, 57, 76, 80, 175, 361, 370, 371, 414, 418, 626, 632, 635, 645, 646, 647, 648, 650, 652, 654, 702, 787, 808, 815, 816, 818, 821, 824, 825, 827, 828, 830, 831, 832, 840, 857, 866, 870], "img_tf": 5, "math": [5, 44, 94, 286, 628, 825, 836, 837, 838, 850, 864], "ve": [5, 10, 16, 25, 27, 62, 85, 639, 734, 814, 815, 816, 817, 830, 840, 843, 844, 847, 853], "lot": [5, 824, 825, 834, 840, 851, 856, 857, 865], "far": [5, 27, 28, 637, 714, 725, 802, 826, 827, 846, 871, 872], "space": [5, 49, 52, 53, 54, 72, 75, 76, 77, 122, 133, 134, 288, 345, 368, 373, 450, 541, 545, 625, 628, 630, 843, 856], "del": [5, 824], "empty_cach": 5, "permute_dim": [5, 60, 83, 635, 830], "usr": [5, 7, 9, 41, 42, 43, 46, 815], "local": [5, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 32, 33, 34, 41, 42, 43, 46, 377, 502, 553, 630, 809, 815, 819, 822, 830, 833, 838, 840], "lib": [5, 10, 22, 23, 24, 25, 41, 42, 43, 46], "python3": [5, 8, 22, 23, 24, 25, 27, 41, 43, 46, 808, 815, 816], "dist": [5, 41, 42, 43, 46], "func_wrapp": [5, 47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 826, 837, 842], "242": [5, 76], "userwarn": [5, 6, 8, 9, 19, 22, 23, 24, 25, 46], "creat": [5, 6, 9, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 41, 42, 43, 45, 46, 49, 52, 53, 62, 70, 72, 75, 76, 81, 85, 94, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 145, 270, 308, 309, 319, 321, 323, 324, 365, 371, 372, 374, 378, 390, 391, 392, 413, 430, 441, 447, 456, 464, 480, 485, 504, 505, 506, 507, 508, 576, 593, 610, 621, 625, 628, 630, 631, 639, 678, 734, 735, 736, 737, 739, 769, 780, 785, 787, 788, 789, 790, 791, 792, 793, 809, 811, 815, 816, 817, 820, 821, 822, 824, 825, 826, 829, 833, 834, 836, 837, 838, 840, 843, 845, 846, 849, 852, 853, 856, 859, 860, 861, 866, 867, 872], "mani": [5, 27, 28, 31, 60, 70, 83, 143, 324, 365, 625, 635, 704, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 832, 833, 834, 836, 837, 838, 840, 843, 845, 847, 848, 851, 855, 856, 857, 862, 866, 869, 872, 873], "view": [5, 6, 9, 19, 22, 23, 24, 25, 53, 60, 76, 98, 129, 140, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 492, 495, 551, 625, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 815, 816, 829, 866], "lead": [5, 6, 9, 19, 22, 23, 24, 25, 58, 70, 81, 99, 243, 372, 436, 576, 628, 630, 633, 680, 683, 774, 824, 825, 827, 839, 841, 851, 856, 857], "overhead": [5, 6, 9, 19, 20, 22, 23, 24, 25, 27, 28, 30, 851, 859, 869], "perform": [5, 6, 10, 20, 22, 23, 24, 25, 27, 28, 30, 32, 39, 41, 49, 53, 57, 58, 66, 67, 72, 76, 77, 80, 81, 89, 90, 109, 113, 133, 134, 206, 214, 236, 269, 290, 337, 359, 368, 369, 371, 372, 374, 381, 383, 394, 395, 396, 397, 399, 400, 404, 405, 413, 415, 441, 457, 511, 519, 520, 541, 542, 543, 556, 557, 558, 574, 584, 622, 625, 627, 628, 630, 632, 633, 636, 637, 643, 644, 655, 658, 674, 683, 685, 690, 711, 712, 713, 721, 722, 753, 754, 763, 764, 767, 784, 788, 802, 806, 819, 820, 821, 823, 825, 826, 827, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 848, 851, 857, 859, 860, 863, 866, 867, 868, 869, 870, 871, 873], "inplac": [5, 6, 8, 9, 10, 19, 22, 23, 24, 25, 48, 54, 70, 77, 93, 96, 532, 534, 555, 558, 559, 576, 577, 630, 637, 721, 722, 726, 731, 732, 779, 780, 785, 792, 818, 820, 827, 830, 832, 834, 837, 843, 847, 849], "17": [5, 9, 10, 22, 23, 24, 25, 39, 41, 43, 46, 47, 53, 58, 69, 75, 76, 77, 78, 80, 81, 85, 99, 108, 109, 134, 219, 236, 261, 269, 300, 308, 359, 365, 371, 374, 390, 391, 399, 400, 403, 404, 408, 409, 414, 418, 470, 542, 557, 611, 613, 622, 625, 628, 630, 631, 632, 633, 637, 639, 646, 655, 656, 667, 671, 722, 735, 736, 737, 739, 823], "factor": [5, 10, 53, 55, 57, 58, 76, 78, 80, 81, 92, 93, 94, 95, 96, 207, 208, 209, 371, 372, 377, 405, 416, 430, 431, 441, 444, 446, 447, 502, 611, 612, 617, 618, 627, 631, 632, 633, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 663, 772, 774, 775, 787, 788, 792, 829, 856], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 8, 27, 28, 41, 50, 52, 57, 73, 75, 80, 99, 164, 240, 371, 393, 403, 541, 551, 626, 628, 630, 632, 633, 647, 649, 654, 678, 808], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 8, 41, 42, 808], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 18, 27, 28, 46, 50, 52, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 88, 98, 99, 103, 149, 159, 175, 182, 202, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 267, 268, 269, 272, 274, 278, 285, 290, 309, 330, 335, 342, 343, 344, 346, 348, 353, 357, 365, 368, 372, 374, 383, 442, 474, 518, 530, 533, 626, 627, 628, 630, 633, 640, 642, 664, 671, 673, 678, 682, 685, 686, 689, 744, 751, 769, 794, 808, 819, 825, 827, 829, 832, 836, 837, 860, 861], "x2": [5, 18, 27, 28, 50, 52, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 98, 99, 103, 149, 175, 182, 202, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 267, 268, 269, 272, 274, 278, 285, 290, 330, 335, 342, 343, 344, 346, 348, 353, 357, 368, 372, 374, 383, 428, 442, 474, 518, 530, 533, 626, 627, 628, 630, 633, 640, 664, 671, 673, 678, 682, 685, 686, 689, 744, 769, 794, 819, 825, 827, 829, 832, 836, 837], "x3": [5, 50, 54, 149, 530, 626, 630], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 788, 808, 849, 860], "batchnorm2d": [5, 8, 791], "downscal": [5, 54, 77, 536, 537, 558, 630], "maxpool": [5, 8], "doubl": 5, "conv": [5, 632, 788, 843], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 53, 76, 371, 407, 843], "align_corn": [5, 53, 76, 371, 407, 843], "conv2dtranspos": [5, 788], "valid": [5, 41, 43, 53, 57, 67, 76, 80, 90, 93, 94, 153, 371, 372, 390, 391, 392, 408, 409, 410, 411, 413, 414, 418, 439, 447, 561, 626, 630, 632, 635, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 698, 706, 763, 764, 772, 773, 788, 801, 815, 821, 825, 827, 831, 835, 838, 840, 859, 867], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 53, 60, 76, 83, 374, 480, 635, 697, 710], "constant_pad": [5, 60, 83, 635], "concat": [5, 39, 44, 54, 60, 70, 83, 209, 545, 627, 630, 635, 710, 838, 843, 845, 859], "root": [6, 8, 9, 22, 23, 24, 25, 41, 42, 43, 46, 52, 75, 283, 628, 810, 814, 815, 816, 822, 830, 837, 848], "user": [6, 9, 16, 22, 23, 24, 25, 27, 42, 43, 45, 270, 287, 374, 480, 576, 628, 630, 788, 789, 790, 801, 808, 815, 816, 818, 820, 821, 823, 824, 825, 826, 829, 834, 835, 836, 837, 840, 842, 843, 844, 845, 851, 852, 855, 856, 864, 866, 872, 873], "broken": [6, 9, 22, 23, 24, 25, 862, 866], "permiss": [6, 9, 22, 23, 24, 25, 815, 824], "conflict": [6, 9, 22, 23, 24, 25, 33, 815, 816, 824, 837, 848], "behaviour": [6, 9, 22, 23, 24, 25, 108, 111, 270, 622, 628, 813, 816, 818, 819, 820, 823, 825, 826, 828, 829, 832, 833, 834, 836, 837, 840, 841, 847], "system": [6, 9, 22, 23, 24, 25, 43, 372, 442, 633, 682, 772, 808, 815, 816, 817, 821, 824, 825, 851, 860, 864, 866, 869, 871, 873], "manag": [6, 9, 18, 19, 22, 23, 24, 25, 27, 576, 600, 630, 808, 809, 817, 821, 825, 826, 836, 839, 851, 857, 868, 870], "recommend": [6, 9, 22, 23, 24, 25, 264, 265, 278, 373, 450, 628, 643, 757, 760, 810, 815, 821, 822, 831, 834, 835, 859], "virtual": [6, 9, 22, 23, 24, 25, 816, 837, 856, 869, 870], "instead": [6, 9, 12, 14, 18, 22, 23, 24, 25, 27, 34, 41, 46, 52, 53, 58, 75, 76, 81, 94, 190, 278, 312, 365, 371, 383, 408, 409, 410, 518, 521, 627, 628, 633, 676, 772, 814, 815, 816, 819, 822, 824, 825, 827, 828, 829, 832, 833, 834, 836, 837, 838, 840, 843, 845, 847, 848, 851, 859, 860, 861, 864, 866, 872, 873], "pypa": [6, 9, 22, 23, 24, 25], "io": [6, 9, 22, 23, 24, 25, 42, 45, 815, 824], "venv": [6, 9, 22, 23, 24, 25], "torch": [6, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 44, 45, 46, 49, 54, 58, 68, 77, 81, 125, 163, 190, 191, 195, 205, 207, 212, 279, 331, 332, 368, 374, 492, 534, 558, 591, 625, 626, 627, 628, 630, 633, 636, 683, 712, 713, 769, 780, 785, 797, 806, 808, 812, 815, 816, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 851, 853, 859, 860, 861, 872], "tensorflow": [6, 9, 11, 12, 16, 18, 19, 22, 23, 24, 25, 27, 28, 29, 32, 33, 34, 39, 45, 52, 53, 54, 75, 76, 143, 190, 205, 220, 324, 365, 372, 426, 591, 625, 627, 630, 767, 780, 797, 808, 812, 813, 814, 815, 816, 819, 824, 825, 826, 830, 832, 836, 837, 838, 840, 841, 843, 845, 850, 851, 853, 856, 857, 860, 861, 863, 864, 867, 869, 870, 872, 873], "2024": 6, "01": [6, 8, 22, 23, 25, 43, 49, 53, 54, 55, 58, 76, 77, 78, 81, 85, 134, 261, 279, 280, 308, 314, 339, 340, 347, 365, 371, 393, 403, 404, 545, 588, 589, 611, 612, 617, 625, 628, 630, 631, 633, 636, 639, 670, 680, 712, 713, 736, 737, 772, 821, 850], "22": [6, 10, 22, 23, 24, 25, 39, 41, 43, 46, 47, 52, 53, 54, 62, 66, 69, 76, 77, 80, 85, 109, 114, 231, 239, 300, 304, 363, 371, 372, 373, 374, 379, 383, 390, 391, 393, 408, 409, 410, 414, 418, 424, 448, 463, 509, 519, 542, 573, 609, 622, 628, 632, 633, 637, 640, 643, 655, 656, 667, 672, 678, 682, 722, 732, 735, 736, 737, 744, 754, 755, 815, 823, 829], "50": [6, 9, 10, 27, 28, 39, 43, 53, 66, 75, 76, 77, 235, 275, 353, 368, 371, 372, 374, 400, 424, 432, 485, 543, 549, 556, 557, 573, 588, 628, 630, 633, 637, 640, 643, 672, 678, 689, 715, 717, 743, 755, 772, 775, 835, 847, 859, 860], "099601": 6, "e": [6, 9, 27, 44, 45, 49, 53, 58, 62, 64, 65, 66, 68, 75, 76, 81, 85, 88, 89, 91, 93, 94, 98, 125, 134, 135, 138, 139, 143, 147, 176, 189, 216, 217, 218, 222, 224, 225, 228, 230, 232, 236, 237, 239, 242, 243, 249, 250, 257, 258, 259, 260, 267, 268, 269, 270, 272, 276, 278, 279, 282, 283, 287, 297, 324, 331, 332, 365, 368, 371, 372, 373, 374, 378, 383, 384, 390, 391, 394, 408, 409, 410, 411, 415, 428, 431, 439, 453, 488, 492, 504, 505, 506, 507, 508, 519, 520, 529, 623, 625, 626, 627, 628, 632, 633, 635, 637, 639, 641, 642, 643, 659, 664, 669, 670, 673, 674, 676, 679, 682, 683, 684, 687, 690, 698, 706, 717, 721, 722, 723, 726, 731, 732, 735, 736, 737, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 788, 801, 802, 806, 808, 809, 812, 814, 815, 816, 818, 819, 821, 823, 825, 829, 830, 835, 837, 840, 845, 848, 851, 852, 853, 856, 857, 859, 862, 874], "extern": [6, 823, 832, 837, 840, 841], "local_xla": 6, "xla": [6, 9, 837, 851, 853, 866], "stream_executor": [6, 9], "cuda_dnn": [6, 9], "cc": [6, 9, 22, 23, 25, 42, 830], "9261": 6, "unabl": [6, 9, 816, 843], "regist": [6, 9, 790, 816, 852, 859], "cudnn": [6, 9], "factori": [6, 9, 53, 373, 452, 453, 802], "attempt": [6, 9, 19, 22, 23, 24, 25, 41, 43, 46, 815, 842, 851], "plugin": [6, 9, 815], "been": [6, 9, 12, 14, 22, 24, 27, 28, 53, 54, 62, 76, 77, 85, 192, 279, 374, 487, 541, 542, 543, 627, 628, 630, 639, 734, 801, 802, 814, 816, 819, 821, 823, 824, 825, 826, 828, 829, 832, 833, 836, 840, 845, 847, 851, 852, 859, 866, 873], "099643": 6, "cuda_fft": [6, 9], "607": 6, "cufft": [6, 9], "100960": 6, "cuda_bla": [6, 9], "1515": 6, "cubla": [6, 9], "108768": 6, "core": [6, 22, 23, 25, 41, 42, 43, 45, 46, 53, 76, 93, 96, 200, 372, 430, 441, 446, 447, 627, 815, 826, 830, 840, 850, 855, 864, 865, 866, 867, 871, 873], "cpu_feature_guard": [6, 22, 23, 25], "182": [6, 22, 23, 25, 76], "binari": [6, 10, 22, 23, 25, 53, 54, 57, 59, 76, 80, 82, 226, 229, 231, 266, 286, 371, 373, 417, 452, 455, 628, 632, 634, 655, 659, 692], "optim": [6, 7, 9, 10, 18, 22, 23, 25, 27, 28, 41, 43, 44, 46, 53, 55, 76, 78, 308, 365, 373, 452, 453, 532, 619, 630, 631, 636, 711, 712, 713, 787, 802, 808, 825, 836, 843, 846, 848, 850, 857, 860, 864, 865, 866, 867, 868, 869, 870, 873], "instruct": [6, 22, 23, 25, 70, 99, 808, 814, 815, 819, 829, 831, 838, 840, 852, 864, 867, 870, 872], "critic": [6, 22, 23, 25, 27, 28, 806, 866, 872], "oper": [6, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 40, 43, 49, 50, 52, 53, 54, 57, 70, 72, 73, 75, 76, 77, 80, 99, 114, 133, 134, 176, 206, 214, 219, 221, 230, 233, 236, 243, 258, 260, 269, 270, 274, 278, 281, 286, 298, 306, 326, 327, 328, 360, 363, 365, 370, 371, 373, 374, 385, 386, 387, 388, 390, 391, 392, 398, 399, 400, 404, 408, 409, 410, 411, 413, 414, 416, 418, 419, 448, 485, 487, 534, 541, 542, 543, 591, 622, 625, 626, 627, 628, 630, 632, 633, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 659, 674, 685, 687, 759, 761, 772, 775, 788, 802, 806, 808, 814, 815, 818, 819, 820, 823, 825, 826, 827, 828, 829, 833, 836, 837, 840, 843, 845, 848, 849, 853, 855, 859, 862, 863, 864, 865, 866, 867, 869, 870, 871, 872, 873], "avx2": [6, 22, 23, 25], "fma": [6, 22, 23, 25], "rebuild": [6, 22, 23, 25, 70, 99], "appropri": [6, 7, 18, 22, 23, 25, 27, 28, 54, 63, 68, 86, 91, 219, 236, 243, 269, 330, 347, 368, 628, 640, 740, 808, 814, 815, 816, 829, 834, 840], "compil": [6, 7, 8, 9, 10, 22, 23, 25, 27, 28, 31, 44, 46, 287, 628, 780, 808, 815, 837, 841, 845, 851, 853, 860, 862, 865, 866, 867, 870, 873], "flag": [6, 22, 23, 25, 70, 192, 373, 383, 450, 518, 627, 632, 659, 769, 780, 791, 816, 825, 826, 836, 837, 838, 840, 859, 860], "332076": 6, "tf2tensorrt": [6, 9], "py_util": [6, 9], "38": [6, 9, 10, 23, 39, 41, 43, 46, 50, 53, 75, 76, 85, 161, 286, 353, 368, 371, 383, 391, 410, 413, 414, 519, 626, 628, 633, 675, 772, 827], "trt": [6, 9], "could": [6, 9, 27, 28, 33, 64, 641, 745, 746, 747, 748, 814, 815, 816, 819, 824, 825, 827, 834, 836, 837, 838, 840, 845, 847, 848, 849, 856, 857, 866, 871, 872], "find": [6, 9, 16, 42, 43, 46, 58, 64, 70, 81, 633, 637, 641, 676, 716, 745, 746, 747, 748, 801, 802, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 824, 830, 835, 840, 843, 845, 848, 852, 853, 855, 859], "tensorrt": [6, 9], "lstm": [6, 632, 658, 788, 845, 866], "layer": [6, 12, 14, 18, 24, 25, 27, 28, 39, 44, 53, 61, 76, 84, 638, 657, 658, 659, 733, 785, 787, 789, 790, 791, 792, 793, 808, 828, 837, 841, 843, 845, 846, 849, 855, 860, 864, 866, 870, 873], "torch_lstm": 6, "rand": [6, 25, 27, 28, 43, 801, 802, 808, 859], "tf_lstm": 6, "workspac": [6, 8, 9, 19, 22, 23, 24, 25, 815, 830], "ivy_repo": [6, 19], "except": [6, 9, 19, 22, 23, 24, 25, 42, 43, 46, 53, 54, 60, 62, 67, 70, 76, 77, 81, 85, 90, 150, 331, 332, 337, 356, 368, 374, 378, 383, 464, 488, 492, 505, 524, 525, 540, 558, 575, 591, 597, 626, 630, 633, 635, 639, 640, 644, 679, 696, 698, 706, 735, 736, 737, 743, 763, 764, 767, 770, 774, 808, 816, 817, 818, 819, 820, 824, 825, 826, 828, 830, 832, 836, 837, 841, 842, 843, 847, 851], "383": [6, 19], "current": [6, 9, 18, 19, 22, 23, 24, 25, 27, 28, 41, 42, 48, 53, 54, 70, 76, 99, 118, 162, 163, 166, 183, 184, 185, 186, 187, 188, 194, 195, 196, 197, 202, 204, 372, 374, 424, 425, 480, 488, 546, 547, 550, 553, 555, 559, 570, 571, 591, 624, 626, 627, 630, 633, 637, 668, 714, 724, 725, 769, 773, 789, 790, 797, 798, 802, 805, 806, 808, 810, 814, 815, 816, 819, 821, 823, 824, 825, 826, 829, 830, 831, 833, 836, 837, 838, 839, 840, 843, 845, 850, 851, 857, 859, 866, 872, 873], "doe": [6, 9, 10, 18, 19, 22, 23, 24, 25, 27, 40, 42, 52, 53, 54, 60, 70, 75, 76, 83, 93, 143, 270, 272, 280, 324, 365, 372, 373, 383, 384, 425, 452, 453, 524, 525, 529, 558, 625, 628, 630, 633, 635, 668, 704, 767, 802, 812, 814, 816, 818, 821, 824, 825, 827, 828, 830, 831, 832, 833, 836, 837, 838, 840, 843, 845, 847, 848, 851, 853, 856, 859, 862, 866, 867, 873], "quietli": [6, 9, 19, 22, 23, 24, 25], "appli": [6, 7, 9, 19, 22, 23, 24, 25, 27, 28, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 407, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 626, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 687, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 720, 723, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 774, 775, 784, 788, 791, 808, 814, 815, 816, 820, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 840, 841, 843, 847, 848, 849, 850, 851, 859, 860, 867], "control": [6, 9, 19, 22, 23, 24, 25, 35, 53, 76, 143, 292, 324, 363, 365, 371, 374, 395, 396, 397, 463, 489, 576, 625, 630, 633, 666, 823, 825, 826, 835, 836, 837, 838, 843, 847, 848, 853, 859, 866, 872], "consid": [6, 9, 10, 19, 22, 23, 24, 25, 32, 33, 53, 58, 64, 76, 81, 114, 143, 264, 265, 324, 330, 335, 347, 365, 368, 372, 383, 426, 430, 441, 518, 622, 625, 628, 633, 641, 666, 676, 745, 746, 747, 748, 774, 787, 820, 824, 825, 833, 835, 841, 843, 846, 847, 848, 855, 856, 859, 863, 867, 871, 873], "set_inplace_mod": [6, 9, 19, 22, 23, 24, 25, 600, 630], "strict": [6, 9, 19, 22, 23, 24, 25, 576, 600, 630], "rais": [6, 9, 19, 22, 23, 24, 25, 42, 43, 49, 53, 54, 62, 64, 67, 70, 72, 76, 77, 83, 85, 87, 90, 124, 150, 239, 274, 331, 332, 342, 368, 371, 373, 374, 378, 383, 405, 416, 453, 458, 459, 466, 468, 470, 471, 472, 479, 488, 495, 505, 524, 525, 534, 558, 576, 578, 589, 591, 597, 601, 626, 628, 630, 633, 635, 639, 640, 641, 643, 644, 673, 675, 689, 698, 699, 700, 702, 704, 705, 706, 707, 709, 735, 736, 737, 743, 748, 756, 758, 763, 764, 767, 774, 792, 808, 816, 819, 821, 825, 826, 829, 836, 837, 841, 842, 845, 847, 852, 856], "error": [6, 9, 10, 19, 22, 23, 24, 25, 33, 44, 46, 52, 53, 57, 70, 75, 76, 80, 106, 238, 286, 331, 332, 339, 340, 368, 372, 373, 374, 383, 384, 441, 447, 449, 451, 488, 525, 529, 576, 622, 628, 630, 632, 633, 643, 662, 681, 684, 756, 758, 774, 792, 805, 809, 813, 814, 815, 816, 819, 820, 821, 824, 825, 826, 827, 831, 832, 837, 840, 841, 842, 847, 851, 857, 866], "whenev": [6, 9, 19, 22, 23, 24, 25, 788, 816, 821, 824, 825, 829, 836, 839, 840, 842, 848], "26": [6, 22, 23, 24, 25, 39, 41, 43, 46, 52, 53, 61, 62, 76, 77, 78, 85, 231, 236, 282, 371, 372, 393, 429, 439, 556, 611, 628, 630, 631, 632, 633, 637, 638, 643, 654, 667, 678, 685, 715, 733, 735, 736, 755], "221321": 6, "common_runtim": [6, 42], "gpu_devic": 6, "1929": 6, "job": [6, 27, 28, 808, 822, 824, 860], "localhost": 6, "replica": 6, "14699": 6, "mb": [6, 8, 41, 43, 46, 824], "tesla": 6, "v100": [6, 7], "pcie": [6, 856], "16gb": 6, "pci": 6, "bu": [6, 81, 856], "id": [6, 10, 42, 53, 76, 192, 326, 327, 328, 365, 553, 627, 630, 808, 813, 815, 820, 822, 823, 831, 835, 840, 852, 874], "0001": [6, 52, 53, 76, 279, 280, 372, 441, 447, 772, 775, 792], "00": [6, 8, 10, 41, 43, 46, 53, 54, 58, 76, 77, 81, 241, 308, 339, 340, 365, 371, 393, 399, 403, 404, 545, 589, 628, 630, 633, 670, 680, 772, 831, 840], "comput": [6, 24, 25, 27, 28, 34, 35, 40, 41, 43, 47, 52, 53, 54, 55, 57, 58, 59, 64, 66, 69, 70, 75, 76, 77, 78, 80, 81, 82, 89, 93, 94, 96, 109, 113, 209, 219, 226, 229, 231, 236, 237, 238, 243, 244, 245, 247, 248, 254, 255, 256, 263, 264, 265, 266, 268, 269, 272, 277, 278, 296, 300, 304, 310, 313, 314, 326, 327, 328, 331, 332, 334, 338, 340, 343, 345, 346, 350, 352, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 381, 383, 390, 391, 392, 393, 394, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 419, 420, 422, 424, 425, 426, 427, 429, 430, 432, 434, 437, 439, 441, 444, 445, 447, 449, 450, 451, 452, 453, 454, 455, 474, 477, 490, 497, 499, 510, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 535, 536, 537, 581, 604, 611, 613, 614, 616, 620, 621, 627, 628, 630, 631, 632, 633, 634, 635, 637, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 663, 664, 668, 669, 670, 673, 674, 676, 678, 680, 682, 683, 685, 687, 689, 690, 692, 693, 694, 698, 720, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 769, 774, 788, 791, 802, 808, 815, 823, 824, 825, 833, 835, 837, 840, 842, 843, 845, 848, 851, 853, 856, 857, 859, 860, 862, 864, 866, 867, 869, 870, 872], "capabl": [6, 16, 24, 28, 840, 843], "625856": 6, "454": 6, "8902": 6, "origin": [6, 7, 9, 10, 25, 27, 28, 29, 30, 31, 33, 40, 41, 42, 46, 53, 58, 60, 66, 70, 76, 81, 83, 89, 93, 96, 98, 99, 224, 249, 276, 315, 365, 371, 372, 374, 383, 415, 441, 473, 479, 481, 484, 519, 520, 524, 525, 526, 527, 528, 628, 633, 635, 643, 674, 702, 703, 754, 769, 774, 797, 798, 808, 810, 814, 815, 816, 821, 822, 824, 825, 830, 834, 836, 837, 838, 845, 857, 859, 860, 866, 867], "32": [6, 10, 25, 27, 28, 39, 41, 42, 43, 52, 53, 62, 75, 76, 80, 81, 85, 98, 99, 108, 160, 218, 230, 231, 240, 254, 260, 276, 279, 280, 334, 368, 371, 372, 374, 383, 391, 392, 393, 403, 413, 414, 424, 428, 463, 519, 541, 557, 622, 626, 628, 630, 632, 633, 639, 640, 643, 647, 649, 650, 654, 656, 673, 678, 689, 735, 736, 737, 744, 755, 772, 775, 808, 824, 825, 835, 848, 871], "original_output": 6, "constant": [6, 12, 14, 19, 22, 23, 29, 32, 34, 39, 53, 60, 61, 76, 83, 84, 93, 94, 318, 365, 371, 373, 374, 417, 452, 453, 480, 635, 637, 638, 697, 720, 733, 787, 791, 808, 833, 838, 841, 849, 850, 851, 859, 861], "transpiled_output": 6, "verifi": [6, 10, 24, 321, 322, 365, 814, 825, 826, 837, 840, 841], "toler": [6, 53, 58, 76, 81, 330, 347, 368, 372, 426, 441, 447, 633, 676, 679, 767, 769, 819, 838, 866], "1e": [6, 7, 8, 9, 12, 14, 27, 39, 43, 50, 53, 55, 58, 59, 61, 73, 76, 78, 81, 82, 84, 97, 161, 330, 347, 368, 373, 377, 453, 497, 498, 499, 578, 579, 588, 601, 602, 611, 612, 617, 619, 626, 630, 631, 633, 634, 638, 683, 692, 693, 694, 733, 767, 769, 789, 791, 792, 808, 812, 823, 830, 833, 836, 838, 849, 850], "benchmark": [6, 868], "n_run": 6, "original_torch_tim": 6, "autograph": 6, "experiment": [6, 806, 812, 816, 825, 837, 841, 845, 866], "do_not_convert": 6, "compiled_tf_lstm": 6, "transpiled_tf_tim": 6, "own": [6, 12, 14, 18, 27, 28, 33, 808, 815, 819, 824, 825, 828, 829, 836, 837, 841, 845, 851, 853, 856, 857, 862, 865, 866, 871, 872], "comparison": [6, 8, 53, 76, 237, 272, 333, 368, 373, 452, 453, 628, 633, 684, 767, 829], "original_tf_lstm": 6, "kera": [6, 11, 12, 14, 16, 17, 25, 27, 28, 44, 45, 785, 808, 857, 860, 872], "time_major": [6, 76, 371, 417, 632, 658], "return_sequ": [6, 788], "original_tf_tim": 6, "slower": [6, 20, 837], "than": [6, 10, 27, 28, 30, 33, 52, 53, 54, 57, 58, 60, 62, 63, 64, 66, 70, 75, 76, 77, 80, 81, 83, 85, 86, 87, 89, 98, 99, 122, 130, 161, 209, 217, 218, 221, 222, 224, 225, 228, 230, 232, 236, 242, 243, 257, 258, 259, 260, 267, 269, 274, 278, 280, 282, 283, 287, 288, 289, 298, 308, 330, 333, 347, 354, 365, 368, 371, 372, 373, 374, 383, 393, 394, 399, 400, 403, 404, 405, 415, 416, 420, 422, 441, 447, 448, 471, 472, 519, 520, 521, 560, 561, 564, 581, 604, 625, 626, 627, 628, 630, 632, 633, 635, 639, 640, 641, 643, 657, 662, 664, 673, 674, 675, 676, 679, 690, 695, 699, 705, 737, 743, 746, 747, 748, 753, 754, 759, 760, 761, 762, 788, 802, 812, 814, 816, 819, 823, 824, 825, 827, 829, 830, 836, 837, 838, 840, 841, 842, 843, 845, 848, 849, 850, 851, 852, 856, 863, 864, 865, 866, 872, 873], "30": [6, 10, 22, 23, 24, 25, 39, 41, 52, 53, 54, 76, 77, 85, 89, 99, 269, 300, 345, 353, 368, 371, 374, 393, 403, 414, 463, 485, 509, 541, 543, 548, 549, 556, 557, 573, 582, 588, 628, 630, 633, 637, 643, 672, 678, 723, 735, 736, 754, 755, 759, 774, 787, 802, 811, 824], "698440": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 41, 42, 43, 46, 53, 286, 458, 459, 460, 628, 816, 819, 821, 825, 837, 845, 850, 872], "spawn": [6, 569, 630], "child": 6, "No": [6, 27, 28, 41, 53, 59, 76, 82, 373, 450, 451, 452, 454, 455, 634, 692, 816, 824, 825, 866], "directori": [6, 41, 42, 43, 46, 585, 608, 627, 630, 806, 810, 814, 815, 816, 822, 824, 830, 837, 840, 852], "725307350738295x": 6, "440824652724787x": 6, "openmim": 7, "mim": 7, "0rc8": 7, "request": [7, 8, 9, 22, 23, 24, 25, 27, 28, 41, 44, 53, 200, 378, 508, 627, 806, 808, 809, 811, 814, 827, 831, 841, 843, 857, 860], "get_model": 7, "list_model": 7, "mmengin": 7, "configdict": 7, "saniti": [7, 9, 10, 27, 837], "checkpoint": [7, 8, 44, 851], "correct": [7, 12, 14, 23, 33, 39, 41, 43, 66, 89, 182, 372, 443, 626, 635, 643, 695, 760, 762, 769, 772, 808, 812, 814, 816, 818, 823, 824, 825, 826, 829, 830, 832, 833, 836, 838, 840, 860], "against": [7, 50, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 149, 268, 287, 330, 333, 336, 347, 368, 383, 524, 525, 526, 527, 528, 565, 626, 628, 630, 633, 640, 673, 674, 676, 679, 740, 840, 845, 851, 855, 866], "zoo": 7, "checkpoint_nam": [7, 9, 27], "convnext": 7, "tiny_32xb128": 7, "noema_in1k": 7, "openmmlab": 7, "dure": [7, 9, 20, 22, 27, 30, 32, 33, 51, 55, 66, 70, 74, 78, 89, 210, 371, 395, 396, 397, 576, 597, 611, 612, 617, 627, 630, 631, 632, 633, 636, 643, 655, 673, 711, 712, 713, 760, 762, 780, 791, 792, 806, 815, 823, 825, 826, 829, 833, 834, 836, 837, 838, 839, 840, 843, 851, 859, 866, 867, 872], "get_scal": 7, "cfg": [7, 831], "kei": [7, 20, 21, 27, 28, 43, 45, 48, 53, 57, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 381, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 464, 465, 486, 488, 490, 492, 497, 499, 500, 501, 503, 505, 511, 518, 519, 520, 521, 530, 531, 533, 534, 536, 537, 538, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 630, 632, 636, 637, 646, 647, 648, 649, 655, 656, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 717, 723, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 772, 773, 779, 785, 788, 792, 808, 811, 822, 823, 824, 833, 836, 837, 838, 840, 848, 860, 866, 869, 873], "input_shap": [7, 14, 25, 27, 28, 808], "block": [7, 27, 28, 31, 32, 33, 34, 372, 432, 808, 816, 823, 825, 829, 833, 840, 844, 846, 850, 851, 853, 860, 871, 873], "url": [7, 9, 24, 27, 28, 41, 44, 808, 860], "cocodataset": [7, 9, 24, 27, 28, 44, 808, 860], "org": [7, 8, 9, 24, 27, 28, 41, 43, 44, 46, 52, 53, 75, 76, 78, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 611, 612, 625, 626, 628, 631, 633, 635, 643, 681, 682, 710, 760, 808, 828, 860], "val2017": [7, 9, 27, 44], "000000039769": [7, 9, 27, 44], "stream": [7, 9, 24, 27, 28, 41, 44, 51, 74, 210, 627, 808, 860, 870], "_config": 7, "train_pipelin": 7, "tensor_imag": 7, "And": [7, 9, 10, 12, 14, 19, 22, 27, 28, 29, 42, 73, 361, 362, 370, 808, 819, 822, 831, 833, 840, 859], "final": [7, 9, 12, 14, 16, 24, 27, 28, 33, 39, 40, 49, 53, 54, 76, 77, 93, 121, 133, 134, 318, 365, 371, 416, 545, 624, 625, 630, 632, 657, 658, 659, 802, 814, 816, 817, 819, 820, 822, 824, 825, 827, 828, 833, 835, 836, 837, 839, 843, 844, 848, 859, 860, 862, 872], "transpiled_graph": [7, 9, 27], "what": [7, 9, 16, 21, 27, 28, 31, 32, 35, 40, 41, 371, 405, 416, 774, 802, 808, 814, 816, 818, 823, 824, 827, 828, 831, 832, 834, 835, 836, 837, 838, 840, 844, 845, 847, 848, 849, 850, 851, 856, 857, 862, 867, 868, 871], "improv": [7, 9, 10, 27, 30, 811, 816, 825, 832, 833, 843, 845, 853, 857, 859, 864, 866, 868, 869], "For": [7, 8, 9, 10, 18, 20, 27, 28, 30, 33, 35, 49, 53, 58, 64, 76, 81, 122, 135, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 271, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 326, 327, 328, 331, 332, 334, 355, 365, 368, 372, 374, 438, 440, 460, 480, 483, 625, 628, 633, 635, 641, 643, 681, 683, 687, 695, 706, 745, 746, 747, 748, 756, 758, 759, 761, 773, 785, 814, 815, 816, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 843, 845, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 863, 864, 867, 872, 873], "issu": [7, 9, 373, 450, 787, 809, 810, 811, 812, 813, 815, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 837, 840, 841, 843, 845, 849, 851, 857, 859], "107960": [7, 9], "export": [7, 9, 42, 824, 865, 872], "lc_all": [7, 9], "en_u": [7, 9], "utf": [7, 9], "ld_library_path": [7, 9], "lib64": [7, 9], "nvidia": [7, 9, 22, 23, 24, 25, 41, 43, 46, 870, 871], "library_path": [7, 9], "stub": [7, 9, 822], "ldconfig": [7, 9], "_f": [7, 9, 27], "comp_model": [7, 9, 27], "equival": [7, 9, 27, 58, 81, 93, 94, 122, 230, 243, 264, 265, 278, 279, 374, 464, 488, 494, 625, 628, 633, 676, 679, 682, 690, 797, 836, 837, 843, 848, 850, 852, 860], "just": [7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 41, 43, 53, 58, 66, 81, 93, 96, 143, 324, 365, 372, 440, 625, 633, 643, 676, 755, 780, 788, 808, 812, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 830, 833, 834, 836, 837, 838, 840, 845, 847, 848, 851, 856, 857, 860, 866, 867, 872], "np_imag": [7, 24, 27, 28], "jax_imag": 7, "hk": [7, 9, 27, 41, 45, 808, 850, 860], "rng_kei": [7, 9, 27, 808, 860], "random": [7, 9, 12, 14, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 41, 43, 44, 53, 57, 70, 76, 80, 319, 320, 321, 322, 323, 365, 372, 373, 430, 441, 447, 453, 504, 505, 506, 507, 508, 632, 655, 734, 735, 736, 737, 738, 739, 772, 774, 787, 801, 802, 808, 814, 826, 838, 840, 841, 850, 860, 861, 866], "prngkei": [7, 9, 20, 21, 27, 28, 41, 808, 850, 860], "42": [7, 9, 10, 20, 21, 25, 27, 28, 39, 41, 42, 47, 62, 69, 78, 85, 114, 230, 371, 393, 403, 611, 615, 622, 628, 631, 633, 638, 639, 643, 674, 678, 733, 734, 735, 736, 737, 738, 755, 808, 845, 850, 860], "jax_mlp_forward": 7, "param": [7, 9, 10, 27, 41, 42, 43, 45, 70, 76, 77, 99, 531, 548, 549, 630, 794, 808, 850, 860], "init": [7, 9, 27, 41, 43, 53, 76, 372, 430, 441, 447, 808, 819, 850, 860], "rng": [7, 9, 27, 41, 808, 850, 860], "both": [7, 8, 9, 10, 12, 14, 22, 24, 27, 28, 32, 33, 40, 42, 49, 52, 53, 54, 57, 58, 72, 75, 76, 77, 80, 81, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 174, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 335, 337, 342, 347, 365, 368, 371, 372, 374, 378, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 474, 480, 488, 491, 492, 504, 518, 521, 548, 552, 554, 556, 565, 587, 596, 620, 621, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 788, 808, 812, 814, 816, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 836, 837, 840, 843, 845, 847, 848, 849, 850, 851, 859, 860, 866, 869, 871, 872, 873], "each": [7, 9, 10, 20, 21, 22, 27, 28, 30, 31, 32, 34, 41, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 64, 66, 70, 73, 75, 76, 77, 78, 80, 81, 83, 86, 87, 89, 93, 94, 96, 98, 99, 107, 108, 110, 111, 112, 114, 118, 135, 149, 161, 164, 209, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 291, 293, 294, 299, 301, 302, 303, 305, 306, 307, 312, 323, 326, 327, 328, 334, 342, 346, 350, 355, 358, 363, 365, 368, 371, 372, 374, 377, 378, 381, 383, 390, 391, 392, 395, 396, 397, 400, 408, 409, 410, 411, 414, 416, 417, 418, 425, 426, 431, 440, 441, 445, 447, 458, 459, 460, 464, 465, 466, 471, 472, 474, 475, 477, 479, 480, 483, 485, 494, 495, 502, 504, 511, 516, 517, 518, 519, 520, 521, 530, 533, 541, 548, 549, 565, 590, 610, 612, 613, 615, 617, 618, 619, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 659, 663, 664, 665, 668, 669, 670, 673, 675, 676, 677, 679, 681, 682, 683, 688, 697, 701, 703, 704, 706, 708, 710, 720, 727, 734, 743, 745, 746, 748, 754, 755, 762, 769, 772, 774, 780, 788, 791, 792, 793, 802, 806, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 850, 851, 855, 856, 857, 859, 860, 862, 863, 867, 869, 872], "timeit": [7, 9, 10, 20, 27, 28, 44, 46], "06": [7, 10, 22, 43, 50, 62, 75, 78, 97, 106, 161, 218, 234, 371, 393, 403, 617, 622, 626, 631, 737, 767, 769, 840, 848], "m": [7, 8, 9, 10, 27, 40, 42, 44, 46, 49, 53, 58, 62, 75, 76, 81, 85, 98, 135, 141, 142, 143, 263, 324, 325, 365, 371, 372, 373, 374, 378, 394, 425, 430, 431, 433, 434, 449, 460, 471, 472, 486, 504, 505, 506, 507, 508, 625, 633, 637, 639, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 722, 735, 736, 737, 808, 815, 816, 818, 824, 845], "per": [7, 9, 10, 20, 41, 43, 53, 57, 76, 80, 315, 365, 371, 372, 374, 390, 391, 392, 408, 409, 410, 411, 440, 487, 632, 646, 648, 649, 650, 651, 654, 659, 788, 816, 824, 834, 837, 848], "loop": [7, 9, 10, 20, 35, 68, 76, 91, 118, 121, 371, 417, 624, 636, 711, 712, 713, 808, 821, 851, 859], "100": [7, 8, 9, 10, 39, 41, 43, 49, 52, 53, 72, 75, 76, 77, 80, 97, 134, 143, 230, 270, 283, 324, 347, 356, 365, 368, 371, 372, 374, 395, 396, 441, 447, 485, 549, 557, 573, 625, 628, 630, 633, 637, 672, 720, 808, 824, 825, 840, 848, 849, 850, 851, 856, 857, 859], "block_until_readi": 7, "08": [7, 53, 66, 76, 85, 222, 330, 347, 368, 371, 373, 393, 403, 453, 628, 736, 737, 762, 767, 772, 831], "\u00b5": [7, 9, 10, 20], "made": [7, 9, 27, 53, 60, 76, 372, 374, 432, 458, 459, 460, 706, 814, 816, 817, 819, 820, 823, 824, 829, 831, 833, 835, 836, 837, 841, 843, 845, 847, 856, 866], "significantli": [7, 9, 27, 53, 58, 76, 81, 372, 445, 633, 683, 824, 855, 864], "line": [7, 9, 10, 16, 17, 20, 21, 24, 27, 28, 30, 31, 42, 43, 286, 628, 806, 808, 815, 819, 820, 824, 826, 827, 829, 837, 840, 843, 846, 847, 848, 849, 857, 860, 869], "even": [7, 24, 27, 28, 53, 76, 93, 236, 269, 274, 279, 374, 383, 480, 518, 628, 815, 816, 817, 819, 821, 824, 825, 826, 828, 832, 833, 836, 837, 838, 843, 847, 848, 849, 850, 851, 856, 857, 872], "better": [7, 10, 30, 39, 45, 46, 814, 818, 837, 838, 841, 843, 844, 847, 848, 849, 857, 869], "3x": 7, "increas": [7, 9, 10, 20, 27, 30, 53, 58, 60, 76, 81, 83, 96, 374, 383, 480, 521, 633, 635, 688, 697, 710, 774, 825, 829, 837, 841, 843, 855, 859, 866], "execut": [7, 9, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 35, 42, 44, 46, 119, 121, 597, 624, 627, 630, 815, 816, 822, 823, 824, 825, 826, 827, 829, 833, 834, 836, 840, 843, 845, 847, 850, 851, 853, 859, 862, 866, 867, 868, 869, 870, 872], "train2017": [7, 9, 24, 27, 28, 808, 860], "000000283921": [7, 9, 27], "out_torch": [7, 9, 27], "et": [7, 632, 633, 659, 683], "took": [7, 75, 276], "out_jax": [7, 9, 27], "66m": 7, "53m": 7, "That": [7, 9, 12, 14, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 41, 278, 373, 452, 628, 801, 815, 816, 820, 840, 847, 848, 849, 867], "pretti": [7, 9, 27, 28, 41, 812, 830, 848, 872], "much": [7, 9, 10, 18, 19, 25, 27, 28, 29, 30, 41, 96, 330, 347, 368, 787, 814, 815, 816, 820, 823, 825, 833, 836, 837, 838, 841, 842, 843, 845, 847, 848, 856, 864, 866, 872, 873], "achiev": [7, 9, 10, 27, 808, 809, 811, 817, 824, 825, 833, 834, 840, 843, 848, 850, 853], "solid": [7, 9, 27], "associ": [8, 53, 58, 76, 81, 219, 269, 374, 383, 457, 521, 628, 633, 676, 679, 691, 769, 816, 825, 833, 834, 837, 838, 840, 851], "python": [8, 12, 18, 30, 35, 39, 41, 42, 43, 45, 46, 53, 62, 76, 85, 122, 203, 215, 243, 278, 371, 378, 417, 504, 505, 506, 507, 508, 610, 625, 627, 628, 630, 639, 734, 735, 736, 737, 739, 797, 801, 802, 806, 813, 815, 816, 819, 822, 823, 824, 829, 830, 837, 839, 840, 845, 847, 848, 851, 853, 854, 855, 856, 859, 863, 866, 867, 868, 872, 873], "2023": [8, 9, 22, 23, 24, 25, 41], "02": [8, 9, 41, 49, 54, 55, 61, 62, 75, 78, 85, 134, 221, 222, 261, 371, 393, 403, 404, 588, 589, 611, 612, 617, 625, 628, 630, 631, 638, 639, 733, 736, 737, 838], "52": [8, 10, 39, 52, 75, 77, 78, 85, 224, 234, 236, 383, 519, 541, 542, 557, 611, 628, 630, 631, 632, 633, 643, 656, 678, 737, 755, 801], "resolv": [8, 41, 43, 53, 66, 243, 383, 519, 520, 628, 635, 643, 698, 753, 754, 759, 761, 816, 822, 825, 831, 845], "185": [8, 41, 69], "199": [8, 41, 222, 628], "110": [8, 41], "133": [8, 41, 57, 537, 630, 656], "111": [8, 41, 637, 732], "108": [8, 10, 22, 23, 24, 25, 41, 632, 643, 656, 755], "connect": [8, 41, 788, 808, 810, 815, 822, 839, 849, 850, 856, 864], "443": [8, 41, 281, 628], "sent": [8, 41], "await": [8, 41], "respons": [8, 41, 377, 502, 816, 824, 825], "200": [8, 10, 41, 77, 80, 230, 371, 395, 396, 549, 573, 628, 630, 801, 848], "ok": [8, 41, 815], "length": [8, 41, 42, 49, 53, 59, 60, 70, 76, 82, 83, 93, 94, 99, 122, 130, 135, 310, 313, 314, 329, 337, 365, 368, 371, 372, 374, 378, 381, 393, 394, 399, 400, 403, 404, 405, 415, 416, 417, 419, 431, 440, 480, 489, 506, 511, 610, 625, 630, 632, 633, 634, 635, 641, 659, 683, 684, 692, 702, 745, 772, 788, 840, 848], "10472": 8, "10k": 8, "plain": [8, 41], "tx": 8, "23k": 8, "kb": [8, 41, 43, 46], "57": [8, 10, 39, 41, 52, 53, 75, 76, 194, 217, 218, 221, 222, 224, 234, 235, 275, 291, 292, 363, 627, 628], "109": [8, 41, 58, 633, 671], "634575": 8, "620k": 8, "jpeg": [8, 42, 43], "619": 8, "70k": 8, "113": 8, "resnet34_weight": 8, "torch_resnet_34": 8, "conv1": 8, "kernel_s": [8, 25, 27, 28, 43, 53, 76, 371, 390, 391, 392, 411, 418, 788, 794], "stride": [8, 53, 57, 76, 77, 80, 98, 371, 374, 390, 391, 392, 408, 409, 410, 411, 413, 414, 418, 456, 630, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788, 836, 841, 866], "bia": [8, 53, 57, 76, 80, 84, 377, 383, 502, 518, 568, 630, 632, 638, 645, 646, 647, 648, 649, 650, 651, 652, 653, 656, 657, 658, 659, 733, 788, 833, 840, 845, 849], "bn1": 8, "ep": [8, 53, 58, 61, 76, 81, 84, 161, 296, 363, 372, 373, 377, 426, 453, 497, 498, 499, 626, 633, 638, 676, 679, 733, 784, 791], "05": [8, 10, 43, 49, 52, 53, 55, 61, 75, 76, 78, 84, 134, 261, 314, 330, 339, 340, 347, 365, 368, 377, 497, 498, 499, 556, 578, 601, 611, 612, 617, 625, 628, 630, 631, 633, 638, 674, 733, 767, 772, 787, 791, 838, 840], "momentum": [8, 41, 53, 76, 377, 497, 499, 791, 856], "affin": [8, 791], "track_running_stat": [8, 791], "dilat": [8, 45, 53, 57, 76, 80, 371, 374, 408, 409, 410, 413, 414, 418, 480, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788], "ceil_mod": [8, 53, 76, 371, 390, 391, 392, 408, 409, 410, 413, 788], "layer1": 8, "basicblock": 8, "conv2": 8, "bn2": 8, "layer2": 8, "downsampl": [8, 53, 76, 407], "layer3": 8, "layer4": 8, "output_s": [8, 53, 76, 371, 385, 386, 387, 388, 632, 661, 788, 808, 860], "fc": [8, 14, 41, 808, 849, 860], "in_featur": [8, 57, 80, 632, 656, 840], "out_featur": [8, 57, 80, 632, 656, 840], "resnet_34": 8, "ivy_resnet_34": 8, "34": [8, 10, 39, 41, 75, 76, 77, 85, 164, 234, 261, 282, 371, 383, 414, 525, 541, 542, 626, 628, 630, 632, 633, 639, 656, 675, 736, 737, 826], "333f7ec4": 8, "pth": 8, "cach": [8, 9, 22, 23, 24, 25, 41, 43, 46, 191, 535, 627, 630, 777, 797, 831, 833, 836, 840], "83": [8, 10, 39, 58, 80, 85, 283, 371, 383, 393, 403, 414, 519, 628, 632, 633, 656, 671, 736], "3m": 8, "56": [8, 10, 39, 41, 52, 53, 57, 62, 75, 76, 80, 134, 269, 283, 286, 289, 371, 393, 403, 611, 625, 628, 631, 632, 633, 637, 643, 647, 649, 651, 653, 656, 678, 714, 736, 755, 827], "4mb": 8, "preserv": [8, 9, 22, 23, 24, 25, 53, 54, 55, 70, 76, 77, 78, 99, 371, 372, 374, 383, 407, 441, 458, 459, 460, 471, 472, 491, 525, 558, 620, 630, 631, 635, 699, 772, 839, 840, 850, 851, 860], "multipl": [8, 9, 18, 22, 23, 24, 25, 27, 52, 53, 58, 61, 66, 67, 70, 75, 76, 77, 78, 81, 83, 84, 89, 90, 130, 230, 254, 261, 267, 268, 269, 271, 331, 332, 368, 371, 372, 374, 377, 381, 393, 400, 403, 405, 439, 466, 475, 492, 495, 502, 511, 530, 537, 568, 611, 612, 615, 617, 618, 619, 620, 625, 628, 630, 631, 632, 633, 635, 638, 640, 643, 644, 647, 648, 649, 650, 663, 672, 673, 674, 687, 695, 698, 703, 704, 733, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 802, 806, 808, 814, 816, 820, 821, 823, 827, 829, 831, 833, 836, 837, 838, 840, 843, 845, 851, 857, 859, 864, 865, 866, 873], "machin": [8, 9, 22, 23, 24, 25, 30, 31, 39, 45, 53, 58, 76, 81, 161, 164, 372, 426, 626, 633, 676, 679, 808, 815, 819, 833, 853, 856, 864, 866, 868, 869, 870, 871, 872], "rel": [8, 9, 22, 23, 24, 25, 53, 55, 58, 60, 65, 72, 76, 78, 81, 83, 88, 98, 132, 330, 347, 368, 373, 383, 452, 453, 518, 612, 615, 617, 618, 619, 631, 633, 635, 642, 667, 676, 679, 687, 699, 703, 749, 752, 767, 769, 816, 824, 838, 843, 866, 868], "project": [8, 9, 16, 21, 22, 23, 24, 25, 27, 28, 31, 94, 632, 659, 788, 808, 810, 811, 814, 815, 816, 817, 820, 821, 822, 840, 849, 851, 855, 856, 857, 860, 862, 864, 866, 869, 873, 874], "consist": [8, 9, 10, 22, 23, 24, 25, 27, 28, 66, 70, 236, 243, 269, 371, 372, 415, 425, 628, 633, 643, 668, 669, 755, 789, 790, 811, 819, 820, 824, 825, 831, 836, 845, 855, 867], "ad": [8, 9, 10, 22, 23, 24, 25, 53, 60, 76, 83, 91, 236, 269, 330, 347, 368, 377, 497, 498, 499, 588, 589, 628, 630, 632, 633, 635, 659, 669, 670, 698, 788, 793, 808, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 841, 843, 845, 849, 851, 856, 859, 865, 866], "home": [8, 9, 22, 23, 24, 25, 824], "95": [8, 10, 39, 53, 55, 58, 62, 69, 78, 80, 85, 106, 356, 368, 414, 611, 615, 619, 622, 631, 633, 639, 671, 736, 737], "builtin": [8, 815, 847, 849], "callabl": [8, 45, 53, 54, 68, 76, 77, 80, 91, 118, 119, 121, 162, 163, 195, 196, 209, 359, 361, 362, 369, 370, 371, 374, 414, 417, 419, 457, 480, 531, 535, 540, 542, 546, 547, 568, 597, 610, 614, 616, 621, 624, 626, 627, 630, 631, 636, 637, 711, 712, 713, 720, 721, 722, 724, 725, 726, 727, 767, 770, 780, 792, 803, 806, 823, 829, 835, 837, 845, 858, 859, 860, 861], "track": [8, 18, 27, 28, 40, 41, 806, 815, 816, 819, 835, 836, 859, 866], "properli": [8, 815, 818, 829, 831, 837, 840], "might": [8, 33, 54, 94, 175, 540, 626, 630, 812, 814, 815, 816, 824, 825, 827, 830, 831, 834, 837, 840, 841, 843, 845, 847, 848, 853], "_trace_graph": 8, "shown": [8, 25, 27, 68, 70, 91, 253, 276, 334, 368, 628, 814, 815, 816, 819, 822, 824, 825, 827, 829, 831, 832, 837, 838, 840, 841, 842, 845, 847, 851], "8507": 8, "1351": 8, "0069": 8, "85072625": 8, "13506091": 8, "00688289": 8, "resnet50_weight": 8, "torch_resnet_50": 8, "imagenet1k_v2": 8, "11ad3fa6": 8, "97": [8, 10, 39, 53, 55, 75, 78, 85, 222, 356, 368, 615, 628, 631, 736], "8m": 8, "8mb": 8, "bottleneck": [8, 855], "conv3": 8, "bn3": 8, "2048": [8, 589, 630], "resnet_50": 8, "ivy_resnet_50": 8, "3429": 8, "0408": 8, "0121": 8, "34288204": 8, "04077014": 8, "01212029": 8, "depend": [9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 32, 49, 50, 53, 54, 58, 64, 65, 73, 76, 81, 88, 89, 119, 125, 148, 216, 217, 218, 221, 222, 223, 224, 233, 234, 236, 239, 241, 257, 258, 259, 260, 269, 271, 274, 281, 282, 286, 287, 355, 368, 371, 372, 417, 425, 443, 591, 624, 625, 626, 628, 630, 632, 633, 640, 642, 657, 668, 669, 680, 681, 682, 683, 744, 749, 752, 762, 808, 810, 812, 814, 815, 816, 822, 825, 826, 828, 830, 834, 836, 837, 838, 839, 840, 843, 845, 851, 852, 856, 859, 864, 866, 867], "yet": [9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 43, 364, 366, 367, 375, 376, 380, 814, 815, 830, 851, 852, 859, 860, 861], "doc": [9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 42, 43, 76, 143, 324, 331, 332, 365, 368, 520, 625, 808, 809, 813, 814, 818, 827, 828, 831, 832, 840, 845, 848, 849, 859, 860, 861], "autofeatureextractor": [9, 27], "extractor": [9, 12, 14, 27, 43, 808], "hug": [9, 27, 859], "face": [9, 27, 809, 815, 819, 830, 831, 835, 843, 845, 859, 866, 872], "arch_nam": [9, 27], "microsoft": [9, 27, 856, 859, 860, 866, 871, 873], "feature_extractor": [9, 27], "23": [9, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 58, 62, 72, 75, 76, 77, 80, 85, 132, 231, 234, 251, 252, 253, 276, 278, 279, 280, 282, 289, 334, 335, 368, 371, 374, 383, 390, 391, 393, 403, 408, 409, 410, 414, 418, 463, 519, 525, 625, 628, 632, 633, 637, 640, 651, 653, 667, 671, 674, 682, 684, 685, 715, 722, 726, 735, 736, 737, 744, 808, 824, 840, 845], "980130": 9, "9342": 9, "980177": 9, "609": 9, "980207": 9, "1518": 9, "351203": 9, "placement": [9, 814], "390": [9, 22, 23, 24, 25], "inputs_jax": [9, 27], "last_hidden_st": [9, 27], "jax_forward": [9, 27], "jit_appli": 9, "63": [9, 10, 39, 43, 52, 69, 75, 80, 81, 114, 275, 282, 283, 371, 383, 393, 403, 414, 519, 628, 633, 637, 643, 663, 678, 715, 726, 755], "122": [9, 50, 164, 234, 628], "134": [9, 57, 633, 656, 675], "2x": [9, 27], "ipytest": 10, "panda": [10, 41, 43, 856, 863], "matplotlib": [10, 22, 23, 24, 25, 41, 42, 43, 46], "scikit": [10, 372, 443, 856], "learn": [10, 12, 14, 18, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 39, 41, 53, 55, 78, 372, 373, 443, 448, 541, 612, 615, 617, 618, 619, 630, 631, 636, 711, 712, 713, 792, 808, 809, 813, 814, 815, 818, 819, 825, 830, 831, 833, 835, 844, 853, 855, 856, 864, 868, 869, 870, 871, 872, 873], "cryptographi": 10, "frontend": [10, 575, 630, 769, 770, 773, 777, 780, 808, 813, 816, 818, 824, 825, 829, 830, 835, 839, 840, 843, 844, 846, 853, 860, 866], "sklearn": 10, "classification_report": 10, "model_select": 10, "train_test_split": 10, "dataset": [10, 27, 70, 808, 848, 859, 860], "load_breast_canc": 10, "pyplot": [10, 41, 42, 43, 46], "plt": [10, 41, 42, 43, 46], "pd": [10, 43], "functool": [10, 41, 829, 837, 847], "autoconfig": 10, "tqdm": [10, 22, 23, 24, 25, 41, 43, 808], "tqdm_notebook": 10, "These": [10, 34, 53, 76, 372, 374, 383, 425, 479, 518, 632, 633, 659, 668, 669, 808, 811, 813, 814, 815, 816, 819, 823, 825, 827, 828, 832, 833, 836, 837, 840, 845, 846, 848, 849, 850, 851, 853, 855, 856, 857, 860, 866, 870, 872, 873], "sole": [10, 39, 832, 841, 865, 866, 867], "re": [10, 16, 19, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 44, 46, 53, 54, 63, 76, 86, 96, 209, 315, 365, 372, 374, 446, 481, 482, 541, 627, 630, 633, 635, 640, 685, 703, 742, 744, 809, 810, 814, 815, 816, 817, 818, 819, 822, 825, 830, 835, 836, 837, 838, 839, 841, 843, 847, 850, 851, 854, 855, 856, 866], "test_jax_gpu": 10, "xla_bridg": [10, 41], "get_backend": [10, 833], "test_torch_gpu": 10, "is_avail": 10, "test_xgboost_gpu": 10, "capsi": 10, "load_diabet": 10, "y": [10, 27, 28, 39, 40, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 125, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 145, 148, 149, 150, 159, 161, 164, 176, 189, 193, 197, 202, 203, 204, 208, 210, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 330, 331, 332, 338, 346, 347, 348, 349, 350, 355, 357, 359, 363, 365, 368, 371, 372, 373, 374, 377, 383, 391, 393, 395, 396, 400, 403, 405, 409, 415, 422, 426, 432, 439, 446, 448, 449, 451, 452, 453, 454, 455, 465, 467, 476, 480, 488, 489, 490, 492, 496, 500, 501, 503, 511, 517, 518, 519, 520, 521, 524, 526, 527, 528, 530, 533, 536, 537, 540, 541, 543, 544, 545, 548, 549, 550, 554, 556, 557, 558, 560, 561, 564, 565, 570, 577, 578, 579, 582, 585, 586, 588, 589, 591, 593, 595, 596, 597, 601, 602, 605, 608, 609, 610, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 647, 649, 651, 653, 654, 655, 656, 663, 664, 665, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 681, 683, 684, 685, 687, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 717, 720, 721, 723, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 806, 808, 821, 823, 826, 827, 835, 837, 838, 840, 841, 843, 845, 847, 859], "target": [10, 12, 14, 20, 22, 23, 25, 27, 28, 30, 31, 32, 33, 34, 43, 53, 76, 191, 373, 448, 449, 450, 451, 452, 453, 454, 455, 627, 767, 788, 790, 796, 808, 812, 815, 818, 821, 830, 831, 838, 839, 844, 848, 849, 850, 860, 861, 862, 864, 865, 866, 869, 871, 872], "xgb_model": 10, "xgbregressor": 10, "tree_method": 10, "caus": [10, 373, 450, 815, 816, 819, 821, 823, 824, 825, 827, 836, 838, 840, 851], "either": [10, 22, 23, 32, 33, 34, 35, 39, 45, 52, 53, 54, 57, 66, 70, 75, 76, 77, 80, 81, 108, 111, 114, 119, 129, 130, 140, 216, 217, 218, 219, 224, 234, 236, 237, 239, 241, 243, 250, 251, 257, 258, 259, 260, 261, 269, 278, 280, 281, 283, 286, 287, 333, 355, 368, 371, 377, 383, 393, 403, 413, 414, 418, 502, 519, 520, 540, 560, 568, 569, 577, 597, 622, 624, 625, 628, 630, 632, 633, 636, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 659, 673, 678, 681, 685, 711, 712, 713, 753, 754, 759, 761, 774, 788, 789, 790, 797, 810, 814, 815, 816, 821, 822, 823, 825, 826, 827, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 845, 848, 851, 852, 860, 866], "fit": [10, 60, 83, 635, 701, 814, 837, 845, 862, 863, 866], "consol": [10, 571, 630, 808, 816, 831, 840, 847, 852], "gpu_hist": 10, "captur": [10, 835, 840, 850, 867], "readouterr": 10, "err": 10, "99": [10, 39, 52, 53, 55, 73, 75, 85, 131, 218, 233, 356, 368, 588, 615, 625, 628, 630, 631, 637, 643, 718, 726, 736, 755], "implement": [10, 18, 19, 27, 29, 33, 41, 44, 50, 51, 53, 64, 65, 73, 74, 76, 81, 88, 93, 148, 162, 163, 176, 195, 196, 210, 216, 217, 218, 221, 222, 223, 224, 233, 234, 236, 239, 241, 243, 257, 258, 259, 260, 269, 271, 274, 278, 281, 282, 286, 287, 331, 332, 355, 368, 372, 383, 424, 425, 524, 525, 546, 547, 626, 627, 628, 630, 632, 633, 641, 642, 643, 659, 668, 669, 670, 678, 687, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 773, 775, 797, 808, 812, 814, 818, 819, 820, 821, 823, 825, 826, 828, 829, 830, 832, 833, 834, 836, 838, 840, 841, 843, 845, 847, 848, 849, 850, 851, 853, 863, 864, 865, 866, 869, 872, 873], "tabular": 10, "pulsar": 10, "emploi": [10, 872], "remov": [10, 16, 17, 20, 25, 27, 28, 30, 58, 70, 81, 633, 635, 636, 637, 667, 673, 687, 705, 711, 712, 728, 802, 805, 808, 814, 821, 822, 824, 825, 828, 833, 839, 840, 843, 850, 859, 860, 866], "column": [10, 43, 53, 58, 76, 81, 93, 94, 128, 143, 324, 365, 372, 374, 381, 383, 425, 431, 443, 464, 469, 471, 472, 476, 478, 511, 517, 518, 625, 633, 668, 669, 674, 680, 682, 683, 688, 772, 787], "well": [10, 27, 28, 41, 42, 43, 77, 373, 452, 554, 630, 633, 682, 774, 808, 810, 814, 816, 822, 824, 825, 829, 836, 837, 838, 840, 849, 850, 860, 865, 866, 867, 871], "standard": [10, 52, 58, 61, 62, 66, 75, 84, 85, 89, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 372, 374, 383, 415, 445, 488, 492, 518, 610, 625, 626, 628, 630, 633, 635, 638, 639, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 733, 736, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 774, 787, 791, 801, 802, 808, 811, 818, 819, 820, 823, 825, 828, 832, 836, 839, 840, 841, 851, 854, 860, 862, 864, 865, 868, 869, 871], "while": [10, 27, 28, 35, 53, 57, 70, 76, 80, 93, 94, 99, 121, 137, 175, 243, 244, 264, 265, 343, 368, 371, 372, 374, 416, 417, 439, 482, 483, 517, 624, 625, 626, 628, 632, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 745, 757, 760, 770, 812, 814, 815, 816, 820, 821, 822, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 847, 849, 850, 851, 852, 855, 856, 859, 866, 872, 873], "extra": [10, 28, 70, 99, 118, 610, 624, 630, 820, 825, 827, 834, 836, 837, 838, 843, 845, 859, 860, 863, 868], "dimens": [10, 49, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 72, 76, 77, 80, 81, 82, 83, 85, 86, 87, 89, 90, 96, 98, 99, 102, 109, 113, 137, 141, 142, 312, 323, 325, 326, 327, 328, 331, 332, 336, 337, 345, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 385, 387, 388, 390, 391, 392, 394, 399, 400, 404, 408, 409, 410, 411, 414, 415, 417, 418, 420, 422, 425, 434, 443, 448, 452, 458, 459, 460, 464, 470, 481, 482, 483, 484, 486, 488, 492, 497, 498, 499, 502, 506, 508, 511, 521, 523, 524, 525, 526, 527, 528, 541, 542, 543, 545, 552, 586, 590, 610, 622, 625, 630, 632, 633, 634, 635, 636, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 663, 664, 665, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 690, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 711, 712, 713, 739, 740, 741, 743, 745, 746, 747, 748, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 784, 788, 791, 827, 829, 835, 837, 838, 840, 843, 845, 848], "label": [10, 41, 42, 43, 53, 59, 76, 82, 373, 448, 449, 451, 452, 453, 454, 455, 634, 692, 693, 694, 808, 814, 819, 837, 844, 845, 846, 850, 852, 866], "load_data": 10, "standardscal": 10, "df": [10, 43], "read_csv": [10, 43], "delimit": [10, 848], "drop": [10, 43, 53, 76, 327, 365, 373, 374, 452, 489, 787, 788, 815, 851], "sc": 10, "fit_transform": 10, "prepare_data": 10, "tupl": [10, 45, 48, 49, 50, 52, 53, 54, 57, 58, 60, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 96, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 123, 124, 130, 132, 136, 137, 139, 143, 145, 149, 150, 151, 162, 163, 164, 168, 169, 175, 176, 182, 192, 195, 196, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 312, 317, 321, 324, 330, 331, 332, 333, 334, 336, 337, 338, 341, 342, 344, 345, 346, 347, 351, 352, 353, 354, 355, 357, 358, 359, 360, 365, 368, 370, 371, 372, 374, 377, 378, 379, 381, 383, 390, 391, 392, 394, 395, 396, 397, 399, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 425, 426, 430, 434, 436, 441, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 475, 480, 486, 488, 489, 490, 492, 494, 497, 499, 500, 501, 502, 503, 505, 506, 508, 509, 510, 518, 519, 520, 521, 523, 524, 525, 526, 527, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 577, 587, 588, 589, 590, 591, 593, 594, 595, 596, 609, 610, 611, 612, 613, 615, 617, 620, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 662, 663, 664, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 685, 686, 687, 690, 692, 693, 694, 695, 696, 697, 699, 700, 702, 703, 704, 705, 706, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 721, 722, 723, 725, 726, 729, 730, 731, 732, 734, 735, 736, 737, 739, 742, 743, 745, 746, 747, 748, 749, 750, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 787, 788, 790, 801, 802, 820, 825, 832, 833, 836, 838, 840, 845, 848, 849, 851, 859, 860, 861], "expand_dim": [10, 24, 27, 28, 43, 45, 60, 83, 632, 635, 654, 808, 837, 845, 848, 860], "astyp": [10, 12, 14, 19, 41, 42, 43, 50, 57, 73, 80, 626, 632, 648, 650, 651, 654, 808, 825, 836, 837, 843, 861], "csv": [10, 43, 808], "instanc": [10, 18, 24, 27, 28, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 161, 164, 167, 168, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 408, 409, 410, 414, 415, 417, 418, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 583, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 632, 633, 634, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 780, 785, 806, 814, 815, 816, 819, 820, 821, 825, 827, 828, 829, 830, 832, 833, 834, 835, 836, 840, 848, 849, 850, 853, 859, 867], "117564": 10, "variou": [10, 21, 31, 33, 39, 808, 811, 814, 815, 816, 819, 824, 825, 828, 829, 832, 834, 835, 837, 838, 839, 840, 852, 862, 864, 865, 866, 869, 872], "structur": [10, 28, 70, 73, 99, 161, 164, 538, 630, 637, 718, 727, 808, 814, 816, 817, 820, 823, 833, 838, 839, 840, 841, 848, 849, 865, 866], "allow": [10, 25, 27, 28, 39, 53, 66, 76, 89, 133, 274, 372, 383, 444, 521, 525, 568, 625, 628, 630, 642, 643, 751, 758, 772, 773, 774, 775, 789, 790, 802, 806, 808, 814, 816, 817, 820, 821, 824, 825, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 845, 847, 851, 853, 856, 859, 860, 861, 864, 866, 870, 871], "navig": [10, 812, 815, 816, 818, 830], "choic": [10, 28, 45, 53, 66, 76, 89, 372, 374, 443, 463, 643, 760, 762, 808, 815, 824, 836, 837, 848, 857, 860, 866, 873], "rerun": [10, 41], "most": [10, 18, 27, 28, 70, 72, 93, 96, 137, 372, 425, 581, 604, 625, 630, 633, 668, 669, 805, 808, 813, 814, 815, 820, 823, 824, 825, 826, 830, 832, 833, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 856, 866, 867, 869, 870, 872, 873], "method": [10, 18, 27, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 148, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 372, 373, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 538, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 633, 634, 637, 640, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 725, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 780, 786, 787, 788, 789, 790, 814, 816, 819, 820, 824, 825, 826, 827, 828, 832, 840, 841, 845, 846, 849, 850, 851, 859, 860, 861, 867, 873], "signific": [10, 53, 373, 453, 842, 851, 855, 856, 866], "object": [10, 18, 23, 25, 27, 41, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 102, 103, 125, 129, 130, 140, 152, 161, 164, 172, 175, 210, 268, 505, 553, 569, 613, 625, 626, 627, 630, 631, 637, 639, 717, 718, 719, 721, 722, 723, 729, 730, 731, 732, 739, 767, 769, 770, 777, 778, 779, 785, 786, 788, 789, 790, 797, 801, 808, 820, 821, 823, 824, 833, 834, 837, 838, 840, 843, 847, 850, 858, 859, 860, 861, 866, 872], "logist": 10, "booster": 10, "gblinear": 10, "n_estim": 10, "learning_r": 10, "reg_lambda": 10, "reg_alpha": 10, "base_margin": 10, "xgb_cl": 10, "ivy_cl": 10, "n": [10, 39, 42, 43, 44, 46, 49, 52, 53, 57, 58, 60, 62, 63, 66, 67, 75, 76, 80, 81, 83, 85, 86, 89, 90, 93, 98, 135, 141, 142, 143, 216, 286, 288, 324, 325, 337, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 385, 386, 387, 388, 393, 394, 399, 400, 403, 404, 405, 413, 414, 415, 416, 418, 426, 427, 434, 438, 440, 442, 447, 448, 460, 466, 469, 473, 475, 486, 495, 497, 498, 499, 502, 504, 505, 506, 507, 508, 511, 518, 528, 625, 628, 632, 633, 635, 637, 639, 640, 643, 644, 645, 646, 647, 648, 650, 652, 654, 659, 664, 667, 671, 673, 674, 675, 676, 677, 678, 679, 680, 683, 684, 687, 688, 689, 690, 697, 698, 700, 706, 710, 722, 735, 736, 737, 743, 757, 759, 760, 761, 762, 763, 764, 788, 791, 801, 808, 818, 822, 824, 840, 852, 860], "436": 10, "48": [10, 39, 43, 52, 53, 75, 76, 77, 78, 85, 108, 218, 241, 283, 371, 391, 392, 393, 403, 409, 410, 413, 556, 611, 615, 622, 628, 630, 631, 633, 637, 643, 678, 715, 736, 755], "wai": [10, 16, 17, 18, 21, 23, 27, 31, 33, 39, 93, 96, 808, 810, 813, 814, 815, 819, 820, 821, 822, 824, 825, 826, 836, 837, 838, 840, 843, 847, 848, 849, 850, 851, 852, 855, 856, 861, 868, 872, 873], "t4": 10, "higher": [10, 53, 76, 372, 374, 383, 429, 441, 447, 458, 459, 460, 528, 787, 825, 836, 844, 845, 850, 851, 863, 866, 867, 870, 872, 873], "tier": [10, 817], "reduc": [10, 53, 54, 58, 63, 66, 67, 70, 76, 77, 81, 86, 89, 90, 209, 331, 332, 352, 368, 369, 383, 523, 524, 525, 526, 527, 528, 542, 627, 630, 633, 640, 643, 644, 680, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 801, 802, 824, 829, 837, 843, 845, 847, 859, 864, 868, 869, 870], "lower": [10, 43, 49, 52, 53, 58, 62, 75, 76, 81, 85, 128, 141, 267, 303, 309, 315, 324, 325, 363, 365, 383, 521, 522, 528, 625, 628, 633, 639, 663, 669, 670, 676, 737, 774, 787, 808, 816, 825, 827, 837, 840, 845, 851, 853, 862, 863, 864, 866, 867, 872, 873], "although": [10, 633, 681, 808, 810, 820, 822, 823, 837, 843, 864, 866], "experi": [10, 16, 43, 815, 829, 840, 846, 848, 851], "demonstr": [10, 24, 27, 28, 42, 817, 825, 827, 829, 847], "still": [10, 21, 23, 24, 27, 28, 30, 31, 34, 58, 70, 81, 633, 683, 772, 814, 815, 816, 820, 821, 825, 828, 829, 831, 833, 836, 837, 840, 843, 849, 851, 856, 859, 860, 863, 866, 872], "substanti": [10, 811, 816, 820, 825, 840, 856, 866], "dive": [10, 16, 18, 27, 39, 809, 810, 813, 814, 816, 819, 823, 825, 831, 838, 844, 847, 848, 851, 872], "stuff": 10, "tool": [10, 18, 27, 28, 808, 815, 816, 827, 831, 846, 850, 851, 854, 857, 860, 864, 865, 866, 867, 869, 872, 873], "25": [10, 39, 41, 42, 43, 52, 53, 54, 58, 59, 62, 66, 69, 75, 76, 77, 80, 81, 84, 85, 89, 98, 99, 114, 133, 219, 220, 230, 236, 238, 249, 254, 269, 274, 277, 279, 282, 283, 284, 289, 311, 365, 373, 383, 414, 449, 452, 519, 528, 556, 557, 573, 588, 625, 628, 630, 633, 634, 637, 638, 643, 646, 663, 667, 672, 688, 693, 715, 722, 726, 733, 735, 736, 737, 754, 755, 757, 762, 817, 823, 835], "201": [10, 75, 76, 221, 393, 628], "20x": 10, "24": [10, 20, 39, 41, 52, 53, 58, 66, 75, 76, 77, 80, 81, 85, 98, 231, 239, 254, 256, 269, 279, 280, 283, 345, 348, 368, 371, 383, 390, 392, 393, 403, 408, 409, 410, 414, 418, 519, 541, 542, 628, 630, 633, 637, 643, 646, 667, 674, 678, 715, 726, 735, 736, 737, 753, 755, 769, 829, 848], "ivy_pr": 10, "xgb_pred": 10, "ivyclassifi": 10, "nxgbclassifi": 10, "precis": [10, 53, 58, 76, 81, 161, 249, 269, 276, 283, 342, 368, 372, 383, 426, 518, 581, 604, 626, 628, 630, 633, 669, 670, 674, 681, 683, 684, 690, 780, 824, 837, 842, 843, 870], "recal": 10, "f1": [10, 825], "score": [10, 57, 80, 373, 455, 632, 660, 662, 808], "94": [10, 39, 52, 53, 55, 62, 75, 76, 78, 85, 203, 279, 280, 356, 368, 403, 615, 627, 631, 737], "106597": 10, "33": [10, 39, 41, 42, 52, 62, 66, 75, 76, 77, 78, 80, 222, 223, 230, 279, 371, 372, 374, 383, 391, 413, 414, 444, 463, 519, 537, 588, 615, 628, 630, 631, 632, 633, 637, 643, 655, 656, 678, 732, 735, 755, 762, 772, 775], "10967": 10, "accuraci": [10, 41, 43, 46, 371, 415, 825], "macro": 10, "avg": [10, 371, 390, 392, 413], "96": [10, 39, 53, 55, 75, 76, 77, 85, 233, 254, 286, 356, 368, 371, 393, 541, 542, 615, 628, 630, 631, 633, 643, 678, 737, 755], "67": [10, 39, 52, 53, 54, 58, 75, 76, 77, 80, 85, 98, 234, 239, 279, 280, 282, 289, 300, 304, 363, 383, 414, 519, 541, 542, 588, 614, 616, 628, 630, 631, 633, 671, 737], "73": [10, 39, 52, 81, 283, 383, 519, 633, 639, 663, 736, 840], "92": [10, 39, 43, 53, 54, 85, 356, 368, 609, 619, 631, 633, 665, 736, 737], "28": [10, 25, 27, 28, 39, 41, 43, 46, 52, 53, 57, 61, 75, 76, 77, 80, 81, 85, 89, 235, 238, 259, 275, 371, 372, 393, 403, 424, 525, 556, 611, 628, 630, 631, 632, 633, 638, 643, 647, 649, 651, 653, 654, 656, 678, 733, 735, 736, 737, 755, 759, 808], "27": [10, 39, 41, 46, 52, 53, 58, 62, 75, 76, 77, 80, 81, 85, 89, 230, 231, 234, 274, 282, 283, 342, 368, 371, 393, 403, 557, 587, 628, 630, 633, 637, 643, 673, 678, 688, 715, 722, 736, 755, 759, 772, 874], "852": [10, 632, 656], "449": 10, "47": [10, 39, 43, 52, 53, 58, 62, 75, 76, 77, 78, 80, 85, 225, 283, 371, 383, 391, 409, 410, 519, 541, 542, 615, 628, 630, 631, 632, 633, 639, 656, 671, 736, 737], "29": [10, 39, 41, 43, 46, 58, 75, 77, 78, 80, 85, 224, 383, 414, 519, 541, 542, 613, 617, 628, 630, 631, 633, 671, 735, 736, 737], "82": [10, 39, 41, 46, 47, 52, 78, 85, 109, 222, 383, 519, 611, 631, 736, 737, 812, 830], "68": [10, 39, 43, 46, 52, 85, 109, 131, 224, 371, 393, 403, 622, 625, 628, 633, 638, 689, 733, 736, 737], "nevertheless": 10, "fall": [10, 41, 792, 814, 825, 844], "short": [10, 39, 53, 76, 419, 632, 657, 658, 814, 816, 825, 845, 849], "blaze": 10, "31": [10, 22, 23, 24, 25, 39, 41, 42, 46, 47, 52, 53, 75, 76, 77, 80, 85, 109, 114, 134, 230, 261, 269, 371, 374, 383, 392, 393, 463, 519, 536, 622, 625, 628, 630, 736, 737, 848], "03": [10, 23, 42, 49, 52, 54, 55, 75, 76, 78, 85, 134, 234, 259, 339, 340, 588, 589, 612, 617, 625, 628, 630, 631, 633, 672, 736], "62": [10, 39, 41, 47, 69, 75, 76, 85, 109, 254, 282, 628, 638, 639, 733, 735, 737], "36": [10, 39, 43, 52, 53, 57, 66, 76, 77, 81, 224, 279, 280, 345, 368, 371, 372, 383, 393, 403, 429, 519, 541, 542, 589, 628, 630, 633, 637, 643, 656, 675, 678, 688, 725, 755], "35": [10, 39, 47, 57, 58, 69, 75, 76, 80, 81, 85, 109, 224, 283, 371, 393, 403, 628, 632, 633, 640, 643, 656, 664, 671, 736, 744, 755], "37": [10, 22, 23, 24, 25, 39, 47, 52, 53, 69, 75, 76, 80, 98, 109, 222, 230, 279, 282, 286, 379, 414, 509, 628, 632, 633, 637, 639, 656, 675, 722, 736, 824], "surpass": 10, "remark": [10, 851], "artifici": 10, "simpli": [10, 18, 27, 28, 30, 39, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 628, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 808, 814, 815, 816, 820, 821, 822, 824, 825, 826, 827, 828, 830, 832, 833, 836, 837, 838, 840, 843, 845, 849, 850, 851, 853, 867, 872], "stack": [10, 20, 22, 23, 24, 25, 30, 39, 43, 53, 58, 60, 70, 76, 81, 83, 98, 141, 142, 325, 365, 372, 374, 425, 464, 465, 467, 476, 496, 575, 584, 607, 625, 630, 633, 635, 637, 665, 667, 668, 669, 670, 672, 673, 675, 676, 677, 679, 680, 681, 683, 684, 687, 714, 724, 725, 788, 808, 813, 819, 836, 845, 862, 864, 871, 872], "x_doubl": 10, "vstack": [10, 53, 76, 374, 476], "y_doubl": 10, "explor": [10, 12, 14, 18, 22, 23, 24, 27, 28, 33, 34, 35, 814, 815, 816, 825, 830, 843, 846, 850, 866, 869], "235128": 10, "41": [10, 22, 23, 24, 25, 39, 41, 46, 52, 53, 58, 75, 76, 77, 80, 81, 109, 223, 231, 238, 269, 283, 371, 372, 379, 383, 391, 409, 414, 436, 509, 519, 536, 537, 622, 628, 630, 633, 643, 663, 671, 761], "315": [10, 275, 628], "40": [10, 39, 41, 43, 53, 54, 75, 76, 77, 85, 89, 99, 230, 234, 254, 283, 345, 368, 371, 374, 391, 393, 403, 409, 485, 541, 543, 548, 549, 573, 588, 610, 613, 628, 630, 631, 633, 637, 643, 672, 678, 723, 736, 755, 759, 808, 824], "879": 10, "65": [10, 39, 41, 43, 46, 75, 78, 85, 230, 269, 556, 611, 628, 630, 631, 633, 643, 678, 736, 737, 755, 824], "380": 10, "seem": [10, 814, 815, 843, 849, 850, 851, 866], "observ": [10, 53, 76, 383, 517, 518, 816, 825, 829, 845, 859, 868], "examin": 10, "600": [10, 43, 77, 80, 371, 395, 396, 549, 824], "plot": [10, 42, 808, 866], "conduct": [10, 870], "num_boosting_round": 10, "300": [10, 75, 77, 80, 279, 371, 395, 396, 549, 573, 628, 630, 633, 672, 840], "400": [10, 77, 80, 371, 395, 396, 549, 573, 630, 633, 672], "500": [10, 53, 76, 77, 80, 371, 372, 395, 396, 447, 549, 630], "ivy_elapsed_tim": 10, "xgb_elapsed_tim": 10, "ivy_tim": 10, "partial": [10, 53, 70, 76, 162, 163, 195, 196, 345, 368, 371, 372, 374, 383, 419, 434, 441, 481, 482, 483, 484, 525, 546, 547, 616, 626, 627, 630, 631, 773, 775, 789, 790, 816, 822, 843], "append": [10, 42, 43, 53, 58, 70, 76, 228, 337, 368, 628, 633, 635, 667, 673, 698, 802, 808, 824, 840, 845, 848, 863], "xgb_time": 10, "fivethirtyeight": 10, "legend": [10, 43, 814], "loc": [10, 863], "best": [10, 41, 568, 630, 802, 806, 808, 809, 812, 813, 814, 815, 816, 818, 824, 825, 829, 830, 839, 840, 841, 852, 869, 870], "xlabel": 10, "ylabel": 10, "obviou": [10, 848, 866], "trend": 10, "longer": [10, 815, 825, 836, 840, 866], "gap": 10, "between": [10, 16, 17, 22, 32, 33, 34, 39, 52, 53, 54, 57, 58, 59, 60, 64, 70, 75, 76, 80, 81, 82, 83, 99, 122, 161, 224, 237, 272, 288, 330, 347, 349, 368, 371, 372, 373, 374, 383, 395, 396, 397, 408, 409, 410, 418, 424, 428, 449, 450, 451, 452, 453, 454, 455, 480, 528, 625, 626, 628, 632, 634, 635, 637, 639, 641, 655, 678, 692, 693, 694, 698, 706, 720, 735, 746, 747, 748, 773, 780, 792, 808, 820, 821, 825, 827, 832, 833, 834, 836, 837, 838, 839, 840, 843, 844, 846, 847, 848, 850, 855, 859, 860, 862, 863, 865, 866, 867, 872], "within": [10, 12, 14, 18, 27, 28, 48, 53, 76, 122, 330, 347, 368, 371, 377, 408, 409, 410, 415, 418, 458, 459, 460, 502, 625, 639, 737, 802, 811, 814, 816, 817, 820, 824, 825, 837, 838, 839, 840, 849, 851, 860, 862, 863, 867], "slightli": [10, 308, 365, 823, 837, 840, 845, 849], "paramet": [10, 14, 25, 27, 28, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 568, 569, 572, 573, 576, 577, 578, 579, 582, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 787, 788, 789, 790, 791, 792, 793, 797, 798, 801, 802, 804, 806, 808, 814, 820, 828, 829, 832, 837, 838, 840, 841, 845, 847, 848, 859, 860, 861, 867], "x_train": 10, "y_train": [10, 43, 808], "train_siz": [10, 41], "random_st": [10, 372, 430], "51": [10, 39, 43, 52, 53, 75, 76, 77, 85, 231, 269, 282, 372, 393, 447, 628, 737, 772], "clear": [10, 191, 627, 814, 816, 821, 825, 826, 827, 837, 843, 845, 847, 855, 856, 857, 866], "amount": [10, 59, 82, 211, 627, 634, 692, 693, 694, 802, 815, 824, 826, 838], "widen": 10, "impress": 10, "outcom": [10, 53, 76, 333, 345, 368, 802], "howev": [10, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 58, 81, 243, 286, 287, 374, 377, 488, 497, 499, 576, 628, 630, 633, 681, 683, 797, 814, 815, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 836, 837, 838, 840, 843, 845, 847, 848, 849, 850, 851, 856, 859, 865, 866, 872], "tend": 10, "outperform": 10, "proce": [10, 814, 815], "95933": 10, "9874": 10, "105807": 10, "70": [10, 39, 41, 53, 76, 77, 371, 393, 403, 549, 573, 633, 643, 678, 755, 856], "77": [10, 39, 43, 77, 589, 633, 643, 678, 755], "93": [10, 39, 53, 75, 77, 85, 194, 283, 356, 368, 541, 542, 627, 630, 736, 737], "wrap": [10, 18, 20, 27, 28, 30, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 584, 587, 588, 589, 590, 591, 593, 595, 596, 607, 609, 611, 612, 615, 617, 618, 619, 620, 630, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 808, 818, 819, 820, 821, 823, 824, 825, 826, 828, 829, 832, 833, 836, 837, 840, 845, 847, 850, 851, 853, 859, 860, 862, 866, 867, 872, 873], "balanc": 10, "breast": 10, "cancer": 10, "53": [10, 22, 39, 58, 62, 75, 80, 155, 211, 241, 414, 614, 616, 626, 627, 631, 633, 638, 671, 733, 737], "return_x_i": 10, "x_test": 10, "y_test": 10, "test_siz": [10, 41], "76": [10, 20, 39, 52, 53, 66, 73, 75, 76, 85, 164, 218, 234, 282, 318, 365, 403, 626, 628, 633, 637, 643, 685, 722, 736, 755], "87": [10, 39, 78, 80, 230, 259, 383, 414, 519, 611, 628, 631, 772, 830], "171": [10, 58, 633, 671, 772], "90": [10, 39, 41, 43, 52, 53, 75, 76, 235, 275, 279, 356, 368, 374, 383, 486, 519, 628, 633, 643, 678, 755, 802, 856], "86": [10, 39, 62, 76, 85, 371, 383, 403, 519, 611, 631, 736, 737], "88": [10, 39, 78, 85, 108, 383, 519, 615, 622, 631, 633, 639, 643, 678, 737, 755], "perfectli": [10, 774, 857], "align": [10, 53, 70, 76, 371, 372, 407, 423, 632, 661, 802, 811, 815, 824, 837, 839, 845, 847, 853, 872], "gain": [10, 787, 816, 817, 819, 844, 849, 866], "combin": [10, 33, 53, 70, 76, 99, 371, 383, 405, 416, 518, 546, 547, 630, 633, 664, 673, 816, 820, 823, 824, 825, 827, 829, 833, 840, 850, 866], "build": [11, 15, 16, 18, 25, 27, 28, 31, 32, 33, 34, 39, 41, 46, 64, 70, 99, 641, 745, 746, 747, 748, 788, 789, 790, 808, 809, 815, 818, 824, 825, 833, 835, 844, 846, 849, 850, 851, 853, 856, 860, 864, 866, 868, 871, 872, 873], "timm": [11, 12, 16, 27, 28, 808, 860], "seen": [12, 14, 19, 25, 27, 372, 378, 431, 506, 553, 630, 797, 824, 825, 827, 829, 837, 840, 845, 847, 848, 855, 856, 872], "veri": [12, 20, 27, 28, 30, 52, 75, 270, 330, 347, 368, 628, 633, 681, 774, 813, 814, 815, 816, 822, 823, 825, 826, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 843, 846, 848, 849, 850, 851, 855, 856, 862, 863, 864, 866, 867, 868, 871, 872, 873], "guid": [12, 25, 808, 809, 814, 815, 816, 822, 831, 837, 839, 872], "focu": [12, 25, 814, 835, 864, 865, 868, 873], "more": [12, 15, 16, 18, 19, 20, 23, 25, 27, 28, 29, 30, 39, 41, 42, 43, 47, 52, 53, 58, 60, 64, 69, 75, 76, 81, 83, 87, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 149, 241, 243, 259, 274, 287, 291, 296, 297, 299, 359, 363, 369, 372, 373, 374, 420, 422, 434, 436, 439, 452, 458, 459, 460, 465, 486, 576, 622, 625, 626, 628, 630, 633, 635, 641, 667, 673, 676, 679, 681, 683, 690, 699, 706, 745, 746, 747, 748, 774, 784, 802, 808, 810, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 860, 861, 864, 865, 866, 867, 868, 869, 872, 873], "involv": [12, 15, 16, 23, 25, 50, 73, 176, 219, 236, 243, 269, 274, 626, 628, 802, 809, 817, 818, 824, 825, 827, 838, 843, 850, 856, 866, 872], "develop": [12, 26, 27, 28, 808, 809, 810, 811, 812, 813, 814, 815, 816, 819, 822, 824, 830, 839, 841, 851, 853, 855, 856, 857, 859, 860, 864, 865, 866, 867, 868, 871, 872, 873], "usual": [12, 14, 44, 236, 269, 628, 801, 815, 819, 825, 837, 840, 843], "directli": [12, 14, 18, 21, 25, 27, 28, 31, 371, 372, 407, 431, 637, 726, 808, 814, 815, 816, 817, 819, 820, 823, 824, 825, 826, 828, 831, 833, 834, 836, 837, 838, 841, 842, 845, 847, 849, 850, 851, 852, 857, 859, 860, 861, 870, 871, 872], "case": [12, 14, 20, 22, 27, 28, 30, 31, 32, 33, 41, 48, 49, 53, 54, 60, 66, 70, 72, 76, 77, 83, 93, 94, 99, 124, 135, 162, 163, 190, 195, 196, 203, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 244, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 343, 345, 355, 368, 371, 373, 374, 377, 378, 384, 395, 396, 397, 417, 448, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 485, 486, 492, 495, 497, 499, 506, 529, 546, 547, 551, 558, 572, 573, 574, 625, 626, 627, 628, 630, 633, 635, 637, 643, 681, 687, 698, 699, 700, 702, 704, 705, 707, 709, 717, 723, 756, 757, 758, 759, 760, 761, 762, 772, 773, 792, 802, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 856, 859, 860, 861, 865, 869], "mlp": 12, "mixer": 12, "onli": [12, 14, 27, 28, 33, 39, 41, 43, 45, 48, 49, 52, 53, 58, 60, 62, 70, 72, 75, 76, 81, 83, 85, 93, 96, 98, 114, 134, 174, 175, 204, 264, 265, 270, 276, 308, 338, 345, 365, 368, 371, 372, 374, 378, 383, 394, 407, 417, 426, 431, 445, 447, 458, 459, 460, 470, 504, 505, 521, 535, 622, 625, 626, 627, 628, 630, 632, 633, 635, 637, 639, 640, 642, 643, 659, 673, 680, 683, 684, 699, 702, 714, 715, 721, 722, 724, 725, 726, 731, 732, 735, 736, 737, 740, 741, 751, 757, 760, 770, 772, 773, 775, 788, 792, 801, 806, 808, 809, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 833, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 855, 859, 860, 865, 866, 867, 872, 873], "retriev": [12, 14, 18, 531, 553, 578, 630, 816, 837], "mlp_encod": [12, 27, 28, 808, 860], "create_model": [12, 27, 28, 808, 860], "mixer_b16_224": [12, 27, 28, 808, 860], "nois": [12, 14, 27, 28, 808, 859, 860], "randn": [12, 14, 27, 28, 374, 492, 808, 860], "tf_mlp_encod": [12, 27, 28], "output_torch": [12, 14], "output_tf": [12, 14], "output_dens": [12, 27, 28, 808], "dens": [12, 25, 27, 28, 312, 365, 788, 808], "unit": [12, 27, 28, 53, 69, 76, 93, 94, 106, 108, 109, 110, 111, 112, 113, 114, 291, 292, 295, 299, 301, 302, 305, 306, 307, 363, 500, 501, 622, 808, 815, 819, 825, 837, 838, 840, 851, 867, 870], "activ": [12, 25, 27, 28, 53, 54, 57, 68, 76, 80, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 291, 292, 293, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 591, 632, 659, 662, 787, 788, 806, 808, 815, 816, 825, 831, 841, 842, 849, 860, 866, 869], "mention": [12, 14, 27, 28, 33, 814, 815, 816, 820, 827, 832, 833, 836, 837, 840, 843, 856, 861, 866], "basic": [12, 14, 18, 21, 25, 27, 28, 31, 34, 374, 487, 808, 809, 814, 827, 840], "fulli": [12, 14, 16, 17, 20, 25, 27, 28, 41, 53, 76, 383, 525, 788, 808, 820, 825, 832, 835, 843, 845, 846, 847, 848, 849, 850, 851, 857, 861, 864, 865, 866, 872, 873], "trainabl": [12, 14, 18, 24, 25, 27, 28, 45, 785, 789, 790, 793, 808, 828, 846, 848, 849, 860, 861], "fine": [12, 14, 27, 28, 815, 816, 825, 827, 837, 847, 850, 872], "tune": [12, 14, 27, 28, 871, 872], "train": [12, 14, 25, 27, 28, 44, 53, 55, 57, 76, 78, 80, 96, 371, 372, 377, 395, 396, 397, 444, 497, 499, 611, 612, 617, 631, 632, 655, 657, 659, 662, 787, 788, 789, 790, 791, 808, 823, 826, 833, 848, 849, 850, 851, 857, 860, 864, 865, 870, 872, 873], "ground": [12, 14, 373, 449, 767, 769, 780, 812, 830, 837, 840, 855], "ret": [12, 14, 27, 28, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 159, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 205, 208, 209, 210, 211, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 427, 432, 434, 437, 439, 442, 445, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 568, 569, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 720, 721, 722, 723, 724, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 785, 790, 792, 797, 802, 804, 808, 825, 826, 828, 829, 835, 836, 837, 838, 841, 845, 850, 860], "op": [12, 18, 39, 784, 797, 806, 841, 845, 851], "eagertensor": [12, 18, 39, 797, 838], "readi": [12, 14, 19, 20, 21, 29, 30, 31, 32, 33, 34, 41, 43, 814, 815], "deepmind": [13, 857], "perceiverio": [13, 857], "backbon": [13, 41, 808, 845, 848], "TO": [13, 15, 26], "replac": [13, 15, 26, 42, 52, 53, 54, 60, 62, 70, 75, 76, 77, 83, 85, 128, 270, 306, 309, 363, 365, 374, 485, 488, 492, 572, 573, 577, 625, 628, 630, 635, 639, 695, 734, 772, 816, 822, 823, 825, 826, 834, 837, 840, 847, 850, 851, 856, 860, 873], "efficientnet": 14, "include_top": [14, 808], "eff_encod": [14, 808], "applic": [14, 16, 41, 43, 46, 53, 57, 76, 80, 96, 372, 447, 632, 633, 637, 643, 659, 662, 687, 720, 721, 722, 726, 727, 759, 761, 808, 815, 824, 825, 826, 834, 849, 863, 864, 866, 868, 870, 872], "efficientnet_v2": [14, 808], "efficientnetv2b0": [14, 808], "data": [14, 22, 23, 24, 25, 28, 33, 41, 43, 46, 47, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 65, 66, 67, 69, 70, 72, 75, 76, 77, 80, 81, 83, 85, 86, 87, 88, 89, 90, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 151, 153, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 177, 178, 179, 180, 182, 188, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 296, 297, 298, 299, 308, 309, 310, 311, 312, 313, 314, 325, 326, 327, 328, 329, 331, 332, 333, 350, 355, 363, 365, 368, 371, 372, 374, 378, 382, 383, 386, 395, 396, 397, 413, 415, 417, 423, 425, 445, 463, 485, 488, 489, 491, 492, 504, 505, 506, 507, 508, 514, 518, 519, 520, 524, 527, 528, 545, 558, 560, 561, 564, 591, 622, 625, 627, 628, 630, 632, 633, 635, 637, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 655, 656, 657, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 696, 699, 700, 702, 703, 705, 706, 710, 718, 735, 736, 737, 739, 740, 741, 743, 744, 749, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 784, 787, 788, 789, 790, 794, 802, 806, 808, 815, 818, 819, 820, 821, 822, 823, 826, 828, 832, 833, 834, 836, 838, 841, 843, 845, 847, 853, 854, 856, 866, 867, 868, 870, 871, 872], "storag": [14, 41, 42, 848, 856], "googleapi": [14, 41, 42], "efficientnetv2": 14, "b0_notop": 14, "h5": [14, 70], "24274472": 14, "0u": 14, "torch_eff_encod": [14, 808], "modes_to_trac": 14, "1280": [14, 541, 630, 808], "state": [15, 26, 41, 57, 76, 80, 96, 183, 184, 185, 186, 187, 269, 371, 417, 598, 600, 603, 605, 606, 626, 628, 630, 632, 657, 658, 770, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 808, 812, 815, 822, 825, 826, 828, 829, 830, 831, 832, 837, 840, 844, 845, 846, 848, 856, 860, 872, 873], "api": [15, 20, 25, 26, 30, 43, 45, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 174, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 812, 815, 816, 818, 820, 822, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 840, 843, 844, 846, 848, 851, 853, 854, 855, 862, 864, 866, 868, 871, 873], "welcom": [16, 42, 808, 809, 815, 816, 817, 839], "goal": [16, 41, 243, 628, 808, 814, 817, 856, 866, 872], "provid": [16, 18, 22, 25, 27, 28, 32, 33, 39, 45, 49, 53, 54, 58, 60, 63, 66, 67, 70, 72, 76, 77, 81, 83, 86, 89, 90, 118, 135, 137, 154, 155, 156, 157, 158, 166, 176, 188, 192, 205, 288, 371, 372, 374, 377, 383, 407, 415, 419, 424, 428, 441, 442, 446, 447, 464, 466, 475, 495, 497, 499, 528, 540, 572, 573, 624, 625, 626, 627, 628, 630, 632, 633, 635, 637, 640, 643, 644, 659, 675, 678, 689, 698, 699, 706, 718, 740, 760, 762, 763, 764, 773, 788, 792, 797, 798, 808, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 840, 841, 843, 847, 849, 851, 855, 859, 860, 861, 864, 865, 866, 867, 868, 869, 870, 873], "varieti": [16, 819, 824, 825, 826, 840, 842, 862, 864, 868, 869, 872, 873], "organ": [16, 820, 823, 833, 837, 839, 841, 853, 856], "main": [16, 28, 49, 53, 58, 76, 81, 128, 141, 142, 143, 309, 324, 325, 365, 372, 374, 423, 469, 625, 633, 666, 667, 687, 808, 811, 814, 815, 816, 817, 819, 822, 823, 830, 834, 836, 864, 866, 867, 872], "exactli": [16, 20, 30, 39, 40, 44, 286, 628, 814, 823, 824, 825, 826, 827, 829, 840, 843, 855, 857], "rush": [16, 857], "jump": [16, 838], "straight": [16, 808, 824, 837, 840, 847], "quickstart": 16, "introduct": [16, 18, 25, 27, 28, 866], "point": [16, 25, 50, 52, 53, 58, 62, 64, 66, 73, 75, 76, 81, 85, 89, 122, 123, 124, 126, 128, 131, 138, 139, 144, 148, 161, 165, 169, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 249, 250, 251, 252, 257, 258, 259, 260, 261, 269, 271, 272, 274, 276, 278, 279, 280, 281, 282, 283, 284, 286, 287, 288, 289, 290, 308, 309, 311, 331, 332, 349, 350, 353, 355, 365, 368, 371, 372, 373, 378, 383, 386, 395, 396, 397, 415, 425, 445, 449, 504, 505, 506, 507, 508, 518, 519, 520, 528, 623, 625, 626, 628, 633, 639, 640, 641, 642, 643, 663, 665, 668, 669, 670, 672, 674, 675, 676, 679, 680, 681, 682, 683, 684, 685, 687, 690, 736, 737, 743, 745, 746, 747, 748, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 797, 798, 806, 808, 812, 814, 815, 816, 819, 820, 822, 824, 825, 827, 828, 830, 832, 836, 837, 840, 841, 843, 845, 847, 848, 857, 859, 872], "those": [16, 40, 41, 58, 60, 70, 76, 81, 83, 122, 175, 236, 269, 489, 610, 625, 626, 628, 630, 633, 635, 637, 640, 680, 683, 695, 716, 743, 811, 814, 815, 816, 817, 820, 823, 824, 825, 834, 836, 837, 838, 840, 843, 855, 863], "who": [16, 811, 817, 818, 829, 844, 851, 866, 868, 874], "deeper": [16, 18, 28, 48, 637, 725, 726, 816, 818, 840, 844, 855], "showcas": [16, 808], "real": [16, 24, 52, 53, 66, 75, 76, 89, 98, 108, 111, 114, 138, 139, 216, 217, 218, 219, 221, 222, 223, 224, 225, 234, 236, 237, 239, 241, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 266, 269, 271, 272, 274, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 290, 331, 332, 338, 339, 340, 350, 368, 371, 372, 394, 415, 416, 425, 426, 622, 625, 628, 633, 640, 643, 668, 669, 670, 674, 681, 683, 684, 687, 690, 743, 756, 758, 759, 760, 761, 823, 868], "world": [16, 24, 816, 868], "whether": [16, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 94, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 123, 124, 130, 132, 137, 139, 145, 148, 149, 151, 154, 155, 156, 157, 158, 159, 162, 163, 164, 166, 167, 168, 169, 171, 172, 173, 174, 176, 188, 192, 193, 195, 196, 198, 200, 203, 204, 206, 209, 210, 212, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 325, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 365, 368, 371, 372, 373, 374, 383, 390, 391, 392, 394, 395, 396, 397, 413, 415, 417, 419, 434, 436, 442, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 468, 470, 471, 472, 475, 479, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 568, 572, 573, 574, 575, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 603, 604, 607, 609, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 643, 644, 646, 647, 648, 649, 655, 656, 657, 658, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 682, 687, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 767, 769, 772, 784, 785, 788, 789, 790, 791, 792, 801, 808, 809, 814, 815, 820, 823, 825, 827, 832, 836, 837, 840, 842, 843, 859, 860], "beginn": [16, 809, 866], "advanc": [16, 39, 815, 817, 865], "got": [16, 39, 829], "cover": [16, 27, 53, 76, 371, 408, 409, 410, 814, 819, 820, 822, 825, 827, 828, 833, 834, 840, 843, 844], "write": [16, 17, 27, 28, 39, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 325, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 346, 348, 349, 350, 351, 354, 355, 356, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 419, 420, 422, 423, 431, 432, 434, 437, 438, 439, 440, 446, 449, 450, 451, 452, 454, 455, 464, 465, 468, 469, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 741, 742, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 770, 808, 813, 814, 816, 818, 819, 821, 822, 824, 825, 827, 828, 829, 833, 836, 838, 841, 845, 847, 850, 857, 866, 873], "familiar": [16, 17, 18, 808, 814, 815], "concept": [16, 17, 18], "agnost": [16, 17, 18, 19, 27, 28, 29, 33, 39, 808, 820, 825, 832, 845, 847, 850, 851, 872, 873], "unifi": [16, 17, 18, 20, 21, 27, 30, 31, 35, 42, 70, 209, 627, 817, 818, 819, 820, 824, 825, 829, 834, 835, 837, 843, 845, 851, 854, 856, 858, 860, 862, 863, 864, 866, 870, 873], "alongsid": [16, 17, 18, 19, 29, 632, 659, 856], "turn": [16, 17, 20, 30, 57, 80, 93, 94, 395, 396, 397, 632, 655, 788, 815, 822, 823, 826, 827, 837, 840, 857], "wrapper": [16, 17, 20, 53, 76, 294, 780, 820, 822, 823, 825, 829, 833, 836, 837, 840, 847, 853, 862, 866], "unus": [16, 17, 20, 827, 836], "part": [16, 17, 20, 49, 52, 53, 75, 76, 81, 98, 108, 111, 114, 141, 142, 143, 249, 253, 276, 324, 325, 351, 365, 368, 371, 372, 374, 383, 415, 426, 480, 528, 622, 625, 628, 633, 669, 670, 769, 808, 814, 815, 816, 817, 819, 822, 825, 831, 833, 836, 837, 840, 841, 843, 845, 846, 850, 851, 859, 860, 861, 864, 866, 871, 872, 873], "lazi": [16, 17, 20, 23, 30, 33, 34, 45], "eager": [16, 17, 20, 23, 25, 30, 33, 34, 45, 806, 823, 851, 866], "understand": [16, 17, 18, 22, 39, 45, 812, 813, 814, 815, 816, 818, 819, 822, 827, 828, 832, 838, 839, 844, 857, 862, 872], "decor": [16, 17, 22, 24, 25, 33, 45, 535, 630, 772, 774, 780, 812, 819, 820, 823, 825, 826, 830, 833, 836, 837, 838, 843], "kornia": [16, 17, 24, 27, 28, 41, 45, 808, 860], "roundup": 18, "over": [18, 25, 28, 30, 41, 53, 58, 66, 67, 68, 73, 76, 80, 81, 89, 90, 91, 93, 118, 316, 317, 331, 332, 345, 352, 365, 368, 371, 372, 373, 374, 381, 383, 385, 386, 387, 388, 391, 400, 405, 409, 413, 414, 415, 416, 417, 418, 440, 448, 457, 470, 485, 488, 489, 492, 511, 521, 527, 576, 610, 624, 630, 633, 638, 639, 643, 644, 664, 674, 685, 687, 689, 690, 733, 737, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 791, 797, 801, 808, 815, 816, 821, 827, 828, 835, 836, 838, 841, 845, 847, 851, 855, 857, 864, 866], "indep": [18, 27], "futur": [18, 25, 27, 41, 633, 669, 670, 808, 815, 816, 817, 824, 825, 840, 841, 843, 847, 851, 855, 857, 872], "proof": [18, 27], "delv": [18, 28, 808], "theori": [18, 810, 822], "deep": [18, 25, 27, 39, 70, 541, 630, 808, 809, 810, 813, 814, 816, 819, 822, 823, 825, 831, 835, 838, 844, 847, 848, 855, 864, 866, 869, 870, 872, 873], "esenti": [18, 27], "abstract": [18, 27, 28, 787, 792, 808, 823, 825, 836, 837, 840, 843, 849, 855, 864, 866, 868, 869, 873], "specif": [18, 19, 24, 25, 27, 28, 29, 31, 33, 41, 51, 53, 54, 74, 76, 77, 176, 207, 210, 243, 264, 265, 274, 318, 331, 332, 365, 368, 374, 378, 488, 508, 541, 542, 543, 569, 626, 627, 628, 630, 633, 635, 636, 639, 642, 643, 669, 670, 685, 706, 711, 712, 713, 734, 751, 756, 757, 758, 760, 767, 769, 789, 790, 797, 798, 804, 806, 808, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 825, 826, 829, 831, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 849, 850, 851, 852, 853, 855, 859, 860, 861, 862, 864, 865, 867, 868, 869, 873], "quirk": [18, 27], "perk": [18, 27, 808, 820, 823], "under": [18, 27, 28, 53, 373, 452, 453, 801, 808, 814, 815, 818, 819, 826, 827, 828, 831, 837, 838, 840, 843, 844, 845, 848, 850, 851, 859, 860, 866, 869, 873], "hood": [18, 27, 28, 808, 818, 826, 827, 831, 837, 840, 843, 844, 845, 848, 850, 859, 860, 873], "appropi": 18, "string": [18, 27, 28, 43, 53, 54, 57, 70, 76, 80, 146, 147, 159, 166, 188, 189, 190, 191, 192, 194, 203, 210, 211, 215, 371, 372, 374, 414, 418, 426, 480, 491, 520, 539, 626, 627, 630, 632, 633, 645, 646, 647, 648, 650, 652, 654, 670, 767, 769, 773, 801, 802, 821, 822, 824, 825, 826, 829, 837, 845, 848], "simplest": [18, 815, 827, 840, 843], "interact": [18, 27, 42, 45, 814, 865, 866, 871], "submodul": [18, 27, 41, 43, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 814, 815, 816, 819, 822, 824, 826, 830, 833, 834, 840, 844, 845, 849, 853], "ones": [18, 25, 27, 39, 45, 49, 53, 55, 57, 62, 70, 72, 76, 80, 85, 128, 132, 137, 139, 145, 195, 196, 232, 309, 365, 383, 527, 611, 625, 627, 628, 631, 632, 650, 651, 735, 736, 737, 773, 808, 814, 820, 824, 827, 832, 833, 839, 840, 847, 848, 866], "likewis": [18, 23, 27, 34, 808, 816, 823, 825, 828, 832, 833, 837, 843, 848, 859, 860, 872], "nativearrai": [18, 27, 28, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 66, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 123, 124, 125, 127, 132, 133, 134, 135, 136, 137, 139, 141, 142, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 167, 168, 169, 171, 173, 175, 176, 182, 192, 193, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 313, 314, 318, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 463, 464, 465, 466, 468, 469, 470, 471, 472, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 518, 519, 520, 521, 522, 530, 533, 534, 536, 537, 541, 542, 543, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 561, 564, 565, 567, 572, 573, 574, 577, 586, 587, 588, 589, 590, 591, 593, 595, 596, 598, 609, 611, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 715, 716, 717, 721, 722, 723, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 793, 820, 823, 827, 829, 832, 833, 834, 836, 837, 841, 842, 845, 847, 853], "alia": [18, 27, 331, 332, 368, 623, 814, 837, 858, 861], "select": [18, 27, 32, 45, 53, 66, 76, 89, 372, 374, 383, 426, 439, 488, 489, 492, 519, 520, 643, 753, 754, 814, 815, 816, 824, 830, 836, 840, 845, 847, 850, 851, 866, 869, 870], "lastli": [18, 27, 820], "contain": [18, 27, 28, 42, 47, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 94, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 159, 161, 162, 163, 164, 167, 168, 169, 171, 173, 176, 193, 195, 196, 197, 202, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 363, 365, 368, 370, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 577, 580, 582, 587, 588, 589, 590, 591, 593, 595, 596, 603, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 721, 722, 723, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 779, 780, 788, 789, 790, 792, 793, 797, 801, 802, 806, 808, 810, 812, 814, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 830, 832, 833, 834, 835, 836, 838, 840, 842, 843, 844, 845, 846, 849, 851, 852, 853, 855, 859, 866, 867, 872], "subclass": [18, 27, 28, 834, 837, 843, 860], "dict": [18, 27, 28, 41, 45, 48, 54, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 130, 132, 137, 139, 145, 149, 151, 162, 163, 164, 168, 169, 176, 192, 195, 196, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 321, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 365, 374, 394, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 480, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 531, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 620, 624, 626, 627, 630, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 714, 715, 717, 720, 721, 722, 723, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 769, 770, 785, 788, 790, 797, 802, 820, 823, 848, 849, 853, 859, 860, 861], "recurs": [18, 27, 28, 41, 43, 48, 70, 71, 162, 163, 195, 196, 372, 444, 546, 547, 553, 626, 627, 630, 637, 714, 715, 718, 724, 725, 726, 767, 815, 819, 822, 823, 830, 833, 836, 849, 851], "fashion": [18, 774, 840, 860], "native_arrai": [18, 27, 28, 49, 50, 52, 72, 74, 75, 76, 77, 81, 88, 106, 109, 132, 135, 137, 139, 145, 148, 149, 150, 151, 159, 164, 171, 193, 202, 210, 226, 230, 235, 236, 237, 239, 243, 247, 255, 256, 264, 269, 272, 275, 278, 283, 331, 332, 359, 368, 373, 374, 454, 480, 486, 490, 530, 533, 560, 561, 564, 595, 622, 625, 626, 627, 628, 630, 632, 633, 634, 635, 639, 640, 643, 644, 646, 647, 654, 662, 665, 669, 670, 675, 676, 680, 684, 685, 687, 690, 692, 694, 695, 702, 734, 743, 752, 758, 761, 763, 769, 779, 797, 812, 830, 838, 840], "data_class": [18, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 391, 392, 541, 545, 683, 708], "low": [18, 27, 30, 46, 53, 57, 62, 76, 80, 85, 371, 414, 418, 632, 639, 645, 646, 647, 648, 650, 652, 654, 735, 737, 774, 823, 829, 836, 837, 843, 845, 862, 864, 866, 867, 868, 870, 872], "level": [18, 27, 28, 30, 53, 76, 77, 372, 444, 533, 802, 806, 808, 809, 814, 815, 816, 817, 823, 825, 829, 833, 835, 836, 837, 839, 842, 843, 844, 845, 848, 849, 850, 851, 853, 857, 862, 863, 864, 865, 866, 867, 868, 870, 871, 872, 873, 874], "c": [18, 27, 33, 42, 43, 49, 53, 54, 55, 57, 60, 66, 72, 73, 75, 76, 77, 78, 80, 81, 83, 87, 89, 93, 94, 112, 123, 124, 134, 137, 161, 164, 219, 230, 236, 237, 257, 258, 260, 269, 272, 280, 287, 371, 372, 374, 377, 383, 385, 386, 387, 388, 399, 404, 420, 422, 424, 425, 427, 439, 458, 459, 460, 470, 488, 492, 497, 498, 499, 502, 520, 533, 541, 542, 543, 544, 552, 556, 557, 587, 596, 611, 612, 615, 617, 618, 619, 622, 625, 626, 628, 630, 631, 632, 633, 635, 637, 640, 641, 643, 646, 647, 648, 649, 650, 651, 653, 668, 670, 672, 702, 706, 714, 717, 721, 722, 723, 725, 726, 731, 732, 743, 748, 754, 755, 760, 762, 791, 801, 802, 809, 815, 818, 821, 822, 823, 827, 833, 835, 844, 845, 846, 848, 851, 853, 854, 856, 857, 860, 862, 866, 870, 871, 873], "fundament": [18, 27, 824, 837, 843, 845, 855, 866], "common": [18, 21, 27, 31, 52, 53, 70, 75, 175, 246, 254, 335, 342, 368, 626, 628, 809, 812, 814, 815, 822, 825, 826, 827, 833, 834, 837, 841, 843, 851, 855, 863, 866, 873], "signatur": [18, 27, 374, 383, 480, 518, 825, 826, 827, 828, 832, 836, 840, 841, 843, 856, 863, 872], "matmul": [18, 27, 28, 44, 58, 81, 372, 442, 610, 630, 633, 683, 821, 840, 841, 845], "to_n": [18, 27, 28, 39, 48, 71, 845], "jaxlib": [18, 24, 42, 797, 815, 820, 825, 826, 832, 841, 845, 847], "xla_extens": [18, 24, 797, 820, 825, 826, 832, 841, 845, 847], "arrayimpl": [18, 24, 797], "abov": [18, 23, 27, 28, 33, 34, 49, 52, 53, 58, 62, 69, 75, 76, 81, 85, 94, 114, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 307, 309, 324, 325, 331, 332, 334, 337, 363, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 405, 408, 409, 410, 415, 416, 417, 425, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 558, 587, 596, 620, 622, 625, 626, 628, 630, 631, 632, 633, 635, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 735, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 812, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 843, 845, 847, 848, 849, 850, 866, 871], "why": [18, 808, 816, 836, 847, 854, 856], "underli": [18, 27, 28, 39, 53, 60, 76, 83, 96, 226, 229, 231, 266, 373, 374, 453, 470, 628, 633, 635, 681, 702, 823, 836, 843, 859, 866], "disabl": [18, 27, 53, 76, 374, 488, 790, 806, 822], "array_mod": [18, 27, 574, 598, 630, 842], "set_array_mod": [18, 27, 598, 630, 842], "composit": [18, 27, 162, 163, 195, 196, 288, 372, 432, 546, 547, 626, 627, 628, 630, 773, 775, 814, 818, 820, 821, 823, 825, 826, 834, 836, 837, 838, 840, 843, 845, 849, 850, 851, 853, 859, 867], "ultim": [18, 27, 859], "sigmoid": [18, 27, 28, 39, 47, 53, 69, 76, 297, 363, 378, 504, 622, 784, 845, 848, 849], "z": [18, 27, 28, 40, 41, 49, 52, 53, 54, 58, 59, 62, 64, 66, 72, 75, 76, 77, 81, 82, 83, 85, 89, 98, 99, 133, 134, 136, 137, 197, 219, 220, 224, 226, 229, 231, 236, 247, 248, 251, 252, 253, 255, 256, 261, 263, 265, 266, 267, 268, 276, 285, 296, 297, 331, 332, 334, 363, 368, 373, 383, 449, 451, 452, 453, 454, 455, 461, 465, 476, 517, 518, 521, 528, 533, 545, 548, 549, 556, 557, 573, 586, 588, 589, 597, 610, 625, 627, 628, 630, 633, 634, 635, 637, 639, 640, 641, 643, 664, 673, 678, 679, 683, 690, 692, 693, 694, 695, 717, 721, 723, 731, 735, 736, 737, 740, 745, 755, 756, 758, 759, 760, 787, 808, 821, 823, 826, 827, 845, 847, 859], "divid": [18, 23, 27, 28, 44, 52, 53, 54, 60, 70, 75, 76, 83, 98, 99, 243, 377, 450, 497, 498, 499, 502, 588, 628, 630, 635, 704, 820, 823, 827, 831, 840], "exp": [18, 27, 28, 52, 53, 75, 76, 112, 114, 241, 261, 274, 297, 363, 371, 373, 399, 404, 453, 622, 628, 633, 681, 835, 837], "high": [18, 27, 28, 46, 53, 57, 62, 76, 80, 85, 371, 414, 418, 581, 630, 632, 639, 645, 646, 647, 648, 650, 652, 654, 735, 737, 774, 811, 814, 829, 835, 837, 848, 853, 857, 862, 863, 864, 865, 866, 870, 872, 873], "network": [18, 25, 27, 28, 39, 41, 46, 632, 656, 784, 787, 788, 808, 823, 833, 845, 849, 856, 860, 862, 864, 865, 866, 870, 872, 873], "entir": [18, 27, 28, 30, 43, 53, 66, 67, 70, 76, 77, 89, 90, 209, 239, 241, 281, 282, 331, 332, 368, 371, 374, 383, 395, 396, 397, 480, 521, 554, 627, 628, 643, 644, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 802, 814, 815, 816, 819, 820, 823, 825, 827, 829, 836, 837, 838, 840, 843, 845, 848, 849, 850, 851, 856, 857, 860, 866, 872, 873], "further": [18, 70, 99, 774, 816, 819, 820, 824, 827, 829, 832, 833, 836, 837, 839, 840, 844, 845, 848, 849, 856, 857, 871, 872], "congratul": [18, 24], "There": [18, 25, 28, 33, 93, 364, 366, 367, 375, 376, 380, 774, 808, 814, 815, 816, 819, 820, 822, 823, 825, 826, 827, 829, 831, 833, 835, 837, 838, 842, 845, 848, 851, 855, 859, 867, 868, 872, 873], "come": [18, 41, 811, 814, 815, 816, 820, 824, 837, 842, 843, 849, 853, 866], "independ": [18, 28, 53, 62, 76, 85, 219, 236, 269, 279, 377, 378, 502, 504, 628, 633, 639, 664, 682, 734, 808, 819, 825, 827, 834, 845, 850, 860, 864], "good": [18, 27, 28, 808, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 838, 840, 841, 843, 845, 846, 849], "foundat": [18, 856, 869], "power": [18, 27, 28, 52, 53, 54, 58, 75, 76, 77, 81, 98, 99, 230, 239, 240, 274, 329, 342, 365, 368, 371, 419, 578, 589, 601, 628, 630, 633, 637, 675, 688, 720, 787, 842, 847, 848, 849, 866, 868, 872], "defin": [19, 25, 27, 28, 29, 49, 53, 54, 58, 72, 76, 77, 81, 96, 112, 137, 141, 142, 143, 219, 236, 243, 269, 270, 278, 280, 283, 296, 300, 304, 310, 313, 314, 315, 324, 325, 326, 327, 328, 331, 332, 334, 363, 365, 368, 371, 372, 374, 383, 407, 424, 480, 486, 521, 556, 557, 577, 622, 625, 628, 630, 632, 633, 643, 657, 664, 669, 670, 682, 756, 757, 758, 760, 808, 814, 815, 820, 821, 824, 825, 828, 832, 835, 837, 838, 840, 841, 847, 849, 851, 853, 861, 863, 864, 865, 866, 867, 870, 872, 873], "div": [19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 861], "sub": [19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 53, 58, 60, 70, 71, 75, 76, 77, 81, 83, 99, 268, 372, 374, 383, 426, 466, 475, 495, 524, 525, 553, 630, 633, 635, 636, 667, 687, 704, 711, 712, 713, 814, 816, 818, 823, 829, 837, 838, 840, 847, 848, 849, 861, 862], "By": [19, 39, 46, 53, 59, 60, 66, 67, 76, 82, 83, 89, 90, 283, 329, 331, 332, 345, 352, 365, 368, 371, 373, 374, 381, 383, 394, 452, 453, 488, 492, 511, 518, 521, 576, 628, 630, 633, 634, 635, 643, 644, 664, 689, 692, 701, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 815, 821, 825, 827, 829, 833, 835, 836, 837, 845, 849, 850, 859], "with_numpi": 19, "seed": [19, 22, 23, 43, 44, 53, 57, 62, 64, 70, 76, 80, 85, 319, 320, 321, 322, 323, 365, 372, 378, 430, 441, 447, 504, 505, 506, 507, 508, 632, 639, 641, 655, 734, 735, 736, 737, 739, 745, 780, 785, 787, 802, 834, 838, 840], "123": [19, 72, 73, 76, 132, 164, 452, 544, 625, 630, 802, 840], "reproduc": [19, 44, 57, 80, 632, 655, 772, 773, 774, 775, 780, 812, 819, 830], "uniform": [19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 33, 34, 41, 53, 62, 76, 85, 383, 521, 639, 734, 735, 737, 787, 808, 839, 849, 860, 861, 873], "x_": [19, 29, 94, 280, 628, 861], "66391283": 19, "12516928": 19, "38367081": 19, "03102401": 19, "76419425": 19, "52797794": 19, "90346956": 19, "61316347": 19, "27585283": 19, "66309303": 19, "compat": [19, 25, 29, 33, 39, 46, 52, 53, 58, 60, 63, 66, 67, 75, 76, 81, 83, 86, 89, 90, 98, 99, 150, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 290, 331, 332, 368, 626, 628, 633, 635, 640, 643, 644, 664, 676, 679, 682, 685, 689, 690, 702, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 806, 808, 815, 821, 832, 837, 838, 841, 845, 851, 856], "sever": [19, 20, 29, 30, 32, 33, 34, 53, 76, 93, 371, 372, 385, 386, 387, 388, 440, 772, 815, 816, 841, 851, 864, 870], "pro": [19, 20, 21, 29, 30, 31, 32, 33, 34], "pick": [20, 30, 787], "off": [20, 30, 57, 58, 80, 81, 395, 396, 397, 632, 633, 655, 667, 687, 787, 788, 815, 830, 844, 857, 859, 872], "last": [20, 25, 27, 30, 49, 53, 57, 58, 59, 60, 63, 65, 66, 67, 70, 72, 76, 80, 81, 82, 83, 88, 89, 90, 94, 98, 133, 134, 137, 192, 309, 337, 365, 368, 371, 372, 373, 374, 381, 383, 400, 405, 415, 416, 417, 428, 452, 470, 480, 482, 488, 492, 511, 519, 520, 625, 627, 632, 633, 634, 635, 640, 642, 643, 644, 658, 659, 664, 667, 678, 687, 689, 693, 694, 696, 699, 702, 703, 704, 706, 740, 741, 749, 751, 752, 753, 754, 763, 764, 788, 797, 808, 816, 819, 821, 822, 825, 827, 836, 838, 840, 843, 845, 851, 857, 860, 866], "purpos": [20, 27, 28, 30, 41, 43, 143, 241, 259, 324, 365, 625, 628, 633, 681, 816, 818, 820, 823, 824, 826, 827, 829, 832, 833, 834, 837, 839, 840, 843, 844, 847, 853, 865, 867, 870, 871, 872], "illustr": [20, 30, 821, 845], "trigger": [20, 30, 790, 814, 831], "unif": [20, 22, 23, 30, 32, 809, 847, 856, 862, 872], "detail": [20, 30, 43, 47, 52, 53, 58, 60, 64, 69, 75, 76, 77, 81, 83, 87, 106, 107, 108, 109, 110, 111, 112, 113, 114, 129, 140, 287, 291, 296, 297, 299, 363, 372, 422, 465, 544, 622, 625, 628, 641, 667, 673, 679, 683, 706, 745, 746, 747, 748, 784, 808, 814, 816, 819, 821, 822, 823, 824, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 845, 847, 848, 849, 868, 872], "55563945": 20, "65538704": 20, "14150524": 20, "46951997": 20, "30220294": 20, "14739668": 20, "57017946": 20, "91962677": 20, "51029003": 20, "59644395": 20, "arbitrari": [20, 30, 49, 50, 53, 70, 73, 76, 135, 149, 176, 318, 373, 450, 458, 459, 460, 613, 625, 626, 631, 832, 833, 835, 836, 837, 840, 849, 851, 859, 861, 867, 872], "constitu": [20, 30, 70, 850], "due": [20, 27, 28, 30, 44, 46, 269, 279, 374, 488, 628, 815, 819, 824, 829, 836, 837, 856, 859, 860, 866], "manner": [20, 28, 30, 40, 48, 71, 637, 726, 815, 825, 826, 828, 833, 837, 841, 848, 851, 855, 862, 864, 872, 873], "non": [20, 30, 50, 52, 53, 58, 62, 63, 66, 67, 73, 75, 76, 81, 85, 86, 89, 90, 130, 148, 166, 175, 244, 264, 265, 270, 331, 332, 336, 343, 356, 368, 371, 372, 374, 383, 415, 426, 430, 436, 459, 460, 521, 524, 625, 626, 628, 633, 637, 639, 640, 643, 644, 664, 665, 674, 676, 683, 685, 689, 690, 727, 736, 740, 741, 742, 743, 756, 757, 758, 759, 760, 762, 763, 764, 772, 787, 789, 790, 792, 820, 823, 827, 845, 859, 860, 861, 866], "5556394": 20, "655387": 20, "1415051": 20, "4695197": 20, "3022028": 20, "1473966": 20, "5701794": 20, "91962665": 20, "51028997": 20, "5964439": 20, "assess": [20, 30, 814, 843], "985": 20, "000": [20, 75, 270, 772, 812, 824, 830], "69": [20, 39, 46, 52, 78, 85, 217, 259, 371, 393, 403, 615, 628, 631, 633, 674, 675, 736, 840, 848], "On": [20, 27, 28, 815, 825, 826, 831, 837, 840, 843, 846, 850], "hand": [20, 52, 372, 442, 772, 808, 819, 825, 826, 831, 833, 840, 851], "singl": [20, 30, 39, 44, 52, 62, 70, 75, 85, 94, 288, 347, 368, 372, 378, 439, 505, 596, 609, 613, 628, 630, 631, 632, 639, 641, 659, 735, 736, 737, 745, 772, 788, 806, 814, 815, 816, 819, 824, 827, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 857], "learnt": [21, 31], "two": [21, 31, 33, 39, 49, 53, 58, 64, 76, 77, 81, 98, 99, 119, 122, 128, 135, 141, 142, 143, 174, 182, 230, 244, 245, 279, 324, 325, 330, 343, 344, 346, 347, 349, 351, 358, 365, 368, 371, 372, 373, 374, 383, 400, 423, 424, 425, 434, 439, 448, 450, 454, 459, 480, 486, 490, 518, 528, 533, 624, 625, 626, 628, 630, 632, 633, 635, 641, 657, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 707, 745, 746, 747, 748, 772, 774, 780, 788, 814, 815, 819, 820, 825, 826, 827, 828, 833, 837, 838, 840, 843, 844, 848, 850, 857, 863, 871], "workflow": [21, 31, 42, 814, 816, 817, 821, 825, 835, 837, 848, 853, 857, 865, 872, 873], "ivy_norm": 21, "jax_norm": [21, 27, 28], "wider": [21, 31, 581, 604, 630, 825, 842, 872], "avoid": [21, 31, 33, 53, 60, 76, 236, 241, 243, 259, 269, 373, 374, 377, 450, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 497, 498, 499, 535, 551, 553, 576, 581, 604, 628, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 774, 775, 815, 816, 821, 822, 823, 824, 825, 829, 834, 837, 840, 841, 842, 843, 866], "conveni": [21, 31, 814, 825, 826, 832, 838, 846, 848, 849, 853, 872], "act": [21, 31, 53, 76, 294, 359, 369, 816, 827, 842, 851, 873], "shorthand": [21, 31, 33, 840], "pair": [21, 31, 41, 53, 57, 76, 80, 224, 243, 316, 358, 365, 368, 371, 405, 414, 416, 418, 628, 632, 633, 645, 646, 647, 648, 650, 652, 654, 662, 664, 802], "93968587": 21, "26075466": 21, "22723222": 21, "06276492": 21, "47426987": 21, "72835908": 21, "71737559": 21, "50411096": 21, "65419174": 21, "15576624": 21, "implic": [21, 31, 32, 35, 823], "requir": [22, 23, 24, 25, 32, 41, 42, 43, 46, 52, 53, 70, 75, 76, 270, 283, 287, 372, 374, 425, 426, 480, 628, 633, 635, 668, 669, 670, 706, 772, 780, 785, 802, 810, 814, 815, 820, 822, 824, 825, 826, 827, 828, 829, 831, 832, 834, 837, 838, 839, 840, 841, 843, 845, 847, 851, 860, 866, 872], "satisfi": [22, 23, 24, 25, 41, 43, 46, 53, 371, 372, 394, 426, 825, 827], "opt": [22, 23, 24, 25, 45, 815, 821, 825, 836, 840, 843], "fw": [22, 23, 24, 25, 57, 80, 383, 518, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 769, 815, 840], "mxnet": [22, 23, 24, 25, 205, 627, 797, 814, 815, 856, 873], "einop": [22, 23, 24, 25, 41, 43, 46, 54, 77, 541, 542, 543, 630, 825, 856], "miniconda": [22, 23, 24, 25], "env": [22, 23, 24, 25], "multienv": [22, 23, 24, 25], "site": [22, 23, 24, 25, 867], "psutil": [22, 23, 24, 25, 41, 43, 46], "termcolor": [22, 23, 24, 25, 41, 43, 46, 70, 99], "colorama": [22, 23, 24, 25, 41, 43], "535": [22, 23, 24, 25, 47, 69, 114, 622, 829], "diskcach": [22, 23, 24, 25, 41], "auth": [22, 23, 24, 25], "urllib3": [22, 23, 24, 25, 41], "pyvi": [22, 23, 24, 25, 27, 28], "dill": [22, 23, 24, 25, 41], "astunpars": [22, 23, 24, 25], "cloudpickl": [22, 23, 24, 25], "gast": [22, 23, 24, 25], "66": [22, 23, 24, 25, 39, 41, 43, 66, 76, 77, 78, 371, 403, 541, 542, 615, 630, 631, 633, 643, 678, 755], "wheel": [22, 23, 24, 25, 41, 43, 46, 855], "six": [22, 23, 24, 25, 41, 46, 815, 843], "cachetool": [22, 23, 24, 25], "pyasn1": [22, 23, 24, 25], "rsa": [22, 23, 24, 25], "jinja2": [22, 23, 24, 25], "jsonpickl": [22, 23, 24, 25], "networkx": [22, 23, 24, 25, 46], "charset": [22, 23, 24, 25, 41], "idna": [22, 23, 24, 25, 41], "certifi": [22, 23, 24, 25, 41], "2017": [22, 23, 24, 25, 41, 632, 659], "jedi": [22, 23, 24, 25], "inlin": [22, 23, 24, 25, 822], "prompt": [22, 23, 24, 25, 814, 816], "toolkit": [22, 23, 24, 25, 866, 867, 873], "pygment": [22, 23, 24, 25], "traitlet": [22, 23, 24, 25], "exceptiongroup": [22, 23, 24, 25], "paddl": [22, 23, 24, 25, 205, 331, 332, 368, 627, 785, 797, 814, 815, 825, 830], "pexpect": [22, 23, 24, 25], "markupsaf": [22, 23, 24, 25], "parso": [22, 23, 24, 25], "ptyprocess": [22, 23, 24, 25], "wcwidth": [22, 23, 24, 25], "asttoken": [22, 23, 24, 25], "pure": [22, 23, 24, 25, 33, 43, 808, 828, 832, 837, 843, 847, 850, 851, 866, 872, 873], "eagerli": [22, 23, 27, 28, 32, 33, 34, 41, 808, 859, 860, 861], "lazili": [22, 23, 24, 27, 28, 32, 34, 45, 808, 859, 860, 861], "actual": [22, 32, 812, 816, 818, 824, 830, 833, 834, 836, 837, 838, 840, 843, 844, 849, 851, 867, 872], "occur": [22, 27, 28, 32, 45, 50, 52, 64, 73, 75, 87, 151, 270, 286, 626, 628, 640, 641, 740, 741, 745, 746, 747, 748, 819, 824, 826, 829, 842], "becaus": [22, 30, 32, 42, 53, 371, 394, 767, 815, 816, 819, 820, 821, 822, 823, 825, 826, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 843, 845, 849, 850, 851, 866, 869, 872], "argument": [22, 24, 25, 27, 28, 30, 32, 33, 34, 39, 41, 43, 45, 48, 49, 52, 53, 54, 58, 70, 71, 75, 76, 77, 93, 94, 99, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 176, 205, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 339, 340, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 408, 409, 410, 415, 417, 419, 426, 480, 488, 492, 518, 521, 525, 531, 532, 534, 535, 540, 542, 543, 548, 552, 554, 556, 558, 568, 572, 573, 587, 591, 596, 597, 610, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 720, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 780, 785, 788, 789, 790, 797, 801, 804, 808, 814, 818, 819, 820, 821, 822, 823, 827, 828, 831, 833, 838, 840, 841, 843, 845, 847, 848, 853, 855, 859, 860, 861, 866], "altern": [22, 32, 42, 53, 76, 81, 93, 94, 330, 338, 339, 340, 344, 346, 347, 348, 349, 351, 352, 353, 357, 358, 368, 808, 814, 815, 822, 836, 848, 869], "dummi": [22, 23, 32, 33, 34, 40, 816], "assum": [22, 23, 32, 33, 34, 49, 52, 53, 54, 57, 58, 59, 75, 76, 77, 80, 81, 82, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 309, 325, 331, 332, 334, 337, 355, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 440, 442, 480, 488, 492, 518, 521, 548, 552, 554, 556, 565, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 634, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 801, 808, 815, 819, 821, 824, 825, 828, 838, 840, 843, 847, 848, 851], "201733": 22, "slowli": [22, 32], "norm": [22, 32, 33, 53, 54, 58, 76, 77, 81, 92, 93, 371, 372, 393, 394, 398, 399, 400, 403, 404, 405, 415, 416, 422, 426, 500, 501, 503, 536, 537, 558, 630, 633, 674, 690, 733, 788, 792, 841], "slow": [22, 32, 810, 815, 822], "34431235": [22, 23], "51129461": [22, 23], "06686894": [22, 23], "36452447": [22, 23], "98795534": [22, 23], "15493582": [22, 23], "91630631": [22, 23], "41939619": [22, 23], "78909753": [22, 23], "19475674": [22, 23], "norm_trac": 22, "float64": [22, 23, 50, 53, 62, 66, 72, 73, 75, 76, 77, 85, 89, 122, 130, 131, 148, 151, 155, 156, 161, 162, 165, 166, 171, 172, 176, 178, 179, 185, 188, 270, 342, 368, 373, 383, 448, 453, 518, 567, 625, 626, 630, 633, 639, 669, 670, 674, 690, 736, 737, 754, 769, 772, 773, 825, 838, 840], "norm_tran": [22, 32], "know": [22, 23, 32, 33, 34, 64, 641, 745, 746, 747, 748, 810, 814, 816, 826, 834, 838, 840, 843, 857, 861, 867], "07": [23, 41, 43, 55, 59, 75, 78, 82, 85, 224, 257, 260, 261, 280, 371, 403, 601, 611, 612, 614, 615, 616, 617, 628, 630, 631, 634, 693, 694, 736, 789, 792, 849], "981554": 23, "happen": [23, 27, 28, 288, 628, 808, 815, 816, 817, 826, 836, 840, 848, 857, 859, 860], "wherea": [23, 34, 76, 371, 417, 816, 820, 823, 825, 826, 827, 832, 833, 840, 850, 863], "subtract": [23, 27, 28, 52, 75, 98, 99, 130, 374, 480, 625, 628, 820, 823, 827], "begin": [23, 53, 76, 280, 373, 374, 448, 464, 480, 481, 482, 483, 484, 628, 637, 714, 725, 772, 815, 819, 824, 838], "filelock": [24, 41], "extens": [24, 41, 52, 58, 75, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 813, 815, 816, 828, 830, 831, 840, 863, 866, 873], "sympi": [24, 856], "fsspec": [24, 41], "mpmath": 24, "scenario": [24, 825, 835], "often": [24, 53, 373, 448, 813, 819, 829, 832, 833, 837, 840, 851, 857, 867, 870, 873], "fortun": [24, 25, 819], "everyth": [24, 42, 801, 808, 814, 815, 816, 817, 818, 824, 827, 836, 837, 838, 840, 846, 851, 852, 857], "practic": [24, 816, 821, 824, 837, 839, 869], "specifi": [24, 25, 27, 28, 32, 33, 34, 45, 47, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 73, 75, 76, 77, 80, 81, 82, 83, 85, 86, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 126, 131, 133, 138, 141, 142, 144, 148, 150, 197, 202, 204, 208, 209, 210, 278, 287, 291, 296, 297, 299, 325, 330, 347, 352, 363, 365, 368, 371, 372, 373, 374, 378, 383, 390, 391, 392, 394, 400, 405, 415, 416, 417, 418, 426, 438, 440, 445, 448, 452, 453, 454, 456, 470, 473, 482, 483, 485, 486, 488, 492, 505, 516, 518, 519, 520, 523, 524, 528, 531, 548, 549, 551, 553, 554, 567, 569, 577, 610, 622, 625, 626, 627, 628, 630, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 644, 657, 659, 662, 664, 666, 667, 669, 670, 674, 682, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 703, 705, 706, 709, 710, 718, 719, 721, 722, 729, 730, 731, 732, 735, 736, 737, 739, 740, 741, 743, 746, 747, 748, 749, 753, 754, 755, 759, 761, 763, 764, 772, 775, 784, 788, 789, 790, 802, 806, 815, 818, 822, 825, 826, 832, 833, 834, 836, 837, 838, 840, 845, 848, 849, 859, 860, 861, 872], "everi": [24, 27, 28, 33, 41, 49, 53, 54, 76, 77, 131, 132, 297, 331, 332, 345, 363, 368, 371, 374, 408, 409, 410, 417, 494, 530, 625, 630, 814, 816, 819, 821, 822, 824, 825, 827, 831, 832, 833, 834, 836, 837, 838, 840, 845, 847, 849, 859, 860, 861, 866], "jax_kornia": [24, 27, 28, 808, 860], "though": [24, 813, 814, 816, 825, 826, 828, 833, 836, 837, 843, 848, 851], "000000000034": [24, 27, 28, 808, 860], "raw_img": [24, 27, 28, 808, 860], "enhanc": [24, 27, 28, 808, 839, 860], "sharp": [24, 27, 28, 808], "prefer": [24, 27, 28, 243, 628, 808, 815, 823, 829, 830, 834, 837, 852, 866], "leverag": [24, 27, 28, 808, 815, 836, 860, 864, 866], "whole": [25, 53, 76, 374, 377, 487, 500, 501, 503, 816, 822, 831], "full": [25, 53, 58, 76, 80, 81, 93, 94, 96, 161, 248, 256, 319, 320, 321, 322, 323, 365, 372, 373, 374, 445, 446, 452, 453, 481, 484, 575, 584, 599, 607, 625, 626, 628, 630, 632, 633, 647, 649, 650, 651, 653, 676, 680, 682, 683, 773, 780, 808, 815, 816, 822, 825, 828, 829, 832, 833, 837, 840, 843, 845, 851, 856, 857, 864, 866, 872], "advantag": [25, 27, 28, 808, 815, 816, 825, 836, 837, 852, 860, 866], "complex": [25, 27, 28, 41, 47, 52, 53, 58, 66, 69, 73, 75, 76, 81, 89, 106, 107, 108, 109, 110, 111, 112, 113, 114, 138, 139, 154, 168, 177, 183, 216, 217, 218, 219, 220, 221, 222, 225, 233, 234, 236, 237, 239, 241, 249, 250, 251, 252, 253, 257, 258, 259, 260, 269, 271, 272, 274, 276, 279, 280, 281, 282, 283, 286, 287, 291, 296, 297, 299, 334, 339, 340, 363, 368, 371, 372, 383, 394, 405, 415, 416, 420, 425, 426, 427, 438, 440, 526, 527, 588, 589, 622, 625, 626, 628, 630, 633, 640, 643, 668, 669, 670, 674, 681, 683, 685, 687, 690, 743, 758, 759, 761, 773, 784, 802, 811, 814, 817, 822, 825, 827, 834, 837, 840, 841, 843, 848, 849, 850, 851, 853, 860, 862, 864, 866, 868, 872, 873], "neccessari": 25, "set_random_se": [25, 44], "manual_se": 25, "301436": 25, "_c": 25, "0x7f252c392390": 25, "convolut": [25, 53, 57, 76, 80, 371, 392, 410, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 774, 788, 806, 860, 864, 866], "flatten": [25, 27, 28, 41, 43, 46, 53, 54, 58, 60, 63, 64, 76, 77, 81, 83, 86, 87, 336, 352, 368, 372, 374, 383, 423, 469, 479, 483, 488, 489, 492, 494, 516, 523, 524, 525, 526, 527, 528, 541, 545, 630, 633, 635, 640, 641, 671, 678, 690, 696, 701, 703, 740, 741, 745, 746, 747, 748, 767, 769, 808, 836, 843], "keyword": [25, 27, 28, 43, 45, 48, 49, 53, 70, 76, 99, 135, 270, 371, 374, 383, 419, 480, 518, 532, 535, 568, 597, 625, 628, 630, 633, 637, 643, 684, 720, 761, 767, 769, 773, 789, 790, 801, 814, 820, 823, 825, 826, 834, 836, 837, 838, 840, 841, 843, 848, 859, 860, 861], "input_arrai": [25, 27, 28, 836], "torch_model": [25, 27, 28, 45], "159": [25, 69, 106, 622, 632, 656], "state_upd": 25, "properti": [25, 70, 93, 94, 95, 96, 97, 98, 102, 790, 792, 819, 823, 833, 838, 840, 847, 848, 849, 872], "_transpil": 25, "thank": [25, 848, 856], "fledg": [25, 815, 845, 846], "output_arrai": [25, 27, 28, 53, 450], "0893": 25, "1504": 25, "1372": 25, "0991": 25, "0867": 25, "0851": 25, "0911": 25, "0804": 25, "0926": 25, "0881": 25, "softmaxbackward0": 25, "furthermor": 25, "relat": [25, 243, 628, 808, 810, 813, 814, 815, 816, 822, 829, 837, 840, 841, 842, 843, 860, 869], "interest": [25, 27, 39, 236, 269, 628, 814, 816], "continu": [25, 27, 28, 43, 121, 283, 291, 363, 624, 628, 808, 813, 814, 815, 818, 819, 830, 836, 839, 840, 851, 856, 857, 866], "regress": [26, 866, 873], "checkout": [27, 42, 816, 819, 840], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 27, "theoret": 27, "aspect": [27, 28, 809, 835, 848, 866], "switch": [27, 39, 780, 821, 829, 833, 834, 873], "easiest": [27, 808, 810, 815, 852], "defer": [27, 28, 814, 820, 825, 826, 833, 836, 837, 840, 872], "similarli": [27, 40, 135, 143, 219, 324, 331, 332, 365, 368, 625, 628, 821, 825, 837, 843, 847, 872], "obtain": [27, 28, 46, 53, 76, 315, 365, 371, 411, 632, 659, 774, 837, 859], "essenc": [27, 867, 872], "becom": [27, 53, 76, 93, 342, 368, 374, 460, 635, 695, 797, 816, 817, 823, 825, 827, 829, 836, 851, 855, 857, 859], "regardless": [27, 28, 39, 70, 809, 825, 829, 847, 850, 857], "being": [27, 28, 39, 53, 70, 76, 91, 98, 102, 122, 372, 374, 436, 464, 480, 582, 625, 630, 632, 633, 657, 670, 769, 775, 787, 808, 815, 816, 819, 820, 821, 823, 825, 826, 827, 830, 832, 834, 836, 837, 838, 840, 841, 843, 845, 848, 851, 856, 857, 862, 864, 865, 866, 867, 872, 873], "slide": [27, 53, 57, 76, 80, 371, 390, 391, 392, 408, 409, 410, 411, 414, 418, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788], "A": [27, 28, 42, 49, 50, 53, 54, 60, 62, 66, 67, 70, 73, 75, 76, 77, 80, 81, 83, 85, 87, 90, 93, 94, 99, 118, 119, 121, 128, 136, 143, 149, 190, 209, 271, 273, 277, 309, 320, 324, 326, 327, 328, 330, 344, 347, 351, 352, 365, 368, 371, 372, 373, 374, 377, 378, 383, 386, 400, 414, 417, 419, 426, 434, 439, 442, 450, 454, 465, 468, 486, 490, 491, 497, 498, 499, 500, 504, 505, 506, 507, 508, 516, 525, 528, 533, 535, 544, 553, 556, 557, 588, 589, 590, 593, 621, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 637, 639, 643, 644, 655, 659, 667, 669, 672, 677, 678, 682, 683, 695, 698, 700, 704, 706, 714, 717, 719, 721, 722, 723, 724, 725, 729, 730, 731, 732, 734, 735, 736, 737, 739, 745, 755, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 787, 802, 806, 808, 813, 814, 815, 818, 823, 825, 826, 829, 832, 833, 837, 838, 840, 845, 848, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 866, 867], "regressor": [27, 28, 808], "input_dim": [27, 28, 42, 808], "output_dim": [27, 28, 42, 808], "linear0": [27, 28, 39, 808, 848, 849], "linear1": [27, 28, 39, 808, 848, 849], "instanti": [27, 28, 780, 828], "adam": [27, 28, 39, 43, 55, 78, 532, 611, 612, 617, 630, 631, 792, 808, 848, 849, 850, 866], "n_training_exampl": [27, 28, 808], "2000": [27, 28, 76, 310, 365, 808], "random_norm": [27, 28, 57, 58, 62, 80, 81, 85, 541, 630, 632, 633, 639, 647, 649, 650, 651, 653, 654, 658, 683, 808], "linspac": [27, 28, 49, 72, 122, 625, 808, 832, 843, 845, 873], "loss_fn": [27, 28, 39, 41, 43, 808, 848, 849, 850], "pred": [27, 28, 42, 43, 53, 59, 76, 82, 373, 449, 452, 634, 692, 693, 694, 808, 823, 833, 836], "epoch": [27, 28, 41, 43, 808], "loss": [27, 28, 41, 43, 53, 76, 93, 448, 449, 450, 451, 452, 453, 454, 455, 581, 604, 630, 692, 693, 694, 808, 824, 825, 833, 837, 841, 842, 848, 849, 850, 866, 873], "gradient": [27, 28, 41, 43, 53, 76, 93, 209, 360, 368, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 627, 636, 711, 712, 713, 769, 780, 792, 808, 818, 841, 848, 849, 851, 866], "grad": [27, 28, 39, 43, 611, 631, 792, 808, 835, 848, 849, 850], "execute_with_gradi": [27, 28, 39, 43, 631, 808, 848, 849, 850, 851], "lambda": [27, 28, 44, 46, 76, 119, 121, 293, 303, 540, 553, 613, 614, 616, 621, 624, 630, 631, 633, 637, 669, 721, 722, 726, 808, 814, 833, 834, 835, 838, 843, 845, 848], "2d": [27, 28, 43, 53, 76, 93, 309, 365, 371, 372, 374, 383, 386, 387, 395, 396, 438, 445, 459, 469, 518, 788, 806, 808, 837, 843], "5f": [27, 28, 808], "nonetheless": [27, 28], "slight": [27, 28, 825, 840, 849], "introduc": [27, 28, 243, 628, 635, 641, 703, 745, 814, 823, 824, 825, 834, 838, 840, 843, 848, 855], "address": [27, 28, 53, 54, 76, 374, 488, 595, 630, 814, 816, 819, 820, 832, 839, 845, 857, 862, 864, 866, 872], "extract": [27, 28, 35, 42, 53, 76, 94, 374, 463, 489, 837, 839, 841, 862, 866, 867, 872], "gc": [27, 28, 553, 630], "decompos": [27, 28, 53, 76, 93, 96, 319, 320, 321, 322, 323, 344, 351, 365, 368, 372, 436, 441, 444, 447, 837, 850], "said": [27, 28, 774, 841, 857, 859], "otherwis": [27, 28, 45, 48, 49, 50, 52, 53, 54, 57, 58, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 122, 124, 125, 130, 132, 133, 134, 137, 139, 145, 148, 149, 151, 152, 154, 155, 156, 157, 158, 167, 171, 175, 176, 192, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 305, 306, 307, 309, 319, 320, 321, 322, 323, 330, 331, 332, 333, 334, 336, 337, 338, 346, 347, 353, 355, 357, 358, 359, 363, 365, 368, 371, 372, 374, 377, 390, 391, 392, 395, 396, 397, 415, 428, 443, 445, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 470, 471, 472, 479, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 517, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 587, 588, 589, 591, 593, 595, 596, 597, 609, 613, 615, 620, 624, 625, 626, 627, 628, 630, 631, 632, 633, 636, 637, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 657, 659, 662, 663, 664, 665, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 683, 687, 689, 690, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 727, 734, 735, 736, 737, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 772, 773, 788, 790, 791, 797, 808, 816, 820, 823, 825, 826, 827, 833, 834, 836, 840, 845, 852, 859, 860], "x0": [27, 28, 46, 77, 533, 630, 827], "normalize_trac": [27, 28], "html": [27, 28, 42, 52, 53, 75, 76, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 625, 626, 628, 633, 635, 643, 681, 682, 710, 760, 808, 828, 856], "fname": [27, 28, 44, 46, 790, 848], "anticip": [27, 28], "addition": [27, 28, 823, 836, 837, 872], "backend_compil": [27, 28], "normalize_native_comp": [27, 28], "return_backend_compiled_fn": 27, "immedi": [27, 28, 806, 814, 815], "built": [27, 28, 33, 41, 43, 46, 122, 625, 788, 789, 790, 808, 815, 816, 822, 823, 840, 846, 852, 859, 865, 866, 870], "summar": [27, 28, 93, 840], "eager_graph": [27, 28, 808, 859, 860], "lazy_graph": [27, 28, 808, 859, 860], "codebas": [27, 28, 207, 208, 627, 809, 811, 818, 825, 831, 836, 837, 839, 840, 841, 844, 857], "thought": [27, 28, 815, 816, 832, 856, 864], "research": [27, 28, 41, 808, 855, 860, 866, 873], "wa": [27, 28, 33, 42, 53, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 96, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 354, 355, 357, 358, 359, 365, 368, 372, 395, 396, 397, 415, 446, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 597, 609, 615, 620, 628, 630, 637, 643, 644, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 797, 808, 810, 816, 819, 821, 822, 824, 827, 833, 835, 837, 845, 847, 856, 859, 860, 865, 866, 868], "matter": [27, 28, 33, 827, 855], "haven": [27, 28, 33, 852, 866], "jax_out": [27, 28], "ideal": [27, 28, 824, 825, 837, 843, 848], "But": [27, 28, 774, 823, 824, 828, 831, 834, 843, 850], "bring": [27, 28, 819, 839, 840, 845, 846, 853, 856], "wise": [27, 47, 52, 53, 58, 69, 75, 76, 81, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 216, 217, 219, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 235, 236, 237, 238, 240, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 272, 274, 275, 277, 278, 285, 290, 291, 292, 293, 294, 295, 297, 299, 301, 302, 303, 305, 306, 307, 330, 333, 338, 341, 342, 343, 346, 347, 348, 349, 353, 354, 357, 358, 363, 368, 371, 372, 374, 395, 396, 397, 424, 431, 467, 474, 476, 477, 496, 622, 628, 635, 664, 695, 792, 843], "vision": [27, 28, 46, 862, 872], "worth": [27, 28], "differenti": [27, 28, 291, 361, 362, 363, 370, 866], "chosen": [27, 28, 46, 96, 122, 224, 625, 628, 640, 744, 814, 824, 837], "plai": [27, 28, 373, 452, 808, 811, 815, 817, 820, 826, 830, 837, 840, 850, 866, 869], "role": [27, 28, 808, 811, 816, 817, 826, 837, 846, 867, 869, 873], "dl": [27, 28], "cnn": [27, 28, 866], "effortlessli": [27, 28], "previous": [27, 28, 599, 630, 797, 814, 815, 821, 833, 835, 840, 845], "pre": [27, 28, 808, 812, 814, 839, 840, 850, 851, 852, 866], "default_devic": [27, 28, 202, 205, 206, 207, 213, 214, 627, 826, 829, 830], "as_n": [27, 28, 50, 51, 70, 73, 74, 154, 155, 156, 157, 158, 159, 165, 192, 193, 626, 627, 825], "certainli": [27, 28, 808, 856, 872], "upon": [27, 28, 45, 806, 816, 817, 827, 836, 840, 843, 851, 865, 866], "unnecessari": [27, 28, 837], "extend": [27, 28, 53, 76, 374, 383, 480, 521, 821, 822, 825, 828, 829, 832, 837, 841, 851, 863, 866, 872], "infrastructur": [27, 28, 808, 862, 868, 869], "least": [27, 52, 53, 58, 75, 76, 236, 254, 269, 371, 374, 383, 399, 404, 458, 459, 460, 469, 471, 518, 628, 633, 640, 673, 743, 808, 816, 820, 824, 825, 826, 827, 833, 836, 840, 860], "coco": 27, "seamlessli": [28, 840], "benefit": [28, 808, 815, 820, 823, 836, 843, 847, 848, 851, 856, 857, 864, 868, 871], "through": [28, 33, 41, 53, 76, 96, 224, 383, 524, 525, 628, 637, 717, 723, 790, 801, 808, 809, 812, 813, 814, 816, 817, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 833, 834, 836, 837, 838, 840, 842, 843, 844, 845, 848, 849, 850, 859, 864, 866, 867, 868], "therefor": [28, 33, 49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 175, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 473, 480, 481, 483, 488, 492, 493, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 816, 819, 820, 823, 824, 825, 826, 827, 828, 829, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 849, 851, 855, 863, 866, 872], "wide": [28, 808, 816, 840, 864, 866], "prepar": [28, 41, 43, 46, 808, 824], "plenti": 28, "resourc": [28, 809, 814, 815, 824], "visit": [28, 814, 815, 816, 824], "page": [28, 808, 814, 815, 816, 822, 824, 830, 846, 847, 850, 852, 861, 874], "newli": [29, 30, 42, 44, 50, 73, 148, 535, 626, 630, 816, 824, 836, 840], "randon": [29, 30, 32, 33, 34], "mean_": 29, "std_": 29, "detect": [29, 33, 52, 70, 75, 251, 628, 637, 714, 725, 814, 815, 821, 823, 824, 831, 840, 848, 849], "inspect": [29, 33, 531, 630], "__": [29, 30, 31, 32, 33, 34, 70, 827, 848], "exhibit": [30, 872], "via": [30, 33, 243, 372, 374, 441, 444, 447, 488, 628, 637, 724, 725, 816, 819, 823, 825, 826, 836, 841, 843, 845, 847, 848, 866], "script": [30, 808, 815, 816, 819, 824, 827, 845, 851, 866], "comp": 30, "low_level": 30, "chain": [30, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 464, 465, 486, 488, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 636, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 716, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 793, 820, 823, 835, 837, 849, 850, 851, 866], "un": [30, 166, 626, 825, 845], "partial_comp": 30, "time_funct": 30, "slowest": [30, 53, 60, 76, 83, 374, 470, 635, 702], "express": [30, 52, 53, 75, 76, 94, 217, 221, 223, 224, 233, 235, 275, 281, 286, 355, 368, 628, 794, 802, 828, 837, 845, 850, 866, 867], "fastest": [30, 53, 60, 76, 83, 372, 374, 439, 470, 635, 702], "maxim": [30, 833, 836, 845, 863, 864, 868, 869, 870], "conclud": [31, 841], "collect": [31, 41, 43, 45, 46, 48, 70, 71, 622, 627, 630, 631, 632, 634, 637, 638, 639, 727, 784, 788, 789, 790, 791, 792, 815, 824, 829, 830, 834, 835, 838, 840, 864, 866, 869], "norm_comp": [32, 33], "global": [32, 33, 43, 54, 70, 77, 99, 154, 155, 156, 157, 158, 207, 208, 209, 578, 579, 582, 588, 589, 601, 602, 605, 626, 627, 630, 780, 791, 797, 815, 820, 821, 824, 825, 826, 829, 833, 837, 845, 866], "approach": [32, 812, 814, 815, 816, 820, 823, 825, 826, 830, 833, 837, 840, 841, 843, 847, 848, 851, 863, 870, 872], "b": [33, 47, 52, 53, 54, 57, 58, 66, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 125, 130, 131, 132, 134, 137, 139, 145, 148, 149, 150, 151, 159, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 378, 381, 383, 390, 391, 392, 393, 395, 396, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 421, 424, 426, 428, 432, 435, 439, 442, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 461, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 486, 488, 489, 490, 491, 492, 495, 496, 501, 503, 505, 506, 508, 509, 511, 518, 519, 520, 521, 523, 525, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 587, 588, 589, 591, 595, 596, 609, 611, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 801, 802, 806, 808, 809, 812, 816, 818, 819, 821, 823, 824, 827, 830, 833, 835, 838, 844, 845, 846, 848, 849, 850, 854, 857, 859, 862], "option": [33, 42, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 164, 166, 176, 188, 192, 204, 207, 208, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 415, 416, 417, 419, 420, 422, 423, 424, 426, 428, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 463, 464, 465, 466, 468, 470, 471, 472, 473, 474, 475, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 539, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 577, 587, 588, 589, 591, 593, 595, 596, 597, 609, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 721, 725, 726, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 773, 780, 784, 785, 787, 788, 790, 792, 793, 801, 806, 814, 815, 816, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 843, 845, 850, 851, 859, 860, 861, 866, 872], "prioriti": [33, 70, 797, 811, 814, 816, 817, 826, 836], "normalize_via_oper": 33, "determin": [33, 52, 53, 58, 60, 64, 67, 70, 75, 76, 77, 81, 88, 90, 93, 96, 98, 99, 128, 151, 153, 160, 166, 167, 168, 169, 171, 172, 173, 188, 198, 200, 201, 212, 217, 218, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 236, 239, 241, 243, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 266, 269, 274, 278, 281, 282, 283, 284, 285, 286, 287, 290, 300, 304, 350, 355, 363, 368, 371, 372, 373, 374, 383, 407, 415, 426, 448, 449, 488, 492, 518, 530, 533, 554, 555, 559, 560, 561, 562, 563, 564, 591, 609, 625, 626, 627, 628, 630, 633, 635, 636, 641, 644, 663, 664, 665, 667, 671, 672, 673, 675, 676, 678, 679, 681, 682, 687, 689, 690, 696, 711, 712, 713, 745, 746, 747, 748, 749, 763, 764, 774, 780, 787, 791, 823, 825, 826, 828, 833, 837, 840, 842, 843, 855], "think": [33, 814, 816, 824, 827, 843, 867], "uniqu": [33, 43, 53, 54, 64, 76, 77, 87, 371, 372, 374, 419, 442, 479, 480, 494, 565, 630, 636, 637, 641, 711, 712, 713, 716, 720, 745, 746, 747, 748, 774, 808, 819, 823, 833, 837, 838, 839, 843, 851, 855, 869], "rule": [33, 50, 52, 53, 58, 73, 75, 76, 81, 148, 151, 174, 175, 176, 225, 236, 269, 271, 278, 280, 288, 290, 371, 374, 383, 415, 468, 518, 626, 628, 633, 635, 663, 664, 671, 675, 678, 682, 696, 774, 801, 819, 820, 823, 824, 825, 827, 831, 832, 833, 835, 840, 843, 867], "broadcast": [33, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 335, 336, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 420, 422, 423, 431, 432, 437, 438, 440, 449, 450, 451, 452, 454, 455, 461, 465, 468, 473, 481, 482, 483, 484, 486, 488, 490, 492, 493, 497, 500, 501, 503, 504, 505, 507, 508, 518, 519, 520, 521, 524, 525, 526, 527, 528, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 682, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 801, 823, 825, 827, 828, 829, 840, 841, 845], "elementwis": [33, 53, 61, 76, 84, 296, 298, 358, 363, 633, 638, 688, 733, 833, 841, 845], "must": [33, 41, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 321, 322, 325, 326, 327, 328, 331, 332, 333, 334, 335, 337, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 385, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 418, 420, 422, 423, 425, 431, 432, 437, 438, 439, 440, 445, 449, 450, 451, 452, 454, 455, 458, 459, 460, 465, 466, 468, 470, 471, 472, 473, 475, 479, 481, 482, 483, 484, 486, 488, 489, 490, 492, 493, 495, 500, 501, 503, 504, 505, 507, 508, 511, 518, 519, 520, 521, 528, 536, 537, 541, 542, 543, 548, 549, 551, 558, 572, 573, 610, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 787, 788, 792, 794, 813, 814, 815, 816, 819, 820, 824, 825, 826, 827, 828, 829, 832, 833, 834, 836, 837, 840, 841, 842, 843, 845, 849, 850, 855, 857, 860, 861, 867, 873], "taken": [33, 53, 58, 76, 81, 337, 368, 371, 416, 633, 667, 687, 814, 824, 837, 841, 850, 867], "account": [33, 43, 45, 53, 60, 76, 83, 283, 374, 470, 628, 635, 702, 787, 801, 815, 824, 828, 837, 841, 859], "rather": [33, 54, 70, 77, 122, 209, 560, 561, 564, 625, 627, 630, 632, 657, 812, 816, 819, 823, 825, 828, 830, 837, 838, 840, 841, 850, 851, 856, 862, 865, 866], "fact": [33, 93, 816, 819, 824, 837, 840, 845, 848], "consum": [33, 769, 823, 824, 832, 838, 840], "thrown": [33, 558, 630, 815, 820, 826, 829, 831, 851], "doesn": [33, 558, 576, 630, 767, 788, 814, 815, 821, 823, 824, 825, 826, 827, 830, 831, 833, 835, 840, 843, 845, 851, 859, 864], "consider": [33, 814, 827, 832, 843, 855, 863, 864], "effect": [33, 49, 53, 55, 66, 76, 78, 89, 135, 373, 407, 452, 611, 619, 625, 631, 632, 643, 659, 760, 762, 772, 775, 814, 820, 823, 824, 828, 832, 836, 838, 843, 851, 856], "explain": [33, 53, 76, 371, 405, 416, 808, 814, 815, 816, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 843, 845, 846, 847, 848, 849, 850, 862, 869, 872], "necessari": [33, 49, 53, 72, 76, 83, 124, 236, 269, 373, 374, 448, 458, 459, 460, 466, 468, 469, 470, 471, 472, 479, 495, 581, 604, 628, 630, 698, 699, 700, 702, 704, 705, 707, 709, 808, 814, 815, 820, 821, 823, 825, 827, 836, 837, 840, 842, 843, 859, 860], "standalon": [34, 814, 820, 840, 853, 862, 867, 872, 873], "dynam": [34, 635, 702, 790, 797, 818, 824, 825, 826, 836, 837, 842, 845, 859, 866, 870], "static": [34, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 102, 103, 125, 315, 371, 392, 405, 410, 419, 441, 447, 486, 498, 591, 625, 632, 659, 678, 785, 790, 837, 842, 851, 865, 866, 867], "flow": [35, 823, 859, 866, 867], "statement": [35, 40, 824, 836, 840, 843, 851, 859, 860], "opposit": 35, "exclud": [35, 66, 76, 89, 122, 143, 324, 365, 519, 520, 625, 639, 737, 753, 772, 775, 797, 827, 845, 859], "todo": [36, 37, 38, 43, 46, 76, 520, 814, 825, 837], "aim": [39, 812, 816, 819, 830, 834, 837, 840, 844, 864, 866, 869], "interfac": [39, 72, 130, 625, 847, 850, 851, 853, 856, 862, 863, 864, 865, 866, 870, 873], "set_framework": [39, 46], "44": [39, 43, 52, 53, 62, 75, 76, 85, 222, 269, 279, 283, 284, 335, 368, 371, 392, 393, 628, 632, 633, 637, 640, 643, 655, 678, 722, 735, 736, 744, 755], "45": [39, 41, 43, 52, 53, 66, 75, 76, 78, 80, 85, 99, 220, 224, 236, 279, 280, 339, 340, 353, 368, 371, 383, 393, 403, 414, 519, 525, 611, 617, 628, 631, 633, 635, 643, 678, 704, 736, 737, 755, 772], "46": [39, 41, 43, 53, 62, 76, 80, 85, 134, 259, 280, 310, 365, 371, 391, 409, 410, 625, 628, 637, 715, 735, 736], "underneath": [39, 824, 864], "sai": [39, 814, 815, 830, 834, 847, 857, 874], "clip": [39, 52, 53, 60, 75, 76, 77, 83, 267, 268, 374, 463, 488, 489, 536, 537, 628, 630, 635, 823, 833, 835, 836, 848, 850, 863], "a_min": 39, "a_max": 39, "tensforflow": 39, "clip_by_valu": [39, 850, 863], "clip_value_min": 39, "clip_value_max": 39, "clamp": [39, 53, 76, 296, 363, 850], "min": [39, 43, 50, 53, 54, 58, 66, 73, 76, 77, 81, 89, 141, 143, 161, 164, 268, 324, 327, 332, 365, 368, 372, 374, 426, 485, 526, 542, 572, 573, 588, 625, 626, 628, 630, 633, 643, 674, 680, 683, 684, 690, 808, 863], "max": [39, 41, 50, 53, 54, 58, 66, 73, 76, 77, 81, 89, 161, 164, 267, 331, 368, 371, 372, 373, 374, 390, 391, 392, 408, 409, 410, 411, 413, 415, 426, 448, 485, 487, 488, 536, 537, 542, 558, 572, 573, 626, 628, 630, 633, 643, 674, 676, 679, 772, 788, 792, 824, 837, 863], "49": [39, 43, 53, 62, 76, 80, 81, 283, 371, 372, 383, 393, 403, 414, 439, 519, 628, 643, 688, 736, 755], "devicearrai": [39, 820, 837, 845, 847], "concaten": [39, 53, 54, 60, 76, 81, 374, 465, 541, 545, 630, 632, 635, 659, 678, 696, 772, 838, 843, 845, 848], "accept": [39, 48, 49, 52, 53, 58, 71, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 338, 360, 365, 368, 370, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 814, 815, 816, 820, 823, 825, 826, 827, 828, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 847, 853, 864], "jax_concat": 39, "tf_concat": 39, "np_concat": 39, "torch_concat": 39, "85": [39, 47, 53, 62, 69, 75, 76, 78, 80, 85, 99, 108, 221, 230, 231, 275, 291, 292, 295, 363, 383, 519, 588, 615, 622, 628, 630, 631, 632, 639, 656, 735, 736, 737], "mymodel": [39, 848], "x_in": [39, 848, 849, 850], "reduce_mean": [39, 808, 848, 849, 850], "91": [39, 53, 80, 85, 356, 368, 414, 632, 633, 639, 643, 656, 678, 736, 755], "49040043354034424": 39, "48975786566734314": 39, "4892795979976654": 39, "48886892199516296": 39, "4884953498840332": 39, "4881443977355957": 39, "4878086447715759": 39, "48748287558555603": 39, "48716384172439575": 39, "48684927821159363": 39, "48653748631477356": 39, "48622724413871765": 39, "4859171509742737": 39, "48560672998428345": 39, "48529526591300964": 39, "4849821627140045": 39, "48466697335243225": 39, "4843493402004242": 39, "4840289056301117": 39, "4837053418159485": 39, "4833785891532898": 39, "4830484390258789": 39, "48271444439888": 39, "48237672448158264": 39, "48203518986701965": 39, "48168954253196716": 39, "4813397228717804": 39, "4809857904911041": 39, "48062753677368164": 39, "48026490211486816": 39, "479898065328598": 39, "47952669858932495": 39, "4791509211063385": 39, "4787706732749939": 39, "47838595509529114": 39, "4779967665672302": 39, "47760307788848877": 39, "4772048890590668": 39, "47680220007896423": 39, "47639501094818115": 39, "47598329186439514": 39, "4755673110485077": 39, "4751465618610382": 39, "4747215211391449": 39, "4742920398712158": 39, "47385817766189575": 39, "47341999411582947": 39, "47297725081443787": 39, "4725303053855896": 39, "47207894921302795": 39, "47162333130836487": 39, "47116345167160034": 39, "470699280500412": 39, "47023090720176697": 39, "54": [39, 50, 52, 57, 75, 76, 80, 85, 164, 233, 234, 239, 254, 283, 289, 310, 365, 371, 383, 393, 403, 519, 628, 632, 633, 643, 656, 675, 678, 735, 736, 737, 755, 824, 827], "4697583019733429": 39, "55": [39, 47, 76, 85, 114, 230, 289, 383, 519, 556, 628, 630, 633, 639, 643, 672, 678, 736, 737, 755, 819], "46928152441978455": 39, "46880054473876953": 39, "4683155119419098": 39, "58": [39, 260, 536, 628, 630], "4678264260292053": 39, "59": [39, 52, 231, 383, 519], "46733325719833374": 39, "46683603525161743": 39, "61": [39, 41, 52, 53, 58, 75, 76, 78, 82, 85, 222, 257, 259, 284, 393, 611, 628, 631, 632, 633, 654, 671, 737, 830], "4663347601890564": 39, "4658295214176178": 39, "465320348739624": 39, "4648073613643646": 39, "46429020166397095": 39, "4637692868709564": 39, "46324464678764343": 39, "4627160429954529": 39, "4621836841106415": 39, "4616474211215973": 39, "71": [39, 52, 75, 80, 235, 275, 414, 628], "46110764145851135": 39, "72": [39, 53, 62, 76, 78, 241, 345, 368, 371, 393, 403, 615, 628, 631, 633, 643, 678, 736, 755], "460563987493515": 39, "4600166976451874": 39, "74": [39, 41, 52, 85, 231, 261, 628, 633, 675], "45946577191352844": 39, "45891112089157104": 39, "45835286378860474": 39, "4577910006046295": 39, "78": [39, 55, 280, 617, 628, 631, 633, 639, 643, 678, 736, 755], "45722562074661255": 39, "79": [39, 41, 53, 54, 76, 77, 80, 85, 98, 236, 371, 393, 403, 414, 536, 537, 628, 630, 737], "45665669441223145": 39, "80": [39, 53, 76, 345, 368, 372, 383, 439, 519, 633, 637, 643, 678, 725, 755, 856], "4560841917991638": 39, "81": [39, 43, 52, 58, 73, 75, 81, 85, 164, 234, 259, 260, 284, 383, 519, 626, 628, 633, 637, 639, 643, 671, 675, 688, 722, 737, 755, 840], "4555082619190216": 39, "45492875576019287": 39, "45434585213661194": 39, "84": [39, 57, 66, 75, 85, 164, 194, 259, 626, 627, 633, 638, 643, 656, 678, 733, 736, 737, 755], "45375964045524597": 39, "4531698524951935": 39, "4525766670703888": 39, "45198020339012146": 39, "4513803720474243": 39, "4507772624492645": 39, "4501707851886749": 39, "4495610296726227": 39, "4489481747150421": 39, "44833192229270935": 39, "4477125108242035": 39, "44708991050720215": 39, "44646409153938293": 39, "44583529233932495": 39, "98": [39, 47, 53, 55, 62, 69, 75, 78, 85, 109, 234, 282, 356, 368, 615, 622, 631, 633, 637, 640, 643, 678, 715, 726, 735, 737, 744, 755], "4452032148838043": 39, "44456806778907776": 39, "4439": 39, "selectbackward0": 39, "hope": [39, 851, 856, 872, 874], "ivy_compil": 40, "ic": 40, "produc": [40, 53, 54, 57, 76, 80, 298, 308, 311, 363, 365, 371, 419, 632, 662, 772, 802, 814, 825, 830, 831, 836, 838, 840, 841, 859, 867, 869], "numer": [40, 49, 50, 52, 53, 54, 58, 62, 63, 66, 73, 75, 76, 77, 81, 85, 86, 88, 98, 99, 135, 148, 216, 219, 232, 236, 241, 242, 243, 250, 251, 252, 255, 264, 265, 269, 271, 272, 273, 274, 278, 279, 280, 284, 285, 289, 290, 371, 373, 378, 383, 415, 450, 505, 518, 578, 579, 588, 589, 601, 602, 625, 626, 628, 630, 633, 639, 640, 643, 664, 671, 673, 678, 681, 683, 685, 687, 689, 735, 736, 737, 739, 740, 741, 743, 744, 749, 756, 759, 761, 772, 773, 774, 775, 787, 812, 825, 830, 835, 837, 838, 840, 841, 842, 843, 845, 849, 863, 866, 872], "anyth": [40, 53, 76, 383, 524, 525, 816, 829, 840, 841, 866, 867], "affect": [40, 46, 53, 373, 453, 824, 837], "intermedi": [40, 864, 865, 866, 867, 872], "variabl": [40, 42, 43, 45, 53, 54, 55, 61, 70, 76, 77, 78, 84, 118, 119, 121, 318, 365, 371, 372, 378, 383, 417, 443, 506, 517, 518, 534, 558, 559, 560, 561, 564, 591, 612, 613, 615, 617, 618, 619, 624, 630, 631, 633, 636, 638, 682, 711, 712, 713, 733, 769, 780, 785, 787, 788, 789, 790, 791, 792, 793, 816, 821, 825, 828, 832, 835, 836, 840, 841, 845, 848, 849, 850, 851, 852, 859, 867], "original_fn": 40, "100000": 40, "var": [40, 66, 89, 91, 118, 119, 120, 121, 624, 636, 643, 711, 712, 794, 815, 827, 845, 863], "co": [40, 41, 52, 54, 75, 234, 239, 241, 282, 545, 628, 630, 813, 825, 845, 856], "sin": [40, 52, 54, 75, 234, 239, 241, 282, 545, 628, 630, 820, 845], "tan": [40, 52, 75, 532, 628, 630, 828, 832, 833, 836, 837, 845], "comp_fn": 40, "compile_graph": [40, 46], "expected_result": 40, "compiled_result": 40, "irrelev": [40, 824, 825, 827], "opeat": 40, "_layer": [40, 845], "net": [40, 45, 46, 845, 850, 856, 857], "compiled_net": 40, "proceed": 41, "latest": [41, 43, 52, 53, 75, 76, 151, 239, 249, 250, 265, 331, 332, 368, 371, 374, 383, 415, 417, 488, 518, 626, 628, 633, 635, 643, 681, 682, 710, 760, 788, 808, 814, 815, 816, 819, 821, 824, 828, 830, 841, 851, 852, 860, 871], "pypi": [41, 43, 46, 814, 815, 841, 851], "pkg": [41, 43, 46], "public": [41, 43, 46, 538, 630, 824, 835, 847, 869], "revis": [41, 43, 816], "tmp": [41, 43, 585, 608, 630], "req": [41, 43], "tabqrujw": 41, "command": [41, 43, 808, 810, 815, 819, 822, 824, 830, 831, 852], "filter": [41, 43, 45, 53, 57, 76, 80, 313, 314, 365, 371, 392, 410, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 774, 788, 808, 821, 824], "quiet": [41, 43], "commit": [41, 43, 811, 812, 814, 817, 819, 827, 839, 840], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 41, "metadata": [41, 43, 46, 836], "setup": [41, 43, 46, 815, 816, 822, 824, 830], "done": [41, 43, 46, 633, 670, 813, 814, 815, 816, 819, 822, 824, 826, 827, 830, 831, 836, 837, 840, 848, 859, 860, 866], "py3": [41, 43, 46], "whl": [41, 42, 43, 46], "cp39": [41, 43], "manylinux_2_12_x86_64": [41, 43], "manylinux2010_x86_64": [41, 43], "manylinux_2_17_x86_64": [41, 43, 815], "manylinux2014_x86_64": [41, 42, 43], "eta": [41, 43, 46], "tar": [41, 42, 43, 46], "gz": [41, 42, 43, 46], "py2": [41, 43], "495": [41, 43], "nvidia_ml_pi": [41, 43], "pypars": [41, 43, 46], "ivy_cor": [41, 43, 46, 815], "1338326": 41, "sha256": [41, 43, 46], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 41, "store": [41, 43, 46, 50, 53, 54, 58, 60, 70, 73, 76, 77, 81, 83, 150, 371, 372, 416, 424, 428, 442, 446, 545, 630, 633, 635, 687, 704, 769, 770, 788, 789, 790, 810, 816, 820, 821, 823, 828, 834, 836, 837, 838, 845, 847, 848, 849, 853, 859], "ephem": [41, 43], "njrc_e6b": 41, "2e": [41, 43], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [41, 43], "4845": [41, 43], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 41, "b6": [41, 43], "0d": [41, 43], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [41, 43], "successfulli": [41, 43, 46, 790, 811, 815, 820], "uninstal": [41, 43, 46], "found": [41, 43, 44, 46, 58, 60, 64, 70, 76, 81, 83, 87, 99, 197, 383, 465, 519, 627, 637, 667, 673, 706, 725, 745, 802, 811, 814, 815, 816, 820, 821, 822, 823, 825, 826, 828, 831, 834, 836, 837, 852, 868], "vnd": [41, 43, 46], "json": [41, 43, 46, 70, 815, 830, 848], "psst": 41, "cv2": [41, 43, 45, 848], "pickl": [41, 42, 70, 790, 823, 848], "imageio": 41, "urllib": [41, 46], "_src": 41, "tpu": [41, 190, 196, 205, 207, 212, 627, 806, 826, 866, 869], "back": [41, 53, 60, 76, 83, 374, 470, 491, 574, 598, 630, 632, 635, 659, 702, 787, 792, 802, 815, 820, 825, 826, 829, 834, 835, 842, 844, 851, 852, 856, 864, 868], "tf_cpp_min_log_level": 41, "info": [41, 805, 806, 808, 822, 828, 831], "mkdir": [41, 42, 43, 815, 824], "perceiv": [41, 42], "touch": 41, "io_processor": 41, "position_encod": 41, "absl": 41, "jmp": 41, "tabul": 41, "04": [41, 42, 49, 55, 69, 73, 76, 78, 108, 109, 134, 161, 241, 578, 611, 612, 617, 622, 625, 626, 628, 630, 631, 772, 815, 840], "29359": 41, "29k": 41, "67k": 41, "002": 41, "30179": 41, "47k": 41, "8107": 41, "9k": 41, "92k": 41, "itertool": 41, "preprocessor": 41, "vector": [41, 49, 53, 54, 57, 58, 76, 77, 80, 81, 93, 94, 96, 135, 361, 362, 370, 371, 372, 374, 377, 378, 383, 394, 425, 430, 438, 440, 445, 480, 482, 484, 502, 506, 518, 537, 541, 558, 610, 625, 630, 632, 633, 656, 659, 664, 668, 669, 671, 673, 678, 683, 684, 688, 689, 690, 691, 772, 788, 866], "perceiverbackbon": 41, "input_preprocessor": 41, "_input_preprocessor": 41, "_encod": 41, "__call__": [41, 769, 788, 789, 790, 808, 860], "is_train": 41, "po": [41, 802], "input_mask": 41, "network_input_is_1d": 41, "_input_is_1d": 41, "queri": [41, 42, 57, 70, 80, 194, 208, 551, 577, 627, 630, 632, 659, 662, 788, 823, 825, 830, 847, 866], "decod": [41, 848], "cross": [41, 43, 58, 59, 81, 82, 94, 633, 634, 692, 693, 694, 808, 824, 825], "attend": [41, 632, 659], "encoder_queri": 41, "latent": [41, 636, 712, 713], "imagepreprocessor": 41, "deal": [41, 790, 812, 826, 833, 835, 837, 840, 851], "image_s": 41, "fourier_pos_config": 41, "position_encoding_typ": 41, "fourier": [41, 53, 76, 371, 394, 399, 400, 404, 405, 415, 416, 419, 545, 630], "fourier_position_encoding_kwarg": 41, "concat_po": 41, "max_resolut": 41, "num_band": [41, 54, 77, 545, 630], "sine_onli": 41, "prep_typ": 41, "spatial_downsampl": 41, "cross_attend_widening_factor": 41, "cross_attention_shape_for_attn": 41, "kv": 41, "dropout_prob": 41, "num_block": 41, "num_cross_attend_head": 41, "num_self_attend_head": 41, "num_self_attends_per_block": 41, "num_z_channel": 41, "self_attend_widening_factor": 41, "use_query_residu": 41, "z_index_dim": 41, "z_pos_enc_init_scal": 41, "perceiver_backbon": [41, 808], "perceiverencod": 41, "At": [41, 814, 815, 816, 819, 830, 840, 841, 856, 866], "almost": [41, 813, 823, 838, 846, 848, 855], "publish": [41, 808, 851, 857, 860], "thankfulli": [41, 840], "perceiver_io": [41, 42], "imagenet_fourier_position_encod": 41, "pystat": 41, "imagenet_checkpoint": 41, "rb": 41, "ckpt": 41, "read": [41, 43, 53, 60, 70, 72, 76, 83, 130, 374, 470, 625, 635, 702, 814, 815, 822, 824, 830, 840, 842, 843, 866], "09": [41, 47, 52, 78, 85, 114, 274, 284, 611, 622, 628, 631, 736], "173": [41, 58, 633, 671], "194": 41, "217": [41, 829], "125": [41, 53, 58, 81, 230, 342, 368, 373, 449, 628, 633, 688], "177": [41, 43], "193776248": 41, "185m": 41, "octet": 41, "184": 41, "80m": 41, "144mb": 41, "144": 41, "mean_rgb": 41, "stddev_rgb": 41, "im": 41, "denorm": 41, "resize_and_center_crop": 41, "crop": [41, 53, 76, 371, 400, 405, 416], "center": [41, 787], "image_height": [41, 43, 808], "image_width": [41, 808], "padded_center_crop_s": 41, "minimum": [41, 52, 53, 54, 60, 63, 66, 75, 76, 77, 83, 86, 89, 216, 244, 271, 295, 327, 331, 332, 342, 363, 365, 368, 374, 383, 480, 516, 520, 526, 578, 579, 588, 589, 601, 602, 628, 630, 635, 640, 643, 695, 741, 756, 758, 772, 774, 775, 780, 825, 842, 863, 869, 873], "offset_height": 41, "offset_width": 41, "crop_window": 41, "inter_cub": 41, "ye": [41, 851], "dummy_input": [41, 808], "transpili": 41, "torch_perceiver_backbon": 41, "quicker": 41, "params_v": [41, 808, 860], "perceiverioclassifi": [41, 808], "max_pool": [41, 808], "huggingfac": [41, 859, 860], "Of": [41, 820, 836, 837, 848, 871, 872], "cours": [41, 815, 816, 819, 820, 827, 836, 837, 843, 848, 851, 871, 872], "468": 41, "huggingface_hub": 41, "multiprocess": [41, 70, 99, 630, 848, 851], "py39": 41, "132": [41, 76], "pyarrow": 41, "xxhash": 41, "212": [41, 53, 57, 76, 355, 368, 656], "pyyaml": 41, "2021": [41, 53, 76, 358, 368, 808], "aiohttp": 41, "async": 41, "timeout": [41, 70, 99, 582, 605, 630, 842], "0a3": 41, "async_timeout": 41, "frozenlist": 41, "manylinux_2_5_x86_64": [41, 46], "manylinux1_x86_64": [41, 46], "158": 41, "attr": [41, 825], "aiosign": 41, "multidict": 41, "114": [41, 371, 393, 403], "yarl": 41, "264": [41, 637, 714], "2022": [41, 42], "pytz": 41, "2020": [41, 819, 866], "dateutil": [41, 46], "wikiart": 41, "paint": [41, 808, 845, 855], "load_dataset": [41, 859, 860], "n_sampl": [41, 53, 76, 372, 374, 421, 429, 483], "10000": [41, 43, 49, 72, 134, 625], "huggan": 41, "split": [41, 42, 43, 47, 52, 53, 60, 69, 70, 75, 76, 83, 106, 107, 108, 109, 110, 111, 112, 113, 114, 207, 208, 209, 287, 291, 296, 297, 299, 344, 351, 363, 374, 466, 475, 495, 541, 568, 622, 627, 628, 630, 632, 635, 645, 652, 653, 707, 769, 784, 788, 808, 809, 816, 824, 844, 845, 851, 873], "wiki_art": 41, "gib": 41, "unknown": [41, 772], "total": [41, 43, 53, 66, 70, 76, 89, 99, 130, 211, 326, 327, 328, 336, 365, 368, 373, 448, 625, 627, 640, 643, 743, 760, 762, 802, 808, 809, 815, 816, 825, 826, 827, 840, 843, 848, 849, 851, 857], "huggan___parquet": 41, "36ee951979f9b56c": 41, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 41, "parquet": 41, "subsequ": [41, 797, 815, 820, 824, 825, 827, 832, 833, 836, 840, 849, 867], "reus": [41, 49, 72, 76, 83, 124, 458, 459, 466, 468, 470, 471, 472, 479, 495, 698, 699, 700, 702, 704, 705, 707, 709, 829, 840, 871], "curl": [41, 815], "server": [41, 808, 815, 816, 822, 830, 852, 866], "row": [41, 53, 76, 94, 128, 143, 324, 365, 372, 374, 381, 383, 431, 443, 472, 478, 496, 511, 517, 518, 625, 633, 639, 640, 674, 682, 683, 688, 734, 743, 787], "2fwikiart": 41, "receiv": [41, 45, 93, 532, 568, 630, 636, 711, 712, 713, 788, 806, 811, 815, 816, 825, 826, 840, 843], "xferd": 41, "averag": [41, 43, 53, 55, 59, 76, 78, 82, 371, 373, 377, 383, 385, 386, 390, 391, 392, 450, 451, 452, 453, 454, 455, 502, 518, 611, 612, 617, 631, 632, 634, 636, 659, 692, 711, 712, 787, 788], "dload": 41, "upload": [41, 840], "spent": [41, 857], "25936": 41, "278k": 41, "number": [41, 43, 44, 45, 46, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 72, 73, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 89, 90, 93, 94, 96, 98, 99, 102, 122, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 143, 149, 154, 155, 156, 157, 158, 160, 161, 164, 167, 168, 169, 171, 173, 176, 200, 201, 202, 216, 217, 218, 219, 220, 222, 224, 225, 232, 234, 236, 237, 239, 241, 242, 243, 249, 250, 251, 253, 257, 259, 267, 268, 269, 270, 271, 272, 274, 276, 278, 279, 280, 282, 283, 287, 289, 315, 319, 320, 321, 322, 323, 324, 326, 327, 328, 330, 331, 332, 334, 335, 336, 337, 347, 352, 356, 365, 368, 371, 372, 373, 374, 377, 383, 405, 416, 419, 422, 425, 429, 430, 431, 441, 445, 447, 448, 458, 459, 460, 480, 481, 482, 483, 484, 486, 488, 490, 492, 494, 497, 498, 499, 516, 518, 519, 520, 521, 527, 545, 552, 570, 587, 588, 589, 596, 609, 610, 623, 625, 626, 627, 628, 630, 632, 633, 634, 635, 636, 639, 640, 641, 643, 644, 645, 652, 653, 655, 657, 659, 664, 668, 669, 670, 676, 681, 683, 687, 688, 689, 692, 695, 697, 698, 700, 701, 703, 704, 706, 708, 710, 711, 712, 713, 734, 738, 743, 745, 746, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 780, 787, 788, 791, 802, 806, 808, 815, 816, 823, 824, 825, 826, 827, 834, 835, 836, 840, 841, 842, 843, 845, 848, 854, 855, 859], "abstract_expression": 41, "action_paint": 41, "analytical_cub": 41, "art_nouveau": 41, "baroqu": 41, "color_field_paint": 41, "contemporary_r": 41, "cubism": 41, "early_renaiss": 41, "expression": 41, "fauvism": 41, "high_renaiss": 41, "impression": 41, "mannerism_late_renaiss": 41, "minim": [41, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 371, 373, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 802, 828, 836, 838, 843, 845, 859, 864, 872], "naive_art_primitiv": 41, "new_real": 41, "northern_renaiss": 41, "pointil": 41, "pop_art": 41, "post_impression": 41, "realism": 41, "rococo": 41, "romantic": 41, "symbol": [41, 801, 814, 815, 866, 867], "synthetic_cub": 41, "ukiyo_": 41, "custom": [41, 53, 76, 295, 307, 360, 363, 370, 772, 801, 810, 818, 824, 829, 834, 838, 840, 843, 849, 856, 866, 870, 871, 872], "hugginfac": 41, "customdataset": 41, "__len__": [41, 823], "__getitem__": [41, 70, 823], "idx": [41, 42, 43, 531, 630, 808, 826, 847], "random_split": 41, "224x224": 41, "val_siz": 41, "dataset_train": 41, "dataset_v": 41, "dataset_test": 41, "dataloader_train": 41, "batch_siz": [41, 43, 46, 53, 57, 62, 76, 80, 85, 371, 373, 390, 391, 392, 408, 409, 410, 411, 455, 632, 639, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 657, 659, 734, 808, 848], "dataloader_v": 41, "dataloader_test": 41, "batch": [41, 42, 43, 53, 54, 58, 70, 76, 77, 81, 207, 208, 371, 372, 373, 377, 385, 387, 388, 394, 407, 417, 434, 448, 450, 497, 498, 499, 502, 545, 548, 549, 610, 627, 630, 632, 633, 636, 638, 656, 657, 658, 659, 690, 711, 712, 713, 733, 772, 788, 791, 808, 823, 833, 838, 848, 864], "iter": [41, 43, 48, 53, 54, 60, 68, 70, 76, 77, 83, 91, 96, 99, 118, 209, 316, 317, 365, 371, 372, 374, 417, 430, 441, 447, 464, 480, 530, 568, 624, 627, 630, 635, 637, 697, 701, 708, 710, 715, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 729, 730, 732, 801, 802, 806, 819, 821, 823, 845, 848, 857, 859], "train_featur": 41, "train_label": 41, "imshow": [41, 42], "crossentropyloss": [41, 789], "sgd": [41, 792, 866], "lr": [41, 55, 78, 532, 612, 615, 617, 618, 619, 630, 631, 792, 848, 849], "001": [41, 52, 53, 61, 73, 76, 78, 161, 259, 276, 334, 347, 368, 612, 626, 628, 631, 638, 733, 772, 848, 849], "train_step": 41, "running_loss": [41, 43, 808], "last_loss": 41, "training_load": 41, "intra": 41, "report": [41, 811, 814, 840], "zero_grad": 41, "backward": [41, 53, 67, 76, 90, 278, 371, 394, 399, 400, 404, 405, 415, 416, 628, 633, 644, 664, 689, 763, 764, 788, 806, 841, 851], "adjust": [41, 66, 89, 372, 443, 643, 760, 762, 797, 806], "999": [41, 55, 75, 78, 287, 611, 612, 617, 619, 628, 631, 792, 849], "epoch_numb": 41, "best_vloss": 41, "1_000_000": 41, "avg_loss": 41, "running_vloss": 41, "vdata": 41, "vinput": 41, "vlabel": 41, "voutput": 41, "vloss": 41, "avg_vloss": 41, "model_path": 41, "model_": 41, "state_dict": [41, 789, 790], "highest": [41, 53, 62, 76, 85, 315, 318, 365, 639, 735, 825], "energi": 41, "sum": [41, 43, 52, 53, 54, 57, 58, 59, 66, 70, 75, 76, 77, 80, 81, 82, 89, 93, 98, 99, 209, 219, 261, 285, 328, 352, 365, 368, 372, 373, 374, 377, 383, 414, 424, 448, 449, 450, 451, 452, 453, 454, 455, 485, 502, 524, 525, 542, 572, 573, 627, 628, 630, 632, 633, 634, 643, 655, 662, 674, 683, 687, 690, 692, 754, 755, 787, 789, 801, 808, 823, 825, 833, 835, 836, 837, 845, 859, 860, 861, 863], "augment": 41, "mayb": [41, 42, 48, 808, 815, 824, 845, 847], "meta": [41, 711, 712, 713, 820, 841, 866], "finetun": 41, "deploi": [41, 808, 824, 853, 860, 864, 865, 866, 868, 872], "present": [42, 53, 66, 70, 76, 89, 334, 368, 377, 497, 498, 499, 643, 758, 814, 815, 816, 823, 825, 826, 832, 836, 845, 855, 863, 864, 873], "percieverio": 42, "ai": [42, 824, 864, 868], "contribut": [42, 53, 76, 383, 521, 811, 813, 815, 816, 817, 822, 830, 831, 837, 838, 845, 852, 859, 870, 874], "highli": [42, 808, 814, 866], "invit": [42, 814, 817, 837, 843], "g4ar9q7dtn": 42, "step1": 42, "printf": 42, "8packag": 42, "share": [42, 70, 182, 626, 772, 773, 808, 821, 823, 827, 833, 835, 837, 838, 840, 843, 845, 856, 864, 865, 872], "googledr": 42, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 42, "file_id": 42, "drive": [42, 43], "uc": 42, "tee": [42, 815], "file_id_wget_cmd": 42, "perl": 42, "pe": 42, "g": [42, 44, 45, 53, 62, 64, 66, 68, 76, 85, 91, 93, 147, 176, 189, 236, 249, 269, 276, 279, 331, 332, 368, 371, 372, 374, 378, 383, 408, 410, 447, 488, 504, 505, 506, 507, 508, 519, 520, 626, 627, 628, 633, 637, 639, 641, 643, 669, 670, 674, 681, 683, 684, 690, 717, 721, 723, 726, 731, 735, 736, 737, 745, 746, 747, 748, 753, 754, 756, 758, 759, 761, 787, 806, 809, 814, 815, 818, 819, 821, 822, 823, 835, 837, 840, 845, 851, 853, 857, 862], "uuid": 42, "anywai": [42, 820, 834, 837], "bin": [42, 53, 76, 383, 516, 521, 815, 816, 819, 823], "bash": [42, 815, 816, 819], "step2": 42, "interpret": [42, 49, 53, 72, 76, 123, 124, 130, 136, 373, 383, 450, 518, 625, 824, 867], "sudo": [42, 815], "apt": [42, 815], "yf": 42, "step3": 42, "delet": [42, 816, 824], "xvzf": 42, "rm": [42, 44, 810, 816], "step4": 42, "symlink": 42, "unzip": [42, 43], "fr": 42, "l": [42, 53, 58, 75, 81, 263, 372, 373, 425, 448, 632, 633, 659, 663, 668, 669, 670, 673, 687, 816, 818], "d": [42, 53, 54, 57, 58, 60, 72, 76, 77, 80, 81, 83, 96, 112, 134, 143, 176, 219, 236, 237, 269, 272, 324, 365, 371, 372, 374, 377, 378, 381, 390, 391, 392, 399, 404, 408, 409, 410, 411, 413, 417, 423, 439, 460, 466, 468, 471, 475, 489, 491, 495, 502, 504, 510, 533, 544, 622, 625, 626, 628, 632, 633, 635, 637, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 666, 667, 671, 674, 678, 687, 688, 704, 717, 721, 722, 723, 726, 731, 732, 773, 802, 808, 809, 815, 818, 821, 822, 823, 830, 835, 840, 843, 848, 856, 857, 862], "ln": 42, "sf": 42, "la": 42, "step5": 42, "regular": [42, 76, 372, 383, 434, 439, 522, 815, 837, 866], "step6": 42, "ipkykernel": 42, "step7": 42, "engbjapanpython3": 42, "separ": [42, 53, 54, 76, 377, 498, 545, 630, 632, 659, 769, 780, 815, 816, 820, 823, 824, 827, 838, 839, 840, 845, 847, 848, 867, 871], "ipykernel": 42, "reconnect": 42, "sy": [42, 874], "oct": 42, "gcc": [42, 864, 871], "lf": 42, "upgrad": 42, "cuda11": 42, "cudnn805": 42, "cp38": [42, 46, 815], "helper": [42, 767, 769, 770, 776, 778, 779, 808, 812, 822, 825, 829, 830, 839, 848, 853], "feedforward": 42, "prenorm": 42, "perceiveriospec": 42, "fetch": [42, 553, 630, 815, 816, 819, 824], "ogbanugot": [42, 874], "xmartlab": 42, "caffeflow": 42, "fetch_class": 42, "class_label": 42, "ground_truth": 42, "127": [42, 50, 53, 58, 73, 76, 164, 355, 368, 626, 633, 671], "path_to_imag": 42, "get_imag": 42, "ax": [42, 47, 53, 58, 60, 63, 66, 67, 69, 76, 81, 83, 86, 89, 90, 98, 102, 109, 113, 209, 331, 332, 336, 337, 352, 359, 368, 369, 371, 372, 374, 377, 383, 400, 405, 416, 442, 479, 480, 486, 500, 523, 524, 525, 526, 527, 528, 541, 610, 627, 630, 633, 635, 640, 643, 644, 664, 674, 682, 685, 686, 690, 697, 699, 700, 703, 705, 707, 710, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 788, 825, 827, 840, 841, 845, 847], "fig": [42, 43], "subplot": [42, 43], "spine": 42, "set_vis": 42, "right": [42, 53, 58, 70, 76, 81, 99, 116, 117, 228, 230, 283, 346, 368, 371, 372, 374, 406, 436, 442, 443, 445, 471, 541, 624, 628, 630, 633, 642, 683, 688, 751, 772, 809, 814, 815, 816, 818, 819, 827, 830, 843, 848, 859], "bottom": [42, 541, 630, 814, 815, 824, 830, 872], "tick_param": 42, "set_xticklabel": 42, "set_yticklabel": 42, "show_result": 42, "along": [42, 47, 49, 52, 53, 54, 58, 59, 60, 62, 63, 65, 66, 67, 69, 70, 72, 75, 76, 77, 81, 82, 83, 85, 86, 88, 89, 90, 93, 94, 96, 109, 113, 118, 133, 134, 209, 283, 286, 288, 326, 327, 328, 331, 332, 336, 337, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 393, 399, 400, 403, 404, 405, 415, 416, 441, 452, 465, 466, 467, 469, 471, 472, 480, 485, 488, 490, 492, 500, 501, 502, 503, 519, 520, 521, 523, 524, 525, 526, 527, 528, 541, 548, 624, 625, 627, 628, 630, 633, 634, 635, 636, 639, 640, 642, 643, 644, 664, 678, 687, 689, 690, 692, 693, 694, 696, 699, 700, 701, 703, 704, 706, 708, 709, 711, 712, 713, 739, 740, 741, 749, 750, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 788, 808, 814, 817, 818, 827, 836, 839, 841, 843, 845, 866], "figur": [42, 842], "figsiz": [42, 43], "listdir": [42, 43], "endswith": 42, "this_dir": 42, "dirnam": 42, "join": [42, 43, 60, 70, 76, 83, 464, 465, 635, 696, 706, 808, 817], "add_subplot": 42, "xtick": 42, "ytick": 42, "set_titl": [42, 43], "color": [42, 70, 99, 807], "green": [42, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 807, 814, 815, 816], "red": 42, "perceiver_io_img_classif": 42, "normalize_imag": 42, "batch_shap": [42, 57, 62, 72, 80, 85, 128, 137, 625, 632, 633, 639, 658, 662, 691, 734, 788, 843, 845, 847], "img_dim": 42, "queries_dim": 42, "learn_queri": 42, "load_weight": 42, "num_input_ax": 42, "network_depth": 42, "num_lat_att_per_lay": 42, "query_shap": 42, "num_fourier_freq_band": 42, "weight_fpath": 42, "pretrained_weight": 42, "isfil": 42, "noinspect": [42, 847], "pybroadexcept": 42, "from_disk_as_pickl": 42, "larg": [42, 52, 53, 75, 76, 219, 236, 243, 269, 270, 374, 383, 488, 518, 628, 633, 681, 810, 815, 816, 822, 824, 830, 848, 859, 866], "action": [42, 806, 813, 824, 827, 831, 840], "fail": [42, 767, 812, 815, 816, 819, 824, 825, 827, 831, 834, 836, 837, 838], "placehold": [42, 637, 721, 726, 731, 788, 816, 820, 832, 853], "pyunboundlocalvari": 42, "max_fourier_freq": 42, "random_uniform": [42, 46, 62, 85, 639, 826, 829, 840, 845, 849], "817437": 42, "gpu_bfc_alloc": 42, "orig_valu": 42, "tf_force_gpu_allow_growth": 42, "autograd": [42, 851], "declar": [42, 816, 839], "_3r2_73j": 43, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 43, "1297564": 43, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 43, "le3bu3_v": 43, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 43, "third": [43, 93, 94, 374, 467, 494, 633, 641, 683, 745, 822, 825, 836, 851, 865, 866, 872], "parti": [43, 822, 825, 851, 856, 865, 866, 872], "mount": [43, 810, 816], "mydriv": 43, "chdir": 43, "One": [43, 53, 54, 60, 62, 76, 77, 83, 85, 96, 374, 458, 459, 460, 463, 480, 489, 492, 542, 630, 635, 639, 702, 735, 820, 823, 825, 827, 833, 838, 840, 845, 847, 848], "kaggl": 43, "medium": 43, "articl": [43, 808, 831], "insert": [43, 53, 63, 76, 86, 374, 455, 465, 635, 637, 640, 642, 698, 718, 719, 740, 751, 824, 831], "www": [43, 331, 332, 368], "your_kaggle_usernam": 43, "competit": 43, "digit": 43, "recogn": [43, 811, 817], "zip": [43, 845], "readabl": [43, 820, 823, 829, 831, 832, 840, 841, 847, 848], "chmod": [43, 815, 824], "recent": [43, 805, 815, 816, 840, 855, 856], "modifi": [43, 53, 70, 76, 93, 374, 383, 477, 480, 485, 525, 772, 802, 814, 815, 816, 819, 821, 822, 825, 826, 828, 830, 831, 833, 836, 838, 840, 841, 845], "forc": [43, 822, 824, 826], "archiv": [43, 815], "inflat": [43, 825], "sample_submiss": 43, "frame": [43, 53, 76, 315, 365, 371, 419, 856, 866], "later": [43, 70, 535, 630, 814, 831, 836, 840, 841, 866], "my": [43, 824], "label_df": 43, "mod_train": 43, "data_valu": 43, "test_data_valu": 43, "correct_label": 43, "train_path": 43, "str": [43, 45, 48, 49, 53, 54, 57, 58, 59, 60, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 130, 132, 135, 137, 139, 145, 146, 149, 151, 153, 154, 155, 156, 160, 161, 164, 165, 166, 167, 168, 169, 171, 173, 176, 177, 178, 179, 180, 181, 188, 189, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 371, 372, 373, 374, 377, 383, 386, 390, 391, 392, 394, 395, 396, 397, 399, 400, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 422, 426, 441, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 463, 464, 465, 470, 486, 488, 489, 490, 491, 492, 497, 498, 499, 500, 501, 503, 505, 507, 518, 519, 520, 521, 528, 530, 531, 533, 534, 536, 537, 539, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 575, 576, 585, 587, 588, 589, 591, 593, 595, 596, 609, 613, 620, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 684, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 713, 720, 721, 726, 731, 734, 735, 736, 737, 739, 742, 745, 746, 747, 749, 753, 754, 755, 757, 759, 760, 762, 763, 764, 769, 770, 772, 773, 778, 780, 788, 790, 791, 801, 802, 806, 825, 826, 829, 833, 836, 837, 841, 845, 850, 859, 860, 861], "makedir": 43, "valid_path": 43, "28x28": 43, "pic": 43, "pictur": [43, 808, 814, 845, 855], "int8": [43, 50, 62, 72, 73, 85, 130, 157, 162, 164, 165, 169, 625, 626, 735, 772, 773, 825, 840], "new_img": [43, 45], "builder": [43, 810], "batchwis": 43, "subset": [43, 774, 820, 824, 828, 832, 835, 837, 840, 845, 866], "goe": [43, 374, 463, 818, 831, 836, 843], "seed_valu": [43, 70, 639, 738], "randomize_dataset": 43, "shuffl": [43, 53, 62, 70, 76, 85, 506, 639], "create_dataset": 43, "num_examples_per_class": 43, "img_arrai": 43, "class_nam": [43, 769], "dir": [43, 848], "img_path": 43, "imread": [43, 45, 848], "imread_grayscal": 43, "generate_batch": [43, 808], "dataset_s": [43, 808], "ivyerror": [43, 803, 808, 829], "smaller": [43, 53, 60, 66, 76, 83, 298, 330, 347, 363, 368, 371, 373, 383, 400, 405, 416, 448, 518, 519, 520, 541, 630, 635, 643, 695, 703, 753, 754, 759, 761, 808, 816, 829, 845], "yield": [43, 63, 316, 317, 365, 374, 480, 640, 744, 808, 824], "x_batch_inst": 43, "form": [43, 45, 48, 49, 53, 58, 70, 72, 81, 92, 93, 94, 123, 124, 136, 141, 142, 308, 311, 325, 334, 365, 368, 372, 374, 425, 436, 467, 476, 480, 496, 531, 592, 594, 625, 630, 632, 633, 637, 663, 665, 667, 668, 669, 670, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 715, 726, 772, 787, 809, 814, 815, 833, 840, 843, 849, 850, 856, 866, 867, 872], "intialis": 43, "num_epoch": [43, 808], "inherit": [43, 820, 823, 829, 847, 851, 853], "creation": [43, 53, 70, 76, 99, 822, 825, 826, 832, 834, 837, 838, 840, 841, 845, 859, 866, 868, 872], "inform": [43, 45, 50, 53, 55, 73, 78, 161, 164, 315, 365, 531, 620, 626, 630, 631, 636, 713, 806, 808, 813, 814, 815, 816, 817, 819, 823, 824, 829, 833, 834, 836, 838, 840, 869], "insid": [43, 58, 81, 99, 374, 490, 633, 676, 770, 815, 816, 820, 823, 825, 826, 830, 833, 834, 840, 841, 859, 872], "ivynet": [43, 808], "h_w": [43, 808], "input_channel": [43, 788, 808, 845, 849], "output_channel": [43, 788, 808, 849], "gelu": [43, 44, 47, 69, 622, 784, 808], "image_widht": 43, "start_dim": [43, 53, 76, 374, 470, 808], "end_dim": [43, 53, 76, 374, 470, 808], "gpu_is_avail": [43, 627, 808], "120": [43, 66, 89, 99, 633, 678, 753, 808], "model_nam": [43, 808], "__name__": [43, 44, 46, 597, 630, 808, 829], "heavi": [43, 774, 815, 837, 838, 843, 867], "lift": [43, 838, 867], "num_correct": [43, 808], "y_pred": [43, 808], "cross_entropi": [43, 59, 82, 634, 694, 808, 823, 833, 836], "epoch_loss": [43, 808], "field": [43, 58, 64, 81, 87, 372, 374, 425, 494, 633, 641, 668, 669, 680, 681, 683, 745, 746, 747, 808, 824, 864, 872], "training_accuraci": [43, 808], "train_loss": [43, 808], "train_correct": [43, 808], "train_loop": [43, 808], "posit": [43, 45, 48, 52, 53, 54, 58, 59, 60, 75, 76, 77, 81, 82, 83, 93, 128, 130, 143, 161, 216, 217, 218, 222, 225, 236, 243, 250, 251, 257, 259, 269, 270, 277, 278, 282, 283, 287, 309, 324, 330, 335, 347, 365, 368, 372, 374, 423, 443, 454, 479, 488, 535, 545, 610, 623, 625, 626, 628, 630, 633, 634, 635, 639, 640, 644, 663, 666, 687, 692, 698, 703, 738, 743, 763, 764, 769, 772, 780, 785, 789, 790, 802, 808, 814, 816, 819, 823, 837, 840, 841, 848, 859, 868], "leav": [43, 48, 53, 71, 73, 75, 76, 77, 80, 81, 83, 89, 99, 161, 164, 236, 293, 296, 297, 303, 374, 464, 465, 470, 482, 483, 484, 500, 501, 503, 519, 520, 525, 545, 593, 635, 637, 651, 662, 667, 683, 697, 701, 706, 708, 709, 714, 715, 724, 725, 726, 727, 753, 754, 801, 808, 814, 823, 824, 825, 827, 828, 832, 833, 836, 837, 840, 848, 849], "xbatch": [43, 808], "ybatch": [43, 808], "to_devic": [43, 51, 74, 192, 627, 790, 808], "entropi": [43, 59, 82, 634, 692, 693, 694, 808], "hot": [43, 49, 72, 137, 625, 808], "ybatch_encod": [43, 808], "one_hot": [43, 49, 72, 625, 808, 850], "loss_prob": [43, 808], "ret_grad_idx": [43, 613, 631, 769, 835], "xs_grad_idx": [43, 613, 631, 769, 835], "batch_loss": [43, 808], "set_descript": [43, 808], "set_postfix": [43, 808], "accuracy_percentag": [43, 808], "naverag": [43, 808], "6f": [43, 808], "_train_summari": [43, 808], "writer": [43, 808], "writerow": [43, 808], "157it": 43, "06it": 43, "475401": 43, "11it": 43, "081436": 43, "13it": 43, "0187": 43, "029279": 43, "0324": 43, "008382": 43, "07it": 43, "00456": 43, "003816": 43, "82it": 43, "00277": 43, "002179": 43, "05it": 43, "00175": 43, "001569": 43, "00147": 43, "001235": 43, "09it": 43, "00128": 43, "001005": 43, "106": 43, "10it": 43, "00112": 43, "000837": 43, "129": [43, 632, 651, 653], "12it": 43, "000989": 43, "000709": 43, "145": 43, "000873": 43, "000606": 43, "168": [43, 536, 630, 637, 714], "08it": 43, "000774": 43, "000524": 43, "000688": 43, "000455": 43, "000613": 43, "000398": 43, "000547": 43, "000350": 43, "205": 43, "000488": 43, "000308": 43, "218": 43, "000437": 43, "000273": 43, "000391": 43, "000243": 43, "238": [43, 243, 628], "98it": 43, "000351": 43, "000216": 43, "260": 43, "plot_summari": 43, "seaborn": 43, "whitegrid": 43, "ax1": 43, "ax2": 43, "nrow": 43, "ncol": 43, "fontweight": 43, "bold": 43, "set_xlabel": 43, "set_ylabel": 43, "tight_layout": 43, "savefig": 43, "summary_plot": 43, "png": [43, 45, 46, 848], "close": [43, 58, 241, 259, 279, 308, 365, 628, 633, 635, 683, 698, 811, 812, 814, 815, 816, 817, 825, 828, 830, 837, 843, 866], "save_weight": [43, 790], "model_param": 43, "ivynet_weight": 43, "hdf5": [43, 70, 790, 848], "deitimageprocessor": 44, "tfdeitforimageclassif": 44, "tfdeitforimageclassificationwithteach": 44, "head": [44, 45, 632, 659, 788, 808, 813, 815, 824, 837, 863], "distillation_classifi": 44, "cls_classifi": 44, "randomli": [44, 371, 395, 396, 397, 632, 655, 772, 773, 774, 775, 780, 788], "henc": [44, 64, 219, 334, 368, 628, 635, 641, 698, 745, 746, 747, 748, 797, 815, 823, 824, 825, 836, 840], "image_processor": [44, 859, 860], "facebook": 44, "distil": [44, 867], "patch16": 44, "outputs_from_original_model": 44, "predicted_class_idx": 44, "id2label": [44, 859], "architectur": [44, 808, 815, 850, 851, 864, 865, 866, 869, 870, 871], "bertforsequenceclassif": 44, "bertforpretrain": 44, "NOT": [44, 264, 628, 801, 814], "probabl": [44, 53, 57, 59, 62, 76, 80, 82, 85, 371, 373, 378, 383, 395, 396, 397, 450, 504, 518, 521, 525, 632, 634, 639, 655, 659, 662, 692, 734, 774, 787, 788, 808, 840, 852, 857], "ptarmigan": 44, "rf": [44, 816], "branch": [44, 224, 236, 239, 241, 269, 281, 282, 283, 286, 628, 815, 816, 819, 824, 831, 851, 859, 866], "moduleconvert": [44, 785, 790], "mc": 44, "from_keras_modul": [44, 785], "compiled_func": 44, "return_graph": [44, 46], "compiled_output": 44, "diverg": [44, 53, 76, 243, 373, 450, 628], "_all_funct": [44, 46], "convert_to_tensor_v2_with_dispatch": 44, "transpose_v2": 44, "convolution_v2": 44, "bias_add": 44, "binary_op_wrapp": 44, "cast": [44, 50, 52, 53, 58, 66, 73, 75, 81, 148, 151, 176, 270, 383, 519, 520, 626, 628, 633, 643, 674, 690, 753, 754, 759, 761, 773, 833, 838, 845, 863], "moments_v2": 44, "batch_norm": [44, 46, 53, 76, 377], "tensordot": [44, 58, 81, 633, 802, 825], "softmax_v2": 44, "_slice_help": 44, "save_to_disk": [44, 46, 790], "12265048989200113": 44, "11038777417100028": 44, "1167045795539998": 44, "ivy_api_kei": 45, "obj": [45, 123, 124, 553, 625, 630, 859, 860, 861], "combo": [45, 848], "permit": [45, 820, 832, 837, 840, 843], "usabl": [45, 832, 841], "neither": [45, 219, 236, 243, 269, 628, 633, 685, 824, 837, 843], "nor": [45, 219, 236, 243, 269, 628, 824, 837, 870], "specifc": 45, "invoc": 45, "represent": [45, 53, 54, 70, 76, 77, 99, 146, 147, 161, 164, 189, 190, 216, 219, 226, 229, 231, 236, 243, 266, 269, 271, 286, 312, 344, 348, 353, 357, 365, 368, 531, 593, 623, 626, 627, 628, 630, 772, 774, 775, 788, 825, 864, 865, 867, 871, 872], "externally_link": 45, "logo": 45, "patch": [45, 287, 628, 825, 866], "cv2_imshow": 45, "envrion": 45, "canni": 45, "original_img": 45, "fn_arg": 45, "dilate_edg": 45, "edg": [45, 53, 60, 76, 83, 315, 365, 371, 374, 383, 407, 480, 521, 635, 695, 697, 710, 775, 819, 840, 860, 866, 868, 872], "morphologi": 45, "hk_model": 45, "resnet18": [45, 46], "keras_model": 45, "count": [45, 53, 60, 64, 67, 72, 76, 83, 87, 90, 130, 202, 336, 368, 374, 383, 488, 492, 494, 516, 521, 625, 627, 633, 635, 641, 644, 664, 689, 696, 699, 745, 746, 763, 764, 822, 823, 827, 848], "odsc": 45, "talk": [45, 871], "228": 46, "352": [46, 80, 632, 656, 829], "nvidia_ml_py3": 46, "19190": 46, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 46, "b9": 46, "b1": [46, 633, 682], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 46, "cycler": 46, "fonttool": 46, "965": 46, "pillow": 46, "kiwisolv": 46, "show_graph": [46, 790], "to_ivy_modul": [46, 785, 850], "image_dim": 46, "v0": [46, 849], "urlerror": 46, "dev_str": 46, "comp_network": 46, "time_chronolog": 46, "ret0_nc": 46, "ret1_nc": 46, "ret0_c": 46, "ret1_c": 46, "pytorch_vision_v0": 46, "distribut": [46, 53, 59, 62, 76, 82, 85, 371, 372, 373, 378, 395, 396, 397, 430, 441, 447, 450, 452, 453, 455, 504, 505, 506, 507, 508, 634, 639, 692, 693, 694, 734, 735, 736, 737, 739, 787, 788, 814, 815, 824, 826, 851, 866, 869], "distributed_c10d": 46, "262": 46, "reduce_op": 46, "deprec": 46, "reduceop": 46, "004645566477999864": 46, "0044566806820000695": 46, "attribut": [46, 70, 161, 162, 163, 164, 195, 196, 204, 546, 547, 626, 627, 630, 770, 821, 822, 823, 828, 829, 833, 834, 836, 837, 843, 846, 847, 848, 849], "definit": [46, 52, 58, 75, 81, 288, 628, 633, 663, 808, 812, 816, 820, 825, 830, 833, 847, 860], "max_pool2d": [46, 53, 76, 371, 391], "__iadd__": 46, "adaptive_avg_pool2d": [46, 53, 76, 371], "_arraywithactiv": [47, 98], "abc": [47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 102, 544, 630, 637, 732, 787, 792, 801, 802, 847], "_abc_impl": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "_abc": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "_abc_data": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "approxim": [47, 52, 53, 58, 69, 75, 76, 81, 93, 96, 106, 217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 243, 257, 258, 259, 260, 274, 281, 282, 286, 287, 288, 345, 355, 368, 373, 452, 453, 622, 628, 633, 676, 679, 784, 828, 837], "complex_mod": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 834], "variant": [47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 679, 680, 681, 683, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 820, 827, 828, 843], "docstr": [47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 610, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 633, 635, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 813, 814, 818, 822, 831, 832, 833, 834, 837, 839, 841], "liter": [47, 52, 53, 58, 69, 75, 76, 81, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 371, 372, 374, 377, 393, 403, 407, 415, 430, 436, 441, 444, 447, 480, 502, 622, 628, 633, 642, 674, 690, 751, 784, 843], "magnitud": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 216, 219, 236, 243, 269, 287, 291, 296, 297, 299, 363, 622, 628, 633, 683, 684, 784, 825], "handle_complex_input": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 834], "element": [47, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 80, 81, 83, 85, 86, 87, 89, 94, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 125, 131, 132, 141, 142, 143, 159, 161, 164, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 301, 302, 303, 305, 306, 307, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 338, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 363, 365, 368, 371, 372, 373, 374, 383, 384, 395, 396, 397, 400, 405, 408, 409, 410, 414, 416, 417, 418, 424, 425, 426, 448, 458, 459, 460, 470, 471, 472, 474, 477, 487, 488, 490, 492, 494, 516, 517, 519, 520, 521, 522, 523, 524, 526, 527, 529, 533, 536, 537, 548, 549, 565, 567, 587, 588, 589, 591, 595, 596, 622, 625, 628, 630, 632, 633, 635, 637, 639, 640, 641, 642, 643, 644, 655, 664, 666, 668, 669, 673, 678, 680, 681, 683, 687, 695, 698, 699, 700, 701, 702, 703, 704, 705, 714, 717, 723, 734, 742, 743, 744, 745, 746, 747, 748, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 788, 802, 828, 838, 840, 843, 845, 870], "138": [47, 106, 622], "165": [47, 106, 622, 632, 656], "hardswish": [47, 53, 69, 76, 294, 363, 622, 784], "leaky_relu": [47, 69, 76, 291, 622, 773], "alpha": [47, 52, 53, 69, 75, 76, 103, 108, 219, 285, 291, 292, 300, 304, 310, 363, 365, 372, 377, 378, 426, 502, 505, 506, 507, 622, 628, 784, 832, 837, 838], "float": [47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 66, 69, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 85, 89, 93, 96, 98, 108, 114, 122, 123, 124, 126, 128, 130, 131, 132, 133, 134, 138, 139, 144, 148, 152, 156, 161, 165, 169, 175, 176, 179, 185, 194, 203, 207, 208, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 240, 241, 242, 243, 247, 249, 250, 251, 252, 253, 255, 257, 258, 259, 260, 261, 262, 269, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 298, 300, 303, 304, 306, 307, 308, 309, 310, 311, 313, 314, 315, 330, 331, 332, 333, 341, 342, 347, 349, 350, 353, 354, 355, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 386, 395, 396, 397, 414, 415, 422, 425, 426, 428, 441, 445, 447, 448, 449, 453, 454, 469, 487, 497, 498, 499, 502, 503, 504, 505, 506, 507, 508, 518, 519, 520, 521, 526, 527, 528, 535, 536, 537, 545, 554, 578, 579, 582, 588, 589, 609, 611, 612, 615, 617, 618, 619, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 655, 657, 659, 662, 663, 665, 668, 669, 670, 672, 674, 675, 676, 679, 680, 681, 682, 683, 684, 685, 687, 690, 692, 693, 694, 711, 712, 713, 720, 733, 736, 737, 743, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 760, 761, 762, 769, 772, 773, 775, 784, 787, 788, 791, 792, 806, 812, 819, 823, 825, 828, 829, 830, 832, 833, 835, 836, 838, 840, 841, 843, 845, 847, 849], "slope": [47, 53, 69, 76, 108, 291, 292, 298, 300, 304, 363, 622, 784], "neg": [47, 52, 53, 58, 60, 62, 67, 69, 75, 76, 81, 83, 85, 90, 93, 108, 111, 114, 122, 128, 130, 143, 236, 243, 250, 251, 269, 270, 278, 283, 291, 309, 324, 327, 363, 365, 372, 373, 374, 378, 423, 430, 436, 453, 488, 492, 508, 622, 625, 628, 633, 635, 639, 644, 664, 666, 683, 687, 689, 690, 696, 698, 699, 703, 736, 763, 764, 772, 774, 784, 823, 836], "leaki": [47, 69, 108, 622, 784], "log_softmax": [47, 69, 622, 784], "0719": [47, 69, 109], "221": [47, 109], "mish": [47, 69, 622, 784], "30340147": [47, 110, 622], "86509842": [47, 69, 110, 622], "269": [47, 112], "731": [47, 112], "881": [47, 52, 75, 112, 222, 235, 275, 628], "422": [47, 113, 622], "155": [47, 80, 113, 622, 632, 656], "softplu": [47, 69, 622, 784, 843], "beta": [47, 53, 61, 69, 76, 84, 114, 300, 304, 310, 313, 314, 363, 365, 372, 373, 377, 378, 426, 454, 502, 506, 507, 622, 638, 733, 784, 843], "threshold": [47, 52, 53, 69, 75, 76, 114, 267, 268, 307, 333, 363, 368, 373, 374, 449, 454, 487, 622, 628, 784, 843], "union": [47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 560, 561, 564, 565, 567, 568, 572, 573, 577, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 787, 792, 793, 820, 823, 825, 826, 827, 829, 832, 833, 836, 841, 843, 845, 850, 859, 860, 861], "3461": [47, 69, 114, 622], "6491": [47, 69, 114, 622], "_array_to_new_backend": 48, "_to_ivi": 48, "_to_n": 48, "to_ignor": [48, 68, 91, 637, 725, 726], "_to_new_backend": 48, "args_to_ivi": 48, "include_deriv": [48, 71, 637, 715, 726, 769], "nest": [48, 70, 71, 99, 102, 239, 563, 593, 610, 613, 628, 630, 631, 636, 711, 712, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 792, 820, 822, 823, 833, 835, 841, 848, 849, 851, 853, 866], "unchang": [48, 52, 371, 374, 416, 470, 632, 655], "deriv": [48, 49, 53, 55, 71, 72, 76, 78, 127, 132, 139, 145, 309, 313, 338, 365, 368, 611, 612, 615, 616, 617, 618, 619, 625, 631, 636, 637, 713, 715, 726, 790, 792, 793, 825, 826, 847, 849], "word": [48, 122, 374, 473, 625, 639, 737, 785, 788, 823, 836, 837, 853], "args_to_n": [48, 836], "cont_inplac": 48, "decid": [48, 70, 637, 725, 726, 808, 814, 815, 825, 843], "args_to_new_backend": 48, "shallow": [48, 637, 721, 722, 726, 731, 732], "nativevari": 48, "mutabl": [48, 637, 715, 721, 722, 726, 731, 732, 821], "to_ivi": [48, 71, 637, 727, 836], "leaf": [48, 70, 77, 89, 99, 544, 637, 724, 725, 727, 754, 823, 833, 848], "travers": [48, 71, 637, 718, 726, 823, 825, 829, 845], "lowest": [48, 53, 62, 71, 76, 85, 383, 521, 637, 639, 726, 735, 802, 833, 851, 853, 863, 867, 871], "search": [48, 53, 71, 76, 740, 741, 780, 813, 815, 823, 827, 830, 840, 841, 855], "to_new_backend": 48, "_arraywithcr": [49, 98], "boolean": [49, 50, 52, 53, 54, 60, 63, 66, 70, 72, 73, 75, 76, 77, 83, 86, 89, 98, 99, 119, 121, 123, 124, 125, 131, 148, 164, 166, 168, 169, 172, 188, 198, 206, 212, 226, 227, 228, 229, 230, 231, 263, 264, 265, 266, 331, 332, 347, 368, 372, 374, 430, 441, 447, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 488, 495, 530, 533, 544, 551, 554, 555, 559, 560, 561, 562, 563, 564, 565, 574, 577, 580, 581, 583, 584, 609, 624, 625, 626, 627, 628, 630, 632, 635, 636, 637, 640, 643, 659, 698, 699, 700, 702, 704, 705, 707, 709, 711, 712, 724, 742, 743, 744, 756, 758, 772, 773, 774, 775, 780, 791, 823, 825, 833, 837, 840, 843], "alwai": [49, 50, 53, 54, 60, 72, 73, 76, 83, 106, 124, 148, 219, 269, 342, 368, 372, 374, 443, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 558, 622, 626, 628, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 774, 808, 814, 815, 816, 820, 821, 823, 825, 828, 831, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 851, 859], "never": [49, 53, 60, 72, 76, 83, 124, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 816, 825, 836, 837, 840], "valueerror": [49, 53, 60, 72, 76, 83, 87, 124, 371, 373, 405, 416, 453, 458, 459, 466, 468, 470, 471, 472, 479, 495, 635, 698, 699, 700, 702, 704, 705, 707, 709, 748, 774, 803, 829], "buffer": [49, 72, 76, 83, 124, 130, 458, 459, 466, 468, 470, 471, 472, 479, 495, 625, 698, 699, 700, 702, 704, 705, 707, 709, 789, 790, 836, 851], "nativedtyp": [49, 50, 53, 57, 58, 62, 63, 66, 72, 76, 81, 85, 86, 89, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 144, 145, 147, 148, 153, 154, 155, 156, 157, 158, 159, 160, 165, 166, 170, 172, 174, 178, 188, 308, 309, 310, 311, 312, 313, 314, 329, 336, 352, 365, 368, 378, 383, 504, 505, 506, 507, 508, 518, 519, 520, 521, 524, 527, 625, 626, 632, 633, 639, 640, 642, 643, 655, 674, 690, 735, 736, 737, 740, 741, 751, 753, 754, 759, 761, 787, 825, 826, 832, 841, 845], "datatyp": [49, 53, 70, 72, 76, 124, 132, 136, 153, 174, 178, 371, 419, 625, 626, 767, 841, 859], "nativedevic": [49, 51, 53, 62, 72, 74, 76, 85, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 145, 190, 191, 192, 193, 194, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 308, 309, 324, 365, 378, 504, 505, 507, 508, 625, 627, 639, 734, 735, 736, 737, 787, 792, 793, 825, 826, 829, 832, 841], "39999998": [49, 123, 124, 625, 641, 746], "5999999": [49, 53, 76, 80, 123, 124, 293, 363, 372, 421, 625, 632, 655, 662], "0999999": [49, 66, 123, 124, 293, 303, 306, 349, 363, 368, 625, 757], "10000038": [49, 123, 124, 625], "90786433e": [49, 123, 124, 625], "310": [49, 123, 124, 625], "copy_arrai": [49, 72, 625], "to_ivy_arrai": [49, 72, 125, 625], "empty_lik": [49, 53, 72, 76, 260, 372, 424, 625, 628], "uniniti": [49, 126, 127, 625, 831], "from_dlpack": [49, 72, 625], "full_lik": [49, 72, 625, 841], "fill_valu": [49, 53, 63, 72, 76, 86, 131, 132, 248, 256, 374, 378, 488, 508, 625, 628, 640, 743, 825, 838, 841], "scalar": [49, 52, 53, 54, 58, 69, 72, 75, 76, 77, 81, 93, 108, 132, 137, 219, 240, 285, 291, 334, 335, 337, 342, 345, 347, 349, 354, 368, 371, 372, 373, 374, 419, 426, 448, 458, 459, 460, 469, 474, 596, 609, 625, 628, 630, 633, 690, 825, 835, 837, 851, 866], "fill": [49, 52, 53, 62, 63, 70, 72, 75, 76, 85, 86, 126, 131, 132, 134, 137, 138, 139, 144, 145, 270, 309, 365, 372, 374, 378, 430, 436, 441, 447, 469, 488, 489, 505, 507, 508, 625, 628, 639, 640, 735, 743, 787, 814, 838], "000123": [49, 132, 625], "stop": [49, 53, 55, 72, 76, 78, 122, 133, 134, 209, 372, 441, 447, 574, 612, 615, 617, 618, 619, 620, 625, 627, 630, 631, 636, 637, 711, 712, 713, 725, 792, 806, 832, 835, 843, 845, 851, 866], "num": [49, 72, 133, 134, 625, 772, 816, 832, 845], "endpoint": [49, 72, 133, 134, 625, 787, 832], "logspac": [49, 72, 625, 845], "log": [49, 52, 53, 58, 72, 75, 76, 81, 114, 134, 259, 261, 274, 296, 297, 350, 357, 363, 368, 373, 378, 450, 452, 453, 504, 622, 625, 628, 681, 772, 774, 775, 784, 816, 823, 824, 827, 833, 836, 837, 838, 840, 842, 843, 845, 848], "sequenc": [49, 53, 57, 58, 60, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 128, 130, 132, 134, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 312, 319, 320, 321, 322, 323, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 361, 362, 365, 368, 369, 370, 371, 372, 374, 378, 383, 384, 386, 387, 388, 395, 396, 397, 399, 400, 404, 405, 407, 414, 415, 416, 417, 418, 421, 429, 430, 431, 433, 439, 440, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 464, 465, 466, 467, 473, 475, 476, 478, 479, 481, 484, 486, 488, 489, 490, 492, 495, 496, 497, 499, 500, 501, 503, 505, 506, 518, 519, 520, 521, 528, 529, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 613, 614, 615, 620, 625, 628, 630, 631, 632, 633, 635, 637, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 690, 692, 693, 694, 695, 696, 698, 699, 701, 702, 703, 704, 705, 706, 709, 710, 714, 721, 731, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 791, 793, 816, 824, 825, 826, 827, 829, 840, 841, 843, 845, 850, 869], "on_valu": [49, 72, 134, 137, 625], "off_valu": [49, 72, 134, 137, 625], "evenli": [49, 52, 53, 57, 60, 70, 72, 75, 76, 80, 83, 122, 133, 134, 288, 371, 414, 418, 625, 628, 632, 635, 645, 646, 647, 648, 650, 652, 654, 704], "hint": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 820, 828, 830, 832, 833, 836, 837, 841], "simplic": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 828, 843, 849], "nestabl": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 818, 827, 828, 836, 840, 853], "464": [49, 52, 85, 134, 223, 224, 628], "15888336": [49, 134], "2154": [49, 134], "43469003": [49, 134], "meshgrid": [49, 72, 625], "spars": [49, 53, 59, 72, 76, 82, 135, 312, 365, 372, 430, 441, 447, 625, 634, 694], "xy": [49, 72, 135, 625], "dimension": [49, 52, 53, 58, 60, 63, 66, 67, 70, 72, 75, 76, 81, 83, 89, 90, 98, 122, 128, 130, 135, 143, 288, 324, 331, 332, 365, 368, 371, 372, 374, 383, 399, 400, 404, 405, 415, 416, 423, 458, 459, 460, 464, 469, 470, 516, 528, 625, 628, 633, 635, 640, 643, 644, 664, 665, 671, 673, 676, 678, 679, 689, 690, 704, 740, 741, 743, 756, 757, 758, 759, 760, 761, 762, 763, 764, 833, 835, 840, 843, 845, 863, 866, 873], "repres": [49, 52, 53, 57, 58, 75, 76, 80, 81, 96, 121, 135, 137, 160, 218, 219, 222, 225, 234, 236, 243, 269, 282, 286, 287, 312, 326, 327, 328, 345, 362, 365, 368, 370, 371, 372, 373, 374, 377, 378, 381, 414, 418, 432, 446, 448, 453, 480, 491, 497, 498, 499, 504, 510, 517, 553, 624, 625, 626, 628, 630, 632, 633, 655, 656, 657, 671, 678, 681, 682, 774, 787, 791, 802, 815, 820, 825, 843, 847, 863, 864, 867], "coordin": [49, 52, 63, 75, 76, 86, 135, 143, 224, 286, 316, 317, 324, 345, 365, 379, 509, 625, 628, 640, 743], "conserv": [49, 135, 625], "cartesian": [49, 135, 625], "matrix": [49, 53, 54, 57, 58, 76, 77, 80, 81, 93, 94, 96, 98, 135, 141, 142, 143, 324, 325, 365, 372, 374, 383, 422, 425, 426, 429, 430, 431, 433, 436, 437, 438, 439, 440, 441, 442, 443, 446, 447, 478, 518, 530, 536, 625, 630, 632, 633, 656, 663, 665, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 687, 688, 691, 772, 774, 787, 788, 802, 806, 814, 825, 837, 864, 866], "ij": [49, 66, 135, 625, 643, 755, 802], "respect": [49, 52, 53, 55, 58, 75, 76, 78, 81, 93, 135, 216, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 278, 282, 285, 286, 296, 345, 360, 363, 368, 370, 372, 374, 377, 428, 445, 457, 497, 499, 553, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 625, 628, 630, 631, 632, 633, 636, 645, 652, 653, 659, 664, 680, 683, 711, 712, 713, 769, 772, 787, 802, 813, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 832, 833, 835, 836, 837, 840, 841, 842, 862, 872], "rank": [49, 53, 58, 60, 67, 76, 81, 83, 90, 93, 94, 95, 96, 97, 102, 135, 319, 320, 321, 322, 323, 365, 372, 374, 383, 430, 431, 441, 444, 447, 480, 488, 492, 528, 625, 633, 635, 640, 644, 664, 666, 674, 676, 680, 682, 687, 689, 690, 697, 698, 706, 709, 710, 743, 763, 764, 809, 874], "ni": [49, 135, 625], "xi": [49, 135, 625], "scatter": [49, 54, 72, 77, 137, 572, 573, 625, 630, 822, 836, 843, 873], "j": [49, 52, 53, 54, 58, 66, 72, 75, 76, 81, 93, 121, 137, 217, 218, 219, 220, 222, 225, 234, 236, 239, 241, 249, 257, 259, 263, 269, 280, 282, 283, 286, 287, 334, 368, 371, 372, 383, 399, 400, 404, 415, 416, 420, 425, 427, 438, 444, 528, 533, 624, 625, 628, 630, 633, 643, 668, 687, 755, 802, 816, 818, 822, 859, 862], "unless": [49, 53, 58, 72, 76, 137, 269, 330, 347, 352, 368, 625, 628, 633, 676, 821, 826, 836, 851, 860, 861], "ones_lik": [49, 72, 625, 821, 850, 863], "tril": [49, 72, 625], "whose": [49, 52, 53, 54, 58, 60, 64, 66, 72, 75, 76, 77, 81, 83, 87, 89, 94, 96, 98, 132, 141, 142, 218, 222, 225, 233, 234, 235, 274, 275, 281, 282, 286, 287, 288, 325, 339, 340, 344, 348, 349, 351, 355, 365, 372, 374, 425, 446, 479, 488, 494, 535, 591, 625, 628, 630, 633, 635, 641, 643, 663, 665, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 690, 699, 703, 745, 746, 747, 754, 755, 774, 811, 828, 840], "innermost": [49, 53, 58, 81, 141, 142, 325, 365, 372, 425, 625, 633, 663, 665, 667, 668, 669, 670, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687], "mxn": [49, 53, 58, 81, 141, 142, 325, 365, 625, 633, 667, 674, 676, 677, 679, 680, 684, 687], "matric": [49, 53, 58, 76, 81, 93, 94, 98, 135, 141, 142, 325, 365, 372, 374, 425, 430, 431, 433, 439, 440, 445, 469, 625, 632, 633, 656, 663, 665, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 688, 774, 812, 830, 866], "diagon": [49, 53, 58, 76, 81, 94, 128, 141, 142, 143, 309, 324, 325, 365, 372, 374, 423, 426, 436, 442, 469, 625, 633, 666, 687], "triangular": [49, 53, 58, 81, 141, 142, 143, 324, 325, 365, 372, 442, 625, 633, 663, 669, 670, 676, 680], "alloc": [49, 50, 53, 73, 141, 142, 148, 325, 365, 625, 626, 806, 814, 816, 851], "triu": [49, 72, 625], "upper": [49, 53, 58, 62, 76, 81, 85, 128, 142, 143, 309, 325, 365, 372, 383, 442, 521, 625, 633, 639, 663, 669, 670, 680, 737, 825, 836, 840], "zeros_lik": [49, 53, 72, 148, 265, 374, 488, 611, 612, 615, 617, 618, 619, 625, 626, 628, 631, 633, 635, 680, 695, 837, 843], "data_typ": [50, 53, 73, 76, 178, 626, 822, 825, 840, 841], "_arraywithdatatyp": [50, 98], "irrespect": [50, 58, 73, 81, 148, 626, 633, 683, 823, 836, 847, 873], "promot": [50, 52, 53, 58, 73, 75, 76, 81, 88, 98, 99, 148, 151, 174, 175, 176, 182, 217, 218, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 236, 239, 241, 243, 257, 258, 259, 260, 261, 266, 269, 274, 278, 281, 282, 283, 284, 285, 286, 287, 290, 342, 350, 355, 368, 371, 383, 415, 518, 581, 604, 626, 628, 630, 633, 635, 643, 663, 664, 671, 672, 673, 674, 675, 676, 678, 679, 681, 682, 689, 690, 696, 706, 749, 757, 760, 772, 773, 817, 819, 828, 829, 833, 842], "nan": [50, 52, 53, 54, 64, 66, 73, 75, 76, 77, 148, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 235, 236, 237, 239, 241, 242, 243, 244, 245, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 270, 272, 274, 275, 278, 279, 280, 281, 282, 283, 286, 287, 289, 296, 330, 331, 332, 343, 347, 352, 355, 363, 368, 374, 383, 488, 516, 517, 524, 525, 526, 527, 554, 609, 623, 626, 628, 630, 641, 643, 644, 745, 746, 747, 748, 756, 757, 758, 760, 761, 762, 763, 764, 772, 775, 819, 825, 828, 835, 841, 842], "infin": [50, 52, 54, 58, 73, 75, 81, 148, 216, 217, 218, 219, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 257, 258, 259, 260, 261, 264, 269, 270, 272, 274, 278, 279, 281, 282, 283, 286, 287, 289, 331, 332, 355, 368, 554, 623, 626, 628, 630, 633, 643, 644, 681, 690, 756, 758, 763, 764, 819, 828], "desir": [50, 51, 53, 63, 70, 73, 74, 76, 86, 93, 148, 150, 151, 210, 315, 356, 365, 368, 374, 383, 478, 524, 527, 528, 626, 627, 633, 640, 685, 742, 787, 788, 816, 821, 824, 825, 826, 837, 845, 855, 859, 866], "broadcast_arrai": [50, 73, 626], "mix": [50, 52, 73, 75, 76, 77, 82, 85, 98, 99, 149, 162, 163, 176, 195, 196, 226, 229, 230, 231, 236, 237, 243, 247, 255, 256, 266, 269, 272, 278, 373, 383, 454, 525, 544, 546, 547, 548, 549, 558, 593, 596, 626, 627, 628, 630, 632, 633, 634, 635, 638, 643, 646, 648, 651, 653, 654, 656, 662, 663, 685, 692, 694, 695, 733, 755, 757, 760, 773, 775, 814, 818, 825, 826, 827, 836, 843, 845, 853, 866, 870, 872], "broadcast_to": [50, 73, 626, 825], "can_cast": [50, 73, 626, 825, 833, 837], "accord": [50, 53, 54, 60, 66, 73, 83, 89, 151, 161, 219, 230, 236, 243, 269, 280, 315, 365, 371, 374, 416, 480, 548, 551, 572, 573, 626, 628, 630, 633, 635, 643, 689, 697, 710, 760, 762, 767, 774, 794, 801, 814, 815, 819, 825, 831, 833, 837, 840], "finfo": [50, 73, 626, 840], "resolut": [50, 73, 161, 626, 816], "4028235e": [50, 161, 626], "iinfo": [50, 73, 626], "integ": [50, 52, 53, 57, 58, 60, 62, 66, 67, 70, 75, 76, 77, 80, 81, 83, 85, 89, 90, 98, 99, 122, 131, 164, 165, 171, 175, 176, 180, 216, 226, 227, 228, 229, 230, 231, 232, 242, 243, 254, 266, 271, 274, 278, 279, 289, 290, 326, 327, 328, 331, 332, 336, 341, 342, 365, 368, 371, 374, 378, 381, 383, 399, 404, 414, 417, 418, 419, 466, 475, 480, 488, 492, 495, 504, 505, 506, 507, 508, 510, 511, 516, 518, 519, 520, 525, 528, 551, 567, 577, 610, 625, 626, 628, 630, 632, 633, 635, 639, 642, 643, 644, 645, 646, 647, 648, 650, 652, 654, 664, 666, 675, 689, 690, 704, 734, 735, 736, 737, 738, 739, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 780, 788, 802, 816, 823, 825, 835, 838, 840, 845, 847], "119": [50, 164], "1220": [50, 164], "int16": [50, 53, 62, 66, 73, 85, 151, 155, 157, 162, 164, 171, 186, 383, 519, 520, 626, 643, 735, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "32768": [50, 73, 164, 589, 630], "32767": [50, 73, 164], "is_bool_dtyp": [50, 73, 626], "is_float_dtyp": [50, 73, 626, 841], "is_int_dtyp": [50, 73, 626, 838, 841], "is_uint_dtyp": [50, 73, 626, 838, 841], "result_typ": [50, 73, 626, 825], "arrays_and_dtyp": [50, 73, 176, 626], "_arraywithdevic": [51, 98], "move": [51, 53, 74, 76, 143, 206, 210, 214, 324, 365, 374, 479, 625, 627, 790, 808, 816, 826, 841], "addit": [51, 53, 54, 61, 74, 76, 77, 84, 119, 121, 210, 219, 279, 373, 377, 383, 448, 502, 517, 522, 541, 542, 543, 610, 624, 627, 628, 630, 632, 636, 638, 659, 713, 733, 788, 802, 814, 815, 816, 821, 825, 827, 828, 831, 833, 835, 836, 837, 840, 841, 843, 847, 848, 850, 859, 866, 867, 868, 872], "__dlpack__": [51, 74, 129, 210, 625, 627], "caveat": [51, 74, 210, 373, 452, 627], "portabl": [51, 74, 210, 627, 808, 864], "_arraywithelementwis": [52, 98], "ab": [52, 58, 68, 75, 91, 98, 99, 274, 330, 347, 368, 374, 487, 628, 633, 637, 674, 684, 690, 722, 725, 769, 801, 802, 812, 820, 825, 830, 834, 837, 840, 863], "absolut": [52, 53, 58, 68, 70, 75, 76, 81, 98, 216, 280, 330, 347, 350, 356, 368, 372, 373, 426, 443, 449, 451, 628, 633, 674, 675, 676, 681, 767, 769, 772, 774, 775, 809, 815], "aco": [52, 75, 628], "invers": [52, 53, 58, 75, 76, 81, 217, 218, 221, 222, 223, 224, 225, 340, 368, 371, 381, 394, 403, 405, 415, 510, 628, 633, 672, 675, 679, 794, 825], "cosin": [52, 75, 217, 218, 233, 234, 308, 311, 365, 371, 393, 403, 628, 788], "acosh": [52, 75, 162, 163, 626, 628, 812, 830], "area": [52, 53, 75, 76, 80, 218, 222, 225, 371, 407, 414, 418, 628, 811, 836, 843, 856, 862], "hyperbol": [52, 75, 218, 222, 225, 234, 282, 286, 287, 300, 304, 363, 628], "sector": [52, 75, 218, 222, 225, 628, 856], "second": [52, 53, 55, 58, 60, 64, 75, 76, 77, 78, 81, 83, 87, 94, 98, 99, 119, 143, 174, 182, 219, 224, 226, 228, 229, 230, 231, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 269, 272, 274, 285, 315, 324, 330, 343, 345, 346, 347, 353, 357, 358, 365, 368, 372, 373, 374, 381, 383, 424, 425, 426, 428, 432, 454, 486, 494, 505, 507, 511, 518, 521, 533, 582, 605, 611, 612, 617, 624, 625, 626, 628, 630, 631, 633, 635, 636, 637, 641, 664, 667, 668, 669, 671, 673, 678, 680, 681, 683, 685, 687, 689, 706, 707, 712, 715, 745, 746, 747, 792, 815, 819, 822, 825, 827, 831, 836, 837, 840, 842, 847, 857, 871], "multipli": [52, 53, 57, 66, 75, 76, 80, 93, 219, 285, 348, 371, 372, 407, 438, 439, 519, 520, 628, 632, 643, 655, 753, 759, 816, 820, 821, 823, 827], "angl": [52, 75, 224, 234, 282, 287, 346, 368, 628], "deg": [52, 75, 220, 628], "radian": [52, 53, 75, 76, 217, 220, 221, 223, 224, 233, 235, 275, 281, 286, 355, 368, 628, 828], "degre": [52, 53, 66, 75, 76, 89, 220, 235, 275, 318, 365, 374, 486, 628, 643, 760, 762, 865], "1j": [52, 75, 76, 220, 221, 233, 234, 239, 241, 253, 276, 281, 282, 286, 334, 588, 628, 630], "2j": [52, 53, 75, 76, 220, 249, 334, 371, 399, 404, 589, 628, 630], "3j": [52, 53, 75, 76, 220, 253, 276, 334, 368, 628], "35619449": [52, 220, 628], "78539816": [52, 220, 628], "135": [52, 220, 536, 628, 630], "asin": [52, 75, 628], "sine": [52, 75, 221, 222, 281, 282, 628], "927": [52, 75, 221], "asinh": [52, 75, 221, 628], "atan": [52, 75, 628], "tangent": [52, 75, 223, 224, 225, 286, 287, 300, 304, 361, 363, 370, 628, 828], "785": [52, 75, 223, 224, 628], "atan2": [52, 75, 628], "quotient": [52, 75, 224, 236, 243, 628], "245": [52, 80, 224, 632, 655, 656], "588": [52, 224, 628], "inf": [52, 53, 54, 58, 75, 76, 77, 81, 224, 241, 250, 251, 252, 253, 257, 258, 260, 270, 296, 340, 350, 363, 368, 372, 383, 422, 521, 554, 609, 623, 628, 630, 632, 633, 660, 674, 690, 772, 775, 812, 825, 830, 835], "719": [52, 224, 628], "197": [52, 224, 628], "atanh": [52, 75, 628], "549": [52, 75, 80, 225, 628, 632, 656], "bitwise_and": [52, 75, 628], "bitwise_invert": [52, 75, 628], "bitiwse_invert": [52, 227], "bitwise_left_shift": [52, 75, 628], "bitwise_or": [52, 75, 628], "bitwise_right_shift": [52, 75, 98, 628], "bitwise_xor": [52, 75, 98, 628], "ceil": [52, 53, 75, 76, 93, 96, 122, 371, 390, 391, 392, 408, 409, 410, 413, 625, 628, 788, 836], "round": [52, 53, 75, 76, 93, 95, 96, 97, 219, 232, 236, 242, 243, 269, 283, 289, 290, 341, 368, 628, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857, 863], "416": [52, 233, 628], "540": [52, 233], "990": [52, 233], "cosh": [52, 75, 233, 628], "deg2rad": [52, 75, 628], "convers": [52, 53, 76, 235, 275, 574, 584, 630, 789, 790, 814, 844, 846, 850, 851, 853, 857, 865, 872], "180": [52, 75, 235, 275, 628], "270": [52, 75, 235, 275, 628], "360": [52, 75, 235, 275, 628, 824], "dividend": [52, 75, 236, 243, 278, 290, 628], "divisor": [52, 53, 55, 66, 75, 76, 78, 89, 236, 243, 246, 247, 278, 290, 371, 374, 390, 391, 392, 466, 475, 495, 611, 612, 617, 628, 631, 643, 760, 762, 788, 792], "375": [52, 237, 272], "erf": [52, 75, 339, 368, 628], "exponenti": [52, 53, 75, 76, 238, 239, 241, 261, 274, 291, 301, 363, 372, 437, 628], "gauss": [52, 75, 238, 628], "328": [52, 238, 286, 628], "677": [52, 238], "842": [52, 238, 286, 628], "71828198": [52, 75, 239], "38905573": [52, 75, 239], "08553696": [52, 75, 239, 628], "exp2": [52, 75, 628], "expm1": [52, 75, 628, 825], "244": [52, 241, 808], "918": [52, 241], "147": [52, 241, 628], "floor": [52, 53, 75, 76, 93, 96, 230, 243, 371, 390, 391, 392, 394, 408, 409, 410, 413, 628, 788, 836], "floor_divid": [52, 75, 628, 780, 825], "fmin": [52, 75, 628, 825], "gcd": [52, 75, 628, 825], "greater": [52, 53, 57, 60, 62, 75, 76, 80, 85, 98, 99, 130, 217, 218, 221, 222, 224, 225, 228, 230, 236, 242, 243, 257, 259, 274, 278, 280, 282, 283, 287, 288, 289, 333, 368, 371, 394, 399, 404, 415, 625, 628, 632, 633, 635, 639, 662, 664, 675, 705, 737, 774, 788, 816, 817, 838, 863], "greater_equ": [52, 75, 98, 99, 261, 628, 863], "isfinit": [52, 75, 628, 837], "out_i": [52, 75, 250, 251, 252, 253, 276, 628], "self_i": [52, 75, 250, 251, 252, 253, 276], "finit": [52, 75, 216, 217, 218, 219, 222, 224, 225, 234, 236, 237, 239, 241, 243, 250, 251, 257, 259, 269, 270, 272, 274, 278, 282, 283, 287, 628], "isinf": [52, 75, 628], "detect_posit": [52, 75, 251, 628], "detect_neg": [52, 75, 251, 628], "isnan": [52, 75, 628], "isreal": [52, 75, 628], "5j": [52, 75, 76, 253, 276, 334, 368, 628], "6j": [52, 53, 75, 249, 253, 334, 628], "lcm": [52, 75, 628, 825], "less": [52, 53, 58, 62, 66, 75, 76, 81, 85, 98, 99, 217, 218, 221, 224, 225, 232, 236, 243, 257, 258, 259, 260, 274, 278, 280, 283, 354, 368, 371, 372, 383, 393, 394, 403, 415, 441, 447, 518, 521, 628, 633, 639, 643, 674, 675, 676, 679, 690, 737, 760, 762, 788, 815, 816, 823, 825, 827, 829, 832, 837, 840, 843, 844, 845, 856, 863, 866, 868], "less_equ": [52, 75, 98, 99, 628, 829, 863], "log10": [52, 53, 75, 315, 365, 628], "logarithm": [52, 75, 239, 257, 258, 259, 260, 261, 338, 350, 368, 628, 633, 681], "602": [52, 258, 628], "699": [52, 258, 628], "log1p": [52, 75, 628, 835], "693": [52, 75, 113, 222, 259, 622, 628], "0953": [52, 75, 257, 259, 628], "log2": [52, 75, 262, 628], "logaddexp": [52, 75, 628], "logaddexp2": [52, 75, 628, 812, 830], "169925": [52, 75, 262, 628], "logical_and": [52, 75, 628, 837, 843, 873], "logical_not": [52, 75, 628, 825], "logical_or": [52, 75, 628, 873], "conform": [52, 58, 75, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 828, 831], "api_specif": [52, 53, 75, 76, 151, 239, 249, 250, 265, 331, 332, 368, 371, 374, 415, 488, 626, 628, 635, 643, 710, 760, 828], "array_api": [52, 75, 151, 239, 249, 250, 265, 371, 374, 415, 488, 626, 628, 633, 635, 643, 681, 682, 710, 760, 828], "logical_xor": [52, 75, 628], "maximum": [52, 53, 54, 55, 60, 63, 66, 70, 75, 76, 77, 78, 83, 86, 89, 99, 209, 295, 331, 332, 343, 356, 363, 368, 371, 372, 374, 383, 387, 388, 398, 441, 444, 447, 480, 519, 521, 526, 536, 537, 545, 553, 617, 627, 628, 630, 631, 633, 635, 640, 643, 674, 695, 740, 741, 756, 758, 772, 774, 775, 780, 802, 816, 825, 827, 836, 848, 863, 873], "use_wher": [52, 75, 267, 268, 628], "formula": [52, 53, 75, 236, 258, 260, 267, 268, 269, 315, 349, 365, 368, 377, 497, 499, 628, 806], "exce": [52, 53, 76, 268, 374, 490, 628], "product": [52, 53, 57, 58, 66, 75, 76, 80, 81, 89, 93, 94, 96, 269, 361, 362, 370, 372, 374, 383, 421, 424, 428, 431, 432, 433, 438, 439, 440, 492, 519, 520, 527, 628, 632, 633, 643, 659, 662, 664, 671, 673, 678, 685, 689, 753, 754, 755, 759, 760, 802, 814, 845, 866, 868], "nan_to_num": [52, 75, 628], "posinf": [52, 75, 270, 628], "neginf": [52, 75, 270, 628], "5e": [52, 55, 75, 76, 270, 353, 617, 628, 631], "not_equ": [52, 75, 98, 99, 628, 863], "pow": [52, 75, 98, 99, 628, 819, 863], "expon": [52, 53, 54, 76, 77, 274, 342, 344, 348, 368, 377, 502, 589, 628, 630, 633, 675], "rad2deg": [52, 75, 628], "286": [52, 76, 275], "458": [52, 275], "573": [52, 275, 628], "reciproc": [52, 75, 628], "333": [52, 75, 236, 277, 537, 628, 630], "remaind": [52, 53, 60, 70, 75, 76, 83, 245, 628, 635, 704, 819, 836], "modulu": [52, 75, 278, 628, 836], "sign": [52, 53, 58, 64, 66, 75, 76, 81, 93, 122, 216, 217, 218, 219, 222, 224, 225, 230, 234, 236, 239, 241, 243, 269, 271, 278, 282, 283, 287, 335, 368, 372, 374, 383, 443, 487, 488, 519, 520, 625, 628, 633, 641, 643, 681, 745, 746, 747, 748, 753, 754, 759, 761, 808, 815, 817, 825, 845, 850, 856], "x2_i": [52, 75, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 628, 819], "decim": [52, 75, 279, 628, 842], "678": [52, 279, 280], "np_variant": [52, 75, 280, 628], "841": [52, 69, 75, 106, 281, 622, 628], "909": [52, 75, 77, 281, 628], "141": [52, 75, 148, 281, 626, 628], "sinh": [52, 75, 281, 628], "232": [52, 75, 282, 628], "sqrt": [52, 53, 75, 76, 371, 394, 399, 400, 404, 405, 415, 628, 787, 788, 808], "squar": [52, 53, 58, 75, 76, 81, 283, 372, 373, 377, 383, 425, 437, 449, 502, 518, 613, 614, 616, 621, 628, 631, 633, 637, 663, 665, 666, 668, 669, 670, 672, 675, 681, 682, 683, 688, 720, 808], "tanh": [52, 53, 75, 76, 286, 300, 304, 363, 628, 784, 845], "762": [52, 75, 287, 628], "964": [52, 75, 287, 628], "trapz": [52, 75, 628], "dx": [52, 75, 288, 628], "apart": [52, 75, 288, 628], "trapezoid": [52, 75, 288, 628], "trunc": [52, 75, 628], "025": [52, 289, 373, 454, 628, 636, 713], "trunc_divid": [52, 75, 628], "_arraywithactivationsexperiment": [53, 98], "celu": [53, 76, 363], "formul": [53, 69, 76, 94, 106, 291, 293, 363, 784], "elu": [53, 76, 295, 363, 784], "scaler": [53, 76, 292, 363, 772, 775, 840], "hardshrink": [53, 76, 363], "lambd": [53, 76, 293, 303, 363], "hardsilu": [53, 76, 363], "66666667": [53, 115, 294, 383, 518, 622], "hardtanh": [53, 76, 363], "max_val": [53, 76, 295, 363], "min_val": [53, 76, 295, 363], "region": [53, 76, 295, 303, 363, 815], "19722438": [53, 76, 296, 363], "38629448": [53, 76, 296, 363], "38629436": [53, 76, 296, 363], "logsigmoid": [53, 76, 363, 784], "31326175": [53, 69, 297, 363], "126928": [53, 76, 297], "01814993": [53, 297], "00004578": [53, 297], "57888985": [53, 297], "31326169": [53, 76, 297, 363], "69314718": [53, 58, 69, 76, 81, 297, 350, 363, 368, 633, 681], "01104775": [53, 297], "prelu": [53, 76, 363, 784], "unidirect": [53, 298, 363, 632, 657], "relu6": [53, 76, 363, 784], "rectifi": [53, 69, 76, 108, 110, 111, 299, 302, 307, 363, 622], "scaled_tanh": [53, 76, 304, 363], "7159": [53, 76, 300, 304, 363], "amplitud": [53, 76, 300, 304, 363], "65537548": [53, 76, 300], "49570239": [53, 76, 300], "77637792": [53, 300], "selu": [53, 76, 363, 784], "11133075": [53, 301, 363], "05070102": [53, 76, 301, 363], "10140204": [53, 301, 363], "15210295": [53, 301, 363], "20280409": [53, 301, 363], "25350523": [53, 301, 363], "30420589": [53, 301, 363], "35490704": [53, 301, 363], "silu": [53, 76, 363, 784], "26894143": [53, 302], "73105854": [53, 76, 302], "softshrink": [53, 76, 363], "bound": [53, 76, 303, 315, 363, 365, 374, 463, 488, 489, 772, 825, 829, 837, 840, 845, 872], "tanhshrink": [53, 76, 363], "23840582": [53, 76, 305, 363], "condit": [53, 63, 76, 86, 119, 306, 321, 322, 365, 372, 422, 624, 637, 640, 724, 725, 744, 774, 819, 825, 827, 829, 833, 834, 836, 840, 859], "met": [53, 76, 306, 829], "hreshold": [53, 306], "thresholded_relu": [53, 76, 363], "_arraywithconversionsexperiment": [53, 98], "_arraywithcreationexperiment": [53, 98], "blackman_window": [53, 76, 365], "period": [53, 76, 282, 286, 308, 310, 311, 313, 314, 365, 371, 406, 628, 816], "window": [53, 57, 76, 80, 308, 310, 311, 313, 314, 329, 365, 371, 377, 390, 391, 392, 394, 408, 409, 410, 411, 413, 414, 418, 419, 502, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788, 810, 816, 822, 830, 871], "symmetr": [53, 58, 76, 81, 93, 94, 308, 310, 311, 313, 314, 365, 372, 374, 425, 480, 633, 663, 668, 669, 670, 691, 823], "38777878e": [53, 76, 308, 365], "40000000e": [53, 308, 365], "00000000e": [53, 58, 76, 77, 308, 339, 340, 365, 371, 393, 399, 403, 404, 633, 680, 812, 830], "30000000e": [53, 76, 308, 365], "eye_lik": [53, 76, 365], "elsewher": [53, 76, 128, 309, 365, 625, 640, 744, 815], "mel_weight_matrix": [53, 76, 365], "num_mel_bin": [53, 76, 315, 365], "dft_length": [53, 76, 315, 365, 371, 394], "sample_r": [53, 76, 315, 365], "lower_edge_hertz": [53, 76, 315, 365], "upper_edge_hertz": [53, 76, 315, 365], "3000": [53, 76, 315, 365], "melweightmatrix": [53, 76, 315, 365], "linearli": [53, 54, 77, 315, 365, 545, 630, 633, 682], "frequenc": [53, 54, 76, 77, 315, 365, 383, 518, 545, 630, 816], "spectra": [53, 315, 365], "dft": [53, 76, 315, 365, 371], "stft": [53, 76, 315, 365, 371], "mel": [53, 76, 315, 365], "term": [53, 76, 308, 315, 318, 365, 373, 452, 453, 632, 657, 658, 788, 802, 808, 816, 823, 845, 853, 855, 866], "hertz": [53, 315, 365], "2595": [53, 315, 365], "700": [53, 77, 315, 365, 549], "band": [53, 54, 76, 77, 315, 365, 545, 630], "spectrum": [53, 76, 315, 365], "n_fft": [53, 76, 315, 365, 371, 394], "signal": [53, 76, 315, 365, 371, 385, 386, 387, 388, 393, 394, 403, 419, 788, 865, 866], "8000": [53, 76, 310, 315, 365], "75694758": [53, 315, 365], "trilu": [53, 76, 365], "retain": [53, 143, 324, 325, 365, 613, 625, 631, 835, 839, 853], "unsorted_segment_mean": [53, 76, 365], "segment_id": [53, 76, 326, 327, 328, 365, 794], "num_seg": [53, 76, 326, 327, 328, 365, 794], "identifi": [53, 76, 326, 327, 328, 365, 814, 819, 824, 825, 840, 843], "th": [53, 76, 94, 326, 327, 328, 337, 365, 368, 372, 373, 383, 423, 430, 448, 528], "distinct": [53, 64, 76, 326, 327, 328, 365, 641, 745, 746, 747, 748, 811, 815, 823, 828, 835, 836, 837, 844, 856, 866], "unsorted_segment_min": [53, 76, 365], "unsorted_segment_sum": [53, 76, 365], "polyv": [53, 76, 365], "coeff": [53, 76, 318, 365], "polynomi": [53, 76, 318, 365], "coeffici": [53, 76, 310, 318, 365, 372, 442, 633, 682, 792], "indetermin": [53, 76, 318, 365], "simplifi": [53, 76, 318, 365, 801, 802, 829, 837, 845, 846, 849, 856, 859, 862, 864, 865, 866, 869, 872, 873], "substitut": [53, 76, 318, 365], "_arraywithdata_typeexperiment": [53, 98], "_arraywithdeviceexperiment": [53, 98], "_arraywithelementwiseexperiment": [53, 98], "equal_nan": [53, 76, 330, 347, 368], "1e10": [53, 330, 347, 368], "00001e10": [53, 330, 347, 368], "00001e": [53, 330, 368], "amax": [53, 76, 368], "keepdim": [53, 58, 60, 63, 66, 67, 70, 76, 81, 83, 86, 89, 90, 331, 332, 336, 352, 359, 368, 369, 374, 383, 485, 523, 524, 525, 526, 527, 528, 633, 635, 640, 643, 644, 674, 690, 709, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 829, 837, 845], "singleton": [53, 58, 63, 66, 67, 76, 81, 86, 89, 90, 331, 332, 368, 633, 635, 640, 643, 644, 690, 698, 705, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 845], "amin": [53, 76, 368], "binar": [53, 76, 368], "map": [53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 368, 371, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 615, 620, 630, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 721, 722, 726, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 802, 820, 823, 825, 832, 833, 837, 840, 841, 848, 851, 853, 860, 867], "conj": [53, 76, 234, 239, 241, 282, 283, 287, 368, 628], "conjug": [53, 58, 76, 81, 334, 368, 371, 372, 378, 394, 420, 426, 438, 440, 442, 506, 633, 673, 677, 685], "copysign": [53, 76, 368], "unsign": [53, 66, 76, 335, 368, 374, 383, 488, 519, 520, 643, 753, 754, 759, 761, 773, 825, 845], "count_nonzero": [53, 76, 368], "diff": [53, 70, 76, 368, 827, 836, 863], "prepend": [53, 76, 337, 368, 633, 635, 673, 698, 815], "differenc": [53, 76, 337, 368], "prior": [53, 76, 337, 368, 378, 506, 633, 685, 829, 841], "expand": [53, 54, 60, 76, 77, 337, 368, 374, 492, 545, 630, 635, 698, 823, 839], "discret": [53, 76, 337, 368, 371, 393, 394, 399, 400, 403, 404, 405, 415, 416, 634, 693, 788], "digamma": [53, 76, 368], "7549271": [53, 338, 368], "92278427": [53, 76, 338, 368], "9988394": [53, 338, 368], "erfc": [53, 76, 368], "complementari": [53, 76, 329, 339, 365, 368, 864, 872], "84270084e": [53, 339, 340], "80259693e": [53, 339, 340], "erfinv": [53, 76, 368], "toward": [53, 60, 76, 83, 243, 290, 341, 353, 368, 374, 383, 486, 521, 628, 635, 703, 808, 812, 814, 815, 830, 845, 862, 866], "float_pow": [53, 76, 368], "fmax": [53, 76, 368], "fmod": [53, 76, 628], "divis": [53, 54, 55, 76, 77, 78, 230, 236, 243, 245, 278, 280, 290, 374, 466, 579, 588, 602, 611, 612, 617, 628, 630, 631, 632, 645, 652, 653, 792, 833, 842], "frexp": [53, 76, 368], "edge_ord": [53, 76, 345, 368], "estim": [53, 76, 345, 368, 383, 518, 806], "boundari": [53, 62, 76, 85, 96, 321, 322, 345, 365, 368, 371, 407, 639, 737, 866], "33333333": [53, 76, 277, 345, 368, 448, 628], "hypot": [53, 76, 368], "hypotenus": [53, 346, 368], "4031": [53, 346, 368], "8102": [53, 346, 368], "isclos": [53, 76, 368, 819], "ldexp": [53, 76, 368], "lerp": [53, 76, 368], "lgamma": [53, 76, 368], "45373654": [53, 350, 368], "6477685": [53, 350, 368], "modf": [53, 76, 368], "fraction": [53, 76, 351, 368, 383, 528, 632, 655], "nansum": [53, 76, 368], "accumul": [53, 76, 352, 368, 374, 485], "nextaft": [53, 76, 368], "0e": [53, 55, 76, 78, 353, 368, 617, 631], "4013e": [53, 76, 353, 368], "4028e": [53, 76, 353, 368], "signbit": [53, 76, 368], "637": [53, 76, 355, 368], "0909": [53, 76, 355, 368], "sparsify_tensor": [53, 76, 368], "sparsifi": [53, 76, 356, 368], "arang": [53, 58, 66, 76, 81, 133, 356, 368, 371, 372, 390, 391, 392, 399, 404, 408, 409, 410, 413, 422, 439, 472, 568, 610, 625, 630, 633, 636, 643, 674, 690, 712, 713, 755, 808, 825, 836, 873], "xlogi": [53, 76, 368], "0986": [53, 76, 357, 368], "3863": [53, 76, 357, 368], "0000": [53, 76, 310, 311, 314, 340, 357, 365, 368, 372, 374, 437, 474], "zeta": [53, 76, 368], "0369": [53, 76, 358, 368], "_arraywithgeneralexperiment": [53, 98], "init_valu": [53, 76, 80, 359, 369, 371, 414], "reduct": [53, 54, 59, 67, 70, 76, 77, 80, 82, 90, 359, 369, 371, 373, 374, 414, 448, 449, 450, 451, 452, 453, 454, 455, 485, 542, 572, 573, 630, 634, 644, 692, 693, 694, 763, 764, 789, 825, 833, 836, 840, 847], "_arraywithgradientsexperiment": [53, 98], "_arraywithimageexperiment": [53, 98], "_arraywithlayersexperiment": [53, 98], "adaptive_avg_pool1d": [53, 76, 371], "1d": [53, 76, 93, 94, 371, 372, 374, 383, 385, 393, 395, 397, 403, 438, 458, 463, 485, 489, 518, 772, 788], "adapt": [53, 76, 78, 371, 385, 386, 387, 388, 618, 631, 788, 792, 856], "pool": [53, 76, 80, 371, 385, 386, 387, 388, 390, 391, 392, 408, 409, 410, 411, 414, 788, 815], "plane": [53, 76, 236, 239, 241, 269, 281, 282, 283, 286, 371, 374, 385, 386, 387, 388, 486, 628], "l_in": [53, 76, 371, 385], "spatial": [53, 57, 76, 80, 371, 377, 385, 386, 387, 388, 407, 414, 418, 497, 498, 499, 502, 632, 645, 646, 647, 648, 650, 652, 654, 791], "Will": [53, 76, 371, 385, 386, 387, 388, 797, 851], "l_out": [53, 76, 371, 385], "nhwc": [53, 57, 76, 80, 371, 377, 386, 391, 396, 409, 413, 502, 632, 645, 648, 649, 652, 653, 654, 788], "3d": [53, 58, 76, 371, 386, 388, 395, 396, 460, 633, 671, 788, 843], "4d": [53, 76, 371, 372, 377, 386, 396, 397, 446, 502], "s_0": [53, 76, 371, 386, 387], "s_1": [53, 76, 371, 386, 387], "adaptive_max_pool2d": [53, 76, 371], "h_in": [53, 76, 371, 387, 388], "w_in": [53, 76, 371, 387, 388], "adaptive_max_pool3d": [53, 76, 371], "avg_pool1d": [53, 76, 371], "kernel": [53, 57, 76, 80, 371, 390, 391, 392, 408, 409, 410, 411, 632, 658, 845, 851, 866, 869, 870], "nwc": [53, 57, 76, 80, 371, 390, 395, 408, 411, 632, 645, 646, 647, 652, 653, 788], "count_include_pad": [53, 76, 371, 390, 391, 392, 788], "d_in": [53, 57, 76, 80, 371, 388, 390, 391, 392, 394, 399, 400, 404, 408, 409, 410, 411, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654], "algorithm": [53, 57, 69, 76, 80, 106, 371, 372, 390, 391, 392, 407, 408, 409, 410, 411, 441, 443, 447, 633, 646, 648, 649, 650, 651, 654, 681, 784, 788, 802, 825, 837, 843, 851, 866, 868, 870], "ncw": [53, 57, 76, 80, 371, 390, 395, 396, 408, 411, 632, 645, 646, 647, 652, 653, 788], "avg_pool2d": [53, 76, 371], "divisor_overrid": [53, 76, 371, 390, 391, 392, 788], "avg_pool3d": [53, 76, 371], "ndhwc": [53, 57, 76, 80, 371, 392, 397, 410, 632, 645, 650, 651, 652, 653, 788], "volum": [53, 57, 76, 80, 371, 392, 394, 399, 400, 404, 410, 632, 650, 651], "ncdhw": [53, 57, 76, 80, 371, 392, 397, 410, 632, 645, 650, 651, 652, 653, 788], "dct": [53, 76, 371, 788, 848], "truncat": [53, 76, 371, 372, 393, 399, 403, 404, 405, 416, 445, 575, 630, 788, 829, 848], "larger": [53, 60, 66, 76, 83, 89, 161, 371, 393, 400, 403, 405, 416, 626, 635, 643, 695, 703, 760, 762, 788, 840, 843, 873], "ortho": [53, 76, 371, 393, 394, 399, 400, 403, 404, 405, 415, 416, 788], "onesid": [53, 76, 371, 394], "fft": [53, 76, 371, 394, 400, 415, 416, 419, 788, 814, 866], "symmetri": [53, 371, 394], "rfft": [53, 76, 371, 394, 416], "invok": [53, 371, 394, 808, 831, 859, 860], "batch_idx": [53, 371, 394], "signal_dim1": [53, 371, 394], "signal_dim2": [53, 371, 394], "signal_dimn": [53, 371, 394], "signal_dim": [53, 371, 394], "embed": [53, 76, 371, 373, 448, 632, 659, 774, 788, 866], "max_norm": [53, 54, 76, 77, 371, 398, 536, 537, 630, 788], "ifft": [53, 76, 371, 399, 405, 788], "pi": [53, 76, 282, 286, 371, 373, 399, 404, 453, 623, 628], "44509285e": [53, 76, 371, 399], "14423775e": [53, 76, 371, 399], "17j": [53, 76, 371, 399, 404], "11483250e": [53, 76, 371, 399], "16j": [53, 76, 371, 399, 404], "33486982e": [53, 76, 371, 399], "22464680e": [53, 76, 371, 399], "95799250e": [53, 76, 371, 399], "66951701e": [53, 76, 371, 399], "fft2": [53, 371], "vari": [53, 64, 93, 94, 287, 400, 541, 628, 630, 633, 641, 680, 746, 747, 748, 802, 823, 827, 837, 840, 847], "20477401j": [53, 371, 400], "0614962j": [53, 371, 400], "idct": [53, 76, 371], "49862671": [53, 76, 371, 393, 403], "37691498": [53, 76, 371, 393, 403], "00390816": [53, 76, 371, 393, 403], "58938599": [53, 76, 371, 393, 403], "92713165": [53, 76, 371, 393, 403], "078475": [53, 76, 371, 393, 403], "19664812": [53, 76, 371, 393, 403], "95411837": [53, 76, 371, 393, 403], "30636606e": [53, 76, 371, 404], "43029718e": [53, 76, 371, 404], "18j": [53, 76, 371, 399, 404], "53080850e": [53, 76, 371, 404], "58689626e": [53, 76, 371, 404], "24474906e": [53, 76, 371, 404], "91858728e": [53, 76, 371, 404], "01435406e": [53, 76, 371, 404], "ifftn": [53, 76, 371], "24730653": [53, 76, 371, 405], "90832391j": [53, 76, 371, 405], "49495562": [53, 76, 371, 405], "9039565j": [53, 76, 371, 405], "98193269": [53, 76, 371, 405], "49560517j": [53, 76, 371, 405], "93280757": [53, 76, 371, 405], "48075343j": [53, 76, 371, 405], "28526384": [53, 76, 371, 405], "3351205j": [53, 76, 371, 405], "2343787": [53, 76, 371, 405], "83528011j": [53, 76, 371, 405], "18791352": [53, 76, 371, 405], "30690572j": [53, 76, 371, 405], "82115787": [53, 76, 371, 405], "96195183j": [53, 76, 371, 405], "44719226": [53, 76, 371, 405], "72654048j": [53, 76, 371, 405], "51476765": [53, 371, 405], "66160417j": [53, 371, 405], "04319742": [53, 371, 405], "05411636j": [53, 371, 405], "015561": [53, 371, 405], "04216015j": [53, 371, 405], "06310689": [53, 371, 405], "05347854j": [53, 371, 405], "13392983": [53, 371, 405], "16052352j": [53, 371, 405], "08371392": [53, 371, 405], "17252843j": [53, 371, 405], "0031429": [53, 371, 405], "05421245j": [53, 371, 405], "10446617": [53, 371, 405], "17747098j": [53, 371, 405], "05344324": [53, 371, 405], "07972424j": [53, 371, 405], "8344667": [53, 76, 371, 405], "98222595j": [53, 76, 371, 405], "48472244": [53, 76, 371, 405], "30233797j": [53, 76, 371, 405], "recompute_scale_factor": [53, 76, 371, 407, 843], "antialia": [53, 76, 371, 407, 843], "height": [53, 54, 57, 76, 77, 80, 371, 407, 541, 630, 632, 648, 649, 650, 651, 654, 817, 848], "width": [53, 54, 57, 76, 77, 80, 371, 372, 374, 377, 383, 407, 426, 480, 502, 521, 541, 630, 632, 646, 647, 648, 649, 650, 651, 654, 659], "trilinear": [53, 76, 371, 407, 843], "nearest_exact": [53, 76, 371, 407, 843], "tf_area": [53, 76, 371, 407, 843], "mitchellcub": [53, 76, 371, 407, 843], "lanczos3": [53, 76, 371, 407, 843], "lanczos5": [53, 76, 371, 407, 843], "gaussian": [53, 76, 106, 371, 407, 622, 843], "overwrit": [53, 70, 76, 209, 371, 407, 627, 816, 836, 837, 845], "thu": [53, 76, 230, 243, 278, 286, 287, 371, 372, 407, 425, 628, 633, 668, 669, 814, 824, 829, 834, 837, 841], "antialias": [53, 76, 407], "max_pool1d": [53, 76, 371], "dilaton": [53, 76, 408, 409, 410], "max_pool3d": [53, 76, 371], "max_unpool1d": [53, 76, 371], "unpool": [53, 76, 371, 411], "reduce_window": [53, 80, 371], "window_dimens": [53, 80, 371, 414], "window_strid": [53, 80, 371, 414], "base_dil": [53, 80, 371, 414], "window_dil": [53, 80, 371, 414], "trim": [53, 70, 76, 371, 374, 415, 491], "orthonorm": [53, 58, 76, 81, 371, 415, 633, 680, 683], "8660254j": [53, 76, 371, 415], "rfftn": [53, 76, 371], "sliding_window": [53, 76, 371], "window_s": [53, 76, 371, 418], "frame_length": [53, 76, 371, 419], "frame_step": [53, 76, 371, 419], "fft_length": [53, 76, 371, 419], "window_fn": [53, 76, 371, 419], "pad_end": [53, 76, 371, 419], "smallest": [53, 70, 76, 161, 164, 232, 371, 374, 419, 490, 626, 628, 633, 674, 772, 774, 775], "enclos": [53, 76, 371, 419, 867], "window_length": [53, 76, 308, 310, 313, 314, 329, 365, 371, 419], "li": [53, 76, 371, 372, 383, 419, 426, 528, 855], "past": [53, 76, 371, 419, 816, 819, 838, 840, 852, 866], "fft_unique_bin": [53, 76, 371, 419], "complex64": [53, 73, 76, 154, 168, 177, 183, 249, 276, 371, 415, 419, 626, 628, 633, 681, 683, 684, 773, 825, 830], "complex128": [53, 76, 77, 154, 155, 168, 177, 183, 371, 419, 567, 626, 630, 633, 669, 670, 674, 690, 772, 773, 812, 825, 830], "compon": [53, 76, 138, 139, 217, 218, 219, 222, 225, 234, 236, 237, 239, 241, 269, 271, 272, 279, 282, 283, 286, 287, 319, 323, 334, 365, 368, 371, 372, 377, 419, 430, 441, 502, 625, 628, 640, 743, 808, 839, 845, 856, 862, 867, 869], "linear_algebra": [53, 58, 76, 81, 633, 841], "_arraywithlinearalgebraexperiment": [53, 98], "adjoint": [53, 58, 76, 81, 372, 442, 633, 672, 682, 683, 772], "batched_out": [53, 76, 372], "j1": [53, 76, 372, 421], "jn": [53, 76, 372, 421], "k1": [53, 76, 372, 421], "km": [53, 76, 372, 421], "outer": [53, 58, 76, 81, 93, 372, 421, 633, 636, 711, 712, 713, 802, 814], "30000001": [53, 76, 372, 421, 541, 630, 641, 746], "40000001": [53, 57, 69, 76, 98, 99, 108, 111, 292, 363, 372, 421, 622, 632, 641, 662, 746], "60000002": [53, 76, 89, 99, 372, 377, 421, 501, 503, 757], "80000001": [53, 76, 372, 377, 421, 501, 503], "60000001": [53, 76, 372, 421], "90000004": [53, 76, 372, 421, 643, 757], "20000002": [53, 76, 372, 421], "20000005": [53, 55, 76, 292, 300, 303, 304, 363, 372, 421, 611], "00000012": [53, 76, 372, 421], "49999994": [53, 76, 372, 421], "00000006": [53, 76, 372, 421], "60000014": [53, 76, 372, 421], "19999993": [53, 76, 372, 421], "80000007": [53, 76, 372, 421], "20000017": [53, 76, 372, 421], "89999992": [53, 76, 372, 421], "60000008": [53, 76, 372, 421], "80000019": [53, 76, 349, 368, 372, 421], "4000001": [53, 76, 80, 372, 421, 632, 655, 662], "cond": [53, 76, 119, 372, 624, 851], "933034373659268": [53, 422], "diagflat": [53, 76, 372, 432, 437], "offset": [53, 58, 61, 72, 76, 81, 84, 130, 372, 377, 423, 497, 498, 499, 625, 633, 638, 667, 687, 733, 779], "padding_valu": [53, 76, 372, 423], "right_left": [53, 76, 372, 423], "num_row": [53, 76, 372, 423], "num_col": [53, 76, 372, 423], "dot": [53, 57, 76, 80, 93, 372, 373, 439, 448, 632, 633, 659, 662, 689, 802, 808, 815, 824], "eig": [53, 58, 76, 372, 633, 669, 670], "37228132": [53, 76, 372, 425, 427, 668], "82456484": [53, 425, 668], "41597356": [53, 425, 668], "56576746": [53, 425, 668], "90937671": [53, 425, 668], "eigh_tridiagon": [53, 76, 372], "eigvals_onli": [53, 76, 372, 426], "select_rang": [53, 76, 372, 426], "tol": [53, 76, 97, 372, 426, 441, 447], "eigenvalu": [53, 58, 76, 81, 93, 94, 372, 425, 426, 427, 633, 668, 669, 670, 676], "eigenvector": [53, 76, 372, 425, 426, 633, 668, 669], "interv": [53, 62, 67, 76, 85, 90, 122, 133, 134, 141, 372, 383, 426, 521, 625, 633, 635, 639, 644, 664, 689, 695, 698, 706, 735, 737, 763, 764], "togeth": [53, 70, 76, 330, 347, 368, 372, 426, 793, 808, 817, 820, 823, 825, 836, 837, 840, 841, 843, 849, 850, 851, 856, 864, 866, 867, 872], "cluster": [53, 76, 372, 426, 851, 866], "converg": [53, 76, 372, 426, 857], "_2": [53, 76, 372, 426], "eig_val": [53, 76, 372, 426], "decreas": [53, 76, 372, 426, 774], "eig_vector": [53, 76, 372, 426], "38196": [53, 426], "61803": [53, 426], "eigval": [53, 76, 372], "general_inner_product": [53, 81, 372], "n_mode": [53, 81, 372, 428], "tradit": [53, 81, 372, 428], "inner": [53, 58, 72, 81, 102, 137, 372, 425, 428, 625, 633, 636, 668, 669, 673, 711, 712, 713, 802, 814, 836], "higher_order_mo": [53, 76, 372], "n_featur": [53, 76, 372, 429], "d1": [53, 76, 372, 429], "dn": [53, 76, 372, 429], "initialize_tuck": [53, 76, 372], "svd": [53, 58, 76, 81, 96, 372, 430, 436, 441, 443, 444, 445, 447, 633, 684], "truncated_svd": [53, 76, 372, 430, 441, 444, 447], "non_neg": [53, 76, 323, 365, 372, 430], "mask": [53, 57, 76, 80, 93, 371, 372, 374, 417, 430, 431, 441, 447, 487, 551, 630, 632, 655, 659, 662, 843], "svd_mask_repeat": [53, 76, 372, 430, 441, 447], "tuckertensor": [53, 76, 97, 323, 365, 372, 430, 441, 447], "scheme": [53, 76, 372, 430, 441, 819, 849, 866], "tucker": [53, 76, 323, 365, 372, 430, 441], "decomposit": [53, 58, 76, 81, 93, 94, 96, 319, 320, 321, 322, 323, 365, 372, 430, 434, 441, 444, 446, 447, 633, 663, 669, 680, 683, 814, 873], "miss": [53, 76, 372, 374, 430, 441, 447, 487, 792, 814, 815, 820, 823, 824, 827, 837, 840, 843], "everywher": [53, 76, 372, 430, 441, 447], "imput": [53, 76, 372, 430, 441, 447], "kron": [53, 76, 372, 437, 873], "make_svd_non_neg": [53, 76, 372, 445], "nntype": [53, 76, 372, 436], "nndsvd": [53, 76, 372, 436], "singular": [53, 58, 76, 81, 372, 430, 436, 443, 445, 633, 674, 676, 679, 683, 684, 772, 774, 825], "nndsvda": [53, 76, 372, 436], "boutsidi": [53, 76, 372, 436], "gallopoulo": [53, 76, 372, 436], "pattern": [53, 54, 76, 77, 372, 436, 541, 542, 543, 630, 825, 828, 839, 857], "recognit": [53, 76, 372, 436, 811], "1350": [53, 76, 372, 436], "1362": [53, 76, 372, 436], "2008": [53, 76, 372, 436, 866], "matrix_exp": [53, 76, 372], "7183": [53, 76, 372, 437], "3891": [53, 76, 372, 437], "mode_dot": [53, 76, 92, 93, 97, 372], "matrix_or_vector": [53, 76, 93, 97, 372, 438], "i_1": [53, 76, 93, 94, 372, 438], "i_k": [53, 76, 93, 372, 438], "i_n": [53, 76, 93, 372, 438], "i_": [53, 76, 93, 372, 383, 438, 521], "multi_dot": [53, 76, 372], "148": [53, 75, 76, 239, 372, 439], "multi_mode_dot": [53, 76, 372], "mat_or_vec_list": [53, 76, 372, 440], "times_0": [53, 372, 440], "vec": [53, 372, 440], "times_1": [53, 372, 440], "cdot": [53, 269, 372, 440, 628], "times_n": [53, 372, 440], "partial_tuck": [53, 76, 372], "n_iter_max": [53, 76, 372, 441, 447], "verbos": [53, 76, 372, 441, 444, 447, 806, 840, 845], "return_error": [53, 76, 372, 441, 447], "variat": [53, 76, 372, 441, 447, 827, 837, 840], "reconstruct": [53, 58, 64, 76, 87, 96, 372, 374, 441, 447, 494, 633, 641, 683, 745, 747, 838], "return_erro": [53, 372, 441, 447], "svd_flip": [53, 76, 372], "u_based_decis": [53, 76, 372, 443], "basi": [53, 76, 372, 443, 816, 819, 848], "flip": [53, 60, 76, 83, 93, 227, 372, 374, 443, 471, 472, 628, 635, 836, 847, 848, 850], "decis": [53, 76, 372, 443, 808, 819, 825, 843, 845, 847, 866], "u_adjust": [53, 76, 372, 443], "v_adjust": [53, 76, 372, 443], "tensor_train": [53, 76, 372], "tt": [53, 76, 322, 365, 372, 444, 446], "kth": [53, 372, 444], "tttensor": [53, 96, 322, 365, 372, 444], "compute_uv": [53, 58, 76, 81, 372, 445, 633, 683], "n_eigenvec": [53, 76, 372, 445], "returnedv": [53, 445], "vh": [53, 58, 76, 81, 372, 445, 633, 683], "eigen": [53, 76, 372, 445], "namedtupl": [53, 58, 64, 76, 81, 87, 372, 374, 425, 445, 494, 633, 641, 668, 669, 680, 681, 683, 745, 746, 747], "tt_matrix_to_tensor": [53, 76, 372], "known": [53, 76, 280, 372, 444, 446, 628, 787, 819, 824, 825, 837, 840], "rank_k": [53, 76, 372, 446], "left_dim_k": [53, 76, 372, 446], "right_dim_k": [53, 76, 372, 446], "rank_": [53, 76, 372, 446], "49671414": [53, 76, 372, 446, 639, 736], "1382643": [53, 76, 372, 446, 639, 736], "64768857": [53, 76, 372, 446, 639, 736], "5230298": [53, 76, 372, 446, 639, 736], "23415337": [53, 76, 372, 446, 639, 736], "23413695": [53, 76, 372, 446, 639, 736], "57921278": [53, 76, 372, 446], "76743472": [53, 76, 372, 446], "1163073": [53, 76, 372, 446], "11629914": [53, 76, 372, 446], "03237505": [53, 76, 372, 446], "03237278": [53, 76, 372, 446], "78441733": [53, 76, 372, 446], "38119566": [53, 76, 372, 446], "21834874": [53, 76, 372, 446], "10610882": [53, 76, 372, 446], "15165846": [53, 76, 372, 446], "15164782": [53, 76, 372, 446], "35662258": [53, 76, 372, 446], "35659757": [53, 76, 372, 446], "02283812": [53, 76, 372, 446], "49705869": [53, 76, 372, 446], "40518808": [53, 76, 372, 446], "16882598": [53, 76, 372, 446], "fixed_factor": [53, 76, 372, 447], "tl": [53, 76, 372, 447], "kolda": [53, 76, 372, 447], "bader": [53, 76, 372, 447], "siam": [53, 76, 372, 444, 447], "review": [53, 76, 372, 447, 810, 811, 814, 816, 822, 824, 827, 837, 841], "vol": [53, 76, 372, 447], "pp": [53, 76, 372, 447], "455": [53, 76, 372, 447], "2009": [53, 76, 372, 447], "_arraywithlossesexperiment": [53, 98], "hinge_embedding_loss": [53, 76, 373], "margin": [53, 76, 373, 448, 455, 837], "measur": [53, 373, 448, 632, 659, 788], "semi": [53, 373, 448], "supervis": [53, 373, 448], "l_n": [53, 373, 448], "x_n": [53, 373, 448], "y_n": [53, 373, 448], "ell": [53, 373, 448], "operatornam": [53, 280, 282, 373, 448, 628, 633, 669], "l_1": [53, 373, 448], "Its": [53, 373, 448, 866], "hyperparamet": [53, 76, 373, 448], "aggreg": [53, 76, 373, 448, 641, 745, 824], "unreduc": [53, 76, 373, 448], "hing": [53, 76, 373, 448, 455], "input_tensor": [53, 76, 372, 373, 444, 448, 453, 837], "target_tensor": [53, 373, 448, 453], "huber_loss": [53, 76, 373], "delta": [53, 55, 76, 78, 373, 449, 611, 631], "transit": [53, 76, 373, 449, 866], "huber": [53, 76, 373, 449], "kl_div": [53, 76, 373], "log_target": [53, 76, 373, 450], "contai": [53, 450], "batchmean": [53, 373, 450], "kullback": [53, 76, 373, 450], "leibler": [53, 76, 373, 450], "0916": [53, 450], "l1_loss": [53, 76, 373, 452], "l1": [53, 58, 76, 81, 373, 377, 449, 451, 452, 454, 500, 633, 690, 823, 848], "targetict": [53, 76, 373, 451, 452, 454, 455], "20000000000000004": [53, 451], "log_poisson_loss": [53, 76, 373], "compute_full_loss": [53, 76, 373, 452, 789], "favor": [53, 76, 373, 452], "likelihood": [53, 76, 373, 452, 453], "28402555": [53, 373, 452], "03402555": [53, 373, 452], "1573164": [53, 373, 452], "poisson_nll_loss": [53, 76, 373], "log_input": [53, 76, 373, 453], "poisson": [53, 76, 373, 378, 452, 453], "assumpt": [53, 373, 452, 453], "minu": [53, 373, 452, 453], "omiss": [53, 373, 453], "stirl": [53, 76, 373, 452, 453], "describ": [53, 66, 76, 94, 219, 236, 237, 269, 272, 274, 373, 378, 381, 453, 508, 511, 628, 632, 643, 659, 755, 759, 761, 810, 811, 814, 815, 816, 822, 824, 836, 837, 840, 845, 850, 866], "prevent": [53, 55, 76, 78, 373, 453, 553, 611, 612, 617, 630, 631, 632, 643, 655, 761, 787, 792, 814, 816, 824, 825, 829, 836, 837, 841], "1977562": [53, 453], "smooth_l1_loss": [53, 76, 373], "smooth": [53, 59, 76, 82, 373, 449, 454, 634, 692, 693, 694, 835], "8125": [53, 454], "soft_margin_loss": [53, 76, 373], "soft": [53, 76, 303, 373, 374, 455, 487, 826], "35667497": [53, 455], "22314353": [53, 455], "60943791": [53, 455], "manipul": [53, 76, 836, 837, 841, 843, 845, 850, 855, 866], "_arraywithmanipulationexperiment": [53, 98], "as_strid": [53, 76, 374], "nativeshap": [53, 57, 60, 62, 76, 83, 85, 123, 124, 126, 131, 138, 144, 374, 378, 456, 468, 473, 481, 484, 504, 505, 506, 507, 508, 573, 586, 592, 594, 625, 630, 632, 635, 639, 645, 647, 649, 651, 653, 702, 735, 736, 737, 832, 834], "byte": [53, 54, 72, 76, 77, 98, 130, 374, 456, 567, 625, 630, 871, 872], "associative_scan": [53, 76, 374], "revers": [53, 54, 58, 66, 76, 81, 89, 98, 99, 362, 370, 371, 372, 374, 383, 417, 433, 457, 471, 472, 519, 520, 540, 630, 633, 635, 643, 688, 699, 753, 754, 814, 823, 824, 825, 827, 828, 836, 837, 843, 850, 851], "scan": [53, 76, 374, 457, 851], "atleast_1d": [53, 76, 374], "ari": [53, 76, 374, 458, 459, 460, 466, 475, 495], "a1": [53, 77, 374, 458, 459, 460, 464, 533], "a2": [53, 77, 374, 458, 459, 460, 464, 533], "atleast_2d": [53, 76, 374], "atleast_3d": [53, 76, 374], "column_stack": [53, 76, 374], "concat_from_sequ": [53, 76, 374], "input_sequ": [53, 76, 374, 465], "new_axi": [53, 76, 374, 465, 850], "dsplit": [53, 76, 374], "indices_or_sect": [53, 76, 374, 466, 475, 495], "3rd": [53, 76, 374, 466], "dstack": [53, 76, 374], "fill_diagon": [53, 76, 374], "fill_diag": [53, 469], "fortran": [53, 60, 76, 83, 374, 470, 635, 702, 866, 870], "layout": [53, 60, 76, 83, 374, 470, 635, 702, 821, 836, 837, 843], "fliplr": [53, 76, 374, 836], "diag": [53, 58, 76, 81, 94, 374, 471, 472, 633, 669, 845], "flipud": [53, 76, 374, 836], "fold": [53, 76, 374, 481, 482, 824], "unfold": [53, 76, 93, 94, 96, 372, 374, 430, 473, 481, 483], "folded_tensor": [53, 374, 473], "heavisid": [53, 76, 374], "5000": [53, 374, 474, 633, 672, 802], "hsplit": [53, 76, 374], "horizont": [53, 76, 374, 464, 475, 541, 630], "hstack": [53, 76, 374, 464], "i0": [53, 76, 374, 383, 521], "bessel": [53, 66, 76, 89, 313, 365, 374, 477, 643, 760, 762], "kind": [53, 66, 76, 161, 164, 165, 383, 477, 519, 520, 525, 626, 643, 753, 754, 759, 761, 772, 773, 813, 837, 840, 843, 845, 851], "26606588": [53, 76, 374, 477], "2795853": [53, 76, 374, 477], "88079259": [53, 76, 374, 477], "row_mod": [53, 76, 374, 478], "column_mod": [53, 76, 374, 478], "ascend": [53, 65, 76, 88, 374, 381, 478, 511, 642, 749, 751, 817], "prod": [53, 54, 66, 77, 89, 372, 374, 431, 433, 478, 527, 542, 630, 643, 772, 802, 825, 827, 845, 863], "moveaxi": [53, 76, 374], "destin": [53, 76, 374, 479], "unstack": [53, 60, 70, 83, 479, 635, 823, 845, 848, 873], "reorder": [53, 60, 76, 83, 374, 479, 541, 630, 635, 699, 839], "stat_length": [53, 76, 374, 480], "constant_valu": [53, 76, 374, 480], "end_valu": [53, 76, 374, 480], "reflect_typ": [53, 76, 374, 480], "partial_fold": [53, 76, 374], "skip_begin": [53, 76, 374, 481, 482, 483, 484], "untouch": [53, 76, 374, 481, 482, 483, 484], "partial_tensor_to_vec": [53, 76, 374], "skip_end": [53, 76, 374, 482, 483], "vectoris": [53, 76, 93, 374, 482, 484], "partial_unfold": [53, 76, 374], "ravel_tensor": [53, 76, 374, 483], "n_1": [53, 76, 374, 483], "n_2": [53, 76, 374, 483], "n_i": [53, 76, 372, 374, 431, 483], "partial_vec_to_tensor": [53, 76, 374], "put_along_axi": [53, 76, 374], "rot90": [53, 76, 374, 836], "rotat": [53, 76, 374, 486], "soft_threshold": [53, 76, 374], "behav": [53, 76, 331, 332, 368, 372, 374, 425, 488, 633, 668, 819, 829, 834, 836, 837, 838, 847, 867], "invalid": [53, 67, 76, 90, 374, 488, 633, 635, 644, 689, 698, 763, 764, 772, 815, 825], "slice": [53, 66, 70, 76, 77, 89, 94, 143, 324, 365, 374, 463, 485, 488, 489, 548, 549, 551, 577, 625, 630, 637, 643, 723, 758, 840, 866], "inexact": [53, 76, 342, 368, 374, 488], "largest": [53, 70, 76, 161, 164, 372, 374, 443, 488, 490, 626, 633, 674, 683], "take_along_axi": [53, 76, 374], "arr": [53, 54, 73, 76, 169, 374, 463, 485, 489, 573, 626, 825, 826], "top_k": [53, 76, 374], "sort": [53, 64, 70, 76, 87, 99, 195, 288, 372, 374, 383, 425, 490, 511, 525, 627, 628, 633, 641, 668, 669, 683, 684, 745, 749, 750, 751, 774, 808, 813, 824, 839, 841], "trim_zero": [53, 76, 374], "fb": [53, 76, 374, 491], "front": [53, 76, 374, 491, 837, 844, 845, 848, 855, 864, 866], "unflatten": [53, 76, 374], "unfolded_tensor": [53, 374, 493], "unique_consecut": [53, 76, 374], "vsplit": [53, 76, 374], "vertic": [53, 76, 374, 495, 496, 541, 630, 816], "_arraywithnormsexperiment": [53, 98], "varianc": [53, 66, 76, 89, 377, 497, 499, 643, 762, 787, 791], "nsc": [53, 76, 377, 497, 498, 499, 791], "braodcast": [53, 76, 377, 497], "running_mean": [53, 76, 377, 497, 499, 791], "running_var": [53, 76, 377, 497, 499, 791], "nc": [53, 76, 377, 497, 498, 499, 791], "group_norm": [53, 76, 377], "num_group": [53, 76, 377, 498], "group": [53, 76, 374, 377, 494, 498, 632, 637, 645, 652, 653, 716, 806, 817, 819, 823, 825, 833, 837, 838, 862, 865, 871], "instance_norm": [53, 76, 377], "l1_normal": [53, 76, 377], "33333334": [53, 76, 294, 363, 377, 500, 503, 613, 631, 632, 633, 654, 690], "33333337": [53, 133, 377, 500, 613, 625, 631], "28571439": [53, 377, 500], "l2_normal": [53, 76, 377, 503], "l2": [53, 58, 81, 92, 93, 377, 501, 503, 633, 690, 788, 823], "44721359": [53, 76, 377, 501, 503], "89442718": [53, 76, 377, 501, 503], "lp_normal": [53, 76, 377], "lp": [53, 377, 503], "_arraywithrandomexperiment": [53, 98], "bernoulli": [53, 76, 371, 378, 395, 396, 397], "event": [53, 76, 378, 504, 840], "entri": [53, 60, 70, 76, 83, 87, 94, 133, 372, 374, 378, 442, 469, 471, 472, 504, 625, 635, 637, 704, 727, 745, 815, 824, 840, 866], "parameter": [53, 62, 76, 85, 378, 504, 505, 507, 508, 639, 734, 736, 737], "odd": [53, 76, 274, 374, 378, 480, 504, 628, 802, 813, 819], "drawn": [53, 62, 76, 85, 378, 504, 505, 506, 507, 508, 639, 734, 735, 736, 737, 772, 773, 774, 787, 840], "dirichlet": [53, 76, 378], "10598304": [53, 378, 506], "21537054": [53, 378, 506], "67864642": [53, 378, 506], "48006698": [53, 378, 506], "07472073": [53, 378, 506], "44521229": [53, 378, 506], "55479872": [53, 378, 506], "05426367": [53, 378, 506], "39093761": [53, 378, 506], "19531053": [53, 378, 506], "51675832": [53, 378, 506], "28793114": [53, 378, 506], "12315625": [53, 378, 506], "29823365": [53, 378, 506], "5786101": [53, 378, 506], "15564976": [53, 378, 506], "50542368": [53, 378, 506], "33892656": [53, 378, 506], "1325352": [53, 378, 506], "44439589": [53, 378, 506], "42306891": [53, 378, 506], "gamma": [53, 61, 76, 84, 338, 350, 368, 378, 383, 522, 638, 733], "rate": [53, 55, 76, 78, 371, 378, 413, 508, 612, 615, 617, 618, 619, 631, 632, 636, 657, 711, 712, 713, 792, 824], "lam": [53, 76, 378, 508], "_arraywithsearchingexperiment": [53, 98], "unravel_index": [53, 76, 379], "unravel": [53, 76, 379, 509], "_arraywithsetexperiment": [53, 98], "_arraywithsortingexperiment": [53, 98], "lexsort": [53, 76, 381], "indirectli": [53, 76, 381, 511], "statist": [53, 76, 91, 374, 480, 791, 806, 814, 825, 840, 841, 866], "_arraywithstatisticalexperiment": [53, 98], "bincount": [53, 76, 383], "minlength": [53, 76, 383, 516], "corrcoef": [53, 76, 383], "rowvar": [53, 76, 383, 517, 518], "relationship": [53, 76, 517, 787, 839], "cov": [53, 76, 383], "ddof": [53, 76, 383, 518], "fweight": [53, 76, 383, 518], "aweight": [53, 76, 383, 518], "overridden": [53, 76, 383, 518, 792, 820], "unbias": [53, 66, 76, 89, 383, 518, 643, 762], "typic": [53, 76, 330, 347, 368, 383, 518, 642, 751, 788, 819, 833, 865, 873], "assign": [53, 76, 93, 383, 518, 814, 816, 821, 825, 836, 839, 847], "covari": [53, 76, 383, 518], "cummax": [53, 76, 383], "exclus": [53, 54, 66, 70, 76, 77, 89, 122, 372, 383, 441, 519, 520, 560, 561, 564, 625, 630, 639, 643, 735, 753, 754, 811, 823, 825, 833, 850, 870, 872], "cumul": [53, 66, 76, 89, 383, 519, 520, 643, 753, 754], "uint64": [53, 66, 158, 163, 165, 166, 176, 178, 181, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 840, 845], "uint16": [53, 66, 153, 158, 163, 164, 173, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "bit": [53, 66, 160, 161, 164, 227, 228, 230, 383, 519, 520, 626, 628, 643, 753, 754, 759, 761, 808, 813, 814, 815, 823, 824, 825, 827, 833, 845, 847, 872], "uint32": [53, 66, 158, 163, 164, 165, 187, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 840, 845], "cummin": [53, 76, 383], "histogram": [53, 76, 383], "extend_lower_interv": [53, 76, 383, 521], "extend_upper_interv": [53, 76, 383, 521], "densiti": [53, 76, 383, 521], "monoton": [53, 76, 383, 521], "rightmost": [53, 76, 383, 521], "c1": [53, 76, 383, 521, 823], "ff": [53, 76, 383, 521], "c_": [53, 76, 94, 383, 521], "igamma": [53, 76, 383], "incomplet": [53, 76, 383, 522, 816], "3614": [53, 76, 383, 522], "2085": [53, 76, 383, 522], "median": [53, 76, 374, 383, 480, 525], "nanmean": [53, 76, 383], "6666666666666665": [53, 76, 383, 524], "nanmedian": [53, 76, 383], "overwrite_input": [53, 76, 383, 525], "treat": [53, 70, 76, 99, 274, 352, 368, 374, 377, 383, 489, 502, 525, 527, 628, 769, 835, 840, 846, 850], "undefin": [53, 76, 374, 383, 384, 480, 525, 529, 825, 829, 835], "nanmin": [53, 76, 383], "nanprod": [53, 76, 383], "Not": [53, 76, 352, 368, 372, 383, 427, 527, 623, 821, 829, 838, 848, 849, 851], "quantil": [53, 76, 383, 863], "inclus": [53, 76, 122, 383, 528, 625, 639, 735, 809, 821, 836, 843], "midpoint": [53, 76, 383, 528], "surround": [53, 76, 383, 528, 843], "whichev": [53, 76, 383, 528], "_arraywithutilityexperiment": [53, 98], "optional_get_el": [53, 76, 384], "empti": [53, 54, 66, 70, 77, 89, 122, 374, 384, 480, 529, 536, 573, 625, 630, 633, 637, 643, 644, 687, 690, 728, 758, 759, 761, 763, 764, 814, 815, 820, 822, 825, 826, 836], "_arraywithgener": [54, 98], "all_equ": [54, 77, 630], "equality_matrix": [54, 77, 530, 630], "array_equ": [54, 77, 630], "assert_supports_inplac": [54, 77, 630], "ivybackendexcept": [54, 77, 534, 558, 630, 803, 820, 826, 829, 830], "clip_matrix_norm": [54, 77, 630], "894": [54, 77, 536, 537, 630, 638, 733], "clip_vector_norm": [54, 77, 630], "default_v": [54, 540, 630], "catch_except": [54, 540, 630], "rev": [54, 540, 630], "with_cal": [54, 540, 630], "catch": [54, 540, 630, 834, 840], "einops_rearrang": [54, 77, 630], "axes_length": [54, 77, 541, 542, 543, 630], "arrang": [54, 541, 630], "rearrang": [54, 77, 541, 543, 630, 839], "einops_reduc": [54, 77, 630, 825], "einops_repeat": [54, 77, 630], "fourier_encod": [54, 77, 630], "max_freq": [54, 77, 545, 630], "oppos": [54, 77, 545, 630, 825], "geometr": [54, 77, 545, 630, 633, 688], "0000000e": [54, 77, 545, 630], "2246468e": [54, 77, 545, 630], "4492936e": [54, 545, 630], "6739404e": [54, 77, 545, 630], "batch_dim": [54, 77, 548, 549, 630, 794], "gather_nd": [54, 77, 630], "get_num_dim": [54, 77, 630], "as_arrai": [54, 77, 552, 586, 630, 794], "has_nan": [54, 77, 630], "include_inf": [54, 77, 554, 609, 630], "inplace_decr": [54, 77, 630], "val": [54, 70, 75, 77, 249, 374, 469, 556, 557, 558, 577, 578, 579, 628, 630, 825, 836, 847], "decrement": [54, 77, 556, 630], "inplace_incr": [54, 77, 630], "increment": [54, 77, 557, 630, 816, 866], "inplace_upd": [54, 77, 576, 630, 785, 836], "ensure_in_backend": [54, 77, 558, 630, 836], "keep_input_dtyp": [54, 77, 558, 630, 836], "is_arrai": [54, 77, 630, 836, 837], "is_ivy_arrai": [54, 77, 630, 836, 847], "is_ivy_contain": [54, 630], "is_native_arrai": [54, 77, 172, 561, 626, 630, 847], "isin": [54, 77, 630, 863], "test_el": [54, 77, 565, 630], "assume_uniqu": [54, 77, 565, 630], "invert": [54, 77, 227, 565, 628, 630, 633, 675], "scatter_flat": [54, 77, 630], "occupi": [54, 161, 164, 572, 573, 626, 630], "scatter_nd": [54, 77, 630, 843, 847], "stable_divid": [54, 77, 630, 833], "denomin": [54, 61, 77, 84, 579, 588, 602, 630, 638, 733, 791, 833, 842, 851, 863], "min_denomin": [54, 77, 579, 588, 602, 630, 842], "_min_denomin": [54, 588, 630], "stable_pow": [54, 77, 630], "min_bas": [54, 77, 578, 589, 601, 630, 791, 842], "stabl": [54, 65, 77, 88, 143, 324, 331, 332, 365, 368, 381, 511, 578, 579, 588, 589, 601, 602, 625, 630, 642, 749, 752, 774, 815, 821, 825, 837, 842, 845, 851], "00004": [54, 77, 589, 630], "00008": [54, 77, 589, 630], "00004000e": [54, 589], "56002560e": [54, 589], "60001200e": [54, 589], "09602048e": [54, 589], "supports_inplace_upd": [54, 77, 630], "to_fil": 54, "fid": 54, "sep": 54, "format_": 54, "recov": [54, 829, 837], "to_scalar": [54, 77, 630], "value_is_nan": [54, 77, 630], "_arraywithgradi": [55, 98], "adam_step": [55, 78, 631], "mw": [55, 78, 611, 612, 631, 849], "vw": [55, 78, 611, 612, 631, 849], "beta1": [55, 78, 532, 611, 612, 617, 630, 631, 792, 849], "beta2": [55, 78, 532, 611, 612, 617, 630, 631, 792, 849], "epsilon": [55, 58, 59, 78, 81, 82, 532, 611, 612, 617, 630, 631, 633, 634, 676, 679, 692, 693, 694, 784, 789, 791, 792, 823, 833, 836, 849], "dc": [55, 78, 611, 612, 615, 617, 618, 619, 631], "dw": [55, 78, 611, 612, 615, 617, 618, 619, 631], "forget": [55, 78, 611, 612, 617, 631, 792, 808, 825], "dcdw": [55, 78, 611, 612, 615, 617, 618, 631], "adam_step_delta": [55, 78, 611, 631], "2020105": [55, 611, 631], "22187898": [55, 611, 631], "24144873": [55, 611, 631], "10000002": [55, 89, 292, 363, 611, 757], "00300002": [55, 611], "00800002": [55, 611], "adam_upd": [55, 78, 631, 849], "mw_tm1": [55, 78, 612, 617, 631], "vw_tm1": [55, 78, 612, 617, 631], "stop_gradi": [55, 78, 209, 532, 612, 615, 617, 618, 619, 627, 630, 631, 636, 711, 712, 713, 792, 849], "ws_new": [55, 78, 612, 617, 618, 619, 631], "updated_weight": [55, 78, 612, 631], "92558753": [55, 612], "92558873": [55, 612, 631], "92558718": [55, 612, 631], "00000063e": [55, 78, 612, 631], "00000016e": [55, 78, 612, 631], "00000086e": [55, 78, 612, 631], "gradient_descent_upd": [55, 78, 631, 636, 711, 712, 713], "descent": [55, 78, 615, 631, 792, 849, 866], "new_weight": [55, 78, 615, 617, 618, 631, 848], "lamb_upd": [55, 78, 631], "max_trust_ratio": [55, 78, 617, 631, 792], "decay_lambda": [55, 78, 617, 618, 631, 792], "trust": [55, 78, 617, 631, 792], "ratio": [55, 78, 617, 631, 792], "decai": [55, 78, 617, 618, 631, 792], "lamb": [55, 78, 617, 631, 792, 849], "784": [55, 617, 631], "lars_upd": [55, 78, 631], "lar": [55, 78, 618, 631, 792, 849], "34077978": [55, 618, 631], "78025991": [55, 618, 631], "56051969": [55, 618, 631], "78026009": [55, 618, 631], "56051981": [55, 618, 631], "12103939": [55, 618, 631], "optimizer_upd": [55, 78, 631], "effective_grad": [55, 78, 619, 631], "3e": [55, 78, 619, 631], "preserve_typ": [55, 78, 620, 631], "_arraywithimag": [56, 98], "_arraywithlay": [57, 98], "conv1d": [57, 80, 632, 788], "filter_format": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "channel_last": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 772], "x_dilat": [57, 80, 632, 645, 646, 648, 649, 650, 652], "d_out": [57, 80, 371, 388, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "channel_first": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "wio": [57, 632, 645, 646, 647, 652], "conv1d_transpos": [57, 80, 632], "output_shap": [57, 80, 632, 645, 647, 649, 651, 653, 788], "iow": [57, 80, 632, 647], "woi": [57, 80, 632, 647], "fh": [57, 80, 632, 637, 645, 648, 649, 650, 651, 652, 653, 654, 726], "hwio": [57, 632, 645, 646, 648, 652], "conv2d_transpos": [57, 80, 632], "iohw": [57, 80, 632, 649], "hwoi": [57, 80, 632, 649], "conv3d": [57, 80, 632, 651, 788], "fd": [57, 80, 632, 645, 650, 651, 652, 653], "conv3d_transpos": [57, 80, 632, 653], "iodhw": [57, 80, 632, 651, 653], "dhwoi": [57, 80, 632, 651, 653], "depthwise_conv2d": [57, 80, 632], "randint": [57, 62, 64, 80, 85, 639, 641, 654, 658, 745, 825, 859], "noise_shap": [57, 80, 632, 655], "42857146": [57, 632, 655], "85714293": [57, 632, 655], "28571415": [57, 80, 632, 655], "71428585": [57, 80, 632, 655], "14285755": [57, 80, 632, 655], "5714283": [57, 632, 655], "4285717": [57, 80, 632, 655], "8571434": [57, 80, 632, 655], "2857151": [57, 632, 655], "dropout1d": [57, 80, 371], "droput1d": [57, 395, 396], "dropout2d": [57, 80, 371], "dropout3d": [57, 80, 371], "droput3d": [57, 397], "outer_batch_shap": [57, 80, 632, 656], "inner_batch_shap": [57, 80, 632, 656], "lstm_updat": [57, 80, 632, 845], "init_h": [57, 80, 632, 658, 845], "init_c": [57, 80, 632, 658, 845], "recurrent_kernel": [57, 80, 632, 658, 845], "recurrent_bia": [57, 80, 632, 658, 845], "hidden": [57, 80, 632, 657, 658, 788, 822, 829, 845, 849], "recurr": [57, 76, 80, 371, 417, 632, 658, 845, 866, 870], "timestep": [57, 76, 80, 371, 417, 632, 657, 658, 659, 788, 845], "h_i": [57, 80, 658], "c_i": [57, 80, 658], "rc": [57, 80, 658], "multi_head_attent": [57, 80, 632, 836], "num_head": [57, 80, 632, 659, 788], "in_proj_weight": [57, 80, 632, 659], "q_proj_weight": [57, 80, 632, 659], "k_proj_weight": [57, 80, 632, 659], "v_proj_weight": [57, 80, 632, 659], "out_proj_weight": [57, 80, 632, 659], "in_proj_bia": [57, 80, 632, 659], "out_proj_bia": [57, 80, 632, 659], "is_caus": [57, 80, 632, 659, 662], "key_padding_mask": [57, 80, 632, 659], "bias_k": [57, 80, 632, 659], "bias_v": [57, 80, 632, 659], "static_k": [57, 80, 632, 659], "static_v": [57, 80, 632, 659], "add_zero_attn": [57, 80, 632, 659], "return_attention_weight": [57, 80, 632, 659], "average_attention_weight": [57, 80, 632, 659], "scaled_dot_product_attent": [57, 80, 632], "dropout_p": [57, 80, 632, 662], "num_queri": [57, 80, 632, 662], "feat_dim": [57, 80, 632, 662], "num_kei": [57, 80, 632, 662], "causal": [57, 80, 632, 659, 662], "attent": [57, 80, 632, 659, 662, 788, 816, 820, 856], "29999995": [57, 292, 293, 303, 363, 371, 415, 632, 641, 662, 746], "19994521": [57, 632, 662], "09994531": [57, 632, 662], "30000019": [57, 374, 464, 632, 662], "_arraywithlinearalgebra": [58, 98], "choleski": [58, 81, 633, 836], "625": [58, 76, 344, 633, 663], "vif": [58, 81, 664], "det": [58, 81, 633, 681, 824], "axis1": [58, 60, 81, 83, 633, 635, 667, 687, 707], "axis2": [58, 81, 633, 667, 687], "eigh": [58, 81, 372, 425, 633, 668], "uplo": [58, 81, 633, 669, 670], "eigvalsh": [58, 81, 633], "array_lik": [58, 81, 371, 373, 374, 416, 449, 450, 454, 455, 485, 633, 671, 678, 802], "105": [58, 80, 632, 633, 655, 656, 671, 678], "149": [58, 633, 671], "143": [58, 75, 99, 286, 628, 633, 671, 827], "203": [58, 75, 225, 633, 638, 671, 733], "233": [58, 633, 671], "inv": [58, 81, 633], "transpose_a": [58, 81, 633, 673], "transpose_b": [58, 81, 633, 673], "adjoint_a": [58, 81, 633, 673], "adjoint_b": [58, 81, 633, 673], "matrix_norm": [58, 81, 633], "ord": [58, 81, 633, 674, 690], "fro": [58, 81, 373, 449, 633, 674], "nuc": [58, 81, 633, 674], "matrix_pow": [58, 81, 633], "matrix_rank": [58, 81, 633], "hermitian": [58, 81, 372, 425, 426, 633, 668, 669, 670, 676, 683], "largest_singular_valu": [58, 81, 633, 676, 679], "defici": [58, 633, 676], "matrix_transpos": [58, 81, 633, 847], "pinv": [58, 81, 633], "pseudo": [58, 81, 633, 679, 835], "99999988": [58, 81, 633, 679], "qr": [58, 81, 633, 838], "complet": [58, 70, 81, 633, 680, 773, 814, 815, 816, 817, 819, 820, 823, 824, 827, 829, 833, 837, 838, 840, 843, 847, 848, 856, 864], "12309149": [58, 633, 680], "90453403": [58, 633, 680], "40824829": [58, 633, 680], "49236596": [58, 633, 680], "30151134": [58, 633, 680], "81649658": [58, 633, 680], "86164044": [58, 633, 680], "12403841e": [58, 633, 680], "60113630e": [58, 633, 680], "10782342e": [58, 633, 680], "04534034e": [58, 633, 680], "80906807e": [58, 633, 680], "88178420e": [58, 81, 633, 670, 680], "slogdet": [58, 81, 633], "logabsdet": [58, 81, 633, 681], "natur": [58, 81, 239, 257, 258, 259, 260, 279, 350, 368, 628, 633, 681, 820, 827, 829, 838, 856], "098611": [58, 633, 681], "solv": [58, 81, 372, 436, 633, 772, 808, 815, 819, 830, 837, 846, 868], "full_matric": [58, 81, 633, 683], "svf": [58, 683], "reconstructed_x": [58, 633, 683], "svdval": [58, 81, 633], "tensorsolv": [58, 81, 633], "vander": [58, 81, 633], "vandermond": [58, 81, 633, 688], "vecdot": [58, 81, 633], "vector_norm": [58, 81, 633], "mathemat": [58, 81, 219, 224, 236, 241, 243, 259, 269, 623, 628, 633, 674, 690, 825, 837, 843, 866, 872], "manhattan": [58, 81, 633, 690], "euclidean": [58, 81, 93, 94, 633, 690], "7416575": [58, 81, 633, 690], "vector_to_skew_symmetric_matrix": [58, 81, 633], "_arraywithloss": [59, 98], "binary_cross_entropi": [59, 82, 634, 824], "from_logit": [59, 82, 634, 692, 789], "pos_weight": [59, 82, 634, 692], "crossentropi": [59, 82, 634, 692], "26765382": [59, 634, 692], "34657359": [59, 634, 693], "sparse_cross_entropi": [59, 82, 634], "07438118": [59, 82, 694], "11889165": [59, 694], "_arraywithmanipul": [60, 98], "x_min": [60, 83, 635, 695, 850], "x_max": [60, 83, 635, 695, 850], "before_1": [60, 83, 374, 480, 635, 697, 710], "after_1": [60, 83, 374, 480, 635, 697, 710], "before_n": [60, 83, 374, 480, 635, 697, 710], "after_n": [60, 83, 374, 480, 635, 697, 710], "repetit": [60, 83, 635, 701, 708, 843], "flat": [60, 70, 83, 379, 509, 572, 630, 635, 701], "allowzero": [60, 83, 635, 702], "remain": [60, 63, 76, 83, 86, 219, 236, 237, 243, 251, 252, 269, 272, 278, 280, 371, 395, 396, 397, 416, 628, 635, 637, 640, 702, 720, 743, 802, 815, 816, 824, 827, 829, 833, 841, 843, 851], "roll": [60, 83, 635, 832, 863], "shift": [60, 72, 83, 99, 132, 143, 228, 230, 324, 365, 625, 628, 635, 703, 815, 816, 826, 827, 832, 839, 863], "restor": [60, 83, 635, 703, 831], "num_or_size_split": [60, 70, 83, 635, 704, 845], "with_remaind": [60, 70, 83, 635, 704], "squeezabl": [60, 635, 705], "swapax": [60, 83, 635], "axis0": [60, 83, 635, 707], "swap_ax": [60, 707], "swap": [60, 83, 635, 707, 797, 860], "tile": [60, 77, 83, 543, 635], "unpack": [60, 83, 635, 709, 838, 840], "zero_pad": [60, 83, 635], "_arraywithnorm": [61, 98], "layer_norm": [61, 84, 638], "normalized_idx": [61, 84, 638, 733], "new_std": [61, 84, 638, 733, 791], "learnabl": [61, 84, 632, 636, 638, 657, 713, 733, 788, 791, 850], "deviat": [61, 62, 66, 84, 85, 89, 638, 639, 643, 733, 736, 760, 774, 787, 791, 819, 857], "0976": [61, 638, 733], "3452": [61, 638, 733], "2740": [61, 638, 733], "1047": [61, 638, 733], "5886": [61, 638, 733], "2732": [61, 638, 733], "7696": [61, 638, 733, 772], "7024": [61, 638, 733], "2518": [61, 638, 733], "826": [61, 638, 733], "178": [61, 638, 733], "981": [61, 638, 733], "831": [61, 638, 733], "421": [61, 638, 733], "_arraywithrandom": [62, 98], "multinomi": [62, 85, 378, 506, 639], "population_s": [62, 85, 639, 734], "num_sampl": [62, 85, 639, 734], "unnorm": [62, 85, 639, 734, 840], "popul": [62, 66, 70, 85, 89, 639, 643, 734, 760, 762, 825, 826, 836, 840, 845, 872], "draw": [62, 85, 378, 504, 506, 508, 639, 734, 736, 737, 772, 773, 774, 775, 780, 787, 814, 819, 838, 840], "half": [62, 85, 122, 283, 625, 628, 639, 735, 737, 812, 830, 843], "235": [62, 736], "float16": [62, 73, 85, 130, 153, 155, 156, 161, 163, 342, 368, 625, 626, 633, 690, 736, 737, 772, 773, 812, 825, 830, 837, 840], "807": [62, 736], "_arraywithsearch": [63, 98], "select_last_index": [63, 86, 640, 740, 741], "occurr": [63, 374, 383, 494, 516, 640, 641, 740, 741, 745], "argmin": [63, 86, 640, 863], "output_dtyp": [63, 86, 640, 741], "argwher": [63, 86, 640], "nonzero": [63, 86, 94, 217, 218, 219, 222, 225, 234, 236, 239, 241, 243, 269, 282, 287, 628, 640], "as_tupl": [63, 86, 640, 743], "fewer": [63, 86, 640, 743], "_arraywithset": [64, 98], "unique_al": [64, 87, 641], "by_valu": [64, 87, 641, 745], "inverse_indic": [64, 87, 374, 494, 641, 745, 747], "unique_count": [64, 87, 641], "unique_invers": [64, 87, 641], "unique_valu": [64, 87, 641], "admonit": [64, 748], "dask": [64, 641, 745, 746, 747, 748, 856], "difficult": [64, 641, 745, 746, 747, 748, 816, 819, 825, 840, 851], "omit": [64, 279, 628, 641, 745, 746, 747, 748, 832, 836, 837], "x_i": [64, 66, 75, 94, 216, 217, 218, 221, 222, 223, 225, 227, 232, 233, 234, 239, 241, 242, 249, 250, 251, 252, 253, 257, 258, 259, 260, 264, 271, 276, 279, 280, 281, 282, 283, 284, 286, 287, 289, 331, 332, 334, 355, 368, 628, 641, 643, 745, 746, 747, 748, 756, 757, 758, 760, 761, 762, 787, 828], "x_j": [64, 641, 745, 746, 747, 748], "impli": [64, 641, 745, 746, 747, 748, 840], "typeerror": [64, 87, 641, 748, 847], "_arraywithsort": [65, 98], "stabil": [65, 88, 588, 589, 630, 642, 749, 752, 825, 835, 841, 843], "maintain": [65, 88, 642, 749, 752, 815, 816, 819, 831, 836, 838, 839, 840, 855, 865], "msort": [65, 88, 642], "searchsort": [65, 88, 642, 773], "side": [65, 88, 346, 368, 372, 442, 642, 751, 772, 788, 801, 802, 815, 816, 822], "sorter": [65, 88, 642, 751], "ret_dtyp": [65, 88, 642, 751], "_arraywithstatist": [66, 98], "cumprod": [66, 89, 643, 837, 850, 863], "cumsum": [66, 89, 643, 825, 863], "einsum": [66, 89, 643], "equat": [66, 76, 89, 310, 365, 372, 442, 633, 643, 682, 755, 772, 801, 824, 866], "operand": [66, 76, 80, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 355, 359, 368, 369, 371, 414, 628, 633, 643, 681, 687, 755, 756, 758, 759, 761, 801, 802, 820, 823, 828, 837], "contract": [66, 633, 643, 685, 755, 802], "seq": [66, 643, 755, 772], "ii": [66, 89, 643, 755, 816], "jk": [66, 643, 755, 802], "ik": [66, 643, 755, 802], "126": [66, 106, 275, 622, 628, 633, 643, 675, 755], "510": [66, 643, 755], "special": [66, 81, 93, 94, 98, 99, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 355, 368, 628, 633, 643, 681, 687, 756, 757, 758, 759, 760, 761, 762, 772, 773, 774, 775, 780, 787, 814, 817, 819, 820, 822, 824, 827, 828, 829, 832, 836, 838, 839, 840, 841, 843, 866, 867, 868], "arithmet": [66, 89, 230, 236, 269, 628, 643, 757, 837], "propag": [66, 230, 331, 332, 368, 628, 643, 756, 757, 758, 760, 761, 762, 835], "04999995": [66, 757], "freedom": [66, 89, 643, 760, 762, 821], "constitut": [66, 89, 643, 760, 762, 833, 845, 867], "commonli": [66, 89, 643, 760, 762, 829, 833, 835], "81649661": [66, 643, 760], "6666665": [66, 762, 848], "667": [66, 77, 236, 537, 588, 628, 630, 762], "_arraywithutil": [67, 98], "logic": [67, 90, 200, 236, 237, 263, 264, 265, 269, 272, 627, 628, 644, 763, 764, 814, 820, 824, 825, 826, 829, 833, 834, 835, 836, 837, 839, 840, 843, 847, 860], "AND": [67, 90, 226, 237, 263, 628, 644, 763], "OR": [67, 90, 229, 265, 272, 628, 644, 764, 815, 816, 835], "_wrap_funct": [68, 91, 822, 833, 834], "function_nam": [68, 91, 814, 841], "new_funct": [68, 91, 822], "add_ivy_array_instance_method": 68, "cl": [68, 91], "moduletyp": [68, 91, 859, 860, 861], "toi": [68, 91], "arrayexampl": 68, "hasattr": [68, 91], "_containerwithactiv": [69, 99], "dict_in": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "queue": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 582, 605, 630, 842, 848], "queue_load_s": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "container_combine_method": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "list_join": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "queue_timeout": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 582, 605, 630, 842], "print_limit": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "key_length_limit": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "print_ind": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "print_line_spac": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "ivyh": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "default_key_color": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "keyword_color_dict": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "rebuild_child_contain": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "types_to_iteratively_nest": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "alphabetical_kei": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "dynamic_backend": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 789, 790, 821, 842], "build_cal": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "containerbas": [69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 823], "_static_gelu": 69, "key_chain": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "to_appli": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "prune_unappli": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "map_sequ": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "prune": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 728, 729, 730, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 770, 773, 824], "static_gelu": 69, "046": 69, "_static_hardswish": 69, "_static_leaky_relu": 69, "static_leaky_relu": 69, "38999999": [69, 76, 108, 291, 292, 363], "_static_log_softmax": 69, "static_log_softmax": 69, "371": [69, 109], "_static_mish": 69, "static_mish": 69, "30883577": [69, 110, 622], "28903052": [69, 110, 622], "10714479": [69, 110, 622], "_static_relu": 69, "static_relu": 69, "_static_sigmoid": 69, "static_sigmoid": 69, "2689414": [69, 112, 113, 622], "7310586": [69, 112, 113, 622], "88079703": [69, 112, 622], "62245935": [69, 112], "4750208": [69, 112], "_static_softmax": 69, "static_softmax": 69, "72844321": [69, 113], "19852395": [69, 113], "07303288": [69, 113], "_static_softplu": 69, "revert": [69, 114, 622], "static_softplu": 69, "53499615": 69, "42036411": 69, "948": [69, 114, 637, 714], "166": [69, 106, 622], "dictionari": [70, 87, 99, 208, 597, 613, 627, 630, 631, 748, 767, 769, 802, 820, 824, 825, 833, 837, 838, 848, 851], "asynchron": [70, 99, 866], "wait": [70, 99, 582, 630, 808, 814, 816, 824, 837], "arriv": [70, 99, 582, 630, 843], "cont_list_join": [70, 99], "limit": [70, 99, 161, 164, 536, 537, 553, 626, 630, 635, 695, 772, 774, 775, 787, 794, 802, 808, 815, 816, 822, 824, 827, 829, 837, 840, 843, 848, 851, 865, 866, 867], "whitespac": [70, 99], "indent": [70, 99, 848], "newlin": [70, 99, 828], "termin": [70, 99, 815, 816, 823, 830, 831, 845, 848], "constructor": [70, 99, 532, 630, 769, 785, 793, 825, 826, 828, 847], "kept": [70, 99, 636, 711, 712, 816, 836, 841], "encount": [70, 99, 788, 812, 814, 825, 829, 830, 840], "node": [70, 77, 99, 534, 544, 591, 637, 724, 725, 787, 796, 822, 823, 837, 856, 859, 860, 867], "alphabet": [70, 99], "__setitem__": [70, 374, 488, 820, 823, 847], "_cont_at_key_chains_input_as_dict": 70, "current_chain": 70, "ignore_key_error": 70, "_cont_at_key_chains_input_as_seq": 70, "_cont_call_static_method_with_flexible_arg": 70, "static_method": 70, "kw": 70, "self_idx": 70, "_cont_concat_unifi": 70, "_cont_get_dev": 70, "_cont_get_dtyp": 70, "_cont_get_shap": 70, "_cont_ivi": 70, "_cont_mean_unifi": 70, "_1": 70, "_cont_prune_key_chains_input_as_dict": 70, "return_cont": 70, "_cont_prune_key_chains_input_as_seq": 70, "_cont_slice_kei": 70, "key_slic": 70, "_cont_sum_unifi": 70, "_get_queue_item": 70, "cont_all_fals": 70, "assert_is_bool": 70, "cont_all_key_chain": 70, "include_empti": 70, "cont_all_tru": [70, 823, 848], "cont_as_bool": 70, "cont_assert_contains_sub_contain": 70, "sub_cont": 70, "screen": [70, 814, 815, 848], "cont_assert_contains_sub_structur": 70, "check_shap": [70, 794], "cont_assert_ident": 70, "check_typ": 70, "same_arrai": [70, 848], "arrays_equ": 70, "cont_assert_identical_structur": 70, "assert_and_assign": 70, "congruent": 70, "cont_at_key_chain": 70, "ignore_non": 70, "cont_at_kei": 70, "substr": 70, "cont_combin": 70, "duplic": [70, 374, 485, 553, 630, 637, 716, 821, 828, 834, 835, 838, 849, 872], "configur": [70, 208, 627, 637, 727, 815, 816, 822, 824, 825, 830, 831], "container_rightmost": 70, "cont_common_key_chain": 70, "cont_config": 70, "cont_contains_sub_contain": 70, "cont_contains_sub_structur": 70, "cont_copi": [70, 848], "cont_create_if_abs": 70, "noth": [70, 843, 872], "cont_cutoff_at_depth": 70, "depth_cutoff": 70, "summari": [70, 165, 538, 626, 630, 815, 816, 840], "cont_cutoff_at_height": 70, "height_cutoff": 70, "cont_deep_copi": [70, 848, 859], "cont_dev": 70, "belong": [70, 814, 819, 849], "cont_dev_str": 70, "cont_diff": [70, 848], "diff_kei": 70, "detect_key_diff": 70, "detect_value_diff": 70, "detect_shape_diff": 70, "among": [70, 823, 824, 840, 843, 857, 866], "container0": 70, "cont_dtyp": 70, "cont_duplicate_array_keychain": 70, "cont_find_sub_contain": 70, "sub_cont_to_find": 70, "cont_find_sub_structur": 70, "sub_struc_to_find": 70, "cont_flatten_key_chain": [70, 848], "above_height": [70, 848], "below_depth": [70, 848], "cont_format_key_chain": 70, "format_fn": 70, "cont_from_disk_as_hdf5": [70, 848], "h5_obj_or_filepath": 70, "slice_obj": 70, "disk": [70, 790, 848, 865], "h5py": 70, "filepath": [70, 644, 765, 766, 816, 819], "cont_from_disk_as_json": [70, 848], "json_filepath": 70, "cont_from_disk_as_pickl": [70, 848], "pickle_filepath": 70, "cont_from_flat_list": 70, "flat_list": 70, "hierarchi": [70, 806, 814, 839, 848, 862, 872], "cont_handle_inplac": 70, "prime": [70, 825], "overwritten": [70, 820, 821], "cont_has_kei": 70, "query_kei": 70, "somewher": [70, 824], "cont_has_key_chain": 70, "cont_ident": [70, 848], "cont_identical_array_shap": 70, "cont_identical_config": 70, "cont_identical_structur": 70, "cont_if_exist": 70, "cont_inplace_upd": 70, "cont_ivi": 70, "cont_key_chains_contain": 70, "sub_str": 70, "cont_list_stack": [70, 848], "cont_load": 70, "cont_map": [70, 823, 848], "func": [70, 93, 209, 360, 361, 362, 370, 535, 610, 613, 614, 616, 621, 627, 630, 631, 637, 727, 769, 814, 819, 820, 827, 829, 835], "cont_map_sub_cont": 70, "include_self": 70, "possibli": [70, 593, 630, 772, 840, 851], "cont_max_depth": 70, "cont_multi_map": 70, "map_nest": 70, "assert_ident": 70, "leftmost": [70, 637, 727], "cont_multi_map_in_funct": 70, "cont_num_arrai": 70, "cont_overwrite_at_key_chain": 70, "target_dict": 70, "return_dict": 70, "cont_prune_empti": 70, "keep_non": 70, "cont_prune_key_chain": 70, "key1": [70, 808, 849], "key2": [70, 808], "key3": 70, "cont_prune_key_from_key_chain": 70, "certain": [70, 122, 133, 134, 373, 450, 625, 814, 815, 816, 819, 825, 833, 839, 840, 843, 851, 859, 860, 861, 870], "cont_prune_kei": 70, "cont_prune_keys_from_key_chain": 70, "cont_reduc": 70, "cont_remove_key_length_limit": 70, "cont_remove_print_limit": 70, "cont_reshape_lik": 70, "leading_shap": 70, "cont_restructur": 70, "keep_orig": 70, "old": [70, 815, 821, 836], "cont_restructure_key_chain": 70, "keychain_map": 70, "cont_sav": 70, "cont_set_at_key_chain": 70, "cont_set_at_kei": 70, "cont_shap": [70, 632, 650], "cont_show": 70, "cont_show_sub_contain": 70, "sub_cont_or_keychain": 70, "cont_size_ordered_arrai": 70, "keychain": [70, 76, 294, 333, 458, 459, 460, 489], "cont_slice_kei": 70, "all_depth": 70, "cont_slice_via_kei": 70, "slice_kei": 70, "cont_sort_by_kei": 70, "cont_structural_diff": 70, "cont_to_dict": 70, "cont_to_disk_as_hdf5": [70, 848], "starting_index": 70, "max_batch_s": 70, "cont_to_disk_as_json": [70, 848], "cont_to_disk_as_pickl": [70, 848], "cont_to_flat_list": 70, "cont_to_iter": [70, 823], "leaf_keys_onli": 70, "cont_to_iterator_kei": 70, "cont_to_iterator_valu": 70, "cont_to_json": 70, "cont_to_nested_list": 70, "cont_to_raw": 70, "cont_trim_kei": 70, "cont_try_kc": 70, "cont_unifi": 70, "concatten": [70, 209, 627], "cont_unstack_cont": 70, "dim_siz": 70, "cont_update_config": 70, "cont_with_default_key_color": 70, "cont_with_entries_as_list": 70, "cont_with_ivy_backend": 70, "ivy_backend": [70, 838], "cont_with_key_length_limit": [70, 848], "cont_with_print_ind": [70, 848], "cont_with_print_limit": [70, 848], "cont_with_print_line_spac": 70, "h5_file_s": 70, "shuffle_h5_fil": 70, "split_cont": 70, "_is_json": 70, "_repr": 70, "_containerwithconvers": [71, 99], "_static_to_ivi": 71, "_static_to_n": 71, "_containerwithcr": [72, 99], "_static_arang": 72, "_static_asarrai": 72, "_static_copy_arrai": 72, "_static_empti": 72, "_static_empty_lik": 72, "_static_ey": 72, "n_row": [72, 76, 128, 143, 324, 365, 372, 433, 625], "n_col": [72, 76, 128, 143, 324, 365, 625], "_static_from_dlpack": 72, "_static_ful": 72, "_static_full_lik": 72, "static_full_lik": 72, "2324": [72, 132, 625], "234": [72, 75, 132, 155, 238, 289, 625, 626, 628, 632, 656, 772], "_static_linspac": 72, "_static_logspac": 72, "static_logspac": 72, "15443469": [72, 134], "64158883": [72, 134], "_static_meshgrid": 72, "_static_native_arrai": 72, "_static_one_hot": 72, "static_one_hot": 72, "_static_on": 72, "_static_ones_lik": 72, "_static_tril": 72, "_static_triu": 72, "_static_zero": 72, "_static_zeros_lik": 72, "frombuff": [72, 625], "expos": [72, 130, 538, 625, 630, 808, 824, 845, 849, 855], "x00": [72, 130, 625], "xf0": [72, 130, 625], "x01": [72, 130, 625], "x02": [72, 130, 625], "x03": [72, 130, 625], "x04": [72, 130, 625], "x05": [72, 130], "5443469": [72, 134, 625], "static_frombuff": 72, "static_triu_indic": 72, "triu_indic": [72, 625], "_containerwithdatatyp": [73, 99], "_static_astyp": 73, "718": [73, 75, 148, 265, 626], "618": [73, 75, 148, 265, 626], "static_astyp": 73, "_static_broadcast_arrai": 73, "static_broadcast_arrai": 73, "_static_broadcast_to": 73, "static_broadcast_to": 73, "_static_can_cast": 73, "from_": [73, 151, 626], "static_can_cast": 73, "_static_default_complex_dtyp": 73, "complex_dtyp": [73, 154, 177, 626], "_static_default_float_dtyp": 73, "float_dtyp": [73, 156, 179, 626], "_static_dtyp": 73, "_static_finfo": 73, "inquir": [73, 161, 164], "static_finfo": 73, "55040e": [73, 161, 626], "7976931348623157e": [73, 161, 626], "308": [73, 161, 626, 772, 840], "_static_function_supported_dtyp": 73, "_static_function_unsupported_dtyp": 73, "_static_iinfo": 73, "1800": [73, 164, 626], "1084": 73, "40000": 73, "static_iinfo": 73, "2147483648": [73, 76, 164, 374, 488, 626], "2147483647": [73, 164, 626], "_static_is_bool_dtyp": 73, "dtype_in": [73, 146, 147, 160, 166, 167, 168, 169, 170, 171, 172, 173, 188, 626], "_static_is_complex_dtyp": 73, "is_complex_dtyp": [73, 626, 841], "roughli": [73, 815, 819, 869], "static_is_complex_dtyp": 73, "_static_is_float_dtyp": 73, "static_is_float_dtyp": 73, "_static_is_int_dtyp": 73, "_static_is_uint_dtyp": 73, "_static_result_typ": 73, "static_result_typ": 73, "broadcats": [73, 149], "_containerwithdevic": [74, 99], "_static_dev": 74, "static_dev": 74, "_static_to_devic": 74, "static_to_devic": 74, "contaion": [74, 193], "_containerwithelementwis": [75, 99], "_static_ab": 75, "static_ab": 75, "_static_aco": 75, "static_aco": 75, "_static_acosh": 75, "static_acosh": 75, "_static_add": 75, "static_add": [75, 103], "_static_asin": 75, "static_asin": 75, "524": [75, 221, 628], "412": [75, 80, 221, 628, 637, 714], "_static_asinh": 75, "static_asinh": 75, "_static_atan": 75, "static_atan": 75, "_static_atan2": 75, "static_atan2": 75, "915": [75, 224, 628], "983": [75, 224, 628], "978": [75, 224, 628], "696": [75, 85, 224, 628, 736], "993": [75, 224, 628], "_static_atanh": 75, "static_atanh": 75, "_static_bitwise_and": 75, "static_bitwise_and": 75, "_static_bitwise_invert": 75, "static_bitwise_invert": 75, "_static_bitwise_left_shift": 75, "_static_bitwise_or": 75, "static_bitwise_or": 75, "_static_bitwise_right_shift": 75, "static_bitwise_right_shift": 75, "_static_bitwise_xor": 75, "static_bitwise_xor": 75, "_static_ceil": 75, "static_ceil": 75, "_static_co": 75, "static_co": 75, "_static_cosh": 75, "static_cosh": 75, "_static_deg2rad": 75, "static_deg2rad": 75, "0262": [75, 235, 275, 628], "873": [75, 235, 275, 628], "_static_divid": 75, "static_divid": 75, "_static_equ": 75, "static_equ": 75, "_static_erf": 75, "static_erf": 75, "27632612": [75, 238], "934008": [75, 238, 628], "99999928": [75, 238], "91903949": [75, 238], "_static_exp": 75, "static_exp": 75, "59814835": [75, 239, 628], "4131622": [75, 239], "_static_expm1": 75, "thefunct": [75, 238], "areal": 75, "static_expm1": 75, "71828175": [75, 239, 628], "38905621": [75, 239, 628], "59815216": 75, "_static_floor": 75, "static_floor": 75, "_static_floor_divid": 75, "static_floor_divid": 75, "_static_great": 75, "static_great": 75, "_static_greater_equ": 75, "static_greater_equ": 75, "_static_isfinit": 75, "999999999999": [75, 250, 628], "static_isfinit": 75, "_static_isinf": 75, "static_isinf": 75, "_static_isnan": 75, "static_isnan": 75, "_static_isr": 75, "0j": [75, 76, 138, 139, 217, 218, 219, 222, 225, 234, 239, 241, 253, 257, 259, 276, 280, 282, 283, 287, 334, 368, 625, 628, 633, 681], "23j": [75, 76], "9j": [75, 76], "static_isr": 75, "_static_lcm": 75, "1080": [75, 254], "1550": [75, 254], "130": [75, 254], "_static_less": 75, "static_less": 75, "_static_less_equ": 75, "static_less_equ": 75, "_static_log": 75, "static_log": 75, "_static_log10": 75, "static_log10": 75, "898": [75, 258, 628], "0414": [75, 258, 628], "_static_log1p": 75, "static_log1p": 75, "_static_log2": 75, "static_log2": 75, "_static_logaddexp": 75, "static_logaddexp": 75, "_static_logical_and": 75, "static_logical_and": 75, "_static_logical_not": 75, "static_logical_not": 75, "_static_logical_or": 75, "static_logical_or": 75, "_static_logical_xor": 75, "static_logical_xor": 75, "_static_maximum": 75, "static_maximum": 75, "_static_minimum": 75, "static_minimum": 75, "_static_multipli": 75, "static_multipli": 75, "_static_neg": 75, "static_neg": 75, "_static_not_equ": 75, "static_not_equ": 75, "_static_posit": 75, "static_posit": 75, "_static_pow": 75, "static_pow": 75, "_static_rad2deg": 75, "static_rad2deg": 75, "5160": 75, "10300": [75, 275, 628], "15500": 75, "20600": 75, "2860": [75, 275], "_static_reciproc": 75, "recirpoc": [75, 277], "static_reciproc": 75, "_static_remaind": 75, "static_remaind": 75, "_static_round": 75, "thevfunct": 75, "527": [75, 279, 628], "static_round": 75, "301": [75, 279, 628], "_static_sign": 75, "static_sign": 75, "_static_sin": 75, "static_sin": 75, "757": [75, 281, 628], "959": [75, 241, 281, 628], "279": [75, 281, 371, 393, 403, 536, 628, 630], "_static_sinh": 75, "static_sinh": 75, "835": [75, 282], "347": [75, 282], "721": [75, 282], "_static_sqrt": 75, "static_sqrt": 75, "_static_squar": 75, "static_squar": 75, "_static_subtract": 75, "static_subtract": 75, "_static_tan": 75, "static_tan": 75, "_static_tanh": 75, "static_tanh": 75, "995": [75, 287, 628], "9999": 75, "_static_trapz": 75, "static_trapz": 75, "_static_trunc": 75, "static_trunc": 75, "_static_trunc_divid": 75, "75j": [75, 220, 249], "01317055": [75, 220], "05634501": [75, 220], "115": [75, 220, 275, 628], "3461759": [75, 220], "524111": [75, 220], "644": [75, 221, 628, 849], "305": [75, 80, 221, 628], "351": [75, 235, 275], "00613": [75, 235], "0154": [75, 235], "403": [75, 239], "428772": [75, 239], "649": [75, 241], "220": [75, 241], "865": [75, 241], "metho": [75, 248, 260], "imaginari": [75, 98, 108, 111, 114, 138, 139, 217, 218, 219, 234, 236, 237, 239, 241, 249, 269, 271, 272, 279, 282, 283, 287, 334, 368, 371, 372, 415, 426, 622, 625, 628, 640, 743, 827], "4j": [75, 249, 371, 415, 589, 628, 630], "7j": [75, 76, 253, 276, 334, 368, 628], "956": [75, 259], "08746284": [75, 262], "32192809": [75, 262], "nuner": [75, 269], "413": [75, 275], "335": [75, 76, 276, 334], "345j": [75, 76, 276, 334], "static_angl": 75, "static_exp2": 75, "static_fmin": 75, "static_gcd": 75, "static_imag": 75, "static_logaddexp2": 75, "static_nan_to_num": 75, "static_r": 75, "_containerwithactivationexperiment": [76, 99], "_static_celu": 76, "formlat": 76, "static_celu": 76, "_static_elu": 76, "static_elu": 76, "_static_hardshrink": 76, "hard": [76, 293, 816, 847, 866], "shrinkag": [76, 293, 303, 374, 487], "_static_hardsilu": 76, "20833333": [76, 294, 363], "29166666": [76, 294, 363], "66666669": [76, 99, 294, 363, 377, 503, 613, 631], "66666663": [76, 133, 294, 363, 625], "_static_hardtanh": 76, "3899": 76, "_static_scaled_tanh": 76, "931": 76, "71587813": 76, "88367474": 76, "00376701": [76, 300], "2285642": 76, "99999881": 76, "49999905": 76, "_static_silu": 76, "static_silu": 76, "27777028": [76, 302], "23947507": [76, 302], "0900332": [76, 302], "_static_softshrink": 76, "_static_tanhshrink": 76, "36634541": [76, 305], "02005103": [76, 305], "00262468": [76, 305], "_static_threshold": 76, "389999": [76, 295], "19722462": [76, 296], "84729779": [76, 296], "31326163": [76, 297], "46328258": [76, 297], "51301527": [76, 297], "79813886": [76, 297], "simplywrap": [76, 300], "54939651": [76, 300], "09999998": [76, 300, 611, 631], "09999999": [76, 300], "08336546": [76, 300], "0379949": [76, 300], "22856998": [76, 301], "42028043": [76, 301], "31868932": [76, 301], "static_logit": 76, "static_logsigmoid": 76, "34115386": 76, "64439666": 76, "24115384": 76, "55435526": 76, "07888974": 76, "00741899": 76, "26328245": 76, "00012302": 76, "static_prelu": 76, "static_relu6": 76, "static_selu": 76, "static_thresholded_relu": 76, "_containerwithconversionexperiment": [76, 99], "_containerwithcreationexperiment": [76, 99], "_static_trilu": 76, "blackman": [76, 308, 365], "00770143e": [76, 308], "49229857e": [76, 308], "hamming_window": [76, 365], "ham": [76, 310, 365], "4180": [76, 310], "8180": [76, 310], "hann_window": [76, 365], "hann": [76, 311, 365], "7500": [76, 311], "3455": [76, 311], "9045": [76, 311], "kaiser_bessel_derived_window": [76, 365], "suitabl": [76, 313, 314, 365, 642, 751, 774, 815, 816, 823, 841, 866], "spectral": [76, 313, 314, 365], "analysi": [76, 313, 314, 365, 866, 867], "kaiser": [76, 308, 313, 314, 365], "70710677": [76, 313, 501, 503], "18493208": [76, 313, 365], "9827513": [76, 313, 365], "kaiser_window": [76, 365], "static_kaiser_window": [76, 314], "2049": [76, 314], "8712": [76, 314], "0367": [76, 314, 365], "7753": [76, 314], "static_blackman_window": 76, "static_eye_lik": 76, "static_hamming_window": 76, "static_hann_window": 76, "static_hann": 76, "static_kaiser_bessel_derived_window": 76, "static_mel_weight_matrix": 76, "static_polyv": 76, "static_tril_indic": 76, "static_unsorted_segment_mean": 76, "static_unsorted_segment_min": 76, "static_unsorted_segment_sum": 76, "static_vorbis_window": 76, "vorbis_window": [76, 365], "vorbi": [76, 329, 365], "38268343": [76, 329, 633, 669], "92387953": [76, 329], "14943586": [76, 329, 365], "51644717": [76, 329], "85631905": [76, 329], "98877142": [76, 329], "tril_indic": [76, 365], "_containerwithdata_typeexperiment": [76, 99], "_containerwithdeviceexperiment": [76, 99], "_containerwithelementwiseexperiment": [76, 99], "0003": [76, 330, 633, 672, 772, 775], "0006": [76, 330, 358], "2345j": [76, 334], "5772": [76, 338], "9635": [76, 338], "4228": [76, 338], "9228": [76, 338], "57299206e": [76, 339, 340], "67773480e": [76, 339, 340], "20904985e": [76, 339, 340], "84270084": [76, 339, 340, 368], "99532223": [76, 339, 340], "99997795": [76, 339, 340], "mantissa": [76, 344, 368, 825], "frist": [76, 345, 368], "coord": [76, 345], "6055": [76, 346], "160": [76, 348], "10240": [76, 348], "60000038": [76, 349, 368, 633, 689], "0707": [76, 355, 368], "0579": [76, 355, 368], "static_allclos": 76, "static_amax": 76, "static_amin": 76, "static_binar": 76, "static_conj": 76, "static_copysign": 76, "static_count_nonzero": 76, "static_diff": 76, "static_digamma": 76, "57721537": 76, "96351004": 76, "static_erfc": 76, "15729921": 76, "00467773": [76, 339, 368], "static_erfinv": 76, "static_fix": 76, "static_float_pow": 76, "static_fmax": 76, "static_fmod": 76, "static_frexp": 76, "static_gradi": 76, "static_hypot": 76, "static_isclos": 76, "static_ldexp": 76, "static_lerp": 76, "90000057": [76, 349, 368], "70000076": [76, 349, 368], "55000019": [76, 349, 368], "05000019": [76, 349, 368], "static_modf": 76, "static_nansum": 76, "static_nextaft": 76, "static_signbit": 76, "static_sinc": 76, "636": 76, "090": 76, "070": 76, "057": 76, "static_sparsify_tensor": 76, "static_xlogi": 76, "static_zeta": 76, "0244": [76, 358], "_containerwithgeneralexperiment": [76, 99], "_static_reduc": 76, "static_reduc": 76, "_containerwithgradientsexperiment": [76, 99], "_containerwithimageexperiment": [76, 99], "_containerwithlayersexperiment": [76, 99], "_static_fft": 76, "static_fft": 76, "_static_sliding_window": 76, "673": [76, 393], "0507": [76, 393], "79711437": [76, 371, 393, 403], "94867325": [76, 371, 393, 403], "74089146": [76, 371, 393, 403], "25980937": [76, 371, 393, 403], "64958102": [76, 371, 393, 403], "2442648": [76, 371, 393, 403], "247306": [76, 405], "908323j": [76, 405], "494955": [76, 405], "90395j": [76, 405], "static_adaptive_avg_pool1d": 76, "static_adaptive_avg_pool2d": 76, "static_adaptive_max_pool2d": 76, "static_adaptive_max_pool3d": 76, "static_avg_pool1d": 76, "static_avg_pool2d": 76, "static_avg_pool3d": 76, "static_dct": 76, "253": [76, 282, 628], "515": [76, 639, 736], "467": 76, "static_dft": 76, "static_embed": 76, "static_idct": 76, "93732834": [76, 371, 393], "75048852": [76, 371, 393], "29723358": [76, 371, 403], "6950531": 76, "93914509": 76, "88008738": 76, "18951225": 76, "06697273": [76, 371, 403], "57439804": 76, "68861485": [76, 371, 403], "41308832": [76, 371, 403], "0700836": 76, "2449036": 76, "6711426": 76, "514": 76, "501709": 76, "4924011": 76, "static_ifft": 76, "static_ifftn": 76, "static_interpol": 76, "static_max_pool1d": 76, "static_max_pool2d": 76, "max_pool2dd": 76, "static_max_pool3d": 76, "static_max_unpool1d": 76, "static_rfft": 76, "static_rfftn": 76, "static_rnn": 76, "step_funct": [76, 371, 417], "initial_st": [76, 371, 417, 632, 657], "go_backward": [76, 371, 417], "unrol": [76, 371, 417, 632, 658, 845, 848], "input_length": [76, 371, 417], "zero_output_for_mask": [76, 371, 417], "return_all_output": [76, 371, 417], "rnn": [76, 371, 866], "tempor": [76, 371, 417], "state_s": [76, 371, 417], "while_loop": [76, 371, 417, 624], "otput": [76, 371, 417], "funciton": [76, 371, 417], "static_stft": 76, "_containerwithlinearalgebraexperiment": [76, 99], "933034": [76, 372, 422], "eigenvealu": [76, 425, 668], "xx": [76, 425, 427, 668], "37228107": [76, 425, 668], "3722816": [76, 425, 668], "8245648": [76, 425, 668], "41597357": [76, 425, 668], "56576747": [76, 425, 668], "9093767": [76, 425, 668], "56155": [76, 426], "82842": [76, 426], "450": [76, 432], "static_adjoint": 76, "static_batched_out": 76, "static_cond": 76, "static_diagflat": 76, "static_dot": 76, "static_eig": 76, "static_eigh_tridiagon": 76, "static_eigv": 76, "static_higher_order_mo": 76, "static_initialize_tuck": 76, "static_kron": 76, "kroneck": [76, 372, 431, 432], "static_make_svd_non_neg": 76, "static_matrix_exp": 76, "static_mode_dot": 76, "static_multi_dot": 76, "static_multi_mode_dot": 76, "static_partial_tuck": 76, "static_svd_flip": 76, "static_tensor_train": 76, "static_truncated_svd": 76, "static_tt_matrix_to_tensor": 76, "tt_matrix": [76, 372, 446], "output_tensor": [76, 96, 372, 446], "static_tuck": 76, "_containerwithlossesexperiment": [76, 99], "_static_hinge_embedding_loss": 76, "_static_huber_loss": 76, "static_huber_loss": 76, "0575": [76, 449], "_static_kl_div": 76, "_static_l1_loss": 76, "static_l1_loss": 76, "_static_log_poisson_loss": 76, "static_log_poisson_loss": 76, "_static_poisson_nll_loss": 76, "06446016": 76, "55611551": 76, "30244565": [76, 453], "_static_smooth_l1_loss": 76, "static_smooth_l1_loss": 76, "_static_soft_margin_loss": 76, "3890561": [76, 452], "413159": [76, 452], "06429195": [76, 453], "43333333": [76, 454], "10666666": [76, 454], "_containerwithmanipulationexperiment": [76, 99], "_static_fill_diagon": 76, "_static_put_along_axi": 76, "_static_tak": 76, "69999981": [76, 303, 363, 374, 464, 488], "_static_trim_zero": 76, "_static_unflatten": 76, "_static_unique_consecut": 76, "ary1": [76, 374, 458, 459, 460], "ary2": [76, 374, 458, 459, 460], "broadcast_shap": [76, 102, 374, 772, 774], "static_concat_from_sequ": [76, 465], "30192195": [76, 477], "static_as_strid": 76, "static_atleast_1d": 76, "static_atleast_2d": 76, "static_atleast_3d": 76, "static_broadcast_shap": 76, "static_column_stack": 76, "static_dsplit": 76, "static_dstack": 76, "static_expand": 76, "static_flatten": 76, "static_fliplr": 76, "static_flipud": 76, "static_fold": 76, "static_heavisid": 76, "static_hsplit": 76, "static_hstack": 76, "static_i0": 76, "static_matric": 76, "static_moveaxi": 76, "static_pad": 76, "static_partial_fold": 76, "static_partial_tensor_to_vec": 76, "static_partial_unfold": 76, "static_partial_vec_to_tensor": 76, "static_rot90": 76, "static_soft_threshold": 76, "static_take_along_axi": 76, "static_top_k": 76, "static_unfold": 76, "static_vsplit": 76, "static_vstack": 76, "_containerwithnormsexperiment": [76, 99], "16903085": [76, 501, 503], "50709254": [76, 501, 503], "84515423": [76, 501, 503], "44183609": [76, 501, 503], "56807494": [76, 501, 503], "69431382": [76, 501, 503], "static_batch_norm": 76, "static_group_norm": 76, "static_instance_norm": 76, "static_l1_norm": 76, "static_l2_norm": 76, "static_lp_norm": 76, "12500000": 76, "37500000": 76, "62500000": 76, "27500000": 76, "35000000": 76, "42500000": 76, "0000000": 76, "5000000": 76, "2500000": 76, "_containerwithrandomexperiment": [76, 99], "43643127": [76, 506], "32325703": [76, 506], "24031169": [76, 506], "34251311": [76, 506], "31692529": [76, 506], "3405616": [76, 506], "5319725": [76, 506], "22458365": [76, 506], "24344385": [76, 506], "26588406": [76, 506], "61075421": [76, 506], "12336174": [76, 506], "51142915": [76, 506], "25041268": [76, 506], "23815817": [76, 506], "64042903": [76, 506], "25763214": [76, 506], "10193883": [76, 506], "31624692": [76, 506], "46567987": [76, 506], "21807321": [76, 506], "37677699": [76, 506], "39914594": [76, 506], "22407707": [76, 506], "static_bernoulli": 76, "static_beta": 76, "static_dirichlet": 76, "static_gamma": 76, "static_poisson": 76, "_containerwithsearchingexperiment": [76, 99], "static_unravel_index": 76, "_containerwithsetexperiment": [76, 99], "_containerwithsortingexperiment": [76, 99], "invert_permut": [76, 381], "static_invert_permut": 76, "static_lexsort": [76, 88], "_containerwithstatisticalexperiment": [76, 99], "_static_cummax": 76, "static_cummax": 76, "_static_cummin": 76, "static_cummin": 76, "_static_nanmin": 76, "static_nanmin": 76, "func_nam": [76, 521, 814, 827, 828, 833, 837], "static_bincount": 76, "static_corrcoef": 76, "static_cov": [76, 383, 518], "static_histogram": 76, "static_igamma": 76, "static_lgamma": 76, "static_median": 76, "static_nanmean": 76, "static_nanmedian": 76, "static_nanprod": 76, "static_quantil": 76, "_containerwithutilityexperiment": [76, 99], "static_optional_get_el": 76, "_containerwithgener": [77, 99], "_static_all_equ": 77, "static_all_equ": 77, "_static_array_equ": 77, "a0": [77, 374, 464], "static_array_equ": 77, "_static_assert_supports_inplac": 77, "_static_clip_matrix_norm": 77, "static_clip_matrix_norm": 77, "849": [77, 536, 537, 630], "_static_clip_vector_norm": 77, "static_clip_vector_norm": 77, "_static_einops_rearrang": 77, "static_einops_rearrang": 77, "_static_einops_reduc": 77, "static_einops_reduc": 77, "29333329": [77, 542, 630], "53000069": [77, 542, 630], "39666676": [77, 542, 630], "20666695": [77, 542, 630], "_static_einops_repeat": 77, "static_einops_repeat": 77, "_static_exist": 77, "_static_fourier_encod": 77, "static_fourier_encod": 77, "classivi": [77, 641, 746], "89858720e": 77, "79717439e": 77, "_static_gath": 77, "static_gath": 77, "_static_gather_nd": 77, "static_gather_nd": 77, "_static_get_num_dim": 77, "static_get_num_dim": 77, "_static_has_nan": 77, "leafwis": 77, "static_has_nan": 77, "_static_inplace_decr": 77, "_static_inplace_incr": 77, "_static_inplace_upd": 77, "_static_is_arrai": 77, "static_is_arrai": 77, "_static_is_ivy_arrai": 77, "static_is_ivy_arrai": 77, "_static_is_native_arrai": 77, "static_is_native_arrai": 77, "_static_scatter_flat": 77, "_static_scatter_nd": 77, "static_scatter_nd": 77, "_static_s": 77, "static_s": 77, "_static_stable_divid": 77, "22222222": 77, "11111111": 77, "857": [77, 588, 630], "444": 77, "_static_stable_pow": 77, "00012": [77, 589, 630], "00016": [77, 78, 589, 617, 630, 631], "00001": [77, 589, 630, 772], "00032": [77, 589], "00256": [77, 589], "1679638": [77, 589], "395": [77, 589], "16777383": [77, 589], "_static_supports_inplace_upd": 77, "_static_to_list": 77, "static_to_list": 77, "_static_to_numpi": 77, "static_to_numpi": 77, "_static_to_scalar": 77, "static_to_scalar": 77, "_static_value_is_nan": 77, "452": 77, "static_value_is_nan": 77, "833": [77, 537], "items": [77, 98, 630], "static_isin": 77, "static_items": 77, "static_strid": 77, "425": [77, 609], "_containerwithgradi": [78, 99], "_static_stop_gradi": 78, "static_stop_gradi": 78, "976": [78, 287, 611, 628, 631], "49e": [78, 611, 631], "74e": [78, 611, 631], "95e": [78, 611, 631], "024": [78, 611, 631], "096": [78, 611, 631], "216": [78, 81, 611, 631, 688], "626": [78, 611, 631], "en": [78, 611, 612, 631, 824], "wikipedia": [78, 611, 612, 631], "wiki": [78, 611, 612, 631], "stochastic_gradient_desc": [78, 611, 612, 631], "01099": [78, 612], "01003": [78, 612, 631], "01015": [78, 612, 631], "99936122": [78, 612, 631], "99936116": [78, 612, 631], "99936128": [78, 612, 631], "99936104": [78, 612, 631], "w_new": [78, 615, 631], "708": [78, 617, 631], "445": [78, 617, 631], "6e": [78, 617, 631], "00036": [78, 617, 631], "00049": [78, 617, 631], "layerwis": [78, 618, 631], "01132035": [78, 618, 631], "22264051": [78, 618, 631], "2056601": [78, 618, 631], "1324538": [78, 618, 631], "56490755": [78, 618, 631], "96622658": [78, 618, 631], "90848625": [78, 618, 631], "93616199": [78, 618, 631], "77232409": [78, 618, 631], "_containerwithimag": [79, 99], "_containerwithlay": [80, 99], "_static_conv1d": 80, "static_conv1d": 80, "_static_conv1d_transpos": 80, "static_conv1d_transpos": 80, "112": [80, 633, 643, 647, 678, 755], "_static_conv2d": 80, "ey": [80, 625, 632, 648, 654, 843, 850], "static_conv2d": 80, "_static_conv2d_transpos": 80, "static_conv2d_transpos": 80, "_static_conv3d": 80, "fdfh": [80, 650], "static_conv3d": 80, "_static_conv3d_transpos": 80, "static_conv3d_transpos": 80, "_static_depthwise_conv2d": 80, "inp": [80, 632, 654], "static_depthwise_conv2d": 80, "_static_dropout": 80, "static_dropout": 80, "_static_dropout1d": 80, "static_dropout1d": 80, "_static_dropout2d": 80, "_static_dropout3d": 80, "_static_linear": 80, "278": [80, 632, 655, 656], "static_linear": 80, "195": 80, "_static_lstm_upd": 80, "_static_multi_head_attent": 80, "_static_reduce_window": 80, "_static_scaled_dot_product_attent": 80, "static_scaled_dot_product_attent": 80, "39999962": [80, 632, 655, 656], "19999695": [80, 656], "11600018": [80, 656], "88399887": [80, 656], "196": [80, 632, 656], "306": [80, 632, 656], "19999981": [80, 293, 306, 363, 371, 415, 632, 655, 662], "59249449": [80, 632, 662], "68226194": [80, 632, 662], "19603825": [80, 632, 662], "9960382": [80, 632, 662], "26894283": [80, 632, 662], "40236187": [80, 632, 662], "39999437": [80, 632, 662], "59999037": [80, 632, 662], "35046196": [80, 632, 662], "54282808": [80, 632, 662], "39989519": [80, 632, 662], "5998764": [80, 632, 662], "_containerwithlinearalgebra": [81, 99], "_static_choleski": 81, "static_choleski": 81, "577": [81, 633, 663], "707": [81, 633, 663], "static_rol": [81, 83], "_static_cross": 81, "static_cross": 81, "_static_det": 81, "_static_diag": 81, "_static_diagon": 81, "static_diagon": 81, "_static_eigh": 81, "_static_eigvalsh": 81, "static_eigvalsh": 81, "51572949": [81, 633, 670], "17091519": [81, 633, 670], "3448143": [81, 633, 670], "35898387e": [81, 633, 670], "46410179e": [81, 633, 670], "_static_inn": 81, "static_inn": 81, "_static_inv": 81, "static_inv": 81, "_static_matmul": 81, "matul": 81, "static_matmul": 81, "_static_matrix_norm": 81, "deimens": 81, "static_matrix_norm": 81, "_static_matrix_pow": 81, "_static_matrix_rank": 81, "static_matrix_rank": 81, "_static_matrix_transpos": 81, "static_matrix_transpos": 81, "_static_out": 81, "n1": [81, 135, 625], "n2": [81, 135, 625], "static_out": [81, 678], "_static_pinv": 81, "static_pinv": 81, "0426": 81, "0964": 81, "0605": 81, "1368": 81, "_static_qr": 81, "static_qr": 81, "31622777": [81, 633, 680], "9486833": [81, 633, 680], "4472136": [81, 633, 680], "89442719": [81, 633, 680], "16227766": [81, 633, 680], "42718872": [81, 633, 680], "63245553": [81, 633, 680], "47213595": [81, 633, 680], "81377674": [81, 633, 680], "_static_slogdet": 81, "static_slogdet": 81, "6931472": 81, "0986123": 81, "_static_solv": 81, "_static_svd": 81, "static_svd": 81, "au": 81, "aS": 81, "avh": 81, "bvh": 81, "_static_svdv": 81, "_static_tensordot": 81, "_static_tensorsolv": 81, "_static_trac": 81, "static_trac": 81, "_static_vand": 81, "static_vand": 81, "343": [81, 279, 628, 688], "729": [81, 688, 849], "_static_vecdot": 81, "_static_vector_norm": 81, "static_vector_norm": 81, "77359247": [81, 690], "_static_vector_to_skew_symmetric_matrix": 81, "09861231": [81, 633, 681], "static_general_inner_product": 81, "3475602": [81, 683], "93765765": [81, 683], "58776021": [81, 683], "10416126": [81, 683], "80644298": [81, 683], "87024701": [81, 683], "48127627": [81, 683], "79101127": [81, 683], "98288572": [81, 683], "68917423": [81, 683], "_containerwithloss": [82, 99], "_static_binary_cross_entropi": 82, "static_binary_cross_entropi": 82, "511": 82, "223": 82, "357": 82, "_static_cross_entropi": 82, "static_cross_entropi": 82, "20397282": 82, "83258148": 82, "60943794": [82, 633, 681], "_static_sparse_cross_entropi": 82, "static_sparse_cross_entropi": 82, "36354783": [82, 634, 692], "14733934": [82, 634, 692], "17027519": [82, 693], "53647931": [82, 693], "53647929": [82, 694], "1702752": [82, 694], "_containerwithmanipul": [83, 99], "_static_clip": 83, "static_clip": 83, "_static_concat": 83, "_static_constant_pad": 83, "static_constant_pad": 83, "_static_expand_dim": 83, "static_expand_dim": 83, "container_axi": [83, 635, 698], "_static_flip": 83, "static_flip": 83, "_static_permute_dim": 83, "static_permute_dim": 83, "_static_repeat": 83, "static_repeat": 83, "_static_reshap": 83, "static_reshap": 83, "_static_rol": 83, "positivclip": 83, "_static_split": 83, "static_split": 83, "_static_squeez": 83, "static_squeez": 83, "_static_stack": 83, "leavv": 83, "static_stack": 83, "_static_swapax": 83, "_static_til": 83, "static_til": 83, "_static_unstack": 83, "static_unstack": 83, "_static_zero_pad": 83, "repreat": [83, 701], "_containerwithnorm": [84, 99], "34198591": [84, 638, 733], "04274819": [84, 638, 733], "29923761": [84, 638, 733], "24053511": [84, 638, 733], "62221265": [84, 733], "20277636": [84, 733], "41943574": [84, 733], "83710337": [84, 733], "_containerwithrandom": [85, 99], "_static_multinomi": 85, "_static_randint": 85, "static_randint": 85, "_static_random_norm": 85, "static_random_norm": 85, "651": 85, "_static_random_uniform": 85, "static_random_uniform": 85, "481": 85, "0999": 85, "_static_shuffl": 85, "static_shuffl": 85, "431": [85, 736], "274": [85, 736], "_containerwithsearch": [86, 99], "_static_argmax": 86, "static_argmax": 86, "_static_argmin": 86, "static_argmin": 86, "_static_argwher": 86, "static_argwher": 86, "_static_nonzero": 86, "_static_wher": 86, "static_wher": 86, "_containerwithset": [87, 99], "_static_unique_al": 87, "static_unique_al": 87, "_static_unique_count": 87, "static_unique_count": 87, "_static_unique_invers": 87, "static_unique_invers": 87, "_static_unique_valu": 87, "_containerwithsort": [88, 99], "_static_argsort": 88, "static_argsort": 88, "_static_searchsort": 88, "_static_sort": 88, "static_sort": 88, "static_msort": 88, "_containerwithstatist": [89, 99], "_static_cumprod": 89, "static_cumprod": 89, "_static_cumsum": 89, "static_cumsum": 89, "_static_min": 89, "_static_prod": 89, "static_prod": 89, "11000001": [89, 759], "23100001": [89, 759], "30800003": [89, 643, 759], "_static_sum": 89, "_static_var": 89, "static_var": 89, "12666667": [89, 643, 762], "11555555": [89, 643, 762], "rtype": [89, 755, 801], "respectv": [89, 760], "81649649": [89, 760], "94280904": [89, 760], "509902": [89, 643, 760], "2472192": [89, 760], "44948983": [89, 760], "41421354": [89, 760], "6666667": [89, 762], "_containerwithutil": [90, 99], "_static_al": 90, "static_al": 90, "_static_ani": 90, "static_ani": 90, "add_ivy_container_instance_method": 91, "containerexampl": 91, "factorized_tensor": [92, 93, 94, 95, 96, 97], "factorizedtensor": [92, 93, 94, 95, 96, 97], "matrix_or_tensor": 92, "to_tensor": [92, 93, 94, 95, 96, 97], "to_unfold": [92, 93, 94, 95, 96, 97], "to_vec": [92, 93, 94, 95, 96, 97], "cp_tensor": [93, 94], "cptensor": [93, 94, 319, 365], "cp_copi": 93, "cp_flip_sign": 93, "s_i": [93, 94], "normalisation_weight": [93, 94], "normalised_factor": [93, 94], "cp_lstsq_grad": 93, "return_loss": 93, "nabla": 93, "mathcal": 93, "mathbf": 93, "factor_matric": 93, "cp_gradient": 93, "quantiti": 93, "cp_mode_dot": 93, "keep_dim": [93, 97], "cp_multi_mode_dot": 93, "cp_n_param": 93, "tensor_shap": [93, 95, 96, 97], "n_param": [93, 94, 95, 96, 97], "cp_norm": 93, "cp_to_tensor": 93, "khatria": 93, "rao": [93, 372, 431], "khatri": [93, 372, 431], "cp_normal": 93, "normalis": [93, 94], "u_1": [93, 94], "u_n": [93, 94], "v_1": [93, 94], "v_n": [93, 94], "v_k": [93, 94], "u_k": [93, 94], "absorb": [93, 94], "refold": [93, 374, 473, 484], "cp_to_unfold": 93, "ie": 93, "s_u_i": 93, "exploit": [93, 869], "khatri_rao": [93, 372], "cp_to_vec": 93, "ravel": [93, 843], "unfolding_dot_khatri_rao": 93, "mttkrp": 93, "validate_cp_rank": 93, "percent": [93, 96], "validate_cp_tensor": 93, "parafac2_tensor": 94, "parafac2tensor": [94, 320, 365], "apply_parafac2_project": 94, "evolv": [94, 855, 866], "b_i": 94, "ijk": [94, 802], "sum_r": 94, "a_": 94, "ir": [94, 864, 867, 872], "jr": 94, "kr": 94, "coupl": [94, 815, 820, 847, 849, 866], "factoris": 94, "i1": [94, 383, 521], "classmethod": [94, 101, 102, 777], "from_cptensor": 94, "parafac2_tensor_ok": 94, "parafac2_normalis": 94, "normalised_project": 94, "parafac2_to_slic": 94, "slice_idx": 94, "frontal": 94, "a_i": 94, "j_i": 94, "b_": 94, "reformul": 94, "p_i": 94, "orthogon": [94, 319, 323, 365, 372, 425, 441, 447, 633, 668, 669], "sum_": 94, "ijr": 94, "constraint": [94, 802, 824, 825, 835], "projection_matric": 94, "parafac2_to_tensor": 94, "construct": [94, 635, 708, 788, 791, 792, 793, 839, 845, 849, 850, 864, 866, 873], "uneven": 94, "parafac2_to_unfold": 94, "parafac2_to_vec": 94, "validate_parafac2_tensor": 94, "cp": [94, 319, 365, 816], "tr_tensor": 95, "trtensor": [95, 321, 365], "tr_n_param": 95, "tr_to_tensor": 95, "tr_to_unfold": 95, "tr_to_vec": 95, "validate_tr_rank": 95, "validate_tr_tensor": 95, "tt_tensor": 96, "_tt_n_param": 96, "mp": [96, 322, 365], "index_upd": 96, "pad_tt_rank": 96, "factor_list": 96, "n_pad": 96, "pad_boundari": 96, "ring": 96, "bond": 96, "padded_factor_list": 96, "tt_to_tensor": 96, "assembl": [96, 372, 446], "tt_to_unfold": 96, "reassembl": 96, "tt_to_vec": 96, "validate_tt_rank": 96, "constant_rank": 96, "allow_overparametr": 96, "proport": [96, 787], "realiz": [96, 866], "validate_tt_tensor": 96, "tucker_tensor": 97, "tucker_copi": 97, "tucker_mode_dot": [97, 873], "tucker_n_param": 97, "tucker_norm": 97, "tucker_to_tensor": 97, "skip_factor": 97, "transpose_factor": 97, "tucker_to_unfold": 97, "tucker_to_vec": 97, "validate_tucker_rank": 97, "fixed_mod": 97, "validate_tucker_tensor": 97, "_bisection_root_find": 97, "fun": [97, 362, 370, 610, 630, 637, 725, 824], "max_it": 97, "__abs__": [98, 99], "__add__": [98, 99, 820, 823, 827, 828, 832, 837, 838, 847], "__eq__": [98, 99], "__ge__": [98, 99], "__gt__": [98, 99, 843], "__le__": [98, 99], "__lt__": [98, 99], "__ne__": [98, 99], "__pow__": [98, 99, 847], "69678056": 98, "59876156": 98, "82660675": 98, "__radd__": [98, 99, 827, 828, 837], "__rrshift__": [98, 99], "__rshift__": [98, 99], "__rsub__": [98, 99], "__sub__": [98, 99, 820, 823, 827, 832, 847], "__truediv__": [98, 99, 820, 823, 827], "__xor__": [98, 99], "referenc": [98, 829, 836], "resid": [98, 102, 635, 698, 837, 845, 849], "mt": [98, 847], "hopefulli": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857], "overview": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 822, 824, 838, 840, 844], "reach": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857, 865, 866], "eq": 99, "ge": 99, "le": 99, "ne": 99, "75979435": 99, "52153397": 99, "13532257": 99, "rshift": 99, "truediv": 99, "nested_arrai": [101, 102, 103, 822], "nestedarrai": 101, "nested_rank": [101, 102, 103], "inner_shap": [101, 102, 103], "nestedarraybas": [101, 102, 103], "from_row_length": 101, "row_length": 101, "from_row_split": 101, "row_split": 101, "ragged_map": 102, "ragged_multi_map": 102, "ragged_arrai": 102, "ragged_multi_map_in_funct": 102, "replace_ivy_arrai": 102, "unbind": 102, "nestedarrayelementwis": 103, "strictli": [108, 111, 114, 243, 622, 628, 832, 836], "24000001": [108, 622], "703": [109, 622], "683": [109, 622], "408": [109, 622], "313": [109, 622], "437": [109, 622], "40337825": [110, 622], "56114835": [110, 622], "20788449": [110, 622], "0768": [113, 622], "231": [113, 622], "\u03b2": [114, 622], "body_fn": [118, 119, 121, 624], "bodi": [118, 121, 624, 819, 840], "lst": [118, 624], "orelse_fn": [119, 624], "body1": [120, 624], "body2": [120, 624], "test_fn": [121, 624, 770, 808, 860, 861], "repeatedli": [121, 624, 637, 723, 824, 840], "ml_framework": [122, 625], "distanc": [122, 625], "adjac": [122, 625], "nestedsequ": [123, 124, 625], "typevar": [123, 124, 625], "supportsbufferprotocol": [123, 124, 625], "static_copy_arrai": [125, 625], "intdtyp": [128, 139, 145, 157, 168, 173, 180, 186, 625, 626], "pycapsul": [129, 140, 625], "interchang": [129, 140, 625, 635, 707], "plu": [130, 625], "x00b": [130, 625], "x00d": [130, 625], "x00e": [130, 625], "41588834": [134, 625], "7827941": [134, 625], "6227766": [134, 625], "23413252": [134, 625], "n3": [135, 625], "xv": [135, 625], "yv": [135, 625], "x_nativ": [136, 625, 836], "y_nativ": [136, 625], "z_nativ": [136, 625], "d_type": [138, 625], "col": [143, 324, 365, 625], "primari": [143, 162, 163, 195, 196, 324, 365, 381, 511, 546, 547, 625, 626, 627, 630, 773, 775, 814, 818, 821, 825, 834, 836, 837, 839, 840, 843, 851, 853], "upward": [143, 324, 365, 625], "downward": [143, 324, 365, 625], "2xn": [143, 324, 365, 625], "subarrai": [143, 324, 365, 625], "incompat": [150, 626], "closest": [153, 232, 242, 243, 279, 289, 626, 628, 840, 843], "xtype": [153, 626], "ytype": [153, 626], "native_uint16": [153, 626], "complexdtyp": [154, 168, 177, 626], "set_default_complex_dtyp": [154, 183, 626], "4294": [154, 156, 626], "967346": [154, 156, 626], "set_default_dtyp": [155, 184, 626, 825, 833], "floatdtyp": [156, 179, 626], "set_default_float_dtyp": [156, 165, 177, 185, 626, 825], "int_dtyp": [157, 180, 626], "set_default_int_dtyp": [157, 165, 186, 626, 825], "4294967346": [157, 158, 626], "uint_dtyp": [158, 181, 626], "uint": [158, 173, 181, 187, 626, 825, 838], "uintdtyp": [158, 173, 181, 187, 626], "set_default_uint_dtyp": [158, 165, 187, 626], "native_bool": [160, 626], "ieee": [161, 219, 236, 241, 259, 269, 278, 283, 286, 623, 626, 628, 856], "754": [161, 219, 236, 241, 259, 269, 278, 283, 286, 623, 626, 628, 856], "smallest_norm": [161, 626], "bfloat16": [162, 626, 772, 773, 825, 837, 840, 841], "unsupport": [163, 196, 547, 626, 627, 630, 767, 770, 812, 815, 830, 837], "encapsul": [164, 626, 824], "314": [164, 276, 334, 368, 626, 628], "9223372036854775808": [164, 626], "9223372036854775807": [164, 626], "65535": [164, 626], "4294967295": [164, 626], "native_uint8": [166, 626], "hashabl": [170, 626], "type1": [174, 626], "type2": [174, 626], "array_api_promot": [174, 175, 626, 772, 773], "unexpect": [175, 243, 626, 628, 825], "default_complex_dtyp": [177, 626], "default_dtype_stack": [178, 184, 626], "unset_default_dtyp": [178, 626], "native_uint64": [178, 626], "default_float_dtyp": [179, 626, 825], "default_int_dtyp": [180, 186, 626, 825], "default_uint_dtyp": [181, 187, 626], "ret1": [182, 626], "ret2": [182, 626], "reset": [183, 184, 185, 186, 187, 213, 214, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 626, 627, 630, 826], "default_complex_dtype_stack": [183, 626], "default_float_dtype_stack": [185, 626], "native_float16": [188, 626], "unmodifi": [190, 627, 821, 825], "aliv": [197, 202, 204, 550, 570, 571, 627, 630, 826], "139740789224448": [197, 627], "physic": [200, 627], "process_specif": [203, 215, 627], "percentag": [203, 627], "ram": [203, 211, 215, 627], "alon": [203, 215, 627, 808, 831, 840], "036902561555": [203, 627], "7024003467681645": [203, 627], "as_native_dev": [203, 627], "7095597456708771": [203, 627], "attr_onli": [204, 627], "soft_device_mod": [206, 214, 627], "chunk": [207, 208, 209, 627], "split_factor": [207, 627, 829], "max_chunk_s": [209, 627], "chunk_siz": [209, 627], "input_ax": [209, 627], "output_ax": [209, 627], "usag": [209, 627, 825, 833, 836, 840, 845, 851, 856, 869], "fed": [209, 627, 849], "fist": [209, 627], "gb": [211, 215, 627, 815, 830], "66700032": [211, 627], "589934592": [211, 627], "219563008": [215, 627], "902400346": [215, 627], "525205504": [215, 627], "na": [216, 628, 840], "noqa": [216, 283, 628, 788, 797, 838], "princip": [217, 221, 223, 355, 368, 628], "domain": [217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 257, 258, 260, 281, 282, 283, 286, 287, 355, 368, 628, 828, 864, 866], "codomain": [217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 257, 258, 260, 281, 282, 283, 286, 287, 355, 368, 628, 828], "\u03c0": [217, 221, 223, 224, 623, 628], "3\u03c0": [217, 224, 628], "unspecifi": [217, 218, 222, 225, 234, 239, 241, 243, 278, 282, 283, 287, 372, 425, 628, 633, 635, 668, 669, 706, 836], "\u03c0j": [218, 222, 225, 257, 259, 628], "3\u03c0j": [218, 257, 259, 628], "x1_i": [219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 628, 819], "2019": [219, 236, 241, 259, 269, 628, 866, 869], "overflow": [219, 236, 243, 628, 633, 643, 681, 761, 813, 825], "commut": [219, 628], "tabl": [219, 236, 269, 581, 604, 628, 630, 772, 773, 788, 837, 842, 866], "dj": [219, 236, 269, 628], "bj": [219, 236, 269, 334, 368, 628], "z1": [219, 628], "z2": [219, 628], "yj": [220, 628], "nanj": [222, 628], "809": [222, 628], "569": [222, 628], "733": [222, 628], "notat": [224, 628, 643, 755, 824], "denot": [224, 628, 790], "quadrant": [224, 628], "rai": [224, 628, 856], "bitwis": [226, 229, 231, 266, 628], "170": [230, 628], "243": [230, 628], "xor": [231, 266, 628], "654": [233, 628], "ci": [234, 239, 241, 282, 628, 819, 825, 831, 838, 840, 851], "368": [234, 628], "670": [234, 628], "202": [234, 628, 819], "548": [234, 628], "1490": [234, 628], "57079633": [235, 628], "14159265": [235, 628], "71238898": [235, 628], "28318531": [235, 628], "02617994": [235, 628], "87266463": [235, 628], "01919862": [235, 628], "03839725": [235, 628], "05759586": [235, 628], "07679449": [235, 628], "09599311": [235, 628], "11519173": [235, 628], "35081118": [235, 628], "88139129": [235, 628], "underflow": [236, 243, 628, 633, 681, 825], "textbook": [236, 269, 628], "frac": [236, 258, 260, 280, 282, 286, 371, 377, 399, 400, 404, 405, 497, 499, 628], "ac": [236, 269, 628, 801, 802], "bd": [236, 269, 628], "bc": [236, 269, 628, 801, 802], "versu": [236, 269, 628], "riemann": [236, 269, 628], "sphere": [236, 269, 628], "c99": [236, 269, 628], "infinit": [236, 269, 283, 628], "unlik": [236, 269, 628, 819, 824, 827, 856, 871, 873], "698": [236, 628], "truth": [237, 247, 248, 255, 256, 272, 373, 449, 628, 767, 769, 780, 812, 830, 837, 840], "32862675": [238, 628], "67780113": [238, 628], "11246294": [238, 628], "42839241": [238, 628], "52050018": [238, 628], "16799599": [238, 628], "30787992": [238, 628], "43796915": [238, 628], "98667163": [238, 628], "79690808": [238, 628], "88020504": [238, 628], "91031402": [238, 628], "95228523": [238, 628], "96610528": [238, 628], "cut": [239, 241, 281, 282, 283, 286, 628, 855, 872], "08553692": [239, 628], "567": [239, 628], "00344786": [239, 628], "76297021": [239, 628], "197948": [239, 628], "53253174": [239, 628], "accur": [241, 259, 628, 633, 681, 834], "fdlibm": [241, 259, 628], "compliant": [241, 259, 264, 265, 331, 332, 368, 628, 643, 756, 757, 758, 760], "potenti": [241, 259, 628, 808, 814, 815, 824, 825, 837, 844, 869], "632": [241, 628], "20e": [241, 628], "72e": [241, 628, 772], "greatest": [242, 243, 246, 628], "pep": [243, 628, 832], "disambigu": [243, 628, 835], "former": [243, 628, 815, 825, 828, 837], "latter": [243, 628, 815, 819, 821, 825, 828, 837], "overload": [243, 628, 840], "led": [243, 628, 819, 868], "subtl": [243, 628, 825, 872], "bug": [243, 628, 808, 814, 816, 822, 830, 831, 837, 840, 852], "ambigu": [243, 628], "semant": [243, 278, 374, 488, 628, 825, 845, 850, 855, 867], "ill": [243, 628, 774], "surpris": [243, 628, 851], "arrau": [249, 628], "log_": [258, 260, 628], "742": [259, 628], "negat": [271, 334, 368, 628], "52095687": [274, 628], "92457771": [274, 628], "49372482": [274, 628], "22738838": [274, 628], "156": [274, 628, 772], "5877228": [274, 628], "189": [275, 628, 637, 714], "252": [275, 628], "378": [275, 628], "1150": [275, 628], "2890": [275, 628], "172": [275, 628], "487": [275, 628, 632, 656], "344": [275, 628], "355j": [276, 334, 368, 628], "55j": [276, 334, 368, 628], "primarili": [278, 628, 814, 823, 866], "reason": [278, 287, 628, 814, 816, 819, 820, 823, 824, 825, 827, 833, 836, 837, 840, 841, 843, 845, 847, 856, 872], "counterpart": [279, 628, 823, 834], "deliber": [279, 628, 843], "imprecis": [279, 628], "5654": [279, 628], "034": [279, 628], "433": [279, 614, 616, 628, 631], "signum": [280, 628], "textrm": [280, 628], "932": [281, 628], "746": [281, 628], "657": [281, 537, 628, 630], "indistinguish": [283, 628], "convent": [283, 628, 633, 643, 673, 755, 816, 821, 832, 841, 855, 872], "infti": [283, 628], "32455532": [283, 628], "89897949": [283, 628], "169": [283, 628], "analyt": [286, 628, 866, 868, 872], "pole": [286, 628], "546": [286, 628, 632, 656], "916": [286, 628], "996": [286, 628], "histor": [287, 628], "stem": [287, 628, 836], "older": [287, 628], "advis": [287, 628, 837], "462": [287, 628], "604": [287, 628], "984": [287, 628], "997": [287, 628], "0375": [289, 628], "032": [289, 628], "57258511": [292, 363], "69999999": [292, 363, 621, 631], "90928203": [292, 363], "98772264": [292, 363], "99591321": [292, 363], "99863964": [292, 363], "69880581": [292, 363], "18126924": [292, 363], "79999995": [293, 303, 306, 363], "70000005": [293, 306, 363], "1241": [294, 363], "4897": [294, 363], "4090": [294, 363], "31008321": [294, 363], "1147176": [294, 363], "40899992": [294, 363], "20141329": [297, 363], "40318608": [297, 363], "48683619": [297, 363], "46328247": [297, 363], "59813893": [297, 363], "43748799": [297, 363], "parametr": [298, 363, 819, 840, 866], "71589994": [300, 304, 363], "14324772": [300, 304, 363], "70648694": [300, 304, 363], "54488957": [300, 304, 363], "10740992": [300, 304, 363], "19514863": [300, 304, 363], "6705687": [301, 363], "52016652": [301, 363], "40560818": [301, 363], "45630932": [301, 363], "2689": [302, 363], "7310": [302, 363], "7615": [302, 363], "2784": [302, 363], "7168": [302, 363], "8708": [302, 363], "4374": [302, 363], "1379": [302, 363], "0089": [302, 363], "59999991": [303, 363], "03597236": [305, 363], "43827677": [305, 363], "80100036": [305, 363], "12954807": [305, 363], "76459098": [305, 363], "20044947": [305, 363], "60000372": [305, 363], "taper": [308, 311, 365], "summat": [308, 365, 643, 755, 801, 802], "leakag": [308, 365], "wors": [308, 365, 856], "y1": [309, 365], "0800": [310, 365], "3979": [310, 365], "9121": [310, 365], "5400": [310, 365], "han": [311, 365], "ith": [312, 365], "00726415": [313, 365], "9999736": [313, 365], "2773e": [314, 365], "0172e": [314, 365], "9294e": [314, 365], "4149": [314, 365], "9138": [314, 365], "5529": [314, 365], "multidimension": [316, 317, 365, 866], "normalise_factor": [319, 320, 365], "parafac2": [320, 365], "tr": [321, 365], "context": [321, 365, 569, 630, 814, 815, 816, 821, 825, 826, 827], "38268346": [329, 365], "38268352": [329, 365], "8563191": [329, 365], "14943568": [329, 365], "paddlepaddl": [331, 332, 368, 815], "cn": [331, 332, 368], "zh": [331, 332, 368], "amax_cn": [331, 368], "sentinel": [331, 332, 368, 643, 756, 758], "amin_cn": [332, 368], "4769": [340, 368], "position": [342, 368], "triangl": [346, 368], "999999e": [347, 368], "65999985": [349, 368], "52000046": [349, 368], "1500001": [349, 368, 542, 630], "11259177": [350, 368], "3574118": [350, 368], "20097363": [350, 368], "suppli": [354, 368, 374, 480, 801, 820, 822, 840], "217234": [355, 368], "hurwitz": [358, 368], "custom_grad_func": [360, 370], "bind": [360, 370, 814, 835, 865, 866], "upstream": [360, 370, 815, 816, 819, 830, 835], "primal": [361, 362, 370], "jacobian": [361, 362, 370, 616, 631, 851, 866], "cotang": [362, 370], "stanh": 363, "ndenumer": 365, "ndindex": 365, "random_cp": 365, "random_parafac2": 365, "random_tr": 365, "random_tt": 365, "random_tuck": 365, "bind_custom_gradient_funct": [370, 835], "jvp": 370, "vjp": 370, "h_out": [371, 388, 632, 657], "w_out": [371, 388], "area_interpol": 371, "01823380e": [371, 393, 403], "15385818e": [371, 393, 403], "36371466e": [371, 393, 403], "38763905e": [371, 393, 403], "60722279e": [371, 393, 403], "80319249e": [371, 393, 403], "05617893e": [371, 393, 403], "21500000e": [371, 393, 403], "24000015e": [371, 393, 403], "90734863e": [371, 393, 403], "10000420e": [371, 393, 403], "15899994e": [371, 393, 403], "24000053e": [371, 393, 403], "81469727e": [371, 393, 403], "09999847e": [371, 393, 403], "4135742": [371, 393, 403], "6779785": [371, 393, 403], "3770599": [371, 393, 403], "8719864": [371, 393, 403], "72109985": [371, 393, 403], "52869415": [371, 393, 403], "79182434": [371, 393, 403], "72489166": [371, 393, 403], "container_n": [371, 393, 403], "container_typ": [371, 393, 403, 630], "container_norm": [371, 393, 403], "1580677": [371, 393], "89422607": [371, 393], "86190414": [371, 393], "00041008": [371, 393], "75149155": [371, 393], "97056389": [371, 393], "87819386": [371, 393], "89381361": [371, 393], "50000000e": [371, 393, 403, 772], "22044605e": [371, 393, 403], "ed": [371, 395, 396, 397], "rest": [371, 374, 395, 396, 397, 466, 815, 822, 824, 840, 850, 868], "5d": [371, 397, 788], "emb": [371, 398], "51285338": [371, 398], "87183261": [371, 398], "2308116": [371, 398], "02733949e": [371, 399], "00j": [371, 399], "49660576e": [371, 399], "68178638e": [371, 399], "01j": [371, 399, 404], "98912367e": [371, 399], "21802426e": [371, 399, 404], "04549134e": [371, 399, 404], "82842712e": [371, 399, 404], "86902654e": [371, 399, 404], "25501143e": [371, 399, 404], "32978028e": [371, 399, 404], "52068201e": [371, 399, 404], "71158374e": [371, 399, 404], "generate_einsum_equ": 371, "get_interpolate_kernel": 371, "27279224e": [371, 403], "44232273e": [371, 403], "70464332e": [371, 403], "73454881e": [371, 403], "00902849e": [371, 403], "10039906e": [371, 403], "07022366e": [371, 403], "69506073": [371, 403], "93914604": [371, 403], "88008881": [371, 403], "18951607": [371, 403], "57439613": [371, 403], "15318303e": [371, 404], "15148591e": [371, 404], "19j": [371, 404], "25000000e": [371, 404], "35378602e": [371, 404], "02j": [371, 404], "65404249e": [371, 404], "17611649e": [371, 404], "24320230e": [371, 404], "79344813e": [371, 404], "22374531e": [371, 404], "45929364e": [371, 404], "14208718e": [371, 404], "07177031e": [371, 404], "indexerror": [371, 405, 416, 635, 698, 803, 829], "interp": [371, 843], "xp": [371, 406, 819], "fp": [371, 406], "nd": [371, 407], "tf_bicub": [371, 407, 843], "nearest_interpol": 371, "window_shap": [371, 413], "pool_typ": [371, 413], "irfft": [371, 415], "silent": [371, 415], "discard": [371, 415, 824], "1400001": [371, 415], "3999999": [371, 415], "3999996": [371, 415], "99038106j": [371, 416], "33012702": [371, 416], "23205081j": [371, 416], "33012702j": [371, 416], "superdiagon": [372, 423, 633, 666], "subdiagon": [372, 423, 633, 666], "eigendecomposit": [372, 425, 633, 668, 669], "qlq\u1d40": [372, 425, 633, 668, 669], "tridiagon": [372, 426], "38196602": [372, 426], "61803389": [372, 426], "35048741": [372, 426], "56710052": [372, 426], "06693714": [372, 426], "74234426": [372, 426], "56155282": [372, 426], "56155276": [372, 426], "82842714": [372, 426], "82842731": [372, 426, 633, 669], "necessarili": [372, 427, 820, 823], "generalis": [372, 428], "skip_matrix": [372, 431, 433], "khatri_rao_product": [372, 431], "kronecker_product": [372, 433], "n_column": [372, 433], "lu_factor": 372, "pivot": [372, 434], "lu": [372, 434, 435], "lu_solv": 372, "nnmf": [372, 436], "hoi": [372, 441, 447], "solve_triangular": 372, "unit_diagon": [372, 442], "solut": [372, 442, 633, 682, 772, 808, 812, 814, 815, 816, 823, 825, 830, 838, 840, 843, 864, 868], "determinist": [372, 443, 840], "borrow": [372, 443, 818], "extmath": [372, 443], "ivan": [372, 444], "oseledet": [372, 444], "scientif": [372, 444, 866], "2295": [372, 444], "2317": [372, 444], "2011": [372, 444], "convention": [373, 450, 869], "explicit": [373, 374, 450, 488, 815, 823, 825, 835, 836, 837, 845, 851, 866], "555969": [373, 450], "223876": [373, 450], "111938": [373, 450], "42649534": [373, 450], "68651628": [373, 450], "51119184": [373, 450], "59967244": [373, 450], "mae": [373, 451], "666": [373, 451, 632, 633, 656, 674], "91097307": [373, 453], "3467": [373, 454], "0133": [373, 454], "0250": [373, 454], "0056": [373, 454], "0025": [373, 454], "0675": [373, 454], "6987": [373, 455], "1606": [373, 455], "3711": [373, 455], "4032": [373, 455], "6931": [373, 455], "whilst": [374, 458, 459, 460, 850, 853, 866], "ary3": [374, 460], "check_scalar": 374, "force_integ": [374, 462], "force_posit": [374, 462], "mod": [374, 463, 819], "tall": [374, 469], "appear": [374, 471, 472, 610, 630, 815, 816, 819, 837, 843, 859], "horizot": [374, 476], "shortcut": [374, 480, 815], "linear_ramp": [374, 480], "reflect": [374, 480, 816, 820, 836, 840], "ramp": [374, 480], "mirror": [374, 480, 811, 814, 866], "padding_func": [374, 480], "iaxis_pad_width": [374, 480], "iaxi": [374, 480], "unalt": [374, 480], "put": [374, 485, 808, 814, 840, 851, 872], "mul": [374, 485, 836, 847], "conceptu": [374, 488, 862, 867], "concern": [374, 488, 816, 818, 823, 825, 827, 836, 843, 844, 872], "regard": [374, 488, 813, 823, 837, 838, 843, 856], "mutat": [374, 488], "elimin": [374, 494, 815], "consecut": [374, 494], "batch_mean": [377, 497, 499], "batch_var": [377, 497, 499], "running_vari": [377, 497, 499], "local_response_norm": 377, "neighbour": [377, 502], "42857143": [377, 503], "5714286": [377, 503], "multivari": [378, 506], "bayesian": [378, 506], "supposedli": [381, 510], "indirect": [381, 511], "secondari": [381, 511], "is_ivy_sparse_arrai": 382, "is_native_sparse_arrai": 382, "native_sparse_arrai": 382, "coo_indic": [382, 514], "crow_indic": [382, 514], "col_indic": [382, 514], "ccol_indic": [382, 514], "row_indic": [382, 514], "dense_shap": [382, 514], "native_sparse_array_to_indices_values_and_shap": 382, "nativesparsearrai": 382, "sparsearrai": 382, "linalg": [383, 518, 633, 681, 682, 814, 836, 838], "aw": [383, 518, 856], "48447205": [383, 518], "c0": [383, 521], "ck": [383, 521], "c2": [383, 521], "nearest_jax": [383, 528], "trace_on_next_step": [532, 630, 792, 849], "recalcul": [535, 630], "my_sum": [535, 630], "val1": [535, 630], "val2": [535, 630], "cached_sum": [535, 630], "line_eq": [535, 630], "slp": [535, 630], "itc": [535, 630], "cached_line_eq": [535, 630], "0353": [536, 630], "424": [536, 630], "176": [536, 630], "339": [536, 630], "271": [536, 630], "391": [536, 630], "417": [537, 630], "583": [537, 630], "0667": [537, 630], "267": [537, 630], "131": [537, 630], "263": [537, 630], "394": [537, 630, 639, 739], "526": [537, 630], "788": [537, 630], "27279221": [537, 630], "69705628": [537, 630], "12132034": [537, 630], "default_str": [540, 630], "46999979": [541, 630], "66000009": [541, 630], "93000001": [541, 630], "29000092": [541, 630], "33999991": [541, 630], "6400001": [541, 630], "96000004": [541, 630], "36000013": [541, 630], "51999998": [541, 630], "67000008": [541, 630], "suppos": [541, 630, 825, 840], "960": [541, 630], "3600": [541, 630], "h1": [541, 630], "w1": [541, 630], "40499985": [542, 630], "61000061": [542, 630], "max_depth": [553, 630], "seen_set": [553, 630], "local_set": [553, 630], "referr": [553, 630], "redund": [553, 630, 808, 825, 829, 837, 859], "example_funct": [553, 630], "repr": [553, 630], "ivyexcept": [558, 591, 630, 803, 826, 829, 834, 836, 837, 841], "allow_dupl": [568, 630], "fork": [569, 630, 809, 819, 824, 830], "forkserv": [569, 630], "mp_default": [569, 630], "defaultcontext": [569, 630], "0x7f4e3193e520": [569, 630], "mp_fork": [569, 630], "forkcontext": [569, 630], "0x7f4e3193e580": [569, 630], "mp_spawn": [569, 630], "spawncontext": [569, 630], "0x7f4e3193e5e0": [569, 630], "mp_forkserv": [569, 630], "forkservercontext": [569, 630], "0x7f4e3193e640": [569, 630], "garbag": [571, 630], "collector": [571, 630], "get_all_arrays_in_memori": [571, 630], "exception_trace_mod": [575, 599, 630, 842], "lenient": [576, 600, 630], "inplace_mod": [576, 600, 630], "break": [576, 630, 808, 821, 825, 832, 841, 851], "infus": [577, 630], "unset": [578, 585, 630, 633, 681, 797, 821, 845], "unset_min_bas": [578, 630], "nestable_mod": [580, 603, 630, 842], "precise_mod": [581, 604, 630, 842], "shape_array_mod": [583, 606, 630, 842], "show_func_wrapper_trace_mod": [584, 607, 630, 842], "tmp_dr": [585, 630], "tmp_dir": [585, 608, 630, 842], "my_tmp": [585, 630], "unset_tmp_dir": [585, 630], "49999999999975": [588, 630], "5015015015010504": [588, 630], "000444502911705e": [588, 630], "9999999999995j": [588, 630], "00000262": [589, 630], "15605032": [589, 630], "01208451j": [589, 630], "00048": [589, 630], "1296": [589, 630], "00864": [589, 630], "isn": [591, 630, 811, 816, 834, 836, 840, 848, 851, 868], "100000023841858": [593, 630], "200000047683716": [593, 630], "299999952316284": [593, 630], "400000095367432": [593, 630], "599999904632568": [593, 630], "hemant": [597, 630], "unset_shape_array_mod": [598, 630], "set_exception_trace_mod": [599, 630, 829], "set_min_bas": [601, 630], "set_min_denomin": [602, 630], "set_nestable_mod": [603, 630], "set_precise_mod": [604, 630], "set_queue_timeout": [605, 630], "set_shape_array_mod": [606, 630], "set_show_func_wrapper_trace_mod": [607, 630, 829], "set_tmp_dir": [608, 630], "my_dir": [608, 630], "451": [609, 630], "in_ax": [610, 630], "out_ax": [610, 630], "thereof": [610, 630], "summaris": [610, 630], "99999998": [611, 631], "19999998": [611, 631], "00000001": [611, 631], "00300001": [611, 631], "00800001": [611, 631], "0125": [611, 631], "17294501": [611, 631], "15770318": [611, 631], "20863818": [611, 631], "90000075": [612, 631], "90000164": [612, 631], "9000032": [612, 631], "50000012e": [612, 631], "92558754": [612, 631], "92558694": [612, 631], "92558682": [612, 631], "92558861": [612, 631], "60000025e": [612, 631], "01024": [612, 631], "retain_grad": [613, 631], "func_ret": [613, 631, 835], "666666": [613, 631], "333332": [613, 631], "66666675": [613, 621, 631], "argnum": [614, 631], "933": [614, 616, 631], "jac_fn": [616, 631], "639": [617, 631], "361": [617, 631], "52565837": [618, 631], "8418861": [618, 631], "68377209": [618, 631], "value_grad": [621, 631], "42333412": [621, 631], "5333333": [621, 631], "93333334": [621, 631], "43333334": [621, 631], "0666666": [621, 631], "softsign": 622, "718281828459045": 623, "euler": 623, "141592653589793": 623, "cmp_i": 624, "cmp_isnot": 624, "for_loop": 624, "if_els": 624, "try_except": 624, "to_dlpack": 625, "as_ivy_dtyp": [626, 837], "as_native_dtyp": 626, "check_float": 626, "closest_valid_dtyp": 626, "default_dtyp": [626, 825, 833], "dtype_bit": 626, "function_supported_dtyp": [626, 825, 840], "function_unsupported_dtyp": [626, 825], "infer_default_dtyp": 626, "invalid_dtyp": [626, 825], "is_hashable_dtyp": 626, "is_native_dtyp": 626, "promote_typ": [626, 825], "promote_types_of_input": [626, 825, 836], "type_promote_arrai": [626, 825], "unset_default_complex_dtyp": 626, "unset_default_float_dtyp": 626, "unset_default_int_dtyp": 626, "unset_default_uint_dtyp": 626, "valid_dtyp": 626, "defaultcomplexdtyp": 626, "defaultdtyp": 626, "defaultfloatdtyp": 626, "defaultintdtyp": 626, "defaultuintdtyp": 626, "as_ivy_dev": [627, 847], "clear_cached_mem_on_dev": 627, "dev_util": [627, 826], "function_supported_devic": 627, "function_unsupported_devic": 627, "get_all_ivy_arrays_on_dev": [627, 826], "handle_soft_device_vari": [627, 826], "num_cpu_cor": [627, 826], "num_gpu": [627, 826, 840], "num_ivy_arrays_on_dev": 627, "percent_used_mem_on_dev": 627, "print_all_ivy_arrays_on_dev": 627, "set_split_factor": [627, 829], "split_func_cal": 627, "total_mem_on_dev": [627, 826], "tpu_is_avail": 627, "unset_default_devic": [627, 826], "unset_soft_device_mod": [627, 826], "used_mem_on_dev": 627, "defaultdevic": [627, 826], "profil": 627, "save_dir": 627, "arg_info": 630, "arg_nam": 630, "cache_fn": [630, 833], "current_backend_str": [630, 840, 845, 847], "function_supported_devices_and_dtyp": 630, "function_unsupported_devices_and_dtyp": 630, "get_item": [630, 836], "get_referrers_recurs": 630, "inplace_arrays_support": 630, "inplace_variables_support": 630, "is_ivy_nested_arrai": 630, "isscalar": 630, "match_kwarg": 630, "num_arrays_in_memori": 630, "print_all_arrays_in_memori": 630, "set_item": [630, 840], "to_ivy_shap": 630, "to_native_shap": 630, "try_else_non": 630, "unset_array_mod": [630, 842], "unset_exception_trace_mod": 630, "unset_inplace_mod": 630, "unset_min_denomin": 630, "unset_nestable_mod": 630, "unset_precise_mod": 630, "unset_queue_timeout": 630, "unset_show_func_wrapper_trace_mod": 630, "vmap": [630, 851, 866], "arraymod": 630, "precisemod": [630, 825], "jac": 631, "value_and_grad": [631, 835], "neural": [632, 784, 788, 808, 860, 862, 864, 865, 866, 870, 872, 873], "feature_group_count": [632, 645, 652, 653], "oiw": [632, 645, 646, 652], "oihw": [632, 645, 648, 652], "oidhw": [632, 645, 650, 652], "dhwio": [632, 645, 646, 650, 652], "conv_general_dil": [632, 837], "conv_general_transpos": 632, "depthwis": [632, 654, 774, 788], "overfit": [632, 655], "overal": [632, 655, 802, 823, 825, 826, 828, 850, 859, 862, 864, 865, 866], "1428566": [632, 655], "49000001": [632, 655], "55599999": [632, 655], "21000004": [632, 655], "incom": [632, 656], "4269": [632, 656], "911": [632, 656, 829], "157": [632, 656], "753": [632, 656], "545": [632, 639, 656, 737], "547": [632, 656, 826], "124": [632, 656], "963": [632, 656], "98495483": [632, 656], "0293808": [632, 656], "0159359": [632, 656], "74752808": [632, 656], "20942307": [632, 656], "3205719": [632, 656], "all_weight": [632, 657], "num_lay": [632, 657, 788], "batch_first": [632, 657, 659], "weights_transpos": [632, 657], "has_ih_bia": [632, 657], "has_hh_bia": [632, 657], "multi": [632, 633, 657, 659, 664, 774, 788, 827, 844, 851, 862, 864, 866, 870], "long": [632, 657, 658, 815, 816, 824, 825, 827, 829, 830, 837, 845, 866], "seq_len": [632, 657], "input_s": [632, 657], "h_0": [632, 657], "c_0": [632, 657], "num_direct": [632, 657], "hidden_s": [632, 657], "four": [632, 657, 811, 820, 825, 827, 832, 833, 840, 843, 848], "w_ih": [632, 657], "w_hh": [632, 657], "b_ih": [632, 657], "b_hh": [632, 657], "bias": [632, 657], "pack": [632, 657], "c_out": [632, 657], "paper": [632, 659, 808, 857], "vaswani": [632, 659], "al": [632, 659], "num_attention_head": [632, 659], "key_dim": [632, 659, 788], "value_dim": [632, 659, 788], "attention_weight": [632, 659], "unbatch": [632, 659], "nm": 632, "box": [632, 660, 661, 815], "iou_threshold": [632, 660], "max_output_s": [632, 660], "score_threshold": [632, 660], "roi_align": 632, "spatial_scal": [632, 661], "sampling_ratio": [632, 661], "23333359": [632, 662], "03946018": [632, 662], "0280633": [632, 662], "29981947": [632, 662], "29981089": [632, 662], "06345534": [632, 662], "9634552": [632, 662], "19336844": [632, 662], "09336829": [632, 662], "axisa": [633, 664], "axisb": [633, 664], "axisc": [633, 664], "293": [633, 665], "46997": [633, 665], "explicitli": [633, 669, 670, 685, 769, 788, 789, 790, 812, 819, 820, 821, 823, 825, 828, 829, 830, 833, 834, 835, 836, 838, 840, 845, 851, 860, 866], "17157288": [633, 669], "9238795": [633, 669], "78930789": [633, 669], "59803128": [633, 669], "19127655": [633, 669], "31213903": [633, 669], "63418275": [633, 669], "84632206": [633, 669], "70548367": [633, 669], "70223427": [633, 669], "09570674": [633, 669], "63116378": [633, 669], "56109613": [633, 669], "53554028": [633, 669], "32237405": [633, 669], "43822157": [633, 669], "83906901": [633, 669], "50766778": [633, 669], "71475857": [633, 669], "48103389": [633, 669], "3676433": [633, 669], "68466955": [633, 669], "62933773": [633, 669], "77917379": [633, 669], "14264561": [633, 669], "61036086": [633, 669], "45033181e": [633, 670], "02829754e": [633, 670], "54220343e": [633, 670], "12647155e": [633, 670], "38447177e": [633, 670], "56155300e": [633, 670], "26794919": [633, 670], "7320509": [633, 670], "0012": [633, 672], "00342": [633, 672], "000565": [633, 672], "0104": [633, 672], "000981": [633, 672], "00282": [633, 672], "000766": [633, 672], "0322": [633, 672], "00237": [633, 672], "000151": [633, 672], "00101": [633, 672], "00019": [633, 672], "0214": [633, 672], "00171": [633, 672], "0107": [633, 672], "0167": [633, 672], "0472": [633, 672], "0536": [633, 672], "0177": [633, 672], "000429": [633, 672], "00762": [633, 672], "frobeniu": [633, 674], "nuclear": [633, 674], "induc": [633, 674], "ranl": [633, 674], "47722558": [633, 674], "776": [633, 674], "6000004": [633, 674], "118": [633, 675], "moor": [633, 679], "penros": [633, 679], "31622776": [633, 680], "94868332": [633, 680], "1622777": [633, 680], "42718887": [633, 680], "deteremin": [633, 681], "logsabsdet": [633, 681], "subject": [633, 681], "unset_backend": [633, 681, 797, 821], "ordin": [633, 682], "b2": [633, 682], "usvh": [633, 683], "cetera": [633, 683], "driver": [633, 684, 851], "cusolv": [633, 684], "gesvd": [633, 684], "gesvdj": [633, 684], "gesvda": [633, 684], "86217213": [633, 684], "31816804": [633, 684], "615": [633, 684], "ss": [633, 684], "25994301": [633, 684], "16403675": [633, 684], "61529762": [633, 684], "51231241": [633, 684], "39777088": [633, 684], "15413129": [633, 684], "1029852": [633, 684], "01383495": [633, 684], "86647356": [633, 684], "7786541": [633, 684], "55970621": [633, 684], "16857576": [633, 684], "86412698": [633, 684], "37566757": [633, 684], "88477993": [633, 684], "95925522": [633, 684], "6444726": [633, 684], "54687881": [633, 684], "16134834": [633, 684], "35037804": [633, 684], "31025076": [633, 684], "35769391": [633, 684], "transposit": [633, 685], "success": [633, 643, 687, 759, 761, 811, 815, 824, 856], "0x": [633, 688], "Such": [633, 688, 833, 840], "progress": [633, 688, 811, 815, 816, 850], "alexandr": [633, 688], "theophil": [633, 688], "dot_product": [633, 689], "9000001": [633, 690], "64158917": [633, 690], "skew": [633, 691], "60309976": [634, 692], "6666193": [634, 692], "01348412": [634, 692], "05393649": [634, 692], "49992943": [634, 692], "83330965": [634, 692], "02136981": [634, 692], "32844672": [634, 692], "26561815": [634, 692], "22314337": [634, 692], "08916873": [634, 693, 694], "44832274": [634, 694], "75646281": [634, 694], "13862944": [634, 694], "57564628": [634, 694], "outsid": [635, 695, 706, 825, 826, 833, 847, 871], "honor": [635, 702], "beyond": [635, 703, 828, 837, 872], "famili": [635, 706], "intxx": [635, 706], "floatxx": [635, 706], "rep": [635, 708], "fomaml_step": 636, "inner_cost_fn": [636, 711, 712, 713], "outer_cost_fn": [636, 711, 712], "inner_grad_step": [636, 711, 712, 713], "inner_learning_r": [636, 711, 712, 713], "inner_optimization_step": [636, 711, 712, 713], "inner_batch_fn": [636, 711, 712], "outer_batch_fn": [636, 711, 712], "average_across_step": [636, 711, 712], "inner_v": [636, 711, 712], "keep_inner_v": [636, 711, 712], "outer_v": [636, 711, 712], "keep_outer_v": [636, 711, 712], "return_inner_v": [636, 711, 712, 713], "num_task": [636, 711, 712, 713], "maml": [636, 711, 712], "0x7f73c90abf40": [636, 711, 712, 713], "maml_step": 636, "vanilla": [636, 712, 849, 866], "_variabl": [636, 712, 713], "sub_batch": [636, 712], "40069818": [636, 712], "13723135": [636, 712], "reptile_step": 636, "cost_fn": [636, 713], "reptil": [636, 713], "batch_in": [636, 713], "4485182": [636, 713], "139": [636, 713], "9569855": [636, 713], "9880483": [636, 713], "01766968": [636, 713], "02197957": [636, 713], "02197981": [636, 713], "all_nested_indic": 637, "include_nest": [637, 714], "_index": [637, 714, 725], "_base": [637, 714, 724, 725, 836], "themselv": [637, 714, 823, 825, 826, 828, 833, 837, 849, 863, 872], "863": [637, 714, 826], "672": [637, 714], "482": [637, 714], "674": [637, 714], "341": [637, 714], "copy_nest": 637, "to_mut": [637, 715, 726], "deepli": [637, 715, 817, 851, 866], "copied_nest": [637, 715], "1337": [637, 715, 726], "duplicate_array_index_chain": 637, "index_nest": [637, 833], "insert_into_nest_at_index": 637, "insert_into_nest_at_indic": 637, "onto": [637, 720, 726, 854, 855, 866], "special_squar": [637, 720], "6666666666666667": [637, 720], "special_pow": [637, 720], "linear_model": [637, 720], "map_nest_at_index": 637, "_result": [637, 721, 731], "hh": [637, 721, 726], "map_nest_at_indic": 637, "ub": [637, 722], "tb": [637, 722], "multi_index_nest": 637, "nested_ani": 637, "check_nest": [637, 724, 725], "nested_argwher": 637, "stop_after_n_found": [637, 725], "nested_indic": [637, 725], "nested_map": [637, 826, 833], "_tuple_check_fn": [637, 726], "_list_check_fn": [637, 726], "_dict_check_fn": [637, 726], "wherebi": [637, 726, 814, 863], "ah": [637, 726], "bh": [637, 726], "ch": [637, 726], "dh": [637, 726, 819], "eh": [637, 726], "gh": [637, 726, 815, 830], "ih": [637, 726], "1338": [637, 726], "nested_multi_map": 637, "index_chain": [637, 727], "nest0": [637, 727], "ivy_arrai": [637, 727, 820, 837], "unappli": [637, 727], "prune_empti": 637, "prune_nest_at_index": 637, "prune_nest_at_indic": 637, "set_nest_at_index": 637, "set_nest_at_indic": 637, "xyz": [637, 732], "pqr": [637, 732], "mini": [638, 733, 788, 791], "uniformli": [639, 735, 737], "22346112": [639, 736], "0922": [639, 736], "9213753": [639, 736], "12818667": [639, 736], "799": [639, 736], "469": [639, 736], "287": [639, 736], "0366": [639, 736], "26431865": [639, 737], "475": [639, 737], "878": [639, 737], "861": [639, 737], "929": [639, 737], "789": [639, 737], "519": [639, 737], "0435": [639, 737], "381": [639, 737], "4608004": [639, 737], "8458502": [639, 737], "67270088": [639, 737], "31128597": [639, 737], "zeroel": [640, 743], "guarante": [641, 745, 747, 806, 820, 825, 836, 851, 857], "fourth": [641, 745], "1141": [641, 745], "8101": [641, 745], "9298": [641, 745], "8460": [641, 745], "2119": [641, 745], "3519": [641, 745], "6252": [641, 745], "4033": [641, 745], "7443": [641, 745], "2577": [641, 745], "3707": [641, 745], "0545": [641, 745], "3238": [641, 745], "5944": [641, 745], "0775": [641, 745], "4327": [641, 745], "62519997": [641, 745], "40329999": [641, 745], "59439999": [641, 745], "74430001": [641, 745], "81010002": [641, 745], "84600002": [641, 745], "92979997": [641, 745], "einstein": [643, 755, 801], "117": [643, 755], "intend": [643, 761, 770, 787, 819, 832, 835, 864, 866, 870, 871], "07472222": [643, 762], "00666667": [643, 762], "08966666": [643, 762], "simplicit": [644, 763, 764], "ivy_test": [767, 769, 770, 772, 773, 774, 775, 776, 777, 778, 779, 780, 814, 815, 816, 819, 822, 824, 830, 838], "test_ivi": [767, 769, 770, 772, 773, 774, 775, 776, 777, 778, 779, 780, 814, 815, 816, 822, 824, 830, 838, 840], "assert_all_clos": [767, 838], "ret_np": [767, 769, 838], "ret_from_gt_np": [767, 838], "ground_truth_backend": [767, 769, 770, 779, 780, 812, 830, 838], "mark": [767, 811, 814, 816, 819, 840, 845], "assert_same_typ": 767, "ret_from_target": 767, "ret_from_gt": 767, "backend_to_test": [767, 769, 812, 830, 838], "gt_backend": 767, "with_backend": [767, 797], "assert_same_type_and_shap": 767, "this_key_chain": 767, "check_unsupported_devic": 767, "input_devic": 767, "all_as_kwargs_np": [767, 769], "presenc": [767, 823, 836], "check_unsupported_device_and_dtyp": 767, "input_dtyp": [767, 769, 779, 812, 830, 838, 840], "check_unsupported_dtyp": 767, "test_unsupported_funct": 767, "value_test": 767, "ret_np_flat": 767, "ret_np_from_gt_flat": 767, "specific_tolerance_dict": 767, "ret_from_np_gt_flat": 767, "function_test": 769, "args_to_contain": 769, "array_arg": [769, 833], "args_to_frontend": 769, "frontend_array_fn": 769, "arrays_to_frontend": 769, "as_list": 769, "convtru": 769, "nativeclass": 769, "counter": [769, 849], "create_args_kwarg": 769, "args_np": 769, "arg_np_val": 769, "args_idx": 769, "kwargs_np": 769, "kwarg_np_val": 769, "kwargs_idx": 769, "test_flag": [769, 812, 830, 838, 840], "on_devic": [769, 779, 812, 830, 838], "flatten_and_to_np": 769, "flatten_frontend": 769, "flatten_frontend_fw_to_np": 769, "frontend_ret": [769, 838], "isscalar_func": 769, "is_native_array_func": 769, "to_numpy_func": 769, "flatten_frontend_to_np": 769, "get_frontend_ret": 769, "frontend_fn": 769, "frontend_array_funct": 769, "precision_mod": [769, 779, 780, 830], "test_trac": [769, 779, 780, 812, 819, 830], "test_trace_each": [769, 779, 780], "get_ret_and_flattened_np_arrai": 769, "gradient_incompatible_funct": 769, "gradient_test": [769, 840], "rtol_": [769, 812, 830], "atol_": [769, 812, 830, 838], "tolerance_dict": 769, "gradient_unsupported_dtyp": 769, "kwargs_to_args_n_kwarg": 769, "num_positional_arg": [769, 779, 780, 812, 830, 838, 840], "port": [769, 857], "test_frontend_funct": [769, 838], "fn_tree": [769, 770, 780, 812, 830, 837, 838, 840], "gt_fn_tree": [769, 780], "test_valu": [769, 838, 840], "frontend_function_flag": [769, 779], "functiontestflag": [769, 779, 812, 830], "with_out": [769, 779, 812, 830, 838, 840], "instance_method": [769, 779, 812, 830, 840], "as_vari": [769, 779, 812, 830, 838, 840], "namespac": [769, 814, 825, 834, 837, 838, 841, 845, 850], "arg_": 769, "test_frontend_method": [769, 838], "init_input_dtyp": [769, 838], "method_input_dtyp": [769, 838], "init_flag": [769, 838, 840], "method_flag": [769, 779, 838, 840], "init_all_as_kwargs_np": [769, 838], "method_all_as_kwargs_np": [769, 838], "frontend_method_data": [769, 838], "init_as_variable_flag": [769, 780], "dictat": [769, 820, 827, 832, 836], "init_num_positional_arg": [769, 780], "init_native_array_flag": 769, "with_v": 769, "ret_gt": 769, "test_funct": [769, 812, 815, 816, 824, 830, 838, 840], "fn_name": [769, 770, 780, 812, 821, 830, 838, 840], "return_flat_np_arrai": 769, "as_variable_flag": [769, 780, 840], "native_array_flag": [769, 780, 840], "container_flag": [769, 779, 780, 840], "test_function_backend_comput": 769, "test_function_ground_truth_comput": 769, "arg_np_arrai": 769, "arrays_args_indic": 769, "arrays_kwargs_indic": 769, "kwarg_np_arrai": 769, "test_gradient_backend_comput": 769, "test_gradient_ground_truth_comput": 769, "test_method": 769, "method_nam": [769, 778, 780, 838], "init_with_v": 769, "method_with_v": 769, "test_gradi": [769, 779, 780, 812, 830, 840], "method_as_variable_flag": [769, 780], "method_num_positional_arg": [769, 780], "method_native_array_flag": 769, "method_container_flag": [769, 780], "test_method_backend_comput": 769, "test_method_ground_truth_comput": 769, "org_con_data": 769, "args_np_method": 769, "met_arg_np_v": 769, "met_args_idx": 769, "kwargs_np_method": 769, "met_kwarg_np_v": 769, "met_kwargs_idx": 769, "v_np": 769, "traced_if_requir": 769, "wrap_frontend_function_arg": 769, "holder": 770, "current_frontend_config": 770, "0x7f73bc7f1f00": 770, "interruptedtest": 770, "test_interrupt": 770, "baseexcept": 770, "tri": [770, 825], "testdata": 770, "supported_device_dtyp": 770, "is_method": 770, "setup_api_test": 770, "test_data": 770, "setup_frontend_test": 770, "teardown_api_test": 770, "teardown_frontend_test": 770, "hypothesis_help": [772, 773, 774, 775], "array_help": 772, "array_and_broadcastable_shap": 772, "searchstrategi": [772, 773, 774, 775, 779, 780, 840], "array_bool": [772, 840], "min_valu": [772, 773, 774, 775, 812, 830, 838, 840], "max_valu": [772, 773, 774, 775, 838, 840], "ex": [772, 773, 774, 775, 780, 824, 860], "strategi": [772, 773, 774, 775, 779, 780, 814, 838], "array_helpers_dtype_info_help": 772, "kind_dtyp": [772, 774], "array_indices_axi": 772, "array_dtyp": [772, 773, 840], "indices_dtyp": 772, "get_dtyp": [772, 773, 812, 830, 838, 840], "abs_smallest_v": [772, 774, 775], "large_abs_safety_factor": [772, 774, 775, 812, 830, 838, 840], "small_abs_safety_factor": [772, 774, 775, 812, 830, 838], "safety_factor_scal": [772, 774, 775, 838, 840], "disable_random_axi": 772, "axis_zero": 772, "allow_inf": [772, 775, 838, 840], "min_num_dim": [772, 774, 838, 840], "max_num_dim": [772, 774, 838, 840], "min_dim_s": [772, 774, 838, 840], "max_dim_s": [772, 774, 838], "first_dimension_onli": 772, "indices_same_dim": 772, "valid_bound": 772, "safeti": [772, 774, 775, 866], "0002": [772, 775], "hypothesi": [772, 774, 780, 814, 816, 819, 824, 834], "65536": 772, "44758124e": [772, 840], "array_indices_put_along_axi": 772, "values_dtyp": 772, "array_valu": [772, 840], "allow_nan": [772, 775, 840], "allow_subnorm": [772, 775, 840], "exclude_min": [772, 775, 840], "exclude_max": [772, 775], "subnorm": [772, 775], "get_shap": [772, 774, 838, 840], "1806": 772, "36912": 772, "6955": 772, "59576": 772, "1025": 772, "arrays_and_ax": 772, "available_dtyp": [772, 773, 812, 830, 838, 840], "allow_non": [772, 774, 838, 840], "return_dtyp": 772, "force_int_axi": 772, "26e": 772, "10e": 772, "24322108": 772, "26446279e": 772, "96046448e": 772, "008": 772, "17549435e": 772, "038": 772, "06541027e": 772, "13725760e": 772, "07143888": 772, "arrays_for_pool": 772, "min_dim": 772, "max_dim": 772, "min_sid": 772, "max_sid": 772, "explicit_or_str_pad": 772, "only_explicit_pad": 772, "return_dil": 772, "mixed_fn_compo": [772, 773, 774, 775, 840], "return_data_format": 772, "cond_data_gen_help": 772, "create_concatenable_arrays_dtyp": 772, "min_num_arrai": 772, "max_num_arrai": 772, "concat_dim": 772, "common_shap": [772, 840], "stackabl": 772, "given_common_shap": 772, "create_nested_input": 772, "leaf_valu": 772, "dtype_and_valu": [772, 812, 830, 838, 840], "num_arrai": [772, 773, 838, 840], "shared_dtyp": [772, 773, 838], "ret_shap": 772, "array_api_dtyp": [772, 773], "shape_kei": 772, "37915": 772, "6322": 772, "26765": 772, "12413": 772, "26986": 772, "34665": 772, "000e": 772, "711e": 772, "100e": 772, "955e": [772, 840], "40817": 772, "56193": 772, "29200": 772, "5851": 772, "9746": 772, "9604645e": 772, "103": 772, "41795": 772, "1170789994": 772, "44251": 772, "44209": 772, "433075925": 772, "24791": 772, "24691": 772, "24892": 772, "16711": 772, "972": 772, "15357": 772, "72057594037927936": 772, "dtype_array_queri": 772, "allow_mask": 772, "allow_neg_step": 772, "dtype_array_query_v": 772, "dtype_values_axi": [772, 840], "min_axi": 772, "max_axi": 772, "valid_axi": 772, "allow_neg_ax": 772, "min_axes_s": 772, "max_axes_s": 772, "force_tuple_axi": 772, "29788": 772, "62222885e": 772, "68281172e": 772, "257j": 772, "40129846e": 772, "90000000e": 772, "63426649e": 772, "91931887e": 772, "29488e": 772, "14361019e": 772, "12445": 772, "einsum_help": 772, "get_first_solve_batch_matrix": 772, "choose_adjoint": 772, "get_second_solve_batch_matrix": 772, "get_first_solve_matrix": 772, "allow_simplifi": 772, "choose_sid": 772, "xa": 772, "get_second_solve_matrix": 772, "list_of_s": 772, "sampled_from": [772, 838, 840], "min_siz": [772, 774, 780, 840], "max_siz": [772, 774, 780, 840], "size_bound": [772, 840], "999999999999999": 772, "9394938006792373": 772, "mutually_broadcastable_shap": 772, "num_shap": 772, "base_shap": 772, "dtype_help": 773, "univers": [773, 837, 855], "cast_filt": 773, "cast_filter_help": 773, "current_backend": [773, 797, 814, 821, 829, 833, 838, 841, 845], "get_castable_dtyp": 773, "castabl": 773, "prune_funct": 773, "intersect": [773, 824, 840], "signed_integ": 773, "real_and_complex": 773, "float_and_complex": 773, "general_help": 774, "broadcasterror": 774, "apply_safety_factor": 774, "dims_and_offset": 774, "ensure_dim_uniqu": 774, "embedding_help": 774, "general_helpers_dtype_info_help": 774, "get_axi": [774, 840], "allow_neg": 774, "sort_valu": 774, "force_tupl": 774, "force_int": 774, "assertionerror": [774, 812, 819, 829, 830, 838, 840], "get_bound": [774, 840], "get_mean_std": 774, "matrix_is_st": 774, "cond_limit": 774, "instabl": [774, 812, 825, 830], "computation": [774, 815], "prone": [774, 825], "thumb": 774, "gradual": 774, "strong": [774, 851, 856, 866], "collinear": 774, "reshape_shap": [774, 840], "sizes_": 774, "two_broadcastable_shap": 774, "x_and_filt": 774, "number_help": 775, "arbitrarili": [775, 848], "safety_factor": 775, "backend_proc": 776, "input_queu": 776, "output_queu": 776, "frontend_proc": 776, "pipeline_help": 777, "backendhandl": 777, "update_backend": [777, 838], "backendhandlermod": 777, "enum": 777, "setbackend": 777, "withbackend": 777, "withbackendcontext": 777, "get_frontend_config": 777, "frontendmethoddata": 778, "ivy_init_modul": 778, "framework_init_modul": 778, "init_nam": 778, "test_parameter_flag": 779, "dynamicflag": [779, 780], "frontendfunctiontestflag": [779, 830], "with_copi": 779, "generate_frontend_arrai": [779, 780, 830], "testflag": 779, "apply_flag": 779, "args_to_iter": 779, "frontendinittestflag": 779, "frontendmethodtestflag": 779, "test_cython_wrapp": [779, 780], "initmethodtestflag": 779, "methodtestflag": 779, "build_flag": 779, "frontend_init_flag": 779, "frontend_method_flag": 779, "function_flag": 779, "init_method_flag": 779, "testing_help": 780, "handle_exampl": [780, 840], "test_exampl": [780, 840], "test_frontend_exampl": [780, 840], "test_method_exampl": [780, 840], "test_frontend_method_exampl": [780, 840], "given_kwarg": 780, "handle_frontend_method": [780, 838, 840], "class_tre": [780, 838], "init_tre": [780, 838], "init_native_arrai": 780, "_as_varaible_strategi": 780, "method_native_arrai": 780, "test_inplac": [780, 840], "_given_kwarg": 780, "test_compil": 780, "handle_frontend_test": [780, 838, 840], "alias": [780, 814, 837, 838], "number_positional_arg": [780, 838], "test_with_out": [780, 838, 840], "test_with_copi": 780, "handle_method": [780, 840], "method_tre": [780, 838, 840], "_gradient_strategi": 780, "handle_test": [780, 812, 830, 840], "test_instance_method": [780, 840], "num_positional_args_help": 780, "num_positional_args_method": 780, "geglu": 784, "leakyrelu": 784, "logsoftmax": 784, "from_flax_modul": 785, "native_modul": 785, "params_fx": 785, "rng_seed": 785, "constructor_arg": 785, "constructor_kwarg": 785, "instance_arg": 785, "instance_kwarg": 785, "flax": [785, 850, 851, 857, 866], "from_haiku_modul": 785, "params_hk": 785, "from_paddle_modul": 785, "from_torch_modul": 785, "dedic": [785, 817, 832, 843, 847, 849], "to_keras_modul": 785, "native_module_class": 785, "modulehelp": [786, 790], "create_vari": [787, 849], "var_shap": [787, 849], "fan_out": [787, 849], "fan_in": [787, 849], "rectangular": 787, "firstlayersiren": 787, "siren": 787, "glorotuniform": [787, 788, 849], "glorot": 787, "xavier": 787, "neuron": 787, "w_1x_1": 787, "w_2x_2": 787, "w_nx_n": 787, "w_i": 787, "vanish": 787, "explod": [787, 854, 855], "kaimingnorm": 787, "fan_mod": [787, 849], "kaim": 787, "he": 787, "negative_slop": 787, "fan": 787, "propog": 787, "fan_sum": [787, 849], "Ones": 787, "randomnorm": 787, "stddev": 787, "w0": 787, "wlim": 787, "predefin": 787, "fan_avg": 787, "adaptiveavgpool1d": 788, "avgpool1d": 788, "implicit": [788, 823, 828, 837, 840, 845, 866], "avgpool2d": 788, "avgpool3d": 788, "e501": 788, "filter_s": 788, "weight_initi": [788, 849], "bias_initi": [788, 849], "0x7f73c8bc07c0": 788, "0x7f73c8bc0820": 788, "conv1dtranspos": 788, "0x7f73c8bc0880": 788, "0x7f73c8bc08e0": 788, "filter_shap": 788, "0x7f73c8bc0940": 788, "0x7f73c8bc09a0": 788, "0x7f73c8bc0a00": 788, "0x7f73c8bc0a60": 788, "0x7f73c8bc0b80": 788, "0x7f73c8bc0be0": 788, "conv3dtranspos": 788, "0x7f73c8bc0c40": 788, "0x7f73c8bc0ca0": 788, "depthwiseconv2d": 788, "num_channel": 788, "0x7f73c8bc0ac0": 788, "0x7f73c8bc0b20": 788, "bernoul": 788, "num_embed": 788, "embedding_dim": 788, "padding_idx": 788, "lookup": 788, "num_embeddingss": 788, "renorm": 788, "insensit": 788, "return_st": 788, "0x7f73c8bc0d00": 788, "get_initial_st": 788, "0x7f73c8bc0700": 788, "0x7f73c8bc0760": 788, "maxpool1d": 788, "maxpool3d": 788, "multiheadattent": 788, "embed_dim": 788, "head_dim": 788, "dropout_r": 788, "use_proj_bia": 788, "attention_ax": 788, "build_mod": [788, 789, 790], "on_init": [788, 790], "parallel": [788, 822, 866, 870, 871], "binarycrossentropyloss": 789, "store_var": [789, 790], "with_partial_v": [789, 790], "logpoissonloss": 789, "modulemeta": 790, "temporarili": [790, 812, 819, 830], "from_cal": 790, "module_dict": 790, "register_buff": 790, "register_paramet": 790, "weights_path": 790, "randomness_factor": 790, "with_edge_label": 790, "with_arg_label": 790, "with_output_label": 790, "output_connected_onli": 790, "highlight_subgraph": 790, "trace_kwarg": 790, "_unified_ivy_graph": 790, "_call": 790, "num_featur": 791, "trail": 791, "layernorm": 791, "normalized_shap": 791, "elementwise_affin": 791, "set_stat": [792, 849], "adamw": 792, "weight_decai": 792, "init_on_first_step": 792, "fallback_to_non_trac": 792, "ignore_miss": 792, "privat": [792, 837, 840], "_step": [792, 849], "stochast": [792, 866], "sub_modul": 793, "check_al": 794, "messag": [794, 803, 807, 815, 816, 824, 827, 829, 831, 837, 845, 847, 856], "check_all_or_any_fn": 794, "check_ani": 794, "check_dev_correct_format": 794, "check_dimens": 794, "check_elem_in_list": [794, 833, 836, 837], "elem": 794, "check_equ": [794, 837], "check_exist": 794, "check_fals": 794, "check_gather_input_valid": 794, "check_gather_nd_input_valid": 794, "check_great": 794, "allow_equ": [794, 829], "check_inplace_sizes_valid": [794, 836], "check_isinst": 794, "allowed_typ": 794, "check_kernel_padding_s": 794, "padding_s": 794, "check_less": [794, 829], "check_one_way_broadcast": 794, "check_same_dtyp": 794, "check_shapes_broadcast": 794, "check_tru": 794, "check_unsorted_segment_valid_param": 794, "ast_help": 796, "importtransform": 796, "nodetransform": 796, "impersonate_import": 796, "tree": [796, 825], "local_ivy_id": 796, "visit_import": 796, "visit_importfrom": 796, "ivyload": 796, "loader": [796, 848, 851], "exec_modul": 796, "ivypathfind": 796, "metapathfind": 796, "find_spec": 796, "fullnam": 796, "contextmanag": 797, "choose_random_backend": 797, "global_backend": 797, "dynamic_backend_convert": 797, "backend_stack": [797, 845], "prevent_access_loc": 797, "previous_backend": [797, 821], "Or": [797, 808, 810, 815, 836, 848], "set_backend_to_specific_vers": 797, "set_jax_backend": 797, "set_mxnet_backend": 797, "mx": 797, "set_numpy_backend": 797, "set_paddle_backend": 797, "set_tensorflow_backend": 797, "set_torch_backend": 797, "sub_backend_handl": 798, "clear_sub_backend": 798, "find_available_sub_backend": 798, "sub_backends_loc": 798, "fn_name_from_version_specific_fn_nam": 798, "fn_name_from_version_specific_fn_name_sub_backend": 798, "sub_backend_vers": 798, "backend_vers": [798, 812, 825, 830], "set_sub_backend": 798, "sub_backend_str": 798, "set_sub_backend_to_specific_vers": 798, "sub_backend": 798, "unset_sub_backend": 798, "check_for_binari": 799, "cleanup_and_fetch_binari": [799, 815], "clean": [799, 816, 841, 845, 846, 848], "dynamic_import": 800, "import_modul": [800, 845], "einsum_pars": 801, "convert_interleaved_input": 801, "interleav": 801, "convert_subscript": 801, "old_sub": 801, "symbol_map": 801, "subscript": [801, 802], "oe": 801, "ellipsi": [801, 802], "find_output_shap": 801, "find_output_str": 801, "canon": 801, "gen_unused_symbol": 801, "abd": [801, 802], "get_symbol": 801, "letter": 801, "resort": 801, "unicod": 801, "charact": [801, 837, 856], "chr": 801, "surrog": 801, "\u0155": 801, "20000": 801, "\u4eac": 801, "has_valid_einsum_chars_onli": 801, "einsum_str": 801, "abaz": 801, "\u00f6ver": 801, "is_valid_einsum_char": 801, "\u01f5": 801, "legalise_einsum_expr": 801, "reproduct": [801, 802], "pars": [801, 802, 822, 827, 851], "intak": 801, "contract_path": 801, "parse_einsum_input": [801, 802], "einsum_eqn": 801, "legalis": 801, "legalise_einsum_eqn": 801, "za": [801, 802], "xza": [801, 802], "xz": [801, 802], "possibly_convert_to_numpi": 801, "myshap": 801, "__main__": 801, "0x10f850710": 801, "einsum_path_help": 802, "can_dot": 802, "idx_remov": 802, "bla": 802, "benefici": 802, "movement": 802, "costli": 802, "gemm": 802, "ijj": 802, "ddot": 802, "ikj": 802, "compute_size_by_dict": 802, "idx_dict": 802, "abbc": 802, "find_contract": 802, "input_set": 802, "output_set": 802, "lh": 802, "rh": 802, "new_result": 802, "idx_contract": 802, "iset": 802, "oset": 802, "bdc": 802, "flop_count": 802, "num_term": 802, "size_dictionari": 802, "flop": [802, 806], "greedy_path": 802, "memory_limit": 802, "exhaust": [802, 836, 840, 863, 872], "indices_remov": 802, "priorit": [802, 814, 839, 843], "hadamard": 802, "cubic": 802, "greedi": 802, "idx_siz": 802, "optimal_path": 802, "siev": 802, "input_str": 802, "output_str": 802, "parse_possible_contract": 802, "path_cost": 802, "naive_cost": 802, "propos": [802, 816, 837, 843, 866], "intermediari": [802, 821], "unoptim": 802, "new_input_set": 802, "update_other_result": 802, "provision": 802, "_parse_possible_contract": 802, "mod_result": 802, "inplaceupdateexcept": 803, "include_backend": [803, 829], "ivyattributeerror": [803, 829], "attributeerror": [803, 829, 847], "ivybroadcastshapeerror": [803, 829], "ivydeviceerror": 803, "ivydtypepromotionerror": [803, 829], "ivyindexerror": [803, 829], "ivyinvalidbackendexcept": 803, "ivynotimplementedexcept": [803, 829], "notimplementederror": 803, "ivyvalueerror": [803, 829], "handle_except": [803, 832, 834], "add_array_spec": 804, "fn_array_spec": 804, "set_logging_mod": 805, "debug": [805, 811, 815, 816, 823, 824, 835, 840, 843, 848, 866, 874], "unset_logging_mod": 805, "print_stat": 806, "viz": 806, "snakeviz": 806, "bonu": 806, "cprofil": 806, "tensorflow_profile_start": 806, "logdir": 806, "host_tracer_level": 806, "python_tracer_level": 806, "device_tracer_level": 806, "delay_m": 806, "toggl": [806, 816], "host": [806, 810, 824, 851, 856, 871], "timestamp": 806, "awai": [806, 808, 864, 866], "millisecond": 806, "guess": 806, "tensorflow_profile_stop": 806, "torch_profiler_init": 806, "schedul": [806, 824, 851, 866, 873], "on_trace_readi": 806, "record_shap": 806, "profile_memori": 806, "with_stack": 806, "with_flop": 806, "with_modul": 806, "experimental_config": 806, "profileract": 806, "record_and_sav": 806, "dealloc": 806, "record": [806, 815, 851, 867], "callstack": 806, "aten": 806, "torchscript": [806, 845, 853, 873], "_experimentalconfig": 806, "kineto": 806, "torch_profiler_start": 806, "torch_profiler_stop": 806, "cprint": [807, 845], "grant": 808, "autotun": [808, 870], "grow": [808, 811, 817, 866, 874], "peopl": [808, 813, 815, 816, 818, 866, 868], "wip": [808, 859], "docker": [808, 812, 813, 830], "pull": [808, 809, 811, 814, 815, 819, 827, 831, 841, 843, 851, 852, 857], "sweat_smil": 808, "setting_up": 808, "jax_fn": 808, "jax_x": 808, "torch_x": 808, "torch_fn": 808, "motiv": [808, 847, 856], "contextu": 808, "problem": [808, 811, 814, 816, 819, 820, 826, 837, 847, 856, 862, 868, 872], "explos": [808, 854, 856], "adher": [808, 819, 825, 828, 832, 843, 845, 850, 855, 856, 862, 863, 872], "focus": [808, 825, 841, 864, 865, 866, 872, 873], "orient": 808, "contributor": [808, 809, 812, 814, 815, 816, 830, 837, 844, 866], "shorter": [808, 847], "ensp": 808, "customiz": [808, 822], "deepmind_perceiver_io": 808, "sm_framework": 808, "segmentation_model": 808, "sm": 808, "torch_sm": 808, "metric": [808, 851], "iou_scor": 808, "rax": 808, "torch_rax": 808, "poly1_softmax_loss": 808, "madmom": 808, "madmon": 808, "torch_madmom": 808, "freq": 808, "audio": 808, "hz2midi": 808, "torch_loss": 808, "maxpooling1d": 808, "pool_siz": 808, "tf_kornia": 808, "tf_rax": 808, "tf_madmom": 808, "tf_loss": 808, "_forward_classifi": [808, 860], "forward_classifi": [808, 860], "hk_eff_encod": 808, "dummy_x": 808, "jax_sm": 808, "jax_madmom": 808, "jax_loss": 808, "np_kornia": 808, "np_sm": 808, "np_rax": 808, "np_loss": 808, "yourself": [808, 814, 816, 831, 840, 843], "favourit": [808, 815], "pipelin": [808, 810, 818, 819, 820, 838, 841, 850, 853, 855, 860, 866, 867, 872], "hyperparam": 808, "idea": [808, 814, 839, 841, 846, 857, 865], "instantli": [808, 860], "essenti": [808, 811, 814, 821, 823, 826, 827, 833, 836, 837, 838, 855, 856, 872], "mainli": [808, 814, 818, 835, 837, 840, 846, 848, 853, 866], "handler": [808, 844, 846, 850, 853], "scene": [808, 818, 844, 846, 854, 855, 866], "facilit": [808, 817], "mse_loss": 808, "jax_ms": 808, "tf_mse": 808, "np_mse": 808, "torch_ms": 808, "someth": [808, 812, 816, 821, 830, 831, 841, 848, 849, 851, 852, 872], "favorit": 808, "flexibl": [808, 823, 825, 832, 835, 841, 843, 866], "everyon": [808, 809, 814, 815, 816, 851, 857], "plan": [808, 852], "interoper": [808, 856, 863, 864, 866, 869], "believ": [808, 816, 856], "feedback": [808, 814, 824], "appreci": [808, 817], "amaz": [808, 874], "journei": [808, 809, 817], "ambiti": 808, "season": 808, "perfect": 808, "ask": [808, 814, 815, 827, 845, 847, 851, 852, 857], "fellow": 808, "twitter": 808, "sneak": 808, "peek": 808, "stai": [808, 824], "proper": [808, 814, 837, 860], "credit": 808, "accompani": 808, "lenton2021ivi": 808, "inter": 808, "author": [808, 814, 816, 864, 868], "lenton": 808, "daniel": 808, "pardo": 808, "fabio": 808, "falck": 808, "fabian": 808, "jame": 808, "stephen": 808, "clark": 808, "ronald": 808, "journal": 808, "arxiv": 808, "preprint": 808, "2102": 808, "02886": 808, "year": [808, 819, 851, 855, 857, 866], "strongli": [809, 815, 837, 872, 873], "engag": [809, 816, 817, 856], "skill": [809, 817, 868], "veteran": 809, "effort": [809, 814, 851, 856, 862, 866, 872], "board": [809, 822], "stage": [809, 816, 818, 819, 822, 840, 856, 866], "excit": [809, 818, 856], "reward": [809, 817], "badg": [809, 817, 824, 874], "program": [809, 836, 863, 864, 866, 869, 870, 873], "climb": [809, 813], "Be": [810, 822], "awar": [810, 822, 829, 831], "linux": [810, 815, 816, 822, 869, 871], "regularli": [810, 822, 824], "internet": [810, 822], "codespac": [810, 822, 830], "make_doc": 810, "sh": [810, 815, 816, 819, 824], "pwd": 810, "ssh": [810, 824], "make_docs_without_dock": [810, 822], "award": 811, "formal": 811, "dynamo": [811, 874], "earn": [811, 817], "thoroughli": [811, 819], "valuabl": [811, 814, 816], "merg": [811, 814, 816, 819, 824, 837, 866, 874], "meet": [811, 817, 837], "qualiti": [811, 816], "wizard": [811, 874], "impact": [811, 824, 840, 849, 868], "inspector": [811, 874], "acknowledg": [811, 817], "honour": 811, "dilig": 811, "bronz": [811, 817, 874], "silver": [811, 817, 874], "gold": [811, 817, 851, 874], "expertis": [811, 817, 868], "assist": [812, 830], "runtimeerror": [812, 830], "logaddexp2_cpu": [812, 830], "falsifi": [812, 819, 830, 840], "test_logaddexp2": [812, 830], "backend_fw": [812, 830, 838], "dtype_and_x": [812, 830, 838, 840], "reproduce_failur": [812, 819, 830, 834, 840], "axicy2bkaamobaar2waaaacvaai": [812, 830], "decoartor": [812, 830], "with_unsupported_dtyp": [812, 825, 830, 837], "25830078125": [812, 830], "258544921875": [812, 830], "test_acosh": [812, 830], "axicy2baabyqwqgiaabdaai": [812, 830], "quit": [812, 816, 820, 827, 828, 830, 833, 834, 840, 843, 866, 872], "41421356": [812, 830], "41421356e": [812, 830], "34078079e": [812, 830], "154": [812, 830], "test_ab": [812, 815, 830, 840], "000j": [812, 830], "154j": [812, 830], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [812, 830], "thread": [812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 848, 866], "pycharm": [812, 838, 840], "few": [813, 814, 816, 823, 825, 826, 832, 833, 835, 836, 838, 840, 843, 845, 846, 847, 848, 849, 857, 866, 868], "steep": 813, "curv": 813, "realpython": 813, "pyn": 813, "exchang": [813, 856, 862, 864], "pilot": [813, 852], "stuck": [813, 814], "spell": 813, "sound": [813, 824, 844], "frequent": [814, 816, 821, 866], "outlin": [814, 815, 816, 818, 823, 825, 828, 833, 836, 837, 840], "broad": [814, 868], "individu": [814, 816, 819, 821, 825, 833, 837, 866, 869, 872, 873], "clearli": [814, 816, 827, 838, 840, 856, 870], "straightforward": [814, 817, 848], "lie": 814, "urgent": 814, "encourag": [814, 817, 831, 851, 856], "tackl": [814, 817, 837], "challeng": [814, 821, 872], "categoris": [814, 819, 837], "comfort": [814, 815, 829], "linkag": 814, "pr": [814, 816, 817, 819, 831, 837, 838, 840], "confid": 814, "submit": [814, 831], "scipi": [814, 856, 868, 873], "mindspor": 814, "simpler": [814, 816, 831, 859, 867, 873], "member": [814, 816, 837, 852, 856], "comment": [814, 815, 816, 819, 825, 831, 837, 839, 843], "composition": 814, "feasibl": [814, 824, 840, 856, 859], "pend": 814, "helpfulli": [814, 843, 864], "problemat": [814, 815], "unimpl": 814, "issue_link": 814, "alias_nam": 814, "notic": [814, 820, 824, 830, 831, 840, 843, 859], "push": [814, 816, 817, 819, 838, 840, 872], "liner": 814, "meanwhil": [814, 824], "reselect": 814, "faithfulli": 814, "creation_routin": [814, 838], "indexing_routin": 814, "ma": 814, "manipulation_routin": 814, "mathematical_funct": [814, 837], "sorting_searching_count": 814, "ufunc": [814, 837], "matrix_and_vector_product": 814, "matrix_eigenvalu": 814, "norms_and_other_numb": 814, "solving_equations_and_inverting_matric": 814, "gleam": 814, "uncom": 814, "test_numpy_inn": 814, "test_frontend": [814, 824, 830, 838], "unsur": [814, 840], "statu": [814, 817, 824, 831, 857], "refrain": 814, "checkbox": [814, 815], "aforement": 814, "parent": [814, 824, 847], "arraywithelementwis": [814, 820, 847], "containerwithmanipul": 814, "thorough": [814, 828, 832, 840], "add_reformatting_checklist_": 814, "category_nam": [814, 825, 826, 828, 832, 833], "autom": [814, 824, 831, 840, 853, 868], "bot": [814, 831], "markdown": [814, 822], "patient": [814, 815], "elabor": 814, "struggl": 814, "assigne": 814, "status": 814, "central": [814, 831, 843, 856, 872], "analyz": [814, 853], "relevant_submodul": 814, "roadmap": [814, 824], "soon": [814, 816, 824, 825, 851, 859], "deem": [814, 837], "subtask": 814, "clearer": [814, 829, 838, 848], "backend_nam": [814, 821, 825, 826, 828, 832, 833, 834], "sometim": [814, 815, 816, 819, 825, 833, 837, 840, 843], "rare": [814, 826, 851, 871], "button": [814, 815, 816, 830], "centr": 814, "predetermin": 814, "superset": [814, 818, 833, 836, 851], "reserv": 814, "happi": [815, 830, 851, 857], "your_usernam": [815, 830], "your_fold": [815, 830], "enter": [815, 816, 820, 825, 826, 830, 832, 834], "sync": [815, 819, 830], "remot": [815, 819, 830, 831], "nutshel": [815, 832], "hook": [815, 831, 839], "lint": [815, 818], "succe": [815, 859], "whatev": [815, 823, 851], "elig": [815, 817], "student": 815, "licens": [815, 869], "remind": 815, "expir": 815, "won": [815, 816, 823, 825, 850, 852, 856, 857, 859, 860, 861], "profession": 815, "trial": 815, "jetbrain": 815, "month": [815, 855], "bui": [815, 872], "paid": 815, "rapid": [815, 855, 856, 866], "pace": 815, "person": [815, 816], "abil": [815, 843, 846, 851, 866], "perhap": [815, 847, 848, 849, 851, 872], "conda": [815, 856, 868], "ivy_dev": [815, 816], "icon": [815, 816, 830], "panel": 815, "vscode": [815, 830], "palett": 815, "ctrl": [815, 816], "mac": [815, 816], "intel": [815, 856, 864, 871], "m1": 815, "optional_apple_silicon_1": 815, "optional_apple_silicon_2": 815, "array_api_test": [815, 816, 819, 830], "test_array_api": [815, 816, 819, 830, 840], "suit": [815, 818, 819, 824, 830, 839, 840, 848, 856, 866, 872], "cmd": 815, "bat": [815, 816], "virtualenv": 815, "tick": [815, 816, 824], "nz2": 815, "openssl": 815, "libssl1": 815, "1_1": 815, "1f": 815, "1ubuntu2": 815, "20_amd64": 815, "deb": 815, "dpkg": 815, "mitig": [815, 872], "desktop": [815, 830], "powershel": 815, "admin": 815, "deploy": [815, 860, 865, 868, 869, 872, 873], "menu": [815, 830], "introspect": 815, "dialog": 815, "persist": 815, "earlier": [815, 816, 825, 841], "virtualis": 815, "bio": [815, 856], "dropdown": [815, 824], "dockerfil": 815, "ca": 815, "certif": 815, "gnupg": 815, "lsb": 815, "keyr": 815, "fssl": 815, "gpg": 815, "dearmor": 815, "echo": [815, 824, 852], "arch": 815, "lsb_releas": 815, "null": [815, 830], "ce": 815, "cli": 815, "containerd": 815, "systemctl": 815, "softwar": [815, 816, 855, 856, 864, 869, 870, 871], "press": [815, 816, 848], "4a": 815, "socket": 815, "rwx": 815, "sock": 815, "pid": 815, "editor": 815, "pytest": [815, 816, 819, 824, 830, 834, 840], "keyboard": 815, "screenshot": 815, "pop": [815, 830, 856], "test_elementwis": 815, "bar": [815, 830], "shell": [815, 816, 819, 824], "setup_test": 815, "run_ivy_core_test": 815, "run_ivy_nn_test": 815, "run_ivy_stateful_test": 815, "run_test": [815, 824], "test_depend": 815, "test_ivy_cor": 815, "test_ivy_nn": 815, "test_ivy_st": 815, "unix": 815, "test_": [815, 838], "test_cor": [815, 816, 838], "offici": [815, 825, 845], "wish": [815, 837], "ivy_nn": 815, "ivy_st": 815, "header": [815, 816, 839], "arrow": 815, "test_stat": 815, "test_submodule_nam": 815, "test_function_nam": 815, "debugg": 815, "studio": [815, 830, 840], "especi": [815, 821, 831, 855, 866], "afterward": [815, 848], "background": [815, 822, 830, 866, 868], "overlap": [815, 824, 830, 841, 843, 867], "test_file_path": [815, 830], "test_fn_nam": [815, 830], "engin": [815, 866, 868, 869], "devcontain": 815, "comma": 815, "postcreatecommand": 815, "post_create_command": 815, "poststartcommand": 815, "safe": [815, 837], "containerworkspacefold": 815, "reopen": 815, "test_fle_path": 815, "slash": 815, "isol": [815, 816, 867, 872], "container": 815, "intens": 815, "headach": 815, "arm": [815, 816], "vm": [815, 824], "azur": 815, "cloud": [815, 824, 868], "theme": [815, 822], "ipad": 815, "browser": [815, 822], "quota": 815, "requisit": 815, "pane": [815, 816, 824], "dockerfilegpu": 815, "ivv": 815, "multiv": 815, "multivers": [815, 841], "dockerfilemultivers": 815, "dockerhub": 815, "upto": [815, 816], "minut": [815, 824], "launch": 815, "quickli": [815, 816, 824, 848, 849, 855, 857, 866, 873], "kindli": [815, 839], "guidelin": 815, "colour": 815, "chanc": 815, "troubleshoot": 815, "ever": 815, "flask": [815, 830], "toolbar": [815, 816, 830], "_array_modul": [815, 819, 830], "refresh": [815, 830], "pytestarg": [815, 830], "unittesten": [815, 830], "pytesten": [815, 830], "autotestdiscoveronsaveen": [815, 830], "conftest": 815, "serv": [815, 816, 820, 823, 832, 833, 837, 838, 840, 843, 844, 853, 864], "aren": [815, 825], "available_config": 815, "cp310": 815, "x86": [815, 871], "newer": [815, 840], "_compil": 815, "meantim": 815, "suffici": [815, 827, 837, 840], "bear": [815, 820, 823, 825, 837], "tendenc": 816, "land": 816, "unrel": [816, 856], "fly": [816, 866], "internship": 816, "suspect": 816, "iii": 816, "issue_numb": 816, "12345": 816, "rememb": 816, "respond": 816, "dai": [816, 831], "freed": 816, "situat": [816, 824, 850], "obvious": [816, 824], "hypothet": 816, "frustrat": 816, "delai": [816, 859], "busi": 816, "inact": 816, "unfairli": 816, "investig": 816, "name_of_your_branch": 816, "date": [816, 819], "complic": [816, 838, 845], "merge_with_upstream": 816, "abort": 816, "tediou": [816, 827, 843], "stash": [816, 831], "reinstat": 816, "uncommit": 816, "unstag": [816, 831], "untrack": 816, "atlassian": 816, "wrote": 816, "piec": [816, 820, 833, 834, 845, 859, 862, 864], "blame": 816, "eg": 816, "week": [816, 857], "grep": 816, "commit_id": 816, "handi": 816, "histori": 816, "highlight": [816, 824, 827, 837, 839], "approv": 816, "someon": [816, 851], "hash": [816, 848], "cancel": 816, "speedup": 816, "unavail": 816, "tickbox": 816, "span": [816, 864, 872], "intent": [816, 836], "discourag": 816, "adopt": [816, 820, 832, 843, 856, 865, 866, 871], "philosophi": 816, "infrequ": 816, "earli": [816, 866], "wast": [816, 824], "spot": [816, 827, 833], "mistak": 816, "mountain": 816, "advoc": [816, 851], "session": [816, 866], "beauti": 816, "particularli": [816, 848, 851, 859, 864], "care": [816, 826, 837, 843, 850, 856], "undo": 816, "stress": 816, "nifti": 816, "reassur": 816, "local_path_to_ivi": 816, "subfold": [816, 838, 840, 841], "dep": 816, "fresh": 816, "arsen": 816, "exec": 816, "ivy_contain": 816, "test_imag": 816, "test_random_crop": 816, "test_creation_funct": 816, "test_arang": 816, "cursor": 816, "alt": 816, "blog": 816, "breakpoint": 816, "gutter": 816, "caret": 816, "f8": 816, "f9": 816, "Into": 816, "f7": 816, "smart": 816, "fragment": [816, 862, 864, 868], "wherein": [816, 833, 840], "failur": [816, 824, 838, 840], "embark": 817, "innov": [817, 856], "door": [817, 851], "elev": 817, "mission": [817, 856, 868], "opportun": 817, "testament": [817, 839], "stone": 817, "gift": 817, "acquir": 817, "peak": 817, "privileg": [817, 868], "bounti": 817, "cash": 817, "delight": 817, "weed": [818, 844], "tour": 818, "formatt": [818, 831], "conjunct": 819, "establish": [819, 868], "popular": [819, 866], "sens": [819, 825, 827, 837, 839, 847], "unconnect": 819, "initialis": [819, 837, 840], "strang": [819, 847], "test_linalg": [819, 838], "test_set_funct": 819, "test_signatur": 819, "excess": [819, 821, 827], "array_modul": 819, "vv": 819, "test_manipulation_funct": 819, "test_concat": [819, 840], "nb": 819, "liber": 819, "______________________": 819, "test_remaind": 819, "_______________________": 819, "test_operators_and_elementwise_funct": 819, "1264": 819, "1277": 819, "binary_param_assert_against_refimpl": 819, "ctx": 819, "620": 819, "binary_assert_against_refimpl": 819, "324": 819, "scalar_o": 819, "17304064": 819, "binaryparamcontext": 819, "axic42baaowcnp": 819, "rumwmabaear0": 819, "make_binary_param": 819, "numeric_dtyp": 819, "left_strat": 819, "left_sym": 819, "right_strat": 819, "right_sym": 819, "right_is_scalar": 819, "binary_param_assert_dtyp": 819, "binary_param_assert_shap": 819, "recreat": 819, "unexpectedli": 819, "discrep": [819, 838], "test_asarray_arrai": 819, "test_floor_divid": 819, "health": 819, "test_iop": 819, "__imod__": 819, "isequ": 819, "test_matrix_norm": 819, "alter": 819, "tweak": 819, "array_api_methods_to_test": 819, "test_special_cas": 819, "__ipow__": 819, "is_integ": 819, "easier": [819, 820, 821, 825, 838, 841, 853, 866, 868], "revisit": [819, 832], "_data": [820, 836, 837, 847], "organiz": [820, 823, 837], "underpin": [820, 823, 845], "programmat": [820, 823, 867], "backup": [820, 822, 823], "accident": [820, 823, 837], "absent": [820, 823], "auto": [820, 822, 823, 831, 848], "__mul__": [820, 823, 827, 832, 843, 847], "throw": [820, 825, 826, 829, 830, 847, 866], "imposs": 820, "inputs_to_native_arrai": [820, 833, 834], "outputs_to_ivy_arrai": [820, 825, 826, 832, 833, 834], "secondli": [820, 825], "__ivy_array_function__": 820, "inspir": 820, "__torch_function__": 820, "myarrai": 820, "handled_funct": 820, "notimpl": 820, "issubclass": 820, "enough": [820, 824, 825, 826, 840, 847, 848, 849], "ivy_funct": 820, "my_ab": 820, "my_arrai": 820, "implicit_backend": [821, 845], "__dict__": [821, 836, 845], "ivy_original_dict": [821, 845], "fallback": 821, "live": [821, 822, 825, 856, 857, 862, 864], "scope": [821, 867, 871], "dlpack": 821, "set_dynamic_backend": 821, "unset_dynamic_backend": 821, "dynamic_backend_a": 821, "set_": 821, "unset_": 821, "backend_handl": 821, "requires_grad": 821, "memory_format": 821, "preserve_format": 821, "weren": 821, "vast": [821, 825, 866], "minor": [821, 843, 851], "fn_name_v_1p12_and_abov": 821, "fn_name_v_1p01_to_1p1": 821, "heavili": [822, 834, 851], "characterist": 822, "conf": 822, "cleanup": 822, "readm": [822, 851], "maxdepth": 822, "caption": 822, "related_work": 822, "deep_div": 822, "faq": 822, "glossari": 822, "autosummari": 822, "top_functional_toc": 822, "restructuredtext": 822, "discov": [822, 825], "ivy_toctree_caption_map": 822, "unfortun": [822, 831], "linker": 822, "foo": 822, "discussion_channel_map": 822, "1000043690254946374": 822, "1000043749088436315": 822, "forum": [822, 852], "seri": [822, 825, 837, 840, 866, 868], "discussion_paragraph": 822, "discord_link": 822, "channel_link": 822, "gg": 822, "zvqdvbznqj": 822, "799879767196958751": 822, "channel_id": 822, "autoskippablemethod": 822, "skippable_method_attribut": 822, "__qualname__": 822, "autodoc": 822, "__doc__": 822, "autoivydata": 822, "mutual": [823, 833], "containerwithelementwis": 823, "__repr__": 823, "__getattr__": [823, 859], "__setattr__": [823, 859], "__contains__": 823, "__getstate__": 823, "__setstate__": 823, "unpickl": 823, "num_dim": [823, 850], "restrict": [823, 824, 837, 845, 859, 863], "enforc": [823, 847], "lefthand": 823, "righthand": 823, "handle_nest": [823, 832, 833, 834, 845], "absenc": [823, 832, 866], "implicitli": [823, 835, 840, 845], "log_pr": [823, 833, 836], "intuit": [823, 840, 848, 849, 862], "chronolog": 823, "concurr": [823, 824, 833, 866], "despit": [823, 825, 826, 838, 845, 856, 863, 866], "__list__": 823, "whatsoev": [823, 833, 853, 872], "children": 823, "shallowest": 823, "deepest": 823, "rollback": 824, "incorpor": [824, 838, 848, 866], "techniqu": 824, "triplet": 824, "test_torch": [824, 838], "test_tensor": [824, 838], "test_torch_instance_arctan_": 824, "12500": 824, "daili": 824, "huge": [824, 848, 854, 856, 866, 872], "shoot": 824, "_reduce_loss": [824, 833, 836], "test_nn": 824, "test_loss": 824, "test_binary_cross_entropy_with_logit": 824, "test_cross_entropi": 824, "test_binary_cross_entropi": 824, "test_sparse_cross_entropi": 824, "test_loss_funct": 824, "test_torch_binary_cross_entropi": 824, "test_torch_cross_entropi": 824, "binary_cross_entropy_with_logit": 824, "torch_binary_cross_entropi": 824, "torch_cross_entropi": 824, "magic": 824, "readthedoc": 824, "pedagog": 824, "f_1": 824, "t_1": 824, "t_3": 824, "t_7": 824, "t_": 824, "f_m": 824, "cyclic": 824, "intellig": [824, 840, 868], "tests_fil": 824, "file_nam": [824, 840, 841], "tests_lin": 824, "correspondingli": 824, "tests_to_run": 824, "determine_tests_lin": 824, "mongodb": 824, "databas": [824, 840], "mechan": [824, 851], "secret": 824, "db": 824, "ssh_deploy_kei": 824, "suffic": [824, 834, 840], "massiv": 824, "yml": 824, "felicit": 824, "clone_map": 824, "deploy_kei": 824, "user_email": 824, "user_nam": 824, "target_branch": 824, "github_serv": 824, "deploy_key_fil": 824, "ssh_known_hosts_fil": 824, "known_host": 824, "keyscan": 824, "git_ssh_command": 824, "userknownhostsfil": 824, "email": [824, 856], "methodologi": 824, "master1": 824, "restructur": 824, "_map": 824, "t_2": 824, "t_n": 824, "index_map": 824, "test_map": 824, "snowbal": 824, "recalibr": 824, "workflow_dispatch": 824, "cron": 824, "saturdai": 824, "night": 824, "pm": 824, "gut": 824, "lesser": [824, 829], "lol": 824, "hour": [824, 857], "cater": [824, 839], "master2": 824, "master32": 824, "synchron": 824, "runner2": 824, "corrupt": 824, "decoupl": [824, 849], "150": 824, "cycl": [824, 840], "yellow": 824, "queu": 824, "redirect": 824, "book": 824, "onrend": 824, "jo": 824, "ran": 824, "clickabl": 824, "all_dtyp": 825, "all_numeric_dtyp": 825, "all_int_dtyp": 825, "all_float_dtyp": 825, "replic": [825, 835, 836, 837], "thirdli": 825, "native_float32": 825, "importantli": [825, 847, 850], "arguabl": [825, 826, 837], "jaxarrai": [825, 826, 829, 832, 836, 841, 845], "_handle_0_dim_output": 825, "subtli": [825, 836], "promote_types_frontend_nam": 825, "promote_types_of_frontend_name_input": 825, "frontend_nam": 825, "upcast": 825, "nearli": [825, 832, 834, 866], "downcast": 825, "footprint": 825, "concret": 825, "aris": [825, 831, 851, 856], "utterli": 825, "meant": [825, 827, 836], "twice": 825, "disadvantag": 825, "relax": 825, "f64": 825, "unwant": 825, "primaci": 825, "resembl": 825, "compound": 825, "infer_dtyp": [825, 826, 832, 834], "settabl": [825, 826], "handle_out_argu": [825, 826, 832, 833, 834, 836, 845], "infer_devic": [825, 826, 832, 834], "deleg": [825, 873], "shape_to_tupl": 825, "with_supported_dtyp": 825, "unment": 825, "_cast_for_unary_op": [825, 833, 836], "target_typ": 825, "syntax": [825, 855, 856, 866], "unsupported_dtyp": 825, "supported_dtypes_and_devic": 825, "with_unsupported_device_and_dtyp": 825, "globals_getter_func": 825, "f2": 825, "lack": [825, 836, 866, 873], "mandat": [825, 836, 840, 841, 856], "confus": [825, 829, 836, 843, 853, 857], "inconsist": [825, 829, 835], "is_nan": 825, "supported_dtyp": 825, "anytim": 825, "84530": 825, "unwarr": 825, "risk": [825, 872], "needlessli": 825, "bloat": 825, "undergo": [825, 851], "unsupported_devic": 825, "supported_devic": 825, "downsid": 825, "coverag": [825, 840], "undesir": 825, "accomplish": 825, "upcast_data_typ": 825, "downcast_data_typ": 825, "crosscast_data_typ": 825, "cast_data_typ": 825, "downcast_data_dtyp": 825, "vice": 825, "versa": 825, "till": 825, "crosscast": 825, "exmp1": 825, "watch": [825, 837], "handle_numpy_arrays_in_specific_backend": [825, 832], "cate": 825, "understood": 825, "consumpt": [825, 870], "dual": 826, "categor": [826, 833, 837], "210": 826, "_handle_except": [826, 829], "1013": 826, "_handle_nest": [826, 829], "905": 826, "_handle_out_argu": [826, 829], "441": 826, "_inputs_to_native_arrai": [826, 829], "new_arg": [826, 829], "new_kwarg": [826, 829], "_outputs_to_ivy_arrai": [826, 829], "358": 826, "_handle_array_funct": [826, 829], "_handle_device_shift": 826, "handle_device_shift": [826, 834], "crucial": [826, 835], "device_shifting_dev": 826, "__enter__": 826, "__exit__": 826, "mostli": [826, 836, 840], "soft_devic": 826, "eight": [827, 844], "op_nam": 827, "__r": 827, "unsurprisingli": [827, 855], "recap": [827, 849], "combinatori": 827, "okai": [827, 843, 845], "spec": [827, 828], "my_func": [827, 841], "some_flag": 827, "another_flag": 827, "jointli": 827, "5574077": 827, "1850398": 827, "5463025": 827, "8422884": 827, "91601413": 827, "9647598": 827, "3738229": 827, "1597457": 827, "0963247": 827, "9955841": 827, "3278579": 827, "asid": 827, "increasingli": [827, 859], "14254655": 827, "1578213": 827, "380515": 827, "trivial": [827, 836], "failing_fn_nam": 827, "onlin": [827, 828], "minutest": 827, "fault": [827, 866], "contrast": [828, 832, 837, 872], "preview": 828, "incorrectli": [828, 859], "needless": [828, 838], "renam": [828, 837], "judgment": 828, "operator_nam": 828, "succinct": 828, "docst": 828, "native_error": 829, "_combine_messag": 829, "truli": [829, 847], "wrong": [829, 831, 834, 837, 843], "198": 829, "392": 829, "_handle_array_like_without_promot": 829, "805": 829, "432": 829, "349": 829, "other_test": 829, "523": 829, "_handle_numpy_out": 829, "396": [829, 849], "_outputs_to_numpy_arrai": 829, "_inputs_to_ivy_arrays_np": 829, "ivy_arg": 829, "ivy_kwarg": 829, "453": 829, "_from_zero_dim_arrays_to_scalar": 829, "truth_value_test": 829, "visibl": 829, "unwieldi": 829, "squash": 829, "hide": [829, 859], "cleaner": [829, 848], "caught": [829, 831], "rethrow": 829, "_print_traceback_histori": 829, "error_stack": 829, "axiserror": 829, "polici": [829, 834, 840, 842], "moreov": 829, "submoodul": 830, "test_jax_transpos": 830, "manipulaiton": 830, "test_jax": [830, 838], "test_numpi": [830, 838], "test_manipul": [830, 838, 840], "preconditionnotmet": 830, "densetensor": 830, "holder_": 830, "phi": 830, "dense_tensor_impl": 830, "array_and_ax": 830, "aaegbaegaqaaaaaaaaaaaaab": 830, "black": 831, "flake8": 831, "linter": 831, "autoflak": 831, "docformatt": 831, "pydocstyl": 831, "yaml": 831, "patch1687898304": 831, "8072": 831, "3516aed563": 831, "reformat": 831, "akshai": 831, "jain": 831, "gui": 831, "cryptic": 831, "garden": 831, "utc": 831, "didn": 831, "human": 831, "intervent": 831, "typo": 831, "ui": 831, "handle_array_like_without_promot": [832, 834], "to_native_arrays_and_back": [832, 834, 845], "handle_array_funct": [832, 834], "inputs_to_native_shap": [832, 834], "rational": [832, 836, 843], "__div__": [832, 843], "484": 832, "annot": 832, "brittl": 832, "freeli": 832, "inde": [832, 843, 851, 864], "technic": [832, 836, 851, 866, 868], "original_typ": 832, "cumbersom": 832, "hinder": [832, 855], "venn": 833, "diagram": [833, 872], "light": [833, 841, 851, 853, 867, 872], "maximis": 833, "encompass": 833, "partial_mixed_handl": [833, 834, 843], "handle_partial_mixed_funct": [833, 834, 843], "fn_decor": 833, "mixed_backend_wrapp": [833, 836], "to_add": 833, "to_skip": 833, "inputs_to_ivy_arrai": [833, 834], "modif": [833, 866], "briefli": [833, 840, 848], "get_all_arrays_on_dev": 833, "outputs_to_ivy_shap": 834, "outputs_to_native_arrai": 834, "handle_view_index": [834, 836], "handle_view": [834, 836], "handle_rag": 834, "handle_backend_invalid": 834, "handle_nan": 834, "to_native_shapes_and_back": 834, "modern": [835, 855, 856, 871], "inter_func": 835, "custom_grad_fn": 835, "args1": 835, "eas": [835, 866], "speak": 836, "val_n": 836, "base_idx": 836, "_manipulation_stack": 836, "base_flat": 836, "_view_ref": 836, "_update_view": 836, "contigu": 836, "c_contigu": 836, "ascontiguousarrai": 836, "copyto": 836, "_is_vari": 836, "tensor_scatter_nd_upd": 836, "is_vari": 836, "_update_torch_view": 836, "predominantli": [836, 841], "support_native_out": [836, 845], "_scalar_output_to_0d_arrai": 836, "_wrap_fn": 836, "dim0": 836, "dim1": 836, "res_floor": 836, "extent": [836, 837], "to_out_fn": 836, "add_wrapp": 836, "paradigm": [836, 851, 866], "expans": 836, "brief": [836, 840], "weak": 836, "_torch_bas": 836, "_torch_view_ref": 836, "_torch_manipul": 836, "weakli": 836, "adequ": 836, "tf_frontend": 837, "lax": [837, 838, 843, 850, 851], "torch_frontend": [837, 838], "numpy_frontend": 837, "jax_frontend": 837, "to_ivy_arrays_and_back": [837, 838], "fidel": 837, "algebra": [837, 864, 865, 866, 869, 873], "dynamic": 837, "mimic": 837, "arithmetic_oper": 837, "handle_numpy_out": 837, "handle_numpy_dtyp": 837, "handle_numpy_cast": 837, "from_zero_dim_arrays_to_scalar": 837, "_add": 837, "same_kind": 837, "subok": [837, 838, 843], "promote_types_of_numpy_input": 837, "underscor": 837, "unhandl": 837, "trigonometric_funct": 837, "_tan": 837, "check_tensorflow_cast": 837, "raw_op": [837, 838], "map_raw_ops_alia": 837, "output_typ": 837, "kwargs_to_upd": 837, "pointwise_op": 837, "sensibl": 837, "ahead": [837, 841, 866], "reduce_logsumexp": 837, "logsumexp": 837, "trick": 837, "max_input_tensor": 837, "preferred_element_typ": 837, "languag": [837, 845, 853, 855, 857, 864, 867, 869, 870, 871, 872], "offer": [837, 849, 857, 866, 872, 873], "finer": 837, "logicaland": 837, "np_frontend": 837, "_ivy_arrai": 837, "radd": 837, "_init_data": 837, "_process_str_data": 837, "_dtype": [837, 838, 847], "_shape": [837, 847], "govern": 837, "promote_types_of_": 837, "_input": 837, "promote_types_of_torch_input": [837, 838], "handle_numpy_casting_speci": 837, "new_fn": 837, "equiv": 837, "unsaf": 837, "array_type_test": 837, "_isfinit": 837, "organis": 837, "grasp": 837, "youtub": 837, "knowledg": 838, "np_frontend_help": 838, "open_task": 838, "test_lax": 838, "test_oper": 838, "test_jax_tan": 838, "test_mathematical_funct": 838, "test_trigonometric_funct": 838, "dtypes_values_cast": 838, "dtypes_values_casting_dtyp": 838, "arr_func": 838, "get_num_positional_args_ufunc": 838, "test_numpy_tan": 838, "handle_where_and_array_bool": 838, "test_tensorflow": 838, "test_math": 838, "test_tensorflow_tan": 838, "test_pointwise_op": 838, "test_torch_tan": 838, "_fill_valu": 838, "test_glob": 838, "test_jax_ful": 838, "test_from_shape_or_valu": 838, "_input_fill_and_dtyp": 838, "dtype_and_input": 838, "dtype_to_cast": 838, "input_fill_dtyp": 838, "test_numpy_ful": 838, "test_raw_op": 838, "test_tensorflow_fil": 838, "test_creation_op": 838, "with_arrai": 838, "test_torch_ful": 838, "add_nois": 838, "all_clos": 838, "_get_dtype_and_matrix": 838, "test_torch_qr": 838, "frontend_q": 838, "frontend_r": 838, "walkthrough": 838, "comparison_op": 838, "test_comparison_op": 838, "test_torch_great": 838, "all_alias": 838, "test_ndarrai": 838, "test_numpy_instance_add__": 838, "test_tensorflow_instance_add": 838, "1e04": 838, "allow_infin": 838, "test_torch_instance_add": 838, "_arrays_idx_n_dtyp": 838, "surprisingli": 838, "closest_relevant_group": 838, "strive": [838, 840, 843, 851, 868], "craft": [839, 840], "tailor": 839, "clariti": [839, 840, 843, 866], "weav": 839, "thrill": 839, "brim": 839, "stand": [839, 840], "landscap": 839, "forese": 839, "refin": 839, "inquiri": 839, "fixtur": 840, "hit": [840, 845, 859], "eleg": [840, 866], "unexplor": 840, "artifact": 840, "bespok": 840, "_array_or_typ": 840, "rigor": [840, 855], "test_default_int_dtyp": 840, "print_hypothesis_exampl": 840, "custom_strategi": 840, "randomis": 840, "simplist": 840, "intricaci": 840, "glanc": 840, "one_of": 840, "datum": 840, "pipe": 840, "array_or_scal": 840, "len_of_arrai": 840, "test_add": 840, "test_gpu_is_avail": 840, "pretest": 840, "snippet": [840, 860], "outlier": 840, "frontend_test": 840, "frontend_method": 840, "criterion": 840, "valid_ax": 840, "hoc": 840, "11228": 840, "268": 840, "wherev": 840, "9622": 840, "28136": 840, "6375": 840, "12720": 840, "21354": 840, "900e": 840, "57384": 840, "25687": 840, "248": 840, "test_devic": 840, "array_shap": 840, "test_lay": 840, "some_sequ": 840, "arrays_valu": 840, "36418": 840, "213": 840, "21716926": 840, "none_or_list_of_float": 840, "get_prob": 840, "103515625e": 840, "099609375": 840, "probabilist": 840, "number_positional_argu": 840, "unreproduc": 840, "x_and_linear": 840, "is_torch_backend": 840, "x_shape": [840, 845], "weight_shap": 840, "bias_shap": 840, "ivy_np": 840, "valid_float_dtyp": 840, "test_demo": 840, "failing_test": 840, "traceback": 840, "shrink": 840, "prescrib": 840, "scratch": 840, "therebi": 840, "test_gelu": 840, "test_fil": 840, "phase": [840, 851, 866], "notabl": [840, 866], "max_exampl": 840, "deadlin": 840, "weird": 840, "systemat": 840, "safeguard": 840, "inabl": 840, "test_result_typ": 840, "9090909090909091": 840, "judgement": 841, "some_namespac": 841, "some_backend": 841, "another_backend": 841, "refactor": 841, "ongo": 841, "check_fill_value_and_dtype_are_compat": 841, "_to_devic": 841, "shouldn": [841, 859], "pin": 841, "unpinn": 841, "culmin": 841, "unsett": 842, "array_significant_figur": 842, "array_decimal_valu": 842, "warning_level": 842, "nan_polici": 842, "stablest": 842, "constantli": [843, 855], "answer": [843, 847, 851], "contradict": 843, "entail": 843, "sacrif": 843, "jacfwd": 843, "jacrev": 843, "banner": 843, "expens": 843, "incredibli": [843, 848, 851, 869], "price": 843, "pai": 843, "intrus": 843, "x_beta": 843, "equip": 843, "simplif": 843, "allevi": 843, "ineffici": [843, 851, 866], "fuse": 843, "hybrid": 843, "workaround": 843, "slip": 843, "radar": 843, "stumbl": 843, "gone": [844, 856], "fulfil": 844, "syntact": [845, 850], "power_seq": 845, "_determine_backend_from_arg": 845, "importlib": 845, "_backend_dict": 845, "x_flat": 845, "wi": 845, "wi_x": 845, "wii_x": 845, "wif_x": 845, "wig_x": 845, "wio_x": 845, "wh": 845, "ht": 845, "ct": 845, "hts_list": 845, "wii_xt": 845, "wif_xt": 845, "wig_xt": 845, "wio_xt": 845, "htm1": 845, "ctm1": 845, "wh_htm1": 845, "whi_htm1": 845, "whf_htm1": 845, "whg_htm1": 845, "who_htm1": 845, "ft": 845, "ot": 845, "reliabl": 845, "scalabl": [845, 855, 871, 872], "sacrific": 845, "hear": 845, "virtu": [845, 863], "pure_ivi": 845, "pure_torch": 845, "unclean": 845, "wx": 845, "temp": 845, "ivy_func": 845, "emphas": 845, "example_input": 845, "static_argnum": [845, 859], "static_argnam": [845, 859], "primit": [846, 851, 864, 866], "upcom": 846, "hierarch": [846, 848, 849, 866], "arraywithactiv": 847, "arraywithcr": 847, "arraywithdatatyp": 847, "arraywithdevic": 847, "arraywithgener": 847, "arraywithgradi": 847, "arraywithimag": 847, "arraywithlay": 847, "arraywithlinearalgebra": 847, "arraywithloss": 847, "arraywithmanipul": 847, "arraywithnorm": 847, "arraywithrandom": 847, "arraywithsearch": 847, "arraywithset": 847, "arraywithsort": 847, "arraywithstatist": 847, "arraywithutil": 847, "_init": 847, "_size": 847, "_devic": 847, "_dev_str": 847, "_pre_repr": 847, "_post_repr": 847, "framework_str": 847, "pypep8nam": 847, "immut": 847, "claim": 847, "_native_wrapp": 847, "genuin": 847, "some_method": 847, "rewritten": 847, "littl": [847, 855, 868], "wonder": [847, 855, 857], "compartment": 847, "newshap": 847, "new_shap": 847, "tidi": 847, "crystal": 847, "ton": 848, "ado": [848, 849], "soup": 848, "walk": [848, 849], "cnt": 848, "3333335": 848, "autocomplet": 848, "midwai": 848, "agent": 848, "total_spe": 848, "total_height": 848, "total_width": 848, "ag": 848, "tot": 848, "total_": 848, "total_h": 848, "cnt0": 848, "cnt1": 848, "diff_0": 848, "diff_1": 848, "config0": 848, "config1": 848, "l0": 848, "decoder__l0": 848, "decoder__l1": 848, "encoder__l0": 848, "encoder__l1": 848, "l0__b": 848, "l0__w": 848, "l1__b": 848, "l1__w": 848, "printabl": 848, "foresight": 848, "untidili": 848, "update_ag": 848, "normalize_img": 848, "img_max": 848, "reduce_max": 848, "img_min": 848, "reduce_min": 848, "img_rang": 848, "agent_posit": 848, "agent_veloc": 848, "agent_cam_front_rgb": 848, "agent_cam_front_depth": 848, "agent_cam_rear_rgb": 848, "agent_cam_rear_depth": 848, "agent_cam_lidar": 848, "camera": 848, "front_rgb": 848, "front_depth": 848, "rear_rgb": 848, "rear_depth": 848, "lidar": 848, "rgb": 848, "rear": 848, "veloc": 848, "cam": 848, "cam_max": 848, "cam_min": 848, "cam_rang": 848, "five": 848, "allud": [848, 856], "perman": 848, "dataload": 848, "_cnt": 848, "img_": 848, "_dataset_s": 848, "_batch_siz": 848, "_count": [848, 849], "__next__": 848, "img_fnam": 848, "loaded_img": 848, "batch_slic": 848, "0145": 848, "addbackward0": 848, "_create_vari": 849, "_input_channel": 849, "_output_channel": 849, "_w_shape": 849, "_b_shape": 849, "_with_bia": 849, "764": 849, "872": 849, "211": 849, "439": 849, "nightmar": 849, "overcom": 849, "v1": 849, "key0": 849, "linear3": 849, "v2": 849, "preced": [849, 856], "_w_init": 849, "_b_init": 849, "misnom": 849, "saw": 849, "_beta1": 849, "_beta2": 849, "_epsilon": 849, "_mw": 849, "_vw": 849, "_first_pass": 849, "_should_trac": 849, "new_v": 849, "_lr": 849, "_inplac": 849, "_stop_gradi": 849, "sparse_funct": 850, "vital": [850, 855], "_linear": 850, "jax_graph": 850, "to_backend": 850, "thinli": 850, "to_haiku_modul": 850, "loss_fn_t": 850, "without_apply_rng": 850, "update_rul": 850, "tree_multimap": 850, "trax": [850, 857], "objax": [850, 857], "matur": [851, 856, 866], "doubt": 851, "grate": [851, 874], "probe": 851, "lock": 851, "dex": 851, "tricki": [851, 853], "predictor": 851, "tight": 851, "dispatch": [851, 866, 869], "ast": 851, "autodiff": 851, "shine": 851, "merci": 851, "compet": [851, 866], "parallelis": 851, "spmd": 851, "mixtur": 851, "expert": 851, "sophist": 851, "depart": 851, "hundr": 851, "thousand": 851, "broadli": [851, 872], "supplementari": 851, "reusabl": [851, 864, 866], "fanci": [851, 866], "fusion": [851, 870], "lose": 851, "pmap": 851, "eventu": 851, "supplement": 851, "backdoor": 851, "callback": 851, "somewhat": [851, 866], "outsourc": 851, "ivy_root": 852, "pem": 852, "api_kei": 852, "asap": 852, "nail": 853, "scientist": 853, "correl": 853, "collabor": [854, 855, 856], "consortium": [854, 856], "grown": 855, "rapidli": 855, "shareabl": 855, "outdat": 855, "newest": 855, "prototyp": [855, 866], "obsolet": [855, 857], "invent": 855, "simultan": [855, 857], "runner": 855, "principl": [855, 864, 866, 869], "2006": 855, "cloth": 855, "forgiven": 856, "eyebrow": 856, "somehow": 856, "industri": [856, 866, 868], "funni": 856, "comic": 856, "charger": 856, "instant": 856, "contrari": 856, "bumpi": 856, "road": 856, "technologi": [856, 864, 868], "motherboard": 856, "raid": 856, "bluetooth": 856, "wireless": 856, "btx": 856, "sata": 856, "tcp": 856, "ip": 856, "smtp": 856, "send": [856, 871], "gmail": 856, "outlook": 856, "growth": [856, 869], "necess": 856, "2015": [856, 866], "aros": 856, "ourselv": [856, 872], "quansight": [856, 872], "compani": [856, 862], "apach": [856, 868, 872], "onnx": [856, 864, 872], "cupi": [856, 866, 873], "modin": 856, "spyder": 856, "octoml": [856, 872], "sponsor": 856, "lg": 856, "electron": 856, "shaw": 856, "pursuit": 856, "complianc": 856, "convinc": 856, "celebr": 856, "abund": 857, "streamlin": [857, 869], "awesom": 857, "love": 857, "slew": 857, "inevit": [857, 867], "erron": 857, "poor": 857, "spin": 857, "sake": 857, "wouldn": 857, "frantic": 857, "lucid": 857, "honk": 857, "hasn": 857, "spend": [857, 866], "sonnet": 857, "trainer": [857, 873], "quo": 857, "dopamin": 857, "ignit": 857, "catalyst": 857, "lightn": 857, "fastai": 857, "publicli": [859, 860, 861], "logger": 859, "arg_stateful_idx": 859, "kwarg_stateful_idx": 859, "include_gener": 859, "array_cach": 859, "return_backend_traced_fn": 859, "lazygraph": [859, 860, 861], "sum_j": 859, "traced_fn": 859, "impos": 859, "comp_func": 859, "trade": 859, "bake": 859, "cont": 859, "new_attribut": 859, "resnet50": 859, "breed": 859, "autoimageprocessor": [859, 860], "resnetforimageclassif": [859, 860], "traced_graph": 859, "predicted_label": 859, "debug_mod": 860, "rough": 860, "transformed_with_st": 860, "bigger": 860, "hf": 860, "tf_model": 860, "tf_input": 860, "transpile_kwarg": 861, "transpiled_func": 861, "unified_func": 861, "rwork": 862, "vendor": [862, 868], "complimentari": [862, 872], "acycl": [862, 867], "fillna": 863, "pct_chang": 863, "tail": 863, "_____________": 863, "__________________________________________________________________": 863, "scaffold": [864, 872], "heart": 864, "toolchain": [864, 869], "assembli": [864, 871, 872], "idl": 864, "middl": 864, "emit": 864, "gnu": [864, 869], "broader": 864, "heterogen": 864, "aid": 864, "coprocessor": 864, "programm": [864, 871], "gate": 864, "onednn": 864, "sit": [864, 867, 872], "tandem": 864, "possess": 864, "khrono": [865, 871], "appl": 865, "coremltool": 865, "albeit": 865, "promin": 866, "abbrevi": 866, "laboratori": 866, "proprietari": [866, 870, 871], "mathwork": 866, "commerci": 866, "1984": 866, "toolbox": 866, "mupad": 866, "simulink": 866, "graphic": [866, 870, 871], "simul": 866, "million": [866, 869], "worldwid": 866, "scienc": [866, 868], "econom": 866, "2001": 866, "od": 866, "solver": 866, "cython": 866, "friendli": 866, "2002": 866, "lua": 866, "luajit": 866, "idiap": 866, "epfl": 866, "2005": 866, "numarrai": 866, "cpython": 866, "partli": 866, "2007": 866, "forest": 866, "boost": 866, "dbscan": 866, "inbuilt": 866, "esqu": 866, "aesara": 866, "datafram": 866, "2012": 866, "polymorph": 866, "mpi": 866, "openmp": 866, "glue": 866, "jaot": 866, "nasa": 866, "cern": 866, "climat": 866, "allianc": 866, "influenti": 866, "2014": 866, "scala": 866, "ship": 866, "forgiv": 866, "decemb": 866, "announc": 866, "mainten": 866, "v7": 866, "meaning": 866, "2016": 866, "imper": 866, "amazon": 866, "traction": 866, "cognit": [866, 873], "grade": 866, "dnn": 866, "backpropag": 866, "succumb": 866, "came": 866, "monitor": 866, "practition": [866, 870, 871, 872], "hobbyist": 866, "tremend": 866, "ecosystem": 866, "gear": 866, "batteri": 866, "zygot": 866, "jl": 866, "workload": 866, "daggerflux": 866, "frontier": 866, "hessian": 866, "2018": 866, "lightweight": [866, 873], "shortcom": 866, "barrier": 866, "inexperienc": 866, "underdevelop": 866, "fanat": 866, "ounc": 866, "infanc": 866, "emerg": 866, "nich": 866, "mobil": 866, "lite": 866, "enterpris": 866, "reinvent": [866, 868], "inertia": 866, "creator": [866, 868], "paszk": 866, "hi": 866, "bulk": 866, "haskel": 866, "dataflow": 867, "trace_modul": 867, "scriptfunct": 867, "scriptmodul": 867, "fake": 867, "proxi": 867, "graphmodul": 867, "travi": 868, "oliph": 868, "leader": 868, "cornerston": 868, "numba": 868, "numfocu": 868, "pydata": 868, "confer": 868, "consult": 868, "servic": 868, "devop": 868, "mlop": 868, "dashboard": 868, "startup": 868, "mlir": [868, 869, 872], "Their": 868, "held": 868, "presum": 868, "llvm": [868, 871], "founder": 868, "tvm": [868, 872], "sustain": 868, "empow": 868, "har": 868, "burden": 868, "precompil": 869, "executor": 869, "julia": [869, 872], "fsf": 869, "gpl": 869, "biggest": [869, 872], "throughput": 870, "gpgpu": 870, "classic": 871, "sycl": 871, "dpc": 871, "processor": 871, "maco": 871, "oneapi": 871, "ia": 871, "aka": 871, "xeon": 871, "gen9": 871, "xe": 871, "arria": 871, "gx": 871, "fpga": 871, "lofti": 872, "ambit": 872, "realm": 872, "bedrock": 872, "flux": 872, "bite": 872, "chew": 872, "eagerpi": 872, "tensorli": 872, "thinc": 872, "neuropod": 872, "fx": 872, "retrain": 872, "closer": 872, "greatli": 872, "modular": 872, "anywher": 872, "theano": 873, "plaidml": 873, "partial_svd": 873, "excel": 873, "subsystem": 873, "samund": 874, "singh": 874, "samthakur587": 874, "suraj": 874, "muhammad": 874, "ishaqu": 874, "muhammadnizamani": 874, "suyash": 874, "gupta": 874, "sgalpha01": 874, "sanjai": 874, "suthar": 874, "sanjay8602": 874, "zera": 874, "marveen": 874, "lyngkhoi": 874, "fleventi": 874, "nitesh": 874, "kesharwani": 874, "niteshk84": 874, "sarvesh": 874, "jackson": 874, "mcclintock": 874, "jacksondm33": 874, "david": 874, "adlai": 874, "nettei": 874, "garima": 874, "saroj": 874, "androgari": 874, "lee": 874, "bissessar": 874, "leebissessar5": 874, "mostafa": 874, "gamal": 874, "mr": 874, "array22": 874, "ogban": 874, "ugot": 874, "rahul": 874, "prem": 874, "rp097": 874, "rohit": 874, "kumar": 874, "salla": 874, "rohitsalla": 874, "srikar": 874, "vedantam": 874, "shruzki": 874, "waqar": 874, "ahm": 874, "waqaarahm": 874, "aryan": 874, "pandei": 874, "aryan8912": 874, "dhruv": 874, "sharma": 874, "druvdub": 874, "kacper": 874, "ko\u017cdo\u0144": 874, "kozdon": 874, "mehmet": 874, "bilgehan": 874, "bezcioglu": 874, "bilgehanmehmet": 874, "sheroz": 874, "khan": 874, "ksheroz": 874, "muzakkir": 874, "hussain": 874, "muzakkirhussain011": 874}, "objects": {"ivy.Array": [[216, 0, 1, "", "abs"], [217, 0, 1, "", "acos"], [218, 0, 1, "", "acosh"], [611, 0, 1, "", "adam_step"], [612, 0, 1, "", "adam_update"], [385, 0, 1, "", "adaptive_avg_pool1d"], [386, 0, 1, "", "adaptive_avg_pool2d"], [387, 0, 1, "", "adaptive_max_pool2d"], [388, 0, 1, "", "adaptive_max_pool3d"], [219, 0, 1, "", "add"], [420, 0, 1, "", "adjoint"], [763, 0, 1, "", "all"], [530, 0, 1, "", "all_equal"], [330, 0, 1, "", "allclose"], [331, 0, 1, "", "amax"], [332, 0, 1, "", "amin"], [220, 0, 1, "", "angle"], [764, 0, 1, "", "any"], [740, 0, 1, "", "argmax"], [741, 0, 1, "", "argmin"], [749, 0, 1, "", "argsort"], [742, 0, 1, "", "argwhere"], [533, 0, 1, "", "array_equal"], [456, 0, 1, "", "as_strided"], [124, 0, 1, "", "asarray"], [221, 0, 1, "", "asin"], [222, 0, 1, "", "asinh"], [534, 0, 1, "", "assert_supports_inplace"], [457, 0, 1, "", "associative_scan"], [148, 0, 1, "", "astype"], [223, 0, 1, "", "atan"], [224, 0, 1, "", "atan2"], [225, 0, 1, "", "atanh"], [458, 0, 1, "", "atleast_1d"], [459, 0, 1, "", "atleast_2d"], [460, 0, 1, "", "atleast_3d"], [390, 0, 1, "", "avg_pool1d"], [391, 0, 1, "", "avg_pool2d"], [392, 0, 1, "", "avg_pool3d"], [497, 0, 1, "", "batch_norm"], [421, 0, 1, "", "batched_outer"], [504, 0, 1, "", "bernoulli"], [505, 0, 1, "", "beta"], [333, 0, 1, "", "binarizer"], [692, 0, 1, "", "binary_cross_entropy"], [516, 0, 1, "", "bincount"], [226, 0, 1, "", "bitwise_and"], [227, 0, 1, "", "bitwise_invert"], [228, 0, 1, "", "bitwise_left_shift"], [229, 0, 1, "", "bitwise_or"], [230, 0, 1, "", "bitwise_right_shift"], [231, 0, 1, "", "bitwise_xor"], [308, 0, 1, "", "blackman_window"], [149, 0, 1, "", "broadcast_arrays"], [150, 0, 1, "", "broadcast_to"], [151, 0, 1, "", "can_cast"], [232, 0, 1, "", "ceil"], [291, 0, 1, "", "celu"], [663, 0, 1, "", "cholesky"], [695, 0, 1, "", "clip"], [536, 0, 1, "", "clip_matrix_norm"], [537, 0, 1, "", "clip_vector_norm"], [464, 0, 1, "", "column_stack"], [696, 0, 1, "", "concat"], [465, 0, 1, "", "concat_from_sequence"], [422, 0, 1, "", "cond"], [334, 0, 1, "", "conj"], [697, 0, 1, "", "constant_pad"], [646, 0, 1, "", "conv1d"], [647, 0, 1, "", "conv1d_transpose"], [648, 0, 1, "", "conv2d"], [649, 0, 1, "", "conv2d_transpose"], [650, 0, 1, "", "conv3d"], [651, 0, 1, "", "conv3d_transpose"], [125, 0, 1, "", "copy_array"], [335, 0, 1, "", "copysign"], [517, 0, 1, "", "corrcoef"], [233, 0, 1, "", "cos"], [234, 0, 1, "", "cosh"], [336, 0, 1, "", "count_nonzero"], [518, 0, 1, "", "cov"], [664, 0, 1, "", "cross"], [693, 0, 1, "", "cross_entropy"], [519, 0, 1, "", "cummax"], [520, 0, 1, "", "cummin"], [753, 0, 1, "", "cumprod"], [754, 0, 1, "", "cumsum"], [393, 0, 1, "", "dct"], [540, 0, 1, "", "default"], [235, 0, 1, "", "deg2rad"], [654, 0, 1, "", "depthwise_conv2d"], [665, 0, 1, "", "det"], [193, 0, 1, "", "dev"], [394, 0, 1, "", "dft"], [666, 0, 1, "", "diag"], [423, 0, 1, "", "diagflat"], [667, 0, 1, "", "diagonal"], [337, 0, 1, "", "diff"], [338, 0, 1, "", "digamma"], [506, 0, 1, "", "dirichlet"], [236, 0, 1, "", "divide"], [424, 0, 1, "", "dot"], [655, 0, 1, "", "dropout"], [395, 0, 1, "", "dropout1d"], [396, 0, 1, "", "dropout2d"], [397, 0, 1, "", "dropout3d"], [466, 0, 1, "", "dsplit"], [467, 0, 1, "", "dstack"], [159, 0, 1, "", "dtype"], [425, 0, 1, "", "eig"], [669, 0, 1, "", "eigh"], [426, 0, 1, "", "eigh_tridiagonal"], [427, 0, 1, "", "eigvals"], [670, 0, 1, "", "eigvalsh"], [541, 0, 1, "", "einops_rearrange"], [542, 0, 1, "", "einops_reduce"], [543, 0, 1, "", "einops_repeat"], [755, 0, 1, "", "einsum"], [292, 0, 1, "", "elu"], [398, 0, 1, "", "embedding"], [127, 0, 1, "", "empty_like"], [237, 0, 1, "", "equal"], [238, 0, 1, "", "erf"], [339, 0, 1, "", "erfc"], [340, 0, 1, "", "erfinv"], [544, 0, 1, "", "exists"], [239, 0, 1, "", "exp"], [240, 0, 1, "", "exp2"], [468, 0, 1, "", "expand"], [698, 0, 1, "", "expand_dims"], [241, 0, 1, "", "expm1"], [309, 0, 1, "", "eye_like"], [399, 0, 1, "", "fft"], [400, 0, 1, "", "fft2"], [469, 0, 1, "", "fill_diagonal"], [161, 0, 1, "", "finfo"], [341, 0, 1, "", "fix"], [470, 0, 1, "", "flatten"], [699, 0, 1, "", "flip"], [471, 0, 1, "", "fliplr"], [472, 0, 1, "", "flipud"], [342, 0, 1, "", "float_power"], [242, 0, 1, "", "floor"], [243, 0, 1, "", "floor_divide"], [343, 0, 1, "", "fmax"], [244, 0, 1, "", "fmin"], [245, 0, 1, "", "fmod"], [473, 0, 1, "", "fold"], [545, 0, 1, "", "fourier_encode"], [344, 0, 1, "", "frexp"], [129, 0, 1, "", "from_dlpack"], [132, 0, 1, "", "full_like"], [507, 0, 1, "", "gamma"], [548, 0, 1, "", "gather"], [549, 0, 1, "", "gather_nd"], [246, 0, 1, "", "gcd"], [106, 0, 1, "", "gelu"], [428, 0, 1, "", "general_inner_product"], [552, 0, 1, "", "get_num_dims"], [345, 0, 1, "", "gradient"], [615, 0, 1, "", "gradient_descent_update"], [247, 0, 1, "", "greater"], [248, 0, 1, "", "greater_equal"], [498, 0, 1, "", "group_norm"], [293, 0, 1, "", "hardshrink"], [294, 0, 1, "", "hardsilu"], [107, 0, 1, "", "hardswish"], [295, 0, 1, "", "hardtanh"], [554, 0, 1, "", "has_nans"], [474, 0, 1, "", "heaviside"], [429, 0, 1, "", "higher_order_moment"], [448, 0, 1, "", "hinge_embedding_loss"], [521, 0, 1, "", "histogram"], [475, 0, 1, "", "hsplit"], [476, 0, 1, "", "hstack"], [449, 0, 1, "", "huber_loss"], [346, 0, 1, "", "hypot"], [477, 0, 1, "", "i0"], [403, 0, 1, "", "idct"], [404, 0, 1, "", "ifft"], [405, 0, 1, "", "ifftn"], [522, 0, 1, "", "igamma"], [164, 0, 1, "", "iinfo"], [249, 0, 1, "", "imag"], [430, 0, 1, "", "initialize_tucker"], [671, 0, 1, "", "inner"], [556, 0, 1, "", "inplace_decrement"], [557, 0, 1, "", "inplace_increment"], [558, 0, 1, "", "inplace_update"], [499, 0, 1, "", "instance_norm"], [407, 0, 1, "", "interpolate"], [672, 0, 1, "", "inv"], [560, 0, 1, "", "is_array"], [167, 0, 1, "", "is_bool_dtype"], [169, 0, 1, "", "is_float_dtype"], [171, 0, 1, "", "is_int_dtype"], [561, 0, 1, "", "is_ivy_array"], [562, 0, 1, "", "is_ivy_container"], [564, 0, 1, "", "is_native_array"], [173, 0, 1, "", "is_uint_dtype"], [347, 0, 1, "", "isclose"], [250, 0, 1, "", "isfinite"], [565, 0, 1, "", "isin"], [251, 0, 1, "", "isinf"], [252, 0, 1, "", "isnan"], [253, 0, 1, "", "isreal"], [567, 0, 1, "", "itemsize"], [450, 0, 1, "", "kl_div"], [432, 0, 1, "", "kron"], [451, 0, 1, "", "l1_loss"], [500, 0, 1, "", "l1_normalize"], [501, 0, 1, "", "l2_normalize"], [617, 0, 1, "", "lamb_update"], [618, 0, 1, "", "lars_update"], [733, 0, 1, "", "layer_norm"], [254, 0, 1, "", "lcm"], [348, 0, 1, "", "ldexp"], [108, 0, 1, "", "leaky_relu"], [349, 0, 1, "", "lerp"], [255, 0, 1, "", "less"], [256, 0, 1, "", "less_equal"], [511, 0, 1, "", "lexsort"], [350, 0, 1, "", "lgamma"], [656, 0, 1, "", "linear"], [133, 0, 1, "", "linspace"], [257, 0, 1, "", "log"], [258, 0, 1, "", "log10"], [259, 0, 1, "", "log1p"], [260, 0, 1, "", "log2"], [452, 0, 1, "", "log_poisson_loss"], [109, 0, 1, "", "log_softmax"], [261, 0, 1, "", "logaddexp"], [262, 0, 1, "", "logaddexp2"], [263, 0, 1, "", "logical_and"], [264, 0, 1, "", "logical_not"], [265, 0, 1, "", "logical_or"], [266, 0, 1, "", "logical_xor"], [296, 0, 1, "", "logit"], [297, 0, 1, "", "logsigmoid"], [134, 0, 1, "", "logspace"], [503, 0, 1, "", "lp_normalize"], [658, 0, 1, "", "lstm_update"], [436, 0, 1, "", "make_svd_non_negative"], [673, 0, 1, "", "matmul"], [478, 0, 1, "", "matricize"], [437, 0, 1, "", "matrix_exp"], [674, 0, 1, "", "matrix_norm"], [675, 0, 1, "", "matrix_power"], [676, 0, 1, "", "matrix_rank"], [677, 0, 1, "", "matrix_transpose"], [756, 0, 1, "", "max"], [408, 0, 1, "", "max_pool1d"], [409, 0, 1, "", "max_pool2d"], [410, 0, 1, "", "max_pool3d"], [411, 0, 1, "", "max_unpool1d"], [267, 0, 1, "", "maximum"], [757, 0, 1, "", "mean"], [523, 0, 1, "", "median"], [315, 0, 1, "", "mel_weight_matrix"], [135, 0, 1, "", "meshgrid"], [758, 0, 1, "", "min"], [268, 0, 1, "", "minimum"], [110, 0, 1, "", "mish"], [438, 0, 1, "", "mode_dot"], [351, 0, 1, "", "modf"], [479, 0, 1, "", "moveaxis"], [750, 0, 1, "", "msort"], [439, 0, 1, "", "multi_dot"], [659, 0, 1, "", "multi_head_attention"], [440, 0, 1, "", "multi_mode_dot"], [734, 0, 1, "", "multinomial"], [269, 0, 1, "", "multiply"], [270, 0, 1, "", "nan_to_num"], [524, 0, 1, "", "nanmean"], [525, 0, 1, "", "nanmedian"], [526, 0, 1, "", "nanmin"], [527, 0, 1, "", "nanprod"], [352, 0, 1, "", "nansum"], [136, 0, 1, "", "native_array"], [271, 0, 1, "", "negative"], [353, 0, 1, "", "nextafter"], [743, 0, 1, "", "nonzero"], [272, 0, 1, "", "not_equal"], [137, 0, 1, "", "one_hot"], [139, 0, 1, "", "ones_like"], [619, 0, 1, "", "optimizer_update"], [529, 0, 1, "", "optional_get_element"], [678, 0, 1, "", "outer"], [480, 0, 1, "", "pad"], [481, 0, 1, "", "partial_fold"], [482, 0, 1, "", "partial_tensor_to_vec"], [441, 0, 1, "", "partial_tucker"], [483, 0, 1, "", "partial_unfold"], [484, 0, 1, "", "partial_vec_to_tensor"], [700, 0, 1, "", "permute_dims"], [679, 0, 1, "", "pinv"], [508, 0, 1, "", "poisson"], [453, 0, 1, "", "poisson_nll_loss"], [273, 0, 1, "", "positive"], [274, 0, 1, "", "pow"], [298, 0, 1, "", "prelu"], [759, 0, 1, "", "prod"], [485, 0, 1, "", "put_along_axis"], [680, 0, 1, "", "qr"], [528, 0, 1, "", "quantile"], [275, 0, 1, "", "rad2deg"], [735, 0, 1, "", "randint"], [736, 0, 1, "", "random_normal"], [737, 0, 1, "", "random_uniform"], [276, 0, 1, "", "real"], [277, 0, 1, "", "reciprocal"], [359, 0, 1, "", "reduce"], [414, 0, 1, "", "reduce_window"], [111, 0, 1, "", "relu"], [299, 0, 1, "", "relu6"], [278, 0, 1, "", "remainder"], [701, 0, 1, "", "repeat"], [702, 0, 1, "", "reshape"], [176, 0, 1, "", "result_type"], [415, 0, 1, "", "rfft"], [416, 0, 1, "", "rfftn"], [703, 0, 1, "", "roll"], [486, 0, 1, "", "rot90"], [279, 0, 1, "", "round"], [662, 0, 1, "", "scaled_dot_product_attention"], [300, 0, 1, "", "scaled_tanh"], [572, 0, 1, "", "scatter_flat"], [573, 0, 1, "", "scatter_nd"], [751, 0, 1, "", "searchsorted"], [301, 0, 1, "", "selu"], [586, 0, 1, "", "shape"], [739, 0, 1, "", "shuffle"], [112, 0, 1, "", "sigmoid"], [280, 0, 1, "", "sign"], [354, 0, 1, "", "signbit"], [302, 0, 1, "", "silu"], [281, 0, 1, "", "sin"], [355, 0, 1, "", "sinc"], [282, 0, 1, "", "sinh"], [587, 0, 1, "", "size"], [418, 0, 1, "", "sliding_window"], [681, 0, 1, "", "slogdet"], [454, 0, 1, "", "smooth_l1_loss"], [455, 0, 1, "", "soft_margin_loss"], [487, 0, 1, "", "soft_thresholding"], [113, 0, 1, "", "softmax"], [114, 0, 1, "", "softplus"], [303, 0, 1, "", "softshrink"], [682, 0, 1, "", "solve"], [752, 0, 1, "", "sort"], [694, 0, 1, "", "sparse_cross_entropy"], [356, 0, 1, "", "sparsify_tensor"], [704, 0, 1, "", "split"], [283, 0, 1, "", "sqrt"], [284, 0, 1, "", "square"], [705, 0, 1, "", "squeeze"], [588, 0, 1, "", "stable_divide"], [589, 0, 1, "", "stable_pow"], [706, 0, 1, "", "stack"], [760, 0, 1, "", "std"], [419, 0, 1, "", "stft"], [620, 0, 1, "", "stop_gradient"], [590, 0, 1, "", "strides"], [285, 0, 1, "", "subtract"], [761, 0, 1, "", "sum"], [591, 0, 1, "", "supports_inplace_updates"], [683, 0, 1, "", "svd"], [443, 0, 1, "", "svd_flip"], [684, 0, 1, "", "svdvals"], [707, 0, 1, "", "swapaxes"], [488, 0, 1, "", "take"], [489, 0, 1, "", "take_along_axis"], [286, 0, 1, "", "tan"], [287, 0, 1, "", "tanh"], [305, 0, 1, "", "tanhshrink"], [444, 0, 1, "", "tensor_train"], [685, 0, 1, "", "tensordot"], [686, 0, 1, "", "tensorsolve"], [306, 0, 1, "", "threshold"], [307, 0, 1, "", "thresholded_relu"], [708, 0, 1, "", "tile"], [210, 0, 1, "", "to_device"], [593, 0, 1, "", "to_list"], [595, 0, 1, "", "to_numpy"], [596, 0, 1, "", "to_scalar"], [490, 0, 1, "", "top_k"], [687, 0, 1, "", "trace"], [288, 0, 1, "", "trapz"], [141, 0, 1, "", "tril"], [325, 0, 1, "", "trilu"], [491, 0, 1, "", "trim_zeros"], [142, 0, 1, "", "triu"], [289, 0, 1, "", "trunc"], [290, 0, 1, "", "trunc_divide"], [445, 0, 1, "", "truncated_svd"], [446, 0, 1, "", "tt_matrix_to_tensor"], [447, 0, 1, "", "tucker"], [492, 0, 1, "", "unflatten"], [493, 0, 1, "", "unfold"], [745, 0, 1, "", "unique_all"], [494, 0, 1, "", "unique_consecutive"], [746, 0, 1, "", "unique_counts"], [747, 0, 1, "", "unique_inverse"], [748, 0, 1, "", "unique_values"], [509, 0, 1, "", "unravel_index"], [326, 0, 1, "", "unsorted_segment_mean"], [327, 0, 1, "", "unsorted_segment_min"], [328, 0, 1, "", "unsorted_segment_sum"], [709, 0, 1, "", "unstack"], [609, 0, 1, "", "value_is_nan"], [688, 0, 1, "", "vander"], [762, 0, 1, "", "var"], [689, 0, 1, "", "vecdot"], [690, 0, 1, "", "vector_norm"], [691, 0, 1, "", "vector_to_skew_symmetric_matrix"], [495, 0, 1, "", "vsplit"], [496, 0, 1, "", "vstack"], [744, 0, 1, "", "where"], [357, 0, 1, "", "xlogy"], [710, 0, 1, "", "zero_pad"], [145, 0, 1, "", "zeros_like"], [358, 0, 1, "", "zeta"]], "ivy": [[630, 1, 1, "", "ArrayMode"], [626, 1, 1, "", "DefaultComplexDtype"], [627, 1, 1, "", "DefaultDevice"], [626, 1, 1, "", "DefaultDtype"], [626, 1, 1, "", "DefaultFloatDtype"], [626, 1, 1, "", "DefaultIntDtype"], [626, 1, 1, "", "DefaultUintDtype"], [382, 1, 1, "", "NativeSparseArray"], [625, 1, 1, "", "NestedSequence"], [630, 1, 1, "", "PreciseMode"], [627, 1, 1, "", "Profiler"], [382, 1, 1, "", "SparseArray"], [216, 2, 1, "", "abs"], [217, 2, 1, "", "acos"], [218, 2, 1, "", "acosh"], [631, 2, 1, "", "adam_step"], [631, 2, 1, "", "adam_update"], [385, 2, 1, "", "adaptive_avg_pool1d"], [386, 2, 1, "", "adaptive_avg_pool2d"], [387, 2, 1, "", "adaptive_max_pool2d"], [388, 2, 1, "", "adaptive_max_pool3d"], [219, 2, 1, "", "add"], [372, 2, 1, "", "adjoint"], [644, 2, 1, "", "all"], [630, 2, 1, "", "all_equal"], [637, 2, 1, "", "all_nested_indices"], [368, 2, 1, "", "allclose"], [368, 2, 1, "", "amax"], [368, 2, 1, "", "amin"], [220, 2, 1, "", "angle"], [644, 2, 1, "", "any"], [625, 2, 1, "", "arange"], [389, 2, 1, "", "area_interpolate"], [630, 2, 1, "", "arg_info"], [630, 2, 1, "", "arg_names"], [640, 2, 1, "", "argmax"], [640, 2, 1, "", "argmin"], [642, 2, 1, "", "argsort"], [640, 2, 1, "", "argwhere"], [625, 2, 1, "", "array"], [630, 2, 1, "", "array_equal"], [189, 2, 1, "", "as_ivy_dev"], [626, 2, 1, "", "as_ivy_dtype"], [190, 2, 1, "", "as_native_dev"], [626, 2, 1, "", "as_native_dtype"], [374, 2, 1, "", "as_strided"], [625, 2, 1, "", "asarray"], [221, 2, 1, "", "asin"], [222, 2, 1, "", "asinh"], [630, 2, 1, "", "assert_supports_inplace"], [374, 2, 1, "", "associative_scan"], [626, 2, 1, "", "astype"], [223, 2, 1, "", "atan"], [224, 2, 1, "", "atan2"], [225, 2, 1, "", "atanh"], [374, 2, 1, "", "atleast_1d"], [374, 2, 1, "", "atleast_2d"], [374, 2, 1, "", "atleast_3d"], [390, 2, 1, "", "avg_pool1d"], [391, 2, 1, "", "avg_pool2d"], [392, 2, 1, "", "avg_pool3d"], [377, 2, 1, "", "batch_norm"], [372, 2, 1, "", "batched_outer"], [378, 2, 1, "", "bernoulli"], [378, 2, 1, "", "beta"], [368, 2, 1, "", "binarizer"], [634, 2, 1, "", "binary_cross_entropy"], [383, 2, 1, "", "bincount"], [370, 2, 1, "", "bind_custom_gradient_function"], [226, 2, 1, "", "bitwise_and"], [227, 2, 1, "", "bitwise_invert"], [228, 2, 1, "", "bitwise_left_shift"], [229, 2, 1, "", "bitwise_or"], [230, 2, 1, "", "bitwise_right_shift"], [231, 2, 1, "", "bitwise_xor"], [308, 2, 1, "", "blackman_window"], [626, 2, 1, "", "broadcast_arrays"], [374, 2, 1, "", "broadcast_shapes"], [626, 2, 1, "", "broadcast_to"], [630, 2, 1, "", "cache_fn"], [626, 2, 1, "", "can_cast"], [232, 2, 1, "", "ceil"], [291, 2, 1, "", "celu"], [626, 2, 1, "", "check_float"], [374, 2, 1, "", "check_scalar"], [633, 2, 1, "", "cholesky"], [374, 2, 1, "", "choose"], [191, 2, 1, "", "clear_cached_mem_on_dev"], [635, 2, 1, "", "clip"], [630, 2, 1, "", "clip_matrix_norm"], [630, 2, 1, "", "clip_vector_norm"], [626, 2, 1, "", "closest_valid_dtype"], [624, 2, 1, "", "cmp_is"], [624, 2, 1, "", "cmp_isnot"], [374, 2, 1, "", "column_stack"], [635, 2, 1, "", "concat"], [374, 2, 1, "", "concat_from_sequence"], [372, 2, 1, "", "cond"], [368, 2, 1, "", "conj"], [635, 2, 1, "", "constant_pad"], [630, 2, 1, "", "container_types"], [632, 2, 1, "", "conv"], [632, 2, 1, "", "conv1d"], [632, 2, 1, "", "conv1d_transpose"], [632, 2, 1, "", "conv2d"], [632, 2, 1, "", "conv2d_transpose"], [632, 2, 1, "", "conv3d"], [632, 2, 1, "", "conv3d_transpose"], [632, 2, 1, "", "conv_general_dilated"], [632, 2, 1, "", "conv_general_transpose"], [625, 2, 1, "", "copy_array"], [637, 2, 1, "", "copy_nest"], [368, 2, 1, "", "copysign"], [383, 2, 1, "", "corrcoef"], [233, 2, 1, "", "cos"], [234, 2, 1, "", "cosh"], [368, 2, 1, "", "count_nonzero"], [383, 2, 1, "", "cov"], [633, 2, 1, "", "cross"], [634, 2, 1, "", "cross_entropy"], [383, 2, 1, "", "cummax"], [383, 2, 1, "", "cummin"], [643, 2, 1, "", "cumprod"], [643, 2, 1, "", "cumsum"], [630, 2, 1, "", "current_backend_str"], [393, 2, 1, "", "dct"], [630, 2, 1, "", "default"], [626, 2, 1, "", "default_complex_dtype"], [192, 2, 1, "", "default_device"], [626, 2, 1, "", "default_dtype"], [626, 2, 1, "", "default_float_dtype"], [626, 2, 1, "", "default_int_dtype"], [626, 2, 1, "", "default_uint_dtype"], [235, 2, 1, "", "deg2rad"], [632, 2, 1, "", "depthwise_conv2d"], [633, 2, 1, "", "det"], [193, 2, 1, "", "dev"], [194, 2, 1, "", "dev_util"], [394, 2, 1, "", "dft"], [633, 2, 1, "", "diag"], [372, 2, 1, "", "diagflat"], [633, 2, 1, "", "diagonal"], [368, 2, 1, "", "diff"], [368, 2, 1, "", "digamma"], [378, 2, 1, "", "dirichlet"], [236, 2, 1, "", "divide"], [372, 2, 1, "", "dot"], [632, 2, 1, "", "dropout"], [395, 2, 1, "", "dropout1d"], [396, 2, 1, "", "dropout2d"], [397, 2, 1, "", "dropout3d"], [374, 2, 1, "", "dsplit"], [374, 2, 1, "", "dstack"], [626, 2, 1, "", "dtype"], [626, 2, 1, "", "dtype_bits"], [637, 2, 1, "", "duplicate_array_index_chains"], [623, 6, 1, "", "e"], [372, 2, 1, "", "eig"], [633, 2, 1, "", "eigh"], [372, 2, 1, "", "eigh_tridiagonal"], [372, 2, 1, "", "eigvals"], [633, 2, 1, "", "eigvalsh"], [630, 2, 1, "", "einops_rearrange"], [630, 2, 1, "", "einops_reduce"], [630, 2, 1, "", "einops_repeat"], [643, 2, 1, "", "einsum"], [292, 2, 1, "", "elu"], [398, 2, 1, "", "embedding"], [625, 2, 1, "", "empty"], [625, 2, 1, "", "empty_like"], [237, 2, 1, "", "equal"], [238, 2, 1, "", "erf"], [368, 2, 1, "", "erfc"], [368, 2, 1, "", "erfinv"], [631, 2, 1, "", "execute_with_gradients"], [630, 2, 1, "", "exists"], [239, 2, 1, "", "exp"], [240, 2, 1, "", "exp2"], [374, 2, 1, "", "expand"], [635, 2, 1, "", "expand_dims"], [241, 2, 1, "", "expm1"], [625, 2, 1, "", "eye"], [309, 2, 1, "", "eye_like"], [399, 2, 1, "", "fft"], [400, 2, 1, "", "fft2"], [374, 2, 1, "", "fill_diagonal"], [626, 2, 1, "", "finfo"], [368, 2, 1, "", "fix"], [374, 2, 1, "", "flatten"], [635, 2, 1, "", "flip"], [374, 2, 1, "", "fliplr"], [374, 2, 1, "", "flipud"], [368, 2, 1, "", "float_power"], [242, 2, 1, "", "floor"], [243, 2, 1, "", "floor_divide"], [368, 2, 1, "", "fmax"], [244, 2, 1, "", "fmin"], [245, 2, 1, "", "fmod"], [374, 2, 1, "", "fold"], [636, 2, 1, "", "fomaml_step"], [624, 2, 1, "", "for_loop"], [630, 2, 1, "", "fourier_encode"], [368, 2, 1, "", "frexp"], [625, 2, 1, "", "from_dlpack"], [625, 2, 1, "", "frombuffer"], [625, 2, 1, "", "full"], [625, 2, 1, "", "full_like"], [195, 2, 1, "", "function_supported_devices"], [630, 2, 1, "", "function_supported_devices_and_dtypes"], [626, 2, 1, "", "function_supported_dtypes"], [196, 2, 1, "", "function_unsupported_devices"], [630, 2, 1, "", "function_unsupported_devices_and_dtypes"], [626, 2, 1, "", "function_unsupported_dtypes"], [378, 2, 1, "", "gamma"], [630, 2, 1, "", "gather"], [630, 2, 1, "", "gather_nd"], [246, 2, 1, "", "gcd"], [622, 2, 1, "", "gelu"], [372, 2, 1, "", "general_inner_product"], [401, 2, 1, "", "generate_einsum_equation"], [630, 2, 1, "", "get_all_arrays_in_memory"], [197, 2, 1, "", "get_all_ivy_arrays_on_dev"], [402, 2, 1, "", "get_interpolate_kernel"], [630, 2, 1, "", "get_item"], [630, 2, 1, "", "get_num_dims"], [630, 2, 1, "", "get_referrers_recursive"], [198, 2, 1, "", "gpu_is_available"], [631, 2, 1, "", "grad"], [368, 2, 1, "", "gradient"], [631, 2, 1, "", "gradient_descent_update"], [247, 2, 1, "", "greater"], [248, 2, 1, "", "greater_equal"], [377, 2, 1, "", "group_norm"], [310, 2, 1, "", "hamming_window"], [199, 2, 1, "", "handle_soft_device_variable"], [311, 2, 1, "", "hann_window"], [293, 2, 1, "", "hardshrink"], [294, 2, 1, "", "hardsilu"], [622, 2, 1, "", "hardswish"], [295, 2, 1, "", "hardtanh"], [630, 2, 1, "", "has_nans"], [374, 2, 1, "", "heaviside"], [372, 2, 1, "", "higher_order_moment"], [373, 2, 1, "", "hinge_embedding_loss"], [383, 2, 1, "", "histogram"], [374, 2, 1, "", "hsplit"], [374, 2, 1, "", "hstack"], [373, 2, 1, "", "huber_loss"], [368, 2, 1, "", "hypot"], [374, 2, 1, "", "i0"], [403, 2, 1, "", "idct"], [624, 2, 1, "", "if_else"], [404, 2, 1, "", "ifft"], [405, 2, 1, "", "ifftn"], [383, 2, 1, "", "igamma"], [626, 2, 1, "", "iinfo"], [249, 2, 1, "", "imag"], [637, 2, 1, "", "index_nest"], [312, 2, 1, "", "indices"], [623, 6, 1, "", "inf"], [626, 2, 1, "", "infer_default_dtype"], [372, 2, 1, "", "initialize_tucker"], [633, 2, 1, "", "inner"], [630, 2, 1, "", "inplace_arrays_supported"], [630, 2, 1, "", "inplace_decrement"], [630, 2, 1, "", "inplace_increment"], [630, 2, 1, "", "inplace_update"], [630, 2, 1, "", "inplace_variables_supported"], [637, 2, 1, "", "insert_into_nest_at_index"], [637, 2, 1, "", "insert_into_nest_at_indices"], [377, 2, 1, "", "instance_norm"], [406, 2, 1, "", "interp"], [407, 2, 1, "", "interpolate"], [633, 2, 1, "", "inv"], [626, 2, 1, "", "invalid_dtype"], [381, 2, 1, "", "invert_permutation"], [630, 2, 1, "", "is_array"], [626, 2, 1, "", "is_bool_dtype"], [626, 2, 1, "", "is_complex_dtype"], [626, 2, 1, "", "is_float_dtype"], [626, 2, 1, "", "is_hashable_dtype"], [626, 2, 1, "", "is_int_dtype"], [630, 2, 1, "", "is_ivy_array"], [630, 2, 1, "", "is_ivy_container"], [630, 2, 1, "", "is_ivy_nested_array"], [382, 2, 1, "", "is_ivy_sparse_array"], [630, 2, 1, "", "is_native_array"], [626, 2, 1, "", "is_native_dtype"], [382, 2, 1, "", "is_native_sparse_array"], [626, 2, 1, "", "is_uint_dtype"], [368, 2, 1, "", "isclose"], [250, 2, 1, "", "isfinite"], [630, 2, 1, "", "isin"], [251, 2, 1, "", "isinf"], [252, 2, 1, "", "isnan"], [253, 2, 1, "", "isreal"], [630, 2, 1, "", "isscalar"], [630, 2, 1, "", "itemsize"], [631, 2, 1, "", "jac"], [370, 2, 1, "", "jvp"], [313, 2, 1, "", "kaiser_bessel_derived_window"], [314, 2, 1, "", "kaiser_window"], [372, 2, 1, "", "khatri_rao"], [373, 2, 1, "", "kl_div"], [372, 2, 1, "", "kron"], [372, 2, 1, "", "kronecker"], [373, 2, 1, "", "l1_loss"], [377, 2, 1, "", "l1_normalize"], [377, 2, 1, "", "l2_normalize"], [631, 2, 1, "", "lamb_update"], [631, 2, 1, "", "lars_update"], [638, 2, 1, "", "layer_norm"], [254, 2, 1, "", "lcm"], [368, 2, 1, "", "ldexp"], [622, 2, 1, "", "leaky_relu"], [368, 2, 1, "", "lerp"], [255, 2, 1, "", "less"], [256, 2, 1, "", "less_equal"], [381, 2, 1, "", "lexsort"], [368, 2, 1, "", "lgamma"], [632, 2, 1, "", "linear"], [625, 2, 1, "", "linspace"], [644, 2, 1, "", "load"], [377, 2, 1, "", "local_response_norm"], [257, 2, 1, "", "log"], [258, 2, 1, "", "log10"], [259, 2, 1, "", "log1p"], [260, 2, 1, "", "log2"], [373, 2, 1, "", "log_poisson_loss"], [622, 2, 1, "", "log_softmax"], [261, 2, 1, "", "logaddexp"], [262, 2, 1, "", "logaddexp2"], [263, 2, 1, "", "logical_and"], [264, 2, 1, "", "logical_not"], [265, 2, 1, "", "logical_or"], [266, 2, 1, "", "logical_xor"], [296, 2, 1, "", "logit"], [297, 2, 1, "", "logsigmoid"], [625, 2, 1, "", "logspace"], [377, 2, 1, "", "lp_normalize"], [632, 2, 1, "", "lstm"], [632, 2, 1, "", "lstm_update"], [372, 2, 1, "", "lu_factor"], [372, 2, 1, "", "lu_solve"], [372, 2, 1, "", "make_svd_non_negative"], [636, 2, 1, "", "maml_step"], [637, 2, 1, "", "map"], [637, 2, 1, "", "map_nest_at_index"], [637, 2, 1, "", "map_nest_at_indices"], [630, 2, 1, "", "match_kwargs"], [633, 2, 1, "", "matmul"], [374, 2, 1, "", "matricize"], [372, 2, 1, "", "matrix_exp"], [633, 2, 1, "", "matrix_norm"], [633, 2, 1, "", "matrix_power"], [633, 2, 1, "", "matrix_rank"], [633, 2, 1, "", "matrix_transpose"], [643, 2, 1, "", "max"], [408, 2, 1, "", "max_pool1d"], [409, 2, 1, "", "max_pool2d"], [410, 2, 1, "", "max_pool3d"], [411, 2, 1, "", "max_unpool1d"], [267, 2, 1, "", "maximum"], [643, 2, 1, "", "mean"], [383, 2, 1, "", "median"], [315, 2, 1, "", "mel_weight_matrix"], [625, 2, 1, "", "meshgrid"], [643, 2, 1, "", "min"], [268, 2, 1, "", "minimum"], [622, 2, 1, "", "mish"], [372, 2, 1, "", "mode_dot"], [368, 2, 1, "", "modf"], [374, 2, 1, "", "moveaxis"], [642, 2, 1, "", "msort"], [372, 2, 1, "", "multi_dot"], [632, 2, 1, "", "multi_head_attention"], [637, 2, 1, "", "multi_index_nest"], [372, 2, 1, "", "multi_mode_dot"], [639, 2, 1, "", "multinomial"], [269, 2, 1, "", "multiply"], [630, 2, 1, "", "multiprocessing"], [623, 6, 1, "", "nan"], [270, 2, 1, "", "nan_to_num"], [383, 2, 1, "", "nanmean"], [383, 2, 1, "", "nanmedian"], [383, 2, 1, "", "nanmin"], [383, 2, 1, "", "nanprod"], [368, 2, 1, "", "nansum"], [625, 2, 1, "", "native_array"], [382, 2, 1, "", "native_sparse_array"], [382, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [316, 2, 1, "", "ndenumerate"], [317, 2, 1, "", "ndindex"], [412, 2, 1, "", "nearest_interpolate"], [271, 2, 1, "", "negative"], [637, 2, 1, "", "nested_any"], [637, 2, 1, "", "nested_argwhere"], [637, 2, 1, "", "nested_map"], [637, 2, 1, "", "nested_multi_map"], [623, 6, 1, "", "newaxis"], [368, 2, 1, "", "nextafter"], [632, 2, 1, "", "nms"], [640, 2, 1, "", "nonzero"], [272, 2, 1, "", "not_equal"], [630, 2, 1, "", "num_arrays_in_memory"], [200, 2, 1, "", "num_cpu_cores"], [201, 2, 1, "", "num_gpus"], [202, 2, 1, "", "num_ivy_arrays_on_dev"], [625, 2, 1, "", "one_hot"], [625, 2, 1, "", "ones"], [625, 2, 1, "", "ones_like"], [631, 2, 1, "", "optimizer_update"], [384, 2, 1, "", "optional_get_element"], [633, 2, 1, "", "outer"], [374, 2, 1, "", "pad"], [374, 2, 1, "", "partial_fold"], [374, 2, 1, "", "partial_tensor_to_vec"], [372, 2, 1, "", "partial_tucker"], [374, 2, 1, "", "partial_unfold"], [374, 2, 1, "", "partial_vec_to_tensor"], [203, 2, 1, "", "percent_used_mem_on_dev"], [635, 2, 1, "", "permute_dims"], [623, 6, 1, "", "pi"], [633, 2, 1, "", "pinv"], [378, 2, 1, "", "poisson"], [373, 2, 1, "", "poisson_nll_loss"], [318, 2, 1, "", "polyval"], [413, 2, 1, "", "pool"], [273, 2, 1, "", "positive"], [274, 2, 1, "", "pow"], [298, 2, 1, "", "prelu"], [630, 2, 1, "", "print_all_arrays_in_memory"], [204, 2, 1, "", "print_all_ivy_arrays_on_dev"], [643, 2, 1, "", "prod"], [626, 2, 1, "", "promote_types"], [626, 2, 1, "", "promote_types_of_inputs"], [637, 2, 1, "", "prune_empty"], [637, 2, 1, "", "prune_nest_at_index"], [637, 2, 1, "", "prune_nest_at_indices"], [374, 2, 1, "", "put_along_axis"], [633, 2, 1, "", "qr"], [383, 2, 1, "", "quantile"], [275, 2, 1, "", "rad2deg"], [639, 2, 1, "", "randint"], [319, 2, 1, "", "random_cp"], [639, 2, 1, "", "random_normal"], [320, 2, 1, "", "random_parafac2"], [321, 2, 1, "", "random_tr"], [365, 2, 1, "", "random_tt"], [365, 2, 1, "", "random_tucker"], [639, 2, 1, "", "random_uniform"], [276, 2, 1, "", "real"], [277, 2, 1, "", "reciprocal"], [369, 2, 1, "", "reduce"], [371, 2, 1, "", "reduce_window"], [622, 2, 1, "", "relu"], [299, 2, 1, "", "relu6"], [278, 2, 1, "", "remainder"], [635, 2, 1, "", "repeat"], [636, 2, 1, "", "reptile_step"], [635, 2, 1, "", "reshape"], [626, 2, 1, "", "result_type"], [371, 2, 1, "", "rfft"], [371, 2, 1, "", "rfftn"], [371, 2, 1, "", "rnn"], [632, 2, 1, "", "roi_align"], [635, 2, 1, "", "roll"], [374, 2, 1, "", "rot90"], [279, 2, 1, "", "round"], [644, 2, 1, "", "save"], [632, 2, 1, "", "scaled_dot_product_attention"], [300, 2, 1, "", "scaled_tanh"], [630, 2, 1, "", "scatter_flat"], [630, 2, 1, "", "scatter_nd"], [642, 2, 1, "", "searchsorted"], [639, 2, 1, "", "seed"], [301, 2, 1, "", "selu"], [630, 2, 1, "", "set_array_mode"], [626, 2, 1, "", "set_default_complex_dtype"], [205, 2, 1, "", "set_default_device"], [626, 2, 1, "", "set_default_dtype"], [626, 2, 1, "", "set_default_float_dtype"], [626, 2, 1, "", "set_default_int_dtype"], [626, 2, 1, "", "set_default_uint_dtype"], [630, 2, 1, "", "set_exception_trace_mode"], [630, 2, 1, "", "set_inplace_mode"], [630, 2, 1, "", "set_item"], [630, 2, 1, "", "set_min_base"], [630, 2, 1, "", "set_min_denominator"], [637, 2, 1, "", "set_nest_at_index"], [637, 2, 1, "", "set_nest_at_indices"], [630, 2, 1, "", "set_nestable_mode"], [630, 2, 1, "", "set_precise_mode"], [630, 2, 1, "", "set_queue_timeout"], [630, 2, 1, "", "set_shape_array_mode"], [630, 2, 1, "", "set_show_func_wrapper_trace_mode"], [206, 2, 1, "", "set_soft_device_mode"], [207, 2, 1, "", "set_split_factor"], [630, 2, 1, "", "set_tmp_dir"], [630, 2, 1, "", "shape"], [639, 2, 1, "", "shuffle"], [622, 2, 1, "", "sigmoid"], [280, 2, 1, "", "sign"], [368, 2, 1, "", "signbit"], [302, 2, 1, "", "silu"], [281, 2, 1, "", "sin"], [368, 2, 1, "", "sinc"], [282, 2, 1, "", "sinh"], [630, 2, 1, "", "size"], [371, 2, 1, "", "sliding_window"], [633, 2, 1, "", "slogdet"], [373, 2, 1, "", "smooth_l1_loss"], [373, 2, 1, "", "soft_margin_loss"], [374, 2, 1, "", "soft_thresholding"], [622, 2, 1, "", "softmax"], [622, 2, 1, "", "softplus"], [303, 2, 1, "", "softshrink"], [622, 2, 1, "", "softsign"], [633, 2, 1, "", "solve"], [372, 2, 1, "", "solve_triangular"], [642, 2, 1, "", "sort"], [634, 2, 1, "", "sparse_cross_entropy"], [368, 2, 1, "", "sparsify_tensor"], [635, 2, 1, "", "split"], [208, 2, 1, "", "split_factor"], [209, 2, 1, "", "split_func_call"], [283, 2, 1, "", "sqrt"], [284, 2, 1, "", "square"], [635, 2, 1, "", "squeeze"], [630, 2, 1, "", "stable_divide"], [630, 2, 1, "", "stable_pow"], [635, 2, 1, "", "stack"], [304, 2, 1, "", "stanh"], [643, 2, 1, "", "std"], [371, 2, 1, "", "stft"], [631, 2, 1, "", "stop_gradient"], [630, 2, 1, "", "strides"], [285, 2, 1, "", "subtract"], [643, 2, 1, "", "sum"], [630, 2, 1, "", "supports_inplace_updates"], [633, 2, 1, "", "svd"], [372, 2, 1, "", "svd_flip"], [633, 2, 1, "", "svdvals"], [635, 2, 1, "", "swapaxes"], [374, 2, 1, "", "take"], [374, 2, 1, "", "take_along_axis"], [286, 2, 1, "", "tan"], [287, 2, 1, "", "tanh"], [305, 2, 1, "", "tanhshrink"], [372, 2, 1, "", "tensor_train"], [633, 2, 1, "", "tensordot"], [633, 2, 1, "", "tensorsolve"], [306, 2, 1, "", "threshold"], [307, 2, 1, "", "thresholded_relu"], [635, 2, 1, "", "tile"], [210, 2, 1, "", "to_device"], [625, 2, 1, "", "to_dlpack"], [630, 2, 1, "", "to_ivy_shape"], [630, 2, 1, "", "to_list"], [630, 2, 1, "", "to_native_shape"], [630, 2, 1, "", "to_numpy"], [630, 2, 1, "", "to_scalar"], [374, 2, 1, "", "top_k"], [211, 2, 1, "", "total_mem_on_dev"], [212, 2, 1, "", "tpu_is_available"], [633, 2, 1, "", "trace"], [859, 2, 1, "", "trace_graph"], [860, 2, 1, "", "transpile"], [288, 2, 1, "", "trapz"], [625, 2, 1, "", "tril"], [365, 2, 1, "", "tril_indices"], [365, 2, 1, "", "trilu"], [374, 2, 1, "", "trim_zeros"], [625, 2, 1, "", "triu"], [625, 2, 1, "", "triu_indices"], [289, 2, 1, "", "trunc"], [290, 2, 1, "", "trunc_divide"], [372, 2, 1, "", "truncated_svd"], [630, 2, 1, "", "try_else_none"], [624, 2, 1, "", "try_except"], [372, 2, 1, "", "tt_matrix_to_tensor"], [372, 2, 1, "", "tucker"], [626, 2, 1, "", "type_promote_arrays"], [374, 2, 1, "", "unflatten"], [374, 2, 1, "", "unfold"], [861, 2, 1, "", "unify"], [641, 2, 1, "", "unique_all"], [374, 2, 1, "", "unique_consecutive"], [641, 2, 1, "", "unique_counts"], [641, 2, 1, "", "unique_inverse"], [641, 2, 1, "", "unique_values"], [379, 2, 1, "", "unravel_index"], [630, 2, 1, "", "unset_array_mode"], [626, 2, 1, "", "unset_default_complex_dtype"], [213, 2, 1, "", "unset_default_device"], [184, 2, 1, "", "unset_default_dtype"], [185, 2, 1, "", "unset_default_float_dtype"], [186, 2, 1, "", "unset_default_int_dtype"], [187, 2, 1, "", "unset_default_uint_dtype"], [630, 2, 1, "", "unset_exception_trace_mode"], [630, 2, 1, "", "unset_inplace_mode"], [630, 2, 1, "", "unset_min_base"], [630, 2, 1, "", "unset_min_denominator"], [630, 2, 1, "", "unset_nestable_mode"], [630, 2, 1, "", "unset_precise_mode"], [630, 2, 1, "", "unset_queue_timeout"], [630, 2, 1, "", "unset_shape_array_mode"], [630, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [214, 2, 1, "", "unset_soft_device_mode"], [630, 2, 1, "", "unset_tmp_dir"], [365, 2, 1, "", "unsorted_segment_mean"], [365, 2, 1, "", "unsorted_segment_min"], [365, 2, 1, "", "unsorted_segment_sum"], [635, 2, 1, "", "unstack"], [215, 2, 1, "", "used_mem_on_dev"], [188, 2, 1, "", "valid_dtype"], [631, 2, 1, "", "value_and_grad"], [630, 2, 1, "", "value_is_nan"], [633, 2, 1, "", "vander"], [643, 2, 1, "", "var"], [633, 2, 1, "", "vecdot"], [633, 2, 1, "", "vector_norm"], [633, 2, 1, "", "vector_to_skew_symmetric_matrix"], [370, 2, 1, "", "vjp"], [630, 2, 1, "", "vmap"], [365, 2, 1, "", "vorbis_window"], [374, 2, 1, "", "vsplit"], [374, 2, 1, "", "vstack"], [640, 2, 1, "", "where"], [624, 2, 1, "", "while_loop"], [368, 2, 1, "", "xlogy"], [635, 2, 1, "", "zero_pad"], [625, 2, 1, "", "zeros"], [625, 2, 1, "", "zeros_like"], [368, 2, 1, "", "zeta"]], "ivy.Container": [[216, 0, 1, "", "abs"], [217, 0, 1, "", "acos"], [218, 0, 1, "", "acosh"], [611, 0, 1, "", "adam_step"], [612, 0, 1, "", "adam_update"], [385, 0, 1, "", "adaptive_avg_pool1d"], [386, 0, 1, "", "adaptive_avg_pool2d"], [387, 0, 1, "", "adaptive_max_pool2d"], [388, 0, 1, "", "adaptive_max_pool3d"], [219, 0, 1, "", "add"], [420, 0, 1, "", "adjoint"], [763, 0, 1, "", "all"], [530, 0, 1, "", "all_equal"], [330, 0, 1, "", "allclose"], [331, 0, 1, "", "amax"], [332, 0, 1, "", "amin"], [220, 0, 1, "", "angle"], [764, 0, 1, "", "any"], [740, 0, 1, "", "argmax"], [741, 0, 1, "", "argmin"], [749, 0, 1, "", "argsort"], [742, 0, 1, "", "argwhere"], [533, 0, 1, "", "array_equal"], [456, 0, 1, "", "as_strided"], [124, 0, 1, "", "asarray"], [221, 0, 1, "", "asin"], [222, 0, 1, "", "asinh"], [534, 0, 1, "", "assert_supports_inplace"], [457, 0, 1, "", "associative_scan"], [148, 0, 1, "", "astype"], [223, 0, 1, "", "atan"], [224, 0, 1, "", "atan2"], [225, 0, 1, "", "atanh"], [458, 0, 1, "", "atleast_1d"], [459, 0, 1, "", "atleast_2d"], [460, 0, 1, "", "atleast_3d"], [390, 0, 1, "", "avg_pool1d"], [391, 0, 1, "", "avg_pool2d"], [392, 0, 1, "", "avg_pool3d"], [497, 0, 1, "", "batch_norm"], [421, 0, 1, "", "batched_outer"], [504, 0, 1, "", "bernoulli"], [505, 0, 1, "", "beta"], [333, 0, 1, "", "binarizer"], [692, 0, 1, "", "binary_cross_entropy"], [516, 0, 1, "", "bincount"], [226, 0, 1, "", "bitwise_and"], [227, 0, 1, "", "bitwise_invert"], [228, 0, 1, "", "bitwise_left_shift"], [229, 0, 1, "", "bitwise_or"], [230, 0, 1, "", "bitwise_right_shift"], [231, 0, 1, "", "bitwise_xor"], [308, 0, 1, "", "blackman_window"], [149, 0, 1, "", "broadcast_arrays"], [461, 0, 1, "", "broadcast_shapes"], [150, 0, 1, "", "broadcast_to"], [151, 0, 1, "", "can_cast"], [232, 0, 1, "", "ceil"], [291, 0, 1, "", "celu"], [663, 0, 1, "", "cholesky"], [695, 0, 1, "", "clip"], [536, 0, 1, "", "clip_matrix_norm"], [537, 0, 1, "", "clip_vector_norm"], [464, 0, 1, "", "column_stack"], [696, 0, 1, "", "concat"], [465, 0, 1, "", "concat_from_sequence"], [422, 0, 1, "", "cond"], [334, 0, 1, "", "conj"], [697, 0, 1, "", "constant_pad"], [646, 0, 1, "", "conv1d"], [647, 0, 1, "", "conv1d_transpose"], [648, 0, 1, "", "conv2d"], [649, 0, 1, "", "conv2d_transpose"], [650, 0, 1, "", "conv3d"], [651, 0, 1, "", "conv3d_transpose"], [125, 0, 1, "", "copy_array"], [335, 0, 1, "", "copysign"], [517, 0, 1, "", "corrcoef"], [233, 0, 1, "", "cos"], [234, 0, 1, "", "cosh"], [336, 0, 1, "", "count_nonzero"], [518, 0, 1, "", "cov"], [664, 0, 1, "", "cross"], [693, 0, 1, "", "cross_entropy"], [519, 0, 1, "", "cummax"], [520, 0, 1, "", "cummin"], [753, 0, 1, "", "cumprod"], [754, 0, 1, "", "cumsum"], [393, 0, 1, "", "dct"], [235, 0, 1, "", "deg2rad"], [654, 0, 1, "", "depthwise_conv2d"], [665, 0, 1, "", "det"], [193, 0, 1, "", "dev"], [394, 0, 1, "", "dft"], [666, 0, 1, "", "diag"], [423, 0, 1, "", "diagflat"], [667, 0, 1, "", "diagonal"], [337, 0, 1, "", "diff"], [338, 0, 1, "", "digamma"], [506, 0, 1, "", "dirichlet"], [236, 0, 1, "", "divide"], [424, 0, 1, "", "dot"], [655, 0, 1, "", "dropout"], [395, 0, 1, "", "dropout1d"], [396, 0, 1, "", "dropout2d"], [397, 0, 1, "", "dropout3d"], [466, 0, 1, "", "dsplit"], [467, 0, 1, "", "dstack"], [159, 0, 1, "", "dtype"], [425, 0, 1, "", "eig"], [669, 0, 1, "", "eigh"], [426, 0, 1, "", "eigh_tridiagonal"], [427, 0, 1, "", "eigvals"], [670, 0, 1, "", "eigvalsh"], [541, 0, 1, "", "einops_rearrange"], [542, 0, 1, "", "einops_reduce"], [543, 0, 1, "", "einops_repeat"], [755, 0, 1, "", "einsum"], [292, 0, 1, "", "elu"], [398, 0, 1, "", "embedding"], [127, 0, 1, "", "empty_like"], [237, 0, 1, "", "equal"], [238, 0, 1, "", "erf"], [339, 0, 1, "", "erfc"], [340, 0, 1, "", "erfinv"], [544, 0, 1, "", "exists"], [239, 0, 1, "", "exp"], [240, 0, 1, "", "exp2"], [468, 0, 1, "", "expand"], [698, 0, 1, "", "expand_dims"], [241, 0, 1, "", "expm1"], [309, 0, 1, "", "eye_like"], [399, 0, 1, "", "fft"], [469, 0, 1, "", "fill_diagonal"], [161, 0, 1, "", "finfo"], [341, 0, 1, "", "fix"], [470, 0, 1, "", "flatten"], [699, 0, 1, "", "flip"], [471, 0, 1, "", "fliplr"], [472, 0, 1, "", "flipud"], [342, 0, 1, "", "float_power"], [242, 0, 1, "", "floor"], [243, 0, 1, "", "floor_divide"], [343, 0, 1, "", "fmax"], [244, 0, 1, "", "fmin"], [245, 0, 1, "", "fmod"], [473, 0, 1, "", "fold"], [545, 0, 1, "", "fourier_encode"], [344, 0, 1, "", "frexp"], [129, 0, 1, "", "from_dlpack"], [130, 0, 1, "", "frombuffer"], [132, 0, 1, "", "full_like"], [507, 0, 1, "", "gamma"], [548, 0, 1, "", "gather"], [549, 0, 1, "", "gather_nd"], [246, 0, 1, "", "gcd"], [106, 0, 1, "", "gelu"], [428, 0, 1, "", "general_inner_product"], [552, 0, 1, "", "get_num_dims"], [345, 0, 1, "", "gradient"], [615, 0, 1, "", "gradient_descent_update"], [247, 0, 1, "", "greater"], [248, 0, 1, "", "greater_equal"], [498, 0, 1, "", "group_norm"], [310, 0, 1, "", "hamming_window"], [311, 0, 1, "", "hann_window"], [293, 0, 1, "", "hardshrink"], [294, 0, 1, "", "hardsilu"], [107, 0, 1, "", "hardswish"], [295, 0, 1, "", "hardtanh"], [554, 0, 1, "", "has_nans"], [474, 0, 1, "", "heaviside"], [429, 0, 1, "", "higher_order_moment"], [448, 0, 1, "", "hinge_embedding_loss"], [521, 0, 1, "", "histogram"], [475, 0, 1, "", "hsplit"], [476, 0, 1, "", "hstack"], [449, 0, 1, "", "huber_loss"], [346, 0, 1, "", "hypot"], [477, 0, 1, "", "i0"], [403, 0, 1, "", "idct"], [404, 0, 1, "", "ifft"], [405, 0, 1, "", "ifftn"], [522, 0, 1, "", "igamma"], [164, 0, 1, "", "iinfo"], [249, 0, 1, "", "imag"], [430, 0, 1, "", "initialize_tucker"], [671, 0, 1, "", "inner"], [556, 0, 1, "", "inplace_decrement"], [557, 0, 1, "", "inplace_increment"], [558, 0, 1, "", "inplace_update"], [499, 0, 1, "", "instance_norm"], [407, 0, 1, "", "interpolate"], [672, 0, 1, "", "inv"], [510, 0, 1, "", "invert_permutation"], [560, 0, 1, "", "is_array"], [167, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_complex_dtype"], [169, 0, 1, "", "is_float_dtype"], [171, 0, 1, "", "is_int_dtype"], [561, 0, 1, "", "is_ivy_array"], [564, 0, 1, "", "is_native_array"], [173, 0, 1, "", "is_uint_dtype"], [347, 0, 1, "", "isclose"], [250, 0, 1, "", "isfinite"], [565, 0, 1, "", "isin"], [251, 0, 1, "", "isinf"], [252, 0, 1, "", "isnan"], [253, 0, 1, "", "isreal"], [567, 0, 1, "", "itemsize"], [313, 0, 1, "", "kaiser_bessel_derived_window"], [314, 0, 1, "", "kaiser_window"], [450, 0, 1, "", "kl_div"], [432, 0, 1, "", "kron"], [451, 0, 1, "", "l1_loss"], [500, 0, 1, "", "l1_normalize"], [501, 0, 1, "", "l2_normalize"], [617, 0, 1, "", "lamb_update"], [618, 0, 1, "", "lars_update"], [733, 0, 1, "", "layer_norm"], [254, 0, 1, "", "lcm"], [348, 0, 1, "", "ldexp"], [108, 0, 1, "", "leaky_relu"], [349, 0, 1, "", "lerp"], [255, 0, 1, "", "less"], [256, 0, 1, "", "less_equal"], [511, 0, 1, "", "lexsort"], [350, 0, 1, "", "lgamma"], [656, 0, 1, "", "linear"], [133, 0, 1, "", "linspace"], [257, 0, 1, "", "log"], [258, 0, 1, "", "log10"], [259, 0, 1, "", "log1p"], [260, 0, 1, "", "log2"], [452, 0, 1, "", "log_poisson_loss"], [109, 0, 1, "", "log_softmax"], [261, 0, 1, "", "logaddexp"], [262, 0, 1, "", "logaddexp2"], [263, 0, 1, "", "logical_and"], [264, 0, 1, "", "logical_not"], [265, 0, 1, "", "logical_or"], [266, 0, 1, "", "logical_xor"], [296, 0, 1, "", "logit"], [297, 0, 1, "", "logsigmoid"], [134, 0, 1, "", "logspace"], [503, 0, 1, "", "lp_normalize"], [658, 0, 1, "", "lstm_update"], [436, 0, 1, "", "make_svd_non_negative"], [673, 0, 1, "", "matmul"], [478, 0, 1, "", "matricize"], [437, 0, 1, "", "matrix_exp"], [674, 0, 1, "", "matrix_norm"], [675, 0, 1, "", "matrix_power"], [676, 0, 1, "", "matrix_rank"], [677, 0, 1, "", "matrix_transpose"], [756, 0, 1, "", "max"], [408, 0, 1, "", "max_pool1d"], [409, 0, 1, "", "max_pool2d"], [410, 0, 1, "", "max_pool3d"], [411, 0, 1, "", "max_unpool1d"], [267, 0, 1, "", "maximum"], [757, 0, 1, "", "mean"], [523, 0, 1, "", "median"], [315, 0, 1, "", "mel_weight_matrix"], [135, 0, 1, "", "meshgrid"], [758, 0, 1, "", "min"], [268, 0, 1, "", "minimum"], [110, 0, 1, "", "mish"], [438, 0, 1, "", "mode_dot"], [351, 0, 1, "", "modf"], [479, 0, 1, "", "moveaxis"], [750, 0, 1, "", "msort"], [439, 0, 1, "", "multi_dot"], [659, 0, 1, "", "multi_head_attention"], [440, 0, 1, "", "multi_mode_dot"], [734, 0, 1, "", "multinomial"], [269, 0, 1, "", "multiply"], [270, 0, 1, "", "nan_to_num"], [524, 0, 1, "", "nanmean"], [525, 0, 1, "", "nanmedian"], [526, 0, 1, "", "nanmin"], [527, 0, 1, "", "nanprod"], [352, 0, 1, "", "nansum"], [136, 0, 1, "", "native_array"], [271, 0, 1, "", "negative"], [353, 0, 1, "", "nextafter"], [743, 0, 1, "", "nonzero"], [272, 0, 1, "", "not_equal"], [137, 0, 1, "", "one_hot"], [139, 0, 1, "", "ones_like"], [619, 0, 1, "", "optimizer_update"], [529, 0, 1, "", "optional_get_element"], [678, 0, 1, "", "outer"], [480, 0, 1, "", "pad"], [481, 0, 1, "", "partial_fold"], [482, 0, 1, "", "partial_tensor_to_vec"], [441, 0, 1, "", "partial_tucker"], [483, 0, 1, "", "partial_unfold"], [484, 0, 1, "", "partial_vec_to_tensor"], [700, 0, 1, "", "permute_dims"], [679, 0, 1, "", "pinv"], [508, 0, 1, "", "poisson"], [453, 0, 1, "", "poisson_nll_loss"], [318, 0, 1, "", "polyval"], [273, 0, 1, "", "positive"], [274, 0, 1, "", "pow"], [298, 0, 1, "", "prelu"], [759, 0, 1, "", "prod"], [485, 0, 1, "", "put_along_axis"], [680, 0, 1, "", "qr"], [528, 0, 1, "", "quantile"], [275, 0, 1, "", "rad2deg"], [735, 0, 1, "", "randint"], [736, 0, 1, "", "random_normal"], [737, 0, 1, "", "random_uniform"], [276, 0, 1, "", "real"], [277, 0, 1, "", "reciprocal"], [359, 0, 1, "", "reduce"], [414, 0, 1, "", "reduce_window"], [111, 0, 1, "", "relu"], [299, 0, 1, "", "relu6"], [278, 0, 1, "", "remainder"], [701, 0, 1, "", "repeat"], [702, 0, 1, "", "reshape"], [176, 0, 1, "", "result_type"], [415, 0, 1, "", "rfft"], [416, 0, 1, "", "rfftn"], [703, 0, 1, "", "roll"], [486, 0, 1, "", "rot90"], [279, 0, 1, "", "round"], [662, 0, 1, "", "scaled_dot_product_attention"], [300, 0, 1, "", "scaled_tanh"], [572, 0, 1, "", "scatter_flat"], [573, 0, 1, "", "scatter_nd"], [751, 0, 1, "", "searchsorted"], [301, 0, 1, "", "selu"], [739, 0, 1, "", "shuffle"], [112, 0, 1, "", "sigmoid"], [280, 0, 1, "", "sign"], [354, 0, 1, "", "signbit"], [302, 0, 1, "", "silu"], [281, 0, 1, "", "sin"], [355, 0, 1, "", "sinc"], [282, 0, 1, "", "sinh"], [587, 0, 1, "", "size"], [418, 0, 1, "", "sliding_window"], [681, 0, 1, "", "slogdet"], [454, 0, 1, "", "smooth_l1_loss"], [455, 0, 1, "", "soft_margin_loss"], [487, 0, 1, "", "soft_thresholding"], [113, 0, 1, "", "softmax"], [114, 0, 1, "", "softplus"], [303, 0, 1, "", "softshrink"], [682, 0, 1, "", "solve"], [752, 0, 1, "", "sort"], [694, 0, 1, "", "sparse_cross_entropy"], [356, 0, 1, "", "sparsify_tensor"], [704, 0, 1, "", "split"], [283, 0, 1, "", "sqrt"], [284, 0, 1, "", "square"], [705, 0, 1, "", "squeeze"], [588, 0, 1, "", "stable_divide"], [589, 0, 1, "", "stable_pow"], [706, 0, 1, "", "stack"], [760, 0, 1, "", "std"], [419, 0, 1, "", "stft"], [620, 0, 1, "", "stop_gradient"], [590, 0, 1, "", "strides"], [285, 0, 1, "", "subtract"], [761, 0, 1, "", "sum"], [591, 0, 1, "", "supports_inplace_updates"], [683, 0, 1, "", "svd"], [443, 0, 1, "", "svd_flip"], [684, 0, 1, "", "svdvals"], [707, 0, 1, "", "swapaxes"], [488, 0, 1, "", "take"], [489, 0, 1, "", "take_along_axis"], [286, 0, 1, "", "tan"], [287, 0, 1, "", "tanh"], [305, 0, 1, "", "tanhshrink"], [444, 0, 1, "", "tensor_train"], [685, 0, 1, "", "tensordot"], [686, 0, 1, "", "tensorsolve"], [306, 0, 1, "", "threshold"], [307, 0, 1, "", "thresholded_relu"], [708, 0, 1, "", "tile"], [210, 0, 1, "", "to_device"], [593, 0, 1, "", "to_list"], [595, 0, 1, "", "to_numpy"], [596, 0, 1, "", "to_scalar"], [490, 0, 1, "", "top_k"], [687, 0, 1, "", "trace"], [288, 0, 1, "", "trapz"], [141, 0, 1, "", "tril"], [324, 0, 1, "", "tril_indices"], [325, 0, 1, "", "trilu"], [491, 0, 1, "", "trim_zeros"], [142, 0, 1, "", "triu"], [143, 0, 1, "", "triu_indices"], [289, 0, 1, "", "trunc"], [290, 0, 1, "", "trunc_divide"], [445, 0, 1, "", "truncated_svd"], [446, 0, 1, "", "tt_matrix_to_tensor"], [447, 0, 1, "", "tucker"], [492, 0, 1, "", "unflatten"], [493, 0, 1, "", "unfold"], [745, 0, 1, "", "unique_all"], [494, 0, 1, "", "unique_consecutive"], [746, 0, 1, "", "unique_counts"], [747, 0, 1, "", "unique_inverse"], [748, 0, 1, "", "unique_values"], [509, 0, 1, "", "unravel_index"], [326, 0, 1, "", "unsorted_segment_mean"], [327, 0, 1, "", "unsorted_segment_min"], [328, 0, 1, "", "unsorted_segment_sum"], [709, 0, 1, "", "unstack"], [609, 0, 1, "", "value_is_nan"], [688, 0, 1, "", "vander"], [762, 0, 1, "", "var"], [689, 0, 1, "", "vecdot"], [690, 0, 1, "", "vector_norm"], [691, 0, 1, "", "vector_to_skew_symmetric_matrix"], [329, 0, 1, "", "vorbis_window"], [495, 0, 1, "", "vsplit"], [496, 0, 1, "", "vstack"], [744, 0, 1, "", "where"], [357, 0, 1, "", "xlogy"], [710, 0, 1, "", "zero_pad"], [145, 0, 1, "", "zeros_like"], [358, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[47, 3, 0, "-", "activations"], [98, 3, 0, "-", "array"], [48, 3, 0, "-", "conversions"], [49, 3, 0, "-", "creation"], [50, 3, 0, "-", "data_type"], [51, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [53, 3, 0, "-", "experimental"], [54, 3, 0, "-", "general"], [55, 3, 0, "-", "gradients"], [56, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [58, 3, 0, "-", "linear_algebra"], [59, 3, 0, "-", "losses"], [60, 3, 0, "-", "manipulation"], [61, 3, 0, "-", "norms"], [62, 3, 0, "-", "random"], [63, 3, 0, "-", "searching"], [64, 3, 0, "-", "set"], [65, 3, 0, "-", "sorting"], [66, 3, 0, "-", "statistical"], [67, 3, 0, "-", "utility"], [68, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[47, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[47, 4, 1, "", "_abc_impl"], [47, 0, 1, "", "gelu"], [47, 0, 1, "", "hardswish"], [47, 0, 1, "", "leaky_relu"], [47, 0, 1, "", "log_softmax"], [47, 0, 1, "", "mish"], [47, 0, 1, "", "relu"], [47, 0, 1, "", "sigmoid"], [47, 0, 1, "", "softmax"], [47, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[98, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[98, 5, 1, "", "T"], [98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"], [98, 5, 1, "", "backend"], [98, 5, 1, "", "base"], [98, 5, 1, "", "data"], [98, 5, 1, "", "device"], [98, 5, 1, "", "dtype"], [98, 5, 1, "", "dynamic_backend"], [98, 5, 1, "", "imag"], [98, 5, 1, "", "itemsize"], [98, 5, 1, "", "mT"], [98, 5, 1, "", "ndim"], [98, 5, 1, "", "real"], [98, 5, 1, "", "shape"], [98, 5, 1, "", "size"], [98, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[48, 2, 1, "", "_array_to_new_backend"], [48, 2, 1, "", "_to_ivy"], [48, 2, 1, "", "_to_native"], [48, 2, 1, "", "_to_new_backend"], [48, 2, 1, "", "args_to_ivy"], [48, 2, 1, "", "args_to_native"], [48, 2, 1, "", "args_to_new_backend"], [48, 2, 1, "", "to_ivy"], [48, 2, 1, "", "to_native"], [48, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[49, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "asarray"], [49, 0, 1, "", "copy_array"], [49, 0, 1, "", "empty_like"], [49, 0, 1, "", "from_dlpack"], [49, 0, 1, "", "full_like"], [49, 0, 1, "", "linspace"], [49, 0, 1, "", "logspace"], [49, 0, 1, "", "meshgrid"], [49, 0, 1, "", "native_array"], [49, 0, 1, "", "one_hot"], [49, 0, 1, "", "ones_like"], [49, 0, 1, "", "tril"], [49, 0, 1, "", "triu"], [49, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[50, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "astype"], [50, 0, 1, "", "broadcast_arrays"], [50, 0, 1, "", "broadcast_to"], [50, 0, 1, "", "can_cast"], [50, 0, 1, "", "dtype"], [50, 0, 1, "", "finfo"], [50, 0, 1, "", "iinfo"], [50, 0, 1, "", "is_bool_dtype"], [50, 0, 1, "", "is_float_dtype"], [50, 0, 1, "", "is_int_dtype"], [50, 0, 1, "", "is_uint_dtype"], [50, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[51, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "dev"], [51, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[52, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "abs"], [52, 0, 1, "", "acos"], [52, 0, 1, "", "acosh"], [52, 0, 1, "", "add"], [52, 0, 1, "", "angle"], [52, 0, 1, "", "asin"], [52, 0, 1, "", "asinh"], [52, 0, 1, "", "atan"], [52, 0, 1, "", "atan2"], [52, 0, 1, "", "atanh"], [52, 0, 1, "", "bitwise_and"], [52, 0, 1, "", "bitwise_invert"], [52, 0, 1, "", "bitwise_left_shift"], [52, 0, 1, "", "bitwise_or"], [52, 0, 1, "", "bitwise_right_shift"], [52, 0, 1, "", "bitwise_xor"], [52, 0, 1, "", "ceil"], [52, 0, 1, "", "cos"], [52, 0, 1, "", "cosh"], [52, 0, 1, "", "deg2rad"], [52, 0, 1, "", "divide"], [52, 0, 1, "", "equal"], [52, 0, 1, "", "erf"], [52, 0, 1, "", "exp"], [52, 0, 1, "", "exp2"], [52, 0, 1, "", "expm1"], [52, 0, 1, "", "floor"], [52, 0, 1, "", "floor_divide"], [52, 0, 1, "", "fmin"], [52, 0, 1, "", "gcd"], [52, 0, 1, "", "greater"], [52, 0, 1, "", "greater_equal"], [52, 0, 1, "", "isfinite"], [52, 0, 1, "", "isinf"], [52, 0, 1, "", "isnan"], [52, 0, 1, "", "isreal"], [52, 0, 1, "", "lcm"], [52, 0, 1, "", "less"], [52, 0, 1, "", "less_equal"], [52, 0, 1, "", "log"], [52, 0, 1, "", "log10"], [52, 0, 1, "", "log1p"], [52, 0, 1, "", "log2"], [52, 0, 1, "", "logaddexp"], [52, 0, 1, "", "logaddexp2"], [52, 0, 1, "", "logical_and"], [52, 0, 1, "", "logical_not"], [52, 0, 1, "", "logical_or"], [52, 0, 1, "", "logical_xor"], [52, 0, 1, "", "maximum"], [52, 0, 1, "", "minimum"], [52, 0, 1, "", "multiply"], [52, 0, 1, "", "nan_to_num"], [52, 0, 1, "", "negative"], [52, 0, 1, "", "not_equal"], [52, 0, 1, "", "positive"], [52, 0, 1, "", "pow"], [52, 0, 1, "", "rad2deg"], [52, 0, 1, "", "real"], [52, 0, 1, "", "reciprocal"], [52, 0, 1, "", "remainder"], [52, 0, 1, "", "round"], [52, 0, 1, "", "sign"], [52, 0, 1, "", "sin"], [52, 0, 1, "", "sinh"], [52, 0, 1, "", "sqrt"], [52, 0, 1, "", "square"], [52, 0, 1, "", "subtract"], [52, 0, 1, "", "tan"], [52, 0, 1, "", "tanh"], [52, 0, 1, "", "trapz"], [52, 0, 1, "", "trunc"], [52, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[53, 3, 0, "-", "activations"], [53, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [53, 3, 0, "-", "data_type"], [53, 3, 0, "-", "device"], [53, 3, 0, "-", "elementwise"], [53, 3, 0, "-", "general"], [53, 3, 0, "-", "gradients"], [53, 3, 0, "-", "image"], [53, 3, 0, "-", "layers"], [53, 3, 0, "-", "linear_algebra"], [53, 3, 0, "-", "losses"], [53, 3, 0, "-", "manipulation"], [53, 3, 0, "-", "norms"], [53, 3, 0, "-", "random"], [53, 3, 0, "-", "searching"], [53, 3, 0, "-", "set"], [53, 3, 0, "-", "sorting"], [53, 3, 0, "-", "statistical"], [53, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[53, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "celu"], [53, 0, 1, "", "elu"], [53, 0, 1, "", "hardshrink"], [53, 0, 1, "", "hardsilu"], [53, 0, 1, "", "hardtanh"], [53, 0, 1, "", "logit"], [53, 0, 1, "", "logsigmoid"], [53, 0, 1, "", "prelu"], [53, 0, 1, "", "relu6"], [53, 0, 1, "", "scaled_tanh"], [53, 0, 1, "", "selu"], [53, 0, 1, "", "silu"], [53, 0, 1, "", "softshrink"], [53, 0, 1, "", "tanhshrink"], [53, 0, 1, "", "threshold"], [53, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[53, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[53, 1, 1, "", "_ArrayWithCreationExperimental"], [53, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "blackman_window"], [53, 0, 1, "", "eye_like"], [53, 0, 1, "", "mel_weight_matrix"], [53, 0, 1, "", "trilu"], [53, 0, 1, "", "unsorted_segment_mean"], [53, 0, 1, "", "unsorted_segment_min"], [53, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[53, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[53, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[53, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "allclose"], [53, 0, 1, "", "amax"], [53, 0, 1, "", "amin"], [53, 0, 1, "", "binarizer"], [53, 0, 1, "", "conj"], [53, 0, 1, "", "copysign"], [53, 0, 1, "", "count_nonzero"], [53, 0, 1, "", "diff"], [53, 0, 1, "", "digamma"], [53, 0, 1, "", "erfc"], [53, 0, 1, "", "erfinv"], [53, 0, 1, "", "fix"], [53, 0, 1, "", "float_power"], [53, 0, 1, "", "fmax"], [53, 0, 1, "", "fmod"], [53, 0, 1, "", "frexp"], [53, 0, 1, "", "gradient"], [53, 0, 1, "", "hypot"], [53, 0, 1, "", "isclose"], [53, 0, 1, "", "ldexp"], [53, 0, 1, "", "lerp"], [53, 0, 1, "", "lgamma"], [53, 0, 1, "", "modf"], [53, 0, 1, "", "nansum"], [53, 0, 1, "", "nextafter"], [53, 0, 1, "", "signbit"], [53, 0, 1, "", "sinc"], [53, 0, 1, "", "sparsify_tensor"], [53, 0, 1, "", "xlogy"], [53, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[53, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[53, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[53, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[53, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "adaptive_avg_pool1d"], [53, 0, 1, "", "adaptive_avg_pool2d"], [53, 0, 1, "", "adaptive_max_pool2d"], [53, 0, 1, "", "adaptive_max_pool3d"], [53, 0, 1, "", "avg_pool1d"], [53, 0, 1, "", "avg_pool2d"], [53, 0, 1, "", "avg_pool3d"], [53, 0, 1, "", "dct"], [53, 0, 1, "", "dft"], [53, 0, 1, "", "embedding"], [53, 0, 1, "", "fft"], [53, 0, 1, "", "fft2"], [53, 0, 1, "", "idct"], [53, 0, 1, "", "ifft"], [53, 0, 1, "", "ifftn"], [53, 0, 1, "", "interpolate"], [53, 0, 1, "", "max_pool1d"], [53, 0, 1, "", "max_pool2d"], [53, 0, 1, "", "max_pool3d"], [53, 0, 1, "", "max_unpool1d"], [53, 0, 1, "", "reduce_window"], [53, 0, 1, "", "rfft"], [53, 0, 1, "", "rfftn"], [53, 0, 1, "", "sliding_window"], [53, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[53, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "adjoint"], [53, 0, 1, "", "batched_outer"], [53, 0, 1, "", "cond"], [53, 0, 1, "", "diagflat"], [53, 0, 1, "", "dot"], [53, 0, 1, "", "eig"], [53, 0, 1, "", "eigh_tridiagonal"], [53, 0, 1, "", "eigvals"], [53, 0, 1, "", "general_inner_product"], [53, 0, 1, "", "higher_order_moment"], [53, 0, 1, "", "initialize_tucker"], [53, 0, 1, "", "kron"], [53, 0, 1, "", "make_svd_non_negative"], [53, 0, 1, "", "matrix_exp"], [53, 0, 1, "", "mode_dot"], [53, 0, 1, "", "multi_dot"], [53, 0, 1, "", "multi_mode_dot"], [53, 0, 1, "", "partial_tucker"], [53, 0, 1, "", "svd_flip"], [53, 0, 1, "", "tensor_train"], [53, 0, 1, "", "truncated_svd"], [53, 0, 1, "", "tt_matrix_to_tensor"], [53, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[53, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "hinge_embedding_loss"], [53, 0, 1, "", "huber_loss"], [53, 0, 1, "", "kl_div"], [53, 0, 1, "", "l1_loss"], [53, 0, 1, "", "log_poisson_loss"], [53, 0, 1, "", "poisson_nll_loss"], [53, 0, 1, "", "smooth_l1_loss"], [53, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[53, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "as_strided"], [53, 0, 1, "", "associative_scan"], [53, 0, 1, "", "atleast_1d"], [53, 0, 1, "", "atleast_2d"], [53, 0, 1, "", "atleast_3d"], [53, 0, 1, "", "column_stack"], [53, 0, 1, "", "concat_from_sequence"], [53, 0, 1, "", "dsplit"], [53, 0, 1, "", "dstack"], [53, 0, 1, "", "expand"], [53, 0, 1, "", "fill_diagonal"], [53, 0, 1, "", "flatten"], [53, 0, 1, "", "fliplr"], [53, 0, 1, "", "flipud"], [53, 0, 1, "", "fold"], [53, 0, 1, "", "heaviside"], [53, 0, 1, "", "hsplit"], [53, 0, 1, "", "hstack"], [53, 0, 1, "", "i0"], [53, 0, 1, "", "matricize"], [53, 0, 1, "", "moveaxis"], [53, 0, 1, "", "pad"], [53, 0, 1, "", "partial_fold"], [53, 0, 1, "", "partial_tensor_to_vec"], [53, 0, 1, "", "partial_unfold"], [53, 0, 1, "", "partial_vec_to_tensor"], [53, 0, 1, "", "put_along_axis"], [53, 0, 1, "", "rot90"], [53, 0, 1, "", "soft_thresholding"], [53, 0, 1, "", "take"], [53, 0, 1, "", "take_along_axis"], [53, 0, 1, "", "top_k"], [53, 0, 1, "", "trim_zeros"], [53, 0, 1, "", "unflatten"], [53, 0, 1, "", "unfold"], [53, 0, 1, "", "unique_consecutive"], [53, 0, 1, "", "vsplit"], [53, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[53, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "batch_norm"], [53, 0, 1, "", "group_norm"], [53, 0, 1, "", "instance_norm"], [53, 0, 1, "", "l1_normalize"], [53, 0, 1, "", "l2_normalize"], [53, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[53, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "bernoulli"], [53, 0, 1, "", "beta"], [53, 0, 1, "", "dirichlet"], [53, 0, 1, "", "gamma"], [53, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[53, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[53, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[53, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[53, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "bincount"], [53, 0, 1, "", "corrcoef"], [53, 0, 1, "", "cov"], [53, 0, 1, "", "cummax"], [53, 0, 1, "", "cummin"], [53, 0, 1, "", "histogram"], [53, 0, 1, "", "igamma"], [53, 0, 1, "", "median"], [53, 0, 1, "", "nanmean"], [53, 0, 1, "", "nanmedian"], [53, 0, 1, "", "nanmin"], [53, 0, 1, "", "nanprod"], [53, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[53, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[54, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "all_equal"], [54, 0, 1, "", "array_equal"], [54, 0, 1, "", "assert_supports_inplace"], [54, 0, 1, "", "clip_matrix_norm"], [54, 0, 1, "", "clip_vector_norm"], [54, 0, 1, "", "default"], [54, 0, 1, "", "einops_rearrange"], [54, 0, 1, "", "einops_reduce"], [54, 0, 1, "", "einops_repeat"], [54, 0, 1, "", "exists"], [54, 0, 1, "", "fourier_encode"], [54, 0, 1, "", "gather"], [54, 0, 1, "", "gather_nd"], [54, 0, 1, "", "get_num_dims"], [54, 0, 1, "", "has_nans"], [54, 0, 1, "", "inplace_decrement"], [54, 0, 1, "", "inplace_increment"], [54, 0, 1, "", "inplace_update"], [54, 0, 1, "", "is_array"], [54, 0, 1, "", "is_ivy_array"], [54, 0, 1, "", "is_ivy_container"], [54, 0, 1, "", "is_native_array"], [54, 0, 1, "", "isin"], [54, 0, 1, "", "scatter_flat"], [54, 0, 1, "", "scatter_nd"], [54, 0, 1, "", "stable_divide"], [54, 0, 1, "", "stable_pow"], [54, 0, 1, "", "supports_inplace_updates"], [54, 0, 1, "", "to_file"], [54, 0, 1, "", "to_list"], [54, 0, 1, "", "to_numpy"], [54, 0, 1, "", "to_scalar"], [54, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[55, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "adam_step"], [55, 0, 1, "", "adam_update"], [55, 0, 1, "", "gradient_descent_update"], [55, 0, 1, "", "lamb_update"], [55, 0, 1, "", "lars_update"], [55, 0, 1, "", "optimizer_update"], [55, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[56, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[56, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[57, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "conv1d"], [57, 0, 1, "", "conv1d_transpose"], [57, 0, 1, "", "conv2d"], [57, 0, 1, "", "conv2d_transpose"], [57, 0, 1, "", "conv3d"], [57, 0, 1, "", "conv3d_transpose"], [57, 0, 1, "", "depthwise_conv2d"], [57, 0, 1, "", "dropout"], [57, 0, 1, "", "dropout1d"], [57, 0, 1, "", "dropout2d"], [57, 0, 1, "", "dropout3d"], [57, 0, 1, "", "linear"], [57, 0, 1, "", "lstm_update"], [57, 0, 1, "", "multi_head_attention"], [57, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[58, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "cholesky"], [58, 0, 1, "", "cross"], [58, 0, 1, "", "det"], [58, 0, 1, "", "diag"], [58, 0, 1, "", "diagonal"], [58, 0, 1, "", "eig"], [58, 0, 1, "", "eigh"], [58, 0, 1, "", "eigvalsh"], [58, 0, 1, "", "inner"], [58, 0, 1, "", "inv"], [58, 0, 1, "", "matmul"], [58, 0, 1, "", "matrix_norm"], [58, 0, 1, "", "matrix_power"], [58, 0, 1, "", "matrix_rank"], [58, 0, 1, "", "matrix_transpose"], [58, 0, 1, "", "outer"], [58, 0, 1, "", "pinv"], [58, 0, 1, "", "qr"], [58, 0, 1, "", "slogdet"], [58, 0, 1, "", "solve"], [58, 0, 1, "", "svd"], [58, 0, 1, "", "svdvals"], [58, 0, 1, "", "tensordot"], [58, 0, 1, "", "tensorsolve"], [58, 0, 1, "", "trace"], [58, 0, 1, "", "vander"], [58, 0, 1, "", "vecdot"], [58, 0, 1, "", "vector_norm"], [58, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[59, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "binary_cross_entropy"], [59, 0, 1, "", "cross_entropy"], [59, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[60, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "clip"], [60, 0, 1, "", "concat"], [60, 0, 1, "", "constant_pad"], [60, 0, 1, "", "expand_dims"], [60, 0, 1, "", "flip"], [60, 0, 1, "", "permute_dims"], [60, 0, 1, "", "repeat"], [60, 0, 1, "", "reshape"], [60, 0, 1, "", "roll"], [60, 0, 1, "", "split"], [60, 0, 1, "", "squeeze"], [60, 0, 1, "", "stack"], [60, 0, 1, "", "swapaxes"], [60, 0, 1, "", "tile"], [60, 0, 1, "", "unstack"], [60, 0, 1, "", "view"], [60, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[61, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[62, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "multinomial"], [62, 0, 1, "", "randint"], [62, 0, 1, "", "random_normal"], [62, 0, 1, "", "random_uniform"], [62, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[63, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "argmax"], [63, 0, 1, "", "argmin"], [63, 0, 1, "", "argwhere"], [63, 0, 1, "", "nonzero"], [63, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[64, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "unique_all"], [64, 0, 1, "", "unique_counts"], [64, 0, 1, "", "unique_inverse"], [64, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[65, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "argsort"], [65, 0, 1, "", "msort"], [65, 0, 1, "", "searchsorted"], [65, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[66, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "cumprod"], [66, 0, 1, "", "cumsum"], [66, 0, 1, "", "einsum"], [66, 0, 1, "", "max"], [66, 0, 1, "", "mean"], [66, 0, 1, "", "min"], [66, 0, 1, "", "prod"], [66, 0, 1, "", "std"], [66, 0, 1, "", "sum"], [66, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[67, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "all"], [67, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[68, 2, 1, "", "_wrap_function"], [68, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[69, 3, 0, "-", "activations"], [70, 3, 0, "-", "base"], [99, 3, 0, "-", "container"], [71, 3, 0, "-", "conversions"], [72, 3, 0, "-", "creation"], [73, 3, 0, "-", "data_type"], [74, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [76, 3, 0, "-", "experimental"], [77, 3, 0, "-", "general"], [78, 3, 0, "-", "gradients"], [79, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [81, 3, 0, "-", "linear_algebra"], [82, 3, 0, "-", "losses"], [83, 3, 0, "-", "manipulation"], [84, 3, 0, "-", "norms"], [85, 3, 0, "-", "random"], [86, 3, 0, "-", "searching"], [87, 3, 0, "-", "set"], [88, 3, 0, "-", "sorting"], [89, 3, 0, "-", "statistical"], [90, 3, 0, "-", "utility"], [91, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[69, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_static_gelu"], [69, 0, 1, "", "_static_hardswish"], [69, 0, 1, "", "_static_leaky_relu"], [69, 0, 1, "", "_static_log_softmax"], [69, 0, 1, "", "_static_mish"], [69, 0, 1, "", "_static_relu"], [69, 0, 1, "", "_static_sigmoid"], [69, 0, 1, "", "_static_softmax"], [69, 0, 1, "", "_static_softplus"], [69, 0, 1, "", "gelu"], [69, 0, 1, "", "hardswish"], [69, 0, 1, "", "leaky_relu"], [69, 0, 1, "", "log_softmax"], [69, 0, 1, "", "mish"], [69, 0, 1, "", "relu"], [69, 0, 1, "", "sigmoid"], [69, 0, 1, "", "softmax"], [69, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[70, 1, 1, "", "ContainerBase"], [70, 2, 1, "", "_is_jsonable"], [70, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[70, 0, 1, "", "__getitem__"], [70, 0, 1, "", "__init__"], [70, 0, 1, "", "__setitem__"], [70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [70, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [70, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [70, 0, 1, "", "_cont_concat_unify"], [70, 0, 1, "", "_cont_get_dev"], [70, 0, 1, "", "_cont_get_dtype"], [70, 0, 1, "", "_cont_get_shape"], [70, 0, 1, "", "_cont_get_shapes"], [70, 5, 1, "", "_cont_ivy"], [70, 0, 1, "", "_cont_mean_unify"], [70, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [70, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [70, 0, 1, "", "_cont_slice_keys"], [70, 0, 1, "", "_cont_sum_unify"], [70, 0, 1, "", "_get_queue_item"], [70, 0, 1, "", "cont_all_false"], [70, 0, 1, "", "cont_all_key_chains"], [70, 0, 1, "", "cont_all_true"], [70, 0, 1, "", "cont_as_bools"], [70, 0, 1, "", "cont_assert_contains_sub_container"], [70, 0, 1, "", "cont_assert_contains_sub_structure"], [70, 0, 1, "", "cont_assert_identical"], [70, 0, 1, "", "cont_assert_identical_structure"], [70, 0, 1, "", "cont_at_key_chain"], [70, 0, 1, "", "cont_at_key_chains"], [70, 0, 1, "", "cont_at_keys"], [70, 0, 1, "", "cont_combine"], [70, 0, 1, "", "cont_common_key_chains"], [70, 5, 1, "", "cont_config"], [70, 0, 1, "", "cont_contains_sub_container"], [70, 0, 1, "", "cont_contains_sub_structure"], [70, 0, 1, "", "cont_copy"], [70, 0, 1, "", "cont_create_if_absent"], [70, 0, 1, "", "cont_cutoff_at_depth"], [70, 0, 1, "", "cont_cutoff_at_height"], [70, 0, 1, "", "cont_deep_copy"], [70, 5, 1, "", "cont_dev"], [70, 5, 1, "", "cont_dev_str"], [70, 0, 1, "", "cont_diff"], [70, 5, 1, "", "cont_dtype"], [70, 0, 1, "", "cont_duplicate_array_keychains"], [70, 0, 1, "", "cont_find_sub_container"], [70, 0, 1, "", "cont_find_sub_structure"], [70, 0, 1, "", "cont_flatten_key_chain"], [70, 0, 1, "", "cont_flatten_key_chains"], [70, 0, 1, "", "cont_format_key_chains"], [70, 0, 1, "", "cont_from_disk_as_hdf5"], [70, 0, 1, "", "cont_from_disk_as_json"], [70, 0, 1, "", "cont_from_disk_as_pickled"], [70, 0, 1, "", "cont_from_flat_list"], [70, 0, 1, "", "cont_handle_inplace"], [70, 0, 1, "", "cont_has_key"], [70, 0, 1, "", "cont_has_key_chain"], [70, 0, 1, "", "cont_identical"], [70, 0, 1, "", "cont_identical_array_shapes"], [70, 0, 1, "", "cont_identical_configs"], [70, 0, 1, "", "cont_identical_structure"], [70, 0, 1, "", "cont_if_exists"], [70, 0, 1, "", "cont_inplace_update"], [70, 5, 1, "", "cont_ivy"], [70, 0, 1, "", "cont_key_chains_containing"], [70, 0, 1, "", "cont_list_join"], [70, 0, 1, "", "cont_list_stack"], [70, 0, 1, "", "cont_load"], [70, 0, 1, "", "cont_map"], [70, 0, 1, "", "cont_map_sub_conts"], [70, 5, 1, "", "cont_max_depth"], [70, 0, 1, "", "cont_multi_map"], [70, 0, 1, "", "cont_multi_map_in_function"], [70, 0, 1, "", "cont_num_arrays"], [70, 0, 1, "", "cont_overwrite_at_key_chain"], [70, 0, 1, "", "cont_overwrite_at_key_chains"], [70, 0, 1, "", "cont_prune_empty"], [70, 0, 1, "", "cont_prune_key_chain"], [70, 0, 1, "", "cont_prune_key_chains"], [70, 0, 1, "", "cont_prune_key_from_key_chains"], [70, 0, 1, "", "cont_prune_keys"], [70, 0, 1, "", "cont_prune_keys_from_key_chains"], [70, 0, 1, "", "cont_reduce"], [70, 0, 1, "", "cont_remove_key_length_limit"], [70, 0, 1, "", "cont_remove_print_limit"], [70, 0, 1, "", "cont_reshape_like"], [70, 0, 1, "", "cont_restructure"], [70, 0, 1, "", "cont_restructure_key_chains"], [70, 0, 1, "", "cont_save"], [70, 0, 1, "", "cont_set_at_key_chain"], [70, 0, 1, "", "cont_set_at_key_chains"], [70, 0, 1, "", "cont_set_at_keys"], [70, 5, 1, "", "cont_shape"], [70, 5, 1, "", "cont_shapes"], [70, 0, 1, "", "cont_show"], [70, 0, 1, "", "cont_show_sub_container"], [70, 0, 1, "", "cont_size_ordered_arrays"], [70, 0, 1, "", "cont_slice_keys"], [70, 0, 1, "", "cont_slice_via_key"], [70, 0, 1, "", "cont_sort_by_key"], [70, 0, 1, "", "cont_structural_diff"], [70, 0, 1, "", "cont_to_dict"], [70, 0, 1, "", "cont_to_disk_as_hdf5"], [70, 0, 1, "", "cont_to_disk_as_json"], [70, 0, 1, "", "cont_to_disk_as_pickled"], [70, 0, 1, "", "cont_to_flat_list"], [70, 0, 1, "", "cont_to_iterator"], [70, 0, 1, "", "cont_to_iterator_keys"], [70, 0, 1, "", "cont_to_iterator_values"], [70, 0, 1, "", "cont_to_jsonable"], [70, 0, 1, "", "cont_to_nested_list"], [70, 0, 1, "", "cont_to_raw"], [70, 0, 1, "", "cont_trim_key"], [70, 0, 1, "", "cont_try_kc"], [70, 0, 1, "", "cont_unify"], [70, 0, 1, "", "cont_unstack_conts"], [70, 0, 1, "", "cont_update_config"], [70, 0, 1, "", "cont_with_default_key_color"], [70, 0, 1, "", "cont_with_entries_as_lists"], [70, 0, 1, "", "cont_with_ivy_backend"], [70, 0, 1, "", "cont_with_key_length_limit"], [70, 0, 1, "", "cont_with_print_indent"], [70, 0, 1, "", "cont_with_print_limit"], [70, 0, 1, "", "cont_with_print_line_spacing"], [70, 5, 1, "", "dynamic_backend"], [70, 0, 1, "", "h5_file_size"], [70, 0, 1, "", "shuffle_h5_file"], [70, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[99, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[99, 0, 1, "", "__abs__"], [99, 0, 1, "", "__add__"], [99, 0, 1, "", "__eq__"], [99, 0, 1, "", "__ge__"], [99, 0, 1, "", "__gt__"], [99, 0, 1, "", "__init__"], [99, 0, 1, "", "__le__"], [99, 0, 1, "", "__lt__"], [99, 0, 1, "", "__ne__"], [99, 0, 1, "", "__pow__"], [99, 0, 1, "", "__radd__"], [99, 0, 1, "", "__rrshift__"], [99, 0, 1, "", "__rshift__"], [99, 0, 1, "", "__rsub__"], [99, 0, 1, "", "__sub__"], [99, 0, 1, "", "__truediv__"], [99, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[71, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_to_ivy"], [71, 0, 1, "", "_static_to_native"], [71, 0, 1, "", "to_ivy"], [71, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[72, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_arange"], [72, 0, 1, "", "_static_asarray"], [72, 0, 1, "", "_static_copy_array"], [72, 0, 1, "", "_static_empty"], [72, 0, 1, "", "_static_empty_like"], [72, 0, 1, "", "_static_eye"], [72, 0, 1, "", "_static_from_dlpack"], [72, 0, 1, "", "_static_full"], [72, 0, 1, "", "_static_full_like"], [72, 0, 1, "", "_static_linspace"], [72, 0, 1, "", "_static_logspace"], [72, 0, 1, "", "_static_meshgrid"], [72, 0, 1, "", "_static_native_array"], [72, 0, 1, "", "_static_one_hot"], [72, 0, 1, "", "_static_ones"], [72, 0, 1, "", "_static_ones_like"], [72, 0, 1, "", "_static_tril"], [72, 0, 1, "", "_static_triu"], [72, 0, 1, "", "_static_zeros"], [72, 0, 1, "", "_static_zeros_like"], [72, 0, 1, "", "asarray"], [72, 0, 1, "", "copy_array"], [72, 0, 1, "", "empty_like"], [72, 0, 1, "", "from_dlpack"], [72, 0, 1, "", "frombuffer"], [72, 0, 1, "", "full_like"], [72, 0, 1, "", "linspace"], [72, 0, 1, "", "logspace"], [72, 0, 1, "", "meshgrid"], [72, 0, 1, "", "native_array"], [72, 0, 1, "", "one_hot"], [72, 0, 1, "", "ones_like"], [72, 0, 1, "", "static_frombuffer"], [72, 0, 1, "", "static_triu_indices"], [72, 0, 1, "", "tril"], [72, 0, 1, "", "triu"], [72, 0, 1, "", "triu_indices"], [72, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[73, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_astype"], [73, 0, 1, "", "_static_broadcast_arrays"], [73, 0, 1, "", "_static_broadcast_to"], [73, 0, 1, "", "_static_can_cast"], [73, 0, 1, "", "_static_default_complex_dtype"], [73, 0, 1, "", "_static_default_float_dtype"], [73, 0, 1, "", "_static_dtype"], [73, 0, 1, "", "_static_finfo"], [73, 0, 1, "", "_static_function_supported_dtypes"], [73, 0, 1, "", "_static_function_unsupported_dtypes"], [73, 0, 1, "", "_static_iinfo"], [73, 0, 1, "", "_static_is_bool_dtype"], [73, 0, 1, "", "_static_is_complex_dtype"], [73, 0, 1, "", "_static_is_float_dtype"], [73, 0, 1, "", "_static_is_int_dtype"], [73, 0, 1, "", "_static_is_uint_dtype"], [73, 0, 1, "", "_static_result_type"], [73, 0, 1, "", "astype"], [73, 0, 1, "", "broadcast_arrays"], [73, 0, 1, "", "broadcast_to"], [73, 0, 1, "", "can_cast"], [73, 0, 1, "", "dtype"], [73, 0, 1, "", "finfo"], [73, 0, 1, "", "iinfo"], [73, 0, 1, "", "is_bool_dtype"], [73, 0, 1, "", "is_complex_dtype"], [73, 0, 1, "", "is_float_dtype"], [73, 0, 1, "", "is_int_dtype"], [73, 0, 1, "", "is_uint_dtype"], [73, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[74, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_dev"], [74, 0, 1, "", "_static_to_device"], [74, 0, 1, "", "dev"], [74, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[75, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_abs"], [75, 0, 1, "", "_static_acos"], [75, 0, 1, "", "_static_acosh"], [75, 0, 1, "", "_static_add"], [75, 0, 1, "", "_static_asin"], [75, 0, 1, "", "_static_asinh"], [75, 0, 1, "", "_static_atan"], [75, 0, 1, "", "_static_atan2"], [75, 0, 1, "", "_static_atanh"], [75, 0, 1, "", "_static_bitwise_and"], [75, 0, 1, "", "_static_bitwise_invert"], [75, 0, 1, "", "_static_bitwise_left_shift"], [75, 0, 1, "", "_static_bitwise_or"], [75, 0, 1, "", "_static_bitwise_right_shift"], [75, 0, 1, "", "_static_bitwise_xor"], [75, 0, 1, "", "_static_ceil"], [75, 0, 1, "", "_static_cos"], [75, 0, 1, "", "_static_cosh"], [75, 0, 1, "", "_static_deg2rad"], [75, 0, 1, "", "_static_divide"], [75, 0, 1, "", "_static_equal"], [75, 0, 1, "", "_static_erf"], [75, 0, 1, "", "_static_exp"], [75, 0, 1, "", "_static_expm1"], [75, 0, 1, "", "_static_floor"], [75, 0, 1, "", "_static_floor_divide"], [75, 0, 1, "", "_static_greater"], [75, 0, 1, "", "_static_greater_equal"], [75, 0, 1, "", "_static_isfinite"], [75, 0, 1, "", "_static_isinf"], [75, 0, 1, "", "_static_isnan"], [75, 0, 1, "", "_static_isreal"], [75, 0, 1, "", "_static_lcm"], [75, 0, 1, "", "_static_less"], [75, 0, 1, "", "_static_less_equal"], [75, 0, 1, "", "_static_log"], [75, 0, 1, "", "_static_log10"], [75, 0, 1, "", "_static_log1p"], [75, 0, 1, "", "_static_log2"], [75, 0, 1, "", "_static_logaddexp"], [75, 0, 1, "", "_static_logical_and"], [75, 0, 1, "", "_static_logical_not"], [75, 0, 1, "", "_static_logical_or"], [75, 0, 1, "", "_static_logical_xor"], [75, 0, 1, "", "_static_maximum"], [75, 0, 1, "", "_static_minimum"], [75, 0, 1, "", "_static_multiply"], [75, 0, 1, "", "_static_negative"], [75, 0, 1, "", "_static_not_equal"], [75, 0, 1, "", "_static_positive"], [75, 0, 1, "", "_static_pow"], [75, 0, 1, "", "_static_rad2deg"], [75, 0, 1, "", "_static_reciprocal"], [75, 0, 1, "", "_static_remainder"], [75, 0, 1, "", "_static_round"], [75, 0, 1, "", "_static_sign"], [75, 0, 1, "", "_static_sin"], [75, 0, 1, "", "_static_sinh"], [75, 0, 1, "", "_static_sqrt"], [75, 0, 1, "", "_static_square"], [75, 0, 1, "", "_static_subtract"], [75, 0, 1, "", "_static_tan"], [75, 0, 1, "", "_static_tanh"], [75, 0, 1, "", "_static_trapz"], [75, 0, 1, "", "_static_trunc"], [75, 0, 1, "", "_static_trunc_divide"], [75, 0, 1, "", "abs"], [75, 0, 1, "", "acos"], [75, 0, 1, "", "acosh"], [75, 0, 1, "", "add"], [75, 0, 1, "", "angle"], [75, 0, 1, "", "asin"], [75, 0, 1, "", "asinh"], [75, 0, 1, "", "atan"], [75, 0, 1, "", "atan2"], [75, 0, 1, "", "atanh"], [75, 0, 1, "", "bitwise_and"], [75, 0, 1, "", "bitwise_invert"], [75, 0, 1, "", "bitwise_left_shift"], [75, 0, 1, "", "bitwise_or"], [75, 0, 1, "", "bitwise_right_shift"], [75, 0, 1, "", "bitwise_xor"], [75, 0, 1, "", "ceil"], [75, 0, 1, "", "cos"], [75, 0, 1, "", "cosh"], [75, 0, 1, "", "deg2rad"], [75, 0, 1, "", "divide"], [75, 0, 1, "", "equal"], [75, 0, 1, "", "erf"], [75, 0, 1, "", "exp"], [75, 0, 1, "", "exp2"], [75, 0, 1, "", "expm1"], [75, 0, 1, "", "floor"], [75, 0, 1, "", "floor_divide"], [75, 0, 1, "", "fmin"], [75, 0, 1, "", "gcd"], [75, 0, 1, "", "greater"], [75, 0, 1, "", "greater_equal"], [75, 0, 1, "", "imag"], [75, 0, 1, "", "isfinite"], [75, 0, 1, "", "isinf"], [75, 0, 1, "", "isnan"], [75, 0, 1, "", "isreal"], [75, 0, 1, "", "lcm"], [75, 0, 1, "", "less"], [75, 0, 1, "", "less_equal"], [75, 0, 1, "", "log"], [75, 0, 1, "", "log10"], [75, 0, 1, "", "log1p"], [75, 0, 1, "", "log2"], [75, 0, 1, "", "logaddexp"], [75, 0, 1, "", "logaddexp2"], [75, 0, 1, "", "logical_and"], [75, 0, 1, "", "logical_not"], [75, 0, 1, "", "logical_or"], [75, 0, 1, "", "logical_xor"], [75, 0, 1, "", "maximum"], [75, 0, 1, "", "minimum"], [75, 0, 1, "", "multiply"], [75, 0, 1, "", "nan_to_num"], [75, 0, 1, "", "negative"], [75, 0, 1, "", "not_equal"], [75, 0, 1, "", "positive"], [75, 0, 1, "", "pow"], [75, 0, 1, "", "rad2deg"], [75, 0, 1, "", "real"], [75, 0, 1, "", "reciprocal"], [75, 0, 1, "", "remainder"], [75, 0, 1, "", "round"], [75, 0, 1, "", "sign"], [75, 0, 1, "", "sin"], [75, 0, 1, "", "sinh"], [75, 0, 1, "", "sqrt"], [75, 0, 1, "", "square"], [75, 0, 1, "", "static_angle"], [75, 0, 1, "", "static_exp2"], [75, 0, 1, "", "static_fmin"], [75, 0, 1, "", "static_gcd"], [75, 0, 1, "", "static_imag"], [75, 0, 1, "", "static_logaddexp2"], [75, 0, 1, "", "static_nan_to_num"], [75, 0, 1, "", "static_real"], [75, 0, 1, "", "subtract"], [75, 0, 1, "", "tan"], [75, 0, 1, "", "tanh"], [75, 0, 1, "", "trapz"], [75, 0, 1, "", "trunc"], [75, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[76, 3, 0, "-", "activations"], [76, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [76, 3, 0, "-", "data_type"], [76, 3, 0, "-", "device"], [76, 3, 0, "-", "elementwise"], [76, 3, 0, "-", "general"], [76, 3, 0, "-", "gradients"], [76, 3, 0, "-", "image"], [76, 3, 0, "-", "layers"], [76, 3, 0, "-", "linear_algebra"], [76, 3, 0, "-", "losses"], [76, 3, 0, "-", "manipulation"], [76, 3, 0, "-", "norms"], [76, 3, 0, "-", "random"], [76, 3, 0, "-", "searching"], [76, 3, 0, "-", "set"], [76, 3, 0, "-", "sorting"], [76, 3, 0, "-", "statistical"], [76, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[76, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_celu"], [76, 0, 1, "", "_static_elu"], [76, 0, 1, "", "_static_hardshrink"], [76, 0, 1, "", "_static_hardsilu"], [76, 0, 1, "", "_static_hardtanh"], [76, 0, 1, "", "_static_scaled_tanh"], [76, 0, 1, "", "_static_silu"], [76, 0, 1, "", "_static_softshrink"], [76, 0, 1, "", "_static_tanhshrink"], [76, 0, 1, "", "_static_threshold"], [76, 0, 1, "", "celu"], [76, 0, 1, "", "elu"], [76, 0, 1, "", "hardshrink"], [76, 0, 1, "", "hardsilu"], [76, 0, 1, "", "hardtanh"], [76, 0, 1, "", "logit"], [76, 0, 1, "", "logsigmoid"], [76, 0, 1, "", "prelu"], [76, 0, 1, "", "relu6"], [76, 0, 1, "", "scaled_tanh"], [76, 0, 1, "", "selu"], [76, 0, 1, "", "silu"], [76, 0, 1, "", "softshrink"], [76, 0, 1, "", "static_logit"], [76, 0, 1, "", "static_logsigmoid"], [76, 0, 1, "", "static_prelu"], [76, 0, 1, "", "static_relu6"], [76, 0, 1, "", "static_selu"], [76, 0, 1, "", "static_thresholded_relu"], [76, 0, 1, "", "tanhshrink"], [76, 0, 1, "", "threshold"], [76, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[76, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[76, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_trilu"], [76, 0, 1, "", "blackman_window"], [76, 0, 1, "", "eye_like"], [76, 0, 1, "", "hamming_window"], [76, 0, 1, "", "hann_window"], [76, 0, 1, "", "kaiser_bessel_derived_window"], [76, 0, 1, "", "kaiser_window"], [76, 0, 1, "", "mel_weight_matrix"], [76, 0, 1, "", "polyval"], [76, 0, 1, "", "static_blackman_window"], [76, 0, 1, "", "static_eye_like"], [76, 0, 1, "", "static_hamming_window"], [76, 0, 1, "", "static_hann_window"], [76, 0, 1, "", "static_kaiser_bessel_derived_window"], [76, 0, 1, "", "static_kaiser_window"], [76, 0, 1, "", "static_mel_weight_matrix"], [76, 0, 1, "", "static_polyval"], [76, 0, 1, "", "static_tril_indices"], [76, 0, 1, "", "static_unsorted_segment_mean"], [76, 0, 1, "", "static_unsorted_segment_min"], [76, 0, 1, "", "static_unsorted_segment_sum"], [76, 0, 1, "", "static_vorbis_window"], [76, 0, 1, "", "tril_indices"], [76, 0, 1, "", "trilu"], [76, 0, 1, "", "unsorted_segment_mean"], [76, 0, 1, "", "unsorted_segment_min"], [76, 0, 1, "", "unsorted_segment_sum"], [76, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[76, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[76, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[76, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "allclose"], [76, 0, 1, "", "amax"], [76, 0, 1, "", "amin"], [76, 0, 1, "", "binarizer"], [76, 0, 1, "", "conj"], [76, 0, 1, "", "copysign"], [76, 0, 1, "", "count_nonzero"], [76, 0, 1, "", "diff"], [76, 0, 1, "", "digamma"], [76, 0, 1, "", "erfc"], [76, 0, 1, "", "erfinv"], [76, 0, 1, "", "fix"], [76, 0, 1, "", "float_power"], [76, 0, 1, "", "fmax"], [76, 0, 1, "", "fmod"], [76, 0, 1, "", "frexp"], [76, 0, 1, "", "gradient"], [76, 0, 1, "", "hypot"], [76, 0, 1, "", "isclose"], [76, 0, 1, "", "ldexp"], [76, 0, 1, "", "lerp"], [76, 0, 1, "", "modf"], [76, 0, 1, "", "nansum"], [76, 0, 1, "", "nextafter"], [76, 0, 1, "", "signbit"], [76, 0, 1, "", "sinc"], [76, 0, 1, "", "sparsify_tensor"], [76, 0, 1, "", "static_allclose"], [76, 0, 1, "", "static_amax"], [76, 0, 1, "", "static_amin"], [76, 0, 1, "", "static_binarizer"], [76, 0, 1, "", "static_conj"], [76, 0, 1, "", "static_copysign"], [76, 0, 1, "", "static_count_nonzero"], [76, 0, 1, "", "static_diff"], [76, 0, 1, "", "static_digamma"], [76, 0, 1, "", "static_erfc"], [76, 0, 1, "", "static_erfinv"], [76, 0, 1, "", "static_fix"], [76, 0, 1, "", "static_float_power"], [76, 0, 1, "", "static_fmax"], [76, 0, 1, "", "static_fmod"], [76, 0, 1, "", "static_frexp"], [76, 0, 1, "", "static_gradient"], [76, 0, 1, "", "static_hypot"], [76, 0, 1, "", "static_isclose"], [76, 0, 1, "", "static_ldexp"], [76, 0, 1, "", "static_lerp"], [76, 0, 1, "", "static_modf"], [76, 0, 1, "", "static_nansum"], [76, 0, 1, "", "static_nextafter"], [76, 0, 1, "", "static_signbit"], [76, 0, 1, "", "static_sinc"], [76, 0, 1, "", "static_sparsify_tensor"], [76, 0, 1, "", "static_xlogy"], [76, 0, 1, "", "static_zeta"], [76, 0, 1, "", "xlogy"], [76, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[76, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_reduce"], [76, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[76, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[76, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[76, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_fft"], [76, 0, 1, "", "_static_sliding_window"], [76, 0, 1, "", "adaptive_avg_pool1d"], [76, 0, 1, "", "adaptive_avg_pool2d"], [76, 0, 1, "", "adaptive_max_pool2d"], [76, 0, 1, "", "adaptive_max_pool3d"], [76, 0, 1, "", "avg_pool1d"], [76, 0, 1, "", "avg_pool2d"], [76, 0, 1, "", "avg_pool3d"], [76, 0, 1, "", "dct"], [76, 0, 1, "", "dft"], [76, 0, 1, "", "embedding"], [76, 0, 1, "", "fft"], [76, 0, 1, "", "idct"], [76, 0, 1, "", "ifft"], [76, 0, 1, "", "ifftn"], [76, 0, 1, "", "interpolate"], [76, 0, 1, "", "max_pool1d"], [76, 0, 1, "", "max_pool2d"], [76, 0, 1, "", "max_pool3d"], [76, 0, 1, "", "max_unpool1d"], [76, 0, 1, "", "rfft"], [76, 0, 1, "", "rfftn"], [76, 0, 1, "", "sliding_window"], [76, 0, 1, "", "static_adaptive_avg_pool1d"], [76, 0, 1, "", "static_adaptive_avg_pool2d"], [76, 0, 1, "", "static_adaptive_max_pool2d"], [76, 0, 1, "", "static_adaptive_max_pool3d"], [76, 0, 1, "", "static_avg_pool1d"], [76, 0, 1, "", "static_avg_pool2d"], [76, 0, 1, "", "static_avg_pool3d"], [76, 0, 1, "", "static_dct"], [76, 0, 1, "", "static_dft"], [76, 0, 1, "", "static_embedding"], [76, 0, 1, "", "static_idct"], [76, 0, 1, "", "static_ifft"], [76, 0, 1, "", "static_ifftn"], [76, 0, 1, "", "static_interpolate"], [76, 0, 1, "", "static_max_pool1d"], [76, 0, 1, "", "static_max_pool2d"], [76, 0, 1, "", "static_max_pool3d"], [76, 0, 1, "", "static_max_unpool1d"], [76, 0, 1, "", "static_rfft"], [76, 0, 1, "", "static_rfftn"], [76, 0, 1, "", "static_rnn"], [76, 0, 1, "", "static_stft"], [76, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[76, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "adjoint"], [76, 0, 1, "", "batched_outer"], [76, 0, 1, "", "cond"], [76, 0, 1, "", "diagflat"], [76, 0, 1, "", "dot"], [76, 0, 1, "", "eig"], [76, 0, 1, "", "eigh_tridiagonal"], [76, 0, 1, "", "eigvals"], [76, 0, 1, "", "higher_order_moment"], [76, 0, 1, "", "initialize_tucker"], [76, 0, 1, "", "kron"], [76, 0, 1, "", "make_svd_non_negative"], [76, 0, 1, "", "matrix_exp"], [76, 0, 1, "", "mode_dot"], [76, 0, 1, "", "multi_dot"], [76, 0, 1, "", "multi_mode_dot"], [76, 0, 1, "", "partial_tucker"], [76, 0, 1, "", "static_adjoint"], [76, 0, 1, "", "static_batched_outer"], [76, 0, 1, "", "static_cond"], [76, 0, 1, "", "static_diagflat"], [76, 0, 1, "", "static_dot"], [76, 0, 1, "", "static_eig"], [76, 0, 1, "", "static_eigh_tridiagonal"], [76, 0, 1, "", "static_eigvals"], [76, 0, 1, "", "static_higher_order_moment"], [76, 0, 1, "", "static_initialize_tucker"], [76, 0, 1, "", "static_kron"], [76, 0, 1, "", "static_make_svd_non_negative"], [76, 0, 1, "", "static_matrix_exp"], [76, 0, 1, "", "static_mode_dot"], [76, 0, 1, "", "static_multi_dot"], [76, 0, 1, "", "static_multi_mode_dot"], [76, 0, 1, "", "static_partial_tucker"], [76, 0, 1, "", "static_svd_flip"], [76, 0, 1, "", "static_tensor_train"], [76, 0, 1, "", "static_truncated_svd"], [76, 0, 1, "", "static_tt_matrix_to_tensor"], [76, 0, 1, "", "static_tucker"], [76, 0, 1, "", "svd_flip"], [76, 0, 1, "", "tensor_train"], [76, 0, 1, "", "truncated_svd"], [76, 0, 1, "", "tt_matrix_to_tensor"], [76, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[76, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_hinge_embedding_loss"], [76, 0, 1, "", "_static_huber_loss"], [76, 0, 1, "", "_static_kl_div"], [76, 0, 1, "", "_static_l1_loss"], [76, 0, 1, "", "_static_log_poisson_loss"], [76, 0, 1, "", "_static_poisson_nll_loss"], [76, 0, 1, "", "_static_smooth_l1_loss"], [76, 0, 1, "", "_static_soft_margin_loss"], [76, 0, 1, "", "hinge_embedding_loss"], [76, 0, 1, "", "huber_loss"], [76, 0, 1, "", "kl_div"], [76, 0, 1, "", "l1_loss"], [76, 0, 1, "", "log_poisson_loss"], [76, 0, 1, "", "poisson_nll_loss"], [76, 0, 1, "", "smooth_l1_loss"], [76, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[76, 1, 1, "", "_ContainerWithManipulationExperimental"], [76, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_fill_diagonal"], [76, 0, 1, "", "_static_put_along_axis"], [76, 0, 1, "", "_static_take"], [76, 0, 1, "", "_static_trim_zeros"], [76, 0, 1, "", "_static_unflatten"], [76, 0, 1, "", "_static_unique_consecutive"], [76, 0, 1, "", "as_strided"], [76, 0, 1, "", "associative_scan"], [76, 0, 1, "", "atleast_1d"], [76, 0, 1, "", "atleast_2d"], [76, 0, 1, "", "atleast_3d"], [76, 0, 1, "", "broadcast_shapes"], [76, 0, 1, "", "column_stack"], [76, 0, 1, "", "concat_from_sequence"], [76, 0, 1, "", "dsplit"], [76, 0, 1, "", "dstack"], [76, 0, 1, "", "expand"], [76, 0, 1, "", "fill_diagonal"], [76, 0, 1, "", "flatten"], [76, 0, 1, "", "fliplr"], [76, 0, 1, "", "flipud"], [76, 0, 1, "", "fold"], [76, 0, 1, "", "heaviside"], [76, 0, 1, "", "hsplit"], [76, 0, 1, "", "hstack"], [76, 0, 1, "", "i0"], [76, 0, 1, "", "matricize"], [76, 0, 1, "", "moveaxis"], [76, 0, 1, "", "pad"], [76, 0, 1, "", "partial_fold"], [76, 0, 1, "", "partial_tensor_to_vec"], [76, 0, 1, "", "partial_unfold"], [76, 0, 1, "", "partial_vec_to_tensor"], [76, 0, 1, "", "put_along_axis"], [76, 0, 1, "", "rot90"], [76, 0, 1, "", "soft_thresholding"], [76, 0, 1, "", "static_as_strided"], [76, 0, 1, "", "static_atleast_1d"], [76, 0, 1, "", "static_atleast_2d"], [76, 0, 1, "", "static_atleast_3d"], [76, 0, 1, "", "static_broadcast_shapes"], [76, 0, 1, "", "static_column_stack"], [76, 0, 1, "", "static_concat_from_sequence"], [76, 0, 1, "", "static_dsplit"], [76, 0, 1, "", "static_dstack"], [76, 0, 1, "", "static_expand"], [76, 0, 1, "", "static_flatten"], [76, 0, 1, "", "static_fliplr"], [76, 0, 1, "", "static_flipud"], [76, 0, 1, "", "static_fold"], [76, 0, 1, "", "static_heaviside"], [76, 0, 1, "", "static_hsplit"], [76, 0, 1, "", "static_hstack"], [76, 0, 1, "", "static_i0"], [76, 0, 1, "", "static_matricize"], [76, 0, 1, "", "static_moveaxis"], [76, 0, 1, "", "static_pad"], [76, 0, 1, "", "static_partial_fold"], [76, 0, 1, "", "static_partial_tensor_to_vec"], [76, 0, 1, "", "static_partial_unfold"], [76, 0, 1, "", "static_partial_vec_to_tensor"], [76, 0, 1, "", "static_rot90"], [76, 0, 1, "", "static_soft_thresholding"], [76, 0, 1, "", "static_take_along_axis"], [76, 0, 1, "", "static_top_k"], [76, 0, 1, "", "static_unfold"], [76, 0, 1, "", "static_vsplit"], [76, 0, 1, "", "static_vstack"], [76, 0, 1, "", "take"], [76, 0, 1, "", "take_along_axis"], [76, 0, 1, "", "top_k"], [76, 0, 1, "", "trim_zeros"], [76, 0, 1, "", "unflatten"], [76, 0, 1, "", "unfold"], [76, 0, 1, "", "unique_consecutive"], [76, 0, 1, "", "vsplit"], [76, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[76, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "batch_norm"], [76, 0, 1, "", "group_norm"], [76, 0, 1, "", "instance_norm"], [76, 0, 1, "", "l1_normalize"], [76, 0, 1, "", "l2_normalize"], [76, 0, 1, "", "lp_normalize"], [76, 0, 1, "", "static_batch_norm"], [76, 0, 1, "", "static_group_norm"], [76, 0, 1, "", "static_instance_norm"], [76, 0, 1, "", "static_l1_normalize"], [76, 0, 1, "", "static_l2_normalize"], [76, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[76, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "bernoulli"], [76, 0, 1, "", "beta"], [76, 0, 1, "", "dirichlet"], [76, 0, 1, "", "gamma"], [76, 0, 1, "", "poisson"], [76, 0, 1, "", "static_bernoulli"], [76, 0, 1, "", "static_beta"], [76, 0, 1, "", "static_dirichlet"], [76, 0, 1, "", "static_gamma"], [76, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[76, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "static_unravel_index"], [76, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[76, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[76, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "invert_permutation"], [76, 0, 1, "", "lexsort"], [76, 0, 1, "", "static_invert_permutation"], [76, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[76, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_cummax"], [76, 0, 1, "", "_static_cummin"], [76, 0, 1, "", "_static_nanmin"], [76, 0, 1, "", "bincount"], [76, 0, 1, "", "corrcoef"], [76, 0, 1, "", "cov"], [76, 0, 1, "", "cummax"], [76, 0, 1, "", "cummin"], [76, 0, 1, "", "histogram"], [76, 0, 1, "", "igamma"], [76, 0, 1, "", "lgamma"], [76, 0, 1, "", "median"], [76, 0, 1, "", "nanmean"], [76, 0, 1, "", "nanmedian"], [76, 0, 1, "", "nanmin"], [76, 0, 1, "", "nanprod"], [76, 0, 1, "", "quantile"], [76, 0, 1, "", "static_bincount"], [76, 0, 1, "", "static_corrcoef"], [76, 0, 1, "", "static_cov"], [76, 0, 1, "", "static_histogram"], [76, 0, 1, "", "static_igamma"], [76, 0, 1, "", "static_lgamma"], [76, 0, 1, "", "static_median"], [76, 0, 1, "", "static_nanmean"], [76, 0, 1, "", "static_nanmedian"], [76, 0, 1, "", "static_nanprod"], [76, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[76, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "optional_get_element"], [76, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[77, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_all_equal"], [77, 0, 1, "", "_static_array_equal"], [77, 0, 1, "", "_static_assert_supports_inplace"], [77, 0, 1, "", "_static_clip_matrix_norm"], [77, 0, 1, "", "_static_clip_vector_norm"], [77, 0, 1, "", "_static_einops_rearrange"], [77, 0, 1, "", "_static_einops_reduce"], [77, 0, 1, "", "_static_einops_repeat"], [77, 0, 1, "", "_static_exists"], [77, 0, 1, "", "_static_fourier_encode"], [77, 0, 1, "", "_static_gather"], [77, 0, 1, "", "_static_gather_nd"], [77, 0, 1, "", "_static_get_num_dims"], [77, 0, 1, "", "_static_has_nans"], [77, 0, 1, "", "_static_inplace_decrement"], [77, 0, 1, "", "_static_inplace_increment"], [77, 0, 1, "", "_static_inplace_update"], [77, 0, 1, "", "_static_is_array"], [77, 0, 1, "", "_static_is_ivy_array"], [77, 0, 1, "", "_static_is_native_array"], [77, 0, 1, "", "_static_scatter_flat"], [77, 0, 1, "", "_static_scatter_nd"], [77, 0, 1, "", "_static_size"], [77, 0, 1, "", "_static_stable_divide"], [77, 0, 1, "", "_static_stable_pow"], [77, 0, 1, "", "_static_supports_inplace_updates"], [77, 0, 1, "", "_static_to_list"], [77, 0, 1, "", "_static_to_numpy"], [77, 0, 1, "", "_static_to_scalar"], [77, 0, 1, "", "_static_value_is_nan"], [77, 0, 1, "", "all_equal"], [77, 0, 1, "", "array_equal"], [77, 0, 1, "", "assert_supports_inplace"], [77, 0, 1, "", "clip_matrix_norm"], [77, 0, 1, "", "clip_vector_norm"], [77, 0, 1, "", "einops_rearrange"], [77, 0, 1, "", "einops_reduce"], [77, 0, 1, "", "einops_repeat"], [77, 0, 1, "", "exists"], [77, 0, 1, "", "fourier_encode"], [77, 0, 1, "", "gather"], [77, 0, 1, "", "gather_nd"], [77, 0, 1, "", "get_num_dims"], [77, 0, 1, "", "has_nans"], [77, 0, 1, "", "inplace_decrement"], [77, 0, 1, "", "inplace_increment"], [77, 0, 1, "", "inplace_update"], [77, 0, 1, "", "is_array"], [77, 0, 1, "", "is_ivy_array"], [77, 0, 1, "", "is_native_array"], [77, 0, 1, "", "isin"], [77, 0, 1, "", "itemsize"], [77, 0, 1, "", "scatter_flat"], [77, 0, 1, "", "scatter_nd"], [77, 0, 1, "", "size"], [77, 0, 1, "", "stable_divide"], [77, 0, 1, "", "stable_pow"], [77, 0, 1, "", "static_isin"], [77, 0, 1, "", "static_itemsize"], [77, 0, 1, "", "static_strides"], [77, 0, 1, "", "strides"], [77, 0, 1, "", "supports_inplace_updates"], [77, 0, 1, "", "to_list"], [77, 0, 1, "", "to_numpy"], [77, 0, 1, "", "to_scalar"], [77, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[78, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_stop_gradient"], [78, 0, 1, "", "adam_step"], [78, 0, 1, "", "adam_update"], [78, 0, 1, "", "gradient_descent_update"], [78, 0, 1, "", "lamb_update"], [78, 0, 1, "", "lars_update"], [78, 0, 1, "", "optimizer_update"], [78, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[79, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[79, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[80, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_conv1d"], [80, 0, 1, "", "_static_conv1d_transpose"], [80, 0, 1, "", "_static_conv2d"], [80, 0, 1, "", "_static_conv2d_transpose"], [80, 0, 1, "", "_static_conv3d"], [80, 0, 1, "", "_static_conv3d_transpose"], [80, 0, 1, "", "_static_depthwise_conv2d"], [80, 0, 1, "", "_static_dropout"], [80, 0, 1, "", "_static_dropout1d"], [80, 0, 1, "", "_static_dropout2d"], [80, 0, 1, "", "_static_dropout3d"], [80, 0, 1, "", "_static_linear"], [80, 0, 1, "", "_static_lstm_update"], [80, 0, 1, "", "_static_multi_head_attention"], [80, 0, 1, "", "_static_reduce_window"], [80, 0, 1, "", "_static_scaled_dot_product_attention"], [80, 0, 1, "", "conv1d"], [80, 0, 1, "", "conv1d_transpose"], [80, 0, 1, "", "conv2d"], [80, 0, 1, "", "conv2d_transpose"], [80, 0, 1, "", "conv3d"], [80, 0, 1, "", "conv3d_transpose"], [80, 0, 1, "", "depthwise_conv2d"], [80, 0, 1, "", "dropout"], [80, 0, 1, "", "dropout1d"], [80, 0, 1, "", "dropout2d"], [80, 0, 1, "", "dropout3d"], [80, 0, 1, "", "linear"], [80, 0, 1, "", "lstm_update"], [80, 0, 1, "", "multi_head_attention"], [80, 0, 1, "", "reduce_window"], [80, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[81, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_cholesky"], [81, 0, 1, "", "_static_cross"], [81, 0, 1, "", "_static_det"], [81, 0, 1, "", "_static_diag"], [81, 0, 1, "", "_static_diagonal"], [81, 0, 1, "", "_static_eigh"], [81, 0, 1, "", "_static_eigvalsh"], [81, 0, 1, "", "_static_inner"], [81, 0, 1, "", "_static_inv"], [81, 0, 1, "", "_static_matmul"], [81, 0, 1, "", "_static_matrix_norm"], [81, 0, 1, "", "_static_matrix_power"], [81, 0, 1, "", "_static_matrix_rank"], [81, 0, 1, "", "_static_matrix_transpose"], [81, 0, 1, "", "_static_outer"], [81, 0, 1, "", "_static_pinv"], [81, 0, 1, "", "_static_qr"], [81, 0, 1, "", "_static_slogdet"], [81, 0, 1, "", "_static_solve"], [81, 0, 1, "", "_static_svd"], [81, 0, 1, "", "_static_svdvals"], [81, 0, 1, "", "_static_tensordot"], [81, 0, 1, "", "_static_tensorsolve"], [81, 0, 1, "", "_static_trace"], [81, 0, 1, "", "_static_vander"], [81, 0, 1, "", "_static_vecdot"], [81, 0, 1, "", "_static_vector_norm"], [81, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [81, 0, 1, "", "cholesky"], [81, 0, 1, "", "cross"], [81, 0, 1, "", "det"], [81, 0, 1, "", "diag"], [81, 0, 1, "", "diagonal"], [81, 0, 1, "", "eigh"], [81, 0, 1, "", "eigvalsh"], [81, 0, 1, "", "general_inner_product"], [81, 0, 1, "", "inner"], [81, 0, 1, "", "inv"], [81, 0, 1, "", "matmul"], [81, 0, 1, "", "matrix_norm"], [81, 0, 1, "", "matrix_power"], [81, 0, 1, "", "matrix_rank"], [81, 0, 1, "", "matrix_transpose"], [81, 0, 1, "", "outer"], [81, 0, 1, "", "pinv"], [81, 0, 1, "", "qr"], [81, 0, 1, "", "slogdet"], [81, 0, 1, "", "solve"], [81, 0, 1, "", "static_general_inner_product"], [81, 0, 1, "", "svd"], [81, 0, 1, "", "svdvals"], [81, 0, 1, "", "tensordot"], [81, 0, 1, "", "tensorsolve"], [81, 0, 1, "", "trace"], [81, 0, 1, "", "vander"], [81, 0, 1, "", "vecdot"], [81, 0, 1, "", "vector_norm"], [81, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[82, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_binary_cross_entropy"], [82, 0, 1, "", "_static_cross_entropy"], [82, 0, 1, "", "_static_sparse_cross_entropy"], [82, 0, 1, "", "binary_cross_entropy"], [82, 0, 1, "", "cross_entropy"], [82, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[83, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "_static_clip"], [83, 0, 1, "", "_static_concat"], [83, 0, 1, "", "_static_constant_pad"], [83, 0, 1, "", "_static_expand_dims"], [83, 0, 1, "", "_static_flip"], [83, 0, 1, "", "_static_permute_dims"], [83, 0, 1, "", "_static_repeat"], [83, 0, 1, "", "_static_reshape"], [83, 0, 1, "", "_static_roll"], [83, 0, 1, "", "_static_split"], [83, 0, 1, "", "_static_squeeze"], [83, 0, 1, "", "_static_stack"], [83, 0, 1, "", "_static_swapaxes"], [83, 0, 1, "", "_static_tile"], [83, 0, 1, "", "_static_unstack"], [83, 0, 1, "", "_static_zero_pad"], [83, 0, 1, "", "clip"], [83, 0, 1, "", "concat"], [83, 0, 1, "", "constant_pad"], [83, 0, 1, "", "expand_dims"], [83, 0, 1, "", "flip"], [83, 0, 1, "", "permute_dims"], [83, 0, 1, "", "repeat"], [83, 0, 1, "", "reshape"], [83, 0, 1, "", "roll"], [83, 0, 1, "", "split"], [83, 0, 1, "", "squeeze"], [83, 0, 1, "", "stack"], [83, 0, 1, "", "swapaxes"], [83, 0, 1, "", "tile"], [83, 0, 1, "", "unstack"], [83, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[84, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[85, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_multinomial"], [85, 0, 1, "", "_static_randint"], [85, 0, 1, "", "_static_random_normal"], [85, 0, 1, "", "_static_random_uniform"], [85, 0, 1, "", "_static_shuffle"], [85, 0, 1, "", "multinomial"], [85, 0, 1, "", "randint"], [85, 0, 1, "", "random_normal"], [85, 0, 1, "", "random_uniform"], [85, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[86, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_argmax"], [86, 0, 1, "", "_static_argmin"], [86, 0, 1, "", "_static_argwhere"], [86, 0, 1, "", "_static_nonzero"], [86, 0, 1, "", "_static_where"], [86, 0, 1, "", "argmax"], [86, 0, 1, "", "argmin"], [86, 0, 1, "", "argwhere"], [86, 0, 1, "", "nonzero"], [86, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[87, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_unique_all"], [87, 0, 1, "", "_static_unique_counts"], [87, 0, 1, "", "_static_unique_inverse"], [87, 0, 1, "", "_static_unique_values"], [87, 0, 1, "", "unique_all"], [87, 0, 1, "", "unique_counts"], [87, 0, 1, "", "unique_inverse"], [87, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[88, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_argsort"], [88, 0, 1, "", "_static_searchsorted"], [88, 0, 1, "", "_static_sort"], [88, 0, 1, "", "argsort"], [88, 0, 1, "", "msort"], [88, 0, 1, "", "searchsorted"], [88, 0, 1, "", "sort"], [88, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[89, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_cumprod"], [89, 0, 1, "", "_static_cumsum"], [89, 0, 1, "", "_static_min"], [89, 0, 1, "", "_static_prod"], [89, 0, 1, "", "_static_sum"], [89, 0, 1, "", "_static_var"], [89, 0, 1, "", "cumprod"], [89, 0, 1, "", "cumsum"], [89, 0, 1, "", "einsum"], [89, 0, 1, "", "max"], [89, 0, 1, "", "mean"], [89, 0, 1, "", "min"], [89, 0, 1, "", "prod"], [89, 0, 1, "", "std"], [89, 0, 1, "", "sum"], [89, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[90, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_all"], [90, 0, 1, "", "_static_any"], [90, 0, 1, "", "all"], [90, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[91, 2, 1, "", "_wrap_function"], [91, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[92, 3, 0, "-", "base"], [93, 3, 0, "-", "cp_tensor"], [94, 3, 0, "-", "parafac2_tensor"], [95, 3, 0, "-", "tr_tensor"], [96, 3, 0, "-", "tt_tensor"], [97, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[92, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "mode_dot"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[93, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "cp_copy"], [93, 0, 1, "", "cp_flip_sign"], [93, 0, 1, "", "cp_lstsq_grad"], [93, 0, 1, "", "cp_mode_dot"], [93, 0, 1, "", "cp_n_param"], [93, 0, 1, "", "cp_norm"], [93, 0, 1, "", "cp_normalize"], [93, 0, 1, "", "cp_to_tensor"], [93, 0, 1, "", "cp_to_unfolded"], [93, 0, 1, "", "cp_to_vec"], [93, 0, 1, "", "mode_dot"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "norm"], [93, 0, 1, "", "normalize"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "unfolding_dot_khatri_rao"], [93, 0, 1, "", "validate_cp_rank"], [93, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[94, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "apply_parafac2_projections"], [94, 0, 1, "", "from_CPTensor"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "parafac2_normalise"], [94, 0, 1, "", "parafac2_to_slice"], [94, 0, 1, "", "parafac2_to_slices"], [94, 0, 1, "", "parafac2_to_tensor"], [94, 0, 1, "", "parafac2_to_unfolded"], [94, 0, 1, "", "parafac2_to_vec"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[95, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolded"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tr_n_param"], [95, 0, 1, "", "tr_to_tensor"], [95, 0, 1, "", "tr_to_unfolded"], [95, 0, 1, "", "tr_to_vec"], [95, 0, 1, "", "validate_tr_rank"], [95, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[96, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "_tt_n_param"], [96, 0, 1, "", "index_update"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "pad_tt_rank"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolding"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tt_to_tensor"], [96, 0, 1, "", "tt_to_unfolded"], [96, 0, 1, "", "tt_to_vec"], [96, 0, 1, "", "validate_tt_rank"], [96, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[97, 1, 1, "", "TuckerTensor"], [97, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "tucker_copy"], [97, 0, 1, "", "tucker_mode_dot"], [97, 0, 1, "", "tucker_n_param"], [97, 0, 1, "", "tucker_normalize"], [97, 0, 1, "", "tucker_to_tensor"], [97, 0, 1, "", "tucker_to_unfolded"], [97, 0, 1, "", "tucker_to_vec"], [97, 0, 1, "", "validate_tucker_rank"], [97, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[102, 3, 0, "-", "base"], [103, 3, 0, "-", "elementwise"], [101, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[102, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[102, 0, 1, "", "__init__"], [102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "broadcast_shapes"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "inner_shape"], [102, 5, 1, "", "ndim"], [102, 0, 1, "", "nested_array"], [102, 5, 1, "", "nested_rank"], [102, 0, 1, "", "ragged_map"], [102, 0, 1, "", "ragged_multi_map"], [102, 0, 1, "", "ragged_multi_map_in_function"], [102, 0, 1, "", "replace_ivy_arrays"], [102, 5, 1, "", "shape"], [102, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[103, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[103, 4, 1, "", "_abc_impl"], [103, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[101, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[101, 0, 1, "", "__init__"], [101, 0, 1, "", "from_row_lengths"], [101, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[622, 3, 0, "-", "activations"], [623, 3, 0, "-", "constants"], [624, 3, 0, "-", "control_flow_ops"], [625, 3, 0, "-", "creation"], [626, 3, 0, "-", "data_type"], [627, 3, 0, "-", "device"], [628, 3, 0, "-", "elementwise"], [629, 3, 0, "-", "experimental"], [630, 3, 0, "-", "general"], [631, 3, 0, "-", "gradients"], [632, 3, 0, "-", "layers"], [633, 3, 0, "-", "linear_algebra"], [634, 3, 0, "-", "losses"], [635, 3, 0, "-", "manipulation"], [636, 3, 0, "-", "meta"], [637, 3, 0, "-", "nest"], [638, 3, 0, "-", "norms"], [639, 3, 0, "-", "random"], [640, 3, 0, "-", "searching"], [641, 3, 0, "-", "set"], [642, 3, 0, "-", "sorting"], [643, 3, 0, "-", "statistical"], [644, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[363, 3, 0, "-", "activations"], [364, 3, 0, "-", "constants"], [365, 3, 0, "-", "creation"], [366, 3, 0, "-", "data_type"], [367, 3, 0, "-", "device"], [368, 3, 0, "-", "elementwise"], [369, 3, 0, "-", "general"], [370, 3, 0, "-", "gradients"], [371, 3, 0, "-", "layers"], [372, 3, 0, "-", "linear_algebra"], [373, 3, 0, "-", "losses"], [374, 3, 0, "-", "manipulation"], [375, 3, 0, "-", "meta"], [376, 3, 0, "-", "nest"], [377, 3, 0, "-", "norms"], [378, 3, 0, "-", "random"], [379, 3, 0, "-", "searching"], [380, 3, 0, "-", "set"], [381, 3, 0, "-", "sorting"], [382, 3, 0, "-", "sparse_array"], [383, 3, 0, "-", "statistical"], [384, 3, 0, "-", "utility"]], "ivy.stateful": [[784, 3, 0, "-", "activations"], [785, 3, 0, "-", "converters"], [786, 3, 0, "-", "helpers"], [787, 3, 0, "-", "initializers"], [788, 3, 0, "-", "layers"], [789, 3, 0, "-", "losses"], [790, 3, 0, "-", "module"], [791, 3, 0, "-", "norms"], [792, 3, 0, "-", "optimizers"], [793, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[784, 1, 1, "", "ELU"], [784, 1, 1, "", "GEGLU"], [784, 1, 1, "", "GELU"], [784, 1, 1, "", "Hardswish"], [784, 1, 1, "", "LeakyReLU"], [784, 1, 1, "", "LogSigmoid"], [784, 1, 1, "", "LogSoftmax"], [784, 1, 1, "", "Logit"], [784, 1, 1, "", "Mish"], [784, 1, 1, "", "PReLU"], [784, 1, 1, "", "ReLU"], [784, 1, 1, "", "ReLU6"], [784, 1, 1, "", "SeLU"], [784, 1, 1, "", "SiLU"], [784, 1, 1, "", "Sigmoid"], [784, 1, 1, "", "Softmax"], [784, 1, 1, "", "Softplus"], [784, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[784, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[785, 1, 1, "", "ModuleConverters"], [785, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[785, 0, 1, "", "from_flax_module"], [785, 0, 1, "", "from_haiku_module"], [785, 0, 1, "", "from_keras_module"], [785, 0, 1, "", "from_paddle_module"], [785, 0, 1, "", "from_torch_module"], [785, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[786, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[787, 1, 1, "", "Constant"], [787, 1, 1, "", "FirstLayerSiren"], [787, 1, 1, "", "GlorotUniform"], [787, 1, 1, "", "Initializer"], [787, 1, 1, "", "KaimingNormal"], [787, 1, 1, "", "Ones"], [787, 1, 1, "", "RandomNormal"], [787, 1, 1, "", "Siren"], [787, 1, 1, "", "Uniform"], [787, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[787, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[788, 1, 1, "", "AdaptiveAvgPool1d"], [788, 1, 1, "", "AdaptiveAvgPool2d"], [788, 1, 1, "", "AvgPool1D"], [788, 1, 1, "", "AvgPool2D"], [788, 1, 1, "", "AvgPool3D"], [788, 1, 1, "", "Conv1D"], [788, 1, 1, "", "Conv1DTranspose"], [788, 1, 1, "", "Conv2D"], [788, 1, 1, "", "Conv2DTranspose"], [788, 1, 1, "", "Conv3D"], [788, 1, 1, "", "Conv3DTranspose"], [788, 1, 1, "", "Dct"], [788, 1, 1, "", "DepthwiseConv2D"], [788, 1, 1, "", "Dropout"], [788, 1, 1, "", "Embedding"], [788, 1, 1, "", "FFT"], [788, 1, 1, "", "IFFT"], [788, 1, 1, "", "Identity"], [788, 1, 1, "", "LSTM"], [788, 1, 1, "", "Linear"], [788, 1, 1, "", "MaxPool1D"], [788, 1, 1, "", "MaxPool2D"], [788, 1, 1, "", "MaxPool3D"], [788, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[788, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[789, 1, 1, "", "BinaryCrossEntropyLoss"], [789, 1, 1, "", "CrossEntropyLoss"], [789, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.module": [[790, 1, 1, "", "Module"], [790, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[790, 0, 1, "", "__call__"], [790, 0, 1, "", "__init__"], [790, 5, 1, "", "buffers"], [790, 0, 1, "", "build"], [790, 5, 1, "", "build_mode"], [790, 5, 1, "", "built"], [790, 5, 1, "", "device"], [790, 5, 1, "", "dtype"], [790, 0, 1, "", "eval"], [790, 0, 1, "", "load"], [790, 5, 1, "", "module_dict"], [790, 0, 1, "", "register_buffer"], [790, 0, 1, "", "register_parameter"], [790, 0, 1, "", "save"], [790, 0, 1, "", "save_weights"], [790, 0, 1, "", "show_graph"], [790, 5, 1, "", "state_dict"], [790, 0, 1, "", "to_device"], [790, 0, 1, "", "trace_graph"], [790, 0, 1, "", "train"], [790, 5, 1, "", "training"], [790, 5, 1, "", "v"]], "ivy.stateful.norms": [[791, 1, 1, "", "BatchNorm2D"], [791, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[791, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[791, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[792, 1, 1, "", "Adam"], [792, 1, 1, "", "AdamW"], [792, 1, 1, "", "LAMB"], [792, 1, 1, "", "LARS"], [792, 1, 1, "", "Optimizer"], [792, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[792, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.sequential": [[793, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[793, 0, 1, "", "__init__"]], "ivy.utils": [[794, 3, 0, "-", "assertions"], [795, 3, 0, "-", "backend"], [799, 3, 0, "-", "binaries"], [800, 3, 0, "-", "dynamic_import"], [801, 3, 0, "-", "einsum_parser"], [802, 3, 0, "-", "einsum_path_helpers"], [803, 3, 0, "-", "exceptions"], [804, 3, 0, "-", "inspection"], [805, 3, 0, "-", "logging"], [806, 3, 0, "-", "profiler"], [807, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[794, 2, 1, "", "check_all"], [794, 2, 1, "", "check_all_or_any_fn"], [794, 2, 1, "", "check_any"], [794, 2, 1, "", "check_dev_correct_formatting"], [794, 2, 1, "", "check_dimensions"], [794, 2, 1, "", "check_elem_in_list"], [794, 2, 1, "", "check_equal"], [794, 2, 1, "", "check_exists"], [794, 2, 1, "", "check_false"], [794, 2, 1, "", "check_gather_input_valid"], [794, 2, 1, "", "check_gather_nd_input_valid"], [794, 2, 1, "", "check_greater"], [794, 2, 1, "", "check_inplace_sizes_valid"], [794, 2, 1, "", "check_isinstance"], [794, 2, 1, "", "check_kernel_padding_size"], [794, 2, 1, "", "check_less"], [794, 2, 1, "", "check_one_way_broadcastable"], [794, 2, 1, "", "check_same_dtype"], [794, 2, 1, "", "check_shape"], [794, 2, 1, "", "check_shapes_broadcastable"], [794, 2, 1, "", "check_true"], [794, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[796, 3, 0, "-", "ast_helpers"], [797, 3, 0, "-", "handler"], [798, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[796, 1, 1, "", "ImportTransformer"], [796, 1, 1, "", "IvyLoader"], [796, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "impersonate_import"], [796, 0, 1, "", "visit_Import"], [796, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[796, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[797, 1, 1, "", "ContextManager"], [797, 2, 1, "", "choose_random_backend"], [797, 2, 1, "", "current_backend"], [797, 2, 1, "", "dynamic_backend_converter"], [797, 2, 1, "", "prevent_access_locally"], [797, 2, 1, "", "previous_backend"], [797, 2, 1, "", "set_backend"], [797, 2, 1, "", "set_backend_to_specific_version"], [797, 2, 1, "", "set_jax_backend"], [797, 2, 1, "", "set_mxnet_backend"], [797, 2, 1, "", "set_numpy_backend"], [797, 2, 1, "", "set_paddle_backend"], [797, 2, 1, "", "set_tensorflow_backend"], [797, 2, 1, "", "set_torch_backend"], [797, 2, 1, "", "unset_backend"], [797, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[797, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[798, 2, 1, "", "clear_sub_backends"], [798, 2, 1, "", "find_available_sub_backends"], [798, 2, 1, "", "fn_name_from_version_specific_fn_name"], [798, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [798, 2, 1, "", "set_sub_backend"], [798, 2, 1, "", "set_sub_backend_to_specific_version"], [798, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[799, 2, 1, "", "check_for_binaries"], [799, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[800, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[801, 2, 1, "", "convert_interleaved_input"], [801, 2, 1, "", "convert_subscripts"], [801, 2, 1, "", "find_output_shape"], [801, 2, 1, "", "find_output_str"], [801, 2, 1, "", "gen_unused_symbols"], [801, 2, 1, "", "get_symbol"], [801, 2, 1, "", "has_valid_einsum_chars_only"], [801, 2, 1, "", "is_valid_einsum_char"], [801, 2, 1, "", "legalise_einsum_expr"], [801, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[802, 2, 1, "", "can_dot"], [802, 2, 1, "", "compute_size_by_dict"], [802, 2, 1, "", "find_contraction"], [802, 2, 1, "", "flop_count"], [802, 2, 1, "", "greedy_path"], [802, 2, 1, "", "optimal_path"], [802, 2, 1, "", "parse_einsum_input"], [802, 2, 1, "", "parse_possible_contraction"], [802, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[803, 7, 1, "", "InplaceUpdateException"], [803, 7, 1, "", "IvyAttributeError"], [803, 7, 1, "", "IvyBackendException"], [803, 7, 1, "", "IvyBroadcastShapeError"], [803, 7, 1, "", "IvyDeviceError"], [803, 7, 1, "", "IvyDtypePromotionError"], [803, 7, 1, "", "IvyError"], [803, 7, 1, "", "IvyException"], [803, 7, 1, "", "IvyIndexError"], [803, 7, 1, "", "IvyInvalidBackendException"], [803, 7, 1, "", "IvyNotImplementedException"], [803, 7, 1, "", "IvyValueError"], [803, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[803, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[804, 2, 1, "", "add_array_specs"], [804, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[805, 2, 1, "", "set_logging_mode"], [805, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[806, 1, 1, "", "Profiler"], [806, 2, 1, "", "tensorflow_profile_start"], [806, 2, 1, "", "tensorflow_profile_stop"], [806, 2, 1, "", "torch_profiler_init"], [806, 2, 1, "", "torch_profiler_start"], [806, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[806, 0, 1, "", "__init__"], [806, 4, 1, "", "print_stats"], [806, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[807, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[767, 3, 0, "-", "assertions"], [768, 3, 0, "-", "available_frameworks"], [769, 3, 0, "-", "function_testing"], [770, 3, 0, "-", "globals"], [771, 3, 0, "-", "hypothesis_helpers"], [776, 3, 0, "-", "multiprocessing"], [777, 3, 0, "-", "pipeline_helper"], [778, 3, 0, "-", "structs"], [779, 3, 0, "-", "test_parameter_flags"], [780, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[767, 2, 1, "", "assert_all_close"], [767, 2, 1, "", "assert_same_type"], [767, 2, 1, "", "assert_same_type_and_shape"], [767, 2, 1, "", "check_unsupported_device"], [767, 2, 1, "", "check_unsupported_device_and_dtype"], [767, 2, 1, "", "check_unsupported_dtype"], [767, 2, 1, "", "test_unsupported_function"], [767, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[769, 2, 1, "", "args_to_container"], [769, 2, 1, "", "args_to_frontend"], [769, 2, 1, "", "arrays_to_frontend"], [769, 2, 1, "", "as_lists"], [769, 2, 1, "", "convtrue"], [769, 2, 1, "", "create_args_kwargs"], [769, 2, 1, "", "flatten"], [769, 2, 1, "", "flatten_and_to_np"], [769, 2, 1, "", "flatten_frontend"], [769, 2, 1, "", "flatten_frontend_fw_to_np"], [769, 2, 1, "", "flatten_frontend_to_np"], [769, 2, 1, "", "get_frontend_ret"], [769, 2, 1, "", "get_ret_and_flattened_np_array"], [769, 2, 1, "", "gradient_incompatible_function"], [769, 2, 1, "", "gradient_test"], [769, 2, 1, "", "gradient_unsupported_dtypes"], [769, 2, 1, "", "kwargs_to_args_n_kwargs"], [769, 2, 1, "", "test_frontend_function"], [769, 2, 1, "", "test_frontend_method"], [769, 2, 1, "", "test_function"], [769, 2, 1, "", "test_function_backend_computation"], [769, 2, 1, "", "test_function_ground_truth_computation"], [769, 2, 1, "", "test_gradient_backend_computation"], [769, 2, 1, "", "test_gradient_ground_truth_computation"], [769, 2, 1, "", "test_method"], [769, 2, 1, "", "test_method_backend_computation"], [769, 2, 1, "", "test_method_ground_truth_computation"], [769, 2, 1, "", "traced_if_required"], [769, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[770, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [770, 7, 1, "", "InterruptedTest"], [770, 1, 1, "", "TestData"], [770, 2, 1, "", "setup_api_test"], [770, 2, 1, "", "setup_frontend_test"], [770, 2, 1, "", "teardown_api_test"], [770, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[770, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "fn_name"], [770, 4, 1, "", "fn_tree"], [770, 4, 1, "", "is_method"], [770, 4, 1, "", "supported_device_dtypes"], [770, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[772, 3, 0, "-", "array_helpers"], [773, 3, 0, "-", "dtype_helpers"], [774, 3, 0, "-", "general_helpers"], [775, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[772, 2, 1, "", "array_and_broadcastable_shape"], [772, 2, 1, "", "array_bools"], [772, 2, 1, "", "array_helpers_dtype_info_helper"], [772, 2, 1, "", "array_indices_axis"], [772, 2, 1, "", "array_indices_put_along_axis"], [772, 2, 1, "", "array_values"], [772, 2, 1, "", "arrays_and_axes"], [772, 2, 1, "", "arrays_for_pooling"], [772, 2, 1, "", "broadcast_shapes"], [772, 2, 1, "", "cond_data_gen_helper"], [772, 2, 1, "", "create_concatenable_arrays_dtypes"], [772, 2, 1, "", "create_nested_input"], [772, 2, 1, "", "dtype_and_values"], [772, 2, 1, "", "dtype_array_query"], [772, 2, 1, "", "dtype_array_query_val"], [772, 2, 1, "", "dtype_values_axis"], [772, 2, 1, "", "einsum_helper"], [772, 2, 1, "", "get_first_solve_batch_matrix"], [772, 2, 1, "", "get_first_solve_matrix"], [772, 2, 1, "", "get_second_solve_batch_matrix"], [772, 2, 1, "", "get_second_solve_matrix"], [772, 2, 1, "", "list_of_size"], [772, 2, 1, "", "lists"], [772, 2, 1, "", "mutually_broadcastable_shapes"], [772, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[773, 2, 1, "", "array_dtypes"], [773, 2, 1, "", "cast_filter"], [773, 2, 1, "", "cast_filter_helper"], [773, 2, 1, "", "get_castable_dtype"], [773, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[774, 7, 1, "", "BroadcastError"], [774, 2, 1, "", "apply_safety_factor"], [774, 2, 1, "", "broadcast_shapes"], [774, 2, 1, "", "dims_and_offset"], [774, 2, 1, "", "embedding_helper"], [774, 2, 1, "", "general_helpers_dtype_info_helper"], [774, 2, 1, "", "get_axis"], [774, 2, 1, "", "get_bounds"], [774, 2, 1, "", "get_mean_std"], [774, 2, 1, "", "get_shape"], [774, 2, 1, "", "matrix_is_stable"], [774, 2, 1, "", "reshape_shapes"], [774, 2, 1, "", "sizes_"], [774, 2, 1, "", "subsets"], [774, 2, 1, "", "two_broadcastable_shapes"], [774, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[775, 2, 1, "", "floats"], [775, 2, 1, "", "ints"], [775, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[776, 2, 1, "", "backend_proc"], [776, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[777, 1, 1, "", "BackendHandler"], [777, 1, 1, "", "BackendHandlerMode"], [777, 1, 1, "", "WithBackendContext"], [777, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[777, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[777, 4, 1, "", "SetBackend"], [777, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[777, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[778, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[778, 0, 1, "", "__init__"], [778, 4, 1, "", "framework_init_module"], [778, 4, 1, "", "init_name"], [778, 4, 1, "", "ivy_init_module"], [778, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[779, 1, 1, "", "DynamicFlag"], [779, 1, 1, "", "FrontendFunctionTestFlags"], [779, 1, 1, "", "FrontendInitTestFlags"], [779, 1, 1, "", "FrontendMethodTestFlags"], [779, 1, 1, "", "FunctionTestFlags"], [779, 1, 1, "", "InitMethodTestFlags"], [779, 1, 1, "", "MethodTestFlags"], [779, 1, 1, "", "TestFlags"], [779, 2, 1, "", "build_flag"], [779, 2, 1, "", "frontend_function_flags"], [779, 2, 1, "", "frontend_init_flags"], [779, 2, 1, "", "frontend_method_flags"], [779, 2, 1, "", "function_flags"], [779, 2, 1, "", "init_method_flags"], [779, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[779, 0, 1, "", "__init__"], [779, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[780, 2, 1, "", "handle_example"], [780, 2, 1, "", "handle_frontend_method"], [780, 2, 1, "", "handle_frontend_test"], [780, 2, 1, "", "handle_method"], [780, 2, 1, "", "handle_test"], [780, 2, 1, "", "num_positional_args"], [780, 2, 1, "", "num_positional_args_helper"], [780, 2, 1, "", "num_positional_args_method"], [780, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 16, 27, 41, 42], "creat": [0, 39, 40, 814], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 8, 10, 16, 35, 808, 827, 832, 835, 838, 840, 843, 859, 860, 861], "ivi": [3, 4, 5, 8, 15, 18, 26, 27, 28, 39, 40, 42, 43, 45, 808, 814, 816, 820, 822, 824, 827, 829, 835, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 852, 859, 860, 861, 872], "alexnet": 3, "instal": [3, 4, 8, 18, 39, 40, 42, 808, 852], "data": [3, 4, 5, 8, 10, 18, 27, 39, 50, 73, 104, 366, 626, 641, 745, 746, 747, 748, 825, 837, 840, 848, 851], "prepar": [3, 4, 5, 8], "infer": [3, 4, 5, 8, 834], "torch": [3, 4, 5, 8, 35, 42, 866, 867], "tensorflow": [3, 4, 5, 10, 14, 35, 42, 43, 44, 866], "jax": [3, 4, 5, 7, 9, 10, 35, 42, 866], "appendix": [3, 5], "code": [3, 18, 19, 20, 21, 28, 39, 831, 839, 841], "implement": [3, 5, 824, 835, 837, 857], "bert": 4, "dependeci": 4, "import": [4, 5, 8, 10, 18, 39, 40, 43, 800], "modul": [4, 790, 825, 826, 849, 860], "sequenc": [4, 832], "classif": 4, "model": [4, 5, 7, 8, 9, 12, 13, 14, 25, 26, 27, 28, 39, 40, 41, 42, 43, 45, 850, 851], "imag": [5, 8, 56, 79, 249, 810, 822], "segment": 5, "unet": 5, "custom": [5, 820, 822, 835, 839, 848, 851], "preprocess": 5, "load": [5, 8, 10, 765, 848], "visualis": [5, 8], "initi": [5, 8, 787, 849], "nativ": [5, 8, 820, 843], "pretrain": [5, 8], "weight": [5, 8, 848], "mask": 5, "function": [5, 18, 27, 28, 39, 40, 41, 43, 45, 105, 769, 814, 823, 825, 826, 829, 832, 833, 834, 835, 837, 838, 840, 841, 842, 843, 845, 850, 851, 860], "us": [5, 8, 15, 23, 26, 43, 45, 808, 810, 814, 815, 819, 835, 838, 848, 852, 859, 860], "your": [5, 8, 816, 840], "backend": [5, 10, 18, 27, 39, 40, 42, 43, 795, 798, 814, 821, 825, 835, 841, 845, 851], "acceler": [7, 9, 10], "mmpretrain": 7, "resnet": [8, 46], "set": [8, 35, 39, 40, 64, 87, 380, 641, 815, 821, 830, 842, 852], "label": 8, "resnet34": 8, "classifi": 8, "resnet50": 8, "pytorch": [9, 10, 12, 41, 866], "xgboost": 10, "test": [10, 41, 769, 779, 780, 783, 814, 815, 816, 819, 824, 830, 838, 840], "compar": 10, "xgb_frontend": 10, "xgbclassifi": 10, "xgb": 10, "more": [10, 815, 843, 857], "exhaust": 10, "evalu": 10, "train": [10, 39, 41, 43], "time": 10, "v": [10, 22, 32, 35, 831, 851, 856, 859], "number": [10, 775, 832], "boost": 10, "round": [10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 41, 279, 839], "fraction": 10, "comparison": [10, 848], "metric": [10, 43], "guid": [11, 16], "transpil": [12, 13, 14, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 41, 45, 808, 850, 852, 860], "build": [12, 13, 14, 43, 810, 822, 845], "top": [12, 13, 14, 817, 824, 874], "up": [12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 41, 815, 830, 839, 852], "haiku": 13, "develop": 15, "convolut": 15, "network": [15, 40, 43, 848, 850], "tutori": [16, 43], "And": 16, "learn": [16, 17, 866], "basic": [16, 17, 39, 40, 816, 837], "write": [18, 26, 837, 840], "content": [18, 41], "handler": [18, 27, 797, 798, 845], "structur": [18, 27, 822, 835, 851], "api": [18, 27, 28, 814, 819, 823, 824, 835, 841, 845, 847, 849, 850, 852, 856, 859, 860, 861, 863, 870, 872], "state": [18, 27, 28, 849, 851, 859], "unifi": [19, 22, 23, 29, 32, 33, 34, 39, 808, 847, 857, 861, 868, 872], "trace": [20, 22, 23, 28, 687, 829], "lazi": [22, 32, 859], "eager": [22, 32, 859], "how": [23, 814, 822, 830, 839, 840], "decor": [23, 34, 829, 834, 840], "ani": [24, 25, 27, 28, 764], "librari": [24, 27, 28, 43, 45, 860], "odsc": 27, "framework": [27, 33, 39, 768, 781, 835, 838, 846, 866, 869, 872, 873], "graph": [27, 44, 867, 872], "tracer": [27, 845, 850, 852, 859, 867, 872], "quickstart": 28, "get": [28, 808, 816, 852], "familiar": 28, "0": [29, 30, 31, 32, 36, 37], "1": [30, 32, 33, 34, 35, 38, 45, 866], "compil": [30, 32, 33, 34, 40, 859, 864, 869, 871, 872], "2": [31, 34, 36, 45, 866], "select": 33, "As": 34, "3": [35, 37, 38, 45], "dynam": [35, 43, 800, 821, 851], "static": 35, "todo": [35, 816], "explain": 35, "via": 35, "why": [35, 840, 857], "mode": [35, 825, 829, 842], "i": [35, 808, 822, 843], "true": 35, "default": [35, 540], "when": [35, 808], "from": [35, 42, 852], "numpi": [35, 42, 837, 866], "fals": 35, "kornia": 36, "perceiv": 37, "stabl": 38, "diffus": 38, "oper": [39, 832, 842, 847, 851], "ml": [39, 855, 868, 872], "chang": 39, "one": 39, "line": [39, 816], "No": [39, 815, 857], "need": [39, 840], "worri": 39, "about": 39, "type": [39, 50, 73, 366, 626, 825, 833, 837, 851], "differ": 39, "them": 39, "all": [39, 763], "standalon": [39, 833], "defin": [39, 40, 41, 43], "optim": [39, 792, 849], "input": [39, 40, 832], "target": 39, "loss": [39, 59, 82, 373, 634, 789], "loop": [39, 43], "sampl": 40, "check": [40, 831, 851], "result": 40, "simpl": 40, "neural": 40, "deepmind": [41, 42], "": [41, 43, 814, 822, 839, 852], "perceiverio": [41, 42], "tabl": [41, 822, 825, 863], "construct": [41, 848], "some": 41, "helper": [41, 771, 772, 773, 774, 775, 777, 780, 786, 796, 802, 838, 840, 841], "pipelin": [41, 43, 777, 822, 824, 840, 851], "dataset": [41, 43], "download": 41, "dataload": 41, "gpu": [42, 851], "introduct": [42, 45, 837, 838], "python3": 42, "8": 42, "setup": [42, 831], "kernel": 42, "clone": [42, 815, 824], "repo": [42, 815], "ivy_model": 42, "run": [42, 816, 819, 822, 830, 840], "end": 43, "let": 43, "we": [43, 840], "ar": 43, "mnist": 43, "thi": 43, "temporari": 43, "loader": 43, "util": [43, 67, 90, 384, 644, 782], "plot": 43, "save": [43, 766, 848], "huggingfac": 44, "deit": 44, "can": 44, "visual": 44, "displai": 44, "html": 44, "file": 44, "browser": [44, 816], "To": [45, 816], "interfac": 45, "telemetri": 45, "18": 46, "activ": [47, 69, 363, 622, 784], "convers": [48, 71, 834], "creation": [49, 72, 365, 625], "devic": [51, 74, 367, 627, 826, 832, 837], "elementwis": [52, 75, 103, 368, 628], "experiment": [53, 76, 629, 814], "gener": [54, 77, 369, 630, 774, 835, 840, 843, 859], "gradient": [55, 78, 345, 370, 631, 835], "layer": [57, 80, 371, 632, 788], "linear": [58, 81, 372, 633, 656], "algebra": [58, 81, 372, 633], "manipul": [60, 83, 374, 635], "norm": [61, 84, 377, 638, 791], "random": [62, 85, 378, 639], "search": [63, 86, 379, 640], "sort": [65, 88, 381, 642, 752], "statist": [66, 89, 383, 643], "wrap": [68, 91, 834], "base": [70, 92, 102], "cp": 93, "tensor": [93, 94, 95, 96, 97, 100], "parafac2": 94, "tr": 95, "tt": 96, "tucker": [97, 447], "arrai": [98, 101, 123, 382, 772, 819, 820, 824, 832, 847, 856, 859, 863], "contain": [99, 816, 823, 848], "factor": 100, "nest": [101, 376, 637], "class": [104, 781, 820, 829, 837, 847], "gelu": 106, "hardswish": 107, "leaky_relu": 108, "log_softmax": 109, "mish": 110, "relu": 111, "sigmoid": 112, "softmax": 113, "softplu": 114, "softsign": 115, "cmp_i": 116, "cmp_isnot": 117, "for_loop": 118, "if_els": 119, "try_except": 120, "while_loop": 121, "arang": 122, "asarrai": 124, "copy_arrai": 125, "empti": 126, "empty_lik": 127, "ey": 128, "from_dlpack": 129, "note": [129, 140, 625], "frombuff": 130, "full": [131, 838], "full_lik": 132, "linspac": 133, "logspac": 134, "meshgrid": 135, "native_arrai": 136, "one_hot": 137, "ones": 138, "ones_lik": 139, "to_dlpack": 140, "tril": 141, "triu": 142, "triu_indic": 143, "zero": 144, "zeros_lik": 145, "as_ivy_dtyp": 146, "as_native_dtyp": 147, "astyp": 148, "broadcast_arrai": 149, "broadcast_to": 150, "can_cast": 151, "check_float": 152, "closest_valid_dtyp": 153, "default_complex_dtyp": 154, "default_dtyp": 155, "default_float_dtyp": 156, "default_int_dtyp": 157, "default_uint_dtyp": 158, "dtype": [159, 773, 832], "dtype_bit": 160, "finfo": 161, "function_supported_dtyp": 162, "function_unsupported_dtyp": 163, "iinfo": 164, "infer_default_dtyp": 165, "invalid_dtyp": 166, "is_bool_dtyp": 167, "is_complex_dtyp": 168, "is_float_dtyp": 169, "is_hashable_dtyp": 170, "is_int_dtyp": 171, "is_native_dtyp": 172, "is_uint_dtyp": 173, "promote_typ": 174, "promote_types_of_input": 175, "result_typ": 176, "set_default_complex_dtyp": 177, "set_default_dtyp": 178, "set_default_float_dtyp": 179, "set_default_int_dtyp": 180, "set_default_uint_dtyp": 181, "type_promote_arrai": 182, "unset_default_complex_dtyp": 183, "unset_default_dtyp": 184, "unset_default_float_dtyp": 185, "unset_default_int_dtyp": 186, "unset_default_uint_dtyp": 187, "valid_dtyp": 188, "as_ivy_dev": 189, "as_native_dev": 190, "clear_cached_mem_on_dev": 191, "default_devic": 192, "dev": 193, "dev_util": 194, "function_supported_devic": 195, "function_unsupported_devic": 196, "get_all_ivy_arrays_on_dev": 197, "gpu_is_avail": 198, "handle_soft_device_vari": 199, "num_cpu_cor": 200, "num_gpu": 201, "num_ivy_arrays_on_dev": 202, "percent_used_mem_on_dev": 203, "print_all_ivy_arrays_on_dev": 204, "set_default_devic": 205, "set_soft_device_mod": 206, "paramet": [206, 574, 575, 580, 581, 583, 584, 627, 630, 779, 784, 842], "set_split_factor": 207, "split_factor": 208, "split_func_cal": 209, "to_devic": 210, "total_mem_on_dev": 211, "tpu_is_avail": 212, "unset_default_devic": 213, "unset_soft_device_mod": 214, "used_mem_on_dev": 215, "ab": 216, "aco": 217, "acosh": 218, "add": [219, 827, 838, 872], "angl": 220, "asin": 221, "asinh": 222, "atan": 223, "atan2": 224, "atanh": 225, "bitwise_and": 226, "bitwise_invert": 227, "bitwise_left_shift": 228, "bitwise_or": 229, "bitwise_right_shift": 230, "bitwise_xor": 231, "ceil": 232, "co": 233, "cosh": 234, "deg2rad": 235, "divid": 236, "equal": 237, "erf": 238, "exp": 239, "exp2": 240, "expm1": 241, "floor": 242, "floor_divid": 243, "fmin": 244, "fmod": 245, "gcd": 246, "greater": 247, "greater_equ": 248, "isfinit": 250, "isinf": 251, "isnan": 252, "isreal": 253, "lcm": 254, "less": 255, "less_equ": 256, "log": [257, 805, 815], "log10": 258, "log1p": 259, "log2": 260, "logaddexp": 261, "logaddexp2": 262, "logical_and": 263, "logical_not": 264, "logical_or": 265, "logical_xor": 266, "maximum": 267, "minimum": 268, "multipli": 269, "nan_to_num": 270, "neg": 271, "not_equ": 272, "posit": [273, 832], "pow": 274, "rad2deg": 275, "real": 276, "reciproc": 277, "remaind": 278, "sign": 280, "sin": 281, "sinh": 282, "sqrt": 283, "squar": 284, "subtract": 285, "tan": [286, 827, 838], "tanh": 287, "trapz": 288, "trunc": 289, "trunc_divid": 290, "celu": 291, "elu": 292, "hardshrink": 293, "hardsilu": 294, "hardtanh": 295, "logit": 296, "logsigmoid": 297, "prelu": 298, "relu6": 299, "scaled_tanh": 300, "selu": 301, "silu": 302, "softshrink": 303, "stanh": 304, "tanhshrink": 305, "threshold": 306, "thresholded_relu": 307, "blackman_window": 308, "eye_lik": 309, "hamming_window": 310, "hann_window": 311, "indic": 312, "kaiser_bessel_derived_window": 313, "kaiser_window": 314, "mel_weight_matrix": 315, "ndenumer": 316, "ndindex": 317, "polyv": 318, "random_cp": 319, "random_parafac2": 320, "random_tr": 321, "random_tt": 322, "random_tuck": 323, "tril_indic": 324, "trilu": 325, "unsorted_segment_mean": 326, "unsorted_segment_min": 327, "unsorted_segment_sum": 328, "vorbis_window": 329, "allclos": 330, "amax": 331, "amin": 332, "binar": 333, "conj": 334, "copysign": 335, "count_nonzero": 336, "diff": 337, "digamma": 338, "erfc": 339, "erfinv": 340, "fix": [341, 814, 830], "float_pow": 342, "fmax": 343, "frexp": 344, "hypot": 346, "isclos": 347, "ldexp": 348, "lerp": 349, "lgamma": 350, "modf": 351, "nansum": 352, "nextaft": 353, "signbit": 354, "sinc": 355, "sparsify_tensor": 356, "xlogi": 357, "zeta": 358, "reduc": 359, "bind_custom_gradient_funct": 360, "jvp": 361, "vjp": 362, "constant": [364, 623], "meta": [375, 636], "spars": 382, "adaptive_avg_pool1d": 385, "adaptive_avg_pool2d": 386, "adaptive_max_pool2d": 387, "adaptive_max_pool3d": 388, "area_interpol": 389, "avg_pool1d": 390, "avg_pool2d": 391, "avg_pool3d": 392, "dct": 393, "dft": 394, "dropout1d": 395, "dropout2d": 396, "dropout3d": 397, "embed": 398, "fft": 399, "fft2": 400, "generate_einsum_equ": 401, "get_interpolate_kernel": 402, "idct": 403, "ifft": 404, "ifftn": 405, "interp": 406, "interpol": 407, "max_pool1d": 408, "max_pool2d": 409, "max_pool3d": 410, "max_unpool1d": 411, "nearest_interpol": 412, "pool": 413, "reduce_window": 414, "rfft": 415, "rfftn": 416, "rnn": 417, "sliding_window": 418, "stft": 419, "adjoint": 420, "batched_out": 421, "cond": 422, "diagflat": 423, "dot": 424, "eig": [425, 668], "eigh_tridiagon": 426, "eigval": 427, "general_inner_product": 428, "higher_order_mo": 429, "initialize_tuck": 430, "khatri_rao": 431, "kron": 432, "kroneck": 433, "lu_factor": 434, "lu_solv": 435, "make_svd_non_neg": 436, "matrix_exp": 437, "mode_dot": 438, "multi_dot": 439, "multi_mode_dot": 440, "partial_tuck": 441, "solve_triangular": 442, "svd_flip": 443, "tensor_train": 444, "truncated_svd": 445, "tt_matrix_to_tensor": 446, "hinge_embedding_loss": 448, "huber_loss": 449, "kl_div": 450, "l1_loss": 451, "log_poisson_loss": 452, "poisson_nll_loss": 453, "smooth_l1_loss": 454, "soft_margin_loss": 455, "as_strid": 456, "associative_scan": 457, "atleast_1d": 458, "atleast_2d": 459, "atleast_3d": 460, "broadcast_shap": 461, "check_scalar": 462, "choos": 463, "column_stack": 464, "concat_from_sequ": 465, "dsplit": 466, "dstack": 467, "expand": 468, "fill_diagon": 469, "flatten": 470, "fliplr": 471, "flipud": 472, "fold": 473, "heavisid": 474, "hsplit": 475, "hstack": 476, "i0": 477, "matric": 478, "moveaxi": 479, "pad": 480, "partial_fold": 481, "partial_tensor_to_vec": 482, "partial_unfold": 483, "partial_vec_to_tensor": 484, "put_along_axi": 485, "rot90": 486, "soft_threshold": 487, "take": 488, "take_along_axi": 489, "top_k": 490, "trim_zero": 491, "unflatten": 492, "unfold": 493, "unique_consecut": 494, "vsplit": 495, "vstack": 496, "batch_norm": 497, "group_norm": 498, "instance_norm": 499, "l1_normal": 500, "l2_normal": 501, "local_response_norm": 502, "lp_normal": 503, "bernoulli": 504, "beta": 505, "dirichlet": 506, "gamma": 507, "poisson": 508, "unravel_index": 509, "invert_permut": 510, "lexsort": 511, "is_ivy_sparse_arrai": 512, "is_native_sparse_arrai": 513, "native_sparse_arrai": 514, "native_sparse_array_to_indices_values_and_shap": 515, "bincount": 516, "corrcoef": 517, "cov": 518, "cummax": 519, "cummin": 520, "histogram": 521, "igamma": 522, "median": 523, "nanmean": 524, "nanmedian": 525, "nanmin": 526, "nanprod": 527, "quantil": 528, "optional_get_el": 529, "all_equ": 530, "arg_info": 531, "arg_nam": 532, "array_equ": 533, "assert_supports_inplac": 534, "cache_fn": 535, "clip_matrix_norm": 536, "clip_vector_norm": 537, "container_typ": 538, "current_backend_str": 539, "einops_rearrang": 541, "einops_reduc": 542, "einops_repeat": 543, "exist": [544, 810, 839], "fourier_encod": 545, "function_supported_devices_and_dtyp": 546, "function_unsupported_devices_and_dtyp": 547, "gather": 548, "gather_nd": 549, "get_all_arrays_in_memori": 550, "get_item": 551, "get_num_dim": 552, "get_referrers_recurs": 553, "has_nan": 554, "inplace_arrays_support": 555, "inplace_decr": 556, "inplace_incr": 557, "inplace_upd": 558, "inplace_variables_support": 559, "is_arrai": 560, "is_ivy_arrai": 561, "is_ivy_contain": 562, "is_ivy_nested_arrai": 563, "is_native_arrai": 564, "isin": 565, "isscalar": 566, "items": 567, "match_kwarg": 568, "multiprocess": [569, 776], "num_arrays_in_memori": 570, "print_all_arrays_in_memori": 571, "scatter_flat": 572, "scatter_nd": 573, "set_array_mod": 574, "set_exception_trace_mod": 575, "set_inplace_mod": 576, "set_item": 577, "set_min_bas": 578, "set_min_denomin": 579, "set_nestable_mod": 580, "set_precise_mod": 581, "set_queue_timeout": 582, "set_shape_array_mod": 583, "set_show_func_wrapper_trace_mod": 584, "set_tmp_dir": 585, "shape": [586, 641, 745, 746, 747, 748, 834, 851], "size": [587, 851], "stable_divid": 588, "stable_pow": 589, "stride": 590, "supports_inplace_upd": 591, "to_ivy_shap": 592, "to_list": 593, "to_native_shap": 594, "to_numpi": 595, "to_scalar": 596, "try_else_non": 597, "unset_array_mod": 598, "unset_exception_trace_mod": 599, "unset_inplace_mod": 600, "unset_min_bas": 601, "unset_min_denomin": 602, "unset_nestable_mod": 603, "unset_precise_mod": 604, "unset_queue_timeout": 605, "unset_shape_array_mod": 606, "unset_show_func_wrapper_trace_mod": 607, "unset_tmp_dir": 608, "value_is_nan": 609, "vmap": 610, "adam_step": 611, "adam_upd": 612, "execute_with_gradi": [613, 835], "grad": 614, "gradient_descent_upd": 615, "jac": 616, "lamb_upd": 617, "lars_upd": 618, "optimizer_upd": 619, "stop_gradi": 620, "value_and_grad": 621, "control": [624, 851], "flow": [624, 851], "op": 624, "depend": [641, 745, 746, 747, 748], "output": [641, 745, 746, 747, 748], "conv": 645, "conv1d": 646, "conv1d_transpos": 647, "conv2d": 648, "conv2d_transpos": 649, "conv3d": 650, "conv3d_transpos": 651, "conv_general_dil": 652, "conv_general_transpos": 653, "depthwise_conv2d": 654, "dropout": 655, "lstm": 657, "lstm_updat": 658, "multi_head_attent": 659, "nm": 660, "roi_align": 661, "scaled_dot_product_attent": 662, "choleski": 663, "cross": 664, "det": 665, "diag": 666, "diagon": 667, "eigh": 669, "eigvalsh": 670, "inner": 671, "inv": 672, "matmul": 673, "matrix_norm": 674, "matrix_pow": 675, "matrix_rank": 676, "matrix_transpos": 677, "outer": 678, "pinv": 679, "qr": 680, "slogdet": 681, "solv": 682, "svd": 683, "svdval": 684, "tensordot": 685, "tensorsolv": 686, "vander": 688, "vecdot": 689, "vector_norm": 690, "vector_to_skew_symmetric_matrix": 691, "binary_cross_entropi": 692, "cross_entropi": 693, "sparse_cross_entropi": 694, "clip": 695, "concat": 696, "constant_pad": 697, "expand_dim": 698, "flip": 699, "permute_dim": 700, "repeat": 701, "reshap": 702, "roll": [703, 827], "split": 704, "squeez": 705, "stack": [706, 829], "swapax": 707, "tile": 708, "unstack": 709, "zero_pad": 710, "fomaml_step": 711, "maml_step": 712, "reptile_step": 713, "all_nested_indic": 714, "copy_nest": 715, "duplicate_array_index_chain": 716, "index_nest": 717, "insert_into_nest_at_index": 718, "insert_into_nest_at_indic": 719, "map": [720, 824], "map_nest_at_index": 721, "map_nest_at_indic": 722, "multi_index_nest": 723, "nested_ani": 724, "nested_argwher": 725, "nested_map": 726, "nested_multi_map": 727, "prune_empti": 728, "prune_nest_at_index": 729, "prune_nest_at_indic": 730, "set_nest_at_index": 731, "set_nest_at_indic": 732, "layer_norm": 733, "multinomi": 734, "randint": 735, "random_norm": 736, "random_uniform": 737, "seed": 738, "shuffl": 739, "argmax": 740, "argmin": 741, "argwher": 742, "nonzero": 743, "where": [744, 814, 830], "unique_al": 745, "unique_count": 746, "unique_invers": 747, "unique_valu": 748, "argsort": 749, "msort": 750, "searchsort": 751, "cumprod": 753, "cumsum": 754, "einsum": [755, 801, 802], "max": 756, "mean": 757, "min": 758, "prod": 759, "std": 760, "sum": 761, "var": 762, "assert": [767, 794, 829], "avail": 768, "global": [770, 842], "hypothesi": [771, 815, 838, 840], "struct": 778, "flag": 779, "convert": [785, 850], "sequenti": 793, "ast": 796, "sub": 798, "binari": [799, 815], "parser": 801, "path": 802, "except": [803, 829, 834], "inspect": 804, "profil": 806, "verbos": 807, "statu": 808, "ai": 808, "start": [808, 852], "pip": [808, 852], "document": 808, "dive": [808, 818], "deeper": 808, "should": 808, "contribut": [808, 809, 814, 839], "commun": 808, "citat": 808, "doc": [810, 822], "docker": [810, 815, 816, 822, 852], "conveni": [810, 822, 833], "script": [810, 822], "hub": 810, "local": [810, 816, 831], "without": [810, 838], "contributor": [811, 817, 874], "reward": 811, "badg": 811, "tier": 811, "error": [812, 829, 830], "handl": [812, 820, 826, 829, 834, 851], "help": [813, 816, 830], "resourc": 813, "open": 814, "task": 814, "fail": [814, 830, 840], "frontend": [814, 821, 837, 838, 850], "place": 814, "checklist": 814, "format": [814, 831, 865, 872], "extend": [814, 840, 843], "an": [814, 835], "issu": [814, 816, 831, 852], "github": [814, 815], "templat": 814, "fork": [815, 816], "pre": [815, 831], "commit": [815, 816, 824, 831], "pycharm": [815, 816, 831], "virtual": 815, "environ": 815, "miniconda": 815, "venv": 815, "interpret": 815, "window": 815, "maco": 815, "ubuntu": 815, "detail": 815, "free": 815, "wsl": 815, "codespac": 815, "The": [815, 816, 822, 835, 837, 847, 851, 856], "list": 816, "manag": 816, "who": 816, "ask": [816, 830], "With": 816, "command": 816, "pull": [816, 824], "request": [816, 824], "small": 816, "often": 816, "interact": 816, "most": 816, "out": [816, 832, 834, 836], "id": [816, 819], "program": 817, "core": [817, 874], "rise": [817, 874], "deep": 818, "termin": 819, "regener": 819, "failur": 819, "skip": 819, "integr": [820, 824, 831, 839, 840], "version": [821, 841, 851], "support": [821, 825, 834, 837, 851], "builder": 822, "being": 822, "option": 822, "index": 822, "rst": 822, "partial_conf": 822, "py": 822, "prebuild": 822, "sh": 822, "extens": 822, "custom_autosummari": 822, "hide": 822, "discussion_link": 822, "skippable_funct": 822, "ivy_data": 822, "instanc": [823, 837, 838, 847], "method": [823, 837, 838, 847, 848], "special": [823, 825, 837], "nestabl": [823, 832, 833, 834], "continu": [824, 831], "push": 824, "pr": 824, "trigger": 824, "A": [824, 843], "down": 824, "view": [824, 834, 836], "store": 824, "retriev": 824, "repositori": 824, "nitti": 824, "gritti": 824, "storag": 824, "space": 824, "unifyai": 824, "determin": 824, "coverag": 824, "workflow": 824, "multipl": 824, "runner": 824, "race": 824, "condit": 824, "period": 824, "manual": 824, "dispatch": 824, "ci": 824, "dashboard": 824, "promot": [825, 837], "precis": 825, "non": [825, 843], "argument": [825, 826, 832, 834, 836, 837], "other": [825, 826], "unsupport": 825, "attribut": [825, 842], "case": [825, 848], "bug": 825, "cast": [825, 837], "superset": [825, 843], "docstr": [827, 828], "configur": [829, 838, 848], "func_wrapp": 829, "prune": 829, "handle_except": 829, "consist": [829, 840], "prerequir": 830, "common": [830, 831], "lint": [831, 839], "keyword": 832, "integ": 832, "primari": 833, "composit": 833, "mix": [833, 834, 840], "partial": [833, 834, 840], "order": 834, "wrapper": [834, 872, 873], "miscellan": 834, "overview": [835, 839], "usag": [835, 839, 843, 861], "signatur": 835, "design": [835, 841, 844], "our": 835, "polici": [835, 837], "specif": [835, 870, 871, 872], "consider": 835, "inplac": 836, "updat": 836, "copi": 836, "short": 837, "unus": 837, "rule": 837, "duplic": [837, 843], "valu": 838, "alia": 838, "formatt": 839, "functionorderingformatt": 839, "work": [839, 856, 862], "own": 840, "strategi": 840, "ad": 840, "explicit": 840, "do": [840, 856], "effect": 840, "bonu": 840, "featur": 840, "self": 840, "test_array_funct": 840, "re": [840, 857], "navig": 841, "categor": 841, "submodul": 841, "unpin": 841, "properti": 842, "getter": 842, "setter": 842, "set_": 842, "unset_": 842, "behaviour": 843, "standard": [843, 856, 863, 872], "what": [843, 872], "balanc": 843, "effici": 843, "maxim": 843, "block": 845, "monkei": 847, "patch": 847, "represent": 848, "recurs": 848, "built": 848, "ins": 848, "access": 848, "compartment": 848, "role": 850, "faq": 851, "maintain": 851, "deploy": 851, "auto": 851, "differenti": 851, "replica": 851, "parallel": 851, "altern": 851, "sourc": 852, "folder": 852, "kei": 852, "question": 852, "glossari": 853, "motiv": 854, "explos": 855, "skeptic": 856, "complimentari": 856, "competit": 856, "infinit": 857, "shelf": 857, "life": 857, "One": 858, "liner": 858, "trace_graph": 859, "cach": 859, "sharp": [859, 860, 861], "bit": [859, 860, 861], "relat": 862, "infrastructur": [864, 872], "llvm": 864, "mlir": 864, "oneapi": 864, "exchang": [865, 872], "onnx": 865, "nnef": 865, "coreml": 865, "matlab": 866, "scipi": 866, "scikit": 866, "theano": 866, "panda": 866, "julia": 866, "apach": [866, 869], "spark": 866, "mllib": 866, "caff": 866, "chainer": 866, "mxnet": 866, "cntk": 866, "flux": 866, "dex": 866, "languag": 866, "tf": 867, "jaxpr": 867, "jit": 867, "fx": 867, "compani": [868, 872], "quansight": 868, "modular": 868, "octoml": 868, "multi": [869, 872], "vendor": [869, 870, 871, 872], "tvm": 869, "xla": 869, "gcc": 869, "tensorrt": 870, "cuda": 870, "icc": 871, "icx": 871, "nvcc": 871, "doe": 872, "eagerpi": 873, "kera": 873, "thinc": 873, "tensorli": 873, "neuropod": 873, "leaderboard": 874}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"type_promote_arrays": [[182, "type-promote-arrays"]], "finfo": [[161, "finfo"]], "default_uint_dtype": [[158, "default-uint-dtype"]], "infer_default_dtype": [[165, "infer-default-dtype"]], "zeros_like": [[145, "zeros-like"]], "triu_indices": [[143, "triu-indices"]], "dtype": [[159, "dtype"]], "is_float_dtype": [[169, "is-float-dtype"]], "can_cast": [[151, "can-cast"]], "as_native_dtype": [[147, "as-native-dtype"]], "iinfo": [[164, "iinfo"]], "is_uint_dtype": [[173, "is-uint-dtype"]], "set_default_int_dtype": [[180, "set-default-int-dtype"]], "default_complex_dtype": [[154, "default-complex-dtype"]], "ones": [[138, "ones"]], "is_hashable_dtype": [[170, "is-hashable-dtype"]], "zeros": [[144, "zeros"]], "function_supported_dtypes": [[162, "function-supported-dtypes"]], "astype": [[148, "astype"]], "promote_types": [[174, "promote-types"]], "default_int_dtype": [[157, "default-int-dtype"]], "set_default_uint_dtype": [[181, "set-default-uint-dtype"]], "ones_like": [[139, "ones-like"]], "is_bool_dtype": [[167, "is-bool-dtype"]], "default_float_dtype": [[156, "default-float-dtype"]], "result_type": [[176, "result-type"]], "broadcast_to": [[150, "broadcast-to"]], "invalid_dtype": [[166, "invalid-dtype"]], "function_unsupported_dtypes": [[163, "function-unsupported-dtypes"]], "default_dtype": [[155, "default-dtype"]], "check_float": [[152, "check-float"]], "broadcast_arrays": [[149, "broadcast-arrays"]], "is_native_dtype": [[172, "is-native-dtype"]], "set_default_complex_dtype": [[177, "set-default-complex-dtype"]], "as_ivy_dtype": [[146, "as-ivy-dtype"]], "tril": [[141, "tril"]], "promote_types_of_inputs": [[175, "promote-types-of-inputs"]], "closest_valid_dtype": [[153, "closest-valid-dtype"]], "triu": [[142, "triu"]], "unset_default_complex_dtype": [[183, "unset-default-complex-dtype"]], "set_default_dtype": [[178, "set-default-dtype"]], "is_complex_dtype": [[168, "is-complex-dtype"]], "to_dlpack": [[140, "to-dlpack"]], "Note": [[140, null], [129, null], [625, null], [625, null]], "dtype_bits": [[160, "dtype-bits"]], "is_int_dtype": [[171, "is-int-dtype"]], "set_default_float_dtype": [[179, "set-default-float-dtype"]], "Contributor Leaderboard": [[874, "contributor-leaderboard"]], "Top Contributors": [[874, "top-contributors"]], "Rising Contributors": [[874, "rising-contributors"]], "Core Contributors": [[874, "core-contributors"]], "Contributors": [[874, "contributors"]], "Exchange Formats": [[865, "exchange-formats"], [872, "exchange-formats"]], "ONNX onnx": [[865, "onnx-onnx"]], "NNEF nnef": [[865, "nnef-nnef"]], "CoreML coreml": [[865, "coreml-coreml"]], "Standardization": [[856, "standardization"]], "Skepticism": [[856, "skepticism"]], "Complimentary vs Competitive": [[856, "complimentary-vs-competitive"]], "Do Standards Work?": [[856, "do-standards-work"]], "The Array API Standard": [[856, "the-array-api-standard"]], "Ivy as a Framework": [[846, "ivy-as-a-framework"], [27, "Ivy-as-a-Framework"]], "Building Blocks": [[845, "building-blocks"]], "Backend Functional APIs \u2705": [[845, "backend-functional-apis"]], "Ivy Functional API \u2705": [[845, "ivy-functional-api"]], "Backend Handler \u2705": [[845, "backend-handler"]], "Tracer \ud83d\udea7": [[845, "tracer"]], "Related Work": [[862, "related-work"]], "Frameworks": [[866, "frameworks"], [872, "frameworks"]], "MATLAB matlab": [[866, "matlab-matlab"]], "SciPy scipy": [[866, "scipy-scipy"]], "Torch torch": [[866, "torch-torch"]], "NumPy numpy": [[866, "numpy-numpy"]], "SciKit Learn scikit-learn": [[866, "scikit-learn-scikit-learn"]], "Theano theano": [[866, "theano-theano"]], "Pandas pandas": [[866, "pandas-pandas"]], "Julia julia": [[866, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[866, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[866, "caffe-caffe"]], "Chainer chainer": [[866, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[866, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[866, "mxnet-mxnet"]], "CNTK cntk": [[866, "cntk-cntk"]], "PyTorch pytorch": [[866, "pytorch-pytorch"]], "Flux flux": [[866, "flux-flux"]], "JAX jax": [[866, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[866, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[866, "dex-language-dex-language"]], "Ivy Array": [[847, "ivy-array"], [820, "ivy-array"]], "The Array Class": [[847, "the-array-class"]], "Unifying Operators": [[847, "unifying-operators"]], "API Monkey Patching": [[847, "api-monkey-patching"]], "Instance Methods": [[847, "instance-methods"]], "Vendor-Specific APIs": [[870, "vendor-specific-apis"], [872, "vendor-specific-apis"]], "TensorRT tensorrt": [[870, "tensorrt-tensorrt"]], "CUDA cuda": [[870, "cuda-cuda"]], "FAQ": [[851, "faq"]], "Maintaining Backend Versions": [[851, "maintaining-backend-versions"]], "Dynamic Sizes": [[851, "dynamic-sizes"]], "Type and Shape Checking": [[851, "type-and-shape-checking"]], "GPU handling": [[851, "gpu-handling"]], "Model Deployment": [[851, "model-deployment"]], "Dynamic Control Flow": [[851, "dynamic-control-flow"]], "Auto-Differentiation": [[851, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[851, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[851, "support-for-functions"]], "Alternative Data Structures": [[851, "alternative-data-structures"]], "Custom Operations": [[851, "custom-operations"]], "The Pipeline": [[851, "the-pipeline"]], "State": [[851, "state"]], "Navigating the Code": [[841, "navigating-the-code"]], "Categorization": [[841, "categorization"]], "Submodule Design": [[841, "submodule-design"]], "Ivy API": [[841, "ivy-api"]], "Backend API": [[841, "backend-api"]], "Submodule Helper Functions": [[841, "submodule-helper-functions"]], "Version Unpinning": [[841, "version-unpinning"]], "ivy.transpile()": [[860, "ivy-transpile"]], "Transpiler API": [[860, "transpiler-api"]], "Using the transpiler": [[860, "using-the-transpiler"]], "Transpiling functions": [[860, "transpiling-functions"]], "Transpiling Libraries": [[860, "transpiling-libraries"]], "Transpiling Modules": [[860, "transpiling-modules"]], "Sharp bits": [[860, "sharp-bits"], [859, "sharp-bits"], [861, "sharp-bits"]], "Examples": [[860, "examples"], [832, "examples"], [859, "examples"], [861, "examples"], [808, "examples"]], "Operating Modes": [[842, "operating-modes"]], "Global Parameter Properties": [[842, "global-parameter-properties"]], "Getter: ivy. attribute": [[842, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[842, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Exception Handling": [[829, "exception-handling"], [834, "exception-handling"]], "Ivy Exception Class": [[829, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[829, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[829, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[829, "handle-exceptions-decorator"]], "Consistency in Errors": [[829, "consistency-in-errors"]], "Assertion Function": [[829, "assertion-function"]], "One liners": [[858, "one-liners"]], "Ivy Frontend Tests": [[838, "ivy-frontend-tests"]], "Introduction": [[838, "introduction"], [837, "introduction"], [42, "Introduction"]], "Frontend Test Examples": [[838, "frontend-test-examples"]], "ivy.tan()": [[838, "ivy-tan"]], "ivy.full()": [[838, "ivy-full"]], "Testing Without Using Tests Values": [[838, "testing-without-using-tests-values"]], "Alias functions": [[838, "alias-functions"]], "Frontend Instance Method Tests": [[838, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[838, "frontend-instance-method-test-examples"]], "ivy.add()": [[838, "ivy-add"]], "Hypothesis Helpers": [[838, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[838, "frontend-framework-testing-configuration"]], "Function Arguments": [[832, "function-arguments"]], "Positional and Keyword Arguments": [[832, "positional-and-keyword-arguments"]], "Input Arrays": [[832, "input-arrays"]], "out Argument": [[832, "out-argument"]], "dtype and device arguments": [[832, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[832, "numbers-in-operator-functions"]], "Integer Sequences": [[832, "integer-sequences"]], "Nestable Functions": [[832, "nestable-functions"], [833, "nestable-functions"], [823, "nestable-functions"]], "ivy.trace_graph()": [[859, "ivy-trace-graph"]], "Tracer API": [[859, "tracer-api"]], "Using the tracer": [[859, "using-the-tracer"]], "Eager vs lazy Compilation": [[859, "eager-vs-lazy-compilation"]], "Array caching": [[859, "array-caching"]], "Generators": [[859, "generators"]], "Stateful": [[859, "stateful"]], "Compiler Infrastructure": [[864, "compiler-infrastructure"], [872, "compiler-infrastructure"]], "LLVM": [[864, "id1"]], "MLIR": [[864, "id2"]], "OneAPI": [[864, "id3"]], "ML-Unifying Companies": [[868, "ml-unifying-companies"], [872, "ml-unifying-companies"]], "Quansight": [[868, "id1"]], "Modular": [[868, "id2"]], "OctoML": [[868, "id3"]], "Glossary": [[853, "glossary"]], "ivy.unify()": [[861, "ivy-unify"]], "Unify API": [[861, "unify-api"]], "Usage": [[861, "usage"]], "Docstrings": [[828, "docstrings"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[839, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[839, "overview"], [835, "overview"]], "Existing Formatters": [[839, "existing-formatters"]], "FunctionOrderingFormatter": [[839, "functionorderingformatter"]], "How the Formatter Works:": [[839, "how-the-formatter-works"]], "Integration and Usage": [[839, "integration-and-usage"]], "Contribution": [[839, "contribution"]], "Round Up": [[839, "round-up"], [14, "Round-Up"], [41, "Round-Up"], [31, "Round-Up"], [34, "Round-Up"], [24, "Round-Up"], [33, "Round-Up"], [23, "Round-Up"], [19, "Round-Up"], [29, "Round-Up"], [18, "Round-Up"], [32, "Round-Up"], [21, "Round-Up"], [22, "Round-Up"], [30, "Round-Up"], [28, "Round-Up"], [20, "Round-Up"], [12, "Round-Up"]], "Inplace Updates": [[836, "inplace-updates"]], "out argument": [[836, "out-argument"]], "copy argument": [[836, "copy-argument"]], "Views": [[836, "views"]], "Function Wrapping": [[834, "function-wrapping"]], "Decorator order": [[834, "decorator-order"]], "Conversion Wrappers": [[834, "conversion-wrappers"]], "Inference Wrappers": [[834, "inference-wrappers"]], "Out Argument Support": [[834, "out-argument-support"]], "Nestable Support": [[834, "nestable-support"]], "Partial Mixed Function Support": [[834, "partial-mixed-function-support"]], "Shape Conversion": [[834, "shape-conversion"]], "View Handling": [[834, "view-handling"]], "Miscellaneous Wrappers": [[834, "miscellaneous-wrappers"]], "Graph Tracers": [[867, "graph-tracers"], [872, "graph-tracers"]], "tf.Graph": [[867, "tf-graph"]], "Jaxpr": [[867, "jaxpr"]], "torch.jit": [[867, "torch-jit"]], "torch.fx": [[867, "torch-fx"]], "What does Ivy Add?": [[872, "what-does-ivy-add"]], "API Standards": [[872, "api-standards"], [863, "api-standards"]], "Wrapper Frameworks": [[872, "wrapper-frameworks"], [873, "wrapper-frameworks"]], "Multi-Vendor Compiler Frameworks": [[872, "multi-vendor-compiler-frameworks"], [869, "multi-vendor-compiler-frameworks"]], "Vendor-Specific Compilers": [[872, "vendor-specific-compilers"], [871, "vendor-specific-compilers"]], "Ivy Frontends": [[837, "ivy-frontends"]], "The Frontend Basics": [[837, "the-frontend-basics"]], "Writing Frontend Functions": [[837, "writing-frontend-functions"]], "Short Frontend Implementations": [[837, "short-frontend-implementations"]], "Unused Arguments": [[837, "unused-arguments"]], "Supported Data Types and Devices": [[837, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[837, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[837, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[837, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[837, "frontends-duplicate-policy"]], "Gradients": [[835, "gradients"], [631, "gradients"], [370, "gradients"], [78, "module-ivy.data_classes.container.gradients"], [55, "module-ivy.data_classes.array.gradients"]], "Example Usage of the Gradient API": [[835, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[835, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[835, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[835, "custom-gradient-functions"]], "Design of the Gradient API": [[835, "design-of-the-gradient-api"]], "Our policy on gradients": [[835, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[835, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[835, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[835, "framework-specific-considerations"]], "Superset Behaviour": [[843, "superset-behaviour"]], "Extending the Standard": [[843, "extending-the-standard"]], "What is the Superset?": [[843, "what-is-the-superset"]], "A Non-Duplicate Superset": [[843, "a-non-duplicate-superset"]], "What is not the Superset?": [[843, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[843, "balancing-generalization-with-efficiency"]], "More Examples": [[843, "more-examples"]], "Maximizing Usage of Native Functionality": [[843, "maximizing-usage-of-native-functionality"]], "Formatting": [[831, "formatting"]], "Lint Checks": [[831, "lint-checks"], [831, "id2"]], "Setup Formatting Locally": [[831, "setup-formatting-locally"]], "Pre-commit": [[831, "pre-commit"]], "VS Code": [[831, "vs-code"]], "PyCharm": [[831, "pycharm"], [815, "pycharm"]], "Common Issues with Pre-Commit": [[831, "common-issues-with-pre-commit"]], "Continuous Integration": [[831, "continuous-integration"], [824, "continuous-integration"]], "Lint Formatting": [[831, "lint-formatting"]], "ML Explosion": [[855, "ml-explosion"]], "Fix Failing Tests:": [[830, "fix-failing-tests"]], "Prerequirement:": [[830, "prerequirement"]], "Setting Up": [[830, "setting-up"], [815, "setting-up"]], "How to run tests": [[830, "how-to-run-tests"]], "Common Errors": [[830, "common-errors"]], "Where to ask for Help": [[830, "where-to-ask-for-help"]], "Ivy as a Transpiler": [[850, "ivy-as-a-transpiler"], [28, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[850, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[850, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[850, "converting-network-models"]], "Get Started": [[852, "get-started"]], "Installing using pip": [[852, "installing-using-pip"], [808, "installing-using-pip"]], "Docker": [[852, "docker"]], "Installing from source": [[852, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[852, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[852, "ivy-folder"]], "Setting Up the API key": [[852, "setting-up-the-api-key"]], "Issues and Questions": [[852, "issues-and-questions"]], "Ivy Stateful API": [[849, "ivy-stateful-api"], [18, "Ivy-Stateful-API"], [27, "Ivy-Stateful-API"]], "Modules": [[849, "modules"]], "Initializers": [[849, "initializers"], [787, "module-ivy.stateful.initializers"]], "Optimizers": [[849, "optimizers"], [792, "module-ivy.stateful.optimizers"]], "Ivy Tests": [[840, "ivy-tests"], [824, "ivy-tests"]], "Testing Pipeline": [[840, "testing-pipeline"]], "Hypothesis": [[840, "id2"]], "Data Generation": [[840, "id3"]], "Writing your own strategy": [[840, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[840, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[840, "ivy-test-decorators"]], "Writing Ivy Tests": [[840, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[840, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[840, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[840, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[840, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[840, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[840, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[840, "self-consistent-and-explicit-testing"]], "test_array_function": [[840, "id5"]], "Running Ivy Tests": [[840, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[840, "re-running-failed-ivy-tests"]], "Ivy Container": [[848, "ivy-container"]], "Construction": [[848, "construction"]], "Representation": [[848, "representation"]], "Recursive Methods": [[848, "recursive-methods"]], "Built-ins": [[848, "built-ins"]], "Access": [[848, "access"]], "Saving and Loading": [[848, "saving-and-loading"]], "Comparisons": [[848, "comparisons"]], "Customized Representations": [[848, "customized-representations"]], "Use Cases": [[848, "use-cases"]], "Compartmentalization": [[848, "compartmentalization"]], "Configuration": [[848, "configuration"]], "Data loading": [[848, "data-loading"]], "Network weights": [[848, "network-weights"]], "Why Unify?": [[857, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[857, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[857, "infinite-shelf-life"]], "ICC": [[871, "id1"]], "ICX": [[871, "icx"]], "NVCC": [[871, "nvcc"]], "Design": [[844, "design"]], "Function Types": [[833, "function-types"]], "Primary Functions": [[833, "primary-functions"]], "Compositional Functions": [[833, "compositional-functions"]], "Mixed Functions": [[833, "mixed-functions"]], "Partial Mixed Functions": [[833, "partial-mixed-functions"]], "Standalone Functions": [[833, "standalone-functions"]], "Convenience Functions": [[833, "convenience-functions"]], "Array API Standard": [[863, "id1"]], "Table:": [[863, "table"]], "Apache TVM": [[869, "apache-tvm"]], "XLA": [[869, "xla"]], "GCC": [[869, "gcc"]], "EagerPy eagerpy": [[873, "eagerpy-eagerpy"]], "Keras keras": [[873, "keras-keras"]], "Thinc thinc": [[873, "thinc-thinc"]], "TensorLy tensorly": [[873, "tensorly-tensorly"]], "NeuroPod": [[873, "id1"]], "Motivation": [[854, "motivation"]], "for_loop": [[118, "for-loop"]], "Cp tensor": [[93, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "log_softmax": [[109, "log-softmax"]], "if_else": [[119, "if-else"]], "softsign": [[115, "softsign"]], "hardswish": [[107, "hardswish"]], "array": [[123, "array"]], "sigmoid": [[112, "sigmoid"]], "arange": [[122, "arange"]], "relu": [[111, "relu"]], "gelu": [[106, "gelu"]], "Base": [[102, "module-ivy.data_classes.nested_array.base"], [92, "module-ivy.data_classes.factorized_tensor.base"], [70, "module-ivy.data_classes.container.base"]], "Elementwise": [[103, "module-ivy.data_classes.nested_array.elementwise"], [628, "elementwise"], [368, "elementwise"], [75, "module-ivy.data_classes.container.elementwise"], [52, "module-ivy.data_classes.array.elementwise"]], "softmax": [[113, "softmax"]], "frombuffer": [[130, "frombuffer"]], "full": [[131, "full"]], "leaky_relu": [[108, "leaky-relu"]], "empty": [[126, "empty"]], "Array": [[98, "array"]], "copy_array": [[125, "copy-array"]], "logspace": [[134, "logspace"]], "full_like": [[132, "full-like"]], "from_dlpack": [[129, "from-dlpack"]], "Factorized tensor": [[100, "factorized-tensor"]], "cmp_is": [[116, "cmp-is"]], "asarray": [[124, "asarray"]], "empty_like": [[127, "empty-like"]], "linspace": [[133, "linspace"]], "softplus": [[114, "softplus"]], "Functions": [[105, "functions"]], "Tr tensor": [[95, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "one_hot": [[137, "one-hot"]], "Data classes": [[104, "data-classes"]], "Tt tensor": [[96, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "eye": [[128, "eye"]], "try_except": [[120, "try-except"]], "native_array": [[136, "native-array"]], "Tucker tensor": [[97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Nested array": [[101, "nested-array"]], "meshgrid": [[135, "meshgrid"]], "Container": [[99, "container"]], "mish": [[110, "mish"]], "cmp_isnot": [[117, "cmp-isnot"]], "while_loop": [[121, "while-loop"]], "Parafac2 tensor": [[94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "load": [[765, "load"]], "unique_values": [[748, "unique-values"]], "Data-dependent output shape": [[748, null], [745, null], [746, null], [747, null], [641, null], [641, null], [641, null], [641, null]], "General helpers": [[774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "argsort": [[749, "argsort"]], "Function testing": [[769, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Globals": [[770, "module-ivy_tests.test_ivy.helpers.globals"]], "Assertions": [[767, "module-ivy_tests.test_ivy.helpers.assertions"], [794, "module-ivy.utils.assertions"]], "random_normal": [[736, "random-normal"]], "Array helpers": [[772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Dtype helpers": [[773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "max": [[756, "max"]], "argwhere": [[742, "argwhere"]], "where": [[744, "where"]], "sum": [[761, "sum"]], "prod": [[759, "prod"]], "unique_all": [[745, "unique-all"]], "save": [[766, "save"]], "Multiprocessing": [[776, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Test parameter flags": [[779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "cumprod": [[753, "cumprod"]], "Framework classes": [[781, "framework-classes"]], "argmin": [[741, "argmin"]], "Hypothesis helpers": [[771, "hypothesis-helpers"]], "Pipeline helper": [[777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "msort": [[750, "msort"]], "nonzero": [[743, "nonzero"]], "shuffle": [[739, "shuffle"]], "einsum": [[755, "einsum"]], "random_uniform": [[737, "random-uniform"]], "Available frameworks": [[768, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "any": [[764, "any"]], "unique_counts": [[746, "unique-counts"]], "std": [[760, "std"]], "Structs": [[778, "module-ivy_tests.test_ivy.helpers.structs"]], "searchsorted": [[751, "searchsorted"]], "Testing helpers": [[780, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "var": [[762, "var"]], "cumsum": [[754, "cumsum"]], "all": [[763, "all"]], "min": [[758, "min"]], "sort": [[752, "sort"]], "mean": [[757, "mean"]], "unique_inverse": [[747, "unique-inverse"]], "argmax": [[740, "argmax"]], "Number helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "seed": [[738, "seed"]], "Norms": [[791, "module-ivy.stateful.norms"], [638, "norms"], [377, "norms"], [84, "module-ivy.data_classes.container.norms"], [61, "module-ivy.data_classes.array.norms"]], "Forking and cloning the repo": [[815, "forking-and-cloning-the-repo"]], "Pre-Commit": [[815, "pre-commit"]], "Virtual environments - No Docker": [[815, "virtual-environments-no-docker"]], "Using miniconda": [[815, "using-miniconda"]], "Using venv": [[815, "using-venv"]], "Docker Interpreter with PyCharm": [[815, "docker-interpreter-with-pycharm"]], "Windows": [[815, "windows"], [815, "id6"]], "MacOS": [[815, "macos"]], "Ubuntu": [[815, "ubuntu"], [815, "id8"]], "Setting Up Testing in PyCharm": [[815, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[815, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[815, "setting-up-for-free"]], "WSL": [[815, "wsl"]], "GitHub Codespaces": [[815, "github-codespaces"]], "The Binaries": [[815, "the-binaries"]], "Profiler": [[806, "module-ivy.utils.profiler"]], "Devices": [[826, "devices"]], "Device Module": [[826, "device-module"]], "Arguments in other Functions": [[826, "arguments-in-other-functions"], [825, "arguments-in-other-functions"]], "Device handling": [[826, "device-handling"]], "Open Tasks": [[814, "open-tasks"]], "Fixing Failing Tests": [[814, "fixing-failing-tests"]], "How to Contribute": [[814, "how-to-contribute"]], "Frontend APIs": [[814, "frontend-apis"]], "Where to place a frontend function": [[814, "where-to-place-a-frontend-function"]], "Frontend checklist": [[814, "frontend-checklist"]], "Function Formatting": [[814, "function-formatting"]], "Formatting checklist": [[814, "formatting-checklist"]], "Ivy Experimental API": [[814, "ivy-experimental-api"]], "Extending the Ivy API": [[814, "extending-the-ivy-api"]], "Where to place a backend function": [[814, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[814, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Module": [[790, "module-ivy.stateful.module"]], "Array API Tests": [[819, "array-api-tests"], [824, "array-api-tests"]], "Running the Tests": [[819, "running-the-tests"]], "Using Terminal": [[819, "using-terminal"]], "Using the IDE": [[819, "using-the-ide"]], "Regenerating Test Failures": [[819, "regenerating-test-failures"]], "Test Skipping": [[819, "test-skipping"]], "Contributor Program": [[817, "contributor-program"]], "Contributor": [[817, "contributor"]], "Core Contributor": [[817, "core-contributor"]], "Rising Contributor": [[817, "rising-contributor"]], "Top Contributor": [[817, "top-contributor"]], "Arrays": [[820, "arrays"]], "Native Array": [[820, "native-array"]], "Array Handling": [[820, "array-handling"]], "Integrating custom classes with Ivy": [[820, "integrating-custom-classes-with-ivy"]], "Building the Docs Pipeline": [[822, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[822, "how-the-doc-builder-is-being-run"]], "The convenience script": [[822, "the-convenience-script"]], "Options": [[822, "options"]], "The Docker image": [[822, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[822, "how-ivy-s-docs-is-structured"]], "index.rst": [[822, "index-rst"]], "partial_conf.py": [[822, "partial-conf-py"]], "prebuild.sh": [[822, "prebuild-sh"]], "Custom Extensions": [[822, "custom-extensions"]], "custom_autosummary": [[822, "custom-autosummary"]], ":hide-table:": [[822, "hide-table"]], "discussion_linker": [[822, "discussion-linker"]], "skippable_function": [[822, "skippable-function"]], "ivy_data": [[822, "ivy-data"]], "Sequential": [[793, "module-ivy.stateful.sequential"]], "Einsum parser": [[801, "module-ivy.utils.einsum_parser"]], "Ast helpers": [[796, "module-ivy.utils.backend.ast_helpers"]], "Inspection": [[804, "module-ivy.utils.inspection"]], "Backend Setting": [[821, "backend-setting"]], "Dynamic Backend Setting": [[821, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[821, "backend-and-frontend-version-support"]], "Exceptions": [[803, "module-ivy.utils.exceptions"]], "Testing": [[783, "testing"], [41, "Testing"]], "Layers": [[788, "module-ivy.stateful.layers"], [632, "layers"], [371, "layers"], [57, "module-ivy.data_classes.array.layers"], [80, "module-ivy.data_classes.container.layers"]], "Contributing": [[809, "contributing"], [808, "contributing"]], "Utils": [[782, "utils"]], "Building the Docs": [[810, "building-the-docs"]], "Building the Docs using Docker": [[810, "building-the-docs-using-docker"]], "Using convenience script": [[810, "using-convenience-script"]], "Using existing image on Docker Hub": [[810, "using-existing-image-on-docker-hub"]], "Building the image locally": [[810, "building-the-image-locally"]], "Building the Docs without Docker": [[810, "building-the-docs-without-docker"]], "Error Handling": [[812, "error-handling"]], "Commit (Push/PR) Triggered Testing": [[824, "commit-push-pr-triggered-testing"]], "Implementation": [[824, "implementation"]], "A Top-Down View": [[824, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[824, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[824, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[824, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[824, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[824, "determine-test-coverage-workflow"]], "Multiple Runners": [[824, "multiple-runners"]], "Race Condition": [[824, "race-condition"]], "Periodic Testing": [[824, "periodic-testing"]], "Manually Dispatched Workflows": [[824, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[824, "ci-pipeline"]], "Push": [[824, "push"]], "Pull Request": [[824, "pull-request"]], "Dashboard": [[824, "dashboard"]], "Converters": [[785, "module-ivy.stateful.converters"]], "Containers": [[823, "containers"]], "Container Instance Methods": [[823, "container-instance-methods"]], "API Instance Methods": [[823, "api-instance-methods"]], "API Special Methods": [[823, "api-special-methods"]], "Logging": [[805, "module-ivy.utils.logging"]], "Losses": [[789, "module-ivy.stateful.losses"], [634, "losses"], [373, "losses"], [82, "module-ivy.data_classes.container.losses"], [59, "module-ivy.data_classes.array.losses"]], "Status": [[808, "status"]], "Unified AI": [[808, "unified-ai"]], "Getting started": [[808, "getting-started"]], "Installing ivy": [[808, "installing-ivy"]], "Using Ivy": [[808, "using-ivy"]], "Documentation": [[808, "documentation"]], "Diving deeper": [[808, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[808, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[808, "community"]], "Citation": [[808, "citation"]], "Contributor Rewards": [[811, "contributor-rewards"]], "Badges": [[811, "badges"]], "Badge Tiers": [[811, "badge-tiers"]], "Helpful Resources": [[813, "helpful-resources"]], "Backend": [[795, "backend"]], "Deep Dive": [[818, "deep-dive"]], "Activations": [[784, "module-ivy.stateful.activations"], [622, "activations"], [363, "activations"], [47, "module-ivy.data_classes.array.activations"], [69, "module-ivy.data_classes.container.activations"]], "Parameter": [[784, "parameter"], [784, "id1"], [575, "parameter"], [583, "parameter"], [574, "parameter"], [584, "parameter"], [580, "parameter"], [581, "parameter"], [630, "parameter"], [630, "id1"], [630, "id2"], [630, "id3"], [630, "id4"], [630, "id5"], [627, "parameter"], [206, "parameter"]], "Handler": [[797, "module-ivy.utils.backend.handler"]], "Einsum path helpers": [[802, "module-ivy.utils.einsum_path_helpers"]], "Binaries": [[799, "module-ivy.utils.binaries"]], "Dynamic import": [[800, "module-ivy.utils.dynamic_import"]], "The Basics": [[816, "the-basics"]], "Getting Help": [[816, "getting-help"]], "ToDo List Issues": [[816, "todo-list-issues"]], "Managing Your Fork": [[816, "managing-your-fork"]], "Who To Ask": [[816, "who-to-ask"]], "With Command Line:": [[816, "with-command-line"]], "With Browser:": [[816, "with-browser"]], "Pull Requests": [[816, "pull-requests"]], "Small Commits Often": [[816, "small-commits-often"]], "Interactive Ivy Docker Container": [[816, "interactive-ivy-docker-container"]], "Running Tests Locally": [[816, "running-tests-locally"]], "With Docker": [[816, "with-docker"]], "Getting the most out of IDE": [[816, "getting-the-most-out-of-ide"]], "with PyCharm": [[816, "with-pycharm"]], "Verbosity": [[807, "module-ivy.utils.verbosity"]], "Sub backend handler": [[798, "module-ivy.utils.backend.sub_backend_handler"]], "Data Types": [[825, "data-types"]], "Data Type Module": [[825, "data-type-module"]], "Data Type Promotion": [[825, "data-type-promotion"]], "Precise Mode": [[825, "precise-mode"]], "Precise Promotion Table": [[825, "precise-promotion-table"]], "Non-Precise Promotion Table": [[825, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[825, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[825, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[825, "special-case"]], "Backend Data Type Bugs": [[825, "backend-data-type-bugs"]], "Data Type Casting Modes": [[825, "data-type-casting-modes"]], "Superset Data Type Support": [[825, "superset-data-type-support"]], "Helpers": [[786, "module-ivy.stateful.helpers"]], "Docstring Examples": [[827, "docstring-examples"]], "ivy.tan": [[827, "ivy-tan"]], "ivy.roll": [[827, "ivy-roll"]], "ivy.add": [[827, "ivy-add"]], "nested_map": [[726, "nested-map"]], "binary_cross_entropy": [[692, "binary-cross-entropy"]], "insert_into_nest_at_indices": [[719, "insert-into-nest-at-indices"]], "roll": [[703, "roll"]], "reshape": [[702, "reshape"]], "randint": [[735, "randint"]], "swapaxes": [[707, "swapaxes"]], "unstack": [[709, "unstack"]], "stack": [[706, "stack"]], "multinomial": [[734, "multinomial"]], "flip": [[699, "flip"]], "layer_norm": [[733, "layer-norm"]], "concat": [[696, "concat"]], "duplicate_array_index_chains": [[716, "duplicate-array-index-chains"]], "insert_into_nest_at_index": [[718, "insert-into-nest-at-index"]], "nested_argwhere": [[725, "nested-argwhere"]], "set_nest_at_indices": [[732, "set-nest-at-indices"]], "constant_pad": [[697, "constant-pad"]], "squeeze": [[705, "squeeze"]], "split": [[704, "split"]], "tile": [[708, "tile"]], "map_nest_at_indices": [[722, "map-nest-at-indices"]], "reptile_step": [[713, "reptile-step"]], "clip": [[695, "clip"]], "map": [[720, "map"]], "nested_any": [[724, "nested-any"]], "all_nested_indices": [[714, "all-nested-indices"]], "repeat": [[701, "repeat"]], "index_nest": [[717, "index-nest"]], "prune_nest_at_indices": [[730, "prune-nest-at-indices"]], "maml_step": [[712, "maml-step"]], "nested_multi_map": [[727, "nested-multi-map"]], "cross_entropy": [[693, "cross-entropy"]], "zero_pad": [[710, "zero-pad"]], "set_nest_at_index": [[731, "set-nest-at-index"]], "expand_dims": [[698, "expand-dims"]], "prune_empty": [[728, "prune-empty"]], "multi_index_nest": [[723, "multi-index-nest"]], "vector_norm": [[690, "vector-norm"]], "copy_nest": [[715, "copy-nest"]], "permute_dims": [[700, "permute-dims"]], "vector_to_skew_symmetric_matrix": [[691, "vector-to-skew-symmetric-matrix"]], "fomaml_step": [[711, "fomaml-step"]], "prune_nest_at_index": [[729, "prune-nest-at-index"]], "sparse_cross_entropy": [[694, "sparse-cross-entropy"]], "map_nest_at_index": [[721, "map-nest-at-index"]], "eig": [[668, "eig"], [425, "eig"]], "conv_general_transpose": [[653, "conv-general-transpose"]], "slogdet": [[681, "slogdet"]], "Utility": [[644, "utility"], [384, "utility"], [90, "module-ivy.data_classes.container.utility"], [67, "module-ivy.data_classes.array.utility"]], "multi_head_attention": [[659, "multi-head-attention"]], "pinv": [[679, "pinv"]], "solve": [[682, "solve"]], "linear": [[656, "linear"]], "diag": [[666, "diag"]], "matrix_norm": [[674, "matrix-norm"]], "vander": [[688, "vander"]], "eigh": [[669, "eigh"]], "eigvalsh": [[670, "eigvalsh"]], "outer": [[678, "outer"]], "vecdot": [[689, "vecdot"]], "diagonal": [[667, "diagonal"]], "tensordot": [[685, "tensordot"]], "conv": [[645, "conv"]], "svdvals": [[684, "svdvals"]], "matmul": [[673, "matmul"]], "matrix_rank": [[676, "matrix-rank"]], "roi_align": [[661, "roi-align"]], "scaled_dot_product_attention": [[662, "scaled-dot-product-attention"]], "conv3d_transpose": [[651, "conv3d-transpose"]], "lstm": [[657, "lstm"]], "depthwise_conv2d": [[654, "depthwise-conv2d"]], "dropout": [[655, "dropout"]], "conv2d": [[648, "conv2d"]], "lstm_update": [[658, "lstm-update"]], "matrix_transpose": [[677, "matrix-transpose"]], "inv": [[672, "inv"]], "matrix_power": [[675, "matrix-power"]], "tensorsolve": [[686, "tensorsolve"]], "conv1d": [[646, "conv1d"]], "conv2d_transpose": [[649, "conv2d-transpose"]], "nms": [[660, "nms"]], "conv_general_dilated": [[652, "conv-general-dilated"]], "qr": [[680, "qr"]], "trace": [[687, "trace"]], "inner": [[671, "inner"]], "svd": [[683, "svd"]], "conv3d": [[650, "conv3d"]], "cholesky": [[663, "cholesky"]], "det": [[665, "det"]], "conv1d_transpose": [[647, "conv1d-transpose"]], "cross": [[664, "cross"]], "is_ivy_nested_array": [[563, "is-ivy-nested-array"]], "set_exception_trace_mode": [[575, "set-exception-trace-mode"]], "multiprocessing": [[569, "multiprocessing"]], "set_shape_array_mode": [[583, "set-shape-array-mode"]], "try_else_none": [[597, "try-else-none"]], "set_queue_timeout": [[582, "set-queue-timeout"]], "set_tmp_dir": [[585, "set-tmp-dir"]], "set_min_denominator": [[579, "set-min-denominator"]], "set_array_mode": [[574, "set-array-mode"]], "itemsize": [[567, "itemsize"]], "is_native_array": [[564, "is-native-array"]], "to_ivy_shape": [[592, "to-ivy-shape"]], "set_show_func_wrapper_trace_mode": [[584, "set-show-func-wrapper-trace-mode"]], "inplace_update": [[558, "inplace-update"]], "scatter_nd": [[573, "scatter-nd"]], "stable_pow": [[589, "stable-pow"]], "has_nans": [[554, "has-nans"]], "inplace_variables_supported": [[559, "inplace-variables-supported"]], "isin": [[565, "isin"]], "isscalar": [[566, "isscalar"]], "to_native_shape": [[594, "to-native-shape"]], "to_scalar": [[596, "to-scalar"]], "to_numpy": [[595, "to-numpy"]], "print_all_arrays_in_memory": [[571, "print-all-arrays-in-memory"]], "inplace_increment": [[557, "inplace-increment"]], "size": [[587, "size"]], "to_list": [[593, "to-list"]], "is_ivy_array": [[561, "is-ivy-array"]], "num_arrays_in_memory": [[570, "num-arrays-in-memory"]], "strides": [[590, "strides"]], "set_item": [[577, "set-item"]], "set_inplace_mode": [[576, "set-inplace-mode"]], "supports_inplace_updates": [[591, "supports-inplace-updates"]], "match_kwargs": [[568, "match-kwargs"]], "shape": [[586, "shape"]], "set_nestable_mode": [[580, "set-nestable-mode"]], "set_precise_mode": [[581, "set-precise-mode"]], "stable_divide": [[588, "stable-divide"]], "inplace_arrays_supported": [[555, "inplace-arrays-supported"]], "get_referrers_recursive": [[553, "get-referrers-recursive"]], "is_ivy_container": [[562, "is-ivy-container"]], "scatter_flat": [[572, "scatter-flat"]], "get_num_dims": [[552, "get-num-dims"]], "inplace_decrement": [[556, "inplace-decrement"]], "is_array": [[560, "is-array"]], "set_min_base": [[578, "set-min-base"]], "native_sparse_array": [[514, "native-sparse-array"]], "get_item": [[551, "get-item"]], "cov": [[518, "cov"]], "gamma": [[507, "gamma"]], "current_backend_str": [[539, "current-backend-str"]], "default": [[540, "default"]], "fourier_encode": [[545, "fourier-encode"]], "cache_fn": [[535, "cache-fn"]], "cummin": [[520, "cummin"]], "median": [[523, "median"]], "einops_repeat": [[543, "einops-repeat"]], "bincount": [[516, "bincount"]], "quantile": [[528, "quantile"]], "optional_get_element": [[529, "optional-get-element"]], "unravel_index": [[509, "unravel-index"]], "einops_reduce": [[542, "einops-reduce"]], "histogram": [[521, "histogram"]], "is_ivy_sparse_array": [[512, "is-ivy-sparse-array"]], "nanmedian": [[525, "nanmedian"]], "assert_supports_inplace": [[534, "assert-supports-inplace"]], "clip_matrix_norm": [[536, "clip-matrix-norm"]], "gather_nd": [[549, "gather-nd"]], "arg_info": [[531, "arg-info"]], "container_types": [[538, "container-types"]], "exists": [[544, "exists"]], "dirichlet": [[506, "dirichlet"]], "poisson": [[508, "poisson"]], "corrcoef": [[517, "corrcoef"]], "nanmean": [[524, "nanmean"]], "native_sparse_array_to_indices_values_and_shape": [[515, "native-sparse-array-to-indices-values-and-shape"]], "gather": [[548, "gather"]], "nanmin": [[526, "nanmin"]], "is_native_sparse_array": [[513, "is-native-sparse-array"]], "einops_rearrange": [[541, "einops-rearrange"]], "igamma": [[522, "igamma"]], "arg_names": [[532, "arg-names"]], "function_unsupported_devices_and_dtypes": [[547, "function-unsupported-devices-and-dtypes"]], "clip_vector_norm": [[537, "clip-vector-norm"]], "lexsort": [[511, "lexsort"]], "nanprod": [[527, "nanprod"]], "invert_permutation": [[510, "invert-permutation"]], "cummax": [[519, "cummax"]], "array_equal": [[533, "array-equal"]], "get_all_arrays_in_memory": [[550, "get-all-arrays-in-memory"]], "function_supported_devices_and_dtypes": [[546, "function-supported-devices-and-dtypes"]], "all_equal": [[530, "all-equal"]], "lp_normalize": [[503, "lp-normalize"]], "take_along_axis": [[489, "take-along-axis"]], "local_response_norm": [[502, "local-response-norm"]], "matricize": [[478, "matricize"]], "fliplr": [[471, "fliplr"]], "hsplit": [[475, "hsplit"]], "hstack": [[476, "hstack"]], "pad": [[480, "pad"]], "atleast_3d": [[460, "atleast-3d"]], "choose": [[463, "choose"]], "broadcast_shapes": [[461, "broadcast-shapes"]], "vsplit": [[495, "vsplit"]], "l1_normalize": [[500, "l1-normalize"]], "i0": [[477, "i0"]], "batch_norm": [[497, "batch-norm"]], "unique_consecutive": [[494, "unique-consecutive"]], "moveaxis": [[479, "moveaxis"]], "partial_unfold": [[483, "partial-unfold"]], "instance_norm": [[499, "instance-norm"]], "flipud": [[472, "flipud"]], "l2_normalize": [[501, "l2-normalize"]], "bernoulli": [[504, "bernoulli"]], "top_k": [[490, "top-k"]], "fold": [[473, "fold"]], "put_along_axis": [[485, "put-along-axis"]], "fill_diagonal": [[469, "fill-diagonal"]], "vstack": [[496, "vstack"]], "dstack": [[467, "dstack"]], "expand": [[468, "expand"]], "unflatten": [[492, "unflatten"]], "unfold": [[493, "unfold"]], "partial_tensor_to_vec": [[482, "partial-tensor-to-vec"]], "heaviside": [[474, "heaviside"]], "check_scalar": [[462, "check-scalar"]], "flatten": [[470, "flatten"]], "beta": [[505, "beta"]], "take": [[488, "take"]], "rot90": [[486, "rot90"]], "concat_from_sequence": [[465, "concat-from-sequence"]], "group_norm": [[498, "group-norm"]], "partial_fold": [[481, "partial-fold"]], "dsplit": [[466, "dsplit"]], "partial_vec_to_tensor": [[484, "partial-vec-to-tensor"]], "soft_thresholding": [[487, "soft-thresholding"]], "trim_zeros": [[491, "trim-zeros"]], "column_stack": [[464, "column-stack"]], "vmap": [[610, "vmap"]], "Meta": [[636, "meta"], [375, "module-ivy.functional.ivy.experimental.meta"]], "Sorting": [[642, "sorting"], [381, "sorting"], [65, "module-ivy.data_classes.array.sorting"], [88, "module-ivy.data_classes.container.sorting"]], "value_is_nan": [[609, "value-is-nan"]], "unset_min_denominator": [[602, "unset-min-denominator"]], "unset_precise_mode": [[604, "unset-precise-mode"]], "adam_update": [[612, "adam-update"]], "Creation": [[625, "creation"], [365, "creation"], [72, "module-ivy.data_classes.container.creation"], [49, "module-ivy.data_classes.array.creation"]], "Constants": [[623, "module-ivy.functional.ivy.constants"], [364, "module-ivy.functional.ivy.experimental.constants"]], "Statistical": [[643, "statistical"], [383, "statistical"], [66, "module-ivy.data_classes.array.statistical"], [89, "module-ivy.data_classes.container.statistical"]], "lars_update": [[618, "lars-update"]], "unset_show_func_wrapper_trace_mode": [[607, "unset-show-func-wrapper-trace-mode"]], "grad": [[614, "grad"]], "stop_gradient": [[620, "stop-gradient"]], "unset_inplace_mode": [[600, "unset-inplace-mode"]], "unset_nestable_mode": [[603, "unset-nestable-mode"]], "unset_min_base": [[601, "unset-min-base"]], "Linear algebra": [[633, "linear-algebra"], [372, "linear-algebra"], [58, "module-ivy.data_classes.array.linear_algebra"], [81, "module-ivy.data_classes.container.linear_algebra"]], "execute_with_gradients": [[613, "execute-with-gradients"]], "unset_array_mode": [[598, "unset-array-mode"]], "Set": [[641, "set"], [380, "module-ivy.functional.ivy.experimental.set"], [64, "module-ivy.data_classes.array.set"], [87, "module-ivy.data_classes.container.set"]], "unset_tmp_dir": [[608, "unset-tmp-dir"]], "Manipulation": [[635, "manipulation"], [374, "manipulation"], [60, "module-ivy.data_classes.array.manipulation"], [83, "module-ivy.data_classes.container.manipulation"]], "jac": [[616, "jac"]], "unset_queue_timeout": [[605, "unset-queue-timeout"]], "value_and_grad": [[621, "value-and-grad"]], "unset_exception_trace_mode": [[599, "unset-exception-trace-mode"]], "lamb_update": [[617, "lamb-update"]], "gradient_descent_update": [[615, "gradient-descent-update"]], "unset_shape_array_mode": [[606, "unset-shape-array-mode"]], "General": [[630, "general"], [369, "general"], [54, "module-ivy.data_classes.array.general"], [77, "module-ivy.data_classes.container.general"]], "optimizer_update": [[619, "optimizer-update"]], "Data type": [[626, "data-type"], [366, "module-ivy.functional.ivy.experimental.data_type"], [73, "module-ivy.data_classes.container.data_type"], [50, "module-ivy.data_classes.array.data_type"]], "Device": [[627, "device"], [367, "module-ivy.functional.ivy.experimental.device"], [51, "module-ivy.data_classes.array.device"], [74, "module-ivy.data_classes.container.device"]], "Experimental": [[629, "experimental"], [53, "module-ivy.data_classes.array.experimental"], [76, "module-ivy.data_classes.container.experimental"]], "Nest": [[637, "nest"], [376, "module-ivy.functional.ivy.experimental.nest"]], "Searching": [[640, "searching"], [379, "searching"], [86, "module-ivy.data_classes.container.searching"], [63, "module-ivy.data_classes.array.searching"]], "Control flow ops": [[624, "control-flow-ops"]], "adam_step": [[611, "adam-step"]], "Random": [[639, "random"], [378, "random"], [85, "module-ivy.data_classes.container.random"], [62, "module-ivy.data_classes.array.random"]], "batched_outer": [[421, "batched-outer"]], "log_poisson_loss": [[452, "log-poisson-loss"]], "l1_loss": [[451, "l1-loss"]], "initialize_tucker": [[430, "initialize-tucker"]], "kron": [[432, "kron"]], "adjoint": [[420, "adjoint"]], "solve_triangular": [[442, "solve-triangular"]], "multi_dot": [[439, "multi-dot"]], "as_strided": [[456, "as-strided"]], "dot": [[424, "dot"]], "soft_margin_loss": [[455, "soft-margin-loss"]], "smooth_l1_loss": [[454, "smooth-l1-loss"]], "kl_div": [[450, "kl-div"]], "lu_solve": [[435, "lu-solve"]], "truncated_svd": [[445, "truncated-svd"]], "matrix_exp": [[437, "matrix-exp"]], "mode_dot": [[438, "mode-dot"]], "kronecker": [[433, "kronecker"]], "higher_order_moment": [[429, "higher-order-moment"]], "eigh_tridiagonal": [[426, "eigh-tridiagonal"]], "associative_scan": [[457, "associative-scan"]], "lu_factor": [[434, "lu-factor"]], "rfftn": [[416, "rfftn"]], "eigvals": [[427, "eigvals"]], "general_inner_product": [[428, "general-inner-product"]], "multi_mode_dot": [[440, "multi-mode-dot"]], "partial_tucker": [[441, "partial-tucker"]], "tensor_train": [[444, "tensor-train"]], "cond": [[422, "cond"]], "atleast_1d": [[458, "atleast-1d"]], "svd_flip": [[443, "svd-flip"]], "reduce_window": [[414, "reduce-window"]], "make_svd_non_negative": [[436, "make-svd-non-negative"]], "hinge_embedding_loss": [[448, "hinge-embedding-loss"]], "sliding_window": [[418, "sliding-window"]], "huber_loss": [[449, "huber-loss"]], "atleast_2d": [[459, "atleast-2d"]], "tt_matrix_to_tensor": [[446, "tt-matrix-to-tensor"]], "rfft": [[415, "rfft"]], "diagflat": [[423, "diagflat"]], "tucker": [[447, "tucker"]], "poisson_nll_loss": [[453, "poisson-nll-loss"]], "khatri_rao": [[431, "khatri-rao"]], "rnn": [[417, "rnn"]], "stft": [[419, "stft"]], "unsorted_segment_mean": [[326, "unsorted-segment-mean"]], "sparsify_tensor": [[356, "sparsify-tensor"]], "erfinv": [[340, "erfinv"]], "modf": [[351, "modf"]], "fmax": [[343, "fmax"]], "vjp": [[362, "vjp"]], "digamma": [[338, "digamma"]], "jvp": [[361, "jvp"]], "count_nonzero": [[336, "count-nonzero"]], "fix": [[341, "fix"]], "amax": [[331, "amax"]], "hypot": [[346, "hypot"]], "random_tt": [[322, "random-tt"]], "zeta": [[358, "zeta"]], "bind_custom_gradient_function": [[360, "bind-custom-gradient-function"]], "binarizer": [[333, "binarizer"]], "sinc": [[355, "sinc"]], "xlogy": [[357, "xlogy"]], "signbit": [[354, "signbit"]], "erfc": [[339, "erfc"]], "float_power": [[342, "float-power"]], "diff": [[337, "diff"]], "nansum": [[352, "nansum"]], "allclose": [[330, "allclose"]], "frexp": [[344, "frexp"]], "gradient": [[345, "gradient"]], "lerp": [[349, "lerp"]], "nextafter": [[353, "nextafter"]], "reduce": [[359, "reduce"]], "conj": [[334, "conj"]], "trilu": [[325, "trilu"]], "unsorted_segment_min": [[327, "unsorted-segment-min"]], "vorbis_window": [[329, "vorbis-window"]], "tril_indices": [[324, "tril-indices"]], "lgamma": [[350, "lgamma"]], "isclose": [[347, "isclose"]], "copysign": [[335, "copysign"]], "unsorted_segment_sum": [[328, "unsorted-segment-sum"]], "random_tucker": [[323, "random-tucker"]], "amin": [[332, "amin"]], "ldexp": [[348, "ldexp"]], "avg_pool2d": [[391, "avg-pool2d"]], "fft2": [[400, "fft2"]], "avg_pool1d": [[390, "avg-pool1d"]], "interp": [[406, "interp"]], "ifftn": [[405, "ifftn"]], "embedding": [[398, "embedding"]], "ifft": [[404, "ifft"]], "adaptive_max_pool2d": [[387, "adaptive-max-pool2d"]], "avg_pool3d": [[392, "avg-pool3d"]], "nearest_interpolate": [[412, "nearest-interpolate"]], "adaptive_avg_pool2d": [[386, "adaptive-avg-pool2d"]], "get_interpolate_kernel": [[402, "get-interpolate-kernel"]], "dct": [[393, "dct"]], "interpolate": [[407, "interpolate"]], "adaptive_max_pool3d": [[388, "adaptive-max-pool3d"]], "Sparse array": [[382, "sparse-array"]], "adaptive_avg_pool1d": [[385, "adaptive-avg-pool1d"]], "dropout1d": [[395, "dropout1d"]], "dropout3d": [[397, "dropout3d"]], "generate_einsum_equation": [[401, "generate-einsum-equation"]], "max_unpool1d": [[411, "max-unpool1d"]], "max_pool1d": [[408, "max-pool1d"]], "area_interpolate": [[389, "area-interpolate"]], "pool": [[413, "pool"]], "max_pool3d": [[410, "max-pool3d"]], "idct": [[403, "idct"]], "max_pool2d": [[409, "max-pool2d"]], "fft": [[399, "fft"]], "dropout2d": [[396, "dropout2d"]], "dft": [[394, "dft"]], "logsigmoid": [[297, "logsigmoid"]], "silu": [[302, "silu"]], "kaiser_bessel_derived_window": [[313, "kaiser-bessel-derived-window"]], "sign": [[280, "sign"]], "tan": [[286, "tan"]], "hardsilu": [[294, "hardsilu"]], "blackman_window": [[308, "blackman-window"]], "tanhshrink": [[305, "tanhshrink"]], "trunc": [[289, "trunc"]], "remainder": [[278, "remainder"]], "logit": [[296, "logit"]], "ndindex": [[317, "ndindex"]], "ndenumerate": [[316, "ndenumerate"]], "relu6": [[299, "relu6"]], "hardtanh": [[295, "hardtanh"]], "prelu": [[298, "prelu"]], "trunc_divide": [[290, "trunc-divide"]], "square": [[284, "square"]], "hardshrink": [[293, "hardshrink"]], "round": [[279, "round"]], "random_tr": [[321, "random-tr"]], "indices": [[312, "indices"]], "thresholded_relu": [[307, "thresholded-relu"]], "elu": [[292, "elu"]], "sin": [[281, "sin"]], "real": [[276, "real"]], "stanh": [[304, "stanh"]], "celu": [[291, "celu"]], "eye_like": [[309, "eye-like"]], "mel_weight_matrix": [[315, "mel-weight-matrix"]], "polyval": [[318, "polyval"]], "softshrink": [[303, "softshrink"]], "subtract": [[285, "subtract"]], "random_cp": [[319, "random-cp"]], "reciprocal": [[277, "reciprocal"]], "tanh": [[287, "tanh"]], "selu": [[301, "selu"]], "hamming_window": [[310, "hamming-window"]], "hann_window": [[311, "hann-window"]], "random_parafac2": [[320, "random-parafac2"]], "sinh": [[282, "sinh"]], "sqrt": [[283, "sqrt"]], "trapz": [[288, "trapz"]], "kaiser_window": [[314, "kaiser-window"]], "threshold": [[306, "threshold"]], "scaled_tanh": [[300, "scaled-tanh"]], "unset_default_device": [[213, "unset-default-device"]], "function_unsupported_devices": [[196, "function-unsupported-devices"]], "used_mem_on_dev": [[215, "used-mem-on-dev"]], "num_gpus": [[201, "num-gpus"]], "default_device": [[192, "default-device"]], "bitwise_invert": [[227, "bitwise-invert"]], "set_soft_device_mode": [[206, "set-soft-device-mode"]], "function_supported_devices": [[195, "function-supported-devices"]], "tpu_is_available": [[212, "tpu-is-available"]], "bitwise_or": [[229, "bitwise-or"]], "atanh": [[225, "atanh"]], "set_split_factor": [[207, "set-split-factor"]], "dev_util": [[194, "dev-util"]], "set_default_device": [[205, "set-default-device"]], "asin": [[221, "asin"]], "acosh": [[218, "acosh"]], "unset_default_float_dtype": [[185, "unset-default-float-dtype"]], "valid_dtype": [[188, "valid-dtype"]], "to_device": [[210, "to-device"]], "num_ivy_arrays_on_dev": [[202, "num-ivy-arrays-on-dev"]], "unset_default_int_dtype": [[186, "unset-default-int-dtype"]], "num_cpu_cores": [[200, "num-cpu-cores"]], "clear_cached_mem_on_dev": [[191, "clear-cached-mem-on-dev"]], "as_ivy_dev": [[189, "as-ivy-dev"]], "get_all_ivy_arrays_on_dev": [[197, "get-all-ivy-arrays-on-dev"]], "split_func_call": [[209, "split-func-call"]], "unset_soft_device_mode": [[214, "unset-soft-device-mode"]], "unset_default_uint_dtype": [[187, "unset-default-uint-dtype"]], "handle_soft_device_variable": [[199, "handle-soft-device-variable"]], "print_all_ivy_arrays_on_dev": [[204, "print-all-ivy-arrays-on-dev"]], "abs": [[216, "abs"]], "bitwise_left_shift": [[228, "bitwise-left-shift"]], "percent_used_mem_on_dev": [[203, "percent-used-mem-on-dev"]], "unset_default_dtype": [[184, "unset-default-dtype"]], "bitwise_and": [[226, "bitwise-and"]], "acos": [[217, "acos"]], "as_native_dev": [[190, "as-native-dev"]], "angle": [[220, "angle"]], "dev": [[193, "dev"]], "gpu_is_available": [[198, "gpu-is-available"]], "atan": [[223, "atan"]], "total_mem_on_dev": [[211, "total-mem-on-dev"]], "split_factor": [[208, "split-factor"]], "asinh": [[222, "asinh"]], "add": [[219, "add"]], "atan2": [[224, "atan2"]], "nan_to_num": [[270, "nan-to-num"]], "fmin": [[244, "fmin"]], "fmod": [[245, "fmod"]], "less_equal": [[256, "less-equal"]], "bitwise_xor": [[231, "bitwise-xor"]], "deg2rad": [[235, "deg2rad"]], "greater": [[247, "greater"]], "gcd": [[246, "gcd"]], "isreal": [[253, "isreal"]], "erf": [[238, "erf"]], "exp": [[239, "exp"]], "equal": [[237, "equal"]], "rad2deg": [[275, "rad2deg"]], "floor_divide": [[243, "floor-divide"]], "not_equal": [[272, "not-equal"]], "logaddexp": [[261, "logaddexp"]], "minimum": [[268, "minimum"]], "logaddexp2": [[262, "logaddexp2"]], "greater_equal": [[248, "greater-equal"]], "isnan": [[252, "isnan"]], "positive": [[273, "positive"]], "cos": [[233, "cos"]], "exp2": [[240, "exp2"]], "floor": [[242, "floor"]], "logical_and": [[263, "logical-and"]], "bitwise_right_shift": [[230, "bitwise-right-shift"]], "logical_xor": [[266, "logical-xor"]], "maximum": [[267, "maximum"]], "expm1": [[241, "expm1"]], "isinf": [[251, "isinf"]], "less": [[255, "less"]], "log1p": [[259, "log1p"]], "logical_or": [[265, "logical-or"]], "pow": [[274, "pow"]], "isfinite": [[250, "isfinite"]], "logical_not": [[264, "logical-not"]], "log10": [[258, "log10"]], "divide": [[236, "divide"]], "log": [[257, "log"]], "ceil": [[232, "ceil"]], "multiply": [[269, "multiply"]], "lcm": [[254, "lcm"]], "cosh": [[234, "cosh"]], "log2": [[260, "log2"]], "imag": [[249, "imag"]], "negative": [[271, "negative"]], "Resnet 18": [[46, "Resnet-18"]], "Conversions": [[48, "module-ivy.data_classes.array.conversions"], [71, "module-ivy.data_classes.container.conversions"]], "Image": [[79, "module-ivy.data_classes.container.image"], [56, "module-ivy.data_classes.array.image"]], "Wrapping": [[91, "module-ivy.data_classes.container.wrapping"], [68, "module-ivy.data_classes.array.wrapping"]], "Transpiling a Tensorflow model to build on top": [[14, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Compilation of a Basic Function": [[40, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[40, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[40, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[40, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[40, "Function-compilation-\ud83d\udee0"]], "Set backend": [[40, "Set-backend"]], "Sample input": [[40, "Sample-input"]], "Define function to compile": [[40, "Define-function-to-compile"]], "Compile the function": [[40, "Compile-the-function"]], "Check results": [[40, "Check-results"], [40, "id1"]], "Compiling simple neural network \ud83e\udde0": [[40, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[40, "Define-Model"], [39, "Define-Model"]], "Create model": [[40, "Create-model"]], "Define input": [[40, "Define-input"]], "Compile network": [[40, "Compile-network"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[41, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[41, "Table-of-Contents"]], "Defining the model": [[41, "Defining-the-model"]], "Model construction": [[41, "Model-construction"]], "Some helper functions": [[41, "Some-helper-functions"]], "Transpiling the model": [[41, "Transpiling-the-model"]], "PyTorch pipeline": [[41, "PyTorch-pipeline"]], "Dataset download": [[41, "Dataset-download"]], "DataLoader": [[41, "DataLoader"]], "Training": [[41, "Training"]], "Accelerating PyTorch models with JAX": [[9, "Accelerating-PyTorch-models-with-JAX"]], "0.2: Transpile": [[31, "0.2:-Transpile"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Data Preparation": [[4, "Data-Preparation"], [5, "Data-Preparation"], [8, "Data-Preparation"], [3, "Data-Preparation"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "1.2: As a Decorator": [[34, "1.2:-As-a-Decorator"]], "Unify": [[34, "Unify"], [33, "Unify"], [23, "Unify"], [32, "Unify"], [22, "Unify"]], "Compile": [[34, "Compile"], [33, "Compile"], [32, "Compile"]], "Transpile": [[34, "Transpile"], [33, "Transpile"], [23, "Transpile"], [32, "Transpile"], [22, "Transpile"]], "End-to-End Training Pipeline in Ivy": [[43, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[43, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[43, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[43, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[43, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[43, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[43, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[43, "Plotting-the-training-metrics"]], "Save the trained Model": [[43, "Save-the-trained-Model"]], "Write a model using Ivy": [[26, "Write-a-model-using-Ivy"]], "Transpile any model": [[25, "Transpile-any-model"]], "Round up": [[25, "Round-up"]], "Guides": [[11, "guides"], [16, "guides"]], "Accelerating MMPreTrain models with JAX": [[7, "Accelerating-MMPreTrain-models-with-JAX"]], "Transpile any library": [[24, "Transpile-any-library"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [8, "Imports"], [10, "Imports"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [8, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [8, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "1.1: Framework Selection": [[33, "1.1:-Framework-Selection"]], "2.0: Kornia": [[36, "2.0:-Kornia"]], "Examples and Demos": [[2, "examples-and-demos"], [16, "examples-and-demos"]], "How to use decorators": [[23, "How-to-use-decorators"]], "Trace": [[23, "Trace"], [22, "Trace"]], "Unify code": [[19, "Unify-code"]], "1.3: Dynamic vs Static": [[35, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[35, "Dynamic"]], "Static": [[35, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[35, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Using Ivy ResNet": [[8, "Using-Ivy-ResNet"]], "Installation": [[8, "Installation"], [3, "Installation"]], "Prepare the set of labels": [[8, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[8, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[8, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[8, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [8, "id1"]], "Model Inference ResNet50": [[8, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[8, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "0.0: Unify": [[29, "0.0:-Unify"]], "Write Ivy code": [[18, "Write-Ivy-code"]], "Contents": [[18, "Contents"]], "Installing Ivy": [[18, "Installing-Ivy"]], "Importing Ivy": [[18, "Importing-Ivy"]], "Ivy Backend Handler": [[18, "Ivy-Backend-Handler"], [27, "Ivy-Backend-Handler"]], "Data Structures": [[18, "Data-Structures"], [27, "Data-Structures"]], "Ivy Functional API": [[18, "Ivy-Functional-API"], [27, "Ivy-Functional-API"]], "1.0: Lazy vs Eager": [[32, "1.0:-Lazy-vs-Eager"]], "Deepmind PerceiverIO on GPU": [[42, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[42, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[42, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[42, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[42, "Run-the-demo..."]], "\u2026with torch backend": [[42, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[42, "....with-tensorflow-backend"]], "\u2026with jax backend": [[42, "...with-jax-backend"]], "\u2026with numpy backend": [[42, "...with-numpy-backend"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Transpiling a haiku model to build on top": [[13, "Transpiling-a-haiku-model-to-build-on-top"]], "3.1: Stable Diffusion": [[38, "3.1:-Stable-Diffusion"]], "Tutorials And Examples": [[16, "tutorials-and-examples"]], "Learn the basics": [[16, "learn-the-basics"], [17, "learn-the-basics"]], "Transpile code": [[21, "Transpile-code"]], "Lazy vs Eager": [[22, "Lazy-vs-Eager"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "0.1: Compile": [[30, "0.1:-Compile"]], "Accelerating XGBoost with JAX": [[10, "Accelerating-XGBoost-with-JAX"]], "Tests": [[10, "Tests"]], "Loading the Data": [[10, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[10, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[10, "JAX-backend"]], "Tensorflow backend": [[10, "Tensorflow-backend"]], "PyTorch backend": [[10, "PyTorch-backend"]], "More exhaustive example": [[10, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[10, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[10, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[10, "Comparison-of-Metrics"]], "Ivy as a Transpiler Introduction": [[45, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[45, "To-use-the-transpiler:"]], "Transpiler Interface": [[45, "Transpiler-Interface"]], "Telemetry": [[45, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[45, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[45, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[45, "3.-Transpile-Models-\ud83c\udf10"]], "Basic Operations with Ivy": [[39, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[39, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[39, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[39, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[39, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[39, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[39, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[39, "Set-Backend-Framework"]], "Create Model": [[39, "Create-Model"]], "Create Optimizer": [[39, "Create-Optimizer"]], "Input and Target": [[39, "Input-and-Target"]], "Loss Function": [[39, "Loss-Function"]], "Training Loop": [[39, "Training-Loop"]], "3.0: Perceiver": [[37, "3.0:-Perceiver"]], "Developing a convolutional network using Ivy": [[15, "Developing-a-convolutional-network-using-Ivy"]], "HuggingFace Tensorflow DeiT": [[44, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[44, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Quickstart": [[28, "Quickstart"]], "Get familiar with Ivy": [[28, "Get-familiar-with-Ivy"]], "Functional API": [[28, "Functional-API"]], "Stateful API": [[28, "Stateful-API"]], "Tracing code": [[28, "Tracing-code"]], "Any function": [[28, "Any-function"], [27, "Any-function"]], "Any library": [[28, "Any-library"], [27, "Any-library"]], "Any model": [[28, "Any-model"], [27, "Any-model"]], "Trace code": [[20, "Trace-code"]], "Transpiling a PyTorch model to build on top": [[12, "Transpiling-a-PyTorch-model-to-build-on-top"]], "ODSC Ivy Demo": [[27, "ODSC-Ivy-Demo"]], "Graph Tracer": [[27, "Graph-Tracer"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[47, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[47, "module-ivy.data_classes.array.activations"], [48, "module-ivy.data_classes.array.conversions"], [49, "module-ivy.data_classes.array.creation"], [50, "module-ivy.data_classes.array.data_type"], [51, "module-ivy.data_classes.array.device"], [52, "module-ivy.data_classes.array.elementwise"], [53, "module-ivy.data_classes.array.experimental"], [53, "module-ivy.data_classes.array.experimental.activations"], [53, "module-ivy.data_classes.array.experimental.conversions"], [53, "module-ivy.data_classes.array.experimental.creation"], [53, "module-ivy.data_classes.array.experimental.data_type"], [53, "module-ivy.data_classes.array.experimental.device"], [53, "module-ivy.data_classes.array.experimental.elementwise"], [53, "module-ivy.data_classes.array.experimental.general"], [53, "module-ivy.data_classes.array.experimental.gradients"], [53, "module-ivy.data_classes.array.experimental.image"], [53, "module-ivy.data_classes.array.experimental.layers"], [53, "module-ivy.data_classes.array.experimental.linear_algebra"], [53, "module-ivy.data_classes.array.experimental.losses"], [53, "module-ivy.data_classes.array.experimental.manipulation"], [53, "module-ivy.data_classes.array.experimental.norms"], [53, "module-ivy.data_classes.array.experimental.random"], [53, "module-ivy.data_classes.array.experimental.searching"], [53, "module-ivy.data_classes.array.experimental.set"], [53, "module-ivy.data_classes.array.experimental.sorting"], [53, "module-ivy.data_classes.array.experimental.statistical"], [53, "module-ivy.data_classes.array.experimental.utility"], [54, "module-ivy.data_classes.array.general"], [55, "module-ivy.data_classes.array.gradients"], [56, "module-ivy.data_classes.array.image"], [57, "module-ivy.data_classes.array.layers"], [58, "module-ivy.data_classes.array.linear_algebra"], [59, "module-ivy.data_classes.array.losses"], [60, "module-ivy.data_classes.array.manipulation"], [61, "module-ivy.data_classes.array.norms"], [62, "module-ivy.data_classes.array.random"], [63, "module-ivy.data_classes.array.searching"], [64, "module-ivy.data_classes.array.set"], [65, "module-ivy.data_classes.array.sorting"], [66, "module-ivy.data_classes.array.statistical"], [67, "module-ivy.data_classes.array.utility"], [68, "module-ivy.data_classes.array.wrapping"], [69, "module-ivy.data_classes.container.activations"], [70, "module-ivy.data_classes.container.base"], [71, "module-ivy.data_classes.container.conversions"], [72, "module-ivy.data_classes.container.creation"], [73, "module-ivy.data_classes.container.data_type"], [74, "module-ivy.data_classes.container.device"], [75, "module-ivy.data_classes.container.elementwise"], [76, "module-ivy.data_classes.container.experimental"], [76, "module-ivy.data_classes.container.experimental.activations"], [76, "module-ivy.data_classes.container.experimental.conversions"], [76, "module-ivy.data_classes.container.experimental.creation"], [76, "module-ivy.data_classes.container.experimental.data_type"], [76, "module-ivy.data_classes.container.experimental.device"], [76, "module-ivy.data_classes.container.experimental.elementwise"], [76, "module-ivy.data_classes.container.experimental.general"], [76, "module-ivy.data_classes.container.experimental.gradients"], [76, "module-ivy.data_classes.container.experimental.image"], [76, "module-ivy.data_classes.container.experimental.layers"], [76, "module-ivy.data_classes.container.experimental.linear_algebra"], [76, "module-ivy.data_classes.container.experimental.losses"], [76, "module-ivy.data_classes.container.experimental.manipulation"], [76, "module-ivy.data_classes.container.experimental.norms"], [76, "module-ivy.data_classes.container.experimental.random"], [76, "module-ivy.data_classes.container.experimental.searching"], [76, "module-ivy.data_classes.container.experimental.set"], [76, "module-ivy.data_classes.container.experimental.sorting"], [76, "module-ivy.data_classes.container.experimental.statistical"], [76, "module-ivy.data_classes.container.experimental.utility"], [77, "module-ivy.data_classes.container.general"], [78, "module-ivy.data_classes.container.gradients"], [79, "module-ivy.data_classes.container.image"], [80, "module-ivy.data_classes.container.layers"], [81, "module-ivy.data_classes.container.linear_algebra"], [82, "module-ivy.data_classes.container.losses"], [83, "module-ivy.data_classes.container.manipulation"], [84, "module-ivy.data_classes.container.norms"], [85, "module-ivy.data_classes.container.random"], [86, "module-ivy.data_classes.container.searching"], [87, "module-ivy.data_classes.container.set"], [88, "module-ivy.data_classes.container.sorting"], [89, "module-ivy.data_classes.container.statistical"], [90, "module-ivy.data_classes.container.utility"], [91, "module-ivy.data_classes.container.wrapping"], [92, "module-ivy.data_classes.factorized_tensor.base"], [93, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [98, "module-ivy.data_classes.array.array"], [99, "module-ivy.data_classes.container.container"], [101, "module-ivy.data_classes.nested_array.nested_array"], [102, "module-ivy.data_classes.nested_array.base"], [103, "module-ivy.data_classes.nested_array.elementwise"], [363, "module-ivy.functional.ivy.experimental.activations"], [364, "module-ivy.functional.ivy.experimental.constants"], [365, "module-ivy.functional.ivy.experimental.creation"], [366, "module-ivy.functional.ivy.experimental.data_type"], [367, "module-ivy.functional.ivy.experimental.device"], [368, "module-ivy.functional.ivy.experimental.elementwise"], [369, "module-ivy.functional.ivy.experimental.general"], [370, "module-ivy.functional.ivy.experimental.gradients"], [371, "module-ivy.functional.ivy.experimental.layers"], [372, "module-ivy.functional.ivy.experimental.linear_algebra"], [373, "module-ivy.functional.ivy.experimental.losses"], [374, "module-ivy.functional.ivy.experimental.manipulation"], [375, "module-ivy.functional.ivy.experimental.meta"], [376, "module-ivy.functional.ivy.experimental.nest"], [377, "module-ivy.functional.ivy.experimental.norms"], [378, "module-ivy.functional.ivy.experimental.random"], [379, "module-ivy.functional.ivy.experimental.searching"], [380, "module-ivy.functional.ivy.experimental.set"], [381, "module-ivy.functional.ivy.experimental.sorting"], [382, "module-ivy.functional.ivy.experimental.sparse_array"], [383, "module-ivy.functional.ivy.experimental.statistical"], [384, "module-ivy.functional.ivy.experimental.utility"], [622, "module-ivy.functional.ivy.activations"], [623, "module-ivy.functional.ivy.constants"], [624, "module-ivy.functional.ivy.control_flow_ops"], [625, "module-ivy.functional.ivy.creation"], [626, "module-ivy.functional.ivy.data_type"], [627, "module-ivy.functional.ivy.device"], [628, "module-ivy.functional.ivy.elementwise"], [629, "module-ivy.functional.ivy.experimental"], [630, "module-ivy.functional.ivy.general"], [631, "module-ivy.functional.ivy.gradients"], [632, "module-ivy.functional.ivy.layers"], [633, "module-ivy.functional.ivy.linear_algebra"], [634, "module-ivy.functional.ivy.losses"], [635, "module-ivy.functional.ivy.manipulation"], [636, "module-ivy.functional.ivy.meta"], [637, "module-ivy.functional.ivy.nest"], [638, "module-ivy.functional.ivy.norms"], [639, "module-ivy.functional.ivy.random"], [640, "module-ivy.functional.ivy.searching"], [641, "module-ivy.functional.ivy.set"], [642, "module-ivy.functional.ivy.sorting"], [643, "module-ivy.functional.ivy.statistical"], [644, "module-ivy.functional.ivy.utility"], [767, "module-ivy_tests.test_ivy.helpers.assertions"], [768, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [769, "module-ivy_tests.test_ivy.helpers.function_testing"], [770, "module-ivy_tests.test_ivy.helpers.globals"], [771, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [776, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [778, "module-ivy_tests.test_ivy.helpers.structs"], [779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [780, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [784, "module-ivy.stateful.activations"], [785, "module-ivy.stateful.converters"], [786, "module-ivy.stateful.helpers"], [787, "module-ivy.stateful.initializers"], [788, "module-ivy.stateful.layers"], [789, "module-ivy.stateful.losses"], [790, "module-ivy.stateful.module"], [791, "module-ivy.stateful.norms"], [792, "module-ivy.stateful.optimizers"], [793, "module-ivy.stateful.sequential"], [794, "module-ivy.utils.assertions"], [795, "module-ivy.utils.backend"], [796, "module-ivy.utils.backend.ast_helpers"], [797, "module-ivy.utils.backend.handler"], [798, "module-ivy.utils.backend.sub_backend_handler"], [799, "module-ivy.utils.binaries"], [800, "module-ivy.utils.dynamic_import"], [801, "module-ivy.utils.einsum_parser"], [802, "module-ivy.utils.einsum_path_helpers"], [803, "module-ivy.utils.exceptions"], [804, "module-ivy.utils.inspection"], [805, "module-ivy.utils.logging"], [806, "module-ivy.utils.profiler"], [807, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[48, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[49, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[50, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[51, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[51, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[51, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[51, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[51, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[52, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[53, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[53, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[53, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[53, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[53, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[53, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[53, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[53, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[53, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[53, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[53, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[53, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[53, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[53, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[53, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[53, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[53, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[53, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[53, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[53, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[53, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[53, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[53, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[53, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[53, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[53, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[53, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[53, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[53, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[53, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[53, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[53, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[54, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[55, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[56, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[56, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[56, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[57, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[58, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[59, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[60, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[61, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[62, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[62, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[62, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[63, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[64, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[64, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[64, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[65, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[66, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[67, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[68, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[68, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[68, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[69, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[70, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[70, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[71, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[72, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[73, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[74, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[74, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[75, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[76, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[76, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[76, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[76, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[76, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[76, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[76, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[76, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[76, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[76, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[76, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[76, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[76, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[76, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[76, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[76, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[76, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[76, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[76, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[76, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[76, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[76, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[76, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[76, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[76, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[76, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[76, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[76, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[76, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[76, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[76, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[76, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[76, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[76, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[77, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[78, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[79, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[79, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[79, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[80, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[81, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[82, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[83, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[84, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[85, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[85, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[86, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[87, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[87, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[87, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[88, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[89, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[90, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[91, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[91, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[91, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[92, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[93, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[98, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[98, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[99, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[99, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[101, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[102, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[103, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[106, "ivy.gelu"], [622, "ivy.gelu"]], "gelu() (ivy.array method)": [[106, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[106, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[107, "ivy.hardswish"], [622, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[107, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[107, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[108, "ivy.leaky_relu"], [622, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[108, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[108, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[109, "ivy.log_softmax"], [622, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[109, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[109, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[110, "ivy.mish"], [622, "ivy.mish"]], "mish() (ivy.array method)": [[110, "ivy.Array.mish"]], "mish() (ivy.container method)": [[110, "ivy.Container.mish"]], "relu() (in module ivy)": [[111, "ivy.relu"], [622, "ivy.relu"]], "relu() (ivy.array method)": [[111, "ivy.Array.relu"]], "relu() (ivy.container method)": [[111, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[112, "ivy.sigmoid"], [622, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[112, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[112, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[113, "ivy.softmax"], [622, "ivy.softmax"]], "softmax() (ivy.array method)": [[113, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[113, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[114, "ivy.softplus"], [622, "ivy.softplus"]], "softplus() (ivy.array method)": [[114, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[114, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[115, "ivy.softsign"], [622, "ivy.softsign"]], "cmp_is() (in module ivy)": [[116, "ivy.cmp_is"], [624, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[117, "ivy.cmp_isnot"], [624, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[118, "ivy.for_loop"], [624, "ivy.for_loop"]], "if_else() (in module ivy)": [[119, "ivy.if_else"], [624, "ivy.if_else"]], "try_except() (in module ivy)": [[120, "ivy.try_except"], [624, "ivy.try_except"]], "while_loop() (in module ivy)": [[121, "ivy.while_loop"], [624, "ivy.while_loop"]], "arange() (in module ivy)": [[122, "ivy.arange"], [625, "ivy.arange"]], "array() (in module ivy)": [[123, "ivy.array"], [625, "ivy.array"]], "asarray() (in module ivy)": [[124, "ivy.asarray"], [625, "ivy.asarray"]], "asarray() (ivy.array method)": [[124, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[124, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[125, "ivy.copy_array"], [625, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[125, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[125, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[126, "ivy.empty"], [625, "ivy.empty"]], "empty_like() (in module ivy)": [[127, "ivy.empty_like"], [625, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[127, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[127, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[128, "ivy.eye"], [625, "ivy.eye"]], "from_dlpack() (in module ivy)": [[129, "ivy.from_dlpack"], [625, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[129, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[129, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[130, "ivy.frombuffer"], [625, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[130, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[131, "ivy.full"], [625, "ivy.full"]], "full_like() (in module ivy)": [[132, "ivy.full_like"], [625, "ivy.full_like"]], "full_like() (ivy.array method)": [[132, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[132, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[133, "ivy.linspace"], [625, "ivy.linspace"]], "linspace() (ivy.array method)": [[133, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[133, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[134, "ivy.logspace"], [625, "ivy.logspace"]], "logspace() (ivy.array method)": [[134, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[134, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[135, "ivy.meshgrid"], [625, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[135, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[135, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[136, "ivy.native_array"], [625, "ivy.native_array"]], "native_array() (ivy.array method)": [[136, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[136, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[137, "ivy.one_hot"], [625, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[137, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[137, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[138, "ivy.ones"], [625, "ivy.ones"]], "ones_like() (in module ivy)": [[139, "ivy.ones_like"], [625, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[139, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[139, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[140, "ivy.to_dlpack"], [625, "ivy.to_dlpack"]], "tril() (in module ivy)": [[141, "ivy.tril"], [625, "ivy.tril"]], "tril() (ivy.array method)": [[141, "ivy.Array.tril"]], "tril() (ivy.container method)": [[141, "ivy.Container.tril"]], "triu() (in module ivy)": [[142, "ivy.triu"], [625, "ivy.triu"]], "triu() (ivy.array method)": [[142, "ivy.Array.triu"]], "triu() (ivy.container method)": [[142, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[143, "ivy.triu_indices"], [625, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[143, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[144, "ivy.zeros"], [625, "ivy.zeros"]], "zeros_like() (in module ivy)": [[145, "ivy.zeros_like"], [625, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[145, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[145, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[146, "ivy.as_ivy_dtype"], [626, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[147, "ivy.as_native_dtype"], [626, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[148, "ivy.astype"], [626, "ivy.astype"]], "astype() (ivy.array method)": [[148, "ivy.Array.astype"]], "astype() (ivy.container method)": [[148, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[149, "ivy.broadcast_arrays"], [626, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[149, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[149, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[150, "ivy.broadcast_to"], [626, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[150, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[150, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[151, "ivy.can_cast"], [626, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[151, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[151, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[152, "ivy.check_float"], [626, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[153, "ivy.closest_valid_dtype"], [626, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[154, "ivy.default_complex_dtype"], [626, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[155, "ivy.default_dtype"], [626, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[156, "ivy.default_float_dtype"], [626, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[157, "ivy.default_int_dtype"], [626, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[158, "ivy.default_uint_dtype"], [626, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[159, "ivy.dtype"], [626, "ivy.dtype"]], "dtype() (ivy.array method)": [[159, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[159, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[160, "ivy.dtype_bits"], [626, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[161, "ivy.finfo"], [626, "ivy.finfo"]], "finfo() (ivy.array method)": [[161, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[161, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[162, "ivy.function_supported_dtypes"], [626, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[163, "ivy.function_unsupported_dtypes"], [626, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[164, "ivy.iinfo"], [626, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[164, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[164, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[165, "ivy.infer_default_dtype"], [626, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[166, "ivy.invalid_dtype"], [626, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[167, "ivy.is_bool_dtype"], [626, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[167, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[167, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[168, "ivy.is_complex_dtype"], [626, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[168, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[169, "ivy.is_float_dtype"], [626, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[169, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[169, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[170, "ivy.is_hashable_dtype"], [626, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[171, "ivy.is_int_dtype"], [626, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[171, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[171, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[172, "ivy.is_native_dtype"], [626, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[173, "ivy.is_uint_dtype"], [626, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[173, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[173, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[174, "ivy.promote_types"], [626, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[175, "ivy.promote_types_of_inputs"], [626, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[176, "ivy.result_type"], [626, "ivy.result_type"]], "result_type() (ivy.array method)": [[176, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[176, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[177, "ivy.set_default_complex_dtype"], [626, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[178, "ivy.set_default_dtype"], [626, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[179, "ivy.set_default_float_dtype"], [626, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[180, "ivy.set_default_int_dtype"], [626, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[181, "ivy.set_default_uint_dtype"], [626, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[182, "ivy.type_promote_arrays"], [626, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[183, "ivy.unset_default_complex_dtype"], [626, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[184, "ivy.unset_default_dtype"], [626, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[185, "ivy.unset_default_float_dtype"], [626, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[186, "ivy.unset_default_int_dtype"], [626, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[187, "ivy.unset_default_uint_dtype"], [626, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[188, "ivy.valid_dtype"], [626, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[189, "ivy.as_ivy_dev"], [627, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[190, "ivy.as_native_dev"], [627, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[191, "ivy.clear_cached_mem_on_dev"], [627, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[192, "ivy.default_device"], [627, "ivy.default_device"]], "dev() (in module ivy)": [[193, "ivy.dev"], [627, "ivy.dev"]], "dev() (ivy.array method)": [[193, "ivy.Array.dev"]], "dev() (ivy.container method)": [[193, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[194, "ivy.dev_util"], [627, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[195, "ivy.function_supported_devices"], [627, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[196, "ivy.function_unsupported_devices"], [627, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[197, "ivy.get_all_ivy_arrays_on_dev"], [627, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[198, "ivy.gpu_is_available"], [627, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[199, "ivy.handle_soft_device_variable"], [627, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[200, "ivy.num_cpu_cores"], [627, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[201, "ivy.num_gpus"], [627, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[202, "ivy.num_ivy_arrays_on_dev"], [627, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[203, "ivy.percent_used_mem_on_dev"], [627, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[204, "ivy.print_all_ivy_arrays_on_dev"], [627, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[205, "ivy.set_default_device"], [627, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[206, "ivy.set_soft_device_mode"], [627, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[207, "ivy.set_split_factor"], [627, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[208, "ivy.split_factor"], [627, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[209, "ivy.split_func_call"], [627, "ivy.split_func_call"]], "to_device() (in module ivy)": [[210, "ivy.to_device"], [627, "ivy.to_device"]], "to_device() (ivy.array method)": [[210, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[210, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[211, "ivy.total_mem_on_dev"], [627, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[212, "ivy.tpu_is_available"], [627, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[213, "ivy.unset_default_device"], [627, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[214, "ivy.unset_soft_device_mode"], [627, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[215, "ivy.used_mem_on_dev"], [627, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[216, "ivy.abs"], [628, "ivy.abs"]], "abs() (ivy.array method)": [[216, "ivy.Array.abs"]], "abs() (ivy.container method)": [[216, "ivy.Container.abs"]], "acos() (in module ivy)": [[217, "ivy.acos"], [628, "ivy.acos"]], "acos() (ivy.array method)": [[217, "ivy.Array.acos"]], "acos() (ivy.container method)": [[217, "ivy.Container.acos"]], "acosh() (in module ivy)": [[218, "ivy.acosh"], [628, "ivy.acosh"]], "acosh() (ivy.array method)": [[218, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[218, "ivy.Container.acosh"]], "add() (in module ivy)": [[219, "ivy.add"], [628, "ivy.add"]], "add() (ivy.array method)": [[219, "ivy.Array.add"]], "add() (ivy.container method)": [[219, "ivy.Container.add"]], "angle() (in module ivy)": [[220, "ivy.angle"], [628, "ivy.angle"]], "angle() (ivy.array method)": [[220, "ivy.Array.angle"]], "angle() (ivy.container method)": [[220, "ivy.Container.angle"]], "asin() (in module ivy)": [[221, "ivy.asin"], [628, "ivy.asin"]], "asin() (ivy.array method)": [[221, "ivy.Array.asin"]], "asin() (ivy.container method)": [[221, "ivy.Container.asin"]], "asinh() (in module ivy)": [[222, "ivy.asinh"], [628, "ivy.asinh"]], "asinh() (ivy.array method)": [[222, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[222, "ivy.Container.asinh"]], "atan() (in module ivy)": [[223, "ivy.atan"], [628, "ivy.atan"]], "atan() (ivy.array method)": [[223, "ivy.Array.atan"]], "atan() (ivy.container method)": [[223, "ivy.Container.atan"]], "atan2() (in module ivy)": [[224, "ivy.atan2"], [628, "ivy.atan2"]], "atan2() (ivy.array method)": [[224, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[224, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[225, "ivy.atanh"], [628, "ivy.atanh"]], "atanh() (ivy.array method)": [[225, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[225, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[226, "ivy.bitwise_and"], [628, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[226, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[226, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[227, "ivy.bitwise_invert"], [628, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[227, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[227, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[228, "ivy.bitwise_left_shift"], [628, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[228, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[228, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[229, "ivy.bitwise_or"], [628, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[229, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[229, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[230, "ivy.bitwise_right_shift"], [628, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[230, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[230, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[231, "ivy.bitwise_xor"], [628, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[231, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[231, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[232, "ivy.ceil"], [628, "ivy.ceil"]], "ceil() (ivy.array method)": [[232, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[232, "ivy.Container.ceil"]], "cos() (in module ivy)": [[233, "ivy.cos"], [628, "ivy.cos"]], "cos() (ivy.array method)": [[233, "ivy.Array.cos"]], "cos() (ivy.container method)": [[233, "ivy.Container.cos"]], "cosh() (in module ivy)": [[234, "ivy.cosh"], [628, "ivy.cosh"]], "cosh() (ivy.array method)": [[234, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[234, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[235, "ivy.deg2rad"], [628, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[235, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[235, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[236, "ivy.divide"], [628, "ivy.divide"]], "divide() (ivy.array method)": [[236, "ivy.Array.divide"]], "divide() (ivy.container method)": [[236, "ivy.Container.divide"]], "equal() (in module ivy)": [[237, "ivy.equal"], [628, "ivy.equal"]], "equal() (ivy.array method)": [[237, "ivy.Array.equal"]], "equal() (ivy.container method)": [[237, "ivy.Container.equal"]], "erf() (in module ivy)": [[238, "ivy.erf"], [628, "ivy.erf"]], "erf() (ivy.array method)": [[238, "ivy.Array.erf"]], "erf() (ivy.container method)": [[238, "ivy.Container.erf"]], "exp() (in module ivy)": [[239, "ivy.exp"], [628, "ivy.exp"]], "exp() (ivy.array method)": [[239, "ivy.Array.exp"]], "exp() (ivy.container method)": [[239, "ivy.Container.exp"]], "exp2() (in module ivy)": [[240, "ivy.exp2"], [628, "ivy.exp2"]], "exp2() (ivy.array method)": [[240, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[240, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[241, "ivy.expm1"], [628, "ivy.expm1"]], "expm1() (ivy.array method)": [[241, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[241, "ivy.Container.expm1"]], "floor() (in module ivy)": [[242, "ivy.floor"], [628, "ivy.floor"]], "floor() (ivy.array method)": [[242, "ivy.Array.floor"]], "floor() (ivy.container method)": [[242, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[243, "ivy.floor_divide"], [628, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[243, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[243, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[244, "ivy.fmin"], [628, "ivy.fmin"]], "fmin() (ivy.array method)": [[244, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[244, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[245, "ivy.fmod"], [628, "ivy.fmod"]], "fmod() (ivy.array method)": [[245, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[245, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[246, "ivy.gcd"], [628, "ivy.gcd"]], "gcd() (ivy.array method)": [[246, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[246, "ivy.Container.gcd"]], "greater() (in module ivy)": [[247, "ivy.greater"], [628, "ivy.greater"]], "greater() (ivy.array method)": [[247, "ivy.Array.greater"]], "greater() (ivy.container method)": [[247, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[248, "ivy.greater_equal"], [628, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[248, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[248, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[249, "ivy.imag"], [628, "ivy.imag"]], "imag() (ivy.array method)": [[249, "ivy.Array.imag"]], "imag() (ivy.container method)": [[249, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[250, "ivy.isfinite"], [628, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[250, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[250, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[251, "ivy.isinf"], [628, "ivy.isinf"]], "isinf() (ivy.array method)": [[251, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[251, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[252, "ivy.isnan"], [628, "ivy.isnan"]], "isnan() (ivy.array method)": [[252, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[252, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[253, "ivy.isreal"], [628, "ivy.isreal"]], "isreal() (ivy.array method)": [[253, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[253, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[254, "ivy.lcm"], [628, "ivy.lcm"]], "lcm() (ivy.array method)": [[254, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[254, "ivy.Container.lcm"]], "less() (in module ivy)": [[255, "ivy.less"], [628, "ivy.less"]], "less() (ivy.array method)": [[255, "ivy.Array.less"]], "less() (ivy.container method)": [[255, "ivy.Container.less"]], "less_equal() (in module ivy)": [[256, "ivy.less_equal"], [628, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[256, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[256, "ivy.Container.less_equal"]], "log() (in module ivy)": [[257, "ivy.log"], [628, "ivy.log"]], "log() (ivy.array method)": [[257, "ivy.Array.log"]], "log() (ivy.container method)": [[257, "ivy.Container.log"]], "log10() (in module ivy)": [[258, "ivy.log10"], [628, "ivy.log10"]], "log10() (ivy.array method)": [[258, "ivy.Array.log10"]], "log10() (ivy.container method)": [[258, "ivy.Container.log10"]], "log1p() (in module ivy)": [[259, "ivy.log1p"], [628, "ivy.log1p"]], "log1p() (ivy.array method)": [[259, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[259, "ivy.Container.log1p"]], "log2() (in module ivy)": [[260, "ivy.log2"], [628, "ivy.log2"]], "log2() (ivy.array method)": [[260, "ivy.Array.log2"]], "log2() (ivy.container method)": [[260, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[261, "ivy.logaddexp"], [628, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[261, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[261, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[262, "ivy.logaddexp2"], [628, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[262, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[262, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[263, "ivy.logical_and"], [628, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[263, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[263, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[264, "ivy.logical_not"], [628, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[264, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[264, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[265, "ivy.logical_or"], [628, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[265, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[265, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[266, "ivy.logical_xor"], [628, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[266, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[266, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[267, "ivy.maximum"], [628, "ivy.maximum"]], "maximum() (ivy.array method)": [[267, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[267, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[268, "ivy.minimum"], [628, "ivy.minimum"]], "minimum() (ivy.array method)": [[268, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[268, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[269, "ivy.multiply"], [628, "ivy.multiply"]], "multiply() (ivy.array method)": [[269, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[269, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[270, "ivy.nan_to_num"], [628, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[270, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[270, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[271, "ivy.negative"], [628, "ivy.negative"]], "negative() (ivy.array method)": [[271, "ivy.Array.negative"]], "negative() (ivy.container method)": [[271, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[272, "ivy.not_equal"], [628, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[272, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[272, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[273, "ivy.positive"], [628, "ivy.positive"]], "positive() (ivy.array method)": [[273, "ivy.Array.positive"]], "positive() (ivy.container method)": [[273, "ivy.Container.positive"]], "pow() (in module ivy)": [[274, "ivy.pow"], [628, "ivy.pow"]], "pow() (ivy.array method)": [[274, "ivy.Array.pow"]], "pow() (ivy.container method)": [[274, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[275, "ivy.rad2deg"], [628, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[275, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[275, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[276, "ivy.real"], [628, "ivy.real"]], "real() (ivy.array method)": [[276, "ivy.Array.real"]], "real() (ivy.container method)": [[276, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[277, "ivy.reciprocal"], [628, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[277, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[277, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[278, "ivy.remainder"], [628, "ivy.remainder"]], "remainder() (ivy.array method)": [[278, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[278, "ivy.Container.remainder"]], "round() (in module ivy)": [[279, "ivy.round"], [628, "ivy.round"]], "round() (ivy.array method)": [[279, "ivy.Array.round"]], "round() (ivy.container method)": [[279, "ivy.Container.round"]], "sign() (in module ivy)": [[280, "ivy.sign"], [628, "ivy.sign"]], "sign() (ivy.array method)": [[280, "ivy.Array.sign"]], "sign() (ivy.container method)": [[280, "ivy.Container.sign"]], "sin() (in module ivy)": [[281, "ivy.sin"], [628, "ivy.sin"]], "sin() (ivy.array method)": [[281, "ivy.Array.sin"]], "sin() (ivy.container method)": [[281, "ivy.Container.sin"]], "sinh() (in module ivy)": [[282, "ivy.sinh"], [628, "ivy.sinh"]], "sinh() (ivy.array method)": [[282, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[282, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[283, "ivy.sqrt"], [628, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[283, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[283, "ivy.Container.sqrt"]], "square() (in module ivy)": [[284, "ivy.square"], [628, "ivy.square"]], "square() (ivy.array method)": [[284, "ivy.Array.square"]], "square() (ivy.container method)": [[284, "ivy.Container.square"]], "subtract() (in module ivy)": [[285, "ivy.subtract"], [628, "ivy.subtract"]], "subtract() (ivy.array method)": [[285, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[285, "ivy.Container.subtract"]], "tan() (in module ivy)": [[286, "ivy.tan"], [628, "ivy.tan"]], "tan() (ivy.array method)": [[286, "ivy.Array.tan"]], "tan() (ivy.container method)": [[286, "ivy.Container.tan"]], "tanh() (in module ivy)": [[287, "ivy.tanh"], [628, "ivy.tanh"]], "tanh() (ivy.array method)": [[287, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[287, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[288, "ivy.trapz"], [628, "ivy.trapz"]], "trapz() (ivy.array method)": [[288, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[288, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[289, "ivy.trunc"], [628, "ivy.trunc"]], "trunc() (ivy.array method)": [[289, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[289, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[290, "ivy.trunc_divide"], [628, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[290, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[290, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[291, "ivy.celu"], [363, "ivy.celu"]], "celu() (ivy.array method)": [[291, "ivy.Array.celu"]], "celu() (ivy.container method)": [[291, "ivy.Container.celu"]], "elu() (in module ivy)": [[292, "ivy.elu"], [363, "ivy.elu"]], "elu() (ivy.array method)": [[292, "ivy.Array.elu"]], "elu() (ivy.container method)": [[292, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[293, "ivy.hardshrink"], [363, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[293, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[293, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[294, "ivy.hardsilu"], [363, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[294, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[294, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[295, "ivy.hardtanh"], [363, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[295, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[295, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[296, "ivy.logit"], [363, "ivy.logit"]], "logit() (ivy.array method)": [[296, "ivy.Array.logit"]], "logit() (ivy.container method)": [[296, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[297, "ivy.logsigmoid"], [363, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[297, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[297, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[298, "ivy.prelu"], [363, "ivy.prelu"]], "prelu() (ivy.array method)": [[298, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[298, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[299, "ivy.relu6"], [363, "ivy.relu6"]], "relu6() (ivy.array method)": [[299, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[299, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[300, "ivy.scaled_tanh"], [363, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[300, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[300, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[301, "ivy.selu"], [363, "ivy.selu"]], "selu() (ivy.array method)": [[301, "ivy.Array.selu"]], "selu() (ivy.container method)": [[301, "ivy.Container.selu"]], "silu() (in module ivy)": [[302, "ivy.silu"], [363, "ivy.silu"]], "silu() (ivy.array method)": [[302, "ivy.Array.silu"]], "silu() (ivy.container method)": [[302, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[303, "ivy.softshrink"], [363, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[303, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[303, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[304, "ivy.stanh"], [363, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[305, "ivy.tanhshrink"], [363, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[305, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[305, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[306, "ivy.threshold"], [363, "ivy.threshold"]], "threshold() (ivy.array method)": [[306, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[306, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[307, "ivy.thresholded_relu"], [363, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[307, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[307, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[308, "ivy.blackman_window"], [365, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[308, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[308, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[309, "ivy.eye_like"], [365, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[309, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[309, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[310, "ivy.hamming_window"], [365, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[310, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[311, "ivy.hann_window"], [365, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[311, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[312, "ivy.indices"], [365, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[313, "ivy.kaiser_bessel_derived_window"], [365, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[313, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[314, "ivy.kaiser_window"], [365, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[314, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[315, "ivy.mel_weight_matrix"], [365, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[315, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[315, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[316, "ivy.ndenumerate"], [365, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[317, "ivy.ndindex"], [365, "ivy.ndindex"]], "polyval() (in module ivy)": [[318, "ivy.polyval"], [365, "ivy.polyval"]], "polyval() (ivy.container method)": [[318, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[319, "ivy.random_cp"], [365, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[320, "ivy.random_parafac2"], [365, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[321, "ivy.random_tr"], [365, "ivy.random_tr"]], "random_tt() (in module ivy)": [[322, "ivy.random_tt"], [365, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[323, "ivy.random_tucker"], [365, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[324, "ivy.tril_indices"], [365, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[324, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[325, "ivy.trilu"], [365, "ivy.trilu"]], "trilu() (ivy.array method)": [[325, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[325, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[326, "ivy.unsorted_segment_mean"], [365, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[327, "ivy.unsorted_segment_min"], [365, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[327, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[327, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[328, "ivy.unsorted_segment_sum"], [365, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[328, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[328, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[329, "ivy.vorbis_window"], [365, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[329, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[330, "ivy.allclose"], [368, "ivy.allclose"]], "allclose() (ivy.array method)": [[330, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[330, "ivy.Container.allclose"]], "amax() (in module ivy)": [[331, "ivy.amax"], [368, "ivy.amax"]], "amax() (ivy.array method)": [[331, "ivy.Array.amax"]], "amax() (ivy.container method)": [[331, "ivy.Container.amax"]], "amin() (in module ivy)": [[332, "ivy.amin"], [368, "ivy.amin"]], "amin() (ivy.array method)": [[332, "ivy.Array.amin"]], "amin() (ivy.container method)": [[332, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[333, "ivy.binarizer"], [368, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[333, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[333, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[334, "ivy.conj"], [368, "ivy.conj"]], "conj() (ivy.array method)": [[334, "ivy.Array.conj"]], "conj() (ivy.container method)": [[334, "ivy.Container.conj"]], "copysign() (in module ivy)": [[335, "ivy.copysign"], [368, "ivy.copysign"]], "copysign() (ivy.array method)": [[335, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[335, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[336, "ivy.count_nonzero"], [368, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[336, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[336, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[337, "ivy.diff"], [368, "ivy.diff"]], "diff() (ivy.array method)": [[337, "ivy.Array.diff"]], "diff() (ivy.container method)": [[337, "ivy.Container.diff"]], "digamma() (in module ivy)": [[338, "ivy.digamma"], [368, "ivy.digamma"]], "digamma() (ivy.array method)": [[338, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[338, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[339, "ivy.erfc"], [368, "ivy.erfc"]], "erfc() (ivy.array method)": [[339, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[339, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[340, "ivy.erfinv"], [368, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[340, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[340, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[341, "ivy.fix"], [368, "ivy.fix"]], "fix() (ivy.array method)": [[341, "ivy.Array.fix"]], "fix() (ivy.container method)": [[341, "ivy.Container.fix"]], "float_power() (in module ivy)": [[342, "ivy.float_power"], [368, "ivy.float_power"]], "float_power() (ivy.array method)": [[342, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[342, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[343, "ivy.fmax"], [368, "ivy.fmax"]], "fmax() (ivy.array method)": [[343, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[343, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[344, "ivy.frexp"], [368, "ivy.frexp"]], "frexp() (ivy.array method)": [[344, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[344, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[345, "ivy.gradient"], [368, "ivy.gradient"]], "gradient() (ivy.array method)": [[345, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[345, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[346, "ivy.hypot"], [368, "ivy.hypot"]], "hypot() (ivy.array method)": [[346, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[346, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[347, "ivy.isclose"], [368, "ivy.isclose"]], "isclose() (ivy.array method)": [[347, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[347, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[348, "ivy.ldexp"], [368, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[348, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[348, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[349, "ivy.lerp"], [368, "ivy.lerp"]], "lerp() (ivy.array method)": [[349, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[349, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[350, "ivy.lgamma"], [368, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[350, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[350, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[351, "ivy.modf"], [368, "ivy.modf"]], "modf() (ivy.array method)": [[351, "ivy.Array.modf"]], "modf() (ivy.container method)": [[351, "ivy.Container.modf"]], "nansum() (in module ivy)": [[352, "ivy.nansum"], [368, "ivy.nansum"]], "nansum() (ivy.array method)": [[352, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[352, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[353, "ivy.nextafter"], [368, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[353, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[353, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[354, "ivy.signbit"], [368, "ivy.signbit"]], "signbit() (ivy.array method)": [[354, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[354, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[355, "ivy.sinc"], [368, "ivy.sinc"]], "sinc() (ivy.array method)": [[355, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[355, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[356, "ivy.sparsify_tensor"], [368, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[356, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[356, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[357, "ivy.xlogy"], [368, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[357, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[357, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[358, "ivy.zeta"], [368, "ivy.zeta"]], "zeta() (ivy.array method)": [[358, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[358, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[359, "ivy.reduce"], [369, "ivy.reduce"]], "reduce() (ivy.array method)": [[359, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[359, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[360, "ivy.bind_custom_gradient_function"], [370, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[361, "ivy.jvp"], [370, "ivy.jvp"]], "vjp() (in module ivy)": [[362, "ivy.vjp"], [370, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[363, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[364, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[365, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[366, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[367, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[368, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[369, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[370, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[371, "ivy.adaptive_avg_pool1d"], [385, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[371, "ivy.adaptive_avg_pool2d"], [386, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[371, "ivy.adaptive_max_pool2d"], [387, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[371, "ivy.adaptive_max_pool3d"], [388, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[371, "ivy.area_interpolate"], [389, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[371, "ivy.avg_pool1d"], [390, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[371, "ivy.avg_pool2d"], [391, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[371, "ivy.avg_pool3d"], [392, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[371, "ivy.dct"], [393, "ivy.dct"]], "dft() (in module ivy)": [[371, "ivy.dft"], [394, "ivy.dft"]], "dropout1d() (in module ivy)": [[371, "ivy.dropout1d"], [395, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[371, "ivy.dropout2d"], [396, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[371, "ivy.dropout3d"], [397, "ivy.dropout3d"]], "embedding() (in module ivy)": [[371, "ivy.embedding"], [398, "ivy.embedding"]], "fft() (in module ivy)": [[371, "ivy.fft"], [399, "ivy.fft"]], "fft2() (in module ivy)": [[371, "ivy.fft2"], [400, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[371, "ivy.generate_einsum_equation"], [401, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[371, "ivy.get_interpolate_kernel"], [402, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[371, "ivy.idct"], [403, "ivy.idct"]], "ifft() (in module ivy)": [[371, "ivy.ifft"], [404, "ivy.ifft"]], "ifftn() (in module ivy)": [[371, "ivy.ifftn"], [405, "ivy.ifftn"]], "interp() (in module ivy)": [[371, "ivy.interp"], [406, "ivy.interp"]], "interpolate() (in module ivy)": [[371, "ivy.interpolate"], [407, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[371, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[371, "ivy.max_pool1d"], [408, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[371, "ivy.max_pool2d"], [409, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[371, "ivy.max_pool3d"], [410, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[371, "ivy.max_unpool1d"], [411, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[371, "ivy.nearest_interpolate"], [412, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[371, "ivy.pool"], [413, "ivy.pool"]], "reduce_window() (in module ivy)": [[371, "ivy.reduce_window"], [414, "ivy.reduce_window"]], "rfft() (in module ivy)": [[371, "ivy.rfft"], [415, "ivy.rfft"]], "rfftn() (in module ivy)": [[371, "ivy.rfftn"], [416, "ivy.rfftn"]], "rnn() (in module ivy)": [[371, "ivy.rnn"], [417, "ivy.rnn"]], "sliding_window() (in module ivy)": [[371, "ivy.sliding_window"], [418, "ivy.sliding_window"]], "stft() (in module ivy)": [[371, "ivy.stft"], [419, "ivy.stft"]], "adjoint() (in module ivy)": [[372, "ivy.adjoint"], [420, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[372, "ivy.batched_outer"], [421, "ivy.batched_outer"]], "cond() (in module ivy)": [[372, "ivy.cond"], [422, "ivy.cond"]], "diagflat() (in module ivy)": [[372, "ivy.diagflat"], [423, "ivy.diagflat"]], "dot() (in module ivy)": [[372, "ivy.dot"], [424, "ivy.dot"]], "eig() (in module ivy)": [[372, "ivy.eig"], [425, "ivy.eig"], [633, "ivy.eig"], [668, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[372, "ivy.eigh_tridiagonal"], [426, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[372, "ivy.eigvals"], [427, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[372, "ivy.general_inner_product"], [428, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[372, "ivy.higher_order_moment"], [429, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[372, "ivy.initialize_tucker"], [430, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[372, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[372, "ivy.khatri_rao"], [431, "ivy.khatri_rao"]], "kron() (in module ivy)": [[372, "ivy.kron"], [432, "ivy.kron"]], "kronecker() (in module ivy)": [[372, "ivy.kronecker"], [433, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[372, "ivy.lu_factor"], [434, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[372, "ivy.lu_solve"], [435, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[372, "ivy.make_svd_non_negative"], [436, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[372, "ivy.matrix_exp"], [437, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[372, "ivy.mode_dot"], [438, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[372, "ivy.multi_dot"], [439, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[372, "ivy.multi_mode_dot"], [440, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[372, "ivy.partial_tucker"], [441, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[372, "ivy.solve_triangular"], [442, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[372, "ivy.svd_flip"], [443, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[372, "ivy.tensor_train"], [444, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[372, "ivy.truncated_svd"], [445, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[372, "ivy.tt_matrix_to_tensor"], [446, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[372, "ivy.tucker"], [447, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[373, "ivy.hinge_embedding_loss"], [448, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[373, "ivy.huber_loss"], [449, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[373, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[373, "ivy.kl_div"], [450, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[373, "ivy.l1_loss"], [451, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[373, "ivy.log_poisson_loss"], [452, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[373, "ivy.poisson_nll_loss"], [453, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[373, "ivy.smooth_l1_loss"], [454, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[373, "ivy.soft_margin_loss"], [455, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[374, "ivy.as_strided"], [456, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[374, "ivy.associative_scan"], [457, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[374, "ivy.atleast_1d"], [458, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[374, "ivy.atleast_2d"], [459, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[374, "ivy.atleast_3d"], [460, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[374, "ivy.broadcast_shapes"], [461, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[374, "ivy.check_scalar"], [462, "ivy.check_scalar"]], "choose() (in module ivy)": [[374, "ivy.choose"], [463, "ivy.choose"]], "column_stack() (in module ivy)": [[374, "ivy.column_stack"], [464, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[374, "ivy.concat_from_sequence"], [465, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[374, "ivy.dsplit"], [466, "ivy.dsplit"]], "dstack() (in module ivy)": [[374, "ivy.dstack"], [467, "ivy.dstack"]], "expand() (in module ivy)": [[374, "ivy.expand"], [468, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[374, "ivy.fill_diagonal"], [469, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[374, "ivy.flatten"], [470, "ivy.flatten"]], "fliplr() (in module ivy)": [[374, "ivy.fliplr"], [471, "ivy.fliplr"]], "flipud() (in module ivy)": [[374, "ivy.flipud"], [472, "ivy.flipud"]], "fold() (in module ivy)": [[374, "ivy.fold"], [473, "ivy.fold"]], "heaviside() (in module ivy)": [[374, "ivy.heaviside"], [474, "ivy.heaviside"]], "hsplit() (in module ivy)": [[374, "ivy.hsplit"], [475, "ivy.hsplit"]], "hstack() (in module ivy)": [[374, "ivy.hstack"], [476, "ivy.hstack"]], "i0() (in module ivy)": [[374, "ivy.i0"], [477, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[374, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[374, "ivy.matricize"], [478, "ivy.matricize"]], "moveaxis() (in module ivy)": [[374, "ivy.moveaxis"], [479, "ivy.moveaxis"]], "pad() (in module ivy)": [[374, "ivy.pad"], [480, "ivy.pad"]], "partial_fold() (in module ivy)": [[374, "ivy.partial_fold"], [481, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[374, "ivy.partial_tensor_to_vec"], [482, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[374, "ivy.partial_unfold"], [483, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[374, "ivy.partial_vec_to_tensor"], [484, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[374, "ivy.put_along_axis"], [485, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[374, "ivy.rot90"], [486, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[374, "ivy.soft_thresholding"], [487, "ivy.soft_thresholding"]], "take() (in module ivy)": [[374, "ivy.take"], [488, "ivy.take"]], "take_along_axis() (in module ivy)": [[374, "ivy.take_along_axis"], [489, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[374, "ivy.top_k"], [490, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[374, "ivy.trim_zeros"], [491, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[374, "ivy.unflatten"], [492, "ivy.unflatten"]], "unfold() (in module ivy)": [[374, "ivy.unfold"], [493, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[374, "ivy.unique_consecutive"], [494, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[374, "ivy.vsplit"], [495, "ivy.vsplit"]], "vstack() (in module ivy)": [[374, "ivy.vstack"], [496, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[375, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[376, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[377, "ivy.batch_norm"], [497, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[377, "ivy.group_norm"], [498, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[377, "ivy.instance_norm"], [499, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[377, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[377, "ivy.l1_normalize"], [500, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[377, "ivy.l2_normalize"], [501, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[377, "ivy.local_response_norm"], [502, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[377, "ivy.lp_normalize"], [503, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[378, "ivy.bernoulli"], [504, "ivy.bernoulli"]], "beta() (in module ivy)": [[378, "ivy.beta"], [505, "ivy.beta"]], "dirichlet() (in module ivy)": [[378, "ivy.dirichlet"], [506, "ivy.dirichlet"]], "gamma() (in module ivy)": [[378, "ivy.gamma"], [507, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[378, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[378, "ivy.poisson"], [508, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[379, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[379, "ivy.unravel_index"], [509, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[380, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[381, "ivy.invert_permutation"], [510, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[381, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[381, "ivy.lexsort"], [511, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[382, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[382, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[382, "ivy.is_ivy_sparse_array"], [512, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[382, "ivy.is_native_sparse_array"], [513, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[382, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[382, "ivy.native_sparse_array"], [514, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[382, "ivy.native_sparse_array_to_indices_values_and_shape"], [515, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[383, "ivy.bincount"], [516, "ivy.bincount"]], "corrcoef() (in module ivy)": [[383, "ivy.corrcoef"], [517, "ivy.corrcoef"]], "cov() (in module ivy)": [[383, "ivy.cov"], [518, "ivy.cov"]], "cummax() (in module ivy)": [[383, "ivy.cummax"], [519, "ivy.cummax"]], "cummin() (in module ivy)": [[383, "ivy.cummin"], [520, "ivy.cummin"]], "histogram() (in module ivy)": [[383, "ivy.histogram"], [521, "ivy.histogram"]], "igamma() (in module ivy)": [[383, "ivy.igamma"], [522, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[383, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[383, "ivy.median"], [523, "ivy.median"]], "nanmean() (in module ivy)": [[383, "ivy.nanmean"], [524, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[383, "ivy.nanmedian"], [525, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[383, "ivy.nanmin"], [526, "ivy.nanmin"]], "nanprod() (in module ivy)": [[383, "ivy.nanprod"], [527, "ivy.nanprod"]], "quantile() (in module ivy)": [[383, "ivy.quantile"], [528, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[384, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[384, "ivy.optional_get_element"], [529, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[385, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[385, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[386, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[386, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[387, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[387, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[388, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[388, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[390, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[390, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[391, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[391, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[392, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[392, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[393, "ivy.Array.dct"]], "dct() (ivy.container method)": [[393, "ivy.Container.dct"]], "dft() (ivy.array method)": [[394, "ivy.Array.dft"]], "dft() (ivy.container method)": [[394, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[395, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[395, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[396, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[396, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[397, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[397, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[398, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[398, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[399, "ivy.Array.fft"]], "fft() (ivy.container method)": [[399, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[400, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[403, "ivy.Array.idct"]], "idct() (ivy.container method)": [[403, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[404, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[404, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[405, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[405, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[407, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[407, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[408, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[408, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[409, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[409, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[410, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[410, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[411, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[411, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[414, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[414, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[415, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[415, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[416, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[416, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[418, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[418, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[419, "ivy.Array.stft"]], "stft() (ivy.container method)": [[419, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[420, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[420, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[421, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[421, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[422, "ivy.Array.cond"]], "cond() (ivy.container method)": [[422, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[423, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[423, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[424, "ivy.Array.dot"]], "dot() (ivy.container method)": [[424, "ivy.Container.dot"]], "eig() (ivy.array method)": [[425, "ivy.Array.eig"], [668, "ivy.Array.eig"]], "eig() (ivy.container method)": [[425, "ivy.Container.eig"], [668, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[426, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[426, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[427, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[427, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[428, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[428, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[429, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[429, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[430, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[430, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[432, "ivy.Array.kron"]], "kron() (ivy.container method)": [[432, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[436, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[436, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[437, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[437, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[438, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[438, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[439, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[439, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[440, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[440, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[441, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[441, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[443, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[443, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[444, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[444, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[445, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[445, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[446, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[446, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[447, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[447, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[448, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[448, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[449, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[449, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[450, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[450, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[451, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[451, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[452, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[452, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[453, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[453, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[454, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[454, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[455, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[455, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[456, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[456, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[457, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[457, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[458, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[458, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[459, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[459, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[460, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[460, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[461, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[464, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[464, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[465, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[465, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[466, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[466, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[467, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[467, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[468, "ivy.Array.expand"]], "expand() (ivy.container method)": [[468, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[469, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[469, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[470, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[470, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[471, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[471, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[472, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[472, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[473, "ivy.Array.fold"]], "fold() (ivy.container method)": [[473, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[474, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[474, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[475, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[475, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[476, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[476, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[477, "ivy.Array.i0"]], "i0() (ivy.container method)": [[477, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[478, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[478, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[479, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[479, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[480, "ivy.Array.pad"]], "pad() (ivy.container method)": [[480, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[481, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[481, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[482, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[482, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[483, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[483, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[484, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[484, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[485, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[485, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[486, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[486, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[487, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[487, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[488, "ivy.Array.take"]], "take() (ivy.container method)": [[488, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[489, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[489, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[490, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[490, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[491, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[491, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[492, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[492, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[493, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[493, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[494, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[494, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[495, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[495, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[496, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[496, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[497, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[497, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[498, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[498, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[499, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[499, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[500, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[500, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[501, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[501, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[503, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[503, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[504, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[504, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[505, "ivy.Array.beta"]], "beta() (ivy.container method)": [[505, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[506, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[506, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[507, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[507, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[508, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[508, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[509, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[509, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[510, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[511, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[511, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[516, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[516, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[517, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[517, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[518, "ivy.Array.cov"]], "cov() (ivy.container method)": [[518, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[519, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[519, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[520, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[520, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[521, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[521, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[522, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[522, "ivy.Container.igamma"]], "median() (ivy.array method)": [[523, "ivy.Array.median"]], "median() (ivy.container method)": [[523, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[524, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[524, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[525, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[525, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[526, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[526, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[527, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[527, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[528, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[528, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[529, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[529, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[530, "ivy.all_equal"], [630, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[530, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[530, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[531, "ivy.arg_info"], [630, "ivy.arg_info"]], "arg_names() (in module ivy)": [[532, "ivy.arg_names"], [630, "ivy.arg_names"]], "array_equal() (in module ivy)": [[533, "ivy.array_equal"], [630, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[533, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[533, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[534, "ivy.assert_supports_inplace"], [630, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[534, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[534, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[535, "ivy.cache_fn"], [630, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[536, "ivy.clip_matrix_norm"], [630, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[536, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[536, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[537, "ivy.clip_vector_norm"], [630, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[537, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[537, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[538, "ivy.container_types"], [630, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[539, "ivy.current_backend_str"], [630, "ivy.current_backend_str"]], "default() (in module ivy)": [[540, "ivy.default"], [630, "ivy.default"]], "default() (ivy.array method)": [[540, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[541, "ivy.einops_rearrange"], [630, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[541, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[541, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[542, "ivy.einops_reduce"], [630, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[542, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[542, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[543, "ivy.einops_repeat"], [630, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[543, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[543, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[544, "ivy.exists"], [630, "ivy.exists"]], "exists() (ivy.array method)": [[544, "ivy.Array.exists"]], "exists() (ivy.container method)": [[544, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[545, "ivy.fourier_encode"], [630, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[545, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[545, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[546, "ivy.function_supported_devices_and_dtypes"], [630, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[547, "ivy.function_unsupported_devices_and_dtypes"], [630, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[548, "ivy.gather"], [630, "ivy.gather"]], "gather() (ivy.array method)": [[548, "ivy.Array.gather"]], "gather() (ivy.container method)": [[548, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[549, "ivy.gather_nd"], [630, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[549, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[549, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[550, "ivy.get_all_arrays_in_memory"], [630, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[551, "ivy.get_item"], [630, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[552, "ivy.get_num_dims"], [630, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[552, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[552, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[553, "ivy.get_referrers_recursive"], [630, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[554, "ivy.has_nans"], [630, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[554, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[554, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[555, "ivy.inplace_arrays_supported"], [630, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[556, "ivy.inplace_decrement"], [630, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[556, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[556, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[557, "ivy.inplace_increment"], [630, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[557, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[557, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[558, "ivy.inplace_update"], [630, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[558, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[558, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[559, "ivy.inplace_variables_supported"], [630, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[560, "ivy.is_array"], [630, "ivy.is_array"]], "is_array() (ivy.array method)": [[560, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[560, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[561, "ivy.is_ivy_array"], [630, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[561, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[561, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[562, "ivy.is_ivy_container"], [630, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[562, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[563, "ivy.is_ivy_nested_array"], [630, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[564, "ivy.is_native_array"], [630, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[564, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[564, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[565, "ivy.isin"], [630, "ivy.isin"]], "isin() (ivy.array method)": [[565, "ivy.Array.isin"]], "isin() (ivy.container method)": [[565, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[566, "ivy.isscalar"], [630, "ivy.isscalar"]], "itemsize() (in module ivy)": [[567, "ivy.itemsize"], [630, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[567, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[567, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[568, "ivy.match_kwargs"], [630, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[569, "ivy.multiprocessing"], [630, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[570, "ivy.num_arrays_in_memory"], [630, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[571, "ivy.print_all_arrays_in_memory"], [630, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[572, "ivy.scatter_flat"], [630, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[572, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[572, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[573, "ivy.scatter_nd"], [630, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[573, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[573, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[574, "ivy.set_array_mode"], [630, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[575, "ivy.set_exception_trace_mode"], [630, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[576, "ivy.set_inplace_mode"], [630, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[577, "ivy.set_item"], [630, "ivy.set_item"]], "set_min_base() (in module ivy)": [[578, "ivy.set_min_base"], [630, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[579, "ivy.set_min_denominator"], [630, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[580, "ivy.set_nestable_mode"], [630, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[581, "ivy.set_precise_mode"], [630, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[582, "ivy.set_queue_timeout"], [630, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[583, "ivy.set_shape_array_mode"], [630, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[584, "ivy.set_show_func_wrapper_trace_mode"], [630, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[585, "ivy.set_tmp_dir"], [630, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[586, "ivy.shape"], [630, "ivy.shape"]], "shape() (ivy.array method)": [[586, "ivy.Array.shape"]], "size() (in module ivy)": [[587, "ivy.size"], [630, "ivy.size"]], "size() (ivy.array method)": [[587, "ivy.Array.size"]], "size() (ivy.container method)": [[587, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[588, "ivy.stable_divide"], [630, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[588, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[588, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[589, "ivy.stable_pow"], [630, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[589, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[589, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[590, "ivy.strides"], [630, "ivy.strides"]], "strides() (ivy.array method)": [[590, "ivy.Array.strides"]], "strides() (ivy.container method)": [[590, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[591, "ivy.supports_inplace_updates"], [630, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[591, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[591, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[592, "ivy.to_ivy_shape"], [630, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[593, "ivy.to_list"], [630, "ivy.to_list"]], "to_list() (ivy.array method)": [[593, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[593, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[594, "ivy.to_native_shape"], [630, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[595, "ivy.to_numpy"], [630, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[595, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[595, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[596, "ivy.to_scalar"], [630, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[596, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[596, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[597, "ivy.try_else_none"], [630, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[598, "ivy.unset_array_mode"], [630, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[599, "ivy.unset_exception_trace_mode"], [630, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[600, "ivy.unset_inplace_mode"], [630, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[601, "ivy.unset_min_base"], [630, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[602, "ivy.unset_min_denominator"], [630, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[603, "ivy.unset_nestable_mode"], [630, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[604, "ivy.unset_precise_mode"], [630, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[605, "ivy.unset_queue_timeout"], [630, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[606, "ivy.unset_shape_array_mode"], [630, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[607, "ivy.unset_show_func_wrapper_trace_mode"], [630, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[608, "ivy.unset_tmp_dir"], [630, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[609, "ivy.value_is_nan"], [630, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[609, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[609, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[610, "ivy.vmap"], [630, "ivy.vmap"]], "adam_step() (in module ivy)": [[611, "ivy.adam_step"], [631, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[611, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[611, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[612, "ivy.adam_update"], [631, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[612, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[612, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[613, "ivy.execute_with_gradients"], [631, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[614, "ivy.grad"], [631, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[615, "ivy.gradient_descent_update"], [631, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[615, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[615, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[616, "ivy.jac"], [631, "ivy.jac"]], "lamb_update() (in module ivy)": [[617, "ivy.lamb_update"], [631, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[617, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[617, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[618, "ivy.lars_update"], [631, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[618, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[618, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[619, "ivy.optimizer_update"], [631, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[619, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[619, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[620, "ivy.stop_gradient"], [631, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[620, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[620, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[621, "ivy.value_and_grad"], [631, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[622, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[623, "ivy.e"]], "inf (in module ivy)": [[623, "ivy.inf"]], "ivy.functional.ivy.constants": [[623, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[623, "ivy.nan"]], "newaxis (in module ivy)": [[623, "ivy.newaxis"]], "pi (in module ivy)": [[623, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[624, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[625, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[625, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[626, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[626, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[626, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[626, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[626, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[626, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[627, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[627, "ivy.Profiler"]], "ivy.functional.ivy.device": [[627, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[628, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[629, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[630, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[630, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[630, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[631, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[632, "ivy.conv"], [645, "ivy.conv"]], "conv1d() (in module ivy)": [[632, "ivy.conv1d"], [646, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[632, "ivy.conv1d_transpose"], [647, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[632, "ivy.conv2d"], [648, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[632, "ivy.conv2d_transpose"], [649, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[632, "ivy.conv3d"], [650, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[632, "ivy.conv3d_transpose"], [651, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[632, "ivy.conv_general_dilated"], [652, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[632, "ivy.conv_general_transpose"], [653, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[632, "ivy.depthwise_conv2d"], [654, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[632, "ivy.dropout"], [655, "ivy.dropout"]], "ivy.functional.ivy.layers": [[632, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[632, "ivy.linear"], [656, "ivy.linear"]], "lstm() (in module ivy)": [[632, "ivy.lstm"], [657, "ivy.lstm"]], "lstm_update() (in module ivy)": [[632, "ivy.lstm_update"], [658, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[632, "ivy.multi_head_attention"], [659, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[632, "ivy.nms"], [660, "ivy.nms"]], "roi_align() (in module ivy)": [[632, "ivy.roi_align"], [661, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[632, "ivy.scaled_dot_product_attention"], [662, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[633, "ivy.cholesky"], [663, "ivy.cholesky"]], "cross() (in module ivy)": [[633, "ivy.cross"], [664, "ivy.cross"]], "det() (in module ivy)": [[633, "ivy.det"], [665, "ivy.det"]], "diag() (in module ivy)": [[633, "ivy.diag"], [666, "ivy.diag"]], "diagonal() (in module ivy)": [[633, "ivy.diagonal"], [667, "ivy.diagonal"]], "eigh() (in module ivy)": [[633, "ivy.eigh"], [669, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[633, "ivy.eigvalsh"], [670, "ivy.eigvalsh"]], "inner() (in module ivy)": [[633, "ivy.inner"], [671, "ivy.inner"]], "inv() (in module ivy)": [[633, "ivy.inv"], [672, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[633, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[633, "ivy.matmul"], [673, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[633, "ivy.matrix_norm"], [674, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[633, "ivy.matrix_power"], [675, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[633, "ivy.matrix_rank"], [676, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[633, "ivy.matrix_transpose"], [677, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[633, "ivy.outer"], [678, "ivy.outer"]], "pinv() (in module ivy)": [[633, "ivy.pinv"], [679, "ivy.pinv"]], "qr() (in module ivy)": [[633, "ivy.qr"], [680, "ivy.qr"]], "slogdet() (in module ivy)": [[633, "ivy.slogdet"], [681, "ivy.slogdet"]], "solve() (in module ivy)": [[633, "ivy.solve"], [682, "ivy.solve"]], "svd() (in module ivy)": [[633, "ivy.svd"], [683, "ivy.svd"]], "svdvals() (in module ivy)": [[633, "ivy.svdvals"], [684, "ivy.svdvals"]], "tensordot() (in module ivy)": [[633, "ivy.tensordot"], [685, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[633, "ivy.tensorsolve"], [686, "ivy.tensorsolve"]], "trace() (in module ivy)": [[633, "ivy.trace"], [687, "ivy.trace"]], "vander() (in module ivy)": [[633, "ivy.vander"], [688, "ivy.vander"]], "vecdot() (in module ivy)": [[633, "ivy.vecdot"], [689, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[633, "ivy.vector_norm"], [690, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[633, "ivy.vector_to_skew_symmetric_matrix"], [691, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[634, "ivy.binary_cross_entropy"], [692, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[634, "ivy.cross_entropy"], [693, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[634, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[634, "ivy.sparse_cross_entropy"], [694, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[635, "ivy.clip"], [695, "ivy.clip"]], "concat() (in module ivy)": [[635, "ivy.concat"], [696, "ivy.concat"]], "constant_pad() (in module ivy)": [[635, "ivy.constant_pad"], [697, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[635, "ivy.expand_dims"], [698, "ivy.expand_dims"]], "flip() (in module ivy)": [[635, "ivy.flip"], [699, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[635, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[635, "ivy.permute_dims"], [700, "ivy.permute_dims"]], "repeat() (in module ivy)": [[635, "ivy.repeat"], [701, "ivy.repeat"]], "reshape() (in module ivy)": [[635, "ivy.reshape"], [702, "ivy.reshape"]], "roll() (in module ivy)": [[635, "ivy.roll"], [703, "ivy.roll"]], "split() (in module ivy)": [[635, "ivy.split"], [704, "ivy.split"]], "squeeze() (in module ivy)": [[635, "ivy.squeeze"], [705, "ivy.squeeze"]], "stack() (in module ivy)": [[635, "ivy.stack"], [706, "ivy.stack"]], "swapaxes() (in module ivy)": [[635, "ivy.swapaxes"], [707, "ivy.swapaxes"]], "tile() (in module ivy)": [[635, "ivy.tile"], [708, "ivy.tile"]], "unstack() (in module ivy)": [[635, "ivy.unstack"], [709, "ivy.unstack"]], "zero_pad() (in module ivy)": [[635, "ivy.zero_pad"], [710, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[636, "ivy.fomaml_step"], [711, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[636, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[636, "ivy.maml_step"], [712, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[636, "ivy.reptile_step"], [713, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[637, "ivy.all_nested_indices"], [714, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[637, "ivy.copy_nest"], [715, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[637, "ivy.duplicate_array_index_chains"], [716, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[637, "ivy.index_nest"], [717, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[637, "ivy.insert_into_nest_at_index"], [718, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[637, "ivy.insert_into_nest_at_indices"], [719, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[637, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[637, "ivy.map"], [720, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[637, "ivy.map_nest_at_index"], [721, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[637, "ivy.map_nest_at_indices"], [722, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[637, "ivy.multi_index_nest"], [723, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[637, "ivy.nested_any"], [724, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[637, "ivy.nested_argwhere"], [725, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[637, "ivy.nested_map"], [726, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[637, "ivy.nested_multi_map"], [727, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[637, "ivy.prune_empty"], [728, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[637, "ivy.prune_nest_at_index"], [729, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[637, "ivy.prune_nest_at_indices"], [730, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[637, "ivy.set_nest_at_index"], [731, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[637, "ivy.set_nest_at_indices"], [732, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[638, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[638, "ivy.layer_norm"], [733, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[639, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[639, "ivy.multinomial"], [734, "ivy.multinomial"]], "randint() (in module ivy)": [[639, "ivy.randint"], [735, "ivy.randint"]], "random_normal() (in module ivy)": [[639, "ivy.random_normal"], [736, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[639, "ivy.random_uniform"], [737, "ivy.random_uniform"]], "seed() (in module ivy)": [[639, "ivy.seed"], [738, "ivy.seed"]], "shuffle() (in module ivy)": [[639, "ivy.shuffle"], [739, "ivy.shuffle"]], "argmax() (in module ivy)": [[640, "ivy.argmax"], [740, "ivy.argmax"]], "argmin() (in module ivy)": [[640, "ivy.argmin"], [741, "ivy.argmin"]], "argwhere() (in module ivy)": [[640, "ivy.argwhere"], [742, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[640, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[640, "ivy.nonzero"], [743, "ivy.nonzero"]], "where() (in module ivy)": [[640, "ivy.where"], [744, "ivy.where"]], "ivy.functional.ivy.set": [[641, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[641, "ivy.unique_all"], [745, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[641, "ivy.unique_counts"], [746, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[641, "ivy.unique_inverse"], [747, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[641, "ivy.unique_values"], [748, "ivy.unique_values"]], "argsort() (in module ivy)": [[642, "ivy.argsort"], [749, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[642, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[642, "ivy.msort"], [750, "ivy.msort"]], "searchsorted() (in module ivy)": [[642, "ivy.searchsorted"], [751, "ivy.searchsorted"]], "sort() (in module ivy)": [[642, "ivy.sort"], [752, "ivy.sort"]], "cumprod() (in module ivy)": [[643, "ivy.cumprod"], [753, "ivy.cumprod"]], "cumsum() (in module ivy)": [[643, "ivy.cumsum"], [754, "ivy.cumsum"]], "einsum() (in module ivy)": [[643, "ivy.einsum"], [755, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[643, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[643, "ivy.max"], [756, "ivy.max"]], "mean() (in module ivy)": [[643, "ivy.mean"], [757, "ivy.mean"]], "min() (in module ivy)": [[643, "ivy.min"], [758, "ivy.min"]], "prod() (in module ivy)": [[643, "ivy.prod"], [759, "ivy.prod"]], "std() (in module ivy)": [[643, "ivy.std"], [760, "ivy.std"]], "sum() (in module ivy)": [[643, "ivy.sum"], [761, "ivy.sum"]], "var() (in module ivy)": [[643, "ivy.var"], [762, "ivy.var"]], "all() (in module ivy)": [[644, "ivy.all"], [763, "ivy.all"]], "any() (in module ivy)": [[644, "ivy.any"], [764, "ivy.any"]], "ivy.functional.ivy.utility": [[644, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[644, "ivy.load"], [765, "ivy.load"]], "save() (in module ivy)": [[644, "ivy.save"], [766, "ivy.save"]], "conv1d() (ivy.array method)": [[646, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[646, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[647, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[647, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[648, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[648, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[649, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[649, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[650, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[650, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[651, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[651, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[654, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[654, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[655, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[655, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[656, "ivy.Array.linear"]], "linear() (ivy.container method)": [[656, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[658, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[658, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[659, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[659, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[662, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[662, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[663, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[663, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[664, "ivy.Array.cross"]], "cross() (ivy.container method)": [[664, "ivy.Container.cross"]], "det() (ivy.array method)": [[665, "ivy.Array.det"]], "det() (ivy.container method)": [[665, "ivy.Container.det"]], "diag() (ivy.array method)": [[666, "ivy.Array.diag"]], "diag() (ivy.container method)": [[666, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[667, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[667, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[669, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[669, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[670, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[670, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[671, "ivy.Array.inner"]], "inner() (ivy.container method)": [[671, "ivy.Container.inner"]], "inv() (ivy.array method)": [[672, "ivy.Array.inv"]], "inv() (ivy.container method)": [[672, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[673, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[673, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[674, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[674, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[675, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[675, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[676, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[676, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[677, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[677, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[678, "ivy.Array.outer"]], "outer() (ivy.container method)": [[678, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[679, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[679, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[680, "ivy.Array.qr"]], "qr() (ivy.container method)": [[680, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[681, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[681, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[682, "ivy.Array.solve"]], "solve() (ivy.container method)": [[682, "ivy.Container.solve"]], "svd() (ivy.array method)": [[683, "ivy.Array.svd"]], "svd() (ivy.container method)": [[683, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[684, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[684, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[685, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[685, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[686, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[686, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[687, "ivy.Array.trace"]], "trace() (ivy.container method)": [[687, "ivy.Container.trace"]], "vander() (ivy.array method)": [[688, "ivy.Array.vander"]], "vander() (ivy.container method)": [[688, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[689, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[689, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[690, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[690, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[691, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[691, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[692, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[692, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[693, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[693, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[694, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[694, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[695, "ivy.Array.clip"]], "clip() (ivy.container method)": [[695, "ivy.Container.clip"]], "concat() (ivy.array method)": [[696, "ivy.Array.concat"]], "concat() (ivy.container method)": [[696, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[697, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[697, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[698, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[698, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[699, "ivy.Array.flip"]], "flip() (ivy.container method)": [[699, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[700, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[700, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[701, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[701, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[702, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[702, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[703, "ivy.Array.roll"]], "roll() (ivy.container method)": [[703, "ivy.Container.roll"]], "split() (ivy.array method)": [[704, "ivy.Array.split"]], "split() (ivy.container method)": [[704, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[705, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[705, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[706, "ivy.Array.stack"]], "stack() (ivy.container method)": [[706, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[707, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[707, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[708, "ivy.Array.tile"]], "tile() (ivy.container method)": [[708, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[709, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[709, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[710, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[710, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[733, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[733, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[734, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[734, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[735, "ivy.Array.randint"]], "randint() (ivy.container method)": [[735, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[736, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[736, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[737, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[737, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[739, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[739, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[740, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[740, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[741, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[741, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[742, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[742, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[743, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[743, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[744, "ivy.Array.where"]], "where() (ivy.container method)": [[744, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[745, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[745, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[746, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[746, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[747, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[747, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[748, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[748, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[749, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[749, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[750, "ivy.Array.msort"]], "msort() (ivy.container method)": [[750, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[751, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[751, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[752, "ivy.Array.sort"]], "sort() (ivy.container method)": [[752, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[753, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[753, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[754, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[754, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[755, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[755, "ivy.Container.einsum"]], "max() (ivy.array method)": [[756, "ivy.Array.max"]], "max() (ivy.container method)": [[756, "ivy.Container.max"]], "mean() (ivy.array method)": [[757, "ivy.Array.mean"]], "mean() (ivy.container method)": [[757, "ivy.Container.mean"]], "min() (ivy.array method)": [[758, "ivy.Array.min"]], "min() (ivy.container method)": [[758, "ivy.Container.min"]], "prod() (ivy.array method)": [[759, "ivy.Array.prod"]], "prod() (ivy.container method)": [[759, "ivy.Container.prod"]], "std() (ivy.array method)": [[760, "ivy.Array.std"]], "std() (ivy.container method)": [[760, "ivy.Container.std"]], "sum() (ivy.array method)": [[761, "ivy.Array.sum"]], "sum() (ivy.container method)": [[761, "ivy.Container.sum"]], "var() (ivy.array method)": [[762, "ivy.Array.var"]], "var() (ivy.container method)": [[762, "ivy.Container.var"]], "all() (ivy.array method)": [[763, "ivy.Array.all"]], "all() (ivy.container method)": [[763, "ivy.Container.all"]], "any() (ivy.array method)": [[764, "ivy.Array.any"]], "any() (ivy.container method)": [[764, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[767, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[768, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[769, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[770, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[770, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[770, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[771, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[776, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[776, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[776, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[778, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[780, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[784, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[784, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[784, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[784, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[784, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[784, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[784, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[784, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[784, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[784, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[784, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[784, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[784, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[784, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[784, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[784, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[784, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[784, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[784, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[785, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[785, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[785, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[785, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[786, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[786, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[787, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[787, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[787, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[787, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[787, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[787, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[787, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[787, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[787, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[787, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[787, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[787, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[787, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[787, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[787, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[788, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[788, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[788, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[788, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[788, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[788, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[788, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[788, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[788, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[788, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[788, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[788, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[788, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[788, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[788, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[788, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[788, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[788, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[788, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[788, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[788, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[788, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[788, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[788, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[788, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[788, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[789, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[789, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[789, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[789, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[790, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[790, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[790, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[790, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[791, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[791, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[791, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[791, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[791, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[792, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[792, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[792, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[792, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[792, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[792, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[792, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[792, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[792, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[792, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[792, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[792, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[792, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[792, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[793, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[793, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[793, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[794, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[795, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[796, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[796, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[797, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[797, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[798, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[799, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[799, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[799, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[800, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[800, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[801, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[802, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[803, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[803, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[803, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[803, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[803, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[803, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[803, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[803, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[803, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[803, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[803, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[803, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[803, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[803, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[803, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[803, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[803, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[803, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[803, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[803, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[803, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[803, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[803, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[803, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[803, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[803, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[804, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[804, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[804, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[805, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[805, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[805, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[806, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[806, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[806, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[806, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[806, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[807, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[807, "module-ivy.utils.verbosity"]], "automatic code conversions": [[853, "term-Automatic-Code-Conversions"]], "backend handler": [[853, "term-Backend-Handler"]], "compositional functions": [[853, "term-Compositional-Functions"]], "convenience functions": [[853, "term-Convenience-Functions"]], "framework": [[853, "term-Framework"]], "framework handler": [[853, "term-Framework-Handler"]], "graph compiler": [[853, "term-Graph-Compiler"]], "ivy array": [[853, "term-Ivy-Array"]], "ivy backends": [[853, "term-Ivy-Backends"]], "ivy compiler": [[853, "term-Ivy-Compiler"]], "ivy container": [[853, "term-Ivy-Container"]], "ivy frontends": [[853, "term-Ivy-Frontends"]], "ivy functional api": [[853, "term-Ivy-Functional-API"]], "ivy tracer": [[853, "term-Ivy-Tracer"]], "ivy transpiler": [[853, "term-Ivy-Transpiler"]], "mixed functions": [[853, "term-Mixed-Functions"]], "native array": [[853, "term-Native-Array"]], "nestable functions": [[853, "term-Nestable-Functions"]], "pipeline": [[853, "term-Pipeline"]], "primary functions": [[853, "term-Primary-Functions"]], "standalone functions": [[853, "term-Standalone-Functions"]], "submodule helper functions": [[853, "term-Submodule-Helper-Functions"]], "built-in function": [[859, "ivy.trace_graph"], [860, "ivy.transpile"], [861, "ivy.unify"]], "ivy.trace_graph()": [[859, "ivy.trace_graph"]], "ivy.transpile()": [[860, "ivy.transpile"]], "ivy.unify()": [[861, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/lstm_demo", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.size", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/contributor_rewards", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_program", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks", "overview/volunteer_ranks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/lstm_demo.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardsilu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfinv.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_factor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.lu_solve.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unflatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.size.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/contributor_rewards.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_program.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst", "overview/volunteer_ranks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "<no title>", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardsilu", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "erfinv", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "adaptive_max_pool3d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "lu_factor", "lu_solve", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unflatten", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "size", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Contributor Rewards", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Contributor Program", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks", "Contributor Leaderboard"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 42, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 161, 164, 167, 168, 169, 171, 175, 176, 190, 193, 203, 209, 210, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 378, 380, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 408, 409, 410, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 576, 582, 587, 588, 589, 590, 591, 593, 595, 596, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 716, 718, 720, 721, 726, 727, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 775, 784, 785, 787, 788, 790, 791, 792, 793, 802, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874], "repo": [0, 12, 41, 813, 816, 819, 822, 824, 825, 830, 838, 840, 855], "hold": [0, 53, 54, 58, 66, 76, 81, 89, 93, 94, 330, 347, 352, 368, 383, 466, 495, 519, 520, 525, 572, 573, 630, 633, 643, 674, 754, 770, 817, 848, 867], "all": [0, 1, 3, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 40, 41, 43, 44, 46, 48, 49, 53, 54, 57, 58, 60, 62, 67, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 85, 90, 91, 93, 94, 122, 130, 137, 141, 142, 143, 197, 204, 236, 240, 268, 269, 324, 325, 337, 356, 365, 368, 371, 372, 373, 374, 383, 405, 414, 416, 417, 418, 426, 431, 441, 442, 444, 447, 448, 469, 480, 488, 494, 524, 530, 533, 550, 570, 571, 588, 595, 596, 610, 613, 625, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 640, 644, 655, 658, 659, 664, 676, 681, 682, 685, 690, 699, 703, 705, 711, 712, 713, 714, 715, 716, 725, 726, 727, 728, 734, 737, 742, 767, 769, 772, 773, 774, 775, 787, 788, 794, 797, 802, 804, 806, 808, 809, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 862, 863, 864, 865, 866, 867, 869, 872, 873, 874], "jupyt": [0, 856, 868], "exampl": [0, 7, 9, 18, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 43, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 405, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 437, 439, 442, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 500, 501, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 569, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 780, 797, 801, 802, 806, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 836, 837, 841, 845, 847, 848, 849, 850, 851, 857, 863, 864, 867, 869, 872, 873], "tab": [0, 814, 815, 824, 830, 848], "ivi": [0, 1, 2, 6, 7, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 815, 818, 819, 821, 823, 825, 826, 828, 830, 831, 832, 833, 834, 836, 843, 844, 851, 853, 856, 857, 858, 862, 873, 874], "": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 42, 44, 45, 46, 49, 53, 54, 55, 58, 66, 76, 78, 81, 89, 118, 135, 141, 142, 162, 163, 192, 195, 196, 208, 243, 278, 325, 330, 331, 332, 334, 345, 347, 353, 357, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 386, 387, 394, 400, 405, 416, 424, 428, 436, 445, 450, 452, 453, 469, 471, 472, 480, 497, 498, 499, 508, 518, 528, 546, 547, 553, 567, 590, 591, 612, 614, 615, 616, 617, 619, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 637, 643, 647, 649, 651, 653, 659, 666, 674, 676, 683, 684, 690, 726, 760, 762, 773, 787, 788, 789, 790, 791, 792, 793, 797, 806, 808, 809, 810, 811, 812, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 853, 856, 857, 858, 859, 860, 861, 862, 865, 866, 867, 869, 870, 871, 872], "web": 0, "relev": [0, 49, 72, 134, 625, 792, 808, 814, 815, 816, 820, 823, 824, 825, 827, 830, 834, 835, 838, 839, 840, 848, 852, 856, 864, 871, 872], "link": [0, 18, 27, 28, 42, 808, 814, 815, 816, 822, 824, 825, 831, 837, 860, 862, 864], "list": [0, 4, 5, 7, 8, 10, 43, 48, 49, 50, 52, 53, 54, 57, 60, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 130, 132, 135, 136, 137, 139, 145, 149, 151, 164, 168, 169, 176, 192, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 337, 338, 341, 342, 345, 346, 347, 353, 354, 355, 357, 358, 359, 368, 371, 372, 374, 381, 390, 391, 392, 394, 395, 396, 397, 408, 409, 410, 411, 415, 417, 421, 426, 430, 433, 440, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 466, 475, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 510, 518, 519, 520, 521, 530, 532, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 550, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 594, 595, 596, 597, 609, 610, 615, 620, 625, 626, 627, 628, 630, 632, 633, 635, 637, 638, 641, 642, 646, 647, 648, 649, 650, 651, 654, 655, 656, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 685, 687, 692, 693, 694, 695, 696, 699, 702, 703, 704, 705, 706, 709, 710, 714, 715, 716, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 753, 754, 757, 759, 760, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 788, 794, 801, 802, 806, 811, 813, 814, 815, 817, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 845, 848, 849, 850, 851, 859, 866, 867, 872, 874], "open": [0, 3, 5, 7, 8, 9, 24, 27, 28, 41, 42, 43, 44, 54, 62, 85, 122, 625, 639, 735, 737, 808, 809, 810, 811, 815, 816, 817, 822, 825, 828, 830, 837, 838, 843, 852, 855, 856, 857, 859, 860, 864, 865, 866, 868, 869], "task": [0, 6, 44, 636, 711, 712, 713, 808, 809, 811, 815, 816, 817, 837, 838, 866, 872, 873], "avil": 0, "discuss": [0, 814, 816, 822, 825, 826, 836, 837, 839, 840, 843, 846, 847, 848, 851, 857, 862, 867], "suggest": [0, 814, 815, 816, 822, 825, 831, 835, 837, 840, 841, 842, 852], "new": [0, 6, 7, 9, 11, 12, 14, 16, 19, 22, 23, 24, 25, 27, 28, 29, 43, 45, 48, 53, 54, 55, 60, 61, 70, 72, 76, 77, 78, 81, 83, 84, 126, 129, 131, 132, 137, 138, 139, 144, 145, 182, 205, 225, 271, 273, 277, 330, 335, 347, 352, 368, 371, 374, 383, 407, 456, 464, 465, 479, 485, 492, 525, 541, 542, 543, 545, 548, 549, 551, 572, 573, 576, 578, 585, 588, 589, 595, 612, 615, 617, 618, 619, 625, 626, 627, 628, 630, 631, 632, 635, 637, 638, 659, 671, 678, 698, 702, 706, 719, 731, 732, 733, 785, 788, 791, 792, 797, 802, 808, 809, 811, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 827, 828, 830, 831, 834, 836, 837, 838, 839, 840, 841, 843, 844, 847, 850, 852, 853, 855, 856, 857, 859, 864, 868, 872, 873], "should": [0, 4, 6, 9, 10, 19, 22, 23, 24, 25, 44, 47, 49, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 69, 70, 72, 75, 76, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 93, 96, 98, 99, 109, 113, 121, 135, 137, 141, 142, 150, 175, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 298, 309, 325, 331, 332, 344, 348, 349, 350, 351, 355, 360, 361, 362, 363, 365, 368, 370, 371, 372, 373, 374, 378, 383, 386, 395, 396, 397, 399, 404, 415, 430, 441, 447, 454, 479, 480, 504, 505, 518, 519, 520, 535, 553, 558, 610, 612, 615, 617, 618, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 652, 653, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 685, 687, 689, 690, 702, 718, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 753, 754, 755, 756, 757, 758, 759, 761, 762, 769, 770, 772, 774, 784, 785, 787, 788, 790, 791, 792, 793, 801, 802, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 854, 856, 860, 862, 863, 866, 868, 873], "comprehens": [0, 16, 816, 819, 839], "possibl": [0, 3, 33, 49, 53, 72, 76, 83, 93, 124, 243, 286, 308, 331, 332, 365, 368, 371, 373, 374, 394, 449, 458, 459, 460, 466, 468, 470, 471, 472, 479, 495, 568, 628, 630, 632, 643, 655, 698, 699, 700, 702, 704, 705, 707, 709, 756, 758, 772, 788, 802, 805, 808, 809, 812, 814, 815, 816, 819, 822, 823, 825, 827, 828, 830, 831, 833, 835, 836, 837, 838, 840, 843, 845, 848, 851, 856, 864, 866, 872], "us": [0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 85, 86, 91, 93, 94, 96, 99, 106, 134, 137, 148, 160, 162, 163, 174, 175, 195, 196, 198, 203, 207, 208, 209, 210, 212, 215, 221, 229, 257, 258, 260, 261, 263, 264, 265, 267, 268, 270, 279, 283, 288, 308, 310, 311, 313, 314, 315, 323, 345, 348, 349, 352, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 394, 395, 396, 397, 398, 400, 405, 407, 408, 409, 410, 413, 415, 416, 417, 419, 424, 426, 430, 436, 438, 440, 441, 443, 444, 445, 447, 448, 453, 470, 474, 478, 480, 488, 492, 497, 499, 503, 504, 505, 506, 507, 508, 509, 510, 511, 518, 525, 528, 546, 547, 556, 557, 568, 569, 576, 578, 579, 581, 588, 589, 601, 602, 604, 611, 612, 617, 618, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 643, 656, 657, 659, 662, 667, 669, 676, 680, 684, 687, 690, 692, 701, 702, 703, 707, 711, 712, 713, 714, 716, 717, 723, 724, 725, 727, 734, 735, 736, 737, 739, 740, 741, 742, 745, 747, 755, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 797, 801, 802, 806, 809, 811, 813, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 840, 841, 842, 843, 844, 845, 846, 847, 849, 850, 851, 853, 857, 861, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873], "easi": [0, 27, 28, 41, 815, 816, 820, 821, 823, 833, 835, 838, 840, 843, 856, 864, 866, 872, 873], "follow": [0, 6, 10, 21, 22, 23, 25, 27, 28, 31, 32, 33, 39, 42, 43, 53, 54, 55, 57, 58, 64, 70, 76, 77, 78, 80, 81, 130, 161, 164, 209, 219, 236, 243, 269, 271, 278, 279, 315, 365, 371, 373, 374, 377, 394, 407, 415, 453, 468, 480, 497, 499, 556, 557, 558, 588, 589, 612, 615, 617, 618, 619, 625, 626, 627, 628, 630, 631, 632, 633, 637, 641, 659, 662, 674, 680, 690, 720, 726, 745, 746, 747, 748, 788, 792, 808, 810, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 859, 863, 866, 869], "attract": 0, "visual": [0, 10, 45, 806, 808, 815, 830, 837, 840, 851, 866, 868, 871], "graph": [0, 3, 5, 8, 10, 16, 17, 20, 22, 24, 25, 28, 34, 35, 40, 45, 46, 64, 641, 745, 746, 747, 748, 780, 808, 823, 833, 837, 839, 843, 845, 850, 851, 853, 857, 858, 859, 860, 861, 862, 866, 869], "nice": [0, 840, 857, 866], "format": [0, 24, 25, 27, 28, 39, 41, 42, 43, 51, 54, 57, 66, 69, 70, 71, 74, 80, 96, 114, 159, 193, 371, 372, 382, 413, 446, 514, 541, 622, 626, 627, 630, 632, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 657, 755, 765, 766, 767, 784, 808, 815, 816, 818, 824, 825, 826, 827, 828, 829, 837, 839, 848, 860, 862, 864, 866, 867], "result": [0, 3, 5, 6, 7, 8, 9, 10, 12, 14, 22, 23, 24, 25, 27, 28, 39, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 175, 176, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 428, 429, 431, 432, 436, 437, 438, 439, 440, 442, 446, 449, 450, 451, 452, 454, 455, 457, 464, 465, 468, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 536, 537, 541, 542, 543, 548, 549, 553, 558, 565, 572, 573, 611, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 717, 720, 721, 723, 727, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 774, 780, 794, 802, 806, 808, 812, 814, 816, 819, 820, 822, 823, 824, 825, 827, 828, 830, 832, 833, 835, 836, 837, 838, 840, 841, 845, 848, 851, 859, 860, 861, 867, 869], "etc": [0, 30, 35, 42, 49, 53, 62, 64, 68, 72, 76, 85, 91, 125, 133, 134, 137, 371, 378, 400, 405, 416, 504, 505, 507, 508, 625, 639, 641, 734, 735, 736, 737, 745, 746, 747, 748, 772, 775, 787, 788, 789, 790, 791, 792, 793, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 827, 829, 832, 837, 838, 840, 841, 845, 847, 848, 851, 853, 857, 859, 864, 866, 872], "gener": [0, 5, 16, 20, 25, 27, 28, 30, 33, 41, 43, 45, 46, 49, 52, 53, 57, 62, 68, 72, 75, 76, 80, 85, 91, 94, 122, 133, 134, 143, 151, 236, 239, 249, 250, 265, 269, 278, 308, 311, 315, 316, 317, 319, 320, 321, 322, 323, 324, 331, 332, 365, 368, 371, 372, 374, 378, 383, 415, 421, 443, 488, 506, 518, 625, 626, 628, 632, 633, 635, 639, 643, 655, 681, 682, 685, 688, 710, 734, 735, 737, 738, 760, 772, 775, 780, 792, 801, 814, 815, 816, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 833, 836, 837, 838, 841, 844, 845, 847, 849, 850, 851, 853, 864, 865, 866, 867, 868, 869, 870, 871, 872], "tone": [0, 4], "feel": [0, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 852, 859], "free": [0, 5, 41, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 810, 812, 813, 814, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 852, 859, 867, 869], "includ": [0, 10, 16, 20, 30, 35, 49, 52, 53, 54, 58, 63, 66, 67, 70, 72, 75, 76, 77, 81, 86, 89, 90, 122, 123, 124, 133, 134, 136, 143, 216, 240, 244, 245, 246, 249, 251, 254, 262, 270, 283, 288, 310, 313, 314, 315, 318, 324, 327, 329, 331, 332, 336, 337, 338, 341, 342, 343, 344, 346, 348, 349, 351, 352, 353, 354, 357, 358, 365, 368, 371, 374, 383, 390, 391, 392, 422, 425, 427, 471, 472, 474, 477, 479, 481, 484, 506, 508, 509, 517, 521, 523, 524, 526, 527, 528, 554, 609, 625, 628, 630, 632, 633, 637, 639, 640, 643, 644, 657, 668, 688, 690, 714, 737, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 775, 787, 788, 791, 804, 806, 808, 814, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 856, 859, 860, 863, 864, 866, 868, 871, 872, 873], "emoji": [0, 814], "don": [0, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 41, 43, 68, 91, 808, 814, 815, 816, 824, 825, 826, 831, 835, 840, 843, 849, 851, 852, 857, 859], "t": [0, 4, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 39, 41, 42, 43, 53, 57, 68, 76, 80, 91, 93, 94, 98, 345, 360, 368, 370, 372, 426, 558, 576, 591, 613, 630, 631, 632, 637, 656, 658, 722, 767, 788, 808, 810, 811, 814, 815, 816, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 833, 834, 835, 836, 840, 841, 843, 845, 847, 848, 849, 850, 851, 852, 856, 857, 859, 860, 861, 864, 866, 868], "keep": [0, 1, 12, 14, 18, 24, 25, 27, 53, 60, 70, 76, 83, 93, 96, 356, 372, 447, 635, 709, 813, 814, 815, 816, 819, 822, 823, 824, 829, 836, 837, 840, 841, 843, 848, 850, 852, 860], "thing": [0, 25, 39, 41, 801, 813, 814, 815, 816, 821, 837, 840, 843, 847, 848, 855, 856, 857, 866], "super": [0, 3, 5, 12, 14, 27, 28, 41, 53, 76, 372, 426, 808, 829, 845, 848, 849, 850, 860], "seriou": 0, "given": [0, 3, 18, 27, 40, 53, 54, 59, 60, 62, 70, 76, 77, 78, 82, 83, 85, 93, 94, 96, 98, 99, 122, 126, 133, 134, 154, 155, 156, 157, 158, 170, 175, 194, 203, 207, 208, 209, 211, 215, 288, 318, 327, 330, 336, 337, 345, 346, 347, 349, 352, 365, 368, 371, 372, 373, 374, 377, 378, 383, 390, 391, 392, 393, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 416, 426, 431, 446, 450, 451, 452, 454, 455, 456, 457, 467, 468, 469, 476, 478, 490, 496, 500, 501, 502, 503, 504, 505, 506, 507, 508, 518, 519, 520, 521, 527, 549, 553, 572, 573, 583, 611, 612, 615, 617, 618, 619, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 691, 692, 693, 694, 695, 698, 699, 700, 701, 703, 704, 708, 709, 721, 722, 731, 732, 735, 736, 737, 739, 751, 752, 753, 754, 767, 772, 773, 774, 775, 780, 784, 785, 787, 788, 790, 791, 792, 793, 794, 801, 802, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 846, 847, 849, 856, 857, 863, 868, 869, 872, 873], "an": [0, 2, 3, 6, 9, 10, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 33, 39, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 161, 164, 167, 171, 175, 176, 206, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 312, 313, 314, 316, 317, 324, 325, 326, 327, 328, 329, 331, 332, 334, 337, 341, 346, 350, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 403, 405, 407, 408, 409, 410, 413, 414, 415, 416, 417, 418, 419, 420, 422, 425, 426, 427, 452, 453, 457, 458, 459, 460, 464, 465, 466, 468, 475, 479, 480, 486, 488, 492, 494, 495, 497, 498, 499, 502, 504, 505, 507, 510, 511, 516, 517, 518, 519, 520, 521, 522, 525, 526, 529, 534, 536, 537, 545, 548, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 567, 573, 576, 577, 586, 587, 591, 595, 596, 597, 610, 613, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 720, 733, 735, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 775, 777, 780, 784, 785, 787, 788, 790, 791, 792, 793, 802, 806, 808, 810, 811, 812, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 869, 870, 872, 873], "intern": [0, 10, 70, 101, 102, 103, 637, 714, 724, 725, 787, 788, 789, 790, 791, 793, 817, 820, 823, 826, 828, 836, 838, 840, 842], "releas": [0, 42, 814, 815, 825, 841, 843, 851, 857, 866, 872], "tracer": [0, 3, 5, 6, 8, 9, 19, 22, 23, 24, 25, 28, 44, 46, 808, 837, 844, 846, 851, 853, 860, 861, 862], "i": [0, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 176, 188, 190, 192, 193, 195, 196, 198, 200, 203, 208, 209, 210, 211, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 384, 385, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 400, 403, 405, 407, 408, 409, 410, 411, 414, 415, 416, 417, 418, 419, 423, 424, 425, 426, 428, 429, 430, 431, 433, 434, 438, 439, 440, 441, 442, 443, 444, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 478, 479, 480, 481, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 510, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 568, 569, 572, 573, 574, 576, 582, 586, 587, 588, 589, 591, 593, 595, 596, 597, 609, 610, 612, 613, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 794, 797, 798, 801, 802, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873], "around": [0, 11, 12, 14, 16, 53, 70, 76, 99, 374, 480, 488, 814, 816, 819, 820, 822, 826, 832, 833, 837, 840, 841, 847, 851, 853, 859, 863, 864, 866, 873], "corner": [0, 53, 76, 371, 407, 815, 816, 830, 837], "anybodi": 0, "abl": [0, 3, 5, 29, 33, 44, 46, 70, 93, 815, 816, 817, 819, 825, 830, 833, 836, 837, 841, 845, 850, 859, 869, 872], "start": [0, 1, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 42, 43, 49, 53, 70, 72, 76, 80, 122, 130, 133, 134, 349, 359, 368, 369, 371, 374, 383, 414, 470, 473, 481, 483, 493, 527, 625, 774, 801, 806, 809, 814, 815, 816, 817, 818, 824, 825, 827, 828, 830, 831, 832, 837, 840, 843, 844, 845, 847, 848, 849, 851, 859, 860, 866, 872], "work": [0, 25, 27, 28, 39, 40, 42, 46, 48, 53, 76, 93, 383, 528, 633, 637, 684, 721, 722, 726, 731, 732, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 836, 837, 838, 840, 841, 844, 845, 847, 849, 850, 852, 857, 859, 860, 861, 864, 866, 868, 870, 873], "shortli": 0, "so": [0, 1, 5, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 39, 41, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 368, 371, 374, 381, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 632, 637, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 725, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 802, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 855, 856, 859, 860, 861, 866, 867, 868, 870], "worri": [0, 27, 28, 814, 815, 831], "about": [0, 16, 17, 18, 21, 23, 25, 27, 28, 31, 42, 43, 50, 73, 161, 164, 626, 806, 808, 810, 813, 814, 815, 816, 817, 818, 819, 822, 824, 825, 826, 831, 832, 836, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 857, 861, 867, 868, 871], "have": [0, 1, 3, 4, 5, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 39, 41, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 161, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 339, 340, 344, 346, 348, 349, 350, 351, 355, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 416, 420, 422, 423, 425, 426, 431, 432, 437, 438, 439, 440, 445, 449, 450, 451, 452, 453, 454, 455, 459, 460, 465, 466, 468, 473, 481, 482, 483, 484, 486, 488, 490, 492, 493, 500, 501, 503, 504, 505, 507, 508, 509, 511, 518, 519, 520, 521, 525, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 576, 611, 612, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 784, 785, 787, 788, 790, 791, 792, 793, 801, 802, 808, 810, 811, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 861, 862, 863, 864, 865, 866, 868, 872, 873, 874], "access": [0, 24, 27, 28, 70, 808, 814, 815, 816, 824, 825, 831, 836, 837, 852, 860, 866, 868, 870], "transpil": [0, 6, 7, 8, 9, 11, 16, 17, 19, 20, 30, 779, 780, 814, 815, 829, 830, 837, 844, 845, 846, 853, 858, 859, 861, 866, 872, 873], "code": [0, 4, 7, 8, 9, 16, 17, 24, 25, 27, 29, 30, 31, 32, 33, 34, 41, 42, 51, 52, 70, 74, 75, 99, 210, 256, 383, 525, 534, 542, 543, 558, 572, 576, 591, 627, 630, 632, 633, 635, 654, 675, 676, 677, 706, 806, 808, 811, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 843, 844, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 869, 870, 871, 872, 873], "now": [0, 4, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 43, 788, 789, 790, 808, 815, 819, 820, 821, 822, 823, 824, 825, 826, 830, 832, 834, 837, 838, 840, 841, 843, 847, 848, 850, 851, 857, 859, 860, 861, 866], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 45, 46, 53, 54, 76, 77, 93, 98, 99, 374, 383, 468, 525, 548, 549, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 659, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 866, 874], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 46, 49, 50, 53, 54, 58, 60, 62, 64, 72, 73, 76, 77, 81, 83, 85, 87, 93, 94, 108, 111, 123, 124, 134, 136, 151, 190, 207, 208, 209, 298, 315, 363, 365, 371, 372, 373, 374, 377, 378, 381, 383, 394, 407, 431, 438, 440, 445, 453, 465, 492, 497, 505, 506, 511, 518, 565, 576, 610, 613, 622, 625, 626, 627, 630, 631, 632, 633, 635, 639, 659, 667, 673, 683, 687, 702, 706, 735, 736, 737, 745, 769, 772, 773, 774, 775, 780, 802, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 869, 870, 872, 873], "style": [0, 10, 41, 43, 374, 480, 640, 743, 816, 831, 866], "stori": 0, "If": [0, 1, 3, 4, 6, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 42, 45, 46, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 94, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 148, 149, 150, 151, 176, 192, 208, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 324, 325, 327, 330, 331, 332, 333, 334, 336, 337, 338, 342, 346, 347, 352, 353, 355, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 400, 403, 405, 407, 408, 409, 410, 415, 416, 417, 419, 424, 426, 428, 430, 431, 438, 440, 442, 443, 445, 446, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 475, 479, 485, 486, 487, 488, 489, 490, 492, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 577, 587, 588, 589, 591, 593, 595, 596, 609, 610, 613, 615, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 659, 662, 663, 664, 666, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 726, 727, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 787, 788, 790, 791, 797, 802, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 855, 859, 860, 861], "anyon": [0, 808, 809, 816, 824, 851, 856, 872], "ha": [0, 3, 5, 6, 8, 9, 10, 12, 14, 18, 20, 24, 27, 28, 30, 33, 35, 39, 46, 49, 53, 58, 60, 64, 66, 70, 73, 76, 77, 81, 83, 87, 89, 93, 135, 192, 216, 236, 239, 241, 243, 253, 269, 271, 276, 279, 281, 282, 286, 326, 327, 328, 365, 372, 373, 374, 383, 407, 442, 452, 463, 487, 489, 494, 517, 519, 520, 522, 554, 625, 627, 628, 632, 633, 635, 640, 641, 643, 658, 659, 673, 674, 682, 683, 685, 687, 690, 698, 705, 743, 746, 747, 748, 753, 754, 757, 759, 760, 761, 762, 769, 772, 775, 797, 814, 816, 819, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 849, 850, 851, 852, 855, 856, 857, 859, 861, 862, 865, 866, 868, 869, 872], "ani": [0, 5, 8, 12, 14, 16, 17, 18, 19, 20, 29, 30, 33, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 58, 67, 68, 72, 74, 75, 76, 77, 90, 91, 93, 98, 99, 118, 119, 121, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 151, 152, 167, 171, 175, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 416, 417, 426, 431, 448, 469, 480, 488, 492, 497, 498, 499, 518, 521, 524, 525, 526, 530, 540, 541, 542, 543, 544, 548, 552, 554, 556, 560, 562, 563, 581, 587, 589, 596, 597, 604, 610, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 717, 720, 721, 723, 724, 731, 733, 737, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 767, 769, 770, 774, 784, 785, 787, 788, 790, 791, 792, 793, 797, 801, 802, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 867, 869, 872, 873], "question": [0, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 855, 856, 857], "ping": 0, "me": [0, 816], "guillermo": 0, "commun": [0, 42, 809, 814, 815, 816, 817, 851, 856, 865, 866, 868], "ux": 0, "team": [0, 808, 809, 811, 814, 815, 816, 817, 837, 852, 868], "discord": [0, 42, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857], "channel": [0, 25, 43, 53, 54, 57, 76, 77, 80, 98, 99, 371, 377, 395, 396, 397, 407, 497, 498, 499, 502, 541, 545, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 784, 785, 787, 788, 790, 791, 792, 793, 816, 822, 830, 839], "To": [0, 6, 8, 9, 10, 12, 14, 18, 22, 23, 24, 25, 27, 28, 39, 42, 43, 44, 94, 243, 373, 452, 582, 628, 630, 787, 814, 815, 819, 820, 821, 822, 825, 827, 829, 830, 831, 833, 834, 837, 838, 839, 840, 841, 848, 849, 850, 852, 859, 860], "ensur": [0, 8, 9, 12, 14, 22, 23, 24, 25, 53, 54, 76, 77, 371, 372, 408, 409, 410, 443, 558, 630, 767, 808, 811, 814, 815, 816, 820, 825, 826, 827, 829, 831, 832, 834, 836, 837, 838, 839, 840, 841, 852, 866], "similar": [0, 18, 27, 28, 53, 278, 373, 448, 628, 632, 659, 788, 812, 814, 815, 823, 824, 825, 826, 829, 830, 831, 833, 834, 835, 837, 838, 840, 841, 848, 851, 855, 860, 862, 863, 864, 865, 872], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 42, 44, 45, 48, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 70, 72, 75, 76, 77, 80, 81, 83, 85, 86, 87, 93, 94, 98, 99, 122, 132, 134, 137, 143, 197, 202, 204, 209, 233, 235, 236, 239, 243, 264, 265, 269, 274, 275, 279, 281, 286, 287, 288, 324, 326, 327, 328, 330, 333, 335, 336, 337, 341, 342, 347, 352, 355, 359, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 378, 380, 383, 387, 388, 394, 395, 396, 397, 400, 405, 407, 415, 416, 425, 426, 430, 440, 441, 443, 447, 448, 449, 453, 454, 458, 459, 460, 470, 471, 472, 474, 480, 483, 487, 488, 497, 499, 504, 505, 506, 507, 508, 518, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 544, 550, 555, 559, 570, 571, 580, 591, 603, 613, 625, 627, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 655, 656, 657, 659, 662, 664, 668, 669, 670, 673, 674, 676, 679, 680, 683, 684, 688, 689, 690, 695, 696, 699, 703, 705, 715, 720, 725, 726, 727, 735, 736, 737, 740, 741, 742, 743, 745, 747, 767, 769, 772, 773, 774, 775, 780, 787, 790, 793, 794, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 861, 862, 863, 866, 867, 868, 869, 870, 871, 872, 873, 874], "across": [0, 8, 9, 10, 22, 23, 24, 25, 39, 53, 63, 70, 76, 77, 86, 98, 207, 208, 236, 243, 269, 287, 373, 377, 448, 499, 502, 533, 554, 590, 627, 628, 630, 632, 637, 640, 655, 659, 720, 740, 741, 788, 814, 819, 825, 827, 829, 832, 833, 835, 840, 843, 864, 866, 871], "templat": [0, 808, 822, 828, 840], "help": [0, 16, 43, 45, 50, 531, 576, 630, 643, 761, 787, 808, 809, 810, 814, 815, 817, 820, 821, 822, 823, 824, 825, 827, 831, 833, 834, 836, 837, 840, 841, 847, 848, 849, 852, 853, 862, 866, 868, 872], "get": [0, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 41, 42, 44, 50, 51, 58, 70, 74, 81, 98, 159, 160, 161, 164, 192, 193, 194, 197, 203, 208, 211, 215, 374, 485, 532, 550, 571, 590, 626, 627, 630, 633, 637, 690, 716, 772, 787, 788, 801, 809, 811, 813, 814, 815, 817, 818, 819, 824, 825, 826, 830, 833, 834, 835, 836, 837, 838, 839, 840, 845, 846, 847, 848, 849, 853, 857, 860, 861, 866, 872], "It": [0, 3, 6, 9, 10, 19, 22, 23, 24, 25, 27, 28, 29, 30, 39, 40, 41, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 339, 340, 344, 346, 348, 349, 350, 351, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 384, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 420, 422, 423, 431, 432, 437, 438, 439, 440, 448, 449, 450, 451, 452, 454, 455, 465, 468, 473, 481, 482, 483, 484, 486, 488, 492, 493, 497, 500, 501, 503, 504, 505, 507, 508, 518, 519, 520, 521, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 574, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 682, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 713, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 752, 753, 754, 757, 759, 760, 762, 763, 764, 787, 788, 808, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 834, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 858, 861, 864, 866, 867, 869, 870, 871, 872, 873], "locat": [0, 43, 137, 383, 519, 625, 637, 639, 642, 718, 734, 751, 802, 814, 816, 821, 822, 826, 837, 838, 840, 841, 852, 864], "asset": [0, 853], "01_templat": 0, "ipynb": 0, "pleas": [0, 33, 42, 46, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857], "make": [0, 3, 5, 7, 8, 9, 10, 19, 27, 28, 29, 41, 45, 53, 76, 371, 415, 797, 808, 811, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 852, 856, 857, 860, 864, 866, 867, 868, 869, 872, 873], "copi": [0, 43, 46, 49, 50, 51, 52, 53, 54, 60, 70, 72, 73, 74, 75, 76, 77, 83, 93, 97, 123, 124, 125, 129, 140, 148, 210, 270, 374, 456, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 577, 588, 595, 596, 625, 626, 627, 628, 630, 635, 637, 642, 698, 699, 700, 702, 704, 705, 707, 709, 715, 750, 752, 780, 802, 815, 816, 819, 821, 824, 825, 828, 837, 838, 845, 851, 859, 860, 861], "firstli": [0, 19, 20, 23, 29, 30, 34, 39, 820, 825, 827, 828, 829, 833, 834, 836, 843, 848, 862, 872], "updat": [0, 4, 5, 6, 7, 9, 10, 19, 21, 22, 23, 24, 25, 27, 28, 41, 43, 48, 54, 55, 70, 77, 78, 93, 374, 485, 558, 572, 573, 576, 577, 600, 611, 612, 615, 617, 618, 619, 630, 631, 632, 636, 637, 655, 658, 711, 712, 713, 721, 722, 726, 731, 732, 780, 785, 791, 792, 797, 802, 808, 814, 815, 816, 818, 819, 820, 823, 824, 825, 827, 832, 834, 835, 837, 838, 840, 843, 845, 847, 848, 850, 851], "file": [0, 6, 41, 42, 43, 54, 70, 585, 608, 630, 790, 806, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 826, 828, 829, 830, 831, 833, 837, 838, 839, 840, 841, 845, 848, 852, 862, 865, 866, 867], "name": [0, 6, 7, 27, 28, 39, 41, 42, 43, 53, 58, 64, 68, 76, 81, 87, 91, 243, 371, 372, 374, 419, 425, 434, 490, 494, 531, 532, 628, 630, 633, 641, 668, 669, 680, 681, 683, 684, 688, 745, 746, 747, 769, 773, 780, 790, 797, 798, 800, 806, 814, 815, 816, 821, 822, 823, 824, 827, 828, 829, 832, 837, 838, 840, 841, 842, 843, 845, 848, 850, 866, 874], "match": [0, 50, 53, 70, 73, 76, 148, 243, 278, 335, 337, 368, 371, 373, 374, 416, 448, 463, 485, 489, 568, 626, 628, 630, 633, 669, 670, 674, 690, 767, 812, 814, 820, 822, 823, 827, 830, 838, 867, 872], "topic": [0, 16, 19, 20, 21, 29, 30, 31, 32, 33, 34, 834, 847, 866], "your": [0, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 39, 41, 43, 45, 808, 809, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 828, 830, 831, 835, 837, 839, 841, 843, 848, 849, 851, 852, 856, 857, 859, 860, 866, 874], "Then": [0, 46, 632, 659, 810, 814, 815, 816, 821, 822, 824, 830, 831, 834, 836, 840, 841, 851], "place": [0, 8, 9, 22, 23, 24, 25, 41, 48, 49, 52, 53, 54, 58, 60, 70, 72, 74, 75, 76, 77, 81, 83, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 270, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 308, 309, 312, 324, 325, 330, 331, 332, 334, 337, 338, 339, 340, 344, 346, 347, 348, 349, 351, 352, 353, 357, 358, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 470, 480, 485, 488, 492, 505, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 557, 558, 572, 576, 587, 591, 596, 600, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 792, 808, 812, 813, 816, 818, 819, 822, 823, 824, 826, 827, 828, 830, 832, 833, 837, 838, 840, 841, 843, 850, 853, 868], "its": [0, 9, 18, 20, 27, 28, 30, 33, 40, 41, 43, 48, 50, 53, 60, 70, 73, 76, 77, 83, 96, 108, 111, 114, 119, 149, 154, 155, 156, 157, 158, 209, 236, 269, 288, 298, 363, 371, 374, 383, 411, 419, 492, 494, 521, 545, 594, 622, 624, 626, 627, 628, 630, 633, 635, 637, 673, 698, 702, 703, 707, 720, 769, 802, 808, 814, 815, 820, 823, 824, 825, 826, 828, 829, 830, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 850, 851, 853, 859, 865, 866, 872], "folder": [0, 8, 9, 22, 23, 24, 25, 43, 808, 815, 816, 819, 822, 824, 830, 833, 837, 840, 841, 842], "next": [0, 5, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 41, 43, 53, 76, 161, 344, 348, 353, 357, 368, 626, 787, 792, 808, 814, 815, 816, 821, 825, 827, 828, 830, 831, 834, 846, 847, 848, 857, 866, 868], "edit": [0, 814, 815, 816, 831], "titl": [0, 10, 13, 15, 26, 42, 45, 808, 814, 816, 822], "descript": [0, 1, 36, 37, 38, 43, 46, 49, 52, 53, 58, 75, 76, 81, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 816, 828, 835, 836], "accordingli": [0, 53, 58, 63, 64, 66, 67, 76, 81, 86, 89, 90, 135, 236, 241, 243, 259, 269, 283, 331, 332, 368, 625, 628, 633, 640, 641, 643, 644, 690, 741, 745, 746, 747, 748, 756, 757, 758, 759, 760, 761, 762, 763, 764, 837, 845, 852], "thei": [0, 10, 34, 39, 44, 53, 58, 62, 64, 70, 81, 85, 87, 174, 288, 342, 368, 626, 628, 632, 633, 636, 639, 641, 657, 688, 711, 712, 734, 745, 767, 793, 808, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 836, 837, 840, 841, 843, 845, 847, 848, 849, 850, 851, 859, 863, 866, 868, 869, 872, 873], "render": [0, 822, 828], "correctli": [0, 24, 27, 28, 41, 53, 58, 63, 76, 81, 86, 336, 368, 383, 524, 525, 526, 527, 528, 633, 640, 674, 740, 814, 815, 816, 820, 823, 825, 827, 829, 831, 832, 838, 840, 843, 849, 851, 859, 860], "webpag": [0, 16], "content": [0, 1, 13, 15, 26, 27, 42, 43, 53, 70, 76, 383, 525, 814, 816, 822, 826, 836, 839, 845, 848, 852], "behind": [0, 18, 27, 808, 818, 832, 840, 844, 846], "exist": [0, 18, 27, 28, 41, 42, 43, 46, 49, 53, 54, 70, 72, 76, 77, 83, 124, 374, 458, 459, 465, 466, 468, 470, 471, 472, 479, 495, 540, 576, 630, 635, 696, 698, 699, 700, 702, 704, 705, 707, 709, 792, 794, 806, 808, 814, 815, 819, 821, 826, 827, 828, 833, 834, 836, 837, 840, 843, 845, 851, 853, 855, 856, 864, 866, 869, 872], "cell": [0, 1, 3, 4, 5, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 42, 57, 80, 632, 657, 658, 788, 824, 845], "where": [0, 7, 20, 24, 30, 31, 35, 43, 49, 52, 53, 54, 58, 60, 62, 63, 66, 67, 70, 72, 75, 76, 77, 81, 83, 85, 86, 89, 90, 93, 94, 131, 132, 135, 137, 143, 224, 234, 236, 239, 241, 243, 244, 253, 258, 259, 260, 267, 268, 269, 274, 276, 280, 282, 286, 296, 298, 324, 326, 327, 328, 343, 347, 354, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 385, 386, 387, 388, 394, 399, 400, 404, 419, 425, 426, 430, 431, 433, 434, 441, 447, 448, 449, 458, 459, 460, 474, 480, 497, 498, 499, 502, 504, 505, 507, 508, 518, 526, 527, 528, 558, 572, 610, 625, 628, 630, 632, 633, 635, 637, 639, 640, 643, 644, 657, 659, 664, 668, 669, 674, 676, 678, 679, 680, 683, 684, 687, 689, 695, 697, 698, 700, 706, 710, 718, 725, 734, 735, 736, 737, 742, 743, 758, 760, 762, 763, 764, 772, 787, 791, 802, 806, 808, 809, 812, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 852, 855, 856, 857, 859, 864, 873], "The": [0, 3, 5, 6, 7, 8, 9, 10, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 129, 130, 132, 134, 137, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 151, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 166, 168, 169, 170, 173, 174, 176, 177, 179, 180, 181, 182, 188, 189, 190, 191, 192, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 344, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 422, 423, 424, 425, 426, 428, 430, 442, 443, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 467, 469, 470, 471, 472, 476, 479, 480, 485, 486, 488, 489, 490, 491, 492, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506, 507, 509, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 531, 533, 534, 535, 536, 537, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 567, 569, 572, 573, 576, 578, 579, 582, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 775, 780, 784, 785, 787, 788, 790, 791, 792, 797, 801, 802, 808, 809, 810, 812, 814, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 838, 840, 841, 843, 844, 845, 848, 849, 850, 852, 853, 854, 855, 857, 859, 860, 861, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874], "h2": [0, 1, 13, 15, 26], "tag": [0, 1, 13, 15, 26, 815, 816], "section": [0, 1, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 47, 53, 64, 76, 108, 371, 374, 405, 416, 466, 475, 495, 641, 745, 746, 747, 748, 808, 809, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 843, 844, 848, 849, 861, 862, 869, 872], "h3": [0, 1, 13, 15, 26], "subsect": [0, 1, 13, 15, 26, 814, 815, 816, 819, 824], "step": [0, 1, 13, 14, 15, 26, 27, 28, 39, 41, 42, 43, 53, 55, 72, 76, 78, 122, 133, 371, 374, 417, 419, 474, 611, 612, 615, 617, 618, 619, 625, 631, 636, 711, 712, 713, 792, 806, 808, 814, 815, 816, 817, 820, 821, 823, 824, 825, 826, 827, 830, 835, 837, 840, 845, 848, 849, 850, 857, 866], "explan": [0, 1, 13, 15, 26, 814, 815, 816, 823, 828, 832, 837, 841, 847], "go": [0, 4, 12, 14, 18, 25, 28, 33, 48, 53, 76, 80, 371, 414, 418, 637, 725, 726, 808, 809, 812, 814, 815, 816, 818, 821, 822, 825, 827, 830, 831, 837, 838, 840, 841, 844, 848, 851, 862, 866, 867, 871, 873], "default": [0, 3, 5, 6, 27, 28, 41, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 96, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 168, 169, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 192, 193, 195, 196, 200, 203, 204, 205, 207, 208, 209, 210, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 422, 423, 424, 426, 428, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 568, 569, 572, 573, 576, 577, 582, 586, 587, 588, 589, 591, 593, 595, 596, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 793, 801, 802, 806, 814, 815, 816, 821, 822, 825, 826, 827, 828, 829, 832, 833, 837, 840, 843, 845, 849, 853, 859, 866], "which": [0, 3, 6, 9, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 96, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 151, 153, 159, 161, 164, 166, 169, 176, 188, 193, 197, 202, 204, 207, 208, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 318, 321, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 342, 344, 346, 347, 348, 349, 351, 352, 353, 355, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 381, 383, 394, 395, 396, 397, 399, 400, 404, 405, 414, 415, 416, 418, 423, 426, 438, 441, 442, 443, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 485, 486, 487, 488, 489, 490, 492, 497, 499, 500, 501, 503, 504, 505, 506, 507, 508, 510, 511, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 565, 570, 571, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 657, 659, 662, 663, 664, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 680, 681, 682, 683, 687, 689, 690, 692, 693, 694, 695, 696, 698, 699, 701, 702, 703, 704, 705, 706, 709, 710, 719, 720, 721, 722, 727, 729, 730, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 784, 785, 787, 788, 789, 790, 791, 792, 793, 797, 798, 804, 806, 808, 810, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 859, 860, 862, 863, 864, 865, 866, 867, 869, 871, 872, 873], "text": [0, 4, 8, 10, 41, 53, 54, 372, 373, 440, 448, 814, 816, 822, 827, 828], "paragraph": [0, 1, 13, 15, 26, 822], "p": [0, 1, 13, 15, 26, 39, 53, 54, 58, 76, 77, 81, 94, 135, 240, 372, 377, 422, 435, 503, 536, 537, 625, 628, 630, 633, 637, 674, 690, 722, 788, 808, 815, 816, 818], "without": [0, 3, 10, 30, 39, 43, 46, 64, 70, 96, 582, 597, 630, 635, 637, 641, 702, 715, 745, 746, 747, 748, 772, 775, 801, 815, 816, 820, 821, 823, 824, 825, 826, 827, 829, 832, 833, 837, 840, 841, 843, 847, 848, 849, 851, 859, 863, 866, 867, 868, 872], "path": [0, 8, 9, 10, 22, 23, 24, 25, 42, 43, 769, 780, 796, 815, 822, 836, 837, 838, 852, 866], "correspond": [0, 3, 7, 9, 14, 27, 28, 42, 50, 52, 53, 54, 57, 60, 63, 64, 66, 70, 73, 75, 76, 80, 83, 89, 93, 96, 99, 149, 161, 164, 224, 274, 288, 327, 341, 342, 365, 368, 371, 372, 374, 377, 383, 394, 400, 411, 416, 422, 425, 426, 427, 446, 471, 472, 492, 497, 498, 499, 502, 519, 520, 588, 610, 626, 628, 630, 632, 633, 635, 639, 640, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 659, 664, 668, 669, 674, 681, 682, 702, 703, 734, 740, 741, 745, 746, 747, 748, 753, 754, 759, 760, 761, 762, 769, 772, 774, 801, 806, 808, 814, 816, 820, 821, 823, 824, 825, 827, 828, 829, 832, 833, 835, 837, 840, 843, 845, 859, 860, 861, 866], "toctre": [0, 822], "index": [0, 41, 42, 43, 46, 49, 53, 54, 60, 63, 64, 65, 70, 72, 76, 77, 83, 86, 87, 88, 128, 135, 309, 316, 317, 326, 327, 328, 365, 371, 372, 374, 379, 381, 383, 394, 400, 431, 433, 440, 463, 470, 473, 481, 483, 485, 488, 489, 492, 493, 509, 510, 519, 528, 531, 549, 551, 572, 573, 577, 623, 625, 630, 635, 637, 640, 641, 642, 702, 706, 716, 717, 718, 721, 722, 723, 729, 731, 740, 741, 743, 745, 746, 747, 749, 751, 773, 788, 802, 804, 823, 824, 829, 833, 834, 835, 836, 838, 840, 847, 866], "rst": [0, 833], "left": [0, 20, 30, 41, 42, 53, 58, 63, 65, 76, 81, 86, 88, 116, 117, 228, 243, 336, 352, 359, 368, 369, 371, 372, 374, 383, 406, 425, 430, 436, 443, 445, 471, 481, 523, 524, 525, 526, 527, 528, 541, 624, 628, 630, 633, 640, 642, 668, 669, 674, 683, 688, 740, 751, 772, 815, 816, 819, 822, 824, 825, 827, 830], "mai": [0, 51, 52, 53, 58, 64, 65, 74, 75, 81, 88, 98, 99, 122, 129, 140, 210, 236, 237, 243, 248, 256, 264, 265, 269, 270, 272, 287, 331, 332, 368, 400, 540, 576, 625, 627, 628, 630, 633, 641, 642, 643, 681, 690, 745, 746, 747, 748, 749, 752, 756, 757, 758, 760, 772, 802, 813, 814, 815, 816, 819, 823, 824, 825, 829, 830, 833, 834, 835, 837, 838, 840, 843, 846, 847, 849, 857, 873], "need": [0, 3, 7, 9, 16, 18, 24, 25, 27, 28, 41, 42, 43, 53, 54, 60, 76, 77, 83, 371, 372, 383, 394, 399, 400, 404, 425, 525, 536, 537, 558, 630, 632, 633, 635, 637, 659, 668, 695, 698, 725, 773, 808, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 845, 847, 848, 851, 852, 857, 859, 860, 862, 866, 867, 868, 872], "add": [0, 20, 30, 43, 45, 52, 53, 61, 68, 70, 75, 76, 84, 91, 98, 99, 359, 369, 371, 373, 414, 453, 568, 597, 628, 630, 632, 633, 638, 643, 659, 687, 733, 761, 769, 780, 788, 791, 806, 808, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 833, 834, 836, 837, 840, 841, 843, 845, 847, 851, 852, 862, 863, 864, 866], "grid": [0, 43, 49, 135, 312, 365, 625, 827, 840], "item": [0, 4, 27, 28, 39, 41, 43, 48, 54, 68, 70, 72, 75, 76, 77, 130, 155, 192, 246, 262, 270, 337, 341, 354, 538, 548, 549, 553, 588, 589, 625, 626, 627, 630, 637, 644, 719, 720, 721, 722, 726, 731, 732, 766, 808, 814, 823, 825, 845, 847, 848, 850, 859], "card": [0, 53, 76, 356, 368, 871], "refer": [0, 5, 53, 60, 66, 67, 76, 78, 83, 89, 90, 128, 143, 241, 259, 309, 324, 354, 365, 368, 371, 372, 374, 400, 405, 416, 423, 447, 470, 611, 612, 625, 628, 631, 633, 635, 643, 644, 664, 666, 689, 702, 760, 762, 763, 764, 788, 808, 813, 814, 815, 816, 819, 820, 822, 824, 825, 832, 833, 834, 835, 836, 837, 838, 839, 840, 851, 852, 853, 866], "also": [0, 3, 4, 6, 7, 9, 10, 12, 14, 18, 20, 22, 23, 25, 27, 28, 30, 32, 33, 34, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 94, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 164, 167, 168, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 371, 372, 374, 381, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 632, 633, 635, 636, 637, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 724, 725, 726, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 787, 788, 797, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 852, 855, 856, 859, 860, 862, 863, 864, 865, 866, 867, 869, 871, 872, 873], "look": [0, 5, 18, 27, 28, 41, 43, 46, 808, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 833, 837, 838, 840, 841, 842, 843, 845, 847, 849, 850, 852, 855, 859, 862, 866], "document": [0, 18, 27, 60, 243, 331, 332, 368, 610, 628, 630, 706, 809, 810, 813, 816, 822, 824, 825, 827, 836, 837, 838, 840, 848, 850], "sphinx": [0, 810, 822], "design": [0, 10, 18, 27, 76, 243, 308, 313, 314, 365, 628, 808, 811, 818, 822, 824, 825, 836, 837, 838, 839, 843, 845, 847, 851, 855, 856, 862, 864, 866, 869, 870, 871], "websit": [0, 45, 815, 819, 856], "alreadi": [1, 6, 9, 19, 22, 23, 24, 25, 27, 28, 33, 41, 43, 46, 53, 58, 70, 76, 81, 232, 242, 269, 279, 289, 374, 383, 459, 460, 480, 516, 525, 628, 633, 671, 678, 801, 802, 808, 814, 815, 816, 821, 823, 825, 826, 832, 836, 837, 843, 851, 852, 866, 868, 873], "instal": [1, 5, 6, 7, 9, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 41, 43, 44, 45, 46, 810, 815, 816, 821, 822, 830, 831], "skip": [1, 4, 43, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 372, 374, 395, 396, 397, 415, 431, 433, 440, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 481, 484, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 773, 801, 822, 833, 840], "colab": [1, 4, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 41, 43, 45, 46], "manual": [1, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 637, 714, 724, 725, 814, 815, 816, 825, 831, 840, 849, 852], "do": [1, 3, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 39, 41, 43, 53, 54, 70, 76, 77, 236, 269, 278, 371, 373, 374, 383, 417, 453, 465, 525, 528, 558, 628, 630, 637, 714, 721, 724, 725, 726, 731, 774, 802, 808, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 841, 843, 845, 847, 848, 849, 850, 851, 853, 857, 867, 872, 873], "run": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 41, 43, 44, 45, 53, 55, 76, 78, 377, 497, 499, 611, 612, 617, 631, 632, 636, 657, 711, 712, 713, 769, 770, 788, 789, 790, 791, 801, 808, 810, 814, 815, 818, 820, 821, 824, 826, 827, 829, 831, 832, 834, 837, 838, 845, 846, 847, 848, 849, 850, 851, 852, 859, 860, 861, 864, 866, 867, 868, 869, 871, 872, 873], "below": [1, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 32, 33, 34, 39, 42, 43, 44, 49, 53, 58, 76, 81, 89, 141, 142, 143, 243, 253, 276, 324, 325, 334, 365, 368, 374, 488, 625, 628, 633, 667, 687, 762, 809, 812, 814, 815, 818, 819, 823, 824, 825, 826, 827, 829, 830, 833, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 859, 860, 861, 862, 864, 869, 871], "mind": [1, 12, 14, 18, 24, 27, 31, 814, 815, 820, 823, 840, 852, 860], "packag": [1, 3, 5, 6, 8, 9, 12, 22, 23, 24, 25, 28, 41, 42, 43, 46, 800, 808, 812, 815, 824, 837, 851, 852, 866, 868], "avail": [1, 3, 5, 6, 8, 22, 23, 25, 27, 28, 43, 54, 77, 192, 198, 200, 201, 212, 542, 627, 630, 633, 684, 773, 806, 808, 815, 816, 823, 824, 825, 826, 828, 829, 837, 840, 843, 851, 852, 855, 859, 860, 861, 871, 872], "click": [1, 3, 43, 814, 815, 816, 824, 828, 830, 831, 846], "runtim": [1, 3, 4, 5, 7, 8, 9, 20, 27, 30, 41, 42, 818, 833, 840, 843, 866], "restart": [1, 3, 4, 5, 8, 41, 42, 815, 830], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 45, 46, 812, 815, 822, 831], "q": [1, 3, 4, 5, 6, 7, 8, 9, 10, 41, 42, 43, 53, 57, 58, 76, 80, 81, 358, 368, 372, 383, 425, 528, 632, 633, 637, 659, 662, 668, 669, 680, 722, 815, 816, 818, 838, 851], "git": [1, 3, 4, 5, 8, 27, 41, 42, 43, 44, 808, 810, 813, 815, 816, 819, 822, 824, 830, 831, 840, 852], "clone": [1, 3, 5, 8, 27, 41, 43, 44, 808, 810, 816, 830, 852], "http": [1, 3, 4, 5, 6, 7, 8, 9, 14, 22, 23, 24, 25, 27, 28, 41, 42, 43, 44, 45, 46, 52, 53, 75, 76, 78, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 611, 612, 625, 626, 628, 631, 633, 635, 643, 681, 682, 710, 760, 808, 810, 815, 816, 819, 822, 824, 825, 828, 830, 852, 860], "github": [1, 3, 4, 5, 7, 8, 9, 27, 41, 42, 43, 44, 45, 808, 810, 811, 813, 816, 817, 819, 822, 824, 825, 827, 828, 830, 831, 839, 840, 852, 855, 874], "com": [1, 3, 4, 5, 7, 8, 9, 14, 27, 41, 42, 43, 44, 45, 808, 810, 815, 816, 819, 822, 824, 825, 830, 852], "unifyai": [1, 3, 5, 8, 27, 41, 42, 43, 44, 45, 808, 810, 815, 816, 822, 830, 852], "model": [1, 2, 3, 10, 11, 16, 17, 18, 44, 46, 236, 269, 373, 449, 628, 785, 789, 790, 806, 808, 848, 849, 853, 859, 860, 864, 865, 866, 867, 868, 869, 870, 872, 873], "depth": [1, 3, 5, 8, 42, 49, 53, 57, 72, 76, 80, 137, 371, 374, 407, 467, 541, 553, 625, 630, 632, 650, 651, 816, 824, 848, 849, 850, 852], "1": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 143, 145, 148, 149, 150, 151, 155, 159, 160, 161, 164, 169, 171, 176, 192, 193, 197, 201, 202, 204, 205, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 321, 322, 324, 326, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 436, 437, 438, 441, 442, 444, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 777, 780, 784, 787, 788, 789, 790, 791, 792, 793, 797, 801, 802, 806, 808, 811, 812, 815, 816, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 849, 850, 851, 856, 857, 859, 860, 861, 874], "from": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 83, 85, 86, 89, 90, 91, 93, 94, 96, 99, 122, 124, 127, 129, 130, 131, 132, 135, 136, 139, 143, 145, 151, 169, 175, 176, 192, 197, 202, 208, 209, 235, 243, 244, 271, 275, 276, 283, 287, 308, 309, 315, 318, 324, 326, 327, 328, 335, 338, 342, 343, 345, 346, 358, 362, 365, 368, 370, 371, 372, 373, 374, 378, 383, 395, 396, 397, 411, 416, 417, 436, 443, 448, 449, 453, 463, 466, 475, 480, 486, 488, 489, 491, 492, 494, 495, 504, 505, 506, 507, 508, 519, 520, 540, 548, 549, 551, 571, 582, 593, 610, 612, 613, 617, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 640, 641, 643, 644, 646, 654, 655, 664, 667, 683, 687, 688, 689, 696, 699, 702, 705, 711, 712, 713, 715, 726, 727, 728, 734, 735, 736, 737, 741, 744, 745, 747, 753, 754, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 787, 788, 789, 790, 792, 797, 802, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 860, 861, 862, 864, 865, 866, 867, 868, 870, 871, 872, 873], "repositori": [1, 3, 5, 8, 810, 814, 815, 816, 818, 819, 822, 830, 839, 857], "cd": [1, 3, 5, 8, 27, 44, 808, 810, 815, 816, 830, 852], "here": [1, 3, 10, 13, 15, 18, 23, 26, 27, 28, 39, 41, 42, 43, 44, 46, 76, 279, 455, 628, 808, 812, 813, 814, 815, 816, 819, 821, 822, 823, 824, 825, 827, 830, 831, 832, 834, 835, 836, 837, 838, 840, 841, 845, 846, 847, 848, 849, 850, 851, 859, 860, 861, 866, 867, 874], "normal": [1, 3, 8, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 41, 42, 53, 61, 62, 76, 84, 85, 93, 94, 355, 368, 371, 377, 383, 393, 394, 399, 400, 403, 404, 405, 415, 416, 497, 498, 499, 500, 501, 502, 503, 518, 521, 635, 638, 639, 696, 706, 733, 734, 736, 787, 788, 791, 808, 814, 836, 837, 843, 848, 859, 861, 864], "resnet": [2, 9, 16, 27, 859, 860], "imag": [2, 3, 7, 9, 12, 16, 24, 27, 28, 41, 42, 43, 44, 45, 46, 53, 57, 75, 76, 80, 98, 216, 217, 218, 219, 222, 225, 234, 237, 239, 241, 250, 251, 252, 257, 259, 272, 279, 280, 282, 283, 287, 371, 390, 391, 407, 408, 409, 411, 541, 628, 630, 632, 645, 646, 647, 648, 649, 652, 653, 654, 788, 808, 815, 830, 843, 845, 846, 848, 850, 852, 859, 860, 866], "classif": [2, 3, 8, 10, 16, 41, 808, 866], "acceler": [2, 16, 808, 825, 837, 864, 868, 869, 870, 871], "pytorch": [2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 25, 27, 28, 39, 46, 279, 331, 332, 368, 628, 792, 808, 813, 814, 820, 825, 826, 829, 832, 833, 836, 837, 838, 843, 845, 850, 851, 853, 856, 857, 859, 860, 863, 867, 869, 870, 872, 873], "jax": [2, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 39, 41, 45, 47, 52, 53, 54, 64, 69, 75, 76, 77, 106, 107, 108, 109, 110, 111, 112, 113, 114, 205, 287, 291, 296, 297, 299, 345, 363, 368, 383, 528, 558, 591, 610, 622, 627, 628, 630, 641, 745, 746, 747, 748, 780, 784, 797, 808, 812, 813, 814, 815, 816, 819, 821, 825, 826, 829, 830, 832, 835, 836, 837, 838, 840, 841, 843, 845, 847, 850, 851, 856, 857, 859, 860, 861, 867, 869, 872, 873], "convert": [2, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 24, 25, 27, 28, 29, 31, 33, 41, 44, 46, 48, 49, 52, 70, 71, 72, 75, 93, 123, 124, 136, 146, 147, 189, 190, 191, 192, 203, 211, 215, 235, 275, 374, 379, 458, 459, 460, 509, 574, 592, 594, 595, 596, 598, 625, 626, 627, 628, 630, 633, 637, 691, 715, 726, 727, 769, 797, 801, 808, 814, 820, 821, 834, 835, 837, 840, 842, 845, 851, 853, 857, 860, 864, 865, 872], "them": [2, 3, 7, 9, 12, 14, 16, 27, 28, 33, 372, 442, 535, 571, 630, 772, 788, 808, 810, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 829, 831, 834, 836, 837, 838, 840, 842, 845, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861, 863, 864, 866, 868, 872], "faster": [2, 3, 7, 9, 10, 16, 27, 28, 44, 46, 53, 58, 76, 81, 372, 445, 633, 683, 810, 813, 822, 853, 868, 871], "infer": [2, 7, 9, 10, 16, 20, 30, 32, 33, 42, 44, 46, 49, 53, 54, 57, 60, 72, 76, 77, 80, 83, 122, 124, 127, 131, 132, 136, 139, 145, 154, 155, 156, 157, 158, 308, 309, 371, 374, 378, 407, 492, 506, 552, 586, 587, 625, 626, 630, 632, 635, 655, 702, 797, 798, 818, 821, 825, 826, 840, 845, 850, 860, 864, 865, 868, 870], "mmpretrain": [2, 16], "segment": [2, 16, 53, 76, 326, 327, 328, 365, 822, 827], "unet": [2, 16], "alexnet": [2, 16], "In": [2, 3, 4, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 46, 51, 53, 54, 60, 74, 76, 77, 83, 93, 94, 203, 210, 211, 215, 219, 236, 237, 243, 251, 252, 269, 272, 278, 280, 371, 374, 377, 395, 396, 397, 417, 458, 459, 460, 466, 468, 470, 471, 472, 473, 475, 479, 485, 486, 495, 497, 499, 531, 551, 558, 576, 627, 628, 630, 633, 635, 639, 681, 698, 699, 700, 702, 704, 705, 707, 709, 737, 808, 814, 815, 816, 819, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 847, 848, 849, 850, 851, 855, 857, 859, 860, 861, 862, 864, 866, 867, 869, 872], "we": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 46, 53, 58, 59, 60, 68, 76, 81, 82, 91, 93, 94, 114, 360, 370, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 490, 495, 541, 551, 591, 613, 614, 616, 621, 622, 630, 631, 633, 634, 635, 676, 692, 698, 699, 700, 702, 704, 705, 707, 709, 784, 790, 797, 802, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862, 866, 867, 871, 872, 874], "show": [2, 3, 4, 8, 16, 22, 27, 28, 29, 30, 32, 39, 41, 43, 44, 575, 584, 607, 630, 808, 814, 815, 816, 822, 824, 827, 831, 836, 837, 840, 842, 851, 859, 866], "how": [2, 3, 4, 5, 7, 9, 12, 14, 16, 17, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 39, 42, 45, 46, 47, 52, 53, 69, 75, 76, 96, 106, 107, 108, 109, 110, 111, 112, 113, 114, 236, 269, 287, 291, 296, 297, 299, 363, 373, 374, 448, 463, 488, 489, 622, 628, 784, 787, 788, 789, 790, 808, 809, 810, 812, 813, 815, 816, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 834, 835, 836, 837, 838, 841, 842, 843, 844, 846, 847, 848, 849, 850, 851, 855, 857, 862, 866], "written": [2, 3, 4, 16, 18, 27, 28, 41, 54, 374, 469, 815, 819, 820, 828, 831, 832, 836, 837, 841, 845, 847, 850, 851, 855, 860, 864, 866, 870, 872, 873], "xgboost": [2, 16], "video": [3, 5, 7, 8, 9, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 808, 809, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 852, 864], "tutori": [3, 5, 7, 8, 9, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 808, 816, 837, 852], "nativ": [3, 4, 6, 9, 18, 19, 22, 23, 24, 25, 27, 28, 48, 49, 50, 51, 54, 71, 74, 77, 98, 102, 136, 146, 147, 153, 154, 155, 156, 157, 158, 172, 175, 190, 191, 192, 193, 203, 211, 215, 558, 560, 564, 571, 576, 594, 625, 626, 627, 630, 769, 780, 785, 797, 808, 812, 814, 825, 826, 829, 830, 833, 834, 836, 837, 838, 840, 845, 847, 848, 853, 859, 860, 861, 864, 873], "integr": [3, 4, 12, 14, 21, 28, 31, 50, 52, 53, 73, 75, 76, 148, 288, 351, 368, 383, 521, 626, 628, 808, 813, 815, 817, 818, 834, 860, 864, 866, 868, 869, 870], "three": [3, 4, 16, 22, 32, 33, 43, 53, 135, 308, 365, 374, 460, 625, 815, 816, 823, 824, 825, 827, 837, 840, 843, 844, 845, 867, 872], "major": [3, 4, 640, 743, 825, 826, 838, 840, 851, 856, 863, 866], "ml": [3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 46, 808, 809, 813, 837, 844, 845, 846, 848, 849, 850, 854, 856, 857, 860, 862, 863, 864, 865, 866, 869, 871, 873], "framework": [3, 4, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 41, 43, 45, 48, 54, 166, 188, 198, 201, 212, 539, 555, 559, 591, 594, 626, 627, 630, 637, 716, 767, 769, 773, 780, 785, 792, 797, 798, 808, 811, 812, 814, 815, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 840, 841, 843, 844, 845, 847, 850, 851, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 867, 870], "sinc": [3, 5, 8, 24, 25, 27, 28, 41, 43, 53, 76, 94, 368, 808, 810, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 829, 836, 837, 851, 856, 866, 872], "want": [3, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 40, 41, 43, 53, 68, 76, 91, 236, 269, 374, 468, 628, 790, 808, 809, 810, 814, 815, 816, 822, 824, 826, 829, 831, 833, 834, 835, 836, 840, 843, 848, 849, 850, 851, 852, 856, 860], "after": [3, 4, 5, 7, 8, 9, 27, 28, 42, 53, 54, 55, 57, 61, 70, 76, 77, 78, 80, 84, 182, 283, 300, 304, 353, 363, 368, 371, 372, 374, 394, 395, 396, 397, 414, 418, 439, 469, 480, 558, 612, 615, 617, 618, 619, 626, 628, 630, 631, 632, 637, 638, 645, 646, 647, 648, 650, 652, 654, 655, 725, 733, 792, 797, 808, 814, 815, 816, 819, 821, 822, 824, 825, 827, 829, 832, 835, 838, 840, 844, 852, 859, 860, 866], "first": [3, 4, 5, 8, 12, 18, 20, 21, 22, 24, 27, 28, 30, 31, 32, 41, 44, 45, 46, 49, 52, 53, 58, 60, 62, 63, 64, 66, 72, 75, 76, 77, 81, 83, 85, 87, 89, 93, 94, 98, 99, 118, 119, 133, 134, 143, 174, 182, 192, 219, 224, 226, 228, 229, 230, 231, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 269, 272, 274, 285, 286, 298, 308, 309, 324, 326, 327, 328, 330, 343, 345, 346, 347, 353, 357, 358, 363, 365, 368, 371, 372, 373, 374, 381, 383, 394, 424, 425, 426, 428, 432, 454, 464, 466, 470, 477, 480, 482, 483, 486, 494, 505, 507, 511, 519, 520, 521, 528, 533, 624, 625, 626, 627, 628, 630, 632, 633, 635, 636, 637, 640, 641, 642, 643, 659, 664, 667, 668, 669, 671, 673, 678, 680, 681, 683, 685, 687, 689, 702, 703, 706, 707, 711, 712, 713, 714, 715, 724, 725, 727, 739, 740, 741, 745, 746, 747, 750, 751, 753, 754, 769, 787, 788, 789, 790, 792, 797, 808, 810, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 826, 827, 831, 832, 833, 834, 836, 837, 840, 843, 845, 847, 848, 850, 852, 855, 856, 859, 860, 864, 866, 867, 871], "notebook": [3, 4, 5, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 42, 790, 808], "automat": [3, 5, 8, 25, 27, 28, 33, 808, 814, 815, 816, 818, 821, 822, 824, 825, 831, 833, 836, 840, 843, 844, 846, 849, 850, 852, 853, 857, 866, 869, 873], "sure": [3, 5, 7, 8, 9, 10, 27, 41, 811, 814, 815, 816, 819, 824, 829, 830, 837, 838, 840, 843, 852], "gpu": [3, 4, 5, 6, 7, 8, 9, 10, 41, 43, 45, 46, 192, 194, 195, 198, 201, 203, 205, 207, 208, 211, 213, 215, 627, 806, 808, 815, 816, 824, 826, 847, 852, 864, 866, 869, 870, 871], "enabl": [3, 4, 5, 6, 7, 8, 9, 10, 22, 23, 25, 42, 53, 58, 70, 81, 99, 371, 373, 394, 452, 576, 630, 633, 676, 790, 806, 808, 815, 816, 817, 820, 823, 825, 833, 834, 835, 836, 837, 840, 841, 844, 846, 848, 850, 851, 853, 856, 859, 864, 865, 866, 867, 868, 869, 872, 873], "dm": [3, 4, 5, 7, 9, 27, 28, 39, 41], "haiku": [3, 4, 5, 7, 9, 25, 27, 28, 39, 41, 45, 785, 808, 850, 857, 860, 866], "exit": [3, 5, 8, 27, 28, 826], "download": [3, 8, 12, 14, 27, 28, 42, 43, 46, 810, 815, 822, 840, 859, 860], "imagenet": [3, 14, 42, 44, 808], "class": [3, 5, 8, 10, 12, 14, 18, 27, 28, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 130, 139, 145, 161, 164, 177, 179, 180, 239, 276, 334, 356, 368, 382, 383, 391, 392, 425, 524, 525, 532, 541, 545, 558, 568, 591, 625, 626, 627, 628, 630, 632, 633, 634, 637, 638, 653, 658, 662, 668, 678, 682, 683, 685, 692, 708, 715, 726, 733, 748, 755, 759, 760, 769, 770, 777, 778, 779, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 796, 797, 801, 806, 808, 814, 821, 822, 823, 825, 826, 827, 828, 832, 834, 835, 838, 839, 840, 843, 845, 846, 848, 849, 850, 853, 859, 860, 864, 866, 867, 873], "preprocess": [3, 8, 10, 27, 28, 41, 44, 859], "wget": [3, 5, 8, 41, 42, 45, 815], "raw": [3, 5, 7, 8, 9, 24, 27, 28, 41, 44, 45, 70, 808, 828, 860, 867], "githubusercont": [3, 5, 8, 41, 45], "hub": [3, 5, 8, 41, 44, 46], "master": [3, 5, 8, 19, 20, 21, 29, 30, 31, 32, 33, 34, 41, 43, 44, 45, 811, 824, 866, 874], "imagenet_class": [3, 8], "txt": [3, 8, 42, 54, 815, 819, 822], "r": [3, 8, 41, 42, 53, 58, 70, 76, 81, 93, 94, 345, 360, 368, 370, 613, 631, 633, 635, 680, 709, 815, 816, 818, 835, 838, 874], "f": [3, 4, 6, 7, 8, 27, 28, 40, 41, 43, 53, 60, 76, 83, 298, 315, 363, 365, 374, 470, 491, 635, 637, 702, 717, 721, 722, 723, 726, 731, 732, 808, 809, 816, 818, 823, 824, 829, 841, 845, 847, 848, 857, 862], "categori": [3, 8, 814, 819, 820, 823, 825, 829, 837, 841, 844], "strip": [3, 8, 20, 30, 856], "readlin": [3, 8, 42], "cat": [3, 8, 42, 838, 843, 845, 850, 859, 860], "jpg": [3, 5, 7, 8, 9, 24, 27, 28, 43, 44, 808, 860], "filenam": [3, 5, 8, 27, 28, 41, 43, 46, 54, 790, 796, 848], "3": [3, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 128, 130, 132, 133, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 155, 159, 161, 169, 171, 176, 190, 192, 193, 204, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 388, 390, 391, 392, 393, 395, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 439, 442, 444, 447, 448, 449, 450, 451, 452, 453, 454, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 500, 501, 502, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 572, 573, 586, 587, 588, 589, 593, 596, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 775, 788, 801, 802, 806, 808, 812, 814, 815, 819, 820, 821, 823, 824, 825, 827, 829, 830, 833, 835, 838, 840, 845, 847, 848, 849, 850, 859, 860, 873], "import": [3, 6, 7, 9, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 42, 44, 45, 46, 53, 64, 68, 72, 76, 91, 190, 191, 195, 207, 303, 383, 518, 553, 569, 627, 630, 636, 641, 712, 713, 748, 780, 797, 798, 808, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 828, 831, 834, 835, 836, 837, 838, 839, 840, 841, 845, 847, 848, 850, 851, 852, 856, 859, 860, 861, 862, 864, 866, 869, 870, 872], "devic": [3, 5, 6, 7, 8, 9, 42, 43, 46, 49, 53, 62, 70, 72, 76, 85, 98, 101, 102, 103, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 189, 190, 191, 192, 193, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 213, 215, 308, 309, 324, 325, 365, 378, 468, 504, 505, 507, 508, 532, 546, 547, 625, 630, 639, 734, 735, 736, 737, 767, 769, 770, 785, 787, 788, 789, 790, 791, 792, 793, 794, 806, 808, 816, 818, 821, 825, 829, 833, 834, 838, 840, 841, 843, 845, 850, 851, 852, 853, 856, 865, 866, 868, 869, 870, 871], "torchvis": [3, 7, 8, 41, 857], "transform": [3, 4, 7, 8, 9, 24, 27, 28, 41, 42, 44, 53, 57, 76, 80, 371, 372, 393, 394, 399, 400, 403, 404, 405, 415, 416, 419, 436, 632, 656, 772, 775, 788, 808, 834, 840, 850, 853, 859, 860, 864, 866, 867, 868], "pil": [3, 5, 7, 8, 9, 24, 27, 28, 42, 43, 44, 808, 860], "numpi": [3, 4, 5, 6, 7, 9, 12, 14, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 53, 54, 66, 75, 76, 77, 143, 172, 190, 195, 220, 280, 303, 324, 365, 383, 518, 525, 534, 558, 588, 591, 595, 625, 626, 627, 628, 630, 633, 643, 681, 755, 767, 769, 780, 797, 801, 802, 808, 813, 814, 815, 816, 819, 820, 821, 824, 825, 826, 829, 830, 832, 836, 838, 840, 841, 843, 845, 847, 850, 852, 853, 855, 856, 859, 860, 861, 863, 868, 873], "np": [3, 4, 5, 6, 7, 9, 12, 14, 19, 22, 23, 24, 25, 27, 28, 29, 32, 33, 34, 39, 40, 41, 42, 43, 44, 46, 49, 53, 75, 76, 77, 123, 124, 125, 136, 172, 249, 253, 303, 371, 372, 399, 404, 420, 588, 625, 626, 628, 630, 637, 720, 769, 797, 801, 802, 808, 814, 820, 825, 826, 829, 832, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 853, 861], "warn": [3, 4, 5, 6, 8, 9, 10, 19, 22, 23, 24, 25, 41, 42, 43, 46, 805, 815, 816, 842, 859, 860, 861], "time": [3, 4, 6, 7, 9, 25, 27, 28, 33, 41, 43, 44, 45, 53, 55, 58, 64, 76, 78, 87, 93, 94, 130, 337, 368, 371, 372, 374, 383, 400, 405, 417, 419, 440, 447, 480, 486, 518, 612, 617, 625, 631, 632, 633, 635, 636, 640, 641, 655, 658, 673, 708, 711, 712, 713, 740, 741, 745, 746, 788, 789, 790, 806, 814, 815, 816, 819, 821, 823, 824, 825, 827, 830, 832, 833, 834, 836, 837, 840, 841, 845, 848, 850, 851, 852, 855, 856, 857, 859, 860, 864, 866, 867, 870, 871, 872], "filterwarn": [3, 4], "ignor": [3, 4, 40, 48, 49, 53, 70, 76, 135, 371, 372, 374, 383, 395, 396, 397, 426, 434, 442, 482, 483, 487, 526, 625, 632, 637, 659, 725, 726, 792, 815, 822, 824, 827, 840, 851, 872], "compos": [3, 7, 8, 27, 28, 41, 53, 76, 371, 385, 386, 387, 388, 815, 823, 837, 840, 859, 861, 866, 873], "resiz": [3, 5, 7, 8, 41, 42, 53, 76, 371, 407, 843], "256": [3, 5, 8, 52, 77, 279, 280, 589, 632, 647, 649, 772], "centercrop": [3, 8], "224": [3, 8, 12, 14, 27, 28, 41, 42, 44, 808, 860], "totensor": [3, 7, 8, 41], "mean": [3, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39, 41, 42, 43, 53, 54, 57, 59, 60, 62, 66, 68, 70, 72, 76, 77, 80, 82, 83, 85, 89, 91, 93, 130, 209, 326, 336, 365, 368, 371, 372, 373, 374, 377, 378, 383, 400, 405, 423, 436, 448, 449, 450, 451, 452, 453, 454, 455, 465, 470, 480, 497, 499, 505, 524, 525, 542, 613, 614, 616, 621, 625, 627, 630, 631, 632, 633, 634, 635, 636, 637, 639, 643, 647, 649, 650, 651, 653, 654, 655, 666, 692, 693, 694, 702, 711, 712, 713, 720, 735, 736, 772, 774, 775, 787, 788, 791, 808, 815, 816, 818, 819, 821, 823, 825, 826, 827, 833, 835, 836, 837, 840, 841, 843, 845, 847, 848, 849, 850, 851, 853, 860, 861, 863, 866], "0": [3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 125, 128, 130, 131, 132, 133, 134, 137, 139, 141, 142, 143, 144, 145, 148, 149, 150, 151, 159, 161, 164, 165, 169, 171, 176, 189, 192, 194, 197, 202, 203, 204, 205, 207, 208, 209, 211, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 321, 322, 324, 325, 326, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 390, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 414, 415, 416, 418, 421, 422, 423, 425, 426, 427, 430, 431, 433, 436, 437, 440, 441, 442, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 463, 465, 466, 467, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 535, 536, 537, 540, 541, 542, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 568, 570, 572, 573, 577, 582, 586, 587, 588, 589, 591, 593, 595, 596, 605, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 777, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 797, 801, 802, 806, 808, 812, 815, 816, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 835, 836, 837, 838, 840, 841, 845, 847, 848, 849, 850, 851, 859, 860], "485": [3, 8, 41], "456": [3, 8, 41, 840], "406": [3, 8, 41, 53, 76, 393, 536, 630], "std": [3, 7, 8, 9, 10, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 42, 57, 62, 66, 80, 85, 89, 378, 505, 632, 639, 643, 647, 649, 650, 651, 653, 654, 735, 736, 808, 827, 861, 863], "229": [3, 8, 41, 275, 628], "225": [3, 8, 41, 43, 230, 628], "torch_img": [3, 5, 8], "unsqueez": [3, 5, 7, 8], "img": [3, 5, 8, 24, 27, 28, 41, 42, 43, 45, 808, 848, 860], "4": [3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 22, 23, 24, 25, 27, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 113, 114, 122, 123, 124, 125, 128, 130, 132, 133, 134, 135, 136, 137, 139, 143, 145, 149, 150, 151, 159, 161, 164, 169, 171, 176, 193, 194, 202, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 316, 317, 324, 326, 331, 332, 334, 336, 337, 339, 340, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 355, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 436, 442, 448, 449, 450, 451, 452, 453, 454, 456, 458, 459, 460, 463, 464, 465, 466, 467, 470, 471, 472, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 500, 501, 502, 503, 506, 508, 509, 511, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 554, 556, 557, 558, 565, 572, 573, 588, 589, 590, 591, 593, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 775, 787, 788, 792, 801, 802, 808, 812, 814, 815, 821, 822, 823, 824, 825, 827, 830, 835, 838, 840, 843, 845, 847, 848, 849, 850, 857, 859, 866, 872, 873], "ipython": [3, 5, 8, 22, 23, 24, 25, 27, 28, 46], "displai": [3, 5, 8, 24, 27, 28, 41, 42, 43, 45, 46, 815, 822, 824, 829, 840, 848], "end": [3, 5, 41, 42, 53, 76, 122, 224, 280, 349, 368, 371, 373, 374, 419, 448, 470, 480, 482, 483, 625, 628, 802, 808, 815, 816, 821, 824, 830, 836, 841, 843, 844, 851, 864, 869], "see": [3, 4, 6, 7, 9, 10, 19, 20, 25, 27, 28, 29, 30, 34, 39, 40, 46, 47, 50, 52, 53, 58, 63, 64, 66, 67, 69, 75, 76, 81, 86, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 129, 133, 140, 143, 150, 169, 176, 219, 224, 226, 228, 229, 230, 231, 236, 237, 241, 243, 247, 248, 255, 256, 259, 261, 263, 265, 266, 269, 272, 274, 278, 285, 287, 290, 291, 296, 297, 299, 324, 331, 332, 363, 365, 368, 372, 373, 374, 422, 450, 488, 622, 625, 626, 628, 633, 640, 641, 643, 644, 664, 676, 679, 682, 689, 690, 741, 745, 746, 747, 748, 756, 757, 758, 759, 760, 761, 762, 763, 764, 784, 808, 809, 812, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 830, 831, 832, 833, 837, 838, 840, 843, 845, 847, 848, 851, 855, 862, 874], "5": [3, 4, 5, 6, 7, 8, 9, 10, 12, 19, 20, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 89, 93, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 122, 123, 124, 130, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 149, 150, 151, 155, 159, 161, 169, 171, 176, 193, 202, 207, 210, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 326, 329, 331, 332, 334, 336, 338, 340, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 353, 354, 355, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 379, 381, 383, 390, 391, 392, 393, 395, 396, 398, 399, 400, 403, 404, 408, 409, 410, 413, 414, 415, 416, 418, 421, 424, 425, 427, 428, 430, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 464, 465, 466, 467, 470, 471, 474, 475, 476, 479, 480, 485, 486, 487, 488, 489, 490, 492, 495, 496, 501, 502, 503, 506, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 525, 528, 534, 535, 536, 537, 540, 541, 542, 543, 545, 548, 549, 551, 554, 556, 557, 558, 572, 573, 577, 588, 589, 590, 591, 593, 597, 610, 611, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 650, 651, 652, 653, 654, 655, 656, 658, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 788, 801, 802, 808, 811, 814, 815, 816, 819, 821, 823, 824, 825, 827, 829, 830, 832, 835, 838, 840, 847, 848, 849, 860, 874], "set_default_devic": [3, 4, 5, 7, 8, 9, 213, 627, 826], "set_soft_device_mod": [3, 10, 14, 214, 627, 826], "true": [3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18, 21, 22, 24, 25, 27, 28, 32, 33, 34, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 124, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 152, 159, 161, 162, 163, 164, 167, 168, 169, 170, 171, 172, 173, 176, 188, 192, 193, 195, 196, 200, 203, 204, 206, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 467, 468, 470, 471, 472, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 510, 511, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 572, 573, 574, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 598, 603, 604, 606, 607, 609, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 777, 788, 789, 790, 791, 792, 794, 797, 799, 801, 802, 806, 808, 812, 815, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 843, 845, 848, 849, 850, 859, 860], "set_backend": [3, 4, 5, 8, 10, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 40, 42, 43, 44, 52, 54, 68, 75, 77, 163, 172, 190, 191, 195, 205, 207, 212, 220, 534, 558, 626, 627, 630, 633, 636, 681, 712, 713, 797, 808, 819, 821, 825, 826, 833, 834, 835, 845, 847, 850, 859, 860, 861], "ivy_model": [3, 4, 5, 8, 44], "ivy_alexnet": 3, "order": [3, 21, 31, 33, 41, 44, 46, 49, 53, 54, 57, 58, 60, 64, 65, 70, 76, 80, 81, 83, 87, 88, 93, 98, 99, 123, 124, 135, 143, 224, 243, 286, 324, 345, 365, 368, 371, 372, 374, 377, 381, 417, 422, 425, 426, 427, 428, 429, 433, 439, 441, 444, 447, 470, 471, 472, 477, 478, 490, 497, 498, 499, 502, 511, 625, 628, 632, 633, 635, 636, 640, 641, 642, 646, 647, 648, 649, 650, 651, 654, 668, 669, 674, 683, 684, 688, 690, 699, 702, 711, 712, 743, 745, 746, 747, 748, 749, 751, 752, 769, 791, 793, 802, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 837, 838, 839, 840, 841, 842, 843, 848, 850, 851, 855, 862, 865, 866, 867, 869, 872], "quick": [3, 16, 28, 816, 818, 838, 849], "call": [3, 7, 12, 14, 18, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34, 41, 45, 53, 68, 73, 76, 91, 93, 99, 118, 168, 169, 209, 372, 383, 439, 525, 576, 582, 597, 613, 614, 616, 624, 627, 630, 631, 633, 637, 681, 714, 720, 724, 725, 769, 780, 788, 789, 790, 792, 797, 802, 806, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 851, 856, 859, 860, 861, 866, 867, 870], "trace_graph": [3, 4, 5, 8, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 44, 790, 808, 845, 850, 858], "take": [3, 8, 18, 25, 27, 28, 33, 39, 41, 44, 53, 58, 60, 66, 76, 83, 93, 118, 119, 121, 137, 276, 283, 298, 363, 371, 372, 374, 391, 399, 404, 409, 419, 428, 442, 463, 470, 489, 519, 520, 624, 625, 628, 632, 633, 635, 636, 659, 673, 677, 702, 713, 753, 772, 780, 787, 788, 801, 806, 808, 809, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 836, 837, 838, 840, 843, 845, 847, 849, 850, 851, 852, 857, 859, 860, 863, 864, 872], "moment": [3, 53, 55, 76, 78, 372, 429, 611, 612, 617, 631, 792, 806, 814, 821, 851, 859, 860], "one": [3, 6, 7, 9, 12, 14, 16, 17, 20, 21, 24, 25, 27, 28, 30, 31, 43, 44, 45, 49, 53, 54, 57, 58, 60, 63, 64, 66, 70, 72, 75, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 89, 93, 122, 125, 135, 137, 138, 139, 149, 151, 209, 230, 236, 243, 244, 261, 267, 268, 269, 288, 298, 308, 311, 312, 330, 336, 339, 340, 343, 344, 347, 348, 349, 351, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 393, 395, 399, 400, 403, 404, 407, 415, 420, 422, 431, 440, 454, 458, 459, 460, 464, 470, 471, 472, 477, 479, 484, 487, 497, 498, 499, 504, 509, 519, 520, 523, 524, 525, 526, 527, 528, 530, 568, 572, 573, 575, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 638, 640, 641, 643, 646, 647, 648, 649, 650, 651, 654, 671, 673, 674, 678, 680, 689, 690, 698, 699, 700, 703, 705, 709, 733, 740, 743, 745, 746, 747, 748, 753, 755, 772, 774, 791, 794, 797, 802, 805, 808, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 842, 843, 844, 847, 848, 850, 851, 852, 853, 856, 857, 860, 866, 867, 869, 872], "cost": [3, 55, 78, 611, 612, 615, 617, 618, 619, 631, 636, 711, 712, 713, 802, 825, 843, 864], "arg": [3, 5, 6, 7, 8, 12, 14, 22, 23, 25, 27, 28, 32, 33, 34, 45, 48, 70, 92, 102, 118, 199, 209, 597, 624, 625, 627, 630, 767, 769, 784, 785, 788, 789, 790, 794, 797, 801, 806, 808, 820, 825, 826, 829, 835, 836, 837, 843, 845, 849, 859, 860, 861], "asarrai": [3, 4, 5, 7, 8, 42, 49, 53, 54, 65, 72, 76, 77, 88, 123, 381, 510, 511, 541, 552, 556, 557, 587, 588, 589, 625, 630, 632, 641, 642, 646, 746, 750, 829, 834, 837, 838], "cuda": [3, 4, 5, 6, 7, 8, 9, 10, 18, 27, 42, 43, 46, 49, 53, 62, 72, 76, 85, 133, 134, 137, 189, 190, 191, 207, 378, 504, 505, 507, 508, 625, 627, 633, 639, 684, 734, 735, 736, 737, 787, 788, 789, 790, 791, 792, 793, 806, 808, 845, 851, 853, 871], "7": [3, 5, 6, 7, 8, 9, 10, 12, 14, 20, 22, 23, 24, 25, 39, 41, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 108, 109, 110, 111, 122, 123, 124, 133, 136, 137, 155, 161, 164, 194, 216, 219, 222, 226, 227, 229, 230, 231, 232, 234, 236, 237, 238, 239, 240, 242, 243, 246, 247, 248, 253, 254, 255, 256, 257, 258, 259, 260, 261, 264, 266, 267, 268, 269, 271, 272, 273, 275, 276, 279, 280, 281, 283, 286, 287, 289, 290, 292, 293, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 326, 330, 334, 336, 337, 345, 346, 347, 349, 351, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 379, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 413, 414, 415, 416, 418, 421, 424, 437, 449, 450, 451, 452, 454, 455, 458, 459, 460, 464, 466, 470, 475, 476, 479, 480, 485, 486, 488, 489, 491, 492, 495, 496, 506, 508, 509, 516, 519, 520, 522, 523, 528, 534, 536, 537, 541, 542, 545, 556, 557, 558, 565, 572, 573, 588, 591, 611, 612, 614, 615, 616, 617, 618, 619, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 649, 651, 653, 654, 655, 656, 662, 664, 665, 666, 667, 669, 670, 671, 673, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 692, 693, 694, 695, 698, 699, 704, 706, 707, 709, 714, 715, 722, 726, 733, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 753, 754, 755, 757, 759, 761, 762, 772, 815, 816, 821, 823, 824, 827, 833, 836, 840], "output": [3, 4, 5, 6, 8, 18, 24, 25, 27, 28, 40, 41, 42, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 175, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 360, 361, 362, 363, 365, 368, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 417, 419, 420, 422, 423, 424, 426, 428, 431, 432, 434, 437, 438, 439, 440, 442, 443, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 463, 464, 465, 468, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 535, 536, 537, 541, 542, 543, 545, 549, 558, 565, 572, 573, 574, 598, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 772, 787, 788, 801, 802, 808, 810, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 828, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 845, 847, 849, 850, 851, 853, 859, 860, 867], "softmax": [3, 8, 12, 25, 27, 28, 43, 47, 57, 68, 69, 80, 373, 450, 622, 632, 659, 662, 784, 808], "pass": [3, 5, 7, 8, 9, 10, 12, 14, 18, 25, 27, 28, 34, 40, 41, 43, 45, 46, 52, 53, 68, 70, 75, 76, 91, 99, 118, 119, 121, 153, 175, 190, 209, 224, 270, 371, 373, 374, 377, 378, 383, 417, 450, 470, 497, 499, 504, 524, 525, 558, 624, 626, 627, 628, 630, 636, 711, 712, 767, 769, 773, 780, 785, 789, 790, 792, 793, 797, 801, 806, 808, 812, 814, 816, 819, 820, 821, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 851, 859, 860, 861, 864], "argsort": [3, 8, 65, 88, 642, 751, 837], "descend": [3, 8, 65, 88, 633, 642, 683, 684, 749, 752], "top": [3, 8, 11, 16, 25, 27, 28, 41, 42, 53, 60, 76, 315, 365, 373, 374, 448, 490, 541, 630, 696, 808, 815, 816, 825, 830, 837, 839, 840, 843, 848, 849, 866, 870], "logit": [3, 4, 5, 8, 41, 42, 43, 44, 53, 59, 76, 82, 363, 378, 504, 507, 634, 692, 694, 784, 808, 859], "gather": [3, 8, 41, 53, 54, 76, 77, 326, 327, 328, 365, 549, 551, 630, 873], "print": [3, 4, 6, 7, 8, 10, 12, 14, 18, 19, 21, 25, 27, 28, 29, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 144, 145, 148, 149, 150, 151, 153, 159, 160, 161, 162, 163, 166, 168, 169, 171, 176, 188, 189, 193, 195, 196, 197, 198, 200, 201, 202, 203, 204, 207, 208, 210, 211, 212, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 305, 306, 307, 309, 316, 317, 324, 326, 330, 331, 332, 334, 349, 350, 355, 359, 363, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 398, 400, 403, 405, 408, 409, 410, 413, 415, 416, 421, 424, 426, 428, 429, 439, 446, 449, 450, 451, 452, 453, 454, 455, 461, 463, 465, 476, 480, 485, 486, 488, 489, 490, 492, 496, 500, 501, 503, 518, 519, 520, 521, 528, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 568, 569, 571, 572, 573, 577, 578, 579, 582, 585, 586, 587, 588, 589, 591, 593, 595, 596, 597, 601, 602, 605, 608, 609, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 797, 801, 802, 806, 808, 815, 816, 823, 825, 827, 838, 840, 842, 845, 847, 848, 849, 859, 861], "indic": [3, 8, 49, 53, 54, 57, 58, 60, 61, 63, 64, 65, 70, 72, 73, 76, 77, 80, 81, 83, 84, 86, 87, 88, 93, 96, 123, 124, 137, 141, 143, 164, 168, 169, 280, 324, 325, 326, 345, 365, 368, 371, 372, 373, 374, 379, 381, 390, 391, 392, 394, 398, 399, 400, 404, 405, 408, 409, 410, 411, 415, 416, 426, 447, 450, 458, 459, 460, 463, 466, 468, 470, 471, 472, 475, 479, 485, 486, 488, 489, 490, 492, 494, 495, 509, 510, 511, 533, 548, 549, 551, 572, 573, 577, 610, 613, 614, 625, 628, 630, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 646, 648, 649, 650, 651, 654, 659, 676, 690, 698, 699, 700, 702, 703, 704, 705, 707, 709, 714, 717, 719, 721, 722, 723, 725, 729, 730, 731, 732, 733, 734, 740, 741, 742, 743, 745, 747, 749, 751, 752, 769, 770, 772, 774, 788, 794, 801, 802, 804, 815, 824, 832, 835, 837, 850, 859], "to_list": [3, 8, 54, 77, 630], "arrai": [3, 4, 6, 8, 9, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 165, 167, 168, 169, 171, 173, 174, 175, 176, 182, 192, 193, 197, 202, 204, 206, 209, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 555, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 568, 570, 571, 572, 573, 574, 576, 577, 583, 584, 586, 587, 588, 589, 590, 591, 593, 594, 595, 596, 597, 598, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 774, 780, 787, 788, 789, 790, 793, 797, 801, 802, 804, 808, 812, 814, 815, 816, 818, 821, 822, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 853, 860, 861, 864, 865, 866, 868, 872, 873], "282": [3, 8], "281": [3, 8, 41, 43], "285": [3, 8, 76], "dev": [3, 7, 8, 9, 10, 20, 41, 43, 46, 51, 70, 74, 197, 204, 627, 815, 826, 830, 833, 847, 849], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 10, 12, 14, 18, 19, 22, 23, 24, 25, 39, 41, 42, 43, 44, 46, 47, 52, 53, 58, 62, 69, 75, 76, 78, 81, 85, 108, 222, 257, 259, 261, 291, 292, 295, 363, 371, 383, 391, 393, 410, 413, 519, 611, 622, 628, 631, 633, 643, 671, 678, 736, 755], "tiger": [3, 8], "tabbi": [3, 8], "egyptian": [3, 8], "check": [3, 4, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 44, 46, 48, 50, 54, 58, 70, 73, 77, 81, 114, 152, 153, 162, 163, 166, 168, 169, 170, 173, 188, 195, 196, 203, 215, 534, 544, 546, 547, 554, 560, 561, 562, 563, 564, 580, 591, 603, 609, 622, 626, 627, 630, 633, 637, 669, 670, 676, 714, 724, 725, 726, 767, 774, 801, 802, 808, 809, 810, 813, 814, 815, 816, 817, 819, 823, 824, 826, 827, 829, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 847, 848, 849, 852, 859], "confirm": [3, 42, 811, 814], "same": [3, 4, 5, 6, 7, 8, 9, 14, 19, 20, 22, 23, 24, 25, 27, 30, 32, 34, 39, 40, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 89, 93, 94, 95, 96, 97, 98, 112, 122, 127, 132, 134, 135, 137, 139, 141, 142, 143, 145, 148, 149, 150, 161, 164, 209, 216, 217, 218, 219, 221, 223, 227, 229, 232, 236, 242, 243, 249, 269, 271, 273, 276, 278, 279, 280, 289, 297, 309, 323, 324, 325, 326, 327, 328, 331, 332, 334, 342, 358, 363, 365, 368, 371, 372, 373, 374, 377, 379, 381, 383, 390, 391, 392, 408, 409, 410, 411, 413, 414, 415, 416, 418, 425, 430, 431, 441, 442, 443, 444, 445, 447, 448, 450, 453, 463, 465, 480, 488, 489, 492, 497, 499, 509, 511, 516, 517, 518, 519, 520, 521, 522, 528, 565, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 639, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 659, 662, 663, 664, 665, 667, 668, 669, 670, 672, 673, 675, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 696, 699, 700, 702, 703, 705, 706, 711, 712, 727, 737, 745, 746, 747, 748, 749, 750, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 767, 769, 772, 773, 774, 780, 788, 801, 808, 815, 816, 820, 821, 823, 824, 825, 826, 827, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 855, 857, 859, 861, 863, 865, 872, 873], "8": [3, 7, 8, 9, 10, 20, 22, 23, 24, 25, 39, 41, 43, 46, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 98, 99, 106, 121, 131, 132, 136, 139, 145, 154, 156, 157, 158, 161, 169, 194, 211, 219, 221, 222, 226, 227, 230, 231, 232, 234, 240, 243, 247, 248, 254, 255, 256, 260, 261, 264, 265, 267, 268, 269, 274, 275, 278, 279, 280, 283, 284, 287, 288, 289, 293, 299, 301, 302, 303, 305, 306, 308, 309, 326, 330, 342, 345, 347, 348, 349, 352, 359, 363, 365, 368, 371, 372, 373, 374, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 409, 413, 414, 418, 421, 424, 432, 449, 450, 451, 453, 454, 455, 456, 458, 459, 460, 464, 466, 470, 475, 476, 485, 486, 489, 490, 491, 492, 495, 496, 506, 508, 520, 523, 524, 528, 534, 535, 537, 541, 542, 545, 548, 552, 556, 557, 558, 560, 561, 564, 567, 572, 573, 577, 587, 588, 589, 590, 591, 611, 614, 616, 618, 619, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 646, 650, 651, 653, 654, 655, 656, 659, 665, 666, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 699, 706, 707, 709, 715, 722, 726, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 754, 755, 757, 759, 761, 762, 772, 775, 788, 815, 823, 824, 827, 840, 844, 848], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 10, 12, 14, 27, 28, 41, 42, 53, 55, 57, 59, 76, 78, 80, 82, 93, 94, 311, 315, 349, 365, 368, 371, 372, 383, 398, 431, 516, 518, 521, 611, 612, 615, 617, 618, 619, 631, 632, 634, 636, 656, 657, 658, 659, 662, 692, 713, 774, 787, 788, 790, 792, 806, 808, 823, 833, 840, 845, 849, 850, 865], "imagenet1k_v1": [3, 8], "dropout": [3, 57, 80, 371, 395, 396, 397, 632, 657, 659, 662, 788, 848], "9": [3, 4, 5, 7, 8, 9, 10, 20, 22, 23, 24, 25, 39, 41, 43, 46, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 69, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88, 89, 98, 99, 106, 122, 123, 124, 136, 154, 155, 156, 157, 158, 161, 164, 217, 219, 221, 222, 225, 226, 227, 230, 231, 236, 237, 238, 243, 250, 256, 257, 258, 260, 264, 265, 267, 268, 269, 272, 274, 275, 279, 280, 283, 284, 285, 290, 296, 299, 300, 301, 338, 341, 345, 351, 352, 359, 363, 368, 369, 371, 373, 374, 381, 383, 390, 391, 392, 393, 398, 399, 403, 404, 408, 409, 413, 414, 418, 432, 449, 451, 453, 454, 458, 459, 460, 466, 470, 475, 485, 486, 487, 488, 490, 492, 495, 506, 508, 511, 520, 537, 541, 542, 543, 545, 548, 556, 557, 560, 561, 564, 572, 573, 587, 588, 590, 611, 612, 613, 617, 618, 622, 625, 626, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 642, 643, 646, 647, 648, 654, 655, 656, 664, 665, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 683, 684, 685, 687, 688, 689, 695, 699, 703, 704, 706, 707, 709, 714, 715, 720, 722, 725, 726, 734, 735, 736, 737, 739, 744, 745, 747, 749, 750, 752, 754, 755, 757, 759, 761, 762, 772, 792, 823, 825, 827, 835, 840, 848, 849, 862], "torch_output": [3, 5, 8], "dim": [3, 8, 43, 53, 70, 72, 76, 137, 309, 365, 371, 374, 389, 399, 400, 401, 404, 412, 470, 492, 625, 632, 645, 652, 653, 658, 774, 788, 808, 825, 837, 838, 843], "torch_class": [3, 8], "torch_logit": [3, 8], "tensor": [3, 4, 7, 8, 9, 12, 14, 18, 19, 22, 23, 25, 27, 28, 29, 33, 39, 41, 49, 52, 53, 54, 57, 59, 60, 62, 70, 72, 75, 76, 77, 80, 81, 82, 83, 85, 92, 125, 133, 134, 137, 143, 159, 175, 267, 268, 298, 315, 319, 320, 321, 322, 323, 324, 333, 356, 363, 365, 368, 371, 372, 373, 374, 383, 384, 390, 391, 394, 398, 407, 408, 409, 410, 417, 419, 421, 428, 429, 430, 431, 434, 436, 438, 440, 441, 444, 446, 447, 448, 450, 453, 454, 470, 473, 478, 481, 482, 483, 484, 487, 492, 493, 524, 529, 572, 573, 625, 626, 628, 630, 632, 633, 634, 635, 639, 655, 658, 659, 674, 685, 692, 702, 704, 734, 788, 797, 802, 806, 808, 820, 821, 825, 826, 830, 832, 833, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 851, 853, 855, 859, 860, 861, 863, 864, 867, 869, 870, 873], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 8, 25, 39, 614, 621, 631, 848], "lt": [3, 8, 12, 14, 18, 22, 23, 24, 25, 39, 41, 43, 99], "takebackward0": [3, 8], "gt": [3, 6, 8, 12, 14, 18, 22, 23, 24, 25, 39, 41, 43, 46, 99, 838, 845], "great": [3, 5, 808, 816, 840, 845, 847, 856, 857, 872], "With": [3, 20, 30, 39, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 66, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 123, 124, 125, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 148, 149, 150, 151, 153, 159, 160, 161, 164, 171, 176, 177, 178, 179, 180, 190, 193, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 331, 332, 334, 336, 339, 340, 344, 347, 348, 349, 351, 352, 355, 363, 365, 368, 371, 372, 373, 374, 383, 393, 395, 396, 403, 415, 422, 423, 424, 426, 427, 428, 439, 442, 454, 470, 471, 472, 474, 477, 479, 480, 486, 488, 490, 492, 494, 509, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 534, 535, 536, 537, 540, 541, 542, 543, 544, 548, 549, 552, 554, 556, 557, 558, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 662, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 680, 681, 682, 683, 684, 685, 687, 688, 689, 692, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 815, 825, 827, 837, 840, 843, 845, 856, 857, 859, 866, 869], "simpl": [3, 12, 16, 17, 19, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 39, 41, 43, 46, 53, 76, 383, 518, 774, 788, 802, 808, 814, 815, 816, 820, 822, 823, 825, 826, 827, 828, 833, 836, 837, 840, 841, 843, 847, 849, 850, 851, 853, 855, 859, 860, 865, 866, 867, 868], "chang": [3, 4, 10, 18, 28, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 96, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 628, 635, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 715, 726, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 808, 814, 815, 816, 817, 819, 821, 822, 823, 824, 825, 827, 828, 830, 831, 837, 838, 839, 840, 841, 842, 843, 845, 849, 851, 852, 857, 859, 869, 872], "backend": [3, 6, 9, 19, 20, 21, 22, 23, 24, 25, 28, 30, 31, 33, 48, 49, 53, 54, 58, 70, 76, 77, 81, 98, 125, 162, 163, 166, 188, 195, 196, 198, 201, 212, 331, 332, 368, 372, 424, 426, 525, 534, 546, 547, 555, 558, 559, 569, 576, 591, 594, 625, 626, 627, 630, 633, 681, 683, 767, 769, 770, 772, 773, 774, 777, 779, 780, 785, 789, 790, 792, 796, 797, 808, 812, 813, 815, 816, 818, 819, 820, 824, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 840, 842, 843, 844, 846, 847, 850, 853, 855, 859, 860, 861, 866, 869, 872, 873], "let": [3, 4, 5, 7, 9, 10, 12, 14, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 41, 42, 44, 46, 54, 66, 77, 216, 217, 218, 219, 222, 225, 234, 237, 239, 241, 250, 251, 252, 257, 259, 272, 280, 282, 283, 287, 548, 549, 628, 630, 633, 643, 687, 757, 759, 760, 761, 762, 808, 814, 817, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 857, 859, 860, 873], "u": [3, 7, 41, 43, 45, 46, 53, 58, 72, 76, 81, 93, 94, 134, 372, 436, 443, 445, 633, 637, 663, 669, 670, 683, 722, 808, 809, 815, 816, 818, 823, 824, 831, 834, 836, 837, 838, 839, 840, 841, 843, 849, 851, 856], "differ": [3, 4, 7, 9, 10, 12, 16, 17, 21, 22, 23, 27, 28, 31, 32, 33, 34, 52, 53, 54, 58, 66, 70, 76, 77, 89, 98, 99, 108, 111, 161, 219, 236, 243, 244, 269, 285, 330, 337, 342, 343, 347, 368, 371, 372, 374, 383, 405, 416, 441, 447, 464, 471, 472, 486, 519, 520, 528, 548, 549, 622, 626, 628, 630, 632, 633, 635, 643, 655, 656, 671, 681, 696, 706, 753, 754, 759, 761, 762, 767, 772, 780, 789, 790, 808, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 860, 861, 863, 864, 865, 866, 869, 872, 873], "ll": [3, 5, 7, 9, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 42, 808, 809, 811, 812, 814, 815, 816, 817, 822, 827, 830, 831, 835, 836, 848, 852, 857, 859, 860], "try": [3, 19, 29, 39, 42, 46, 70, 597, 630, 787, 797, 808, 814, 815, 816, 819, 820, 823, 824, 825, 829, 831, 836, 838, 845, 847, 851, 854, 856, 857, 861], "10": [3, 5, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 39, 41, 43, 45, 46, 49, 52, 53, 54, 55, 57, 58, 62, 64, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 122, 132, 133, 134, 218, 226, 227, 230, 231, 234, 241, 246, 248, 254, 256, 258, 269, 275, 282, 283, 288, 297, 330, 331, 332, 335, 339, 340, 342, 344, 345, 347, 348, 349, 351, 352, 356, 359, 368, 371, 374, 383, 390, 391, 392, 393, 403, 408, 409, 413, 414, 415, 416, 418, 448, 460, 463, 466, 470, 475, 485, 486, 495, 516, 519, 520, 523, 525, 528, 541, 542, 543, 545, 548, 549, 551, 556, 557, 565, 573, 577, 582, 588, 590, 602, 605, 617, 625, 628, 630, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 649, 655, 665, 667, 671, 672, 673, 674, 675, 678, 683, 684, 685, 687, 689, 699, 704, 705, 706, 707, 709, 720, 722, 725, 733, 734, 735, 736, 737, 743, 745, 751, 753, 754, 755, 756, 758, 759, 761, 762, 772, 774, 792, 808, 812, 815, 819, 823, 824, 825, 827, 830, 835, 838, 840, 845, 847, 848, 856, 861, 871], "tf": [3, 5, 6, 9, 12, 14, 19, 22, 23, 25, 27, 28, 29, 30, 32, 34, 39, 44, 45, 785, 808, 820, 825, 826, 832, 836, 837, 840, 841, 843, 845, 850, 851, 853, 859, 860, 861, 866], "onc": [3, 5, 27, 28, 39, 41, 58, 62, 81, 85, 209, 372, 425, 627, 633, 639, 668, 669, 670, 683, 734, 808, 814, 815, 816, 823, 824, 825, 826, 827, 830, 831, 836, 837, 840, 843, 845, 848, 851, 852, 857, 859], "set": [3, 12, 14, 20, 27, 28, 30, 33, 41, 42, 43, 44, 45, 48, 53, 54, 57, 58, 63, 65, 66, 70, 76, 77, 80, 81, 86, 88, 89, 111, 114, 121, 141, 143, 177, 178, 179, 180, 181, 192, 205, 206, 207, 208, 209, 224, 324, 336, 352, 354, 359, 365, 368, 369, 371, 372, 373, 374, 383, 394, 415, 419, 423, 427, 430, 448, 453, 454, 470, 480, 483, 490, 518, 523, 524, 525, 526, 527, 528, 530, 534, 541, 553, 558, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 599, 622, 624, 625, 626, 627, 628, 630, 632, 633, 637, 639, 640, 642, 643, 655, 662, 664, 674, 676, 679, 682, 683, 714, 721, 724, 725, 726, 731, 732, 738, 740, 741, 745, 747, 748, 749, 752, 760, 762, 769, 772, 773, 774, 775, 780, 787, 788, 790, 792, 797, 802, 805, 806, 808, 809, 816, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 848, 855, 858, 859, 860, 864, 865, 866, 867, 868, 870, 873], "our": [3, 7, 9, 10, 12, 14, 16, 19, 20, 22, 23, 24, 27, 28, 29, 30, 32, 33, 34, 39, 41, 42, 45, 68, 91, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 774, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 827, 829, 830, 831, 834, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 855, 856, 859, 871, 872, 874], "post": [3, 5, 41, 61, 84, 638, 733, 815, 830, 835, 850, 852], "process": [3, 5, 6, 22, 27, 28, 32, 41, 203, 215, 627, 809, 815, 816, 822, 823, 824, 830, 831, 833, 835, 837, 838, 839, 840, 843, 845, 850, 856, 857, 859, 864, 865, 866, 869, 870, 872, 873], "11": [3, 5, 6, 8, 9, 18, 20, 22, 23, 24, 25, 39, 41, 42, 43, 46, 52, 53, 54, 57, 58, 62, 66, 75, 76, 77, 80, 81, 83, 85, 89, 99, 219, 223, 226, 231, 241, 278, 279, 285, 349, 368, 371, 372, 374, 390, 391, 403, 408, 409, 413, 414, 418, 427, 463, 464, 466, 470, 475, 477, 495, 519, 520, 535, 541, 542, 548, 557, 573, 628, 630, 632, 633, 634, 635, 637, 639, 640, 641, 643, 646, 647, 655, 656, 667, 670, 671, 672, 673, 674, 678, 682, 683, 684, 685, 687, 689, 692, 699, 704, 705, 707, 709, 720, 722, 732, 735, 736, 737, 744, 745, 753, 754, 755, 762, 823, 824, 825, 827, 835], "st": [3, 4, 7, 772, 819, 838, 840], "perf_count": [3, 6, 7], "raw_logit": 3, "latenc": [3, 7], "nn": [3, 5, 6, 14, 25, 27, 28, 41, 45, 135, 625, 808, 833, 838, 843, 850, 860, 867], "axi": [3, 5, 10, 42, 43, 44, 47, 49, 52, 53, 54, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 72, 75, 76, 77, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 109, 113, 133, 134, 137, 209, 283, 288, 331, 332, 336, 337, 345, 352, 368, 371, 373, 374, 377, 381, 383, 393, 394, 400, 403, 405, 415, 416, 452, 457, 465, 466, 467, 470, 471, 472, 475, 480, 485, 486, 488, 489, 490, 492, 494, 495, 500, 501, 503, 511, 516, 519, 520, 521, 523, 524, 525, 526, 527, 528, 541, 548, 610, 622, 625, 627, 628, 630, 632, 633, 634, 635, 636, 639, 640, 641, 642, 643, 644, 654, 664, 667, 674, 687, 689, 690, 692, 693, 694, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 739, 740, 741, 745, 747, 749, 750, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 784, 788, 789, 794, 823, 825, 827, 829, 832, 833, 836, 837, 840, 843, 845, 847, 850], "direct": [3, 53, 76, 337, 344, 348, 353, 357, 368, 371, 374, 405, 416, 471, 472, 486, 642, 752, 814, 820, 822, 837, 843, 849, 850, 862, 866, 867, 870], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 10, 12, 14, 20, 21, 22, 23, 27, 28, 33, 39, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 97, 98, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 204, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 317, 319, 320, 321, 322, 323, 324, 325, 331, 332, 333, 334, 335, 337, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 356, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 416, 417, 420, 421, 422, 423, 425, 426, 427, 430, 431, 432, 433, 434, 437, 438, 439, 440, 441, 442, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 460, 461, 463, 465, 468, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 536, 537, 541, 542, 543, 545, 548, 549, 552, 558, 565, 572, 573, 583, 592, 594, 606, 610, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 749, 750, 752, 753, 754, 755, 757, 759, 760, 762, 763, 764, 769, 772, 774, 787, 788, 791, 801, 806, 808, 816, 817, 823, 825, 826, 827, 828, 829, 830, 832, 836, 837, 838, 840, 841, 842, 845, 847, 848, 849, 850, 859, 860], "dtype": [3, 5, 8, 10, 14, 20, 22, 23, 24, 25, 39, 42, 49, 50, 53, 54, 57, 58, 62, 63, 66, 70, 72, 73, 75, 76, 77, 80, 81, 85, 86, 89, 98, 101, 102, 103, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 144, 145, 146, 147, 148, 149, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 204, 231, 235, 267, 268, 270, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 329, 334, 336, 352, 365, 368, 371, 372, 373, 374, 378, 383, 393, 403, 415, 416, 419, 442, 448, 453, 464, 488, 504, 505, 506, 507, 508, 518, 519, 520, 521, 524, 527, 528, 545, 546, 547, 549, 558, 567, 595, 625, 626, 627, 628, 630, 632, 633, 636, 639, 640, 642, 643, 644, 648, 655, 674, 690, 712, 713, 735, 736, 737, 740, 741, 742, 751, 752, 753, 754, 759, 761, 763, 764, 767, 769, 772, 774, 775, 787, 788, 789, 790, 791, 793, 808, 812, 819, 821, 825, 826, 827, 829, 830, 833, 834, 836, 837, 838, 840, 841, 845, 847, 860], "int32": [3, 39, 41, 50, 53, 54, 62, 63, 66, 73, 76, 77, 85, 86, 128, 133, 137, 139, 145, 148, 151, 153, 155, 157, 159, 162, 164, 165, 169, 172, 176, 180, 184, 186, 204, 231, 267, 268, 379, 383, 509, 519, 520, 521, 549, 558, 595, 625, 626, 627, 628, 630, 639, 640, 643, 735, 736, 737, 741, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 8, 10, 12, 14, 19, 20, 39, 41, 42, 43, 49, 50, 53, 54, 57, 72, 73, 76, 77, 80, 89, 134, 137, 139, 145, 146, 147, 151, 155, 156, 159, 160, 161, 162, 165, 168, 169, 171, 176, 179, 185, 235, 249, 276, 329, 342, 365, 368, 371, 372, 373, 383, 393, 403, 416, 442, 448, 453, 521, 558, 595, 625, 626, 628, 630, 632, 633, 636, 648, 650, 651, 654, 681, 683, 684, 690, 712, 713, 769, 772, 773, 808, 825, 827, 838, 840, 841, 860, 861], "As": [3, 5, 7, 9, 10, 12, 14, 20, 24, 25, 27, 28, 30, 33, 39, 40, 64, 68, 91, 633, 641, 681, 745, 746, 747, 748, 808, 812, 814, 815, 816, 817, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 833, 836, 837, 838, 839, 840, 843, 847, 848, 849, 851, 855, 859, 860, 861, 866, 871], "expect": [3, 5, 7, 9, 20, 24, 27, 28, 30, 43, 44, 46, 53, 58, 59, 76, 82, 175, 243, 287, 371, 373, 394, 416, 453, 532, 626, 628, 630, 632, 634, 657, 678, 692, 787, 788, 808, 815, 816, 819, 825, 826, 829, 831, 834, 836, 838, 840, 843, 851, 852, 857, 859, 860, 861], "ident": [3, 10, 25, 42, 44, 58, 70, 128, 197, 551, 577, 625, 627, 630, 633, 637, 671, 675, 727, 788, 823, 833, 834, 837, 838, 841, 843, 847, 848, 851, 853, 855, 857], "had": [3, 823, 824, 836, 841, 845, 866, 867], "anoth": [3, 18, 20, 21, 24, 25, 27, 28, 30, 31, 43, 44, 129, 149, 151, 625, 626, 808, 814, 815, 816, 821, 823, 825, 826, 829, 831, 833, 836, 837, 840, 845, 847, 850, 853, 856, 858, 859, 860, 866, 872], "postprocess": 3, "routin": [3, 824, 836, 837, 843, 851, 866], "feed": [3, 209, 627, 859, 866, 867], "other": [3, 6, 7, 9, 12, 14, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 50, 52, 53, 54, 60, 66, 70, 73, 75, 76, 77, 83, 89, 93, 98, 99, 122, 137, 149, 175, 236, 241, 243, 259, 268, 269, 333, 337, 368, 374, 464, 465, 473, 530, 531, 625, 626, 628, 630, 639, 643, 696, 706, 737, 760, 762, 769, 774, 808, 812, 814, 815, 816, 817, 819, 820, 823, 824, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 852, 853, 856, 859, 860, 862, 864, 865, 866, 872, 873], "carefulli": [3, 274, 628, 787, 837, 864, 869], "rewrit": 3, "easili": [3, 24, 27, 28, 39, 808, 815, 820, 824, 830, 837, 840, 843, 848, 849, 850, 851, 856, 866, 872, 873], "out": [3, 5, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 42, 45, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 150, 159, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 419, 420, 421, 422, 423, 424, 425, 428, 429, 431, 432, 433, 434, 435, 437, 438, 439, 440, 442, 446, 449, 450, 451, 452, 454, 455, 461, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 536, 537, 541, 542, 543, 545, 548, 549, 558, 568, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 780, 784, 785, 787, 788, 790, 791, 792, 793, 808, 809, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 855, 856, 857, 859, 860, 866, 873], "quickest": 3, "particular": [3, 27, 28, 264, 628, 773, 815, 816, 819, 821, 824, 825, 827, 834, 836, 837, 840, 841, 862, 866, 872], "hardwar": [3, 41, 98, 102, 808, 815, 843, 856, 862, 864, 865, 866, 867, 868, 869, 870, 871, 872], "again": [3, 5, 21, 22, 30, 31, 32, 33, 633, 681, 816, 820, 821, 822, 823, 827, 829, 831, 836, 837, 840, 841, 843, 848, 850, 851, 856, 857, 871, 872], "speed": [3, 7, 9, 10, 27, 28, 41, 46, 54, 77, 565, 630, 840, 855, 869], "up": [3, 5, 7, 9, 10, 27, 53, 54, 76, 77, 371, 374, 394, 407, 464, 472, 553, 565, 630, 632, 655, 657, 808, 809, 812, 814, 816, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 855, 856, 857, 859, 867, 872, 873], "12": [3, 5, 7, 8, 10, 18, 20, 22, 23, 24, 25, 39, 41, 42, 43, 50, 52, 53, 54, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 84, 85, 89, 98, 99, 164, 219, 221, 226, 230, 231, 234, 236, 237, 238, 256, 269, 272, 279, 282, 289, 290, 313, 314, 345, 348, 349, 365, 368, 371, 374, 383, 390, 391, 392, 393, 395, 399, 400, 408, 409, 413, 414, 415, 416, 418, 463, 464, 466, 470, 475, 492, 495, 508, 519, 525, 526, 527, 537, 541, 542, 573, 579, 588, 602, 628, 630, 632, 633, 635, 637, 638, 639, 640, 641, 643, 646, 650, 655, 656, 667, 669, 671, 674, 678, 682, 684, 685, 687, 689, 699, 703, 705, 707, 709, 726, 733, 735, 736, 737, 744, 745, 753, 754, 755, 759, 761, 772, 815, 821, 823, 825, 827, 835], "repeat": [3, 4, 21, 31, 53, 54, 60, 76, 77, 83, 371, 374, 383, 400, 405, 469, 518, 543, 630, 635, 636, 708, 712, 713, 801, 816, 820, 821, 827, 828, 836, 840], "previou": [3, 10, 20, 21, 22, 24, 30, 31, 32, 34, 55, 76, 78, 183, 184, 185, 186, 187, 360, 370, 371, 417, 598, 600, 601, 602, 603, 605, 606, 608, 612, 617, 626, 630, 631, 787, 805, 815, 816, 819, 821, 824, 826, 832, 837, 840, 843, 850, 851, 869], "trace": [3, 4, 5, 7, 8, 9, 16, 17, 21, 24, 27, 30, 32, 33, 45, 54, 58, 70, 77, 81, 560, 561, 564, 575, 584, 599, 607, 630, 633, 769, 780, 790, 792, 806, 808, 819, 823, 825, 837, 842, 843, 845, 850, 851, 858, 859, 860, 867, 872], "befor": [3, 4, 5, 19, 20, 21, 22, 23, 29, 30, 31, 32, 33, 34, 41, 53, 57, 58, 60, 64, 66, 70, 76, 80, 81, 206, 209, 214, 371, 374, 383, 399, 404, 414, 418, 464, 471, 472, 473, 480, 519, 520, 627, 632, 633, 635, 636, 637, 641, 643, 645, 646, 647, 648, 650, 652, 654, 658, 659, 662, 673, 674, 690, 696, 711, 712, 726, 745, 746, 747, 748, 753, 754, 759, 761, 769, 788, 797, 801, 814, 815, 816, 819, 820, 822, 825, 826, 828, 829, 830, 831, 832, 834, 835, 836, 837, 838, 840, 845, 848, 851, 859, 860, 866], "13": [3, 5, 7, 8, 18, 22, 23, 24, 25, 39, 41, 43, 47, 52, 53, 57, 58, 62, 66, 75, 76, 77, 78, 80, 83, 85, 89, 98, 114, 164, 194, 219, 234, 243, 254, 274, 283, 345, 352, 359, 368, 371, 374, 392, 393, 403, 414, 418, 463, 464, 466, 470, 475, 495, 508, 519, 520, 536, 537, 541, 542, 557, 579, 588, 611, 622, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 640, 641, 643, 646, 647, 655, 656, 667, 671, 678, 682, 684, 687, 709, 713, 726, 735, 736, 737, 744, 745, 753, 754, 755, 823, 825, 827, 837], "026875037000081647": 3, "14": [3, 5, 7, 8, 23, 39, 41, 42, 43, 50, 52, 53, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 85, 148, 161, 164, 217, 222, 224, 231, 235, 261, 265, 269, 275, 282, 290, 341, 371, 372, 374, 383, 390, 391, 392, 393, 403, 408, 410, 413, 414, 415, 418, 422, 428, 429, 464, 466, 470, 475, 495, 519, 588, 611, 626, 628, 630, 631, 632, 633, 635, 637, 641, 643, 646, 647, 649, 651, 653, 655, 667, 669, 671, 678, 685, 687, 689, 709, 726, 735, 736, 737, 745, 754, 755, 823, 827, 840], "overrid": [3, 5, 33, 42, 49, 53, 72, 76, 137, 383, 518, 625, 820, 822], "behavior": [3, 5, 53, 64, 236, 243, 269, 278, 384, 529, 576, 600, 628, 630, 641, 745, 746, 747, 748, 814, 822, 823, 824, 825, 836, 837, 838, 840, 843, 845, 851, 863], "prealloc": [3, 5], "75": [3, 5, 39, 52, 53, 75, 76, 77, 80, 85, 115, 133, 222, 224, 236, 238, 249, 311, 344, 345, 365, 368, 414, 528, 543, 556, 588, 622, 625, 628, 630, 633, 637, 639, 646, 672, 678, 722, 737], "memori": [3, 5, 6, 9, 19, 22, 23, 24, 25, 49, 53, 60, 72, 76, 83, 124, 135, 191, 203, 209, 211, 215, 374, 383, 458, 459, 466, 468, 470, 471, 472, 479, 495, 525, 571, 576, 600, 625, 627, 630, 632, 635, 657, 658, 698, 699, 700, 702, 704, 705, 707, 709, 802, 806, 824, 825, 826, 836, 837, 843, 845, 851, 859, 866, 868, 869, 870], "temporari": [3, 5, 585, 608, 630, 802, 825, 842], "fix": [3, 5, 43, 53, 76, 93, 94, 368, 371, 372, 417, 447, 632, 659, 808, 812, 815, 816, 819, 825, 831, 840, 841], "until": [3, 5, 802, 816, 836, 845, 851, 856, 859, 873], "handl": [3, 5, 39, 41, 47, 51, 52, 53, 69, 70, 74, 75, 76, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 189, 190, 191, 192, 193, 197, 202, 203, 211, 215, 221, 233, 258, 260, 274, 280, 281, 286, 287, 291, 296, 297, 299, 363, 374, 463, 489, 622, 627, 628, 633, 643, 687, 759, 761, 784, 792, 809, 811, 818, 823, 824, 825, 831, 832, 833, 835, 836, 837, 838, 839, 840, 842, 843, 849, 863, 873], "o": [3, 5, 40, 41, 42, 43, 45, 568, 630, 632, 659, 808, 815, 818, 824, 845, 852], "environ": [3, 5, 6, 9, 22, 23, 24, 25, 42, 45, 808, 809, 816, 852, 866, 868], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 6, 10, 22, 23, 25, 810, 813, 815, 822, 864, 868, 870], "jit": [3, 7, 9, 27, 30, 845, 851, 859, 866], "img_jax": [3, 5], "device_put": [3, 7], "15": [3, 5, 6, 8, 9, 10, 23, 39, 41, 42, 43, 46, 52, 53, 54, 58, 62, 66, 72, 73, 75, 76, 77, 80, 81, 83, 85, 89, 99, 132, 161, 219, 226, 230, 236, 238, 247, 254, 255, 260, 261, 269, 278, 279, 280, 345, 359, 368, 369, 371, 372, 374, 383, 390, 391, 408, 410, 413, 414, 418, 424, 466, 470, 475, 495, 519, 537, 541, 542, 545, 556, 557, 582, 588, 605, 625, 626, 628, 630, 632, 633, 635, 637, 639, 640, 641, 643, 646, 656, 667, 670, 671, 672, 678, 684, 685, 703, 709, 714, 735, 736, 743, 745, 754, 755, 769, 811, 815, 824, 827, 835, 869], "warm": 3, "_": [3, 6, 7, 9, 10, 27, 40, 41, 52, 53, 70, 75, 76, 78, 94, 151, 239, 241, 249, 250, 265, 331, 332, 368, 371, 374, 383, 415, 444, 447, 488, 518, 541, 611, 612, 626, 628, 630, 631, 633, 635, 637, 643, 681, 682, 684, 710, 721, 760, 816, 824, 825, 828, 836, 840, 848], "rang": [3, 6, 10, 27, 28, 39, 40, 41, 43, 49, 53, 66, 72, 76, 122, 133, 134, 283, 295, 303, 315, 363, 365, 372, 374, 383, 426, 438, 473, 481, 483, 488, 493, 519, 520, 521, 541, 610, 625, 628, 630, 641, 643, 745, 753, 754, 759, 761, 772, 774, 775, 787, 808, 811, 814, 825, 829, 833, 840, 845, 848, 849, 850, 866, 872], "16": [3, 5, 6, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 54, 57, 58, 62, 66, 73, 75, 76, 77, 80, 81, 83, 85, 98, 99, 164, 230, 259, 279, 286, 342, 345, 349, 368, 371, 374, 383, 390, 391, 393, 399, 403, 404, 408, 409, 414, 418, 453, 470, 519, 525, 542, 545, 567, 588, 589, 621, 626, 628, 630, 631, 632, 633, 635, 637, 639, 640, 643, 654, 656, 663, 667, 670, 671, 678, 680, 684, 709, 722, 735, 736, 737, 744, 754, 755, 772, 775, 808, 816, 825, 827, 848], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 53, 69, 70, 106, 371, 373, 407, 412, 452, 453, 641, 745, 747, 774, 784, 815, 816, 819, 827, 845], "note": [3, 5, 10, 23, 27, 28, 33, 42, 43, 44, 53, 54, 58, 60, 64, 76, 81, 83, 93, 130, 143, 175, 243, 278, 279, 286, 324, 325, 345, 365, 368, 371, 372, 374, 394, 425, 430, 440, 441, 447, 470, 488, 626, 628, 632, 633, 635, 641, 643, 659, 668, 669, 680, 681, 683, 702, 706, 746, 748, 757, 788, 802, 806, 812, 814, 815, 816, 820, 825, 827, 828, 831, 836, 837, 838, 840, 841, 843], "were": [3, 5, 44, 70, 73, 164, 168, 169, 243, 628, 632, 659, 814, 815, 816, 825, 829, 831, 835, 836, 838, 840, 841, 843, 845, 859, 866, 867, 872], "function": [3, 6, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 161, 162, 163, 164, 167, 168, 169, 171, 175, 176, 193, 195, 196, 205, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 380, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 571, 572, 573, 576, 577, 580, 582, 584, 587, 588, 589, 590, 591, 593, 595, 596, 597, 603, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 716, 718, 720, 721, 722, 724, 725, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 770, 772, 773, 774, 775, 780, 784, 787, 790, 797, 798, 804, 806, 808, 812, 815, 816, 818, 819, 820, 821, 822, 824, 827, 828, 830, 836, 839, 844, 846, 847, 848, 849, 853, 855, 859, 861, 863, 864, 865, 866, 867, 872, 873], "calcul": [3, 10, 41, 52, 53, 54, 59, 66, 70, 75, 76, 77, 81, 82, 89, 99, 216, 217, 218, 219, 220, 221, 222, 223, 224, 233, 234, 236, 239, 240, 241, 257, 258, 259, 260, 261, 262, 267, 268, 269, 274, 281, 282, 283, 285, 286, 287, 293, 303, 331, 332, 345, 355, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 426, 448, 453, 480, 497, 499, 525, 565, 628, 630, 633, 634, 643, 670, 678, 681, 692, 693, 694, 756, 757, 758, 759, 760, 761, 762, 772, 774, 787, 788, 791, 814, 828, 845, 856, 859], "dog": 3, "18": [3, 9, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 62, 75, 76, 77, 80, 81, 85, 89, 109, 231, 236, 278, 282, 291, 292, 345, 363, 368, 371, 374, 393, 399, 403, 404, 408, 414, 418, 470, 587, 622, 628, 633, 639, 643, 650, 667, 673, 678, 685, 735, 736, 737, 754, 755, 759, 823, 825, 827], "19": [3, 9, 22, 23, 24, 25, 39, 41, 42, 43, 46, 52, 53, 62, 75, 76, 80, 81, 85, 222, 231, 259, 269, 286, 371, 372, 374, 383, 392, 393, 404, 408, 414, 418, 424, 429, 470, 519, 628, 633, 637, 639, 642, 667, 674, 687, 725, 735, 736, 737, 752, 827], "006431100999861883": 3, "258": [3, 632, 647, 649], "104": [3, 66, 633, 643, 678, 755], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 824], "predict": [3, 5, 8, 10, 41, 42, 43, 44, 53, 59, 76, 82, 373, 449, 452, 455, 634, 692, 693, 694, 808, 825], "down": [3, 20, 30, 44, 53, 76, 371, 374, 407, 472, 815, 840, 853, 866, 872], "itself": [3, 22, 32, 52, 93, 270, 531, 597, 628, 630, 637, 726, 802, 812, 815, 816, 819, 822, 823, 824, 825, 826, 829, 830, 831, 836, 837, 849, 851, 855, 859, 865, 866, 867, 872], "version": [3, 6, 10, 24, 25, 30, 41, 42, 43, 46, 47, 53, 76, 93, 106, 287, 336, 338, 368, 383, 523, 528, 610, 628, 630, 633, 669, 670, 769, 797, 798, 808, 815, 816, 822, 824, 825, 828, 836, 838, 845, 855, 856, 857, 860, 872, 873], "return": [3, 5, 7, 8, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 779, 780, 785, 787, 788, 790, 792, 797, 798, 801, 802, 803, 804, 805, 806, 808, 815, 816, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 859, 860, 861, 867], "20": [3, 6, 10, 14, 39, 41, 42, 43, 46, 52, 53, 54, 57, 62, 66, 75, 76, 77, 80, 81, 85, 89, 231, 235, 239, 275, 279, 283, 300, 345, 347, 349, 368, 371, 374, 390, 392, 408, 414, 418, 463, 485, 541, 548, 549, 551, 573, 577, 588, 628, 630, 633, 639, 640, 643, 646, 647, 658, 667, 672, 674, 678, 685, 735, 743, 744, 753, 754, 755, 759, 761, 808, 824, 843, 847], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 856], "sourc": [3, 6, 8, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 33, 34, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 770, 772, 773, 774, 776, 777, 778, 779, 780, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 814, 815, 816, 819, 820, 822, 823, 824, 837, 839, 855, 856, 857, 858, 860, 861, 865, 866, 867, 868, 869], "21": [3, 10, 39, 41, 43, 46, 52, 53, 54, 62, 72, 75, 76, 80, 81, 85, 89, 98, 134, 164, 219, 222, 224, 230, 254, 269, 300, 352, 371, 372, 373, 374, 383, 390, 393, 403, 408, 414, 416, 418, 422, 448, 463, 519, 573, 625, 626, 628, 630, 633, 637, 643, 667, 678, 682, 720, 735, 736, 753, 754, 755, 829, 835], "modul": [3, 5, 7, 9, 12, 14, 16, 17, 18, 22, 23, 24, 25, 27, 28, 29, 33, 39, 40, 41, 43, 44, 45, 68, 70, 91, 99, 364, 366, 367, 375, 376, 380, 569, 630, 644, 765, 769, 784, 785, 786, 788, 789, 791, 793, 796, 797, 806, 808, 810, 815, 820, 821, 822, 829, 833, 836, 837, 839, 840, 845, 846, 848, 850, 851, 857, 859, 861, 866, 867, 869], "def": [3, 5, 7, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 45, 52, 75, 118, 220, 535, 624, 630, 636, 637, 712, 713, 720, 801, 808, 812, 814, 815, 819, 820, 823, 825, 826, 827, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 859, 860, 861], "__init__": [3, 5, 12, 14, 27, 28, 39, 40, 41, 43, 70, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 770, 777, 778, 779, 784, 787, 788, 789, 790, 791, 792, 793, 796, 797, 801, 803, 806, 808, 814, 820, 821, 825, 829, 837, 841, 845, 847, 848, 849, 850, 860], "self": [3, 5, 12, 14, 27, 28, 39, 40, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 632, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 792, 801, 808, 816, 820, 823, 829, 837, 838, 845, 847, 848, 849, 850, 860], "num_class": [3, 12, 14, 27, 28, 41, 43, 45, 808, 850, 860], "1000": [3, 6, 7, 8, 12, 27, 28, 41, 42, 43, 44, 46, 49, 72, 134, 625, 808, 848, 860], "v": [3, 4, 5, 16, 17, 20, 27, 28, 30, 33, 34, 39, 42, 43, 53, 57, 65, 72, 76, 80, 88, 134, 234, 239, 241, 282, 372, 374, 426, 436, 443, 444, 469, 628, 632, 636, 642, 659, 662, 712, 713, 751, 769, 788, 789, 790, 791, 792, 793, 808, 810, 815, 816, 818, 822, 830, 845, 848, 849, 850, 874], "none": [3, 5, 7, 9, 10, 27, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 98, 99, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 166, 167, 168, 169, 171, 173, 176, 188, 191, 192, 204, 205, 206, 207, 208, 209, 210, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 382, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 514, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 574, 575, 576, 578, 579, 580, 581, 583, 584, 585, 587, 588, 589, 591, 593, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 718, 719, 720, 721, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 769, 770, 772, 773, 774, 775, 780, 784, 785, 787, 788, 789, 790, 791, 792, 793, 796, 797, 800, 802, 806, 808, 812, 815, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 859, 860, 861], "_build": [3, 5, 789, 790, 808], "kwarg": [3, 4, 5, 9, 10, 27, 41, 45, 48, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 99, 102, 199, 374, 480, 568, 597, 625, 627, 630, 767, 769, 784, 785, 788, 789, 790, 797, 806, 808, 820, 825, 826, 829, 833, 836, 837, 843, 845, 849, 859, 860, 861], "featur": [3, 9, 10, 12, 14, 16, 18, 27, 28, 41, 45, 53, 76, 371, 385, 387, 388, 395, 396, 397, 787, 788, 806, 808, 814, 815, 816, 820, 821, 824, 825, 832, 841, 843, 848, 851, 860, 866, 867, 868, 872], "sequenti": [3, 5, 8, 25, 27, 28, 43, 808, 822, 823, 849, 860], "conv2d": [3, 5, 8, 25, 27, 28, 43, 46, 57, 80, 632, 649, 788, 808], "64": [3, 5, 8, 39, 41, 42, 43, 46, 52, 53, 57, 75, 76, 77, 80, 81, 85, 89, 99, 160, 230, 240, 274, 283, 284, 342, 368, 371, 393, 403, 541, 542, 589, 617, 626, 628, 630, 631, 632, 633, 637, 643, 647, 649, 651, 653, 654, 675, 678, 688, 722, 726, 736, 755, 759, 808, 815, 825, 848, 849, 863, 871], "2": [3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 22, 23, 24, 25, 27, 28, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 145, 148, 149, 150, 151, 155, 159, 161, 169, 171, 176, 192, 193, 194, 197, 200, 202, 204, 207, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 315, 316, 317, 324, 326, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 387, 390, 391, 392, 393, 394, 395, 396, 398, 399, 400, 403, 404, 405, 408, 409, 410, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 432, 437, 439, 442, 446, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 500, 501, 503, 506, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 568, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 593, 597, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 717, 718, 720, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 775, 784, 787, 788, 797, 801, 802, 806, 808, 812, 815, 816, 819, 821, 822, 823, 824, 825, 827, 829, 830, 832, 833, 835, 836, 837, 838, 840, 844, 845, 847, 848, 849, 850, 851, 859, 860, 861, 872, 873], "data_format": [3, 43, 53, 57, 76, 80, 371, 377, 386, 390, 391, 392, 395, 396, 397, 408, 409, 410, 411, 413, 497, 498, 499, 502, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 772, 788, 791, 808], "nchw": [3, 43, 53, 57, 76, 80, 371, 377, 386, 391, 396, 409, 413, 502, 632, 645, 648, 649, 652, 653, 654, 788, 808], "relu": [3, 5, 8, 25, 27, 28, 39, 46, 47, 53, 68, 69, 76, 108, 298, 299, 307, 363, 622, 784, 808, 838, 848, 849], "maxpool2d": [3, 5, 8, 41, 788, 808], "192": [3, 43, 772, 801], "384": [3, 78, 611, 631, 637, 714], "avgpool": [3, 8], "adaptiveavgpool2d": [3, 8, 788], "6": [3, 7, 8, 9, 10, 12, 20, 22, 23, 24, 25, 27, 28, 39, 41, 42, 43, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 63, 65, 66, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 94, 98, 99, 106, 108, 113, 118, 123, 124, 131, 132, 135, 136, 139, 145, 149, 150, 151, 159, 161, 169, 215, 216, 218, 219, 221, 222, 223, 224, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 259, 260, 261, 262, 264, 266, 267, 268, 269, 271, 272, 273, 275, 276, 278, 279, 280, 281, 283, 284, 285, 286, 287, 288, 290, 292, 293, 295, 297, 299, 301, 302, 303, 305, 306, 307, 308, 309, 315, 326, 331, 332, 334, 336, 345, 346, 348, 349, 350, 352, 359, 363, 365, 368, 369, 371, 372, 373, 374, 379, 381, 383, 393, 395, 398, 399, 403, 404, 408, 414, 415, 416, 418, 421, 424, 427, 428, 432, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 464, 466, 470, 471, 475, 476, 479, 480, 485, 486, 488, 489, 492, 495, 496, 506, 508, 509, 511, 516, 518, 519, 520, 521, 523, 525, 527, 528, 534, 536, 537, 540, 541, 542, 548, 549, 556, 557, 558, 573, 587, 588, 589, 590, 591, 593, 597, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 664, 665, 666, 667, 669, 670, 671, 673, 674, 675, 678, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 707, 708, 709, 710, 714, 715, 725, 726, 732, 733, 734, 735, 736, 737, 739, 740, 741, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 772, 787, 808, 812, 815, 819, 821, 823, 824, 825, 827, 830, 835, 840, 843, 845, 847, 848, 849], "classifi": [3, 10, 12, 14, 27, 28, 41, 43, 44, 808, 814, 859, 860], "prob": [3, 43, 53, 57, 76, 80, 85, 371, 378, 395, 396, 397, 504, 632, 639, 655, 734, 788, 808], "linear": [3, 8, 14, 26, 27, 28, 39, 40, 41, 43, 46, 53, 54, 57, 69, 76, 77, 80, 106, 108, 110, 111, 114, 291, 295, 299, 301, 302, 303, 307, 349, 363, 368, 371, 374, 383, 407, 442, 480, 528, 545, 568, 622, 630, 632, 637, 659, 682, 721, 772, 774, 775, 787, 788, 808, 823, 828, 833, 834, 836, 837, 840, 843, 845, 848, 849, 850, 860, 864, 865, 866, 869], "4096": 3, "_forward": [3, 5, 7, 9, 27, 28, 39, 40, 43, 808, 828, 845, 848, 849], "x": [3, 5, 6, 10, 12, 14, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 168, 169, 171, 176, 192, 193, 195, 197, 202, 203, 204, 208, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 270, 271, 273, 274, 275, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 318, 324, 325, 329, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 381, 382, 383, 384, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 418, 420, 422, 423, 425, 427, 429, 430, 431, 432, 433, 436, 437, 438, 439, 440, 441, 442, 445, 446, 447, 448, 449, 451, 452, 453, 454, 455, 456, 457, 461, 462, 464, 465, 467, 468, 470, 473, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 577, 578, 579, 582, 585, 586, 587, 588, 589, 590, 591, 593, 595, 596, 597, 609, 610, 612, 613, 614, 616, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 717, 720, 721, 722, 723, 724, 725, 726, 731, 732, 733, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 788, 791, 794, 797, 801, 806, 808, 812, 814, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 849, 850, 859, 860, 861], "reshap": [3, 27, 28, 43, 44, 53, 57, 58, 60, 70, 76, 80, 81, 83, 356, 368, 371, 372, 374, 390, 391, 392, 395, 408, 409, 410, 413, 422, 439, 464, 470, 610, 630, 632, 633, 635, 648, 650, 654, 674, 690, 808, 836, 837, 840, 843, 845, 847, 850, 863], "bidirect": [4, 632, 657], "encod": [4, 12, 14, 27, 28, 41, 43, 54, 59, 77, 82, 545, 630, 634, 692, 808, 848, 856, 860], "mlm": 4, "support": [4, 6, 9, 10, 18, 19, 22, 23, 24, 25, 27, 30, 42, 51, 53, 54, 58, 74, 76, 77, 81, 143, 162, 166, 188, 195, 210, 219, 236, 243, 264, 265, 269, 279, 298, 324, 345, 363, 365, 368, 372, 374, 407, 425, 434, 488, 534, 546, 555, 558, 559, 576, 591, 625, 626, 627, 628, 630, 632, 633, 656, 668, 669, 670, 674, 683, 690, 767, 773, 780, 792, 797, 798, 801, 806, 808, 810, 812, 814, 815, 816, 819, 820, 822, 826, 827, 828, 830, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 847, 848, 850, 852, 853, 855, 856, 857, 860, 863, 865, 866, 869, 871, 872, 873], "googl": [4, 22, 23, 24, 25, 41, 42, 43, 45, 824, 856], "type": [4, 7, 12, 14, 18, 24, 27, 28, 33, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 535, 536, 537, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 767, 769, 772, 773, 774, 775, 779, 780, 784, 787, 788, 789, 790, 794, 797, 801, 802, 803, 806, 808, 814, 815, 816, 818, 819, 820, 823, 826, 827, 828, 829, 832, 834, 836, 838, 840, 841, 843, 845, 847, 848, 859, 860, 861, 866, 867, 870], "choos": [4, 41, 43, 51, 63, 64, 74, 210, 236, 243, 264, 265, 269, 331, 332, 368, 374, 627, 628, 640, 641, 643, 744, 745, 746, 747, 748, 756, 757, 758, 760, 772, 808, 814, 815, 816, 834, 840, 846, 850, 859], "librari": [4, 7, 9, 16, 17, 23, 25, 39, 41, 51, 64, 74, 210, 241, 243, 259, 264, 265, 287, 331, 332, 368, 627, 628, 633, 641, 643, 669, 670, 745, 746, 747, 748, 756, 757, 758, 760, 806, 808, 814, 815, 819, 825, 850, 851, 855, 856, 857, 859, 862, 863, 864, 866, 870, 873], "pretrain": [4, 7, 12, 13, 14, 27, 28, 46, 808, 860], "save": [4, 8, 41, 53, 70, 76, 383, 525, 585, 608, 627, 630, 644, 790, 806, 815, 824, 831, 840, 851, 857, 865], "some": [4, 5, 6, 9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 32, 33, 39, 43, 44, 70, 78, 241, 243, 259, 371, 395, 396, 397, 611, 612, 615, 617, 618, 619, 627, 628, 631, 637, 725, 788, 808, 812, 814, 815, 816, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 847, 848, 849, 851, 852, 853, 856, 857, 859, 860, 862, 863, 865, 866, 867, 872, 873], "mohame54": 4, "automodel": [4, 9, 27], "autotoken": 4, "load": [4, 6, 7, 9, 24, 27, 41, 42, 43, 44, 45, 46, 70, 372, 443, 644, 790, 808, 840, 851, 865, 872], "token": [4, 43, 817], "bert_bas": 4, "from_pretrain": [4, 9, 27, 44, 859, 860], "base": [4, 10, 41, 44, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 103, 134, 143, 175, 239, 240, 257, 258, 259, 260, 274, 315, 324, 326, 333, 336, 342, 349, 365, 368, 371, 372, 373, 381, 414, 418, 443, 448, 510, 578, 589, 601, 625, 626, 628, 630, 633, 635, 641, 643, 674, 698, 745, 746, 747, 748, 755, 770, 773, 774, 777, 778, 779, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 796, 797, 802, 803, 806, 808, 815, 816, 817, 819, 823, 824, 825, 829, 832, 834, 835, 836, 838, 839, 840, 841, 842, 843, 845, 866, 871, 873, 874], "uncas": 4, "eval": [4, 5, 8, 14, 22, 23, 24, 25, 632, 657, 790], "evalu": [4, 52, 53, 70, 75, 76, 239, 241, 257, 258, 259, 260, 264, 271, 273, 280, 284, 318, 350, 361, 362, 365, 370, 372, 373, 374, 439, 448, 453, 477, 621, 628, 631, 637, 644, 724, 725, 763, 764, 789, 790, 816, 823, 825, 833, 834, 866], "bert_token": 4, "sampl": [4, 7, 9, 12, 14, 24, 27, 28, 42, 49, 52, 53, 62, 66, 72, 75, 76, 85, 89, 133, 134, 288, 315, 365, 371, 373, 374, 378, 395, 396, 397, 407, 417, 419, 448, 453, 483, 504, 505, 506, 507, 508, 625, 628, 639, 643, 734, 735, 736, 737, 760, 762, 788, 838, 840], "test": [4, 19, 20, 22, 23, 29, 30, 32, 33, 34, 42, 43, 52, 54, 67, 75, 77, 90, 121, 167, 171, 250, 251, 252, 253, 276, 371, 395, 396, 397, 565, 624, 626, 628, 630, 644, 763, 764, 767, 770, 773, 802, 808, 810, 812, 813, 818, 822, 825, 827, 829, 831, 834, 837, 839, 841, 851, 852, 857, 859, 860, 861, 866], "did": [4, 41, 814, 822, 850, 856, 872], "realli": [4, 39, 815, 823, 830, 851, 859, 871, 872], "like": [4, 7, 9, 19, 20, 21, 27, 29, 30, 31, 32, 33, 34, 44, 46, 49, 52, 53, 60, 72, 75, 76, 80, 83, 88, 134, 152, 175, 220, 240, 246, 249, 262, 280, 337, 342, 354, 368, 371, 372, 373, 374, 381, 383, 414, 416, 425, 450, 459, 460, 469, 470, 510, 511, 528, 625, 626, 628, 633, 635, 639, 642, 668, 702, 737, 750, 802, 808, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 856, 859, 860, 866, 871], "input": [4, 5, 6, 9, 12, 14, 24, 25, 27, 32, 33, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 94, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 160, 161, 164, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 190, 192, 193, 206, 209, 210, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 316, 318, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 437, 439, 440, 441, 442, 443, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 463, 464, 465, 466, 468, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 572, 573, 574, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 598, 603, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 720, 721, 722, 723, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 773, 780, 784, 787, 788, 789, 790, 791, 801, 802, 806, 819, 820, 821, 823, 825, 826, 827, 828, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 859, 860, 867, 870], "pad": [4, 8, 41, 43, 53, 57, 60, 76, 80, 83, 94, 96, 371, 374, 390, 391, 392, 393, 394, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 545, 630, 632, 635, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 697, 710, 774, 788, 808], "longest": 4, "return_tensor": [4, 9, 27, 44, 859, 860], "pt": [4, 9, 27, 859], "max_length": [4, 70], "512": [4, 5, 8, 41, 43, 81, 632, 647, 688, 808], "input_id": 4, "101": [4, 10, 42, 632, 633, 637, 656, 672, 720], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 10, 53, 76, 85, 393, 735], "token_type_id": 4, "attention_mask": [4, 57, 80, 632, 659], "pooler": 4, "compar": [4, 6, 7, 9, 27, 40, 44, 46, 53, 54, 64, 65, 66, 70, 76, 77, 88, 89, 330, 347, 368, 383, 526, 530, 533, 630, 632, 641, 642, 643, 657, 745, 746, 747, 748, 749, 752, 758, 769, 808, 821, 827, 829, 838, 840, 843, 848, 862, 864, 866, 872, 873], "no_grad": [4, 41, 859], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 7, 40, 43, 49, 53, 54, 57, 58, 62, 72, 75, 76, 80, 81, 85, 93, 94, 118, 128, 141, 142, 143, 263, 309, 324, 325, 365, 372, 374, 378, 381, 383, 423, 438, 442, 444, 446, 486, 490, 504, 505, 506, 507, 508, 511, 521, 533, 624, 625, 630, 632, 633, 637, 639, 640, 659, 662, 666, 673, 674, 680, 682, 683, 684, 687, 722, 735, 736, 737, 743, 808, 818, 819, 837, 838, 845, 859, 862, 866], "ivy_output": [4, 44], "logits_clos": 4, "allclos": [4, 6, 7, 9, 12, 14, 27, 44, 46, 53, 76, 368], "detach": [4, 6, 7, 9, 12, 14, 27, 835], "rtol": [4, 12, 14, 53, 58, 76, 81, 330, 347, 368, 633, 676, 679, 767, 769, 812, 830, 838], "005": [4, 8, 53, 76, 330, 347, 368, 449], "atol": [4, 6, 7, 9, 27, 53, 58, 76, 81, 330, 347, 368, 633, 676, 767, 769, 812, 830, 838], "equal": [4, 49, 50, 52, 53, 54, 58, 59, 60, 62, 64, 65, 66, 70, 73, 75, 76, 77, 81, 82, 83, 85, 88, 94, 98, 99, 128, 130, 131, 132, 138, 139, 148, 228, 230, 234, 239, 241, 250, 251, 272, 274, 279, 282, 283, 287, 326, 327, 328, 330, 347, 365, 368, 371, 372, 374, 377, 383, 394, 415, 442, 466, 475, 488, 492, 495, 500, 501, 503, 521, 530, 533, 610, 625, 626, 628, 630, 633, 634, 635, 639, 640, 641, 642, 643, 667, 675, 676, 679, 681, 687, 692, 695, 697, 702, 704, 710, 737, 743, 745, 746, 747, 748, 749, 752, 757, 759, 760, 761, 762, 780, 787, 788, 822, 823, 825, 827, 829, 838, 840, 863], "els": [4, 5, 7, 10, 42, 43, 45, 46, 53, 54, 62, 75, 76, 85, 154, 155, 156, 157, 158, 170, 276, 280, 371, 372, 378, 417, 430, 441, 445, 447, 505, 540, 544, 626, 628, 630, 632, 637, 639, 658, 724, 727, 735, 736, 737, 767, 801, 802, 808, 814, 815, 816, 819, 821, 825, 826, 829, 833, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 867], "768": 4, "fn": [4, 44, 46, 53, 70, 73, 76, 102, 162, 163, 195, 196, 199, 374, 457, 531, 546, 547, 597, 626, 627, 630, 637, 720, 721, 722, 724, 725, 726, 767, 769, 794, 797, 803, 804, 806, 826, 829, 836, 837, 845, 859], "finish": [4, 16, 27, 28, 39, 42, 808, 809, 814, 815, 818], "2f": [4, 7], "sec": 4, "89": [4, 10, 39, 52, 62, 73, 75, 76, 85, 99, 164, 231, 626, 633, 643, 685, 736, 737, 761], "43": [4, 10, 39, 41, 43, 53, 76, 85, 99, 230, 371, 372, 383, 392, 424, 519, 628, 639, 640, 736, 737, 744], "procedur": [4, 822, 824, 827, 838], "60": [4, 39, 43, 52, 66, 75, 77, 85, 89, 220, 254, 374, 485, 549, 557, 573, 588, 610, 628, 630, 633, 637, 643, 678, 717, 735, 753, 755, 759, 802, 824], "big": [4, 787, 809, 851, 866], "jnp": [4, 19, 24, 27, 28, 29, 30, 33, 39, 41, 45, 808, 825, 826, 829, 832, 836, 841, 845, 850, 860, 861], "config": [4, 5, 7, 9, 10, 21, 24, 27, 28, 41, 42, 44, 70, 637, 727, 808, 815, 819, 822, 824, 831, 838, 848, 859, 867], "jax_enable_x64": [4, 5, 7, 9, 10, 21, 24, 27, 28, 808], "ref": [4, 5, 7, 9, 77, 81, 255, 269, 272, 278, 285, 628, 635, 706, 815, 836], "initi": [4, 27, 28, 44, 53, 57, 66, 70, 76, 80, 89, 99, 372, 383, 430, 441, 447, 526, 527, 632, 643, 657, 658, 758, 785, 788, 789, 790, 792, 793, 806, 808, 811, 816, 817, 821, 825, 826, 830, 838, 840, 845, 856, 859, 860, 861, 866, 872, 873], "fast": [4, 22, 32, 53, 371, 394, 866], "valu": [4, 10, 39, 40, 42, 43, 49, 50, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 89, 96, 98, 99, 101, 114, 118, 119, 121, 122, 128, 131, 132, 133, 134, 137, 143, 148, 165, 169, 175, 208, 209, 216, 217, 218, 219, 221, 223, 224, 225, 232, 236, 237, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 266, 267, 268, 269, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 298, 303, 306, 307, 309, 316, 318, 324, 326, 327, 328, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 341, 344, 345, 347, 348, 350, 353, 355, 356, 357, 358, 359, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 382, 383, 394, 407, 414, 415, 417, 419, 423, 426, 430, 436, 441, 443, 445, 447, 448, 449, 451, 452, 453, 454, 463, 469, 474, 480, 485, 487, 488, 489, 490, 492, 494, 497, 499, 504, 505, 507, 508, 514, 516, 519, 520, 521, 524, 525, 526, 527, 528, 534, 536, 537, 538, 540, 545, 548, 549, 551, 556, 557, 558, 565, 572, 573, 577, 578, 579, 582, 591, 596, 601, 602, 605, 608, 609, 610, 611, 612, 613, 617, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 662, 666, 669, 670, 674, 675, 676, 679, 680, 681, 682, 683, 684, 687, 690, 695, 696, 697, 701, 702, 710, 711, 712, 716, 718, 719, 720, 721, 722, 727, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 767, 769, 772, 773, 774, 775, 777, 779, 784, 787, 788, 789, 790, 791, 792, 806, 812, 815, 816, 819, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 837, 840, 842, 843, 845, 847, 851, 859, 866, 867], "demo": [5, 7, 8, 9, 10, 28, 35, 39, 43, 808], "milesi": 5, "blob": [5, 41, 43], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 6, 9, 19, 22, 23, 24, 25, 41, 44, 53, 76, 194, 372, 443, 627, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 815, 822, 826, 829, 830, 833, 836, 840, 841, 845, 860, 864, 872, 873], "data_load": 5, "py": [5, 6, 8, 9, 19, 22, 23, 24, 25, 41, 43, 46, 89, 372, 443, 755, 797, 801, 808, 814, 815, 816, 819, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 837, 838, 840, 841, 845, 847, 849, 850], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 7, 41, 53, 57, 61, 76, 78, 80, 84, 108, 207, 208, 300, 301, 304, 315, 345, 363, 365, 368, 371, 372, 377, 389, 395, 396, 397, 405, 407, 412, 416, 432, 497, 498, 499, 618, 622, 627, 631, 632, 638, 655, 659, 662, 733, 772, 774, 775, 787, 788, 792, 802, 866, 868], "is_mask": 5, "w": [5, 6, 9, 42, 43, 53, 54, 55, 57, 70, 75, 76, 77, 78, 80, 93, 263, 345, 360, 368, 370, 371, 372, 377, 390, 391, 392, 394, 408, 409, 410, 411, 427, 447, 502, 517, 541, 543, 588, 611, 612, 613, 615, 617, 618, 619, 630, 631, 632, 637, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 720, 808, 818, 835, 845, 848, 849, 860, 874], "h": [5, 53, 54, 57, 76, 77, 80, 371, 377, 391, 392, 409, 410, 502, 541, 543, 630, 632, 637, 645, 648, 649, 650, 651, 652, 653, 654, 717, 721, 723, 726, 731, 809, 818, 822, 823, 824, 860, 862], "size": [5, 10, 12, 14, 19, 22, 23, 29, 30, 32, 33, 34, 41, 43, 46, 53, 54, 57, 58, 60, 62, 63, 70, 76, 77, 80, 81, 83, 85, 86, 93, 94, 98, 99, 130, 133, 207, 208, 209, 308, 311, 315, 326, 327, 328, 329, 336, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 385, 386, 387, 388, 389, 390, 391, 407, 408, 409, 411, 412, 418, 419, 426, 429, 441, 447, 448, 450, 464, 466, 478, 488, 490, 492, 498, 499, 502, 506, 511, 523, 524, 525, 526, 527, 528, 567, 572, 625, 627, 630, 632, 633, 635, 639, 640, 644, 657, 659, 662, 664, 667, 671, 674, 678, 680, 683, 689, 698, 703, 704, 705, 734, 740, 743, 763, 764, 772, 774, 775, 788, 802, 808, 836, 838, 840, 843, 848, 859, 861], "neww": 5, "newh": 5, "int": [5, 41, 44, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 102, 109, 113, 114, 123, 124, 128, 130, 131, 132, 133, 134, 137, 141, 142, 143, 150, 157, 160, 161, 164, 171, 186, 200, 201, 202, 209, 210, 219, 226, 227, 228, 229, 230, 231, 243, 246, 270, 274, 279, 285, 288, 296, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 331, 332, 336, 337, 341, 345, 352, 354, 356, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 422, 426, 428, 429, 430, 431, 433, 438, 440, 441, 444, 445, 447, 452, 456, 457, 461, 465, 466, 469, 470, 473, 475, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 495, 498, 500, 501, 503, 504, 505, 506, 507, 508, 509, 511, 516, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 541, 542, 543, 545, 548, 549, 552, 553, 567, 570, 572, 587, 588, 589, 590, 594, 610, 611, 612, 613, 614, 617, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 659, 664, 666, 667, 674, 675, 680, 685, 687, 688, 689, 690, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 720, 721, 723, 725, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 745, 747, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 784, 787, 788, 801, 802, 806, 823, 825, 826, 827, 829, 832, 833, 836, 838, 840, 841, 843, 845, 850, 859], "assert": [5, 10, 42, 44, 46, 70, 534, 630, 780, 812, 818, 819, 830, 833, 836, 837, 838, 840, 841, 847, 848], "too": [5, 53, 76, 219, 236, 243, 269, 374, 488, 628, 787, 814, 815, 816, 819, 825, 829, 841, 851], "small": [5, 10, 43, 52, 53, 58, 61, 75, 76, 81, 84, 236, 243, 269, 270, 330, 347, 368, 372, 373, 377, 436, 453, 497, 498, 499, 628, 633, 638, 676, 679, 681, 733, 787, 791, 808, 815, 824, 827, 833, 838, 843, 845, 849, 851, 859, 860, 867], "would": [5, 6, 9, 10, 19, 21, 22, 23, 24, 25, 27, 28, 31, 33, 35, 43, 49, 51, 53, 72, 74, 76, 83, 109, 113, 124, 210, 371, 374, 399, 404, 458, 459, 466, 468, 470, 471, 472, 479, 483, 495, 622, 627, 698, 699, 700, 702, 704, 705, 707, 709, 774, 784, 788, 808, 809, 812, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 827, 828, 830, 832, 834, 836, 837, 838, 840, 841, 843, 844, 845, 847, 849, 850, 851, 852, 856, 859, 866, 872], "pixel": [5, 41, 53, 76, 371, 407], "resampl": 5, "nearest": [5, 53, 76, 219, 236, 269, 279, 341, 368, 371, 383, 407, 528, 628, 843], "bicub": [5, 53, 76, 371, 407, 843], "zero": [5, 41, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 64, 66, 67, 72, 73, 75, 76, 78, 80, 81, 85, 86, 89, 90, 94, 108, 110, 111, 112, 114, 125, 126, 128, 130, 135, 137, 138, 139, 141, 142, 145, 148, 149, 217, 218, 219, 221, 222, 223, 224, 225, 228, 230, 231, 233, 234, 235, 236, 238, 241, 242, 243, 250, 251, 252, 253, 259, 264, 265, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 281, 282, 283, 284, 286, 287, 289, 290, 292, 294, 295, 299, 301, 307, 309, 318, 325, 331, 332, 335, 336, 337, 341, 349, 352, 354, 355, 356, 357, 363, 365, 368, 371, 372, 374, 381, 383, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 414, 415, 416, 417, 418, 419, 424, 426, 434, 439, 442, 464, 474, 479, 480, 491, 492, 510, 519, 520, 537, 541, 548, 568, 573, 611, 612, 617, 618, 619, 620, 622, 625, 626, 628, 630, 631, 632, 633, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 659, 662, 663, 665, 669, 670, 672, 673, 674, 675, 676, 677, 679, 681, 687, 689, 690, 697, 698, 699, 700, 702, 703, 710, 733, 735, 736, 737, 740, 741, 742, 743, 745, 746, 747, 748, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 787, 788, 792, 806, 820, 823, 825, 826, 827, 832, 834, 835, 838, 845, 848, 849, 857, 865], "int64": [5, 53, 62, 63, 65, 66, 73, 85, 86, 88, 89, 138, 151, 157, 160, 162, 164, 168, 169, 173, 180, 312, 365, 381, 383, 511, 519, 520, 625, 626, 640, 642, 643, 735, 740, 741, 742, 751, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "enumer": [5, 41, 43, 777, 808], "ndim": [5, 53, 58, 63, 76, 81, 86, 98, 102, 372, 374, 440, 441, 447, 458, 459, 460, 473, 481, 483, 493, 610, 630, 633, 640, 680, 683, 743, 823, 833, 840], "newaxi": [5, 623], "transpos": [5, 24, 27, 28, 45, 53, 57, 58, 70, 76, 80, 81, 98, 372, 420, 438, 440, 442, 517, 632, 633, 645, 647, 649, 651, 652, 653, 657, 673, 677, 679, 685, 774, 788, 808, 830, 836, 847, 850, 860], "255": [5, 24, 27, 28, 41, 42, 43, 45, 57, 76, 80, 230, 628, 654, 808, 860], "car": 5, "full_img": 5, "from_numpi": [5, 848], "fals": [5, 7, 8, 9, 14, 18, 19, 27, 30, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 124, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 161, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 192, 193, 198, 200, 203, 204, 206, 209, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 413, 414, 415, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 467, 468, 469, 470, 471, 472, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 510, 511, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 568, 572, 573, 574, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 598, 603, 604, 606, 607, 609, 612, 613, 615, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 654, 655, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 720, 724, 725, 726, 727, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 784, 785, 788, 789, 790, 792, 794, 797, 801, 802, 803, 806, 808, 812, 815, 819, 821, 824, 825, 826, 827, 829, 830, 836, 837, 838, 840, 842, 843, 845, 848, 849, 850, 859, 860], "permut": [5, 8, 41, 60, 83, 98, 381, 510, 635, 700, 707, 860], "img_numpi": 5, "cpu": [5, 6, 7, 9, 22, 23, 24, 25, 27, 41, 42, 43, 45, 46, 49, 51, 53, 62, 72, 74, 76, 85, 122, 128, 131, 133, 134, 137, 138, 139, 145, 189, 190, 192, 193, 194, 195, 200, 203, 205, 207, 210, 211, 213, 215, 372, 378, 434, 504, 505, 507, 508, 625, 627, 639, 734, 735, 736, 737, 769, 787, 788, 789, 790, 791, 792, 793, 806, 808, 812, 815, 816, 822, 825, 826, 830, 837, 840, 851, 864, 866, 869, 871], "torch_unet": 5, "unet_carvana": 5, "when": [5, 6, 8, 9, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 42, 44, 48, 49, 50, 52, 53, 58, 59, 62, 63, 66, 70, 72, 73, 75, 76, 81, 82, 85, 86, 89, 99, 137, 148, 219, 236, 241, 243, 259, 269, 287, 288, 296, 331, 332, 363, 368, 371, 372, 373, 377, 378, 383, 394, 407, 419, 426, 430, 441, 447, 448, 453, 497, 499, 505, 525, 528, 558, 574, 582, 589, 625, 626, 628, 630, 632, 633, 634, 635, 637, 639, 640, 643, 645, 657, 659, 676, 681, 692, 693, 694, 702, 725, 726, 735, 736, 737, 740, 741, 743, 744, 756, 758, 760, 762, 772, 775, 787, 788, 789, 790, 791, 797, 806, 809, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 850, 851, 852, 855, 856, 859, 860, 864, 866, 869, 870, 871, 872], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 8, 14, 27, 28, 41, 43, 53, 76, 361, 370, 371, 394, 399, 400, 404, 405, 415, 416, 785, 787, 788, 790, 792, 806, 808, 815, 821, 828, 835, 840, 841, 843, 850, 851, 859, 866, 867], "effici": [5, 7, 8, 9, 16, 17, 19, 20, 27, 28, 29, 30, 53, 58, 76, 81, 372, 373, 436, 452, 581, 604, 630, 633, 676, 808, 815, 816, 823, 833, 834, 836, 840, 842, 845, 848, 851, 860, 866, 868, 869], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 49, 53, 54, 72, 76, 94, 123, 124, 136, 371, 372, 374, 383, 416, 441, 485, 524, 525, 595, 625, 630, 797, 801, 814, 820, 825, 826, 829, 832, 836, 837, 838, 841, 843, 845, 847, 850, 853], "isinst": [5, 10, 25, 27, 28, 829, 837, 840, 841, 849, 850], "len": [5, 10, 41, 43, 49, 53, 58, 76, 81, 135, 312, 321, 322, 365, 371, 372, 383, 405, 416, 428, 431, 441, 447, 528, 625, 633, 669, 688, 808, 823, 824, 829, 836, 837, 840, 847, 850, 859], "uint8": [5, 24, 27, 28, 43, 151, 158, 162, 173, 176, 181, 187, 626, 772, 773, 825, 840], "elif": [5, 7, 824, 829, 836, 837, 838], "bool": [5, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 125, 130, 131, 132, 133, 134, 135, 137, 139, 145, 148, 149, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 184, 188, 192, 193, 195, 196, 198, 200, 203, 204, 209, 210, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 319, 320, 321, 322, 323, 325, 330, 331, 332, 333, 334, 336, 338, 346, 347, 352, 353, 355, 357, 358, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 390, 391, 392, 394, 395, 396, 397, 407, 408, 409, 410, 413, 415, 417, 419, 426, 430, 433, 434, 438, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 468, 469, 470, 471, 472, 475, 479, 483, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 502, 503, 505, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 568, 572, 573, 577, 586, 587, 588, 589, 591, 593, 595, 596, 609, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 655, 656, 657, 658, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 677, 678, 680, 681, 682, 683, 687, 688, 690, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 731, 732, 734, 735, 736, 737, 739, 740, 741, 742, 743, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 770, 772, 773, 774, 784, 788, 791, 792, 801, 802, 806, 825, 827, 829, 836, 837, 840, 841, 843, 845, 850, 859, 860], "argmax": [5, 42, 43, 44, 63, 86, 374, 485, 640, 808, 837, 859, 863], "fromarrai": [5, 24, 27, 28, 43], "interpol": [5, 41, 53, 76, 349, 368, 371, 383, 528, 632, 659, 843, 866], "mode": [5, 33, 45, 53, 58, 70, 76, 81, 92, 93, 94, 95, 96, 97, 206, 209, 214, 219, 236, 269, 323, 361, 362, 365, 370, 371, 372, 374, 402, 407, 415, 416, 428, 430, 438, 440, 441, 447, 463, 473, 478, 480, 481, 483, 485, 488, 489, 493, 574, 575, 576, 580, 581, 583, 584, 598, 599, 603, 604, 606, 607, 627, 628, 630, 632, 633, 657, 680, 780, 788, 789, 790, 805, 806, 815, 816, 818, 823, 826, 827, 830, 843, 851, 866, 869], "bilinear": [5, 53, 76, 371, 407, 843], "torch_mask": 5, "squeez": [5, 41, 60, 83, 635, 866], "torch_result": 5, "to_numpi": [5, 10, 27, 28, 39, 42, 43, 46, 54, 77, 630, 808, 830, 838, 848, 863], "give": [5, 19, 29, 39, 53, 57, 76, 80, 175, 361, 370, 371, 414, 418, 626, 632, 635, 645, 646, 647, 648, 650, 652, 654, 702, 787, 808, 815, 816, 818, 821, 824, 825, 827, 828, 830, 831, 832, 840, 857, 866, 870], "img_tf": 5, "math": [5, 44, 94, 286, 628, 825, 836, 837, 838, 850, 864], "ve": [5, 10, 16, 25, 27, 62, 85, 639, 734, 814, 815, 816, 817, 830, 840, 843, 844, 847, 853], "lot": [5, 824, 825, 834, 840, 851, 856, 857, 865], "far": [5, 27, 28, 637, 714, 725, 802, 826, 827, 846, 871, 872], "space": [5, 49, 52, 53, 54, 72, 75, 76, 77, 122, 133, 134, 288, 345, 368, 373, 450, 541, 545, 625, 628, 630, 843, 856], "del": [5, 824], "empty_cach": 5, "permute_dim": [5, 60, 83, 635, 830], "usr": [5, 7, 9, 41, 42, 43, 46, 815], "local": [5, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 32, 33, 34, 41, 42, 43, 46, 377, 502, 553, 630, 809, 815, 819, 822, 830, 833, 838, 840], "lib": [5, 10, 22, 23, 24, 25, 41, 42, 43, 46], "python3": [5, 8, 22, 23, 24, 25, 27, 41, 43, 46, 808, 815, 816], "dist": [5, 41, 42, 43, 46], "func_wrapp": [5, 47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 826, 837, 842], "242": [5, 76], "userwarn": [5, 6, 8, 9, 19, 22, 23, 24, 25, 46], "creat": [5, 6, 9, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 41, 42, 43, 45, 46, 49, 52, 53, 62, 70, 72, 75, 76, 81, 85, 94, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 145, 270, 308, 309, 319, 321, 323, 324, 365, 371, 372, 374, 378, 390, 391, 392, 413, 430, 441, 447, 456, 464, 480, 485, 504, 505, 506, 507, 508, 576, 593, 610, 621, 625, 628, 630, 631, 639, 678, 734, 735, 736, 737, 739, 769, 780, 785, 787, 788, 789, 790, 791, 792, 793, 809, 811, 815, 816, 817, 820, 821, 822, 824, 825, 826, 829, 833, 834, 836, 837, 838, 840, 843, 845, 846, 849, 852, 853, 856, 859, 860, 861, 866, 867, 872], "mani": [5, 27, 28, 31, 60, 70, 83, 143, 324, 365, 625, 635, 704, 808, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 828, 832, 833, 834, 836, 837, 838, 840, 843, 845, 847, 848, 851, 855, 856, 857, 862, 866, 869, 872, 873], "view": [5, 6, 9, 19, 22, 23, 24, 25, 53, 60, 76, 98, 129, 140, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 492, 495, 551, 625, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 815, 816, 829, 866], "lead": [5, 6, 9, 19, 22, 23, 24, 25, 58, 70, 81, 99, 243, 372, 436, 576, 628, 630, 633, 680, 683, 774, 824, 825, 827, 839, 841, 851, 856, 857], "overhead": [5, 6, 9, 19, 20, 22, 23, 24, 25, 27, 28, 30, 851, 859, 869], "perform": [5, 6, 10, 20, 22, 23, 24, 25, 27, 28, 30, 32, 39, 41, 49, 53, 57, 58, 66, 67, 72, 76, 77, 80, 81, 89, 90, 109, 113, 133, 134, 206, 214, 236, 269, 290, 337, 359, 368, 369, 371, 372, 374, 381, 383, 394, 395, 396, 397, 399, 400, 404, 405, 413, 415, 441, 457, 511, 519, 520, 541, 542, 543, 556, 557, 558, 574, 584, 622, 625, 627, 628, 630, 632, 633, 636, 637, 643, 644, 655, 658, 674, 683, 685, 690, 711, 712, 713, 721, 722, 753, 754, 763, 764, 767, 784, 788, 802, 806, 819, 820, 821, 823, 825, 826, 827, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 848, 851, 857, 859, 860, 863, 866, 867, 868, 869, 870, 871, 873], "inplac": [5, 6, 8, 9, 10, 19, 22, 23, 24, 25, 48, 54, 70, 77, 93, 96, 532, 534, 555, 558, 559, 576, 577, 630, 637, 721, 722, 726, 731, 732, 779, 780, 785, 792, 818, 820, 827, 830, 832, 834, 837, 843, 847, 849], "17": [5, 9, 10, 22, 23, 24, 25, 39, 41, 43, 46, 47, 53, 58, 69, 75, 76, 77, 78, 80, 81, 85, 99, 108, 109, 134, 219, 236, 261, 269, 300, 308, 359, 365, 371, 374, 390, 391, 399, 400, 403, 404, 408, 409, 414, 418, 470, 542, 557, 611, 613, 622, 625, 628, 630, 631, 632, 633, 637, 639, 646, 655, 656, 667, 671, 722, 735, 736, 737, 739, 823], "factor": [5, 10, 53, 55, 57, 58, 76, 78, 80, 81, 92, 93, 94, 95, 96, 207, 208, 209, 371, 372, 377, 405, 416, 430, 431, 441, 444, 446, 447, 502, 611, 612, 617, 618, 627, 631, 632, 633, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 663, 772, 774, 775, 787, 788, 792, 829, 856], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 8, 27, 28, 41, 50, 52, 57, 73, 75, 80, 99, 164, 240, 371, 393, 403, 541, 551, 626, 628, 630, 632, 633, 647, 649, 654, 678, 808], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 8, 41, 42, 808], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 18, 27, 28, 46, 50, 52, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 88, 98, 99, 103, 149, 159, 175, 182, 202, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 267, 268, 269, 272, 274, 278, 285, 290, 309, 330, 335, 342, 343, 344, 346, 348, 353, 357, 365, 368, 372, 374, 383, 442, 474, 518, 530, 533, 626, 627, 628, 630, 633, 640, 642, 664, 671, 673, 678, 682, 685, 686, 689, 744, 751, 769, 794, 808, 819, 825, 827, 829, 832, 836, 837, 860, 861], "x2": [5, 18, 27, 28, 50, 52, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 98, 99, 103, 149, 175, 182, 202, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 267, 268, 269, 272, 274, 278, 285, 290, 330, 335, 342, 343, 344, 346, 348, 353, 357, 368, 372, 374, 383, 428, 442, 474, 518, 530, 533, 626, 627, 628, 630, 633, 640, 664, 671, 673, 678, 682, 685, 686, 689, 744, 769, 794, 819, 825, 827, 829, 832, 836, 837], "x3": [5, 50, 54, 149, 530, 626, 630], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 788, 808, 849, 860], "batchnorm2d": [5, 8, 791], "downscal": [5, 54, 77, 536, 537, 558, 630], "maxpool": [5, 8], "doubl": 5, "conv": [5, 632, 788, 843], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 53, 76, 371, 407, 843], "align_corn": [5, 53, 76, 371, 407, 843], "conv2dtranspos": [5, 788], "valid": [5, 41, 43, 53, 57, 67, 76, 80, 90, 93, 94, 153, 371, 372, 390, 391, 392, 408, 409, 410, 411, 413, 414, 418, 439, 447, 561, 626, 630, 632, 635, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 698, 706, 763, 764, 772, 773, 788, 801, 815, 821, 825, 827, 831, 835, 838, 840, 859, 867], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 53, 60, 76, 83, 374, 480, 635, 697, 710], "constant_pad": [5, 60, 83, 635], "concat": [5, 39, 44, 54, 60, 70, 83, 209, 545, 627, 630, 635, 710, 838, 843, 845, 859], "root": [6, 8, 9, 22, 23, 24, 25, 41, 42, 43, 46, 52, 75, 283, 628, 810, 814, 815, 816, 822, 830, 837, 848], "user": [6, 9, 16, 22, 23, 24, 25, 27, 42, 43, 45, 270, 287, 374, 480, 576, 628, 630, 788, 789, 790, 801, 808, 815, 816, 818, 820, 821, 823, 824, 825, 826, 829, 834, 835, 836, 837, 840, 842, 843, 844, 845, 851, 852, 855, 856, 864, 866, 872, 873], "broken": [6, 9, 22, 23, 24, 25, 862, 866], "permiss": [6, 9, 22, 23, 24, 25, 815, 824], "conflict": [6, 9, 22, 23, 24, 25, 33, 815, 816, 824, 837, 848], "behaviour": [6, 9, 22, 23, 24, 25, 108, 111, 270, 622, 628, 813, 816, 818, 819, 820, 823, 825, 826, 828, 829, 832, 833, 834, 836, 837, 840, 841, 847], "system": [6, 9, 22, 23, 24, 25, 43, 372, 442, 633, 682, 772, 808, 815, 816, 817, 821, 824, 825, 851, 860, 864, 866, 869, 871, 873], "manag": [6, 9, 18, 19, 22, 23, 24, 25, 27, 576, 600, 630, 808, 809, 817, 821, 825, 826, 836, 839, 851, 857, 868, 870], "recommend": [6, 9, 22, 23, 24, 25, 264, 265, 278, 373, 450, 628, 643, 757, 760, 810, 815, 821, 822, 831, 834, 835, 859], "virtual": [6, 9, 22, 23, 24, 25, 816, 837, 856, 869, 870], "instead": [6, 9, 12, 14, 18, 22, 23, 24, 25, 27, 34, 41, 46, 52, 53, 58, 75, 76, 81, 94, 190, 278, 312, 365, 371, 383, 408, 409, 410, 518, 521, 627, 628, 633, 676, 772, 814, 815, 816, 819, 822, 824, 825, 827, 828, 829, 832, 833, 834, 836, 837, 838, 840, 843, 845, 847, 848, 851, 859, 860, 861, 864, 866, 872, 873], "pypa": [6, 9, 22, 23, 24, 25], "io": [6, 9, 22, 23, 24, 25, 42, 45, 815, 824], "venv": [6, 9, 22, 23, 24, 25], "torch": [6, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41, 44, 45, 46, 49, 54, 58, 68, 77, 81, 125, 163, 190, 191, 195, 205, 207, 212, 279, 331, 332, 368, 374, 492, 534, 558, 591, 625, 626, 627, 628, 630, 633, 636, 683, 712, 713, 769, 780, 785, 797, 806, 808, 812, 815, 816, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 847, 848, 850, 851, 853, 859, 860, 861, 872], "tensorflow": [6, 9, 11, 12, 16, 18, 19, 22, 23, 24, 25, 27, 28, 29, 32, 33, 34, 39, 45, 52, 53, 54, 75, 76, 143, 190, 205, 220, 324, 365, 372, 426, 591, 625, 627, 630, 767, 780, 797, 808, 812, 813, 814, 815, 816, 819, 824, 825, 826, 830, 832, 836, 837, 838, 840, 841, 843, 845, 850, 851, 853, 856, 857, 860, 861, 863, 864, 867, 869, 870, 872, 873], "2024": 6, "01": [6, 8, 22, 23, 25, 43, 49, 53, 54, 55, 58, 76, 77, 78, 81, 85, 134, 261, 279, 280, 308, 314, 339, 340, 347, 365, 371, 393, 403, 404, 545, 588, 589, 611, 612, 617, 625, 628, 630, 631, 633, 636, 639, 670, 680, 712, 713, 736, 737, 772, 821, 850], "22": [6, 10, 22, 23, 24, 25, 39, 41, 43, 46, 47, 52, 53, 54, 62, 66, 69, 76, 77, 80, 85, 109, 114, 231, 239, 300, 304, 363, 371, 372, 373, 374, 379, 383, 390, 391, 393, 408, 409, 410, 414, 418, 424, 448, 463, 509, 519, 542, 573, 609, 622, 628, 632, 633, 637, 640, 643, 655, 656, 667, 672, 678, 682, 722, 732, 735, 736, 737, 744, 754, 755, 815, 823, 829], "50": [6, 9, 10, 27, 28, 39, 43, 53, 66, 75, 76, 77, 235, 275, 353, 368, 371, 372, 374, 400, 424, 432, 485, 543, 549, 556, 557, 573, 588, 628, 630, 633, 637, 640, 643, 672, 678, 689, 715, 717, 743, 755, 772, 775, 835, 847, 859, 860], "099601": 6, "e": [6, 9, 27, 44, 45, 49, 53, 58, 62, 64, 65, 66, 68, 75, 76, 81, 85, 88, 89, 91, 93, 94, 98, 125, 134, 135, 138, 139, 143, 147, 176, 189, 216, 217, 218, 222, 224, 225, 228, 230, 232, 236, 237, 239, 242, 243, 249, 250, 257, 258, 259, 260, 267, 268, 269, 270, 272, 276, 278, 279, 282, 283, 287, 297, 324, 331, 332, 365, 368, 371, 372, 373, 374, 378, 383, 384, 390, 391, 394, 408, 409, 410, 411, 415, 428, 431, 439, 453, 488, 492, 504, 505, 506, 507, 508, 519, 520, 529, 623, 625, 626, 627, 628, 632, 633, 635, 637, 639, 641, 642, 643, 659, 664, 669, 670, 673, 674, 676, 679, 682, 683, 684, 687, 690, 698, 706, 717, 721, 722, 723, 726, 731, 732, 735, 736, 737, 745, 746, 747, 748, 749, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 788, 801, 802, 806, 808, 809, 812, 814, 815, 816, 818, 819, 821, 823, 825, 829, 830, 835, 837, 840, 845, 848, 851, 852, 853, 856, 857, 859, 862, 874], "extern": [6, 823, 832, 837, 840, 841], "local_xla": 6, "xla": [6, 9, 837, 851, 853, 866], "stream_executor": [6, 9], "cuda_dnn": [6, 9], "cc": [6, 9, 22, 23, 25, 42, 830], "9261": 6, "unabl": [6, 9, 816, 843], "regist": [6, 9, 790, 816, 852, 859], "cudnn": [6, 9], "factori": [6, 9, 53, 373, 452, 453, 802], "attempt": [6, 9, 19, 22, 23, 24, 25, 41, 43, 46, 815, 842, 851], "plugin": [6, 9, 815], "been": [6, 9, 12, 14, 22, 24, 27, 28, 53, 54, 62, 76, 77, 85, 192, 279, 374, 487, 541, 542, 543, 627, 628, 630, 639, 734, 801, 802, 814, 816, 819, 821, 823, 824, 825, 826, 828, 829, 832, 833, 836, 840, 845, 847, 851, 852, 859, 866, 873], "099643": 6, "cuda_fft": [6, 9], "607": 6, "cufft": [6, 9], "100960": 6, "cuda_bla": [6, 9], "1515": 6, "cubla": [6, 9], "108768": 6, "core": [6, 22, 23, 25, 41, 42, 43, 45, 46, 53, 76, 93, 96, 200, 372, 430, 441, 446, 447, 627, 815, 826, 830, 840, 850, 855, 864, 865, 866, 867, 871, 873], "cpu_feature_guard": [6, 22, 23, 25], "182": [6, 22, 23, 25, 76], "binari": [6, 10, 22, 23, 25, 53, 54, 57, 59, 76, 80, 82, 226, 229, 231, 266, 286, 371, 373, 417, 452, 455, 628, 632, 634, 655, 659, 692], "optim": [6, 7, 9, 10, 18, 22, 23, 25, 27, 28, 41, 43, 44, 46, 53, 55, 76, 78, 308, 365, 373, 452, 453, 532, 619, 630, 631, 636, 711, 712, 713, 787, 802, 808, 825, 836, 843, 846, 848, 850, 857, 860, 864, 865, 866, 867, 868, 869, 870, 873], "instruct": [6, 22, 23, 25, 70, 99, 808, 814, 815, 819, 829, 831, 838, 840, 852, 864, 867, 870, 872], "critic": [6, 22, 23, 25, 27, 28, 806, 866, 872], "oper": [6, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 40, 43, 49, 50, 52, 53, 54, 57, 70, 72, 73, 75, 76, 77, 80, 99, 114, 133, 134, 176, 206, 214, 219, 221, 230, 233, 236, 243, 258, 260, 269, 270, 274, 278, 281, 286, 298, 306, 326, 327, 328, 360, 363, 365, 370, 371, 373, 374, 385, 386, 387, 388, 390, 391, 392, 398, 399, 400, 404, 408, 409, 410, 411, 413, 414, 416, 418, 419, 448, 485, 487, 534, 541, 542, 543, 591, 622, 625, 626, 627, 628, 630, 632, 633, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 659, 674, 685, 687, 759, 761, 772, 775, 788, 802, 806, 808, 814, 815, 818, 819, 820, 823, 825, 826, 827, 828, 829, 833, 836, 837, 840, 843, 845, 848, 849, 853, 855, 859, 862, 863, 864, 865, 866, 867, 869, 870, 871, 872, 873], "avx2": [6, 22, 23, 25], "fma": [6, 22, 23, 25], "rebuild": [6, 22, 23, 25, 70, 99], "appropri": [6, 7, 18, 22, 23, 25, 27, 28, 54, 63, 68, 86, 91, 219, 236, 243, 269, 330, 347, 368, 628, 640, 740, 808, 814, 815, 816, 829, 834, 840], "compil": [6, 7, 8, 9, 10, 22, 23, 25, 27, 28, 31, 44, 46, 287, 628, 780, 808, 815, 837, 841, 845, 851, 853, 860, 862, 865, 866, 867, 870, 873], "flag": [6, 22, 23, 25, 70, 192, 373, 383, 450, 518, 627, 632, 659, 769, 780, 791, 816, 825, 826, 836, 837, 838, 840, 859, 860], "332076": 6, "tf2tensorrt": [6, 9], "py_util": [6, 9], "38": [6, 9, 10, 23, 39, 41, 43, 46, 50, 53, 75, 76, 85, 161, 286, 353, 368, 371, 383, 391, 410, 413, 414, 519, 626, 628, 633, 675, 772, 827], "trt": [6, 9], "could": [6, 9, 27, 28, 33, 64, 641, 745, 746, 747, 748, 814, 815, 816, 819, 824, 825, 827, 834, 836, 837, 838, 840, 845, 847, 848, 849, 856, 857, 866, 871, 872], "find": [6, 9, 16, 42, 43, 46, 58, 64, 70, 81, 633, 637, 641, 676, 716, 745, 746, 747, 748, 801, 802, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 824, 830, 835, 840, 843, 845, 848, 852, 853, 855, 859], "tensorrt": [6, 9], "lstm": [6, 632, 658, 788, 845, 866], "layer": [6, 12, 14, 18, 24, 25, 27, 28, 39, 44, 53, 61, 76, 84, 638, 657, 658, 659, 733, 785, 787, 789, 790, 791, 792, 793, 808, 828, 837, 841, 843, 845, 846, 849, 855, 860, 864, 866, 870, 873], "torch_lstm": 6, "rand": [6, 25, 27, 28, 43, 801, 802, 808, 859], "tf_lstm": 6, "workspac": [6, 8, 9, 19, 22, 23, 24, 25, 815, 830], "ivy_repo": [6, 19], "except": [6, 9, 19, 22, 23, 24, 25, 42, 43, 46, 53, 54, 60, 62, 67, 70, 76, 77, 81, 85, 90, 150, 331, 332, 337, 356, 368, 374, 378, 383, 464, 488, 492, 505, 524, 525, 540, 558, 575, 591, 597, 626, 630, 633, 635, 639, 640, 644, 679, 696, 698, 706, 735, 736, 737, 743, 763, 764, 767, 770, 774, 808, 816, 817, 818, 819, 820, 824, 825, 826, 828, 830, 832, 836, 837, 841, 842, 843, 847, 851], "383": [6, 19], "current": [6, 9, 18, 19, 22, 23, 24, 25, 27, 28, 41, 42, 48, 53, 54, 70, 76, 99, 118, 162, 163, 166, 183, 184, 185, 186, 187, 188, 194, 195, 196, 197, 202, 204, 372, 374, 424, 425, 480, 488, 546, 547, 550, 553, 555, 559, 570, 571, 591, 624, 626, 627, 630, 633, 637, 668, 714, 724, 725, 769, 773, 789, 790, 797, 798, 802, 805, 806, 808, 810, 814, 815, 816, 819, 821, 823, 824, 825, 826, 829, 830, 831, 833, 836, 837, 838, 839, 840, 843, 845, 850, 851, 857, 859, 866, 872, 873], "doe": [6, 9, 10, 18, 19, 22, 23, 24, 25, 27, 40, 42, 52, 53, 54, 60, 70, 75, 76, 83, 93, 143, 270, 272, 280, 324, 365, 372, 373, 383, 384, 425, 452, 453, 524, 525, 529, 558, 625, 628, 630, 633, 635, 668, 704, 767, 802, 812, 814, 816, 818, 821, 824, 825, 827, 828, 830, 831, 832, 833, 836, 837, 838, 840, 843, 845, 847, 848, 851, 853, 856, 859, 862, 866, 867, 873], "quietli": [6, 9, 19, 22, 23, 24, 25], "appli": [6, 7, 9, 19, 22, 23, 24, 25, 27, 28, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 368, 369, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 407, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 622, 626, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 687, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 720, 723, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 774, 775, 784, 788, 791, 808, 814, 815, 816, 820, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 836, 837, 840, 841, 843, 847, 848, 849, 850, 851, 859, 860, 867], "control": [6, 9, 19, 22, 23, 24, 25, 35, 53, 76, 143, 292, 324, 363, 365, 371, 374, 395, 396, 397, 463, 489, 576, 625, 630, 633, 666, 823, 825, 826, 835, 836, 837, 838, 843, 847, 848, 853, 859, 866, 872], "consid": [6, 9, 10, 19, 22, 23, 24, 25, 32, 33, 53, 58, 64, 76, 81, 114, 143, 264, 265, 324, 330, 335, 347, 365, 368, 372, 383, 426, 430, 441, 518, 622, 625, 628, 633, 641, 666, 676, 745, 746, 747, 748, 774, 787, 820, 824, 825, 833, 835, 841, 843, 846, 847, 848, 855, 856, 859, 863, 867, 871, 873], "set_inplace_mod": [6, 9, 19, 22, 23, 24, 25, 600, 630], "strict": [6, 9, 19, 22, 23, 24, 25, 576, 600, 630], "rais": [6, 9, 19, 22, 23, 24, 25, 42, 43, 49, 53, 54, 62, 64, 67, 70, 72, 76, 77, 83, 85, 87, 90, 124, 150, 239, 274, 331, 332, 342, 368, 371, 373, 374, 378, 383, 405, 416, 453, 458, 459, 466, 468, 470, 471, 472, 479, 488, 495, 505, 524, 525, 534, 558, 576, 578, 589, 591, 597, 601, 626, 628, 630, 633, 635, 639, 640, 641, 643, 644, 673, 675, 689, 698, 699, 700, 702, 704, 705, 706, 707, 709, 735, 736, 737, 743, 748, 756, 758, 763, 764, 767, 774, 792, 808, 816, 819, 821, 825, 826, 829, 836, 837, 841, 842, 845, 847, 852, 856], "error": [6, 9, 10, 19, 22, 23, 24, 25, 33, 44, 46, 52, 53, 57, 70, 75, 76, 80, 106, 238, 286, 331, 332, 339, 340, 368, 372, 373, 374, 383, 384, 441, 447, 449, 451, 488, 525, 529, 576, 622, 628, 630, 632, 633, 643, 662, 681, 684, 756, 758, 774, 792, 805, 809, 813, 814, 815, 816, 819, 820, 821, 824, 825, 826, 827, 831, 832, 837, 840, 841, 842, 847, 851, 857, 866], "whenev": [6, 9, 19, 22, 23, 24, 25, 788, 816, 821, 824, 825, 829, 836, 839, 840, 842, 848], "26": [6, 22, 23, 24, 25, 39, 41, 43, 46, 52, 53, 61, 62, 76, 77, 78, 85, 231, 236, 282, 371, 372, 393, 429, 439, 556, 611, 628, 630, 631, 632, 633, 637, 638, 643, 654, 667, 678, 685, 715, 733, 735, 736, 755], "221321": 6, "common_runtim": [6, 42], "gpu_devic": 6, "1929": 6, "job": [6, 27, 28, 808, 822, 824, 860], "localhost": 6, "replica": 6, "14699": 6, "mb": [6, 8, 41, 43, 46, 824], "tesla": 6, "v100": [6, 7], "pcie": [6, 856], "16gb": 6, "pci": 6, "bu": [6, 81, 856], "id": [6, 10, 42, 53, 76, 192, 326, 327, 328, 365, 553, 627, 630, 808, 813, 815, 820, 822, 823, 831, 835, 840, 852, 874], "0001": [6, 52, 53, 76, 279, 280, 372, 441, 447, 772, 775, 792], "00": [6, 8, 10, 41, 43, 46, 53, 54, 58, 76, 77, 81, 241, 308, 339, 340, 365, 371, 393, 399, 403, 404, 545, 589, 628, 630, 633, 670, 680, 772, 831, 840], "comput": [6, 24, 25, 27, 28, 34, 35, 40, 41, 43, 47, 52, 53, 54, 55, 57, 58, 59, 64, 66, 69, 70, 75, 76, 77, 78, 80, 81, 82, 89, 93, 94, 96, 109, 113, 209, 219, 226, 229, 231, 236, 237, 238, 243, 244, 245, 247, 248, 254, 255, 256, 263, 264, 265, 266, 268, 269, 272, 277, 278, 296, 300, 304, 310, 313, 314, 326, 327, 328, 331, 332, 334, 338, 340, 343, 345, 346, 350, 352, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 381, 383, 390, 391, 392, 393, 394, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 419, 420, 422, 424, 425, 426, 427, 429, 430, 432, 434, 437, 439, 441, 444, 445, 447, 449, 450, 451, 452, 453, 454, 455, 474, 477, 490, 497, 499, 510, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 535, 536, 537, 581, 604, 611, 613, 614, 616, 620, 621, 627, 628, 630, 631, 632, 633, 634, 635, 637, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 656, 663, 664, 668, 669, 670, 673, 674, 676, 678, 680, 682, 683, 685, 687, 689, 690, 692, 693, 694, 698, 720, 745, 746, 747, 748, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 769, 774, 788, 791, 802, 808, 815, 823, 824, 825, 833, 835, 837, 840, 842, 843, 845, 848, 851, 853, 856, 857, 859, 860, 862, 864, 866, 867, 869, 870, 872], "capabl": [6, 16, 24, 28, 840, 843], "625856": 6, "454": 6, "8902": 6, "origin": [6, 7, 9, 10, 25, 27, 28, 29, 30, 31, 33, 40, 41, 42, 46, 53, 58, 60, 66, 70, 76, 81, 83, 89, 93, 96, 98, 99, 224, 249, 276, 315, 365, 371, 372, 374, 383, 415, 441, 473, 479, 481, 484, 519, 520, 524, 525, 526, 527, 528, 628, 633, 635, 643, 674, 702, 703, 754, 769, 774, 797, 798, 808, 810, 814, 815, 816, 821, 822, 824, 825, 830, 834, 836, 837, 838, 845, 857, 859, 860, 866, 867], "32": [6, 10, 25, 27, 28, 39, 41, 42, 43, 52, 53, 62, 75, 76, 80, 81, 85, 98, 99, 108, 160, 218, 230, 231, 240, 254, 260, 276, 279, 280, 334, 368, 371, 372, 374, 383, 391, 392, 393, 403, 413, 414, 424, 428, 463, 519, 541, 557, 622, 626, 628, 630, 632, 633, 639, 640, 643, 647, 649, 650, 654, 656, 673, 678, 689, 735, 736, 737, 744, 755, 772, 775, 808, 824, 825, 835, 848, 871], "original_output": 6, "constant": [6, 12, 14, 19, 22, 23, 29, 32, 34, 39, 53, 60, 61, 76, 83, 84, 93, 94, 318, 365, 371, 373, 374, 417, 452, 453, 480, 635, 637, 638, 697, 720, 733, 787, 791, 808, 833, 838, 841, 849, 850, 851, 859, 861], "transpiled_output": 6, "verifi": [6, 10, 24, 321, 322, 365, 814, 825, 826, 837, 840, 841], "toler": [6, 53, 58, 76, 81, 330, 347, 368, 372, 426, 441, 447, 633, 676, 679, 767, 769, 819, 838, 866], "1e": [6, 7, 8, 9, 12, 14, 27, 39, 43, 50, 53, 55, 58, 59, 61, 73, 76, 78, 81, 82, 84, 97, 161, 330, 347, 368, 373, 377, 453, 497, 498, 499, 578, 579, 588, 601, 602, 611, 612, 617, 619, 626, 630, 631, 633, 634, 638, 683, 692, 693, 694, 733, 767, 769, 789, 791, 792, 808, 812, 823, 830, 833, 836, 838, 849, 850], "benchmark": [6, 868], "n_run": 6, "original_torch_tim": 6, "autograph": 6, "experiment": [6, 806, 812, 816, 825, 837, 841, 845, 866], "do_not_convert": 6, "compiled_tf_lstm": 6, "transpiled_tf_tim": 6, "own": [6, 12, 14, 18, 27, 28, 33, 808, 815, 819, 824, 825, 828, 829, 836, 837, 841, 845, 851, 853, 856, 857, 862, 865, 866, 871, 872], "comparison": [6, 8, 53, 76, 237, 272, 333, 368, 373, 452, 453, 628, 633, 684, 767, 829], "original_tf_lstm": 6, "kera": [6, 11, 12, 14, 16, 17, 25, 27, 28, 44, 45, 785, 808, 857, 860, 872], "time_major": [6, 76, 371, 417, 632, 658], "return_sequ": [6, 788], "original_tf_tim": 6, "slower": [6, 20, 837], "than": [6, 10, 27, 28, 30, 33, 52, 53, 54, 57, 58, 60, 62, 63, 64, 66, 70, 75, 76, 77, 80, 81, 83, 85, 86, 87, 89, 98, 99, 122, 130, 161, 209, 217, 218, 221, 222, 224, 225, 228, 230, 232, 236, 242, 243, 257, 258, 259, 260, 267, 269, 274, 278, 280, 282, 283, 287, 288, 289, 298, 308, 330, 333, 347, 354, 365, 368, 371, 372, 373, 374, 383, 393, 394, 399, 400, 403, 404, 405, 415, 416, 420, 422, 441, 447, 448, 471, 472, 519, 520, 521, 560, 561, 564, 581, 604, 625, 626, 627, 628, 630, 632, 633, 635, 639, 640, 641, 643, 657, 662, 664, 673, 674, 675, 676, 679, 690, 695, 699, 705, 737, 743, 746, 747, 748, 753, 754, 759, 760, 761, 762, 788, 802, 812, 814, 816, 819, 823, 824, 825, 827, 829, 830, 836, 837, 838, 840, 841, 842, 843, 845, 848, 849, 850, 851, 852, 856, 863, 864, 865, 866, 872, 873], "30": [6, 10, 22, 23, 24, 25, 39, 41, 52, 53, 54, 76, 77, 85, 89, 99, 269, 300, 345, 353, 368, 371, 374, 393, 403, 414, 463, 485, 509, 541, 543, 548, 549, 556, 557, 573, 582, 588, 628, 630, 633, 637, 643, 672, 678, 723, 735, 736, 754, 755, 759, 774, 787, 802, 811, 824], "698440": 6, "local_tsl": 6, "tsl": 6, "subprocess": 6, "304": 6, "cannot": [6, 41, 42, 43, 46, 53, 286, 458, 459, 460, 628, 816, 819, 821, 825, 837, 845, 850, 872], "spawn": [6, 569, 630], "child": 6, "No": [6, 27, 28, 41, 53, 59, 76, 82, 373, 450, 451, 452, 454, 455, 634, 692, 816, 824, 825, 866], "directori": [6, 41, 42, 43, 46, 585, 608, 627, 630, 806, 810, 814, 815, 816, 822, 824, 830, 837, 840, 852], "725307350738295x": 6, "440824652724787x": 6, "openmim": 7, "mim": 7, "0rc8": 7, "request": [7, 8, 9, 22, 23, 24, 25, 27, 28, 41, 44, 53, 200, 378, 508, 627, 806, 808, 809, 811, 814, 827, 831, 841, 843, 857, 860], "get_model": 7, "list_model": 7, "mmengin": 7, "configdict": 7, "saniti": [7, 9, 10, 27, 837], "checkpoint": [7, 8, 44, 851], "correct": [7, 12, 14, 23, 33, 39, 41, 43, 66, 89, 182, 372, 443, 626, 635, 643, 695, 760, 762, 769, 772, 808, 812, 814, 816, 818, 823, 824, 825, 826, 829, 830, 832, 833, 836, 838, 840, 860], "against": [7, 50, 53, 54, 58, 63, 73, 75, 76, 77, 81, 86, 149, 268, 287, 330, 333, 336, 347, 368, 383, 524, 525, 526, 527, 528, 565, 626, 628, 630, 633, 640, 673, 674, 676, 679, 740, 840, 845, 851, 855, 866], "zoo": 7, "checkpoint_nam": [7, 9, 27], "convnext": 7, "tiny_32xb128": 7, "noema_in1k": 7, "openmmlab": 7, "dure": [7, 9, 20, 22, 27, 30, 32, 33, 51, 55, 66, 70, 74, 78, 89, 210, 371, 395, 396, 397, 576, 597, 611, 612, 617, 627, 630, 631, 632, 633, 636, 643, 655, 673, 711, 712, 713, 760, 762, 780, 791, 792, 806, 815, 823, 825, 826, 829, 833, 834, 836, 837, 838, 839, 840, 843, 851, 859, 866, 867, 872], "get_scal": 7, "cfg": [7, 831], "kei": [7, 20, 21, 27, 28, 43, 45, 48, 53, 57, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 381, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 464, 465, 486, 488, 490, 492, 497, 499, 500, 501, 503, 505, 511, 518, 519, 520, 521, 530, 531, 533, 534, 536, 537, 538, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 630, 632, 636, 637, 646, 647, 648, 649, 655, 656, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 717, 723, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 772, 773, 779, 785, 788, 792, 808, 811, 822, 823, 824, 833, 836, 837, 838, 840, 848, 860, 866, 869, 873], "input_shap": [7, 14, 25, 27, 28, 808], "block": [7, 27, 28, 31, 32, 33, 34, 372, 432, 808, 816, 823, 825, 829, 833, 840, 844, 846, 850, 851, 853, 860, 871, 873], "url": [7, 9, 24, 27, 28, 41, 44, 808, 860], "cocodataset": [7, 9, 24, 27, 28, 44, 808, 860], "org": [7, 8, 9, 24, 27, 28, 41, 43, 44, 46, 52, 53, 75, 76, 78, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 611, 612, 625, 626, 628, 631, 633, 635, 643, 681, 682, 710, 760, 808, 828, 860], "val2017": [7, 9, 27, 44], "000000039769": [7, 9, 27, 44], "stream": [7, 9, 24, 27, 28, 41, 44, 51, 74, 210, 627, 808, 860, 870], "_config": 7, "train_pipelin": 7, "tensor_imag": 7, "And": [7, 9, 10, 12, 14, 19, 22, 27, 28, 29, 42, 73, 361, 362, 370, 808, 819, 822, 831, 833, 840, 859], "final": [7, 9, 12, 14, 16, 24, 27, 28, 33, 39, 40, 49, 53, 54, 76, 77, 93, 121, 133, 134, 318, 365, 371, 416, 545, 624, 625, 630, 632, 657, 658, 659, 802, 814, 816, 817, 819, 820, 822, 824, 825, 827, 828, 833, 835, 836, 837, 839, 843, 844, 848, 859, 860, 862, 872], "transpiled_graph": [7, 9, 27], "what": [7, 9, 16, 21, 27, 28, 31, 32, 35, 40, 41, 371, 405, 416, 774, 802, 808, 814, 816, 818, 823, 824, 827, 828, 831, 832, 834, 835, 836, 837, 838, 840, 844, 845, 847, 848, 849, 850, 851, 856, 857, 862, 867, 868, 871], "improv": [7, 9, 10, 27, 30, 811, 816, 825, 832, 833, 843, 845, 853, 857, 859, 864, 866, 868, 869], "For": [7, 8, 9, 10, 18, 20, 27, 28, 30, 33, 35, 49, 53, 58, 64, 76, 81, 122, 135, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 271, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 326, 327, 328, 331, 332, 334, 355, 365, 368, 372, 374, 438, 440, 460, 480, 483, 625, 628, 633, 635, 641, 643, 681, 683, 687, 695, 706, 745, 746, 747, 748, 756, 758, 759, 761, 773, 785, 814, 815, 816, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 843, 845, 847, 848, 849, 850, 851, 852, 855, 856, 857, 859, 863, 864, 867, 872, 873], "issu": [7, 9, 373, 450, 787, 809, 810, 811, 812, 813, 815, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 837, 840, 841, 843, 845, 849, 851, 857, 859], "107960": [7, 9], "export": [7, 9, 42, 824, 865, 872], "lc_all": [7, 9], "en_u": [7, 9], "utf": [7, 9], "ld_library_path": [7, 9], "lib64": [7, 9], "nvidia": [7, 9, 22, 23, 24, 25, 41, 43, 46, 870, 871], "library_path": [7, 9], "stub": [7, 9, 822], "ldconfig": [7, 9], "_f": [7, 9, 27], "comp_model": [7, 9, 27], "equival": [7, 9, 27, 58, 81, 93, 94, 122, 230, 243, 264, 265, 278, 279, 374, 464, 488, 494, 625, 628, 633, 676, 679, 682, 690, 797, 836, 837, 843, 848, 850, 852, 860], "just": [7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 39, 41, 43, 53, 58, 66, 81, 93, 96, 143, 324, 365, 372, 440, 625, 633, 643, 676, 755, 780, 788, 808, 812, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 830, 833, 834, 836, 837, 838, 840, 845, 847, 848, 851, 856, 857, 860, 866, 867, 872], "np_imag": [7, 24, 27, 28], "jax_imag": 7, "hk": [7, 9, 27, 41, 45, 808, 850, 860], "rng_kei": [7, 9, 27, 808, 860], "random": [7, 9, 12, 14, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 41, 43, 44, 53, 57, 70, 76, 80, 319, 320, 321, 322, 323, 365, 372, 373, 430, 441, 447, 453, 504, 505, 506, 507, 508, 632, 655, 734, 735, 736, 737, 738, 739, 772, 774, 787, 801, 802, 808, 814, 826, 838, 840, 841, 850, 860, 861, 866], "prngkei": [7, 9, 20, 21, 27, 28, 41, 808, 850, 860], "42": [7, 9, 10, 20, 21, 25, 27, 28, 39, 41, 42, 47, 62, 69, 78, 85, 114, 230, 371, 393, 403, 611, 615, 622, 628, 631, 633, 638, 639, 643, 674, 678, 733, 734, 735, 736, 737, 738, 755, 808, 845, 850, 860], "jax_mlp_forward": 7, "param": [7, 9, 10, 27, 41, 42, 43, 45, 70, 76, 77, 99, 531, 548, 549, 630, 794, 808, 850, 860], "init": [7, 9, 27, 41, 43, 53, 76, 372, 430, 441, 447, 808, 819, 850, 860], "rng": [7, 9, 27, 41, 808, 850, 860], "both": [7, 8, 9, 10, 12, 14, 22, 24, 27, 28, 32, 33, 40, 42, 49, 52, 53, 54, 57, 58, 72, 75, 76, 77, 80, 81, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 174, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 335, 337, 342, 347, 365, 368, 371, 372, 374, 378, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 474, 480, 488, 491, 492, 504, 518, 521, 548, 552, 554, 556, 565, 587, 596, 620, 621, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 788, 808, 812, 814, 816, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 836, 837, 840, 843, 845, 847, 848, 849, 850, 851, 859, 860, 866, 869, 871, 872, 873], "each": [7, 9, 10, 20, 21, 22, 27, 28, 30, 31, 32, 34, 41, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 63, 64, 66, 70, 73, 75, 76, 77, 78, 80, 81, 83, 86, 87, 89, 93, 94, 96, 98, 99, 107, 108, 110, 111, 112, 114, 118, 135, 149, 161, 164, 209, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 291, 293, 294, 299, 301, 302, 303, 305, 306, 307, 312, 323, 326, 327, 328, 334, 342, 346, 350, 355, 358, 363, 365, 368, 371, 372, 374, 377, 378, 381, 383, 390, 391, 392, 395, 396, 397, 400, 408, 409, 410, 411, 414, 416, 417, 418, 425, 426, 431, 440, 441, 445, 447, 458, 459, 460, 464, 465, 466, 471, 472, 474, 475, 477, 479, 480, 483, 485, 494, 495, 502, 504, 511, 516, 517, 518, 519, 520, 521, 530, 533, 541, 548, 549, 565, 590, 610, 612, 613, 615, 617, 618, 619, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 637, 639, 640, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 659, 663, 664, 665, 668, 669, 670, 673, 675, 676, 677, 679, 681, 682, 683, 688, 697, 701, 703, 704, 706, 708, 710, 720, 727, 734, 743, 745, 746, 748, 754, 755, 762, 769, 772, 774, 780, 788, 791, 792, 793, 802, 806, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 850, 851, 855, 856, 857, 859, 860, 862, 863, 867, 869, 872], "timeit": [7, 9, 10, 20, 27, 28, 44, 46], "06": [7, 10, 22, 43, 50, 62, 75, 78, 97, 106, 161, 218, 234, 371, 393, 403, 617, 622, 626, 631, 737, 767, 769, 840, 848], "m": [7, 8, 9, 10, 27, 40, 42, 44, 46, 49, 53, 58, 62, 75, 76, 81, 85, 98, 135, 141, 142, 143, 263, 324, 325, 365, 371, 372, 373, 374, 378, 394, 425, 430, 431, 433, 434, 449, 460, 471, 472, 486, 504, 505, 506, 507, 508, 625, 633, 637, 639, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 722, 735, 736, 737, 808, 815, 816, 818, 824, 845], "per": [7, 9, 10, 20, 41, 43, 53, 57, 76, 80, 315, 365, 371, 372, 374, 390, 391, 392, 408, 409, 410, 411, 440, 487, 632, 646, 648, 649, 650, 651, 654, 659, 788, 816, 824, 834, 837, 848], "loop": [7, 9, 10, 20, 35, 68, 76, 91, 118, 121, 371, 417, 624, 636, 711, 712, 713, 808, 821, 851, 859], "100": [7, 8, 9, 10, 39, 41, 43, 49, 52, 53, 72, 75, 76, 77, 80, 97, 134, 143, 230, 270, 283, 324, 347, 356, 365, 368, 371, 372, 374, 395, 396, 441, 447, 485, 549, 557, 573, 625, 628, 630, 633, 637, 672, 720, 808, 824, 825, 840, 848, 849, 850, 851, 856, 857, 859], "block_until_readi": 7, "08": [7, 53, 66, 76, 85, 222, 330, 347, 368, 371, 373, 393, 403, 453, 628, 736, 737, 762, 767, 772, 831], "\u00b5": [7, 9, 10, 20], "made": [7, 9, 27, 53, 60, 76, 372, 374, 432, 458, 459, 460, 706, 814, 816, 817, 819, 820, 823, 824, 829, 831, 833, 835, 836, 837, 841, 843, 845, 847, 856, 866], "significantli": [7, 9, 27, 53, 58, 76, 81, 372, 445, 633, 683, 824, 855, 864], "line": [7, 9, 10, 16, 17, 20, 21, 24, 27, 28, 30, 31, 42, 43, 286, 628, 806, 808, 815, 819, 820, 824, 826, 827, 829, 837, 840, 843, 846, 847, 848, 849, 857, 860, 869], "even": [7, 24, 27, 28, 53, 76, 93, 236, 269, 274, 279, 374, 383, 480, 518, 628, 815, 816, 817, 819, 821, 824, 825, 826, 828, 832, 833, 836, 837, 838, 843, 847, 848, 849, 850, 851, 856, 857, 872], "better": [7, 10, 30, 39, 45, 46, 814, 818, 837, 838, 841, 843, 844, 847, 848, 849, 857, 869], "3x": 7, "increas": [7, 9, 10, 20, 27, 30, 53, 58, 60, 76, 81, 83, 96, 374, 383, 480, 521, 633, 635, 688, 697, 710, 774, 825, 829, 837, 841, 843, 855, 859, 866], "execut": [7, 9, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 35, 42, 44, 46, 119, 121, 597, 624, 627, 630, 815, 816, 822, 823, 824, 825, 826, 827, 829, 833, 834, 836, 840, 843, 845, 847, 850, 851, 853, 859, 862, 866, 867, 868, 869, 870, 872], "train2017": [7, 9, 24, 27, 28, 808, 860], "000000283921": [7, 9, 27], "out_torch": [7, 9, 27], "et": [7, 632, 633, 659, 683], "took": [7, 75, 276], "out_jax": [7, 9, 27], "66m": 7, "53m": 7, "That": [7, 9, 12, 14, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 41, 278, 373, 452, 628, 801, 815, 816, 820, 840, 847, 848, 849, 867], "pretti": [7, 9, 27, 28, 41, 812, 830, 848, 872], "much": [7, 9, 10, 18, 19, 25, 27, 28, 29, 30, 41, 96, 330, 347, 368, 787, 814, 815, 816, 820, 823, 825, 833, 836, 837, 838, 841, 842, 843, 845, 847, 848, 856, 864, 866, 872, 873], "achiev": [7, 9, 10, 27, 808, 809, 811, 817, 824, 825, 833, 834, 840, 843, 848, 850, 853], "solid": [7, 9, 27], "associ": [8, 53, 58, 76, 81, 219, 269, 374, 383, 457, 521, 628, 633, 676, 679, 691, 769, 816, 825, 833, 834, 837, 838, 840, 851], "python": [8, 12, 18, 30, 35, 39, 41, 42, 43, 45, 46, 53, 62, 76, 85, 122, 203, 215, 243, 278, 371, 378, 417, 504, 505, 506, 507, 508, 610, 625, 627, 628, 630, 639, 734, 735, 736, 737, 739, 797, 801, 802, 806, 813, 815, 816, 819, 822, 823, 824, 829, 830, 837, 839, 840, 845, 847, 848, 851, 853, 854, 855, 856, 859, 863, 866, 867, 868, 872, 873], "2023": [8, 9, 22, 23, 24, 25, 41], "02": [8, 9, 41, 49, 54, 55, 61, 62, 75, 78, 85, 134, 221, 222, 261, 371, 393, 403, 404, 588, 589, 611, 612, 617, 625, 628, 630, 631, 638, 639, 733, 736, 737, 838], "52": [8, 10, 39, 52, 75, 77, 78, 85, 224, 234, 236, 383, 519, 541, 542, 557, 611, 628, 630, 631, 632, 633, 643, 656, 678, 737, 755, 801], "resolv": [8, 41, 43, 53, 66, 243, 383, 519, 520, 628, 635, 643, 698, 753, 754, 759, 761, 816, 822, 825, 831, 845], "185": [8, 41, 69], "199": [8, 41, 222, 628], "110": [8, 41], "133": [8, 41, 57, 537, 630, 656], "111": [8, 41, 637, 732], "108": [8, 10, 22, 23, 24, 25, 41, 632, 643, 656, 755], "connect": [8, 41, 788, 808, 810, 815, 822, 839, 849, 850, 856, 864], "443": [8, 41, 281, 628], "sent": [8, 41], "await": [8, 41], "respons": [8, 41, 377, 502, 816, 824, 825], "200": [8, 10, 41, 77, 80, 230, 371, 395, 396, 549, 573, 628, 630, 801, 848], "ok": [8, 41, 815], "length": [8, 41, 42, 49, 53, 59, 60, 70, 76, 82, 83, 93, 94, 99, 122, 130, 135, 310, 313, 314, 329, 337, 365, 368, 371, 372, 374, 378, 381, 393, 394, 399, 400, 403, 404, 405, 415, 416, 417, 419, 431, 440, 480, 489, 506, 511, 610, 625, 630, 632, 633, 634, 635, 641, 659, 683, 684, 692, 702, 745, 772, 788, 840, 848], "10472": 8, "10k": 8, "plain": [8, 41], "tx": 8, "23k": 8, "kb": [8, 41, 43, 46], "57": [8, 10, 39, 41, 52, 53, 75, 76, 194, 217, 218, 221, 222, 224, 234, 235, 275, 291, 292, 363, 627, 628], "109": [8, 41, 58, 633, 671], "634575": 8, "620k": 8, "jpeg": [8, 42, 43], "619": 8, "70k": 8, "113": 8, "resnet34_weight": 8, "torch_resnet_34": 8, "conv1": 8, "kernel_s": [8, 25, 27, 28, 43, 53, 76, 371, 390, 391, 392, 411, 418, 788, 794], "stride": [8, 53, 57, 76, 77, 80, 98, 371, 374, 390, 391, 392, 408, 409, 410, 411, 413, 414, 418, 456, 630, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788, 836, 841, 866], "bia": [8, 53, 57, 76, 80, 84, 377, 383, 502, 518, 568, 630, 632, 638, 645, 646, 647, 648, 649, 650, 651, 652, 653, 656, 657, 658, 659, 733, 788, 833, 840, 845, 849], "bn1": 8, "ep": [8, 53, 58, 61, 76, 81, 84, 161, 296, 363, 372, 373, 377, 426, 453, 497, 498, 499, 626, 633, 638, 676, 679, 733, 784, 791], "05": [8, 10, 43, 49, 52, 53, 55, 61, 75, 76, 78, 84, 134, 261, 314, 330, 339, 340, 347, 365, 368, 377, 497, 498, 499, 556, 578, 601, 611, 612, 617, 625, 628, 630, 631, 633, 638, 674, 733, 767, 772, 787, 791, 838, 840], "momentum": [8, 41, 53, 76, 377, 497, 499, 791, 856], "affin": [8, 791], "track_running_stat": [8, 791], "dilat": [8, 45, 53, 57, 76, 80, 371, 374, 408, 409, 410, 413, 414, 418, 480, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788], "ceil_mod": [8, 53, 76, 371, 390, 391, 392, 408, 409, 410, 413, 788], "layer1": 8, "basicblock": 8, "conv2": 8, "bn2": 8, "layer2": 8, "downsampl": [8, 53, 76, 407], "layer3": 8, "layer4": 8, "output_s": [8, 53, 76, 371, 385, 386, 387, 388, 632, 661, 788, 808, 860], "fc": [8, 14, 41, 808, 849, 860], "in_featur": [8, 57, 80, 632, 656, 840], "out_featur": [8, 57, 80, 632, 656, 840], "resnet_34": 8, "ivy_resnet_34": 8, "34": [8, 10, 39, 41, 75, 76, 77, 85, 164, 234, 261, 282, 371, 383, 414, 525, 541, 542, 626, 628, 630, 632, 633, 639, 656, 675, 736, 737, 826], "333f7ec4": 8, "pth": 8, "cach": [8, 9, 22, 23, 24, 25, 41, 43, 46, 191, 535, 627, 630, 777, 797, 831, 833, 836, 840], "83": [8, 10, 39, 58, 80, 85, 283, 371, 383, 393, 403, 414, 519, 628, 632, 633, 656, 671, 736], "3m": 8, "56": [8, 10, 39, 41, 52, 53, 57, 62, 75, 76, 80, 134, 269, 283, 286, 289, 371, 393, 403, 611, 625, 628, 631, 632, 633, 637, 643, 647, 649, 651, 653, 656, 678, 714, 736, 755, 827], "4mb": 8, "preserv": [8, 9, 22, 23, 24, 25, 53, 54, 55, 70, 76, 77, 78, 99, 371, 372, 374, 383, 407, 441, 458, 459, 460, 471, 472, 491, 525, 558, 620, 630, 631, 635, 699, 772, 839, 840, 850, 851, 860], "multipl": [8, 9, 18, 22, 23, 24, 25, 27, 52, 53, 58, 61, 66, 67, 70, 75, 76, 77, 78, 81, 83, 84, 89, 90, 130, 230, 254, 261, 267, 268, 269, 271, 331, 332, 368, 371, 372, 374, 377, 381, 393, 400, 403, 405, 439, 466, 475, 492, 495, 502, 511, 530, 537, 568, 611, 612, 615, 617, 618, 619, 620, 625, 628, 630, 631, 632, 633, 635, 638, 640, 643, 644, 647, 648, 649, 650, 663, 672, 673, 674, 687, 695, 698, 703, 704, 733, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 802, 806, 808, 814, 816, 820, 821, 823, 827, 829, 831, 833, 836, 837, 838, 840, 843, 845, 851, 857, 859, 864, 865, 866, 873], "machin": [8, 9, 22, 23, 24, 25, 30, 31, 39, 45, 53, 58, 76, 81, 161, 164, 372, 426, 626, 633, 676, 679, 808, 815, 819, 833, 853, 856, 864, 866, 868, 869, 870, 871, 872], "rel": [8, 9, 22, 23, 24, 25, 53, 55, 58, 60, 65, 72, 76, 78, 81, 83, 88, 98, 132, 330, 347, 368, 373, 383, 452, 453, 518, 612, 615, 617, 618, 619, 631, 633, 635, 642, 667, 676, 679, 687, 699, 703, 749, 752, 767, 769, 816, 824, 838, 843, 866, 868], "project": [8, 9, 16, 21, 22, 23, 24, 25, 27, 28, 31, 94, 632, 659, 788, 808, 810, 811, 814, 815, 816, 817, 820, 821, 822, 840, 849, 851, 855, 856, 857, 860, 862, 864, 866, 869, 873, 874], "consist": [8, 9, 10, 22, 23, 24, 25, 27, 28, 66, 70, 236, 243, 269, 371, 372, 415, 425, 628, 633, 643, 668, 669, 755, 789, 790, 811, 819, 820, 824, 825, 831, 836, 845, 855, 867], "ad": [8, 9, 10, 22, 23, 24, 25, 53, 60, 76, 83, 91, 236, 269, 330, 347, 368, 377, 497, 498, 499, 588, 589, 628, 630, 632, 633, 635, 659, 669, 670, 698, 788, 793, 808, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 841, 843, 845, 849, 851, 856, 859, 865, 866], "home": [8, 9, 22, 23, 24, 25, 824], "95": [8, 10, 39, 53, 55, 58, 62, 69, 78, 80, 85, 106, 356, 368, 414, 611, 615, 619, 622, 631, 633, 639, 671, 736, 737], "builtin": [8, 815, 847, 849], "callabl": [8, 45, 53, 54, 68, 76, 77, 80, 91, 118, 119, 121, 162, 163, 195, 196, 209, 359, 361, 362, 369, 370, 371, 374, 414, 417, 419, 457, 480, 531, 535, 540, 542, 546, 547, 568, 597, 610, 614, 616, 621, 624, 626, 627, 630, 631, 636, 637, 711, 712, 713, 720, 721, 722, 724, 725, 726, 727, 767, 770, 780, 792, 803, 806, 823, 829, 835, 837, 845, 858, 859, 860, 861], "track": [8, 18, 27, 28, 40, 41, 806, 815, 816, 819, 835, 836, 859, 866], "properli": [8, 815, 818, 829, 831, 837, 840], "might": [8, 33, 54, 94, 175, 540, 626, 630, 812, 814, 815, 816, 824, 825, 827, 830, 831, 834, 837, 840, 841, 843, 845, 847, 848, 853], "_trace_graph": 8, "shown": [8, 25, 27, 68, 70, 91, 253, 276, 334, 368, 628, 814, 815, 816, 819, 822, 824, 825, 827, 829, 831, 832, 837, 838, 840, 841, 842, 845, 847, 851], "8507": 8, "1351": 8, "0069": 8, "85072625": 8, "13506091": 8, "00688289": 8, "resnet50_weight": 8, "torch_resnet_50": 8, "imagenet1k_v2": 8, "11ad3fa6": 8, "97": [8, 10, 39, 53, 55, 75, 78, 85, 222, 356, 368, 615, 628, 631, 736], "8m": 8, "8mb": 8, "bottleneck": [8, 855], "conv3": 8, "bn3": 8, "2048": [8, 589, 630], "resnet_50": 8, "ivy_resnet_50": 8, "3429": 8, "0408": 8, "0121": 8, "34288204": 8, "04077014": 8, "01212029": 8, "depend": [9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 32, 49, 50, 53, 54, 58, 64, 65, 73, 76, 81, 88, 89, 119, 125, 148, 216, 217, 218, 221, 222, 223, 224, 233, 234, 236, 239, 241, 257, 258, 259, 260, 269, 271, 274, 281, 282, 286, 287, 355, 368, 371, 372, 417, 425, 443, 591, 624, 625, 626, 628, 630, 632, 633, 640, 642, 657, 668, 669, 680, 681, 682, 683, 744, 749, 752, 762, 808, 810, 812, 814, 815, 816, 822, 825, 826, 828, 830, 834, 836, 837, 838, 839, 840, 843, 845, 851, 852, 856, 859, 864, 866, 867], "yet": [9, 10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 43, 364, 366, 367, 375, 376, 380, 814, 815, 830, 851, 852, 859, 860, 861], "doc": [9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 42, 43, 76, 143, 324, 331, 332, 365, 368, 520, 625, 808, 809, 813, 814, 818, 827, 828, 831, 832, 840, 845, 848, 849, 859, 860, 861], "autofeatureextractor": [9, 27], "extractor": [9, 12, 14, 27, 43, 808], "hug": [9, 27, 859], "face": [9, 27, 809, 815, 819, 830, 831, 835, 843, 845, 859, 866, 872], "arch_nam": [9, 27], "microsoft": [9, 27, 856, 859, 860, 866, 871, 873], "feature_extractor": [9, 27], "23": [9, 10, 22, 23, 24, 25, 39, 41, 43, 52, 53, 58, 62, 72, 75, 76, 77, 80, 85, 132, 231, 234, 251, 252, 253, 276, 278, 279, 280, 282, 289, 334, 335, 368, 371, 374, 383, 390, 391, 393, 403, 408, 409, 410, 414, 418, 463, 519, 525, 625, 628, 632, 633, 637, 640, 651, 653, 667, 671, 674, 682, 684, 685, 715, 722, 726, 735, 736, 737, 744, 808, 824, 840, 845], "980130": 9, "9342": 9, "980177": 9, "609": 9, "980207": 9, "1518": 9, "351203": 9, "placement": [9, 814], "390": [9, 22, 23, 24, 25], "inputs_jax": [9, 27], "last_hidden_st": [9, 27], "jax_forward": [9, 27], "jit_appli": 9, "63": [9, 10, 39, 43, 52, 69, 75, 80, 81, 114, 275, 282, 283, 371, 383, 393, 403, 414, 519, 628, 633, 637, 643, 663, 678, 715, 726, 755], "122": [9, 50, 164, 234, 628], "134": [9, 57, 633, 656, 675], "2x": [9, 27], "ipytest": 10, "panda": [10, 41, 43, 856, 863], "matplotlib": [10, 22, 23, 24, 25, 41, 42, 43, 46], "scikit": [10, 372, 443, 856], "learn": [10, 12, 14, 18, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 39, 41, 53, 55, 78, 372, 373, 443, 448, 541, 612, 615, 617, 618, 619, 630, 631, 636, 711, 712, 713, 792, 808, 809, 813, 814, 815, 818, 819, 825, 830, 831, 833, 835, 844, 853, 855, 856, 864, 868, 869, 870, 871, 872, 873], "cryptographi": 10, "frontend": [10, 575, 630, 769, 770, 773, 777, 780, 808, 813, 816, 818, 824, 825, 829, 830, 835, 839, 840, 843, 844, 846, 853, 860, 866], "sklearn": 10, "classification_report": 10, "model_select": 10, "train_test_split": 10, "dataset": [10, 27, 70, 808, 848, 859, 860], "load_breast_canc": 10, "pyplot": [10, 41, 42, 43, 46], "plt": [10, 41, 42, 43, 46], "pd": [10, 43], "functool": [10, 41, 829, 837, 847], "autoconfig": 10, "tqdm": [10, 22, 23, 24, 25, 41, 43, 808], "tqdm_notebook": 10, "These": [10, 34, 53, 76, 372, 374, 383, 425, 479, 518, 632, 633, 659, 668, 669, 808, 811, 813, 814, 815, 816, 819, 823, 825, 827, 828, 832, 833, 836, 837, 840, 845, 846, 848, 849, 850, 851, 853, 855, 856, 857, 860, 866, 870, 872, 873], "sole": [10, 39, 832, 841, 865, 866, 867], "re": [10, 16, 19, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 41, 43, 44, 46, 53, 54, 63, 76, 86, 96, 209, 315, 365, 372, 374, 446, 481, 482, 541, 627, 630, 633, 635, 640, 685, 703, 742, 744, 809, 810, 814, 815, 816, 817, 818, 819, 822, 825, 830, 835, 836, 837, 838, 839, 841, 843, 847, 850, 851, 854, 855, 856, 866], "test_jax_gpu": 10, "xla_bridg": [10, 41], "get_backend": [10, 833], "test_torch_gpu": 10, "is_avail": 10, "test_xgboost_gpu": 10, "capsi": 10, "load_diabet": 10, "y": [10, 27, 28, 39, 40, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 125, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 145, 148, 149, 150, 159, 161, 164, 176, 189, 193, 197, 202, 203, 204, 208, 210, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 330, 331, 332, 338, 346, 347, 348, 349, 350, 355, 357, 359, 363, 365, 368, 371, 372, 373, 374, 377, 383, 391, 393, 395, 396, 400, 403, 405, 409, 415, 422, 426, 432, 439, 446, 448, 449, 451, 452, 453, 454, 455, 465, 467, 476, 480, 488, 489, 490, 492, 496, 500, 501, 503, 511, 517, 518, 519, 520, 521, 524, 526, 527, 528, 530, 533, 536, 537, 540, 541, 543, 544, 545, 548, 549, 550, 554, 556, 557, 558, 560, 561, 564, 565, 570, 577, 578, 579, 582, 585, 586, 588, 589, 591, 593, 595, 596, 597, 601, 602, 605, 608, 609, 610, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 647, 649, 651, 653, 654, 655, 656, 663, 664, 665, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 681, 683, 684, 685, 687, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 717, 720, 721, 723, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 806, 808, 821, 823, 826, 827, 835, 837, 838, 840, 841, 843, 845, 847, 859], "target": [10, 12, 14, 20, 22, 23, 25, 27, 28, 30, 31, 32, 33, 34, 43, 53, 76, 191, 373, 448, 449, 450, 451, 452, 453, 454, 455, 627, 767, 788, 790, 796, 808, 812, 815, 818, 821, 830, 831, 838, 839, 844, 848, 849, 850, 860, 861, 862, 864, 865, 866, 869, 871, 872], "xgb_model": 10, "xgbregressor": 10, "tree_method": 10, "caus": [10, 373, 450, 815, 816, 819, 821, 823, 824, 825, 827, 836, 838, 840, 851], "either": [10, 22, 23, 32, 33, 34, 35, 39, 45, 52, 53, 54, 57, 66, 70, 75, 76, 77, 80, 81, 108, 111, 114, 119, 129, 130, 140, 216, 217, 218, 219, 224, 234, 236, 237, 239, 241, 243, 250, 251, 257, 258, 259, 260, 261, 269, 278, 280, 281, 283, 286, 287, 333, 355, 368, 371, 377, 383, 393, 403, 413, 414, 418, 502, 519, 520, 540, 560, 568, 569, 577, 597, 622, 624, 625, 628, 630, 632, 633, 636, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 659, 673, 678, 681, 685, 711, 712, 713, 753, 754, 759, 761, 774, 788, 789, 790, 797, 810, 814, 815, 816, 821, 822, 823, 825, 826, 827, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 845, 848, 851, 852, 860, 866], "fit": [10, 60, 83, 635, 701, 814, 837, 845, 862, 863, 866], "consol": [10, 571, 630, 808, 816, 831, 840, 847, 852], "gpu_hist": 10, "captur": [10, 835, 840, 850, 867], "readouterr": 10, "err": 10, "99": [10, 39, 52, 53, 55, 73, 75, 85, 131, 218, 233, 356, 368, 588, 615, 625, 628, 630, 631, 637, 643, 718, 726, 736, 755], "implement": [10, 18, 19, 27, 29, 33, 41, 44, 50, 51, 53, 64, 65, 73, 74, 76, 81, 88, 93, 148, 162, 163, 176, 195, 196, 210, 216, 217, 218, 221, 222, 223, 224, 233, 234, 236, 239, 241, 243, 257, 258, 259, 260, 269, 271, 274, 278, 281, 282, 286, 287, 331, 332, 355, 368, 372, 383, 424, 425, 524, 525, 546, 547, 626, 627, 628, 630, 632, 633, 641, 642, 643, 659, 668, 669, 670, 678, 687, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 773, 775, 797, 808, 812, 814, 818, 819, 820, 821, 823, 825, 826, 828, 829, 830, 832, 833, 834, 836, 838, 840, 841, 843, 845, 847, 848, 849, 850, 851, 853, 863, 864, 865, 866, 869, 872, 873], "tabular": 10, "pulsar": 10, "emploi": [10, 872], "remov": [10, 16, 17, 20, 25, 27, 28, 30, 58, 70, 81, 633, 635, 636, 637, 667, 673, 687, 705, 711, 712, 728, 802, 805, 808, 814, 821, 822, 824, 825, 828, 833, 839, 840, 843, 850, 859, 860, 866], "column": [10, 43, 53, 58, 76, 81, 93, 94, 128, 143, 324, 365, 372, 374, 381, 383, 425, 431, 443, 464, 469, 471, 472, 476, 478, 511, 517, 518, 625, 633, 668, 669, 674, 680, 682, 683, 688, 772, 787], "well": [10, 27, 28, 41, 42, 43, 77, 373, 452, 554, 630, 633, 682, 774, 808, 810, 814, 816, 822, 824, 825, 829, 836, 837, 838, 840, 849, 850, 860, 865, 866, 867, 871], "standard": [10, 52, 58, 61, 62, 66, 75, 84, 85, 89, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 372, 374, 383, 415, 445, 488, 492, 518, 610, 625, 626, 628, 630, 633, 635, 638, 639, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 733, 736, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 774, 787, 791, 801, 802, 808, 811, 818, 819, 820, 823, 825, 828, 832, 836, 839, 840, 841, 851, 854, 860, 862, 864, 865, 868, 869, 871], "while": [10, 27, 28, 35, 53, 57, 70, 76, 80, 93, 94, 99, 121, 137, 175, 243, 244, 264, 265, 343, 368, 371, 372, 374, 416, 417, 439, 482, 483, 517, 624, 625, 626, 628, 632, 641, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 745, 757, 760, 770, 812, 814, 815, 816, 820, 821, 822, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 847, 849, 850, 851, 852, 855, 856, 859, 866, 872, 873], "extra": [10, 28, 70, 99, 118, 610, 624, 630, 820, 825, 827, 834, 836, 837, 838, 843, 845, 859, 860, 863, 868], "dimens": [10, 49, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 72, 76, 77, 80, 81, 82, 83, 85, 86, 87, 89, 90, 96, 98, 99, 102, 109, 113, 137, 141, 142, 312, 323, 325, 326, 327, 328, 331, 332, 336, 337, 345, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 378, 381, 383, 385, 387, 388, 390, 391, 392, 394, 399, 400, 404, 408, 409, 410, 411, 414, 415, 417, 418, 420, 422, 425, 434, 443, 448, 452, 458, 459, 460, 464, 470, 481, 482, 483, 484, 486, 488, 492, 497, 498, 499, 502, 506, 508, 511, 521, 523, 524, 525, 526, 527, 528, 541, 542, 543, 545, 552, 586, 590, 610, 622, 625, 630, 632, 633, 634, 635, 636, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 658, 659, 663, 664, 665, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 690, 693, 694, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 711, 712, 713, 739, 740, 741, 743, 745, 746, 747, 748, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 784, 788, 791, 827, 829, 835, 837, 838, 840, 843, 845, 848], "label": [10, 41, 42, 43, 53, 59, 76, 82, 373, 448, 449, 451, 452, 453, 454, 455, 634, 692, 693, 694, 808, 814, 819, 837, 844, 845, 846, 850, 852, 866], "load_data": 10, "standardscal": 10, "df": [10, 43], "read_csv": [10, 43], "delimit": [10, 848], "drop": [10, 43, 53, 76, 327, 365, 373, 374, 452, 489, 787, 788, 815, 851], "sc": 10, "fit_transform": 10, "prepare_data": 10, "tupl": [10, 45, 48, 49, 50, 52, 53, 54, 57, 58, 60, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 96, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 123, 124, 130, 132, 136, 137, 139, 143, 145, 149, 150, 151, 162, 163, 164, 168, 169, 175, 176, 182, 192, 195, 196, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 312, 317, 321, 324, 330, 331, 332, 333, 334, 336, 337, 338, 341, 342, 344, 345, 346, 347, 351, 352, 353, 354, 355, 357, 358, 359, 360, 365, 368, 370, 371, 372, 374, 377, 378, 379, 381, 383, 390, 391, 392, 394, 395, 396, 397, 399, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 425, 426, 430, 434, 436, 441, 443, 444, 445, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 475, 480, 486, 488, 489, 490, 492, 494, 497, 499, 500, 501, 502, 503, 505, 506, 508, 509, 510, 518, 519, 520, 521, 523, 524, 525, 526, 527, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 577, 587, 588, 589, 590, 591, 593, 594, 595, 596, 609, 610, 611, 612, 613, 615, 617, 620, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 662, 663, 664, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 685, 686, 687, 690, 692, 693, 694, 695, 696, 697, 699, 700, 702, 703, 704, 705, 706, 709, 710, 711, 712, 713, 714, 715, 717, 718, 719, 721, 722, 723, 725, 726, 729, 730, 731, 732, 734, 735, 736, 737, 739, 742, 743, 745, 746, 747, 748, 749, 750, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 787, 788, 790, 801, 802, 820, 825, 832, 833, 836, 838, 840, 845, 848, 849, 851, 859, 860, 861], "expand_dim": [10, 24, 27, 28, 43, 45, 60, 83, 632, 635, 654, 808, 837, 845, 848, 860], "astyp": [10, 12, 14, 19, 41, 42, 43, 50, 57, 73, 80, 626, 632, 648, 650, 651, 654, 808, 825, 836, 837, 843, 861], "csv": [10, 43, 808], "instanc": [10, 18, 24, 27, 28, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 161, 164, 167, 168, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 368, 371, 372, 373, 374, 377, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 408, 409, 410, 414, 415, 417, 418, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 583, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 632, 633, 634, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 780, 785, 806, 814, 815, 816, 819, 820, 821, 825, 827, 828, 829, 830, 832, 833, 834, 835, 836, 840, 848, 849, 850, 853, 859, 867], "117564": 10, "variou": [10, 21, 31, 33, 39, 808, 811, 814, 815, 816, 819, 824, 825, 828, 829, 832, 834, 835, 837, 838, 839, 840, 852, 862, 864, 865, 866, 869, 872], "structur": [10, 28, 70, 73, 99, 161, 164, 538, 630, 637, 718, 727, 808, 814, 816, 817, 820, 823, 833, 838, 839, 840, 841, 848, 849, 865, 866], "allow": [10, 25, 27, 28, 39, 53, 66, 76, 89, 133, 274, 372, 383, 444, 521, 525, 568, 625, 628, 630, 642, 643, 751, 758, 772, 773, 774, 775, 789, 790, 802, 806, 808, 814, 816, 817, 820, 821, 824, 825, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 845, 847, 851, 853, 856, 859, 860, 861, 864, 866, 870, 871], "navig": [10, 812, 815, 816, 818, 830], "choic": [10, 28, 45, 53, 66, 76, 89, 372, 374, 443, 463, 643, 760, 762, 808, 815, 824, 836, 837, 848, 857, 860, 866, 873], "rerun": [10, 41], "most": [10, 18, 27, 28, 70, 72, 93, 96, 137, 372, 425, 581, 604, 625, 630, 633, 668, 669, 805, 808, 813, 814, 815, 820, 823, 824, 825, 826, 830, 832, 833, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 856, 866, 867, 869, 870, 872, 873], "method": [10, 18, 27, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 148, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 372, 373, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 538, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 631, 633, 634, 637, 640, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 683, 684, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 725, 726, 727, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 780, 786, 787, 788, 789, 790, 814, 816, 819, 820, 824, 825, 826, 827, 828, 832, 840, 841, 845, 846, 849, 850, 851, 859, 860, 861, 867, 873], "signific": [10, 53, 373, 453, 842, 851, 855, 856, 866], "object": [10, 18, 23, 25, 27, 41, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 99, 102, 103, 125, 129, 130, 140, 152, 161, 164, 172, 175, 210, 268, 505, 553, 569, 613, 625, 626, 627, 630, 631, 637, 639, 717, 718, 719, 721, 722, 723, 729, 730, 731, 732, 739, 767, 769, 770, 777, 778, 779, 785, 786, 788, 789, 790, 797, 801, 808, 820, 821, 823, 824, 833, 834, 837, 838, 840, 843, 847, 850, 858, 859, 860, 861, 866, 872], "logist": 10, "booster": 10, "gblinear": 10, "n_estim": 10, "learning_r": 10, "reg_lambda": 10, "reg_alpha": 10, "base_margin": 10, "xgb_cl": 10, "ivy_cl": 10, "n": [10, 39, 42, 43, 44, 46, 49, 52, 53, 57, 58, 60, 62, 63, 66, 67, 75, 76, 80, 81, 83, 85, 86, 89, 90, 93, 98, 135, 141, 142, 143, 216, 286, 288, 324, 325, 337, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 385, 386, 387, 388, 393, 394, 399, 400, 403, 404, 405, 413, 414, 415, 416, 418, 426, 427, 434, 438, 440, 442, 447, 448, 460, 466, 469, 473, 475, 486, 495, 497, 498, 499, 502, 504, 505, 506, 507, 508, 511, 518, 528, 625, 628, 632, 633, 635, 637, 639, 640, 643, 644, 645, 646, 647, 648, 650, 652, 654, 659, 664, 667, 671, 673, 674, 675, 676, 677, 678, 679, 680, 683, 684, 687, 688, 689, 690, 697, 698, 700, 706, 710, 722, 735, 736, 737, 743, 757, 759, 760, 761, 762, 763, 764, 788, 791, 801, 808, 818, 822, 824, 840, 852, 860], "436": 10, "48": [10, 39, 43, 52, 53, 75, 76, 77, 78, 85, 108, 218, 241, 283, 371, 391, 392, 393, 403, 409, 410, 413, 556, 611, 615, 622, 628, 630, 631, 633, 637, 643, 678, 715, 736, 755], "wai": [10, 16, 17, 18, 21, 23, 27, 31, 33, 39, 93, 96, 808, 810, 813, 814, 815, 819, 820, 821, 822, 824, 825, 826, 836, 837, 838, 840, 843, 847, 848, 849, 850, 851, 852, 855, 856, 861, 868, 872, 873], "t4": 10, "higher": [10, 53, 76, 372, 374, 383, 429, 441, 447, 458, 459, 460, 528, 787, 825, 836, 844, 845, 850, 851, 863, 866, 867, 870, 872, 873], "tier": [10, 817], "reduc": [10, 53, 54, 58, 63, 66, 67, 70, 76, 77, 81, 86, 89, 90, 209, 331, 332, 352, 368, 369, 383, 523, 524, 525, 526, 527, 528, 542, 627, 630, 633, 640, 643, 644, 680, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 801, 802, 824, 829, 837, 843, 845, 847, 859, 864, 868, 869, 870], "lower": [10, 43, 49, 52, 53, 58, 62, 75, 76, 81, 85, 128, 141, 267, 303, 309, 315, 324, 325, 363, 365, 383, 521, 522, 528, 625, 628, 633, 639, 663, 669, 670, 676, 737, 774, 787, 808, 816, 825, 827, 837, 840, 845, 851, 853, 862, 863, 864, 866, 867, 872, 873], "although": [10, 633, 681, 808, 810, 820, 822, 823, 837, 843, 864, 866], "experi": [10, 16, 43, 815, 829, 840, 846, 848, 851], "demonstr": [10, 24, 27, 28, 42, 817, 825, 827, 829, 847], "still": [10, 21, 23, 24, 27, 28, 30, 31, 34, 58, 70, 81, 633, 683, 772, 814, 815, 816, 820, 821, 825, 828, 829, 831, 833, 836, 837, 840, 843, 849, 851, 856, 859, 860, 863, 866, 872], "substanti": [10, 811, 816, 820, 825, 840, 856, 866], "dive": [10, 16, 18, 27, 39, 809, 810, 813, 814, 816, 819, 823, 825, 831, 838, 844, 847, 848, 851, 872], "stuff": 10, "tool": [10, 18, 27, 28, 808, 815, 816, 827, 831, 846, 850, 851, 854, 857, 860, 864, 865, 866, 867, 869, 872, 873], "25": [10, 39, 41, 42, 43, 52, 53, 54, 58, 59, 62, 66, 69, 75, 76, 77, 80, 81, 84, 85, 89, 98, 99, 114, 133, 219, 220, 230, 236, 238, 249, 254, 269, 274, 277, 279, 282, 283, 284, 289, 311, 365, 373, 383, 414, 449, 452, 519, 528, 556, 557, 573, 588, 625, 628, 630, 633, 634, 637, 638, 643, 646, 663, 667, 672, 688, 693, 715, 722, 726, 733, 735, 736, 737, 754, 755, 757, 762, 817, 823, 835], "201": [10, 75, 76, 221, 393, 628], "20x": 10, "24": [10, 20, 39, 41, 52, 53, 58, 66, 75, 76, 77, 80, 81, 85, 98, 231, 239, 254, 256, 269, 279, 280, 283, 345, 348, 368, 371, 383, 390, 392, 393, 403, 408, 409, 410, 414, 418, 519, 541, 542, 628, 630, 633, 637, 643, 646, 667, 674, 678, 715, 726, 735, 736, 737, 753, 755, 769, 829, 848], "ivy_pr": 10, "xgb_pred": 10, "ivyclassifi": 10, "nxgbclassifi": 10, "precis": [10, 53, 58, 76, 81, 161, 249, 269, 276, 283, 342, 368, 372, 383, 426, 518, 581, 604, 626, 628, 630, 633, 669, 670, 674, 681, 683, 684, 690, 780, 824, 837, 842, 843, 870], "recal": 10, "f1": [10, 825], "score": [10, 57, 80, 373, 455, 632, 660, 662, 808], "94": [10, 39, 52, 53, 55, 62, 75, 76, 78, 85, 203, 279, 280, 356, 368, 403, 615, 627, 631, 737], "106597": 10, "33": [10, 39, 41, 42, 52, 62, 66, 75, 76, 77, 78, 80, 222, 223, 230, 279, 371, 372, 374, 383, 391, 413, 414, 444, 463, 519, 537, 588, 615, 628, 630, 631, 632, 633, 637, 643, 655, 656, 678, 732, 735, 755, 762, 772, 775], "10967": 10, "accuraci": [10, 41, 43, 46, 371, 415, 825], "macro": 10, "avg": [10, 371, 390, 392, 413], "96": [10, 39, 53, 55, 75, 76, 77, 85, 233, 254, 286, 356, 368, 371, 393, 541, 542, 615, 628, 630, 631, 633, 643, 678, 737, 755], "67": [10, 39, 52, 53, 54, 58, 75, 76, 77, 80, 85, 98, 234, 239, 279, 280, 282, 289, 300, 304, 363, 383, 414, 519, 541, 542, 588, 614, 616, 628, 630, 631, 633, 671, 737], "73": [10, 39, 52, 81, 283, 383, 519, 633, 639, 663, 736, 840], "92": [10, 39, 43, 53, 54, 85, 356, 368, 609, 619, 631, 633, 665, 736, 737], "28": [10, 25, 27, 28, 39, 41, 43, 46, 52, 53, 57, 61, 75, 76, 77, 80, 81, 85, 89, 235, 238, 259, 275, 371, 372, 393, 403, 424, 525, 556, 611, 628, 630, 631, 632, 633, 638, 643, 647, 649, 651, 653, 654, 656, 678, 733, 735, 736, 737, 755, 759, 808], "27": [10, 39, 41, 46, 52, 53, 58, 62, 75, 76, 77, 80, 81, 85, 89, 230, 231, 234, 274, 282, 283, 342, 368, 371, 393, 403, 557, 587, 628, 630, 633, 637, 643, 673, 678, 688, 715, 722, 736, 755, 759, 772, 874], "852": [10, 632, 656], "449": 10, "47": [10, 39, 43, 52, 53, 58, 62, 75, 76, 77, 78, 80, 85, 225, 283, 371, 383, 391, 409, 410, 519, 541, 542, 615, 628, 630, 631, 632, 633, 639, 656, 671, 736, 737], "29": [10, 39, 41, 43, 46, 58, 75, 77, 78, 80, 85, 224, 383, 414, 519, 541, 542, 613, 617, 628, 630, 631, 633, 671, 735, 736, 737], "82": [10, 39, 41, 46, 47, 52, 78, 85, 109, 222, 383, 519, 611, 631, 736, 737, 812, 830], "68": [10, 39, 43, 46, 52, 85, 109, 131, 224, 371, 393, 403, 622, 625, 628, 633, 638, 689, 733, 736, 737], "nevertheless": 10, "fall": [10, 41, 792, 814, 825, 844], "short": [10, 39, 53, 76, 419, 632, 657, 658, 814, 816, 825, 845, 849], "blaze": 10, "31": [10, 22, 23, 24, 25, 39, 41, 42, 46, 47, 52, 53, 75, 76, 77, 80, 85, 109, 114, 134, 230, 261, 269, 371, 374, 383, 392, 393, 463, 519, 536, 622, 625, 628, 630, 736, 737, 848], "03": [10, 23, 42, 49, 52, 54, 55, 75, 76, 78, 85, 134, 234, 259, 339, 340, 588, 589, 612, 617, 625, 628, 630, 631, 633, 672, 736], "62": [10, 39, 41, 47, 69, 75, 76, 85, 109, 254, 282, 628, 638, 639, 733, 735, 737], "36": [10, 39, 43, 52, 53, 57, 66, 76, 77, 81, 224, 279, 280, 345, 368, 371, 372, 383, 393, 403, 429, 519, 541, 542, 589, 628, 630, 633, 637, 643, 656, 675, 678, 688, 725, 755], "35": [10, 39, 47, 57, 58, 69, 75, 76, 80, 81, 85, 109, 224, 283, 371, 393, 403, 628, 632, 633, 640, 643, 656, 664, 671, 736, 744, 755], "37": [10, 22, 23, 24, 25, 39, 47, 52, 53, 69, 75, 76, 80, 98, 109, 222, 230, 279, 282, 286, 379, 414, 509, 628, 632, 633, 637, 639, 656, 675, 722, 736, 824], "surpass": 10, "remark": [10, 851], "artifici": 10, "simpli": [10, 18, 27, 28, 30, 39, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 628, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 808, 814, 815, 816, 820, 821, 822, 824, 825, 826, 827, 828, 830, 832, 833, 836, 837, 838, 840, 843, 845, 849, 850, 851, 853, 867, 872], "stack": [10, 20, 22, 23, 24, 25, 30, 39, 43, 53, 58, 60, 70, 76, 81, 83, 98, 141, 142, 325, 365, 372, 374, 425, 464, 465, 467, 476, 496, 575, 584, 607, 625, 630, 633, 635, 637, 665, 667, 668, 669, 670, 672, 673, 675, 676, 677, 679, 680, 681, 683, 684, 687, 714, 724, 725, 788, 808, 813, 819, 836, 845, 862, 864, 871, 872], "x_doubl": 10, "vstack": [10, 53, 76, 374, 476], "y_doubl": 10, "explor": [10, 12, 14, 18, 22, 23, 24, 27, 28, 33, 34, 35, 814, 815, 816, 825, 830, 843, 846, 850, 866, 869], "235128": 10, "41": [10, 22, 23, 24, 25, 39, 41, 46, 52, 53, 58, 75, 76, 77, 80, 81, 109, 223, 231, 238, 269, 283, 371, 372, 379, 383, 391, 409, 414, 436, 509, 519, 536, 537, 622, 628, 630, 633, 643, 663, 671, 761], "315": [10, 275, 628], "40": [10, 39, 41, 43, 53, 54, 75, 76, 77, 85, 89, 99, 230, 234, 254, 283, 345, 368, 371, 374, 391, 393, 403, 409, 485, 541, 543, 548, 549, 573, 588, 610, 613, 628, 630, 631, 633, 637, 643, 672, 678, 723, 736, 755, 759, 808, 824], "879": 10, "65": [10, 39, 41, 43, 46, 75, 78, 85, 230, 269, 556, 611, 628, 630, 631, 633, 643, 678, 736, 737, 755, 824], "380": 10, "seem": [10, 814, 815, 843, 849, 850, 851, 866], "observ": [10, 53, 76, 383, 517, 518, 816, 825, 829, 845, 859, 868], "examin": 10, "600": [10, 43, 77, 80, 371, 395, 396, 549, 824], "plot": [10, 42, 808, 866], "conduct": [10, 870], "num_boosting_round": 10, "300": [10, 75, 77, 80, 279, 371, 395, 396, 549, 573, 628, 630, 633, 672, 840], "400": [10, 77, 80, 371, 395, 396, 549, 573, 630, 633, 672], "500": [10, 53, 76, 77, 80, 371, 372, 395, 396, 447, 549, 630], "ivy_elapsed_tim": 10, "xgb_elapsed_tim": 10, "ivy_tim": 10, "partial": [10, 53, 70, 76, 162, 163, 195, 196, 345, 368, 371, 372, 374, 383, 419, 434, 441, 481, 482, 483, 484, 525, 546, 547, 616, 626, 627, 630, 631, 773, 775, 789, 790, 816, 822, 843], "append": [10, 42, 43, 53, 58, 70, 76, 228, 337, 368, 628, 633, 635, 667, 673, 698, 802, 808, 824, 840, 845, 848, 863], "xgb_time": 10, "fivethirtyeight": 10, "legend": [10, 43, 814], "loc": [10, 863], "best": [10, 41, 568, 630, 802, 806, 808, 809, 812, 813, 814, 815, 816, 818, 824, 825, 829, 830, 839, 840, 841, 852, 869, 870], "xlabel": 10, "ylabel": 10, "obviou": [10, 848, 866], "trend": 10, "longer": [10, 815, 825, 836, 840, 866], "gap": 10, "between": [10, 16, 17, 22, 32, 33, 34, 39, 52, 53, 54, 57, 58, 59, 60, 64, 70, 75, 76, 80, 81, 82, 83, 99, 122, 161, 224, 237, 272, 288, 330, 347, 349, 368, 371, 372, 373, 374, 383, 395, 396, 397, 408, 409, 410, 418, 424, 428, 449, 450, 451, 452, 453, 454, 455, 480, 528, 625, 626, 628, 632, 634, 635, 637, 639, 641, 655, 678, 692, 693, 694, 698, 706, 720, 735, 746, 747, 748, 773, 780, 792, 808, 820, 821, 825, 827, 832, 833, 834, 836, 837, 838, 839, 840, 843, 844, 846, 847, 848, 850, 855, 859, 860, 862, 863, 865, 866, 867, 872], "within": [10, 12, 14, 18, 27, 28, 48, 53, 76, 122, 330, 347, 368, 371, 377, 408, 409, 410, 415, 418, 458, 459, 460, 502, 625, 639, 737, 802, 811, 814, 816, 817, 820, 824, 825, 837, 838, 839, 840, 849, 851, 860, 862, 863, 867], "slightli": [10, 308, 365, 823, 837, 840, 845, 849], "paramet": [10, 14, 25, 27, 28, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 200, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 567, 568, 569, 572, 573, 576, 577, 578, 579, 582, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 774, 775, 780, 785, 787, 788, 789, 790, 791, 792, 793, 797, 798, 801, 802, 804, 806, 808, 814, 820, 828, 829, 832, 837, 838, 840, 841, 845, 847, 848, 859, 860, 861, 867], "x_train": 10, "y_train": [10, 43, 808], "train_siz": [10, 41], "random_st": [10, 372, 430], "51": [10, 39, 43, 52, 53, 75, 76, 77, 85, 231, 269, 282, 372, 393, 447, 628, 737, 772], "clear": [10, 191, 627, 814, 816, 821, 825, 826, 827, 837, 843, 845, 847, 855, 856, 857, 866], "amount": [10, 59, 82, 211, 627, 634, 692, 693, 694, 802, 815, 824, 826, 838], "widen": 10, "impress": 10, "outcom": [10, 53, 76, 333, 345, 368, 802], "howev": [10, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 58, 81, 243, 286, 287, 374, 377, 488, 497, 499, 576, 628, 630, 633, 681, 683, 797, 814, 815, 819, 820, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 836, 837, 838, 840, 843, 845, 847, 848, 849, 850, 851, 856, 859, 865, 866, 872], "tend": 10, "outperform": 10, "proce": [10, 814, 815], "95933": 10, "9874": 10, "105807": 10, "70": [10, 39, 41, 53, 76, 77, 371, 393, 403, 549, 573, 633, 643, 678, 755, 856], "77": [10, 39, 43, 77, 589, 633, 643, 678, 755], "93": [10, 39, 53, 75, 77, 85, 194, 283, 356, 368, 541, 542, 627, 630, 736, 737], "wrap": [10, 18, 20, 27, 28, 30, 41, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 584, 587, 588, 589, 590, 591, 593, 595, 596, 607, 609, 611, 612, 615, 617, 618, 619, 620, 630, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 769, 808, 818, 819, 820, 821, 823, 824, 825, 826, 828, 829, 832, 833, 836, 837, 840, 845, 847, 850, 851, 853, 859, 860, 862, 866, 867, 872, 873], "balanc": 10, "breast": 10, "cancer": 10, "53": [10, 22, 39, 58, 62, 75, 80, 155, 211, 241, 414, 614, 616, 626, 627, 631, 633, 638, 671, 733, 737], "return_x_i": 10, "x_test": 10, "y_test": 10, "test_siz": [10, 41], "76": [10, 20, 39, 52, 53, 66, 73, 75, 76, 85, 164, 218, 234, 282, 318, 365, 403, 626, 628, 633, 637, 643, 685, 722, 736, 755], "87": [10, 39, 78, 80, 230, 259, 383, 414, 519, 611, 628, 631, 772, 830], "171": [10, 58, 633, 671, 772], "90": [10, 39, 41, 43, 52, 53, 75, 76, 235, 275, 279, 356, 368, 374, 383, 486, 519, 628, 633, 643, 678, 755, 802, 856], "86": [10, 39, 62, 76, 85, 371, 383, 403, 519, 611, 631, 736, 737], "88": [10, 39, 78, 85, 108, 383, 519, 615, 622, 631, 633, 639, 643, 678, 737, 755], "perfectli": [10, 774, 857], "align": [10, 53, 70, 76, 371, 372, 407, 423, 632, 661, 802, 811, 815, 824, 837, 839, 845, 847, 853, 872], "gain": [10, 787, 816, 817, 819, 844, 849, 866], "combin": [10, 33, 53, 70, 76, 99, 371, 383, 405, 416, 518, 546, 547, 630, 633, 664, 673, 816, 820, 823, 824, 825, 827, 829, 833, 840, 850, 866], "build": [11, 15, 16, 18, 25, 27, 28, 31, 32, 33, 34, 39, 41, 46, 64, 70, 99, 641, 745, 746, 747, 748, 788, 789, 790, 808, 809, 815, 818, 824, 825, 833, 835, 844, 846, 849, 850, 851, 853, 856, 860, 864, 866, 868, 871, 872, 873], "timm": [11, 12, 16, 27, 28, 808, 860], "seen": [12, 14, 19, 25, 27, 372, 378, 431, 506, 553, 630, 797, 824, 825, 827, 829, 837, 840, 845, 847, 848, 855, 856, 872], "veri": [12, 20, 27, 28, 30, 52, 75, 270, 330, 347, 368, 628, 633, 681, 774, 813, 814, 815, 816, 822, 823, 825, 826, 827, 829, 830, 832, 833, 836, 837, 838, 840, 841, 843, 846, 848, 849, 850, 851, 855, 856, 862, 863, 864, 866, 867, 868, 871, 872, 873], "guid": [12, 25, 808, 809, 814, 815, 816, 822, 831, 837, 839, 872], "focu": [12, 25, 814, 835, 864, 865, 868, 873], "more": [12, 15, 16, 18, 19, 20, 23, 25, 27, 28, 29, 30, 39, 41, 42, 43, 47, 52, 53, 58, 60, 64, 69, 75, 76, 81, 83, 87, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 149, 241, 243, 259, 274, 287, 291, 296, 297, 299, 359, 363, 369, 372, 373, 374, 420, 422, 434, 436, 439, 452, 458, 459, 460, 465, 486, 576, 622, 625, 626, 628, 630, 633, 635, 641, 667, 673, 676, 679, 681, 683, 690, 699, 706, 745, 746, 747, 748, 774, 784, 802, 808, 810, 813, 814, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 860, 861, 864, 865, 866, 867, 868, 869, 872, 873], "involv": [12, 15, 16, 23, 25, 50, 73, 176, 219, 236, 243, 269, 274, 626, 628, 802, 809, 817, 818, 824, 825, 827, 838, 843, 850, 856, 866, 872], "develop": [12, 26, 27, 28, 808, 809, 810, 811, 812, 813, 814, 815, 816, 819, 822, 824, 830, 839, 841, 851, 853, 855, 856, 857, 859, 860, 864, 865, 866, 867, 868, 871, 872, 873], "usual": [12, 14, 44, 236, 269, 628, 801, 815, 819, 825, 837, 840, 843], "directli": [12, 14, 18, 21, 25, 27, 28, 31, 371, 372, 407, 431, 637, 726, 808, 814, 815, 816, 817, 819, 820, 823, 824, 825, 826, 828, 831, 833, 834, 836, 837, 838, 841, 842, 845, 847, 849, 850, 851, 852, 857, 859, 860, 861, 870, 871, 872], "case": [12, 14, 20, 22, 27, 28, 30, 31, 32, 33, 41, 48, 49, 53, 54, 60, 66, 70, 72, 76, 77, 83, 93, 94, 99, 124, 135, 162, 163, 190, 195, 196, 203, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 244, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 343, 345, 355, 368, 371, 373, 374, 377, 378, 384, 395, 396, 397, 417, 448, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 485, 486, 492, 495, 497, 499, 506, 529, 546, 547, 551, 558, 572, 573, 574, 625, 626, 627, 628, 630, 633, 635, 637, 643, 681, 687, 698, 699, 700, 702, 704, 705, 707, 709, 717, 723, 756, 757, 758, 759, 760, 761, 762, 772, 773, 792, 802, 808, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 849, 850, 851, 856, 859, 860, 861, 865, 869], "mlp": 12, "mixer": 12, "onli": [12, 14, 27, 28, 33, 39, 41, 43, 45, 48, 49, 52, 53, 58, 60, 62, 70, 72, 75, 76, 81, 83, 85, 93, 96, 98, 114, 134, 174, 175, 204, 264, 265, 270, 276, 308, 338, 345, 365, 368, 371, 372, 374, 378, 383, 394, 407, 417, 426, 431, 445, 447, 458, 459, 460, 470, 504, 505, 521, 535, 622, 625, 626, 627, 628, 630, 632, 633, 635, 637, 639, 640, 642, 643, 659, 673, 680, 683, 684, 699, 702, 714, 715, 721, 722, 724, 725, 726, 731, 732, 735, 736, 737, 740, 741, 751, 757, 760, 770, 772, 773, 775, 788, 792, 801, 806, 808, 809, 810, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 833, 835, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 855, 859, 860, 865, 866, 867, 872, 873], "retriev": [12, 14, 18, 531, 553, 578, 630, 816, 837], "mlp_encod": [12, 27, 28, 808, 860], "create_model": [12, 27, 28, 808, 860], "mixer_b16_224": [12, 27, 28, 808, 860], "nois": [12, 14, 27, 28, 808, 859, 860], "randn": [12, 14, 27, 28, 374, 492, 808, 860], "tf_mlp_encod": [12, 27, 28], "output_torch": [12, 14], "output_tf": [12, 14], "output_dens": [12, 27, 28, 808], "dens": [12, 25, 27, 28, 312, 365, 788, 808], "unit": [12, 27, 28, 53, 69, 76, 93, 94, 106, 108, 109, 110, 111, 112, 113, 114, 291, 292, 295, 299, 301, 302, 305, 306, 307, 363, 500, 501, 622, 808, 815, 819, 825, 837, 838, 840, 851, 867, 870], "activ": [12, 25, 27, 28, 53, 54, 57, 68, 76, 80, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 291, 292, 293, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 591, 632, 659, 662, 787, 788, 806, 808, 815, 816, 825, 831, 841, 842, 849, 860, 866, 869], "mention": [12, 14, 27, 28, 33, 814, 815, 816, 820, 827, 832, 833, 836, 837, 840, 843, 856, 861, 866], "basic": [12, 14, 18, 21, 25, 27, 28, 31, 34, 374, 487, 808, 809, 814, 827, 840], "fulli": [12, 14, 16, 17, 20, 25, 27, 28, 41, 53, 76, 383, 525, 788, 808, 820, 825, 832, 835, 843, 845, 846, 847, 848, 849, 850, 851, 857, 861, 864, 865, 866, 872, 873], "trainabl": [12, 14, 18, 24, 25, 27, 28, 45, 785, 789, 790, 793, 808, 828, 846, 848, 849, 860, 861], "fine": [12, 14, 27, 28, 815, 816, 825, 827, 837, 847, 850, 872], "tune": [12, 14, 27, 28, 871, 872], "train": [12, 14, 25, 27, 28, 44, 53, 55, 57, 76, 78, 80, 96, 371, 372, 377, 395, 396, 397, 444, 497, 499, 611, 612, 617, 631, 632, 655, 657, 659, 662, 787, 788, 789, 790, 791, 808, 823, 826, 833, 848, 849, 850, 851, 857, 860, 864, 865, 870, 872, 873], "ground": [12, 14, 373, 449, 767, 769, 780, 812, 830, 837, 840, 855], "ret": [12, 14, 27, 28, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 159, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 205, 208, 209, 210, 211, 212, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 370, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 427, 432, 434, 437, 439, 442, 445, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 568, 569, 570, 572, 573, 577, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 717, 720, 721, 722, 723, 724, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 775, 785, 790, 792, 797, 802, 804, 808, 825, 826, 828, 829, 835, 836, 837, 838, 841, 845, 850, 860], "op": [12, 18, 39, 784, 797, 806, 841, 845, 851], "eagertensor": [12, 18, 39, 797, 838], "readi": [12, 14, 19, 20, 21, 29, 30, 31, 32, 33, 34, 41, 43, 814, 815], "deepmind": [13, 857], "perceiverio": [13, 857], "backbon": [13, 41, 808, 845, 848], "TO": [13, 15, 26], "replac": [13, 15, 26, 42, 52, 53, 54, 60, 62, 70, 75, 76, 77, 83, 85, 128, 270, 306, 309, 363, 365, 374, 485, 488, 492, 572, 573, 577, 625, 628, 630, 635, 639, 695, 734, 772, 816, 822, 823, 825, 826, 834, 837, 840, 847, 850, 851, 856, 860, 873], "efficientnet": 14, "include_top": [14, 808], "eff_encod": [14, 808], "applic": [14, 16, 41, 43, 46, 53, 57, 76, 80, 96, 372, 447, 632, 633, 637, 643, 659, 662, 687, 720, 721, 722, 726, 727, 759, 761, 808, 815, 824, 825, 826, 834, 849, 863, 864, 866, 868, 870, 872], "efficientnet_v2": [14, 808], "efficientnetv2b0": [14, 808], "data": [14, 22, 23, 24, 25, 28, 33, 41, 43, 46, 47, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 65, 66, 67, 69, 70, 72, 75, 76, 77, 80, 81, 83, 85, 86, 87, 88, 89, 90, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 151, 153, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 177, 178, 179, 180, 182, 188, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 296, 297, 298, 299, 308, 309, 310, 311, 312, 313, 314, 325, 326, 327, 328, 329, 331, 332, 333, 350, 355, 363, 365, 368, 371, 372, 374, 378, 382, 383, 386, 395, 396, 397, 413, 415, 417, 423, 425, 445, 463, 485, 488, 489, 491, 492, 504, 505, 506, 507, 508, 514, 518, 519, 520, 524, 527, 528, 545, 558, 560, 561, 564, 591, 622, 625, 627, 628, 630, 632, 633, 635, 637, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 655, 656, 657, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 696, 699, 700, 702, 703, 705, 706, 710, 718, 735, 736, 737, 739, 740, 741, 743, 744, 749, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 784, 787, 788, 789, 790, 794, 802, 806, 808, 815, 818, 819, 820, 821, 822, 823, 826, 828, 832, 833, 834, 836, 838, 841, 843, 845, 847, 853, 854, 856, 866, 867, 868, 870, 871, 872], "storag": [14, 41, 42, 848, 856], "googleapi": [14, 41, 42], "efficientnetv2": 14, "b0_notop": 14, "h5": [14, 70], "24274472": 14, "0u": 14, "torch_eff_encod": [14, 808], "modes_to_trac": 14, "1280": [14, 541, 630, 808], "state": [15, 26, 41, 57, 76, 80, 96, 183, 184, 185, 186, 187, 269, 371, 417, 598, 600, 603, 605, 606, 626, 628, 630, 632, 657, 658, 770, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 808, 812, 815, 822, 825, 826, 828, 829, 830, 831, 832, 837, 840, 844, 845, 846, 848, 856, 860, 872, 873], "api": [15, 20, 25, 26, 30, 43, 45, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 174, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 812, 815, 816, 818, 820, 822, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 840, 843, 844, 846, 848, 851, 853, 854, 855, 862, 864, 866, 868, 871, 873], "welcom": [16, 42, 808, 809, 815, 816, 817, 839], "goal": [16, 41, 243, 628, 808, 814, 817, 856, 866, 872], "provid": [16, 18, 22, 25, 27, 28, 32, 33, 39, 45, 49, 53, 54, 58, 60, 63, 66, 67, 70, 72, 76, 77, 81, 83, 86, 89, 90, 118, 135, 137, 154, 155, 156, 157, 158, 166, 176, 188, 192, 205, 288, 371, 372, 374, 377, 383, 407, 415, 419, 424, 428, 441, 442, 446, 447, 464, 466, 475, 495, 497, 499, 528, 540, 572, 573, 624, 625, 626, 627, 628, 630, 632, 633, 635, 637, 640, 643, 644, 659, 675, 678, 689, 698, 699, 706, 718, 740, 760, 762, 763, 764, 773, 788, 792, 797, 798, 808, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 840, 841, 843, 847, 849, 851, 855, 859, 860, 861, 864, 865, 866, 867, 868, 869, 870, 873], "varieti": [16, 819, 824, 825, 826, 840, 842, 862, 864, 868, 869, 872, 873], "organ": [16, 820, 823, 833, 837, 839, 841, 853, 856], "main": [16, 28, 49, 53, 58, 76, 81, 128, 141, 142, 143, 309, 324, 325, 365, 372, 374, 423, 469, 625, 633, 666, 667, 687, 808, 811, 814, 815, 816, 817, 819, 822, 823, 830, 834, 836, 864, 866, 867, 872], "exactli": [16, 20, 30, 39, 40, 44, 286, 628, 814, 823, 824, 825, 826, 827, 829, 840, 843, 855, 857], "rush": [16, 857], "jump": [16, 838], "straight": [16, 808, 824, 837, 840, 847], "quickstart": 16, "introduct": [16, 18, 25, 27, 28, 866], "point": [16, 25, 50, 52, 53, 58, 62, 64, 66, 73, 75, 76, 81, 85, 89, 122, 123, 124, 126, 128, 131, 138, 139, 144, 148, 161, 165, 169, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 249, 250, 251, 252, 257, 258, 259, 260, 261, 269, 271, 272, 274, 276, 278, 279, 280, 281, 282, 283, 284, 286, 287, 288, 289, 290, 308, 309, 311, 331, 332, 349, 350, 353, 355, 365, 368, 371, 372, 373, 378, 383, 386, 395, 396, 397, 415, 425, 445, 449, 504, 505, 506, 507, 508, 518, 519, 520, 528, 623, 625, 626, 628, 633, 639, 640, 641, 642, 643, 663, 665, 668, 669, 670, 672, 674, 675, 676, 679, 680, 681, 682, 683, 684, 685, 687, 690, 736, 737, 743, 745, 746, 747, 748, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 797, 798, 806, 808, 812, 814, 815, 816, 819, 820, 822, 824, 825, 827, 828, 830, 832, 836, 837, 840, 841, 843, 845, 847, 848, 857, 859, 872], "those": [16, 40, 41, 58, 60, 70, 76, 81, 83, 122, 175, 236, 269, 489, 610, 625, 626, 628, 630, 633, 635, 637, 640, 680, 683, 695, 716, 743, 811, 814, 815, 816, 817, 820, 823, 824, 825, 834, 836, 837, 838, 840, 843, 855, 863], "who": [16, 811, 817, 818, 829, 844, 851, 866, 868, 874], "deeper": [16, 18, 28, 48, 637, 725, 726, 816, 818, 840, 844, 855], "showcas": [16, 808], "real": [16, 24, 52, 53, 66, 75, 76, 89, 98, 108, 111, 114, 138, 139, 216, 217, 218, 219, 221, 222, 223, 224, 225, 234, 236, 237, 239, 241, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 266, 269, 271, 272, 274, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 290, 331, 332, 338, 339, 340, 350, 368, 371, 372, 394, 415, 416, 425, 426, 622, 625, 628, 633, 640, 643, 668, 669, 670, 674, 681, 683, 684, 687, 690, 743, 756, 758, 759, 760, 761, 823, 868], "world": [16, 24, 816, 868], "whether": [16, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 94, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 123, 124, 130, 132, 137, 139, 145, 148, 149, 151, 154, 155, 156, 157, 158, 159, 162, 163, 164, 166, 167, 168, 169, 171, 172, 173, 174, 176, 188, 192, 193, 195, 196, 198, 200, 203, 204, 206, 209, 210, 212, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 325, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 365, 368, 371, 372, 373, 374, 383, 390, 391, 392, 394, 395, 396, 397, 413, 415, 417, 419, 434, 436, 442, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 464, 465, 466, 468, 470, 471, 472, 475, 479, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 568, 572, 573, 574, 575, 577, 580, 581, 583, 584, 586, 587, 588, 589, 591, 593, 595, 596, 603, 604, 607, 609, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 639, 643, 644, 646, 647, 648, 649, 655, 656, 657, 658, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 682, 687, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 720, 721, 722, 724, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 767, 769, 772, 784, 785, 788, 789, 790, 791, 792, 801, 808, 809, 814, 815, 820, 823, 825, 827, 832, 836, 837, 840, 842, 843, 859, 860], "beginn": [16, 809, 866], "advanc": [16, 39, 815, 817, 865], "got": [16, 39, 829], "cover": [16, 27, 53, 76, 371, 408, 409, 410, 814, 819, 820, 822, 825, 827, 828, 833, 834, 840, 843, 844], "write": [16, 17, 27, 28, 39, 43, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 150, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 325, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 346, 348, 349, 350, 351, 354, 355, 356, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 419, 420, 422, 423, 431, 432, 434, 437, 438, 439, 440, 446, 449, 450, 451, 452, 454, 455, 464, 465, 468, 469, 470, 471, 472, 473, 474, 477, 478, 479, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 741, 742, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 770, 808, 813, 814, 816, 818, 819, 821, 822, 824, 825, 827, 828, 829, 833, 836, 838, 841, 845, 847, 850, 857, 866, 873], "familiar": [16, 17, 18, 808, 814, 815], "concept": [16, 17, 18], "agnost": [16, 17, 18, 19, 27, 28, 29, 33, 39, 808, 820, 825, 832, 845, 847, 850, 851, 872, 873], "unifi": [16, 17, 18, 20, 21, 27, 30, 31, 35, 42, 70, 209, 627, 817, 818, 819, 820, 824, 825, 829, 834, 835, 837, 843, 845, 851, 854, 856, 858, 860, 862, 863, 864, 866, 870, 873], "alongsid": [16, 17, 18, 19, 29, 632, 659, 856], "turn": [16, 17, 20, 30, 57, 80, 93, 94, 395, 396, 397, 632, 655, 788, 815, 822, 823, 826, 827, 837, 840, 857], "wrapper": [16, 17, 20, 53, 76, 294, 780, 820, 822, 823, 825, 829, 833, 836, 837, 840, 847, 853, 862, 866], "unus": [16, 17, 20, 827, 836], "part": [16, 17, 20, 49, 52, 53, 75, 76, 81, 98, 108, 111, 114, 141, 142, 143, 249, 253, 276, 324, 325, 351, 365, 368, 371, 372, 374, 383, 415, 426, 480, 528, 622, 625, 628, 633, 669, 670, 769, 808, 814, 815, 816, 817, 819, 822, 825, 831, 833, 836, 837, 840, 841, 843, 845, 846, 850, 851, 859, 860, 861, 864, 866, 871, 872, 873], "lazi": [16, 17, 20, 23, 30, 33, 34, 45], "eager": [16, 17, 20, 23, 25, 30, 33, 34, 45, 806, 823, 851, 866], "understand": [16, 17, 18, 22, 39, 45, 812, 813, 814, 815, 816, 818, 819, 822, 827, 828, 832, 838, 839, 844, 857, 862, 872], "decor": [16, 17, 22, 24, 25, 33, 45, 535, 630, 772, 774, 780, 812, 819, 820, 823, 825, 826, 830, 833, 836, 837, 838, 843], "kornia": [16, 17, 24, 27, 28, 41, 45, 808, 860], "roundup": 18, "over": [18, 25, 28, 30, 41, 53, 58, 66, 67, 68, 73, 76, 80, 81, 89, 90, 91, 93, 118, 316, 317, 331, 332, 345, 352, 365, 368, 371, 372, 373, 374, 381, 383, 385, 386, 387, 388, 391, 400, 405, 409, 413, 414, 415, 416, 417, 418, 440, 448, 457, 470, 485, 488, 489, 492, 511, 521, 527, 576, 610, 624, 630, 633, 638, 639, 643, 644, 664, 674, 685, 687, 689, 690, 733, 737, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 791, 797, 801, 808, 815, 816, 821, 827, 828, 835, 836, 838, 841, 845, 847, 851, 855, 857, 864, 866], "indep": [18, 27], "futur": [18, 25, 27, 41, 633, 669, 670, 808, 815, 816, 817, 824, 825, 840, 841, 843, 847, 851, 855, 857, 872], "proof": [18, 27], "delv": [18, 28, 808], "theori": [18, 810, 822], "deep": [18, 25, 27, 39, 70, 541, 630, 808, 809, 810, 813, 814, 816, 819, 822, 823, 825, 831, 835, 838, 844, 847, 848, 855, 864, 866, 869, 870, 872, 873], "esenti": [18, 27], "abstract": [18, 27, 28, 787, 792, 808, 823, 825, 836, 837, 840, 843, 849, 855, 864, 866, 868, 869, 873], "specif": [18, 19, 24, 25, 27, 28, 29, 31, 33, 41, 51, 53, 54, 74, 76, 77, 176, 207, 210, 243, 264, 265, 274, 318, 331, 332, 365, 368, 374, 378, 488, 508, 541, 542, 543, 569, 626, 627, 628, 630, 633, 635, 636, 639, 642, 643, 669, 670, 685, 706, 711, 712, 713, 734, 751, 756, 757, 758, 760, 767, 769, 789, 790, 797, 798, 804, 806, 808, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 825, 826, 829, 831, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 846, 847, 849, 850, 851, 852, 853, 855, 859, 860, 861, 862, 864, 865, 867, 868, 869, 873], "quirk": [18, 27], "perk": [18, 27, 808, 820, 823], "under": [18, 27, 28, 53, 373, 452, 453, 801, 808, 814, 815, 818, 819, 826, 827, 828, 831, 837, 838, 840, 843, 844, 845, 848, 850, 851, 859, 860, 866, 869, 873], "hood": [18, 27, 28, 808, 818, 826, 827, 831, 837, 840, 843, 844, 845, 848, 850, 859, 860, 873], "appropi": 18, "string": [18, 27, 28, 43, 53, 54, 57, 70, 76, 80, 146, 147, 159, 166, 188, 189, 190, 191, 192, 194, 203, 210, 211, 215, 371, 372, 374, 414, 418, 426, 480, 491, 520, 539, 626, 627, 630, 632, 633, 645, 646, 647, 648, 650, 652, 654, 670, 767, 769, 773, 801, 802, 821, 822, 824, 825, 826, 829, 837, 845, 848], "simplest": [18, 815, 827, 840, 843], "interact": [18, 27, 42, 45, 814, 865, 866, 871], "submodul": [18, 27, 41, 43, 98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 814, 815, 816, 819, 822, 824, 826, 830, 833, 834, 840, 844, 845, 849, 853], "ones": [18, 25, 27, 39, 45, 49, 53, 55, 57, 62, 70, 72, 76, 80, 85, 128, 132, 137, 139, 145, 195, 196, 232, 309, 365, 383, 527, 611, 625, 627, 628, 631, 632, 650, 651, 735, 736, 737, 773, 808, 814, 820, 824, 827, 832, 833, 839, 840, 847, 848, 866], "likewis": [18, 23, 27, 34, 808, 816, 823, 825, 828, 832, 833, 837, 843, 848, 859, 860, 872], "nativearrai": [18, 27, 28, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 66, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 123, 124, 125, 127, 132, 133, 134, 135, 136, 137, 139, 141, 142, 145, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 164, 167, 168, 169, 171, 173, 175, 176, 182, 192, 193, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 313, 314, 318, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 463, 464, 465, 466, 468, 469, 470, 471, 472, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 518, 519, 520, 521, 522, 530, 533, 534, 536, 537, 541, 542, 543, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 561, 564, 565, 567, 572, 573, 574, 577, 586, 587, 588, 589, 590, 591, 593, 595, 596, 598, 609, 611, 612, 613, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 715, 716, 717, 721, 722, 723, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 793, 820, 823, 827, 829, 832, 833, 834, 836, 837, 841, 842, 845, 847, 853], "alia": [18, 27, 331, 332, 368, 623, 814, 837, 858, 861], "select": [18, 27, 32, 45, 53, 66, 76, 89, 372, 374, 383, 426, 439, 488, 489, 492, 519, 520, 643, 753, 754, 814, 815, 816, 824, 830, 836, 840, 845, 847, 850, 851, 866, 869, 870], "lastli": [18, 27, 820], "contain": [18, 27, 28, 42, 47, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 94, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 159, 161, 162, 163, 164, 167, 168, 169, 171, 173, 176, 193, 195, 196, 197, 202, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 363, 365, 368, 370, 371, 372, 373, 374, 377, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 403, 404, 405, 407, 408, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 577, 580, 582, 587, 588, 589, 590, 591, 593, 595, 596, 603, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 717, 721, 722, 723, 726, 727, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 779, 780, 788, 789, 790, 792, 793, 797, 801, 802, 806, 808, 810, 812, 814, 815, 818, 819, 820, 821, 822, 824, 825, 827, 828, 830, 832, 833, 834, 835, 836, 838, 840, 842, 843, 844, 845, 846, 849, 851, 852, 853, 855, 859, 866, 867, 872], "subclass": [18, 27, 28, 834, 837, 843, 860], "dict": [18, 27, 28, 41, 45, 48, 54, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 130, 132, 137, 139, 145, 149, 151, 162, 163, 164, 168, 169, 176, 192, 195, 196, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 321, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 365, 374, 394, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 480, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 531, 533, 534, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 620, 624, 626, 627, 630, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 714, 715, 717, 720, 721, 722, 723, 725, 726, 727, 731, 732, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 769, 770, 785, 788, 790, 797, 802, 820, 823, 848, 849, 853, 859, 860, 861], "recurs": [18, 27, 28, 41, 43, 48, 70, 71, 162, 163, 195, 196, 372, 444, 546, 547, 553, 626, 627, 630, 637, 714, 715, 718, 724, 725, 726, 767, 815, 819, 822, 823, 830, 833, 836, 849, 851], "fashion": [18, 774, 840, 860], "native_arrai": [18, 27, 28, 49, 50, 52, 72, 74, 75, 76, 77, 81, 88, 106, 109, 132, 135, 137, 139, 145, 148, 149, 150, 151, 159, 164, 171, 193, 202, 210, 226, 230, 235, 236, 237, 239, 243, 247, 255, 256, 264, 269, 272, 275, 278, 283, 331, 332, 359, 368, 373, 374, 454, 480, 486, 490, 530, 533, 560, 561, 564, 595, 622, 625, 626, 627, 628, 630, 632, 633, 634, 635, 639, 640, 643, 644, 646, 647, 654, 662, 665, 669, 670, 675, 676, 680, 684, 685, 687, 690, 692, 694, 695, 702, 734, 743, 752, 758, 761, 763, 769, 779, 797, 812, 830, 838, 840], "data_class": [18, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 391, 392, 541, 545, 683, 708], "low": [18, 27, 30, 46, 53, 57, 62, 76, 80, 85, 371, 414, 418, 632, 639, 645, 646, 647, 648, 650, 652, 654, 735, 737, 774, 823, 829, 836, 837, 843, 845, 862, 864, 866, 867, 868, 870, 872], "level": [18, 27, 28, 30, 53, 76, 77, 372, 444, 533, 802, 806, 808, 809, 814, 815, 816, 817, 823, 825, 829, 833, 835, 836, 837, 839, 842, 843, 844, 845, 848, 849, 850, 851, 853, 857, 862, 863, 864, 865, 866, 867, 868, 870, 871, 872, 873, 874], "c": [18, 27, 33, 42, 43, 49, 53, 54, 55, 57, 60, 66, 72, 73, 75, 76, 77, 78, 80, 81, 83, 87, 89, 93, 94, 112, 123, 124, 134, 137, 161, 164, 219, 230, 236, 237, 257, 258, 260, 269, 272, 280, 287, 371, 372, 374, 377, 383, 385, 386, 387, 388, 399, 404, 420, 422, 424, 425, 427, 439, 458, 459, 460, 470, 488, 492, 497, 498, 499, 502, 520, 533, 541, 542, 543, 544, 552, 556, 557, 587, 596, 611, 612, 615, 617, 618, 619, 622, 625, 626, 628, 630, 631, 632, 633, 635, 637, 640, 641, 643, 646, 647, 648, 649, 650, 651, 653, 668, 670, 672, 702, 706, 714, 717, 721, 722, 723, 725, 726, 731, 732, 743, 748, 754, 755, 760, 762, 791, 801, 802, 809, 815, 818, 821, 822, 823, 827, 833, 835, 844, 845, 846, 848, 851, 853, 854, 856, 857, 860, 862, 866, 870, 871, 873], "fundament": [18, 27, 824, 837, 843, 845, 855, 866], "common": [18, 21, 27, 31, 52, 53, 70, 75, 175, 246, 254, 335, 342, 368, 626, 628, 809, 812, 814, 815, 822, 825, 826, 827, 833, 834, 837, 841, 843, 851, 855, 863, 866, 873], "signatur": [18, 27, 374, 383, 480, 518, 825, 826, 827, 828, 832, 836, 840, 841, 843, 856, 863, 872], "matmul": [18, 27, 28, 44, 58, 81, 372, 442, 610, 630, 633, 683, 821, 840, 841, 845], "to_n": [18, 27, 28, 39, 48, 71, 845], "jaxlib": [18, 24, 42, 797, 815, 820, 825, 826, 832, 841, 845, 847], "xla_extens": [18, 24, 797, 820, 825, 826, 832, 841, 845, 847], "arrayimpl": [18, 24, 797], "abov": [18, 23, 27, 28, 33, 34, 49, 52, 53, 58, 62, 69, 75, 76, 81, 85, 94, 114, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 307, 309, 324, 325, 331, 332, 334, 337, 363, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 405, 408, 409, 410, 415, 416, 417, 425, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 558, 587, 596, 620, 622, 625, 626, 628, 630, 631, 632, 633, 635, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 735, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 812, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 840, 843, 845, 847, 848, 849, 850, 866, 871], "why": [18, 808, 816, 836, 847, 854, 856], "underli": [18, 27, 28, 39, 53, 60, 76, 83, 96, 226, 229, 231, 266, 373, 374, 453, 470, 628, 633, 635, 681, 702, 823, 836, 843, 859, 866], "disabl": [18, 27, 53, 76, 374, 488, 790, 806, 822], "array_mod": [18, 27, 574, 598, 630, 842], "set_array_mod": [18, 27, 598, 630, 842], "composit": [18, 27, 162, 163, 195, 196, 288, 372, 432, 546, 547, 626, 627, 628, 630, 773, 775, 814, 818, 820, 821, 823, 825, 826, 834, 836, 837, 838, 840, 843, 845, 849, 850, 851, 853, 859, 867], "ultim": [18, 27, 859], "sigmoid": [18, 27, 28, 39, 47, 53, 69, 76, 297, 363, 378, 504, 622, 784, 845, 848, 849], "z": [18, 27, 28, 40, 41, 49, 52, 53, 54, 58, 59, 62, 64, 66, 72, 75, 76, 77, 81, 82, 83, 85, 89, 98, 99, 133, 134, 136, 137, 197, 219, 220, 224, 226, 229, 231, 236, 247, 248, 251, 252, 253, 255, 256, 261, 263, 265, 266, 267, 268, 276, 285, 296, 297, 331, 332, 334, 363, 368, 373, 383, 449, 451, 452, 453, 454, 455, 461, 465, 476, 517, 518, 521, 528, 533, 545, 548, 549, 556, 557, 573, 586, 588, 589, 597, 610, 625, 627, 628, 630, 633, 634, 635, 637, 639, 640, 641, 643, 664, 673, 678, 679, 683, 690, 692, 693, 694, 695, 717, 721, 723, 731, 735, 736, 737, 740, 745, 755, 756, 758, 759, 760, 787, 808, 821, 823, 826, 827, 845, 847, 859], "divid": [18, 23, 27, 28, 44, 52, 53, 54, 60, 70, 75, 76, 83, 98, 99, 243, 377, 450, 497, 498, 499, 502, 588, 628, 630, 635, 704, 820, 823, 827, 831, 840], "exp": [18, 27, 28, 52, 53, 75, 76, 112, 114, 241, 261, 274, 297, 363, 371, 373, 399, 404, 453, 622, 628, 633, 681, 835, 837], "high": [18, 27, 28, 46, 53, 57, 62, 76, 80, 85, 371, 414, 418, 581, 630, 632, 639, 645, 646, 647, 648, 650, 652, 654, 735, 737, 774, 811, 814, 829, 835, 837, 848, 853, 857, 862, 863, 864, 865, 866, 870, 872, 873], "network": [18, 25, 27, 28, 39, 41, 46, 632, 656, 784, 787, 788, 808, 823, 833, 845, 849, 856, 860, 862, 864, 865, 866, 870, 872, 873], "entir": [18, 27, 28, 30, 43, 53, 66, 67, 70, 76, 77, 89, 90, 209, 239, 241, 281, 282, 331, 332, 368, 371, 374, 383, 395, 396, 397, 480, 521, 554, 627, 628, 643, 644, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 802, 814, 815, 816, 819, 820, 823, 825, 827, 829, 836, 837, 838, 840, 843, 845, 848, 849, 850, 851, 856, 857, 860, 866, 872, 873], "further": [18, 70, 99, 774, 816, 819, 820, 824, 827, 829, 832, 833, 836, 837, 839, 840, 844, 845, 848, 849, 856, 857, 871, 872], "congratul": [18, 24], "There": [18, 25, 28, 33, 93, 364, 366, 367, 375, 376, 380, 774, 808, 814, 815, 816, 819, 820, 822, 823, 825, 826, 827, 829, 831, 833, 835, 837, 838, 842, 845, 848, 851, 855, 859, 867, 868, 872, 873], "come": [18, 41, 811, 814, 815, 816, 820, 824, 837, 842, 843, 849, 853, 866], "independ": [18, 28, 53, 62, 76, 85, 219, 236, 269, 279, 377, 378, 502, 504, 628, 633, 639, 664, 682, 734, 808, 819, 825, 827, 834, 845, 850, 860, 864], "good": [18, 27, 28, 808, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 838, 840, 841, 843, 845, 846, 849], "foundat": [18, 856, 869], "power": [18, 27, 28, 52, 53, 54, 58, 75, 76, 77, 81, 98, 99, 230, 239, 240, 274, 329, 342, 365, 368, 371, 419, 578, 589, 601, 628, 630, 633, 637, 675, 688, 720, 787, 842, 847, 848, 849, 866, 868, 872], "defin": [19, 25, 27, 28, 29, 49, 53, 54, 58, 72, 76, 77, 81, 96, 112, 137, 141, 142, 143, 219, 236, 243, 269, 270, 278, 280, 283, 296, 300, 304, 310, 313, 314, 315, 324, 325, 326, 327, 328, 331, 332, 334, 363, 365, 368, 371, 372, 374, 383, 407, 424, 480, 486, 521, 556, 557, 577, 622, 625, 628, 630, 632, 633, 643, 657, 664, 669, 670, 682, 756, 757, 758, 760, 808, 814, 815, 820, 821, 824, 825, 828, 832, 835, 837, 838, 840, 841, 847, 849, 851, 853, 861, 863, 864, 865, 866, 867, 870, 872, 873], "div": [19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 861], "sub": [19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 53, 58, 60, 70, 71, 75, 76, 77, 81, 83, 99, 268, 372, 374, 383, 426, 466, 475, 495, 524, 525, 553, 630, 633, 635, 636, 667, 687, 704, 711, 712, 713, 814, 816, 818, 823, 829, 837, 838, 840, 847, 848, 849, 861, 862], "By": [19, 39, 46, 53, 59, 60, 66, 67, 76, 82, 83, 89, 90, 283, 329, 331, 332, 345, 352, 365, 368, 371, 373, 374, 381, 383, 394, 452, 453, 488, 492, 511, 518, 521, 576, 628, 630, 633, 634, 635, 643, 644, 664, 689, 692, 701, 753, 756, 757, 758, 759, 760, 761, 762, 763, 764, 815, 821, 825, 827, 829, 833, 835, 836, 837, 845, 849, 850, 859], "with_numpi": 19, "seed": [19, 22, 23, 43, 44, 53, 57, 62, 64, 70, 76, 80, 85, 319, 320, 321, 322, 323, 365, 372, 378, 430, 441, 447, 504, 505, 506, 507, 508, 632, 639, 641, 655, 734, 735, 736, 737, 739, 745, 780, 785, 787, 802, 834, 838, 840], "123": [19, 72, 73, 76, 132, 164, 452, 544, 625, 630, 802, 840], "reproduc": [19, 44, 57, 80, 632, 655, 772, 773, 774, 775, 780, 812, 819, 830], "uniform": [19, 20, 21, 22, 23, 27, 28, 29, 30, 32, 33, 34, 41, 53, 62, 76, 85, 383, 521, 639, 734, 735, 737, 787, 808, 839, 849, 860, 861, 873], "x_": [19, 29, 94, 280, 628, 861], "66391283": 19, "12516928": 19, "38367081": 19, "03102401": 19, "76419425": 19, "52797794": 19, "90346956": 19, "61316347": 19, "27585283": 19, "66309303": 19, "compat": [19, 25, 29, 33, 39, 46, 52, 53, 58, 60, 63, 66, 67, 75, 76, 81, 83, 86, 89, 90, 98, 99, 150, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 290, 331, 332, 368, 626, 628, 633, 635, 640, 643, 644, 664, 676, 679, 682, 685, 689, 690, 702, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 806, 808, 815, 821, 832, 837, 838, 841, 845, 851, 856], "sever": [19, 20, 29, 30, 32, 33, 34, 53, 76, 93, 371, 372, 385, 386, 387, 388, 440, 772, 815, 816, 841, 851, 864, 870], "pro": [19, 20, 21, 29, 30, 31, 32, 33, 34], "pick": [20, 30, 787], "off": [20, 30, 57, 58, 80, 81, 395, 396, 397, 632, 633, 655, 667, 687, 787, 788, 815, 830, 844, 857, 859, 872], "last": [20, 25, 27, 30, 49, 53, 57, 58, 59, 60, 63, 65, 66, 67, 70, 72, 76, 80, 81, 82, 83, 88, 89, 90, 94, 98, 133, 134, 137, 192, 309, 337, 365, 368, 371, 372, 373, 374, 381, 383, 400, 405, 415, 416, 417, 428, 452, 470, 480, 482, 488, 492, 511, 519, 520, 625, 627, 632, 633, 634, 635, 640, 642, 643, 644, 658, 659, 664, 667, 678, 687, 689, 693, 694, 696, 699, 702, 703, 704, 706, 740, 741, 749, 751, 752, 753, 754, 763, 764, 788, 797, 808, 816, 819, 821, 822, 825, 827, 836, 838, 840, 843, 845, 851, 857, 860, 866], "purpos": [20, 27, 28, 30, 41, 43, 143, 241, 259, 324, 365, 625, 628, 633, 681, 816, 818, 820, 823, 824, 826, 827, 829, 832, 833, 834, 837, 839, 840, 843, 844, 847, 853, 865, 867, 870, 871, 872], "illustr": [20, 30, 821, 845], "trigger": [20, 30, 790, 814, 831], "unif": [20, 22, 23, 30, 32, 809, 847, 856, 862, 872], "detail": [20, 30, 43, 47, 52, 53, 58, 60, 64, 69, 75, 76, 77, 81, 83, 87, 106, 107, 108, 109, 110, 111, 112, 113, 114, 129, 140, 287, 291, 296, 297, 299, 363, 372, 422, 465, 544, 622, 625, 628, 641, 667, 673, 679, 683, 706, 745, 746, 747, 748, 784, 808, 814, 816, 819, 821, 822, 823, 824, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 845, 847, 848, 849, 868, 872], "55563945": 20, "65538704": 20, "14150524": 20, "46951997": 20, "30220294": 20, "14739668": 20, "57017946": 20, "91962677": 20, "51029003": 20, "59644395": 20, "arbitrari": [20, 30, 49, 50, 53, 70, 73, 76, 135, 149, 176, 318, 373, 450, 458, 459, 460, 613, 625, 626, 631, 832, 833, 835, 836, 837, 840, 849, 851, 859, 861, 867, 872], "constitu": [20, 30, 70, 850], "due": [20, 27, 28, 30, 44, 46, 269, 279, 374, 488, 628, 815, 819, 824, 829, 836, 837, 856, 859, 860, 866], "manner": [20, 28, 30, 40, 48, 71, 637, 726, 815, 825, 826, 828, 833, 837, 841, 848, 851, 855, 862, 864, 872, 873], "non": [20, 30, 50, 52, 53, 58, 62, 63, 66, 67, 73, 75, 76, 81, 85, 86, 89, 90, 130, 148, 166, 175, 244, 264, 265, 270, 331, 332, 336, 343, 356, 368, 371, 372, 374, 383, 415, 426, 430, 436, 459, 460, 521, 524, 625, 626, 628, 633, 637, 639, 640, 643, 644, 664, 665, 674, 676, 683, 685, 689, 690, 727, 736, 740, 741, 742, 743, 756, 757, 758, 759, 760, 762, 763, 764, 772, 787, 789, 790, 792, 820, 823, 827, 845, 859, 860, 861, 866], "5556394": 20, "655387": 20, "1415051": 20, "4695197": 20, "3022028": 20, "1473966": 20, "5701794": 20, "91962665": 20, "51028997": 20, "5964439": 20, "assess": [20, 30, 814, 843], "985": 20, "000": [20, 75, 270, 772, 812, 824, 830], "69": [20, 39, 46, 52, 78, 85, 217, 259, 371, 393, 403, 615, 628, 631, 633, 674, 675, 736, 840, 848], "On": [20, 27, 28, 815, 825, 826, 831, 837, 840, 843, 846, 850], "hand": [20, 52, 372, 442, 772, 808, 819, 825, 826, 831, 833, 840, 851], "singl": [20, 30, 39, 44, 52, 62, 70, 75, 85, 94, 288, 347, 368, 372, 378, 439, 505, 596, 609, 613, 628, 630, 631, 632, 639, 641, 659, 735, 736, 737, 745, 772, 788, 806, 814, 815, 816, 819, 824, 827, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 848, 849, 850, 851, 857], "learnt": [21, 31], "two": [21, 31, 33, 39, 49, 53, 58, 64, 76, 77, 81, 98, 99, 119, 122, 128, 135, 141, 142, 143, 174, 182, 230, 244, 245, 279, 324, 325, 330, 343, 344, 346, 347, 349, 351, 358, 365, 368, 371, 372, 373, 374, 383, 400, 423, 424, 425, 434, 439, 448, 450, 454, 459, 480, 486, 490, 518, 528, 533, 624, 625, 626, 628, 630, 632, 633, 635, 641, 657, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 689, 707, 745, 746, 747, 748, 772, 774, 780, 788, 814, 815, 819, 820, 825, 826, 827, 828, 833, 837, 838, 840, 843, 844, 848, 850, 857, 863, 871], "workflow": [21, 31, 42, 814, 816, 817, 821, 825, 835, 837, 848, 853, 857, 865, 872, 873], "ivy_norm": 21, "jax_norm": [21, 27, 28], "wider": [21, 31, 581, 604, 630, 825, 842, 872], "avoid": [21, 31, 33, 53, 60, 76, 236, 241, 243, 259, 269, 373, 374, 377, 450, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 497, 498, 499, 535, 551, 553, 576, 581, 604, 628, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 774, 775, 815, 816, 821, 822, 823, 824, 825, 829, 834, 837, 840, 841, 842, 843, 866], "conveni": [21, 31, 814, 825, 826, 832, 838, 846, 848, 849, 853, 872], "act": [21, 31, 53, 76, 294, 359, 369, 816, 827, 842, 851, 873], "shorthand": [21, 31, 33, 840], "pair": [21, 31, 41, 53, 57, 76, 80, 224, 243, 316, 358, 365, 368, 371, 405, 414, 416, 418, 628, 632, 633, 645, 646, 647, 648, 650, 652, 654, 662, 664, 802], "93968587": 21, "26075466": 21, "22723222": 21, "06276492": 21, "47426987": 21, "72835908": 21, "71737559": 21, "50411096": 21, "65419174": 21, "15576624": 21, "implic": [21, 31, 32, 35, 823], "requir": [22, 23, 24, 25, 32, 41, 42, 43, 46, 52, 53, 70, 75, 76, 270, 283, 287, 372, 374, 425, 426, 480, 628, 633, 635, 668, 669, 670, 706, 772, 780, 785, 802, 810, 814, 815, 820, 822, 824, 825, 826, 827, 828, 829, 831, 832, 834, 837, 838, 839, 840, 841, 843, 845, 847, 851, 860, 866, 872], "satisfi": [22, 23, 24, 25, 41, 43, 46, 53, 371, 372, 394, 426, 825, 827], "opt": [22, 23, 24, 25, 45, 815, 821, 825, 836, 840, 843], "fw": [22, 23, 24, 25, 57, 80, 383, 518, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 769, 815, 840], "mxnet": [22, 23, 24, 25, 205, 627, 797, 814, 815, 856, 873], "einop": [22, 23, 24, 25, 41, 43, 46, 54, 77, 541, 542, 543, 630, 825, 856], "miniconda": [22, 23, 24, 25], "env": [22, 23, 24, 25], "multienv": [22, 23, 24, 25], "site": [22, 23, 24, 25, 867], "psutil": [22, 23, 24, 25, 41, 43, 46], "termcolor": [22, 23, 24, 25, 41, 43, 46, 70, 99], "colorama": [22, 23, 24, 25, 41, 43], "535": [22, 23, 24, 25, 47, 69, 114, 622, 829], "diskcach": [22, 23, 24, 25, 41], "auth": [22, 23, 24, 25], "urllib3": [22, 23, 24, 25, 41], "pyvi": [22, 23, 24, 25, 27, 28], "dill": [22, 23, 24, 25, 41], "astunpars": [22, 23, 24, 25], "cloudpickl": [22, 23, 24, 25], "gast": [22, 23, 24, 25], "66": [22, 23, 24, 25, 39, 41, 43, 66, 76, 77, 78, 371, 403, 541, 542, 615, 630, 631, 633, 643, 678, 755], "wheel": [22, 23, 24, 25, 41, 43, 46, 855], "six": [22, 23, 24, 25, 41, 46, 815, 843], "cachetool": [22, 23, 24, 25], "pyasn1": [22, 23, 24, 25], "rsa": [22, 23, 24, 25], "jinja2": [22, 23, 24, 25], "jsonpickl": [22, 23, 24, 25], "networkx": [22, 23, 24, 25, 46], "charset": [22, 23, 24, 25, 41], "idna": [22, 23, 24, 25, 41], "certifi": [22, 23, 24, 25, 41], "2017": [22, 23, 24, 25, 41, 632, 659], "jedi": [22, 23, 24, 25], "inlin": [22, 23, 24, 25, 822], "prompt": [22, 23, 24, 25, 814, 816], "toolkit": [22, 23, 24, 25, 866, 867, 873], "pygment": [22, 23, 24, 25], "traitlet": [22, 23, 24, 25], "exceptiongroup": [22, 23, 24, 25], "paddl": [22, 23, 24, 25, 205, 331, 332, 368, 627, 785, 797, 814, 815, 825, 830], "pexpect": [22, 23, 24, 25], "markupsaf": [22, 23, 24, 25], "parso": [22, 23, 24, 25], "ptyprocess": [22, 23, 24, 25], "wcwidth": [22, 23, 24, 25], "asttoken": [22, 23, 24, 25], "pure": [22, 23, 24, 25, 33, 43, 808, 828, 832, 837, 843, 847, 850, 851, 866, 872, 873], "eagerli": [22, 23, 27, 28, 32, 33, 34, 41, 808, 859, 860, 861], "lazili": [22, 23, 24, 27, 28, 32, 34, 45, 808, 859, 860, 861], "actual": [22, 32, 812, 816, 818, 824, 830, 833, 834, 836, 837, 838, 840, 843, 844, 849, 851, 867, 872], "occur": [22, 27, 28, 32, 45, 50, 52, 64, 73, 75, 87, 151, 270, 286, 626, 628, 640, 641, 740, 741, 745, 746, 747, 748, 819, 824, 826, 829, 842], "becaus": [22, 30, 32, 42, 53, 371, 394, 767, 815, 816, 819, 820, 821, 822, 823, 825, 826, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 843, 845, 849, 850, 851, 866, 869, 872], "argument": [22, 24, 25, 27, 28, 30, 32, 33, 34, 39, 41, 43, 45, 48, 49, 52, 53, 54, 58, 70, 71, 75, 76, 77, 93, 94, 99, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 176, 205, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 339, 340, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 403, 404, 405, 408, 409, 410, 415, 417, 419, 426, 480, 488, 492, 518, 521, 525, 531, 532, 534, 535, 540, 542, 543, 548, 552, 554, 556, 558, 568, 572, 573, 587, 591, 596, 597, 610, 620, 625, 626, 627, 628, 630, 631, 632, 633, 635, 636, 637, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 657, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 713, 720, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 773, 780, 785, 788, 789, 790, 797, 801, 804, 808, 814, 818, 819, 820, 821, 822, 823, 827, 828, 831, 833, 838, 840, 841, 843, 845, 847, 848, 853, 855, 859, 860, 861, 866], "altern": [22, 32, 42, 53, 76, 81, 93, 94, 330, 338, 339, 340, 344, 346, 347, 348, 349, 351, 352, 353, 357, 358, 368, 808, 814, 815, 822, 836, 848, 869], "dummi": [22, 23, 32, 33, 34, 40, 816], "assum": [22, 23, 32, 33, 34, 49, 52, 53, 54, 57, 58, 59, 75, 76, 77, 80, 81, 82, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 309, 325, 331, 332, 334, 337, 355, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 440, 442, 480, 488, 492, 518, 521, 548, 552, 554, 556, 565, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 634, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 801, 808, 815, 819, 821, 824, 825, 828, 838, 840, 843, 847, 848, 851], "201733": 22, "slowli": [22, 32], "norm": [22, 32, 33, 53, 54, 58, 76, 77, 81, 92, 93, 371, 372, 393, 394, 398, 399, 400, 403, 404, 405, 415, 416, 422, 426, 500, 501, 503, 536, 537, 558, 630, 633, 674, 690, 733, 788, 792, 841], "slow": [22, 32, 810, 815, 822], "34431235": [22, 23], "51129461": [22, 23], "06686894": [22, 23], "36452447": [22, 23], "98795534": [22, 23], "15493582": [22, 23], "91630631": [22, 23], "41939619": [22, 23], "78909753": [22, 23], "19475674": [22, 23], "norm_trac": 22, "float64": [22, 23, 50, 53, 62, 66, 72, 73, 75, 76, 77, 85, 89, 122, 130, 131, 148, 151, 155, 156, 161, 162, 165, 166, 171, 172, 176, 178, 179, 185, 188, 270, 342, 368, 373, 383, 448, 453, 518, 567, 625, 626, 630, 633, 639, 669, 670, 674, 690, 736, 737, 754, 769, 772, 773, 825, 838, 840], "norm_tran": [22, 32], "know": [22, 23, 32, 33, 34, 64, 641, 745, 746, 747, 748, 810, 814, 816, 826, 834, 838, 840, 843, 857, 861, 867], "07": [23, 41, 43, 55, 59, 75, 78, 82, 85, 224, 257, 260, 261, 280, 371, 403, 601, 611, 612, 614, 615, 616, 617, 628, 630, 631, 634, 693, 694, 736, 789, 792, 849], "981554": 23, "happen": [23, 27, 28, 288, 628, 808, 815, 816, 817, 826, 836, 840, 848, 857, 859, 860], "wherea": [23, 34, 76, 371, 417, 816, 820, 823, 825, 826, 827, 832, 833, 840, 850, 863], "subtract": [23, 27, 28, 52, 75, 98, 99, 130, 374, 480, 625, 628, 820, 823, 827], "begin": [23, 53, 76, 280, 373, 374, 448, 464, 480, 481, 482, 483, 484, 628, 637, 714, 725, 772, 815, 819, 824, 838], "filelock": [24, 41], "extens": [24, 41, 52, 58, 75, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 813, 815, 816, 828, 830, 831, 840, 863, 866, 873], "sympi": [24, 856], "fsspec": [24, 41], "mpmath": 24, "scenario": [24, 825, 835], "often": [24, 53, 373, 448, 813, 819, 829, 832, 833, 837, 840, 851, 857, 867, 870, 873], "fortun": [24, 25, 819], "everyth": [24, 42, 801, 808, 814, 815, 816, 817, 818, 824, 827, 836, 837, 838, 840, 846, 851, 852, 857], "practic": [24, 816, 821, 824, 837, 839, 869], "specifi": [24, 25, 27, 28, 32, 33, 34, 45, 47, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 73, 75, 76, 77, 80, 81, 82, 83, 85, 86, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 126, 131, 133, 138, 141, 142, 144, 148, 150, 197, 202, 204, 208, 209, 210, 278, 287, 291, 296, 297, 299, 325, 330, 347, 352, 363, 365, 368, 371, 372, 373, 374, 378, 383, 390, 391, 392, 394, 400, 405, 415, 416, 417, 418, 426, 438, 440, 445, 448, 452, 453, 454, 456, 470, 473, 482, 483, 485, 486, 488, 492, 505, 516, 518, 519, 520, 523, 524, 528, 531, 548, 549, 551, 553, 554, 567, 569, 577, 610, 622, 625, 626, 627, 628, 630, 632, 633, 634, 635, 637, 639, 640, 641, 642, 643, 644, 657, 659, 662, 664, 666, 667, 669, 670, 674, 682, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 703, 705, 706, 709, 710, 718, 719, 721, 722, 729, 730, 731, 732, 735, 736, 737, 739, 740, 741, 743, 746, 747, 748, 749, 753, 754, 755, 759, 761, 763, 764, 772, 775, 784, 788, 789, 790, 802, 806, 815, 818, 822, 825, 826, 832, 833, 834, 836, 837, 838, 840, 845, 848, 849, 859, 860, 861, 872], "everi": [24, 27, 28, 33, 41, 49, 53, 54, 76, 77, 131, 132, 297, 331, 332, 345, 363, 368, 371, 374, 408, 409, 410, 417, 494, 530, 625, 630, 814, 816, 819, 821, 822, 824, 825, 827, 831, 832, 833, 834, 836, 837, 838, 840, 845, 847, 849, 859, 860, 861, 866], "jax_kornia": [24, 27, 28, 808, 860], "though": [24, 813, 814, 816, 825, 826, 828, 833, 836, 837, 843, 848, 851], "000000000034": [24, 27, 28, 808, 860], "raw_img": [24, 27, 28, 808, 860], "enhanc": [24, 27, 28, 808, 839, 860], "sharp": [24, 27, 28, 808], "prefer": [24, 27, 28, 243, 628, 808, 815, 823, 829, 830, 834, 837, 852, 866], "leverag": [24, 27, 28, 808, 815, 836, 860, 864, 866], "whole": [25, 53, 76, 374, 377, 487, 500, 501, 503, 816, 822, 831], "full": [25, 53, 58, 76, 80, 81, 93, 94, 96, 161, 248, 256, 319, 320, 321, 322, 323, 365, 372, 373, 374, 445, 446, 452, 453, 481, 484, 575, 584, 599, 607, 625, 626, 628, 630, 632, 633, 647, 649, 650, 651, 653, 676, 680, 682, 683, 773, 780, 808, 815, 816, 822, 825, 828, 829, 832, 833, 837, 840, 843, 845, 851, 856, 857, 864, 866, 872], "advantag": [25, 27, 28, 808, 815, 816, 825, 836, 837, 852, 860, 866], "complex": [25, 27, 28, 41, 47, 52, 53, 58, 66, 69, 73, 75, 76, 81, 89, 106, 107, 108, 109, 110, 111, 112, 113, 114, 138, 139, 154, 168, 177, 183, 216, 217, 218, 219, 220, 221, 222, 225, 233, 234, 236, 237, 239, 241, 249, 250, 251, 252, 253, 257, 258, 259, 260, 269, 271, 272, 274, 276, 279, 280, 281, 282, 283, 286, 287, 291, 296, 297, 299, 334, 339, 340, 363, 368, 371, 372, 383, 394, 405, 415, 416, 420, 425, 426, 427, 438, 440, 526, 527, 588, 589, 622, 625, 626, 628, 630, 633, 640, 643, 668, 669, 670, 674, 681, 683, 685, 687, 690, 743, 758, 759, 761, 773, 784, 802, 811, 814, 817, 822, 825, 827, 834, 837, 840, 841, 843, 848, 849, 850, 851, 853, 860, 862, 864, 866, 868, 872, 873], "neccessari": 25, "set_random_se": [25, 44], "manual_se": 25, "301436": 25, "_c": 25, "0x7f252c392390": 25, "convolut": [25, 53, 57, 76, 80, 371, 392, 410, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 774, 788, 806, 860, 864, 866], "flatten": [25, 27, 28, 41, 43, 46, 53, 54, 58, 60, 63, 64, 76, 77, 81, 83, 86, 87, 336, 352, 368, 372, 374, 383, 423, 469, 479, 483, 488, 489, 492, 494, 516, 523, 524, 525, 526, 527, 528, 541, 545, 630, 633, 635, 640, 641, 671, 678, 690, 696, 701, 703, 740, 741, 745, 746, 747, 748, 767, 769, 808, 836, 843], "keyword": [25, 27, 28, 43, 45, 48, 49, 53, 70, 76, 99, 135, 270, 371, 374, 383, 419, 480, 518, 532, 535, 568, 597, 625, 628, 630, 633, 637, 643, 684, 720, 761, 767, 769, 773, 789, 790, 801, 814, 820, 823, 825, 826, 834, 836, 837, 838, 840, 841, 843, 848, 859, 860, 861], "input_arrai": [25, 27, 28, 836], "torch_model": [25, 27, 28, 45], "159": [25, 69, 106, 622, 632, 656], "state_upd": 25, "properti": [25, 70, 93, 94, 95, 96, 97, 98, 102, 790, 792, 819, 823, 833, 838, 840, 847, 848, 849, 872], "_transpil": 25, "thank": [25, 848, 856], "fledg": [25, 815, 845, 846], "output_arrai": [25, 27, 28, 53, 450], "0893": 25, "1504": 25, "1372": 25, "0991": 25, "0867": 25, "0851": 25, "0911": 25, "0804": 25, "0926": 25, "0881": 25, "softmaxbackward0": 25, "furthermor": 25, "relat": [25, 243, 628, 808, 810, 813, 814, 815, 816, 822, 829, 837, 840, 841, 842, 843, 860, 869], "interest": [25, 27, 39, 236, 269, 628, 814, 816], "continu": [25, 27, 28, 43, 121, 283, 291, 363, 624, 628, 808, 813, 814, 815, 818, 819, 830, 836, 839, 840, 851, 856, 857, 866], "regress": [26, 866, 873], "checkout": [27, 42, 816, 819, 840], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 27, "theoret": 27, "aspect": [27, 28, 809, 835, 848, 866], "switch": [27, 39, 780, 821, 829, 833, 834, 873], "easiest": [27, 808, 810, 815, 852], "defer": [27, 28, 814, 820, 825, 826, 833, 836, 837, 840, 872], "similarli": [27, 40, 135, 143, 219, 324, 331, 332, 365, 368, 625, 628, 821, 825, 837, 843, 847, 872], "obtain": [27, 28, 46, 53, 76, 315, 365, 371, 411, 632, 659, 774, 837, 859], "essenc": [27, 867, 872], "becom": [27, 53, 76, 93, 342, 368, 374, 460, 635, 695, 797, 816, 817, 823, 825, 827, 829, 836, 851, 855, 857, 859], "regardless": [27, 28, 39, 70, 809, 825, 829, 847, 850, 857], "being": [27, 28, 39, 53, 70, 76, 91, 98, 102, 122, 372, 374, 436, 464, 480, 582, 625, 630, 632, 633, 657, 670, 769, 775, 787, 808, 815, 816, 819, 820, 821, 823, 825, 826, 827, 830, 832, 834, 836, 837, 838, 840, 841, 843, 845, 848, 851, 856, 857, 862, 864, 865, 866, 867, 872, 873], "slide": [27, 53, 57, 76, 80, 371, 390, 391, 392, 408, 409, 410, 411, 414, 418, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788], "A": [27, 28, 42, 49, 50, 53, 54, 60, 62, 66, 67, 70, 73, 75, 76, 77, 80, 81, 83, 85, 87, 90, 93, 94, 99, 118, 119, 121, 128, 136, 143, 149, 190, 209, 271, 273, 277, 309, 320, 324, 326, 327, 328, 330, 344, 347, 351, 352, 365, 368, 371, 372, 373, 374, 377, 378, 383, 386, 400, 414, 417, 419, 426, 434, 439, 442, 450, 454, 465, 468, 486, 490, 491, 497, 498, 499, 500, 504, 505, 506, 507, 508, 516, 525, 528, 533, 535, 544, 553, 556, 557, 588, 589, 590, 593, 621, 624, 625, 626, 627, 628, 630, 631, 632, 633, 635, 637, 639, 643, 644, 655, 659, 667, 669, 672, 677, 678, 682, 683, 695, 698, 700, 704, 706, 714, 717, 719, 721, 722, 723, 724, 725, 729, 730, 731, 732, 734, 735, 736, 737, 739, 745, 755, 763, 764, 767, 769, 770, 772, 773, 774, 775, 780, 787, 802, 806, 808, 813, 814, 815, 818, 823, 825, 826, 829, 832, 833, 837, 838, 840, 845, 848, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 866, 867], "regressor": [27, 28, 808], "input_dim": [27, 28, 42, 808], "output_dim": [27, 28, 42, 808], "linear0": [27, 28, 39, 808, 848, 849], "linear1": [27, 28, 39, 808, 848, 849], "instanti": [27, 28, 780, 828], "adam": [27, 28, 39, 43, 55, 78, 532, 611, 612, 617, 630, 631, 792, 808, 848, 849, 850, 866], "n_training_exampl": [27, 28, 808], "2000": [27, 28, 76, 310, 365, 808], "random_norm": [27, 28, 57, 58, 62, 80, 81, 85, 541, 630, 632, 633, 639, 647, 649, 650, 651, 653, 654, 658, 683, 808], "linspac": [27, 28, 49, 72, 122, 625, 808, 832, 843, 845, 873], "loss_fn": [27, 28, 39, 41, 43, 808, 848, 849, 850], "pred": [27, 28, 42, 43, 53, 59, 76, 82, 373, 449, 452, 634, 692, 693, 694, 808, 823, 833, 836], "epoch": [27, 28, 41, 43, 808], "loss": [27, 28, 41, 43, 53, 76, 93, 448, 449, 450, 451, 452, 453, 454, 455, 581, 604, 630, 692, 693, 694, 808, 824, 825, 833, 837, 841, 842, 848, 849, 850, 866, 873], "gradient": [27, 28, 41, 43, 53, 76, 93, 209, 360, 368, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 627, 636, 711, 712, 713, 769, 780, 792, 808, 818, 841, 848, 849, 851, 866], "grad": [27, 28, 39, 43, 611, 631, 792, 808, 835, 848, 849, 850], "execute_with_gradi": [27, 28, 39, 43, 631, 808, 848, 849, 850, 851], "lambda": [27, 28, 44, 46, 76, 119, 121, 293, 303, 540, 553, 613, 614, 616, 621, 624, 630, 631, 633, 637, 669, 721, 722, 726, 808, 814, 833, 834, 835, 838, 843, 845, 848], "2d": [27, 28, 43, 53, 76, 93, 309, 365, 371, 372, 374, 383, 386, 387, 395, 396, 438, 445, 459, 469, 518, 788, 806, 808, 837, 843], "5f": [27, 28, 808], "nonetheless": [27, 28], "slight": [27, 28, 825, 840, 849], "introduc": [27, 28, 243, 628, 635, 641, 703, 745, 814, 823, 824, 825, 834, 838, 840, 843, 848, 855], "address": [27, 28, 53, 54, 76, 374, 488, 595, 630, 814, 816, 819, 820, 832, 839, 845, 857, 862, 864, 866, 872], "extract": [27, 28, 35, 42, 53, 76, 94, 374, 463, 489, 837, 839, 841, 862, 866, 867, 872], "gc": [27, 28, 553, 630], "decompos": [27, 28, 53, 76, 93, 96, 319, 320, 321, 322, 323, 344, 351, 365, 368, 372, 436, 441, 444, 447, 837, 850], "said": [27, 28, 774, 841, 857, 859], "otherwis": [27, 28, 45, 48, 49, 50, 52, 53, 54, 57, 58, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 122, 124, 125, 130, 132, 133, 134, 137, 139, 145, 148, 149, 151, 152, 154, 155, 156, 157, 158, 167, 171, 175, 176, 192, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 305, 306, 307, 309, 319, 320, 321, 322, 323, 330, 331, 332, 333, 334, 336, 337, 338, 346, 347, 353, 355, 357, 358, 359, 363, 365, 368, 371, 372, 374, 377, 390, 391, 392, 395, 396, 397, 415, 428, 443, 445, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 466, 468, 470, 471, 472, 479, 486, 488, 489, 490, 492, 495, 497, 499, 500, 501, 503, 505, 517, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 587, 588, 589, 591, 593, 595, 596, 597, 609, 613, 615, 620, 624, 625, 626, 627, 628, 630, 631, 632, 633, 636, 637, 640, 641, 642, 643, 644, 646, 647, 648, 649, 655, 656, 657, 659, 662, 663, 664, 665, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 683, 687, 689, 690, 692, 693, 694, 695, 698, 699, 700, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 727, 734, 735, 736, 737, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 772, 773, 788, 790, 791, 797, 808, 816, 820, 823, 825, 826, 827, 833, 834, 836, 840, 845, 852, 859, 860], "x0": [27, 28, 46, 77, 533, 630, 827], "normalize_trac": [27, 28], "html": [27, 28, 42, 52, 53, 75, 76, 143, 151, 239, 249, 250, 265, 324, 331, 332, 365, 368, 371, 374, 383, 415, 488, 518, 625, 626, 628, 633, 635, 643, 681, 682, 710, 760, 808, 828, 856], "fname": [27, 28, 44, 46, 790, 848], "anticip": [27, 28], "addition": [27, 28, 823, 836, 837, 872], "backend_compil": [27, 28], "normalize_native_comp": [27, 28], "return_backend_compiled_fn": 27, "immedi": [27, 28, 806, 814, 815], "built": [27, 28, 33, 41, 43, 46, 122, 625, 788, 789, 790, 808, 815, 816, 822, 823, 840, 846, 852, 859, 865, 866, 870], "summar": [27, 28, 93, 840], "eager_graph": [27, 28, 808, 859, 860], "lazy_graph": [27, 28, 808, 859, 860], "codebas": [27, 28, 207, 208, 627, 809, 811, 818, 825, 831, 836, 837, 839, 840, 841, 844, 857], "thought": [27, 28, 815, 816, 832, 856, 864], "research": [27, 28, 41, 808, 855, 860, 866, 873], "wa": [27, 28, 33, 42, 53, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 96, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 354, 355, 357, 358, 359, 365, 368, 372, 395, 396, 397, 415, 446, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 597, 609, 615, 620, 628, 630, 637, 643, 644, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 797, 808, 810, 816, 819, 821, 822, 824, 827, 833, 835, 837, 845, 847, 856, 859, 860, 865, 866, 868], "matter": [27, 28, 33, 827, 855], "haven": [27, 28, 33, 852, 866], "jax_out": [27, 28], "ideal": [27, 28, 824, 825, 837, 843, 848], "But": [27, 28, 774, 823, 824, 828, 831, 834, 843, 850], "bring": [27, 28, 819, 839, 840, 845, 846, 853, 856], "wise": [27, 47, 52, 53, 58, 69, 75, 76, 81, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 216, 217, 219, 220, 221, 223, 224, 226, 227, 228, 229, 230, 231, 235, 236, 237, 238, 240, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 264, 265, 266, 267, 268, 269, 272, 274, 275, 277, 278, 285, 290, 291, 292, 293, 294, 295, 297, 299, 301, 302, 303, 305, 306, 307, 330, 333, 338, 341, 342, 343, 346, 347, 348, 349, 353, 354, 357, 358, 363, 368, 371, 372, 374, 395, 396, 397, 424, 431, 467, 474, 476, 477, 496, 622, 628, 635, 664, 695, 792, 843], "vision": [27, 28, 46, 862, 872], "worth": [27, 28], "differenti": [27, 28, 291, 361, 362, 363, 370, 866], "chosen": [27, 28, 46, 96, 122, 224, 625, 628, 640, 744, 814, 824, 837], "plai": [27, 28, 373, 452, 808, 811, 815, 817, 820, 826, 830, 837, 840, 850, 866, 869], "role": [27, 28, 808, 811, 816, 817, 826, 837, 846, 867, 869, 873], "dl": [27, 28], "cnn": [27, 28, 866], "effortlessli": [27, 28], "previous": [27, 28, 599, 630, 797, 814, 815, 821, 833, 835, 840, 845], "pre": [27, 28, 808, 812, 814, 839, 840, 850, 851, 852, 866], "default_devic": [27, 28, 202, 205, 206, 207, 213, 214, 627, 826, 829, 830], "as_n": [27, 28, 50, 51, 70, 73, 74, 154, 155, 156, 157, 158, 159, 165, 192, 193, 626, 627, 825], "certainli": [27, 28, 808, 856, 872], "upon": [27, 28, 45, 806, 816, 817, 827, 836, 840, 843, 851, 865, 866], "unnecessari": [27, 28, 837], "extend": [27, 28, 53, 76, 374, 383, 480, 521, 821, 822, 825, 828, 829, 832, 837, 841, 851, 863, 866, 872], "infrastructur": [27, 28, 808, 862, 868, 869], "least": [27, 52, 53, 58, 75, 76, 236, 254, 269, 371, 374, 383, 399, 404, 458, 459, 460, 469, 471, 518, 628, 633, 640, 673, 743, 808, 816, 820, 824, 825, 826, 827, 833, 836, 840, 860], "coco": 27, "seamlessli": [28, 840], "benefit": [28, 808, 815, 820, 823, 836, 843, 847, 848, 851, 856, 857, 864, 868, 871], "through": [28, 33, 41, 53, 76, 96, 224, 383, 524, 525, 628, 637, 717, 723, 790, 801, 808, 809, 812, 813, 814, 816, 817, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 833, 834, 836, 837, 838, 840, 842, 843, 844, 845, 848, 849, 850, 859, 864, 866, 867, 868], "therefor": [28, 33, 49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 175, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 473, 480, 481, 483, 488, 492, 493, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 816, 819, 820, 823, 824, 825, 826, 827, 828, 829, 832, 833, 834, 836, 837, 838, 840, 841, 843, 845, 847, 849, 851, 855, 863, 866, 872], "wide": [28, 808, 816, 840, 864, 866], "prepar": [28, 41, 43, 46, 808, 824], "plenti": 28, "resourc": [28, 809, 814, 815, 824], "visit": [28, 814, 815, 816, 824], "page": [28, 808, 814, 815, 816, 822, 824, 830, 846, 847, 850, 852, 861, 874], "newli": [29, 30, 42, 44, 50, 73, 148, 535, 626, 630, 816, 824, 836, 840], "randon": [29, 30, 32, 33, 34], "mean_": 29, "std_": 29, "detect": [29, 33, 52, 70, 75, 251, 628, 637, 714, 725, 814, 815, 821, 823, 824, 831, 840, 848, 849], "inspect": [29, 33, 531, 630], "__": [29, 30, 31, 32, 33, 34, 70, 827, 848], "exhibit": [30, 872], "via": [30, 33, 243, 372, 374, 441, 444, 447, 488, 628, 637, 724, 725, 816, 819, 823, 825, 826, 836, 841, 843, 845, 847, 848, 866], "script": [30, 808, 815, 816, 819, 824, 827, 845, 851, 866], "comp": 30, "low_level": 30, "chain": [30, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 93, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 464, 465, 486, 488, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 636, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 716, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 793, 820, 823, 835, 837, 849, 850, 851, 866], "un": [30, 166, 626, 825, 845], "partial_comp": 30, "time_funct": 30, "slowest": [30, 53, 60, 76, 83, 374, 470, 635, 702], "express": [30, 52, 53, 75, 76, 94, 217, 221, 223, 224, 233, 235, 275, 281, 286, 355, 368, 628, 794, 802, 828, 837, 845, 850, 866, 867], "fastest": [30, 53, 60, 76, 83, 372, 374, 439, 470, 635, 702], "maxim": [30, 833, 836, 845, 863, 864, 868, 869, 870], "conclud": [31, 841], "collect": [31, 41, 43, 45, 46, 48, 70, 71, 622, 627, 630, 631, 632, 634, 637, 638, 639, 727, 784, 788, 789, 790, 791, 792, 815, 824, 829, 830, 834, 835, 838, 840, 864, 866, 869], "norm_comp": [32, 33], "global": [32, 33, 43, 54, 70, 77, 99, 154, 155, 156, 157, 158, 207, 208, 209, 578, 579, 582, 588, 589, 601, 602, 605, 626, 627, 630, 780, 791, 797, 815, 820, 821, 824, 825, 826, 829, 833, 837, 845, 866], "approach": [32, 812, 814, 815, 816, 820, 823, 825, 826, 830, 833, 837, 840, 841, 843, 847, 848, 851, 863, 870, 872], "b": [33, 47, 52, 53, 54, 57, 58, 66, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 125, 130, 131, 132, 134, 137, 139, 145, 148, 149, 150, 151, 159, 169, 171, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 326, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 378, 381, 383, 390, 391, 392, 393, 395, 396, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 421, 424, 426, 428, 432, 435, 439, 442, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 461, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 486, 488, 489, 490, 491, 492, 495, 496, 501, 503, 505, 506, 508, 509, 511, 518, 519, 520, 521, 523, 525, 528, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 565, 572, 573, 587, 588, 589, 591, 595, 596, 609, 611, 612, 613, 615, 617, 618, 619, 620, 622, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 658, 662, 663, 664, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 714, 717, 720, 721, 722, 723, 725, 726, 731, 732, 733, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 801, 802, 806, 808, 809, 812, 816, 818, 819, 821, 823, 824, 827, 830, 833, 835, 838, 844, 845, 846, 848, 849, 850, 854, 857, 859, 862], "option": [33, 42, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 164, 166, 176, 188, 192, 204, 207, 208, 209, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 319, 320, 321, 322, 323, 324, 325, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 371, 372, 373, 374, 377, 378, 379, 381, 383, 384, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 415, 416, 417, 419, 420, 422, 423, 424, 426, 428, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 463, 464, 465, 466, 468, 470, 471, 472, 473, 474, 475, 477, 478, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 536, 537, 539, 541, 542, 543, 544, 545, 548, 549, 551, 552, 553, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 577, 587, 588, 589, 591, 593, 595, 596, 597, 609, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 681, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 720, 721, 725, 726, 731, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 773, 780, 784, 785, 787, 788, 790, 792, 793, 801, 806, 814, 815, 816, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 837, 838, 840, 841, 843, 845, 850, 851, 859, 860, 861, 866, 872], "prioriti": [33, 70, 797, 811, 814, 816, 817, 826, 836], "normalize_via_oper": 33, "determin": [33, 52, 53, 58, 60, 64, 67, 70, 75, 76, 77, 81, 88, 90, 93, 96, 98, 99, 128, 151, 153, 160, 166, 167, 168, 169, 171, 172, 173, 188, 198, 200, 201, 212, 217, 218, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 236, 239, 241, 243, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 266, 269, 274, 278, 281, 282, 283, 284, 285, 286, 287, 290, 300, 304, 350, 355, 363, 368, 371, 372, 373, 374, 383, 407, 415, 426, 448, 449, 488, 492, 518, 530, 533, 554, 555, 559, 560, 561, 562, 563, 564, 591, 609, 625, 626, 627, 628, 630, 633, 635, 636, 641, 644, 663, 664, 665, 667, 671, 672, 673, 675, 676, 678, 679, 681, 682, 687, 689, 690, 696, 711, 712, 713, 745, 746, 747, 748, 749, 763, 764, 774, 780, 787, 791, 823, 825, 826, 828, 833, 837, 840, 842, 843, 855], "think": [33, 814, 816, 824, 827, 843, 867], "uniqu": [33, 43, 53, 54, 64, 76, 77, 87, 371, 372, 374, 419, 442, 479, 480, 494, 565, 630, 636, 637, 641, 711, 712, 713, 716, 720, 745, 746, 747, 748, 774, 808, 819, 823, 833, 837, 838, 839, 843, 851, 855, 869], "rule": [33, 50, 52, 53, 58, 73, 75, 76, 81, 148, 151, 174, 175, 176, 225, 236, 269, 271, 278, 280, 288, 290, 371, 374, 383, 415, 468, 518, 626, 628, 633, 635, 663, 664, 671, 675, 678, 682, 696, 774, 801, 819, 820, 823, 824, 825, 827, 831, 832, 833, 835, 840, 843, 867], "broadcast": [33, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 325, 331, 332, 333, 334, 335, 336, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 363, 365, 368, 371, 372, 373, 374, 377, 378, 383, 390, 391, 392, 394, 395, 396, 397, 398, 399, 400, 404, 405, 407, 408, 409, 410, 413, 415, 420, 422, 423, 431, 432, 437, 438, 440, 449, 450, 451, 452, 454, 455, 461, 465, 468, 473, 481, 482, 483, 484, 486, 488, 490, 492, 493, 497, 500, 501, 503, 504, 505, 507, 508, 518, 519, 520, 521, 524, 525, 526, 527, 528, 536, 537, 541, 542, 543, 548, 549, 558, 572, 573, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 677, 678, 679, 680, 682, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 706, 707, 708, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 744, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 801, 823, 825, 827, 828, 829, 840, 841, 845], "elementwis": [33, 53, 61, 76, 84, 296, 298, 358, 363, 633, 638, 688, 733, 833, 841, 845], "must": [33, 41, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 144, 145, 148, 149, 150, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 321, 322, 325, 326, 327, 328, 331, 332, 333, 334, 335, 337, 339, 340, 342, 344, 346, 348, 349, 350, 351, 355, 358, 363, 365, 368, 371, 372, 373, 374, 377, 378, 381, 383, 385, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 418, 420, 422, 423, 425, 431, 432, 437, 438, 439, 440, 445, 449, 450, 451, 452, 454, 455, 458, 459, 460, 465, 466, 468, 470, 471, 472, 473, 475, 479, 481, 482, 483, 484, 486, 488, 489, 490, 492, 493, 495, 500, 501, 503, 504, 505, 507, 508, 511, 518, 519, 520, 521, 528, 536, 537, 541, 542, 543, 548, 549, 551, 558, 572, 573, 610, 611, 612, 615, 617, 618, 619, 620, 622, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 787, 788, 792, 794, 813, 814, 815, 816, 819, 820, 824, 825, 826, 827, 828, 829, 832, 833, 834, 836, 837, 840, 841, 842, 843, 845, 849, 850, 855, 857, 860, 861, 867, 873], "taken": [33, 53, 58, 76, 81, 337, 368, 371, 416, 633, 667, 687, 814, 824, 837, 841, 850, 867], "account": [33, 43, 45, 53, 60, 76, 83, 283, 374, 470, 628, 635, 702, 787, 801, 815, 824, 828, 837, 841, 859], "rather": [33, 54, 70, 77, 122, 209, 560, 561, 564, 625, 627, 630, 632, 657, 812, 816, 819, 823, 825, 828, 830, 837, 838, 840, 841, 850, 851, 856, 862, 865, 866], "fact": [33, 93, 816, 819, 824, 837, 840, 845, 848], "consum": [33, 769, 823, 824, 832, 838, 840], "thrown": [33, 558, 630, 815, 820, 826, 829, 831, 851], "doesn": [33, 558, 576, 630, 767, 788, 814, 815, 821, 823, 824, 825, 826, 827, 830, 831, 833, 835, 840, 843, 845, 851, 859, 864], "consider": [33, 814, 827, 832, 843, 855, 863, 864], "effect": [33, 49, 53, 55, 66, 76, 78, 89, 135, 373, 407, 452, 611, 619, 625, 631, 632, 643, 659, 760, 762, 772, 775, 814, 820, 823, 824, 828, 832, 836, 838, 843, 851, 856], "explain": [33, 53, 76, 371, 405, 416, 808, 814, 815, 816, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 840, 841, 843, 845, 846, 847, 848, 849, 850, 862, 869, 872], "necessari": [33, 49, 53, 72, 76, 83, 124, 236, 269, 373, 374, 448, 458, 459, 460, 466, 468, 469, 470, 471, 472, 479, 495, 581, 604, 628, 630, 698, 699, 700, 702, 704, 705, 707, 709, 808, 814, 815, 820, 821, 823, 825, 827, 836, 837, 840, 842, 843, 859, 860], "standalon": [34, 814, 820, 840, 853, 862, 867, 872, 873], "dynam": [34, 635, 702, 790, 797, 818, 824, 825, 826, 836, 837, 842, 845, 859, 866, 870], "static": [34, 53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 102, 103, 125, 315, 371, 392, 405, 410, 419, 441, 447, 486, 498, 591, 625, 632, 659, 678, 785, 790, 837, 842, 851, 865, 866, 867], "flow": [35, 823, 859, 866, 867], "statement": [35, 40, 824, 836, 840, 843, 851, 859, 860], "opposit": 35, "exclud": [35, 66, 76, 89, 122, 143, 324, 365, 519, 520, 625, 639, 737, 753, 772, 775, 797, 827, 845, 859], "todo": [36, 37, 38, 43, 46, 76, 520, 814, 825, 837], "aim": [39, 812, 816, 819, 830, 834, 837, 840, 844, 864, 866, 869], "interfac": [39, 72, 130, 625, 847, 850, 851, 853, 856, 862, 863, 864, 865, 866, 870, 873], "set_framework": [39, 46], "44": [39, 43, 52, 53, 62, 75, 76, 85, 222, 269, 279, 283, 284, 335, 368, 371, 392, 393, 628, 632, 633, 637, 640, 643, 655, 678, 722, 735, 736, 744, 755], "45": [39, 41, 43, 52, 53, 66, 75, 76, 78, 80, 85, 99, 220, 224, 236, 279, 280, 339, 340, 353, 368, 371, 383, 393, 403, 414, 519, 525, 611, 617, 628, 631, 633, 635, 643, 678, 704, 736, 737, 755, 772], "46": [39, 41, 43, 53, 62, 76, 80, 85, 134, 259, 280, 310, 365, 371, 391, 409, 410, 625, 628, 637, 715, 735, 736], "underneath": [39, 824, 864], "sai": [39, 814, 815, 830, 834, 847, 857, 874], "clip": [39, 52, 53, 60, 75, 76, 77, 83, 267, 268, 374, 463, 488, 489, 536, 537, 628, 630, 635, 823, 833, 835, 836, 848, 850, 863], "a_min": 39, "a_max": 39, "tensforflow": 39, "clip_by_valu": [39, 850, 863], "clip_value_min": 39, "clip_value_max": 39, "clamp": [39, 53, 76, 296, 363, 850], "min": [39, 43, 50, 53, 54, 58, 66, 73, 76, 77, 81, 89, 141, 143, 161, 164, 268, 324, 327, 332, 365, 368, 372, 374, 426, 485, 526, 542, 572, 573, 588, 625, 626, 628, 630, 633, 643, 674, 680, 683, 684, 690, 808, 863], "max": [39, 41, 50, 53, 54, 58, 66, 73, 76, 77, 81, 89, 161, 164, 267, 331, 368, 371, 372, 373, 374, 390, 391, 392, 408, 409, 410, 411, 413, 415, 426, 448, 485, 487, 488, 536, 537, 542, 558, 572, 573, 626, 628, 630, 633, 643, 674, 676, 679, 772, 788, 792, 824, 837, 863], "49": [39, 43, 53, 62, 76, 80, 81, 283, 371, 372, 383, 393, 403, 414, 439, 519, 628, 643, 688, 736, 755], "devicearrai": [39, 820, 837, 845, 847], "concaten": [39, 53, 54, 60, 76, 81, 374, 465, 541, 545, 630, 632, 635, 659, 678, 696, 772, 838, 843, 845, 848], "accept": [39, 48, 49, 52, 53, 58, 71, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 338, 360, 365, 368, 370, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 808, 814, 815, 816, 820, 823, 825, 826, 827, 828, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 847, 853, 864], "jax_concat": 39, "tf_concat": 39, "np_concat": 39, "torch_concat": 39, "85": [39, 47, 53, 62, 69, 75, 76, 78, 80, 85, 99, 108, 221, 230, 231, 275, 291, 292, 295, 363, 383, 519, 588, 615, 622, 628, 630, 631, 632, 639, 656, 735, 736, 737], "mymodel": [39, 848], "x_in": [39, 848, 849, 850], "reduce_mean": [39, 808, 848, 849, 850], "91": [39, 53, 80, 85, 356, 368, 414, 632, 633, 639, 643, 656, 678, 736, 755], "49040043354034424": 39, "48975786566734314": 39, "4892795979976654": 39, "48886892199516296": 39, "4884953498840332": 39, "4881443977355957": 39, "4878086447715759": 39, "48748287558555603": 39, "48716384172439575": 39, "48684927821159363": 39, "48653748631477356": 39, "48622724413871765": 39, "4859171509742737": 39, "48560672998428345": 39, "48529526591300964": 39, "4849821627140045": 39, "48466697335243225": 39, "4843493402004242": 39, "4840289056301117": 39, "4837053418159485": 39, "4833785891532898": 39, "4830484390258789": 39, "48271444439888": 39, "48237672448158264": 39, "48203518986701965": 39, "48168954253196716": 39, "4813397228717804": 39, "4809857904911041": 39, "48062753677368164": 39, "48026490211486816": 39, "479898065328598": 39, "47952669858932495": 39, "4791509211063385": 39, "4787706732749939": 39, "47838595509529114": 39, "4779967665672302": 39, "47760307788848877": 39, "4772048890590668": 39, "47680220007896423": 39, "47639501094818115": 39, "47598329186439514": 39, "4755673110485077": 39, "4751465618610382": 39, "4747215211391449": 39, "4742920398712158": 39, "47385817766189575": 39, "47341999411582947": 39, "47297725081443787": 39, "4725303053855896": 39, "47207894921302795": 39, "47162333130836487": 39, "47116345167160034": 39, "470699280500412": 39, "47023090720176697": 39, "54": [39, 50, 52, 57, 75, 76, 80, 85, 164, 233, 234, 239, 254, 283, 289, 310, 365, 371, 383, 393, 403, 519, 628, 632, 633, 643, 656, 675, 678, 735, 736, 737, 755, 824, 827], "4697583019733429": 39, "55": [39, 47, 76, 85, 114, 230, 289, 383, 519, 556, 628, 630, 633, 639, 643, 672, 678, 736, 737, 755, 819], "46928152441978455": 39, "46880054473876953": 39, "4683155119419098": 39, "58": [39, 260, 536, 628, 630], "4678264260292053": 39, "59": [39, 52, 231, 383, 519], "46733325719833374": 39, "46683603525161743": 39, "61": [39, 41, 52, 53, 58, 75, 76, 78, 82, 85, 222, 257, 259, 284, 393, 611, 628, 631, 632, 633, 654, 671, 737, 830], "4663347601890564": 39, "4658295214176178": 39, "465320348739624": 39, "4648073613643646": 39, "46429020166397095": 39, "4637692868709564": 39, "46324464678764343": 39, "4627160429954529": 39, "4621836841106415": 39, "4616474211215973": 39, "71": [39, 52, 75, 80, 235, 275, 414, 628], "46110764145851135": 39, "72": [39, 53, 62, 76, 78, 241, 345, 368, 371, 393, 403, 615, 628, 631, 633, 643, 678, 736, 755], "460563987493515": 39, "4600166976451874": 39, "74": [39, 41, 52, 85, 231, 261, 628, 633, 675], "45946577191352844": 39, "45891112089157104": 39, "45835286378860474": 39, "4577910006046295": 39, "78": [39, 55, 280, 617, 628, 631, 633, 639, 643, 678, 736, 755], "45722562074661255": 39, "79": [39, 41, 53, 54, 76, 77, 80, 85, 98, 236, 371, 393, 403, 414, 536, 537, 628, 630, 737], "45665669441223145": 39, "80": [39, 53, 76, 345, 368, 372, 383, 439, 519, 633, 637, 643, 678, 725, 755, 856], "4560841917991638": 39, "81": [39, 43, 52, 58, 73, 75, 81, 85, 164, 234, 259, 260, 284, 383, 519, 626, 628, 633, 637, 639, 643, 671, 675, 688, 722, 737, 755, 840], "4555082619190216": 39, "45492875576019287": 39, "45434585213661194": 39, "84": [39, 57, 66, 75, 85, 164, 194, 259, 626, 627, 633, 638, 643, 656, 678, 733, 736, 737, 755], "45375964045524597": 39, "4531698524951935": 39, "4525766670703888": 39, "45198020339012146": 39, "4513803720474243": 39, "4507772624492645": 39, "4501707851886749": 39, "4495610296726227": 39, "4489481747150421": 39, "44833192229270935": 39, "4477125108242035": 39, "44708991050720215": 39, "44646409153938293": 39, "44583529233932495": 39, "98": [39, 47, 53, 55, 62, 69, 75, 78, 85, 109, 234, 282, 356, 368, 615, 622, 631, 633, 637, 640, 643, 678, 715, 726, 735, 737, 744, 755], "4452032148838043": 39, "44456806778907776": 39, "4439": 39, "selectbackward0": 39, "hope": [39, 851, 856, 872, 874], "ivy_compil": 40, "ic": 40, "produc": [40, 53, 54, 57, 76, 80, 298, 308, 311, 363, 365, 371, 419, 632, 662, 772, 802, 814, 825, 830, 831, 836, 838, 840, 841, 859, 867, 869], "numer": [40, 49, 50, 52, 53, 54, 58, 62, 63, 66, 73, 75, 76, 77, 81, 85, 86, 88, 98, 99, 135, 148, 216, 219, 232, 236, 241, 242, 243, 250, 251, 252, 255, 264, 265, 269, 271, 272, 273, 274, 278, 279, 280, 284, 285, 289, 290, 371, 373, 378, 383, 415, 450, 505, 518, 578, 579, 588, 589, 601, 602, 625, 626, 628, 630, 633, 639, 640, 643, 664, 671, 673, 678, 681, 683, 685, 687, 689, 735, 736, 737, 739, 740, 741, 743, 744, 749, 756, 759, 761, 772, 773, 774, 775, 787, 812, 825, 830, 835, 837, 838, 840, 841, 842, 843, 845, 849, 863, 866, 872], "anyth": [40, 53, 76, 383, 524, 525, 816, 829, 840, 841, 866, 867], "affect": [40, 46, 53, 373, 453, 824, 837], "intermedi": [40, 864, 865, 866, 867, 872], "variabl": [40, 42, 43, 45, 53, 54, 55, 61, 70, 76, 77, 78, 84, 118, 119, 121, 318, 365, 371, 372, 378, 383, 417, 443, 506, 517, 518, 534, 558, 559, 560, 561, 564, 591, 612, 613, 615, 617, 618, 619, 624, 630, 631, 633, 636, 638, 682, 711, 712, 713, 733, 769, 780, 785, 787, 788, 789, 790, 791, 792, 793, 816, 821, 825, 828, 832, 835, 836, 840, 841, 845, 848, 849, 850, 851, 852, 859, 867], "original_fn": 40, "100000": 40, "var": [40, 66, 89, 91, 118, 119, 120, 121, 624, 636, 643, 711, 712, 794, 815, 827, 845, 863], "co": [40, 41, 52, 54, 75, 234, 239, 241, 282, 545, 628, 630, 813, 825, 845, 856], "sin": [40, 52, 54, 75, 234, 239, 241, 282, 545, 628, 630, 820, 845], "tan": [40, 52, 75, 532, 628, 630, 828, 832, 833, 836, 837, 845], "comp_fn": 40, "compile_graph": [40, 46], "expected_result": 40, "compiled_result": 40, "irrelev": [40, 824, 825, 827], "opeat": 40, "_layer": [40, 845], "net": [40, 45, 46, 845, 850, 856, 857], "compiled_net": 40, "proceed": 41, "latest": [41, 43, 52, 53, 75, 76, 151, 239, 249, 250, 265, 331, 332, 368, 371, 374, 383, 415, 417, 488, 518, 626, 628, 633, 635, 643, 681, 682, 710, 760, 788, 808, 814, 815, 816, 819, 821, 824, 828, 830, 841, 851, 852, 860, 871], "pypi": [41, 43, 46, 814, 815, 841, 851], "pkg": [41, 43, 46], "public": [41, 43, 46, 538, 630, 824, 835, 847, 869], "revis": [41, 43, 816], "tmp": [41, 43, 585, 608, 630], "req": [41, 43], "tabqrujw": 41, "command": [41, 43, 808, 810, 815, 819, 822, 824, 830, 831, 852], "filter": [41, 43, 45, 53, 57, 76, 80, 313, 314, 365, 371, 392, 410, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 774, 788, 808, 821, 824], "quiet": [41, 43], "commit": [41, 43, 811, 812, 814, 817, 819, 827, 839, 840], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 41, "metadata": [41, 43, 46, 836], "setup": [41, 43, 46, 815, 816, 822, 824, 830], "done": [41, 43, 46, 633, 670, 813, 814, 815, 816, 819, 822, 824, 826, 827, 830, 831, 836, 837, 840, 848, 859, 860, 866], "py3": [41, 43, 46], "whl": [41, 42, 43, 46], "cp39": [41, 43], "manylinux_2_12_x86_64": [41, 43], "manylinux2010_x86_64": [41, 43], "manylinux_2_17_x86_64": [41, 43, 815], "manylinux2014_x86_64": [41, 42, 43], "eta": [41, 43, 46], "tar": [41, 42, 43, 46], "gz": [41, 42, 43, 46], "py2": [41, 43], "495": [41, 43], "nvidia_ml_pi": [41, 43], "pypars": [41, 43, 46], "ivy_cor": [41, 43, 46, 815], "1338326": 41, "sha256": [41, 43, 46], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 41, "store": [41, 43, 46, 50, 53, 54, 58, 60, 70, 73, 76, 77, 81, 83, 150, 371, 372, 416, 424, 428, 442, 446, 545, 630, 633, 635, 687, 704, 769, 770, 788, 789, 790, 810, 816, 820, 821, 823, 828, 834, 836, 837, 838, 845, 847, 848, 849, 853, 859], "ephem": [41, 43], "njrc_e6b": 41, "2e": [41, 43], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [41, 43], "4845": [41, 43], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 41, "b6": [41, 43], "0d": [41, 43], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [41, 43], "successfulli": [41, 43, 46, 790, 811, 815, 820], "uninstal": [41, 43, 46], "found": [41, 43, 44, 46, 58, 60, 64, 70, 76, 81, 83, 87, 99, 197, 383, 465, 519, 627, 637, 667, 673, 706, 725, 745, 802, 811, 814, 815, 816, 820, 821, 822, 823, 825, 826, 828, 831, 834, 836, 837, 852, 868], "vnd": [41, 43, 46], "json": [41, 43, 46, 70, 815, 830, 848], "psst": 41, "cv2": [41, 43, 45, 848], "pickl": [41, 42, 70, 790, 823, 848], "imageio": 41, "urllib": [41, 46], "_src": 41, "tpu": [41, 190, 196, 205, 207, 212, 627, 806, 826, 866, 869], "back": [41, 53, 60, 76, 83, 374, 470, 491, 574, 598, 630, 632, 635, 659, 702, 787, 792, 802, 815, 820, 825, 826, 829, 834, 835, 842, 844, 851, 852, 856, 864, 868], "tf_cpp_min_log_level": 41, "info": [41, 805, 806, 808, 822, 828, 831], "mkdir": [41, 42, 43, 815, 824], "perceiv": [41, 42], "touch": 41, "io_processor": 41, "position_encod": 41, "absl": 41, "jmp": 41, "tabul": 41, "04": [41, 42, 49, 55, 69, 73, 76, 78, 108, 109, 134, 161, 241, 578, 611, 612, 617, 622, 625, 626, 628, 630, 631, 772, 815, 840], "29359": 41, "29k": 41, "67k": 41, "002": 41, "30179": 41, "47k": 41, "8107": 41, "9k": 41, "92k": 41, "itertool": 41, "preprocessor": 41, "vector": [41, 49, 53, 54, 57, 58, 76, 77, 80, 81, 93, 94, 96, 135, 361, 362, 370, 371, 372, 374, 377, 378, 383, 394, 425, 430, 438, 440, 445, 480, 482, 484, 502, 506, 518, 537, 541, 558, 610, 625, 630, 632, 633, 656, 659, 664, 668, 669, 671, 673, 678, 683, 684, 688, 689, 690, 691, 772, 788, 866], "perceiverbackbon": 41, "input_preprocessor": 41, "_input_preprocessor": 41, "_encod": 41, "__call__": [41, 769, 788, 789, 790, 808, 860], "is_train": 41, "po": [41, 802], "input_mask": 41, "network_input_is_1d": 41, "_input_is_1d": 41, "queri": [41, 42, 57, 70, 80, 194, 208, 551, 577, 627, 630, 632, 659, 662, 788, 823, 825, 830, 847, 866], "decod": [41, 848], "cross": [41, 43, 58, 59, 81, 82, 94, 633, 634, 692, 693, 694, 808, 824, 825], "attend": [41, 632, 659], "encoder_queri": 41, "latent": [41, 636, 712, 713], "imagepreprocessor": 41, "deal": [41, 790, 812, 826, 833, 835, 837, 840, 851], "image_s": 41, "fourier_pos_config": 41, "position_encoding_typ": 41, "fourier": [41, 53, 76, 371, 394, 399, 400, 404, 405, 415, 416, 419, 545, 630], "fourier_position_encoding_kwarg": 41, "concat_po": 41, "max_resolut": 41, "num_band": [41, 54, 77, 545, 630], "sine_onli": 41, "prep_typ": 41, "spatial_downsampl": 41, "cross_attend_widening_factor": 41, "cross_attention_shape_for_attn": 41, "kv": 41, "dropout_prob": 41, "num_block": 41, "num_cross_attend_head": 41, "num_self_attend_head": 41, "num_self_attends_per_block": 41, "num_z_channel": 41, "self_attend_widening_factor": 41, "use_query_residu": 41, "z_index_dim": 41, "z_pos_enc_init_scal": 41, "perceiver_backbon": [41, 808], "perceiverencod": 41, "At": [41, 814, 815, 816, 819, 830, 840, 841, 856, 866], "almost": [41, 813, 823, 838, 846, 848, 855], "publish": [41, 808, 851, 857, 860], "thankfulli": [41, 840], "perceiver_io": [41, 42], "imagenet_fourier_position_encod": 41, "pystat": 41, "imagenet_checkpoint": 41, "rb": 41, "ckpt": 41, "read": [41, 43, 53, 60, 70, 72, 76, 83, 130, 374, 470, 625, 635, 702, 814, 815, 822, 824, 830, 840, 842, 843, 866], "09": [41, 47, 52, 78, 85, 114, 274, 284, 611, 622, 628, 631, 736], "173": [41, 58, 633, 671], "194": 41, "217": [41, 829], "125": [41, 53, 58, 81, 230, 342, 368, 373, 449, 628, 633, 688], "177": [41, 43], "193776248": 41, "185m": 41, "octet": 41, "184": 41, "80m": 41, "144mb": 41, "144": 41, "mean_rgb": 41, "stddev_rgb": 41, "im": 41, "denorm": 41, "resize_and_center_crop": 41, "crop": [41, 53, 76, 371, 400, 405, 416], "center": [41, 787], "image_height": [41, 43, 808], "image_width": [41, 808], "padded_center_crop_s": 41, "minimum": [41, 52, 53, 54, 60, 63, 66, 75, 76, 77, 83, 86, 89, 216, 244, 271, 295, 327, 331, 332, 342, 363, 365, 368, 374, 383, 480, 516, 520, 526, 578, 579, 588, 589, 601, 602, 628, 630, 635, 640, 643, 695, 741, 756, 758, 772, 774, 775, 780, 825, 842, 863, 869, 873], "offset_height": 41, "offset_width": 41, "crop_window": 41, "inter_cub": 41, "ye": [41, 851], "dummy_input": [41, 808], "transpili": 41, "torch_perceiver_backbon": 41, "quicker": 41, "params_v": [41, 808, 860], "perceiverioclassifi": [41, 808], "max_pool": [41, 808], "huggingfac": [41, 859, 860], "Of": [41, 820, 836, 837, 848, 871, 872], "cours": [41, 815, 816, 819, 820, 827, 836, 837, 843, 848, 851, 871, 872], "468": 41, "huggingface_hub": 41, "multiprocess": [41, 70, 99, 630, 848, 851], "py39": 41, "132": [41, 76], "pyarrow": 41, "xxhash": 41, "212": [41, 53, 57, 76, 355, 368, 656], "pyyaml": 41, "2021": [41, 53, 76, 358, 368, 808], "aiohttp": 41, "async": 41, "timeout": [41, 70, 99, 582, 605, 630, 842], "0a3": 41, "async_timeout": 41, "frozenlist": 41, "manylinux_2_5_x86_64": [41, 46], "manylinux1_x86_64": [41, 46], "158": 41, "attr": [41, 825], "aiosign": 41, "multidict": 41, "114": [41, 371, 393, 403], "yarl": 41, "264": [41, 637, 714], "2022": [41, 42], "pytz": 41, "2020": [41, 819, 866], "dateutil": [41, 46], "wikiart": 41, "paint": [41, 808, 845, 855], "load_dataset": [41, 859, 860], "n_sampl": [41, 53, 76, 372, 374, 421, 429, 483], "10000": [41, 43, 49, 72, 134, 625], "huggan": 41, "split": [41, 42, 43, 47, 52, 53, 60, 69, 70, 75, 76, 83, 106, 107, 108, 109, 110, 111, 112, 113, 114, 207, 208, 209, 287, 291, 296, 297, 299, 344, 351, 363, 374, 466, 475, 495, 541, 568, 622, 627, 628, 630, 632, 635, 645, 652, 653, 707, 769, 784, 788, 808, 809, 816, 824, 844, 845, 851, 873], "wiki_art": 41, "gib": 41, "unknown": [41, 772], "total": [41, 43, 53, 66, 70, 76, 89, 99, 130, 211, 326, 327, 328, 336, 365, 368, 373, 448, 625, 627, 640, 643, 743, 760, 762, 802, 808, 809, 815, 816, 825, 826, 827, 840, 843, 848, 849, 851, 857], "huggan___parquet": 41, "36ee951979f9b56c": 41, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 41, "parquet": 41, "subsequ": [41, 797, 815, 820, 824, 825, 827, 832, 833, 836, 840, 849, 867], "reus": [41, 49, 72, 76, 83, 124, 458, 459, 466, 468, 470, 471, 472, 479, 495, 698, 699, 700, 702, 704, 705, 707, 709, 829, 840, 871], "curl": [41, 815], "server": [41, 808, 815, 816, 822, 830, 852, 866], "row": [41, 53, 76, 94, 128, 143, 324, 365, 372, 374, 381, 383, 431, 443, 472, 478, 496, 511, 517, 518, 625, 633, 639, 640, 674, 682, 683, 688, 734, 743, 787], "2fwikiart": 41, "receiv": [41, 45, 93, 532, 568, 630, 636, 711, 712, 713, 788, 806, 811, 815, 816, 825, 826, 840, 843], "xferd": 41, "averag": [41, 43, 53, 55, 59, 76, 78, 82, 371, 373, 377, 383, 385, 386, 390, 391, 392, 450, 451, 452, 453, 454, 455, 502, 518, 611, 612, 617, 631, 632, 634, 636, 659, 692, 711, 712, 787, 788], "dload": 41, "upload": [41, 840], "spent": [41, 857], "25936": 41, "278k": 41, "number": [41, 43, 44, 45, 46, 49, 50, 52, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 72, 73, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 89, 90, 93, 94, 96, 98, 99, 102, 122, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 143, 149, 154, 155, 156, 157, 158, 160, 161, 164, 167, 168, 169, 171, 173, 176, 200, 201, 202, 216, 217, 218, 219, 220, 222, 224, 225, 232, 234, 236, 237, 239, 241, 242, 243, 249, 250, 251, 253, 257, 259, 267, 268, 269, 270, 271, 272, 274, 276, 278, 279, 280, 282, 283, 287, 289, 315, 319, 320, 321, 322, 323, 324, 326, 327, 328, 330, 331, 332, 334, 335, 336, 337, 347, 352, 356, 365, 368, 371, 372, 373, 374, 377, 383, 405, 416, 419, 422, 425, 429, 430, 431, 441, 445, 447, 448, 458, 459, 460, 480, 481, 482, 483, 484, 486, 488, 490, 492, 494, 497, 498, 499, 516, 518, 519, 520, 521, 527, 545, 552, 570, 587, 588, 589, 596, 609, 610, 623, 625, 626, 627, 628, 630, 632, 633, 634, 635, 636, 639, 640, 641, 643, 644, 645, 652, 653, 655, 657, 659, 664, 668, 669, 670, 676, 681, 683, 687, 688, 689, 692, 695, 697, 698, 700, 701, 703, 704, 706, 708, 710, 711, 712, 713, 734, 738, 743, 745, 746, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 773, 774, 780, 787, 788, 791, 802, 806, 808, 815, 816, 823, 824, 825, 826, 827, 834, 835, 836, 840, 841, 842, 843, 845, 848, 854, 855, 859], "abstract_expression": 41, "action_paint": 41, "analytical_cub": 41, "art_nouveau": 41, "baroqu": 41, "color_field_paint": 41, "contemporary_r": 41, "cubism": 41, "early_renaiss": 41, "expression": 41, "fauvism": 41, "high_renaiss": 41, "impression": 41, "mannerism_late_renaiss": 41, "minim": [41, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 365, 371, 373, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 679, 680, 681, 683, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 802, 828, 836, 838, 843, 845, 859, 864, 872], "naive_art_primitiv": 41, "new_real": 41, "northern_renaiss": 41, "pointil": 41, "pop_art": 41, "post_impression": 41, "realism": 41, "rococo": 41, "romantic": 41, "symbol": [41, 801, 814, 815, 866, 867], "synthetic_cub": 41, "ukiyo_": 41, "custom": [41, 53, 76, 295, 307, 360, 363, 370, 772, 801, 810, 818, 824, 829, 834, 838, 840, 843, 849, 856, 866, 870, 871, 872], "hugginfac": 41, "customdataset": 41, "__len__": [41, 823], "__getitem__": [41, 70, 823], "idx": [41, 42, 43, 531, 630, 808, 826, 847], "random_split": 41, "224x224": 41, "val_siz": 41, "dataset_train": 41, "dataset_v": 41, "dataset_test": 41, "dataloader_train": 41, "batch_siz": [41, 43, 46, 53, 57, 62, 76, 80, 85, 371, 373, 390, 391, 392, 408, 409, 410, 411, 455, 632, 639, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 657, 659, 734, 808, 848], "dataloader_v": 41, "dataloader_test": 41, "batch": [41, 42, 43, 53, 54, 58, 70, 76, 77, 81, 207, 208, 371, 372, 373, 377, 385, 387, 388, 394, 407, 417, 434, 448, 450, 497, 498, 499, 502, 545, 548, 549, 610, 627, 630, 632, 633, 636, 638, 656, 657, 658, 659, 690, 711, 712, 713, 733, 772, 788, 791, 808, 823, 833, 838, 848, 864], "iter": [41, 43, 48, 53, 54, 60, 68, 70, 76, 77, 83, 91, 96, 99, 118, 209, 316, 317, 365, 371, 372, 374, 417, 430, 441, 447, 464, 480, 530, 568, 624, 627, 630, 635, 637, 697, 701, 708, 710, 715, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 729, 730, 732, 801, 802, 806, 819, 821, 823, 845, 848, 857, 859], "train_featur": 41, "train_label": 41, "imshow": [41, 42], "crossentropyloss": [41, 789], "sgd": [41, 792, 866], "lr": [41, 55, 78, 532, 612, 615, 617, 618, 619, 630, 631, 792, 848, 849], "001": [41, 52, 53, 61, 73, 76, 78, 161, 259, 276, 334, 347, 368, 612, 626, 628, 631, 638, 733, 772, 848, 849], "train_step": 41, "running_loss": [41, 43, 808], "last_loss": 41, "training_load": 41, "intra": 41, "report": [41, 811, 814, 840], "zero_grad": 41, "backward": [41, 53, 67, 76, 90, 278, 371, 394, 399, 400, 404, 405, 415, 416, 628, 633, 644, 664, 689, 763, 764, 788, 806, 841, 851], "adjust": [41, 66, 89, 372, 443, 643, 760, 762, 797, 806], "999": [41, 55, 75, 78, 287, 611, 612, 617, 619, 628, 631, 792, 849], "epoch_numb": 41, "best_vloss": 41, "1_000_000": 41, "avg_loss": 41, "running_vloss": 41, "vdata": 41, "vinput": 41, "vlabel": 41, "voutput": 41, "vloss": 41, "avg_vloss": 41, "model_path": 41, "model_": 41, "state_dict": [41, 789, 790], "highest": [41, 53, 62, 76, 85, 315, 318, 365, 639, 735, 825], "energi": 41, "sum": [41, 43, 52, 53, 54, 57, 58, 59, 66, 70, 75, 76, 77, 80, 81, 82, 89, 93, 98, 99, 209, 219, 261, 285, 328, 352, 365, 368, 372, 373, 374, 377, 383, 414, 424, 448, 449, 450, 451, 452, 453, 454, 455, 485, 502, 524, 525, 542, 572, 573, 627, 628, 630, 632, 633, 634, 643, 655, 662, 674, 683, 687, 690, 692, 754, 755, 787, 789, 801, 808, 823, 825, 833, 835, 836, 837, 845, 859, 860, 861, 863], "augment": 41, "mayb": [41, 42, 48, 808, 815, 824, 845, 847], "meta": [41, 711, 712, 713, 820, 841, 866], "finetun": 41, "deploi": [41, 808, 824, 853, 860, 864, 865, 866, 868, 872], "present": [42, 53, 66, 70, 76, 89, 334, 368, 377, 497, 498, 499, 643, 758, 814, 815, 816, 823, 825, 826, 832, 836, 845, 855, 863, 864, 873], "percieverio": 42, "ai": [42, 824, 864, 868], "contribut": [42, 53, 76, 383, 521, 811, 813, 815, 816, 817, 822, 830, 831, 837, 838, 845, 852, 859, 870, 874], "highli": [42, 808, 814, 866], "invit": [42, 814, 817, 837, 843], "g4ar9q7dtn": 42, "step1": 42, "printf": 42, "8packag": 42, "share": [42, 70, 182, 626, 772, 773, 808, 821, 823, 827, 833, 835, 837, 838, 840, 843, 845, 856, 864, 865, 872], "googledr": 42, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 42, "file_id": 42, "drive": [42, 43], "uc": 42, "tee": [42, 815], "file_id_wget_cmd": 42, "perl": 42, "pe": 42, "g": [42, 44, 45, 53, 62, 64, 66, 68, 76, 85, 91, 93, 147, 176, 189, 236, 249, 269, 276, 279, 331, 332, 368, 371, 372, 374, 378, 383, 408, 410, 447, 488, 504, 505, 506, 507, 508, 519, 520, 626, 627, 628, 633, 637, 639, 641, 643, 669, 670, 674, 681, 683, 684, 690, 717, 721, 723, 726, 731, 735, 736, 737, 745, 746, 747, 748, 753, 754, 756, 758, 759, 761, 787, 806, 809, 814, 815, 818, 819, 821, 822, 823, 835, 837, 840, 845, 851, 853, 857, 862], "uuid": 42, "anywai": [42, 820, 834, 837], "bin": [42, 53, 76, 383, 516, 521, 815, 816, 819, 823], "bash": [42, 815, 816, 819], "step2": 42, "interpret": [42, 49, 53, 72, 76, 123, 124, 130, 136, 373, 383, 450, 518, 625, 824, 867], "sudo": [42, 815], "apt": [42, 815], "yf": 42, "step3": 42, "delet": [42, 816, 824], "xvzf": 42, "rm": [42, 44, 810, 816], "step4": 42, "symlink": 42, "unzip": [42, 43], "fr": 42, "l": [42, 53, 58, 75, 81, 263, 372, 373, 425, 448, 632, 633, 659, 663, 668, 669, 670, 673, 687, 816, 818], "d": [42, 53, 54, 57, 58, 60, 72, 76, 77, 80, 81, 83, 96, 112, 134, 143, 176, 219, 236, 237, 269, 272, 324, 365, 371, 372, 374, 377, 378, 381, 390, 391, 392, 399, 404, 408, 409, 410, 411, 413, 417, 423, 439, 460, 466, 468, 471, 475, 489, 491, 495, 502, 504, 510, 533, 544, 622, 625, 626, 628, 632, 633, 635, 637, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 666, 667, 671, 674, 678, 687, 688, 704, 717, 721, 722, 723, 726, 731, 732, 773, 802, 808, 809, 815, 818, 821, 822, 823, 830, 835, 840, 843, 848, 856, 857, 862], "ln": 42, "sf": 42, "la": 42, "step5": 42, "regular": [42, 76, 372, 383, 434, 439, 522, 815, 837, 866], "step6": 42, "ipkykernel": 42, "step7": 42, "engbjapanpython3": 42, "separ": [42, 53, 54, 76, 377, 498, 545, 630, 632, 659, 769, 780, 815, 816, 820, 823, 824, 827, 838, 839, 840, 845, 847, 848, 867, 871], "ipykernel": 42, "reconnect": 42, "sy": [42, 874], "oct": 42, "gcc": [42, 864, 871], "lf": 42, "upgrad": 42, "cuda11": 42, "cudnn805": 42, "cp38": [42, 46, 815], "helper": [42, 767, 769, 770, 776, 778, 779, 808, 812, 822, 825, 829, 830, 839, 848, 853], "feedforward": 42, "prenorm": 42, "perceiveriospec": 42, "fetch": [42, 553, 630, 815, 816, 819, 824], "ogbanugot": [42, 874], "xmartlab": 42, "caffeflow": 42, "fetch_class": 42, "class_label": 42, "ground_truth": 42, "127": [42, 50, 53, 58, 73, 76, 164, 355, 368, 626, 633, 671], "path_to_imag": 42, "get_imag": 42, "ax": [42, 47, 53, 58, 60, 63, 66, 67, 69, 76, 81, 83, 86, 89, 90, 98, 102, 109, 113, 209, 331, 332, 336, 337, 352, 359, 368, 369, 371, 372, 374, 377, 383, 400, 405, 416, 442, 479, 480, 486, 500, 523, 524, 525, 526, 527, 528, 541, 610, 627, 630, 633, 635, 640, 643, 644, 664, 674, 682, 685, 686, 690, 697, 699, 700, 703, 705, 707, 710, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 774, 788, 825, 827, 840, 841, 845, 847], "fig": [42, 43], "subplot": [42, 43], "spine": 42, "set_vis": 42, "right": [42, 53, 58, 70, 76, 81, 99, 116, 117, 228, 230, 283, 346, 368, 371, 372, 374, 406, 436, 442, 443, 445, 471, 541, 624, 628, 630, 633, 642, 683, 688, 751, 772, 809, 814, 815, 816, 818, 819, 827, 830, 843, 848, 859], "bottom": [42, 541, 630, 814, 815, 824, 830, 872], "tick_param": 42, "set_xticklabel": 42, "set_yticklabel": 42, "show_result": 42, "along": [42, 47, 49, 52, 53, 54, 58, 59, 60, 62, 63, 65, 66, 67, 69, 70, 72, 75, 76, 77, 81, 82, 83, 85, 86, 88, 89, 90, 93, 94, 96, 109, 113, 118, 133, 134, 209, 283, 286, 288, 326, 327, 328, 331, 332, 336, 337, 352, 359, 365, 368, 369, 371, 372, 373, 374, 377, 383, 393, 399, 400, 403, 404, 405, 415, 416, 441, 452, 465, 466, 467, 469, 471, 472, 480, 485, 488, 490, 492, 500, 501, 502, 503, 519, 520, 521, 523, 524, 525, 526, 527, 528, 541, 548, 624, 625, 627, 628, 630, 633, 634, 635, 636, 639, 640, 642, 643, 644, 664, 678, 687, 689, 690, 692, 693, 694, 696, 699, 700, 701, 703, 704, 706, 708, 709, 711, 712, 713, 739, 740, 741, 749, 750, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 788, 808, 814, 817, 818, 827, 836, 839, 841, 843, 845, 866], "figur": [42, 842], "figsiz": [42, 43], "listdir": [42, 43], "endswith": 42, "this_dir": 42, "dirnam": 42, "join": [42, 43, 60, 70, 76, 83, 464, 465, 635, 696, 706, 808, 817], "add_subplot": 42, "xtick": 42, "ytick": 42, "set_titl": [42, 43], "color": [42, 70, 99, 807], "green": [42, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 807, 814, 815, 816], "red": 42, "perceiver_io_img_classif": 42, "normalize_imag": 42, "batch_shap": [42, 57, 62, 72, 80, 85, 128, 137, 625, 632, 633, 639, 658, 662, 691, 734, 788, 843, 845, 847], "img_dim": 42, "queries_dim": 42, "learn_queri": 42, "load_weight": 42, "num_input_ax": 42, "network_depth": 42, "num_lat_att_per_lay": 42, "query_shap": 42, "num_fourier_freq_band": 42, "weight_fpath": 42, "pretrained_weight": 42, "isfil": 42, "noinspect": [42, 847], "pybroadexcept": 42, "from_disk_as_pickl": 42, "larg": [42, 52, 53, 75, 76, 219, 236, 243, 269, 270, 374, 383, 488, 518, 628, 633, 681, 810, 815, 816, 822, 824, 830, 848, 859, 866], "action": [42, 806, 813, 824, 827, 831, 840], "fail": [42, 767, 812, 815, 816, 819, 824, 825, 827, 831, 834, 836, 837, 838], "placehold": [42, 637, 721, 726, 731, 788, 816, 820, 832, 853], "pyunboundlocalvari": 42, "max_fourier_freq": 42, "random_uniform": [42, 46, 62, 85, 639, 826, 829, 840, 845, 849], "817437": 42, "gpu_bfc_alloc": 42, "orig_valu": 42, "tf_force_gpu_allow_growth": 42, "autograd": [42, 851], "declar": [42, 816, 839], "_3r2_73j": 43, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 43, "1297564": 43, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 43, "le3bu3_v": 43, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 43, "third": [43, 93, 94, 374, 467, 494, 633, 641, 683, 745, 822, 825, 836, 851, 865, 866, 872], "parti": [43, 822, 825, 851, 856, 865, 866, 872], "mount": [43, 810, 816], "mydriv": 43, "chdir": 43, "One": [43, 53, 54, 60, 62, 76, 77, 83, 85, 96, 374, 458, 459, 460, 463, 480, 489, 492, 542, 630, 635, 639, 702, 735, 820, 823, 825, 827, 833, 838, 840, 845, 847, 848], "kaggl": 43, "medium": 43, "articl": [43, 808, 831], "insert": [43, 53, 63, 76, 86, 374, 455, 465, 635, 637, 640, 642, 698, 718, 719, 740, 751, 824, 831], "www": [43, 331, 332, 368], "your_kaggle_usernam": 43, "competit": 43, "digit": 43, "recogn": [43, 811, 817], "zip": [43, 845], "readabl": [43, 820, 823, 829, 831, 832, 840, 841, 847, 848], "chmod": [43, 815, 824], "recent": [43, 805, 815, 816, 840, 855, 856], "modifi": [43, 53, 70, 76, 93, 374, 383, 477, 480, 485, 525, 772, 802, 814, 815, 816, 819, 821, 822, 825, 826, 828, 830, 831, 833, 836, 838, 840, 841, 845], "forc": [43, 822, 824, 826], "archiv": [43, 815], "inflat": [43, 825], "sample_submiss": 43, "frame": [43, 53, 76, 315, 365, 371, 419, 856, 866], "later": [43, 70, 535, 630, 814, 831, 836, 840, 841, 866], "my": [43, 824], "label_df": 43, "mod_train": 43, "data_valu": 43, "test_data_valu": 43, "correct_label": 43, "train_path": 43, "str": [43, 45, 48, 49, 53, 54, 57, 58, 59, 60, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 119, 121, 130, 132, 135, 137, 139, 145, 146, 149, 151, 153, 154, 155, 156, 160, 161, 164, 165, 166, 167, 168, 169, 171, 173, 176, 177, 178, 179, 180, 181, 188, 189, 209, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 371, 372, 373, 374, 377, 383, 386, 390, 391, 392, 394, 395, 396, 397, 399, 400, 404, 405, 408, 409, 410, 411, 413, 414, 415, 416, 418, 419, 422, 426, 441, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 463, 464, 465, 470, 486, 488, 489, 490, 491, 492, 497, 498, 499, 500, 501, 503, 505, 507, 518, 519, 520, 521, 528, 530, 531, 533, 534, 536, 537, 539, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 569, 572, 573, 575, 576, 585, 587, 588, 589, 591, 593, 595, 596, 609, 613, 620, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 684, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 711, 712, 713, 720, 721, 726, 731, 734, 735, 736, 737, 739, 742, 745, 746, 747, 749, 753, 754, 755, 757, 759, 760, 762, 763, 764, 769, 770, 772, 773, 778, 780, 788, 790, 791, 801, 802, 806, 825, 826, 829, 833, 836, 837, 841, 845, 850, 859, 860, 861], "makedir": 43, "valid_path": 43, "28x28": 43, "pic": 43, "pictur": [43, 808, 814, 845, 855], "int8": [43, 50, 62, 72, 73, 85, 130, 157, 162, 164, 165, 169, 625, 626, 735, 772, 773, 825, 840], "new_img": [43, 45], "builder": [43, 810], "batchwis": 43, "subset": [43, 774, 820, 824, 828, 832, 835, 837, 840, 845, 866], "goe": [43, 374, 463, 818, 831, 836, 843], "seed_valu": [43, 70, 639, 738], "randomize_dataset": 43, "shuffl": [43, 53, 62, 70, 76, 85, 506, 639], "create_dataset": 43, "num_examples_per_class": 43, "img_arrai": 43, "class_nam": [43, 769], "dir": [43, 848], "img_path": 43, "imread": [43, 45, 848], "imread_grayscal": 43, "generate_batch": [43, 808], "dataset_s": [43, 808], "ivyerror": [43, 803, 808, 829], "smaller": [43, 53, 60, 66, 76, 83, 298, 330, 347, 363, 368, 371, 373, 383, 400, 405, 416, 448, 518, 519, 520, 541, 630, 635, 643, 695, 703, 753, 754, 759, 761, 808, 816, 829, 845], "yield": [43, 63, 316, 317, 365, 374, 480, 640, 744, 808, 824], "x_batch_inst": 43, "form": [43, 45, 48, 49, 53, 58, 70, 72, 81, 92, 93, 94, 123, 124, 136, 141, 142, 308, 311, 325, 334, 365, 368, 372, 374, 425, 436, 467, 476, 480, 496, 531, 592, 594, 625, 630, 632, 633, 637, 663, 665, 667, 668, 669, 670, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 715, 726, 772, 787, 809, 814, 815, 833, 840, 843, 849, 850, 856, 866, 867, 872], "intialis": 43, "num_epoch": [43, 808], "inherit": [43, 820, 823, 829, 847, 851, 853], "creation": [43, 53, 70, 76, 99, 822, 825, 826, 832, 834, 837, 838, 840, 841, 845, 859, 866, 868, 872], "inform": [43, 45, 50, 53, 55, 73, 78, 161, 164, 315, 365, 531, 620, 626, 630, 631, 636, 713, 806, 808, 813, 814, 815, 816, 817, 819, 823, 824, 829, 833, 834, 836, 838, 840, 869], "insid": [43, 58, 81, 99, 374, 490, 633, 676, 770, 815, 816, 820, 823, 825, 826, 830, 833, 834, 840, 841, 859, 872], "ivynet": [43, 808], "h_w": [43, 808], "input_channel": [43, 788, 808, 845, 849], "output_channel": [43, 788, 808, 849], "gelu": [43, 44, 47, 69, 622, 784, 808], "image_widht": 43, "start_dim": [43, 53, 76, 374, 470, 808], "end_dim": [43, 53, 76, 374, 470, 808], "gpu_is_avail": [43, 627, 808], "120": [43, 66, 89, 99, 633, 678, 753, 808], "model_nam": [43, 808], "__name__": [43, 44, 46, 597, 630, 808, 829], "heavi": [43, 774, 815, 837, 838, 843, 867], "lift": [43, 838, 867], "num_correct": [43, 808], "y_pred": [43, 808], "cross_entropi": [43, 59, 82, 634, 694, 808, 823, 833, 836], "epoch_loss": [43, 808], "field": [43, 58, 64, 81, 87, 372, 374, 425, 494, 633, 641, 668, 669, 680, 681, 683, 745, 746, 747, 808, 824, 864, 872], "training_accuraci": [43, 808], "train_loss": [43, 808], "train_correct": [43, 808], "train_loop": [43, 808], "posit": [43, 45, 48, 52, 53, 54, 58, 59, 60, 75, 76, 77, 81, 82, 83, 93, 128, 130, 143, 161, 216, 217, 218, 222, 225, 236, 243, 250, 251, 257, 259, 269, 270, 277, 278, 282, 283, 287, 309, 324, 330, 335, 347, 365, 368, 372, 374, 423, 443, 454, 479, 488, 535, 545, 610, 623, 625, 626, 628, 630, 633, 634, 635, 639, 640, 644, 663, 666, 687, 692, 698, 703, 738, 743, 763, 764, 769, 772, 780, 785, 789, 790, 802, 808, 814, 816, 819, 823, 837, 840, 841, 848, 859, 868], "leav": [43, 48, 53, 71, 73, 75, 76, 77, 80, 81, 83, 89, 99, 161, 164, 236, 293, 296, 297, 303, 374, 464, 465, 470, 482, 483, 484, 500, 501, 503, 519, 520, 525, 545, 593, 635, 637, 651, 662, 667, 683, 697, 701, 706, 708, 709, 714, 715, 724, 725, 726, 727, 753, 754, 801, 808, 814, 823, 824, 825, 827, 828, 832, 833, 836, 837, 840, 848, 849], "xbatch": [43, 808], "ybatch": [43, 808], "to_devic": [43, 51, 74, 192, 627, 790, 808], "entropi": [43, 59, 82, 634, 692, 693, 694, 808], "hot": [43, 49, 72, 137, 625, 808], "ybatch_encod": [43, 808], "one_hot": [43, 49, 72, 625, 808, 850], "loss_prob": [43, 808], "ret_grad_idx": [43, 613, 631, 769, 835], "xs_grad_idx": [43, 613, 631, 769, 835], "batch_loss": [43, 808], "set_descript": [43, 808], "set_postfix": [43, 808], "accuracy_percentag": [43, 808], "naverag": [43, 808], "6f": [43, 808], "_train_summari": [43, 808], "writer": [43, 808], "writerow": [43, 808], "157it": 43, "06it": 43, "475401": 43, "11it": 43, "081436": 43, "13it": 43, "0187": 43, "029279": 43, "0324": 43, "008382": 43, "07it": 43, "00456": 43, "003816": 43, "82it": 43, "00277": 43, "002179": 43, "05it": 43, "00175": 43, "001569": 43, "00147": 43, "001235": 43, "09it": 43, "00128": 43, "001005": 43, "106": 43, "10it": 43, "00112": 43, "000837": 43, "129": [43, 632, 651, 653], "12it": 43, "000989": 43, "000709": 43, "145": 43, "000873": 43, "000606": 43, "168": [43, 536, 630, 637, 714], "08it": 43, "000774": 43, "000524": 43, "000688": 43, "000455": 43, "000613": 43, "000398": 43, "000547": 43, "000350": 43, "205": 43, "000488": 43, "000308": 43, "218": 43, "000437": 43, "000273": 43, "000391": 43, "000243": 43, "238": [43, 243, 628], "98it": 43, "000351": 43, "000216": 43, "260": 43, "plot_summari": 43, "seaborn": 43, "whitegrid": 43, "ax1": 43, "ax2": 43, "nrow": 43, "ncol": 43, "fontweight": 43, "bold": 43, "set_xlabel": 43, "set_ylabel": 43, "tight_layout": 43, "savefig": 43, "summary_plot": 43, "png": [43, 45, 46, 848], "close": [43, 58, 241, 259, 279, 308, 365, 628, 633, 635, 683, 698, 811, 812, 814, 815, 816, 817, 825, 828, 830, 837, 843, 866], "save_weight": [43, 790], "model_param": 43, "ivynet_weight": 43, "hdf5": [43, 70, 790, 848], "deitimageprocessor": 44, "tfdeitforimageclassif": 44, "tfdeitforimageclassificationwithteach": 44, "head": [44, 45, 632, 659, 788, 808, 813, 815, 824, 837, 863], "distillation_classifi": 44, "cls_classifi": 44, "randomli": [44, 371, 395, 396, 397, 632, 655, 772, 773, 774, 775, 780, 788], "henc": [44, 64, 219, 334, 368, 628, 635, 641, 698, 745, 746, 747, 748, 797, 815, 823, 824, 825, 836, 840], "image_processor": [44, 859, 860], "facebook": 44, "distil": [44, 867], "patch16": 44, "outputs_from_original_model": 44, "predicted_class_idx": 44, "id2label": [44, 859], "architectur": [44, 808, 815, 850, 851, 864, 865, 866, 869, 870, 871], "bertforsequenceclassif": 44, "bertforpretrain": 44, "NOT": [44, 264, 628, 801, 814], "probabl": [44, 53, 57, 59, 62, 76, 80, 82, 85, 371, 373, 378, 383, 395, 396, 397, 450, 504, 518, 521, 525, 632, 634, 639, 655, 659, 662, 692, 734, 774, 787, 788, 808, 840, 852, 857], "ptarmigan": 44, "rf": [44, 816], "branch": [44, 224, 236, 239, 241, 269, 281, 282, 283, 286, 628, 815, 816, 819, 824, 831, 851, 859, 866], "moduleconvert": [44, 785, 790], "mc": 44, "from_keras_modul": [44, 785], "compiled_func": 44, "return_graph": [44, 46], "compiled_output": 44, "diverg": [44, 53, 76, 243, 373, 450, 628], "_all_funct": [44, 46], "convert_to_tensor_v2_with_dispatch": 44, "transpose_v2": 44, "convolution_v2": 44, "bias_add": 44, "binary_op_wrapp": 44, "cast": [44, 50, 52, 53, 58, 66, 73, 75, 81, 148, 151, 176, 270, 383, 519, 520, 626, 628, 633, 643, 674, 690, 753, 754, 759, 761, 773, 833, 838, 845, 863], "moments_v2": 44, "batch_norm": [44, 46, 53, 76, 377], "tensordot": [44, 58, 81, 633, 802, 825], "softmax_v2": 44, "_slice_help": 44, "save_to_disk": [44, 46, 790], "12265048989200113": 44, "11038777417100028": 44, "1167045795539998": 44, "ivy_api_kei": 45, "obj": [45, 123, 124, 553, 625, 630, 859, 860, 861], "combo": [45, 848], "permit": [45, 820, 832, 837, 840, 843], "usabl": [45, 832, 841], "neither": [45, 219, 236, 243, 269, 628, 633, 685, 824, 837, 843], "nor": [45, 219, 236, 243, 269, 628, 824, 837, 870], "specifc": 45, "invoc": 45, "represent": [45, 53, 54, 70, 76, 77, 99, 146, 147, 161, 164, 189, 190, 216, 219, 226, 229, 231, 236, 243, 266, 269, 271, 286, 312, 344, 348, 353, 357, 365, 368, 531, 593, 623, 626, 627, 628, 630, 772, 774, 775, 788, 825, 864, 865, 867, 871, 872], "externally_link": 45, "logo": 45, "patch": [45, 287, 628, 825, 866], "cv2_imshow": 45, "envrion": 45, "canni": 45, "original_img": 45, "fn_arg": 45, "dilate_edg": 45, "edg": [45, 53, 60, 76, 83, 315, 365, 371, 374, 383, 407, 480, 521, 635, 695, 697, 710, 775, 819, 840, 860, 866, 868, 872], "morphologi": 45, "hk_model": 45, "resnet18": [45, 46], "keras_model": 45, "count": [45, 53, 60, 64, 67, 72, 76, 83, 87, 90, 130, 202, 336, 368, 374, 383, 488, 492, 494, 516, 521, 625, 627, 633, 635, 641, 644, 664, 689, 696, 699, 745, 746, 763, 764, 822, 823, 827, 848], "odsc": 45, "talk": [45, 871], "228": 46, "352": [46, 80, 632, 656, 829], "nvidia_ml_py3": 46, "19190": 46, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 46, "b9": 46, "b1": [46, 633, 682], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 46, "cycler": 46, "fonttool": 46, "965": 46, "pillow": 46, "kiwisolv": 46, "show_graph": [46, 790], "to_ivy_modul": [46, 785, 850], "image_dim": 46, "v0": [46, 849], "urlerror": 46, "dev_str": 46, "comp_network": 46, "time_chronolog": 46, "ret0_nc": 46, "ret1_nc": 46, "ret0_c": 46, "ret1_c": 46, "pytorch_vision_v0": 46, "distribut": [46, 53, 59, 62, 76, 82, 85, 371, 372, 373, 378, 395, 396, 397, 430, 441, 447, 450, 452, 453, 455, 504, 505, 506, 507, 508, 634, 639, 692, 693, 694, 734, 735, 736, 737, 739, 787, 788, 814, 815, 824, 826, 851, 866, 869], "distributed_c10d": 46, "262": 46, "reduce_op": 46, "deprec": 46, "reduceop": 46, "004645566477999864": 46, "0044566806820000695": 46, "attribut": [46, 70, 161, 162, 163, 164, 195, 196, 204, 546, 547, 626, 627, 630, 770, 821, 822, 823, 828, 829, 833, 834, 836, 837, 843, 846, 847, 848, 849], "definit": [46, 52, 58, 75, 81, 288, 628, 633, 663, 808, 812, 816, 820, 825, 830, 833, 847, 860], "max_pool2d": [46, 53, 76, 371, 391], "__iadd__": 46, "adaptive_avg_pool2d": [46, 53, 76, 371], "_arraywithactiv": [47, 98], "abc": [47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 102, 544, 630, 637, 732, 787, 792, 801, 802, 847], "_abc_impl": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "_abc": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "_abc_data": [47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 102, 103], "approxim": [47, 52, 53, 58, 69, 75, 76, 81, 93, 96, 106, 217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 243, 257, 258, 259, 260, 274, 281, 282, 286, 287, 288, 345, 355, 368, 373, 452, 453, 622, 628, 633, 676, 679, 784, 828, 837], "complex_mod": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 834], "variant": [47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 134, 135, 136, 137, 139, 141, 142, 145, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 611, 612, 615, 617, 618, 619, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 679, 680, 681, 683, 687, 688, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 762, 763, 764, 820, 827, 828, 843], "docstr": [47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 149, 150, 151, 161, 164, 168, 169, 176, 193, 210, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 305, 306, 307, 308, 309, 310, 311, 313, 314, 315, 318, 325, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 368, 371, 374, 383, 390, 391, 392, 393, 395, 396, 397, 399, 403, 404, 405, 408, 409, 410, 414, 415, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 562, 564, 565, 567, 572, 573, 587, 588, 589, 590, 591, 593, 595, 596, 609, 610, 611, 612, 615, 617, 618, 619, 620, 625, 626, 628, 630, 633, 635, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 813, 814, 818, 822, 831, 832, 833, 834, 837, 839, 841], "liter": [47, 52, 53, 58, 69, 75, 76, 81, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 371, 372, 374, 377, 393, 403, 407, 415, 430, 436, 441, 444, 447, 480, 502, 622, 628, 633, 642, 674, 690, 751, 784, 843], "magnitud": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 216, 219, 236, 243, 269, 287, 291, 296, 297, 299, 363, 622, 628, 633, 683, 684, 784, 825], "handle_complex_input": [47, 52, 53, 69, 75, 76, 106, 107, 108, 109, 110, 111, 112, 113, 114, 287, 291, 296, 297, 299, 363, 622, 628, 784, 834], "element": [47, 49, 52, 53, 54, 57, 58, 60, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 80, 81, 83, 85, 86, 87, 89, 94, 98, 99, 102, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122, 125, 131, 132, 141, 142, 143, 159, 161, 164, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 301, 302, 303, 305, 306, 307, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 338, 341, 342, 343, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 363, 365, 368, 371, 372, 373, 374, 383, 384, 395, 396, 397, 400, 405, 408, 409, 410, 414, 416, 417, 418, 424, 425, 426, 448, 458, 459, 460, 470, 471, 472, 474, 477, 487, 488, 490, 492, 494, 516, 517, 519, 520, 521, 522, 523, 524, 526, 527, 529, 533, 536, 537, 548, 549, 565, 567, 587, 588, 589, 591, 595, 596, 622, 625, 628, 630, 632, 633, 635, 637, 639, 640, 641, 642, 643, 644, 655, 664, 666, 668, 669, 673, 678, 680, 681, 683, 687, 695, 698, 699, 700, 701, 702, 703, 704, 705, 714, 717, 723, 734, 742, 743, 744, 745, 746, 747, 748, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 767, 769, 772, 774, 788, 802, 828, 838, 840, 843, 845, 870], "138": [47, 106, 622], "165": [47, 106, 622, 632, 656], "hardswish": [47, 53, 69, 76, 294, 363, 622, 784], "leaky_relu": [47, 69, 76, 291, 622, 773], "alpha": [47, 52, 53, 69, 75, 76, 103, 108, 219, 285, 291, 292, 300, 304, 310, 363, 365, 372, 377, 378, 426, 502, 505, 506, 507, 622, 628, 784, 832, 837, 838], "float": [47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 66, 69, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 85, 89, 93, 96, 98, 108, 114, 122, 123, 124, 126, 128, 130, 131, 132, 133, 134, 138, 139, 144, 148, 152, 156, 161, 165, 169, 175, 176, 179, 185, 194, 203, 207, 208, 211, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 240, 241, 242, 243, 247, 249, 250, 251, 252, 253, 255, 257, 258, 259, 260, 261, 262, 269, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 298, 300, 303, 304, 306, 307, 308, 309, 310, 311, 313, 314, 315, 330, 331, 332, 333, 341, 342, 347, 349, 350, 353, 354, 355, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 383, 386, 395, 396, 397, 414, 415, 422, 425, 426, 428, 441, 445, 447, 448, 449, 453, 454, 469, 487, 497, 498, 499, 502, 503, 504, 505, 506, 507, 508, 518, 519, 520, 521, 526, 527, 528, 535, 536, 537, 545, 554, 578, 579, 582, 588, 589, 609, 611, 612, 615, 617, 618, 619, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 655, 657, 659, 662, 663, 665, 668, 669, 670, 672, 674, 675, 676, 679, 680, 681, 682, 683, 684, 685, 687, 690, 692, 693, 694, 711, 712, 713, 720, 733, 736, 737, 743, 745, 746, 747, 748, 753, 754, 756, 757, 758, 759, 760, 761, 762, 769, 772, 773, 775, 784, 787, 788, 791, 792, 806, 812, 819, 823, 825, 828, 829, 830, 832, 833, 835, 836, 838, 840, 841, 843, 845, 847, 849], "slope": [47, 53, 69, 76, 108, 291, 292, 298, 300, 304, 363, 622, 784], "neg": [47, 52, 53, 58, 60, 62, 67, 69, 75, 76, 81, 83, 85, 90, 93, 108, 111, 114, 122, 128, 130, 143, 236, 243, 250, 251, 269, 270, 278, 283, 291, 309, 324, 327, 363, 365, 372, 373, 374, 378, 423, 430, 436, 453, 488, 492, 508, 622, 625, 628, 633, 635, 639, 644, 664, 666, 683, 687, 689, 690, 696, 698, 699, 703, 736, 763, 764, 772, 774, 784, 823, 836], "leaki": [47, 69, 108, 622, 784], "log_softmax": [47, 69, 622, 784], "0719": [47, 69, 109], "221": [47, 109], "mish": [47, 69, 622, 784], "30340147": [47, 110, 622], "86509842": [47, 69, 110, 622], "269": [47, 112], "731": [47, 112], "881": [47, 52, 75, 112, 222, 235, 275, 628], "422": [47, 113, 622], "155": [47, 80, 113, 622, 632, 656], "softplu": [47, 69, 622, 784, 843], "beta": [47, 53, 61, 69, 76, 84, 114, 300, 304, 310, 313, 314, 363, 365, 372, 373, 377, 378, 426, 454, 502, 506, 507, 622, 638, 733, 784, 843], "threshold": [47, 52, 53, 69, 75, 76, 114, 267, 268, 307, 333, 363, 368, 373, 374, 449, 454, 487, 622, 628, 784, 843], "union": [47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 363, 365, 368, 369, 371, 372, 373, 374, 377, 378, 379, 381, 383, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 407, 408, 409, 410, 411, 413, 414, 415, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 550, 551, 552, 554, 556, 557, 558, 560, 561, 564, 565, 567, 568, 572, 573, 577, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 725, 726, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 769, 772, 787, 792, 793, 820, 823, 825, 826, 827, 829, 832, 833, 836, 841, 843, 845, 850, 859, 860, 861], "3461": [47, 69, 114, 622], "6491": [47, 69, 114, 622], "_array_to_new_backend": 48, "_to_ivi": 48, "_to_n": 48, "to_ignor": [48, 68, 91, 637, 725, 726], "_to_new_backend": 48, "args_to_ivi": 48, "include_deriv": [48, 71, 637, 715, 726, 769], "nest": [48, 70, 71, 99, 102, 239, 563, 593, 610, 613, 628, 630, 631, 636, 711, 712, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 792, 820, 822, 823, 833, 835, 841, 848, 849, 851, 853, 866], "unchang": [48, 52, 371, 374, 416, 470, 632, 655], "deriv": [48, 49, 53, 55, 71, 72, 76, 78, 127, 132, 139, 145, 309, 313, 338, 365, 368, 611, 612, 615, 616, 617, 618, 619, 625, 631, 636, 637, 713, 715, 726, 790, 792, 793, 825, 826, 847, 849], "word": [48, 122, 374, 473, 625, 639, 737, 785, 788, 823, 836, 837, 853], "args_to_n": [48, 836], "cont_inplac": 48, "decid": [48, 70, 637, 725, 726, 808, 814, 815, 825, 843], "args_to_new_backend": 48, "shallow": [48, 637, 721, 722, 726, 731, 732], "nativevari": 48, "mutabl": [48, 637, 715, 721, 722, 726, 731, 732, 821], "to_ivi": [48, 71, 637, 727, 836], "leaf": [48, 70, 77, 89, 99, 544, 637, 724, 725, 727, 754, 823, 833, 848], "travers": [48, 71, 637, 718, 726, 823, 825, 829, 845], "lowest": [48, 53, 62, 71, 76, 85, 383, 521, 637, 639, 726, 735, 802, 833, 851, 853, 863, 867, 871], "search": [48, 53, 71, 76, 740, 741, 780, 813, 815, 823, 827, 830, 840, 841, 855], "to_new_backend": 48, "_arraywithcr": [49, 98], "boolean": [49, 50, 52, 53, 54, 60, 63, 66, 70, 72, 73, 75, 76, 77, 83, 86, 89, 98, 99, 119, 121, 123, 124, 125, 131, 148, 164, 166, 168, 169, 172, 188, 198, 206, 212, 226, 227, 228, 229, 230, 231, 263, 264, 265, 266, 331, 332, 347, 368, 372, 374, 430, 441, 447, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 488, 495, 530, 533, 544, 551, 554, 555, 559, 560, 561, 562, 563, 564, 565, 574, 577, 580, 581, 583, 584, 609, 624, 625, 626, 627, 628, 630, 632, 635, 636, 637, 640, 643, 659, 698, 699, 700, 702, 704, 705, 707, 709, 711, 712, 724, 742, 743, 744, 756, 758, 772, 773, 774, 775, 780, 791, 823, 825, 833, 837, 840, 843], "alwai": [49, 50, 53, 54, 60, 72, 73, 76, 83, 106, 124, 148, 219, 269, 342, 368, 372, 374, 443, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 558, 622, 626, 628, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 774, 808, 814, 815, 816, 820, 821, 823, 825, 828, 831, 832, 833, 836, 837, 838, 839, 840, 841, 843, 845, 851, 859], "never": [49, 53, 60, 72, 76, 83, 124, 374, 458, 459, 460, 466, 468, 470, 471, 472, 475, 479, 486, 495, 551, 630, 635, 698, 699, 700, 702, 704, 705, 707, 709, 816, 825, 836, 837, 840], "valueerror": [49, 53, 60, 72, 76, 83, 87, 124, 371, 373, 405, 416, 453, 458, 459, 466, 468, 470, 471, 472, 479, 495, 635, 698, 699, 700, 702, 704, 705, 707, 709, 748, 774, 803, 829], "buffer": [49, 72, 76, 83, 124, 130, 458, 459, 466, 468, 470, 471, 472, 479, 495, 625, 698, 699, 700, 702, 704, 705, 707, 709, 789, 790, 836, 851], "nativedtyp": [49, 50, 53, 57, 58, 62, 63, 66, 72, 76, 81, 85, 86, 89, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 144, 145, 147, 148, 153, 154, 155, 156, 157, 158, 159, 160, 165, 166, 170, 172, 174, 178, 188, 308, 309, 310, 311, 312, 313, 314, 329, 336, 352, 365, 368, 378, 383, 504, 505, 506, 507, 508, 518, 519, 520, 521, 524, 527, 625, 626, 632, 633, 639, 640, 642, 643, 655, 674, 690, 735, 736, 737, 740, 741, 751, 753, 754, 759, 761, 787, 825, 826, 832, 841, 845], "datatyp": [49, 53, 70, 72, 76, 124, 132, 136, 153, 174, 178, 371, 419, 625, 626, 767, 841, 859], "nativedevic": [49, 51, 53, 62, 72, 74, 76, 85, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 136, 137, 138, 139, 143, 144, 145, 190, 191, 192, 193, 194, 197, 202, 203, 204, 205, 207, 208, 209, 210, 211, 215, 308, 309, 324, 365, 378, 504, 505, 507, 508, 625, 627, 639, 734, 735, 736, 737, 787, 792, 793, 825, 826, 829, 832, 841], "39999998": [49, 123, 124, 625, 641, 746], "5999999": [49, 53, 76, 80, 123, 124, 293, 363, 372, 421, 625, 632, 655, 662], "0999999": [49, 66, 123, 124, 293, 303, 306, 349, 363, 368, 625, 757], "10000038": [49, 123, 124, 625], "90786433e": [49, 123, 124, 625], "310": [49, 123, 124, 625], "copy_arrai": [49, 72, 625], "to_ivy_arrai": [49, 72, 125, 625], "empty_lik": [49, 53, 72, 76, 260, 372, 424, 625, 628], "uniniti": [49, 126, 127, 625, 831], "from_dlpack": [49, 72, 625], "full_lik": [49, 72, 625, 841], "fill_valu": [49, 53, 63, 72, 76, 86, 131, 132, 248, 256, 374, 378, 488, 508, 625, 628, 640, 743, 825, 838, 841], "scalar": [49, 52, 53, 54, 58, 69, 72, 75, 76, 77, 81, 93, 108, 132, 137, 219, 240, 285, 291, 334, 335, 337, 342, 345, 347, 349, 354, 368, 371, 372, 373, 374, 419, 426, 448, 458, 459, 460, 469, 474, 596, 609, 625, 628, 630, 633, 690, 825, 835, 837, 851, 866], "fill": [49, 52, 53, 62, 63, 70, 72, 75, 76, 85, 86, 126, 131, 132, 134, 137, 138, 139, 144, 145, 270, 309, 365, 372, 374, 378, 430, 436, 441, 447, 469, 488, 489, 505, 507, 508, 625, 628, 639, 640, 735, 743, 787, 814, 838], "000123": [49, 132, 625], "stop": [49, 53, 55, 72, 76, 78, 122, 133, 134, 209, 372, 441, 447, 574, 612, 615, 617, 618, 619, 620, 625, 627, 630, 631, 636, 637, 711, 712, 713, 725, 792, 806, 832, 835, 843, 845, 851, 866], "num": [49, 72, 133, 134, 625, 772, 816, 832, 845], "endpoint": [49, 72, 133, 134, 625, 787, 832], "logspac": [49, 72, 625, 845], "log": [49, 52, 53, 58, 72, 75, 76, 81, 114, 134, 259, 261, 274, 296, 297, 350, 357, 363, 368, 373, 378, 450, 452, 453, 504, 622, 625, 628, 681, 772, 774, 775, 784, 816, 823, 824, 827, 833, 836, 837, 838, 840, 842, 843, 845, 848], "sequenc": [49, 53, 57, 58, 60, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 128, 130, 132, 134, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 312, 319, 320, 321, 322, 323, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 361, 362, 365, 368, 369, 370, 371, 372, 374, 378, 383, 384, 386, 387, 388, 395, 396, 397, 399, 400, 404, 405, 407, 414, 415, 416, 417, 418, 421, 429, 430, 431, 433, 439, 440, 441, 444, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 464, 465, 466, 467, 473, 475, 476, 478, 479, 481, 484, 486, 488, 489, 490, 492, 495, 496, 497, 499, 500, 501, 503, 505, 506, 518, 519, 520, 521, 528, 529, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 568, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 613, 614, 615, 620, 625, 628, 630, 631, 632, 633, 635, 637, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 655, 656, 657, 659, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 690, 692, 693, 694, 695, 696, 698, 699, 701, 702, 703, 704, 705, 706, 709, 710, 714, 721, 731, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 788, 791, 793, 816, 824, 825, 826, 827, 829, 840, 841, 843, 845, 850, 869], "on_valu": [49, 72, 134, 137, 625], "off_valu": [49, 72, 134, 137, 625], "evenli": [49, 52, 53, 57, 60, 70, 72, 75, 76, 80, 83, 122, 133, 134, 288, 371, 414, 418, 625, 628, 632, 635, 645, 646, 647, 648, 650, 652, 654, 704], "hint": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 820, 828, 830, 832, 833, 836, 837, 841], "simplic": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 548, 552, 554, 556, 587, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 828, 843, 849], "nestabl": [49, 52, 53, 58, 75, 76, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 144, 145, 151, 167, 171, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 309, 324, 325, 331, 332, 334, 337, 365, 368, 371, 372, 374, 383, 390, 391, 392, 393, 395, 396, 397, 403, 408, 409, 410, 415, 417, 426, 480, 488, 492, 518, 521, 525, 534, 542, 543, 548, 552, 554, 556, 558, 572, 587, 591, 596, 620, 625, 626, 628, 630, 631, 632, 633, 635, 638, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 654, 655, 656, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 691, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 733, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 814, 818, 827, 828, 836, 840, 853], "464": [49, 52, 85, 134, 223, 224, 628], "15888336": [49, 134], "2154": [49, 134], "43469003": [49, 134], "meshgrid": [49, 72, 625], "spars": [49, 53, 59, 72, 76, 82, 135, 312, 365, 372, 430, 441, 447, 625, 634, 694], "xy": [49, 72, 135, 625], "dimension": [49, 52, 53, 58, 60, 63, 66, 67, 70, 72, 75, 76, 81, 83, 89, 90, 98, 122, 128, 130, 135, 143, 288, 324, 331, 332, 365, 368, 371, 372, 374, 383, 399, 400, 404, 405, 415, 416, 423, 458, 459, 460, 464, 469, 470, 516, 528, 625, 628, 633, 635, 640, 643, 644, 664, 665, 671, 673, 676, 678, 679, 689, 690, 704, 740, 741, 743, 756, 757, 758, 759, 760, 761, 762, 763, 764, 833, 835, 840, 843, 845, 863, 866, 873], "repres": [49, 52, 53, 57, 58, 75, 76, 80, 81, 96, 121, 135, 137, 160, 218, 219, 222, 225, 234, 236, 243, 269, 282, 286, 287, 312, 326, 327, 328, 345, 362, 365, 368, 370, 371, 372, 373, 374, 377, 378, 381, 414, 418, 432, 446, 448, 453, 480, 491, 497, 498, 499, 504, 510, 517, 553, 624, 625, 626, 628, 630, 632, 633, 655, 656, 657, 671, 678, 681, 682, 774, 787, 791, 802, 815, 820, 825, 843, 847, 863, 864, 867], "coordin": [49, 52, 63, 75, 76, 86, 135, 143, 224, 286, 316, 317, 324, 345, 365, 379, 509, 625, 628, 640, 743], "conserv": [49, 135, 625], "cartesian": [49, 135, 625], "matrix": [49, 53, 54, 57, 58, 76, 77, 80, 81, 93, 94, 96, 98, 135, 141, 142, 143, 324, 325, 365, 372, 374, 383, 422, 425, 426, 429, 430, 431, 433, 436, 437, 438, 439, 440, 441, 442, 443, 446, 447, 478, 518, 530, 536, 625, 630, 632, 633, 656, 663, 665, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 687, 688, 691, 772, 774, 787, 788, 802, 806, 814, 825, 837, 864, 866], "ij": [49, 66, 135, 625, 643, 755, 802], "respect": [49, 52, 53, 55, 58, 75, 76, 78, 81, 93, 135, 216, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 278, 282, 285, 286, 296, 345, 360, 363, 368, 370, 372, 374, 377, 428, 445, 457, 497, 499, 553, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 625, 628, 630, 631, 632, 633, 636, 645, 652, 653, 659, 664, 680, 683, 711, 712, 713, 769, 772, 787, 802, 813, 814, 815, 816, 820, 821, 823, 824, 825, 826, 827, 832, 833, 835, 836, 837, 840, 841, 842, 862, 872], "rank": [49, 53, 58, 60, 67, 76, 81, 83, 90, 93, 94, 95, 96, 97, 102, 135, 319, 320, 321, 322, 323, 365, 372, 374, 383, 430, 431, 441, 444, 447, 480, 488, 492, 528, 625, 633, 635, 640, 644, 664, 666, 674, 676, 680, 682, 687, 689, 690, 697, 698, 706, 709, 710, 743, 763, 764, 809, 874], "ni": [49, 135, 625], "xi": [49, 135, 625], "scatter": [49, 54, 72, 77, 137, 572, 573, 625, 630, 822, 836, 843, 873], "j": [49, 52, 53, 54, 58, 66, 72, 75, 76, 81, 93, 121, 137, 217, 218, 219, 220, 222, 225, 234, 236, 239, 241, 249, 257, 259, 263, 269, 280, 282, 283, 286, 287, 334, 368, 371, 372, 383, 399, 400, 404, 415, 416, 420, 425, 427, 438, 444, 528, 533, 624, 625, 628, 630, 633, 643, 668, 687, 755, 802, 816, 818, 822, 859, 862], "unless": [49, 53, 58, 72, 76, 137, 269, 330, 347, 352, 368, 625, 628, 633, 676, 821, 826, 836, 851, 860, 861], "ones_lik": [49, 72, 625, 821, 850, 863], "tril": [49, 72, 625], "whose": [49, 52, 53, 54, 58, 60, 64, 66, 72, 75, 76, 77, 81, 83, 87, 89, 94, 96, 98, 132, 141, 142, 218, 222, 225, 233, 234, 235, 274, 275, 281, 282, 286, 287, 288, 325, 339, 340, 344, 348, 349, 351, 355, 365, 372, 374, 425, 446, 479, 488, 494, 535, 591, 625, 628, 630, 633, 635, 641, 643, 663, 665, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 687, 690, 699, 703, 745, 746, 747, 754, 755, 774, 811, 828, 840], "innermost": [49, 53, 58, 81, 141, 142, 325, 365, 372, 425, 625, 633, 663, 665, 667, 668, 669, 670, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687], "mxn": [49, 53, 58, 81, 141, 142, 325, 365, 625, 633, 667, 674, 676, 677, 679, 680, 684, 687], "matric": [49, 53, 58, 76, 81, 93, 94, 98, 135, 141, 142, 325, 365, 372, 374, 425, 430, 431, 433, 439, 440, 445, 469, 625, 632, 633, 656, 663, 665, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 688, 774, 812, 830, 866], "diagon": [49, 53, 58, 76, 81, 94, 128, 141, 142, 143, 309, 324, 325, 365, 372, 374, 423, 426, 436, 442, 469, 625, 633, 666, 687], "triangular": [49, 53, 58, 81, 141, 142, 143, 324, 325, 365, 372, 442, 625, 633, 663, 669, 670, 676, 680], "alloc": [49, 50, 53, 73, 141, 142, 148, 325, 365, 625, 626, 806, 814, 816, 851], "triu": [49, 72, 625], "upper": [49, 53, 58, 62, 76, 81, 85, 128, 142, 143, 309, 325, 365, 372, 383, 442, 521, 625, 633, 639, 663, 669, 670, 680, 737, 825, 836, 840], "zeros_lik": [49, 53, 72, 148, 265, 374, 488, 611, 612, 615, 617, 618, 619, 625, 626, 628, 631, 633, 635, 680, 695, 837, 843], "data_typ": [50, 53, 73, 76, 178, 626, 822, 825, 840, 841], "_arraywithdatatyp": [50, 98], "irrespect": [50, 58, 73, 81, 148, 626, 633, 683, 823, 836, 847, 873], "promot": [50, 52, 53, 58, 73, 75, 76, 81, 88, 98, 99, 148, 151, 174, 175, 176, 182, 217, 218, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 236, 239, 241, 243, 257, 258, 259, 260, 261, 266, 269, 274, 278, 281, 282, 283, 284, 285, 286, 287, 290, 342, 350, 355, 368, 371, 383, 415, 518, 581, 604, 626, 628, 630, 633, 635, 643, 663, 664, 671, 672, 673, 674, 675, 676, 678, 679, 681, 682, 689, 690, 696, 706, 749, 757, 760, 772, 773, 817, 819, 828, 829, 833, 842], "nan": [50, 52, 53, 54, 64, 66, 73, 75, 76, 77, 148, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 235, 236, 237, 239, 241, 242, 243, 244, 245, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 270, 272, 274, 275, 278, 279, 280, 281, 282, 283, 286, 287, 289, 296, 330, 331, 332, 343, 347, 352, 355, 363, 368, 374, 383, 488, 516, 517, 524, 525, 526, 527, 554, 609, 623, 626, 628, 630, 641, 643, 644, 745, 746, 747, 748, 756, 757, 758, 760, 761, 762, 763, 764, 772, 775, 819, 825, 828, 835, 841, 842], "infin": [50, 52, 54, 58, 73, 75, 81, 148, 216, 217, 218, 219, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 257, 258, 259, 260, 261, 264, 269, 270, 272, 274, 278, 279, 281, 282, 283, 286, 287, 289, 331, 332, 355, 368, 554, 623, 626, 628, 630, 633, 643, 644, 681, 690, 756, 758, 763, 764, 819, 828], "desir": [50, 51, 53, 63, 70, 73, 74, 76, 86, 93, 148, 150, 151, 210, 315, 356, 365, 368, 374, 383, 478, 524, 527, 528, 626, 627, 633, 640, 685, 742, 787, 788, 816, 821, 824, 825, 826, 837, 845, 855, 859, 866], "broadcast_arrai": [50, 73, 626], "mix": [50, 52, 73, 75, 76, 77, 82, 85, 98, 99, 149, 162, 163, 176, 195, 196, 226, 229, 230, 231, 236, 237, 243, 247, 255, 256, 266, 269, 272, 278, 373, 383, 454, 525, 544, 546, 547, 548, 549, 558, 593, 596, 626, 627, 628, 630, 632, 633, 634, 635, 638, 643, 646, 648, 651, 653, 654, 656, 662, 663, 685, 692, 694, 695, 733, 755, 757, 760, 773, 775, 814, 818, 825, 826, 827, 836, 843, 845, 853, 866, 870, 872], "broadcast_to": [50, 73, 626, 825], "can_cast": [50, 73, 626, 825, 833, 837], "accord": [50, 53, 54, 60, 66, 73, 83, 89, 151, 161, 219, 230, 236, 243, 269, 280, 315, 365, 371, 374, 416, 480, 548, 551, 572, 573, 626, 628, 630, 633, 635, 643, 689, 697, 710, 760, 762, 767, 774, 794, 801, 814, 815, 819, 825, 831, 833, 837, 840], "finfo": [50, 73, 626, 840], "resolut": [50, 73, 161, 626, 816], "4028235e": [50, 161, 626], "iinfo": [50, 73, 626], "integ": [50, 52, 53, 57, 58, 60, 62, 66, 67, 70, 75, 76, 77, 80, 81, 83, 85, 89, 90, 98, 99, 122, 131, 164, 165, 171, 175, 176, 180, 216, 226, 227, 228, 229, 230, 231, 232, 242, 243, 254, 266, 271, 274, 278, 279, 289, 290, 326, 327, 328, 331, 332, 336, 341, 342, 365, 368, 371, 374, 378, 381, 383, 399, 404, 414, 417, 418, 419, 466, 475, 480, 488, 492, 495, 504, 505, 506, 507, 508, 510, 511, 516, 518, 519, 520, 525, 528, 551, 567, 577, 610, 625, 626, 628, 630, 632, 633, 635, 639, 642, 643, 644, 645, 646, 647, 648, 650, 652, 654, 664, 666, 675, 689, 690, 704, 734, 735, 736, 737, 738, 739, 751, 753, 754, 756, 757, 758, 759, 760, 761, 762, 763, 764, 772, 773, 774, 775, 780, 788, 802, 816, 823, 825, 835, 838, 840, 845, 847], "119": [50, 164], "1220": [50, 164], "int16": [50, 53, 62, 66, 73, 85, 151, 155, 157, 162, 164, 171, 186, 383, 519, 520, 626, 643, 735, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "32768": [50, 73, 164, 589, 630], "32767": [50, 73, 164], "is_bool_dtyp": [50, 73, 626], "is_float_dtyp": [50, 73, 626, 841], "is_int_dtyp": [50, 73, 626, 838, 841], "is_uint_dtyp": [50, 73, 626, 838, 841], "result_typ": [50, 73, 626, 825], "arrays_and_dtyp": [50, 73, 176, 626], "_arraywithdevic": [51, 98], "move": [51, 53, 74, 76, 143, 206, 210, 214, 324, 365, 374, 479, 625, 627, 790, 808, 816, 826, 841], "addit": [51, 53, 54, 61, 74, 76, 77, 84, 119, 121, 210, 219, 279, 373, 377, 383, 448, 502, 517, 522, 541, 542, 543, 610, 624, 627, 628, 630, 632, 636, 638, 659, 713, 733, 788, 802, 814, 815, 816, 821, 825, 827, 828, 831, 833, 835, 836, 837, 840, 841, 843, 847, 848, 850, 859, 866, 867, 868, 872], "__dlpack__": [51, 74, 129, 210, 625, 627], "caveat": [51, 74, 210, 373, 452, 627], "portabl": [51, 74, 210, 627, 808, 864], "_arraywithelementwis": [52, 98], "ab": [52, 58, 68, 75, 91, 98, 99, 274, 330, 347, 368, 374, 487, 628, 633, 637, 674, 684, 690, 722, 725, 769, 801, 802, 812, 820, 825, 830, 834, 837, 840, 863], "absolut": [52, 53, 58, 68, 70, 75, 76, 81, 98, 216, 280, 330, 347, 350, 356, 368, 372, 373, 426, 443, 449, 451, 628, 633, 674, 675, 676, 681, 767, 769, 772, 774, 775, 809, 815], "aco": [52, 75, 628], "invers": [52, 53, 58, 75, 76, 81, 217, 218, 221, 222, 223, 224, 225, 340, 368, 371, 381, 394, 403, 405, 415, 510, 628, 633, 672, 675, 679, 794, 825], "cosin": [52, 75, 217, 218, 233, 234, 308, 311, 365, 371, 393, 403, 628, 788], "acosh": [52, 75, 162, 163, 626, 628, 812, 830], "area": [52, 53, 75, 76, 80, 218, 222, 225, 371, 407, 414, 418, 628, 811, 836, 843, 856, 862], "hyperbol": [52, 75, 218, 222, 225, 234, 282, 286, 287, 300, 304, 363, 628], "sector": [52, 75, 218, 222, 225, 628, 856], "second": [52, 53, 55, 58, 60, 64, 75, 76, 77, 78, 81, 83, 87, 94, 98, 99, 119, 143, 174, 182, 219, 224, 226, 228, 229, 230, 231, 237, 243, 244, 245, 246, 247, 248, 254, 255, 256, 261, 262, 263, 265, 266, 269, 272, 274, 285, 315, 324, 330, 343, 345, 346, 347, 353, 357, 358, 365, 368, 372, 373, 374, 381, 383, 424, 425, 426, 428, 432, 454, 486, 494, 505, 507, 511, 518, 521, 533, 582, 605, 611, 612, 617, 624, 625, 626, 628, 630, 631, 633, 635, 636, 637, 641, 664, 667, 668, 669, 671, 673, 678, 680, 681, 683, 685, 687, 689, 706, 707, 712, 715, 745, 746, 747, 792, 815, 819, 822, 825, 827, 831, 836, 837, 840, 842, 847, 857, 871], "multipli": [52, 53, 57, 66, 75, 76, 80, 93, 219, 285, 348, 371, 372, 407, 438, 439, 519, 520, 628, 632, 643, 655, 753, 759, 816, 820, 821, 823, 827], "angl": [52, 75, 224, 234, 282, 287, 346, 368, 628], "deg": [52, 75, 220, 628], "radian": [52, 53, 75, 76, 217, 220, 221, 223, 224, 233, 235, 275, 281, 286, 355, 368, 628, 828], "degre": [52, 53, 66, 75, 76, 89, 220, 235, 275, 318, 365, 374, 486, 628, 643, 760, 762, 865], "1j": [52, 75, 76, 220, 221, 233, 234, 239, 241, 253, 276, 281, 282, 286, 334, 588, 628, 630], "2j": [52, 53, 75, 76, 220, 249, 334, 371, 399, 404, 589, 628, 630], "3j": [52, 53, 75, 76, 220, 253, 276, 334, 368, 628], "35619449": [52, 220, 628], "78539816": [52, 220, 628], "135": [52, 220, 536, 628, 630], "asin": [52, 75, 628], "sine": [52, 75, 221, 222, 281, 282, 628], "927": [52, 75, 221], "asinh": [52, 75, 221, 628], "atan": [52, 75, 628], "tangent": [52, 75, 223, 224, 225, 286, 287, 300, 304, 361, 363, 370, 628, 828], "785": [52, 75, 223, 224, 628], "atan2": [52, 75, 628], "quotient": [52, 75, 224, 236, 243, 628], "245": [52, 80, 224, 632, 655, 656], "588": [52, 224, 628], "inf": [52, 53, 54, 58, 75, 76, 77, 81, 224, 241, 250, 251, 252, 253, 257, 258, 260, 270, 296, 340, 350, 363, 368, 372, 383, 422, 521, 554, 609, 623, 628, 630, 632, 633, 660, 674, 690, 772, 775, 812, 825, 830, 835], "719": [52, 224, 628], "197": [52, 224, 628], "atanh": [52, 75, 628], "549": [52, 75, 80, 225, 628, 632, 656], "bitwise_and": [52, 75, 628], "bitwise_invert": [52, 75, 628], "bitiwse_invert": [52, 227], "bitwise_left_shift": [52, 75, 628], "bitwise_or": [52, 75, 628], "bitwise_right_shift": [52, 75, 98, 628], "bitwise_xor": [52, 75, 98, 628], "ceil": [52, 53, 75, 76, 93, 96, 122, 371, 390, 391, 392, 408, 409, 410, 413, 625, 628, 788, 836], "round": [52, 53, 75, 76, 93, 95, 96, 97, 219, 232, 236, 242, 243, 269, 283, 289, 290, 341, 368, 628, 812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857, 863], "416": [52, 233, 628], "540": [52, 233], "990": [52, 233], "cosh": [52, 75, 233, 628], "deg2rad": [52, 75, 628], "convers": [52, 53, 76, 235, 275, 574, 584, 630, 789, 790, 814, 844, 846, 850, 851, 853, 857, 865, 872], "180": [52, 75, 235, 275, 628], "270": [52, 75, 235, 275, 628], "360": [52, 75, 235, 275, 628, 824], "dividend": [52, 75, 236, 243, 278, 290, 628], "divisor": [52, 53, 55, 66, 75, 76, 78, 89, 236, 243, 246, 247, 278, 290, 371, 374, 390, 391, 392, 466, 475, 495, 611, 612, 617, 628, 631, 643, 760, 762, 788, 792], "375": [52, 237, 272], "erf": [52, 75, 339, 368, 628], "exponenti": [52, 53, 75, 76, 238, 239, 241, 261, 274, 291, 301, 363, 372, 437, 628], "gauss": [52, 75, 238, 628], "328": [52, 238, 286, 628], "677": [52, 238], "842": [52, 238, 286, 628], "71828198": [52, 75, 239], "38905573": [52, 75, 239], "08553696": [52, 75, 239, 628], "exp2": [52, 75, 628], "expm1": [52, 75, 628, 825], "244": [52, 241, 808], "918": [52, 241], "147": [52, 241, 628], "floor": [52, 53, 75, 76, 93, 96, 230, 243, 371, 390, 391, 392, 394, 408, 409, 410, 413, 628, 788, 836], "floor_divid": [52, 75, 628, 780, 825], "fmin": [52, 75, 628, 825], "gcd": [52, 75, 628, 825], "greater": [52, 53, 57, 60, 62, 75, 76, 80, 85, 98, 99, 130, 217, 218, 221, 222, 224, 225, 228, 230, 236, 242, 243, 257, 259, 274, 278, 280, 282, 283, 287, 288, 289, 333, 368, 371, 394, 399, 404, 415, 625, 628, 632, 633, 635, 639, 662, 664, 675, 705, 737, 774, 788, 816, 817, 838, 863], "greater_equ": [52, 75, 98, 99, 261, 628, 863], "isfinit": [52, 75, 628, 837], "out_i": [52, 75, 250, 251, 252, 253, 276, 628], "self_i": [52, 75, 250, 251, 252, 253, 276], "finit": [52, 75, 216, 217, 218, 219, 222, 224, 225, 234, 236, 237, 239, 241, 243, 250, 251, 257, 259, 269, 270, 272, 274, 278, 282, 283, 287, 628], "isinf": [52, 75, 628], "detect_posit": [52, 75, 251, 628], "detect_neg": [52, 75, 251, 628], "isnan": [52, 75, 628], "isreal": [52, 75, 628], "5j": [52, 75, 76, 253, 276, 334, 368, 628], "6j": [52, 53, 75, 249, 253, 334, 628], "lcm": [52, 75, 628, 825], "less": [52, 53, 58, 62, 66, 75, 76, 81, 85, 98, 99, 217, 218, 221, 224, 225, 232, 236, 243, 257, 258, 259, 260, 274, 278, 280, 283, 354, 368, 371, 372, 383, 393, 394, 403, 415, 441, 447, 518, 521, 628, 633, 639, 643, 674, 675, 676, 679, 690, 737, 760, 762, 788, 815, 816, 823, 825, 827, 829, 832, 837, 840, 843, 844, 845, 856, 863, 866, 868], "less_equ": [52, 75, 98, 99, 628, 829, 863], "log10": [52, 53, 75, 315, 365, 628], "logarithm": [52, 75, 239, 257, 258, 259, 260, 261, 338, 350, 368, 628, 633, 681], "602": [52, 258, 628], "699": [52, 258, 628], "log1p": [52, 75, 628, 835], "693": [52, 75, 113, 222, 259, 622, 628], "0953": [52, 75, 257, 259, 628], "log2": [52, 75, 262, 628], "logaddexp": [52, 75, 628], "logaddexp2": [52, 75, 628, 812, 830], "169925": [52, 75, 262, 628], "logical_and": [52, 75, 628, 837, 843, 873], "logical_not": [52, 75, 628, 825], "logical_or": [52, 75, 628, 873], "conform": [52, 58, 75, 122, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 138, 139, 140, 141, 142, 144, 145, 151, 161, 164, 176, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 236, 237, 239, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 258, 259, 260, 261, 263, 264, 265, 266, 269, 271, 272, 273, 274, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 331, 332, 334, 368, 371, 374, 383, 415, 488, 492, 518, 625, 626, 628, 633, 635, 640, 641, 642, 643, 644, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 689, 690, 696, 698, 699, 700, 702, 703, 705, 706, 710, 740, 741, 743, 744, 745, 746, 747, 748, 749, 752, 756, 757, 758, 759, 760, 761, 762, 763, 764, 828, 831], "api_specif": [52, 53, 75, 76, 151, 239, 249, 250, 265, 331, 332, 368, 371, 374, 415, 488, 626, 628, 635, 643, 710, 760, 828], "array_api": [52, 75, 151, 239, 249, 250, 265, 371, 374, 415, 488, 626, 628, 633, 635, 643, 681, 682, 710, 760, 828], "logical_xor": [52, 75, 628], "maximum": [52, 53, 54, 55, 60, 63, 66, 70, 75, 76, 77, 78, 83, 86, 89, 99, 209, 295, 331, 332, 343, 356, 363, 368, 371, 372, 374, 383, 387, 388, 398, 441, 444, 447, 480, 519, 521, 526, 536, 537, 545, 553, 617, 627, 628, 630, 631, 633, 635, 640, 643, 674, 695, 740, 741, 756, 758, 772, 774, 775, 780, 802, 816, 825, 827, 836, 848, 863, 873], "use_wher": [52, 75, 267, 268, 628], "formula": [52, 53, 75, 236, 258, 260, 267, 268, 269, 315, 349, 365, 368, 377, 497, 499, 628, 806], "exce": [52, 53, 76, 268, 374, 490, 628], "product": [52, 53, 57, 58, 66, 75, 76, 80, 81, 89, 93, 94, 96, 269, 361, 362, 370, 372, 374, 383, 421, 424, 428, 431, 432, 433, 438, 439, 440, 492, 519, 520, 527, 628, 632, 633, 643, 659, 662, 664, 671, 673, 678, 685, 689, 753, 754, 755, 759, 760, 802, 814, 845, 866, 868], "nan_to_num": [52, 75, 628], "posinf": [52, 75, 270, 628], "neginf": [52, 75, 270, 628], "5e": [52, 55, 75, 76, 270, 353, 617, 628, 631], "not_equ": [52, 75, 98, 99, 628, 863], "pow": [52, 75, 98, 99, 628, 819, 863], "expon": [52, 53, 54, 76, 77, 274, 342, 344, 348, 368, 377, 502, 589, 628, 630, 633, 675], "rad2deg": [52, 75, 628], "286": [52, 76, 275], "458": [52, 275], "573": [52, 275, 628], "reciproc": [52, 75, 628], "333": [52, 75, 236, 277, 537, 628, 630], "remaind": [52, 53, 60, 70, 75, 76, 83, 245, 628, 635, 704, 819, 836], "modulu": [52, 75, 278, 628, 836], "sign": [52, 53, 58, 64, 66, 75, 76, 81, 93, 122, 216, 217, 218, 219, 222, 224, 225, 230, 234, 236, 239, 241, 243, 269, 271, 278, 282, 283, 287, 335, 368, 372, 374, 383, 443, 487, 488, 519, 520, 625, 628, 633, 641, 643, 681, 745, 746, 747, 748, 753, 754, 759, 761, 808, 815, 817, 825, 845, 850, 856], "x2_i": [52, 75, 219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 628, 819], "decim": [52, 75, 279, 628, 842], "678": [52, 279, 280], "np_variant": [52, 75, 280, 628], "841": [52, 69, 75, 106, 281, 622, 628], "909": [52, 75, 77, 281, 628], "141": [52, 75, 148, 281, 626, 628], "sinh": [52, 75, 281, 628], "232": [52, 75, 282, 628], "sqrt": [52, 53, 75, 76, 371, 394, 399, 400, 404, 405, 415, 628, 787, 788, 808], "squar": [52, 53, 58, 75, 76, 81, 283, 372, 373, 377, 383, 425, 437, 449, 502, 518, 613, 614, 616, 621, 628, 631, 633, 637, 663, 665, 666, 668, 669, 670, 672, 675, 681, 682, 683, 688, 720, 808], "tanh": [52, 53, 75, 76, 286, 300, 304, 363, 628, 784, 845], "762": [52, 75, 287, 628], "964": [52, 75, 287, 628], "trapz": [52, 75, 628], "dx": [52, 75, 288, 628], "apart": [52, 75, 288, 628], "trapezoid": [52, 75, 288, 628], "trunc": [52, 75, 628], "025": [52, 289, 373, 454, 628, 636, 713], "trunc_divid": [52, 75, 628], "_arraywithactivationsexperiment": [53, 98], "celu": [53, 76, 363], "formul": [53, 69, 76, 94, 106, 291, 293, 363, 784], "elu": [53, 76, 295, 363, 784], "scaler": [53, 76, 292, 363, 772, 775, 840], "hardshrink": [53, 76, 363], "lambd": [53, 76, 293, 303, 363], "hardsilu": [53, 76, 363], "66666667": [53, 115, 294, 383, 518, 622], "hardtanh": [53, 76, 363], "max_val": [53, 76, 295, 363], "min_val": [53, 76, 295, 363], "region": [53, 76, 295, 303, 363, 815], "19722438": [53, 76, 296, 363], "38629448": [53, 76, 296, 363], "38629436": [53, 76, 296, 363], "logsigmoid": [53, 76, 363, 784], "31326175": [53, 69, 297, 363], "126928": [53, 76, 297], "01814993": [53, 297], "00004578": [53, 297], "57888985": [53, 297], "31326169": [53, 76, 297, 363], "69314718": [53, 58, 69, 76, 81, 297, 350, 363, 368, 633, 681], "01104775": [53, 297], "prelu": [53, 76, 363, 784], "unidirect": [53, 298, 363, 632, 657], "relu6": [53, 76, 363, 784], "rectifi": [53, 69, 76, 108, 110, 111, 299, 302, 307, 363, 622], "scaled_tanh": [53, 76, 304, 363], "7159": [53, 76, 300, 304, 363], "amplitud": [53, 76, 300, 304, 363], "65537548": [53, 76, 300], "49570239": [53, 76, 300], "77637792": [53, 300], "selu": [53, 76, 363, 784], "11133075": [53, 301, 363], "05070102": [53, 76, 301, 363], "10140204": [53, 301, 363], "15210295": [53, 301, 363], "20280409": [53, 301, 363], "25350523": [53, 301, 363], "30420589": [53, 301, 363], "35490704": [53, 301, 363], "silu": [53, 76, 363, 784], "26894143": [53, 302], "73105854": [53, 76, 302], "softshrink": [53, 76, 363], "bound": [53, 76, 303, 315, 363, 365, 374, 463, 488, 489, 772, 825, 829, 837, 840, 845, 872], "tanhshrink": [53, 76, 363], "23840582": [53, 76, 305, 363], "condit": [53, 63, 76, 86, 119, 306, 321, 322, 365, 372, 422, 624, 637, 640, 724, 725, 744, 774, 819, 825, 827, 829, 833, 834, 836, 840, 859], "met": [53, 76, 306, 829], "hreshold": [53, 306], "thresholded_relu": [53, 76, 363], "_arraywithconversionsexperiment": [53, 98], "_arraywithcreationexperiment": [53, 98], "blackman_window": [53, 76, 365], "period": [53, 76, 282, 286, 308, 310, 311, 313, 314, 365, 371, 406, 628, 816], "window": [53, 57, 76, 80, 308, 310, 311, 313, 314, 329, 365, 371, 377, 390, 391, 392, 394, 408, 409, 410, 411, 413, 414, 418, 419, 502, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 788, 810, 816, 822, 830, 871], "symmetr": [53, 58, 76, 81, 93, 94, 308, 310, 311, 313, 314, 365, 372, 374, 425, 480, 633, 663, 668, 669, 670, 691, 823], "38777878e": [53, 76, 308, 365], "40000000e": [53, 308, 365], "00000000e": [53, 58, 76, 77, 308, 339, 340, 365, 371, 393, 399, 403, 404, 633, 680, 812, 830], "30000000e": [53, 76, 308, 365], "eye_lik": [53, 76, 365], "elsewher": [53, 76, 128, 309, 365, 625, 640, 744, 815], "mel_weight_matrix": [53, 76, 365], "num_mel_bin": [53, 76, 315, 365], "dft_length": [53, 76, 315, 365, 371, 394], "sample_r": [53, 76, 315, 365], "lower_edge_hertz": [53, 76, 315, 365], "upper_edge_hertz": [53, 76, 315, 365], "3000": [53, 76, 315, 365], "melweightmatrix": [53, 76, 315, 365], "linearli": [53, 54, 77, 315, 365, 545, 630, 633, 682], "frequenc": [53, 54, 76, 77, 315, 365, 383, 518, 545, 630, 816], "spectra": [53, 315, 365], "dft": [53, 76, 315, 365, 371], "stft": [53, 76, 315, 365, 371], "mel": [53, 76, 315, 365], "term": [53, 76, 308, 315, 318, 365, 373, 452, 453, 632, 657, 658, 788, 802, 808, 816, 823, 845, 853, 855, 866], "hertz": [53, 315, 365], "2595": [53, 315, 365], "700": [53, 77, 315, 365, 549], "band": [53, 54, 76, 77, 315, 365, 545, 630], "spectrum": [53, 76, 315, 365], "n_fft": [53, 76, 315, 365, 371, 394], "signal": [53, 76, 315, 365, 371, 385, 386, 387, 388, 393, 394, 403, 419, 788, 865, 866], "8000": [53, 76, 310, 315, 365], "75694758": [53, 315, 365], "trilu": [53, 76, 365], "retain": [53, 143, 324, 325, 365, 613, 625, 631, 835, 839, 853], "unsorted_segment_mean": [53, 76, 365], "segment_id": [53, 76, 326, 327, 328, 365, 794], "num_seg": [53, 76, 326, 327, 328, 365, 794], "identifi": [53, 76, 326, 327, 328, 365, 814, 819, 824, 825, 840, 843], "th": [53, 76, 94, 326, 327, 328, 337, 365, 368, 372, 373, 383, 423, 430, 448, 528], "distinct": [53, 64, 76, 326, 327, 328, 365, 641, 745, 746, 747, 748, 811, 815, 823, 828, 835, 836, 837, 844, 856, 866], "unsorted_segment_min": [53, 76, 365], "unsorted_segment_sum": [53, 76, 365], "polyv": [53, 76, 365], "coeff": [53, 76, 318, 365], "polynomi": [53, 76, 318, 365], "coeffici": [53, 76, 310, 318, 365, 372, 442, 633, 682, 792], "indetermin": [53, 76, 318, 365], "simplifi": [53, 76, 318, 365, 801, 802, 829, 837, 845, 846, 849, 856, 859, 862, 864, 865, 866, 869, 872, 873], "substitut": [53, 76, 318, 365], "_arraywithdata_typeexperiment": [53, 98], "_arraywithdeviceexperiment": [53, 98], "_arraywithelementwiseexperiment": [53, 98], "equal_nan": [53, 76, 330, 347, 368], "1e10": [53, 330, 347, 368], "00001e10": [53, 330, 347, 368], "00001e": [53, 330, 368], "amax": [53, 76, 368], "keepdim": [53, 58, 60, 63, 66, 67, 70, 76, 81, 83, 86, 89, 90, 331, 332, 336, 352, 359, 368, 369, 374, 383, 485, 523, 524, 525, 526, 527, 528, 633, 635, 640, 643, 644, 674, 690, 709, 740, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 829, 837, 845], "singleton": [53, 58, 63, 66, 67, 76, 81, 86, 89, 90, 331, 332, 368, 633, 635, 640, 643, 644, 690, 698, 705, 741, 756, 757, 758, 759, 760, 761, 762, 763, 764, 845], "amin": [53, 76, 368], "binar": [53, 76, 368], "map": [53, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 99, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 368, 371, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 610, 615, 620, 630, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 721, 722, 726, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 802, 820, 823, 825, 832, 833, 837, 840, 841, 848, 851, 853, 860, 867], "conj": [53, 76, 234, 239, 241, 282, 283, 287, 368, 628], "conjug": [53, 58, 76, 81, 334, 368, 371, 372, 378, 394, 420, 426, 438, 440, 442, 506, 633, 673, 677, 685], "copysign": [53, 76, 368], "unsign": [53, 66, 76, 335, 368, 374, 383, 488, 519, 520, 643, 753, 754, 759, 761, 773, 825, 845], "count_nonzero": [53, 76, 368], "diff": [53, 70, 76, 368, 827, 836, 863], "prepend": [53, 76, 337, 368, 633, 635, 673, 698, 815], "differenc": [53, 76, 337, 368], "prior": [53, 76, 337, 368, 378, 506, 633, 685, 829, 841], "expand": [53, 54, 60, 76, 77, 337, 368, 374, 492, 545, 630, 635, 698, 823, 839], "discret": [53, 76, 337, 368, 371, 393, 394, 399, 400, 403, 404, 405, 415, 416, 634, 693, 788], "digamma": [53, 76, 368], "7549271": [53, 338, 368], "92278427": [53, 76, 338, 368], "9988394": [53, 338, 368], "erfc": [53, 76, 368], "complementari": [53, 76, 329, 339, 365, 368, 864, 872], "84270084e": [53, 339, 340], "80259693e": [53, 339, 340], "erfinv": [53, 76, 368], "toward": [53, 60, 76, 83, 243, 290, 341, 353, 368, 374, 383, 486, 521, 628, 635, 703, 808, 812, 814, 815, 830, 845, 862, 866], "float_pow": [53, 76, 368], "fmax": [53, 76, 368], "fmod": [53, 76, 628], "divis": [53, 54, 55, 76, 77, 78, 230, 236, 243, 245, 278, 280, 290, 374, 466, 579, 588, 602, 611, 612, 617, 628, 630, 631, 632, 645, 652, 653, 792, 833, 842], "frexp": [53, 76, 368], "edge_ord": [53, 76, 345, 368], "estim": [53, 76, 345, 368, 383, 518, 806], "boundari": [53, 62, 76, 85, 96, 321, 322, 345, 365, 368, 371, 407, 639, 737, 866], "33333333": [53, 76, 277, 345, 368, 448, 628], "hypot": [53, 76, 368], "hypotenus": [53, 346, 368], "4031": [53, 346, 368], "8102": [53, 346, 368], "isclos": [53, 76, 368, 819], "ldexp": [53, 76, 368], "lerp": [53, 76, 368], "lgamma": [53, 76, 368], "45373654": [53, 350, 368], "6477685": [53, 350, 368], "modf": [53, 76, 368], "fraction": [53, 76, 351, 368, 383, 528, 632, 655], "nansum": [53, 76, 368], "accumul": [53, 76, 352, 368, 374, 485], "nextaft": [53, 76, 368], "0e": [53, 55, 76, 78, 353, 368, 617, 631], "4013e": [53, 76, 353, 368], "4028e": [53, 76, 353, 368], "signbit": [53, 76, 368], "637": [53, 76, 355, 368], "0909": [53, 76, 355, 368], "sparsify_tensor": [53, 76, 368], "sparsifi": [53, 76, 356, 368], "arang": [53, 58, 66, 76, 81, 133, 356, 368, 371, 372, 390, 391, 392, 399, 404, 408, 409, 410, 413, 422, 439, 472, 568, 610, 625, 630, 633, 636, 643, 674, 690, 712, 713, 755, 808, 825, 836, 873], "xlogi": [53, 76, 368], "0986": [53, 76, 357, 368], "3863": [53, 76, 357, 368], "0000": [53, 76, 310, 311, 314, 340, 357, 365, 368, 372, 374, 437, 474], "zeta": [53, 76, 368], "0369": [53, 76, 358, 368], "_arraywithgeneralexperiment": [53, 98], "init_valu": [53, 76, 80, 359, 369, 371, 414], "reduct": [53, 54, 59, 67, 70, 76, 77, 80, 82, 90, 359, 369, 371, 373, 374, 414, 448, 449, 450, 451, 452, 453, 454, 455, 485, 542, 572, 573, 630, 634, 644, 692, 693, 694, 763, 764, 789, 825, 833, 836, 840, 847], "_arraywithgradientsexperiment": [53, 98], "_arraywithimageexperiment": [53, 98], "_arraywithlayersexperiment": [53, 98], "adaptive_avg_pool1d": [53, 76, 371], "1d": [53, 76, 93, 94, 371, 372, 374, 383, 385, 393, 395, 397, 403, 438, 458, 463, 485, 489, 518, 772, 788], "adapt": [53, 76, 78, 371, 385, 386, 387, 388, 618, 631, 788, 792, 856], "pool": [53, 76, 80, 371, 385, 386, 387, 388, 390, 391, 392, 408, 409, 410, 411, 414, 788, 815], "plane": [53, 76, 236, 239, 241, 269, 281, 282, 283, 286, 371, 374, 385, 386, 387, 388, 486, 628], "l_in": [53, 76, 371, 385], "spatial": [53, 57, 76, 80, 371, 377, 385, 386, 387, 388, 407, 414, 418, 497, 498, 499, 502, 632, 645, 646, 647, 648, 650, 652, 654, 791], "Will": [53, 76, 371, 385, 386, 387, 388, 797, 851], "l_out": [53, 76, 371, 385], "nhwc": [53, 57, 76, 80, 371, 377, 386, 391, 396, 409, 413, 502, 632, 645, 648, 649, 652, 653, 654, 788], "3d": [53, 58, 76, 371, 386, 388, 395, 396, 460, 633, 671, 788, 843], "4d": [53, 76, 371, 372, 377, 386, 396, 397, 446, 502], "s_0": [53, 76, 371, 386, 387], "s_1": [53, 76, 371, 386, 387], "adaptive_max_pool2d": [53, 76, 371], "h_in": [53, 76, 371, 387, 388], "w_in": [53, 76, 371, 387, 388], "adaptive_max_pool3d": [53, 76, 371], "avg_pool1d": [53, 76, 371], "kernel": [53, 57, 76, 80, 371, 390, 391, 392, 408, 409, 410, 411, 632, 658, 845, 851, 866, 869, 870], "nwc": [53, 57, 76, 80, 371, 390, 395, 408, 411, 632, 645, 646, 647, 652, 653, 788], "count_include_pad": [53, 76, 371, 390, 391, 392, 788], "d_in": [53, 57, 76, 80, 371, 388, 390, 391, 392, 394, 399, 400, 404, 408, 409, 410, 411, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654], "algorithm": [53, 57, 69, 76, 80, 106, 371, 372, 390, 391, 392, 407, 408, 409, 410, 411, 441, 443, 447, 633, 646, 648, 649, 650, 651, 654, 681, 784, 788, 802, 825, 837, 843, 851, 866, 868, 870], "ncw": [53, 57, 76, 80, 371, 390, 395, 396, 408, 411, 632, 645, 646, 647, 652, 653, 788], "avg_pool2d": [53, 76, 371], "divisor_overrid": [53, 76, 371, 390, 391, 392, 788], "avg_pool3d": [53, 76, 371], "ndhwc": [53, 57, 76, 80, 371, 392, 397, 410, 632, 645, 650, 651, 652, 653, 788], "volum": [53, 57, 76, 80, 371, 392, 394, 399, 400, 404, 410, 632, 650, 651], "ncdhw": [53, 57, 76, 80, 371, 392, 397, 410, 632, 645, 650, 651, 652, 653, 788], "dct": [53, 76, 371, 788, 848], "truncat": [53, 76, 371, 372, 393, 399, 403, 404, 405, 416, 445, 575, 630, 788, 829, 848], "larger": [53, 60, 66, 76, 83, 89, 161, 371, 393, 400, 403, 405, 416, 626, 635, 643, 695, 703, 760, 762, 788, 840, 843, 873], "ortho": [53, 76, 371, 393, 394, 399, 400, 403, 404, 405, 415, 416, 788], "onesid": [53, 76, 371, 394], "fft": [53, 76, 371, 394, 400, 415, 416, 419, 788, 814, 866], "symmetri": [53, 371, 394], "rfft": [53, 76, 371, 394, 416], "invok": [53, 371, 394, 808, 831, 859, 860], "batch_idx": [53, 371, 394], "signal_dim1": [53, 371, 394], "signal_dim2": [53, 371, 394], "signal_dimn": [53, 371, 394], "signal_dim": [53, 371, 394], "embed": [53, 76, 371, 373, 448, 632, 659, 774, 788, 866], "max_norm": [53, 54, 76, 77, 371, 398, 536, 537, 630, 788], "ifft": [53, 76, 371, 399, 405, 788], "pi": [53, 76, 282, 286, 371, 373, 399, 404, 453, 623, 628], "44509285e": [53, 76, 371, 399], "14423775e": [53, 76, 371, 399], "17j": [53, 76, 371, 399, 404], "11483250e": [53, 76, 371, 399], "16j": [53, 76, 371, 399, 404], "33486982e": [53, 76, 371, 399], "22464680e": [53, 76, 371, 399], "95799250e": [53, 76, 371, 399], "66951701e": [53, 76, 371, 399], "fft2": [53, 371], "vari": [53, 64, 93, 94, 287, 400, 541, 628, 630, 633, 641, 680, 746, 747, 748, 802, 823, 827, 837, 840, 847], "20477401j": [53, 371, 400], "0614962j": [53, 371, 400], "idct": [53, 76, 371], "49862671": [53, 76, 371, 393, 403], "37691498": [53, 76, 371, 393, 403], "00390816": [53, 76, 371, 393, 403], "58938599": [53, 76, 371, 393, 403], "92713165": [53, 76, 371, 393, 403], "078475": [53, 76, 371, 393, 403], "19664812": [53, 76, 371, 393, 403], "95411837": [53, 76, 371, 393, 403], "30636606e": [53, 76, 371, 404], "43029718e": [53, 76, 371, 404], "18j": [53, 76, 371, 399, 404], "53080850e": [53, 76, 371, 404], "58689626e": [53, 76, 371, 404], "24474906e": [53, 76, 371, 404], "91858728e": [53, 76, 371, 404], "01435406e": [53, 76, 371, 404], "ifftn": [53, 76, 371], "24730653": [53, 76, 371, 405], "90832391j": [53, 76, 371, 405], "49495562": [53, 76, 371, 405], "9039565j": [53, 76, 371, 405], "98193269": [53, 76, 371, 405], "49560517j": [53, 76, 371, 405], "93280757": [53, 76, 371, 405], "48075343j": [53, 76, 371, 405], "28526384": [53, 76, 371, 405], "3351205j": [53, 76, 371, 405], "2343787": [53, 76, 371, 405], "83528011j": [53, 76, 371, 405], "18791352": [53, 76, 371, 405], "30690572j": [53, 76, 371, 405], "82115787": [53, 76, 371, 405], "96195183j": [53, 76, 371, 405], "44719226": [53, 76, 371, 405], "72654048j": [53, 76, 371, 405], "51476765": [53, 371, 405], "66160417j": [53, 371, 405], "04319742": [53, 371, 405], "05411636j": [53, 371, 405], "015561": [53, 371, 405], "04216015j": [53, 371, 405], "06310689": [53, 371, 405], "05347854j": [53, 371, 405], "13392983": [53, 371, 405], "16052352j": [53, 371, 405], "08371392": [53, 371, 405], "17252843j": [53, 371, 405], "0031429": [53, 371, 405], "05421245j": [53, 371, 405], "10446617": [53, 371, 405], "17747098j": [53, 371, 405], "05344324": [53, 371, 405], "07972424j": [53, 371, 405], "8344667": [53, 76, 371, 405], "98222595j": [53, 76, 371, 405], "48472244": [53, 76, 371, 405], "30233797j": [53, 76, 371, 405], "recompute_scale_factor": [53, 76, 371, 407, 843], "antialia": [53, 76, 371, 407, 843], "height": [53, 54, 57, 76, 77, 80, 371, 407, 541, 630, 632, 648, 649, 650, 651, 654, 817, 848], "width": [53, 54, 57, 76, 77, 80, 371, 372, 374, 377, 383, 407, 426, 480, 502, 521, 541, 630, 632, 646, 647, 648, 649, 650, 651, 654, 659], "trilinear": [53, 76, 371, 407, 843], "nearest_exact": [53, 76, 371, 407, 843], "tf_area": [53, 76, 371, 407, 843], "mitchellcub": [53, 76, 371, 407, 843], "lanczos3": [53, 76, 371, 407, 843], "lanczos5": [53, 76, 371, 407, 843], "gaussian": [53, 76, 106, 371, 407, 622, 843], "overwrit": [53, 70, 76, 209, 371, 407, 627, 816, 836, 837, 845], "thu": [53, 76, 230, 243, 278, 286, 287, 371, 372, 407, 425, 628, 633, 668, 669, 814, 824, 829, 834, 837, 841], "antialias": [53, 76, 407], "max_pool1d": [53, 76, 371], "dilaton": [53, 76, 408, 409, 410], "max_pool3d": [53, 76, 371], "max_unpool1d": [53, 76, 371], "unpool": [53, 76, 371, 411], "reduce_window": [53, 80, 371], "window_dimens": [53, 80, 371, 414], "window_strid": [53, 80, 371, 414], "base_dil": [53, 80, 371, 414], "window_dil": [53, 80, 371, 414], "trim": [53, 70, 76, 371, 374, 415, 491], "orthonorm": [53, 58, 76, 81, 371, 415, 633, 680, 683], "8660254j": [53, 76, 371, 415], "rfftn": [53, 76, 371], "sliding_window": [53, 76, 371], "window_s": [53, 76, 371, 418], "frame_length": [53, 76, 371, 419], "frame_step": [53, 76, 371, 419], "fft_length": [53, 76, 371, 419], "window_fn": [53, 76, 371, 419], "pad_end": [53, 76, 371, 419], "smallest": [53, 70, 76, 161, 164, 232, 371, 374, 419, 490, 626, 628, 633, 674, 772, 774, 775], "enclos": [53, 76, 371, 419, 867], "window_length": [53, 76, 308, 310, 313, 314, 329, 365, 371, 419], "li": [53, 76, 371, 372, 383, 419, 426, 528, 855], "past": [53, 76, 371, 419, 816, 819, 838, 840, 852, 866], "fft_unique_bin": [53, 76, 371, 419], "complex64": [53, 73, 76, 154, 168, 177, 183, 249, 276, 371, 415, 419, 626, 628, 633, 681, 683, 684, 773, 825, 830], "complex128": [53, 76, 77, 154, 155, 168, 177, 183, 371, 419, 567, 626, 630, 633, 669, 670, 674, 690, 772, 773, 812, 825, 830], "compon": [53, 76, 138, 139, 217, 218, 219, 222, 225, 234, 236, 237, 239, 241, 269, 271, 272, 279, 282, 283, 286, 287, 319, 323, 334, 365, 368, 371, 372, 377, 419, 430, 441, 502, 625, 628, 640, 743, 808, 839, 845, 856, 862, 867, 869], "linear_algebra": [53, 58, 76, 81, 633, 841], "_arraywithlinearalgebraexperiment": [53, 98], "adjoint": [53, 58, 76, 81, 372, 442, 633, 672, 682, 683, 772], "batched_out": [53, 76, 372], "j1": [53, 76, 372, 421], "jn": [53, 76, 372, 421], "k1": [53, 76, 372, 421], "km": [53, 76, 372, 421], "outer": [53, 58, 76, 81, 93, 372, 421, 633, 636, 711, 712, 713, 802, 814], "30000001": [53, 76, 372, 421, 541, 630, 641, 746], "40000001": [53, 57, 69, 76, 98, 99, 108, 111, 292, 363, 372, 421, 622, 632, 641, 662, 746], "60000002": [53, 76, 89, 99, 372, 377, 421, 501, 503, 757], "80000001": [53, 76, 372, 377, 421, 501, 503], "60000001": [53, 76, 372, 421], "90000004": [53, 76, 372, 421, 643, 757], "20000002": [53, 76, 372, 421], "20000005": [53, 55, 76, 292, 300, 303, 304, 363, 372, 421, 611], "00000012": [53, 76, 372, 421], "49999994": [53, 76, 372, 421], "00000006": [53, 76, 372, 421], "60000014": [53, 76, 372, 421], "19999993": [53, 76, 372, 421], "80000007": [53, 76, 372, 421], "20000017": [53, 76, 372, 421], "89999992": [53, 76, 372, 421], "60000008": [53, 76, 372, 421], "80000019": [53, 76, 349, 368, 372, 421], "4000001": [53, 76, 80, 372, 421, 632, 655, 662], "cond": [53, 76, 119, 372, 624, 851], "933034373659268": [53, 422], "diagflat": [53, 76, 372, 432, 437], "offset": [53, 58, 61, 72, 76, 81, 84, 130, 372, 377, 423, 497, 498, 499, 625, 633, 638, 667, 687, 733, 779], "padding_valu": [53, 76, 372, 423], "right_left": [53, 76, 372, 423], "num_row": [53, 76, 372, 423], "num_col": [53, 76, 372, 423], "dot": [53, 57, 76, 80, 93, 372, 373, 439, 448, 632, 633, 659, 662, 689, 802, 808, 815, 824], "eig": [53, 58, 76, 372, 633, 669, 670], "37228132": [53, 76, 372, 425, 427, 668], "82456484": [53, 425, 668], "41597356": [53, 425, 668], "56576746": [53, 425, 668], "90937671": [53, 425, 668], "eigh_tridiagon": [53, 76, 372], "eigvals_onli": [53, 76, 372, 426], "select_rang": [53, 76, 372, 426], "tol": [53, 76, 97, 372, 426, 441, 447], "eigenvalu": [53, 58, 76, 81, 93, 94, 372, 425, 426, 427, 633, 668, 669, 670, 676], "eigenvector": [53, 76, 372, 425, 426, 633, 668, 669], "interv": [53, 62, 67, 76, 85, 90, 122, 133, 134, 141, 372, 383, 426, 521, 625, 633, 635, 639, 644, 664, 689, 695, 698, 706, 735, 737, 763, 764], "togeth": [53, 70, 76, 330, 347, 368, 372, 426, 793, 808, 817, 820, 823, 825, 836, 837, 840, 841, 843, 849, 850, 851, 856, 864, 866, 867, 872], "cluster": [53, 76, 372, 426, 851, 866], "converg": [53, 76, 372, 426, 857], "_2": [53, 76, 372, 426], "eig_val": [53, 76, 372, 426], "decreas": [53, 76, 372, 426, 774], "eig_vector": [53, 76, 372, 426], "38196": [53, 426], "61803": [53, 426], "eigval": [53, 76, 372], "general_inner_product": [53, 81, 372], "n_mode": [53, 81, 372, 428], "tradit": [53, 81, 372, 428], "inner": [53, 58, 72, 81, 102, 137, 372, 425, 428, 625, 633, 636, 668, 669, 673, 711, 712, 713, 802, 814, 836], "higher_order_mo": [53, 76, 372], "n_featur": [53, 76, 372, 429], "d1": [53, 76, 372, 429], "dn": [53, 76, 372, 429], "initialize_tuck": [53, 76, 372], "svd": [53, 58, 76, 81, 96, 372, 430, 436, 441, 443, 444, 445, 447, 633, 684], "truncated_svd": [53, 76, 372, 430, 441, 444, 447], "non_neg": [53, 76, 323, 365, 372, 430], "mask": [53, 57, 76, 80, 93, 371, 372, 374, 417, 430, 431, 441, 447, 487, 551, 630, 632, 655, 659, 662, 843], "svd_mask_repeat": [53, 76, 372, 430, 441, 447], "tuckertensor": [53, 76, 97, 323, 365, 372, 430, 441, 447], "scheme": [53, 76, 372, 430, 441, 819, 849, 866], "tucker": [53, 76, 323, 365, 372, 430, 441], "decomposit": [53, 58, 76, 81, 93, 94, 96, 319, 320, 321, 322, 323, 365, 372, 430, 434, 441, 444, 446, 447, 633, 663, 669, 680, 683, 814, 873], "miss": [53, 76, 372, 374, 430, 441, 447, 487, 792, 814, 815, 820, 823, 824, 827, 837, 840, 843], "everywher": [53, 76, 372, 430, 441, 447], "imput": [53, 76, 372, 430, 441, 447], "kron": [53, 76, 372, 437, 873], "make_svd_non_neg": [53, 76, 372, 445], "nntype": [53, 76, 372, 436], "nndsvd": [53, 76, 372, 436], "singular": [53, 58, 76, 81, 372, 430, 436, 443, 445, 633, 674, 676, 679, 683, 684, 772, 774, 825], "nndsvda": [53, 76, 372, 436], "boutsidi": [53, 76, 372, 436], "gallopoulo": [53, 76, 372, 436], "pattern": [53, 54, 76, 77, 372, 436, 541, 542, 543, 630, 825, 828, 839, 857], "recognit": [53, 76, 372, 436, 811], "1350": [53, 76, 372, 436], "1362": [53, 76, 372, 436], "2008": [53, 76, 372, 436, 866], "matrix_exp": [53, 76, 372], "7183": [53, 76, 372, 437], "3891": [53, 76, 372, 437], "mode_dot": [53, 76, 92, 93, 97, 372], "matrix_or_vector": [53, 76, 93, 97, 372, 438], "i_1": [53, 76, 93, 94, 372, 438], "i_k": [53, 76, 93, 372, 438], "i_n": [53, 76, 93, 372, 438], "i_": [53, 76, 93, 372, 383, 438, 521], "multi_dot": [53, 76, 372], "148": [53, 75, 76, 239, 372, 439], "multi_mode_dot": [53, 76, 372], "mat_or_vec_list": [53, 76, 372, 440], "times_0": [53, 372, 440], "vec": [53, 372, 440], "times_1": [53, 372, 440], "cdot": [53, 269, 372, 440, 628], "times_n": [53, 372, 440], "partial_tuck": [53, 76, 372], "n_iter_max": [53, 76, 372, 441, 447], "verbos": [53, 76, 372, 441, 444, 447, 806, 840, 845], "return_error": [53, 76, 372, 441, 447], "variat": [53, 76, 372, 441, 447, 827, 837, 840], "reconstruct": [53, 58, 64, 76, 87, 96, 372, 374, 441, 447, 494, 633, 641, 683, 745, 747, 838], "return_erro": [53, 372, 441, 447], "svd_flip": [53, 76, 372], "u_based_decis": [53, 76, 372, 443], "basi": [53, 76, 372, 443, 816, 819, 848], "flip": [53, 60, 76, 83, 93, 227, 372, 374, 443, 471, 472, 628, 635, 836, 847, 848, 850], "decis": [53, 76, 372, 443, 808, 819, 825, 843, 845, 847, 866], "u_adjust": [53, 76, 372, 443], "v_adjust": [53, 76, 372, 443], "tensor_train": [53, 76, 372], "tt": [53, 76, 322, 365, 372, 444, 446], "kth": [53, 372, 444], "tttensor": [53, 96, 322, 365, 372, 444], "compute_uv": [53, 58, 76, 81, 372, 445, 633, 683], "n_eigenvec": [53, 76, 372, 445], "returnedv": [53, 445], "vh": [53, 58, 76, 81, 372, 445, 633, 683], "eigen": [53, 76, 372, 445], "namedtupl": [53, 58, 64, 76, 81, 87, 372, 374, 425, 445, 494, 633, 641, 668, 669, 680, 681, 683, 745, 746, 747], "tt_matrix_to_tensor": [53, 76, 372], "known": [53, 76, 280, 372, 444, 446, 628, 787, 819, 824, 825, 837, 840], "rank_k": [53, 76, 372, 446], "left_dim_k": [53, 76, 372, 446], "right_dim_k": [53, 76, 372, 446], "rank_": [53, 76, 372, 446], "49671414": [53, 76, 372, 446, 639, 736], "1382643": [53, 76, 372, 446, 639, 736], "64768857": [53, 76, 372, 446, 639, 736], "5230298": [53, 76, 372, 446, 639, 736], "23415337": [53, 76, 372, 446, 639, 736], "23413695": [53, 76, 372, 446, 639, 736], "57921278": [53, 76, 372, 446], "76743472": [53, 76, 372, 446], "1163073": [53, 76, 372, 446], "11629914": [53, 76, 372, 446], "03237505": [53, 76, 372, 446], "03237278": [53, 76, 372, 446], "78441733": [53, 76, 372, 446], "38119566": [53, 76, 372, 446], "21834874": [53, 76, 372, 446], "10610882": [53, 76, 372, 446], "15165846": [53, 76, 372, 446], "15164782": [53, 76, 372, 446], "35662258": [53, 76, 372, 446], "35659757": [53, 76, 372, 446], "02283812": [53, 76, 372, 446], "49705869": [53, 76, 372, 446], "40518808": [53, 76, 372, 446], "16882598": [53, 76, 372, 446], "fixed_factor": [53, 76, 372, 447], "tl": [53, 76, 372, 447], "kolda": [53, 76, 372, 447], "bader": [53, 76, 372, 447], "siam": [53, 76, 372, 444, 447], "review": [53, 76, 372, 447, 810, 811, 814, 816, 822, 824, 827, 837, 841], "vol": [53, 76, 372, 447], "pp": [53, 76, 372, 447], "455": [53, 76, 372, 447], "2009": [53, 76, 372, 447], "_arraywithlossesexperiment": [53, 98], "hinge_embedding_loss": [53, 76, 373], "margin": [53, 76, 373, 448, 455, 837], "measur": [53, 373, 448, 632, 659, 788], "semi": [53, 373, 448], "supervis": [53, 373, 448], "l_n": [53, 373, 448], "x_n": [53, 373, 448], "y_n": [53, 373, 448], "ell": [53, 373, 448], "operatornam": [53, 280, 282, 373, 448, 628, 633, 669], "l_1": [53, 373, 448], "Its": [53, 373, 448, 866], "hyperparamet": [53, 76, 373, 448], "aggreg": [53, 76, 373, 448, 641, 745, 824], "unreduc": [53, 76, 373, 448], "hing": [53, 76, 373, 448, 455], "input_tensor": [53, 76, 372, 373, 444, 448, 453, 837], "target_tensor": [53, 373, 448, 453], "huber_loss": [53, 76, 373], "delta": [53, 55, 76, 78, 373, 449, 611, 631], "transit": [53, 76, 373, 449, 866], "huber": [53, 76, 373, 449], "kl_div": [53, 76, 373], "log_target": [53, 76, 373, 450], "contai": [53, 450], "batchmean": [53, 373, 450], "kullback": [53, 76, 373, 450], "leibler": [53, 76, 373, 450], "0916": [53, 450], "l1_loss": [53, 76, 373, 452], "l1": [53, 58, 76, 81, 373, 377, 449, 451, 452, 454, 500, 633, 690, 823, 848], "targetict": [53, 76, 373, 451, 452, 454, 455], "20000000000000004": [53, 451], "log_poisson_loss": [53, 76, 373], "compute_full_loss": [53, 76, 373, 452, 789], "favor": [53, 76, 373, 452], "likelihood": [53, 76, 373, 452, 453], "28402555": [53, 373, 452], "03402555": [53, 373, 452], "1573164": [53, 373, 452], "poisson_nll_loss": [53, 76, 373], "log_input": [53, 76, 373, 453], "poisson": [53, 76, 373, 378, 452, 453], "assumpt": [53, 373, 452, 453], "minu": [53, 373, 452, 453], "omiss": [53, 373, 453], "stirl": [53, 76, 373, 452, 453], "describ": [53, 66, 76, 94, 219, 236, 237, 269, 272, 274, 373, 378, 381, 453, 508, 511, 628, 632, 643, 659, 755, 759, 761, 810, 811, 814, 815, 816, 822, 824, 836, 837, 840, 845, 850, 866], "prevent": [53, 55, 76, 78, 373, 453, 553, 611, 612, 617, 630, 631, 632, 643, 655, 761, 787, 792, 814, 816, 824, 825, 829, 836, 837, 841], "1977562": [53, 453], "smooth_l1_loss": [53, 76, 373], "smooth": [53, 59, 76, 82, 373, 449, 454, 634, 692, 693, 694, 835], "8125": [53, 454], "soft_margin_loss": [53, 76, 373], "soft": [53, 76, 303, 373, 374, 455, 487, 826], "35667497": [53, 455], "22314353": [53, 455], "60943791": [53, 455], "manipul": [53, 76, 836, 837, 841, 843, 845, 850, 855, 866], "_arraywithmanipulationexperiment": [53, 98], "as_strid": [53, 76, 374], "nativeshap": [53, 57, 60, 62, 76, 83, 85, 123, 124, 126, 131, 138, 144, 374, 378, 456, 468, 473, 481, 484, 504, 505, 506, 507, 508, 573, 586, 592, 594, 625, 630, 632, 635, 639, 645, 647, 649, 651, 653, 702, 735, 736, 737, 832, 834], "byte": [53, 54, 72, 76, 77, 98, 130, 374, 456, 567, 625, 630, 871, 872], "associative_scan": [53, 76, 374], "revers": [53, 54, 58, 66, 76, 81, 89, 98, 99, 362, 370, 371, 372, 374, 383, 417, 433, 457, 471, 472, 519, 520, 540, 630, 633, 635, 643, 688, 699, 753, 754, 814, 823, 824, 825, 827, 828, 836, 837, 843, 850, 851], "scan": [53, 76, 374, 457, 851], "atleast_1d": [53, 76, 374], "ari": [53, 76, 374, 458, 459, 460, 466, 475, 495], "a1": [53, 77, 374, 458, 459, 460, 464, 533], "a2": [53, 77, 374, 458, 459, 460, 464, 533], "atleast_2d": [53, 76, 374], "atleast_3d": [53, 76, 374], "column_stack": [53, 76, 374], "concat_from_sequ": [53, 76, 374], "input_sequ": [53, 76, 374, 465], "new_axi": [53, 76, 374, 465, 850], "dsplit": [53, 76, 374], "indices_or_sect": [53, 76, 374, 466, 475, 495], "3rd": [53, 76, 374, 466], "dstack": [53, 76, 374], "fill_diagon": [53, 76, 374], "fill_diag": [53, 469], "fortran": [53, 60, 76, 83, 374, 470, 635, 702, 866, 870], "layout": [53, 60, 76, 83, 374, 470, 635, 702, 821, 836, 837, 843], "fliplr": [53, 76, 374, 836], "diag": [53, 58, 76, 81, 94, 374, 471, 472, 633, 669, 845], "flipud": [53, 76, 374, 836], "fold": [53, 76, 374, 481, 482, 824], "unfold": [53, 76, 93, 94, 96, 372, 374, 430, 473, 481, 483], "folded_tensor": [53, 374, 473], "heavisid": [53, 76, 374], "5000": [53, 374, 474, 633, 672, 802], "hsplit": [53, 76, 374], "horizont": [53, 76, 374, 464, 475, 541, 630], "hstack": [53, 76, 374, 464], "i0": [53, 76, 374, 383, 521], "bessel": [53, 66, 76, 89, 313, 365, 374, 477, 643, 760, 762], "kind": [53, 66, 76, 161, 164, 165, 383, 477, 519, 520, 525, 626, 643, 753, 754, 759, 761, 772, 773, 813, 837, 840, 843, 845, 851], "26606588": [53, 76, 374, 477], "2795853": [53, 76, 374, 477], "88079259": [53, 76, 374, 477], "row_mod": [53, 76, 374, 478], "column_mod": [53, 76, 374, 478], "ascend": [53, 65, 76, 88, 374, 381, 478, 511, 642, 749, 751, 817], "prod": [53, 54, 66, 77, 89, 372, 374, 431, 433, 478, 527, 542, 630, 643, 772, 802, 825, 827, 845, 863], "moveaxi": [53, 76, 374], "destin": [53, 76, 374, 479], "unstack": [53, 60, 70, 83, 479, 635, 823, 845, 848, 873], "reorder": [53, 60, 76, 83, 374, 479, 541, 630, 635, 699, 839], "stat_length": [53, 76, 374, 480], "constant_valu": [53, 76, 374, 480], "end_valu": [53, 76, 374, 480], "reflect_typ": [53, 76, 374, 480], "partial_fold": [53, 76, 374], "skip_begin": [53, 76, 374, 481, 482, 483, 484], "untouch": [53, 76, 374, 481, 482, 483, 484], "partial_tensor_to_vec": [53, 76, 374], "skip_end": [53, 76, 374, 482, 483], "vectoris": [53, 76, 93, 374, 482, 484], "partial_unfold": [53, 76, 374], "ravel_tensor": [53, 76, 374, 483], "n_1": [53, 76, 374, 483], "n_2": [53, 76, 374, 483], "n_i": [53, 76, 372, 374, 431, 483], "partial_vec_to_tensor": [53, 76, 374], "put_along_axi": [53, 76, 374], "rot90": [53, 76, 374, 836], "rotat": [53, 76, 374, 486], "soft_threshold": [53, 76, 374], "behav": [53, 76, 331, 332, 368, 372, 374, 425, 488, 633, 668, 819, 829, 834, 836, 837, 838, 847, 867], "invalid": [53, 67, 76, 90, 374, 488, 633, 635, 644, 689, 698, 763, 764, 772, 815, 825], "slice": [53, 66, 70, 76, 77, 89, 94, 143, 324, 365, 374, 463, 485, 488, 489, 548, 549, 551, 577, 625, 630, 637, 643, 723, 758, 840, 866], "inexact": [53, 76, 342, 368, 374, 488], "largest": [53, 70, 76, 161, 164, 372, 374, 443, 488, 490, 626, 633, 674, 683], "take_along_axi": [53, 76, 374], "arr": [53, 54, 73, 76, 169, 374, 463, 485, 489, 573, 626, 825, 826], "top_k": [53, 76, 374], "sort": [53, 64, 70, 76, 87, 99, 195, 288, 372, 374, 383, 425, 490, 511, 525, 627, 628, 633, 641, 668, 669, 683, 684, 745, 749, 750, 751, 774, 808, 813, 824, 839, 841], "trim_zero": [53, 76, 374], "fb": [53, 76, 374, 491], "front": [53, 76, 374, 491, 837, 844, 845, 848, 855, 864, 866], "unflatten": [53, 76, 374], "unfolded_tensor": [53, 374, 493], "unique_consecut": [53, 76, 374], "vsplit": [53, 76, 374], "vertic": [53, 76, 374, 495, 496, 541, 630, 816], "_arraywithnormsexperiment": [53, 98], "varianc": [53, 66, 76, 89, 377, 497, 499, 643, 762, 787, 791], "nsc": [53, 76, 377, 497, 498, 499, 791], "braodcast": [53, 76, 377, 497], "running_mean": [53, 76, 377, 497, 499, 791], "running_var": [53, 76, 377, 497, 499, 791], "nc": [53, 76, 377, 497, 498, 499, 791], "group_norm": [53, 76, 377], "num_group": [53, 76, 377, 498], "group": [53, 76, 374, 377, 494, 498, 632, 637, 645, 652, 653, 716, 806, 817, 819, 823, 825, 833, 837, 838, 862, 865, 871], "instance_norm": [53, 76, 377], "l1_normal": [53, 76, 377], "33333334": [53, 76, 294, 363, 377, 500, 503, 613, 631, 632, 633, 654, 690], "33333337": [53, 133, 377, 500, 613, 625, 631], "28571439": [53, 377, 500], "l2_normal": [53, 76, 377, 503], "l2": [53, 58, 81, 92, 93, 377, 501, 503, 633, 690, 788, 823], "44721359": [53, 76, 377, 501, 503], "89442718": [53, 76, 377, 501, 503], "lp_normal": [53, 76, 377], "lp": [53, 377, 503], "_arraywithrandomexperiment": [53, 98], "bernoulli": [53, 76, 371, 378, 395, 396, 397], "event": [53, 76, 378, 504, 840], "entri": [53, 60, 70, 76, 83, 87, 94, 133, 372, 374, 378, 442, 469, 471, 472, 504, 625, 635, 637, 704, 727, 745, 815, 824, 840, 866], "parameter": [53, 62, 76, 85, 378, 504, 505, 507, 508, 639, 734, 736, 737], "odd": [53, 76, 274, 374, 378, 480, 504, 628, 802, 813, 819], "drawn": [53, 62, 76, 85, 378, 504, 505, 506, 507, 508, 639, 734, 735, 736, 737, 772, 773, 774, 787, 840], "dirichlet": [53, 76, 378], "10598304": [53, 378, 506], "21537054": [53, 378, 506], "67864642": [53, 378, 506], "48006698": [53, 378, 506], "07472073": [53, 378, 506], "44521229": [53, 378, 506], "55479872": [53, 378, 506], "05426367": [53, 378, 506], "39093761": [53, 378, 506], "19531053": [53, 378, 506], "51675832": [53, 378, 506], "28793114": [53, 378, 506], "12315625": [53, 378, 506], "29823365": [53, 378, 506], "5786101": [53, 378, 506], "15564976": [53, 378, 506], "50542368": [53, 378, 506], "33892656": [53, 378, 506], "1325352": [53, 378, 506], "44439589": [53, 378, 506], "42306891": [53, 378, 506], "gamma": [53, 61, 76, 84, 338, 350, 368, 378, 383, 522, 638, 733], "rate": [53, 55, 76, 78, 371, 378, 413, 508, 612, 615, 617, 618, 619, 631, 632, 636, 657, 711, 712, 713, 792, 824], "lam": [53, 76, 378, 508], "_arraywithsearchingexperiment": [53, 98], "unravel_index": [53, 76, 379], "unravel": [53, 76, 379, 509], "_arraywithsetexperiment": [53, 98], "_arraywithsortingexperiment": [53, 98], "lexsort": [53, 76, 381], "indirectli": [53, 76, 381, 511], "statist": [53, 76, 91, 374, 480, 791, 806, 814, 825, 840, 841, 866], "_arraywithstatisticalexperiment": [53, 98], "bincount": [53, 76, 383], "minlength": [53, 76, 383, 516], "corrcoef": [53, 76, 383], "rowvar": [53, 76, 383, 517, 518], "relationship": [53, 76, 517, 787, 839], "cov": [53, 76, 383], "ddof": [53, 76, 383, 518], "fweight": [53, 76, 383, 518], "aweight": [53, 76, 383, 518], "overridden": [53, 76, 383, 518, 792, 820], "unbias": [53, 66, 76, 89, 383, 518, 643, 762], "typic": [53, 76, 330, 347, 368, 383, 518, 642, 751, 788, 819, 833, 865, 873], "assign": [53, 76, 93, 383, 518, 814, 816, 821, 825, 836, 839, 847], "covari": [53, 76, 383, 518], "cummax": [53, 76, 383], "exclus": [53, 54, 66, 70, 76, 77, 89, 122, 372, 383, 441, 519, 520, 560, 561, 564, 625, 630, 639, 643, 735, 753, 754, 811, 823, 825, 833, 850, 870, 872], "cumul": [53, 66, 76, 89, 383, 519, 520, 643, 753, 754], "uint64": [53, 66, 158, 163, 165, 166, 176, 178, 181, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 840, 845], "uint16": [53, 66, 153, 158, 163, 164, 173, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 837, 840, 845], "bit": [53, 66, 160, 161, 164, 227, 228, 230, 383, 519, 520, 626, 628, 643, 753, 754, 759, 761, 808, 813, 814, 815, 823, 824, 825, 827, 833, 845, 847, 872], "uint32": [53, 66, 158, 163, 164, 165, 187, 383, 519, 520, 626, 643, 753, 754, 759, 761, 772, 773, 825, 840, 845], "cummin": [53, 76, 383], "histogram": [53, 76, 383], "extend_lower_interv": [53, 76, 383, 521], "extend_upper_interv": [53, 76, 383, 521], "densiti": [53, 76, 383, 521], "monoton": [53, 76, 383, 521], "rightmost": [53, 76, 383, 521], "c1": [53, 76, 383, 521, 823], "ff": [53, 76, 383, 521], "c_": [53, 76, 94, 383, 521], "igamma": [53, 76, 383], "incomplet": [53, 76, 383, 522, 816], "3614": [53, 76, 383, 522], "2085": [53, 76, 383, 522], "median": [53, 76, 374, 383, 480, 525], "nanmean": [53, 76, 383], "6666666666666665": [53, 76, 383, 524], "nanmedian": [53, 76, 383], "overwrite_input": [53, 76, 383, 525], "treat": [53, 70, 76, 99, 274, 352, 368, 374, 377, 383, 489, 502, 525, 527, 628, 769, 835, 840, 846, 850], "undefin": [53, 76, 374, 383, 384, 480, 525, 529, 825, 829, 835], "nanmin": [53, 76, 383], "nanprod": [53, 76, 383], "Not": [53, 76, 352, 368, 372, 383, 427, 527, 623, 821, 829, 838, 848, 849, 851], "quantil": [53, 76, 383, 863], "inclus": [53, 76, 122, 383, 528, 625, 639, 735, 809, 821, 836, 843], "midpoint": [53, 76, 383, 528], "surround": [53, 76, 383, 528, 843], "whichev": [53, 76, 383, 528], "_arraywithutilityexperiment": [53, 98], "optional_get_el": [53, 76, 384], "empti": [53, 54, 66, 70, 77, 89, 122, 374, 384, 480, 529, 536, 573, 625, 630, 633, 637, 643, 644, 687, 690, 728, 758, 759, 761, 763, 764, 814, 815, 820, 822, 825, 826, 836], "_arraywithgener": [54, 98], "all_equ": [54, 77, 630], "equality_matrix": [54, 77, 530, 630], "array_equ": [54, 77, 630], "assert_supports_inplac": [54, 77, 630], "ivybackendexcept": [54, 77, 534, 558, 630, 803, 820, 826, 829, 830], "clip_matrix_norm": [54, 77, 630], "894": [54, 77, 536, 537, 630, 638, 733], "clip_vector_norm": [54, 77, 630], "default_v": [54, 540, 630], "catch_except": [54, 540, 630], "rev": [54, 540, 630], "with_cal": [54, 540, 630], "catch": [54, 540, 630, 834, 840], "einops_rearrang": [54, 77, 630], "axes_length": [54, 77, 541, 542, 543, 630], "arrang": [54, 541, 630], "rearrang": [54, 77, 541, 543, 630, 839], "einops_reduc": [54, 77, 630, 825], "einops_repeat": [54, 77, 630], "fourier_encod": [54, 77, 630], "max_freq": [54, 77, 545, 630], "oppos": [54, 77, 545, 630, 825], "geometr": [54, 77, 545, 630, 633, 688], "0000000e": [54, 77, 545, 630], "2246468e": [54, 77, 545, 630], "4492936e": [54, 545, 630], "6739404e": [54, 77, 545, 630], "batch_dim": [54, 77, 548, 549, 630, 794], "gather_nd": [54, 77, 630], "get_num_dim": [54, 77, 630], "as_arrai": [54, 77, 552, 586, 630, 794], "has_nan": [54, 77, 630], "include_inf": [54, 77, 554, 609, 630], "inplace_decr": [54, 77, 630], "val": [54, 70, 75, 77, 249, 374, 469, 556, 557, 558, 577, 578, 579, 628, 630, 825, 836, 847], "decrement": [54, 77, 556, 630], "inplace_incr": [54, 77, 630], "increment": [54, 77, 557, 630, 816, 866], "inplace_upd": [54, 77, 576, 630, 785, 836], "ensure_in_backend": [54, 77, 558, 630, 836], "keep_input_dtyp": [54, 77, 558, 630, 836], "is_arrai": [54, 77, 630, 836, 837], "is_ivy_arrai": [54, 77, 630, 836, 847], "is_ivy_contain": [54, 630], "is_native_arrai": [54, 77, 172, 561, 626, 630, 847], "isin": [54, 77, 630, 863], "test_el": [54, 77, 565, 630], "assume_uniqu": [54, 77, 565, 630], "invert": [54, 77, 227, 565, 628, 630, 633, 675], "scatter_flat": [54, 77, 630], "occupi": [54, 161, 164, 572, 573, 626, 630], "scatter_nd": [54, 77, 630, 843, 847], "stable_divid": [54, 77, 630, 833], "denomin": [54, 61, 77, 84, 579, 588, 602, 630, 638, 733, 791, 833, 842, 851, 863], "min_denomin": [54, 77, 579, 588, 602, 630, 842], "_min_denomin": [54, 588, 630], "stable_pow": [54, 77, 630], "min_bas": [54, 77, 578, 589, 601, 630, 791, 842], "stabl": [54, 65, 77, 88, 143, 324, 331, 332, 365, 368, 381, 511, 578, 579, 588, 589, 601, 602, 625, 630, 642, 749, 752, 774, 815, 821, 825, 837, 842, 845, 851], "00004": [54, 77, 589, 630], "00008": [54, 77, 589, 630], "00004000e": [54, 589], "56002560e": [54, 589], "60001200e": [54, 589], "09602048e": [54, 589], "supports_inplace_upd": [54, 77, 630], "to_fil": 54, "fid": 54, "sep": 54, "format_": 54, "recov": [54, 829, 837], "to_scalar": [54, 77, 630], "value_is_nan": [54, 77, 630], "_arraywithgradi": [55, 98], "adam_step": [55, 78, 631], "mw": [55, 78, 611, 612, 631, 849], "vw": [55, 78, 611, 612, 631, 849], "beta1": [55, 78, 532, 611, 612, 617, 630, 631, 792, 849], "beta2": [55, 78, 532, 611, 612, 617, 630, 631, 792, 849], "epsilon": [55, 58, 59, 78, 81, 82, 532, 611, 612, 617, 630, 631, 633, 634, 676, 679, 692, 693, 694, 784, 789, 791, 792, 823, 833, 836, 849], "dc": [55, 78, 611, 612, 615, 617, 618, 619, 631], "dw": [55, 78, 611, 612, 615, 617, 618, 619, 631], "forget": [55, 78, 611, 612, 617, 631, 792, 808, 825], "dcdw": [55, 78, 611, 612, 615, 617, 618, 631], "adam_step_delta": [55, 78, 611, 631], "2020105": [55, 611, 631], "22187898": [55, 611, 631], "24144873": [55, 611, 631], "10000002": [55, 89, 292, 363, 611, 757], "00300002": [55, 611], "00800002": [55, 611], "adam_upd": [55, 78, 631, 849], "mw_tm1": [55, 78, 612, 617, 631], "vw_tm1": [55, 78, 612, 617, 631], "stop_gradi": [55, 78, 209, 532, 612, 615, 617, 618, 619, 627, 630, 631, 636, 711, 712, 713, 792, 849], "ws_new": [55, 78, 612, 617, 618, 619, 631], "updated_weight": [55, 78, 612, 631], "92558753": [55, 612], "92558873": [55, 612, 631], "92558718": [55, 612, 631], "00000063e": [55, 78, 612, 631], "00000016e": [55, 78, 612, 631], "00000086e": [55, 78, 612, 631], "gradient_descent_upd": [55, 78, 631, 636, 711, 712, 713], "descent": [55, 78, 615, 631, 792, 849, 866], "new_weight": [55, 78, 615, 617, 618, 631, 848], "lamb_upd": [55, 78, 631], "max_trust_ratio": [55, 78, 617, 631, 792], "decay_lambda": [55, 78, 617, 618, 631, 792], "trust": [55, 78, 617, 631, 792], "ratio": [55, 78, 617, 631, 792], "decai": [55, 78, 617, 618, 631, 792], "lamb": [55, 78, 617, 631, 792, 849], "784": [55, 617, 631], "lars_upd": [55, 78, 631], "lar": [55, 78, 618, 631, 792, 849], "34077978": [55, 618, 631], "78025991": [55, 618, 631], "56051969": [55, 618, 631], "78026009": [55, 618, 631], "56051981": [55, 618, 631], "12103939": [55, 618, 631], "optimizer_upd": [55, 78, 631], "effective_grad": [55, 78, 619, 631], "3e": [55, 78, 619, 631], "preserve_typ": [55, 78, 620, 631], "_arraywithimag": [56, 98], "_arraywithlay": [57, 98], "conv1d": [57, 80, 632, 788], "filter_format": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "channel_last": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653, 772], "x_dilat": [57, 80, 632, 645, 646, 648, 649, 650, 652], "d_out": [57, 80, 371, 388, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "channel_first": [57, 80, 632, 645, 646, 647, 648, 649, 650, 651, 652, 653], "wio": [57, 632, 645, 646, 647, 652], "conv1d_transpos": [57, 80, 632], "output_shap": [57, 80, 632, 645, 647, 649, 651, 653, 788], "iow": [57, 80, 632, 647], "woi": [57, 80, 632, 647], "fh": [57, 80, 632, 637, 645, 648, 649, 650, 651, 652, 653, 654, 726], "hwio": [57, 632, 645, 646, 648, 652], "conv2d_transpos": [57, 80, 632], "iohw": [57, 80, 632, 649], "hwoi": [57, 80, 632, 649], "conv3d": [57, 80, 632, 651, 788], "fd": [57, 80, 632, 645, 650, 651, 652, 653], "conv3d_transpos": [57, 80, 632, 653], "iodhw": [57, 80, 632, 651, 653], "dhwoi": [57, 80, 632, 651, 653], "depthwise_conv2d": [57, 80, 632], "randint": [57, 62, 64, 80, 85, 639, 641, 654, 658, 745, 825, 859], "noise_shap": [57, 80, 632, 655], "42857146": [57, 632, 655], "85714293": [57, 632, 655], "28571415": [57, 80, 632, 655], "71428585": [57, 80, 632, 655], "14285755": [57, 80, 632, 655], "5714283": [57, 632, 655], "4285717": [57, 80, 632, 655], "8571434": [57, 80, 632, 655], "2857151": [57, 632, 655], "dropout1d": [57, 80, 371], "droput1d": [57, 395, 396], "dropout2d": [57, 80, 371], "dropout3d": [57, 80, 371], "droput3d": [57, 397], "outer_batch_shap": [57, 80, 632, 656], "inner_batch_shap": [57, 80, 632, 656], "lstm_updat": [57, 80, 632, 845], "init_h": [57, 80, 632, 658, 845], "init_c": [57, 80, 632, 658, 845], "recurrent_kernel": [57, 80, 632, 658, 845], "recurrent_bia": [57, 80, 632, 658, 845], "hidden": [57, 80, 632, 657, 658, 788, 822, 829, 845, 849], "recurr": [57, 76, 80, 371, 417, 632, 658, 845, 866, 870], "timestep": [57, 76, 80, 371, 417, 632, 657, 658, 659, 788, 845], "h_i": [57, 80, 658], "c_i": [57, 80, 658], "rc": [57, 80, 658], "multi_head_attent": [57, 80, 632, 836], "num_head": [57, 80, 632, 659, 788], "in_proj_weight": [57, 80, 632, 659], "q_proj_weight": [57, 80, 632, 659], "k_proj_weight": [57, 80, 632, 659], "v_proj_weight": [57, 80, 632, 659], "out_proj_weight": [57, 80, 632, 659], "in_proj_bia": [57, 80, 632, 659], "out_proj_bia": [57, 80, 632, 659], "is_caus": [57, 80, 632, 659, 662], "key_padding_mask": [57, 80, 632, 659], "bias_k": [57, 80, 632, 659], "bias_v": [57, 80, 632, 659], "static_k": [57, 80, 632, 659], "static_v": [57, 80, 632, 659], "add_zero_attn": [57, 80, 632, 659], "return_attention_weight": [57, 80, 632, 659], "average_attention_weight": [57, 80, 632, 659], "scaled_dot_product_attent": [57, 80, 632], "dropout_p": [57, 80, 632, 662], "num_queri": [57, 80, 632, 662], "feat_dim": [57, 80, 632, 662], "num_kei": [57, 80, 632, 662], "causal": [57, 80, 632, 659, 662], "attent": [57, 80, 632, 659, 662, 788, 816, 820, 856], "29999995": [57, 292, 293, 303, 363, 371, 415, 632, 641, 662, 746], "19994521": [57, 632, 662], "09994531": [57, 632, 662], "30000019": [57, 374, 464, 632, 662], "_arraywithlinearalgebra": [58, 98], "choleski": [58, 81, 633, 836], "625": [58, 76, 344, 633, 663], "vif": [58, 81, 664], "det": [58, 81, 633, 681, 824], "axis1": [58, 60, 81, 83, 633, 635, 667, 687, 707], "axis2": [58, 81, 633, 667, 687], "eigh": [58, 81, 372, 425, 633, 668], "uplo": [58, 81, 633, 669, 670], "eigvalsh": [58, 81, 633], "array_lik": [58, 81, 371, 373, 374, 416, 449, 450, 454, 455, 485, 633, 671, 678, 802], "105": [58, 80, 632, 633, 655, 656, 671, 678], "149": [58, 633, 671], "143": [58, 75, 99, 286, 628, 633, 671, 827], "203": [58, 75, 225, 633, 638, 671, 733], "233": [58, 633, 671], "inv": [58, 81, 633], "transpose_a": [58, 81, 633, 673], "transpose_b": [58, 81, 633, 673], "adjoint_a": [58, 81, 633, 673], "adjoint_b": [58, 81, 633, 673], "matrix_norm": [58, 81, 633], "ord": [58, 81, 633, 674, 690], "fro": [58, 81, 373, 449, 633, 674], "nuc": [58, 81, 633, 674], "matrix_pow": [58, 81, 633], "matrix_rank": [58, 81, 633], "hermitian": [58, 81, 372, 425, 426, 633, 668, 669, 670, 676, 683], "largest_singular_valu": [58, 81, 633, 676, 679], "defici": [58, 633, 676], "matrix_transpos": [58, 81, 633, 847], "pinv": [58, 81, 633], "pseudo": [58, 81, 633, 679, 835], "99999988": [58, 81, 633, 679], "qr": [58, 81, 633, 838], "complet": [58, 70, 81, 633, 680, 773, 814, 815, 816, 817, 819, 820, 823, 824, 827, 829, 833, 837, 838, 840, 843, 847, 848, 856, 864], "12309149": [58, 633, 680], "90453403": [58, 633, 680], "40824829": [58, 633, 680], "49236596": [58, 633, 680], "30151134": [58, 633, 680], "81649658": [58, 633, 680], "86164044": [58, 633, 680], "12403841e": [58, 633, 680], "60113630e": [58, 633, 680], "10782342e": [58, 633, 680], "04534034e": [58, 633, 680], "80906807e": [58, 633, 680], "88178420e": [58, 81, 633, 670, 680], "slogdet": [58, 81, 633], "logabsdet": [58, 81, 633, 681], "natur": [58, 81, 239, 257, 258, 259, 260, 279, 350, 368, 628, 633, 681, 820, 827, 829, 838, 856], "098611": [58, 633, 681], "solv": [58, 81, 372, 436, 633, 772, 808, 815, 819, 830, 837, 846, 868], "full_matric": [58, 81, 633, 683], "svf": [58, 683], "reconstructed_x": [58, 633, 683], "svdval": [58, 81, 633], "tensorsolv": [58, 81, 633], "vander": [58, 81, 633], "vandermond": [58, 81, 633, 688], "vecdot": [58, 81, 633], "vector_norm": [58, 81, 633], "mathemat": [58, 81, 219, 224, 236, 241, 243, 259, 269, 623, 628, 633, 674, 690, 825, 837, 843, 866, 872], "manhattan": [58, 81, 633, 690], "euclidean": [58, 81, 93, 94, 633, 690], "7416575": [58, 81, 633, 690], "vector_to_skew_symmetric_matrix": [58, 81, 633], "_arraywithloss": [59, 98], "binary_cross_entropi": [59, 82, 634, 824], "from_logit": [59, 82, 634, 692, 789], "pos_weight": [59, 82, 634, 692], "crossentropi": [59, 82, 634, 692], "26765382": [59, 634, 692], "34657359": [59, 634, 693], "sparse_cross_entropi": [59, 82, 634], "07438118": [59, 82, 694], "11889165": [59, 694], "_arraywithmanipul": [60, 98], "x_min": [60, 83, 635, 695, 850], "x_max": [60, 83, 635, 695, 850], "before_1": [60, 83, 374, 480, 635, 697, 710], "after_1": [60, 83, 374, 480, 635, 697, 710], "before_n": [60, 83, 374, 480, 635, 697, 710], "after_n": [60, 83, 374, 480, 635, 697, 710], "repetit": [60, 83, 635, 701, 708, 843], "flat": [60, 70, 83, 379, 509, 572, 630, 635, 701], "allowzero": [60, 83, 635, 702], "remain": [60, 63, 76, 83, 86, 219, 236, 237, 243, 251, 252, 269, 272, 278, 280, 371, 395, 396, 397, 416, 628, 635, 637, 640, 702, 720, 743, 802, 815, 816, 824, 827, 829, 833, 841, 843, 851], "roll": [60, 83, 635, 832, 863], "shift": [60, 72, 83, 99, 132, 143, 228, 230, 324, 365, 625, 628, 635, 703, 815, 816, 826, 827, 832, 839, 863], "restor": [60, 83, 635, 703, 831], "num_or_size_split": [60, 70, 83, 635, 704, 845], "with_remaind": [60, 70, 83, 635, 704], "squeezabl": [60, 635, 705], "swapax": [60, 83, 635], "axis0": [60, 83, 635, 707], "swap_ax": [60, 707], "swap": [60, 83, 635, 707, 797, 860], "tile": [60, 77, 83, 543, 635], "unpack": [60, 83, 635, 709, 838, 840], "zero_pad": [60, 83, 635], "_arraywithnorm": [61, 98], "layer_norm": [61, 84, 638], "normalized_idx": [61, 84, 638, 733], "new_std": [61, 84, 638, 733, 791], "learnabl": [61, 84, 632, 636, 638, 657, 713, 733, 788, 791, 850], "deviat": [61, 62, 66, 84, 85, 89, 638, 639, 643, 733, 736, 760, 774, 787, 791, 819, 857], "0976": [61, 638, 733], "3452": [61, 638, 733], "2740": [61, 638, 733], "1047": [61, 638, 733], "5886": [61, 638, 733], "2732": [61, 638, 733], "7696": [61, 638, 733, 772], "7024": [61, 638, 733], "2518": [61, 638, 733], "826": [61, 638, 733], "178": [61, 638, 733], "981": [61, 638, 733], "831": [61, 638, 733], "421": [61, 638, 733], "_arraywithrandom": [62, 98], "multinomi": [62, 85, 378, 506, 639], "population_s": [62, 85, 639, 734], "num_sampl": [62, 85, 639, 734], "unnorm": [62, 85, 639, 734, 840], "popul": [62, 66, 70, 85, 89, 639, 643, 734, 760, 762, 825, 826, 836, 840, 845, 872], "draw": [62, 85, 378, 504, 506, 508, 639, 734, 736, 737, 772, 773, 774, 775, 780, 787, 814, 819, 838, 840], "half": [62, 85, 122, 283, 625, 628, 639, 735, 737, 812, 830, 843], "235": [62, 736], "float16": [62, 73, 85, 130, 153, 155, 156, 161, 163, 342, 368, 625, 626, 633, 690, 736, 737, 772, 773, 812, 825, 830, 837, 840], "807": [62, 736], "_arraywithsearch": [63, 98], "select_last_index": [63, 86, 640, 740, 741], "occurr": [63, 374, 383, 494, 516, 640, 641, 740, 741, 745], "argmin": [63, 86, 640, 863], "output_dtyp": [63, 86, 640, 741], "argwher": [63, 86, 640], "nonzero": [63, 86, 94, 217, 218, 219, 222, 225, 234, 236, 239, 241, 243, 269, 282, 287, 628, 640], "as_tupl": [63, 86, 640, 743], "fewer": [63, 86, 640, 743], "_arraywithset": [64, 98], "unique_al": [64, 87, 641], "by_valu": [64, 87, 641, 745], "inverse_indic": [64, 87, 374, 494, 641, 745, 747], "unique_count": [64, 87, 641], "unique_invers": [64, 87, 641], "unique_valu": [64, 87, 641], "admonit": [64, 748], "dask": [64, 641, 745, 746, 747, 748, 856], "difficult": [64, 641, 745, 746, 747, 748, 816, 819, 825, 840, 851], "omit": [64, 279, 628, 641, 745, 746, 747, 748, 832, 836, 837], "x_i": [64, 66, 75, 94, 216, 217, 218, 221, 222, 223, 225, 227, 232, 233, 234, 239, 241, 242, 249, 250, 251, 252, 253, 257, 258, 259, 260, 264, 271, 276, 279, 280, 281, 282, 283, 284, 286, 287, 289, 331, 332, 334, 355, 368, 628, 641, 643, 745, 746, 747, 748, 756, 757, 758, 760, 761, 762, 787, 828], "x_j": [64, 641, 745, 746, 747, 748], "impli": [64, 641, 745, 746, 747, 748, 840], "typeerror": [64, 87, 641, 748, 847], "_arraywithsort": [65, 98], "stabil": [65, 88, 588, 589, 630, 642, 749, 752, 825, 835, 841, 843], "maintain": [65, 88, 642, 749, 752, 815, 816, 819, 831, 836, 838, 839, 840, 855, 865], "msort": [65, 88, 642], "searchsort": [65, 88, 642, 773], "side": [65, 88, 346, 368, 372, 442, 642, 751, 772, 788, 801, 802, 815, 816, 822], "sorter": [65, 88, 642, 751], "ret_dtyp": [65, 88, 642, 751], "_arraywithstatist": [66, 98], "cumprod": [66, 89, 643, 837, 850, 863], "cumsum": [66, 89, 643, 825, 863], "einsum": [66, 89, 643], "equat": [66, 76, 89, 310, 365, 372, 442, 633, 643, 682, 755, 772, 801, 824, 866], "operand": [66, 76, 80, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 355, 359, 368, 369, 371, 414, 628, 633, 643, 681, 687, 755, 756, 758, 759, 761, 801, 802, 820, 823, 828, 837], "contract": [66, 633, 643, 685, 755, 802], "seq": [66, 643, 755, 772], "ii": [66, 89, 643, 755, 816], "jk": [66, 643, 755, 802], "ik": [66, 643, 755, 802], "126": [66, 106, 275, 622, 628, 633, 643, 675, 755], "510": [66, 643, 755], "special": [66, 81, 93, 94, 98, 99, 216, 217, 218, 219, 221, 222, 223, 224, 225, 232, 233, 234, 236, 237, 239, 241, 242, 243, 250, 251, 252, 257, 258, 259, 260, 261, 264, 269, 272, 274, 278, 279, 280, 281, 282, 283, 286, 287, 289, 331, 332, 355, 368, 628, 633, 643, 681, 687, 756, 757, 758, 759, 760, 761, 762, 772, 773, 774, 775, 780, 787, 814, 817, 819, 820, 822, 824, 827, 828, 829, 832, 836, 838, 839, 840, 841, 843, 866, 867, 868], "arithmet": [66, 89, 230, 236, 269, 628, 643, 757, 837], "propag": [66, 230, 331, 332, 368, 628, 643, 756, 757, 758, 760, 761, 762, 835], "04999995": [66, 757], "freedom": [66, 89, 643, 760, 762, 821], "constitut": [66, 89, 643, 760, 762, 833, 845, 867], "commonli": [66, 89, 643, 760, 762, 829, 833, 835], "81649661": [66, 643, 760], "6666665": [66, 762, 848], "667": [66, 77, 236, 537, 588, 628, 630, 762], "_arraywithutil": [67, 98], "logic": [67, 90, 200, 236, 237, 263, 264, 265, 269, 272, 627, 628, 644, 763, 764, 814, 820, 824, 825, 826, 829, 833, 834, 835, 836, 837, 839, 840, 843, 847, 860], "AND": [67, 90, 226, 237, 263, 628, 644, 763], "OR": [67, 90, 229, 265, 272, 628, 644, 764, 815, 816, 835], "_wrap_funct": [68, 91, 822, 833, 834], "function_nam": [68, 91, 814, 841], "new_funct": [68, 91, 822], "add_ivy_array_instance_method": 68, "cl": [68, 91], "moduletyp": [68, 91, 859, 860, 861], "toi": [68, 91], "arrayexampl": 68, "hasattr": [68, 91], "_containerwithactiv": [69, 99], "dict_in": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "queue": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 582, 605, 630, 842, 848], "queue_load_s": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "container_combine_method": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "list_join": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "queue_timeout": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 582, 605, 630, 842], "print_limit": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "key_length_limit": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "print_ind": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "print_line_spac": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "ivyh": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "default_key_color": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "keyword_color_dict": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "rebuild_child_contain": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "types_to_iteratively_nest": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "alphabetical_kei": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "dynamic_backend": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 98, 99, 789, 790, 821, 842], "build_cal": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99], "containerbas": [69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 823], "_static_gelu": 69, "key_chain": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "to_appli": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "prune_unappli": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 727, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "map_sequ": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 125, 127, 129, 130, 132, 133, 134, 135, 136, 137, 139, 141, 142, 143, 145, 148, 149, 150, 151, 159, 161, 164, 167, 168, 169, 171, 173, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 307, 309, 310, 313, 314, 324, 325, 329, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 356, 357, 358, 359, 385, 386, 387, 388, 390, 391, 392, 394, 395, 396, 397, 398, 399, 407, 408, 409, 410, 414, 415, 418, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 436, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 467, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 492, 494, 496, 497, 498, 499, 500, 501, 503, 505, 510, 511, 518, 519, 520, 521, 528, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 646, 647, 648, 649, 650, 651, 654, 655, 656, 658, 659, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764], "prune": [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 130, 132, 137, 139, 145, 149, 151, 164, 168, 169, 176, 210, 216, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 243, 247, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 305, 306, 307, 309, 330, 331, 332, 333, 334, 336, 338, 346, 347, 353, 355, 357, 358, 359, 395, 396, 397, 415, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 464, 465, 486, 488, 489, 490, 492, 497, 499, 500, 501, 503, 505, 518, 519, 520, 521, 530, 533, 534, 536, 537, 541, 542, 543, 544, 545, 548, 549, 552, 554, 556, 557, 558, 560, 561, 564, 572, 573, 587, 588, 589, 591, 593, 595, 596, 609, 615, 620, 637, 646, 647, 648, 649, 655, 656, 662, 663, 664, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 687, 692, 693, 694, 695, 699, 702, 703, 704, 705, 706, 709, 710, 727, 728, 729, 730, 734, 735, 736, 737, 739, 742, 745, 746, 747, 748, 749, 753, 754, 757, 759, 760, 762, 763, 764, 770, 773, 824], "static_gelu": 69, "046": 69, "_static_hardswish": 69, "_static_leaky_relu": 69, "static_leaky_relu": 69, "38999999": [69, 76, 108, 291, 292, 363], "_static_log_softmax": 69, "static_log_softmax": 69, "371": [69, 109], "_static_mish": 69, "static_mish": 69, "30883577": [69, 110, 622], "28903052": [69, 110, 622], "10714479": [69, 110, 622], "_static_relu": 69, "static_relu": 69, "_static_sigmoid": 69, "static_sigmoid": 69, "2689414": [69, 112, 113, 622], "7310586": [69, 112, 113, 622], "88079703": [69, 112, 622], "62245935": [69, 112], "4750208": [69, 112], "_static_softmax": 69, "static_softmax": 69, "72844321": [69, 113], "19852395": [69, 113], "07303288": [69, 113], "_static_softplu": 69, "revert": [69, 114, 622], "static_softplu": 69, "53499615": 69, "42036411": 69, "948": [69, 114, 637, 714], "166": [69, 106, 622], "dictionari": [70, 87, 99, 208, 597, 613, 627, 630, 631, 748, 767, 769, 802, 820, 824, 825, 833, 837, 838, 848, 851], "asynchron": [70, 99, 866], "wait": [70, 99, 582, 630, 808, 814, 816, 824, 837], "arriv": [70, 99, 582, 630, 843], "cont_list_join": [70, 99], "limit": [70, 99, 161, 164, 536, 537, 553, 626, 630, 635, 695, 772, 774, 775, 787, 794, 802, 808, 815, 816, 822, 824, 827, 829, 837, 840, 843, 848, 851, 865, 866, 867], "whitespac": [70, 99], "indent": [70, 99, 848], "newlin": [70, 99, 828], "termin": [70, 99, 815, 816, 823, 830, 831, 845, 848], "constructor": [70, 99, 532, 630, 769, 785, 793, 825, 826, 828, 847], "kept": [70, 99, 636, 711, 712, 816, 836, 841], "encount": [70, 99, 788, 812, 814, 825, 829, 830, 840], "node": [70, 77, 99, 534, 544, 591, 637, 724, 725, 787, 796, 822, 823, 837, 856, 859, 860, 867], "alphabet": [70, 99], "__setitem__": [70, 374, 488, 820, 823, 847], "_cont_at_key_chains_input_as_dict": 70, "current_chain": 70, "ignore_key_error": 70, "_cont_at_key_chains_input_as_seq": 70, "_cont_call_static_method_with_flexible_arg": 70, "static_method": 70, "kw": 70, "self_idx": 70, "_cont_concat_unifi": 70, "_cont_get_dev": 70, "_cont_get_dtyp": 70, "_cont_get_shap": 70, "_cont_ivi": 70, "_cont_mean_unifi": 70, "_1": 70, "_cont_prune_key_chains_input_as_dict": 70, "return_cont": 70, "_cont_prune_key_chains_input_as_seq": 70, "_cont_slice_kei": 70, "key_slic": 70, "_cont_sum_unifi": 70, "_get_queue_item": 70, "cont_all_fals": 70, "assert_is_bool": 70, "cont_all_key_chain": 70, "include_empti": 70, "cont_all_tru": [70, 823, 848], "cont_as_bool": 70, "cont_assert_contains_sub_contain": 70, "sub_cont": 70, "screen": [70, 814, 815, 848], "cont_assert_contains_sub_structur": 70, "check_shap": [70, 794], "cont_assert_ident": 70, "check_typ": 70, "same_arrai": [70, 848], "arrays_equ": 70, "cont_assert_identical_structur": 70, "assert_and_assign": 70, "congruent": 70, "cont_at_key_chain": 70, "ignore_non": 70, "cont_at_kei": 70, "substr": 70, "cont_combin": 70, "duplic": [70, 374, 485, 553, 630, 637, 716, 821, 828, 834, 835, 838, 849, 872], "configur": [70, 208, 627, 637, 727, 815, 816, 822, 824, 825, 830, 831], "container_rightmost": 70, "cont_common_key_chain": 70, "cont_config": 70, "cont_contains_sub_contain": 70, "cont_contains_sub_structur": 70, "cont_copi": [70, 848], "cont_create_if_abs": 70, "noth": [70, 843, 872], "cont_cutoff_at_depth": 70, "depth_cutoff": 70, "summari": [70, 165, 538, 626, 630, 815, 816, 840], "cont_cutoff_at_height": 70, "height_cutoff": 70, "cont_deep_copi": [70, 848, 859], "cont_dev": 70, "belong": [70, 814, 819, 849], "cont_dev_str": 70, "cont_diff": [70, 848], "diff_kei": 70, "detect_key_diff": 70, "detect_value_diff": 70, "detect_shape_diff": 70, "among": [70, 823, 824, 840, 843, 857, 866], "container0": 70, "cont_dtyp": 70, "cont_duplicate_array_keychain": 70, "cont_find_sub_contain": 70, "sub_cont_to_find": 70, "cont_find_sub_structur": 70, "sub_struc_to_find": 70, "cont_flatten_key_chain": [70, 848], "above_height": [70, 848], "below_depth": [70, 848], "cont_format_key_chain": 70, "format_fn": 70, "cont_from_disk_as_hdf5": [70, 848], "h5_obj_or_filepath": 70, "slice_obj": 70, "disk": [70, 790, 848, 865], "h5py": 70, "filepath": [70, 644, 765, 766, 816, 819], "cont_from_disk_as_json": [70, 848], "json_filepath": 70, "cont_from_disk_as_pickl": [70, 848], "pickle_filepath": 70, "cont_from_flat_list": 70, "flat_list": 70, "hierarchi": [70, 806, 814, 839, 848, 862, 872], "cont_handle_inplac": 70, "prime": [70, 825], "overwritten": [70, 820, 821], "cont_has_kei": 70, "query_kei": 70, "somewher": [70, 824], "cont_has_key_chain": 70, "cont_ident": [70, 848], "cont_identical_array_shap": 70, "cont_identical_config": 70, "cont_identical_structur": 70, "cont_if_exist": 70, "cont_inplace_upd": 70, "cont_ivi": 70, "cont_key_chains_contain": 70, "sub_str": 70, "cont_list_stack": [70, 848], "cont_load": 70, "cont_map": [70, 823, 848], "func": [70, 93, 209, 360, 361, 362, 370, 535, 610, 613, 614, 616, 621, 627, 630, 631, 637, 727, 769, 814, 819, 820, 827, 829, 835], "cont_map_sub_cont": 70, "include_self": 70, "possibli": [70, 593, 630, 772, 840, 851], "cont_max_depth": 70, "cont_multi_map": 70, "map_nest": 70, "assert_ident": 70, "leftmost": [70, 637, 727], "cont_multi_map_in_funct": 70, "cont_num_arrai": 70, "cont_overwrite_at_key_chain": 70, "target_dict": 70, "return_dict": 70, "cont_prune_empti": 70, "keep_non": 70, "cont_prune_key_chain": 70, "key1": [70, 808, 849], "key2": [70, 808], "key3": 70, "cont_prune_key_from_key_chain": 70, "certain": [70, 122, 133, 134, 373, 450, 625, 814, 815, 816, 819, 825, 833, 839, 840, 843, 851, 859, 860, 861, 870], "cont_prune_kei": 70, "cont_prune_keys_from_key_chain": 70, "cont_reduc": 70, "cont_remove_key_length_limit": 70, "cont_remove_print_limit": 70, "cont_reshape_lik": 70, "leading_shap": 70, "cont_restructur": 70, "keep_orig": 70, "old": [70, 815, 821, 836], "cont_restructure_key_chain": 70, "keychain_map": 70, "cont_sav": 70, "cont_set_at_key_chain": 70, "cont_set_at_kei": 70, "cont_shap": [70, 632, 650], "cont_show": 70, "cont_show_sub_contain": 70, "sub_cont_or_keychain": 70, "cont_size_ordered_arrai": 70, "keychain": [70, 76, 294, 333, 458, 459, 460, 489], "cont_slice_kei": 70, "all_depth": 70, "cont_slice_via_kei": 70, "slice_kei": 70, "cont_sort_by_kei": 70, "cont_structural_diff": 70, "cont_to_dict": 70, "cont_to_disk_as_hdf5": [70, 848], "starting_index": 70, "max_batch_s": 70, "cont_to_disk_as_json": [70, 848], "cont_to_disk_as_pickl": [70, 848], "cont_to_flat_list": 70, "cont_to_iter": [70, 823], "leaf_keys_onli": 70, "cont_to_iterator_kei": 70, "cont_to_iterator_valu": 70, "cont_to_json": 70, "cont_to_nested_list": 70, "cont_to_raw": 70, "cont_trim_kei": 70, "cont_try_kc": 70, "cont_unifi": 70, "concatten": [70, 209, 627], "cont_unstack_cont": 70, "dim_siz": 70, "cont_update_config": 70, "cont_with_default_key_color": 70, "cont_with_entries_as_list": 70, "cont_with_ivy_backend": 70, "ivy_backend": [70, 838], "cont_with_key_length_limit": [70, 848], "cont_with_print_ind": [70, 848], "cont_with_print_limit": [70, 848], "cont_with_print_line_spac": 70, "h5_file_s": 70, "shuffle_h5_fil": 70, "split_cont": 70, "_is_json": 70, "_repr": 70, "_containerwithconvers": [71, 99], "_static_to_ivi": 71, "_static_to_n": 71, "_containerwithcr": [72, 99], "_static_arang": 72, "_static_asarrai": 72, "_static_copy_arrai": 72, "_static_empti": 72, "_static_empty_lik": 72, "_static_ey": 72, "n_row": [72, 76, 128, 143, 324, 365, 372, 433, 625], "n_col": [72, 76, 128, 143, 324, 365, 625], "_static_from_dlpack": 72, "_static_ful": 72, "_static_full_lik": 72, "static_full_lik": 72, "2324": [72, 132, 625], "234": [72, 75, 132, 155, 238, 289, 625, 626, 628, 632, 656, 772], "_static_linspac": 72, "_static_logspac": 72, "static_logspac": 72, "15443469": [72, 134], "64158883": [72, 134], "_static_meshgrid": 72, "_static_native_arrai": 72, "_static_one_hot": 72, "static_one_hot": 72, "_static_on": 72, "_static_ones_lik": 72, "_static_tril": 72, "_static_triu": 72, "_static_zero": 72, "_static_zeros_lik": 72, "frombuff": [72, 625], "expos": [72, 130, 538, 625, 630, 808, 824, 845, 849, 855], "x00": [72, 130, 625], "xf0": [72, 130, 625], "x01": [72, 130, 625], "x02": [72, 130, 625], "x03": [72, 130, 625], "x04": [72, 130, 625], "x05": [72, 130], "5443469": [72, 134, 625], "static_frombuff": 72, "static_triu_indic": 72, "triu_indic": [72, 625], "_containerwithdatatyp": [73, 99], "_static_astyp": 73, "718": [73, 75, 148, 265, 626], "618": [73, 75, 148, 265, 626], "static_astyp": 73, "_static_broadcast_arrai": 73, "static_broadcast_arrai": 73, "_static_broadcast_to": 73, "static_broadcast_to": 73, "_static_can_cast": 73, "from_": [73, 151, 626], "static_can_cast": 73, "_static_default_complex_dtyp": 73, "complex_dtyp": [73, 154, 177, 626], "_static_default_float_dtyp": 73, "float_dtyp": [73, 156, 179, 626], "_static_dtyp": 73, "_static_finfo": 73, "inquir": [73, 161, 164], "static_finfo": 73, "55040e": [73, 161, 626], "7976931348623157e": [73, 161, 626], "308": [73, 161, 626, 772, 840], "_static_function_supported_dtyp": 73, "_static_function_unsupported_dtyp": 73, "_static_iinfo": 73, "1800": [73, 164, 626], "1084": 73, "40000": 73, "static_iinfo": 73, "2147483648": [73, 76, 164, 374, 488, 626], "2147483647": [73, 164, 626], "_static_is_bool_dtyp": 73, "dtype_in": [73, 146, 147, 160, 166, 167, 168, 169, 170, 171, 172, 173, 188, 626], "_static_is_complex_dtyp": 73, "is_complex_dtyp": [73, 626, 841], "roughli": [73, 815, 819, 869], "static_is_complex_dtyp": 73, "_static_is_float_dtyp": 73, "static_is_float_dtyp": 73, "_static_is_int_dtyp": 73, "_static_is_uint_dtyp": 73, "_static_result_typ": 73, "static_result_typ": 73, "broadcats": [73, 149], "_containerwithdevic": [74, 99], "_static_dev": 74, "static_dev": 74, "_static_to_devic": 74, "static_to_devic": 74, "contaion": [74, 193], "_containerwithelementwis": [75, 99], "_static_ab": 75, "static_ab": 75, "_static_aco": 75, "static_aco": 75, "_static_acosh": 75, "static_acosh": 75, "_static_add": 75, "static_add": [75, 103], "_static_asin": 75, "static_asin": 75, "524": [75, 221, 628], "412": [75, 80, 221, 628, 637, 714], "_static_asinh": 75, "static_asinh": 75, "_static_atan": 75, "static_atan": 75, "_static_atan2": 75, "static_atan2": 75, "915": [75, 224, 628], "983": [75, 224, 628], "978": [75, 224, 628], "696": [75, 85, 224, 628, 736], "993": [75, 224, 628], "_static_atanh": 75, "static_atanh": 75, "_static_bitwise_and": 75, "static_bitwise_and": 75, "_static_bitwise_invert": 75, "static_bitwise_invert": 75, "_static_bitwise_left_shift": 75, "_static_bitwise_or": 75, "static_bitwise_or": 75, "_static_bitwise_right_shift": 75, "static_bitwise_right_shift": 75, "_static_bitwise_xor": 75, "static_bitwise_xor": 75, "_static_ceil": 75, "static_ceil": 75, "_static_co": 75, "static_co": 75, "_static_cosh": 75, "static_cosh": 75, "_static_deg2rad": 75, "static_deg2rad": 75, "0262": [75, 235, 275, 628], "873": [75, 235, 275, 628], "_static_divid": 75, "static_divid": 75, "_static_equ": 75, "static_equ": 75, "_static_erf": 75, "static_erf": 75, "27632612": [75, 238], "934008": [75, 238, 628], "99999928": [75, 238], "91903949": [75, 238], "_static_exp": 75, "static_exp": 75, "59814835": [75, 239, 628], "4131622": [75, 239], "_static_expm1": 75, "thefunct": [75, 238], "areal": 75, "static_expm1": 75, "71828175": [75, 239, 628], "38905621": [75, 239, 628], "59815216": 75, "_static_floor": 75, "static_floor": 75, "_static_floor_divid": 75, "static_floor_divid": 75, "_static_great": 75, "static_great": 75, "_static_greater_equ": 75, "static_greater_equ": 75, "_static_isfinit": 75, "999999999999": [75, 250, 628], "static_isfinit": 75, "_static_isinf": 75, "static_isinf": 75, "_static_isnan": 75, "static_isnan": 75, "_static_isr": 75, "0j": [75, 76, 138, 139, 217, 218, 219, 222, 225, 234, 239, 241, 253, 257, 259, 276, 280, 282, 283, 287, 334, 368, 625, 628, 633, 681], "23j": [75, 76], "9j": [75, 76], "static_isr": 75, "_static_lcm": 75, "1080": [75, 254], "1550": [75, 254], "130": [75, 254], "_static_less": 75, "static_less": 75, "_static_less_equ": 75, "static_less_equ": 75, "_static_log": 75, "static_log": 75, "_static_log10": 75, "static_log10": 75, "898": [75, 258, 628], "0414": [75, 258, 628], "_static_log1p": 75, "static_log1p": 75, "_static_log2": 75, "static_log2": 75, "_static_logaddexp": 75, "static_logaddexp": 75, "_static_logical_and": 75, "static_logical_and": 75, "_static_logical_not": 75, "static_logical_not": 75, "_static_logical_or": 75, "static_logical_or": 75, "_static_logical_xor": 75, "static_logical_xor": 75, "_static_maximum": 75, "static_maximum": 75, "_static_minimum": 75, "static_minimum": 75, "_static_multipli": 75, "static_multipli": 75, "_static_neg": 75, "static_neg": 75, "_static_not_equ": 75, "static_not_equ": 75, "_static_posit": 75, "static_posit": 75, "_static_pow": 75, "static_pow": 75, "_static_rad2deg": 75, "static_rad2deg": 75, "5160": 75, "10300": [75, 275, 628], "15500": 75, "20600": 75, "2860": [75, 275], "_static_reciproc": 75, "recirpoc": [75, 277], "static_reciproc": 75, "_static_remaind": 75, "static_remaind": 75, "_static_round": 75, "thevfunct": 75, "527": [75, 279, 628], "static_round": 75, "301": [75, 279, 628], "_static_sign": 75, "static_sign": 75, "_static_sin": 75, "static_sin": 75, "757": [75, 281, 628], "959": [75, 241, 281, 628], "279": [75, 281, 371, 393, 403, 536, 628, 630], "_static_sinh": 75, "static_sinh": 75, "835": [75, 282], "347": [75, 282], "721": [75, 282], "_static_sqrt": 75, "static_sqrt": 75, "_static_squar": 75, "static_squar": 75, "_static_subtract": 75, "static_subtract": 75, "_static_tan": 75, "static_tan": 75, "_static_tanh": 75, "static_tanh": 75, "995": [75, 287, 628], "9999": 75, "_static_trapz": 75, "static_trapz": 75, "_static_trunc": 75, "static_trunc": 75, "_static_trunc_divid": 75, "75j": [75, 220, 249], "01317055": [75, 220], "05634501": [75, 220], "115": [75, 220, 275, 628], "3461759": [75, 220], "524111": [75, 220], "644": [75, 221, 628, 849], "305": [75, 80, 221, 628], "351": [75, 235, 275], "00613": [75, 235], "0154": [75, 235], "403": [75, 239], "428772": [75, 239], "649": [75, 241], "220": [75, 241], "865": [75, 241], "metho": [75, 248, 260], "imaginari": [75, 98, 108, 111, 114, 138, 139, 217, 218, 219, 234, 236, 237, 239, 241, 249, 269, 271, 272, 279, 282, 283, 287, 334, 368, 371, 372, 415, 426, 622, 625, 628, 640, 743, 827], "4j": [75, 249, 371, 415, 589, 628, 630], "7j": [75, 76, 253, 276, 334, 368, 628], "956": [75, 259], "08746284": [75, 262], "32192809": [75, 262], "nuner": [75, 269], "413": [75, 275], "335": [75, 76, 276, 334], "345j": [75, 76, 276, 334], "static_angl": 75, "static_exp2": 75, "static_fmin": 75, "static_gcd": 75, "static_imag": 75, "static_logaddexp2": 75, "static_nan_to_num": 75, "static_r": 75, "_containerwithactivationexperiment": [76, 99], "_static_celu": 76, "formlat": 76, "static_celu": 76, "_static_elu": 76, "static_elu": 76, "_static_hardshrink": 76, "hard": [76, 293, 816, 847, 866], "shrinkag": [76, 293, 303, 374, 487], "_static_hardsilu": 76, "20833333": [76, 294, 363], "29166666": [76, 294, 363], "66666669": [76, 99, 294, 363, 377, 503, 613, 631], "66666663": [76, 133, 294, 363, 625], "_static_hardtanh": 76, "3899": 76, "_static_scaled_tanh": 76, "931": 76, "71587813": 76, "88367474": 76, "00376701": [76, 300], "2285642": 76, "99999881": 76, "49999905": 76, "_static_silu": 76, "static_silu": 76, "27777028": [76, 302], "23947507": [76, 302], "0900332": [76, 302], "_static_softshrink": 76, "_static_tanhshrink": 76, "36634541": [76, 305], "02005103": [76, 305], "00262468": [76, 305], "_static_threshold": 76, "389999": [76, 295], "19722462": [76, 296], "84729779": [76, 296], "31326163": [76, 297], "46328258": [76, 297], "51301527": [76, 297], "79813886": [76, 297], "simplywrap": [76, 300], "54939651": [76, 300], "09999998": [76, 300, 611, 631], "09999999": [76, 300], "08336546": [76, 300], "0379949": [76, 300], "22856998": [76, 301], "42028043": [76, 301], "31868932": [76, 301], "static_logit": 76, "static_logsigmoid": 76, "34115386": 76, "64439666": 76, "24115384": 76, "55435526": 76, "07888974": 76, "00741899": 76, "26328245": 76, "00012302": 76, "static_prelu": 76, "static_relu6": 76, "static_selu": 76, "static_thresholded_relu": 76, "_containerwithconversionexperiment": [76, 99], "_containerwithcreationexperiment": [76, 99], "_static_trilu": 76, "blackman": [76, 308, 365], "00770143e": [76, 308], "49229857e": [76, 308], "hamming_window": [76, 365], "ham": [76, 310, 365], "4180": [76, 310], "8180": [76, 310], "hann_window": [76, 365], "hann": [76, 311, 365], "7500": [76, 311], "3455": [76, 311], "9045": [76, 311], "kaiser_bessel_derived_window": [76, 365], "suitabl": [76, 313, 314, 365, 642, 751, 774, 815, 816, 823, 841, 866], "spectral": [76, 313, 314, 365], "analysi": [76, 313, 314, 365, 866, 867], "kaiser": [76, 308, 313, 314, 365], "70710677": [76, 313, 501, 503], "18493208": [76, 313, 365], "9827513": [76, 313, 365], "kaiser_window": [76, 365], "static_kaiser_window": [76, 314], "2049": [76, 314], "8712": [76, 314], "0367": [76, 314, 365], "7753": [76, 314], "static_blackman_window": 76, "static_eye_lik": 76, "static_hamming_window": 76, "static_hann_window": 76, "static_hann": 76, "static_kaiser_bessel_derived_window": 76, "static_mel_weight_matrix": 76, "static_polyv": 76, "static_tril_indic": 76, "static_unsorted_segment_mean": 76, "static_unsorted_segment_min": 76, "static_unsorted_segment_sum": 76, "static_vorbis_window": 76, "vorbis_window": [76, 365], "vorbi": [76, 329, 365], "38268343": [76, 329, 633, 669], "92387953": [76, 329], "14943586": [76, 329, 365], "51644717": [76, 329], "85631905": [76, 329], "98877142": [76, 329], "tril_indic": [76, 365], "_containerwithdata_typeexperiment": [76, 99], "_containerwithdeviceexperiment": [76, 99], "_containerwithelementwiseexperiment": [76, 99], "0003": [76, 330, 633, 672, 772, 775], "0006": [76, 330, 358], "2345j": [76, 334], "5772": [76, 338], "9635": [76, 338], "4228": [76, 338], "9228": [76, 338], "57299206e": [76, 339, 340], "67773480e": [76, 339, 340], "20904985e": [76, 339, 340], "84270084": [76, 339, 340, 368], "99532223": [76, 339, 340], "99997795": [76, 339, 340], "mantissa": [76, 344, 368, 825], "frist": [76, 345, 368], "coord": [76, 345], "6055": [76, 346], "160": [76, 348], "10240": [76, 348], "60000038": [76, 349, 368, 633, 689], "0707": [76, 355, 368], "0579": [76, 355, 368], "static_allclos": 76, "static_amax": 76, "static_amin": 76, "static_binar": 76, "static_conj": 76, "static_copysign": 76, "static_count_nonzero": 76, "static_diff": 76, "static_digamma": 76, "57721537": 76, "96351004": 76, "static_erfc": 76, "15729921": 76, "00467773": [76, 339, 368], "static_erfinv": 76, "static_fix": 76, "static_float_pow": 76, "static_fmax": 76, "static_fmod": 76, "static_frexp": 76, "static_gradi": 76, "static_hypot": 76, "static_isclos": 76, "static_ldexp": 76, "static_lerp": 76, "90000057": [76, 349, 368], "70000076": [76, 349, 368], "55000019": [76, 349, 368], "05000019": [76, 349, 368], "static_modf": 76, "static_nansum": 76, "static_nextaft": 76, "static_signbit": 76, "static_sinc": 76, "636": 76, "090": 76, "070": 76, "057": 76, "static_sparsify_tensor": 76, "static_xlogi": 76, "static_zeta": 76, "0244": [76, 358], "_containerwithgeneralexperiment": [76, 99], "_static_reduc": 76, "static_reduc": 76, "_containerwithgradientsexperiment": [76, 99], "_containerwithimageexperiment": [76, 99], "_containerwithlayersexperiment": [76, 99], "_static_fft": 76, "static_fft": 76, "_static_sliding_window": 76, "673": [76, 393], "0507": [76, 393], "79711437": [76, 371, 393, 403], "94867325": [76, 371, 393, 403], "74089146": [76, 371, 393, 403], "25980937": [76, 371, 393, 403], "64958102": [76, 371, 393, 403], "2442648": [76, 371, 393, 403], "247306": [76, 405], "908323j": [76, 405], "494955": [76, 405], "90395j": [76, 405], "static_adaptive_avg_pool1d": 76, "static_adaptive_avg_pool2d": 76, "static_adaptive_max_pool2d": 76, "static_adaptive_max_pool3d": 76, "static_avg_pool1d": 76, "static_avg_pool2d": 76, "static_avg_pool3d": 76, "static_dct": 76, "253": [76, 282, 628], "515": [76, 639, 736], "467": 76, "static_dft": 76, "static_embed": 76, "static_idct": 76, "93732834": [76, 371, 393], "75048852": [76, 371, 393], "29723358": [76, 371, 403], "6950531": 76, "93914509": 76, "88008738": 76, "18951225": 76, "06697273": [76, 371, 403], "57439804": 76, "68861485": [76, 371, 403], "41308832": [76, 371, 403], "0700836": 76, "2449036": 76, "6711426": 76, "514": 76, "501709": 76, "4924011": 76, "static_ifft": 76, "static_ifftn": 76, "static_interpol": 76, "static_max_pool1d": 76, "static_max_pool2d": 76, "max_pool2dd": 76, "static_max_pool3d": 76, "static_max_unpool1d": 76, "static_rfft": 76, "static_rfftn": 76, "static_rnn": 76, "step_funct": [76, 371, 417], "initial_st": [76, 371, 417, 632, 657], "go_backward": [76, 371, 417], "unrol": [76, 371, 417, 632, 658, 845, 848], "input_length": [76, 371, 417], "zero_output_for_mask": [76, 371, 417], "return_all_output": [76, 371, 417], "rnn": [76, 371, 866], "tempor": [76, 371, 417], "state_s": [76, 371, 417], "while_loop": [76, 371, 417, 624], "otput": [76, 371, 417], "funciton": [76, 371, 417], "static_stft": 76, "_containerwithlinearalgebraexperiment": [76, 99], "933034": [76, 372, 422], "eigenvealu": [76, 425, 668], "xx": [76, 425, 427, 668], "37228107": [76, 425, 668], "3722816": [76, 425, 668], "8245648": [76, 425, 668], "41597357": [76, 425, 668], "56576747": [76, 425, 668], "9093767": [76, 425, 668], "56155": [76, 426], "82842": [76, 426], "450": [76, 432], "static_adjoint": 76, "static_batched_out": 76, "static_cond": 76, "static_diagflat": 76, "static_dot": 76, "static_eig": 76, "static_eigh_tridiagon": 76, "static_eigv": 76, "static_higher_order_mo": 76, "static_initialize_tuck": 76, "static_kron": 76, "kroneck": [76, 372, 431, 432], "static_make_svd_non_neg": 76, "static_matrix_exp": 76, "static_mode_dot": 76, "static_multi_dot": 76, "static_multi_mode_dot": 76, "static_partial_tuck": 76, "static_svd_flip": 76, "static_tensor_train": 76, "static_truncated_svd": 76, "static_tt_matrix_to_tensor": 76, "tt_matrix": [76, 372, 446], "output_tensor": [76, 96, 372, 446], "static_tuck": 76, "_containerwithlossesexperiment": [76, 99], "_static_hinge_embedding_loss": 76, "_static_huber_loss": 76, "static_huber_loss": 76, "0575": [76, 449], "_static_kl_div": 76, "_static_l1_loss": 76, "static_l1_loss": 76, "_static_log_poisson_loss": 76, "static_log_poisson_loss": 76, "_static_poisson_nll_loss": 76, "06446016": 76, "55611551": 76, "30244565": [76, 453], "_static_smooth_l1_loss": 76, "static_smooth_l1_loss": 76, "_static_soft_margin_loss": 76, "3890561": [76, 452], "413159": [76, 452], "06429195": [76, 453], "43333333": [76, 454], "10666666": [76, 454], "_containerwithmanipulationexperiment": [76, 99], "_static_fill_diagon": 76, "_static_put_along_axi": 76, "_static_tak": 76, "69999981": [76, 303, 363, 374, 464, 488], "_static_trim_zero": 76, "_static_unflatten": 76, "_static_unique_consecut": 76, "ary1": [76, 374, 458, 459, 460], "ary2": [76, 374, 458, 459, 460], "broadcast_shap": [76, 102, 374, 772, 774], "static_concat_from_sequ": [76, 465], "30192195": [76, 477], "static_as_strid": 76, "static_atleast_1d": 76, "static_atleast_2d": 76, "static_atleast_3d": 76, "static_broadcast_shap": 76, "static_column_stack": 76, "static_dsplit": 76, "static_dstack": 76, "static_expand": 76, "static_flatten": 76, "static_fliplr": 76, "static_flipud": 76, "static_fold": 76, "static_heavisid": 76, "static_hsplit": 76, "static_hstack": 76, "static_i0": 76, "static_matric": 76, "static_moveaxi": 76, "static_pad": 76, "static_partial_fold": 76, "static_partial_tensor_to_vec": 76, "static_partial_unfold": 76, "static_partial_vec_to_tensor": 76, "static_rot90": 76, "static_soft_threshold": 76, "static_take_along_axi": 76, "static_top_k": 76, "static_unfold": 76, "static_vsplit": 76, "static_vstack": 76, "_containerwithnormsexperiment": [76, 99], "16903085": [76, 501, 503], "50709254": [76, 501, 503], "84515423": [76, 501, 503], "44183609": [76, 501, 503], "56807494": [76, 501, 503], "69431382": [76, 501, 503], "static_batch_norm": 76, "static_group_norm": 76, "static_instance_norm": 76, "static_l1_norm": 76, "static_l2_norm": 76, "static_lp_norm": 76, "12500000": 76, "37500000": 76, "62500000": 76, "27500000": 76, "35000000": 76, "42500000": 76, "0000000": 76, "5000000": 76, "2500000": 76, "_containerwithrandomexperiment": [76, 99], "43643127": [76, 506], "32325703": [76, 506], "24031169": [76, 506], "34251311": [76, 506], "31692529": [76, 506], "3405616": [76, 506], "5319725": [76, 506], "22458365": [76, 506], "24344385": [76, 506], "26588406": [76, 506], "61075421": [76, 506], "12336174": [76, 506], "51142915": [76, 506], "25041268": [76, 506], "23815817": [76, 506], "64042903": [76, 506], "25763214": [76, 506], "10193883": [76, 506], "31624692": [76, 506], "46567987": [76, 506], "21807321": [76, 506], "37677699": [76, 506], "39914594": [76, 506], "22407707": [76, 506], "static_bernoulli": 76, "static_beta": 76, "static_dirichlet": 76, "static_gamma": 76, "static_poisson": 76, "_containerwithsearchingexperiment": [76, 99], "static_unravel_index": 76, "_containerwithsetexperiment": [76, 99], "_containerwithsortingexperiment": [76, 99], "invert_permut": [76, 381], "static_invert_permut": 76, "static_lexsort": [76, 88], "_containerwithstatisticalexperiment": [76, 99], "_static_cummax": 76, "static_cummax": 76, "_static_cummin": 76, "static_cummin": 76, "_static_nanmin": 76, "static_nanmin": 76, "func_nam": [76, 521, 814, 827, 828, 833, 837], "static_bincount": 76, "static_corrcoef": 76, "static_cov": [76, 383, 518], "static_histogram": 76, "static_igamma": 76, "static_lgamma": 76, "static_median": 76, "static_nanmean": 76, "static_nanmedian": 76, "static_nanprod": 76, "static_quantil": 76, "_containerwithutilityexperiment": [76, 99], "static_optional_get_el": 76, "_containerwithgener": [77, 99], "_static_all_equ": 77, "static_all_equ": 77, "_static_array_equ": 77, "a0": [77, 374, 464], "static_array_equ": 77, "_static_assert_supports_inplac": 77, "_static_clip_matrix_norm": 77, "static_clip_matrix_norm": 77, "849": [77, 536, 537, 630], "_static_clip_vector_norm": 77, "static_clip_vector_norm": 77, "_static_einops_rearrang": 77, "static_einops_rearrang": 77, "_static_einops_reduc": 77, "static_einops_reduc": 77, "29333329": [77, 542, 630], "53000069": [77, 542, 630], "39666676": [77, 542, 630], "20666695": [77, 542, 630], "_static_einops_repeat": 77, "static_einops_repeat": 77, "_static_exist": 77, "_static_fourier_encod": 77, "static_fourier_encod": 77, "classivi": [77, 641, 746], "89858720e": 77, "79717439e": 77, "_static_gath": 77, "static_gath": 77, "_static_gather_nd": 77, "static_gather_nd": 77, "_static_get_num_dim": 77, "static_get_num_dim": 77, "_static_has_nan": 77, "leafwis": 77, "static_has_nan": 77, "_static_inplace_decr": 77, "_static_inplace_incr": 77, "_static_inplace_upd": 77, "_static_is_arrai": 77, "static_is_arrai": 77, "_static_is_ivy_arrai": 77, "static_is_ivy_arrai": 77, "_static_is_native_arrai": 77, "static_is_native_arrai": 77, "_static_scatter_flat": 77, "_static_scatter_nd": 77, "static_scatter_nd": 77, "_static_s": 77, "static_s": 77, "_static_stable_divid": 77, "22222222": 77, "11111111": 77, "857": [77, 588, 630], "444": 77, "_static_stable_pow": 77, "00012": [77, 589, 630], "00016": [77, 78, 589, 617, 630, 631], "00001": [77, 589, 630, 772], "00032": [77, 589], "00256": [77, 589], "1679638": [77, 589], "395": [77, 589], "16777383": [77, 589], "_static_supports_inplace_upd": 77, "_static_to_list": 77, "static_to_list": 77, "_static_to_numpi": 77, "static_to_numpi": 77, "_static_to_scalar": 77, "static_to_scalar": 77, "_static_value_is_nan": 77, "452": 77, "static_value_is_nan": 77, "833": [77, 537], "items": [77, 98, 630], "static_isin": 77, "static_items": 77, "static_strid": 77, "425": [77, 609], "_containerwithgradi": [78, 99], "_static_stop_gradi": 78, "static_stop_gradi": 78, "976": [78, 287, 611, 628, 631], "49e": [78, 611, 631], "74e": [78, 611, 631], "95e": [78, 611, 631], "024": [78, 611, 631], "096": [78, 611, 631], "216": [78, 81, 611, 631, 688], "626": [78, 611, 631], "en": [78, 611, 612, 631, 824], "wikipedia": [78, 611, 612, 631], "wiki": [78, 611, 612, 631], "stochastic_gradient_desc": [78, 611, 612, 631], "01099": [78, 612], "01003": [78, 612, 631], "01015": [78, 612, 631], "99936122": [78, 612, 631], "99936116": [78, 612, 631], "99936128": [78, 612, 631], "99936104": [78, 612, 631], "w_new": [78, 615, 631], "708": [78, 617, 631], "445": [78, 617, 631], "6e": [78, 617, 631], "00036": [78, 617, 631], "00049": [78, 617, 631], "layerwis": [78, 618, 631], "01132035": [78, 618, 631], "22264051": [78, 618, 631], "2056601": [78, 618, 631], "1324538": [78, 618, 631], "56490755": [78, 618, 631], "96622658": [78, 618, 631], "90848625": [78, 618, 631], "93616199": [78, 618, 631], "77232409": [78, 618, 631], "_containerwithimag": [79, 99], "_containerwithlay": [80, 99], "_static_conv1d": 80, "static_conv1d": 80, "_static_conv1d_transpos": 80, "static_conv1d_transpos": 80, "112": [80, 633, 643, 647, 678, 755], "_static_conv2d": 80, "ey": [80, 625, 632, 648, 654, 843, 850], "static_conv2d": 80, "_static_conv2d_transpos": 80, "static_conv2d_transpos": 80, "_static_conv3d": 80, "fdfh": [80, 650], "static_conv3d": 80, "_static_conv3d_transpos": 80, "static_conv3d_transpos": 80, "_static_depthwise_conv2d": 80, "inp": [80, 632, 654], "static_depthwise_conv2d": 80, "_static_dropout": 80, "static_dropout": 80, "_static_dropout1d": 80, "static_dropout1d": 80, "_static_dropout2d": 80, "_static_dropout3d": 80, "_static_linear": 80, "278": [80, 632, 655, 656], "static_linear": 80, "195": 80, "_static_lstm_upd": 80, "_static_multi_head_attent": 80, "_static_reduce_window": 80, "_static_scaled_dot_product_attent": 80, "static_scaled_dot_product_attent": 80, "39999962": [80, 632, 655, 656], "19999695": [80, 656], "11600018": [80, 656], "88399887": [80, 656], "196": [80, 632, 656], "306": [80, 632, 656], "19999981": [80, 293, 306, 363, 371, 415, 632, 655, 662], "59249449": [80, 632, 662], "68226194": [80, 632, 662], "19603825": [80, 632, 662], "9960382": [80, 632, 662], "26894283": [80, 632, 662], "40236187": [80, 632, 662], "39999437": [80, 632, 662], "59999037": [80, 632, 662], "35046196": [80, 632, 662], "54282808": [80, 632, 662], "39989519": [80, 632, 662], "5998764": [80, 632, 662], "_containerwithlinearalgebra": [81, 99], "_static_choleski": 81, "static_choleski": 81, "577": [81, 633, 663], "707": [81, 633, 663], "static_rol": [81, 83], "_static_cross": 81, "static_cross": 81, "_static_det": 81, "_static_diag": 81, "_static_diagon": 81, "static_diagon": 81, "_static_eigh": 81, "_static_eigvalsh": 81, "static_eigvalsh": 81, "51572949": [81, 633, 670], "17091519": [81, 633, 670], "3448143": [81, 633, 670], "35898387e": [81, 633, 670], "46410179e": [81, 633, 670], "_static_inn": 81, "static_inn": 81, "_static_inv": 81, "static_inv": 81, "_static_matmul": 81, "matul": 81, "static_matmul": 81, "_static_matrix_norm": 81, "deimens": 81, "static_matrix_norm": 81, "_static_matrix_pow": 81, "_static_matrix_rank": 81, "static_matrix_rank": 81, "_static_matrix_transpos": 81, "static_matrix_transpos": 81, "_static_out": 81, "n1": [81, 135, 625], "n2": [81, 135, 625], "static_out": [81, 678], "_static_pinv": 81, "static_pinv": 81, "0426": 81, "0964": 81, "0605": 81, "1368": 81, "_static_qr": 81, "static_qr": 81, "31622777": [81, 633, 680], "9486833": [81, 633, 680], "4472136": [81, 633, 680], "89442719": [81, 633, 680], "16227766": [81, 633, 680], "42718872": [81, 633, 680], "63245553": [81, 633, 680], "47213595": [81, 633, 680], "81377674": [81, 633, 680], "_static_slogdet": 81, "static_slogdet": 81, "6931472": 81, "0986123": 81, "_static_solv": 81, "_static_svd": 81, "static_svd": 81, "au": 81, "aS": 81, "avh": 81, "bvh": 81, "_static_svdv": 81, "_static_tensordot": 81, "_static_tensorsolv": 81, "_static_trac": 81, "static_trac": 81, "_static_vand": 81, "static_vand": 81, "343": [81, 279, 628, 688], "729": [81, 688, 849], "_static_vecdot": 81, "_static_vector_norm": 81, "static_vector_norm": 81, "77359247": [81, 690], "_static_vector_to_skew_symmetric_matrix": 81, "09861231": [81, 633, 681], "static_general_inner_product": 81, "3475602": [81, 683], "93765765": [81, 683], "58776021": [81, 683], "10416126": [81, 683], "80644298": [81, 683], "87024701": [81, 683], "48127627": [81, 683], "79101127": [81, 683], "98288572": [81, 683], "68917423": [81, 683], "_containerwithloss": [82, 99], "_static_binary_cross_entropi": 82, "static_binary_cross_entropi": 82, "511": 82, "223": 82, "357": 82, "_static_cross_entropi": 82, "static_cross_entropi": 82, "20397282": 82, "83258148": 82, "60943794": [82, 633, 681], "_static_sparse_cross_entropi": 82, "static_sparse_cross_entropi": 82, "36354783": [82, 634, 692], "14733934": [82, 634, 692], "17027519": [82, 693], "53647931": [82, 693], "53647929": [82, 694], "1702752": [82, 694], "_containerwithmanipul": [83, 99], "_static_clip": 83, "static_clip": 83, "_static_concat": 83, "_static_constant_pad": 83, "static_constant_pad": 83, "_static_expand_dim": 83, "static_expand_dim": 83, "container_axi": [83, 635, 698], "_static_flip": 83, "static_flip": 83, "_static_permute_dim": 83, "static_permute_dim": 83, "_static_repeat": 83, "static_repeat": 83, "_static_reshap": 83, "static_reshap": 83, "_static_rol": 83, "positivclip": 83, "_static_split": 83, "static_split": 83, "_static_squeez": 83, "static_squeez": 83, "_static_stack": 83, "leavv": 83, "static_stack": 83, "_static_swapax": 83, "_static_til": 83, "static_til": 83, "_static_unstack": 83, "static_unstack": 83, "_static_zero_pad": 83, "repreat": [83, 701], "_containerwithnorm": [84, 99], "34198591": [84, 638, 733], "04274819": [84, 638, 733], "29923761": [84, 638, 733], "24053511": [84, 638, 733], "62221265": [84, 733], "20277636": [84, 733], "41943574": [84, 733], "83710337": [84, 733], "_containerwithrandom": [85, 99], "_static_multinomi": 85, "_static_randint": 85, "static_randint": 85, "_static_random_norm": 85, "static_random_norm": 85, "651": 85, "_static_random_uniform": 85, "static_random_uniform": 85, "481": 85, "0999": 85, "_static_shuffl": 85, "static_shuffl": 85, "431": [85, 736], "274": [85, 736], "_containerwithsearch": [86, 99], "_static_argmax": 86, "static_argmax": 86, "_static_argmin": 86, "static_argmin": 86, "_static_argwher": 86, "static_argwher": 86, "_static_nonzero": 86, "_static_wher": 86, "static_wher": 86, "_containerwithset": [87, 99], "_static_unique_al": 87, "static_unique_al": 87, "_static_unique_count": 87, "static_unique_count": 87, "_static_unique_invers": 87, "static_unique_invers": 87, "_static_unique_valu": 87, "_containerwithsort": [88, 99], "_static_argsort": 88, "static_argsort": 88, "_static_searchsort": 88, "_static_sort": 88, "static_sort": 88, "static_msort": 88, "_containerwithstatist": [89, 99], "_static_cumprod": 89, "static_cumprod": 89, "_static_cumsum": 89, "static_cumsum": 89, "_static_min": 89, "_static_prod": 89, "static_prod": 89, "11000001": [89, 759], "23100001": [89, 759], "30800003": [89, 643, 759], "_static_sum": 89, "_static_var": 89, "static_var": 89, "12666667": [89, 643, 762], "11555555": [89, 643, 762], "rtype": [89, 755, 801], "respectv": [89, 760], "81649649": [89, 760], "94280904": [89, 760], "509902": [89, 643, 760], "2472192": [89, 760], "44948983": [89, 760], "41421354": [89, 760], "6666667": [89, 762], "_containerwithutil": [90, 99], "_static_al": 90, "static_al": 90, "_static_ani": 90, "static_ani": 90, "add_ivy_container_instance_method": 91, "containerexampl": 91, "factorized_tensor": [92, 93, 94, 95, 96, 97], "factorizedtensor": [92, 93, 94, 95, 96, 97], "matrix_or_tensor": 92, "to_tensor": [92, 93, 94, 95, 96, 97], "to_unfold": [92, 93, 94, 95, 96, 97], "to_vec": [92, 93, 94, 95, 96, 97], "cp_tensor": [93, 94], "cptensor": [93, 94, 319, 365], "cp_copi": 93, "cp_flip_sign": 93, "s_i": [93, 94], "normalisation_weight": [93, 94], "normalised_factor": [93, 94], "cp_lstsq_grad": 93, "return_loss": 93, "nabla": 93, "mathcal": 93, "mathbf": 93, "factor_matric": 93, "cp_gradient": 93, "quantiti": 93, "cp_mode_dot": 93, "keep_dim": [93, 97], "cp_multi_mode_dot": 93, "cp_n_param": 93, "tensor_shap": [93, 95, 96, 97], "n_param": [93, 94, 95, 96, 97], "cp_norm": 93, "cp_to_tensor": 93, "khatria": 93, "rao": [93, 372, 431], "khatri": [93, 372, 431], "cp_normal": 93, "normalis": [93, 94], "u_1": [93, 94], "u_n": [93, 94], "v_1": [93, 94], "v_n": [93, 94], "v_k": [93, 94], "u_k": [93, 94], "absorb": [93, 94], "refold": [93, 374, 473, 484], "cp_to_unfold": 93, "ie": 93, "s_u_i": 93, "exploit": [93, 869], "khatri_rao": [93, 372], "cp_to_vec": 93, "ravel": [93, 843], "unfolding_dot_khatri_rao": 93, "mttkrp": 93, "validate_cp_rank": 93, "percent": [93, 96], "validate_cp_tensor": 93, "parafac2_tensor": 94, "parafac2tensor": [94, 320, 365], "apply_parafac2_project": 94, "evolv": [94, 855, 866], "b_i": 94, "ijk": [94, 802], "sum_r": 94, "a_": 94, "ir": [94, 864, 867, 872], "jr": 94, "kr": 94, "coupl": [94, 815, 820, 847, 849, 866], "factoris": 94, "i1": [94, 383, 521], "classmethod": [94, 101, 102, 777], "from_cptensor": 94, "parafac2_tensor_ok": 94, "parafac2_normalis": 94, "normalised_project": 94, "parafac2_to_slic": 94, "slice_idx": 94, "frontal": 94, "a_i": 94, "j_i": 94, "b_": 94, "reformul": 94, "p_i": 94, "orthogon": [94, 319, 323, 365, 372, 425, 441, 447, 633, 668, 669], "sum_": 94, "ijr": 94, "constraint": [94, 802, 824, 825, 835], "projection_matric": 94, "parafac2_to_tensor": 94, "construct": [94, 635, 708, 788, 791, 792, 793, 839, 845, 849, 850, 864, 866, 873], "uneven": 94, "parafac2_to_unfold": 94, "parafac2_to_vec": 94, "validate_parafac2_tensor": 94, "cp": [94, 319, 365, 816], "tr_tensor": 95, "trtensor": [95, 321, 365], "tr_n_param": 95, "tr_to_tensor": 95, "tr_to_unfold": 95, "tr_to_vec": 95, "validate_tr_rank": 95, "validate_tr_tensor": 95, "tt_tensor": 96, "_tt_n_param": 96, "mp": [96, 322, 365], "index_upd": 96, "pad_tt_rank": 96, "factor_list": 96, "n_pad": 96, "pad_boundari": 96, "ring": 96, "bond": 96, "padded_factor_list": 96, "tt_to_tensor": 96, "assembl": [96, 372, 446], "tt_to_unfold": 96, "reassembl": 96, "tt_to_vec": 96, "validate_tt_rank": 96, "constant_rank": 96, "allow_overparametr": 96, "proport": [96, 787], "realiz": [96, 866], "validate_tt_tensor": 96, "tucker_tensor": 97, "tucker_copi": 97, "tucker_mode_dot": [97, 873], "tucker_n_param": 97, "tucker_norm": 97, "tucker_to_tensor": 97, "skip_factor": 97, "transpose_factor": 97, "tucker_to_unfold": 97, "tucker_to_vec": 97, "validate_tucker_rank": 97, "fixed_mod": 97, "validate_tucker_tensor": 97, "_bisection_root_find": 97, "fun": [97, 362, 370, 610, 630, 637, 725, 824], "max_it": 97, "__abs__": [98, 99], "__add__": [98, 99, 820, 823, 827, 828, 832, 837, 838, 847], "__eq__": [98, 99], "__ge__": [98, 99], "__gt__": [98, 99, 843], "__le__": [98, 99], "__lt__": [98, 99], "__ne__": [98, 99], "__pow__": [98, 99, 847], "69678056": 98, "59876156": 98, "82660675": 98, "__radd__": [98, 99, 827, 828, 837], "__rrshift__": [98, 99], "__rshift__": [98, 99], "__rsub__": [98, 99], "__sub__": [98, 99, 820, 823, 827, 832, 847], "__truediv__": [98, 99, 820, 823, 827], "__xor__": [98, 99], "referenc": [98, 829, 836], "resid": [98, 102, 635, 698, 837, 845, 849], "mt": [98, 847], "hopefulli": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 812, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857], "overview": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 808, 822, 824, 838, 840, 844], "reach": [98, 99, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 784, 785, 787, 788, 790, 791, 792, 793, 812, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 843, 845, 846, 847, 848, 849, 850, 855, 856, 857, 865, 866], "eq": 99, "ge": 99, "le": 99, "ne": 99, "75979435": 99, "52153397": 99, "13532257": 99, "rshift": 99, "truediv": 99, "nested_arrai": [101, 102, 103, 822], "nestedarrai": 101, "nested_rank": [101, 102, 103], "inner_shap": [101, 102, 103], "nestedarraybas": [101, 102, 103], "from_row_length": 101, "row_length": 101, "from_row_split": 101, "row_split": 101, "ragged_map": 102, "ragged_multi_map": 102, "ragged_arrai": 102, "ragged_multi_map_in_funct": 102, "replace_ivy_arrai": 102, "unbind": 102, "nestedarrayelementwis": 103, "strictli": [108, 111, 114, 243, 622, 628, 832, 836], "24000001": [108, 622], "703": [109, 622], "683": [109, 622], "408": [109, 622], "313": [109, 622], "437": [109, 622], "40337825": [110, 622], "56114835": [110, 622], "20788449": [110, 622], "0768": [113, 622], "231": [113, 622], "\u03b2": [114, 622], "body_fn": [118, 119, 121, 624], "bodi": [118, 121, 624, 819, 840], "lst": [118, 624], "orelse_fn": [119, 624], "body1": [120, 624], "body2": [120, 624], "test_fn": [121, 624, 770, 808, 860, 861], "repeatedli": [121, 624, 637, 723, 824, 840], "ml_framework": [122, 625], "distanc": [122, 625], "adjac": [122, 625], "nestedsequ": [123, 124, 625], "typevar": [123, 124, 625], "supportsbufferprotocol": [123, 124, 625], "static_copy_arrai": [125, 625], "intdtyp": [128, 139, 145, 157, 168, 173, 180, 186, 625, 626], "pycapsul": [129, 140, 625], "interchang": [129, 140, 625, 635, 707], "plu": [130, 625], "x00b": [130, 625], "x00d": [130, 625], "x00e": [130, 625], "41588834": [134, 625], "7827941": [134, 625], "6227766": [134, 625], "23413252": [134, 625], "n3": [135, 625], "xv": [135, 625], "yv": [135, 625], "x_nativ": [136, 625, 836], "y_nativ": [136, 625], "z_nativ": [136, 625], "d_type": [138, 625], "col": [143, 324, 365, 625], "primari": [143, 162, 163, 195, 196, 324, 365, 381, 511, 546, 547, 625, 626, 627, 630, 773, 775, 814, 818, 821, 825, 834, 836, 837, 839, 840, 843, 851, 853], "upward": [143, 324, 365, 625], "downward": [143, 324, 365, 625], "2xn": [143, 324, 365, 625], "subarrai": [143, 324, 365, 625], "incompat": [150, 626], "closest": [153, 232, 242, 243, 279, 289, 626, 628, 840, 843], "xtype": [153, 626], "ytype": [153, 626], "native_uint16": [153, 626], "complexdtyp": [154, 168, 177, 626], "set_default_complex_dtyp": [154, 183, 626], "4294": [154, 156, 626], "967346": [154, 156, 626], "set_default_dtyp": [155, 184, 626, 825, 833], "floatdtyp": [156, 179, 626], "set_default_float_dtyp": [156, 165, 177, 185, 626, 825], "int_dtyp": [157, 180, 626], "set_default_int_dtyp": [157, 165, 186, 626, 825], "4294967346": [157, 158, 626], "uint_dtyp": [158, 181, 626], "uint": [158, 173, 181, 187, 626, 825, 838], "uintdtyp": [158, 173, 181, 187, 626], "set_default_uint_dtyp": [158, 165, 187, 626], "native_bool": [160, 626], "ieee": [161, 219, 236, 241, 259, 269, 278, 283, 286, 623, 626, 628, 856], "754": [161, 219, 236, 241, 259, 269, 278, 283, 286, 623, 626, 628, 856], "smallest_norm": [161, 626], "bfloat16": [162, 626, 772, 773, 825, 837, 840, 841], "unsupport": [163, 196, 547, 626, 627, 630, 767, 770, 812, 815, 830, 837], "encapsul": [164, 626, 824], "314": [164, 276, 334, 368, 626, 628], "9223372036854775808": [164, 626], "9223372036854775807": [164, 626], "65535": [164, 626], "4294967295": [164, 626], "native_uint8": [166, 626], "hashabl": [170, 626], "type1": [174, 626], "type2": [174, 626], "array_api_promot": [174, 175, 626, 772, 773], "unexpect": [175, 243, 626, 628, 825], "default_complex_dtyp": [177, 626], "default_dtype_stack": [178, 184, 626], "unset_default_dtyp": [178, 626], "native_uint64": [178, 626], "default_float_dtyp": [179, 626, 825], "default_int_dtyp": [180, 186, 626, 825], "default_uint_dtyp": [181, 187, 626], "ret1": [182, 626], "ret2": [182, 626], "reset": [183, 184, 185, 186, 187, 213, 214, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 626, 627, 630, 826], "default_complex_dtype_stack": [183, 626], "default_float_dtype_stack": [185, 626], "native_float16": [188, 626], "unmodifi": [190, 627, 821, 825], "aliv": [197, 202, 204, 550, 570, 571, 627, 630, 826], "139740789224448": [197, 627], "physic": [200, 627], "process_specif": [203, 215, 627], "percentag": [203, 627], "ram": [203, 211, 215, 627], "alon": [203, 215, 627, 808, 831, 840], "036902561555": [203, 627], "7024003467681645": [203, 627], "as_native_dev": [203, 627], "7095597456708771": [203, 627], "attr_onli": [204, 627], "soft_device_mod": [206, 214, 627], "chunk": [207, 208, 209, 627], "split_factor": [207, 627, 829], "max_chunk_s": [209, 627], "chunk_siz": [209, 627], "input_ax": [209, 627], "output_ax": [209, 627], "usag": [209, 627, 825, 833, 836, 840, 845, 851, 856, 869], "fed": [209, 627, 849], "fist": [209, 627], "gb": [211, 215, 627, 815, 830], "66700032": [211, 627], "589934592": [211, 627], "219563008": [215, 627], "902400346": [215, 627], "525205504": [215, 627], "na": [216, 628, 840], "noqa": [216, 283, 628, 788, 797, 838], "princip": [217, 221, 223, 355, 368, 628], "domain": [217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 257, 258, 260, 281, 282, 283, 286, 287, 355, 368, 628, 828, 864, 866], "codomain": [217, 218, 221, 222, 223, 224, 233, 234, 239, 241, 257, 258, 260, 281, 282, 283, 286, 287, 355, 368, 628, 828], "\u03c0": [217, 221, 223, 224, 623, 628], "3\u03c0": [217, 224, 628], "unspecifi": [217, 218, 222, 225, 234, 239, 241, 243, 278, 282, 283, 287, 372, 425, 628, 633, 635, 668, 669, 706, 836], "\u03c0j": [218, 222, 225, 257, 259, 628], "3\u03c0j": [218, 257, 259, 628], "x1_i": [219, 224, 226, 228, 229, 230, 231, 236, 237, 243, 247, 248, 255, 256, 261, 263, 265, 266, 269, 272, 274, 278, 285, 628, 819], "2019": [219, 236, 241, 259, 269, 628, 866, 869], "overflow": [219, 236, 243, 628, 633, 643, 681, 761, 813, 825], "commut": [219, 628], "tabl": [219, 236, 269, 581, 604, 628, 630, 772, 773, 788, 837, 842, 866], "dj": [219, 236, 269, 628], "bj": [219, 236, 269, 334, 368, 628], "z1": [219, 628], "z2": [219, 628], "yj": [220, 628], "nanj": [222, 628], "809": [222, 628], "569": [222, 628], "733": [222, 628], "notat": [224, 628, 643, 755, 824], "denot": [224, 628, 790], "quadrant": [224, 628], "rai": [224, 628, 856], "bitwis": [226, 229, 231, 266, 628], "170": [230, 628], "243": [230, 628], "xor": [231, 266, 628], "654": [233, 628], "ci": [234, 239, 241, 282, 628, 819, 825, 831, 838, 840, 851], "368": [234, 628], "670": [234, 628], "202": [234, 628, 819], "548": [234, 628], "1490": [234, 628], "57079633": [235, 628], "14159265": [235, 628], "71238898": [235, 628], "28318531": [235, 628], "02617994": [235, 628], "87266463": [235, 628], "01919862": [235, 628], "03839725": [235, 628], "05759586": [235, 628], "07679449": [235, 628], "09599311": [235, 628], "11519173": [235, 628], "35081118": [235, 628], "88139129": [235, 628], "underflow": [236, 243, 628, 633, 681, 825], "textbook": [236, 269, 628], "frac": [236, 258, 260, 280, 282, 286, 371, 377, 399, 400, 404, 405, 497, 499, 628], "ac": [236, 269, 628, 801, 802], "bd": [236, 269, 628], "bc": [236, 269, 628, 801, 802], "versu": [236, 269, 628], "riemann": [236, 269, 628], "sphere": [236, 269, 628], "c99": [236, 269, 628], "infinit": [236, 269, 283, 628], "unlik": [236, 269, 628, 819, 824, 827, 856, 871, 873], "698": [236, 628], "truth": [237, 247, 248, 255, 256, 272, 373, 449, 628, 767, 769, 780, 812, 830, 837, 840], "32862675": [238, 628], "67780113": [238, 628], "11246294": [238, 628], "42839241": [238, 628], "52050018": [238, 628], "16799599": [238, 628], "30787992": [238, 628], "43796915": [238, 628], "98667163": [238, 628], "79690808": [238, 628], "88020504": [238, 628], "91031402": [238, 628], "95228523": [238, 628], "96610528": [238, 628], "cut": [239, 241, 281, 282, 283, 286, 628, 855, 872], "08553692": [239, 628], "567": [239, 628], "00344786": [239, 628], "76297021": [239, 628], "197948": [239, 628], "53253174": [239, 628], "accur": [241, 259, 628, 633, 681, 834], "fdlibm": [241, 259, 628], "compliant": [241, 259, 264, 265, 331, 332, 368, 628, 643, 756, 757, 758, 760], "potenti": [241, 259, 628, 808, 814, 815, 824, 825, 837, 844, 869], "632": [241, 628], "20e": [241, 628], "72e": [241, 628, 772], "greatest": [242, 243, 246, 628], "pep": [243, 628, 832], "disambigu": [243, 628, 835], "former": [243, 628, 815, 825, 828, 837], "latter": [243, 628, 815, 819, 821, 825, 828, 837], "overload": [243, 628, 840], "led": [243, 628, 819, 868], "subtl": [243, 628, 825, 872], "bug": [243, 628, 808, 814, 816, 822, 830, 831, 837, 840, 852], "ambigu": [243, 628], "semant": [243, 278, 374, 488, 628, 825, 845, 850, 855, 867], "ill": [243, 628, 774], "surpris": [243, 628, 851], "arrau": [249, 628], "log_": [258, 260, 628], "742": [259, 628], "negat": [271, 334, 368, 628], "52095687": [274, 628], "92457771": [274, 628], "49372482": [274, 628], "22738838": [274, 628], "156": [274, 628, 772], "5877228": [274, 628], "189": [275, 628, 637, 714], "252": [275, 628], "378": [275, 628], "1150": [275, 628], "2890": [275, 628], "172": [275, 628], "487": [275, 628, 632, 656], "344": [275, 628], "355j": [276, 334, 368, 628], "55j": [276, 334, 368, 628], "primarili": [278, 628, 814, 823, 866], "reason": [278, 287, 628, 814, 816, 819, 820, 823, 824, 825, 827, 833, 836, 837, 840, 841, 843, 845, 847, 856, 872], "counterpart": [279, 628, 823, 834], "deliber": [279, 628, 843], "imprecis": [279, 628], "5654": [279, 628], "034": [279, 628], "433": [279, 614, 616, 628, 631], "signum": [280, 628], "textrm": [280, 628], "932": [281, 628], "746": [281, 628], "657": [281, 537, 628, 630], "indistinguish": [283, 628], "convent": [283, 628, 633, 643, 673, 755, 816, 821, 832, 841, 855, 872], "infti": [283, 628], "32455532": [283, 628], "89897949": [283, 628], "169": [283, 628], "analyt": [286, 628, 866, 868, 872], "pole": [286, 628], "546": [286, 628, 632, 656], "916": [286, 628], "996": [286, 628], "histor": [287, 628], "stem": [287, 628, 836], "older": [287, 628], "advis": [287, 628, 837], "462": [287, 628], "604": [287, 628], "984": [287, 628], "997": [287, 628], "0375": [289, 628], "032": [289, 628], "57258511": [292, 363], "69999999": [292, 363, 621, 631], "90928203": [292, 363], "98772264": [292, 363], "99591321": [292, 363], "99863964": [292, 363], "69880581": [292, 363], "18126924": [292, 363], "79999995": [293, 303, 306, 363], "70000005": [293, 306, 363], "1241": [294, 363], "4897": [294, 363], "4090": [294, 363], "31008321": [294, 363], "1147176": [294, 363], "40899992": [294, 363], "20141329": [297, 363], "40318608": [297, 363], "48683619": [297, 363], "46328247": [297, 363], "59813893": [297, 363], "43748799": [297, 363], "parametr": [298, 363, 819, 840, 866], "71589994": [300, 304, 363], "14324772": [300, 304, 363], "70648694": [300, 304, 363], "54488957": [300, 304, 363], "10740992": [300, 304, 363], "19514863": [300, 304, 363], "6705687": [301, 363], "52016652": [301, 363], "40560818": [301, 363], "45630932": [301, 363], "2689": [302, 363], "7310": [302, 363], "7615": [302, 363], "2784": [302, 363], "7168": [302, 363], "8708": [302, 363], "4374": [302, 363], "1379": [302, 363], "0089": [302, 363], "59999991": [303, 363], "03597236": [305, 363], "43827677": [305, 363], "80100036": [305, 363], "12954807": [305, 363], "76459098": [305, 363], "20044947": [305, 363], "60000372": [305, 363], "taper": [308, 311, 365], "summat": [308, 365, 643, 755, 801, 802], "leakag": [308, 365], "wors": [308, 365, 856], "y1": [309, 365], "0800": [310, 365], "3979": [310, 365], "9121": [310, 365], "5400": [310, 365], "han": [311, 365], "ith": [312, 365], "00726415": [313, 365], "9999736": [313, 365], "2773e": [314, 365], "0172e": [314, 365], "9294e": [314, 365], "4149": [314, 365], "9138": [314, 365], "5529": [314, 365], "multidimension": [316, 317, 365, 866], "normalise_factor": [319, 320, 365], "parafac2": [320, 365], "tr": [321, 365], "context": [321, 365, 569, 630, 814, 815, 816, 821, 825, 826, 827], "38268346": [329, 365], "38268352": [329, 365], "8563191": [329, 365], "14943568": [329, 365], "paddlepaddl": [331, 332, 368, 815], "cn": [331, 332, 368], "zh": [331, 332, 368], "amax_cn": [331, 368], "sentinel": [331, 332, 368, 643, 756, 758], "amin_cn": [332, 368], "4769": [340, 368], "position": [342, 368], "triangl": [346, 368], "999999e": [347, 368], "65999985": [349, 368], "52000046": [349, 368], "1500001": [349, 368, 542, 630], "11259177": [350, 368], "3574118": [350, 368], "20097363": [350, 368], "suppli": [354, 368, 374, 480, 801, 820, 822, 840], "217234": [355, 368], "hurwitz": [358, 368], "custom_grad_func": [360, 370], "bind": [360, 370, 814, 835, 865, 866], "upstream": [360, 370, 815, 816, 819, 830, 835], "primal": [361, 362, 370], "jacobian": [361, 362, 370, 616, 631, 851, 866], "cotang": [362, 370], "stanh": 363, "ndenumer": 365, "ndindex": 365, "random_cp": 365, "random_parafac2": 365, "random_tr": 365, "random_tt": 365, "random_tuck": 365, "bind_custom_gradient_funct": [370, 835], "jvp": 370, "vjp": 370, "h_out": [371, 388, 632, 657], "w_out": [371, 388], "area_interpol": 371, "01823380e": [371, 393, 403], "15385818e": [371, 393, 403], "36371466e": [371, 393, 403], "38763905e": [371, 393, 403], "60722279e": [371, 393, 403], "80319249e": [371, 393, 403], "05617893e": [371, 393, 403], "21500000e": [371, 393, 403], "24000015e": [371, 393, 403], "90734863e": [371, 393, 403], "10000420e": [371, 393, 403], "15899994e": [371, 393, 403], "24000053e": [371, 393, 403], "81469727e": [371, 393, 403], "09999847e": [371, 393, 403], "4135742": [371, 393, 403], "6779785": [371, 393, 403], "3770599": [371, 393, 403], "8719864": [371, 393, 403], "72109985": [371, 393, 403], "52869415": [371, 393, 403], "79182434": [371, 393, 403], "72489166": [371, 393, 403], "container_n": [371, 393, 403], "container_typ": [371, 393, 403, 630], "container_norm": [371, 393, 403], "1580677": [371, 393], "89422607": [371, 393], "86190414": [371, 393], "00041008": [371, 393], "75149155": [371, 393], "97056389": [371, 393], "87819386": [371, 393], "89381361": [371, 393], "50000000e": [371, 393, 403, 772], "22044605e": [371, 393, 403], "ed": [371, 395, 396, 397], "rest": [371, 374, 395, 396, 397, 466, 815, 822, 824, 840, 850, 868], "5d": [371, 397, 788], "emb": [371, 398], "51285338": [371, 398], "87183261": [371, 398], "2308116": [371, 398], "02733949e": [371, 399], "00j": [371, 399], "49660576e": [371, 399], "68178638e": [371, 399], "01j": [371, 399, 404], "98912367e": [371, 399], "21802426e": [371, 399, 404], "04549134e": [371, 399, 404], "82842712e": [371, 399, 404], "86902654e": [371, 399, 404], "25501143e": [371, 399, 404], "32978028e": [371, 399, 404], "52068201e": [371, 399, 404], "71158374e": [371, 399, 404], "generate_einsum_equ": 371, "get_interpolate_kernel": 371, "27279224e": [371, 403], "44232273e": [371, 403], "70464332e": [371, 403], "73454881e": [371, 403], "00902849e": [371, 403], "10039906e": [371, 403], "07022366e": [371, 403], "69506073": [371, 403], "93914604": [371, 403], "88008881": [371, 403], "18951607": [371, 403], "57439613": [371, 403], "15318303e": [371, 404], "15148591e": [371, 404], "19j": [371, 404], "25000000e": [371, 404], "35378602e": [371, 404], "02j": [371, 404], "65404249e": [371, 404], "17611649e": [371, 404], "24320230e": [371, 404], "79344813e": [371, 404], "22374531e": [371, 404], "45929364e": [371, 404], "14208718e": [371, 404], "07177031e": [371, 404], "indexerror": [371, 405, 416, 635, 698, 803, 829], "interp": [371, 843], "xp": [371, 406, 819], "fp": [371, 406], "nd": [371, 407], "tf_bicub": [371, 407, 843], "nearest_interpol": 371, "window_shap": [371, 413], "pool_typ": [371, 413], "irfft": [371, 415], "silent": [371, 415], "discard": [371, 415, 824], "1400001": [371, 415], "3999999": [371, 415], "3999996": [371, 415], "99038106j": [371, 416], "33012702": [371, 416], "23205081j": [371, 416], "33012702j": [371, 416], "superdiagon": [372, 423, 633, 666], "subdiagon": [372, 423, 633, 666], "eigendecomposit": [372, 425, 633, 668, 669], "qlq\u1d40": [372, 425, 633, 668, 669], "tridiagon": [372, 426], "38196602": [372, 426], "61803389": [372, 426], "35048741": [372, 426], "56710052": [372, 426], "06693714": [372, 426], "74234426": [372, 426], "56155282": [372, 426], "56155276": [372, 426], "82842714": [372, 426], "82842731": [372, 426, 633, 669], "necessarili": [372, 427, 820, 823], "generalis": [372, 428], "skip_matrix": [372, 431, 433], "khatri_rao_product": [372, 431], "kronecker_product": [372, 433], "n_column": [372, 433], "lu_factor": 372, "pivot": [372, 434], "lu": [372, 434, 435], "lu_solv": 372, "nnmf": [372, 436], "hoi": [372, 441, 447], "solve_triangular": 372, "unit_diagon": [372, 442], "solut": [372, 442, 633, 682, 772, 808, 812, 814, 815, 816, 823, 825, 830, 838, 840, 843, 864, 868], "determinist": [372, 443, 840], "borrow": [372, 443, 818], "extmath": [372, 443], "ivan": [372, 444], "oseledet": [372, 444], "scientif": [372, 444, 866], "2295": [372, 444], "2317": [372, 444], "2011": [372, 444], "convention": [373, 450, 869], "explicit": [373, 374, 450, 488, 815, 823, 825, 835, 836, 837, 845, 851, 866], "555969": [373, 450], "223876": [373, 450], "111938": [373, 450], "42649534": [373, 450], "68651628": [373, 450], "51119184": [373, 450], "59967244": [373, 450], "mae": [373, 451], "666": [373, 451, 632, 633, 656, 674], "91097307": [373, 453], "3467": [373, 454], "0133": [373, 454], "0250": [373, 454], "0056": [373, 454], "0025": [373, 454], "0675": [373, 454], "6987": [373, 455], "1606": [373, 455], "3711": [373, 455], "4032": [373, 455], "6931": [373, 455], "whilst": [374, 458, 459, 460, 850, 853, 866], "ary3": [374, 460], "check_scalar": 374, "force_integ": [374, 462], "force_posit": [374, 462], "mod": [374, 463, 819], "tall": [374, 469], "appear": [374, 471, 472, 610, 630, 815, 816, 819, 837, 843, 859], "horizot": [374, 476], "shortcut": [374, 480, 815], "linear_ramp": [374, 480], "reflect": [374, 480, 816, 820, 836, 840], "ramp": [374, 480], "mirror": [374, 480, 811, 814, 866], "padding_func": [374, 480], "iaxis_pad_width": [374, 480], "iaxi": [374, 480], "unalt": [374, 480], "put": [374, 485, 808, 814, 840, 851, 872], "mul": [374, 485, 836, 847], "conceptu": [374, 488, 862, 867], "concern": [374, 488, 816, 818, 823, 825, 827, 836, 843, 844, 872], "regard": [374, 488, 813, 823, 837, 838, 843, 856], "mutat": [374, 488], "elimin": [374, 494, 815], "consecut": [374, 494], "batch_mean": [377, 497, 499], "batch_var": [377, 497, 499], "running_vari": [377, 497, 499], "local_response_norm": 377, "neighbour": [377, 502], "42857143": [377, 503], "5714286": [377, 503], "multivari": [378, 506], "bayesian": [378, 506], "supposedli": [381, 510], "indirect": [381, 511], "secondari": [381, 511], "is_ivy_sparse_arrai": 382, "is_native_sparse_arrai": 382, "native_sparse_arrai": 382, "coo_indic": [382, 514], "crow_indic": [382, 514], "col_indic": [382, 514], "ccol_indic": [382, 514], "row_indic": [382, 514], "dense_shap": [382, 514], "native_sparse_array_to_indices_values_and_shap": 382, "nativesparsearrai": 382, "sparsearrai": 382, "linalg": [383, 518, 633, 681, 682, 814, 836, 838], "aw": [383, 518, 856], "48447205": [383, 518], "c0": [383, 521], "ck": [383, 521], "c2": [383, 521], "nearest_jax": [383, 528], "trace_on_next_step": [532, 630, 792, 849], "recalcul": [535, 630], "my_sum": [535, 630], "val1": [535, 630], "val2": [535, 630], "cached_sum": [535, 630], "line_eq": [535, 630], "slp": [535, 630], "itc": [535, 630], "cached_line_eq": [535, 630], "0353": [536, 630], "424": [536, 630], "176": [536, 630], "339": [536, 630], "271": [536, 630], "391": [536, 630], "417": [537, 630], "583": [537, 630], "0667": [537, 630], "267": [537, 630], "131": [537, 630], "263": [537, 630], "394": [537, 630, 639, 739], "526": [537, 630], "788": [537, 630], "27279221": [537, 630], "69705628": [537, 630], "12132034": [537, 630], "default_str": [540, 630], "46999979": [541, 630], "66000009": [541, 630], "93000001": [541, 630], "29000092": [541, 630], "33999991": [541, 630], "6400001": [541, 630], "96000004": [541, 630], "36000013": [541, 630], "51999998": [541, 630], "67000008": [541, 630], "suppos": [541, 630, 825, 840], "960": [541, 630], "3600": [541, 630], "h1": [541, 630], "w1": [541, 630], "40499985": [542, 630], "61000061": [542, 630], "max_depth": [553, 630], "seen_set": [553, 630], "local_set": [553, 630], "referr": [553, 630], "redund": [553, 630, 808, 825, 829, 837, 859], "example_funct": [553, 630], "repr": [553, 630], "ivyexcept": [558, 591, 630, 803, 826, 829, 834, 836, 837, 841], "allow_dupl": [568, 630], "fork": [569, 630, 809, 819, 824, 830], "forkserv": [569, 630], "mp_default": [569, 630], "defaultcontext": [569, 630], "0x7f4e3193e520": [569, 630], "mp_fork": [569, 630], "forkcontext": [569, 630], "0x7f4e3193e580": [569, 630], "mp_spawn": [569, 630], "spawncontext": [569, 630], "0x7f4e3193e5e0": [569, 630], "mp_forkserv": [569, 630], "forkservercontext": [569, 630], "0x7f4e3193e640": [569, 630], "garbag": [571, 630], "collector": [571, 630], "get_all_arrays_in_memori": [571, 630], "exception_trace_mod": [575, 599, 630, 842], "lenient": [576, 600, 630], "inplace_mod": [576, 600, 630], "break": [576, 630, 808, 821, 825, 832, 841, 851], "infus": [577, 630], "unset": [578, 585, 630, 633, 681, 797, 821, 845], "unset_min_bas": [578, 630], "nestable_mod": [580, 603, 630, 842], "precise_mod": [581, 604, 630, 842], "shape_array_mod": [583, 606, 630, 842], "show_func_wrapper_trace_mod": [584, 607, 630, 842], "tmp_dr": [585, 630], "tmp_dir": [585, 608, 630, 842], "my_tmp": [585, 630], "unset_tmp_dir": [585, 630], "49999999999975": [588, 630], "5015015015010504": [588, 630], "000444502911705e": [588, 630], "9999999999995j": [588, 630], "00000262": [589, 630], "15605032": [589, 630], "01208451j": [589, 630], "00048": [589, 630], "1296": [589, 630], "00864": [589, 630], "isn": [591, 630, 811, 816, 834, 836, 840, 848, 851, 868], "100000023841858": [593, 630], "200000047683716": [593, 630], "299999952316284": [593, 630], "400000095367432": [593, 630], "599999904632568": [593, 630], "hemant": [597, 630], "unset_shape_array_mod": [598, 630], "set_exception_trace_mod": [599, 630, 829], "set_min_bas": [601, 630], "set_min_denomin": [602, 630], "set_nestable_mod": [603, 630], "set_precise_mod": [604, 630], "set_queue_timeout": [605, 630], "set_shape_array_mod": [606, 630], "set_show_func_wrapper_trace_mod": [607, 630, 829], "set_tmp_dir": [608, 630], "my_dir": [608, 630], "451": [609, 630], "in_ax": [610, 630], "out_ax": [610, 630], "thereof": [610, 630], "summaris": [610, 630], "99999998": [611, 631], "19999998": [611, 631], "00000001": [611, 631], "00300001": [611, 631], "00800001": [611, 631], "0125": [611, 631], "17294501": [611, 631], "15770318": [611, 631], "20863818": [611, 631], "90000075": [612, 631], "90000164": [612, 631], "9000032": [612, 631], "50000012e": [612, 631], "92558754": [612, 631], "92558694": [612, 631], "92558682": [612, 631], "92558861": [612, 631], "60000025e": [612, 631], "01024": [612, 631], "retain_grad": [613, 631], "func_ret": [613, 631, 835], "666666": [613, 631], "333332": [613, 631], "66666675": [613, 621, 631], "argnum": [614, 631], "933": [614, 616, 631], "jac_fn": [616, 631], "639": [617, 631], "361": [617, 631], "52565837": [618, 631], "8418861": [618, 631], "68377209": [618, 631], "value_grad": [621, 631], "42333412": [621, 631], "5333333": [621, 631], "93333334": [621, 631], "43333334": [621, 631], "0666666": [621, 631], "softsign": 622, "718281828459045": 623, "euler": 623, "141592653589793": 623, "cmp_i": 624, "cmp_isnot": 624, "for_loop": 624, "if_els": 624, "try_except": 624, "to_dlpack": 625, "as_ivy_dtyp": [626, 837], "as_native_dtyp": 626, "check_float": 626, "closest_valid_dtyp": 626, "default_dtyp": [626, 825, 833], "dtype_bit": 626, "function_supported_dtyp": [626, 825, 840], "function_unsupported_dtyp": [626, 825], "infer_default_dtyp": 626, "invalid_dtyp": [626, 825], "is_hashable_dtyp": 626, "is_native_dtyp": 626, "promote_typ": [626, 825], "promote_types_of_input": [626, 825, 836], "type_promote_arrai": [626, 825], "unset_default_complex_dtyp": 626, "unset_default_float_dtyp": 626, "unset_default_int_dtyp": 626, "unset_default_uint_dtyp": 626, "valid_dtyp": 626, "defaultcomplexdtyp": 626, "defaultdtyp": 626, "defaultfloatdtyp": 626, "defaultintdtyp": 626, "defaultuintdtyp": 626, "as_ivy_dev": [627, 847], "clear_cached_mem_on_dev": 627, "dev_util": [627, 826], "function_supported_devic": 627, "function_unsupported_devic": 627, "get_all_ivy_arrays_on_dev": [627, 826], "handle_soft_device_vari": [627, 826], "num_cpu_cor": [627, 826], "num_gpu": [627, 826, 840], "num_ivy_arrays_on_dev": 627, "percent_used_mem_on_dev": 627, "print_all_ivy_arrays_on_dev": 627, "set_split_factor": [627, 829], "split_func_cal": 627, "total_mem_on_dev": [627, 826], "tpu_is_avail": 627, "unset_default_devic": [627, 826], "unset_soft_device_mod": [627, 826], "used_mem_on_dev": 627, "defaultdevic": [627, 826], "profil": 627, "save_dir": 627, "arg_info": 630, "arg_nam": 630, "cache_fn": [630, 833], "current_backend_str": [630, 840, 845, 847], "function_supported_devices_and_dtyp": 630, "function_unsupported_devices_and_dtyp": 630, "get_item": [630, 836], "get_referrers_recurs": 630, "inplace_arrays_support": 630, "inplace_variables_support": 630, "is_ivy_nested_arrai": 630, "isscalar": 630, "match_kwarg": 630, "num_arrays_in_memori": 630, "print_all_arrays_in_memori": 630, "set_item": [630, 840], "to_ivy_shap": 630, "to_native_shap": 630, "try_else_non": 630, "unset_array_mod": [630, 842], "unset_exception_trace_mod": 630, "unset_inplace_mod": 630, "unset_min_denomin": 630, "unset_nestable_mod": 630, "unset_precise_mod": 630, "unset_queue_timeout": 630, "unset_show_func_wrapper_trace_mod": 630, "vmap": [630, 851, 866], "arraymod": 630, "precisemod": [630, 825], "jac": 631, "value_and_grad": [631, 835], "neural": [632, 784, 788, 808, 860, 862, 864, 865, 866, 870, 872, 873], "feature_group_count": [632, 645, 652, 653], "oiw": [632, 645, 646, 652], "oihw": [632, 645, 648, 652], "oidhw": [632, 645, 650, 652], "dhwio": [632, 645, 646, 650, 652], "conv_general_dil": [632, 837], "conv_general_transpos": 632, "depthwis": [632, 654, 774, 788], "overfit": [632, 655], "overal": [632, 655, 802, 823, 825, 826, 828, 850, 859, 862, 864, 865, 866], "1428566": [632, 655], "49000001": [632, 655], "55599999": [632, 655], "21000004": [632, 655], "incom": [632, 656], "4269": [632, 656], "911": [632, 656, 829], "157": [632, 656], "753": [632, 656], "545": [632, 639, 656, 737], "547": [632, 656, 826], "124": [632, 656], "963": [632, 656], "98495483": [632, 656], "0293808": [632, 656], "0159359": [632, 656], "74752808": [632, 656], "20942307": [632, 656], "3205719": [632, 656], "all_weight": [632, 657], "num_lay": [632, 657, 788], "batch_first": [632, 657, 659], "weights_transpos": [632, 657], "has_ih_bia": [632, 657], "has_hh_bia": [632, 657], "multi": [632, 633, 657, 659, 664, 774, 788, 827, 844, 851, 862, 864, 866, 870], "long": [632, 657, 658, 815, 816, 824, 825, 827, 829, 830, 837, 845, 866], "seq_len": [632, 657], "input_s": [632, 657], "h_0": [632, 657], "c_0": [632, 657], "num_direct": [632, 657], "hidden_s": [632, 657], "four": [632, 657, 811, 820, 825, 827, 832, 833, 840, 843, 848], "w_ih": [632, 657], "w_hh": [632, 657], "b_ih": [632, 657], "b_hh": [632, 657], "bias": [632, 657], "pack": [632, 657], "c_out": [632, 657], "paper": [632, 659, 808, 857], "vaswani": [632, 659], "al": [632, 659], "num_attention_head": [632, 659], "key_dim": [632, 659, 788], "value_dim": [632, 659, 788], "attention_weight": [632, 659], "unbatch": [632, 659], "nm": 632, "box": [632, 660, 661, 815], "iou_threshold": [632, 660], "max_output_s": [632, 660], "score_threshold": [632, 660], "roi_align": 632, "spatial_scal": [632, 661], "sampling_ratio": [632, 661], "23333359": [632, 662], "03946018": [632, 662], "0280633": [632, 662], "29981947": [632, 662], "29981089": [632, 662], "06345534": [632, 662], "9634552": [632, 662], "19336844": [632, 662], "09336829": [632, 662], "axisa": [633, 664], "axisb": [633, 664], "axisc": [633, 664], "293": [633, 665], "46997": [633, 665], "explicitli": [633, 669, 670, 685, 769, 788, 789, 790, 812, 819, 820, 821, 823, 825, 828, 829, 830, 833, 834, 835, 836, 838, 840, 845, 851, 860, 866], "17157288": [633, 669], "9238795": [633, 669], "78930789": [633, 669], "59803128": [633, 669], "19127655": [633, 669], "31213903": [633, 669], "63418275": [633, 669], "84632206": [633, 669], "70548367": [633, 669], "70223427": [633, 669], "09570674": [633, 669], "63116378": [633, 669], "56109613": [633, 669], "53554028": [633, 669], "32237405": [633, 669], "43822157": [633, 669], "83906901": [633, 669], "50766778": [633, 669], "71475857": [633, 669], "48103389": [633, 669], "3676433": [633, 669], "68466955": [633, 669], "62933773": [633, 669], "77917379": [633, 669], "14264561": [633, 669], "61036086": [633, 669], "45033181e": [633, 670], "02829754e": [633, 670], "54220343e": [633, 670], "12647155e": [633, 670], "38447177e": [633, 670], "56155300e": [633, 670], "26794919": [633, 670], "7320509": [633, 670], "0012": [633, 672], "00342": [633, 672], "000565": [633, 672], "0104": [633, 672], "000981": [633, 672], "00282": [633, 672], "000766": [633, 672], "0322": [633, 672], "00237": [633, 672], "000151": [633, 672], "00101": [633, 672], "00019": [633, 672], "0214": [633, 672], "00171": [633, 672], "0107": [633, 672], "0167": [633, 672], "0472": [633, 672], "0536": [633, 672], "0177": [633, 672], "000429": [633, 672], "00762": [633, 672], "frobeniu": [633, 674], "nuclear": [633, 674], "induc": [633, 674], "ranl": [633, 674], "47722558": [633, 674], "776": [633, 674], "6000004": [633, 674], "118": [633, 675], "moor": [633, 679], "penros": [633, 679], "31622776": [633, 680], "94868332": [633, 680], "1622777": [633, 680], "42718887": [633, 680], "deteremin": [633, 681], "logsabsdet": [633, 681], "subject": [633, 681], "unset_backend": [633, 681, 797, 821], "ordin": [633, 682], "b2": [633, 682], "usvh": [633, 683], "cetera": [633, 683], "driver": [633, 684, 851], "cusolv": [633, 684], "gesvd": [633, 684], "gesvdj": [633, 684], "gesvda": [633, 684], "86217213": [633, 684], "31816804": [633, 684], "615": [633, 684], "ss": [633, 684], "25994301": [633, 684], "16403675": [633, 684], "61529762": [633, 684], "51231241": [633, 684], "39777088": [633, 684], "15413129": [633, 684], "1029852": [633, 684], "01383495": [633, 684], "86647356": [633, 684], "7786541": [633, 684], "55970621": [633, 684], "16857576": [633, 684], "86412698": [633, 684], "37566757": [633, 684], "88477993": [633, 684], "95925522": [633, 684], "6444726": [633, 684], "54687881": [633, 684], "16134834": [633, 684], "35037804": [633, 684], "31025076": [633, 684], "35769391": [633, 684], "transposit": [633, 685], "success": [633, 643, 687, 759, 761, 811, 815, 824, 856], "0x": [633, 688], "Such": [633, 688, 833, 840], "progress": [633, 688, 811, 815, 816, 850], "alexandr": [633, 688], "theophil": [633, 688], "dot_product": [633, 689], "9000001": [633, 690], "64158917": [633, 690], "skew": [633, 691], "60309976": [634, 692], "6666193": [634, 692], "01348412": [634, 692], "05393649": [634, 692], "49992943": [634, 692], "83330965": [634, 692], "02136981": [634, 692], "32844672": [634, 692], "26561815": [634, 692], "22314337": [634, 692], "08916873": [634, 693, 694], "44832274": [634, 694], "75646281": [634, 694], "13862944": [634, 694], "57564628": [634, 694], "outsid": [635, 695, 706, 825, 826, 833, 847, 871], "honor": [635, 702], "beyond": [635, 703, 828, 837, 872], "famili": [635, 706], "intxx": [635, 706], "floatxx": [635, 706], "rep": [635, 708], "fomaml_step": 636, "inner_cost_fn": [636, 711, 712, 713], "outer_cost_fn": [636, 711, 712], "inner_grad_step": [636, 711, 712, 713], "inner_learning_r": [636, 711, 712, 713], "inner_optimization_step": [636, 711, 712, 713], "inner_batch_fn": [636, 711, 712], "outer_batch_fn": [636, 711, 712], "average_across_step": [636, 711, 712], "inner_v": [636, 711, 712], "keep_inner_v": [636, 711, 712], "outer_v": [636, 711, 712], "keep_outer_v": [636, 711, 712], "return_inner_v": [636, 711, 712, 713], "num_task": [636, 711, 712, 713], "maml": [636, 711, 712], "0x7f508132bf40": [636, 711, 712, 713], "maml_step": 636, "vanilla": [636, 712, 849, 866], "_variabl": [636, 712, 713], "sub_batch": [636, 712], "40069818": [636, 712], "13723135": [636, 712], "reptile_step": 636, "cost_fn": [636, 713], "reptil": [636, 713], "batch_in": [636, 713], "4485182": [636, 713], "139": [636, 713], "9569855": [636, 713], "9880483": [636, 713], "01766968": [636, 713], "02197957": [636, 713], "02197981": [636, 713], "all_nested_indic": 637, "include_nest": [637, 714], "_index": [637, 714, 725], "_base": [637, 714, 724, 725, 836], "themselv": [637, 714, 823, 825, 826, 828, 833, 837, 849, 863, 872], "863": [637, 714, 826], "672": [637, 714], "482": [637, 714], "674": [637, 714], "341": [637, 714], "copy_nest": 637, "to_mut": [637, 715, 726], "deepli": [637, 715, 817, 851, 866], "copied_nest": [637, 715], "1337": [637, 715, 726], "duplicate_array_index_chain": 637, "index_nest": [637, 833], "insert_into_nest_at_index": 637, "insert_into_nest_at_indic": 637, "onto": [637, 720, 726, 854, 855, 866], "special_squar": [637, 720], "6666666666666667": [637, 720], "special_pow": [637, 720], "linear_model": [637, 720], "map_nest_at_index": 637, "_result": [637, 721, 731], "hh": [637, 721, 726], "map_nest_at_indic": 637, "ub": [637, 722], "tb": [637, 722], "multi_index_nest": 637, "nested_ani": 637, "check_nest": [637, 724, 725], "nested_argwher": 637, "stop_after_n_found": [637, 725], "nested_indic": [637, 725], "nested_map": [637, 826, 833], "_tuple_check_fn": [637, 726], "_list_check_fn": [637, 726], "_dict_check_fn": [637, 726], "wherebi": [637, 726, 814, 863], "ah": [637, 726], "bh": [637, 726], "ch": [637, 726], "dh": [637, 726, 819], "eh": [637, 726], "gh": [637, 726, 815, 830], "ih": [637, 726], "1338": [637, 726], "nested_multi_map": 637, "index_chain": [637, 727], "nest0": [637, 727], "ivy_arrai": [637, 727, 820, 837], "unappli": [637, 727], "prune_empti": 637, "prune_nest_at_index": 637, "prune_nest_at_indic": 637, "set_nest_at_index": 637, "set_nest_at_indic": 637, "xyz": [637, 732], "pqr": [637, 732], "mini": [638, 733, 788, 791], "uniformli": [639, 735, 737], "22346112": [639, 736], "0922": [639, 736], "9213753": [639, 736], "12818667": [639, 736], "799": [639, 736], "469": [639, 736], "287": [639, 736], "0366": [639, 736], "26431865": [639, 737], "475": [639, 737], "878": [639, 737], "861": [639, 737], "929": [639, 737], "789": [639, 737], "519": [639, 737], "0435": [639, 737], "381": [639, 737], "4608004": [639, 737], "8458502": [639, 737], "67270088": [639, 737], "31128597": [639, 737], "zeroel": [640, 743], "guarante": [641, 745, 747, 806, 820, 825, 836, 851, 857], "fourth": [641, 745], "1141": [641, 745], "8101": [641, 745], "9298": [641, 745], "8460": [641, 745], "2119": [641, 745], "3519": [641, 745], "6252": [641, 745], "4033": [641, 745], "7443": [641, 745], "2577": [641, 745], "3707": [641, 745], "0545": [641, 745], "3238": [641, 745], "5944": [641, 745], "0775": [641, 745], "4327": [641, 745], "62519997": [641, 745], "40329999": [641, 745], "59439999": [641, 745], "74430001": [641, 745], "81010002": [641, 745], "84600002": [641, 745], "92979997": [641, 745], "einstein": [643, 755, 801], "117": [643, 755], "intend": [643, 761, 770, 787, 819, 832, 835, 864, 866, 870, 871], "07472222": [643, 762], "00666667": [643, 762], "08966666": [643, 762], "simplicit": [644, 763, 764], "ivy_test": [767, 769, 770, 772, 773, 774, 775, 776, 777, 778, 779, 780, 814, 815, 816, 819, 822, 824, 830, 838], "test_ivi": [767, 769, 770, 772, 773, 774, 775, 776, 777, 778, 779, 780, 814, 815, 816, 822, 824, 830, 838, 840], "assert_all_clos": [767, 838], "ret_np": [767, 769, 838], "ret_from_gt_np": [767, 838], "ground_truth_backend": [767, 769, 770, 779, 780, 812, 830, 838], "mark": [767, 811, 814, 816, 819, 840, 845], "assert_same_typ": 767, "ret_from_target": 767, "ret_from_gt": 767, "backend_to_test": [767, 769, 812, 830, 838], "gt_backend": 767, "with_backend": [767, 797], "assert_same_type_and_shap": 767, "this_key_chain": 767, "check_unsupported_devic": 767, "input_devic": 767, "all_as_kwargs_np": [767, 769], "presenc": [767, 823, 836], "check_unsupported_device_and_dtyp": 767, "input_dtyp": [767, 769, 779, 812, 830, 838, 840], "check_unsupported_dtyp": 767, "test_unsupported_funct": 767, "value_test": 767, "ret_np_flat": 767, "ret_np_from_gt_flat": 767, "specific_tolerance_dict": 767, "ret_from_np_gt_flat": 767, "function_test": 769, "args_to_contain": 769, "array_arg": [769, 833], "args_to_frontend": 769, "frontend_array_fn": 769, "arrays_to_frontend": 769, "as_list": 769, "convtru": 769, "nativeclass": 769, "counter": [769, 849], "create_args_kwarg": 769, "args_np": 769, "arg_np_val": 769, "args_idx": 769, "kwargs_np": 769, "kwarg_np_val": 769, "kwargs_idx": 769, "test_flag": [769, 812, 830, 838, 840], "on_devic": [769, 779, 812, 830, 838], "flatten_and_to_np": 769, "flatten_frontend": 769, "flatten_frontend_fw_to_np": 769, "frontend_ret": [769, 838], "isscalar_func": 769, "is_native_array_func": 769, "to_numpy_func": 769, "flatten_frontend_to_np": 769, "get_frontend_ret": 769, "frontend_fn": 769, "frontend_array_funct": 769, "precision_mod": [769, 779, 780, 830], "test_trac": [769, 779, 780, 812, 819, 830], "test_trace_each": [769, 779, 780], "get_ret_and_flattened_np_arrai": 769, "gradient_incompatible_funct": 769, "gradient_test": [769, 840], "rtol_": [769, 812, 830], "atol_": [769, 812, 830, 838], "tolerance_dict": 769, "gradient_unsupported_dtyp": 769, "kwargs_to_args_n_kwarg": 769, "num_positional_arg": [769, 779, 780, 812, 830, 838, 840], "port": [769, 857], "test_frontend_funct": [769, 838], "fn_tree": [769, 770, 780, 812, 830, 837, 838, 840], "gt_fn_tree": [769, 780], "test_valu": [769, 838, 840], "frontend_function_flag": [769, 779], "functiontestflag": [769, 779, 812, 830], "with_out": [769, 779, 812, 830, 838, 840], "instance_method": [769, 779, 812, 830, 840], "as_vari": [769, 779, 812, 830, 838, 840], "namespac": [769, 814, 825, 834, 837, 838, 841, 845, 850], "arg_": 769, "test_frontend_method": [769, 838], "init_input_dtyp": [769, 838], "method_input_dtyp": [769, 838], "init_flag": [769, 838, 840], "method_flag": [769, 779, 838, 840], "init_all_as_kwargs_np": [769, 838], "method_all_as_kwargs_np": [769, 838], "frontend_method_data": [769, 838], "init_as_variable_flag": [769, 780], "dictat": [769, 820, 827, 832, 836], "init_num_positional_arg": [769, 780], "init_native_array_flag": 769, "with_v": 769, "ret_gt": 769, "test_funct": [769, 812, 815, 816, 824, 830, 838, 840], "fn_name": [769, 770, 780, 812, 821, 830, 838, 840], "return_flat_np_arrai": 769, "as_variable_flag": [769, 780, 840], "native_array_flag": [769, 780, 840], "container_flag": [769, 779, 780, 840], "test_function_backend_comput": 769, "test_function_ground_truth_comput": 769, "arg_np_arrai": 769, "arrays_args_indic": 769, "arrays_kwargs_indic": 769, "kwarg_np_arrai": 769, "test_gradient_backend_comput": 769, "test_gradient_ground_truth_comput": 769, "test_method": 769, "method_nam": [769, 778, 780, 838], "init_with_v": 769, "method_with_v": 769, "test_gradi": [769, 779, 780, 812, 830, 840], "method_as_variable_flag": [769, 780], "method_num_positional_arg": [769, 780], "method_native_array_flag": 769, "method_container_flag": [769, 780], "test_method_backend_comput": 769, "test_method_ground_truth_comput": 769, "org_con_data": 769, "args_np_method": 769, "met_arg_np_v": 769, "met_args_idx": 769, "kwargs_np_method": 769, "met_kwarg_np_v": 769, "met_kwargs_idx": 769, "v_np": 769, "traced_if_requir": 769, "wrap_frontend_function_arg": 769, "holder": 770, "current_frontend_config": 770, "0x7f5074a61f10": 770, "interruptedtest": 770, "test_interrupt": 770, "baseexcept": 770, "tri": [770, 825], "testdata": 770, "supported_device_dtyp": 770, "is_method": 770, "setup_api_test": 770, "test_data": 770, "setup_frontend_test": 770, "teardown_api_test": 770, "teardown_frontend_test": 770, "hypothesis_help": [772, 773, 774, 775], "array_help": 772, "array_and_broadcastable_shap": 772, "searchstrategi": [772, 773, 774, 775, 779, 780, 840], "array_bool": [772, 840], "min_valu": [772, 773, 774, 775, 812, 830, 838, 840], "max_valu": [772, 773, 774, 775, 838, 840], "ex": [772, 773, 774, 775, 780, 824, 860], "strategi": [772, 773, 774, 775, 779, 780, 814, 838], "array_helpers_dtype_info_help": 772, "kind_dtyp": [772, 774], "array_indices_axi": 772, "array_dtyp": [772, 773, 840], "indices_dtyp": 772, "get_dtyp": [772, 773, 812, 830, 838, 840], "abs_smallest_v": [772, 774, 775], "large_abs_safety_factor": [772, 774, 775, 812, 830, 838, 840], "small_abs_safety_factor": [772, 774, 775, 812, 830, 838], "safety_factor_scal": [772, 774, 775, 838, 840], "disable_random_axi": 772, "axis_zero": 772, "allow_inf": [772, 775, 838, 840], "min_num_dim": [772, 774, 838, 840], "max_num_dim": [772, 774, 838, 840], "min_dim_s": [772, 774, 838, 840], "max_dim_s": [772, 774, 838], "first_dimension_onli": 772, "indices_same_dim": 772, "valid_bound": 772, "safeti": [772, 774, 775, 866], "0002": [772, 775], "hypothesi": [772, 774, 780, 814, 816, 819, 824, 834], "65536": 772, "44758124e": [772, 840], "array_indices_put_along_axi": 772, "values_dtyp": 772, "array_valu": [772, 840], "allow_nan": [772, 775, 840], "allow_subnorm": [772, 775, 840], "exclude_min": [772, 775, 840], "exclude_max": [772, 775], "subnorm": [772, 775], "get_shap": [772, 774, 838, 840], "1806": 772, "36912": 772, "6955": 772, "59576": 772, "1025": 772, "arrays_and_ax": 772, "available_dtyp": [772, 773, 812, 830, 838, 840], "allow_non": [772, 774, 838, 840], "return_dtyp": 772, "force_int_axi": 772, "26e": 772, "10e": 772, "24322108": 772, "26446279e": 772, "96046448e": 772, "008": 772, "17549435e": 772, "038": 772, "06541027e": 772, "13725760e": 772, "07143888": 772, "arrays_for_pool": 772, "min_dim": 772, "max_dim": 772, "min_sid": 772, "max_sid": 772, "explicit_or_str_pad": 772, "only_explicit_pad": 772, "return_dil": 772, "mixed_fn_compo": [772, 773, 774, 775, 840], "return_data_format": 772, "cond_data_gen_help": 772, "create_concatenable_arrays_dtyp": 772, "min_num_arrai": 772, "max_num_arrai": 772, "concat_dim": 772, "common_shap": [772, 840], "stackabl": 772, "given_common_shap": 772, "create_nested_input": 772, "leaf_valu": 772, "dtype_and_valu": [772, 812, 830, 838, 840], "num_arrai": [772, 773, 838, 840], "shared_dtyp": [772, 773, 838], "ret_shap": 772, "array_api_dtyp": [772, 773], "shape_kei": 772, "37915": 772, "6322": 772, "26765": 772, "12413": 772, "26986": 772, "34665": 772, "000e": 772, "711e": 772, "100e": 772, "955e": [772, 840], "40817": 772, "56193": 772, "29200": 772, "5851": 772, "9746": 772, "9604645e": 772, "103": 772, "41795": 772, "1170789994": 772, "44251": 772, "44209": 772, "433075925": 772, "24791": 772, "24691": 772, "24892": 772, "16711": 772, "972": 772, "15357": 772, "72057594037927936": 772, "dtype_array_queri": 772, "allow_mask": 772, "allow_neg_step": 772, "dtype_array_query_v": 772, "dtype_values_axi": [772, 840], "min_axi": 772, "max_axi": 772, "valid_axi": 772, "allow_neg_ax": 772, "min_axes_s": 772, "max_axes_s": 772, "force_tuple_axi": 772, "29788": 772, "62222885e": 772, "68281172e": 772, "257j": 772, "40129846e": 772, "90000000e": 772, "63426649e": 772, "91931887e": 772, "29488e": 772, "14361019e": 772, "12445": 772, "einsum_help": 772, "get_first_solve_batch_matrix": 772, "choose_adjoint": 772, "get_second_solve_batch_matrix": 772, "get_first_solve_matrix": 772, "allow_simplifi": 772, "choose_sid": 772, "xa": 772, "get_second_solve_matrix": 772, "list_of_s": 772, "sampled_from": [772, 838, 840], "min_siz": [772, 774, 780, 840], "max_siz": [772, 774, 780, 840], "size_bound": [772, 840], "999999999999999": 772, "9394938006792373": 772, "mutually_broadcastable_shap": 772, "num_shap": 772, "base_shap": 772, "dtype_help": 773, "univers": [773, 837, 855], "cast_filt": 773, "cast_filter_help": 773, "current_backend": [773, 797, 814, 821, 829, 833, 838, 841, 845], "get_castable_dtyp": 773, "castabl": 773, "prune_funct": 773, "intersect": [773, 824, 840], "signed_integ": 773, "real_and_complex": 773, "float_and_complex": 773, "general_help": 774, "broadcasterror": 774, "apply_safety_factor": 774, "dims_and_offset": 774, "ensure_dim_uniqu": 774, "embedding_help": 774, "general_helpers_dtype_info_help": 774, "get_axi": [774, 840], "allow_neg": 774, "sort_valu": 774, "force_tupl": 774, "force_int": 774, "assertionerror": [774, 812, 819, 829, 830, 838, 840], "get_bound": [774, 840], "get_mean_std": 774, "matrix_is_st": 774, "cond_limit": 774, "instabl": [774, 812, 825, 830], "computation": [774, 815], "prone": [774, 825], "thumb": 774, "gradual": 774, "strong": [774, 851, 856, 866], "collinear": 774, "reshape_shap": [774, 840], "sizes_": 774, "two_broadcastable_shap": 774, "x_and_filt": 774, "number_help": 775, "arbitrarili": [775, 848], "safety_factor": 775, "backend_proc": 776, "input_queu": 776, "output_queu": 776, "frontend_proc": 776, "pipeline_help": 777, "backendhandl": 777, "update_backend": [777, 838], "backendhandlermod": 777, "enum": 777, "setbackend": 777, "withbackend": 777, "withbackendcontext": 777, "get_frontend_config": 777, "frontendmethoddata": 778, "ivy_init_modul": 778, "framework_init_modul": 778, "init_nam": 778, "test_parameter_flag": 779, "dynamicflag": [779, 780], "frontendfunctiontestflag": [779, 830], "with_copi": 779, "generate_frontend_arrai": [779, 780, 830], "testflag": 779, "apply_flag": 779, "args_to_iter": 779, "frontendinittestflag": 779, "frontendmethodtestflag": 779, "test_cython_wrapp": [779, 780], "initmethodtestflag": 779, "methodtestflag": 779, "build_flag": 779, "frontend_init_flag": 779, "frontend_method_flag": 779, "function_flag": 779, "init_method_flag": 779, "testing_help": 780, "handle_exampl": [780, 840], "test_exampl": [780, 840], "test_frontend_exampl": [780, 840], "test_method_exampl": [780, 840], "test_frontend_method_exampl": [780, 840], "given_kwarg": 780, "handle_frontend_method": [780, 838, 840], "class_tre": [780, 838], "init_tre": [780, 838], "init_native_arrai": 780, "_as_varaible_strategi": 780, "method_native_arrai": 780, "test_inplac": [780, 840], "_given_kwarg": 780, "test_compil": 780, "handle_frontend_test": [780, 838, 840], "alias": [780, 814, 837, 838], "number_positional_arg": [780, 838], "test_with_out": [780, 838, 840], "test_with_copi": 780, "handle_method": [780, 840], "method_tre": [780, 838, 840], "_gradient_strategi": 780, "handle_test": [780, 812, 830, 840], "test_instance_method": [780, 840], "num_positional_args_help": 780, "num_positional_args_method": 780, "geglu": 784, "leakyrelu": 784, "logsoftmax": 784, "from_flax_modul": 785, "native_modul": 785, "params_fx": 785, "rng_seed": 785, "constructor_arg": 785, "constructor_kwarg": 785, "instance_arg": 785, "instance_kwarg": 785, "flax": [785, 850, 851, 857, 866], "from_haiku_modul": 785, "params_hk": 785, "from_paddle_modul": 785, "from_torch_modul": 785, "dedic": [785, 817, 832, 843, 847, 849], "to_keras_modul": 785, "native_module_class": 785, "modulehelp": [786, 790], "create_vari": [787, 849], "var_shap": [787, 849], "fan_out": [787, 849], "fan_in": [787, 849], "rectangular": 787, "firstlayersiren": 787, "siren": 787, "glorotuniform": [787, 788, 849], "glorot": 787, "xavier": 787, "neuron": 787, "w_1x_1": 787, "w_2x_2": 787, "w_nx_n": 787, "w_i": 787, "vanish": 787, "explod": [787, 854, 855], "kaimingnorm": 787, "fan_mod": [787, 849], "kaim": 787, "he": 787, "negative_slop": 787, "fan": 787, "propog": 787, "fan_sum": [787, 849], "Ones": 787, "randomnorm": 787, "stddev": 787, "w0": 787, "wlim": 787, "predefin": 787, "fan_avg": 787, "adaptiveavgpool1d": 788, "avgpool1d": 788, "implicit": [788, 823, 828, 837, 840, 845, 866], "avgpool2d": 788, "avgpool3d": 788, "e501": 788, "filter_s": 788, "weight_initi": [788, 849], "bias_initi": [788, 849], "0x7f5080f80670": 788, "0x7f5080f806d0": 788, "conv1dtranspos": 788, "0x7f5080f80730": 788, "0x7f5080f80790": 788, "filter_shap": 788, "0x7f5080f807f0": 788, "0x7f5080f80850": 788, "0x7f5080f808b0": 788, "0x7f5080f80910": 788, "0x7f5080f80a30": 788, "0x7f5080f80a90": 788, "conv3dtranspos": 788, "0x7f5080f80af0": 788, "0x7f5080f80b50": 788, "depthwiseconv2d": 788, "num_channel": 788, "0x7f5080f80970": 788, "0x7f5080f809d0": 788, "bernoul": 788, "num_embed": 788, "embedding_dim": 788, "padding_idx": 788, "lookup": 788, "num_embeddingss": 788, "renorm": 788, "insensit": 788, "return_st": 788, "0x7f5080f80bb0": 788, "get_initial_st": 788, "0x7f5080f805b0": 788, "0x7f5080f80610": 788, "maxpool1d": 788, "maxpool3d": 788, "multiheadattent": 788, "embed_dim": 788, "head_dim": 788, "dropout_r": 788, "use_proj_bia": 788, "attention_ax": 788, "build_mod": [788, 789, 790], "on_init": [788, 790], "parallel": [788, 822, 866, 870, 871], "binarycrossentropyloss": 789, "store_var": [789, 790], "with_partial_v": [789, 790], "logpoissonloss": 789, "modulemeta": 790, "temporarili": [790, 812, 819, 830], "from_cal": 790, "module_dict": 790, "register_buff": 790, "register_paramet": 790, "weights_path": 790, "randomness_factor": 790, "with_edge_label": 790, "with_arg_label": 790, "with_output_label": 790, "output_connected_onli": 790, "highlight_subgraph": 790, "trace_kwarg": 790, "_unified_ivy_graph": 790, "_call": 790, "num_featur": 791, "trail": 791, "layernorm": 791, "normalized_shap": 791, "elementwise_affin": 791, "set_stat": [792, 849], "adamw": 792, "weight_decai": 792, "init_on_first_step": 792, "fallback_to_non_trac": 792, "ignore_miss": 792, "privat": [792, 837, 840], "_step": [792, 849], "stochast": [792, 866], "sub_modul": 793, "check_al": 794, "messag": [794, 803, 807, 815, 816, 824, 827, 829, 831, 837, 845, 847, 856], "check_all_or_any_fn": 794, "check_ani": 794, "check_dev_correct_format": 794, "check_dimens": 794, "check_elem_in_list": [794, 833, 836, 837], "elem": 794, "check_equ": [794, 837], "check_exist": 794, "check_fals": 794, "check_gather_input_valid": 794, "check_gather_nd_input_valid": 794, "check_great": 794, "allow_equ": [794, 829], "check_inplace_sizes_valid": [794, 836], "check_isinst": 794, "allowed_typ": 794, "check_kernel_padding_s": 794, "padding_s": 794, "check_less": [794, 829], "check_one_way_broadcast": 794, "check_same_dtyp": 794, "check_shapes_broadcast": 794, "check_tru": 794, "check_unsorted_segment_valid_param": 794, "ast_help": 796, "importtransform": 796, "nodetransform": 796, "impersonate_import": 796, "tree": [796, 825], "local_ivy_id": 796, "visit_import": 796, "visit_importfrom": 796, "ivyload": 796, "loader": [796, 848, 851], "exec_modul": 796, "ivypathfind": 796, "metapathfind": 796, "find_spec": 796, "fullnam": 796, "contextmanag": 797, "choose_random_backend": 797, "global_backend": 797, "dynamic_backend_convert": 797, "backend_stack": [797, 845], "prevent_access_loc": 797, "previous_backend": [797, 821], "Or": [797, 808, 810, 815, 836, 848], "set_backend_to_specific_vers": 797, "set_jax_backend": 797, "set_mxnet_backend": 797, "mx": 797, "set_numpy_backend": 797, "set_paddle_backend": 797, "set_tensorflow_backend": 797, "set_torch_backend": 797, "sub_backend_handl": 798, "clear_sub_backend": 798, "find_available_sub_backend": 798, "sub_backends_loc": 798, "fn_name_from_version_specific_fn_nam": 798, "fn_name_from_version_specific_fn_name_sub_backend": 798, "sub_backend_vers": 798, "backend_vers": [798, 812, 825, 830], "set_sub_backend": 798, "sub_backend_str": 798, "set_sub_backend_to_specific_vers": 798, "sub_backend": 798, "unset_sub_backend": 798, "check_for_binari": 799, "cleanup_and_fetch_binari": [799, 815], "clean": [799, 816, 841, 845, 846, 848], "dynamic_import": 800, "import_modul": [800, 845], "einsum_pars": 801, "convert_interleaved_input": 801, "interleav": 801, "convert_subscript": 801, "old_sub": 801, "symbol_map": 801, "subscript": [801, 802], "oe": 801, "ellipsi": [801, 802], "find_output_shap": 801, "find_output_str": 801, "canon": 801, "gen_unused_symbol": 801, "abd": [801, 802], "get_symbol": 801, "letter": 801, "resort": 801, "unicod": 801, "charact": [801, 837, 856], "chr": 801, "surrog": 801, "\u0155": 801, "20000": 801, "\u4eac": 801, "has_valid_einsum_chars_onli": 801, "einsum_str": 801, "abaz": 801, "\u00f6ver": 801, "is_valid_einsum_char": 801, "\u01f5": 801, "legalise_einsum_expr": 801, "reproduct": [801, 802], "pars": [801, 802, 822, 827, 851], "intak": 801, "contract_path": 801, "parse_einsum_input": [801, 802], "einsum_eqn": 801, "legalis": 801, "legalise_einsum_eqn": 801, "za": [801, 802], "xza": [801, 802], "xz": [801, 802], "possibly_convert_to_numpi": 801, "myshap": 801, "__main__": 801, "0x10f850710": 801, "einsum_path_help": 802, "can_dot": 802, "idx_remov": 802, "bla": 802, "benefici": 802, "movement": 802, "costli": 802, "gemm": 802, "ijj": 802, "ddot": 802, "ikj": 802, "compute_size_by_dict": 802, "idx_dict": 802, "abbc": 802, "find_contract": 802, "input_set": 802, "output_set": 802, "lh": 802, "rh": 802, "new_result": 802, "idx_contract": 802, "iset": 802, "oset": 802, "bdc": 802, "flop_count": 802, "num_term": 802, "size_dictionari": 802, "flop": [802, 806], "greedy_path": 802, "memory_limit": 802, "exhaust": [802, 836, 840, 863, 872], "indices_remov": 802, "priorit": [802, 814, 839, 843], "hadamard": 802, "cubic": 802, "greedi": 802, "idx_siz": 802, "optimal_path": 802, "siev": 802, "input_str": 802, "output_str": 802, "parse_possible_contract": 802, "path_cost": 802, "naive_cost": 802, "propos": [802, 816, 837, 843, 866], "intermediari": [802, 821], "unoptim": 802, "new_input_set": 802, "update_other_result": 802, "provision": 802, "_parse_possible_contract": 802, "mod_result": 802, "inplaceupdateexcept": 803, "include_backend": [803, 829], "ivyattributeerror": [803, 829], "attributeerror": [803, 829, 847], "ivybroadcastshapeerror": [803, 829], "ivydeviceerror": 803, "ivydtypepromotionerror": [803, 829], "ivyindexerror": [803, 829], "ivyinvalidbackendexcept": 803, "ivynotimplementedexcept": [803, 829], "notimplementederror": 803, "ivyvalueerror": [803, 829], "handle_except": [803, 832, 834], "add_array_spec": 804, "fn_array_spec": 804, "set_logging_mod": 805, "debug": [805, 811, 815, 816, 823, 824, 835, 840, 843, 848, 866, 874], "unset_logging_mod": 805, "print_stat": 806, "viz": 806, "snakeviz": 806, "bonu": 806, "cprofil": 806, "tensorflow_profile_start": 806, "logdir": 806, "host_tracer_level": 806, "python_tracer_level": 806, "device_tracer_level": 806, "delay_m": 806, "toggl": [806, 816], "host": [806, 810, 824, 851, 856, 871], "timestamp": 806, "awai": [806, 808, 864, 866], "millisecond": 806, "guess": 806, "tensorflow_profile_stop": 806, "torch_profiler_init": 806, "schedul": [806, 824, 851, 866, 873], "on_trace_readi": 806, "record_shap": 806, "profile_memori": 806, "with_stack": 806, "with_flop": 806, "with_modul": 806, "experimental_config": 806, "profileract": 806, "record_and_sav": 806, "dealloc": 806, "record": [806, 815, 851, 867], "callstack": 806, "aten": 806, "torchscript": [806, 845, 853, 873], "_experimentalconfig": 806, "kineto": 806, "torch_profiler_start": 806, "torch_profiler_stop": 806, "cprint": [807, 845], "grant": 808, "autotun": [808, 870], "grow": [808, 811, 817, 866, 874], "peopl": [808, 813, 815, 816, 818, 866, 868], "wip": [808, 859], "docker": [808, 812, 813, 830], "pull": [808, 809, 811, 814, 815, 819, 827, 831, 841, 843, 851, 852, 857], "sweat_smil": 808, "setting_up": 808, "jax_fn": 808, "jax_x": 808, "torch_x": 808, "torch_fn": 808, "motiv": [808, 847, 856], "contextu": 808, "problem": [808, 811, 814, 816, 819, 820, 826, 837, 847, 856, 862, 868, 872], "explos": [808, 854, 856], "adher": [808, 819, 825, 828, 832, 843, 845, 850, 855, 856, 862, 863, 872], "focus": [808, 825, 841, 864, 865, 866, 872, 873], "orient": 808, "contributor": [808, 809, 812, 814, 815, 816, 830, 837, 844, 866], "shorter": [808, 847], "ensp": 808, "customiz": [808, 822], "deepmind_perceiver_io": 808, "sm_framework": 808, "segmentation_model": 808, "sm": 808, "torch_sm": 808, "metric": [808, 851], "iou_scor": 808, "rax": 808, "torch_rax": 808, "poly1_softmax_loss": 808, "madmom": 808, "madmon": 808, "torch_madmom": 808, "freq": 808, "audio": 808, "hz2midi": 808, "torch_loss": 808, "maxpooling1d": 808, "pool_siz": 808, "tf_kornia": 808, "tf_rax": 808, "tf_madmom": 808, "tf_loss": 808, "_forward_classifi": [808, 860], "forward_classifi": [808, 860], "hk_eff_encod": 808, "dummy_x": 808, "jax_sm": 808, "jax_madmom": 808, "jax_loss": 808, "np_kornia": 808, "np_sm": 808, "np_rax": 808, "np_loss": 808, "yourself": [808, 814, 816, 831, 840, 843], "favourit": [808, 815], "pipelin": [808, 810, 818, 819, 820, 838, 841, 850, 853, 855, 860, 866, 867, 872], "hyperparam": 808, "idea": [808, 814, 839, 841, 846, 857, 865], "instantli": [808, 860], "essenti": [808, 811, 814, 821, 823, 826, 827, 833, 836, 837, 838, 855, 856, 872], "mainli": [808, 814, 818, 835, 837, 840, 846, 848, 853, 866], "handler": [808, 844, 846, 850, 853], "scene": [808, 818, 844, 846, 854, 855, 866], "facilit": [808, 817], "mse_loss": 808, "jax_ms": 808, "tf_mse": 808, "np_mse": 808, "torch_ms": 808, "someth": [808, 812, 816, 821, 830, 831, 841, 848, 849, 851, 852, 872], "favorit": 808, "flexibl": [808, 823, 825, 832, 835, 841, 843, 866], "everyon": [808, 809, 814, 815, 816, 851, 857], "plan": [808, 852], "interoper": [808, 856, 863, 864, 866, 869], "believ": [808, 816, 856], "feedback": [808, 814, 824], "appreci": [808, 817], "amaz": [808, 874], "journei": [808, 809, 817], "ambiti": 808, "season": 808, "perfect": 808, "ask": [808, 814, 815, 827, 845, 847, 851, 852, 857], "fellow": 808, "twitter": 808, "sneak": 808, "peek": 808, "stai": [808, 824], "proper": [808, 814, 837, 860], "credit": 808, "accompani": 808, "lenton2021ivi": 808, "inter": 808, "author": [808, 814, 816, 864, 868], "lenton": 808, "daniel": 808, "pardo": 808, "fabio": 808, "falck": 808, "fabian": 808, "jame": 808, "stephen": 808, "clark": 808, "ronald": 808, "journal": 808, "arxiv": 808, "preprint": 808, "2102": 808, "02886": 808, "year": [808, 819, 851, 855, 857, 866], "strongli": [809, 815, 837, 872, 873], "engag": [809, 816, 817, 856], "skill": [809, 817, 868], "veteran": 809, "effort": [809, 814, 851, 856, 862, 866, 872], "board": [809, 822], "stage": [809, 816, 818, 819, 822, 840, 856, 866], "excit": [809, 818, 856], "reward": [809, 817], "badg": [809, 817, 824, 874], "program": [809, 836, 863, 864, 866, 869, 870, 873], "climb": [809, 813], "Be": [810, 822], "awar": [810, 822, 829, 831], "linux": [810, 815, 816, 822, 869, 871], "regularli": [810, 822, 824], "internet": [810, 822], "codespac": [810, 822, 830], "make_doc": 810, "sh": [810, 815, 816, 819, 824], "pwd": 810, "ssh": [810, 824], "make_docs_without_dock": [810, 822], "award": 811, "formal": 811, "dynamo": [811, 874], "earn": [811, 817], "thoroughli": [811, 819], "valuabl": [811, 814, 816], "merg": [811, 814, 816, 819, 824, 837, 866, 874], "meet": [811, 817, 837], "qualiti": [811, 816], "wizard": [811, 874], "impact": [811, 824, 840, 849, 868], "inspector": [811, 874], "acknowledg": [811, 817], "honour": 811, "dilig": 811, "bronz": [811, 817, 874], "silver": [811, 817, 874], "gold": [811, 817, 851, 874], "expertis": [811, 817, 868], "assist": [812, 830], "runtimeerror": [812, 830], "logaddexp2_cpu": [812, 830], "falsifi": [812, 819, 830, 840], "test_logaddexp2": [812, 830], "backend_fw": [812, 830, 838], "dtype_and_x": [812, 830, 838, 840], "reproduce_failur": [812, 819, 830, 834, 840], "axicy2bkaamobaar2waaaacvaai": [812, 830], "decoartor": [812, 830], "with_unsupported_dtyp": [812, 825, 830, 837], "25830078125": [812, 830], "258544921875": [812, 830], "test_acosh": [812, 830], "axicy2baabyqwqgiaabdaai": [812, 830], "quit": [812, 816, 820, 827, 828, 830, 833, 834, 840, 843, 866, 872], "41421356": [812, 830], "41421356e": [812, 830], "34078079e": [812, 830], "154": [812, 830], "test_ab": [812, 815, 830, 840], "000j": [812, 830], "154j": [812, 830], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [812, 830], "thread": [812, 814, 815, 816, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 848, 866], "pycharm": [812, 838, 840], "few": [813, 814, 816, 823, 825, 826, 832, 833, 835, 836, 838, 840, 843, 845, 846, 847, 848, 849, 857, 866, 868], "steep": 813, "curv": 813, "realpython": 813, "pyn": 813, "exchang": [813, 856, 862, 864], "pilot": [813, 852], "stuck": [813, 814], "spell": 813, "sound": [813, 824, 844], "frequent": [814, 816, 821, 866], "outlin": [814, 815, 816, 818, 823, 825, 828, 833, 836, 837, 840], "broad": [814, 868], "individu": [814, 816, 819, 821, 825, 833, 837, 866, 869, 872, 873], "clearli": [814, 816, 827, 838, 840, 856, 870], "straightforward": [814, 817, 848], "lie": 814, "urgent": 814, "encourag": [814, 817, 831, 851, 856], "tackl": [814, 817, 837], "challeng": [814, 821, 872], "categoris": [814, 819, 837], "comfort": [814, 815, 829], "linkag": 814, "pr": [814, 816, 817, 819, 831, 837, 838, 840], "confid": 814, "submit": [814, 831], "scipi": [814, 856, 868, 873], "mindspor": 814, "simpler": [814, 816, 831, 859, 867, 873], "member": [814, 816, 837, 852, 856], "comment": [814, 815, 816, 819, 825, 831, 837, 839, 843], "composition": 814, "feasibl": [814, 824, 840, 856, 859], "pend": 814, "helpfulli": [814, 843, 864], "problemat": [814, 815], "unimpl": 814, "issue_link": 814, "alias_nam": 814, "notic": [814, 820, 824, 830, 831, 840, 843, 859], "push": [814, 816, 817, 819, 838, 840, 872], "liner": 814, "meanwhil": [814, 824], "reselect": 814, "faithfulli": 814, "creation_routin": [814, 838], "indexing_routin": 814, "ma": 814, "manipulation_routin": 814, "mathematical_funct": [814, 837], "sorting_searching_count": 814, "ufunc": [814, 837], "matrix_and_vector_product": 814, "matrix_eigenvalu": 814, "norms_and_other_numb": 814, "solving_equations_and_inverting_matric": 814, "gleam": 814, "uncom": 814, "test_numpy_inn": 814, "test_frontend": [814, 824, 830, 838], "unsur": [814, 840], "statu": [814, 817, 824, 831, 857], "refrain": 814, "checkbox": [814, 815], "aforement": 814, "parent": [814, 824, 847], "arraywithelementwis": [814, 820, 847], "containerwithmanipul": 814, "thorough": [814, 828, 832, 840], "add_reformatting_checklist_": 814, "category_nam": [814, 825, 826, 828, 832, 833], "autom": [814, 824, 831, 840, 853, 868], "bot": [814, 831], "markdown": [814, 822], "patient": [814, 815], "elabor": 814, "struggl": 814, "assigne": 814, "status": 814, "central": [814, 831, 843, 856, 872], "analyz": [814, 853], "relevant_submodul": 814, "roadmap": [814, 824], "soon": [814, 816, 824, 825, 851, 859], "deem": [814, 837], "subtask": 814, "clearer": [814, 829, 838, 848], "backend_nam": [814, 821, 825, 826, 828, 832, 833, 834], "sometim": [814, 815, 816, 819, 825, 833, 837, 840, 843], "rare": [814, 826, 851, 871], "button": [814, 815, 816, 830], "centr": 814, "predetermin": 814, "superset": [814, 818, 833, 836, 851], "reserv": 814, "happi": [815, 830, 851, 857], "your_usernam": [815, 830], "your_fold": [815, 830], "enter": [815, 816, 820, 825, 826, 830, 832, 834], "sync": [815, 819, 830], "remot": [815, 819, 830, 831], "nutshel": [815, 832], "hook": [815, 831, 839], "lint": [815, 818], "succe": [815, 859], "whatev": [815, 823, 851], "elig": [815, 817], "student": 815, "licens": [815, 869], "remind": 815, "expir": 815, "won": [815, 816, 823, 825, 850, 852, 856, 857, 859, 860, 861], "profession": 815, "trial": 815, "jetbrain": 815, "month": [815, 855], "bui": [815, 872], "paid": 815, "rapid": [815, 855, 856, 866], "pace": 815, "person": [815, 816], "abil": [815, 843, 846, 851, 866], "perhap": [815, 847, 848, 849, 851, 872], "conda": [815, 856, 868], "ivy_dev": [815, 816], "icon": [815, 816, 830], "panel": 815, "vscode": [815, 830], "palett": 815, "ctrl": [815, 816], "mac": [815, 816], "intel": [815, 856, 864, 871], "m1": 815, "optional_apple_silicon_1": 815, "optional_apple_silicon_2": 815, "array_api_test": [815, 816, 819, 830], "test_array_api": [815, 816, 819, 830, 840], "suit": [815, 818, 819, 824, 830, 839, 840, 848, 856, 866, 872], "cmd": 815, "bat": [815, 816], "virtualenv": 815, "tick": [815, 816, 824], "nz2": 815, "openssl": 815, "libssl1": 815, "1_1": 815, "1f": 815, "1ubuntu2": 815, "20_amd64": 815, "deb": 815, "dpkg": 815, "mitig": [815, 872], "desktop": [815, 830], "powershel": 815, "admin": 815, "deploy": [815, 860, 865, 868, 869, 872, 873], "menu": [815, 830], "introspect": 815, "dialog": 815, "persist": 815, "earlier": [815, 816, 825, 841], "virtualis": 815, "bio": [815, 856], "dropdown": [815, 824], "dockerfil": 815, "ca": 815, "certif": 815, "gnupg": 815, "lsb": 815, "keyr": 815, "fssl": 815, "gpg": 815, "dearmor": 815, "echo": [815, 824, 852], "arch": 815, "lsb_releas": 815, "null": [815, 830], "ce": 815, "cli": 815, "containerd": 815, "systemctl": 815, "softwar": [815, 816, 855, 856, 864, 869, 870, 871], "press": [815, 816, 848], "4a": 815, "socket": 815, "rwx": 815, "sock": 815, "pid": 815, "editor": 815, "pytest": [815, 816, 819, 824, 830, 834, 840], "keyboard": 815, "screenshot": 815, "pop": [815, 830, 856], "test_elementwis": 815, "bar": [815, 830], "shell": [815, 816, 819, 824], "setup_test": 815, "run_ivy_core_test": 815, "run_ivy_nn_test": 815, "run_ivy_stateful_test": 815, "run_test": [815, 824], "test_depend": 815, "test_ivy_cor": 815, "test_ivy_nn": 815, "test_ivy_st": 815, "unix": 815, "test_": [815, 838], "test_cor": [815, 816, 838], "offici": [815, 825, 845], "wish": [815, 837], "ivy_nn": 815, "ivy_st": 815, "header": [815, 816, 839], "arrow": 815, "test_stat": 815, "test_submodule_nam": 815, "test_function_nam": 815, "debugg": 815, "studio": [815, 830, 840], "especi": [815, 821, 831, 855, 866], "afterward": [815, 848], "background": [815, 822, 830, 866, 868], "overlap": [815, 824, 830, 841, 843, 867], "test_file_path": [815, 830], "test_fn_nam": [815, 830], "engin": [815, 866, 868, 869], "devcontain": 815, "comma": 815, "postcreatecommand": 815, "post_create_command": 815, "poststartcommand": 815, "safe": [815, 837], "containerworkspacefold": 815, "reopen": 815, "test_fle_path": 815, "slash": 815, "isol": [815, 816, 867, 872], "container": 815, "intens": 815, "headach": 815, "arm": [815, 816], "vm": [815, 824], "azur": 815, "cloud": [815, 824, 868], "theme": [815, 822], "ipad": 815, "browser": [815, 822], "quota": 815, "requisit": 815, "pane": [815, 816, 824], "dockerfilegpu": 815, "ivv": 815, "multiv": 815, "multivers": [815, 841], "dockerfilemultivers": 815, "dockerhub": 815, "upto": [815, 816], "minut": [815, 824], "launch": 815, "quickli": [815, 816, 824, 848, 849, 855, 857, 866, 873], "kindli": [815, 839], "guidelin": 815, "colour": 815, "chanc": 815, "troubleshoot": 815, "ever": 815, "flask": [815, 830], "toolbar": [815, 816, 830], "_array_modul": [815, 819, 830], "refresh": [815, 830], "pytestarg": [815, 830], "unittesten": [815, 830], "pytesten": [815, 830], "autotestdiscoveronsaveen": [815, 830], "conftest": 815, "serv": [815, 816, 820, 823, 832, 833, 837, 838, 840, 843, 844, 853, 864], "aren": [815, 825], "available_config": 815, "cp310": 815, "x86": [815, 871], "newer": [815, 840], "_compil": 815, "meantim": 815, "suffici": [815, 827, 837, 840], "bear": [815, 820, 823, 825, 837], "tendenc": 816, "land": 816, "unrel": [816, 856], "fly": [816, 866], "internship": 816, "suspect": 816, "iii": 816, "issue_numb": 816, "12345": 816, "rememb": 816, "respond": 816, "dai": [816, 831], "freed": 816, "situat": [816, 824, 850], "obvious": [816, 824], "hypothet": 816, "frustrat": 816, "delai": [816, 859], "busi": 816, "inact": 816, "unfairli": 816, "investig": 816, "name_of_your_branch": 816, "date": [816, 819], "complic": [816, 838, 845], "merge_with_upstream": 816, "abort": 816, "tediou": [816, 827, 843], "stash": [816, 831], "reinstat": 816, "uncommit": 816, "unstag": [816, 831], "untrack": 816, "atlassian": 816, "wrote": 816, "piec": [816, 820, 833, 834, 845, 859, 862, 864], "blame": 816, "eg": 816, "week": [816, 857], "grep": 816, "commit_id": 816, "handi": 816, "histori": 816, "highlight": [816, 824, 827, 837, 839], "approv": 816, "someon": [816, 851], "hash": [816, 848], "cancel": 816, "speedup": 816, "unavail": 816, "tickbox": 816, "span": [816, 864, 872], "intent": [816, 836], "discourag": 816, "adopt": [816, 820, 832, 843, 856, 865, 866, 871], "philosophi": 816, "infrequ": 816, "earli": [816, 866], "wast": [816, 824], "spot": [816, 827, 833], "mistak": 816, "mountain": 816, "advoc": [816, 851], "session": [816, 866], "beauti": 816, "particularli": [816, 848, 851, 859, 864], "care": [816, 826, 837, 843, 850, 856], "undo": 816, "stress": 816, "nifti": 816, "reassur": 816, "local_path_to_ivi": 816, "subfold": [816, 838, 840, 841], "dep": 816, "fresh": 816, "arsen": 816, "exec": 816, "ivy_contain": 816, "test_imag": 816, "test_random_crop": 816, "test_creation_funct": 816, "test_arang": 816, "cursor": 816, "alt": 816, "blog": 816, "breakpoint": 816, "gutter": 816, "caret": 816, "f8": 816, "f9": 816, "Into": 816, "f7": 816, "smart": 816, "fragment": [816, 862, 864, 868], "wherein": [816, 833, 840], "failur": [816, 824, 838, 840], "embark": 817, "innov": [817, 856], "door": [817, 851], "elev": 817, "mission": [817, 856, 868], "opportun": 817, "testament": [817, 839], "stone": 817, "gift": 817, "acquir": 817, "peak": 817, "privileg": [817, 868], "bounti": 817, "cash": 817, "delight": 817, "weed": [818, 844], "tour": 818, "formatt": [818, 831], "conjunct": 819, "establish": [819, 868], "popular": [819, 866], "sens": [819, 825, 827, 837, 839, 847], "unconnect": 819, "initialis": [819, 837, 840], "strang": [819, 847], "test_linalg": [819, 838], "test_set_funct": 819, "test_signatur": 819, "excess": [819, 821, 827], "array_modul": 819, "vv": 819, "test_manipulation_funct": 819, "test_concat": [819, 840], "nb": 819, "liber": 819, "______________________": 819, "test_remaind": 819, "_______________________": 819, "test_operators_and_elementwise_funct": 819, "1264": 819, "1277": 819, "binary_param_assert_against_refimpl": 819, "ctx": 819, "620": 819, "binary_assert_against_refimpl": 819, "324": 819, "scalar_o": 819, "17304064": 819, "binaryparamcontext": 819, "axic42baaowcnp": 819, "rumwmabaear0": 819, "make_binary_param": 819, "numeric_dtyp": 819, "left_strat": 819, "left_sym": 819, "right_strat": 819, "right_sym": 819, "right_is_scalar": 819, "binary_param_assert_dtyp": 819, "binary_param_assert_shap": 819, "recreat": 819, "unexpectedli": 819, "discrep": [819, 838], "test_asarray_arrai": 819, "test_floor_divid": 819, "health": 819, "test_iop": 819, "__imod__": 819, "isequ": 819, "test_matrix_norm": 819, "alter": 819, "tweak": 819, "array_api_methods_to_test": 819, "test_special_cas": 819, "__ipow__": 819, "is_integ": 819, "easier": [819, 820, 821, 825, 838, 841, 853, 866, 868], "revisit": [819, 832], "_data": [820, 836, 837, 847], "organiz": [820, 823, 837], "underpin": [820, 823, 845], "programmat": [820, 823, 867], "backup": [820, 822, 823], "accident": [820, 823, 837], "absent": [820, 823], "auto": [820, 822, 823, 831, 848], "__mul__": [820, 823, 827, 832, 843, 847], "throw": [820, 825, 826, 829, 830, 847, 866], "imposs": 820, "inputs_to_native_arrai": [820, 833, 834], "outputs_to_ivy_arrai": [820, 825, 826, 832, 833, 834], "secondli": [820, 825], "__ivy_array_function__": 820, "inspir": 820, "__torch_function__": 820, "myarrai": 820, "handled_funct": 820, "notimpl": 820, "issubclass": 820, "enough": [820, 824, 825, 826, 840, 847, 848, 849], "ivy_funct": 820, "my_ab": 820, "my_arrai": 820, "implicit_backend": [821, 845], "__dict__": [821, 836, 845], "ivy_original_dict": [821, 845], "fallback": 821, "live": [821, 822, 825, 856, 857, 862, 864], "scope": [821, 867, 871], "dlpack": 821, "set_dynamic_backend": 821, "unset_dynamic_backend": 821, "dynamic_backend_a": 821, "set_": 821, "unset_": 821, "backend_handl": 821, "requires_grad": 821, "memory_format": 821, "preserve_format": 821, "weren": 821, "vast": [821, 825, 866], "minor": [821, 843, 851], "fn_name_v_1p12_and_abov": 821, "fn_name_v_1p01_to_1p1": 821, "heavili": [822, 834, 851], "characterist": 822, "conf": 822, "cleanup": 822, "readm": [822, 851], "maxdepth": 822, "caption": 822, "related_work": 822, "deep_div": 822, "faq": 822, "glossari": 822, "autosummari": 822, "top_functional_toc": 822, "restructuredtext": 822, "discov": [822, 825], "ivy_toctree_caption_map": 822, "unfortun": [822, 831], "linker": 822, "foo": 822, "discussion_channel_map": 822, "1000043690254946374": 822, "1000043749088436315": 822, "forum": [822, 852], "seri": [822, 825, 837, 840, 866, 868], "discussion_paragraph": 822, "discord_link": 822, "channel_link": 822, "gg": 822, "zvqdvbznqj": 822, "799879767196958751": 822, "channel_id": 822, "autoskippablemethod": 822, "skippable_method_attribut": 822, "__qualname__": 822, "autodoc": 822, "__doc__": 822, "autoivydata": 822, "mutual": [823, 833], "containerwithelementwis": 823, "__repr__": 823, "__getattr__": [823, 859], "__setattr__": [823, 859], "__contains__": 823, "__getstate__": 823, "__setstate__": 823, "unpickl": 823, "num_dim": [823, 850], "restrict": [823, 824, 837, 845, 859, 863], "enforc": [823, 847], "lefthand": 823, "righthand": 823, "handle_nest": [823, 832, 833, 834, 845], "absenc": [823, 832, 866], "implicitli": [823, 835, 840, 845], "log_pr": [823, 833, 836], "intuit": [823, 840, 848, 849, 862], "chronolog": 823, "concurr": [823, 824, 833, 866], "despit": [823, 825, 826, 838, 845, 856, 863, 866], "__list__": 823, "whatsoev": [823, 833, 853, 872], "children": 823, "shallowest": 823, "deepest": 823, "rollback": 824, "incorpor": [824, 838, 848, 866], "techniqu": 824, "triplet": 824, "test_torch": [824, 838], "test_tensor": [824, 838], "test_torch_instance_arctan_": 824, "12500": 824, "daili": 824, "huge": [824, 848, 854, 856, 866, 872], "shoot": 824, "_reduce_loss": [824, 833, 836], "test_nn": 824, "test_loss": 824, "test_binary_cross_entropy_with_logit": 824, "test_cross_entropi": 824, "test_binary_cross_entropi": 824, "test_sparse_cross_entropi": 824, "test_loss_funct": 824, "test_torch_binary_cross_entropi": 824, "test_torch_cross_entropi": 824, "binary_cross_entropy_with_logit": 824, "torch_binary_cross_entropi": 824, "torch_cross_entropi": 824, "magic": 824, "readthedoc": 824, "pedagog": 824, "f_1": 824, "t_1": 824, "t_3": 824, "t_7": 824, "t_": 824, "f_m": 824, "cyclic": 824, "intellig": [824, 840, 868], "tests_fil": 824, "file_nam": [824, 840, 841], "tests_lin": 824, "correspondingli": 824, "tests_to_run": 824, "determine_tests_lin": 824, "mongodb": 824, "databas": [824, 840], "mechan": [824, 851], "secret": 824, "db": 824, "ssh_deploy_kei": 824, "suffic": [824, 834, 840], "massiv": 824, "yml": 824, "felicit": 824, "clone_map": 824, "deploy_kei": 824, "user_email": 824, "user_nam": 824, "target_branch": 824, "github_serv": 824, "deploy_key_fil": 824, "ssh_known_hosts_fil": 824, "known_host": 824, "keyscan": 824, "git_ssh_command": 824, "userknownhostsfil": 824, "email": [824, 856], "methodologi": 824, "master1": 824, "restructur": 824, "_map": 824, "t_2": 824, "t_n": 824, "index_map": 824, "test_map": 824, "snowbal": 824, "recalibr": 824, "workflow_dispatch": 824, "cron": 824, "saturdai": 824, "night": 824, "pm": 824, "gut": 824, "lesser": [824, 829], "lol": 824, "hour": [824, 857], "cater": [824, 839], "master2": 824, "master32": 824, "synchron": 824, "runner2": 824, "corrupt": 824, "decoupl": [824, 849], "150": 824, "cycl": [824, 840], "yellow": 824, "queu": 824, "redirect": 824, "book": 824, "onrend": 824, "jo": 824, "ran": 824, "clickabl": 824, "all_dtyp": 825, "all_numeric_dtyp": 825, "all_int_dtyp": 825, "all_float_dtyp": 825, "replic": [825, 835, 836, 837], "thirdli": 825, "native_float32": 825, "importantli": [825, 847, 850], "arguabl": [825, 826, 837], "jaxarrai": [825, 826, 829, 832, 836, 841, 845], "_handle_0_dim_output": 825, "subtli": [825, 836], "promote_types_frontend_nam": 825, "promote_types_of_frontend_name_input": 825, "frontend_nam": 825, "upcast": 825, "nearli": [825, 832, 834, 866], "downcast": 825, "footprint": 825, "concret": 825, "aris": [825, 831, 851, 856], "utterli": 825, "meant": [825, 827, 836], "twice": 825, "disadvantag": 825, "relax": 825, "f64": 825, "unwant": 825, "primaci": 825, "resembl": 825, "compound": 825, "infer_dtyp": [825, 826, 832, 834], "settabl": [825, 826], "handle_out_argu": [825, 826, 832, 833, 834, 836, 845], "infer_devic": [825, 826, 832, 834], "deleg": [825, 873], "shape_to_tupl": 825, "with_supported_dtyp": 825, "unment": 825, "_cast_for_unary_op": [825, 833, 836], "target_typ": 825, "syntax": [825, 855, 856, 866], "unsupported_dtyp": 825, "supported_dtypes_and_devic": 825, "with_unsupported_device_and_dtyp": 825, "globals_getter_func": 825, "f2": 825, "lack": [825, 836, 866, 873], "mandat": [825, 836, 840, 841, 856], "confus": [825, 829, 836, 843, 853, 857], "inconsist": [825, 829, 835], "is_nan": 825, "supported_dtyp": 825, "anytim": 825, "84530": 825, "unwarr": 825, "risk": [825, 872], "needlessli": 825, "bloat": 825, "undergo": [825, 851], "unsupported_devic": 825, "supported_devic": 825, "downsid": 825, "coverag": [825, 840], "undesir": 825, "accomplish": 825, "upcast_data_typ": 825, "downcast_data_typ": 825, "crosscast_data_typ": 825, "cast_data_typ": 825, "downcast_data_dtyp": 825, "vice": 825, "versa": 825, "till": 825, "crosscast": 825, "exmp1": 825, "watch": [825, 837], "handle_numpy_arrays_in_specific_backend": [825, 832], "cate": 825, "understood": 825, "consumpt": [825, 870], "dual": 826, "categor": [826, 833, 837], "210": 826, "_handle_except": [826, 829], "1013": 826, "_handle_nest": [826, 829], "905": 826, "_handle_out_argu": [826, 829], "441": 826, "_inputs_to_native_arrai": [826, 829], "new_arg": [826, 829], "new_kwarg": [826, 829], "_outputs_to_ivy_arrai": [826, 829], "358": 826, "_handle_array_funct": [826, 829], "_handle_device_shift": 826, "handle_device_shift": [826, 834], "crucial": [826, 835], "device_shifting_dev": 826, "__enter__": 826, "__exit__": 826, "mostli": [826, 836, 840], "soft_devic": 826, "eight": [827, 844], "op_nam": 827, "__r": 827, "unsurprisingli": [827, 855], "recap": [827, 849], "combinatori": 827, "okai": [827, 843, 845], "spec": [827, 828], "my_func": [827, 841], "some_flag": 827, "another_flag": 827, "jointli": 827, "5574077": 827, "1850398": 827, "5463025": 827, "8422884": 827, "91601413": 827, "9647598": 827, "3738229": 827, "1597457": 827, "0963247": 827, "9955841": 827, "3278579": 827, "asid": 827, "increasingli": [827, 859], "14254655": 827, "1578213": 827, "380515": 827, "trivial": [827, 836], "failing_fn_nam": 827, "onlin": [827, 828], "minutest": 827, "fault": [827, 866], "contrast": [828, 832, 837, 872], "preview": 828, "incorrectli": [828, 859], "needless": [828, 838], "renam": [828, 837], "judgment": 828, "operator_nam": 828, "succinct": 828, "docst": 828, "native_error": 829, "_combine_messag": 829, "truli": [829, 847], "wrong": [829, 831, 834, 837, 843], "198": 829, "392": 829, "_handle_array_like_without_promot": 829, "805": 829, "432": 829, "349": 829, "other_test": 829, "523": 829, "_handle_numpy_out": 829, "396": [829, 849], "_outputs_to_numpy_arrai": 829, "_inputs_to_ivy_arrays_np": 829, "ivy_arg": 829, "ivy_kwarg": 829, "453": 829, "_from_zero_dim_arrays_to_scalar": 829, "truth_value_test": 829, "visibl": 829, "unwieldi": 829, "squash": 829, "hide": [829, 859], "cleaner": [829, 848], "caught": [829, 831], "rethrow": 829, "_print_traceback_histori": 829, "error_stack": 829, "axiserror": 829, "polici": [829, 834, 840, 842], "moreov": 829, "submoodul": 830, "test_jax_transpos": 830, "manipulaiton": 830, "test_jax": [830, 838], "test_numpi": [830, 838], "test_manipul": [830, 838, 840], "preconditionnotmet": 830, "densetensor": 830, "holder_": 830, "phi": 830, "dense_tensor_impl": 830, "array_and_ax": 830, "aaegbaegaqaaaaaaaaaaaaab": 830, "black": 831, "flake8": 831, "linter": 831, "autoflak": 831, "docformatt": 831, "pydocstyl": 831, "yaml": 831, "patch1687898304": 831, "8072": 831, "3516aed563": 831, "reformat": 831, "akshai": 831, "jain": 831, "gui": 831, "cryptic": 831, "garden": 831, "utc": 831, "didn": 831, "human": 831, "intervent": 831, "typo": 831, "ui": 831, "handle_array_like_without_promot": [832, 834], "to_native_arrays_and_back": [832, 834, 845], "handle_array_funct": [832, 834], "inputs_to_native_shap": [832, 834], "rational": [832, 836, 843], "__div__": [832, 843], "484": 832, "annot": 832, "brittl": 832, "freeli": 832, "inde": [832, 843, 851, 864], "technic": [832, 836, 851, 866, 868], "original_typ": 832, "cumbersom": 832, "hinder": [832, 855], "venn": 833, "diagram": [833, 872], "light": [833, 841, 851, 853, 867, 872], "maximis": 833, "encompass": 833, "partial_mixed_handl": [833, 834, 843], "handle_partial_mixed_funct": [833, 834, 843], "fn_decor": 833, "mixed_backend_wrapp": [833, 836], "to_add": 833, "to_skip": 833, "inputs_to_ivy_arrai": [833, 834], "modif": [833, 866], "briefli": [833, 840, 848], "get_all_arrays_on_dev": 833, "outputs_to_ivy_shap": 834, "outputs_to_native_arrai": 834, "handle_view_index": [834, 836], "handle_view": [834, 836], "handle_rag": 834, "handle_backend_invalid": 834, "handle_nan": 834, "to_native_shapes_and_back": 834, "modern": [835, 855, 856, 871], "inter_func": 835, "custom_grad_fn": 835, "args1": 835, "eas": [835, 866], "speak": 836, "val_n": 836, "base_idx": 836, "_manipulation_stack": 836, "base_flat": 836, "_view_ref": 836, "_update_view": 836, "contigu": 836, "c_contigu": 836, "ascontiguousarrai": 836, "copyto": 836, "_is_vari": 836, "tensor_scatter_nd_upd": 836, "is_vari": 836, "_update_torch_view": 836, "predominantli": [836, 841], "support_native_out": [836, 845], "_scalar_output_to_0d_arrai": 836, "_wrap_fn": 836, "dim0": 836, "dim1": 836, "res_floor": 836, "extent": [836, 837], "to_out_fn": 836, "add_wrapp": 836, "paradigm": [836, 851, 866], "expans": 836, "brief": [836, 840], "weak": 836, "_torch_bas": 836, "_torch_view_ref": 836, "_torch_manipul": 836, "weakli": 836, "adequ": 836, "tf_frontend": 837, "lax": [837, 838, 843, 850, 851], "torch_frontend": [837, 838], "numpy_frontend": 837, "jax_frontend": 837, "to_ivy_arrays_and_back": [837, 838], "fidel": 837, "algebra": [837, 864, 865, 866, 869, 873], "dynamic": 837, "mimic": 837, "arithmetic_oper": 837, "handle_numpy_out": 837, "handle_numpy_dtyp": 837, "handle_numpy_cast": 837, "from_zero_dim_arrays_to_scalar": 837, "_add": 837, "same_kind": 837, "subok": [837, 838, 843], "promote_types_of_numpy_input": 837, "underscor": 837, "unhandl": 837, "trigonometric_funct": 837, "_tan": 837, "check_tensorflow_cast": 837, "raw_op": [837, 838], "map_raw_ops_alia": 837, "output_typ": 837, "kwargs_to_upd": 837, "pointwise_op": 837, "sensibl": 837, "ahead": [837, 841, 866], "reduce_logsumexp": 837, "logsumexp": 837, "trick": 837, "max_input_tensor": 837, "preferred_element_typ": 837, "languag": [837, 845, 853, 855, 857, 864, 867, 869, 870, 871, 872], "offer": [837, 849, 857, 866, 872, 873], "finer": 837, "logicaland": 837, "np_frontend": 837, "_ivy_arrai": 837, "radd": 837, "_init_data": 837, "_process_str_data": 837, "_dtype": [837, 838, 847], "_shape": [837, 847], "govern": 837, "promote_types_of_": 837, "_input": 837, "promote_types_of_torch_input": [837, 838], "handle_numpy_casting_speci": 837, "new_fn": 837, "equiv": 837, "unsaf": 837, "array_type_test": 837, "_isfinit": 837, "organis": 837, "grasp": 837, "youtub": 837, "knowledg": 838, "np_frontend_help": 838, "open_task": 838, "test_lax": 838, "test_oper": 838, "test_jax_tan": 838, "test_mathematical_funct": 838, "test_trigonometric_funct": 838, "dtypes_values_cast": 838, "dtypes_values_casting_dtyp": 838, "arr_func": 838, "get_num_positional_args_ufunc": 838, "test_numpy_tan": 838, "handle_where_and_array_bool": 838, "test_tensorflow": 838, "test_math": 838, "test_tensorflow_tan": 838, "test_pointwise_op": 838, "test_torch_tan": 838, "_fill_valu": 838, "test_glob": 838, "test_jax_ful": 838, "test_from_shape_or_valu": 838, "_input_fill_and_dtyp": 838, "dtype_and_input": 838, "dtype_to_cast": 838, "input_fill_dtyp": 838, "test_numpy_ful": 838, "test_raw_op": 838, "test_tensorflow_fil": 838, "test_creation_op": 838, "with_arrai": 838, "test_torch_ful": 838, "add_nois": 838, "all_clos": 838, "_get_dtype_and_matrix": 838, "test_torch_qr": 838, "frontend_q": 838, "frontend_r": 838, "walkthrough": 838, "comparison_op": 838, "test_comparison_op": 838, "test_torch_great": 838, "all_alias": 838, "test_ndarrai": 838, "test_numpy_instance_add__": 838, "test_tensorflow_instance_add": 838, "1e04": 838, "allow_infin": 838, "test_torch_instance_add": 838, "_arrays_idx_n_dtyp": 838, "surprisingli": 838, "closest_relevant_group": 838, "strive": [838, 840, 843, 851, 868], "craft": [839, 840], "tailor": 839, "clariti": [839, 840, 843, 866], "weav": 839, "thrill": 839, "brim": 839, "stand": [839, 840], "landscap": 839, "forese": 839, "refin": 839, "inquiri": 839, "fixtur": 840, "hit": [840, 845, 859], "eleg": [840, 866], "unexplor": 840, "artifact": 840, "bespok": 840, "_array_or_typ": 840, "rigor": [840, 855], "test_default_int_dtyp": 840, "print_hypothesis_exampl": 840, "custom_strategi": 840, "randomis": 840, "simplist": 840, "intricaci": 840, "glanc": 840, "one_of": 840, "datum": 840, "pipe": 840, "array_or_scal": 840, "len_of_arrai": 840, "test_add": 840, "test_gpu_is_avail": 840, "pretest": 840, "snippet": [840, 860], "outlier": 840, "frontend_test": 840, "frontend_method": 840, "criterion": 840, "valid_ax": 840, "hoc": 840, "11228": 840, "268": 840, "wherev": 840, "9622": 840, "28136": 840, "6375": 840, "12720": 840, "21354": 840, "900e": 840, "57384": 840, "25687": 840, "248": 840, "test_devic": 840, "array_shap": 840, "test_lay": 840, "some_sequ": 840, "arrays_valu": 840, "36418": 840, "213": 840, "21716926": 840, "none_or_list_of_float": 840, "get_prob": 840, "103515625e": 840, "099609375": 840, "probabilist": 840, "number_positional_argu": 840, "unreproduc": 840, "x_and_linear": 840, "is_torch_backend": 840, "x_shape": [840, 845], "weight_shap": 840, "bias_shap": 840, "ivy_np": 840, "valid_float_dtyp": 840, "test_demo": 840, "failing_test": 840, "traceback": 840, "shrink": 840, "prescrib": 840, "scratch": 840, "therebi": 840, "test_gelu": 840, "test_fil": 840, "phase": [840, 851, 866], "notabl": [840, 866], "max_exampl": 840, "deadlin": 840, "weird": 840, "systemat": 840, "safeguard": 840, "inabl": 840, "test_result_typ": 840, "9090909090909091": 840, "judgement": 841, "some_namespac": 841, "some_backend": 841, "another_backend": 841, "refactor": 841, "ongo": 841, "check_fill_value_and_dtype_are_compat": 841, "_to_devic": 841, "shouldn": [841, 859], "pin": 841, "unpinn": 841, "culmin": 841, "unsett": 842, "array_significant_figur": 842, "array_decimal_valu": 842, "warning_level": 842, "nan_polici": 842, "stablest": 842, "constantli": [843, 855], "answer": [843, 847, 851], "contradict": 843, "entail": 843, "sacrif": 843, "jacfwd": 843, "jacrev": 843, "banner": 843, "expens": 843, "incredibli": [843, 848, 851, 869], "price": 843, "pai": 843, "intrus": 843, "x_beta": 843, "equip": 843, "simplif": 843, "allevi": 843, "ineffici": [843, 851, 866], "fuse": 843, "hybrid": 843, "workaround": 843, "slip": 843, "radar": 843, "stumbl": 843, "gone": [844, 856], "fulfil": 844, "syntact": [845, 850], "power_seq": 845, "_determine_backend_from_arg": 845, "importlib": 845, "_backend_dict": 845, "x_flat": 845, "wi": 845, "wi_x": 845, "wii_x": 845, "wif_x": 845, "wig_x": 845, "wio_x": 845, "wh": 845, "ht": 845, "ct": 845, "hts_list": 845, "wii_xt": 845, "wif_xt": 845, "wig_xt": 845, "wio_xt": 845, "htm1": 845, "ctm1": 845, "wh_htm1": 845, "whi_htm1": 845, "whf_htm1": 845, "whg_htm1": 845, "who_htm1": 845, "ft": 845, "ot": 845, "reliabl": 845, "scalabl": [845, 855, 871, 872], "sacrific": 845, "hear": 845, "virtu": [845, 863], "pure_ivi": 845, "pure_torch": 845, "unclean": 845, "wx": 845, "temp": 845, "ivy_func": 845, "emphas": 845, "example_input": 845, "static_argnum": [845, 859], "static_argnam": [845, 859], "primit": [846, 851, 864, 866], "upcom": 846, "hierarch": [846, 848, 849, 866], "arraywithactiv": 847, "arraywithcr": 847, "arraywithdatatyp": 847, "arraywithdevic": 847, "arraywithgener": 847, "arraywithgradi": 847, "arraywithimag": 847, "arraywithlay": 847, "arraywithlinearalgebra": 847, "arraywithloss": 847, "arraywithmanipul": 847, "arraywithnorm": 847, "arraywithrandom": 847, "arraywithsearch": 847, "arraywithset": 847, "arraywithsort": 847, "arraywithstatist": 847, "arraywithutil": 847, "_init": 847, "_size": 847, "_devic": 847, "_dev_str": 847, "_pre_repr": 847, "_post_repr": 847, "framework_str": 847, "pypep8nam": 847, "immut": 847, "claim": 847, "_native_wrapp": 847, "genuin": 847, "some_method": 847, "rewritten": 847, "littl": [847, 855, 868], "wonder": [847, 855, 857], "compartment": 847, "newshap": 847, "new_shap": 847, "tidi": 847, "crystal": 847, "ton": 848, "ado": [848, 849], "soup": 848, "walk": [848, 849], "cnt": 848, "3333335": 848, "autocomplet": 848, "midwai": 848, "agent": 848, "total_spe": 848, "total_height": 848, "total_width": 848, "ag": 848, "tot": 848, "total_": 848, "total_h": 848, "cnt0": 848, "cnt1": 848, "diff_0": 848, "diff_1": 848, "config0": 848, "config1": 848, "l0": 848, "decoder__l0": 848, "decoder__l1": 848, "encoder__l0": 848, "encoder__l1": 848, "l0__b": 848, "l0__w": 848, "l1__b": 848, "l1__w": 848, "printabl": 848, "foresight": 848, "untidili": 848, "update_ag": 848, "normalize_img": 848, "img_max": 848, "reduce_max": 848, "img_min": 848, "reduce_min": 848, "img_rang": 848, "agent_posit": 848, "agent_veloc": 848, "agent_cam_front_rgb": 848, "agent_cam_front_depth": 848, "agent_cam_rear_rgb": 848, "agent_cam_rear_depth": 848, "agent_cam_lidar": 848, "camera": 848, "front_rgb": 848, "front_depth": 848, "rear_rgb": 848, "rear_depth": 848, "lidar": 848, "rgb": 848, "rear": 848, "veloc": 848, "cam": 848, "cam_max": 848, "cam_min": 848, "cam_rang": 848, "five": 848, "allud": [848, 856], "perman": 848, "dataload": 848, "_cnt": 848, "img_": 848, "_dataset_s": 848, "_batch_siz": 848, "_count": [848, 849], "__next__": 848, "img_fnam": 848, "loaded_img": 848, "batch_slic": 848, "0145": 848, "addbackward0": 848, "_create_vari": 849, "_input_channel": 849, "_output_channel": 849, "_w_shape": 849, "_b_shape": 849, "_with_bia": 849, "764": 849, "872": 849, "211": 849, "439": 849, "nightmar": 849, "overcom": 849, "v1": 849, "key0": 849, "linear3": 849, "v2": 849, "preced": [849, 856], "_w_init": 849, "_b_init": 849, "misnom": 849, "saw": 849, "_beta1": 849, "_beta2": 849, "_epsilon": 849, "_mw": 849, "_vw": 849, "_first_pass": 849, "_should_trac": 849, "new_v": 849, "_lr": 849, "_inplac": 849, "_stop_gradi": 849, "sparse_funct": 850, "vital": [850, 855], "_linear": 850, "jax_graph": 850, "to_backend": 850, "thinli": 850, "to_haiku_modul": 850, "loss_fn_t": 850, "without_apply_rng": 850, "update_rul": 850, "tree_multimap": 850, "trax": [850, 857], "objax": [850, 857], "matur": [851, 856, 866], "doubt": 851, "grate": [851, 874], "probe": 851, "lock": 851, "dex": 851, "tricki": [851, 853], "predictor": 851, "tight": 851, "dispatch": [851, 866, 869], "ast": 851, "autodiff": 851, "shine": 851, "merci": 851, "compet": [851, 866], "parallelis": 851, "spmd": 851, "mixtur": 851, "expert": 851, "sophist": 851, "depart": 851, "hundr": 851, "thousand": 851, "broadli": [851, 872], "supplementari": 851, "reusabl": [851, 864, 866], "fanci": [851, 866], "fusion": [851, 870], "lose": 851, "pmap": 851, "eventu": 851, "supplement": 851, "backdoor": 851, "callback": 851, "somewhat": [851, 866], "outsourc": 851, "ivy_root": 852, "pem": 852, "api_kei": 852, "asap": 852, "nail": 853, "scientist": 853, "correl": 853, "collabor": [854, 855, 856], "consortium": [854, 856], "grown": 855, "rapidli": 855, "shareabl": 855, "outdat": 855, "newest": 855, "prototyp": [855, 866], "obsolet": [855, 857], "invent": 855, "simultan": [855, 857], "runner": 855, "principl": [855, 864, 866, 869], "2006": 855, "cloth": 855, "forgiven": 856, "eyebrow": 856, "somehow": 856, "industri": [856, 866, 868], "funni": 856, "comic": 856, "charger": 856, "instant": 856, "contrari": 856, "bumpi": 856, "road": 856, "technologi": [856, 864, 868], "motherboard": 856, "raid": 856, "bluetooth": 856, "wireless": 856, "btx": 856, "sata": 856, "tcp": 856, "ip": 856, "smtp": 856, "send": [856, 871], "gmail": 856, "outlook": 856, "growth": [856, 869], "necess": 856, "2015": [856, 866], "aros": 856, "ourselv": [856, 872], "quansight": [856, 872], "compani": [856, 862], "apach": [856, 868, 872], "onnx": [856, 864, 872], "cupi": [856, 866, 873], "modin": 856, "spyder": 856, "octoml": [856, 872], "sponsor": 856, "lg": 856, "electron": 856, "shaw": 856, "pursuit": 856, "complianc": 856, "convinc": 856, "celebr": 856, "abund": 857, "streamlin": [857, 869], "awesom": 857, "love": 857, "slew": 857, "inevit": [857, 867], "erron": 857, "poor": 857, "spin": 857, "sake": 857, "wouldn": 857, "frantic": 857, "lucid": 857, "honk": 857, "hasn": 857, "spend": [857, 866], "sonnet": 857, "trainer": [857, 873], "quo": 857, "dopamin": 857, "ignit": 857, "catalyst": 857, "lightn": 857, "fastai": 857, "publicli": [859, 860, 861], "logger": 859, "arg_stateful_idx": 859, "kwarg_stateful_idx": 859, "include_gener": 859, "array_cach": 859, "return_backend_traced_fn": 859, "lazygraph": [859, 860, 861], "sum_j": 859, "traced_fn": 859, "impos": 859, "comp_func": 859, "trade": 859, "bake": 859, "cont": 859, "new_attribut": 859, "resnet50": 859, "breed": 859, "autoimageprocessor": [859, 860], "resnetforimageclassif": [859, 860], "traced_graph": 859, "predicted_label": 859, "debug_mod": 860, "rough": 860, "transformed_with_st": 860, "bigger": 860, "hf": 860, "tf_model": 860, "tf_input": 860, "transpile_kwarg": 861, "transpiled_func": 861, "unified_func": 861, "rwork": 862, "vendor": [862, 868], "complimentari": [862, 872], "acycl": [862, 867], "fillna": 863, "pct_chang": 863, "tail": 863, "_____________": 863, "__________________________________________________________________": 863, "scaffold": [864, 872], "heart": 864, "toolchain": [864, 869], "assembli": [864, 871, 872], "idl": 864, "middl": 864, "emit": 864, "gnu": [864, 869], "broader": 864, "heterogen": 864, "aid": 864, "coprocessor": 864, "programm": [864, 871], "gate": 864, "onednn": 864, "sit": [864, 867, 872], "tandem": 864, "possess": 864, "khrono": [865, 871], "appl": 865, "coremltool": 865, "albeit": 865, "promin": 866, "abbrevi": 866, "laboratori": 866, "proprietari": [866, 870, 871], "mathwork": 866, "commerci": 866, "1984": 866, "toolbox": 866, "mupad": 866, "simulink": 866, "graphic": [866, 870, 871], "simul": 866, "million": [866, 869], "worldwid": 866, "scienc": [866, 868], "econom": 866, "2001": 866, "od": 866, "solver": 866, "cython": 866, "friendli": 866, "2002": 866, "lua": 866, "luajit": 866, "idiap": 866, "epfl": 866, "2005": 866, "numarrai": 866, "cpython": 866, "partli": 866, "2007": 866, "forest": 866, "boost": 866, "dbscan": 866, "inbuilt": 866, "esqu": 866, "aesara": 866, "datafram": 866, "2012": 866, "polymorph": 866, "mpi": 866, "openmp": 866, "glue": 866, "jaot": 866, "nasa": 866, "cern": 866, "climat": 866, "allianc": 866, "influenti": 866, "2014": 866, "scala": 866, "ship": 866, "forgiv": 866, "decemb": 866, "announc": 866, "mainten": 866, "v7": 866, "meaning": 866, "2016": 866, "imper": 866, "amazon": 866, "traction": 866, "cognit": [866, 873], "grade": 866, "dnn": 866, "backpropag": 866, "succumb": 866, "came": 866, "monitor": 866, "practition": [866, 870, 871, 872], "hobbyist": 866, "tremend": 866, "ecosystem": 866, "gear": 866, "batteri": 866, "zygot": 866, "jl": 866, "workload": 866, "daggerflux": 866, "frontier": 866, "hessian": 866, "2018": 866, "lightweight": [866, 873], "shortcom": 866, "barrier": 866, "inexperienc": 866, "underdevelop": 866, "fanat": 866, "ounc": 866, "infanc": 866, "emerg": 866, "nich": 866, "mobil": 866, "lite": 866, "enterpris": 866, "reinvent": [866, 868], "inertia": 866, "creator": [866, 868], "paszk": 866, "hi": 866, "bulk": 866, "haskel": 866, "dataflow": 867, "trace_modul": 867, "scriptfunct": 867, "scriptmodul": 867, "fake": 867, "proxi": 867, "graphmodul": 867, "travi": 868, "oliph": 868, "leader": 868, "cornerston": 868, "numba": 868, "numfocu": 868, "pydata": 868, "confer": 868, "consult": 868, "servic": 868, "devop": 868, "mlop": 868, "dashboard": 868, "startup": 868, "mlir": [868, 869, 872], "Their": 868, "held": 868, "presum": 868, "llvm": [868, 871], "founder": 868, "tvm": [868, 872], "sustain": 868, "empow": 868, "har": 868, "burden": 868, "precompil": 869, "executor": 869, "julia": [869, 872], "fsf": 869, "gpl": 869, "biggest": [869, 872], "throughput": 870, "gpgpu": 870, "classic": 871, "sycl": 871, "dpc": 871, "processor": 871, "maco": 871, "oneapi": 871, "ia": 871, "aka": 871, "xeon": 871, "gen9": 871, "xe": 871, "arria": 871, "gx": 871, "fpga": 871, "lofti": 872, "ambit": 872, "realm": 872, "bedrock": 872, "flux": 872, "bite": 872, "chew": 872, "eagerpi": 872, "tensorli": 872, "thinc": 872, "neuropod": 872, "fx": 872, "retrain": 872, "closer": 872, "greatli": 872, "modular": 872, "anywher": 872, "theano": 873, "plaidml": 873, "partial_svd": 873, "excel": 873, "subsystem": 873, "samund": 874, "singh": 874, "samthakur587": 874, "suraj": 874, "muhammad": 874, "ishaqu": 874, "muhammadnizamani": 874, "suyash": 874, "gupta": 874, "sgalpha01": 874, "sanjai": 874, "suthar": 874, "sanjay8602": 874, "zera": 874, "marveen": 874, "lyngkhoi": 874, "fleventi": 874, "nitesh": 874, "kesharwani": 874, "niteshk84": 874, "sarvesh": 874, "jackson": 874, "mcclintock": 874, "jacksondm33": 874, "david": 874, "adlai": 874, "nettei": 874, "garima": 874, "saroj": 874, "androgari": 874, "lee": 874, "bissessar": 874, "leebissessar5": 874, "mostafa": 874, "gamal": 874, "mr": 874, "array22": 874, "ogban": 874, "ugot": 874, "rahul": 874, "prem": 874, "rp097": 874, "rohit": 874, "kumar": 874, "salla": 874, "rohitsalla": 874, "srikar": 874, "vedantam": 874, "shruzki": 874, "waqar": 874, "ahm": 874, "waqaarahm": 874, "aryan": 874, "pandei": 874, "aryan8912": 874, "dhruv": 874, "sharma": 874, "druvdub": 874, "kacper": 874, "ko\u017cdo\u0144": 874, "kozdon": 874, "mehmet": 874, "bilgehan": 874, "bezcioglu": 874, "bilgehanmehmet": 874, "sheroz": 874, "khan": 874, "ksheroz": 874, "muzakkir": 874, "hussain": 874, "muzakkirhussain011": 874}, "objects": {"ivy.Array": [[216, 0, 1, "", "abs"], [217, 0, 1, "", "acos"], [218, 0, 1, "", "acosh"], [611, 0, 1, "", "adam_step"], [612, 0, 1, "", "adam_update"], [385, 0, 1, "", "adaptive_avg_pool1d"], [386, 0, 1, "", "adaptive_avg_pool2d"], [387, 0, 1, "", "adaptive_max_pool2d"], [388, 0, 1, "", "adaptive_max_pool3d"], [219, 0, 1, "", "add"], [420, 0, 1, "", "adjoint"], [763, 0, 1, "", "all"], [530, 0, 1, "", "all_equal"], [330, 0, 1, "", "allclose"], [331, 0, 1, "", "amax"], [332, 0, 1, "", "amin"], [220, 0, 1, "", "angle"], [764, 0, 1, "", "any"], [740, 0, 1, "", "argmax"], [741, 0, 1, "", "argmin"], [749, 0, 1, "", "argsort"], [742, 0, 1, "", "argwhere"], [533, 0, 1, "", "array_equal"], [456, 0, 1, "", "as_strided"], [124, 0, 1, "", "asarray"], [221, 0, 1, "", "asin"], [222, 0, 1, "", "asinh"], [534, 0, 1, "", "assert_supports_inplace"], [457, 0, 1, "", "associative_scan"], [148, 0, 1, "", "astype"], [223, 0, 1, "", "atan"], [224, 0, 1, "", "atan2"], [225, 0, 1, "", "atanh"], [458, 0, 1, "", "atleast_1d"], [459, 0, 1, "", "atleast_2d"], [460, 0, 1, "", "atleast_3d"], [390, 0, 1, "", "avg_pool1d"], [391, 0, 1, "", "avg_pool2d"], [392, 0, 1, "", "avg_pool3d"], [497, 0, 1, "", "batch_norm"], [421, 0, 1, "", "batched_outer"], [504, 0, 1, "", "bernoulli"], [505, 0, 1, "", "beta"], [333, 0, 1, "", "binarizer"], [692, 0, 1, "", "binary_cross_entropy"], [516, 0, 1, "", "bincount"], [226, 0, 1, "", "bitwise_and"], [227, 0, 1, "", "bitwise_invert"], [228, 0, 1, "", "bitwise_left_shift"], [229, 0, 1, "", "bitwise_or"], [230, 0, 1, "", "bitwise_right_shift"], [231, 0, 1, "", "bitwise_xor"], [308, 0, 1, "", "blackman_window"], [149, 0, 1, "", "broadcast_arrays"], [150, 0, 1, "", "broadcast_to"], [151, 0, 1, "", "can_cast"], [232, 0, 1, "", "ceil"], [291, 0, 1, "", "celu"], [663, 0, 1, "", "cholesky"], [695, 0, 1, "", "clip"], [536, 0, 1, "", "clip_matrix_norm"], [537, 0, 1, "", "clip_vector_norm"], [464, 0, 1, "", "column_stack"], [696, 0, 1, "", "concat"], [465, 0, 1, "", "concat_from_sequence"], [422, 0, 1, "", "cond"], [334, 0, 1, "", "conj"], [697, 0, 1, "", "constant_pad"], [646, 0, 1, "", "conv1d"], [647, 0, 1, "", "conv1d_transpose"], [648, 0, 1, "", "conv2d"], [649, 0, 1, "", "conv2d_transpose"], [650, 0, 1, "", "conv3d"], [651, 0, 1, "", "conv3d_transpose"], [125, 0, 1, "", "copy_array"], [335, 0, 1, "", "copysign"], [517, 0, 1, "", "corrcoef"], [233, 0, 1, "", "cos"], [234, 0, 1, "", "cosh"], [336, 0, 1, "", "count_nonzero"], [518, 0, 1, "", "cov"], [664, 0, 1, "", "cross"], [693, 0, 1, "", "cross_entropy"], [519, 0, 1, "", "cummax"], [520, 0, 1, "", "cummin"], [753, 0, 1, "", "cumprod"], [754, 0, 1, "", "cumsum"], [393, 0, 1, "", "dct"], [540, 0, 1, "", "default"], [235, 0, 1, "", "deg2rad"], [654, 0, 1, "", "depthwise_conv2d"], [665, 0, 1, "", "det"], [193, 0, 1, "", "dev"], [394, 0, 1, "", "dft"], [666, 0, 1, "", "diag"], [423, 0, 1, "", "diagflat"], [667, 0, 1, "", "diagonal"], [337, 0, 1, "", "diff"], [338, 0, 1, "", "digamma"], [506, 0, 1, "", "dirichlet"], [236, 0, 1, "", "divide"], [424, 0, 1, "", "dot"], [655, 0, 1, "", "dropout"], [395, 0, 1, "", "dropout1d"], [396, 0, 1, "", "dropout2d"], [397, 0, 1, "", "dropout3d"], [466, 0, 1, "", "dsplit"], [467, 0, 1, "", "dstack"], [159, 0, 1, "", "dtype"], [425, 0, 1, "", "eig"], [669, 0, 1, "", "eigh"], [426, 0, 1, "", "eigh_tridiagonal"], [427, 0, 1, "", "eigvals"], [670, 0, 1, "", "eigvalsh"], [541, 0, 1, "", "einops_rearrange"], [542, 0, 1, "", "einops_reduce"], [543, 0, 1, "", "einops_repeat"], [755, 0, 1, "", "einsum"], [292, 0, 1, "", "elu"], [398, 0, 1, "", "embedding"], [127, 0, 1, "", "empty_like"], [237, 0, 1, "", "equal"], [238, 0, 1, "", "erf"], [339, 0, 1, "", "erfc"], [340, 0, 1, "", "erfinv"], [544, 0, 1, "", "exists"], [239, 0, 1, "", "exp"], [240, 0, 1, "", "exp2"], [468, 0, 1, "", "expand"], [698, 0, 1, "", "expand_dims"], [241, 0, 1, "", "expm1"], [309, 0, 1, "", "eye_like"], [399, 0, 1, "", "fft"], [400, 0, 1, "", "fft2"], [469, 0, 1, "", "fill_diagonal"], [161, 0, 1, "", "finfo"], [341, 0, 1, "", "fix"], [470, 0, 1, "", "flatten"], [699, 0, 1, "", "flip"], [471, 0, 1, "", "fliplr"], [472, 0, 1, "", "flipud"], [342, 0, 1, "", "float_power"], [242, 0, 1, "", "floor"], [243, 0, 1, "", "floor_divide"], [343, 0, 1, "", "fmax"], [244, 0, 1, "", "fmin"], [245, 0, 1, "", "fmod"], [473, 0, 1, "", "fold"], [545, 0, 1, "", "fourier_encode"], [344, 0, 1, "", "frexp"], [129, 0, 1, "", "from_dlpack"], [132, 0, 1, "", "full_like"], [507, 0, 1, "", "gamma"], [548, 0, 1, "", "gather"], [549, 0, 1, "", "gather_nd"], [246, 0, 1, "", "gcd"], [106, 0, 1, "", "gelu"], [428, 0, 1, "", "general_inner_product"], [552, 0, 1, "", "get_num_dims"], [345, 0, 1, "", "gradient"], [615, 0, 1, "", "gradient_descent_update"], [247, 0, 1, "", "greater"], [248, 0, 1, "", "greater_equal"], [498, 0, 1, "", "group_norm"], [293, 0, 1, "", "hardshrink"], [294, 0, 1, "", "hardsilu"], [107, 0, 1, "", "hardswish"], [295, 0, 1, "", "hardtanh"], [554, 0, 1, "", "has_nans"], [474, 0, 1, "", "heaviside"], [429, 0, 1, "", "higher_order_moment"], [448, 0, 1, "", "hinge_embedding_loss"], [521, 0, 1, "", "histogram"], [475, 0, 1, "", "hsplit"], [476, 0, 1, "", "hstack"], [449, 0, 1, "", "huber_loss"], [346, 0, 1, "", "hypot"], [477, 0, 1, "", "i0"], [403, 0, 1, "", "idct"], [404, 0, 1, "", "ifft"], [405, 0, 1, "", "ifftn"], [522, 0, 1, "", "igamma"], [164, 0, 1, "", "iinfo"], [249, 0, 1, "", "imag"], [430, 0, 1, "", "initialize_tucker"], [671, 0, 1, "", "inner"], [556, 0, 1, "", "inplace_decrement"], [557, 0, 1, "", "inplace_increment"], [558, 0, 1, "", "inplace_update"], [499, 0, 1, "", "instance_norm"], [407, 0, 1, "", "interpolate"], [672, 0, 1, "", "inv"], [560, 0, 1, "", "is_array"], [167, 0, 1, "", "is_bool_dtype"], [169, 0, 1, "", "is_float_dtype"], [171, 0, 1, "", "is_int_dtype"], [561, 0, 1, "", "is_ivy_array"], [562, 0, 1, "", "is_ivy_container"], [564, 0, 1, "", "is_native_array"], [173, 0, 1, "", "is_uint_dtype"], [347, 0, 1, "", "isclose"], [250, 0, 1, "", "isfinite"], [565, 0, 1, "", "isin"], [251, 0, 1, "", "isinf"], [252, 0, 1, "", "isnan"], [253, 0, 1, "", "isreal"], [567, 0, 1, "", "itemsize"], [450, 0, 1, "", "kl_div"], [432, 0, 1, "", "kron"], [451, 0, 1, "", "l1_loss"], [500, 0, 1, "", "l1_normalize"], [501, 0, 1, "", "l2_normalize"], [617, 0, 1, "", "lamb_update"], [618, 0, 1, "", "lars_update"], [733, 0, 1, "", "layer_norm"], [254, 0, 1, "", "lcm"], [348, 0, 1, "", "ldexp"], [108, 0, 1, "", "leaky_relu"], [349, 0, 1, "", "lerp"], [255, 0, 1, "", "less"], [256, 0, 1, "", "less_equal"], [511, 0, 1, "", "lexsort"], [350, 0, 1, "", "lgamma"], [656, 0, 1, "", "linear"], [133, 0, 1, "", "linspace"], [257, 0, 1, "", "log"], [258, 0, 1, "", "log10"], [259, 0, 1, "", "log1p"], [260, 0, 1, "", "log2"], [452, 0, 1, "", "log_poisson_loss"], [109, 0, 1, "", "log_softmax"], [261, 0, 1, "", "logaddexp"], [262, 0, 1, "", "logaddexp2"], [263, 0, 1, "", "logical_and"], [264, 0, 1, "", "logical_not"], [265, 0, 1, "", "logical_or"], [266, 0, 1, "", "logical_xor"], [296, 0, 1, "", "logit"], [297, 0, 1, "", "logsigmoid"], [134, 0, 1, "", "logspace"], [503, 0, 1, "", "lp_normalize"], [658, 0, 1, "", "lstm_update"], [436, 0, 1, "", "make_svd_non_negative"], [673, 0, 1, "", "matmul"], [478, 0, 1, "", "matricize"], [437, 0, 1, "", "matrix_exp"], [674, 0, 1, "", "matrix_norm"], [675, 0, 1, "", "matrix_power"], [676, 0, 1, "", "matrix_rank"], [677, 0, 1, "", "matrix_transpose"], [756, 0, 1, "", "max"], [408, 0, 1, "", "max_pool1d"], [409, 0, 1, "", "max_pool2d"], [410, 0, 1, "", "max_pool3d"], [411, 0, 1, "", "max_unpool1d"], [267, 0, 1, "", "maximum"], [757, 0, 1, "", "mean"], [523, 0, 1, "", "median"], [315, 0, 1, "", "mel_weight_matrix"], [135, 0, 1, "", "meshgrid"], [758, 0, 1, "", "min"], [268, 0, 1, "", "minimum"], [110, 0, 1, "", "mish"], [438, 0, 1, "", "mode_dot"], [351, 0, 1, "", "modf"], [479, 0, 1, "", "moveaxis"], [750, 0, 1, "", "msort"], [439, 0, 1, "", "multi_dot"], [659, 0, 1, "", "multi_head_attention"], [440, 0, 1, "", "multi_mode_dot"], [734, 0, 1, "", "multinomial"], [269, 0, 1, "", "multiply"], [270, 0, 1, "", "nan_to_num"], [524, 0, 1, "", "nanmean"], [525, 0, 1, "", "nanmedian"], [526, 0, 1, "", "nanmin"], [527, 0, 1, "", "nanprod"], [352, 0, 1, "", "nansum"], [136, 0, 1, "", "native_array"], [271, 0, 1, "", "negative"], [353, 0, 1, "", "nextafter"], [743, 0, 1, "", "nonzero"], [272, 0, 1, "", "not_equal"], [137, 0, 1, "", "one_hot"], [139, 0, 1, "", "ones_like"], [619, 0, 1, "", "optimizer_update"], [529, 0, 1, "", "optional_get_element"], [678, 0, 1, "", "outer"], [480, 0, 1, "", "pad"], [481, 0, 1, "", "partial_fold"], [482, 0, 1, "", "partial_tensor_to_vec"], [441, 0, 1, "", "partial_tucker"], [483, 0, 1, "", "partial_unfold"], [484, 0, 1, "", "partial_vec_to_tensor"], [700, 0, 1, "", "permute_dims"], [679, 0, 1, "", "pinv"], [508, 0, 1, "", "poisson"], [453, 0, 1, "", "poisson_nll_loss"], [273, 0, 1, "", "positive"], [274, 0, 1, "", "pow"], [298, 0, 1, "", "prelu"], [759, 0, 1, "", "prod"], [485, 0, 1, "", "put_along_axis"], [680, 0, 1, "", "qr"], [528, 0, 1, "", "quantile"], [275, 0, 1, "", "rad2deg"], [735, 0, 1, "", "randint"], [736, 0, 1, "", "random_normal"], [737, 0, 1, "", "random_uniform"], [276, 0, 1, "", "real"], [277, 0, 1, "", "reciprocal"], [359, 0, 1, "", "reduce"], [414, 0, 1, "", "reduce_window"], [111, 0, 1, "", "relu"], [299, 0, 1, "", "relu6"], [278, 0, 1, "", "remainder"], [701, 0, 1, "", "repeat"], [702, 0, 1, "", "reshape"], [176, 0, 1, "", "result_type"], [415, 0, 1, "", "rfft"], [416, 0, 1, "", "rfftn"], [703, 0, 1, "", "roll"], [486, 0, 1, "", "rot90"], [279, 0, 1, "", "round"], [662, 0, 1, "", "scaled_dot_product_attention"], [300, 0, 1, "", "scaled_tanh"], [572, 0, 1, "", "scatter_flat"], [573, 0, 1, "", "scatter_nd"], [751, 0, 1, "", "searchsorted"], [301, 0, 1, "", "selu"], [586, 0, 1, "", "shape"], [739, 0, 1, "", "shuffle"], [112, 0, 1, "", "sigmoid"], [280, 0, 1, "", "sign"], [354, 0, 1, "", "signbit"], [302, 0, 1, "", "silu"], [281, 0, 1, "", "sin"], [355, 0, 1, "", "sinc"], [282, 0, 1, "", "sinh"], [587, 0, 1, "", "size"], [418, 0, 1, "", "sliding_window"], [681, 0, 1, "", "slogdet"], [454, 0, 1, "", "smooth_l1_loss"], [455, 0, 1, "", "soft_margin_loss"], [487, 0, 1, "", "soft_thresholding"], [113, 0, 1, "", "softmax"], [114, 0, 1, "", "softplus"], [303, 0, 1, "", "softshrink"], [682, 0, 1, "", "solve"], [752, 0, 1, "", "sort"], [694, 0, 1, "", "sparse_cross_entropy"], [356, 0, 1, "", "sparsify_tensor"], [704, 0, 1, "", "split"], [283, 0, 1, "", "sqrt"], [284, 0, 1, "", "square"], [705, 0, 1, "", "squeeze"], [588, 0, 1, "", "stable_divide"], [589, 0, 1, "", "stable_pow"], [706, 0, 1, "", "stack"], [760, 0, 1, "", "std"], [419, 0, 1, "", "stft"], [620, 0, 1, "", "stop_gradient"], [590, 0, 1, "", "strides"], [285, 0, 1, "", "subtract"], [761, 0, 1, "", "sum"], [591, 0, 1, "", "supports_inplace_updates"], [683, 0, 1, "", "svd"], [443, 0, 1, "", "svd_flip"], [684, 0, 1, "", "svdvals"], [707, 0, 1, "", "swapaxes"], [488, 0, 1, "", "take"], [489, 0, 1, "", "take_along_axis"], [286, 0, 1, "", "tan"], [287, 0, 1, "", "tanh"], [305, 0, 1, "", "tanhshrink"], [444, 0, 1, "", "tensor_train"], [685, 0, 1, "", "tensordot"], [686, 0, 1, "", "tensorsolve"], [306, 0, 1, "", "threshold"], [307, 0, 1, "", "thresholded_relu"], [708, 0, 1, "", "tile"], [210, 0, 1, "", "to_device"], [593, 0, 1, "", "to_list"], [595, 0, 1, "", "to_numpy"], [596, 0, 1, "", "to_scalar"], [490, 0, 1, "", "top_k"], [687, 0, 1, "", "trace"], [288, 0, 1, "", "trapz"], [141, 0, 1, "", "tril"], [325, 0, 1, "", "trilu"], [491, 0, 1, "", "trim_zeros"], [142, 0, 1, "", "triu"], [289, 0, 1, "", "trunc"], [290, 0, 1, "", "trunc_divide"], [445, 0, 1, "", "truncated_svd"], [446, 0, 1, "", "tt_matrix_to_tensor"], [447, 0, 1, "", "tucker"], [492, 0, 1, "", "unflatten"], [493, 0, 1, "", "unfold"], [745, 0, 1, "", "unique_all"], [494, 0, 1, "", "unique_consecutive"], [746, 0, 1, "", "unique_counts"], [747, 0, 1, "", "unique_inverse"], [748, 0, 1, "", "unique_values"], [509, 0, 1, "", "unravel_index"], [326, 0, 1, "", "unsorted_segment_mean"], [327, 0, 1, "", "unsorted_segment_min"], [328, 0, 1, "", "unsorted_segment_sum"], [709, 0, 1, "", "unstack"], [609, 0, 1, "", "value_is_nan"], [688, 0, 1, "", "vander"], [762, 0, 1, "", "var"], [689, 0, 1, "", "vecdot"], [690, 0, 1, "", "vector_norm"], [691, 0, 1, "", "vector_to_skew_symmetric_matrix"], [495, 0, 1, "", "vsplit"], [496, 0, 1, "", "vstack"], [744, 0, 1, "", "where"], [357, 0, 1, "", "xlogy"], [710, 0, 1, "", "zero_pad"], [145, 0, 1, "", "zeros_like"], [358, 0, 1, "", "zeta"]], "ivy": [[630, 1, 1, "", "ArrayMode"], [626, 1, 1, "", "DefaultComplexDtype"], [627, 1, 1, "", "DefaultDevice"], [626, 1, 1, "", "DefaultDtype"], [626, 1, 1, "", "DefaultFloatDtype"], [626, 1, 1, "", "DefaultIntDtype"], [626, 1, 1, "", "DefaultUintDtype"], [382, 1, 1, "", "NativeSparseArray"], [625, 1, 1, "", "NestedSequence"], [630, 1, 1, "", "PreciseMode"], [627, 1, 1, "", "Profiler"], [382, 1, 1, "", "SparseArray"], [216, 2, 1, "", "abs"], [217, 2, 1, "", "acos"], [218, 2, 1, "", "acosh"], [631, 2, 1, "", "adam_step"], [631, 2, 1, "", "adam_update"], [385, 2, 1, "", "adaptive_avg_pool1d"], [386, 2, 1, "", "adaptive_avg_pool2d"], [387, 2, 1, "", "adaptive_max_pool2d"], [388, 2, 1, "", "adaptive_max_pool3d"], [219, 2, 1, "", "add"], [372, 2, 1, "", "adjoint"], [644, 2, 1, "", "all"], [630, 2, 1, "", "all_equal"], [637, 2, 1, "", "all_nested_indices"], [368, 2, 1, "", "allclose"], [368, 2, 1, "", "amax"], [368, 2, 1, "", "amin"], [220, 2, 1, "", "angle"], [644, 2, 1, "", "any"], [625, 2, 1, "", "arange"], [389, 2, 1, "", "area_interpolate"], [630, 2, 1, "", "arg_info"], [630, 2, 1, "", "arg_names"], [640, 2, 1, "", "argmax"], [640, 2, 1, "", "argmin"], [642, 2, 1, "", "argsort"], [640, 2, 1, "", "argwhere"], [625, 2, 1, "", "array"], [630, 2, 1, "", "array_equal"], [189, 2, 1, "", "as_ivy_dev"], [626, 2, 1, "", "as_ivy_dtype"], [190, 2, 1, "", "as_native_dev"], [626, 2, 1, "", "as_native_dtype"], [374, 2, 1, "", "as_strided"], [625, 2, 1, "", "asarray"], [221, 2, 1, "", "asin"], [222, 2, 1, "", "asinh"], [630, 2, 1, "", "assert_supports_inplace"], [374, 2, 1, "", "associative_scan"], [626, 2, 1, "", "astype"], [223, 2, 1, "", "atan"], [224, 2, 1, "", "atan2"], [225, 2, 1, "", "atanh"], [374, 2, 1, "", "atleast_1d"], [374, 2, 1, "", "atleast_2d"], [374, 2, 1, "", "atleast_3d"], [390, 2, 1, "", "avg_pool1d"], [391, 2, 1, "", "avg_pool2d"], [392, 2, 1, "", "avg_pool3d"], [377, 2, 1, "", "batch_norm"], [372, 2, 1, "", "batched_outer"], [378, 2, 1, "", "bernoulli"], [378, 2, 1, "", "beta"], [368, 2, 1, "", "binarizer"], [634, 2, 1, "", "binary_cross_entropy"], [383, 2, 1, "", "bincount"], [370, 2, 1, "", "bind_custom_gradient_function"], [226, 2, 1, "", "bitwise_and"], [227, 2, 1, "", "bitwise_invert"], [228, 2, 1, "", "bitwise_left_shift"], [229, 2, 1, "", "bitwise_or"], [230, 2, 1, "", "bitwise_right_shift"], [231, 2, 1, "", "bitwise_xor"], [308, 2, 1, "", "blackman_window"], [626, 2, 1, "", "broadcast_arrays"], [374, 2, 1, "", "broadcast_shapes"], [626, 2, 1, "", "broadcast_to"], [630, 2, 1, "", "cache_fn"], [626, 2, 1, "", "can_cast"], [232, 2, 1, "", "ceil"], [291, 2, 1, "", "celu"], [626, 2, 1, "", "check_float"], [374, 2, 1, "", "check_scalar"], [633, 2, 1, "", "cholesky"], [374, 2, 1, "", "choose"], [191, 2, 1, "", "clear_cached_mem_on_dev"], [635, 2, 1, "", "clip"], [630, 2, 1, "", "clip_matrix_norm"], [630, 2, 1, "", "clip_vector_norm"], [626, 2, 1, "", "closest_valid_dtype"], [624, 2, 1, "", "cmp_is"], [624, 2, 1, "", "cmp_isnot"], [374, 2, 1, "", "column_stack"], [635, 2, 1, "", "concat"], [374, 2, 1, "", "concat_from_sequence"], [372, 2, 1, "", "cond"], [368, 2, 1, "", "conj"], [635, 2, 1, "", "constant_pad"], [630, 2, 1, "", "container_types"], [632, 2, 1, "", "conv"], [632, 2, 1, "", "conv1d"], [632, 2, 1, "", "conv1d_transpose"], [632, 2, 1, "", "conv2d"], [632, 2, 1, "", "conv2d_transpose"], [632, 2, 1, "", "conv3d"], [632, 2, 1, "", "conv3d_transpose"], [632, 2, 1, "", "conv_general_dilated"], [632, 2, 1, "", "conv_general_transpose"], [625, 2, 1, "", "copy_array"], [637, 2, 1, "", "copy_nest"], [368, 2, 1, "", "copysign"], [383, 2, 1, "", "corrcoef"], [233, 2, 1, "", "cos"], [234, 2, 1, "", "cosh"], [368, 2, 1, "", "count_nonzero"], [383, 2, 1, "", "cov"], [633, 2, 1, "", "cross"], [634, 2, 1, "", "cross_entropy"], [383, 2, 1, "", "cummax"], [383, 2, 1, "", "cummin"], [643, 2, 1, "", "cumprod"], [643, 2, 1, "", "cumsum"], [630, 2, 1, "", "current_backend_str"], [393, 2, 1, "", "dct"], [630, 2, 1, "", "default"], [626, 2, 1, "", "default_complex_dtype"], [192, 2, 1, "", "default_device"], [626, 2, 1, "", "default_dtype"], [626, 2, 1, "", "default_float_dtype"], [626, 2, 1, "", "default_int_dtype"], [626, 2, 1, "", "default_uint_dtype"], [235, 2, 1, "", "deg2rad"], [632, 2, 1, "", "depthwise_conv2d"], [633, 2, 1, "", "det"], [193, 2, 1, "", "dev"], [194, 2, 1, "", "dev_util"], [394, 2, 1, "", "dft"], [633, 2, 1, "", "diag"], [372, 2, 1, "", "diagflat"], [633, 2, 1, "", "diagonal"], [368, 2, 1, "", "diff"], [368, 2, 1, "", "digamma"], [378, 2, 1, "", "dirichlet"], [236, 2, 1, "", "divide"], [372, 2, 1, "", "dot"], [632, 2, 1, "", "dropout"], [395, 2, 1, "", "dropout1d"], [396, 2, 1, "", "dropout2d"], [397, 2, 1, "", "dropout3d"], [374, 2, 1, "", "dsplit"], [374, 2, 1, "", "dstack"], [626, 2, 1, "", "dtype"], [626, 2, 1, "", "dtype_bits"], [637, 2, 1, "", "duplicate_array_index_chains"], [623, 6, 1, "", "e"], [372, 2, 1, "", "eig"], [633, 2, 1, "", "eigh"], [372, 2, 1, "", "eigh_tridiagonal"], [372, 2, 1, "", "eigvals"], [633, 2, 1, "", "eigvalsh"], [630, 2, 1, "", "einops_rearrange"], [630, 2, 1, "", "einops_reduce"], [630, 2, 1, "", "einops_repeat"], [643, 2, 1, "", "einsum"], [292, 2, 1, "", "elu"], [398, 2, 1, "", "embedding"], [625, 2, 1, "", "empty"], [625, 2, 1, "", "empty_like"], [237, 2, 1, "", "equal"], [238, 2, 1, "", "erf"], [368, 2, 1, "", "erfc"], [368, 2, 1, "", "erfinv"], [631, 2, 1, "", "execute_with_gradients"], [630, 2, 1, "", "exists"], [239, 2, 1, "", "exp"], [240, 2, 1, "", "exp2"], [374, 2, 1, "", "expand"], [635, 2, 1, "", "expand_dims"], [241, 2, 1, "", "expm1"], [625, 2, 1, "", "eye"], [309, 2, 1, "", "eye_like"], [399, 2, 1, "", "fft"], [400, 2, 1, "", "fft2"], [374, 2, 1, "", "fill_diagonal"], [626, 2, 1, "", "finfo"], [368, 2, 1, "", "fix"], [374, 2, 1, "", "flatten"], [635, 2, 1, "", "flip"], [374, 2, 1, "", "fliplr"], [374, 2, 1, "", "flipud"], [368, 2, 1, "", "float_power"], [242, 2, 1, "", "floor"], [243, 2, 1, "", "floor_divide"], [368, 2, 1, "", "fmax"], [244, 2, 1, "", "fmin"], [245, 2, 1, "", "fmod"], [374, 2, 1, "", "fold"], [636, 2, 1, "", "fomaml_step"], [624, 2, 1, "", "for_loop"], [630, 2, 1, "", "fourier_encode"], [368, 2, 1, "", "frexp"], [625, 2, 1, "", "from_dlpack"], [625, 2, 1, "", "frombuffer"], [625, 2, 1, "", "full"], [625, 2, 1, "", "full_like"], [195, 2, 1, "", "function_supported_devices"], [630, 2, 1, "", "function_supported_devices_and_dtypes"], [626, 2, 1, "", "function_supported_dtypes"], [196, 2, 1, "", "function_unsupported_devices"], [630, 2, 1, "", "function_unsupported_devices_and_dtypes"], [626, 2, 1, "", "function_unsupported_dtypes"], [378, 2, 1, "", "gamma"], [630, 2, 1, "", "gather"], [630, 2, 1, "", "gather_nd"], [246, 2, 1, "", "gcd"], [622, 2, 1, "", "gelu"], [372, 2, 1, "", "general_inner_product"], [401, 2, 1, "", "generate_einsum_equation"], [630, 2, 1, "", "get_all_arrays_in_memory"], [197, 2, 1, "", "get_all_ivy_arrays_on_dev"], [402, 2, 1, "", "get_interpolate_kernel"], [630, 2, 1, "", "get_item"], [630, 2, 1, "", "get_num_dims"], [630, 2, 1, "", "get_referrers_recursive"], [198, 2, 1, "", "gpu_is_available"], [631, 2, 1, "", "grad"], [368, 2, 1, "", "gradient"], [631, 2, 1, "", "gradient_descent_update"], [247, 2, 1, "", "greater"], [248, 2, 1, "", "greater_equal"], [377, 2, 1, "", "group_norm"], [310, 2, 1, "", "hamming_window"], [199, 2, 1, "", "handle_soft_device_variable"], [311, 2, 1, "", "hann_window"], [293, 2, 1, "", "hardshrink"], [294, 2, 1, "", "hardsilu"], [622, 2, 1, "", "hardswish"], [295, 2, 1, "", "hardtanh"], [630, 2, 1, "", "has_nans"], [374, 2, 1, "", "heaviside"], [372, 2, 1, "", "higher_order_moment"], [373, 2, 1, "", "hinge_embedding_loss"], [383, 2, 1, "", "histogram"], [374, 2, 1, "", "hsplit"], [374, 2, 1, "", "hstack"], [373, 2, 1, "", "huber_loss"], [368, 2, 1, "", "hypot"], [374, 2, 1, "", "i0"], [403, 2, 1, "", "idct"], [624, 2, 1, "", "if_else"], [404, 2, 1, "", "ifft"], [405, 2, 1, "", "ifftn"], [383, 2, 1, "", "igamma"], [626, 2, 1, "", "iinfo"], [249, 2, 1, "", "imag"], [637, 2, 1, "", "index_nest"], [312, 2, 1, "", "indices"], [623, 6, 1, "", "inf"], [626, 2, 1, "", "infer_default_dtype"], [372, 2, 1, "", "initialize_tucker"], [633, 2, 1, "", "inner"], [630, 2, 1, "", "inplace_arrays_supported"], [630, 2, 1, "", "inplace_decrement"], [630, 2, 1, "", "inplace_increment"], [630, 2, 1, "", "inplace_update"], [630, 2, 1, "", "inplace_variables_supported"], [637, 2, 1, "", "insert_into_nest_at_index"], [637, 2, 1, "", "insert_into_nest_at_indices"], [377, 2, 1, "", "instance_norm"], [406, 2, 1, "", "interp"], [407, 2, 1, "", "interpolate"], [633, 2, 1, "", "inv"], [626, 2, 1, "", "invalid_dtype"], [381, 2, 1, "", "invert_permutation"], [630, 2, 1, "", "is_array"], [626, 2, 1, "", "is_bool_dtype"], [626, 2, 1, "", "is_complex_dtype"], [626, 2, 1, "", "is_float_dtype"], [626, 2, 1, "", "is_hashable_dtype"], [626, 2, 1, "", "is_int_dtype"], [630, 2, 1, "", "is_ivy_array"], [630, 2, 1, "", "is_ivy_container"], [630, 2, 1, "", "is_ivy_nested_array"], [382, 2, 1, "", "is_ivy_sparse_array"], [630, 2, 1, "", "is_native_array"], [626, 2, 1, "", "is_native_dtype"], [382, 2, 1, "", "is_native_sparse_array"], [626, 2, 1, "", "is_uint_dtype"], [368, 2, 1, "", "isclose"], [250, 2, 1, "", "isfinite"], [630, 2, 1, "", "isin"], [251, 2, 1, "", "isinf"], [252, 2, 1, "", "isnan"], [253, 2, 1, "", "isreal"], [630, 2, 1, "", "isscalar"], [630, 2, 1, "", "itemsize"], [631, 2, 1, "", "jac"], [370, 2, 1, "", "jvp"], [313, 2, 1, "", "kaiser_bessel_derived_window"], [314, 2, 1, "", "kaiser_window"], [372, 2, 1, "", "khatri_rao"], [373, 2, 1, "", "kl_div"], [372, 2, 1, "", "kron"], [372, 2, 1, "", "kronecker"], [373, 2, 1, "", "l1_loss"], [377, 2, 1, "", "l1_normalize"], [377, 2, 1, "", "l2_normalize"], [631, 2, 1, "", "lamb_update"], [631, 2, 1, "", "lars_update"], [638, 2, 1, "", "layer_norm"], [254, 2, 1, "", "lcm"], [368, 2, 1, "", "ldexp"], [622, 2, 1, "", "leaky_relu"], [368, 2, 1, "", "lerp"], [255, 2, 1, "", "less"], [256, 2, 1, "", "less_equal"], [381, 2, 1, "", "lexsort"], [368, 2, 1, "", "lgamma"], [632, 2, 1, "", "linear"], [625, 2, 1, "", "linspace"], [644, 2, 1, "", "load"], [377, 2, 1, "", "local_response_norm"], [257, 2, 1, "", "log"], [258, 2, 1, "", "log10"], [259, 2, 1, "", "log1p"], [260, 2, 1, "", "log2"], [373, 2, 1, "", "log_poisson_loss"], [622, 2, 1, "", "log_softmax"], [261, 2, 1, "", "logaddexp"], [262, 2, 1, "", "logaddexp2"], [263, 2, 1, "", "logical_and"], [264, 2, 1, "", "logical_not"], [265, 2, 1, "", "logical_or"], [266, 2, 1, "", "logical_xor"], [296, 2, 1, "", "logit"], [297, 2, 1, "", "logsigmoid"], [625, 2, 1, "", "logspace"], [377, 2, 1, "", "lp_normalize"], [632, 2, 1, "", "lstm"], [632, 2, 1, "", "lstm_update"], [372, 2, 1, "", "lu_factor"], [372, 2, 1, "", "lu_solve"], [372, 2, 1, "", "make_svd_non_negative"], [636, 2, 1, "", "maml_step"], [637, 2, 1, "", "map"], [637, 2, 1, "", "map_nest_at_index"], [637, 2, 1, "", "map_nest_at_indices"], [630, 2, 1, "", "match_kwargs"], [633, 2, 1, "", "matmul"], [374, 2, 1, "", "matricize"], [372, 2, 1, "", "matrix_exp"], [633, 2, 1, "", "matrix_norm"], [633, 2, 1, "", "matrix_power"], [633, 2, 1, "", "matrix_rank"], [633, 2, 1, "", "matrix_transpose"], [643, 2, 1, "", "max"], [408, 2, 1, "", "max_pool1d"], [409, 2, 1, "", "max_pool2d"], [410, 2, 1, "", "max_pool3d"], [411, 2, 1, "", "max_unpool1d"], [267, 2, 1, "", "maximum"], [643, 2, 1, "", "mean"], [383, 2, 1, "", "median"], [315, 2, 1, "", "mel_weight_matrix"], [625, 2, 1, "", "meshgrid"], [643, 2, 1, "", "min"], [268, 2, 1, "", "minimum"], [622, 2, 1, "", "mish"], [372, 2, 1, "", "mode_dot"], [368, 2, 1, "", "modf"], [374, 2, 1, "", "moveaxis"], [642, 2, 1, "", "msort"], [372, 2, 1, "", "multi_dot"], [632, 2, 1, "", "multi_head_attention"], [637, 2, 1, "", "multi_index_nest"], [372, 2, 1, "", "multi_mode_dot"], [639, 2, 1, "", "multinomial"], [269, 2, 1, "", "multiply"], [630, 2, 1, "", "multiprocessing"], [623, 6, 1, "", "nan"], [270, 2, 1, "", "nan_to_num"], [383, 2, 1, "", "nanmean"], [383, 2, 1, "", "nanmedian"], [383, 2, 1, "", "nanmin"], [383, 2, 1, "", "nanprod"], [368, 2, 1, "", "nansum"], [625, 2, 1, "", "native_array"], [382, 2, 1, "", "native_sparse_array"], [382, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [316, 2, 1, "", "ndenumerate"], [317, 2, 1, "", "ndindex"], [412, 2, 1, "", "nearest_interpolate"], [271, 2, 1, "", "negative"], [637, 2, 1, "", "nested_any"], [637, 2, 1, "", "nested_argwhere"], [637, 2, 1, "", "nested_map"], [637, 2, 1, "", "nested_multi_map"], [623, 6, 1, "", "newaxis"], [368, 2, 1, "", "nextafter"], [632, 2, 1, "", "nms"], [640, 2, 1, "", "nonzero"], [272, 2, 1, "", "not_equal"], [630, 2, 1, "", "num_arrays_in_memory"], [200, 2, 1, "", "num_cpu_cores"], [201, 2, 1, "", "num_gpus"], [202, 2, 1, "", "num_ivy_arrays_on_dev"], [625, 2, 1, "", "one_hot"], [625, 2, 1, "", "ones"], [625, 2, 1, "", "ones_like"], [631, 2, 1, "", "optimizer_update"], [384, 2, 1, "", "optional_get_element"], [633, 2, 1, "", "outer"], [374, 2, 1, "", "pad"], [374, 2, 1, "", "partial_fold"], [374, 2, 1, "", "partial_tensor_to_vec"], [372, 2, 1, "", "partial_tucker"], [374, 2, 1, "", "partial_unfold"], [374, 2, 1, "", "partial_vec_to_tensor"], [203, 2, 1, "", "percent_used_mem_on_dev"], [635, 2, 1, "", "permute_dims"], [623, 6, 1, "", "pi"], [633, 2, 1, "", "pinv"], [378, 2, 1, "", "poisson"], [373, 2, 1, "", "poisson_nll_loss"], [318, 2, 1, "", "polyval"], [413, 2, 1, "", "pool"], [273, 2, 1, "", "positive"], [274, 2, 1, "", "pow"], [298, 2, 1, "", "prelu"], [630, 2, 1, "", "print_all_arrays_in_memory"], [204, 2, 1, "", "print_all_ivy_arrays_on_dev"], [643, 2, 1, "", "prod"], [626, 2, 1, "", "promote_types"], [626, 2, 1, "", "promote_types_of_inputs"], [637, 2, 1, "", "prune_empty"], [637, 2, 1, "", "prune_nest_at_index"], [637, 2, 1, "", "prune_nest_at_indices"], [374, 2, 1, "", "put_along_axis"], [633, 2, 1, "", "qr"], [383, 2, 1, "", "quantile"], [275, 2, 1, "", "rad2deg"], [639, 2, 1, "", "randint"], [319, 2, 1, "", "random_cp"], [639, 2, 1, "", "random_normal"], [320, 2, 1, "", "random_parafac2"], [321, 2, 1, "", "random_tr"], [365, 2, 1, "", "random_tt"], [365, 2, 1, "", "random_tucker"], [639, 2, 1, "", "random_uniform"], [276, 2, 1, "", "real"], [277, 2, 1, "", "reciprocal"], [369, 2, 1, "", "reduce"], [371, 2, 1, "", "reduce_window"], [622, 2, 1, "", "relu"], [299, 2, 1, "", "relu6"], [278, 2, 1, "", "remainder"], [635, 2, 1, "", "repeat"], [636, 2, 1, "", "reptile_step"], [635, 2, 1, "", "reshape"], [626, 2, 1, "", "result_type"], [371, 2, 1, "", "rfft"], [371, 2, 1, "", "rfftn"], [371, 2, 1, "", "rnn"], [632, 2, 1, "", "roi_align"], [635, 2, 1, "", "roll"], [374, 2, 1, "", "rot90"], [279, 2, 1, "", "round"], [644, 2, 1, "", "save"], [632, 2, 1, "", "scaled_dot_product_attention"], [300, 2, 1, "", "scaled_tanh"], [630, 2, 1, "", "scatter_flat"], [630, 2, 1, "", "scatter_nd"], [642, 2, 1, "", "searchsorted"], [639, 2, 1, "", "seed"], [301, 2, 1, "", "selu"], [630, 2, 1, "", "set_array_mode"], [626, 2, 1, "", "set_default_complex_dtype"], [205, 2, 1, "", "set_default_device"], [626, 2, 1, "", "set_default_dtype"], [626, 2, 1, "", "set_default_float_dtype"], [626, 2, 1, "", "set_default_int_dtype"], [626, 2, 1, "", "set_default_uint_dtype"], [630, 2, 1, "", "set_exception_trace_mode"], [630, 2, 1, "", "set_inplace_mode"], [630, 2, 1, "", "set_item"], [630, 2, 1, "", "set_min_base"], [630, 2, 1, "", "set_min_denominator"], [637, 2, 1, "", "set_nest_at_index"], [637, 2, 1, "", "set_nest_at_indices"], [630, 2, 1, "", "set_nestable_mode"], [630, 2, 1, "", "set_precise_mode"], [630, 2, 1, "", "set_queue_timeout"], [630, 2, 1, "", "set_shape_array_mode"], [630, 2, 1, "", "set_show_func_wrapper_trace_mode"], [206, 2, 1, "", "set_soft_device_mode"], [207, 2, 1, "", "set_split_factor"], [630, 2, 1, "", "set_tmp_dir"], [630, 2, 1, "", "shape"], [639, 2, 1, "", "shuffle"], [622, 2, 1, "", "sigmoid"], [280, 2, 1, "", "sign"], [368, 2, 1, "", "signbit"], [302, 2, 1, "", "silu"], [281, 2, 1, "", "sin"], [368, 2, 1, "", "sinc"], [282, 2, 1, "", "sinh"], [630, 2, 1, "", "size"], [371, 2, 1, "", "sliding_window"], [633, 2, 1, "", "slogdet"], [373, 2, 1, "", "smooth_l1_loss"], [373, 2, 1, "", "soft_margin_loss"], [374, 2, 1, "", "soft_thresholding"], [622, 2, 1, "", "softmax"], [622, 2, 1, "", "softplus"], [303, 2, 1, "", "softshrink"], [622, 2, 1, "", "softsign"], [633, 2, 1, "", "solve"], [372, 2, 1, "", "solve_triangular"], [642, 2, 1, "", "sort"], [634, 2, 1, "", "sparse_cross_entropy"], [368, 2, 1, "", "sparsify_tensor"], [635, 2, 1, "", "split"], [208, 2, 1, "", "split_factor"], [209, 2, 1, "", "split_func_call"], [283, 2, 1, "", "sqrt"], [284, 2, 1, "", "square"], [635, 2, 1, "", "squeeze"], [630, 2, 1, "", "stable_divide"], [630, 2, 1, "", "stable_pow"], [635, 2, 1, "", "stack"], [304, 2, 1, "", "stanh"], [643, 2, 1, "", "std"], [371, 2, 1, "", "stft"], [631, 2, 1, "", "stop_gradient"], [630, 2, 1, "", "strides"], [285, 2, 1, "", "subtract"], [643, 2, 1, "", "sum"], [630, 2, 1, "", "supports_inplace_updates"], [633, 2, 1, "", "svd"], [372, 2, 1, "", "svd_flip"], [633, 2, 1, "", "svdvals"], [635, 2, 1, "", "swapaxes"], [374, 2, 1, "", "take"], [374, 2, 1, "", "take_along_axis"], [286, 2, 1, "", "tan"], [287, 2, 1, "", "tanh"], [305, 2, 1, "", "tanhshrink"], [372, 2, 1, "", "tensor_train"], [633, 2, 1, "", "tensordot"], [633, 2, 1, "", "tensorsolve"], [306, 2, 1, "", "threshold"], [307, 2, 1, "", "thresholded_relu"], [635, 2, 1, "", "tile"], [210, 2, 1, "", "to_device"], [625, 2, 1, "", "to_dlpack"], [630, 2, 1, "", "to_ivy_shape"], [630, 2, 1, "", "to_list"], [630, 2, 1, "", "to_native_shape"], [630, 2, 1, "", "to_numpy"], [630, 2, 1, "", "to_scalar"], [374, 2, 1, "", "top_k"], [211, 2, 1, "", "total_mem_on_dev"], [212, 2, 1, "", "tpu_is_available"], [633, 2, 1, "", "trace"], [859, 2, 1, "", "trace_graph"], [860, 2, 1, "", "transpile"], [288, 2, 1, "", "trapz"], [625, 2, 1, "", "tril"], [365, 2, 1, "", "tril_indices"], [365, 2, 1, "", "trilu"], [374, 2, 1, "", "trim_zeros"], [625, 2, 1, "", "triu"], [625, 2, 1, "", "triu_indices"], [289, 2, 1, "", "trunc"], [290, 2, 1, "", "trunc_divide"], [372, 2, 1, "", "truncated_svd"], [630, 2, 1, "", "try_else_none"], [624, 2, 1, "", "try_except"], [372, 2, 1, "", "tt_matrix_to_tensor"], [372, 2, 1, "", "tucker"], [626, 2, 1, "", "type_promote_arrays"], [374, 2, 1, "", "unflatten"], [374, 2, 1, "", "unfold"], [861, 2, 1, "", "unify"], [641, 2, 1, "", "unique_all"], [374, 2, 1, "", "unique_consecutive"], [641, 2, 1, "", "unique_counts"], [641, 2, 1, "", "unique_inverse"], [641, 2, 1, "", "unique_values"], [379, 2, 1, "", "unravel_index"], [630, 2, 1, "", "unset_array_mode"], [626, 2, 1, "", "unset_default_complex_dtype"], [213, 2, 1, "", "unset_default_device"], [184, 2, 1, "", "unset_default_dtype"], [185, 2, 1, "", "unset_default_float_dtype"], [186, 2, 1, "", "unset_default_int_dtype"], [187, 2, 1, "", "unset_default_uint_dtype"], [630, 2, 1, "", "unset_exception_trace_mode"], [630, 2, 1, "", "unset_inplace_mode"], [630, 2, 1, "", "unset_min_base"], [630, 2, 1, "", "unset_min_denominator"], [630, 2, 1, "", "unset_nestable_mode"], [630, 2, 1, "", "unset_precise_mode"], [630, 2, 1, "", "unset_queue_timeout"], [630, 2, 1, "", "unset_shape_array_mode"], [630, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [214, 2, 1, "", "unset_soft_device_mode"], [630, 2, 1, "", "unset_tmp_dir"], [365, 2, 1, "", "unsorted_segment_mean"], [365, 2, 1, "", "unsorted_segment_min"], [365, 2, 1, "", "unsorted_segment_sum"], [635, 2, 1, "", "unstack"], [215, 2, 1, "", "used_mem_on_dev"], [188, 2, 1, "", "valid_dtype"], [631, 2, 1, "", "value_and_grad"], [630, 2, 1, "", "value_is_nan"], [633, 2, 1, "", "vander"], [643, 2, 1, "", "var"], [633, 2, 1, "", "vecdot"], [633, 2, 1, "", "vector_norm"], [633, 2, 1, "", "vector_to_skew_symmetric_matrix"], [370, 2, 1, "", "vjp"], [630, 2, 1, "", "vmap"], [365, 2, 1, "", "vorbis_window"], [374, 2, 1, "", "vsplit"], [374, 2, 1, "", "vstack"], [640, 2, 1, "", "where"], [624, 2, 1, "", "while_loop"], [368, 2, 1, "", "xlogy"], [635, 2, 1, "", "zero_pad"], [625, 2, 1, "", "zeros"], [625, 2, 1, "", "zeros_like"], [368, 2, 1, "", "zeta"]], "ivy.Container": [[216, 0, 1, "", "abs"], [217, 0, 1, "", "acos"], [218, 0, 1, "", "acosh"], [611, 0, 1, "", "adam_step"], [612, 0, 1, "", "adam_update"], [385, 0, 1, "", "adaptive_avg_pool1d"], [386, 0, 1, "", "adaptive_avg_pool2d"], [387, 0, 1, "", "adaptive_max_pool2d"], [388, 0, 1, "", "adaptive_max_pool3d"], [219, 0, 1, "", "add"], [420, 0, 1, "", "adjoint"], [763, 0, 1, "", "all"], [530, 0, 1, "", "all_equal"], [330, 0, 1, "", "allclose"], [331, 0, 1, "", "amax"], [332, 0, 1, "", "amin"], [220, 0, 1, "", "angle"], [764, 0, 1, "", "any"], [740, 0, 1, "", "argmax"], [741, 0, 1, "", "argmin"], [749, 0, 1, "", "argsort"], [742, 0, 1, "", "argwhere"], [533, 0, 1, "", "array_equal"], [456, 0, 1, "", "as_strided"], [124, 0, 1, "", "asarray"], [221, 0, 1, "", "asin"], [222, 0, 1, "", "asinh"], [534, 0, 1, "", "assert_supports_inplace"], [457, 0, 1, "", "associative_scan"], [148, 0, 1, "", "astype"], [223, 0, 1, "", "atan"], [224, 0, 1, "", "atan2"], [225, 0, 1, "", "atanh"], [458, 0, 1, "", "atleast_1d"], [459, 0, 1, "", "atleast_2d"], [460, 0, 1, "", "atleast_3d"], [390, 0, 1, "", "avg_pool1d"], [391, 0, 1, "", "avg_pool2d"], [392, 0, 1, "", "avg_pool3d"], [497, 0, 1, "", "batch_norm"], [421, 0, 1, "", "batched_outer"], [504, 0, 1, "", "bernoulli"], [505, 0, 1, "", "beta"], [333, 0, 1, "", "binarizer"], [692, 0, 1, "", "binary_cross_entropy"], [516, 0, 1, "", "bincount"], [226, 0, 1, "", "bitwise_and"], [227, 0, 1, "", "bitwise_invert"], [228, 0, 1, "", "bitwise_left_shift"], [229, 0, 1, "", "bitwise_or"], [230, 0, 1, "", "bitwise_right_shift"], [231, 0, 1, "", "bitwise_xor"], [308, 0, 1, "", "blackman_window"], [149, 0, 1, "", "broadcast_arrays"], [461, 0, 1, "", "broadcast_shapes"], [150, 0, 1, "", "broadcast_to"], [151, 0, 1, "", "can_cast"], [232, 0, 1, "", "ceil"], [291, 0, 1, "", "celu"], [663, 0, 1, "", "cholesky"], [695, 0, 1, "", "clip"], [536, 0, 1, "", "clip_matrix_norm"], [537, 0, 1, "", "clip_vector_norm"], [464, 0, 1, "", "column_stack"], [696, 0, 1, "", "concat"], [465, 0, 1, "", "concat_from_sequence"], [422, 0, 1, "", "cond"], [334, 0, 1, "", "conj"], [697, 0, 1, "", "constant_pad"], [646, 0, 1, "", "conv1d"], [647, 0, 1, "", "conv1d_transpose"], [648, 0, 1, "", "conv2d"], [649, 0, 1, "", "conv2d_transpose"], [650, 0, 1, "", "conv3d"], [651, 0, 1, "", "conv3d_transpose"], [125, 0, 1, "", "copy_array"], [335, 0, 1, "", "copysign"], [517, 0, 1, "", "corrcoef"], [233, 0, 1, "", "cos"], [234, 0, 1, "", "cosh"], [336, 0, 1, "", "count_nonzero"], [518, 0, 1, "", "cov"], [664, 0, 1, "", "cross"], [693, 0, 1, "", "cross_entropy"], [519, 0, 1, "", "cummax"], [520, 0, 1, "", "cummin"], [753, 0, 1, "", "cumprod"], [754, 0, 1, "", "cumsum"], [393, 0, 1, "", "dct"], [235, 0, 1, "", "deg2rad"], [654, 0, 1, "", "depthwise_conv2d"], [665, 0, 1, "", "det"], [193, 0, 1, "", "dev"], [394, 0, 1, "", "dft"], [666, 0, 1, "", "diag"], [423, 0, 1, "", "diagflat"], [667, 0, 1, "", "diagonal"], [337, 0, 1, "", "diff"], [338, 0, 1, "", "digamma"], [506, 0, 1, "", "dirichlet"], [236, 0, 1, "", "divide"], [424, 0, 1, "", "dot"], [655, 0, 1, "", "dropout"], [395, 0, 1, "", "dropout1d"], [396, 0, 1, "", "dropout2d"], [397, 0, 1, "", "dropout3d"], [466, 0, 1, "", "dsplit"], [467, 0, 1, "", "dstack"], [159, 0, 1, "", "dtype"], [425, 0, 1, "", "eig"], [669, 0, 1, "", "eigh"], [426, 0, 1, "", "eigh_tridiagonal"], [427, 0, 1, "", "eigvals"], [670, 0, 1, "", "eigvalsh"], [541, 0, 1, "", "einops_rearrange"], [542, 0, 1, "", "einops_reduce"], [543, 0, 1, "", "einops_repeat"], [755, 0, 1, "", "einsum"], [292, 0, 1, "", "elu"], [398, 0, 1, "", "embedding"], [127, 0, 1, "", "empty_like"], [237, 0, 1, "", "equal"], [238, 0, 1, "", "erf"], [339, 0, 1, "", "erfc"], [340, 0, 1, "", "erfinv"], [544, 0, 1, "", "exists"], [239, 0, 1, "", "exp"], [240, 0, 1, "", "exp2"], [468, 0, 1, "", "expand"], [698, 0, 1, "", "expand_dims"], [241, 0, 1, "", "expm1"], [309, 0, 1, "", "eye_like"], [399, 0, 1, "", "fft"], [469, 0, 1, "", "fill_diagonal"], [161, 0, 1, "", "finfo"], [341, 0, 1, "", "fix"], [470, 0, 1, "", "flatten"], [699, 0, 1, "", "flip"], [471, 0, 1, "", "fliplr"], [472, 0, 1, "", "flipud"], [342, 0, 1, "", "float_power"], [242, 0, 1, "", "floor"], [243, 0, 1, "", "floor_divide"], [343, 0, 1, "", "fmax"], [244, 0, 1, "", "fmin"], [245, 0, 1, "", "fmod"], [473, 0, 1, "", "fold"], [545, 0, 1, "", "fourier_encode"], [344, 0, 1, "", "frexp"], [129, 0, 1, "", "from_dlpack"], [130, 0, 1, "", "frombuffer"], [132, 0, 1, "", "full_like"], [507, 0, 1, "", "gamma"], [548, 0, 1, "", "gather"], [549, 0, 1, "", "gather_nd"], [246, 0, 1, "", "gcd"], [106, 0, 1, "", "gelu"], [428, 0, 1, "", "general_inner_product"], [552, 0, 1, "", "get_num_dims"], [345, 0, 1, "", "gradient"], [615, 0, 1, "", "gradient_descent_update"], [247, 0, 1, "", "greater"], [248, 0, 1, "", "greater_equal"], [498, 0, 1, "", "group_norm"], [310, 0, 1, "", "hamming_window"], [311, 0, 1, "", "hann_window"], [293, 0, 1, "", "hardshrink"], [294, 0, 1, "", "hardsilu"], [107, 0, 1, "", "hardswish"], [295, 0, 1, "", "hardtanh"], [554, 0, 1, "", "has_nans"], [474, 0, 1, "", "heaviside"], [429, 0, 1, "", "higher_order_moment"], [448, 0, 1, "", "hinge_embedding_loss"], [521, 0, 1, "", "histogram"], [475, 0, 1, "", "hsplit"], [476, 0, 1, "", "hstack"], [449, 0, 1, "", "huber_loss"], [346, 0, 1, "", "hypot"], [477, 0, 1, "", "i0"], [403, 0, 1, "", "idct"], [404, 0, 1, "", "ifft"], [405, 0, 1, "", "ifftn"], [522, 0, 1, "", "igamma"], [164, 0, 1, "", "iinfo"], [249, 0, 1, "", "imag"], [430, 0, 1, "", "initialize_tucker"], [671, 0, 1, "", "inner"], [556, 0, 1, "", "inplace_decrement"], [557, 0, 1, "", "inplace_increment"], [558, 0, 1, "", "inplace_update"], [499, 0, 1, "", "instance_norm"], [407, 0, 1, "", "interpolate"], [672, 0, 1, "", "inv"], [510, 0, 1, "", "invert_permutation"], [560, 0, 1, "", "is_array"], [167, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_complex_dtype"], [169, 0, 1, "", "is_float_dtype"], [171, 0, 1, "", "is_int_dtype"], [561, 0, 1, "", "is_ivy_array"], [564, 0, 1, "", "is_native_array"], [173, 0, 1, "", "is_uint_dtype"], [347, 0, 1, "", "isclose"], [250, 0, 1, "", "isfinite"], [565, 0, 1, "", "isin"], [251, 0, 1, "", "isinf"], [252, 0, 1, "", "isnan"], [253, 0, 1, "", "isreal"], [567, 0, 1, "", "itemsize"], [313, 0, 1, "", "kaiser_bessel_derived_window"], [314, 0, 1, "", "kaiser_window"], [450, 0, 1, "", "kl_div"], [432, 0, 1, "", "kron"], [451, 0, 1, "", "l1_loss"], [500, 0, 1, "", "l1_normalize"], [501, 0, 1, "", "l2_normalize"], [617, 0, 1, "", "lamb_update"], [618, 0, 1, "", "lars_update"], [733, 0, 1, "", "layer_norm"], [254, 0, 1, "", "lcm"], [348, 0, 1, "", "ldexp"], [108, 0, 1, "", "leaky_relu"], [349, 0, 1, "", "lerp"], [255, 0, 1, "", "less"], [256, 0, 1, "", "less_equal"], [511, 0, 1, "", "lexsort"], [350, 0, 1, "", "lgamma"], [656, 0, 1, "", "linear"], [133, 0, 1, "", "linspace"], [257, 0, 1, "", "log"], [258, 0, 1, "", "log10"], [259, 0, 1, "", "log1p"], [260, 0, 1, "", "log2"], [452, 0, 1, "", "log_poisson_loss"], [109, 0, 1, "", "log_softmax"], [261, 0, 1, "", "logaddexp"], [262, 0, 1, "", "logaddexp2"], [263, 0, 1, "", "logical_and"], [264, 0, 1, "", "logical_not"], [265, 0, 1, "", "logical_or"], [266, 0, 1, "", "logical_xor"], [296, 0, 1, "", "logit"], [297, 0, 1, "", "logsigmoid"], [134, 0, 1, "", "logspace"], [503, 0, 1, "", "lp_normalize"], [658, 0, 1, "", "lstm_update"], [436, 0, 1, "", "make_svd_non_negative"], [673, 0, 1, "", "matmul"], [478, 0, 1, "", "matricize"], [437, 0, 1, "", "matrix_exp"], [674, 0, 1, "", "matrix_norm"], [675, 0, 1, "", "matrix_power"], [676, 0, 1, "", "matrix_rank"], [677, 0, 1, "", "matrix_transpose"], [756, 0, 1, "", "max"], [408, 0, 1, "", "max_pool1d"], [409, 0, 1, "", "max_pool2d"], [410, 0, 1, "", "max_pool3d"], [411, 0, 1, "", "max_unpool1d"], [267, 0, 1, "", "maximum"], [757, 0, 1, "", "mean"], [523, 0, 1, "", "median"], [315, 0, 1, "", "mel_weight_matrix"], [135, 0, 1, "", "meshgrid"], [758, 0, 1, "", "min"], [268, 0, 1, "", "minimum"], [110, 0, 1, "", "mish"], [438, 0, 1, "", "mode_dot"], [351, 0, 1, "", "modf"], [479, 0, 1, "", "moveaxis"], [750, 0, 1, "", "msort"], [439, 0, 1, "", "multi_dot"], [659, 0, 1, "", "multi_head_attention"], [440, 0, 1, "", "multi_mode_dot"], [734, 0, 1, "", "multinomial"], [269, 0, 1, "", "multiply"], [270, 0, 1, "", "nan_to_num"], [524, 0, 1, "", "nanmean"], [525, 0, 1, "", "nanmedian"], [526, 0, 1, "", "nanmin"], [527, 0, 1, "", "nanprod"], [352, 0, 1, "", "nansum"], [136, 0, 1, "", "native_array"], [271, 0, 1, "", "negative"], [353, 0, 1, "", "nextafter"], [743, 0, 1, "", "nonzero"], [272, 0, 1, "", "not_equal"], [137, 0, 1, "", "one_hot"], [139, 0, 1, "", "ones_like"], [619, 0, 1, "", "optimizer_update"], [529, 0, 1, "", "optional_get_element"], [678, 0, 1, "", "outer"], [480, 0, 1, "", "pad"], [481, 0, 1, "", "partial_fold"], [482, 0, 1, "", "partial_tensor_to_vec"], [441, 0, 1, "", "partial_tucker"], [483, 0, 1, "", "partial_unfold"], [484, 0, 1, "", "partial_vec_to_tensor"], [700, 0, 1, "", "permute_dims"], [679, 0, 1, "", "pinv"], [508, 0, 1, "", "poisson"], [453, 0, 1, "", "poisson_nll_loss"], [318, 0, 1, "", "polyval"], [273, 0, 1, "", "positive"], [274, 0, 1, "", "pow"], [298, 0, 1, "", "prelu"], [759, 0, 1, "", "prod"], [485, 0, 1, "", "put_along_axis"], [680, 0, 1, "", "qr"], [528, 0, 1, "", "quantile"], [275, 0, 1, "", "rad2deg"], [735, 0, 1, "", "randint"], [736, 0, 1, "", "random_normal"], [737, 0, 1, "", "random_uniform"], [276, 0, 1, "", "real"], [277, 0, 1, "", "reciprocal"], [359, 0, 1, "", "reduce"], [414, 0, 1, "", "reduce_window"], [111, 0, 1, "", "relu"], [299, 0, 1, "", "relu6"], [278, 0, 1, "", "remainder"], [701, 0, 1, "", "repeat"], [702, 0, 1, "", "reshape"], [176, 0, 1, "", "result_type"], [415, 0, 1, "", "rfft"], [416, 0, 1, "", "rfftn"], [703, 0, 1, "", "roll"], [486, 0, 1, "", "rot90"], [279, 0, 1, "", "round"], [662, 0, 1, "", "scaled_dot_product_attention"], [300, 0, 1, "", "scaled_tanh"], [572, 0, 1, "", "scatter_flat"], [573, 0, 1, "", "scatter_nd"], [751, 0, 1, "", "searchsorted"], [301, 0, 1, "", "selu"], [739, 0, 1, "", "shuffle"], [112, 0, 1, "", "sigmoid"], [280, 0, 1, "", "sign"], [354, 0, 1, "", "signbit"], [302, 0, 1, "", "silu"], [281, 0, 1, "", "sin"], [355, 0, 1, "", "sinc"], [282, 0, 1, "", "sinh"], [587, 0, 1, "", "size"], [418, 0, 1, "", "sliding_window"], [681, 0, 1, "", "slogdet"], [454, 0, 1, "", "smooth_l1_loss"], [455, 0, 1, "", "soft_margin_loss"], [487, 0, 1, "", "soft_thresholding"], [113, 0, 1, "", "softmax"], [114, 0, 1, "", "softplus"], [303, 0, 1, "", "softshrink"], [682, 0, 1, "", "solve"], [752, 0, 1, "", "sort"], [694, 0, 1, "", "sparse_cross_entropy"], [356, 0, 1, "", "sparsify_tensor"], [704, 0, 1, "", "split"], [283, 0, 1, "", "sqrt"], [284, 0, 1, "", "square"], [705, 0, 1, "", "squeeze"], [588, 0, 1, "", "stable_divide"], [589, 0, 1, "", "stable_pow"], [706, 0, 1, "", "stack"], [760, 0, 1, "", "std"], [419, 0, 1, "", "stft"], [620, 0, 1, "", "stop_gradient"], [590, 0, 1, "", "strides"], [285, 0, 1, "", "subtract"], [761, 0, 1, "", "sum"], [591, 0, 1, "", "supports_inplace_updates"], [683, 0, 1, "", "svd"], [443, 0, 1, "", "svd_flip"], [684, 0, 1, "", "svdvals"], [707, 0, 1, "", "swapaxes"], [488, 0, 1, "", "take"], [489, 0, 1, "", "take_along_axis"], [286, 0, 1, "", "tan"], [287, 0, 1, "", "tanh"], [305, 0, 1, "", "tanhshrink"], [444, 0, 1, "", "tensor_train"], [685, 0, 1, "", "tensordot"], [686, 0, 1, "", "tensorsolve"], [306, 0, 1, "", "threshold"], [307, 0, 1, "", "thresholded_relu"], [708, 0, 1, "", "tile"], [210, 0, 1, "", "to_device"], [593, 0, 1, "", "to_list"], [595, 0, 1, "", "to_numpy"], [596, 0, 1, "", "to_scalar"], [490, 0, 1, "", "top_k"], [687, 0, 1, "", "trace"], [288, 0, 1, "", "trapz"], [141, 0, 1, "", "tril"], [324, 0, 1, "", "tril_indices"], [325, 0, 1, "", "trilu"], [491, 0, 1, "", "trim_zeros"], [142, 0, 1, "", "triu"], [143, 0, 1, "", "triu_indices"], [289, 0, 1, "", "trunc"], [290, 0, 1, "", "trunc_divide"], [445, 0, 1, "", "truncated_svd"], [446, 0, 1, "", "tt_matrix_to_tensor"], [447, 0, 1, "", "tucker"], [492, 0, 1, "", "unflatten"], [493, 0, 1, "", "unfold"], [745, 0, 1, "", "unique_all"], [494, 0, 1, "", "unique_consecutive"], [746, 0, 1, "", "unique_counts"], [747, 0, 1, "", "unique_inverse"], [748, 0, 1, "", "unique_values"], [509, 0, 1, "", "unravel_index"], [326, 0, 1, "", "unsorted_segment_mean"], [327, 0, 1, "", "unsorted_segment_min"], [328, 0, 1, "", "unsorted_segment_sum"], [709, 0, 1, "", "unstack"], [609, 0, 1, "", "value_is_nan"], [688, 0, 1, "", "vander"], [762, 0, 1, "", "var"], [689, 0, 1, "", "vecdot"], [690, 0, 1, "", "vector_norm"], [691, 0, 1, "", "vector_to_skew_symmetric_matrix"], [329, 0, 1, "", "vorbis_window"], [495, 0, 1, "", "vsplit"], [496, 0, 1, "", "vstack"], [744, 0, 1, "", "where"], [357, 0, 1, "", "xlogy"], [710, 0, 1, "", "zero_pad"], [145, 0, 1, "", "zeros_like"], [358, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[47, 3, 0, "-", "activations"], [98, 3, 0, "-", "array"], [48, 3, 0, "-", "conversions"], [49, 3, 0, "-", "creation"], [50, 3, 0, "-", "data_type"], [51, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [53, 3, 0, "-", "experimental"], [54, 3, 0, "-", "general"], [55, 3, 0, "-", "gradients"], [56, 3, 0, "-", "image"], [57, 3, 0, "-", "layers"], [58, 3, 0, "-", "linear_algebra"], [59, 3, 0, "-", "losses"], [60, 3, 0, "-", "manipulation"], [61, 3, 0, "-", "norms"], [62, 3, 0, "-", "random"], [63, 3, 0, "-", "searching"], [64, 3, 0, "-", "set"], [65, 3, 0, "-", "sorting"], [66, 3, 0, "-", "statistical"], [67, 3, 0, "-", "utility"], [68, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[47, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[47, 4, 1, "", "_abc_impl"], [47, 0, 1, "", "gelu"], [47, 0, 1, "", "hardswish"], [47, 0, 1, "", "leaky_relu"], [47, 0, 1, "", "log_softmax"], [47, 0, 1, "", "mish"], [47, 0, 1, "", "relu"], [47, 0, 1, "", "sigmoid"], [47, 0, 1, "", "softmax"], [47, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[98, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[98, 5, 1, "", "T"], [98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"], [98, 5, 1, "", "backend"], [98, 5, 1, "", "base"], [98, 5, 1, "", "data"], [98, 5, 1, "", "device"], [98, 5, 1, "", "dtype"], [98, 5, 1, "", "dynamic_backend"], [98, 5, 1, "", "imag"], [98, 5, 1, "", "itemsize"], [98, 5, 1, "", "mT"], [98, 5, 1, "", "ndim"], [98, 5, 1, "", "real"], [98, 5, 1, "", "shape"], [98, 5, 1, "", "size"], [98, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[48, 2, 1, "", "_array_to_new_backend"], [48, 2, 1, "", "_to_ivy"], [48, 2, 1, "", "_to_native"], [48, 2, 1, "", "_to_new_backend"], [48, 2, 1, "", "args_to_ivy"], [48, 2, 1, "", "args_to_native"], [48, 2, 1, "", "args_to_new_backend"], [48, 2, 1, "", "to_ivy"], [48, 2, 1, "", "to_native"], [48, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[49, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "asarray"], [49, 0, 1, "", "copy_array"], [49, 0, 1, "", "empty_like"], [49, 0, 1, "", "from_dlpack"], [49, 0, 1, "", "full_like"], [49, 0, 1, "", "linspace"], [49, 0, 1, "", "logspace"], [49, 0, 1, "", "meshgrid"], [49, 0, 1, "", "native_array"], [49, 0, 1, "", "one_hot"], [49, 0, 1, "", "ones_like"], [49, 0, 1, "", "tril"], [49, 0, 1, "", "triu"], [49, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[50, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "astype"], [50, 0, 1, "", "broadcast_arrays"], [50, 0, 1, "", "broadcast_to"], [50, 0, 1, "", "can_cast"], [50, 0, 1, "", "dtype"], [50, 0, 1, "", "finfo"], [50, 0, 1, "", "iinfo"], [50, 0, 1, "", "is_bool_dtype"], [50, 0, 1, "", "is_float_dtype"], [50, 0, 1, "", "is_int_dtype"], [50, 0, 1, "", "is_uint_dtype"], [50, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[51, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "dev"], [51, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[52, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "abs"], [52, 0, 1, "", "acos"], [52, 0, 1, "", "acosh"], [52, 0, 1, "", "add"], [52, 0, 1, "", "angle"], [52, 0, 1, "", "asin"], [52, 0, 1, "", "asinh"], [52, 0, 1, "", "atan"], [52, 0, 1, "", "atan2"], [52, 0, 1, "", "atanh"], [52, 0, 1, "", "bitwise_and"], [52, 0, 1, "", "bitwise_invert"], [52, 0, 1, "", "bitwise_left_shift"], [52, 0, 1, "", "bitwise_or"], [52, 0, 1, "", "bitwise_right_shift"], [52, 0, 1, "", "bitwise_xor"], [52, 0, 1, "", "ceil"], [52, 0, 1, "", "cos"], [52, 0, 1, "", "cosh"], [52, 0, 1, "", "deg2rad"], [52, 0, 1, "", "divide"], [52, 0, 1, "", "equal"], [52, 0, 1, "", "erf"], [52, 0, 1, "", "exp"], [52, 0, 1, "", "exp2"], [52, 0, 1, "", "expm1"], [52, 0, 1, "", "floor"], [52, 0, 1, "", "floor_divide"], [52, 0, 1, "", "fmin"], [52, 0, 1, "", "gcd"], [52, 0, 1, "", "greater"], [52, 0, 1, "", "greater_equal"], [52, 0, 1, "", "isfinite"], [52, 0, 1, "", "isinf"], [52, 0, 1, "", "isnan"], [52, 0, 1, "", "isreal"], [52, 0, 1, "", "lcm"], [52, 0, 1, "", "less"], [52, 0, 1, "", "less_equal"], [52, 0, 1, "", "log"], [52, 0, 1, "", "log10"], [52, 0, 1, "", "log1p"], [52, 0, 1, "", "log2"], [52, 0, 1, "", "logaddexp"], [52, 0, 1, "", "logaddexp2"], [52, 0, 1, "", "logical_and"], [52, 0, 1, "", "logical_not"], [52, 0, 1, "", "logical_or"], [52, 0, 1, "", "logical_xor"], [52, 0, 1, "", "maximum"], [52, 0, 1, "", "minimum"], [52, 0, 1, "", "multiply"], [52, 0, 1, "", "nan_to_num"], [52, 0, 1, "", "negative"], [52, 0, 1, "", "not_equal"], [52, 0, 1, "", "positive"], [52, 0, 1, "", "pow"], [52, 0, 1, "", "rad2deg"], [52, 0, 1, "", "real"], [52, 0, 1, "", "reciprocal"], [52, 0, 1, "", "remainder"], [52, 0, 1, "", "round"], [52, 0, 1, "", "sign"], [52, 0, 1, "", "sin"], [52, 0, 1, "", "sinh"], [52, 0, 1, "", "sqrt"], [52, 0, 1, "", "square"], [52, 0, 1, "", "subtract"], [52, 0, 1, "", "tan"], [52, 0, 1, "", "tanh"], [52, 0, 1, "", "trapz"], [52, 0, 1, "", "trunc"], [52, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[53, 3, 0, "-", "activations"], [53, 3, 0, "-", "conversions"], [53, 3, 0, "-", "creation"], [53, 3, 0, "-", "data_type"], [53, 3, 0, "-", "device"], [53, 3, 0, "-", "elementwise"], [53, 3, 0, "-", "general"], [53, 3, 0, "-", "gradients"], [53, 3, 0, "-", "image"], [53, 3, 0, "-", "layers"], [53, 3, 0, "-", "linear_algebra"], [53, 3, 0, "-", "losses"], [53, 3, 0, "-", "manipulation"], [53, 3, 0, "-", "norms"], [53, 3, 0, "-", "random"], [53, 3, 0, "-", "searching"], [53, 3, 0, "-", "set"], [53, 3, 0, "-", "sorting"], [53, 3, 0, "-", "statistical"], [53, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[53, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "celu"], [53, 0, 1, "", "elu"], [53, 0, 1, "", "hardshrink"], [53, 0, 1, "", "hardsilu"], [53, 0, 1, "", "hardtanh"], [53, 0, 1, "", "logit"], [53, 0, 1, "", "logsigmoid"], [53, 0, 1, "", "prelu"], [53, 0, 1, "", "relu6"], [53, 0, 1, "", "scaled_tanh"], [53, 0, 1, "", "selu"], [53, 0, 1, "", "silu"], [53, 0, 1, "", "softshrink"], [53, 0, 1, "", "tanhshrink"], [53, 0, 1, "", "threshold"], [53, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[53, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[53, 1, 1, "", "_ArrayWithCreationExperimental"], [53, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "blackman_window"], [53, 0, 1, "", "eye_like"], [53, 0, 1, "", "mel_weight_matrix"], [53, 0, 1, "", "trilu"], [53, 0, 1, "", "unsorted_segment_mean"], [53, 0, 1, "", "unsorted_segment_min"], [53, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[53, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[53, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[53, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "allclose"], [53, 0, 1, "", "amax"], [53, 0, 1, "", "amin"], [53, 0, 1, "", "binarizer"], [53, 0, 1, "", "conj"], [53, 0, 1, "", "copysign"], [53, 0, 1, "", "count_nonzero"], [53, 0, 1, "", "diff"], [53, 0, 1, "", "digamma"], [53, 0, 1, "", "erfc"], [53, 0, 1, "", "erfinv"], [53, 0, 1, "", "fix"], [53, 0, 1, "", "float_power"], [53, 0, 1, "", "fmax"], [53, 0, 1, "", "fmod"], [53, 0, 1, "", "frexp"], [53, 0, 1, "", "gradient"], [53, 0, 1, "", "hypot"], [53, 0, 1, "", "isclose"], [53, 0, 1, "", "ldexp"], [53, 0, 1, "", "lerp"], [53, 0, 1, "", "lgamma"], [53, 0, 1, "", "modf"], [53, 0, 1, "", "nansum"], [53, 0, 1, "", "nextafter"], [53, 0, 1, "", "signbit"], [53, 0, 1, "", "sinc"], [53, 0, 1, "", "sparsify_tensor"], [53, 0, 1, "", "xlogy"], [53, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[53, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[53, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[53, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[53, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "adaptive_avg_pool1d"], [53, 0, 1, "", "adaptive_avg_pool2d"], [53, 0, 1, "", "adaptive_max_pool2d"], [53, 0, 1, "", "adaptive_max_pool3d"], [53, 0, 1, "", "avg_pool1d"], [53, 0, 1, "", "avg_pool2d"], [53, 0, 1, "", "avg_pool3d"], [53, 0, 1, "", "dct"], [53, 0, 1, "", "dft"], [53, 0, 1, "", "embedding"], [53, 0, 1, "", "fft"], [53, 0, 1, "", "fft2"], [53, 0, 1, "", "idct"], [53, 0, 1, "", "ifft"], [53, 0, 1, "", "ifftn"], [53, 0, 1, "", "interpolate"], [53, 0, 1, "", "max_pool1d"], [53, 0, 1, "", "max_pool2d"], [53, 0, 1, "", "max_pool3d"], [53, 0, 1, "", "max_unpool1d"], [53, 0, 1, "", "reduce_window"], [53, 0, 1, "", "rfft"], [53, 0, 1, "", "rfftn"], [53, 0, 1, "", "sliding_window"], [53, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[53, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "adjoint"], [53, 0, 1, "", "batched_outer"], [53, 0, 1, "", "cond"], [53, 0, 1, "", "diagflat"], [53, 0, 1, "", "dot"], [53, 0, 1, "", "eig"], [53, 0, 1, "", "eigh_tridiagonal"], [53, 0, 1, "", "eigvals"], [53, 0, 1, "", "general_inner_product"], [53, 0, 1, "", "higher_order_moment"], [53, 0, 1, "", "initialize_tucker"], [53, 0, 1, "", "kron"], [53, 0, 1, "", "make_svd_non_negative"], [53, 0, 1, "", "matrix_exp"], [53, 0, 1, "", "mode_dot"], [53, 0, 1, "", "multi_dot"], [53, 0, 1, "", "multi_mode_dot"], [53, 0, 1, "", "partial_tucker"], [53, 0, 1, "", "svd_flip"], [53, 0, 1, "", "tensor_train"], [53, 0, 1, "", "truncated_svd"], [53, 0, 1, "", "tt_matrix_to_tensor"], [53, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[53, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "hinge_embedding_loss"], [53, 0, 1, "", "huber_loss"], [53, 0, 1, "", "kl_div"], [53, 0, 1, "", "l1_loss"], [53, 0, 1, "", "log_poisson_loss"], [53, 0, 1, "", "poisson_nll_loss"], [53, 0, 1, "", "smooth_l1_loss"], [53, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[53, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "as_strided"], [53, 0, 1, "", "associative_scan"], [53, 0, 1, "", "atleast_1d"], [53, 0, 1, "", "atleast_2d"], [53, 0, 1, "", "atleast_3d"], [53, 0, 1, "", "column_stack"], [53, 0, 1, "", "concat_from_sequence"], [53, 0, 1, "", "dsplit"], [53, 0, 1, "", "dstack"], [53, 0, 1, "", "expand"], [53, 0, 1, "", "fill_diagonal"], [53, 0, 1, "", "flatten"], [53, 0, 1, "", "fliplr"], [53, 0, 1, "", "flipud"], [53, 0, 1, "", "fold"], [53, 0, 1, "", "heaviside"], [53, 0, 1, "", "hsplit"], [53, 0, 1, "", "hstack"], [53, 0, 1, "", "i0"], [53, 0, 1, "", "matricize"], [53, 0, 1, "", "moveaxis"], [53, 0, 1, "", "pad"], [53, 0, 1, "", "partial_fold"], [53, 0, 1, "", "partial_tensor_to_vec"], [53, 0, 1, "", "partial_unfold"], [53, 0, 1, "", "partial_vec_to_tensor"], [53, 0, 1, "", "put_along_axis"], [53, 0, 1, "", "rot90"], [53, 0, 1, "", "soft_thresholding"], [53, 0, 1, "", "take"], [53, 0, 1, "", "take_along_axis"], [53, 0, 1, "", "top_k"], [53, 0, 1, "", "trim_zeros"], [53, 0, 1, "", "unflatten"], [53, 0, 1, "", "unfold"], [53, 0, 1, "", "unique_consecutive"], [53, 0, 1, "", "vsplit"], [53, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[53, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "batch_norm"], [53, 0, 1, "", "group_norm"], [53, 0, 1, "", "instance_norm"], [53, 0, 1, "", "l1_normalize"], [53, 0, 1, "", "l2_normalize"], [53, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[53, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "bernoulli"], [53, 0, 1, "", "beta"], [53, 0, 1, "", "dirichlet"], [53, 0, 1, "", "gamma"], [53, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[53, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[53, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[53, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[53, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[53, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "bincount"], [53, 0, 1, "", "corrcoef"], [53, 0, 1, "", "cov"], [53, 0, 1, "", "cummax"], [53, 0, 1, "", "cummin"], [53, 0, 1, "", "histogram"], [53, 0, 1, "", "igamma"], [53, 0, 1, "", "median"], [53, 0, 1, "", "nanmean"], [53, 0, 1, "", "nanmedian"], [53, 0, 1, "", "nanmin"], [53, 0, 1, "", "nanprod"], [53, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[53, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[54, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "all_equal"], [54, 0, 1, "", "array_equal"], [54, 0, 1, "", "assert_supports_inplace"], [54, 0, 1, "", "clip_matrix_norm"], [54, 0, 1, "", "clip_vector_norm"], [54, 0, 1, "", "default"], [54, 0, 1, "", "einops_rearrange"], [54, 0, 1, "", "einops_reduce"], [54, 0, 1, "", "einops_repeat"], [54, 0, 1, "", "exists"], [54, 0, 1, "", "fourier_encode"], [54, 0, 1, "", "gather"], [54, 0, 1, "", "gather_nd"], [54, 0, 1, "", "get_num_dims"], [54, 0, 1, "", "has_nans"], [54, 0, 1, "", "inplace_decrement"], [54, 0, 1, "", "inplace_increment"], [54, 0, 1, "", "inplace_update"], [54, 0, 1, "", "is_array"], [54, 0, 1, "", "is_ivy_array"], [54, 0, 1, "", "is_ivy_container"], [54, 0, 1, "", "is_native_array"], [54, 0, 1, "", "isin"], [54, 0, 1, "", "scatter_flat"], [54, 0, 1, "", "scatter_nd"], [54, 0, 1, "", "stable_divide"], [54, 0, 1, "", "stable_pow"], [54, 0, 1, "", "supports_inplace_updates"], [54, 0, 1, "", "to_file"], [54, 0, 1, "", "to_list"], [54, 0, 1, "", "to_numpy"], [54, 0, 1, "", "to_scalar"], [54, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[55, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[55, 4, 1, "", "_abc_impl"], [55, 0, 1, "", "adam_step"], [55, 0, 1, "", "adam_update"], [55, 0, 1, "", "gradient_descent_update"], [55, 0, 1, "", "lamb_update"], [55, 0, 1, "", "lars_update"], [55, 0, 1, "", "optimizer_update"], [55, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[56, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[56, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[57, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "conv1d"], [57, 0, 1, "", "conv1d_transpose"], [57, 0, 1, "", "conv2d"], [57, 0, 1, "", "conv2d_transpose"], [57, 0, 1, "", "conv3d"], [57, 0, 1, "", "conv3d_transpose"], [57, 0, 1, "", "depthwise_conv2d"], [57, 0, 1, "", "dropout"], [57, 0, 1, "", "dropout1d"], [57, 0, 1, "", "dropout2d"], [57, 0, 1, "", "dropout3d"], [57, 0, 1, "", "linear"], [57, 0, 1, "", "lstm_update"], [57, 0, 1, "", "multi_head_attention"], [57, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[58, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "cholesky"], [58, 0, 1, "", "cross"], [58, 0, 1, "", "det"], [58, 0, 1, "", "diag"], [58, 0, 1, "", "diagonal"], [58, 0, 1, "", "eig"], [58, 0, 1, "", "eigh"], [58, 0, 1, "", "eigvalsh"], [58, 0, 1, "", "inner"], [58, 0, 1, "", "inv"], [58, 0, 1, "", "matmul"], [58, 0, 1, "", "matrix_norm"], [58, 0, 1, "", "matrix_power"], [58, 0, 1, "", "matrix_rank"], [58, 0, 1, "", "matrix_transpose"], [58, 0, 1, "", "outer"], [58, 0, 1, "", "pinv"], [58, 0, 1, "", "qr"], [58, 0, 1, "", "slogdet"], [58, 0, 1, "", "solve"], [58, 0, 1, "", "svd"], [58, 0, 1, "", "svdvals"], [58, 0, 1, "", "tensordot"], [58, 0, 1, "", "tensorsolve"], [58, 0, 1, "", "trace"], [58, 0, 1, "", "vander"], [58, 0, 1, "", "vecdot"], [58, 0, 1, "", "vector_norm"], [58, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[59, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "binary_cross_entropy"], [59, 0, 1, "", "cross_entropy"], [59, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[60, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "clip"], [60, 0, 1, "", "concat"], [60, 0, 1, "", "constant_pad"], [60, 0, 1, "", "expand_dims"], [60, 0, 1, "", "flip"], [60, 0, 1, "", "permute_dims"], [60, 0, 1, "", "repeat"], [60, 0, 1, "", "reshape"], [60, 0, 1, "", "roll"], [60, 0, 1, "", "split"], [60, 0, 1, "", "squeeze"], [60, 0, 1, "", "stack"], [60, 0, 1, "", "swapaxes"], [60, 0, 1, "", "tile"], [60, 0, 1, "", "unstack"], [60, 0, 1, "", "view"], [60, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[61, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[62, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "multinomial"], [62, 0, 1, "", "randint"], [62, 0, 1, "", "random_normal"], [62, 0, 1, "", "random_uniform"], [62, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[63, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "argmax"], [63, 0, 1, "", "argmin"], [63, 0, 1, "", "argwhere"], [63, 0, 1, "", "nonzero"], [63, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[64, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "unique_all"], [64, 0, 1, "", "unique_counts"], [64, 0, 1, "", "unique_inverse"], [64, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[65, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "argsort"], [65, 0, 1, "", "msort"], [65, 0, 1, "", "searchsorted"], [65, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[66, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "cumprod"], [66, 0, 1, "", "cumsum"], [66, 0, 1, "", "einsum"], [66, 0, 1, "", "max"], [66, 0, 1, "", "mean"], [66, 0, 1, "", "min"], [66, 0, 1, "", "prod"], [66, 0, 1, "", "std"], [66, 0, 1, "", "sum"], [66, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[67, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[67, 4, 1, "", "_abc_impl"], [67, 0, 1, "", "all"], [67, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[68, 2, 1, "", "_wrap_function"], [68, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[69, 3, 0, "-", "activations"], [70, 3, 0, "-", "base"], [99, 3, 0, "-", "container"], [71, 3, 0, "-", "conversions"], [72, 3, 0, "-", "creation"], [73, 3, 0, "-", "data_type"], [74, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [76, 3, 0, "-", "experimental"], [77, 3, 0, "-", "general"], [78, 3, 0, "-", "gradients"], [79, 3, 0, "-", "image"], [80, 3, 0, "-", "layers"], [81, 3, 0, "-", "linear_algebra"], [82, 3, 0, "-", "losses"], [83, 3, 0, "-", "manipulation"], [84, 3, 0, "-", "norms"], [85, 3, 0, "-", "random"], [86, 3, 0, "-", "searching"], [87, 3, 0, "-", "set"], [88, 3, 0, "-", "sorting"], [89, 3, 0, "-", "statistical"], [90, 3, 0, "-", "utility"], [91, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[69, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_static_gelu"], [69, 0, 1, "", "_static_hardswish"], [69, 0, 1, "", "_static_leaky_relu"], [69, 0, 1, "", "_static_log_softmax"], [69, 0, 1, "", "_static_mish"], [69, 0, 1, "", "_static_relu"], [69, 0, 1, "", "_static_sigmoid"], [69, 0, 1, "", "_static_softmax"], [69, 0, 1, "", "_static_softplus"], [69, 0, 1, "", "gelu"], [69, 0, 1, "", "hardswish"], [69, 0, 1, "", "leaky_relu"], [69, 0, 1, "", "log_softmax"], [69, 0, 1, "", "mish"], [69, 0, 1, "", "relu"], [69, 0, 1, "", "sigmoid"], [69, 0, 1, "", "softmax"], [69, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[70, 1, 1, "", "ContainerBase"], [70, 2, 1, "", "_is_jsonable"], [70, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[70, 0, 1, "", "__getitem__"], [70, 0, 1, "", "__init__"], [70, 0, 1, "", "__setitem__"], [70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [70, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [70, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [70, 0, 1, "", "_cont_concat_unify"], [70, 0, 1, "", "_cont_get_dev"], [70, 0, 1, "", "_cont_get_dtype"], [70, 0, 1, "", "_cont_get_shape"], [70, 0, 1, "", "_cont_get_shapes"], [70, 5, 1, "", "_cont_ivy"], [70, 0, 1, "", "_cont_mean_unify"], [70, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [70, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [70, 0, 1, "", "_cont_slice_keys"], [70, 0, 1, "", "_cont_sum_unify"], [70, 0, 1, "", "_get_queue_item"], [70, 0, 1, "", "cont_all_false"], [70, 0, 1, "", "cont_all_key_chains"], [70, 0, 1, "", "cont_all_true"], [70, 0, 1, "", "cont_as_bools"], [70, 0, 1, "", "cont_assert_contains_sub_container"], [70, 0, 1, "", "cont_assert_contains_sub_structure"], [70, 0, 1, "", "cont_assert_identical"], [70, 0, 1, "", "cont_assert_identical_structure"], [70, 0, 1, "", "cont_at_key_chain"], [70, 0, 1, "", "cont_at_key_chains"], [70, 0, 1, "", "cont_at_keys"], [70, 0, 1, "", "cont_combine"], [70, 0, 1, "", "cont_common_key_chains"], [70, 5, 1, "", "cont_config"], [70, 0, 1, "", "cont_contains_sub_container"], [70, 0, 1, "", "cont_contains_sub_structure"], [70, 0, 1, "", "cont_copy"], [70, 0, 1, "", "cont_create_if_absent"], [70, 0, 1, "", "cont_cutoff_at_depth"], [70, 0, 1, "", "cont_cutoff_at_height"], [70, 0, 1, "", "cont_deep_copy"], [70, 5, 1, "", "cont_dev"], [70, 5, 1, "", "cont_dev_str"], [70, 0, 1, "", "cont_diff"], [70, 5, 1, "", "cont_dtype"], [70, 0, 1, "", "cont_duplicate_array_keychains"], [70, 0, 1, "", "cont_find_sub_container"], [70, 0, 1, "", "cont_find_sub_structure"], [70, 0, 1, "", "cont_flatten_key_chain"], [70, 0, 1, "", "cont_flatten_key_chains"], [70, 0, 1, "", "cont_format_key_chains"], [70, 0, 1, "", "cont_from_disk_as_hdf5"], [70, 0, 1, "", "cont_from_disk_as_json"], [70, 0, 1, "", "cont_from_disk_as_pickled"], [70, 0, 1, "", "cont_from_flat_list"], [70, 0, 1, "", "cont_handle_inplace"], [70, 0, 1, "", "cont_has_key"], [70, 0, 1, "", "cont_has_key_chain"], [70, 0, 1, "", "cont_identical"], [70, 0, 1, "", "cont_identical_array_shapes"], [70, 0, 1, "", "cont_identical_configs"], [70, 0, 1, "", "cont_identical_structure"], [70, 0, 1, "", "cont_if_exists"], [70, 0, 1, "", "cont_inplace_update"], [70, 5, 1, "", "cont_ivy"], [70, 0, 1, "", "cont_key_chains_containing"], [70, 0, 1, "", "cont_list_join"], [70, 0, 1, "", "cont_list_stack"], [70, 0, 1, "", "cont_load"], [70, 0, 1, "", "cont_map"], [70, 0, 1, "", "cont_map_sub_conts"], [70, 5, 1, "", "cont_max_depth"], [70, 0, 1, "", "cont_multi_map"], [70, 0, 1, "", "cont_multi_map_in_function"], [70, 0, 1, "", "cont_num_arrays"], [70, 0, 1, "", "cont_overwrite_at_key_chain"], [70, 0, 1, "", "cont_overwrite_at_key_chains"], [70, 0, 1, "", "cont_prune_empty"], [70, 0, 1, "", "cont_prune_key_chain"], [70, 0, 1, "", "cont_prune_key_chains"], [70, 0, 1, "", "cont_prune_key_from_key_chains"], [70, 0, 1, "", "cont_prune_keys"], [70, 0, 1, "", "cont_prune_keys_from_key_chains"], [70, 0, 1, "", "cont_reduce"], [70, 0, 1, "", "cont_remove_key_length_limit"], [70, 0, 1, "", "cont_remove_print_limit"], [70, 0, 1, "", "cont_reshape_like"], [70, 0, 1, "", "cont_restructure"], [70, 0, 1, "", "cont_restructure_key_chains"], [70, 0, 1, "", "cont_save"], [70, 0, 1, "", "cont_set_at_key_chain"], [70, 0, 1, "", "cont_set_at_key_chains"], [70, 0, 1, "", "cont_set_at_keys"], [70, 5, 1, "", "cont_shape"], [70, 5, 1, "", "cont_shapes"], [70, 0, 1, "", "cont_show"], [70, 0, 1, "", "cont_show_sub_container"], [70, 0, 1, "", "cont_size_ordered_arrays"], [70, 0, 1, "", "cont_slice_keys"], [70, 0, 1, "", "cont_slice_via_key"], [70, 0, 1, "", "cont_sort_by_key"], [70, 0, 1, "", "cont_structural_diff"], [70, 0, 1, "", "cont_to_dict"], [70, 0, 1, "", "cont_to_disk_as_hdf5"], [70, 0, 1, "", "cont_to_disk_as_json"], [70, 0, 1, "", "cont_to_disk_as_pickled"], [70, 0, 1, "", "cont_to_flat_list"], [70, 0, 1, "", "cont_to_iterator"], [70, 0, 1, "", "cont_to_iterator_keys"], [70, 0, 1, "", "cont_to_iterator_values"], [70, 0, 1, "", "cont_to_jsonable"], [70, 0, 1, "", "cont_to_nested_list"], [70, 0, 1, "", "cont_to_raw"], [70, 0, 1, "", "cont_trim_key"], [70, 0, 1, "", "cont_try_kc"], [70, 0, 1, "", "cont_unify"], [70, 0, 1, "", "cont_unstack_conts"], [70, 0, 1, "", "cont_update_config"], [70, 0, 1, "", "cont_with_default_key_color"], [70, 0, 1, "", "cont_with_entries_as_lists"], [70, 0, 1, "", "cont_with_ivy_backend"], [70, 0, 1, "", "cont_with_key_length_limit"], [70, 0, 1, "", "cont_with_print_indent"], [70, 0, 1, "", "cont_with_print_limit"], [70, 0, 1, "", "cont_with_print_line_spacing"], [70, 5, 1, "", "dynamic_backend"], [70, 0, 1, "", "h5_file_size"], [70, 0, 1, "", "shuffle_h5_file"], [70, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[99, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[99, 0, 1, "", "__abs__"], [99, 0, 1, "", "__add__"], [99, 0, 1, "", "__eq__"], [99, 0, 1, "", "__ge__"], [99, 0, 1, "", "__gt__"], [99, 0, 1, "", "__init__"], [99, 0, 1, "", "__le__"], [99, 0, 1, "", "__lt__"], [99, 0, 1, "", "__ne__"], [99, 0, 1, "", "__pow__"], [99, 0, 1, "", "__radd__"], [99, 0, 1, "", "__rrshift__"], [99, 0, 1, "", "__rshift__"], [99, 0, 1, "", "__rsub__"], [99, 0, 1, "", "__sub__"], [99, 0, 1, "", "__truediv__"], [99, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[71, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_to_ivy"], [71, 0, 1, "", "_static_to_native"], [71, 0, 1, "", "to_ivy"], [71, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[72, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_arange"], [72, 0, 1, "", "_static_asarray"], [72, 0, 1, "", "_static_copy_array"], [72, 0, 1, "", "_static_empty"], [72, 0, 1, "", "_static_empty_like"], [72, 0, 1, "", "_static_eye"], [72, 0, 1, "", "_static_from_dlpack"], [72, 0, 1, "", "_static_full"], [72, 0, 1, "", "_static_full_like"], [72, 0, 1, "", "_static_linspace"], [72, 0, 1, "", "_static_logspace"], [72, 0, 1, "", "_static_meshgrid"], [72, 0, 1, "", "_static_native_array"], [72, 0, 1, "", "_static_one_hot"], [72, 0, 1, "", "_static_ones"], [72, 0, 1, "", "_static_ones_like"], [72, 0, 1, "", "_static_tril"], [72, 0, 1, "", "_static_triu"], [72, 0, 1, "", "_static_zeros"], [72, 0, 1, "", "_static_zeros_like"], [72, 0, 1, "", "asarray"], [72, 0, 1, "", "copy_array"], [72, 0, 1, "", "empty_like"], [72, 0, 1, "", "from_dlpack"], [72, 0, 1, "", "frombuffer"], [72, 0, 1, "", "full_like"], [72, 0, 1, "", "linspace"], [72, 0, 1, "", "logspace"], [72, 0, 1, "", "meshgrid"], [72, 0, 1, "", "native_array"], [72, 0, 1, "", "one_hot"], [72, 0, 1, "", "ones_like"], [72, 0, 1, "", "static_frombuffer"], [72, 0, 1, "", "static_triu_indices"], [72, 0, 1, "", "tril"], [72, 0, 1, "", "triu"], [72, 0, 1, "", "triu_indices"], [72, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[73, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_astype"], [73, 0, 1, "", "_static_broadcast_arrays"], [73, 0, 1, "", "_static_broadcast_to"], [73, 0, 1, "", "_static_can_cast"], [73, 0, 1, "", "_static_default_complex_dtype"], [73, 0, 1, "", "_static_default_float_dtype"], [73, 0, 1, "", "_static_dtype"], [73, 0, 1, "", "_static_finfo"], [73, 0, 1, "", "_static_function_supported_dtypes"], [73, 0, 1, "", "_static_function_unsupported_dtypes"], [73, 0, 1, "", "_static_iinfo"], [73, 0, 1, "", "_static_is_bool_dtype"], [73, 0, 1, "", "_static_is_complex_dtype"], [73, 0, 1, "", "_static_is_float_dtype"], [73, 0, 1, "", "_static_is_int_dtype"], [73, 0, 1, "", "_static_is_uint_dtype"], [73, 0, 1, "", "_static_result_type"], [73, 0, 1, "", "astype"], [73, 0, 1, "", "broadcast_arrays"], [73, 0, 1, "", "broadcast_to"], [73, 0, 1, "", "can_cast"], [73, 0, 1, "", "dtype"], [73, 0, 1, "", "finfo"], [73, 0, 1, "", "iinfo"], [73, 0, 1, "", "is_bool_dtype"], [73, 0, 1, "", "is_complex_dtype"], [73, 0, 1, "", "is_float_dtype"], [73, 0, 1, "", "is_int_dtype"], [73, 0, 1, "", "is_uint_dtype"], [73, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[74, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_dev"], [74, 0, 1, "", "_static_to_device"], [74, 0, 1, "", "dev"], [74, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[75, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_abs"], [75, 0, 1, "", "_static_acos"], [75, 0, 1, "", "_static_acosh"], [75, 0, 1, "", "_static_add"], [75, 0, 1, "", "_static_asin"], [75, 0, 1, "", "_static_asinh"], [75, 0, 1, "", "_static_atan"], [75, 0, 1, "", "_static_atan2"], [75, 0, 1, "", "_static_atanh"], [75, 0, 1, "", "_static_bitwise_and"], [75, 0, 1, "", "_static_bitwise_invert"], [75, 0, 1, "", "_static_bitwise_left_shift"], [75, 0, 1, "", "_static_bitwise_or"], [75, 0, 1, "", "_static_bitwise_right_shift"], [75, 0, 1, "", "_static_bitwise_xor"], [75, 0, 1, "", "_static_ceil"], [75, 0, 1, "", "_static_cos"], [75, 0, 1, "", "_static_cosh"], [75, 0, 1, "", "_static_deg2rad"], [75, 0, 1, "", "_static_divide"], [75, 0, 1, "", "_static_equal"], [75, 0, 1, "", "_static_erf"], [75, 0, 1, "", "_static_exp"], [75, 0, 1, "", "_static_expm1"], [75, 0, 1, "", "_static_floor"], [75, 0, 1, "", "_static_floor_divide"], [75, 0, 1, "", "_static_greater"], [75, 0, 1, "", "_static_greater_equal"], [75, 0, 1, "", "_static_isfinite"], [75, 0, 1, "", "_static_isinf"], [75, 0, 1, "", "_static_isnan"], [75, 0, 1, "", "_static_isreal"], [75, 0, 1, "", "_static_lcm"], [75, 0, 1, "", "_static_less"], [75, 0, 1, "", "_static_less_equal"], [75, 0, 1, "", "_static_log"], [75, 0, 1, "", "_static_log10"], [75, 0, 1, "", "_static_log1p"], [75, 0, 1, "", "_static_log2"], [75, 0, 1, "", "_static_logaddexp"], [75, 0, 1, "", "_static_logical_and"], [75, 0, 1, "", "_static_logical_not"], [75, 0, 1, "", "_static_logical_or"], [75, 0, 1, "", "_static_logical_xor"], [75, 0, 1, "", "_static_maximum"], [75, 0, 1, "", "_static_minimum"], [75, 0, 1, "", "_static_multiply"], [75, 0, 1, "", "_static_negative"], [75, 0, 1, "", "_static_not_equal"], [75, 0, 1, "", "_static_positive"], [75, 0, 1, "", "_static_pow"], [75, 0, 1, "", "_static_rad2deg"], [75, 0, 1, "", "_static_reciprocal"], [75, 0, 1, "", "_static_remainder"], [75, 0, 1, "", "_static_round"], [75, 0, 1, "", "_static_sign"], [75, 0, 1, "", "_static_sin"], [75, 0, 1, "", "_static_sinh"], [75, 0, 1, "", "_static_sqrt"], [75, 0, 1, "", "_static_square"], [75, 0, 1, "", "_static_subtract"], [75, 0, 1, "", "_static_tan"], [75, 0, 1, "", "_static_tanh"], [75, 0, 1, "", "_static_trapz"], [75, 0, 1, "", "_static_trunc"], [75, 0, 1, "", "_static_trunc_divide"], [75, 0, 1, "", "abs"], [75, 0, 1, "", "acos"], [75, 0, 1, "", "acosh"], [75, 0, 1, "", "add"], [75, 0, 1, "", "angle"], [75, 0, 1, "", "asin"], [75, 0, 1, "", "asinh"], [75, 0, 1, "", "atan"], [75, 0, 1, "", "atan2"], [75, 0, 1, "", "atanh"], [75, 0, 1, "", "bitwise_and"], [75, 0, 1, "", "bitwise_invert"], [75, 0, 1, "", "bitwise_left_shift"], [75, 0, 1, "", "bitwise_or"], [75, 0, 1, "", "bitwise_right_shift"], [75, 0, 1, "", "bitwise_xor"], [75, 0, 1, "", "ceil"], [75, 0, 1, "", "cos"], [75, 0, 1, "", "cosh"], [75, 0, 1, "", "deg2rad"], [75, 0, 1, "", "divide"], [75, 0, 1, "", "equal"], [75, 0, 1, "", "erf"], [75, 0, 1, "", "exp"], [75, 0, 1, "", "exp2"], [75, 0, 1, "", "expm1"], [75, 0, 1, "", "floor"], [75, 0, 1, "", "floor_divide"], [75, 0, 1, "", "fmin"], [75, 0, 1, "", "gcd"], [75, 0, 1, "", "greater"], [75, 0, 1, "", "greater_equal"], [75, 0, 1, "", "imag"], [75, 0, 1, "", "isfinite"], [75, 0, 1, "", "isinf"], [75, 0, 1, "", "isnan"], [75, 0, 1, "", "isreal"], [75, 0, 1, "", "lcm"], [75, 0, 1, "", "less"], [75, 0, 1, "", "less_equal"], [75, 0, 1, "", "log"], [75, 0, 1, "", "log10"], [75, 0, 1, "", "log1p"], [75, 0, 1, "", "log2"], [75, 0, 1, "", "logaddexp"], [75, 0, 1, "", "logaddexp2"], [75, 0, 1, "", "logical_and"], [75, 0, 1, "", "logical_not"], [75, 0, 1, "", "logical_or"], [75, 0, 1, "", "logical_xor"], [75, 0, 1, "", "maximum"], [75, 0, 1, "", "minimum"], [75, 0, 1, "", "multiply"], [75, 0, 1, "", "nan_to_num"], [75, 0, 1, "", "negative"], [75, 0, 1, "", "not_equal"], [75, 0, 1, "", "positive"], [75, 0, 1, "", "pow"], [75, 0, 1, "", "rad2deg"], [75, 0, 1, "", "real"], [75, 0, 1, "", "reciprocal"], [75, 0, 1, "", "remainder"], [75, 0, 1, "", "round"], [75, 0, 1, "", "sign"], [75, 0, 1, "", "sin"], [75, 0, 1, "", "sinh"], [75, 0, 1, "", "sqrt"], [75, 0, 1, "", "square"], [75, 0, 1, "", "static_angle"], [75, 0, 1, "", "static_exp2"], [75, 0, 1, "", "static_fmin"], [75, 0, 1, "", "static_gcd"], [75, 0, 1, "", "static_imag"], [75, 0, 1, "", "static_logaddexp2"], [75, 0, 1, "", "static_nan_to_num"], [75, 0, 1, "", "static_real"], [75, 0, 1, "", "subtract"], [75, 0, 1, "", "tan"], [75, 0, 1, "", "tanh"], [75, 0, 1, "", "trapz"], [75, 0, 1, "", "trunc"], [75, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[76, 3, 0, "-", "activations"], [76, 3, 0, "-", "conversions"], [76, 3, 0, "-", "creation"], [76, 3, 0, "-", "data_type"], [76, 3, 0, "-", "device"], [76, 3, 0, "-", "elementwise"], [76, 3, 0, "-", "general"], [76, 3, 0, "-", "gradients"], [76, 3, 0, "-", "image"], [76, 3, 0, "-", "layers"], [76, 3, 0, "-", "linear_algebra"], [76, 3, 0, "-", "losses"], [76, 3, 0, "-", "manipulation"], [76, 3, 0, "-", "norms"], [76, 3, 0, "-", "random"], [76, 3, 0, "-", "searching"], [76, 3, 0, "-", "set"], [76, 3, 0, "-", "sorting"], [76, 3, 0, "-", "statistical"], [76, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[76, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_celu"], [76, 0, 1, "", "_static_elu"], [76, 0, 1, "", "_static_hardshrink"], [76, 0, 1, "", "_static_hardsilu"], [76, 0, 1, "", "_static_hardtanh"], [76, 0, 1, "", "_static_scaled_tanh"], [76, 0, 1, "", "_static_silu"], [76, 0, 1, "", "_static_softshrink"], [76, 0, 1, "", "_static_tanhshrink"], [76, 0, 1, "", "_static_threshold"], [76, 0, 1, "", "celu"], [76, 0, 1, "", "elu"], [76, 0, 1, "", "hardshrink"], [76, 0, 1, "", "hardsilu"], [76, 0, 1, "", "hardtanh"], [76, 0, 1, "", "logit"], [76, 0, 1, "", "logsigmoid"], [76, 0, 1, "", "prelu"], [76, 0, 1, "", "relu6"], [76, 0, 1, "", "scaled_tanh"], [76, 0, 1, "", "selu"], [76, 0, 1, "", "silu"], [76, 0, 1, "", "softshrink"], [76, 0, 1, "", "static_logit"], [76, 0, 1, "", "static_logsigmoid"], [76, 0, 1, "", "static_prelu"], [76, 0, 1, "", "static_relu6"], [76, 0, 1, "", "static_selu"], [76, 0, 1, "", "static_thresholded_relu"], [76, 0, 1, "", "tanhshrink"], [76, 0, 1, "", "threshold"], [76, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[76, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[76, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_trilu"], [76, 0, 1, "", "blackman_window"], [76, 0, 1, "", "eye_like"], [76, 0, 1, "", "hamming_window"], [76, 0, 1, "", "hann_window"], [76, 0, 1, "", "kaiser_bessel_derived_window"], [76, 0, 1, "", "kaiser_window"], [76, 0, 1, "", "mel_weight_matrix"], [76, 0, 1, "", "polyval"], [76, 0, 1, "", "static_blackman_window"], [76, 0, 1, "", "static_eye_like"], [76, 0, 1, "", "static_hamming_window"], [76, 0, 1, "", "static_hann_window"], [76, 0, 1, "", "static_kaiser_bessel_derived_window"], [76, 0, 1, "", "static_kaiser_window"], [76, 0, 1, "", "static_mel_weight_matrix"], [76, 0, 1, "", "static_polyval"], [76, 0, 1, "", "static_tril_indices"], [76, 0, 1, "", "static_unsorted_segment_mean"], [76, 0, 1, "", "static_unsorted_segment_min"], [76, 0, 1, "", "static_unsorted_segment_sum"], [76, 0, 1, "", "static_vorbis_window"], [76, 0, 1, "", "tril_indices"], [76, 0, 1, "", "trilu"], [76, 0, 1, "", "unsorted_segment_mean"], [76, 0, 1, "", "unsorted_segment_min"], [76, 0, 1, "", "unsorted_segment_sum"], [76, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[76, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[76, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[76, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "allclose"], [76, 0, 1, "", "amax"], [76, 0, 1, "", "amin"], [76, 0, 1, "", "binarizer"], [76, 0, 1, "", "conj"], [76, 0, 1, "", "copysign"], [76, 0, 1, "", "count_nonzero"], [76, 0, 1, "", "diff"], [76, 0, 1, "", "digamma"], [76, 0, 1, "", "erfc"], [76, 0, 1, "", "erfinv"], [76, 0, 1, "", "fix"], [76, 0, 1, "", "float_power"], [76, 0, 1, "", "fmax"], [76, 0, 1, "", "fmod"], [76, 0, 1, "", "frexp"], [76, 0, 1, "", "gradient"], [76, 0, 1, "", "hypot"], [76, 0, 1, "", "isclose"], [76, 0, 1, "", "ldexp"], [76, 0, 1, "", "lerp"], [76, 0, 1, "", "modf"], [76, 0, 1, "", "nansum"], [76, 0, 1, "", "nextafter"], [76, 0, 1, "", "signbit"], [76, 0, 1, "", "sinc"], [76, 0, 1, "", "sparsify_tensor"], [76, 0, 1, "", "static_allclose"], [76, 0, 1, "", "static_amax"], [76, 0, 1, "", "static_amin"], [76, 0, 1, "", "static_binarizer"], [76, 0, 1, "", "static_conj"], [76, 0, 1, "", "static_copysign"], [76, 0, 1, "", "static_count_nonzero"], [76, 0, 1, "", "static_diff"], [76, 0, 1, "", "static_digamma"], [76, 0, 1, "", "static_erfc"], [76, 0, 1, "", "static_erfinv"], [76, 0, 1, "", "static_fix"], [76, 0, 1, "", "static_float_power"], [76, 0, 1, "", "static_fmax"], [76, 0, 1, "", "static_fmod"], [76, 0, 1, "", "static_frexp"], [76, 0, 1, "", "static_gradient"], [76, 0, 1, "", "static_hypot"], [76, 0, 1, "", "static_isclose"], [76, 0, 1, "", "static_ldexp"], [76, 0, 1, "", "static_lerp"], [76, 0, 1, "", "static_modf"], [76, 0, 1, "", "static_nansum"], [76, 0, 1, "", "static_nextafter"], [76, 0, 1, "", "static_signbit"], [76, 0, 1, "", "static_sinc"], [76, 0, 1, "", "static_sparsify_tensor"], [76, 0, 1, "", "static_xlogy"], [76, 0, 1, "", "static_zeta"], [76, 0, 1, "", "xlogy"], [76, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[76, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_reduce"], [76, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[76, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[76, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[76, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_fft"], [76, 0, 1, "", "_static_sliding_window"], [76, 0, 1, "", "adaptive_avg_pool1d"], [76, 0, 1, "", "adaptive_avg_pool2d"], [76, 0, 1, "", "adaptive_max_pool2d"], [76, 0, 1, "", "adaptive_max_pool3d"], [76, 0, 1, "", "avg_pool1d"], [76, 0, 1, "", "avg_pool2d"], [76, 0, 1, "", "avg_pool3d"], [76, 0, 1, "", "dct"], [76, 0, 1, "", "dft"], [76, 0, 1, "", "embedding"], [76, 0, 1, "", "fft"], [76, 0, 1, "", "idct"], [76, 0, 1, "", "ifft"], [76, 0, 1, "", "ifftn"], [76, 0, 1, "", "interpolate"], [76, 0, 1, "", "max_pool1d"], [76, 0, 1, "", "max_pool2d"], [76, 0, 1, "", "max_pool3d"], [76, 0, 1, "", "max_unpool1d"], [76, 0, 1, "", "rfft"], [76, 0, 1, "", "rfftn"], [76, 0, 1, "", "sliding_window"], [76, 0, 1, "", "static_adaptive_avg_pool1d"], [76, 0, 1, "", "static_adaptive_avg_pool2d"], [76, 0, 1, "", "static_adaptive_max_pool2d"], [76, 0, 1, "", "static_adaptive_max_pool3d"], [76, 0, 1, "", "static_avg_pool1d"], [76, 0, 1, "", "static_avg_pool2d"], [76, 0, 1, "", "static_avg_pool3d"], [76, 0, 1, "", "static_dct"], [76, 0, 1, "", "static_dft"], [76, 0, 1, "", "static_embedding"], [76, 0, 1, "", "static_idct"], [76, 0, 1, "", "static_ifft"], [76, 0, 1, "", "static_ifftn"], [76, 0, 1, "", "static_interpolate"], [76, 0, 1, "", "static_max_pool1d"], [76, 0, 1, "", "static_max_pool2d"], [76, 0, 1, "", "static_max_pool3d"], [76, 0, 1, "", "static_max_unpool1d"], [76, 0, 1, "", "static_rfft"], [76, 0, 1, "", "static_rfftn"], [76, 0, 1, "", "static_rnn"], [76, 0, 1, "", "static_stft"], [76, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[76, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "adjoint"], [76, 0, 1, "", "batched_outer"], [76, 0, 1, "", "cond"], [76, 0, 1, "", "diagflat"], [76, 0, 1, "", "dot"], [76, 0, 1, "", "eig"], [76, 0, 1, "", "eigh_tridiagonal"], [76, 0, 1, "", "eigvals"], [76, 0, 1, "", "higher_order_moment"], [76, 0, 1, "", "initialize_tucker"], [76, 0, 1, "", "kron"], [76, 0, 1, "", "make_svd_non_negative"], [76, 0, 1, "", "matrix_exp"], [76, 0, 1, "", "mode_dot"], [76, 0, 1, "", "multi_dot"], [76, 0, 1, "", "multi_mode_dot"], [76, 0, 1, "", "partial_tucker"], [76, 0, 1, "", "static_adjoint"], [76, 0, 1, "", "static_batched_outer"], [76, 0, 1, "", "static_cond"], [76, 0, 1, "", "static_diagflat"], [76, 0, 1, "", "static_dot"], [76, 0, 1, "", "static_eig"], [76, 0, 1, "", "static_eigh_tridiagonal"], [76, 0, 1, "", "static_eigvals"], [76, 0, 1, "", "static_higher_order_moment"], [76, 0, 1, "", "static_initialize_tucker"], [76, 0, 1, "", "static_kron"], [76, 0, 1, "", "static_make_svd_non_negative"], [76, 0, 1, "", "static_matrix_exp"], [76, 0, 1, "", "static_mode_dot"], [76, 0, 1, "", "static_multi_dot"], [76, 0, 1, "", "static_multi_mode_dot"], [76, 0, 1, "", "static_partial_tucker"], [76, 0, 1, "", "static_svd_flip"], [76, 0, 1, "", "static_tensor_train"], [76, 0, 1, "", "static_truncated_svd"], [76, 0, 1, "", "static_tt_matrix_to_tensor"], [76, 0, 1, "", "static_tucker"], [76, 0, 1, "", "svd_flip"], [76, 0, 1, "", "tensor_train"], [76, 0, 1, "", "truncated_svd"], [76, 0, 1, "", "tt_matrix_to_tensor"], [76, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[76, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_hinge_embedding_loss"], [76, 0, 1, "", "_static_huber_loss"], [76, 0, 1, "", "_static_kl_div"], [76, 0, 1, "", "_static_l1_loss"], [76, 0, 1, "", "_static_log_poisson_loss"], [76, 0, 1, "", "_static_poisson_nll_loss"], [76, 0, 1, "", "_static_smooth_l1_loss"], [76, 0, 1, "", "_static_soft_margin_loss"], [76, 0, 1, "", "hinge_embedding_loss"], [76, 0, 1, "", "huber_loss"], [76, 0, 1, "", "kl_div"], [76, 0, 1, "", "l1_loss"], [76, 0, 1, "", "log_poisson_loss"], [76, 0, 1, "", "poisson_nll_loss"], [76, 0, 1, "", "smooth_l1_loss"], [76, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[76, 1, 1, "", "_ContainerWithManipulationExperimental"], [76, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_fill_diagonal"], [76, 0, 1, "", "_static_put_along_axis"], [76, 0, 1, "", "_static_take"], [76, 0, 1, "", "_static_trim_zeros"], [76, 0, 1, "", "_static_unflatten"], [76, 0, 1, "", "_static_unique_consecutive"], [76, 0, 1, "", "as_strided"], [76, 0, 1, "", "associative_scan"], [76, 0, 1, "", "atleast_1d"], [76, 0, 1, "", "atleast_2d"], [76, 0, 1, "", "atleast_3d"], [76, 0, 1, "", "broadcast_shapes"], [76, 0, 1, "", "column_stack"], [76, 0, 1, "", "concat_from_sequence"], [76, 0, 1, "", "dsplit"], [76, 0, 1, "", "dstack"], [76, 0, 1, "", "expand"], [76, 0, 1, "", "fill_diagonal"], [76, 0, 1, "", "flatten"], [76, 0, 1, "", "fliplr"], [76, 0, 1, "", "flipud"], [76, 0, 1, "", "fold"], [76, 0, 1, "", "heaviside"], [76, 0, 1, "", "hsplit"], [76, 0, 1, "", "hstack"], [76, 0, 1, "", "i0"], [76, 0, 1, "", "matricize"], [76, 0, 1, "", "moveaxis"], [76, 0, 1, "", "pad"], [76, 0, 1, "", "partial_fold"], [76, 0, 1, "", "partial_tensor_to_vec"], [76, 0, 1, "", "partial_unfold"], [76, 0, 1, "", "partial_vec_to_tensor"], [76, 0, 1, "", "put_along_axis"], [76, 0, 1, "", "rot90"], [76, 0, 1, "", "soft_thresholding"], [76, 0, 1, "", "static_as_strided"], [76, 0, 1, "", "static_atleast_1d"], [76, 0, 1, "", "static_atleast_2d"], [76, 0, 1, "", "static_atleast_3d"], [76, 0, 1, "", "static_broadcast_shapes"], [76, 0, 1, "", "static_column_stack"], [76, 0, 1, "", "static_concat_from_sequence"], [76, 0, 1, "", "static_dsplit"], [76, 0, 1, "", "static_dstack"], [76, 0, 1, "", "static_expand"], [76, 0, 1, "", "static_flatten"], [76, 0, 1, "", "static_fliplr"], [76, 0, 1, "", "static_flipud"], [76, 0, 1, "", "static_fold"], [76, 0, 1, "", "static_heaviside"], [76, 0, 1, "", "static_hsplit"], [76, 0, 1, "", "static_hstack"], [76, 0, 1, "", "static_i0"], [76, 0, 1, "", "static_matricize"], [76, 0, 1, "", "static_moveaxis"], [76, 0, 1, "", "static_pad"], [76, 0, 1, "", "static_partial_fold"], [76, 0, 1, "", "static_partial_tensor_to_vec"], [76, 0, 1, "", "static_partial_unfold"], [76, 0, 1, "", "static_partial_vec_to_tensor"], [76, 0, 1, "", "static_rot90"], [76, 0, 1, "", "static_soft_thresholding"], [76, 0, 1, "", "static_take_along_axis"], [76, 0, 1, "", "static_top_k"], [76, 0, 1, "", "static_unfold"], [76, 0, 1, "", "static_vsplit"], [76, 0, 1, "", "static_vstack"], [76, 0, 1, "", "take"], [76, 0, 1, "", "take_along_axis"], [76, 0, 1, "", "top_k"], [76, 0, 1, "", "trim_zeros"], [76, 0, 1, "", "unflatten"], [76, 0, 1, "", "unfold"], [76, 0, 1, "", "unique_consecutive"], [76, 0, 1, "", "vsplit"], [76, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[76, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "batch_norm"], [76, 0, 1, "", "group_norm"], [76, 0, 1, "", "instance_norm"], [76, 0, 1, "", "l1_normalize"], [76, 0, 1, "", "l2_normalize"], [76, 0, 1, "", "lp_normalize"], [76, 0, 1, "", "static_batch_norm"], [76, 0, 1, "", "static_group_norm"], [76, 0, 1, "", "static_instance_norm"], [76, 0, 1, "", "static_l1_normalize"], [76, 0, 1, "", "static_l2_normalize"], [76, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[76, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "bernoulli"], [76, 0, 1, "", "beta"], [76, 0, 1, "", "dirichlet"], [76, 0, 1, "", "gamma"], [76, 0, 1, "", "poisson"], [76, 0, 1, "", "static_bernoulli"], [76, 0, 1, "", "static_beta"], [76, 0, 1, "", "static_dirichlet"], [76, 0, 1, "", "static_gamma"], [76, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[76, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "static_unravel_index"], [76, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[76, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[76, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[76, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "invert_permutation"], [76, 0, 1, "", "lexsort"], [76, 0, 1, "", "static_invert_permutation"], [76, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[76, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_cummax"], [76, 0, 1, "", "_static_cummin"], [76, 0, 1, "", "_static_nanmin"], [76, 0, 1, "", "bincount"], [76, 0, 1, "", "corrcoef"], [76, 0, 1, "", "cov"], [76, 0, 1, "", "cummax"], [76, 0, 1, "", "cummin"], [76, 0, 1, "", "histogram"], [76, 0, 1, "", "igamma"], [76, 0, 1, "", "lgamma"], [76, 0, 1, "", "median"], [76, 0, 1, "", "nanmean"], [76, 0, 1, "", "nanmedian"], [76, 0, 1, "", "nanmin"], [76, 0, 1, "", "nanprod"], [76, 0, 1, "", "quantile"], [76, 0, 1, "", "static_bincount"], [76, 0, 1, "", "static_corrcoef"], [76, 0, 1, "", "static_cov"], [76, 0, 1, "", "static_histogram"], [76, 0, 1, "", "static_igamma"], [76, 0, 1, "", "static_lgamma"], [76, 0, 1, "", "static_median"], [76, 0, 1, "", "static_nanmean"], [76, 0, 1, "", "static_nanmedian"], [76, 0, 1, "", "static_nanprod"], [76, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[76, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "optional_get_element"], [76, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[77, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_all_equal"], [77, 0, 1, "", "_static_array_equal"], [77, 0, 1, "", "_static_assert_supports_inplace"], [77, 0, 1, "", "_static_clip_matrix_norm"], [77, 0, 1, "", "_static_clip_vector_norm"], [77, 0, 1, "", "_static_einops_rearrange"], [77, 0, 1, "", "_static_einops_reduce"], [77, 0, 1, "", "_static_einops_repeat"], [77, 0, 1, "", "_static_exists"], [77, 0, 1, "", "_static_fourier_encode"], [77, 0, 1, "", "_static_gather"], [77, 0, 1, "", "_static_gather_nd"], [77, 0, 1, "", "_static_get_num_dims"], [77, 0, 1, "", "_static_has_nans"], [77, 0, 1, "", "_static_inplace_decrement"], [77, 0, 1, "", "_static_inplace_increment"], [77, 0, 1, "", "_static_inplace_update"], [77, 0, 1, "", "_static_is_array"], [77, 0, 1, "", "_static_is_ivy_array"], [77, 0, 1, "", "_static_is_native_array"], [77, 0, 1, "", "_static_scatter_flat"], [77, 0, 1, "", "_static_scatter_nd"], [77, 0, 1, "", "_static_size"], [77, 0, 1, "", "_static_stable_divide"], [77, 0, 1, "", "_static_stable_pow"], [77, 0, 1, "", "_static_supports_inplace_updates"], [77, 0, 1, "", "_static_to_list"], [77, 0, 1, "", "_static_to_numpy"], [77, 0, 1, "", "_static_to_scalar"], [77, 0, 1, "", "_static_value_is_nan"], [77, 0, 1, "", "all_equal"], [77, 0, 1, "", "array_equal"], [77, 0, 1, "", "assert_supports_inplace"], [77, 0, 1, "", "clip_matrix_norm"], [77, 0, 1, "", "clip_vector_norm"], [77, 0, 1, "", "einops_rearrange"], [77, 0, 1, "", "einops_reduce"], [77, 0, 1, "", "einops_repeat"], [77, 0, 1, "", "exists"], [77, 0, 1, "", "fourier_encode"], [77, 0, 1, "", "gather"], [77, 0, 1, "", "gather_nd"], [77, 0, 1, "", "get_num_dims"], [77, 0, 1, "", "has_nans"], [77, 0, 1, "", "inplace_decrement"], [77, 0, 1, "", "inplace_increment"], [77, 0, 1, "", "inplace_update"], [77, 0, 1, "", "is_array"], [77, 0, 1, "", "is_ivy_array"], [77, 0, 1, "", "is_native_array"], [77, 0, 1, "", "isin"], [77, 0, 1, "", "itemsize"], [77, 0, 1, "", "scatter_flat"], [77, 0, 1, "", "scatter_nd"], [77, 0, 1, "", "size"], [77, 0, 1, "", "stable_divide"], [77, 0, 1, "", "stable_pow"], [77, 0, 1, "", "static_isin"], [77, 0, 1, "", "static_itemsize"], [77, 0, 1, "", "static_strides"], [77, 0, 1, "", "strides"], [77, 0, 1, "", "supports_inplace_updates"], [77, 0, 1, "", "to_list"], [77, 0, 1, "", "to_numpy"], [77, 0, 1, "", "to_scalar"], [77, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[78, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[78, 4, 1, "", "_abc_impl"], [78, 0, 1, "", "_static_stop_gradient"], [78, 0, 1, "", "adam_step"], [78, 0, 1, "", "adam_update"], [78, 0, 1, "", "gradient_descent_update"], [78, 0, 1, "", "lamb_update"], [78, 0, 1, "", "lars_update"], [78, 0, 1, "", "optimizer_update"], [78, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[79, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[79, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[80, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_conv1d"], [80, 0, 1, "", "_static_conv1d_transpose"], [80, 0, 1, "", "_static_conv2d"], [80, 0, 1, "", "_static_conv2d_transpose"], [80, 0, 1, "", "_static_conv3d"], [80, 0, 1, "", "_static_conv3d_transpose"], [80, 0, 1, "", "_static_depthwise_conv2d"], [80, 0, 1, "", "_static_dropout"], [80, 0, 1, "", "_static_dropout1d"], [80, 0, 1, "", "_static_dropout2d"], [80, 0, 1, "", "_static_dropout3d"], [80, 0, 1, "", "_static_linear"], [80, 0, 1, "", "_static_lstm_update"], [80, 0, 1, "", "_static_multi_head_attention"], [80, 0, 1, "", "_static_reduce_window"], [80, 0, 1, "", "_static_scaled_dot_product_attention"], [80, 0, 1, "", "conv1d"], [80, 0, 1, "", "conv1d_transpose"], [80, 0, 1, "", "conv2d"], [80, 0, 1, "", "conv2d_transpose"], [80, 0, 1, "", "conv3d"], [80, 0, 1, "", "conv3d_transpose"], [80, 0, 1, "", "depthwise_conv2d"], [80, 0, 1, "", "dropout"], [80, 0, 1, "", "dropout1d"], [80, 0, 1, "", "dropout2d"], [80, 0, 1, "", "dropout3d"], [80, 0, 1, "", "linear"], [80, 0, 1, "", "lstm_update"], [80, 0, 1, "", "multi_head_attention"], [80, 0, 1, "", "reduce_window"], [80, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[81, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_cholesky"], [81, 0, 1, "", "_static_cross"], [81, 0, 1, "", "_static_det"], [81, 0, 1, "", "_static_diag"], [81, 0, 1, "", "_static_diagonal"], [81, 0, 1, "", "_static_eigh"], [81, 0, 1, "", "_static_eigvalsh"], [81, 0, 1, "", "_static_inner"], [81, 0, 1, "", "_static_inv"], [81, 0, 1, "", "_static_matmul"], [81, 0, 1, "", "_static_matrix_norm"], [81, 0, 1, "", "_static_matrix_power"], [81, 0, 1, "", "_static_matrix_rank"], [81, 0, 1, "", "_static_matrix_transpose"], [81, 0, 1, "", "_static_outer"], [81, 0, 1, "", "_static_pinv"], [81, 0, 1, "", "_static_qr"], [81, 0, 1, "", "_static_slogdet"], [81, 0, 1, "", "_static_solve"], [81, 0, 1, "", "_static_svd"], [81, 0, 1, "", "_static_svdvals"], [81, 0, 1, "", "_static_tensordot"], [81, 0, 1, "", "_static_tensorsolve"], [81, 0, 1, "", "_static_trace"], [81, 0, 1, "", "_static_vander"], [81, 0, 1, "", "_static_vecdot"], [81, 0, 1, "", "_static_vector_norm"], [81, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [81, 0, 1, "", "cholesky"], [81, 0, 1, "", "cross"], [81, 0, 1, "", "det"], [81, 0, 1, "", "diag"], [81, 0, 1, "", "diagonal"], [81, 0, 1, "", "eigh"], [81, 0, 1, "", "eigvalsh"], [81, 0, 1, "", "general_inner_product"], [81, 0, 1, "", "inner"], [81, 0, 1, "", "inv"], [81, 0, 1, "", "matmul"], [81, 0, 1, "", "matrix_norm"], [81, 0, 1, "", "matrix_power"], [81, 0, 1, "", "matrix_rank"], [81, 0, 1, "", "matrix_transpose"], [81, 0, 1, "", "outer"], [81, 0, 1, "", "pinv"], [81, 0, 1, "", "qr"], [81, 0, 1, "", "slogdet"], [81, 0, 1, "", "solve"], [81, 0, 1, "", "static_general_inner_product"], [81, 0, 1, "", "svd"], [81, 0, 1, "", "svdvals"], [81, 0, 1, "", "tensordot"], [81, 0, 1, "", "tensorsolve"], [81, 0, 1, "", "trace"], [81, 0, 1, "", "vander"], [81, 0, 1, "", "vecdot"], [81, 0, 1, "", "vector_norm"], [81, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[82, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_binary_cross_entropy"], [82, 0, 1, "", "_static_cross_entropy"], [82, 0, 1, "", "_static_sparse_cross_entropy"], [82, 0, 1, "", "binary_cross_entropy"], [82, 0, 1, "", "cross_entropy"], [82, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[83, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "_static_clip"], [83, 0, 1, "", "_static_concat"], [83, 0, 1, "", "_static_constant_pad"], [83, 0, 1, "", "_static_expand_dims"], [83, 0, 1, "", "_static_flip"], [83, 0, 1, "", "_static_permute_dims"], [83, 0, 1, "", "_static_repeat"], [83, 0, 1, "", "_static_reshape"], [83, 0, 1, "", "_static_roll"], [83, 0, 1, "", "_static_split"], [83, 0, 1, "", "_static_squeeze"], [83, 0, 1, "", "_static_stack"], [83, 0, 1, "", "_static_swapaxes"], [83, 0, 1, "", "_static_tile"], [83, 0, 1, "", "_static_unstack"], [83, 0, 1, "", "_static_zero_pad"], [83, 0, 1, "", "clip"], [83, 0, 1, "", "concat"], [83, 0, 1, "", "constant_pad"], [83, 0, 1, "", "expand_dims"], [83, 0, 1, "", "flip"], [83, 0, 1, "", "permute_dims"], [83, 0, 1, "", "repeat"], [83, 0, 1, "", "reshape"], [83, 0, 1, "", "roll"], [83, 0, 1, "", "split"], [83, 0, 1, "", "squeeze"], [83, 0, 1, "", "stack"], [83, 0, 1, "", "swapaxes"], [83, 0, 1, "", "tile"], [83, 0, 1, "", "unstack"], [83, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[84, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[85, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_multinomial"], [85, 0, 1, "", "_static_randint"], [85, 0, 1, "", "_static_random_normal"], [85, 0, 1, "", "_static_random_uniform"], [85, 0, 1, "", "_static_shuffle"], [85, 0, 1, "", "multinomial"], [85, 0, 1, "", "randint"], [85, 0, 1, "", "random_normal"], [85, 0, 1, "", "random_uniform"], [85, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[86, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_argmax"], [86, 0, 1, "", "_static_argmin"], [86, 0, 1, "", "_static_argwhere"], [86, 0, 1, "", "_static_nonzero"], [86, 0, 1, "", "_static_where"], [86, 0, 1, "", "argmax"], [86, 0, 1, "", "argmin"], [86, 0, 1, "", "argwhere"], [86, 0, 1, "", "nonzero"], [86, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[87, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_unique_all"], [87, 0, 1, "", "_static_unique_counts"], [87, 0, 1, "", "_static_unique_inverse"], [87, 0, 1, "", "_static_unique_values"], [87, 0, 1, "", "unique_all"], [87, 0, 1, "", "unique_counts"], [87, 0, 1, "", "unique_inverse"], [87, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[88, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_argsort"], [88, 0, 1, "", "_static_searchsorted"], [88, 0, 1, "", "_static_sort"], [88, 0, 1, "", "argsort"], [88, 0, 1, "", "msort"], [88, 0, 1, "", "searchsorted"], [88, 0, 1, "", "sort"], [88, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[89, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_cumprod"], [89, 0, 1, "", "_static_cumsum"], [89, 0, 1, "", "_static_min"], [89, 0, 1, "", "_static_prod"], [89, 0, 1, "", "_static_sum"], [89, 0, 1, "", "_static_var"], [89, 0, 1, "", "cumprod"], [89, 0, 1, "", "cumsum"], [89, 0, 1, "", "einsum"], [89, 0, 1, "", "max"], [89, 0, 1, "", "mean"], [89, 0, 1, "", "min"], [89, 0, 1, "", "prod"], [89, 0, 1, "", "std"], [89, 0, 1, "", "sum"], [89, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[90, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[90, 4, 1, "", "_abc_impl"], [90, 0, 1, "", "_static_all"], [90, 0, 1, "", "_static_any"], [90, 0, 1, "", "all"], [90, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[91, 2, 1, "", "_wrap_function"], [91, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[92, 3, 0, "-", "base"], [93, 3, 0, "-", "cp_tensor"], [94, 3, 0, "-", "parafac2_tensor"], [95, 3, 0, "-", "tr_tensor"], [96, 3, 0, "-", "tt_tensor"], [97, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[92, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "mode_dot"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[93, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "cp_copy"], [93, 0, 1, "", "cp_flip_sign"], [93, 0, 1, "", "cp_lstsq_grad"], [93, 0, 1, "", "cp_mode_dot"], [93, 0, 1, "", "cp_n_param"], [93, 0, 1, "", "cp_norm"], [93, 0, 1, "", "cp_normalize"], [93, 0, 1, "", "cp_to_tensor"], [93, 0, 1, "", "cp_to_unfolded"], [93, 0, 1, "", "cp_to_vec"], [93, 0, 1, "", "mode_dot"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "norm"], [93, 0, 1, "", "normalize"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "unfolding_dot_khatri_rao"], [93, 0, 1, "", "validate_cp_rank"], [93, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[94, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 0, 1, "", "apply_parafac2_projections"], [94, 0, 1, "", "from_CPTensor"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "parafac2_normalise"], [94, 0, 1, "", "parafac2_to_slice"], [94, 0, 1, "", "parafac2_to_slices"], [94, 0, 1, "", "parafac2_to_tensor"], [94, 0, 1, "", "parafac2_to_unfolded"], [94, 0, 1, "", "parafac2_to_vec"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[95, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolded"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tr_n_param"], [95, 0, 1, "", "tr_to_tensor"], [95, 0, 1, "", "tr_to_unfolded"], [95, 0, 1, "", "tr_to_vec"], [95, 0, 1, "", "validate_tr_rank"], [95, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[96, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "_tt_n_param"], [96, 0, 1, "", "index_update"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "pad_tt_rank"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolding"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tt_to_tensor"], [96, 0, 1, "", "tt_to_unfolded"], [96, 0, 1, "", "tt_to_vec"], [96, 0, 1, "", "validate_tt_rank"], [96, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[97, 1, 1, "", "TuckerTensor"], [97, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[97, 0, 1, "", "__init__"], [97, 4, 1, "", "_abc_impl"], [97, 0, 1, "", "mode_dot"], [97, 5, 1, "", "n_param"], [97, 0, 1, "", "to_tensor"], [97, 0, 1, "", "to_unfolded"], [97, 0, 1, "", "to_vec"], [97, 0, 1, "", "tucker_copy"], [97, 0, 1, "", "tucker_mode_dot"], [97, 0, 1, "", "tucker_n_param"], [97, 0, 1, "", "tucker_normalize"], [97, 0, 1, "", "tucker_to_tensor"], [97, 0, 1, "", "tucker_to_unfolded"], [97, 0, 1, "", "tucker_to_vec"], [97, 0, 1, "", "validate_tucker_rank"], [97, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[102, 3, 0, "-", "base"], [103, 3, 0, "-", "elementwise"], [101, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[102, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[102, 0, 1, "", "__init__"], [102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "broadcast_shapes"], [102, 5, 1, "", "data"], [102, 5, 1, "", "device"], [102, 5, 1, "", "dtype"], [102, 5, 1, "", "inner_shape"], [102, 5, 1, "", "ndim"], [102, 0, 1, "", "nested_array"], [102, 5, 1, "", "nested_rank"], [102, 0, 1, "", "ragged_map"], [102, 0, 1, "", "ragged_multi_map"], [102, 0, 1, "", "ragged_multi_map_in_function"], [102, 0, 1, "", "replace_ivy_arrays"], [102, 5, 1, "", "shape"], [102, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[103, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[103, 4, 1, "", "_abc_impl"], [103, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[101, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[101, 0, 1, "", "__init__"], [101, 0, 1, "", "from_row_lengths"], [101, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[622, 3, 0, "-", "activations"], [623, 3, 0, "-", "constants"], [624, 3, 0, "-", "control_flow_ops"], [625, 3, 0, "-", "creation"], [626, 3, 0, "-", "data_type"], [627, 3, 0, "-", "device"], [628, 3, 0, "-", "elementwise"], [629, 3, 0, "-", "experimental"], [630, 3, 0, "-", "general"], [631, 3, 0, "-", "gradients"], [632, 3, 0, "-", "layers"], [633, 3, 0, "-", "linear_algebra"], [634, 3, 0, "-", "losses"], [635, 3, 0, "-", "manipulation"], [636, 3, 0, "-", "meta"], [637, 3, 0, "-", "nest"], [638, 3, 0, "-", "norms"], [639, 3, 0, "-", "random"], [640, 3, 0, "-", "searching"], [641, 3, 0, "-", "set"], [642, 3, 0, "-", "sorting"], [643, 3, 0, "-", "statistical"], [644, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[363, 3, 0, "-", "activations"], [364, 3, 0, "-", "constants"], [365, 3, 0, "-", "creation"], [366, 3, 0, "-", "data_type"], [367, 3, 0, "-", "device"], [368, 3, 0, "-", "elementwise"], [369, 3, 0, "-", "general"], [370, 3, 0, "-", "gradients"], [371, 3, 0, "-", "layers"], [372, 3, 0, "-", "linear_algebra"], [373, 3, 0, "-", "losses"], [374, 3, 0, "-", "manipulation"], [375, 3, 0, "-", "meta"], [376, 3, 0, "-", "nest"], [377, 3, 0, "-", "norms"], [378, 3, 0, "-", "random"], [379, 3, 0, "-", "searching"], [380, 3, 0, "-", "set"], [381, 3, 0, "-", "sorting"], [382, 3, 0, "-", "sparse_array"], [383, 3, 0, "-", "statistical"], [384, 3, 0, "-", "utility"]], "ivy.stateful": [[784, 3, 0, "-", "activations"], [785, 3, 0, "-", "converters"], [786, 3, 0, "-", "helpers"], [787, 3, 0, "-", "initializers"], [788, 3, 0, "-", "layers"], [789, 3, 0, "-", "losses"], [790, 3, 0, "-", "module"], [791, 3, 0, "-", "norms"], [792, 3, 0, "-", "optimizers"], [793, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[784, 1, 1, "", "ELU"], [784, 1, 1, "", "GEGLU"], [784, 1, 1, "", "GELU"], [784, 1, 1, "", "Hardswish"], [784, 1, 1, "", "LeakyReLU"], [784, 1, 1, "", "LogSigmoid"], [784, 1, 1, "", "LogSoftmax"], [784, 1, 1, "", "Logit"], [784, 1, 1, "", "Mish"], [784, 1, 1, "", "PReLU"], [784, 1, 1, "", "ReLU"], [784, 1, 1, "", "ReLU6"], [784, 1, 1, "", "SeLU"], [784, 1, 1, "", "SiLU"], [784, 1, 1, "", "Sigmoid"], [784, 1, 1, "", "Softmax"], [784, 1, 1, "", "Softplus"], [784, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[784, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[784, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[785, 1, 1, "", "ModuleConverters"], [785, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[785, 0, 1, "", "from_flax_module"], [785, 0, 1, "", "from_haiku_module"], [785, 0, 1, "", "from_keras_module"], [785, 0, 1, "", "from_paddle_module"], [785, 0, 1, "", "from_torch_module"], [785, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[786, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[787, 1, 1, "", "Constant"], [787, 1, 1, "", "FirstLayerSiren"], [787, 1, 1, "", "GlorotUniform"], [787, 1, 1, "", "Initializer"], [787, 1, 1, "", "KaimingNormal"], [787, 1, 1, "", "Ones"], [787, 1, 1, "", "RandomNormal"], [787, 1, 1, "", "Siren"], [787, 1, 1, "", "Uniform"], [787, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[787, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[787, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[788, 1, 1, "", "AdaptiveAvgPool1d"], [788, 1, 1, "", "AdaptiveAvgPool2d"], [788, 1, 1, "", "AvgPool1D"], [788, 1, 1, "", "AvgPool2D"], [788, 1, 1, "", "AvgPool3D"], [788, 1, 1, "", "Conv1D"], [788, 1, 1, "", "Conv1DTranspose"], [788, 1, 1, "", "Conv2D"], [788, 1, 1, "", "Conv2DTranspose"], [788, 1, 1, "", "Conv3D"], [788, 1, 1, "", "Conv3DTranspose"], [788, 1, 1, "", "Dct"], [788, 1, 1, "", "DepthwiseConv2D"], [788, 1, 1, "", "Dropout"], [788, 1, 1, "", "Embedding"], [788, 1, 1, "", "FFT"], [788, 1, 1, "", "IFFT"], [788, 1, 1, "", "Identity"], [788, 1, 1, "", "LSTM"], [788, 1, 1, "", "Linear"], [788, 1, 1, "", "MaxPool1D"], [788, 1, 1, "", "MaxPool2D"], [788, 1, 1, "", "MaxPool3D"], [788, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[788, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[788, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[789, 1, 1, "", "BinaryCrossEntropyLoss"], [789, 1, 1, "", "CrossEntropyLoss"], [789, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[789, 0, 1, "", "__init__"]], "ivy.stateful.module": [[790, 1, 1, "", "Module"], [790, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[790, 0, 1, "", "__call__"], [790, 0, 1, "", "__init__"], [790, 5, 1, "", "buffers"], [790, 0, 1, "", "build"], [790, 5, 1, "", "build_mode"], [790, 5, 1, "", "built"], [790, 5, 1, "", "device"], [790, 5, 1, "", "dtype"], [790, 0, 1, "", "eval"], [790, 0, 1, "", "load"], [790, 5, 1, "", "module_dict"], [790, 0, 1, "", "register_buffer"], [790, 0, 1, "", "register_parameter"], [790, 0, 1, "", "save"], [790, 0, 1, "", "save_weights"], [790, 0, 1, "", "show_graph"], [790, 5, 1, "", "state_dict"], [790, 0, 1, "", "to_device"], [790, 0, 1, "", "trace_graph"], [790, 0, 1, "", "train"], [790, 5, 1, "", "training"], [790, 5, 1, "", "v"]], "ivy.stateful.norms": [[791, 1, 1, "", "BatchNorm2D"], [791, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[791, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[791, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[792, 1, 1, "", "Adam"], [792, 1, 1, "", "AdamW"], [792, 1, 1, "", "LAMB"], [792, 1, 1, "", "LARS"], [792, 1, 1, "", "Optimizer"], [792, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[792, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[792, 0, 1, "", "__init__"], [792, 0, 1, "", "set_state"], [792, 5, 1, "", "state"]], "ivy.stateful.sequential": [[793, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[793, 0, 1, "", "__init__"]], "ivy.utils": [[794, 3, 0, "-", "assertions"], [795, 3, 0, "-", "backend"], [799, 3, 0, "-", "binaries"], [800, 3, 0, "-", "dynamic_import"], [801, 3, 0, "-", "einsum_parser"], [802, 3, 0, "-", "einsum_path_helpers"], [803, 3, 0, "-", "exceptions"], [804, 3, 0, "-", "inspection"], [805, 3, 0, "-", "logging"], [806, 3, 0, "-", "profiler"], [807, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[794, 2, 1, "", "check_all"], [794, 2, 1, "", "check_all_or_any_fn"], [794, 2, 1, "", "check_any"], [794, 2, 1, "", "check_dev_correct_formatting"], [794, 2, 1, "", "check_dimensions"], [794, 2, 1, "", "check_elem_in_list"], [794, 2, 1, "", "check_equal"], [794, 2, 1, "", "check_exists"], [794, 2, 1, "", "check_false"], [794, 2, 1, "", "check_gather_input_valid"], [794, 2, 1, "", "check_gather_nd_input_valid"], [794, 2, 1, "", "check_greater"], [794, 2, 1, "", "check_inplace_sizes_valid"], [794, 2, 1, "", "check_isinstance"], [794, 2, 1, "", "check_kernel_padding_size"], [794, 2, 1, "", "check_less"], [794, 2, 1, "", "check_one_way_broadcastable"], [794, 2, 1, "", "check_same_dtype"], [794, 2, 1, "", "check_shape"], [794, 2, 1, "", "check_shapes_broadcastable"], [794, 2, 1, "", "check_true"], [794, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[796, 3, 0, "-", "ast_helpers"], [797, 3, 0, "-", "handler"], [798, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[796, 1, 1, "", "ImportTransformer"], [796, 1, 1, "", "IvyLoader"], [796, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "impersonate_import"], [796, 0, 1, "", "visit_Import"], [796, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[796, 0, 1, "", "__init__"], [796, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[796, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[797, 1, 1, "", "ContextManager"], [797, 2, 1, "", "choose_random_backend"], [797, 2, 1, "", "current_backend"], [797, 2, 1, "", "dynamic_backend_converter"], [797, 2, 1, "", "prevent_access_locally"], [797, 2, 1, "", "previous_backend"], [797, 2, 1, "", "set_backend"], [797, 2, 1, "", "set_backend_to_specific_version"], [797, 2, 1, "", "set_jax_backend"], [797, 2, 1, "", "set_mxnet_backend"], [797, 2, 1, "", "set_numpy_backend"], [797, 2, 1, "", "set_paddle_backend"], [797, 2, 1, "", "set_tensorflow_backend"], [797, 2, 1, "", "set_torch_backend"], [797, 2, 1, "", "unset_backend"], [797, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[797, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[798, 2, 1, "", "clear_sub_backends"], [798, 2, 1, "", "find_available_sub_backends"], [798, 2, 1, "", "fn_name_from_version_specific_fn_name"], [798, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [798, 2, 1, "", "set_sub_backend"], [798, 2, 1, "", "set_sub_backend_to_specific_version"], [798, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[799, 2, 1, "", "check_for_binaries"], [799, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[800, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[801, 2, 1, "", "convert_interleaved_input"], [801, 2, 1, "", "convert_subscripts"], [801, 2, 1, "", "find_output_shape"], [801, 2, 1, "", "find_output_str"], [801, 2, 1, "", "gen_unused_symbols"], [801, 2, 1, "", "get_symbol"], [801, 2, 1, "", "has_valid_einsum_chars_only"], [801, 2, 1, "", "is_valid_einsum_char"], [801, 2, 1, "", "legalise_einsum_expr"], [801, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[802, 2, 1, "", "can_dot"], [802, 2, 1, "", "compute_size_by_dict"], [802, 2, 1, "", "find_contraction"], [802, 2, 1, "", "flop_count"], [802, 2, 1, "", "greedy_path"], [802, 2, 1, "", "optimal_path"], [802, 2, 1, "", "parse_einsum_input"], [802, 2, 1, "", "parse_possible_contraction"], [802, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[803, 7, 1, "", "InplaceUpdateException"], [803, 7, 1, "", "IvyAttributeError"], [803, 7, 1, "", "IvyBackendException"], [803, 7, 1, "", "IvyBroadcastShapeError"], [803, 7, 1, "", "IvyDeviceError"], [803, 7, 1, "", "IvyDtypePromotionError"], [803, 7, 1, "", "IvyError"], [803, 7, 1, "", "IvyException"], [803, 7, 1, "", "IvyIndexError"], [803, 7, 1, "", "IvyInvalidBackendException"], [803, 7, 1, "", "IvyNotImplementedException"], [803, 7, 1, "", "IvyValueError"], [803, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[803, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[803, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[804, 2, 1, "", "add_array_specs"], [804, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[805, 2, 1, "", "set_logging_mode"], [805, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[806, 1, 1, "", "Profiler"], [806, 2, 1, "", "tensorflow_profile_start"], [806, 2, 1, "", "tensorflow_profile_stop"], [806, 2, 1, "", "torch_profiler_init"], [806, 2, 1, "", "torch_profiler_start"], [806, 2, 1, "", "torch_profiler_stop"]], "ivy.utils.profiler.Profiler": [[806, 0, 1, "", "__init__"], [806, 4, 1, "", "print_stats"], [806, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[807, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[767, 3, 0, "-", "assertions"], [768, 3, 0, "-", "available_frameworks"], [769, 3, 0, "-", "function_testing"], [770, 3, 0, "-", "globals"], [771, 3, 0, "-", "hypothesis_helpers"], [776, 3, 0, "-", "multiprocessing"], [777, 3, 0, "-", "pipeline_helper"], [778, 3, 0, "-", "structs"], [779, 3, 0, "-", "test_parameter_flags"], [780, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[767, 2, 1, "", "assert_all_close"], [767, 2, 1, "", "assert_same_type"], [767, 2, 1, "", "assert_same_type_and_shape"], [767, 2, 1, "", "check_unsupported_device"], [767, 2, 1, "", "check_unsupported_device_and_dtype"], [767, 2, 1, "", "check_unsupported_dtype"], [767, 2, 1, "", "test_unsupported_function"], [767, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[769, 2, 1, "", "args_to_container"], [769, 2, 1, "", "args_to_frontend"], [769, 2, 1, "", "arrays_to_frontend"], [769, 2, 1, "", "as_lists"], [769, 2, 1, "", "convtrue"], [769, 2, 1, "", "create_args_kwargs"], [769, 2, 1, "", "flatten"], [769, 2, 1, "", "flatten_and_to_np"], [769, 2, 1, "", "flatten_frontend"], [769, 2, 1, "", "flatten_frontend_fw_to_np"], [769, 2, 1, "", "flatten_frontend_to_np"], [769, 2, 1, "", "get_frontend_ret"], [769, 2, 1, "", "get_ret_and_flattened_np_array"], [769, 2, 1, "", "gradient_incompatible_function"], [769, 2, 1, "", "gradient_test"], [769, 2, 1, "", "gradient_unsupported_dtypes"], [769, 2, 1, "", "kwargs_to_args_n_kwargs"], [769, 2, 1, "", "test_frontend_function"], [769, 2, 1, "", "test_frontend_method"], [769, 2, 1, "", "test_function"], [769, 2, 1, "", "test_function_backend_computation"], [769, 2, 1, "", "test_function_ground_truth_computation"], [769, 2, 1, "", "test_gradient_backend_computation"], [769, 2, 1, "", "test_gradient_ground_truth_computation"], [769, 2, 1, "", "test_method"], [769, 2, 1, "", "test_method_backend_computation"], [769, 2, 1, "", "test_method_ground_truth_computation"], [769, 2, 1, "", "traced_if_required"], [769, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[770, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [770, 7, 1, "", "InterruptedTest"], [770, 1, 1, "", "TestData"], [770, 2, 1, "", "setup_api_test"], [770, 2, 1, "", "setup_frontend_test"], [770, 2, 1, "", "teardown_api_test"], [770, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[770, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "fn_name"], [770, 4, 1, "", "fn_tree"], [770, 4, 1, "", "is_method"], [770, 4, 1, "", "supported_device_dtypes"], [770, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[772, 3, 0, "-", "array_helpers"], [773, 3, 0, "-", "dtype_helpers"], [774, 3, 0, "-", "general_helpers"], [775, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[772, 2, 1, "", "array_and_broadcastable_shape"], [772, 2, 1, "", "array_bools"], [772, 2, 1, "", "array_helpers_dtype_info_helper"], [772, 2, 1, "", "array_indices_axis"], [772, 2, 1, "", "array_indices_put_along_axis"], [772, 2, 1, "", "array_values"], [772, 2, 1, "", "arrays_and_axes"], [772, 2, 1, "", "arrays_for_pooling"], [772, 2, 1, "", "broadcast_shapes"], [772, 2, 1, "", "cond_data_gen_helper"], [772, 2, 1, "", "create_concatenable_arrays_dtypes"], [772, 2, 1, "", "create_nested_input"], [772, 2, 1, "", "dtype_and_values"], [772, 2, 1, "", "dtype_array_query"], [772, 2, 1, "", "dtype_array_query_val"], [772, 2, 1, "", "dtype_values_axis"], [772, 2, 1, "", "einsum_helper"], [772, 2, 1, "", "get_first_solve_batch_matrix"], [772, 2, 1, "", "get_first_solve_matrix"], [772, 2, 1, "", "get_second_solve_batch_matrix"], [772, 2, 1, "", "get_second_solve_matrix"], [772, 2, 1, "", "list_of_size"], [772, 2, 1, "", "lists"], [772, 2, 1, "", "mutually_broadcastable_shapes"], [772, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[773, 2, 1, "", "array_dtypes"], [773, 2, 1, "", "cast_filter"], [773, 2, 1, "", "cast_filter_helper"], [773, 2, 1, "", "get_castable_dtype"], [773, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[774, 7, 1, "", "BroadcastError"], [774, 2, 1, "", "apply_safety_factor"], [774, 2, 1, "", "broadcast_shapes"], [774, 2, 1, "", "dims_and_offset"], [774, 2, 1, "", "embedding_helper"], [774, 2, 1, "", "general_helpers_dtype_info_helper"], [774, 2, 1, "", "get_axis"], [774, 2, 1, "", "get_bounds"], [774, 2, 1, "", "get_mean_std"], [774, 2, 1, "", "get_shape"], [774, 2, 1, "", "matrix_is_stable"], [774, 2, 1, "", "reshape_shapes"], [774, 2, 1, "", "sizes_"], [774, 2, 1, "", "subsets"], [774, 2, 1, "", "two_broadcastable_shapes"], [774, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[775, 2, 1, "", "floats"], [775, 2, 1, "", "ints"], [775, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[776, 2, 1, "", "backend_proc"], [776, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[777, 1, 1, "", "BackendHandler"], [777, 1, 1, "", "BackendHandlerMode"], [777, 1, 1, "", "WithBackendContext"], [777, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[777, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[777, 4, 1, "", "SetBackend"], [777, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[777, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[778, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[778, 0, 1, "", "__init__"], [778, 4, 1, "", "framework_init_module"], [778, 4, 1, "", "init_name"], [778, 4, 1, "", "ivy_init_module"], [778, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[779, 1, 1, "", "DynamicFlag"], [779, 1, 1, "", "FrontendFunctionTestFlags"], [779, 1, 1, "", "FrontendInitTestFlags"], [779, 1, 1, "", "FrontendMethodTestFlags"], [779, 1, 1, "", "FunctionTestFlags"], [779, 1, 1, "", "InitMethodTestFlags"], [779, 1, 1, "", "MethodTestFlags"], [779, 1, 1, "", "TestFlags"], [779, 2, 1, "", "build_flag"], [779, 2, 1, "", "frontend_function_flags"], [779, 2, 1, "", "frontend_init_flags"], [779, 2, 1, "", "frontend_method_flags"], [779, 2, 1, "", "function_flags"], [779, 2, 1, "", "init_method_flags"], [779, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[779, 0, 1, "", "__init__"], [779, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[779, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[780, 2, 1, "", "handle_example"], [780, 2, 1, "", "handle_frontend_method"], [780, 2, 1, "", "handle_frontend_test"], [780, 2, 1, "", "handle_method"], [780, 2, 1, "", "handle_test"], [780, 2, 1, "", "num_positional_args"], [780, 2, 1, "", "num_positional_args_helper"], [780, 2, 1, "", "num_positional_args_method"], [780, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 16, 27, 41, 42], "creat": [0, 39, 40, 814], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 8, 10, 16, 35, 808, 827, 832, 835, 838, 840, 843, 859, 860, 861], "ivi": [3, 4, 5, 8, 15, 18, 26, 27, 28, 39, 40, 42, 43, 45, 808, 814, 816, 820, 822, 824, 827, 829, 835, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 852, 859, 860, 861, 872], "alexnet": 3, "instal": [3, 4, 8, 18, 39, 40, 42, 808, 852], "data": [3, 4, 5, 8, 10, 18, 27, 39, 50, 73, 104, 366, 626, 641, 745, 746, 747, 748, 825, 837, 840, 848, 851], "prepar": [3, 4, 5, 8], "infer": [3, 4, 5, 8, 834], "torch": [3, 4, 5, 8, 35, 42, 866, 867], "tensorflow": [3, 4, 5, 10, 14, 35, 42, 43, 44, 866], "jax": [3, 4, 5, 7, 9, 10, 35, 42, 866], "appendix": [3, 5], "code": [3, 18, 19, 20, 21, 28, 39, 831, 839, 841], "implement": [3, 5, 824, 835, 837, 857], "bert": 4, "dependeci": 4, "import": [4, 5, 8, 10, 18, 39, 40, 43, 800], "modul": [4, 790, 825, 826, 849, 860], "sequenc": [4, 832], "classif": 4, "model": [4, 5, 7, 8, 9, 12, 13, 14, 25, 26, 27, 28, 39, 40, 41, 42, 43, 45, 850, 851], "imag": [5, 8, 56, 79, 249, 810, 822], "segment": 5, "unet": 5, "custom": [5, 820, 822, 835, 839, 848, 851], "preprocess": 5, "load": [5, 8, 10, 765, 848], "visualis": [5, 8], "initi": [5, 8, 787, 849], "nativ": [5, 8, 820, 843], "pretrain": [5, 8], "weight": [5, 8, 848], "mask": 5, "function": [5, 18, 27, 28, 39, 40, 41, 43, 45, 105, 769, 814, 823, 825, 826, 829, 832, 833, 834, 835, 837, 838, 840, 841, 842, 843, 845, 850, 851, 860], "us": [5, 8, 15, 23, 26, 43, 45, 808, 810, 814, 815, 819, 835, 838, 848, 852, 859, 860], "your": [5, 8, 816, 840], "backend": [5, 10, 18, 27, 39, 40, 42, 43, 795, 798, 814, 821, 825, 835, 841, 845, 851], "acceler": [7, 9, 10], "mmpretrain": 7, "resnet": [8, 46], "set": [8, 35, 39, 40, 64, 87, 380, 641, 815, 821, 830, 842, 852], "label": 8, "resnet34": 8, "classifi": 8, "resnet50": 8, "pytorch": [9, 10, 12, 41, 866], "xgboost": 10, "test": [10, 41, 769, 779, 780, 783, 814, 815, 816, 819, 824, 830, 838, 840], "compar": 10, "xgb_frontend": 10, "xgbclassifi": 10, "xgb": 10, "more": [10, 815, 843, 857], "exhaust": 10, "evalu": 10, "train": [10, 39, 41, 43], "time": 10, "v": [10, 22, 32, 35, 831, 851, 856, 859], "number": [10, 775, 832], "boost": 10, "round": [10, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 41, 279, 839], "fraction": 10, "comparison": [10, 848], "metric": [10, 43], "guid": [11, 16], "transpil": [12, 13, 14, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 41, 45, 808, 850, 852, 860], "build": [12, 13, 14, 43, 810, 822, 845], "top": [12, 13, 14, 817, 824, 874], "up": [12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 41, 815, 830, 839, 852], "haiku": 13, "develop": 15, "convolut": 15, "network": [15, 40, 43, 848, 850], "tutori": [16, 43], "And": 16, "learn": [16, 17, 866], "basic": [16, 17, 39, 40, 816, 837], "write": [18, 26, 837, 840], "content": [18, 41], "handler": [18, 27, 797, 798, 845], "structur": [18, 27, 822, 835, 851], "api": [18, 27, 28, 814, 819, 823, 824, 835, 841, 845, 847, 849, 850, 852, 856, 859, 860, 861, 863, 870, 872], "state": [18, 27, 28, 849, 851, 859], "unifi": [19, 22, 23, 29, 32, 33, 34, 39, 808, 847, 857, 861, 868, 872], "trace": [20, 22, 23, 28, 687, 829], "lazi": [22, 32, 859], "eager": [22, 32, 859], "how": [23, 814, 822, 830, 839, 840], "decor": [23, 34, 829, 834, 840], "ani": [24, 25, 27, 28, 764], "librari": [24, 27, 28, 43, 45, 860], "odsc": 27, "framework": [27, 33, 39, 768, 781, 835, 838, 846, 866, 869, 872, 873], "graph": [27, 44, 867, 872], "tracer": [27, 845, 850, 852, 859, 867, 872], "quickstart": 28, "get": [28, 808, 816, 852], "familiar": 28, "0": [29, 30, 31, 32, 36, 37], "1": [30, 32, 33, 34, 35, 38, 45, 866], "compil": [30, 32, 33, 34, 40, 859, 864, 869, 871, 872], "2": [31, 34, 36, 45, 866], "select": 33, "As": 34, "3": [35, 37, 38, 45], "dynam": [35, 43, 800, 821, 851], "static": 35, "todo": [35, 816], "explain": 35, "via": 35, "why": [35, 840, 857], "mode": [35, 825, 829, 842], "i": [35, 808, 822, 843], "true": 35, "default": [35, 540], "when": [35, 808], "from": [35, 42, 852], "numpi": [35, 42, 837, 866], "fals": 35, "kornia": 36, "perceiv": 37, "stabl": 38, "diffus": 38, "oper": [39, 832, 842, 847, 851], "ml": [39, 855, 868, 872], "chang": 39, "one": 39, "line": [39, 816], "No": [39, 815, 857], "need": [39, 840], "worri": 39, "about": 39, "type": [39, 50, 73, 366, 626, 825, 833, 837, 851], "differ": 39, "them": 39, "all": [39, 763], "standalon": [39, 833], "defin": [39, 40, 41, 43], "optim": [39, 792, 849], "input": [39, 40, 832], "target": 39, "loss": [39, 59, 82, 373, 634, 789], "loop": [39, 43], "sampl": 40, "check": [40, 831, 851], "result": 40, "simpl": 40, "neural": 40, "deepmind": [41, 42], "": [41, 43, 814, 822, 839, 852], "perceiverio": [41, 42], "tabl": [41, 822, 825, 863], "construct": [41, 848], "some": 41, "helper": [41, 771, 772, 773, 774, 775, 777, 780, 786, 796, 802, 838, 840, 841], "pipelin": [41, 43, 777, 822, 824, 840, 851], "dataset": [41, 43], "download": 41, "dataload": 41, "gpu": [42, 851], "introduct": [42, 45, 837, 838], "python3": 42, "8": 42, "setup": [42, 831], "kernel": 42, "clone": [42, 815, 824], "repo": [42, 815], "ivy_model": 42, "run": [42, 816, 819, 822, 830, 840], "end": 43, "let": 43, "we": [43, 840], "ar": 43, "mnist": 43, "thi": 43, "temporari": 43, "loader": 43, "util": [43, 67, 90, 384, 644, 782], "plot": 43, "save": [43, 766, 848], "huggingfac": 44, "deit": 44, "can": 44, "visual": 44, "displai": 44, "html": 44, "file": 44, "browser": [44, 816], "To": [45, 816], "interfac": 45, "telemetri": 45, "18": 46, "activ": [47, 69, 363, 622, 784], "convers": [48, 71, 834], "creation": [49, 72, 365, 625], "devic": [51, 74, 367, 627, 826, 832, 837], "elementwis": [52, 75, 103, 368, 628], "experiment": [53, 76, 629, 814], "gener": [54, 77, 369, 630, 774, 835, 840, 843, 859], "gradient": [55, 78, 345, 370, 631, 835], "layer": [57, 80, 371, 632, 788], "linear": [58, 81, 372, 633, 656], "algebra": [58, 81, 372, 633], "manipul": [60, 83, 374, 635], "norm": [61, 84, 377, 638, 791], "random": [62, 85, 378, 639], "search": [63, 86, 379, 640], "sort": [65, 88, 381, 642, 752], "statist": [66, 89, 383, 643], "wrap": [68, 91, 834], "base": [70, 92, 102], "cp": 93, "tensor": [93, 94, 95, 96, 97, 100], "parafac2": 94, "tr": 95, "tt": 96, "tucker": [97, 447], "arrai": [98, 101, 123, 382, 772, 819, 820, 824, 832, 847, 856, 859, 863], "contain": [99, 816, 823, 848], "factor": 100, "nest": [101, 376, 637], "class": [104, 781, 820, 829, 837, 847], "gelu": 106, "hardswish": 107, "leaky_relu": 108, "log_softmax": 109, "mish": 110, "relu": 111, "sigmoid": 112, "softmax": 113, "softplu": 114, "softsign": 115, "cmp_i": 116, "cmp_isnot": 117, "for_loop": 118, "if_els": 119, "try_except": 120, "while_loop": 121, "arang": 122, "asarrai": 124, "copy_arrai": 125, "empti": 126, "empty_lik": 127, "ey": 128, "from_dlpack": 129, "note": [129, 140, 625], "frombuff": 130, "full": [131, 838], "full_lik": 132, "linspac": 133, "logspac": 134, "meshgrid": 135, "native_arrai": 136, "one_hot": 137, "ones": 138, "ones_lik": 139, "to_dlpack": 140, "tril": 141, "triu": 142, "triu_indic": 143, "zero": 144, "zeros_lik": 145, "as_ivy_dtyp": 146, "as_native_dtyp": 147, "astyp": 148, "broadcast_arrai": 149, "broadcast_to": 150, "can_cast": 151, "check_float": 152, "closest_valid_dtyp": 153, "default_complex_dtyp": 154, "default_dtyp": 155, "default_float_dtyp": 156, "default_int_dtyp": 157, "default_uint_dtyp": 158, "dtype": [159, 773, 832], "dtype_bit": 160, "finfo": 161, "function_supported_dtyp": 162, "function_unsupported_dtyp": 163, "iinfo": 164, "infer_default_dtyp": 165, "invalid_dtyp": 166, "is_bool_dtyp": 167, "is_complex_dtyp": 168, "is_float_dtyp": 169, "is_hashable_dtyp": 170, "is_int_dtyp": 171, "is_native_dtyp": 172, "is_uint_dtyp": 173, "promote_typ": 174, "promote_types_of_input": 175, "result_typ": 176, "set_default_complex_dtyp": 177, "set_default_dtyp": 178, "set_default_float_dtyp": 179, "set_default_int_dtyp": 180, "set_default_uint_dtyp": 181, "type_promote_arrai": 182, "unset_default_complex_dtyp": 183, "unset_default_dtyp": 184, "unset_default_float_dtyp": 185, "unset_default_int_dtyp": 186, "unset_default_uint_dtyp": 187, "valid_dtyp": 188, "as_ivy_dev": 189, "as_native_dev": 190, "clear_cached_mem_on_dev": 191, "default_devic": 192, "dev": 193, "dev_util": 194, "function_supported_devic": 195, "function_unsupported_devic": 196, "get_all_ivy_arrays_on_dev": 197, "gpu_is_avail": 198, "handle_soft_device_vari": 199, "num_cpu_cor": 200, "num_gpu": 201, "num_ivy_arrays_on_dev": 202, "percent_used_mem_on_dev": 203, "print_all_ivy_arrays_on_dev": 204, "set_default_devic": 205, "set_soft_device_mod": 206, "paramet": [206, 574, 575, 580, 581, 583, 584, 627, 630, 779, 784, 842], "set_split_factor": 207, "split_factor": 208, "split_func_cal": 209, "to_devic": 210, "total_mem_on_dev": 211, "tpu_is_avail": 212, "unset_default_devic": 213, "unset_soft_device_mod": 214, "used_mem_on_dev": 215, "ab": 216, "aco": 217, "acosh": 218, "add": [219, 827, 838, 872], "angl": 220, "asin": 221, "asinh": 222, "atan": 223, "atan2": 224, "atanh": 225, "bitwise_and": 226, "bitwise_invert": 227, "bitwise_left_shift": 228, "bitwise_or": 229, "bitwise_right_shift": 230, "bitwise_xor": 231, "ceil": 232, "co": 233, "cosh": 234, "deg2rad": 235, "divid": 236, "equal": 237, "erf": 238, "exp": 239, "exp2": 240, "expm1": 241, "floor": 242, "floor_divid": 243, "fmin": 244, "fmod": 245, "gcd": 246, "greater": 247, "greater_equ": 248, "isfinit": 250, "isinf": 251, "isnan": 252, "isreal": 253, "lcm": 254, "less": 255, "less_equ": 256, "log": [257, 805, 815], "log10": 258, "log1p": 259, "log2": 260, "logaddexp": 261, "logaddexp2": 262, "logical_and": 263, "logical_not": 264, "logical_or": 265, "logical_xor": 266, "maximum": 267, "minimum": 268, "multipli": 269, "nan_to_num": 270, "neg": 271, "not_equ": 272, "posit": [273, 832], "pow": 274, "rad2deg": 275, "real": 276, "reciproc": 277, "remaind": 278, "sign": 280, "sin": 281, "sinh": 282, "sqrt": 283, "squar": 284, "subtract": 285, "tan": [286, 827, 838], "tanh": 287, "trapz": 288, "trunc": 289, "trunc_divid": 290, "celu": 291, "elu": 292, "hardshrink": 293, "hardsilu": 294, "hardtanh": 295, "logit": 296, "logsigmoid": 297, "prelu": 298, "relu6": 299, "scaled_tanh": 300, "selu": 301, "silu": 302, "softshrink": 303, "stanh": 304, "tanhshrink": 305, "threshold": 306, "thresholded_relu": 307, "blackman_window": 308, "eye_lik": 309, "hamming_window": 310, "hann_window": 311, "indic": 312, "kaiser_bessel_derived_window": 313, "kaiser_window": 314, "mel_weight_matrix": 315, "ndenumer": 316, "ndindex": 317, "polyv": 318, "random_cp": 319, "random_parafac2": 320, "random_tr": 321, "random_tt": 322, "random_tuck": 323, "tril_indic": 324, "trilu": 325, "unsorted_segment_mean": 326, "unsorted_segment_min": 327, "unsorted_segment_sum": 328, "vorbis_window": 329, "allclos": 330, "amax": 331, "amin": 332, "binar": 333, "conj": 334, "copysign": 335, "count_nonzero": 336, "diff": 337, "digamma": 338, "erfc": 339, "erfinv": 340, "fix": [341, 814, 830], "float_pow": 342, "fmax": 343, "frexp": 344, "hypot": 346, "isclos": 347, "ldexp": 348, "lerp": 349, "lgamma": 350, "modf": 351, "nansum": 352, "nextaft": 353, "signbit": 354, "sinc": 355, "sparsify_tensor": 356, "xlogi": 357, "zeta": 358, "reduc": 359, "bind_custom_gradient_funct": 360, "jvp": 361, "vjp": 362, "constant": [364, 623], "meta": [375, 636], "spars": 382, "adaptive_avg_pool1d": 385, "adaptive_avg_pool2d": 386, "adaptive_max_pool2d": 387, "adaptive_max_pool3d": 388, "area_interpol": 389, "avg_pool1d": 390, "avg_pool2d": 391, "avg_pool3d": 392, "dct": 393, "dft": 394, "dropout1d": 395, "dropout2d": 396, "dropout3d": 397, "embed": 398, "fft": 399, "fft2": 400, "generate_einsum_equ": 401, "get_interpolate_kernel": 402, "idct": 403, "ifft": 404, "ifftn": 405, "interp": 406, "interpol": 407, "max_pool1d": 408, "max_pool2d": 409, "max_pool3d": 410, "max_unpool1d": 411, "nearest_interpol": 412, "pool": 413, "reduce_window": 414, "rfft": 415, "rfftn": 416, "rnn": 417, "sliding_window": 418, "stft": 419, "adjoint": 420, "batched_out": 421, "cond": 422, "diagflat": 423, "dot": 424, "eig": [425, 668], "eigh_tridiagon": 426, "eigval": 427, "general_inner_product": 428, "higher_order_mo": 429, "initialize_tuck": 430, "khatri_rao": 431, "kron": 432, "kroneck": 433, "lu_factor": 434, "lu_solv": 435, "make_svd_non_neg": 436, "matrix_exp": 437, "mode_dot": 438, "multi_dot": 439, "multi_mode_dot": 440, "partial_tuck": 441, "solve_triangular": 442, "svd_flip": 443, "tensor_train": 444, "truncated_svd": 445, "tt_matrix_to_tensor": 446, "hinge_embedding_loss": 448, "huber_loss": 449, "kl_div": 450, "l1_loss": 451, "log_poisson_loss": 452, "poisson_nll_loss": 453, "smooth_l1_loss": 454, "soft_margin_loss": 455, "as_strid": 456, "associative_scan": 457, "atleast_1d": 458, "atleast_2d": 459, "atleast_3d": 460, "broadcast_shap": 461, "check_scalar": 462, "choos": 463, "column_stack": 464, "concat_from_sequ": 465, "dsplit": 466, "dstack": 467, "expand": 468, "fill_diagon": 469, "flatten": 470, "fliplr": 471, "flipud": 472, "fold": 473, "heavisid": 474, "hsplit": 475, "hstack": 476, "i0": 477, "matric": 478, "moveaxi": 479, "pad": 480, "partial_fold": 481, "partial_tensor_to_vec": 482, "partial_unfold": 483, "partial_vec_to_tensor": 484, "put_along_axi": 485, "rot90": 486, "soft_threshold": 487, "take": 488, "take_along_axi": 489, "top_k": 490, "trim_zero": 491, "unflatten": 492, "unfold": 493, "unique_consecut": 494, "vsplit": 495, "vstack": 496, "batch_norm": 497, "group_norm": 498, "instance_norm": 499, "l1_normal": 500, "l2_normal": 501, "local_response_norm": 502, "lp_normal": 503, "bernoulli": 504, "beta": 505, "dirichlet": 506, "gamma": 507, "poisson": 508, "unravel_index": 509, "invert_permut": 510, "lexsort": 511, "is_ivy_sparse_arrai": 512, "is_native_sparse_arrai": 513, "native_sparse_arrai": 514, "native_sparse_array_to_indices_values_and_shap": 515, "bincount": 516, "corrcoef": 517, "cov": 518, "cummax": 519, "cummin": 520, "histogram": 521, "igamma": 522, "median": 523, "nanmean": 524, "nanmedian": 525, "nanmin": 526, "nanprod": 527, "quantil": 528, "optional_get_el": 529, "all_equ": 530, "arg_info": 531, "arg_nam": 532, "array_equ": 533, "assert_supports_inplac": 534, "cache_fn": 535, "clip_matrix_norm": 536, "clip_vector_norm": 537, "container_typ": 538, "current_backend_str": 539, "einops_rearrang": 541, "einops_reduc": 542, "einops_repeat": 543, "exist": [544, 810, 839], "fourier_encod": 545, "function_supported_devices_and_dtyp": 546, "function_unsupported_devices_and_dtyp": 547, "gather": 548, "gather_nd": 549, "get_all_arrays_in_memori": 550, "get_item": 551, "get_num_dim": 552, "get_referrers_recurs": 553, "has_nan": 554, "inplace_arrays_support": 555, "inplace_decr": 556, "inplace_incr": 557, "inplace_upd": 558, "inplace_variables_support": 559, "is_arrai": 560, "is_ivy_arrai": 561, "is_ivy_contain": 562, "is_ivy_nested_arrai": 563, "is_native_arrai": 564, "isin": 565, "isscalar": 566, "items": 567, "match_kwarg": 568, "multiprocess": [569, 776], "num_arrays_in_memori": 570, "print_all_arrays_in_memori": 571, "scatter_flat": 572, "scatter_nd": 573, "set_array_mod": 574, "set_exception_trace_mod": 575, "set_inplace_mod": 576, "set_item": 577, "set_min_bas": 578, "set_min_denomin": 579, "set_nestable_mod": 580, "set_precise_mod": 581, "set_queue_timeout": 582, "set_shape_array_mod": 583, "set_show_func_wrapper_trace_mod": 584, "set_tmp_dir": 585, "shape": [586, 641, 745, 746, 747, 748, 834, 851], "size": [587, 851], "stable_divid": 588, "stable_pow": 589, "stride": 590, "supports_inplace_upd": 591, "to_ivy_shap": 592, "to_list": 593, "to_native_shap": 594, "to_numpi": 595, "to_scalar": 596, "try_else_non": 597, "unset_array_mod": 598, "unset_exception_trace_mod": 599, "unset_inplace_mod": 600, "unset_min_bas": 601, "unset_min_denomin": 602, "unset_nestable_mod": 603, "unset_precise_mod": 604, "unset_queue_timeout": 605, "unset_shape_array_mod": 606, "unset_show_func_wrapper_trace_mod": 607, "unset_tmp_dir": 608, "value_is_nan": 609, "vmap": 610, "adam_step": 611, "adam_upd": 612, "execute_with_gradi": [613, 835], "grad": 614, "gradient_descent_upd": 615, "jac": 616, "lamb_upd": 617, "lars_upd": 618, "optimizer_upd": 619, "stop_gradi": 620, "value_and_grad": 621, "control": [624, 851], "flow": [624, 851], "op": 624, "depend": [641, 745, 746, 747, 748], "output": [641, 745, 746, 747, 748], "conv": 645, "conv1d": 646, "conv1d_transpos": 647, "conv2d": 648, "conv2d_transpos": 649, "conv3d": 650, "conv3d_transpos": 651, "conv_general_dil": 652, "conv_general_transpos": 653, "depthwise_conv2d": 654, "dropout": 655, "lstm": 657, "lstm_updat": 658, "multi_head_attent": 659, "nm": 660, "roi_align": 661, "scaled_dot_product_attent": 662, "choleski": 663, "cross": 664, "det": 665, "diag": 666, "diagon": 667, "eigh": 669, "eigvalsh": 670, "inner": 671, "inv": 672, "matmul": 673, "matrix_norm": 674, "matrix_pow": 675, "matrix_rank": 676, "matrix_transpos": 677, "outer": 678, "pinv": 679, "qr": 680, "slogdet": 681, "solv": 682, "svd": 683, "svdval": 684, "tensordot": 685, "tensorsolv": 686, "vander": 688, "vecdot": 689, "vector_norm": 690, "vector_to_skew_symmetric_matrix": 691, "binary_cross_entropi": 692, "cross_entropi": 693, "sparse_cross_entropi": 694, "clip": 695, "concat": 696, "constant_pad": 697, "expand_dim": 698, "flip": 699, "permute_dim": 700, "repeat": 701, "reshap": 702, "roll": [703, 827], "split": 704, "squeez": 705, "stack": [706, 829], "swapax": 707, "tile": 708, "unstack": 709, "zero_pad": 710, "fomaml_step": 711, "maml_step": 712, "reptile_step": 713, "all_nested_indic": 714, "copy_nest": 715, "duplicate_array_index_chain": 716, "index_nest": 717, "insert_into_nest_at_index": 718, "insert_into_nest_at_indic": 719, "map": [720, 824], "map_nest_at_index": 721, "map_nest_at_indic": 722, "multi_index_nest": 723, "nested_ani": 724, "nested_argwher": 725, "nested_map": 726, "nested_multi_map": 727, "prune_empti": 728, "prune_nest_at_index": 729, "prune_nest_at_indic": 730, "set_nest_at_index": 731, "set_nest_at_indic": 732, "layer_norm": 733, "multinomi": 734, "randint": 735, "random_norm": 736, "random_uniform": 737, "seed": 738, "shuffl": 739, "argmax": 740, "argmin": 741, "argwher": 742, "nonzero": 743, "where": [744, 814, 830], "unique_al": 745, "unique_count": 746, "unique_invers": 747, "unique_valu": 748, "argsort": 749, "msort": 750, "searchsort": 751, "cumprod": 753, "cumsum": 754, "einsum": [755, 801, 802], "max": 756, "mean": 757, "min": 758, "prod": 759, "std": 760, "sum": 761, "var": 762, "assert": [767, 794, 829], "avail": 768, "global": [770, 842], "hypothesi": [771, 815, 838, 840], "struct": 778, "flag": 779, "convert": [785, 850], "sequenti": 793, "ast": 796, "sub": 798, "binari": [799, 815], "parser": 801, "path": 802, "except": [803, 829, 834], "inspect": 804, "profil": 806, "verbos": 807, "statu": 808, "ai": 808, "start": [808, 852], "pip": [808, 852], "document": 808, "dive": [808, 818], "deeper": 808, "should": 808, "contribut": [808, 809, 814, 839], "commun": 808, "citat": 808, "doc": [810, 822], "docker": [810, 815, 816, 822, 852], "conveni": [810, 822, 833], "script": [810, 822], "hub": 810, "local": [810, 816, 831], "without": [810, 838], "contributor": [811, 817, 874], "reward": 811, "badg": 811, "tier": 811, "error": [812, 829, 830], "handl": [812, 820, 826, 829, 834, 851], "help": [813, 816, 830], "resourc": 813, "open": 814, "task": 814, "fail": [814, 830, 840], "frontend": [814, 821, 837, 838, 850], "place": 814, "checklist": 814, "format": [814, 831, 865, 872], "extend": [814, 840, 843], "an": [814, 835], "issu": [814, 816, 831, 852], "github": [814, 815], "templat": 814, "fork": [815, 816], "pre": [815, 831], "commit": [815, 816, 824, 831], "pycharm": [815, 816, 831], "virtual": 815, "environ": 815, "miniconda": 815, "venv": 815, "interpret": 815, "window": 815, "maco": 815, "ubuntu": 815, "detail": 815, "free": 815, "wsl": 815, "codespac": 815, "The": [815, 816, 822, 835, 837, 847, 851, 856], "list": 816, "manag": 816, "who": 816, "ask": [816, 830], "With": 816, "command": 816, "pull": [816, 824], "request": [816, 824], "small": 816, "often": 816, "interact": 816, "most": 816, "out": [816, 832, 834, 836], "id": [816, 819], "program": 817, "core": [817, 874], "rise": [817, 874], "deep": 818, "termin": 819, "regener": 819, "failur": 819, "skip": 819, "integr": [820, 824, 831, 839, 840], "version": [821, 841, 851], "support": [821, 825, 834, 837, 851], "builder": 822, "being": 822, "option": 822, "index": 822, "rst": 822, "partial_conf": 822, "py": 822, "prebuild": 822, "sh": 822, "extens": 822, "custom_autosummari": 822, "hide": 822, "discussion_link": 822, "skippable_funct": 822, "ivy_data": 822, "instanc": [823, 837, 838, 847], "method": [823, 837, 838, 847, 848], "special": [823, 825, 837], "nestabl": [823, 832, 833, 834], "continu": [824, 831], "push": 824, "pr": 824, "trigger": 824, "A": [824, 843], "down": 824, "view": [824, 834, 836], "store": 824, "retriev": 824, "repositori": 824, "nitti": 824, "gritti": 824, "storag": 824, "space": 824, "unifyai": 824, "determin": 824, "coverag": 824, "workflow": 824, "multipl": 824, "runner": 824, "race": 824, "condit": 824, "period": 824, "manual": 824, "dispatch": 824, "ci": 824, "dashboard": 824, "promot": [825, 837], "precis": 825, "non": [825, 843], "argument": [825, 826, 832, 834, 836, 837], "other": [825, 826], "unsupport": 825, "attribut": [825, 842], "case": [825, 848], "bug": 825, "cast": [825, 837], "superset": [825, 843], "docstr": [827, 828], "configur": [829, 838, 848], "func_wrapp": 829, "prune": 829, "handle_except": 829, "consist": [829, 840], "prerequir": 830, "common": [830, 831], "lint": [831, 839], "keyword": 832, "integ": 832, "primari": 833, "composit": 833, "mix": [833, 834, 840], "partial": [833, 834, 840], "order": 834, "wrapper": [834, 872, 873], "miscellan": 834, "overview": [835, 839], "usag": [835, 839, 843, 861], "signatur": 835, "design": [835, 841, 844], "our": 835, "polici": [835, 837], "specif": [835, 870, 871, 872], "consider": 835, "inplac": 836, "updat": 836, "copi": 836, "short": 837, "unus": 837, "rule": 837, "duplic": [837, 843], "valu": 838, "alia": 838, "formatt": 839, "functionorderingformatt": 839, "work": [839, 856, 862], "own": 840, "strategi": 840, "ad": 840, "explicit": 840, "do": [840, 856], "effect": 840, "bonu": 840, "featur": 840, "self": 840, "test_array_funct": 840, "re": [840, 857], "navig": 841, "categor": 841, "submodul": 841, "unpin": 841, "properti": 842, "getter": 842, "setter": 842, "set_": 842, "unset_": 842, "behaviour": 843, "standard": [843, 856, 863, 872], "what": [843, 872], "balanc": 843, "effici": 843, "maxim": 843, "block": 845, "monkei": 847, "patch": 847, "represent": 848, "recurs": 848, "built": 848, "ins": 848, "access": 848, "compartment": 848, "role": 850, "faq": 851, "maintain": 851, "deploy": 851, "auto": 851, "differenti": 851, "replica": 851, "parallel": 851, "altern": 851, "sourc": 852, "folder": 852, "kei": 852, "question": 852, "glossari": 853, "motiv": 854, "explos": 855, "skeptic": 856, "complimentari": 856, "competit": 856, "infinit": 857, "shelf": 857, "life": 857, "One": 858, "liner": 858, "trace_graph": 859, "cach": 859, "sharp": [859, 860, 861], "bit": [859, 860, 861], "relat": 862, "infrastructur": [864, 872], "llvm": 864, "mlir": 864, "oneapi": 864, "exchang": [865, 872], "onnx": 865, "nnef": 865, "coreml": 865, "matlab": 866, "scipi": 866, "scikit": 866, "theano": 866, "panda": 866, "julia": 866, "apach": [866, 869], "spark": 866, "mllib": 866, "caff": 866, "chainer": 866, "mxnet": 866, "cntk": 866, "flux": 866, "dex": 866, "languag": 866, "tf": 867, "jaxpr": 867, "jit": 867, "fx": 867, "compani": [868, 872], "quansight": 868, "modular": 868, "octoml": 868, "multi": [869, 872], "vendor": [869, 870, 871, 872], "tvm": 869, "xla": 869, "gcc": 869, "tensorrt": 870, "cuda": 870, "icc": 871, "icx": 871, "nvcc": 871, "doe": 872, "eagerpi": 873, "kera": 873, "thinc": 873, "tensorli": 873, "neuropod": 873, "leaderboard": 874}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"type_promote_arrays": [[182, "type-promote-arrays"]], "default_complex_dtype": [[154, "default-complex-dtype"]], "is_int_dtype": [[171, "is-int-dtype"]], "is_native_dtype": [[172, "is-native-dtype"]], "closest_valid_dtype": [[153, "closest-valid-dtype"]], "infer_default_dtype": [[165, "infer-default-dtype"]], "default_float_dtype": [[156, "default-float-dtype"]], "set_default_int_dtype": [[180, "set-default-int-dtype"]], "triu_indices": [[143, "triu-indices"]], "dtype": [[159, "dtype"]], "ones": [[138, "ones"]], "promote_types_of_inputs": [[175, "promote-types-of-inputs"]], "function_unsupported_dtypes": [[163, "function-unsupported-dtypes"]], "zeros": [[144, "zeros"]], "set_default_dtype": [[178, "set-default-dtype"]], "zeros_like": [[145, "zeros-like"]], "as_ivy_dtype": [[146, "as-ivy-dtype"]], "iinfo": [[164, "iinfo"]], "as_native_dtype": [[147, "as-native-dtype"]], "astype": [[148, "astype"]], "broadcast_arrays": [[149, "broadcast-arrays"]], "is_bool_dtype": [[167, "is-bool-dtype"]], "set_default_float_dtype": [[179, "set-default-float-dtype"]], "result_type": [[176, "result-type"]], "invalid_dtype": [[166, "invalid-dtype"]], "ones_like": [[139, "ones-like"]], "set_default_uint_dtype": [[181, "set-default-uint-dtype"]], "default_dtype": [[155, "default-dtype"]], "unset_default_complex_dtype": [[183, "unset-default-complex-dtype"]], "tril": [[141, "tril"]], "triu": [[142, "triu"]], "default_uint_dtype": [[158, "default-uint-dtype"]], "promote_types": [[174, "promote-types"]], "is_uint_dtype": [[173, "is-uint-dtype"]], "finfo": [[161, "finfo"]], "dtype_bits": [[160, "dtype-bits"]], "is_complex_dtype": [[168, "is-complex-dtype"]], "set_default_complex_dtype": [[177, "set-default-complex-dtype"]], "default_int_dtype": [[157, "default-int-dtype"]], "is_float_dtype": [[169, "is-float-dtype"]], "is_hashable_dtype": [[170, "is-hashable-dtype"]], "function_supported_dtypes": [[162, "function-supported-dtypes"]], "check_float": [[152, "check-float"]], "can_cast": [[151, "can-cast"]], "to_dlpack": [[140, "to-dlpack"]], "Note": [[140, null], [129, null], [625, null], [625, null]], "broadcast_to": [[150, "broadcast-to"]], "Contributor Leaderboard": [[874, "contributor-leaderboard"]], "Top Contributors": [[874, "top-contributors"]], "Rising Contributors": [[874, "rising-contributors"]], "Core Contributors": [[874, "core-contributors"]], "Contributors": [[874, "contributors"]], "Fix Failing Tests:": [[830, "fix-failing-tests"]], "Prerequirement:": [[830, "prerequirement"]], "Setting Up": [[830, "setting-up"], [815, "setting-up"]], "How to run tests": [[830, "how-to-run-tests"]], "Common Errors": [[830, "common-errors"]], "Where to ask for Help": [[830, "where-to-ask-for-help"]], "Function Types": [[833, "function-types"]], "Primary Functions": [[833, "primary-functions"]], "Compositional Functions": [[833, "compositional-functions"]], "Mixed Functions": [[833, "mixed-functions"]], "Partial Mixed Functions": [[833, "partial-mixed-functions"]], "Standalone Functions": [[833, "standalone-functions"]], "Nestable Functions": [[833, "nestable-functions"], [832, "nestable-functions"], [823, "nestable-functions"]], "Convenience Functions": [[833, "convenience-functions"]], "Ivy Tests": [[840, "ivy-tests"], [824, "ivy-tests"]], "Testing Pipeline": [[840, "testing-pipeline"]], "Hypothesis": [[840, "id2"]], "Data Generation": [[840, "id3"]], "Writing your own strategy": [[840, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[840, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[840, "ivy-test-decorators"]], "Writing Ivy Tests": [[840, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[840, "integration-of-strategies-into-ivy-tests"]], "Adding Explicit Examples to tests": [[840, "adding-explicit-examples-to-tests"]], "Why do we need helper functions?": [[840, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[840, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[840, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[840, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[840, "self-consistent-and-explicit-testing"]], "test_array_function": [[840, "id5"]], "Running Ivy Tests": [[840, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[840, "re-running-failed-ivy-tests"]], "API Standards": [[863, "api-standards"], [872, "api-standards"]], "Array API Standard": [[863, "id1"]], "Table:": [[863, "table"]], "Related Work": [[862, "related-work"]], "One liners": [[858, "one-liners"]], "Compiler Infrastructure": [[864, "compiler-infrastructure"], [872, "compiler-infrastructure"]], "LLVM": [[864, "id1"]], "MLIR": [[864, "id2"]], "OneAPI": [[864, "id3"]], "Navigating the Code": [[841, "navigating-the-code"]], "Categorization": [[841, "categorization"]], "Submodule Design": [[841, "submodule-design"]], "Ivy API": [[841, "ivy-api"]], "Backend API": [[841, "backend-api"]], "Submodule Helper Functions": [[841, "submodule-helper-functions"]], "Version Unpinning": [[841, "version-unpinning"]], "Motivation": [[854, "motivation"]], "Vendor-Specific APIs": [[870, "vendor-specific-apis"], [872, "vendor-specific-apis"]], "TensorRT tensorrt": [[870, "tensorrt-tensorrt"]], "CUDA cuda": [[870, "cuda-cuda"]], "Ivy as a Transpiler": [[850, "ivy-as-a-transpiler"], [27, "Ivy-as-a-Transpiler"], [28, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[850, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[850, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[850, "converting-network-models"]], "Docstrings": [[828, "docstrings"]], "ivy.trace_graph()": [[859, "ivy-trace-graph"]], "Tracer API": [[859, "tracer-api"]], "Using the tracer": [[859, "using-the-tracer"]], "Eager vs lazy Compilation": [[859, "eager-vs-lazy-compilation"]], "Array caching": [[859, "array-caching"]], "Generators": [[859, "generators"]], "Stateful": [[859, "stateful"]], "Sharp bits": [[859, "sharp-bits"], [860, "sharp-bits"], [861, "sharp-bits"]], "Examples": [[859, "examples"], [860, "examples"], [832, "examples"], [861, "examples"], [808, "examples"]], "Exchange Formats": [[865, "exchange-formats"], [872, "exchange-formats"]], "ONNX onnx": [[865, "onnx-onnx"]], "NNEF nnef": [[865, "nnef-nnef"]], "CoreML coreml": [[865, "coreml-coreml"]], "Glossary": [[853, "glossary"]], "Inplace Updates": [[836, "inplace-updates"]], "out argument": [[836, "out-argument"]], "copy argument": [[836, "copy-argument"]], "Views": [[836, "views"]], "Function Wrapping": [[834, "function-wrapping"]], "Decorator order": [[834, "decorator-order"]], "Conversion Wrappers": [[834, "conversion-wrappers"]], "Inference Wrappers": [[834, "inference-wrappers"]], "Out Argument Support": [[834, "out-argument-support"]], "Nestable Support": [[834, "nestable-support"]], "Partial Mixed Function Support": [[834, "partial-mixed-function-support"]], "Shape Conversion": [[834, "shape-conversion"]], "View Handling": [[834, "view-handling"]], "Exception Handling": [[834, "exception-handling"], [829, "exception-handling"]], "Miscellaneous Wrappers": [[834, "miscellaneous-wrappers"]], "Graph Tracers": [[867, "graph-tracers"], [872, "graph-tracers"]], "tf.Graph": [[867, "tf-graph"]], "Jaxpr": [[867, "jaxpr"]], "torch.jit": [[867, "torch-jit"]], "torch.fx": [[867, "torch-fx"]], "Why Unify?": [[857, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[857, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[857, "infinite-shelf-life"]], "Superset Behaviour": [[843, "superset-behaviour"]], "Extending the Standard": [[843, "extending-the-standard"]], "What is the Superset?": [[843, "what-is-the-superset"]], "A Non-Duplicate Superset": [[843, "a-non-duplicate-superset"]], "What is not the Superset?": [[843, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[843, "balancing-generalization-with-efficiency"]], "More Examples": [[843, "more-examples"]], "Maximizing Usage of Native Functionality": [[843, "maximizing-usage-of-native-functionality"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[839, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[839, "overview"], [835, "overview"]], "Existing Formatters": [[839, "existing-formatters"]], "FunctionOrderingFormatter": [[839, "functionorderingformatter"]], "How the Formatter Works:": [[839, "how-the-formatter-works"]], "Integration and Usage": [[839, "integration-and-usage"]], "Contribution": [[839, "contribution"]], "Round Up": [[839, "round-up"], [22, "Round-Up"], [12, "Round-Up"], [20, "Round-Up"], [24, "Round-Up"], [34, "Round-Up"], [21, "Round-Up"], [18, "Round-Up"], [29, "Round-Up"], [31, "Round-Up"], [32, "Round-Up"], [33, "Round-Up"], [19, "Round-Up"], [30, "Round-Up"], [41, "Round-Up"], [28, "Round-Up"], [14, "Round-Up"], [23, "Round-Up"]], "Frameworks": [[866, "frameworks"], [872, "frameworks"]], "MATLAB matlab": [[866, "matlab-matlab"]], "SciPy scipy": [[866, "scipy-scipy"]], "Torch torch": [[866, "torch-torch"]], "NumPy numpy": [[866, "numpy-numpy"]], "SciKit Learn scikit-learn": [[866, "scikit-learn-scikit-learn"]], "Theano theano": [[866, "theano-theano"]], "Pandas pandas": [[866, "pandas-pandas"]], "Julia julia": [[866, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[866, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[866, "caffe-caffe"]], "Chainer chainer": [[866, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[866, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[866, "mxnet-mxnet"]], "CNTK cntk": [[866, "cntk-cntk"]], "PyTorch pytorch": [[866, "pytorch-pytorch"]], "Flux flux": [[866, "flux-flux"]], "JAX jax": [[866, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[866, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[866, "dex-language-dex-language"]], "Building Blocks": [[845, "building-blocks"]], "Backend Functional APIs \u2705": [[845, "backend-functional-apis"]], "Ivy Functional API \u2705": [[845, "ivy-functional-api"]], "Backend Handler \u2705": [[845, "backend-handler"]], "Tracer \ud83d\udea7": [[845, "tracer"]], "ivy.transpile()": [[860, "ivy-transpile"]], "Transpiler API": [[860, "transpiler-api"]], "Using the transpiler": [[860, "using-the-transpiler"]], "Transpiling functions": [[860, "transpiling-functions"]], "Transpiling Libraries": [[860, "transpiling-libraries"]], "Transpiling Modules": [[860, "transpiling-modules"]], "Ivy Array": [[847, "ivy-array"], [820, "ivy-array"]], "The Array Class": [[847, "the-array-class"]], "Unifying Operators": [[847, "unifying-operators"]], "API Monkey Patching": [[847, "api-monkey-patching"]], "Instance Methods": [[847, "instance-methods"]], "Multi-Vendor Compiler Frameworks": [[869, "multi-vendor-compiler-frameworks"], [872, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[869, "apache-tvm"]], "XLA": [[869, "xla"]], "GCC": [[869, "gcc"]], "What does Ivy Add?": [[872, "what-does-ivy-add"]], "Wrapper Frameworks": [[872, "wrapper-frameworks"], [873, "wrapper-frameworks"]], "Vendor-Specific Compilers": [[872, "vendor-specific-compilers"], [871, "vendor-specific-compilers"]], "ML-Unifying Companies": [[872, "ml-unifying-companies"], [868, "ml-unifying-companies"]], "Get Started": [[852, "get-started"]], "Installing using pip": [[852, "installing-using-pip"], [808, "installing-using-pip"]], "Docker": [[852, "docker"]], "Installing from source": [[852, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[852, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[852, "ivy-folder"]], "Setting Up the API key": [[852, "setting-up-the-api-key"]], "Issues and Questions": [[852, "issues-and-questions"]], "Ivy Container": [[848, "ivy-container"]], "Construction": [[848, "construction"]], "Representation": [[848, "representation"]], "Recursive Methods": [[848, "recursive-methods"]], "Built-ins": [[848, "built-ins"]], "Access": [[848, "access"]], "Saving and Loading": [[848, "saving-and-loading"]], "Comparisons": [[848, "comparisons"]], "Customized Representations": [[848, "customized-representations"]], "Use Cases": [[848, "use-cases"]], "Compartmentalization": [[848, "compartmentalization"]], "Configuration": [[848, "configuration"]], "Data loading": [[848, "data-loading"]], "Network weights": [[848, "network-weights"]], "ICC": [[871, "id1"]], "ICX": [[871, "icx"]], "NVCC": [[871, "nvcc"]], "Ivy Frontend Tests": [[838, "ivy-frontend-tests"]], "Introduction": [[838, "introduction"], [837, "introduction"], [42, "Introduction"]], "Frontend Test Examples": [[838, "frontend-test-examples"]], "ivy.tan()": [[838, "ivy-tan"]], "ivy.full()": [[838, "ivy-full"]], "Testing Without Using Tests Values": [[838, "testing-without-using-tests-values"]], "Alias functions": [[838, "alias-functions"]], "Frontend Instance Method Tests": [[838, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[838, "frontend-instance-method-test-examples"]], "ivy.add()": [[838, "ivy-add"]], "Hypothesis Helpers": [[838, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[838, "frontend-framework-testing-configuration"]], "EagerPy eagerpy": [[873, "eagerpy-eagerpy"]], "Keras keras": [[873, "keras-keras"]], "Thinc thinc": [[873, "thinc-thinc"]], "TensorLy tensorly": [[873, "tensorly-tensorly"]], "NeuroPod": [[873, "id1"]], "Ivy as a Framework": [[846, "ivy-as-a-framework"], [27, "Ivy-as-a-Framework"]], "FAQ": [[851, "faq"]], "Maintaining Backend Versions": [[851, "maintaining-backend-versions"]], "Dynamic Sizes": [[851, "dynamic-sizes"]], "Type and Shape Checking": [[851, "type-and-shape-checking"]], "GPU handling": [[851, "gpu-handling"]], "Model Deployment": [[851, "model-deployment"]], "Dynamic Control Flow": [[851, "dynamic-control-flow"]], "Auto-Differentiation": [[851, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[851, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[851, "support-for-functions"]], "Alternative Data Structures": [[851, "alternative-data-structures"]], "Custom Operations": [[851, "custom-operations"]], "The Pipeline": [[851, "the-pipeline"]], "State": [[851, "state"]], "Formatting": [[831, "formatting"]], "Lint Checks": [[831, "lint-checks"], [831, "id2"]], "Setup Formatting Locally": [[831, "setup-formatting-locally"]], "Pre-commit": [[831, "pre-commit"]], "VS Code": [[831, "vs-code"]], "PyCharm": [[831, "pycharm"], [815, "pycharm"]], "Common Issues with Pre-Commit": [[831, "common-issues-with-pre-commit"]], "Continuous Integration": [[831, "continuous-integration"], [824, "continuous-integration"]], "Lint Formatting": [[831, "lint-formatting"]], "Quansight": [[868, "id1"]], "Modular": [[868, "id2"]], "OctoML": [[868, "id3"]], "Gradients": [[835, "gradients"], [631, "gradients"], [370, "gradients"], [55, "module-ivy.data_classes.array.gradients"], [78, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[835, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[835, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[835, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[835, "custom-gradient-functions"]], "Design of the Gradient API": [[835, "design-of-the-gradient-api"]], "Our policy on gradients": [[835, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[835, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[835, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[835, "framework-specific-considerations"]], "Function Arguments": [[832, "function-arguments"]], "Positional and Keyword Arguments": [[832, "positional-and-keyword-arguments"]], "Input Arrays": [[832, "input-arrays"]], "out Argument": [[832, "out-argument"]], "dtype and device arguments": [[832, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[832, "numbers-in-operator-functions"]], "Integer Sequences": [[832, "integer-sequences"]], "Ivy Exception Class": [[829, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[829, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[829, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[829, "handle-exceptions-decorator"]], "Consistency in Errors": [[829, "consistency-in-errors"]], "Assertion Function": [[829, "assertion-function"]], "ML Explosion": [[855, "ml-explosion"]], "Ivy Stateful API": [[849, "ivy-stateful-api"], [18, "Ivy-Stateful-API"], [27, "Ivy-Stateful-API"]], "Modules": [[849, "modules"]], "Initializers": [[849, "initializers"], [787, "module-ivy.stateful.initializers"]], "Optimizers": [[849, "optimizers"], [792, "module-ivy.stateful.optimizers"]], "ivy.unify()": [[861, "ivy-unify"]], "Unify API": [[861, "unify-api"]], "Usage": [[861, "usage"]], "Standardization": [[856, "standardization"]], "Skepticism": [[856, "skepticism"]], "Complimentary vs Competitive": [[856, "complimentary-vs-competitive"]], "Do Standards Work?": [[856, "do-standards-work"]], "The Array API Standard": [[856, "the-array-api-standard"]], "Ivy Frontends": [[837, "ivy-frontends"]], "The Frontend Basics": [[837, "the-frontend-basics"]], "Writing Frontend Functions": [[837, "writing-frontend-functions"]], "Short Frontend Implementations": [[837, "short-frontend-implementations"]], "Unused Arguments": [[837, "unused-arguments"]], "Supported Data Types and Devices": [[837, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[837, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[837, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[837, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[837, "frontends-duplicate-policy"]], "Design": [[844, "design"]], "Operating Modes": [[842, "operating-modes"]], "Global Parameter Properties": [[842, "global-parameter-properties"]], "Getter: ivy. attribute": [[842, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[842, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Tt tensor": [[96, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "cmp_is": [[116, "cmp-is"]], "Factorized tensor": [[100, "factorized-tensor"]], "cmp_isnot": [[117, "cmp-isnot"]], "softplus": [[114, "softplus"]], "asarray": [[124, "asarray"]], "copy_array": [[125, "copy-array"]], "Parafac2 tensor": [[94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "Elementwise": [[103, "module-ivy.data_classes.nested_array.elementwise"], [628, "elementwise"], [368, "elementwise"], [75, "module-ivy.data_classes.container.elementwise"], [52, "module-ivy.data_classes.array.elementwise"]], "Nested array": [[101, "nested-array"]], "Container": [[99, "container"]], "from_dlpack": [[129, "from-dlpack"]], "leaky_relu": [[108, "leaky-relu"]], "Base": [[92, "module-ivy.data_classes.factorized_tensor.base"], [102, "module-ivy.data_classes.nested_array.base"], [70, "module-ivy.data_classes.container.base"]], "full_like": [[132, "full-like"]], "Tr tensor": [[95, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "relu": [[111, "relu"]], "gelu": [[106, "gelu"]], "array": [[123, "array"]], "log_softmax": [[109, "log-softmax"]], "while_loop": [[121, "while-loop"]], "Data classes": [[104, "data-classes"]], "Array": [[98, "array"]], "full": [[131, "full"]], "Tucker tensor": [[97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "frombuffer": [[130, "frombuffer"]], "eye": [[128, "eye"]], "Functions": [[105, "functions"]], "mish": [[110, "mish"]], "meshgrid": [[135, "meshgrid"]], "softsign": [[115, "softsign"]], "arange": [[122, "arange"]], "softmax": [[113, "softmax"]], "logspace": [[134, "logspace"]], "linspace": [[133, "linspace"]], "hardswish": [[107, "hardswish"]], "for_loop": [[118, "for-loop"]], "sigmoid": [[112, "sigmoid"]], "empty_like": [[127, "empty-like"]], "if_else": [[119, "if-else"]], "native_array": [[136, "native-array"]], "empty": [[126, "empty"]], "Cp tensor": [[93, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "try_except": [[120, "try-except"]], "one_hot": [[137, "one-hot"]], "argmax": [[740, "argmax"]], "unique_all": [[745, "unique-all"]], "Data-dependent output shape": [[745, null], [746, null], [747, null], [748, null], [641, null], [641, null], [641, null], [641, null]], "any": [[764, "any"]], "Framework classes": [[781, "framework-classes"]], "cumsum": [[754, "cumsum"]], "Available frameworks": [[768, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Assertions": [[767, "module-ivy_tests.test_ivy.helpers.assertions"], [794, "module-ivy.utils.assertions"]], "Array helpers": [[772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "std": [[760, "std"]], "max": [[756, "max"]], "General helpers": [[774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "load": [[765, "load"]], "searchsorted": [[751, "searchsorted"]], "random_uniform": [[737, "random-uniform"]], "Number helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "prod": [[759, "prod"]], "Structs": [[778, "module-ivy_tests.test_ivy.helpers.structs"]], "Dtype helpers": [[773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Hypothesis helpers": [[771, "hypothesis-helpers"]], "sort": [[752, "sort"]], "seed": [[738, "seed"]], "Globals": [[770, "module-ivy_tests.test_ivy.helpers.globals"]], "Test parameter flags": [[779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "shuffle": [[739, "shuffle"]], "Testing helpers": [[780, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "mean": [[757, "mean"]], "einsum": [[755, "einsum"]], "unique_counts": [[746, "unique-counts"]], "min": [[758, "min"]], "sum": [[761, "sum"]], "where": [[744, "where"]], "Pipeline helper": [[777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "var": [[762, "var"]], "Function testing": [[769, "module-ivy_tests.test_ivy.helpers.function_testing"]], "argmin": [[741, "argmin"]], "argwhere": [[742, "argwhere"]], "argsort": [[749, "argsort"]], "save": [[766, "save"]], "cumprod": [[753, "cumprod"]], "unique_inverse": [[747, "unique-inverse"]], "msort": [[750, "msort"]], "all": [[763, "all"]], "Multiprocessing": [[776, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "random_normal": [[736, "random-normal"]], "nonzero": [[743, "nonzero"]], "unique_values": [[748, "unique-values"]], "Helpful Resources": [[813, "helpful-resources"]], "Dynamic import": [[800, "module-ivy.utils.dynamic_import"]], "Deep Dive": [[818, "deep-dive"]], "Contributor Program": [[817, "contributor-program"]], "Contributor": [[817, "contributor"]], "Core Contributor": [[817, "core-contributor"]], "Rising Contributor": [[817, "rising-contributor"]], "Top Contributor": [[817, "top-contributor"]], "Layers": [[788, "module-ivy.stateful.layers"], [632, "layers"], [371, "layers"], [80, "module-ivy.data_classes.container.layers"], [57, "module-ivy.data_classes.array.layers"]], "Devices": [[826, "devices"]], "Device Module": [[826, "device-module"]], "Arguments in other Functions": [[826, "arguments-in-other-functions"], [825, "arguments-in-other-functions"]], "Device handling": [[826, "device-handling"]], "Norms": [[791, "module-ivy.stateful.norms"], [638, "norms"], [377, "norms"], [84, "module-ivy.data_classes.container.norms"], [61, "module-ivy.data_classes.array.norms"]], "Forking and cloning the repo": [[815, "forking-and-cloning-the-repo"]], "Pre-Commit": [[815, "pre-commit"]], "Virtual environments - No Docker": [[815, "virtual-environments-no-docker"]], "Using miniconda": [[815, "using-miniconda"]], "Using venv": [[815, "using-venv"]], "Docker Interpreter with PyCharm": [[815, "docker-interpreter-with-pycharm"]], "Windows": [[815, "windows"], [815, "id6"]], "MacOS": [[815, "macos"]], "Ubuntu": [[815, "ubuntu"], [815, "id8"]], "Setting Up Testing in PyCharm": [[815, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[815, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[815, "setting-up-for-free"]], "WSL": [[815, "wsl"]], "GitHub Codespaces": [[815, "github-codespaces"]], "The Binaries": [[815, "the-binaries"]], "Binaries": [[799, "module-ivy.utils.binaries"]], "Contributing": [[809, "contributing"], [808, "contributing"]], "Backend": [[795, "backend"]], "Array API Tests": [[819, "array-api-tests"], [824, "array-api-tests"]], "Running the Tests": [[819, "running-the-tests"]], "Using Terminal": [[819, "using-terminal"]], "Using the IDE": [[819, "using-the-ide"]], "Regenerating Test Failures": [[819, "regenerating-test-failures"]], "Test Skipping": [[819, "test-skipping"]], "Building the Docs": [[810, "building-the-docs"]], "Building the Docs using Docker": [[810, "building-the-docs-using-docker"]], "Using convenience script": [[810, "using-convenience-script"]], "Using existing image on Docker Hub": [[810, "using-existing-image-on-docker-hub"]], "Building the image locally": [[810, "building-the-image-locally"]], "Building the Docs without Docker": [[810, "building-the-docs-without-docker"]], "Error Handling": [[812, "error-handling"]], "Building the Docs Pipeline": [[822, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[822, "how-the-doc-builder-is-being-run"]], "The convenience script": [[822, "the-convenience-script"]], "Options": [[822, "options"]], "The Docker image": [[822, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[822, "how-ivy-s-docs-is-structured"]], "index.rst": [[822, "index-rst"]], "partial_conf.py": [[822, "partial-conf-py"]], "prebuild.sh": [[822, "prebuild-sh"]], "Custom Extensions": [[822, "custom-extensions"]], "custom_autosummary": [[822, "custom-autosummary"]], ":hide-table:": [[822, "hide-table"]], "discussion_linker": [[822, "discussion-linker"]], "skippable_function": [[822, "skippable-function"]], "ivy_data": [[822, "ivy-data"]], "Status": [[808, "status"]], "Unified AI": [[808, "unified-ai"]], "Getting started": [[808, "getting-started"]], "Installing ivy": [[808, "installing-ivy"]], "Using Ivy": [[808, "using-ivy"]], "Documentation": [[808, "documentation"]], "Diving deeper": [[808, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[808, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[808, "community"]], "Citation": [[808, "citation"]], "Activations": [[784, "module-ivy.stateful.activations"], [622, "activations"], [363, "activations"], [69, "module-ivy.data_classes.container.activations"], [47, "module-ivy.data_classes.array.activations"]], "Parameter": [[784, "parameter"], [784, "id1"], [580, "parameter"], [583, "parameter"], [581, "parameter"], [574, "parameter"], [575, "parameter"], [584, "parameter"], [630, "parameter"], [630, "id1"], [630, "id2"], [630, "id3"], [630, "id4"], [630, "id5"], [627, "parameter"], [206, "parameter"]], "Sub backend handler": [[798, "module-ivy.utils.backend.sub_backend_handler"]], "Converters": [[785, "module-ivy.stateful.converters"]], "Einsum parser": [[801, "module-ivy.utils.einsum_parser"]], "Exceptions": [[803, "module-ivy.utils.exceptions"]], "Contributor Rewards": [[811, "contributor-rewards"]], "Badges": [[811, "badges"]], "Badge Tiers": [[811, "badge-tiers"]], "Arrays": [[820, "arrays"]], "Native Array": [[820, "native-array"]], "Array Handling": [[820, "array-handling"]], "Integrating custom classes with Ivy": [[820, "integrating-custom-classes-with-ivy"]], "Inspection": [[804, "module-ivy.utils.inspection"]], "The Basics": [[816, "the-basics"]], "Getting Help": [[816, "getting-help"]], "ToDo List Issues": [[816, "todo-list-issues"]], "Managing Your Fork": [[816, "managing-your-fork"]], "Who To Ask": [[816, "who-to-ask"]], "With Command Line:": [[816, "with-command-line"]], "With Browser:": [[816, "with-browser"]], "Pull Requests": [[816, "pull-requests"]], "Small Commits Often": [[816, "small-commits-often"]], "Interactive Ivy Docker Container": [[816, "interactive-ivy-docker-container"]], "Running Tests Locally": [[816, "running-tests-locally"]], "With Docker": [[816, "with-docker"]], "Getting the most out of IDE": [[816, "getting-the-most-out-of-ide"]], "with PyCharm": [[816, "with-pycharm"]], "Docstring Examples": [[827, "docstring-examples"]], "ivy.tan": [[827, "ivy-tan"]], "ivy.roll": [[827, "ivy-roll"]], "ivy.add": [[827, "ivy-add"]], "Open Tasks": [[814, "open-tasks"]], "Fixing Failing Tests": [[814, "fixing-failing-tests"]], "How to Contribute": [[814, "how-to-contribute"]], "Frontend APIs": [[814, "frontend-apis"]], "Where to place a frontend function": [[814, "where-to-place-a-frontend-function"]], "Frontend checklist": [[814, "frontend-checklist"]], "Function Formatting": [[814, "function-formatting"]], "Formatting checklist": [[814, "formatting-checklist"]], "Ivy Experimental API": [[814, "ivy-experimental-api"]], "Extending the Ivy API": [[814, "extending-the-ivy-api"]], "Where to place a backend function": [[814, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[814, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Losses": [[789, "module-ivy.stateful.losses"], [634, "losses"], [373, "losses"], [82, "module-ivy.data_classes.container.losses"], [59, "module-ivy.data_classes.array.losses"]], "Testing": [[783, "testing"], [41, "Testing"]], "Module": [[790, "module-ivy.stateful.module"]], "Profiler": [[806, "module-ivy.utils.profiler"]], "Handler": [[797, "module-ivy.utils.backend.handler"]], "Commit (Push/PR) Triggered Testing": [[824, "commit-push-pr-triggered-testing"]], "Implementation": [[824, "implementation"]], "A Top-Down View": [[824, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[824, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[824, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[824, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[824, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[824, "determine-test-coverage-workflow"]], "Multiple Runners": [[824, "multiple-runners"]], "Race Condition": [[824, "race-condition"]], "Periodic Testing": [[824, "periodic-testing"]], "Manually Dispatched Workflows": [[824, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[824, "ci-pipeline"]], "Push": [[824, "push"]], "Pull Request": [[824, "pull-request"]], "Dashboard": [[824, "dashboard"]], "Containers": [[823, "containers"]], "Container Instance Methods": [[823, "container-instance-methods"]], "API Instance Methods": [[823, "api-instance-methods"]], "API Special Methods": [[823, "api-special-methods"]], "Helpers": [[786, "module-ivy.stateful.helpers"]], "Sequential": [[793, "module-ivy.stateful.sequential"]], "Backend Setting": [[821, "backend-setting"]], "Dynamic Backend Setting": [[821, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[821, "backend-and-frontend-version-support"]], "Verbosity": [[807, "module-ivy.utils.verbosity"]], "Data Types": [[825, "data-types"]], "Data Type Module": [[825, "data-type-module"]], "Data Type Promotion": [[825, "data-type-promotion"]], "Precise Mode": [[825, "precise-mode"]], "Precise Promotion Table": [[825, "precise-promotion-table"]], "Non-Precise Promotion Table": [[825, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[825, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[825, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[825, "special-case"]], "Backend Data Type Bugs": [[825, "backend-data-type-bugs"]], "Data Type Casting Modes": [[825, "data-type-casting-modes"]], "Superset Data Type Support": [[825, "superset-data-type-support"]], "Utils": [[782, "utils"]], "Logging": [[805, "module-ivy.utils.logging"]], "Einsum path helpers": [[802, "module-ivy.utils.einsum_path_helpers"]], "Ast helpers": [[796, "module-ivy.utils.backend.ast_helpers"]], "prune_nest_at_index": [[729, "prune-nest-at-index"]], "vector_to_skew_symmetric_matrix": [[691, "vector-to-skew-symmetric-matrix"]], "nested_argwhere": [[725, "nested-argwhere"]], "map_nest_at_index": [[721, "map-nest-at-index"]], "vector_norm": [[690, "vector-norm"]], "squeeze": [[705, "squeeze"]], "fomaml_step": [[711, "fomaml-step"]], "multinomial": [[734, "multinomial"]], "nested_any": [[724, "nested-any"]], "reshape": [[702, "reshape"]], "permute_dims": [[700, "permute-dims"]], "nested_map": [[726, "nested-map"]], "insert_into_nest_at_indices": [[719, "insert-into-nest-at-indices"]], "prune_nest_at_indices": [[730, "prune-nest-at-indices"]], "swapaxes": [[707, "swapaxes"]], "clip": [[695, "clip"]], "layer_norm": [[733, "layer-norm"]], "reptile_step": [[713, "reptile-step"]], "cross_entropy": [[693, "cross-entropy"]], "index_nest": [[717, "index-nest"]], "insert_into_nest_at_index": [[718, "insert-into-nest-at-index"]], "roll": [[703, "roll"]], "expand_dims": [[698, "expand-dims"]], "stack": [[706, "stack"]], "set_nest_at_indices": [[732, "set-nest-at-indices"]], "all_nested_indices": [[714, "all-nested-indices"]], "duplicate_array_index_chains": [[716, "duplicate-array-index-chains"]], "map_nest_at_indices": [[722, "map-nest-at-indices"]], "sparse_cross_entropy": [[694, "sparse-cross-entropy"]], "nested_multi_map": [[727, "nested-multi-map"]], "maml_step": [[712, "maml-step"]], "randint": [[735, "randint"]], "copy_nest": [[715, "copy-nest"]], "binary_cross_entropy": [[692, "binary-cross-entropy"]], "tile": [[708, "tile"]], "constant_pad": [[697, "constant-pad"]], "concat": [[696, "concat"]], "split": [[704, "split"]], "set_nest_at_index": [[731, "set-nest-at-index"]], "prune_empty": [[728, "prune-empty"]], "flip": [[699, "flip"]], "unstack": [[709, "unstack"]], "multi_index_nest": [[723, "multi-index-nest"]], "map": [[720, "map"]], "zero_pad": [[710, "zero-pad"]], "repeat": [[701, "repeat"]], "outer": [[678, "outer"]], "matrix_transpose": [[677, "matrix-transpose"]], "dropout": [[655, "dropout"]], "inner": [[671, "inner"]], "scaled_dot_product_attention": [[662, "scaled-dot-product-attention"]], "nms": [[660, "nms"]], "vecdot": [[689, "vecdot"]], "eigh": [[669, "eigh"]], "matrix_rank": [[676, "matrix-rank"]], "conv_general_transpose": [[653, "conv-general-transpose"]], "conv_general_dilated": [[652, "conv-general-dilated"]], "conv1d_transpose": [[647, "conv1d-transpose"]], "matrix_power": [[675, "matrix-power"]], "conv2d": [[648, "conv2d"]], "slogdet": [[681, "slogdet"]], "eig": [[668, "eig"], [425, "eig"]], "multi_head_attention": [[659, "multi-head-attention"]], "cross": [[664, "cross"]], "conv2d_transpose": [[649, "conv2d-transpose"]], "matmul": [[673, "matmul"]], "linear": [[656, "linear"]], "qr": [[680, "qr"]], "tensorsolve": [[686, "tensorsolve"]], "roi_align": [[661, "roi-align"]], "conv3d_transpose": [[651, "conv3d-transpose"]], "det": [[665, "det"]], "solve": [[682, "solve"]], "svd": [[683, "svd"]], "pinv": [[679, "pinv"]], "cholesky": [[663, "cholesky"]], "lstm_update": [[658, "lstm-update"]], "depthwise_conv2d": [[654, "depthwise-conv2d"]], "tensordot": [[685, "tensordot"]], "vander": [[688, "vander"]], "eigvalsh": [[670, "eigvalsh"]], "Utility": [[644, "utility"], [384, "utility"], [90, "module-ivy.data_classes.container.utility"], [67, "module-ivy.data_classes.array.utility"]], "conv3d": [[650, "conv3d"]], "matrix_norm": [[674, "matrix-norm"]], "diag": [[666, "diag"]], "conv1d": [[646, "conv1d"]], "trace": [[687, "trace"]], "inv": [[672, "inv"]], "svdvals": [[684, "svdvals"]], "conv": [[645, "conv"]], "diagonal": [[667, "diagonal"]], "lstm": [[657, "lstm"]], "set_nestable_mode": [[580, "set-nestable-mode"]], "to_scalar": [[596, "to-scalar"]], "to_numpy": [[595, "to-numpy"]], "set_shape_array_mode": [[583, "set-shape-array-mode"]], "is_ivy_array": [[561, "is-ivy-array"]], "is_ivy_nested_array": [[563, "is-ivy-nested-array"]], "set_precise_mode": [[581, "set-precise-mode"]], "set_array_mode": [[574, "set-array-mode"]], "is_array": [[560, "is-array"]], "inplace_variables_supported": [[559, "inplace-variables-supported"]], "to_native_shape": [[594, "to-native-shape"]], "isin": [[565, "isin"]], "is_native_array": [[564, "is-native-array"]], "inplace_update": [[558, "inplace-update"]], "get_num_dims": [[552, "get-num-dims"]], "isscalar": [[566, "isscalar"]], "try_else_none": [[597, "try-else-none"]], "inplace_decrement": [[556, "inplace-decrement"]], "set_exception_trace_mode": [[575, "set-exception-trace-mode"]], "shape": [[586, "shape"]], "size": [[587, "size"]], "is_ivy_container": [[562, "is-ivy-container"]], "set_min_denominator": [[579, "set-min-denominator"]], "strides": [[590, "strides"]], "inplace_increment": [[557, "inplace-increment"]], "set_item": [[577, "set-item"]], "scatter_nd": [[573, "scatter-nd"]], "set_min_base": [[578, "set-min-base"]], "set_show_func_wrapper_trace_mode": [[584, "set-show-func-wrapper-trace-mode"]], "set_tmp_dir": [[585, "set-tmp-dir"]], "match_kwargs": [[568, "match-kwargs"]], "print_all_arrays_in_memory": [[571, "print-all-arrays-in-memory"]], "multiprocessing": [[569, "multiprocessing"]], "set_queue_timeout": [[582, "set-queue-timeout"]], "stable_pow": [[589, "stable-pow"]], "supports_inplace_updates": [[591, "supports-inplace-updates"]], "get_referrers_recursive": [[553, "get-referrers-recursive"]], "set_inplace_mode": [[576, "set-inplace-mode"]], "stable_divide": [[588, "stable-divide"]], "itemsize": [[567, "itemsize"]], "scatter_flat": [[572, "scatter-flat"]], "to_list": [[593, "to-list"]], "num_arrays_in_memory": [[570, "num-arrays-in-memory"]], "inplace_arrays_supported": [[555, "inplace-arrays-supported"]], "has_nans": [[554, "has-nans"]], "to_ivy_shape": [[592, "to-ivy-shape"]], "invert_permutation": [[510, "invert-permutation"]], "is_native_sparse_array": [[513, "is-native-sparse-array"]], "lexsort": [[511, "lexsort"]], "native_sparse_array_to_indices_values_and_shape": [[515, "native-sparse-array-to-indices-values-and-shape"]], "median": [[523, "median"]], "clip_vector_norm": [[537, "clip-vector-norm"]], "einops_reduce": [[542, "einops-reduce"]], "bincount": [[516, "bincount"]], "arg_info": [[531, "arg-info"]], "get_all_arrays_in_memory": [[550, "get-all-arrays-in-memory"]], "get_item": [[551, "get-item"]], "array_equal": [[533, "array-equal"]], "unravel_index": [[509, "unravel-index"]], "nanmedian": [[525, "nanmedian"]], "native_sparse_array": [[514, "native-sparse-array"]], "assert_supports_inplace": [[534, "assert-supports-inplace"]], "function_supported_devices_and_dtypes": [[546, "function-supported-devices-and-dtypes"]], "is_ivy_sparse_array": [[512, "is-ivy-sparse-array"]], "fourier_encode": [[545, "fourier-encode"]], "dirichlet": [[506, "dirichlet"]], "quantile": [[528, "quantile"]], "einops_rearrange": [[541, "einops-rearrange"]], "function_unsupported_devices_and_dtypes": [[547, "function-unsupported-devices-and-dtypes"]], "clip_matrix_norm": [[536, "clip-matrix-norm"]], "corrcoef": [[517, "corrcoef"]], "cache_fn": [[535, "cache-fn"]], "nanprod": [[527, "nanprod"]], "default": [[540, "default"]], "poisson": [[508, "poisson"]], "container_types": [[538, "container-types"]], "igamma": [[522, "igamma"]], "nanmean": [[524, "nanmean"]], "optional_get_element": [[529, "optional-get-element"]], "cov": [[518, "cov"]], "gather": [[548, "gather"]], "nanmin": [[526, "nanmin"]], "current_backend_str": [[539, "current-backend-str"]], "einops_repeat": [[543, "einops-repeat"]], "all_equal": [[530, "all-equal"]], "cummax": [[519, "cummax"]], "gather_nd": [[549, "gather-nd"]], "arg_names": [[532, "arg-names"]], "exists": [[544, "exists"]], "gamma": [[507, "gamma"]], "histogram": [[521, "histogram"]], "cummin": [[520, "cummin"]], "column_stack": [[464, "column-stack"]], "concat_from_sequence": [[465, "concat-from-sequence"]], "pad": [[480, "pad"]], "flatten": [[470, "flatten"]], "local_response_norm": [[502, "local-response-norm"]], "unfold": [[493, "unfold"]], "check_scalar": [[462, "check-scalar"]], "group_norm": [[498, "group-norm"]], "i0": [[477, "i0"]], "expand": [[468, "expand"]], "moveaxis": [[479, "moveaxis"]], "rot90": [[486, "rot90"]], "unique_consecutive": [[494, "unique-consecutive"]], "trim_zeros": [[491, "trim-zeros"]], "choose": [[463, "choose"]], "l1_normalize": [[500, "l1-normalize"]], "fold": [[473, "fold"]], "partial_fold": [[481, "partial-fold"]], "bernoulli": [[504, "bernoulli"]], "partial_unfold": [[483, "partial-unfold"]], "batch_norm": [[497, "batch-norm"]], "hstack": [[476, "hstack"]], "dsplit": [[466, "dsplit"]], "flipud": [[472, "flipud"]], "take": [[488, "take"]], "top_k": [[490, "top-k"]], "unflatten": [[492, "unflatten"]], "instance_norm": [[499, "instance-norm"]], "fill_diagonal": [[469, "fill-diagonal"]], "beta": [[505, "beta"]], "broadcast_shapes": [[461, "broadcast-shapes"]], "fliplr": [[471, "fliplr"]], "matricize": [[478, "matricize"]], "take_along_axis": [[489, "take-along-axis"]], "heaviside": [[474, "heaviside"]], "lp_normalize": [[503, "lp-normalize"]], "soft_thresholding": [[487, "soft-thresholding"]], "partial_vec_to_tensor": [[484, "partial-vec-to-tensor"]], "hsplit": [[475, "hsplit"]], "vstack": [[496, "vstack"]], "dstack": [[467, "dstack"]], "vsplit": [[495, "vsplit"]], "l2_normalize": [[501, "l2-normalize"]], "atleast_3d": [[460, "atleast-3d"]], "put_along_axis": [[485, "put-along-axis"]], "partial_tensor_to_vec": [[482, "partial-tensor-to-vec"]], "lars_update": [[618, "lars-update"]], "value_is_nan": [[609, "value-is-nan"]], "unset_show_func_wrapper_trace_mode": [[607, "unset-show-func-wrapper-trace-mode"]], "unset_min_base": [[601, "unset-min-base"]], "unset_tmp_dir": [[608, "unset-tmp-dir"]], "vmap": [[610, "vmap"]], "optimizer_update": [[619, "optimizer-update"]], "Constants": [[623, "module-ivy.functional.ivy.constants"], [364, "module-ivy.functional.ivy.experimental.constants"]], "grad": [[614, "grad"]], "stop_gradient": [[620, "stop-gradient"]], "gradient_descent_update": [[615, "gradient-descent-update"]], "Nest": [[637, "nest"], [376, "module-ivy.functional.ivy.experimental.nest"]], "Linear algebra": [[633, "linear-algebra"], [372, "linear-algebra"], [58, "module-ivy.data_classes.array.linear_algebra"], [81, "module-ivy.data_classes.container.linear_algebra"]], "jac": [[616, "jac"]], "Sorting": [[642, "sorting"], [381, "sorting"], [88, "module-ivy.data_classes.container.sorting"], [65, "module-ivy.data_classes.array.sorting"]], "General": [[630, "general"], [369, "general"], [77, "module-ivy.data_classes.container.general"], [54, "module-ivy.data_classes.array.general"]], "execute_with_gradients": [[613, "execute-with-gradients"]], "Statistical": [[643, "statistical"], [383, "statistical"], [89, "module-ivy.data_classes.container.statistical"], [66, "module-ivy.data_classes.array.statistical"]], "adam_step": [[611, "adam-step"]], "lamb_update": [[617, "lamb-update"]], "Control flow ops": [[624, "control-flow-ops"]], "Random": [[639, "random"], [378, "random"], [85, "module-ivy.data_classes.container.random"], [62, "module-ivy.data_classes.array.random"]], "unset_queue_timeout": [[605, "unset-queue-timeout"]], "Device": [[627, "device"], [367, "module-ivy.functional.ivy.experimental.device"], [74, "module-ivy.data_classes.container.device"], [51, "module-ivy.data_classes.array.device"]], "unset_array_mode": [[598, "unset-array-mode"]], "Meta": [[636, "meta"], [375, "module-ivy.functional.ivy.experimental.meta"]], "Data type": [[626, "data-type"], [366, "module-ivy.functional.ivy.experimental.data_type"], [50, "module-ivy.data_classes.array.data_type"], [73, "module-ivy.data_classes.container.data_type"]], "unset_shape_array_mode": [[606, "unset-shape-array-mode"]], "unset_inplace_mode": [[600, "unset-inplace-mode"]], "Experimental": [[629, "experimental"], [53, "module-ivy.data_classes.array.experimental"], [76, "module-ivy.data_classes.container.experimental"]], "value_and_grad": [[621, "value-and-grad"]], "unset_min_denominator": [[602, "unset-min-denominator"]], "adam_update": [[612, "adam-update"]], "unset_exception_trace_mode": [[599, "unset-exception-trace-mode"]], "Searching": [[640, "searching"], [379, "searching"], [63, "module-ivy.data_classes.array.searching"], [86, "module-ivy.data_classes.container.searching"]], "Set": [[641, "set"], [380, "module-ivy.functional.ivy.experimental.set"], [87, "module-ivy.data_classes.container.set"], [64, "module-ivy.data_classes.array.set"]], "Manipulation": [[635, "manipulation"], [374, "manipulation"], [83, "module-ivy.data_classes.container.manipulation"], [60, "module-ivy.data_classes.array.manipulation"]], "unset_precise_mode": [[604, "unset-precise-mode"]], "unset_nestable_mode": [[603, "unset-nestable-mode"]], "Creation": [[625, "creation"], [365, "creation"], [72, "module-ivy.data_classes.container.creation"], [49, "module-ivy.data_classes.array.creation"]], "rfft": [[415, "rfft"]], "soft_margin_loss": [[455, "soft-margin-loss"]], "atleast_1d": [[458, "atleast-1d"]], "lu_factor": [[434, "lu-factor"]], "kl_div": [[450, "kl-div"]], "stft": [[419, "stft"]], "batched_outer": [[421, "batched-outer"]], "matrix_exp": [[437, "matrix-exp"]], "sliding_window": [[418, "sliding-window"]], "huber_loss": [[449, "huber-loss"]], "poisson_nll_loss": [[453, "poisson-nll-loss"]], "associative_scan": [[457, "associative-scan"]], "cond": [[422, "cond"]], "svd_flip": [[443, "svd-flip"]], "log_poisson_loss": [[452, "log-poisson-loss"]], "as_strided": [[456, "as-strided"]], "diagflat": [[423, "diagflat"]], "khatri_rao": [[431, "khatri-rao"]], "initialize_tucker": [[430, "initialize-tucker"]], "truncated_svd": [[445, "truncated-svd"]], "adjoint": [[420, "adjoint"]], "multi_dot": [[439, "multi-dot"]], "higher_order_moment": [[429, "higher-order-moment"]], "solve_triangular": [[442, "solve-triangular"]], "multi_mode_dot": [[440, "multi-mode-dot"]], "l1_loss": [[451, "l1-loss"]], "kronecker": [[433, "kronecker"]], "tt_matrix_to_tensor": [[446, "tt-matrix-to-tensor"]], "rfftn": [[416, "rfftn"]], "lu_solve": [[435, "lu-solve"]], "hinge_embedding_loss": [[448, "hinge-embedding-loss"]], "rnn": [[417, "rnn"]], "dot": [[424, "dot"]], "eigvals": [[427, "eigvals"]], "kron": [[432, "kron"]], "eigh_tridiagonal": [[426, "eigh-tridiagonal"]], "make_svd_non_negative": [[436, "make-svd-non-negative"]], "general_inner_product": [[428, "general-inner-product"]], "tucker": [[447, "tucker"]], "partial_tucker": [[441, "partial-tucker"]], "tensor_train": [[444, "tensor-train"]], "smooth_l1_loss": [[454, "smooth-l1-loss"]], "atleast_2d": [[459, "atleast-2d"]], "reduce_window": [[414, "reduce-window"]], "mode_dot": [[438, "mode-dot"]], "random_tt": [[322, "random-tt"]], "sinc": [[355, "sinc"]], "binarizer": [[333, "binarizer"]], "bind_custom_gradient_function": [[360, "bind-custom-gradient-function"]], "nextafter": [[353, "nextafter"]], "frexp": [[344, "frexp"]], "diff": [[337, "diff"]], "float_power": [[342, "float-power"]], "vorbis_window": [[329, "vorbis-window"]], "lerp": [[349, "lerp"]], "digamma": [[338, "digamma"]], "amin": [[332, "amin"]], "xlogy": [[357, "xlogy"]], "unsorted_segment_sum": [[328, "unsorted-segment-sum"]], "sparsify_tensor": [[356, "sparsify-tensor"]], "ldexp": [[348, "ldexp"]], "unsorted_segment_min": [[327, "unsorted-segment-min"]], "jvp": [[361, "jvp"]], "hypot": [[346, "hypot"]], "random_tucker": [[323, "random-tucker"]], "amax": [[331, "amax"]], "conj": [[334, "conj"]], "modf": [[351, "modf"]], "reduce": [[359, "reduce"]], "nansum": [[352, "nansum"]], "unsorted_segment_mean": [[326, "unsorted-segment-mean"]], "isclose": [[347, "isclose"]], "fmax": [[343, "fmax"]], "allclose": [[330, "allclose"]], "zeta": [[358, "zeta"]], "copysign": [[335, "copysign"]], "count_nonzero": [[336, "count-nonzero"]], "gradient": [[345, "gradient"]], "lgamma": [[350, "lgamma"]], "tril_indices": [[324, "tril-indices"]], "signbit": [[354, "signbit"]], "erfc": [[339, "erfc"]], "fix": [[341, "fix"]], "trilu": [[325, "trilu"]], "erfinv": [[340, "erfinv"]], "vjp": [[362, "vjp"]], "max_pool3d": [[410, "max-pool3d"]], "embedding": [[398, "embedding"]], "idct": [[403, "idct"]], "interp": [[406, "interp"]], "area_interpolate": [[389, "area-interpolate"]], "avg_pool3d": [[392, "avg-pool3d"]], "fft2": [[400, "fft2"]], "pool": [[413, "pool"]], "adaptive_max_pool2d": [[387, "adaptive-max-pool2d"]], "adaptive_avg_pool2d": [[386, "adaptive-avg-pool2d"]], "adaptive_max_pool3d": [[388, "adaptive-max-pool3d"]], "dft": [[394, "dft"]], "ifftn": [[405, "ifftn"]], "nearest_interpolate": [[412, "nearest-interpolate"]], "max_unpool1d": [[411, "max-unpool1d"]], "dropout3d": [[397, "dropout3d"]], "avg_pool2d": [[391, "avg-pool2d"]], "fft": [[399, "fft"]], "dct": [[393, "dct"]], "ifft": [[404, "ifft"]], "interpolate": [[407, "interpolate"]], "max_pool2d": [[409, "max-pool2d"]], "dropout1d": [[395, "dropout1d"]], "max_pool1d": [[408, "max-pool1d"]], "Sparse array": [[382, "sparse-array"]], "generate_einsum_equation": [[401, "generate-einsum-equation"]], "get_interpolate_kernel": [[402, "get-interpolate-kernel"]], "adaptive_avg_pool1d": [[385, "adaptive-avg-pool1d"]], "avg_pool1d": [[390, "avg-pool1d"]], "dropout2d": [[396, "dropout2d"]], "hardtanh": [[295, "hardtanh"]], "indices": [[312, "indices"]], "random_cp": [[319, "random-cp"]], "prelu": [[298, "prelu"]], "kaiser_window": [[314, "kaiser-window"]], "logit": [[296, "logit"]], "sign": [[280, "sign"]], "hardsilu": [[294, "hardsilu"]], "reciprocal": [[277, "reciprocal"]], "threshold": [[306, "threshold"]], "square": [[284, "square"]], "kaiser_bessel_derived_window": [[313, "kaiser-bessel-derived-window"]], "trunc_divide": [[290, "trunc-divide"]], "eye_like": [[309, "eye-like"]], "stanh": [[304, "stanh"]], "random_tr": [[321, "random-tr"]], "subtract": [[285, "subtract"]], "hardshrink": [[293, "hardshrink"]], "softshrink": [[303, "softshrink"]], "thresholded_relu": [[307, "thresholded-relu"]], "random_parafac2": [[320, "random-parafac2"]], "polyval": [[318, "polyval"]], "logsigmoid": [[297, "logsigmoid"]], "hamming_window": [[310, "hamming-window"]], "real": [[276, "real"]], "scaled_tanh": [[300, "scaled-tanh"]], "relu6": [[299, "relu6"]], "round": [[279, "round"]], "trapz": [[288, "trapz"]], "celu": [[291, "celu"]], "sin": [[281, "sin"]], "blackman_window": [[308, "blackman-window"]], "elu": [[292, "elu"]], "ndenumerate": [[316, "ndenumerate"]], "sinh": [[282, "sinh"]], "selu": [[301, "selu"]], "sqrt": [[283, "sqrt"]], "hann_window": [[311, "hann-window"]], "mel_weight_matrix": [[315, "mel-weight-matrix"]], "tanh": [[287, "tanh"]], "tanhshrink": [[305, "tanhshrink"]], "tan": [[286, "tan"]], "trunc": [[289, "trunc"]], "remainder": [[278, "remainder"]], "silu": [[302, "silu"]], "ndindex": [[317, "ndindex"]], "handle_soft_device_variable": [[199, "handle-soft-device-variable"]], "percent_used_mem_on_dev": [[203, "percent-used-mem-on-dev"]], "valid_dtype": [[188, "valid-dtype"]], "abs": [[216, "abs"]], "bitwise_left_shift": [[228, "bitwise-left-shift"]], "set_split_factor": [[207, "set-split-factor"]], "tpu_is_available": [[212, "tpu-is-available"]], "num_cpu_cores": [[200, "num-cpu-cores"]], "num_ivy_arrays_on_dev": [[202, "num-ivy-arrays-on-dev"]], "print_all_ivy_arrays_on_dev": [[204, "print-all-ivy-arrays-on-dev"]], "atanh": [[225, "atanh"]], "total_mem_on_dev": [[211, "total-mem-on-dev"]], "split_factor": [[208, "split-factor"]], "dev": [[193, "dev"]], "bitwise_or": [[229, "bitwise-or"]], "asin": [[221, "asin"]], "to_device": [[210, "to-device"]], "function_unsupported_devices": [[196, "function-unsupported-devices"]], "used_mem_on_dev": [[215, "used-mem-on-dev"]], "get_all_ivy_arrays_on_dev": [[197, "get-all-ivy-arrays-on-dev"]], "add": [[219, "add"]], "angle": [[220, "angle"]], "default_device": [[192, "default-device"]], "unset_default_int_dtype": [[186, "unset-default-int-dtype"]], "as_native_dev": [[190, "as-native-dev"]], "unset_default_float_dtype": [[185, "unset-default-float-dtype"]], "set_soft_device_mode": [[206, "set-soft-device-mode"]], "clear_cached_mem_on_dev": [[191, "clear-cached-mem-on-dev"]], "num_gpus": [[201, "num-gpus"]], "acos": [[217, "acos"]], "unset_default_uint_dtype": [[187, "unset-default-uint-dtype"]], "asinh": [[222, "asinh"]], "acosh": [[218, "acosh"]], "unset_default_device": [[213, "unset-default-device"]], "dev_util": [[194, "dev-util"]], "unset_soft_device_mode": [[214, "unset-soft-device-mode"]], "bitwise_invert": [[227, "bitwise-invert"]], "as_ivy_dev": [[189, "as-ivy-dev"]], "bitwise_and": [[226, "bitwise-and"]], "atan2": [[224, "atan2"]], "set_default_device": [[205, "set-default-device"]], "split_func_call": [[209, "split-func-call"]], "atan": [[223, "atan"]], "gpu_is_available": [[198, "gpu-is-available"]], "function_supported_devices": [[195, "function-supported-devices"]], "unset_default_dtype": [[184, "unset-default-dtype"]], "equal": [[237, "equal"]], "positive": [[273, "positive"]], "log2": [[260, "log2"]], "floor": [[242, "floor"]], "log1p": [[259, "log1p"]], "logical_and": [[263, "logical-and"]], "negative": [[271, "negative"]], "deg2rad": [[235, "deg2rad"]], "bitwise_xor": [[231, "bitwise-xor"]], "isnan": [[252, "isnan"]], "ceil": [[232, "ceil"]], "logical_xor": [[266, "logical-xor"]], "cos": [[233, "cos"]], "multiply": [[269, "multiply"]], "exp": [[239, "exp"]], "not_equal": [[272, "not-equal"]], "nan_to_num": [[270, "nan-to-num"]], "pow": [[274, "pow"]], "exp2": [[240, "exp2"]], "expm1": [[241, "expm1"]], "rad2deg": [[275, "rad2deg"]], "greater_equal": [[248, "greater-equal"]], "isfinite": [[250, "isfinite"]], "logaddexp": [[261, "logaddexp"]], "less_equal": [[256, "less-equal"]], "logaddexp2": [[262, "logaddexp2"]], "erf": [[238, "erf"]], "log": [[257, "log"]], "bitwise_right_shift": [[230, "bitwise-right-shift"]], "lcm": [[254, "lcm"]], "less": [[255, "less"]], "maximum": [[267, "maximum"]], "isinf": [[251, "isinf"]], "fmin": [[244, "fmin"]], "logical_not": [[264, "logical-not"]], "divide": [[236, "divide"]], "fmod": [[245, "fmod"]], "floor_divide": [[243, "floor-divide"]], "imag": [[249, "imag"]], "isreal": [[253, "isreal"]], "logical_or": [[265, "logical-or"]], "log10": [[258, "log10"]], "greater": [[247, "greater"]], "minimum": [[268, "minimum"]], "cosh": [[234, "cosh"]], "gcd": [[246, "gcd"]], "Conversions": [[48, "module-ivy.data_classes.array.conversions"], [71, "module-ivy.data_classes.container.conversions"]], "Image": [[56, "module-ivy.data_classes.array.image"], [79, "module-ivy.data_classes.container.image"]], "Wrapping": [[91, "module-ivy.data_classes.container.wrapping"], [68, "module-ivy.data_classes.array.wrapping"]], "Resnet 18": [[46, "Resnet-18"]], "Lazy vs Eager": [[22, "Lazy-vs-Eager"]], "Unify": [[22, "Unify"], [34, "Unify"], [32, "Unify"], [33, "Unify"], [23, "Unify"]], "Trace": [[22, "Trace"], [23, "Trace"]], "Transpile": [[22, "Transpile"], [34, "Transpile"], [32, "Transpile"], [33, "Transpile"], [23, "Transpile"]], "Transpiling a PyTorch model to build on top": [[12, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Using Ivy ResNet": [[8, "Using-Ivy-ResNet"]], "Installation": [[8, "Installation"], [3, "Installation"]], "Imports": [[8, "Imports"], [10, "Imports"], [5, "Imports"]], "Data Preparation": [[8, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"], [5, "Data-Preparation"]], "Prepare the set of labels": [[8, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[8, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[8, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[8, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[8, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[8, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [8, "id1"]], "Model Inference ResNet50": [[8, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[8, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[8, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Trace code": [[20, "Trace-code"]], "Transpile any library": [[24, "Transpile-any-library"]], "Tutorials And Examples": [[16, "tutorials-and-examples"]], "Learn the basics": [[16, "learn-the-basics"], [17, "learn-the-basics"]], "Guides": [[16, "guides"], [11, "guides"]], "Examples and Demos": [[16, "examples-and-demos"], [2, "examples-and-demos"]], "Accelerating XGBoost with JAX": [[10, "Accelerating-XGBoost-with-JAX"]], "Tests": [[10, "Tests"]], "Loading the Data": [[10, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[10, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[10, "JAX-backend"]], "Tensorflow backend": [[10, "Tensorflow-backend"]], "PyTorch backend": [[10, "PyTorch-backend"]], "More exhaustive example": [[10, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[10, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[10, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[10, "Comparison-of-Metrics"]], "Write a model using Ivy": [[26, "Write-a-model-using-Ivy"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "3.1: Stable Diffusion": [[38, "3.1:-Stable-Diffusion"]], "Compilation of a Basic Function": [[40, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[40, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[40, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[40, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[40, "Function-compilation-\ud83d\udee0"]], "Set backend": [[40, "Set-backend"]], "Sample input": [[40, "Sample-input"]], "Define function to compile": [[40, "Define-function-to-compile"]], "Compile the function": [[40, "Compile-the-function"]], "Check results": [[40, "Check-results"], [40, "id1"]], "Compiling simple neural network \ud83e\udde0": [[40, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[40, "Define-Model"], [39, "Define-Model"]], "Create model": [[40, "Create-model"]], "Define input": [[40, "Define-input"]], "Compile network": [[40, "Compile-network"]], "1.2: As a Decorator": [[34, "1.2:-As-a-Decorator"]], "Compile": [[34, "Compile"], [32, "Compile"], [33, "Compile"]], "Transpile code": [[21, "Transpile-code"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Deepmind PerceiverIO on GPU": [[42, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[42, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[42, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[42, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[42, "Run-the-demo..."]], "\u2026with torch backend": [[42, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[42, "....with-tensorflow-backend"]], "\u2026with jax backend": [[42, "...with-jax-backend"]], "\u2026with numpy backend": [[42, "...with-numpy-backend"]], "HuggingFace Tensorflow DeiT": [[44, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[44, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "1.3: Dynamic vs Static": [[35, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[35, "Dynamic"]], "Static": [[35, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[35, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Write Ivy code": [[18, "Write-Ivy-code"]], "Contents": [[18, "Contents"]], "Installing Ivy": [[18, "Installing-Ivy"]], "Importing Ivy": [[18, "Importing-Ivy"]], "Ivy Backend Handler": [[18, "Ivy-Backend-Handler"], [27, "Ivy-Backend-Handler"]], "Data Structures": [[18, "Data-Structures"], [27, "Data-Structures"]], "Ivy Functional API": [[18, "Ivy-Functional-API"], [27, "Ivy-Functional-API"]], "0.0: Unify": [[29, "0.0:-Unify"]], "0.2: Transpile": [[31, "0.2:-Transpile"]], "Developing a convolutional network using Ivy": [[15, "Developing-a-convolutional-network-using-Ivy"]], "1.0: Lazy vs Eager": [[32, "1.0:-Lazy-vs-Eager"]], "1.1: Framework Selection": [[33, "1.1:-Framework-Selection"]], "Unify code": [[19, "Unify-code"]], "Ivy as a Transpiler Introduction": [[45, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[45, "To-use-the-transpiler:"]], "Transpiler Interface": [[45, "Transpiler-Interface"]], "Telemetry": [[45, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[45, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[45, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[45, "3.-Transpile-Models-\ud83c\udf10"]], "Accelerating MMPreTrain models with JAX": [[7, "Accelerating-MMPreTrain-models-with-JAX"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "ODSC Ivy Demo": [[27, "ODSC-Ivy-Demo"]], "Graph Tracer": [[27, "Graph-Tracer"]], "Any function": [[27, "Any-function"], [28, "Any-function"]], "Any library": [[27, "Any-library"], [28, "Any-library"]], "Any model": [[27, "Any-model"], [28, "Any-model"]], "0.1: Compile": [[30, "0.1:-Compile"]], "Basic Operations with Ivy": [[39, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[39, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[39, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[39, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[39, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[39, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[39, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[39, "Set-Backend-Framework"]], "Create Model": [[39, "Create-Model"]], "Create Optimizer": [[39, "Create-Optimizer"]], "Input and Target": [[39, "Input-and-Target"]], "Loss Function": [[39, "Loss-Function"]], "Training Loop": [[39, "Training-Loop"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[41, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[41, "Table-of-Contents"]], "Defining the model": [[41, "Defining-the-model"]], "Model construction": [[41, "Model-construction"]], "Some helper functions": [[41, "Some-helper-functions"]], "Transpiling the model": [[41, "Transpiling-the-model"]], "PyTorch pipeline": [[41, "PyTorch-pipeline"]], "Dataset download": [[41, "Dataset-download"]], "DataLoader": [[41, "DataLoader"]], "Training": [[41, "Training"]], "3.0: Perceiver": [[37, "3.0:-Perceiver"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "End-to-End Training Pipeline in Ivy": [[43, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[43, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[43, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[43, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[43, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[43, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[43, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[43, "Plotting-the-training-metrics"]], "Save the trained Model": [[43, "Save-the-trained-Model"]], "Transpiling a haiku model to build on top": [[13, "Transpiling-a-haiku-model-to-build-on-top"]], "Quickstart": [[28, "Quickstart"]], "Get familiar with Ivy": [[28, "Get-familiar-with-Ivy"]], "Functional API": [[28, "Functional-API"]], "Stateful API": [[28, "Stateful-API"]], "Tracing code": [[28, "Tracing-code"]], "2.0: Kornia": [[36, "2.0:-Kornia"]], "Transpiling a Tensorflow model to build on top": [[14, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Accelerating PyTorch models with JAX": [[9, "Accelerating-PyTorch-models-with-JAX"]], "Transpile any model": [[25, "Transpile-any-model"]], "Round up": [[25, "Round-up"]], "How to use decorators": [[23, "How-to-use-decorators"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[47, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[47, "module-ivy.data_classes.array.activations"], [48, "module-ivy.data_classes.array.conversions"], [49, "module-ivy.data_classes.array.creation"], [50, "module-ivy.data_classes.array.data_type"], [51, "module-ivy.data_classes.array.device"], [52, "module-ivy.data_classes.array.elementwise"], [53, "module-ivy.data_classes.array.experimental"], [53, "module-ivy.data_classes.array.experimental.activations"], [53, "module-ivy.data_classes.array.experimental.conversions"], [53, "module-ivy.data_classes.array.experimental.creation"], [53, "module-ivy.data_classes.array.experimental.data_type"], [53, "module-ivy.data_classes.array.experimental.device"], [53, "module-ivy.data_classes.array.experimental.elementwise"], [53, "module-ivy.data_classes.array.experimental.general"], [53, "module-ivy.data_classes.array.experimental.gradients"], [53, "module-ivy.data_classes.array.experimental.image"], [53, "module-ivy.data_classes.array.experimental.layers"], [53, "module-ivy.data_classes.array.experimental.linear_algebra"], [53, "module-ivy.data_classes.array.experimental.losses"], [53, "module-ivy.data_classes.array.experimental.manipulation"], [53, "module-ivy.data_classes.array.experimental.norms"], [53, "module-ivy.data_classes.array.experimental.random"], [53, "module-ivy.data_classes.array.experimental.searching"], [53, "module-ivy.data_classes.array.experimental.set"], [53, "module-ivy.data_classes.array.experimental.sorting"], [53, "module-ivy.data_classes.array.experimental.statistical"], [53, "module-ivy.data_classes.array.experimental.utility"], [54, "module-ivy.data_classes.array.general"], [55, "module-ivy.data_classes.array.gradients"], [56, "module-ivy.data_classes.array.image"], [57, "module-ivy.data_classes.array.layers"], [58, "module-ivy.data_classes.array.linear_algebra"], [59, "module-ivy.data_classes.array.losses"], [60, "module-ivy.data_classes.array.manipulation"], [61, "module-ivy.data_classes.array.norms"], [62, "module-ivy.data_classes.array.random"], [63, "module-ivy.data_classes.array.searching"], [64, "module-ivy.data_classes.array.set"], [65, "module-ivy.data_classes.array.sorting"], [66, "module-ivy.data_classes.array.statistical"], [67, "module-ivy.data_classes.array.utility"], [68, "module-ivy.data_classes.array.wrapping"], [69, "module-ivy.data_classes.container.activations"], [70, "module-ivy.data_classes.container.base"], [71, "module-ivy.data_classes.container.conversions"], [72, "module-ivy.data_classes.container.creation"], [73, "module-ivy.data_classes.container.data_type"], [74, "module-ivy.data_classes.container.device"], [75, "module-ivy.data_classes.container.elementwise"], [76, "module-ivy.data_classes.container.experimental"], [76, "module-ivy.data_classes.container.experimental.activations"], [76, "module-ivy.data_classes.container.experimental.conversions"], [76, "module-ivy.data_classes.container.experimental.creation"], [76, "module-ivy.data_classes.container.experimental.data_type"], [76, "module-ivy.data_classes.container.experimental.device"], [76, "module-ivy.data_classes.container.experimental.elementwise"], [76, "module-ivy.data_classes.container.experimental.general"], [76, "module-ivy.data_classes.container.experimental.gradients"], [76, "module-ivy.data_classes.container.experimental.image"], [76, "module-ivy.data_classes.container.experimental.layers"], [76, "module-ivy.data_classes.container.experimental.linear_algebra"], [76, "module-ivy.data_classes.container.experimental.losses"], [76, "module-ivy.data_classes.container.experimental.manipulation"], [76, "module-ivy.data_classes.container.experimental.norms"], [76, "module-ivy.data_classes.container.experimental.random"], [76, "module-ivy.data_classes.container.experimental.searching"], [76, "module-ivy.data_classes.container.experimental.set"], [76, "module-ivy.data_classes.container.experimental.sorting"], [76, "module-ivy.data_classes.container.experimental.statistical"], [76, "module-ivy.data_classes.container.experimental.utility"], [77, "module-ivy.data_classes.container.general"], [78, "module-ivy.data_classes.container.gradients"], [79, "module-ivy.data_classes.container.image"], [80, "module-ivy.data_classes.container.layers"], [81, "module-ivy.data_classes.container.linear_algebra"], [82, "module-ivy.data_classes.container.losses"], [83, "module-ivy.data_classes.container.manipulation"], [84, "module-ivy.data_classes.container.norms"], [85, "module-ivy.data_classes.container.random"], [86, "module-ivy.data_classes.container.searching"], [87, "module-ivy.data_classes.container.set"], [88, "module-ivy.data_classes.container.sorting"], [89, "module-ivy.data_classes.container.statistical"], [90, "module-ivy.data_classes.container.utility"], [91, "module-ivy.data_classes.container.wrapping"], [92, "module-ivy.data_classes.factorized_tensor.base"], [93, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [98, "module-ivy.data_classes.array.array"], [99, "module-ivy.data_classes.container.container"], [101, "module-ivy.data_classes.nested_array.nested_array"], [102, "module-ivy.data_classes.nested_array.base"], [103, "module-ivy.data_classes.nested_array.elementwise"], [363, "module-ivy.functional.ivy.experimental.activations"], [364, "module-ivy.functional.ivy.experimental.constants"], [365, "module-ivy.functional.ivy.experimental.creation"], [366, "module-ivy.functional.ivy.experimental.data_type"], [367, "module-ivy.functional.ivy.experimental.device"], [368, "module-ivy.functional.ivy.experimental.elementwise"], [369, "module-ivy.functional.ivy.experimental.general"], [370, "module-ivy.functional.ivy.experimental.gradients"], [371, "module-ivy.functional.ivy.experimental.layers"], [372, "module-ivy.functional.ivy.experimental.linear_algebra"], [373, "module-ivy.functional.ivy.experimental.losses"], [374, "module-ivy.functional.ivy.experimental.manipulation"], [375, "module-ivy.functional.ivy.experimental.meta"], [376, "module-ivy.functional.ivy.experimental.nest"], [377, "module-ivy.functional.ivy.experimental.norms"], [378, "module-ivy.functional.ivy.experimental.random"], [379, "module-ivy.functional.ivy.experimental.searching"], [380, "module-ivy.functional.ivy.experimental.set"], [381, "module-ivy.functional.ivy.experimental.sorting"], [382, "module-ivy.functional.ivy.experimental.sparse_array"], [383, "module-ivy.functional.ivy.experimental.statistical"], [384, "module-ivy.functional.ivy.experimental.utility"], [622, "module-ivy.functional.ivy.activations"], [623, "module-ivy.functional.ivy.constants"], [624, "module-ivy.functional.ivy.control_flow_ops"], [625, "module-ivy.functional.ivy.creation"], [626, "module-ivy.functional.ivy.data_type"], [627, "module-ivy.functional.ivy.device"], [628, "module-ivy.functional.ivy.elementwise"], [629, "module-ivy.functional.ivy.experimental"], [630, "module-ivy.functional.ivy.general"], [631, "module-ivy.functional.ivy.gradients"], [632, "module-ivy.functional.ivy.layers"], [633, "module-ivy.functional.ivy.linear_algebra"], [634, "module-ivy.functional.ivy.losses"], [635, "module-ivy.functional.ivy.manipulation"], [636, "module-ivy.functional.ivy.meta"], [637, "module-ivy.functional.ivy.nest"], [638, "module-ivy.functional.ivy.norms"], [639, "module-ivy.functional.ivy.random"], [640, "module-ivy.functional.ivy.searching"], [641, "module-ivy.functional.ivy.set"], [642, "module-ivy.functional.ivy.sorting"], [643, "module-ivy.functional.ivy.statistical"], [644, "module-ivy.functional.ivy.utility"], [767, "module-ivy_tests.test_ivy.helpers.assertions"], [768, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [769, "module-ivy_tests.test_ivy.helpers.function_testing"], [770, "module-ivy_tests.test_ivy.helpers.globals"], [771, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [776, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [778, "module-ivy_tests.test_ivy.helpers.structs"], [779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [780, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [784, "module-ivy.stateful.activations"], [785, "module-ivy.stateful.converters"], [786, "module-ivy.stateful.helpers"], [787, "module-ivy.stateful.initializers"], [788, "module-ivy.stateful.layers"], [789, "module-ivy.stateful.losses"], [790, "module-ivy.stateful.module"], [791, "module-ivy.stateful.norms"], [792, "module-ivy.stateful.optimizers"], [793, "module-ivy.stateful.sequential"], [794, "module-ivy.utils.assertions"], [795, "module-ivy.utils.backend"], [796, "module-ivy.utils.backend.ast_helpers"], [797, "module-ivy.utils.backend.handler"], [798, "module-ivy.utils.backend.sub_backend_handler"], [799, "module-ivy.utils.binaries"], [800, "module-ivy.utils.dynamic_import"], [801, "module-ivy.utils.einsum_parser"], [802, "module-ivy.utils.einsum_path_helpers"], [803, "module-ivy.utils.exceptions"], [804, "module-ivy.utils.inspection"], [805, "module-ivy.utils.logging"], [806, "module-ivy.utils.profiler"], [807, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[47, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[48, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[48, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[49, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[49, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[50, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[50, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[51, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[51, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[51, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[51, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[51, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[52, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[52, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[53, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[53, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[53, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[53, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[53, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[53, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[53, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[53, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[53, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[53, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[53, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[53, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[53, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[53, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[53, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[53, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[53, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[53, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[53, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[53, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[53, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[53, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[53, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[53, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[53, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[53, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[53, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[53, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[53, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[53, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[53, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[53, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[53, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[53, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[53, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[53, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[53, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[53, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[53, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[53, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[53, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[53, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[53, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[53, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[53, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[53, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[54, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[54, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[55, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[55, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[56, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[56, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[56, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[57, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[57, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[58, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[58, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[59, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[59, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[60, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[60, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[61, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[61, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[62, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[62, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[62, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[62, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[63, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[63, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[64, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[64, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[64, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[64, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[65, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[65, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[66, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[66, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[67, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[67, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[68, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[68, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[68, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[69, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[69, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[70, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[70, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[70, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[70, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[70, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[70, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[71, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[71, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[72, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[72, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[73, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[73, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[74, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[74, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[74, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[75, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[75, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[76, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[76, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[76, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[76, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[76, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[76, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[76, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[76, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[76, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[76, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[76, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[76, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardsilu"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unflatten"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool3d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[76, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfinv"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardsilu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardsilu"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[76, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[76, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[76, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[76, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[76, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[76, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[76, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[76, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[76, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[76, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[76, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[76, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[76, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[76, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[76, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[76, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[76, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[76, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[76, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[76, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[76, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[76, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[76, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adaptive_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool3d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_erfinv() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfinv"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[76, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_lgamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_lgamma"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[76, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[76, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[76, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[76, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[76, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[76, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[76, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unflatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unflatten"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[76, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[76, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[76, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[76, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_size() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_size"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[77, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "size() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.size"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[77, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[78, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[78, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[79, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[79, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[79, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[80, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[80, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[81, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[81, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[82, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[82, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[83, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[83, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[84, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[84, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[85, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[85, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[85, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[86, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[86, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[87, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[87, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[87, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[87, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[87, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[88, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[88, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[89, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[89, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[90, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[90, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[91, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[91, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[91, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[92, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[92, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[93, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[93, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[94, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[94, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[95, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[96, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[97, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[97, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[98, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[98, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[98, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[98, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[99, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[99, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[99, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[101, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[101, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[102, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[102, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[103, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[103, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[106, "ivy.gelu"], [622, "ivy.gelu"]], "gelu() (ivy.array method)": [[106, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[106, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[107, "ivy.hardswish"], [622, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[107, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[107, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[108, "ivy.leaky_relu"], [622, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[108, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[108, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[109, "ivy.log_softmax"], [622, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[109, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[109, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[110, "ivy.mish"], [622, "ivy.mish"]], "mish() (ivy.array method)": [[110, "ivy.Array.mish"]], "mish() (ivy.container method)": [[110, "ivy.Container.mish"]], "relu() (in module ivy)": [[111, "ivy.relu"], [622, "ivy.relu"]], "relu() (ivy.array method)": [[111, "ivy.Array.relu"]], "relu() (ivy.container method)": [[111, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[112, "ivy.sigmoid"], [622, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[112, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[112, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[113, "ivy.softmax"], [622, "ivy.softmax"]], "softmax() (ivy.array method)": [[113, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[113, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[114, "ivy.softplus"], [622, "ivy.softplus"]], "softplus() (ivy.array method)": [[114, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[114, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[115, "ivy.softsign"], [622, "ivy.softsign"]], "cmp_is() (in module ivy)": [[116, "ivy.cmp_is"], [624, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[117, "ivy.cmp_isnot"], [624, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[118, "ivy.for_loop"], [624, "ivy.for_loop"]], "if_else() (in module ivy)": [[119, "ivy.if_else"], [624, "ivy.if_else"]], "try_except() (in module ivy)": [[120, "ivy.try_except"], [624, "ivy.try_except"]], "while_loop() (in module ivy)": [[121, "ivy.while_loop"], [624, "ivy.while_loop"]], "arange() (in module ivy)": [[122, "ivy.arange"], [625, "ivy.arange"]], "array() (in module ivy)": [[123, "ivy.array"], [625, "ivy.array"]], "asarray() (in module ivy)": [[124, "ivy.asarray"], [625, "ivy.asarray"]], "asarray() (ivy.array method)": [[124, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[124, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[125, "ivy.copy_array"], [625, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[125, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[125, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[126, "ivy.empty"], [625, "ivy.empty"]], "empty_like() (in module ivy)": [[127, "ivy.empty_like"], [625, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[127, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[127, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[128, "ivy.eye"], [625, "ivy.eye"]], "from_dlpack() (in module ivy)": [[129, "ivy.from_dlpack"], [625, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[129, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[129, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[130, "ivy.frombuffer"], [625, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[130, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[131, "ivy.full"], [625, "ivy.full"]], "full_like() (in module ivy)": [[132, "ivy.full_like"], [625, "ivy.full_like"]], "full_like() (ivy.array method)": [[132, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[132, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[133, "ivy.linspace"], [625, "ivy.linspace"]], "linspace() (ivy.array method)": [[133, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[133, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[134, "ivy.logspace"], [625, "ivy.logspace"]], "logspace() (ivy.array method)": [[134, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[134, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[135, "ivy.meshgrid"], [625, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[135, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[135, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[136, "ivy.native_array"], [625, "ivy.native_array"]], "native_array() (ivy.array method)": [[136, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[136, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[137, "ivy.one_hot"], [625, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[137, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[137, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[138, "ivy.ones"], [625, "ivy.ones"]], "ones_like() (in module ivy)": [[139, "ivy.ones_like"], [625, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[139, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[139, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[140, "ivy.to_dlpack"], [625, "ivy.to_dlpack"]], "tril() (in module ivy)": [[141, "ivy.tril"], [625, "ivy.tril"]], "tril() (ivy.array method)": [[141, "ivy.Array.tril"]], "tril() (ivy.container method)": [[141, "ivy.Container.tril"]], "triu() (in module ivy)": [[142, "ivy.triu"], [625, "ivy.triu"]], "triu() (ivy.array method)": [[142, "ivy.Array.triu"]], "triu() (ivy.container method)": [[142, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[143, "ivy.triu_indices"], [625, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[143, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[144, "ivy.zeros"], [625, "ivy.zeros"]], "zeros_like() (in module ivy)": [[145, "ivy.zeros_like"], [625, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[145, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[145, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[146, "ivy.as_ivy_dtype"], [626, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[147, "ivy.as_native_dtype"], [626, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[148, "ivy.astype"], [626, "ivy.astype"]], "astype() (ivy.array method)": [[148, "ivy.Array.astype"]], "astype() (ivy.container method)": [[148, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[149, "ivy.broadcast_arrays"], [626, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[149, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[149, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[150, "ivy.broadcast_to"], [626, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[150, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[150, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[151, "ivy.can_cast"], [626, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[151, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[151, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[152, "ivy.check_float"], [626, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[153, "ivy.closest_valid_dtype"], [626, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[154, "ivy.default_complex_dtype"], [626, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[155, "ivy.default_dtype"], [626, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[156, "ivy.default_float_dtype"], [626, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[157, "ivy.default_int_dtype"], [626, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[158, "ivy.default_uint_dtype"], [626, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[159, "ivy.dtype"], [626, "ivy.dtype"]], "dtype() (ivy.array method)": [[159, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[159, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[160, "ivy.dtype_bits"], [626, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[161, "ivy.finfo"], [626, "ivy.finfo"]], "finfo() (ivy.array method)": [[161, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[161, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[162, "ivy.function_supported_dtypes"], [626, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[163, "ivy.function_unsupported_dtypes"], [626, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[164, "ivy.iinfo"], [626, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[164, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[164, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[165, "ivy.infer_default_dtype"], [626, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[166, "ivy.invalid_dtype"], [626, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[167, "ivy.is_bool_dtype"], [626, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[167, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[167, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[168, "ivy.is_complex_dtype"], [626, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[168, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[169, "ivy.is_float_dtype"], [626, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[169, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[169, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[170, "ivy.is_hashable_dtype"], [626, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[171, "ivy.is_int_dtype"], [626, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[171, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[171, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[172, "ivy.is_native_dtype"], [626, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[173, "ivy.is_uint_dtype"], [626, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[173, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[173, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[174, "ivy.promote_types"], [626, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[175, "ivy.promote_types_of_inputs"], [626, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[176, "ivy.result_type"], [626, "ivy.result_type"]], "result_type() (ivy.array method)": [[176, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[176, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[177, "ivy.set_default_complex_dtype"], [626, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[178, "ivy.set_default_dtype"], [626, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[179, "ivy.set_default_float_dtype"], [626, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[180, "ivy.set_default_int_dtype"], [626, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[181, "ivy.set_default_uint_dtype"], [626, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[182, "ivy.type_promote_arrays"], [626, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[183, "ivy.unset_default_complex_dtype"], [626, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[184, "ivy.unset_default_dtype"], [626, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[185, "ivy.unset_default_float_dtype"], [626, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[186, "ivy.unset_default_int_dtype"], [626, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[187, "ivy.unset_default_uint_dtype"], [626, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[188, "ivy.valid_dtype"], [626, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[189, "ivy.as_ivy_dev"], [627, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[190, "ivy.as_native_dev"], [627, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[191, "ivy.clear_cached_mem_on_dev"], [627, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[192, "ivy.default_device"], [627, "ivy.default_device"]], "dev() (in module ivy)": [[193, "ivy.dev"], [627, "ivy.dev"]], "dev() (ivy.array method)": [[193, "ivy.Array.dev"]], "dev() (ivy.container method)": [[193, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[194, "ivy.dev_util"], [627, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[195, "ivy.function_supported_devices"], [627, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[196, "ivy.function_unsupported_devices"], [627, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[197, "ivy.get_all_ivy_arrays_on_dev"], [627, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[198, "ivy.gpu_is_available"], [627, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[199, "ivy.handle_soft_device_variable"], [627, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[200, "ivy.num_cpu_cores"], [627, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[201, "ivy.num_gpus"], [627, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[202, "ivy.num_ivy_arrays_on_dev"], [627, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[203, "ivy.percent_used_mem_on_dev"], [627, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[204, "ivy.print_all_ivy_arrays_on_dev"], [627, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[205, "ivy.set_default_device"], [627, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[206, "ivy.set_soft_device_mode"], [627, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[207, "ivy.set_split_factor"], [627, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[208, "ivy.split_factor"], [627, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[209, "ivy.split_func_call"], [627, "ivy.split_func_call"]], "to_device() (in module ivy)": [[210, "ivy.to_device"], [627, "ivy.to_device"]], "to_device() (ivy.array method)": [[210, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[210, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[211, "ivy.total_mem_on_dev"], [627, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[212, "ivy.tpu_is_available"], [627, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[213, "ivy.unset_default_device"], [627, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[214, "ivy.unset_soft_device_mode"], [627, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[215, "ivy.used_mem_on_dev"], [627, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[216, "ivy.abs"], [628, "ivy.abs"]], "abs() (ivy.array method)": [[216, "ivy.Array.abs"]], "abs() (ivy.container method)": [[216, "ivy.Container.abs"]], "acos() (in module ivy)": [[217, "ivy.acos"], [628, "ivy.acos"]], "acos() (ivy.array method)": [[217, "ivy.Array.acos"]], "acos() (ivy.container method)": [[217, "ivy.Container.acos"]], "acosh() (in module ivy)": [[218, "ivy.acosh"], [628, "ivy.acosh"]], "acosh() (ivy.array method)": [[218, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[218, "ivy.Container.acosh"]], "add() (in module ivy)": [[219, "ivy.add"], [628, "ivy.add"]], "add() (ivy.array method)": [[219, "ivy.Array.add"]], "add() (ivy.container method)": [[219, "ivy.Container.add"]], "angle() (in module ivy)": [[220, "ivy.angle"], [628, "ivy.angle"]], "angle() (ivy.array method)": [[220, "ivy.Array.angle"]], "angle() (ivy.container method)": [[220, "ivy.Container.angle"]], "asin() (in module ivy)": [[221, "ivy.asin"], [628, "ivy.asin"]], "asin() (ivy.array method)": [[221, "ivy.Array.asin"]], "asin() (ivy.container method)": [[221, "ivy.Container.asin"]], "asinh() (in module ivy)": [[222, "ivy.asinh"], [628, "ivy.asinh"]], "asinh() (ivy.array method)": [[222, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[222, "ivy.Container.asinh"]], "atan() (in module ivy)": [[223, "ivy.atan"], [628, "ivy.atan"]], "atan() (ivy.array method)": [[223, "ivy.Array.atan"]], "atan() (ivy.container method)": [[223, "ivy.Container.atan"]], "atan2() (in module ivy)": [[224, "ivy.atan2"], [628, "ivy.atan2"]], "atan2() (ivy.array method)": [[224, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[224, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[225, "ivy.atanh"], [628, "ivy.atanh"]], "atanh() (ivy.array method)": [[225, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[225, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[226, "ivy.bitwise_and"], [628, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[226, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[226, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[227, "ivy.bitwise_invert"], [628, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[227, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[227, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[228, "ivy.bitwise_left_shift"], [628, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[228, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[228, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[229, "ivy.bitwise_or"], [628, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[229, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[229, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[230, "ivy.bitwise_right_shift"], [628, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[230, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[230, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[231, "ivy.bitwise_xor"], [628, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[231, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[231, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[232, "ivy.ceil"], [628, "ivy.ceil"]], "ceil() (ivy.array method)": [[232, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[232, "ivy.Container.ceil"]], "cos() (in module ivy)": [[233, "ivy.cos"], [628, "ivy.cos"]], "cos() (ivy.array method)": [[233, "ivy.Array.cos"]], "cos() (ivy.container method)": [[233, "ivy.Container.cos"]], "cosh() (in module ivy)": [[234, "ivy.cosh"], [628, "ivy.cosh"]], "cosh() (ivy.array method)": [[234, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[234, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[235, "ivy.deg2rad"], [628, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[235, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[235, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[236, "ivy.divide"], [628, "ivy.divide"]], "divide() (ivy.array method)": [[236, "ivy.Array.divide"]], "divide() (ivy.container method)": [[236, "ivy.Container.divide"]], "equal() (in module ivy)": [[237, "ivy.equal"], [628, "ivy.equal"]], "equal() (ivy.array method)": [[237, "ivy.Array.equal"]], "equal() (ivy.container method)": [[237, "ivy.Container.equal"]], "erf() (in module ivy)": [[238, "ivy.erf"], [628, "ivy.erf"]], "erf() (ivy.array method)": [[238, "ivy.Array.erf"]], "erf() (ivy.container method)": [[238, "ivy.Container.erf"]], "exp() (in module ivy)": [[239, "ivy.exp"], [628, "ivy.exp"]], "exp() (ivy.array method)": [[239, "ivy.Array.exp"]], "exp() (ivy.container method)": [[239, "ivy.Container.exp"]], "exp2() (in module ivy)": [[240, "ivy.exp2"], [628, "ivy.exp2"]], "exp2() (ivy.array method)": [[240, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[240, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[241, "ivy.expm1"], [628, "ivy.expm1"]], "expm1() (ivy.array method)": [[241, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[241, "ivy.Container.expm1"]], "floor() (in module ivy)": [[242, "ivy.floor"], [628, "ivy.floor"]], "floor() (ivy.array method)": [[242, "ivy.Array.floor"]], "floor() (ivy.container method)": [[242, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[243, "ivy.floor_divide"], [628, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[243, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[243, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[244, "ivy.fmin"], [628, "ivy.fmin"]], "fmin() (ivy.array method)": [[244, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[244, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[245, "ivy.fmod"], [628, "ivy.fmod"]], "fmod() (ivy.array method)": [[245, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[245, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[246, "ivy.gcd"], [628, "ivy.gcd"]], "gcd() (ivy.array method)": [[246, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[246, "ivy.Container.gcd"]], "greater() (in module ivy)": [[247, "ivy.greater"], [628, "ivy.greater"]], "greater() (ivy.array method)": [[247, "ivy.Array.greater"]], "greater() (ivy.container method)": [[247, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[248, "ivy.greater_equal"], [628, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[248, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[248, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[249, "ivy.imag"], [628, "ivy.imag"]], "imag() (ivy.array method)": [[249, "ivy.Array.imag"]], "imag() (ivy.container method)": [[249, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[250, "ivy.isfinite"], [628, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[250, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[250, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[251, "ivy.isinf"], [628, "ivy.isinf"]], "isinf() (ivy.array method)": [[251, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[251, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[252, "ivy.isnan"], [628, "ivy.isnan"]], "isnan() (ivy.array method)": [[252, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[252, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[253, "ivy.isreal"], [628, "ivy.isreal"]], "isreal() (ivy.array method)": [[253, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[253, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[254, "ivy.lcm"], [628, "ivy.lcm"]], "lcm() (ivy.array method)": [[254, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[254, "ivy.Container.lcm"]], "less() (in module ivy)": [[255, "ivy.less"], [628, "ivy.less"]], "less() (ivy.array method)": [[255, "ivy.Array.less"]], "less() (ivy.container method)": [[255, "ivy.Container.less"]], "less_equal() (in module ivy)": [[256, "ivy.less_equal"], [628, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[256, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[256, "ivy.Container.less_equal"]], "log() (in module ivy)": [[257, "ivy.log"], [628, "ivy.log"]], "log() (ivy.array method)": [[257, "ivy.Array.log"]], "log() (ivy.container method)": [[257, "ivy.Container.log"]], "log10() (in module ivy)": [[258, "ivy.log10"], [628, "ivy.log10"]], "log10() (ivy.array method)": [[258, "ivy.Array.log10"]], "log10() (ivy.container method)": [[258, "ivy.Container.log10"]], "log1p() (in module ivy)": [[259, "ivy.log1p"], [628, "ivy.log1p"]], "log1p() (ivy.array method)": [[259, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[259, "ivy.Container.log1p"]], "log2() (in module ivy)": [[260, "ivy.log2"], [628, "ivy.log2"]], "log2() (ivy.array method)": [[260, "ivy.Array.log2"]], "log2() (ivy.container method)": [[260, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[261, "ivy.logaddexp"], [628, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[261, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[261, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[262, "ivy.logaddexp2"], [628, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[262, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[262, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[263, "ivy.logical_and"], [628, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[263, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[263, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[264, "ivy.logical_not"], [628, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[264, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[264, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[265, "ivy.logical_or"], [628, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[265, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[265, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[266, "ivy.logical_xor"], [628, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[266, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[266, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[267, "ivy.maximum"], [628, "ivy.maximum"]], "maximum() (ivy.array method)": [[267, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[267, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[268, "ivy.minimum"], [628, "ivy.minimum"]], "minimum() (ivy.array method)": [[268, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[268, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[269, "ivy.multiply"], [628, "ivy.multiply"]], "multiply() (ivy.array method)": [[269, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[269, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[270, "ivy.nan_to_num"], [628, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[270, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[270, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[271, "ivy.negative"], [628, "ivy.negative"]], "negative() (ivy.array method)": [[271, "ivy.Array.negative"]], "negative() (ivy.container method)": [[271, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[272, "ivy.not_equal"], [628, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[272, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[272, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[273, "ivy.positive"], [628, "ivy.positive"]], "positive() (ivy.array method)": [[273, "ivy.Array.positive"]], "positive() (ivy.container method)": [[273, "ivy.Container.positive"]], "pow() (in module ivy)": [[274, "ivy.pow"], [628, "ivy.pow"]], "pow() (ivy.array method)": [[274, "ivy.Array.pow"]], "pow() (ivy.container method)": [[274, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[275, "ivy.rad2deg"], [628, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[275, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[275, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[276, "ivy.real"], [628, "ivy.real"]], "real() (ivy.array method)": [[276, "ivy.Array.real"]], "real() (ivy.container method)": [[276, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[277, "ivy.reciprocal"], [628, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[277, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[277, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[278, "ivy.remainder"], [628, "ivy.remainder"]], "remainder() (ivy.array method)": [[278, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[278, "ivy.Container.remainder"]], "round() (in module ivy)": [[279, "ivy.round"], [628, "ivy.round"]], "round() (ivy.array method)": [[279, "ivy.Array.round"]], "round() (ivy.container method)": [[279, "ivy.Container.round"]], "sign() (in module ivy)": [[280, "ivy.sign"], [628, "ivy.sign"]], "sign() (ivy.array method)": [[280, "ivy.Array.sign"]], "sign() (ivy.container method)": [[280, "ivy.Container.sign"]], "sin() (in module ivy)": [[281, "ivy.sin"], [628, "ivy.sin"]], "sin() (ivy.array method)": [[281, "ivy.Array.sin"]], "sin() (ivy.container method)": [[281, "ivy.Container.sin"]], "sinh() (in module ivy)": [[282, "ivy.sinh"], [628, "ivy.sinh"]], "sinh() (ivy.array method)": [[282, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[282, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[283, "ivy.sqrt"], [628, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[283, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[283, "ivy.Container.sqrt"]], "square() (in module ivy)": [[284, "ivy.square"], [628, "ivy.square"]], "square() (ivy.array method)": [[284, "ivy.Array.square"]], "square() (ivy.container method)": [[284, "ivy.Container.square"]], "subtract() (in module ivy)": [[285, "ivy.subtract"], [628, "ivy.subtract"]], "subtract() (ivy.array method)": [[285, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[285, "ivy.Container.subtract"]], "tan() (in module ivy)": [[286, "ivy.tan"], [628, "ivy.tan"]], "tan() (ivy.array method)": [[286, "ivy.Array.tan"]], "tan() (ivy.container method)": [[286, "ivy.Container.tan"]], "tanh() (in module ivy)": [[287, "ivy.tanh"], [628, "ivy.tanh"]], "tanh() (ivy.array method)": [[287, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[287, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[288, "ivy.trapz"], [628, "ivy.trapz"]], "trapz() (ivy.array method)": [[288, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[288, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[289, "ivy.trunc"], [628, "ivy.trunc"]], "trunc() (ivy.array method)": [[289, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[289, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[290, "ivy.trunc_divide"], [628, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[290, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[290, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[291, "ivy.celu"], [363, "ivy.celu"]], "celu() (ivy.array method)": [[291, "ivy.Array.celu"]], "celu() (ivy.container method)": [[291, "ivy.Container.celu"]], "elu() (in module ivy)": [[292, "ivy.elu"], [363, "ivy.elu"]], "elu() (ivy.array method)": [[292, "ivy.Array.elu"]], "elu() (ivy.container method)": [[292, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[293, "ivy.hardshrink"], [363, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[293, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[293, "ivy.Container.hardshrink"]], "hardsilu() (in module ivy)": [[294, "ivy.hardsilu"], [363, "ivy.hardsilu"]], "hardsilu() (ivy.array method)": [[294, "ivy.Array.hardsilu"]], "hardsilu() (ivy.container method)": [[294, "ivy.Container.hardsilu"]], "hardtanh() (in module ivy)": [[295, "ivy.hardtanh"], [363, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[295, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[295, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[296, "ivy.logit"], [363, "ivy.logit"]], "logit() (ivy.array method)": [[296, "ivy.Array.logit"]], "logit() (ivy.container method)": [[296, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[297, "ivy.logsigmoid"], [363, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[297, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[297, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[298, "ivy.prelu"], [363, "ivy.prelu"]], "prelu() (ivy.array method)": [[298, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[298, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[299, "ivy.relu6"], [363, "ivy.relu6"]], "relu6() (ivy.array method)": [[299, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[299, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[300, "ivy.scaled_tanh"], [363, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[300, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[300, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[301, "ivy.selu"], [363, "ivy.selu"]], "selu() (ivy.array method)": [[301, "ivy.Array.selu"]], "selu() (ivy.container method)": [[301, "ivy.Container.selu"]], "silu() (in module ivy)": [[302, "ivy.silu"], [363, "ivy.silu"]], "silu() (ivy.array method)": [[302, "ivy.Array.silu"]], "silu() (ivy.container method)": [[302, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[303, "ivy.softshrink"], [363, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[303, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[303, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[304, "ivy.stanh"], [363, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[305, "ivy.tanhshrink"], [363, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[305, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[305, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[306, "ivy.threshold"], [363, "ivy.threshold"]], "threshold() (ivy.array method)": [[306, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[306, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[307, "ivy.thresholded_relu"], [363, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[307, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[307, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[308, "ivy.blackman_window"], [365, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[308, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[308, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[309, "ivy.eye_like"], [365, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[309, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[309, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[310, "ivy.hamming_window"], [365, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[310, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[311, "ivy.hann_window"], [365, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[311, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[312, "ivy.indices"], [365, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[313, "ivy.kaiser_bessel_derived_window"], [365, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[313, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[314, "ivy.kaiser_window"], [365, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[314, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[315, "ivy.mel_weight_matrix"], [365, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[315, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[315, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[316, "ivy.ndenumerate"], [365, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[317, "ivy.ndindex"], [365, "ivy.ndindex"]], "polyval() (in module ivy)": [[318, "ivy.polyval"], [365, "ivy.polyval"]], "polyval() (ivy.container method)": [[318, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[319, "ivy.random_cp"], [365, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[320, "ivy.random_parafac2"], [365, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[321, "ivy.random_tr"], [365, "ivy.random_tr"]], "random_tt() (in module ivy)": [[322, "ivy.random_tt"], [365, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[323, "ivy.random_tucker"], [365, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[324, "ivy.tril_indices"], [365, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[324, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[325, "ivy.trilu"], [365, "ivy.trilu"]], "trilu() (ivy.array method)": [[325, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[325, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[326, "ivy.unsorted_segment_mean"], [365, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[327, "ivy.unsorted_segment_min"], [365, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[327, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[327, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[328, "ivy.unsorted_segment_sum"], [365, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[328, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[328, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[329, "ivy.vorbis_window"], [365, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[329, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[330, "ivy.allclose"], [368, "ivy.allclose"]], "allclose() (ivy.array method)": [[330, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[330, "ivy.Container.allclose"]], "amax() (in module ivy)": [[331, "ivy.amax"], [368, "ivy.amax"]], "amax() (ivy.array method)": [[331, "ivy.Array.amax"]], "amax() (ivy.container method)": [[331, "ivy.Container.amax"]], "amin() (in module ivy)": [[332, "ivy.amin"], [368, "ivy.amin"]], "amin() (ivy.array method)": [[332, "ivy.Array.amin"]], "amin() (ivy.container method)": [[332, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[333, "ivy.binarizer"], [368, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[333, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[333, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[334, "ivy.conj"], [368, "ivy.conj"]], "conj() (ivy.array method)": [[334, "ivy.Array.conj"]], "conj() (ivy.container method)": [[334, "ivy.Container.conj"]], "copysign() (in module ivy)": [[335, "ivy.copysign"], [368, "ivy.copysign"]], "copysign() (ivy.array method)": [[335, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[335, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[336, "ivy.count_nonzero"], [368, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[336, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[336, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[337, "ivy.diff"], [368, "ivy.diff"]], "diff() (ivy.array method)": [[337, "ivy.Array.diff"]], "diff() (ivy.container method)": [[337, "ivy.Container.diff"]], "digamma() (in module ivy)": [[338, "ivy.digamma"], [368, "ivy.digamma"]], "digamma() (ivy.array method)": [[338, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[338, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[339, "ivy.erfc"], [368, "ivy.erfc"]], "erfc() (ivy.array method)": [[339, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[339, "ivy.Container.erfc"]], "erfinv() (in module ivy)": [[340, "ivy.erfinv"], [368, "ivy.erfinv"]], "erfinv() (ivy.array method)": [[340, "ivy.Array.erfinv"]], "erfinv() (ivy.container method)": [[340, "ivy.Container.erfinv"]], "fix() (in module ivy)": [[341, "ivy.fix"], [368, "ivy.fix"]], "fix() (ivy.array method)": [[341, "ivy.Array.fix"]], "fix() (ivy.container method)": [[341, "ivy.Container.fix"]], "float_power() (in module ivy)": [[342, "ivy.float_power"], [368, "ivy.float_power"]], "float_power() (ivy.array method)": [[342, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[342, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[343, "ivy.fmax"], [368, "ivy.fmax"]], "fmax() (ivy.array method)": [[343, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[343, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[344, "ivy.frexp"], [368, "ivy.frexp"]], "frexp() (ivy.array method)": [[344, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[344, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[345, "ivy.gradient"], [368, "ivy.gradient"]], "gradient() (ivy.array method)": [[345, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[345, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[346, "ivy.hypot"], [368, "ivy.hypot"]], "hypot() (ivy.array method)": [[346, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[346, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[347, "ivy.isclose"], [368, "ivy.isclose"]], "isclose() (ivy.array method)": [[347, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[347, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[348, "ivy.ldexp"], [368, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[348, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[348, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[349, "ivy.lerp"], [368, "ivy.lerp"]], "lerp() (ivy.array method)": [[349, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[349, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[350, "ivy.lgamma"], [368, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[350, "ivy.Array.lgamma"]], "lgamma() (ivy.container method)": [[350, "ivy.Container.lgamma"]], "modf() (in module ivy)": [[351, "ivy.modf"], [368, "ivy.modf"]], "modf() (ivy.array method)": [[351, "ivy.Array.modf"]], "modf() (ivy.container method)": [[351, "ivy.Container.modf"]], "nansum() (in module ivy)": [[352, "ivy.nansum"], [368, "ivy.nansum"]], "nansum() (ivy.array method)": [[352, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[352, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[353, "ivy.nextafter"], [368, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[353, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[353, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[354, "ivy.signbit"], [368, "ivy.signbit"]], "signbit() (ivy.array method)": [[354, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[354, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[355, "ivy.sinc"], [368, "ivy.sinc"]], "sinc() (ivy.array method)": [[355, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[355, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[356, "ivy.sparsify_tensor"], [368, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[356, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[356, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[357, "ivy.xlogy"], [368, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[357, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[357, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[358, "ivy.zeta"], [368, "ivy.zeta"]], "zeta() (ivy.array method)": [[358, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[358, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[359, "ivy.reduce"], [369, "ivy.reduce"]], "reduce() (ivy.array method)": [[359, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[359, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[360, "ivy.bind_custom_gradient_function"], [370, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[361, "ivy.jvp"], [370, "ivy.jvp"]], "vjp() (in module ivy)": [[362, "ivy.vjp"], [370, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[363, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[364, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[365, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[366, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[367, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[368, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[369, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[370, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[371, "ivy.adaptive_avg_pool1d"], [385, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[371, "ivy.adaptive_avg_pool2d"], [386, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[371, "ivy.adaptive_max_pool2d"], [387, "ivy.adaptive_max_pool2d"]], "adaptive_max_pool3d() (in module ivy)": [[371, "ivy.adaptive_max_pool3d"], [388, "ivy.adaptive_max_pool3d"]], "area_interpolate() (in module ivy)": [[371, "ivy.area_interpolate"], [389, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[371, "ivy.avg_pool1d"], [390, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[371, "ivy.avg_pool2d"], [391, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[371, "ivy.avg_pool3d"], [392, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[371, "ivy.dct"], [393, "ivy.dct"]], "dft() (in module ivy)": [[371, "ivy.dft"], [394, "ivy.dft"]], "dropout1d() (in module ivy)": [[371, "ivy.dropout1d"], [395, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[371, "ivy.dropout2d"], [396, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[371, "ivy.dropout3d"], [397, "ivy.dropout3d"]], "embedding() (in module ivy)": [[371, "ivy.embedding"], [398, "ivy.embedding"]], "fft() (in module ivy)": [[371, "ivy.fft"], [399, "ivy.fft"]], "fft2() (in module ivy)": [[371, "ivy.fft2"], [400, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[371, "ivy.generate_einsum_equation"], [401, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[371, "ivy.get_interpolate_kernel"], [402, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[371, "ivy.idct"], [403, "ivy.idct"]], "ifft() (in module ivy)": [[371, "ivy.ifft"], [404, "ivy.ifft"]], "ifftn() (in module ivy)": [[371, "ivy.ifftn"], [405, "ivy.ifftn"]], "interp() (in module ivy)": [[371, "ivy.interp"], [406, "ivy.interp"]], "interpolate() (in module ivy)": [[371, "ivy.interpolate"], [407, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[371, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[371, "ivy.max_pool1d"], [408, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[371, "ivy.max_pool2d"], [409, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[371, "ivy.max_pool3d"], [410, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[371, "ivy.max_unpool1d"], [411, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[371, "ivy.nearest_interpolate"], [412, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[371, "ivy.pool"], [413, "ivy.pool"]], "reduce_window() (in module ivy)": [[371, "ivy.reduce_window"], [414, "ivy.reduce_window"]], "rfft() (in module ivy)": [[371, "ivy.rfft"], [415, "ivy.rfft"]], "rfftn() (in module ivy)": [[371, "ivy.rfftn"], [416, "ivy.rfftn"]], "rnn() (in module ivy)": [[371, "ivy.rnn"], [417, "ivy.rnn"]], "sliding_window() (in module ivy)": [[371, "ivy.sliding_window"], [418, "ivy.sliding_window"]], "stft() (in module ivy)": [[371, "ivy.stft"], [419, "ivy.stft"]], "adjoint() (in module ivy)": [[372, "ivy.adjoint"], [420, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[372, "ivy.batched_outer"], [421, "ivy.batched_outer"]], "cond() (in module ivy)": [[372, "ivy.cond"], [422, "ivy.cond"]], "diagflat() (in module ivy)": [[372, "ivy.diagflat"], [423, "ivy.diagflat"]], "dot() (in module ivy)": [[372, "ivy.dot"], [424, "ivy.dot"]], "eig() (in module ivy)": [[372, "ivy.eig"], [425, "ivy.eig"], [633, "ivy.eig"], [668, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[372, "ivy.eigh_tridiagonal"], [426, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[372, "ivy.eigvals"], [427, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[372, "ivy.general_inner_product"], [428, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[372, "ivy.higher_order_moment"], [429, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[372, "ivy.initialize_tucker"], [430, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[372, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[372, "ivy.khatri_rao"], [431, "ivy.khatri_rao"]], "kron() (in module ivy)": [[372, "ivy.kron"], [432, "ivy.kron"]], "kronecker() (in module ivy)": [[372, "ivy.kronecker"], [433, "ivy.kronecker"]], "lu_factor() (in module ivy)": [[372, "ivy.lu_factor"], [434, "ivy.lu_factor"]], "lu_solve() (in module ivy)": [[372, "ivy.lu_solve"], [435, "ivy.lu_solve"]], "make_svd_non_negative() (in module ivy)": [[372, "ivy.make_svd_non_negative"], [436, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[372, "ivy.matrix_exp"], [437, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[372, "ivy.mode_dot"], [438, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[372, "ivy.multi_dot"], [439, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[372, "ivy.multi_mode_dot"], [440, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[372, "ivy.partial_tucker"], [441, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[372, "ivy.solve_triangular"], [442, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[372, "ivy.svd_flip"], [443, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[372, "ivy.tensor_train"], [444, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[372, "ivy.truncated_svd"], [445, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[372, "ivy.tt_matrix_to_tensor"], [446, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[372, "ivy.tucker"], [447, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[373, "ivy.hinge_embedding_loss"], [448, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[373, "ivy.huber_loss"], [449, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[373, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[373, "ivy.kl_div"], [450, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[373, "ivy.l1_loss"], [451, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[373, "ivy.log_poisson_loss"], [452, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[373, "ivy.poisson_nll_loss"], [453, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[373, "ivy.smooth_l1_loss"], [454, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[373, "ivy.soft_margin_loss"], [455, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[374, "ivy.as_strided"], [456, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[374, "ivy.associative_scan"], [457, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[374, "ivy.atleast_1d"], [458, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[374, "ivy.atleast_2d"], [459, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[374, "ivy.atleast_3d"], [460, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[374, "ivy.broadcast_shapes"], [461, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[374, "ivy.check_scalar"], [462, "ivy.check_scalar"]], "choose() (in module ivy)": [[374, "ivy.choose"], [463, "ivy.choose"]], "column_stack() (in module ivy)": [[374, "ivy.column_stack"], [464, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[374, "ivy.concat_from_sequence"], [465, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[374, "ivy.dsplit"], [466, "ivy.dsplit"]], "dstack() (in module ivy)": [[374, "ivy.dstack"], [467, "ivy.dstack"]], "expand() (in module ivy)": [[374, "ivy.expand"], [468, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[374, "ivy.fill_diagonal"], [469, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[374, "ivy.flatten"], [470, "ivy.flatten"]], "fliplr() (in module ivy)": [[374, "ivy.fliplr"], [471, "ivy.fliplr"]], "flipud() (in module ivy)": [[374, "ivy.flipud"], [472, "ivy.flipud"]], "fold() (in module ivy)": [[374, "ivy.fold"], [473, "ivy.fold"]], "heaviside() (in module ivy)": [[374, "ivy.heaviside"], [474, "ivy.heaviside"]], "hsplit() (in module ivy)": [[374, "ivy.hsplit"], [475, "ivy.hsplit"]], "hstack() (in module ivy)": [[374, "ivy.hstack"], [476, "ivy.hstack"]], "i0() (in module ivy)": [[374, "ivy.i0"], [477, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[374, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[374, "ivy.matricize"], [478, "ivy.matricize"]], "moveaxis() (in module ivy)": [[374, "ivy.moveaxis"], [479, "ivy.moveaxis"]], "pad() (in module ivy)": [[374, "ivy.pad"], [480, "ivy.pad"]], "partial_fold() (in module ivy)": [[374, "ivy.partial_fold"], [481, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[374, "ivy.partial_tensor_to_vec"], [482, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[374, "ivy.partial_unfold"], [483, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[374, "ivy.partial_vec_to_tensor"], [484, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[374, "ivy.put_along_axis"], [485, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[374, "ivy.rot90"], [486, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[374, "ivy.soft_thresholding"], [487, "ivy.soft_thresholding"]], "take() (in module ivy)": [[374, "ivy.take"], [488, "ivy.take"]], "take_along_axis() (in module ivy)": [[374, "ivy.take_along_axis"], [489, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[374, "ivy.top_k"], [490, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[374, "ivy.trim_zeros"], [491, "ivy.trim_zeros"]], "unflatten() (in module ivy)": [[374, "ivy.unflatten"], [492, "ivy.unflatten"]], "unfold() (in module ivy)": [[374, "ivy.unfold"], [493, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[374, "ivy.unique_consecutive"], [494, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[374, "ivy.vsplit"], [495, "ivy.vsplit"]], "vstack() (in module ivy)": [[374, "ivy.vstack"], [496, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[375, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[376, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[377, "ivy.batch_norm"], [497, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[377, "ivy.group_norm"], [498, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[377, "ivy.instance_norm"], [499, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[377, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[377, "ivy.l1_normalize"], [500, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[377, "ivy.l2_normalize"], [501, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[377, "ivy.local_response_norm"], [502, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[377, "ivy.lp_normalize"], [503, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[378, "ivy.bernoulli"], [504, "ivy.bernoulli"]], "beta() (in module ivy)": [[378, "ivy.beta"], [505, "ivy.beta"]], "dirichlet() (in module ivy)": [[378, "ivy.dirichlet"], [506, "ivy.dirichlet"]], "gamma() (in module ivy)": [[378, "ivy.gamma"], [507, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[378, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[378, "ivy.poisson"], [508, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[379, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[379, "ivy.unravel_index"], [509, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[380, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[381, "ivy.invert_permutation"], [510, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[381, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[381, "ivy.lexsort"], [511, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[382, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[382, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[382, "ivy.is_ivy_sparse_array"], [512, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[382, "ivy.is_native_sparse_array"], [513, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[382, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[382, "ivy.native_sparse_array"], [514, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[382, "ivy.native_sparse_array_to_indices_values_and_shape"], [515, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[383, "ivy.bincount"], [516, "ivy.bincount"]], "corrcoef() (in module ivy)": [[383, "ivy.corrcoef"], [517, "ivy.corrcoef"]], "cov() (in module ivy)": [[383, "ivy.cov"], [518, "ivy.cov"]], "cummax() (in module ivy)": [[383, "ivy.cummax"], [519, "ivy.cummax"]], "cummin() (in module ivy)": [[383, "ivy.cummin"], [520, "ivy.cummin"]], "histogram() (in module ivy)": [[383, "ivy.histogram"], [521, "ivy.histogram"]], "igamma() (in module ivy)": [[383, "ivy.igamma"], [522, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[383, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[383, "ivy.median"], [523, "ivy.median"]], "nanmean() (in module ivy)": [[383, "ivy.nanmean"], [524, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[383, "ivy.nanmedian"], [525, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[383, "ivy.nanmin"], [526, "ivy.nanmin"]], "nanprod() (in module ivy)": [[383, "ivy.nanprod"], [527, "ivy.nanprod"]], "quantile() (in module ivy)": [[383, "ivy.quantile"], [528, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[384, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[384, "ivy.optional_get_element"], [529, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[385, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[385, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[386, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[386, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[387, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[387, "ivy.Container.adaptive_max_pool2d"]], "adaptive_max_pool3d() (ivy.array method)": [[388, "ivy.Array.adaptive_max_pool3d"]], "adaptive_max_pool3d() (ivy.container method)": [[388, "ivy.Container.adaptive_max_pool3d"]], "avg_pool1d() (ivy.array method)": [[390, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[390, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[391, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[391, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[392, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[392, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[393, "ivy.Array.dct"]], "dct() (ivy.container method)": [[393, "ivy.Container.dct"]], "dft() (ivy.array method)": [[394, "ivy.Array.dft"]], "dft() (ivy.container method)": [[394, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[395, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[395, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[396, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[396, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[397, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[397, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[398, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[398, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[399, "ivy.Array.fft"]], "fft() (ivy.container method)": [[399, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[400, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[403, "ivy.Array.idct"]], "idct() (ivy.container method)": [[403, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[404, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[404, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[405, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[405, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[407, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[407, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[408, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[408, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[409, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[409, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[410, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[410, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[411, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[411, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[414, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[414, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[415, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[415, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[416, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[416, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[418, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[418, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[419, "ivy.Array.stft"]], "stft() (ivy.container method)": [[419, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[420, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[420, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[421, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[421, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[422, "ivy.Array.cond"]], "cond() (ivy.container method)": [[422, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[423, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[423, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[424, "ivy.Array.dot"]], "dot() (ivy.container method)": [[424, "ivy.Container.dot"]], "eig() (ivy.array method)": [[425, "ivy.Array.eig"], [668, "ivy.Array.eig"]], "eig() (ivy.container method)": [[425, "ivy.Container.eig"], [668, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[426, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[426, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[427, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[427, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[428, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[428, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[429, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[429, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[430, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[430, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[432, "ivy.Array.kron"]], "kron() (ivy.container method)": [[432, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[436, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[436, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[437, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[437, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[438, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[438, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[439, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[439, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[440, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[440, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[441, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[441, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[443, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[443, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[444, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[444, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[445, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[445, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[446, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[446, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[447, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[447, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[448, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[448, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[449, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[449, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[450, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[450, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[451, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[451, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[452, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[452, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[453, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[453, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[454, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[454, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[455, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[455, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[456, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[456, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[457, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[457, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[458, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[458, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[459, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[459, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[460, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[460, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[461, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[464, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[464, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[465, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[465, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[466, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[466, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[467, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[467, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[468, "ivy.Array.expand"]], "expand() (ivy.container method)": [[468, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[469, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[469, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[470, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[470, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[471, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[471, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[472, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[472, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[473, "ivy.Array.fold"]], "fold() (ivy.container method)": [[473, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[474, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[474, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[475, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[475, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[476, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[476, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[477, "ivy.Array.i0"]], "i0() (ivy.container method)": [[477, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[478, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[478, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[479, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[479, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[480, "ivy.Array.pad"]], "pad() (ivy.container method)": [[480, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[481, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[481, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[482, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[482, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[483, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[483, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[484, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[484, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[485, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[485, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[486, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[486, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[487, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[487, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[488, "ivy.Array.take"]], "take() (ivy.container method)": [[488, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[489, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[489, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[490, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[490, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[491, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[491, "ivy.Container.trim_zeros"]], "unflatten() (ivy.array method)": [[492, "ivy.Array.unflatten"]], "unflatten() (ivy.container method)": [[492, "ivy.Container.unflatten"]], "unfold() (ivy.array method)": [[493, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[493, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[494, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[494, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[495, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[495, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[496, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[496, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[497, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[497, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[498, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[498, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[499, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[499, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[500, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[500, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[501, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[501, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[503, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[503, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[504, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[504, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[505, "ivy.Array.beta"]], "beta() (ivy.container method)": [[505, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[506, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[506, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[507, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[507, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[508, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[508, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[509, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[509, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[510, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[511, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[511, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[516, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[516, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[517, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[517, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[518, "ivy.Array.cov"]], "cov() (ivy.container method)": [[518, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[519, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[519, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[520, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[520, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[521, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[521, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[522, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[522, "ivy.Container.igamma"]], "median() (ivy.array method)": [[523, "ivy.Array.median"]], "median() (ivy.container method)": [[523, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[524, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[524, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[525, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[525, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[526, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[526, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[527, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[527, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[528, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[528, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[529, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[529, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[530, "ivy.all_equal"], [630, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[530, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[530, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[531, "ivy.arg_info"], [630, "ivy.arg_info"]], "arg_names() (in module ivy)": [[532, "ivy.arg_names"], [630, "ivy.arg_names"]], "array_equal() (in module ivy)": [[533, "ivy.array_equal"], [630, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[533, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[533, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[534, "ivy.assert_supports_inplace"], [630, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[534, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[534, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[535, "ivy.cache_fn"], [630, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[536, "ivy.clip_matrix_norm"], [630, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[536, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[536, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[537, "ivy.clip_vector_norm"], [630, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[537, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[537, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[538, "ivy.container_types"], [630, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[539, "ivy.current_backend_str"], [630, "ivy.current_backend_str"]], "default() (in module ivy)": [[540, "ivy.default"], [630, "ivy.default"]], "default() (ivy.array method)": [[540, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[541, "ivy.einops_rearrange"], [630, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[541, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[541, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[542, "ivy.einops_reduce"], [630, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[542, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[542, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[543, "ivy.einops_repeat"], [630, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[543, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[543, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[544, "ivy.exists"], [630, "ivy.exists"]], "exists() (ivy.array method)": [[544, "ivy.Array.exists"]], "exists() (ivy.container method)": [[544, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[545, "ivy.fourier_encode"], [630, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[545, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[545, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[546, "ivy.function_supported_devices_and_dtypes"], [630, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[547, "ivy.function_unsupported_devices_and_dtypes"], [630, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[548, "ivy.gather"], [630, "ivy.gather"]], "gather() (ivy.array method)": [[548, "ivy.Array.gather"]], "gather() (ivy.container method)": [[548, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[549, "ivy.gather_nd"], [630, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[549, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[549, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[550, "ivy.get_all_arrays_in_memory"], [630, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[551, "ivy.get_item"], [630, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[552, "ivy.get_num_dims"], [630, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[552, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[552, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[553, "ivy.get_referrers_recursive"], [630, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[554, "ivy.has_nans"], [630, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[554, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[554, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[555, "ivy.inplace_arrays_supported"], [630, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[556, "ivy.inplace_decrement"], [630, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[556, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[556, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[557, "ivy.inplace_increment"], [630, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[557, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[557, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[558, "ivy.inplace_update"], [630, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[558, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[558, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[559, "ivy.inplace_variables_supported"], [630, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[560, "ivy.is_array"], [630, "ivy.is_array"]], "is_array() (ivy.array method)": [[560, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[560, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[561, "ivy.is_ivy_array"], [630, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[561, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[561, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[562, "ivy.is_ivy_container"], [630, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[562, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[563, "ivy.is_ivy_nested_array"], [630, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[564, "ivy.is_native_array"], [630, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[564, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[564, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[565, "ivy.isin"], [630, "ivy.isin"]], "isin() (ivy.array method)": [[565, "ivy.Array.isin"]], "isin() (ivy.container method)": [[565, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[566, "ivy.isscalar"], [630, "ivy.isscalar"]], "itemsize() (in module ivy)": [[567, "ivy.itemsize"], [630, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[567, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[567, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[568, "ivy.match_kwargs"], [630, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[569, "ivy.multiprocessing"], [630, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[570, "ivy.num_arrays_in_memory"], [630, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[571, "ivy.print_all_arrays_in_memory"], [630, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[572, "ivy.scatter_flat"], [630, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[572, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[572, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[573, "ivy.scatter_nd"], [630, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[573, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[573, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[574, "ivy.set_array_mode"], [630, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[575, "ivy.set_exception_trace_mode"], [630, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[576, "ivy.set_inplace_mode"], [630, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[577, "ivy.set_item"], [630, "ivy.set_item"]], "set_min_base() (in module ivy)": [[578, "ivy.set_min_base"], [630, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[579, "ivy.set_min_denominator"], [630, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[580, "ivy.set_nestable_mode"], [630, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[581, "ivy.set_precise_mode"], [630, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[582, "ivy.set_queue_timeout"], [630, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[583, "ivy.set_shape_array_mode"], [630, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[584, "ivy.set_show_func_wrapper_trace_mode"], [630, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[585, "ivy.set_tmp_dir"], [630, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[586, "ivy.shape"], [630, "ivy.shape"]], "shape() (ivy.array method)": [[586, "ivy.Array.shape"]], "size() (in module ivy)": [[587, "ivy.size"], [630, "ivy.size"]], "size() (ivy.array method)": [[587, "ivy.Array.size"]], "size() (ivy.container method)": [[587, "ivy.Container.size"]], "stable_divide() (in module ivy)": [[588, "ivy.stable_divide"], [630, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[588, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[588, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[589, "ivy.stable_pow"], [630, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[589, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[589, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[590, "ivy.strides"], [630, "ivy.strides"]], "strides() (ivy.array method)": [[590, "ivy.Array.strides"]], "strides() (ivy.container method)": [[590, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[591, "ivy.supports_inplace_updates"], [630, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[591, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[591, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[592, "ivy.to_ivy_shape"], [630, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[593, "ivy.to_list"], [630, "ivy.to_list"]], "to_list() (ivy.array method)": [[593, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[593, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[594, "ivy.to_native_shape"], [630, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[595, "ivy.to_numpy"], [630, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[595, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[595, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[596, "ivy.to_scalar"], [630, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[596, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[596, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[597, "ivy.try_else_none"], [630, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[598, "ivy.unset_array_mode"], [630, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[599, "ivy.unset_exception_trace_mode"], [630, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[600, "ivy.unset_inplace_mode"], [630, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[601, "ivy.unset_min_base"], [630, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[602, "ivy.unset_min_denominator"], [630, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[603, "ivy.unset_nestable_mode"], [630, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[604, "ivy.unset_precise_mode"], [630, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[605, "ivy.unset_queue_timeout"], [630, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[606, "ivy.unset_shape_array_mode"], [630, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[607, "ivy.unset_show_func_wrapper_trace_mode"], [630, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[608, "ivy.unset_tmp_dir"], [630, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[609, "ivy.value_is_nan"], [630, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[609, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[609, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[610, "ivy.vmap"], [630, "ivy.vmap"]], "adam_step() (in module ivy)": [[611, "ivy.adam_step"], [631, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[611, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[611, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[612, "ivy.adam_update"], [631, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[612, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[612, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[613, "ivy.execute_with_gradients"], [631, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[614, "ivy.grad"], [631, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[615, "ivy.gradient_descent_update"], [631, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[615, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[615, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[616, "ivy.jac"], [631, "ivy.jac"]], "lamb_update() (in module ivy)": [[617, "ivy.lamb_update"], [631, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[617, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[617, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[618, "ivy.lars_update"], [631, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[618, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[618, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[619, "ivy.optimizer_update"], [631, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[619, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[619, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[620, "ivy.stop_gradient"], [631, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[620, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[620, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[621, "ivy.value_and_grad"], [631, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[622, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[623, "ivy.e"]], "inf (in module ivy)": [[623, "ivy.inf"]], "ivy.functional.ivy.constants": [[623, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[623, "ivy.nan"]], "newaxis (in module ivy)": [[623, "ivy.newaxis"]], "pi (in module ivy)": [[623, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[624, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[625, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[625, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[626, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[626, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[626, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[626, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[626, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[626, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[627, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[627, "ivy.Profiler"]], "ivy.functional.ivy.device": [[627, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[628, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[629, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[630, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[630, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[630, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[631, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[632, "ivy.conv"], [645, "ivy.conv"]], "conv1d() (in module ivy)": [[632, "ivy.conv1d"], [646, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[632, "ivy.conv1d_transpose"], [647, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[632, "ivy.conv2d"], [648, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[632, "ivy.conv2d_transpose"], [649, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[632, "ivy.conv3d"], [650, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[632, "ivy.conv3d_transpose"], [651, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[632, "ivy.conv_general_dilated"], [652, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[632, "ivy.conv_general_transpose"], [653, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[632, "ivy.depthwise_conv2d"], [654, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[632, "ivy.dropout"], [655, "ivy.dropout"]], "ivy.functional.ivy.layers": [[632, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[632, "ivy.linear"], [656, "ivy.linear"]], "lstm() (in module ivy)": [[632, "ivy.lstm"], [657, "ivy.lstm"]], "lstm_update() (in module ivy)": [[632, "ivy.lstm_update"], [658, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[632, "ivy.multi_head_attention"], [659, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[632, "ivy.nms"], [660, "ivy.nms"]], "roi_align() (in module ivy)": [[632, "ivy.roi_align"], [661, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[632, "ivy.scaled_dot_product_attention"], [662, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[633, "ivy.cholesky"], [663, "ivy.cholesky"]], "cross() (in module ivy)": [[633, "ivy.cross"], [664, "ivy.cross"]], "det() (in module ivy)": [[633, "ivy.det"], [665, "ivy.det"]], "diag() (in module ivy)": [[633, "ivy.diag"], [666, "ivy.diag"]], "diagonal() (in module ivy)": [[633, "ivy.diagonal"], [667, "ivy.diagonal"]], "eigh() (in module ivy)": [[633, "ivy.eigh"], [669, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[633, "ivy.eigvalsh"], [670, "ivy.eigvalsh"]], "inner() (in module ivy)": [[633, "ivy.inner"], [671, "ivy.inner"]], "inv() (in module ivy)": [[633, "ivy.inv"], [672, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[633, "module-ivy.functional.ivy.linear_algebra"]], "matmul() (in module ivy)": [[633, "ivy.matmul"], [673, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[633, "ivy.matrix_norm"], [674, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[633, "ivy.matrix_power"], [675, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[633, "ivy.matrix_rank"], [676, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[633, "ivy.matrix_transpose"], [677, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[633, "ivy.outer"], [678, "ivy.outer"]], "pinv() (in module ivy)": [[633, "ivy.pinv"], [679, "ivy.pinv"]], "qr() (in module ivy)": [[633, "ivy.qr"], [680, "ivy.qr"]], "slogdet() (in module ivy)": [[633, "ivy.slogdet"], [681, "ivy.slogdet"]], "solve() (in module ivy)": [[633, "ivy.solve"], [682, "ivy.solve"]], "svd() (in module ivy)": [[633, "ivy.svd"], [683, "ivy.svd"]], "svdvals() (in module ivy)": [[633, "ivy.svdvals"], [684, "ivy.svdvals"]], "tensordot() (in module ivy)": [[633, "ivy.tensordot"], [685, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[633, "ivy.tensorsolve"], [686, "ivy.tensorsolve"]], "trace() (in module ivy)": [[633, "ivy.trace"], [687, "ivy.trace"]], "vander() (in module ivy)": [[633, "ivy.vander"], [688, "ivy.vander"]], "vecdot() (in module ivy)": [[633, "ivy.vecdot"], [689, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[633, "ivy.vector_norm"], [690, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[633, "ivy.vector_to_skew_symmetric_matrix"], [691, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[634, "ivy.binary_cross_entropy"], [692, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[634, "ivy.cross_entropy"], [693, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[634, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[634, "ivy.sparse_cross_entropy"], [694, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[635, "ivy.clip"], [695, "ivy.clip"]], "concat() (in module ivy)": [[635, "ivy.concat"], [696, "ivy.concat"]], "constant_pad() (in module ivy)": [[635, "ivy.constant_pad"], [697, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[635, "ivy.expand_dims"], [698, "ivy.expand_dims"]], "flip() (in module ivy)": [[635, "ivy.flip"], [699, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[635, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[635, "ivy.permute_dims"], [700, "ivy.permute_dims"]], "repeat() (in module ivy)": [[635, "ivy.repeat"], [701, "ivy.repeat"]], "reshape() (in module ivy)": [[635, "ivy.reshape"], [702, "ivy.reshape"]], "roll() (in module ivy)": [[635, "ivy.roll"], [703, "ivy.roll"]], "split() (in module ivy)": [[635, "ivy.split"], [704, "ivy.split"]], "squeeze() (in module ivy)": [[635, "ivy.squeeze"], [705, "ivy.squeeze"]], "stack() (in module ivy)": [[635, "ivy.stack"], [706, "ivy.stack"]], "swapaxes() (in module ivy)": [[635, "ivy.swapaxes"], [707, "ivy.swapaxes"]], "tile() (in module ivy)": [[635, "ivy.tile"], [708, "ivy.tile"]], "unstack() (in module ivy)": [[635, "ivy.unstack"], [709, "ivy.unstack"]], "zero_pad() (in module ivy)": [[635, "ivy.zero_pad"], [710, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[636, "ivy.fomaml_step"], [711, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[636, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[636, "ivy.maml_step"], [712, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[636, "ivy.reptile_step"], [713, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[637, "ivy.all_nested_indices"], [714, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[637, "ivy.copy_nest"], [715, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[637, "ivy.duplicate_array_index_chains"], [716, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[637, "ivy.index_nest"], [717, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[637, "ivy.insert_into_nest_at_index"], [718, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[637, "ivy.insert_into_nest_at_indices"], [719, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[637, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[637, "ivy.map"], [720, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[637, "ivy.map_nest_at_index"], [721, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[637, "ivy.map_nest_at_indices"], [722, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[637, "ivy.multi_index_nest"], [723, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[637, "ivy.nested_any"], [724, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[637, "ivy.nested_argwhere"], [725, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[637, "ivy.nested_map"], [726, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[637, "ivy.nested_multi_map"], [727, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[637, "ivy.prune_empty"], [728, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[637, "ivy.prune_nest_at_index"], [729, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[637, "ivy.prune_nest_at_indices"], [730, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[637, "ivy.set_nest_at_index"], [731, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[637, "ivy.set_nest_at_indices"], [732, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[638, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[638, "ivy.layer_norm"], [733, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[639, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[639, "ivy.multinomial"], [734, "ivy.multinomial"]], "randint() (in module ivy)": [[639, "ivy.randint"], [735, "ivy.randint"]], "random_normal() (in module ivy)": [[639, "ivy.random_normal"], [736, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[639, "ivy.random_uniform"], [737, "ivy.random_uniform"]], "seed() (in module ivy)": [[639, "ivy.seed"], [738, "ivy.seed"]], "shuffle() (in module ivy)": [[639, "ivy.shuffle"], [739, "ivy.shuffle"]], "argmax() (in module ivy)": [[640, "ivy.argmax"], [740, "ivy.argmax"]], "argmin() (in module ivy)": [[640, "ivy.argmin"], [741, "ivy.argmin"]], "argwhere() (in module ivy)": [[640, "ivy.argwhere"], [742, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[640, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[640, "ivy.nonzero"], [743, "ivy.nonzero"]], "where() (in module ivy)": [[640, "ivy.where"], [744, "ivy.where"]], "ivy.functional.ivy.set": [[641, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[641, "ivy.unique_all"], [745, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[641, "ivy.unique_counts"], [746, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[641, "ivy.unique_inverse"], [747, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[641, "ivy.unique_values"], [748, "ivy.unique_values"]], "argsort() (in module ivy)": [[642, "ivy.argsort"], [749, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[642, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[642, "ivy.msort"], [750, "ivy.msort"]], "searchsorted() (in module ivy)": [[642, "ivy.searchsorted"], [751, "ivy.searchsorted"]], "sort() (in module ivy)": [[642, "ivy.sort"], [752, "ivy.sort"]], "cumprod() (in module ivy)": [[643, "ivy.cumprod"], [753, "ivy.cumprod"]], "cumsum() (in module ivy)": [[643, "ivy.cumsum"], [754, "ivy.cumsum"]], "einsum() (in module ivy)": [[643, "ivy.einsum"], [755, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[643, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[643, "ivy.max"], [756, "ivy.max"]], "mean() (in module ivy)": [[643, "ivy.mean"], [757, "ivy.mean"]], "min() (in module ivy)": [[643, "ivy.min"], [758, "ivy.min"]], "prod() (in module ivy)": [[643, "ivy.prod"], [759, "ivy.prod"]], "std() (in module ivy)": [[643, "ivy.std"], [760, "ivy.std"]], "sum() (in module ivy)": [[643, "ivy.sum"], [761, "ivy.sum"]], "var() (in module ivy)": [[643, "ivy.var"], [762, "ivy.var"]], "all() (in module ivy)": [[644, "ivy.all"], [763, "ivy.all"]], "any() (in module ivy)": [[644, "ivy.any"], [764, "ivy.any"]], "ivy.functional.ivy.utility": [[644, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[644, "ivy.load"], [765, "ivy.load"]], "save() (in module ivy)": [[644, "ivy.save"], [766, "ivy.save"]], "conv1d() (ivy.array method)": [[646, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[646, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[647, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[647, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[648, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[648, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[649, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[649, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[650, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[650, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[651, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[651, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[654, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[654, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[655, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[655, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[656, "ivy.Array.linear"]], "linear() (ivy.container method)": [[656, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[658, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[658, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[659, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[659, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[662, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[662, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[663, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[663, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[664, "ivy.Array.cross"]], "cross() (ivy.container method)": [[664, "ivy.Container.cross"]], "det() (ivy.array method)": [[665, "ivy.Array.det"]], "det() (ivy.container method)": [[665, "ivy.Container.det"]], "diag() (ivy.array method)": [[666, "ivy.Array.diag"]], "diag() (ivy.container method)": [[666, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[667, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[667, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[669, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[669, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[670, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[670, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[671, "ivy.Array.inner"]], "inner() (ivy.container method)": [[671, "ivy.Container.inner"]], "inv() (ivy.array method)": [[672, "ivy.Array.inv"]], "inv() (ivy.container method)": [[672, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[673, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[673, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[674, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[674, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[675, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[675, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[676, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[676, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[677, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[677, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[678, "ivy.Array.outer"]], "outer() (ivy.container method)": [[678, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[679, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[679, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[680, "ivy.Array.qr"]], "qr() (ivy.container method)": [[680, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[681, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[681, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[682, "ivy.Array.solve"]], "solve() (ivy.container method)": [[682, "ivy.Container.solve"]], "svd() (ivy.array method)": [[683, "ivy.Array.svd"]], "svd() (ivy.container method)": [[683, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[684, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[684, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[685, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[685, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[686, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[686, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[687, "ivy.Array.trace"]], "trace() (ivy.container method)": [[687, "ivy.Container.trace"]], "vander() (ivy.array method)": [[688, "ivy.Array.vander"]], "vander() (ivy.container method)": [[688, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[689, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[689, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[690, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[690, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[691, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[691, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[692, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[692, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[693, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[693, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[694, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[694, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[695, "ivy.Array.clip"]], "clip() (ivy.container method)": [[695, "ivy.Container.clip"]], "concat() (ivy.array method)": [[696, "ivy.Array.concat"]], "concat() (ivy.container method)": [[696, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[697, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[697, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[698, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[698, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[699, "ivy.Array.flip"]], "flip() (ivy.container method)": [[699, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[700, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[700, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[701, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[701, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[702, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[702, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[703, "ivy.Array.roll"]], "roll() (ivy.container method)": [[703, "ivy.Container.roll"]], "split() (ivy.array method)": [[704, "ivy.Array.split"]], "split() (ivy.container method)": [[704, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[705, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[705, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[706, "ivy.Array.stack"]], "stack() (ivy.container method)": [[706, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[707, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[707, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[708, "ivy.Array.tile"]], "tile() (ivy.container method)": [[708, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[709, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[709, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[710, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[710, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[733, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[733, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[734, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[734, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[735, "ivy.Array.randint"]], "randint() (ivy.container method)": [[735, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[736, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[736, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[737, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[737, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[739, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[739, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[740, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[740, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[741, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[741, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[742, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[742, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[743, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[743, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[744, "ivy.Array.where"]], "where() (ivy.container method)": [[744, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[745, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[745, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[746, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[746, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[747, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[747, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[748, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[748, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[749, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[749, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[750, "ivy.Array.msort"]], "msort() (ivy.container method)": [[750, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[751, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[751, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[752, "ivy.Array.sort"]], "sort() (ivy.container method)": [[752, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[753, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[753, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[754, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[754, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[755, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[755, "ivy.Container.einsum"]], "max() (ivy.array method)": [[756, "ivy.Array.max"]], "max() (ivy.container method)": [[756, "ivy.Container.max"]], "mean() (ivy.array method)": [[757, "ivy.Array.mean"]], "mean() (ivy.container method)": [[757, "ivy.Container.mean"]], "min() (ivy.array method)": [[758, "ivy.Array.min"]], "min() (ivy.container method)": [[758, "ivy.Container.min"]], "prod() (ivy.array method)": [[759, "ivy.Array.prod"]], "prod() (ivy.container method)": [[759, "ivy.Container.prod"]], "std() (ivy.array method)": [[760, "ivy.Array.std"]], "std() (ivy.container method)": [[760, "ivy.Container.std"]], "sum() (ivy.array method)": [[761, "ivy.Array.sum"]], "sum() (ivy.container method)": [[761, "ivy.Container.sum"]], "var() (ivy.array method)": [[762, "ivy.Array.var"]], "var() (ivy.container method)": [[762, "ivy.Container.var"]], "all() (ivy.array method)": [[763, "ivy.Array.all"]], "all() (ivy.container method)": [[763, "ivy.Container.all"]], "any() (ivy.array method)": [[764, "ivy.Array.any"]], "any() (ivy.container method)": [[764, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[767, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[767, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[768, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[769, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[769, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[770, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[770, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[770, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[770, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[770, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[771, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[772, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[772, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[773, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[773, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "dims_and_offset() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.dims_and_offset"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[774, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "sizes_() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.sizes_"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[774, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[775, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[775, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[776, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[776, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[776, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[777, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[777, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[778, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[778, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[779, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[779, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_example() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_example"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[780, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[780, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[784, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[784, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[784, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[784, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[784, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[784, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[784, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[784, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[784, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[784, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[784, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[784, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[784, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[784, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[784, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[784, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[784, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[784, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[784, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[784, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[785, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[785, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[785, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[785, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[785, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[786, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[786, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[787, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[787, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[787, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[787, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[787, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[787, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[787, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[787, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[787, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[787, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[787, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[787, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[787, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[787, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[787, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[787, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[788, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[788, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[788, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[788, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[788, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[788, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[788, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[788, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[788, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[788, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[788, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[788, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[788, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[788, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[788, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[788, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[788, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[788, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[788, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[788, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[788, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[788, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[788, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[788, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[788, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[788, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[788, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[789, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[789, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[789, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[789, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[789, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[790, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[790, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[790, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[790, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[790, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[790, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[791, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[791, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[791, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[791, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[791, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[792, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[792, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[792, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[792, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[792, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[792, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[792, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[792, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[792, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[792, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[792, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[792, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[792, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[792, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[792, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[792, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[793, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[793, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[793, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[794, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[794, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[795, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[796, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[796, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[796, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[796, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[796, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[797, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[797, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[797, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[798, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[798, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[799, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[799, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[799, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[800, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[800, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[801, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[801, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[802, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[802, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[803, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[803, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[803, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[803, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[803, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[803, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[803, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[803, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[803, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[803, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[803, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[803, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[803, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[803, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[803, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[803, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[803, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[803, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[803, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[803, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[803, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[803, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[803, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[803, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[803, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[803, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[804, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[804, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[804, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[805, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[805, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[805, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[806, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[806, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[806, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[806, "ivy.utils.profiler.Profiler.print_stats"]], "tensorflow_profile_start() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.tensorflow_profile_start"]], "tensorflow_profile_stop() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.tensorflow_profile_stop"]], "torch_profiler_init() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_init"]], "torch_profiler_start() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_start"]], "torch_profiler_stop() (in module ivy.utils.profiler)": [[806, "ivy.utils.profiler.torch_profiler_stop"]], "viz (ivy.utils.profiler.profiler attribute)": [[806, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[807, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[807, "module-ivy.utils.verbosity"]], "automatic code conversions": [[853, "term-Automatic-Code-Conversions"]], "backend handler": [[853, "term-Backend-Handler"]], "compositional functions": [[853, "term-Compositional-Functions"]], "convenience functions": [[853, "term-Convenience-Functions"]], "framework": [[853, "term-Framework"]], "framework handler": [[853, "term-Framework-Handler"]], "graph compiler": [[853, "term-Graph-Compiler"]], "ivy array": [[853, "term-Ivy-Array"]], "ivy backends": [[853, "term-Ivy-Backends"]], "ivy compiler": [[853, "term-Ivy-Compiler"]], "ivy container": [[853, "term-Ivy-Container"]], "ivy frontends": [[853, "term-Ivy-Frontends"]], "ivy functional api": [[853, "term-Ivy-Functional-API"]], "ivy tracer": [[853, "term-Ivy-Tracer"]], "ivy transpiler": [[853, "term-Ivy-Transpiler"]], "mixed functions": [[853, "term-Mixed-Functions"]], "native array": [[853, "term-Native-Array"]], "nestable functions": [[853, "term-Nestable-Functions"]], "pipeline": [[853, "term-Pipeline"]], "primary functions": [[853, "term-Primary-Functions"]], "standalone functions": [[853, "term-Standalone-Functions"]], "submodule helper functions": [[853, "term-Submodule-Helper-Functions"]], "built-in function": [[859, "ivy.trace_graph"], [860, "ivy.transpile"], [861, "ivy.unify"]], "ivy.trace_graph()": [[859, "ivy.trace_graph"]], "ivy.transpile()": [[860, "ivy.transpile"]], "ivy.unify()": [[861, "ivy.unify"]]}}) \ No newline at end of file

    kA>&v)-V(KXhiaX-^^3k;gGry5hj01`oDr=$Si+Xl?Ab(ajN3hM9#L zQ=6R4*d{Npp^L@cIeN+P5$*yV0z)l}?^QXw_Rfia~OV`mh4cxY=2K+fj$c(K0r1Cgcliug(NICSq6cS zWsn7*WHt*S39(}vM@F8=j9+Htx#xDb=zqHVX8a-}A|oT$6S+_8pMifGUXLk&iCyQi zYiXNt;FZ?Eo9$1j2G0v>xOs<;>uFl9AwyZdgtWFTe)yr1_stjXB^8J7Z5i;trbG*f$D+i`@( zui<{b3LHDEz&HDV(p2|uR*q!_4HP@5=fz2Vmol@_+Q@f|zMX)FpF&*;OQ`Q{p)h1O z=v$=~I@^f1mve<$p9wiM%FPw}cb6l?bQ{+jKUH?W4DQ#%yGQNPsz(htRmKjk`GF44 zPmgG7LXRAt9`&_YS0IVpl3LtyWG=VstR--RTHZvj-1=D1R~4Sn75ptQgF0^UBYX21 ztg8npc2Li=RM6f;@6q&K0gM>|?>+vBR(pNpW7psDWhuDK1NatHXP~b@N;NgzJ0#^y~Hhe>=RaZvM1v5b-)})ALBy)>C@nksi|? zQW$@<;VCejC;~kjyZLGWCTp_bixHX4JYo@DNe%*N{%?`BNY)QbY#dB@$zjN#D$3Ta zH)O|?4Yh3=%FVvWN|dB?LVFQgmZ^Y5D|3^!_DH0Y9gCvyV7DjUnh zmW*W*C&p@{`@7rB+;mJcbXWBJ`K0dVCbL-c3oscni6#4Yr~`C<^9NmSVcv^)m7XZ2 z*X8`z2K3xzku{n2MzL@&VF|{N4#4#3hRLnrbm*(?b#U|?Mj`{8GyQk>8J^1!V zsv#X~-F2IM)u^Yw9c>EiK;xcm3JjvI9c>B-yG>u7&)UE-%HZyJ6zmO%Zj0aeIK6Vv z)6h8nf@3)@VBhk#aE6O2b+n|bz_#YCPtqNz@$p?-q9}#XnfSnT}dc3 zmIl}wzHdH%(F~&mE=^t^3DUa22G7hhuHf1TjLd9+^9%i~>+288FWke(tFZ0)+p%p|~cn2=p}fJ^N#KN#KmO&S~Fd zRMQ3ky&`WuDAVqvLuE8OyXE?=QH^__$L0(+e4CI>&+kn4C&N?YP}gElHLFtt5GvFh zSwfX>J){@C2IKQH_n?>kMrol&o{3tzW*niy7oqqpzqM7Uj)$9>)t!Z#Uc8C(HuqH1 z`N{c|8glyZ_>T2DU!lIDL35U%-}CPCL|+&8ZGBa$P!;cLTdGA?P{m6})zrNVGdviy zZM}a)?mifwjPkF63U%`O#j3M|Hwf_#de1wPp|8fzmHLUr6ssN8cS-YUEvnZKPJ8=M zv095MRQn#f&N?05p;sBCi_+c{T_HH_ZSZ1fD021!P?CXi$P4=fG@KE zkJaEzG9lXw3_+WlY~y4vErIGI7(Aj%2>qN6_+NMS`%Gz4AMw-#>o6;fMcf3R0j{@- z^O_Xa(>kBATjAPAUwY+zy@W6NkK+Kc_wpaEH%udn{^Q7O$@}>aR#WsJuIBOlhifPv zajMqxb+~PJuoktzCtrQi7Wm|=z_VuyP`!Ox;FGUDSqtcDI$D6LdE6GD8v3<>t0QZH z=RPjMw^uXZ3Pm+=U;}MYUZGgf*dVwp=!J!bM@5^6))38aVgI7B`jlT-6ICjHre&10w@{@PrG8RjKHEe+d+yz!aEtef zI-V$#>50rcK74#iciulWsZORY`9PY8sGSBIwNZofhEK7cy^J-O?&Wl-or6(qGu|Ma z18FDDl?_8uIQ+j{!JESUT@WqQ z9N9vR@8xZf>1pj>Q|Wd$5H5symm8rR*7iW9y-=N(qHg{y1m?9oFw=XjB%S+&lSafW z9;;FvhHqB~2lTxsJ#aN}==`(KR^SMy@T>0h#^3i6PGG&~4^LDr>@&tbOJqiss7;pm z`yTKS(|qZdxOV}YkHPf=!$S3g{hFpGbfRrpNR?^}EqwUobX4uvpXNMu9}pIB*EmAy zG|r^f9N%LPKr@-d?)&EGNi$J)7k)i?+e>F>li{87v-$&*$(XiYd5-3Tg65hLYF)B( zo7woNh8o7ZDzr6t18ML+pEU3Tu~F2`dSscAYAxP1yG8QKq8@syNJN>s{+w27YqH=d zCp2of_W@r$s!pXrRIo~vF{rgZJv_{;GOASYFcW2K^_8U6`}w|V>t1{#%5o1)rL}l# zpH@-eD81e{ga%R6w$!dI-hcM+wEhGQ?PC`!TIq{zVNq)>dbNeYBx+M^3j<|q^(CZL zs|W8%S*_s9wdC2JR1p?sEyfULZ%g;(PC99(*BZFy7cnCh>hYGy)P2m62H04a}t}jH2sSdH2t#!Nyba2fZqW(Dvh~cHKpU_;@nS_ zYHK~We^l?^8%T-+W6BzVBr{*(@!dK8z884FjQB0#=fQX~pfr4g!~84#cJdvWQ6*}I z6Mv7DL~c->Xkw%vv?}S;B&I3kGu!ugO%Cb{I%}IuXbCcK8#>jQOU6`c>nJ*@q~=fY z_f{pFE$H?_E5MMt{nX9wdsWJtZiU7=2&|x@7kx!F1sJ+!FmP|d_o_-Q@H721GpMZ9 zpKdEx`3tI6oAEW&f16^zz@O zO#u32hA(~idKK7RMhHtub!OLBf5Naa6rL|RefR|4W3Z-O>bVh!``po@vW|cuR12cy!Fm8 zJr{7F_H^#ZLebrs@1We`MqDs`3@fUgjVOhdIbjNww+=$dT>CXymxDMa!2E+=vvc=}J z#obSg$D>;ZrITI{CjY=QIRCS|r-5w1ly6V>C&FoB2_C1@93*Gb+cWA^yW3AkyW9BP z>%7{L6k(^kk9M~YZ0)W~n-$M~L!06K8Zmm?{@L9!jswlg~yYgYV9Tc3kB(SU#3gDw`Plu2^-pW^;qcNp@n%6 zqe)HbGi`lAX#D0A7zbWhgXh49;B>99m}?^VOh*lY3Dl77q1rkGaBKnIL!CiwYsKx* zqXQJ%A@TlDOIJH+*DqSBfCw1%N${UEgC#((XE=& z?nXf1^z5t|hpQ=sBm6G44M#*_OS$)cIvYK@PdBxFXP7Cm*}4f6kbb7^6L8eTj715x zt<}}{Q!*O*T4JU)c!x}k<-wpu`3@O^qV#x&45@6XuYZ7&B=VAUrrhQnD8NDTnRB23 zi?W-uh(Kpczw^Nlerl%NroR&qB%bN-uBL8(Ckk82%OCC|=91Md9TMbxZdSkKx`Lp1 z8?SW;M`BBQ?ZXEyW5U_PnMTDs+rqd-gT&<*}_#Be5lY(S5qpe#%$)N})9jR)e>86$!sR1`I))-H+0Xj#cvbVjBNxS!#~W z9t-?}R;97ItuNTejNYCo@PZnyzfwKmwe;)>wi%NG9JtPmNdXoe(Tqufu3P#Z)6y>K zlbLB>>GkBaOZw9MRBYd4GS?-2GN0=!y`Iu_Nne`P-FoGGbT<5&x;mg6M=p|$i^(&5 z2O__>>&f_lFJ*U;(&>~TN9Yf{V>cU+cvs#04!)Mx{Kx*U*ZZ4jzuo`uKk_?VKM6Zr z@Cj_FaNmD#TK*nP5$K(+7hd5EKW@rK$D0H%Mcarc>*80uv8YYr6}f?ZKSED`9J|-D zA0&4_4J|TGTaHL4VRLVy#DLc!1HE&E)q+qT<+1-@5#|&wHKw!_UgkVKprP$oC4H&7FHtcGV{r@Xd4USa+`8G|W`a>cw!y8O54ib?>gHQ~ z1pC{ZVEOv>h7(n_$&-CXFMlF68sEK3CugrcTJnvh4pyZ|hb#U#rY&&t7Y{gE8j@R` zUba8-Co!4{Sm!n!KG0lFmvdu*i9mR&MBQkXN^&-0n=^>#g%b<<{Fsuq6izIBp*GBm z?;D;}lZP);vWMvhPR?lEN#7Ani_v_<97ynF{>eY@*}T9??=G)cx_HD%80ORR@)Rmg z#?1D6;5W^!YqE~^a;98B%eT$aGDS!Ik~1c|GF!8oA05-F({M_k_4H~(_VCbYTT>zr z&?>vb)s2lh@g1&i;zXmm`FwWv=FrE3zu;#yf5(S~VpO=}?`2z2L5kSCTOH7bmzMEfscN=G%r#Z>Q1TP^nx*-3=`sJld z3X9_7k|L$ErN8+#)#PAGo1#bk{0F=-Fx`Sy02H2 zH42O#L!*H0qfsEXHQJ+4`RefQ@pyR9uaR);L)$KL0-eem*ETpRg&Ws4b%$2t!?WY+ z!PC&nb9zjzS~0>jwp%MtZEJOdEIcf3#w+_!EH1}0W&*nOi)X&_phh{KF`=!&^;dca zgK|7`JV5?_@rzpp$fP_{o4+8SK%uRz)Ujt9u! z&;DF>5Wj4HM`ufa!xg=yUxzN+pP7LC{p{~64+@m+&xE!H*I(^Dbd>Gyc!2!50eVNbjodBR$dC(my-bFo(y#Dz@&mY(R%M7ne!~GOB^;jSbS0 zCi4t!9hw;9T2D>VL9IiRt`Y6ISE=-LbY5JlE1S@uhDU#@Y)|+=t7IRyS!IY}9R43Kl85sxsM@kcFZS}2AQa?W+8To;^3ST34bBJxPzNYDhBt~qP zoOJbhOjpqcl$eDQ{|;Ifr7g6i2GUtweNGDL{*C-sHXy4v5T3;ncr=^lzIW-81j zP?z?TLV6_5Vhz>5&Cv|U=X59C@7wfmZ1oYXRk3CYRleZ1Xy>j?eJ7CCruaccA5sMa z+Ua&lE{2EH-tKW(+DhuLDxX)Gfr9s=TY;=PK%loeff_nOn_K%14^MbPg>QF-#}7^( z$KdLtPs`xIHLsM@ZO*Ufj7otkRQe95X?wCXw{>|bZUWxz*e?&oDJ`g-T!arz3M$$V(2}%D@pSd-MI_+0p!d#OnjQF3r$aRX2YPvd0*S z&qA7J5~d^ZnMDROiT&zia4;@@Icnf(j8UP_AlPepg4y1?KR%`;(f$Lz!JUWvlvF9+ z8BD2G&R*_KXb@1U>bwFF;a!}?h|U_%CT$cIrGYI}_g4ClvOai7;pfah3T7NP8th0(71j-cJ;fI)d>iK?tlYPY^VX;a zZL3Dj7^-|X=V+Ha&ivWyeD0(IomFwp9;*MKFK^Q?*KVfvcy6V>Tq}!VRRiL@_nZ?# z4aWQd@}!>9<)q@5b4ES0yO&jg7ol#x8P1@MCy(#A^W>pBg3g~j4rLgZIM)Gvx<8Qe zQtL`Nsi5ML{Mvrzs2PFb-nl=jtCRCnN_ucGIIQX6>v<|v7Yt&BMTTOoAq00gU-aQk zCh9&1<7(^X3I}>xaZGa{|{K{!tDcJ56x`v zj45m5L%e;E7HS2q@AF&IrS=XSNoc;1n(*55a1r!xfU$4-lUjXgq@6bG(Gv$UtPk21 z(`%2OQzyH=o-T5&#Rr{ZO$LfjB>dYZpXuh18aooT9@rWWta16t#~8AavbJXl?ArQ{XdC zQ2{LtDD$$L-z$H8JW-9jl8UGFET2d?_BasaGl?M9GWPL=`*1%y_NX5O{(xUDC_Nuf zytnofFRRT9Q#ZfeUyu2DxF-kchr*6+STpG4oLQ+3Xg6Qs%e`Myk6e=A(y39)mpUDu z)wjR5H*s4gBKObu!Q^{+^Xhv zeC?U8?|kLq7rgG#RUVk>F@JqrbVZ(0<>*KPOGW3sf<8+N4Gy5aW@{&n*~KSq0V+@xG4?IT6>1PPgUP`OV{ z=soH770blNoX(*GBS!yf8D`l^3zP9E&l5yO{u0+@t`L-84&=EJxskmQGu*ny1!F`b zeU+;%{I2S)n{$wNnP$u`)urVZU&bQ)a*%pWgL1)N?{KZ)26`(&2Qj1gmlE+cm%4eF zXh0KKdU>j>fiF)qP#}>u)~_`%&|7X(UaHiFjvP`AG?%*hOA@EpXI7^7tJCU%?S^0O zOd$lI!@B$`oh9jn>;t|Tgc9)E@~hyDhFHLc5QOJbH-Azl!K}wJh37Ncx-PavTMkmJ zX;5cNSm><;ZK#m61aPUF-vGX}Sd{-)ax*yXK>C#k$YuXk4%0S3hTH(8A@>^+(?U~lV}?8b@P4D1J?M%slf^5-Lo2kWr!po z`)2%I445>-8>2f#THtXx{w_QWZFsm3zwbqiw88g-PD}gall{sJuV3mU^2H#>s)FP# z@vEaA26hv%FXs~gwnO+G>aUw0^&2vN$lp6SKOGH8_`1z{PQ!iuU_h_F(YS6k5Z`d< z0(mv7=EvHb*BtkrEzAE?NqOt+`Ug}_RPVW!$m?T%zlgSRNg4N zZjRq${^P$4&uN9}C&5cLsM#o@(cvi_(O7D8t7{_9r=6>A>k{$Z#Q%9L@?l6*1D{=8 zB79!XeTcVD!tc(9g7BVS-TXTciI%7ITz&mH)AT$~YRf^IH4Vx;f|_Mm=&b}D#En5M z8QXwM-8>_klkBC7Q|b$5H}+$jD+TFSA|RJtk8K%p1CWN?>DU%I)XggR)xz1($e1Vd zX;%m`F9-5mWHkb0xOI&)1WrbPh_9PXFK^qqXu;OIa~ZT=nW|aTJ$7T_o=b3BSMuOf zvQ*)|rHO>i?*t!S*zX!mT_M^skayZL!>w!FY+FV=y?W#qu-=xJ3X9(_cH;+?iIShw zp;8vkl*!kMLhJ()B_)Aw)vW1yuh69rZbN>>wzxjzaFmmZRJXy6m#B3pQ>Y~p52C&p z%)hE2c>}0H)WB{c)@X!e5Y;^D<^}E2YktslMzh3ci$)Sr|G(4@eC>2{PMI)!3_3hP zG^vI0H|f@1J+6*N#cuHx-cec#Vel@^V5jv3o{5%rTi8}9p|JZ0FcsgNx!J-&AE-R1 zb|Bn=A{oJwk&uVxb|loBJHY9x$;og9PPr3)r+2W`c9G{;H{T0G$qGG~IxY?LykHdq zkZ4_gEvTgytU?L+ZTVI3LFhOlCJRJ^OMp6SC)PJjP~}o?+Eg5MkHpRb5)? z(-Hr%IltslQ_+BWTdF`bOd4LT#1t`bxuOb$i(#i^C8j`Ps^@eMUiW>nK0ZA&<0>nr zXv944)b`%-y(|U`mMiPvGIj3{d(sGN1QZ!(vEma_PDqC9-1D7kR zK)B4dwgP!>b@Sh7Yt#Da^dW~!%R(I10)?374}fVlXs7zvT{U}iFu^RD8<14xSh1b1E)*%Fn=V1mRUU6rZQ3WGk57^ zX-SClc_{}c@BArhO`!~X@Wd$mz8BDS^S9eUgzLV(PdRo5cWXKmqFYyV^N60?qkHm} zKX6pB$;A-AB(pc>y*wR_?;h0VJl8MseK{CoO@nfS=taJP-b&EH0MSv>MZV@zH!rqv z@zEEYRzv!pVn^TeI6Ob$`+n7E&&`G1odv#-(teo1aic)f9)Pl4E?FBXKzWk9?zqW9LUw&M+6SBT`(>cVVlCU=FNyl(!rOjucgtA0XpM7gi%)UQo`WmU@| z#3BYUZder3)ypBoLIK~K7KQLNJR=Dq7Fz7_JHZ|cr^AyAOMkYbD+IZg19|S>YF8!0 zt!tbif3m9*@pbc78Sc6L7N_Hp-SB?z%9Vn|D-n>3%ww64QA`HN4L}+~r+Zhi?z;KA zAobFSlM7mQ=0(3RhT2yZBo|yQ`VH(RVhz!gMZe}zH-AJ1UAFkb!LTw11ojYD2y!n6 z@?2`=AsKF6;|z%t4~h7?`4eF4bwBUxUJEE1kbX-QNOw!Rv08a4V&HN`6$lqYrDWx$ zK%QIO{I{Ul(gm$3jqji+{<0VOVvuB2LGt!cUSwc55o;)rc#-B&H(xAQP`nq>D4yTL zmfc%d2y!n6@?2`=MHy~g;|z%tFN*lO`4W(Kg^Didr6f~k-q;WVklWQCVY%#TV?!tb zzb(IZxJ|OLAqdZ>Zr%XBcac&p+b+ZLl1o8?l?ceiSMf4OZUE9SeiAPghq}22qtX(s zfUGYvf~Rva$i1o{x!~Hi*diU{Mz4h1RgEVESfXKtrh}FOJZSi0ke~L_10)w;btMD4iC9DUq$_D2b@Qvi1!X9w zrJZ?|h{F*vplu%ab#%Cp!%Z$jc>w3C5shL9^~n>5F7KmZI)CIGxa~RC?sGb3NlzHgtf%1#Zn`pIei^o@gi2 zed~F#Pd$dcpK*)W@O!5*yk2#430!MupZfd@2i@BS?5Zgt*vZ{8$l2t!;SC6Hn-l^3 zZlt9h0g$((UX~jT?&bnWB6|N+dqKs=!O`^0ypY6k&=q=E)x3)4I*_+0_%wj?j{m+GQVGgMCcQ;HP5zYX-hRM>6eEx~lNX-SB4Csdou zDT;0>_?aG|46&2V<$$i6KL7*lMyt^2_`bb<;(nlsz>?d#M68&!iaIyb)WAntIErDb z#Vs7vrAsk9DPokg#P5NYSoag=xW|=DjJa?HeM=Domn*73xC9kqz)1R* z0*PjKA!=~MyJe10A>!S_-DHk$TQ}e3dz)XLT{^LENpM)8GA~Tke76Q& zb*#hr&jEeZN#9AaqKPZ>R=!0nY~Kq0^TyBSuQ=1J{EOU_^RpAM%VJBK`wTDi+1e>) zHDV0wv9E>S1D3L3fQ*aoLwoc5gSU0K6eL}VfLvI$t&<}+02xG!{WICtQ5@>#?I`u| zgbwShCSs|%6s3-UPN{R`1|VlktvJ-pKZLWuOSB-jWM=22GLU#lh;w<>n3ba3j)8Ph zL)K)>3h27|0E}52`Cc%E4Uz8!l$Rr43&}-JB42{#$QQAO;6~&V9(8jABHs$-BBRH% z@0pj1xHky_*n3@m74sz#PHmeBCE&N^SHT-vBpa@R@O#m*eL0Z2oEBz7teb+hQDjyE%Qhf{uLq`iPz zxi4)kHF#&#p!G^s%|CBP(Jvm-4UT8rg~s~9zPngHK5^s!KEFR>4lX_$e*qxu|Al71 z%}3F+L*?@5(I?H8yljMoPMH0)A3z$G^{SJVKT>VK;-MQ3rkwu%k3lSK-{O0MXS;be zc{r#?lw$E@d}8wBE(KJ=Xk9DI*GTE>kn?(QHaxEBfWuOkXU0wwpcIDxomP0=k)0i% z(&asK*ktEZG{WT9YN_}$pW`9rxT@WkfhQH+l(ghxw{gr8T4DP6+GbmhkUh{PMKO)W zp%=-7)$jK5UHA518J^Y0)1m!I4TpXq@c0(CF2AxedCyd#Unl{;Ex!uh=$}dG7lh|i zH(w+HmECij`W#u8Ub**{v5d^Vp3s3*SCT>zE{UeRDB|Dt5&&?!o)iirJ13bQjqeZK4Wz;SNp(v1K4*j?|Mtubpj7ws z&`w*FDQo1yTzO}SeFw?Fu9vY)%$hV3hoQESpi1C%&E^%FBF?lq{D$B65a)T;&0mMU zwMHB4bj^vbMw`<@K1+`zAlGL6y`UdY@4SAI7I<8azYC8bf7FZZ6n=NR`K`#J(=W*~ zg8SJTeWB;__t5SJGfhTuuTvlac{USh9yPR1Hjm3Wk05(lr-WDCd_VZ)$`QRwcS2Vf zEsZz^3IXV|F29O(6Ax4|P$&VvEx!uh&?Je0f{?cPGCz&?p`21{_^x$9xz1c8O(~ns zsmq;ZFU{N38byq+q-y>{FxJA5rV^H+_!Pqxf|ARDJa2AwnIyxlYn)*iHg5QxBBs<^ zH?%0n*wM%tP}$+4=V|sF#Be(-6~O)rQuaapa3hn zV6T9=DOm;|4FV}}*a<&(cw2g`FO_;ub@Ml6ZO)-!g;;X_S<4&Pv_b%qtjn(=NV(ex zCE&S9&X3z9I%JCA1u+05-3Iwko+95WzS}&<+1}_xc;sgeG|xX79M{L=i8;aNWltI6 zMXj1Kj09oG8lLP=>SM|RWZ8@-r_zZ7B`AM2D=t`(KPU4JkwJjtGg+~4H0;VDBm5o) z!9>=&`A@;^7fSO>4jHZxBw7ySxu2_$k>S=gE(jT&A_*B0Px8VTw@m&r8rmOP^1)+U z4pOgaP%b#HVnPRX+yT9npbhcaJHqeoP0YxpZhi&$+XhWNY0I=c73RsICIV^PWE$bQ zLfpk#2UFC*M;6UhSS{P#H90`hwR?Vb^Otp0zDi-IS7+tPjYaI)R?R~&+wzo7ZVv1W zK>o&&F9#)QMifE0om9iOgn*{UZ2=t`IQnhU@W6#mZFMYLakF{1P_n`chh!lT1N>1v zSnhCXJBuhSEqRib5(>LN2KIcWoqxEHs%QP?M9c4Q_z6n}0Gr+HWSchuU(oliT0#Q< zTP3QF$jBFPLgP^~Po8)c^r)L-?auDFlk&dayHA-#Ow(|0)kI?MzYhcQVsVPXn`>MO zimpUJZZ);JrjT@0s~s+UyvvJ%lFNi$7q@#BC`E}M)ePAM=?RAYA#Dkj_yrf#gu-r9 zwzheaB8!fL;RW?6bV51!<5)WW+id~c^POXP|1r1JDO-{jQBDdsIaDaK) z>gKO%qlGb?1MQ4yKld}~k10Tm_+y&=jk^?8CiP)WuaQiq^e=jsWJ)_NmNi-S0=+Ol z^32<xwdsl z!F|+Ns;Pm`t}YQihVvw2sYZEzb@Me4q&Hk^xiPZyBV|nla&7Apkt^vQN z{w>b}+x4#}0Lf_itzdaCQhOUh33xYyD>*T#38=6t$*MhI{ca7=EW4t!MTB`mmy;kCrj~1yx@T=AZ-Q2+9qjmJ2PRN7v220f*T-9G}yR1{2CCyx(;O zgk&JeWh|4Pns}7jM@M?#bq&jeS7@8qX30J};zZZKpc`*xzuG^dyzJ(#BZn{{@bIen z6*2{EyUY18g$}Eg{LKt526a~VBP4Gljx}tiJx>SNO~e`|;K@w*9eC8u-vbw0I?UG^jIsF=*)im_}O|0LiG4Y;B{Bs zi#_gJKDwPqmn%la-Bu247BR?o!=eyb6J2?0n19=|P{8-5MIn3*8ze~vEVS6;M_|0( zJU^LGMuw3~vTi3S;a&(-An6ViiHM2nsuuz|aJmXb!pTrJ>4g9jEq?)8J;oaP8p~Xm zVytmgAX|(zfk7TTm6jngWSnBG(VS*$X>hEYUk813^@#S3$9E@{xxdGAzd!-nZG@l2 z>Ph>l^P@lt9CpIb!okpp?Gt|A3lM3ufgaXn!QQ6aslpy{GOc8$v^a1Z(wf#Yt(q@^ zaJ)+AxM~nfc(I8B1t_=?eijAGCJLm$VJG}79D*t0_?eg}K*U5Zfi^d)DZiGGZYOdD ziEi9!3iKf7a|I%iI?G)wbae81PkrB#HDSzv0~Z@ zp0uQdAoXrqD&i)_P`gJd0{GoXONC!hGrB~2kup)p^R1h20=-x7(o1*6t0nB`fdV9> zMU@8TK~9B&Knfgo!p|K_C4L?tqRqGKP_RN9-!wiQj+tTN*F5(S0uQg6H+WKq1M+HdMiO2IwZ$&z@=_}2HIm~e>|D&kL$ytV+#T3ur9xf zDU-%fivytqJaq_FEg8X3BUu~>LRw-Gme9*QPTA{FZi%)Wq*&9S&X%yyTM61wA!!NV zQa9T=M7(5dwD*`+`HL5My9BRdu#ABq2ugsGBbZmtJya?$}N7#VEUik#0MHAVRyXG2%MGf=(mJm#}o0b+DT+KsL1n|3& zmI^<^kjXqGMS8wn@$)I7>9Y%alE!n4oD}q;XM0Rmwve1jCkRg$5L2w@T{rIri!Zr7 z`O3^k9gYC12Ot+80kn|Z+-lJBtO3hM01+GHjcdLnN@*T-^EW{DbvI7XH&V3iX=ak* zBQ!+=l5DAhLdRy$<<7pRh=I!$RUljprIKU;3go%b1!Aw6kH62j4cflfZu!`#1n}&u z<|j4#w}$9CZ*0B+vAGK^75`J1BCR^5itXhG7NGz;Zy+#tJGBZ6q`+Y({M^w_$to;B zJSX~8we`PvX1+0^_jKqvHAQgstWWq7fSrzSbJz(#cNi*h`~VRX{Y%hh$-OW*GVclSpy7)_k5vW9 zl~99*f!#!`(ay=Bp?TEJUqsoD;^SY5AG7Sf7-d(GPT39YCSqsHu6fYoT@pUoi;g5|Dc{{w|#@iE-?yUi?T4JTAxI zg+~xNMz-YR#E9{{>gG?i>oM;*lpUh*2!WsFaj}P1&BtK`*ts*IH23??AiM!&4gsuI zN(gG*NJ~4EOIANAQdImVkaOvxyJP!ekZDyxa!*r1$-r(R)@Y(6C}|#ba}``}V|1&} zEJ6{19@`l_*GA7GN_=)LK89xLEF$AqH~$#g=8ePWxw(^o%gKv|&x0 z=GF`^9f@bPoBhmw}Ygi_{f;Q1-lY5Pb6J0+H zx^B|@!}M4$B||86M;^?93Z&bCA`vcWLZ0+`M+I`=M0eX$QS8P{uI2ztwEVr$J9!#? zZnk8YMxW!vh^NslB#)44#Bx*M1k2Oth&5U&8L>2vx;X&ZH%7Pnj97{Yth$}Sb8Ym9 zRpPU2@i8<@N34ur-F!KW2CH}K$;tS9G#aw=Bm);uLIVY8wh?|Vc%9m*2&BMaC;TiN z426;fTY!kCZNd1vcs4#An90idYC4yK4Dg25ktB-Jm1}e~W2a3eg z%MlvLfzwqe5>AGiNrVQN=U6xY31~@cim(DsLI6i-UkuXFnj%2*mQxYhz|xvRV+|FO z2(5Y4&ELX}j)Ta|lHC`h>}=UJ56XiNJ)dqGxp!(Uw_>~dVw7D$I%PMo zbkitQN7&i2YaVs81hTKv{EWVbq=dkh_&jn13eaF9{4744^aeF@1XAEY7m{_=wkpZU z5g?uuT@1h;K;;r1EidxLAcZr4KssB(z|x&;jh)>Rng_)wh{s`y>XS3OTP<|@YPAaQ zJj=uss6n%5Op-!t@mGm{c4@+ZGwnwC$vspqoDDPZW3l0P8!j#S7MQuM(kp`(loiPS z=9~R9P=JgZ;b)Pn?4N-YIP8Ri&4(hCFQ10pK=-fhYC1}GG$?Cs_*7EhtM6eM1WfLvrXh0c*1fHZ_orqGH5CE5e2T{d#cTQ@kIjE@IXI(em! zB2BCFl+q#wom>`Nn_aFVZ{qs+XQ6=aO^c!97X35O3olQ{hm=A1hz{8)z4}2R0W*(&870VkH7gc*6HD;Y&v(rX0vw;oiiM+L zfh6%n1{LkUAGBYin*hgy&()K$d6dR6D3XA5loJ}Dxo@i&6lsCS<@kGtYDo-=7}4o- z7=!l5qx0hv${tWSpZ4=GMFcX@wfqF0Yo=n5rUpKg^*!ffG+YvcG)nYa@@*Dx`Yc?~ zbM?UT9Hax{meZ5K(w2z&S zkLk(~ZC4#v$0IUzZHmKF3q>OaVldr9>45U&KTrU0gT7UF-#{0uN07|q{P40i(71iKfoC9jeB!PfveR-Q0=xZk^Y_pN7b`5HSpQhCBkQR&(bK- z@1OZ?s)p60V?{||Gb0f^50ECcXG~YFyr+4_boA*M>pW;y=VjeVA2r!!fC7txLh%~7|p=O3cv3ukmpu6|BGxEa<^=IoEf4<)k8{d_S&PZ za*%3Cbf;X{r+1Jni?hGGLeOiz=dsvzp8TZ{X2Ui2eu^;GoIO013=2FGJ3TdFuCsl~ z$luB#uslq2-Fx+uKM=|aJgrBnTB)u(HN%@%^jOCUU7obFQSr!YlY?z`(w8tTS7H;V zgurIrmomLajD{x^>#Z8OU3@Xrv*6xVv;gewt`Nu{_X$bgc>E~IfHuYsx*yl&Ih;id zvh;i9tZnJ}p9pS&osZ#KhU@tH0kB+6ixA#|Y|8;esmo3~k{R<_B9Z`fu|7UMGZT5UfLscIHU5cm zE8F{aTvsFk=%xChx$DH2KdB6e*Lkz*V02noO85z`+tBhf0A6$8JLiX#lGE}k7BZ3m zbm5SW`z;XnVOI#`tL~SgHFzo=C;+%Z@q^NJ*!ysNAxQ`l*!b=YSWAE~`ik%9E@e`- zH1pS=S^|Jk(vP#wCu4Zpsfhr-OivaKj>hFr(b{qVEzpnVl9(I76$1IH`=z@90tEtT zBc|+L+;V{efD5z?E_;Y8%*f9zv$H-#eh%dHq~Y*fzPq+yY;sKm@WtYe0{3Sw1;85r zR5T!Wl}G~6^^Z}y;`-p#c0+mV`u>QLo6rk3E^1Q_0zL&m8jq)N4fD>c9pSpoP<5a3 z9l!Qyw>i*wRQ}YJ?*;%BFjyEKSLUOXtdT1Oa!O@=I6R>w%T}B698U-Uw&>o5GF_6Jl}l3q zef(}!(gLUy087IuS;Cw$akuit0J${UHy6^}I#dS43-pwi8A#Ypt`Nv6*THmJZWIo+ zkp!TZMq{%8Em!cZI-zm42ZK2=#lb@p#4? zC;+$?el~0K78BlB=Q=@$?o-;XAzINuy#ah;uOWCa5-`yK*a^)w+c8UoZb<+d>g^f? zg?%~*E>j|f;qkfYz8ovsa;R~cqFFb{mjh_Uze_tZm+yX2N7=XO8{LNhb9txSDKx!l zVEF+XCXxVj<)o(EM}_Z)xJDrW*ebP6xx=yJ1quMJ&<5hLvpyjJ*rmeji`-4A42YL$ zmT;S91C}kgz1ngBEtCQpha6W3D-_X$qy7p9-J6WDliDg^FJ zQ%e3ZF~>a~V0bDwlgMVn#jZJ<~?$sh0lqubgb8DSD%jmPtNG5sNIFVX`E+A zD!o>JeZ6&^b`L!Fb`#+X9U9lUUv)an>G&(s(;?{l1`1<2B|B(3M|lIyfeNHl0$dkQ z>ih0X!knDLMO!MCdoNh7Yo~+Ec1D>s-GJ1&)1m3K^_D41PRL=DSdk@b%Rw2J`Dbbm z1l)CeF+wQwSr^0?1LRU6xezx6l>za>acy@p?))pMDc$~@<~`2-$4(?hM(j;EphgecO0d|N3vzg?q_o)s~0 zxuObK0pjvDl~wZ<{_e4_a)I)Mn~lq^ z;0guyb5`ziz~zYnmjd9@ft}!(gA0`b@q+t&&uR$n2d)svSGvCT4hK)yo1&=n(ldyqvE0)Q(wzX&`0=U#oC*0;2!n$rp17M$A z>cOD%&Ie!9XzLGzz-DoLUf5&f2H{cwESwfv#E<4_lf3b>=8(%X$IrGSZrkOSr?k8; z^dg>1wdEkr;&eQ+UwvfxxfB4GrWfW2#12JeK)g&pI4`$6%8TU70krC`njhHvC%k$L z6aZZJKNmG(e^4|4b}JeCV4DrWr2tsEpzR^sZMn1f;sjFf7u50)E(XXtT}nS2PrCb; zq5<%&wtzNHruXXmgXzO#y0uH$+}g(#tY+c6@iTC~lDavB3oM;C@n|rhL-5X@qiXVSz@r7digq@kJ0q6Rd|${S26JrAy_*sWyDyW8B(I{|>)z&V zORDI#N0fZV-59qf8LnKn?pm7%hjLX~HslSaNCHs$*tX3MbWW>w3(YMFRKS4dV9bER zE!_|`=ZWncOp^f%k%2D?&y>Mac?Na!ozQXG%>&b@E{hEHoAx5UWmZoChUH7G#gO55 zk=@l;CJ~u_Si2-C=ltgE_>^{D%n_(Hu%hyes^-t<%Jo8@oKvph*B-U| z43>^Ss8wBX`K7J)=h4&^LYui8v-B091@JouTnvy6+4dPoj=p4@g6Alj2;l2X_R~!=g6W}sLs`xSqb$qX4eN-LanZ45$Xgrs8_D(xpp@0pS z@2|j4S0Dy1w9^#|gp0AalI?T_kmpu6V{g1xxEr!{L@yys_h};5p(XFz6zDJD^C~@k|di^OAZq zE9tj9!PQS>wE{oRlZGGK92%II)* zSlyvxoNjY*R)`J^FsG}Vex_qd#_cBr0NbEnsRNgxyhznV0N-g#!uVy?&JjN)1UB+e zu{+tT>0`vw7jL{=X*p?HV75&J`goJ$E`8(mKXHl+%YPF9^#JV7)nVO#|$I`7SFh{zRP5euO$Gm-EmYBT4+nqjAz_$Q$k>~!lhl~ zpAZ0yGGLqyx(?jge>D-ncco-Tq6dx^1}!kV>EZ^sSWG;J$=j?&)SQB=TStz}TSTLYRTiR5CCkIex(p!7~cI6xKIF)(rnSQ zf+K$Y>%@$)>@YwD44(ABuwAG8a%{J@te?g;ua?!5+{9{GJiRPHEyJgC=?aq-T z6hnKje8PR)F|AD;4~mMwBkSh3%EmSCf$WUwsO6Z(v`NPrmM17FAxN^Dma+@y$0NM4 z&dThi2;g@kEfs#okwEgESBez9|3}e#=BEa<00dT&irUC|T|8iyr=3tl-0-G%=ozd(3<}i=} zi_64n(y^qD-|0?W9N;sO0zEKYr~6Ybgh4h=5 zKF0x~hycdCVERH+{ zwaJ0yu4_=r@akQzJS*a$X3zq&oBlG1n0aPPbG+`r0P}X)C(Mhj&5|P1yqD6enc6rr zTAV$yhyW>XAX#Utvm+Jgf$1|y)ZOyDmsJ7)+w~bE5cg?C1K^$a`$^!-eh&D4=Ns9o zj@!Z@1Wv0hfz5(Lwx$5=R$KBxH!HRoaPQB^fXhZ({Na-V503f?5pdXS3qMT_Zi~Sq zX-egJ)Xg3El&>FT`GO|3Whf+t!@3? z0*fOLH60jWzUj_v_eswEF->VKcI@*&1q@bP5y@|2*q*Hgt)l8V`7y2;kdoi93j-V;M6Z@o1IM0TXwqQ?{)f>UatO z?wpO!C>vFG5N8{tgbACzG2kpA1U6T3mQ&V<8`vTSc5)PuIDyqh`sQ>(4lK9NXZJg9 zt%MGkthKX-_w&G!&9OKX0STZNKQS58E3Ne;19BXaQje*deVB=KrK*uj>D{SnB9)$x ztnyI`h6wSO7KKqh7kDi6R13;Gngk% zAo3)i^3=`$+E>ckkRkRh?f^;eaZ@ctzvsE45I{}KC*u?M5wGR#d^xWz2hd`%B0gf|QnB$L1{*(1 zi@4G|fbJ$feYEY4qwWvJr!+Br##7&XjznxeUkoa(`rjxM zt7Qp47BW+!0N~0YB~_u^;AXsFy9)upmWPLYz0RtQ?cSCHh@Q=)OL_d|v4!L46iEk;Fsm=6A?MhOgl~_OyQ^tOi)@{KgH(<(J%4!oSnzmKGrXPR7BwW5eA& z{GM{En|~(SaCh(8rlllL2jk<;ZQ7PZyWKj6{*&?X(9U$rp{i` zDd^%sz8pX+ZqxX5)Ui7&1Uamf<(UJugT+kGb+gdMi}(QU<{kI> z63tJG$=bNT0hI`GZR*~Bg`z?<*7t577ILiCI24){BBHO>YZz{y|FC^sn#?oAKBO+d|O)RtpshT!t>$q`yOzqn}05ENwEg>@hN4Dr#ph5 zqx&c4`}gdua?CNK1g)-S#bWHF@z}e(ei;Nf(&x68Xk@XVTWmgFJ%``-GN`oQ4}taz z_a@`=myfOxBw7ySd9!g4_G)Fgb&U%`M&WtD48QM1eBG?c48;3ebgEB2QFm(ZKYcRuT(XNr5|Cyy z{$5ast?C^#(gKgm@ps`7oH9BqpRI)7_aesgs+%wLnUSyi7QZA0O41(qQ}?(uV)s}Q z;@nNSExq_e1ahw_R1ho*%nlxY-wWuv`67^XhmV$zY0*pH_;wCrDIrL+o0f_#S@_@_dUdku73>z{?a|VKRYz9f$%!t7lS;j3X;1eAKrSM4D2RigRHT| zxL1bX_cV{X`8_&xu8huUB45au%d=4-@Zwj^UkBCc`#d^BrXBc$K_QPWcNCxkL+n72 zv`f;)Y9O_ZS8eV^OBo>G`kX-^T!WpWgL7uN@cW(t7E`_vEV1LVy1QwV zWRJI;o!vDh1Zj8EQV}(Ad^J|32;g@kEfs!2#i)8RR;5VM``?54Uf;a^ zi)DwYq=izXw9seuD78w1Q2DkLn>|o?237Otp@|nKhlgjTwfLxjOF^ZT2*`sR?{E38 znX*4!30>bZmibLIe9*jH7o2-#eWGS(u`$FL0+w+Y9R02x4844CK3vWg=f$SEL7C*RV`@&DIrhqU-MhT{rw=3^at& z4HRabv?@>RH4(_RtxH6*L`$9a34)5XjJ&h9m{u1a%??2l)oOmzZ z6@nbgfjsY;YG*6Mt!v!NlGrnPA^S`CeJ|qc<~4{uYt`)!Vf?##L|0hc<)S`^5@*5U~2%eaPr=LE4S}5Rq)1nZ*hCz1R z1(EPOt-Eq1#U4Kk_Sl+IIt6Eka%bTFiDV$_Wh@gZ6YbS}0O^6(H7pZeL9^H)lKBAQ zMAv6w3|Tumze6*@(pD&s3y}om+Kj)8Oo@IfCP!M}aXJ1jJPf^(m>e;p(@oS#g7)p% z#P19{$-YS!bZ0JpAj zhWN>>C*teo7og?%b-+@pPM#sS{T)Yu^~@$`<~`eH~%O2%#Pe!IH7CurC7)OQbN#Y zH!T(0CT*iOYElI7yOEX(zo1o&?a4+>ij+3{u=hQ`8@qPz$c2o-q%v=EvinC8&!TF+ z+&6oBv^P01mri`NM`Z%~1(;_oOwT&{s4E0JEC=%3OH?1taO)ap*evOz5nng|s_mok z7LQA{H=gj(NqyJtI@1?%_KqIU4NYp%>aU#9tseJ*e}Q4HrkWd?FyOprl5{vvGB-5g zzJ|K_jneB`3HmgVJ`WlmKI|BCcn2+^19`6`g(7LvZP>2-+g<_yZr77S;bu4hk6z(- zn`_;CBWS!-PbeEw`S{QmgG8$ek~gi2a|U)3u|e3_^OHEIdDPASEB%gJYk~H#4%r^b zw7_5Hqe75-Igsa4tA6LG0OwAfd^LnKBu@HW#MjN&%h>4UJuF=FV|iU6)VmzWJLS!A z>l!y(-iWW8f7k{?7WdLcW1cv2Fr+dsY}Nc6IMnjN@NRW{Tv_eH+s17xwdNC z*g|h5XhY{@+Zedi&7T6bn~SpAR3>VFLp$a^`hwGHIC<^S^VIOAYyJ8IxjlNxpnat8 zO&)U7xZ7_d+N-)gR^6co4errnejN)pj#UXA7=ERGNEhOV_skRqJY5q4fNdR76Zcp% zA{nq)r%VQ2qVq9_q5<$S?c0<-cwr}N%K@}^uc8#3lffOzn_ttV3HrA2g02pfm%aSO zUKa@1Z?=?We(c6T1q?19lT`QVMB_*nKUN=NPtGWT(K>yJNQo8bEi3z_3pTBy0r0ZB zflpsDT6ME&+j0b*jzB!$*v?mrI@&?UrDVs^z_5BXN zA_6!)$~?5M+w(Cbmjd9a&kC=I0wWJ0b>ln-}BB9ZKsm zqXPq#XHYl)tDl%Om(FP_e5>zB5Hr)t=rMCBh!7qNs^&M!($D+Y{+J%|b^E=g58Bwr zfC`MT14Z1k^6^-0Yy&xPx(Y?Y$rziHjctI5eg85{q%Iu}&G^JK6Dk8amV`LhgFCCA zf~Tl8g)(GjD~8|q0=jPA2(zJus%y&U3PIN8K%NV$rl=WiUE_jSaZ;U3Q6s)?cEPfX zM-NZ!&;K|^a4AT<5&^l$>Z(GH+yJB@baGWeaj2Vr-%H&*W<;)<-vr%e;dAwwIb-FS zxhn*vmjijOvudUcx2|!9#z`|peBJz zy#3gT@(NbX*Mk49@;mS@>$t_0`%j<%6K#Z_rROKhUv6FB_W~(!*a<%i2g70yLAmT4Z`;ih&mGWP z3EGf9Spk9!6i+~d1=@8e`-v-r+Lr@)F1QK@8E#$U43U#?5b<^M=Rn?dpZt>^ow55V zx4fbO>9^cSUp}hv z#bBpZ1<5U?w(tz>CSnb1C0lr!N8KEN=dMtC9?sQo1qo=@G>pvU6jL@vlDYdVh9TnZAbL_ppEDpKdj4L}-#Cy`olpll!D zIV&=EC|X|#K=yU{RjgOGzEA>wTYeS1p+sVRL5TIA0qZYNZa8xjfyZ@M2=y-q^4#<) zUT3&ifCgZMi1K6XqohQBit571>3HZ>`sCcZz zQN|ZTd#)--?inh|7}!n38m*s18O@_^{wt7uc{nXja{O_HF9+$@G$O2BW+uN^L)%oGIS`P9vO zym!yJGfVNB9{W5wqbxe@x!%m3*$8QOX5TOUikAj2^j#Y0)I5)F_go)nkUk__*e_(* z@#C9HV8c6UmkQLpv6>REacZ9t*qwwRhf%Yb*@gnl z5ddtFc2Vr@2%emCDFD{!Cvx^uDj(J?k^pp(-hAvhWZ_Z-IQq9(24vy56aee)EmJzT zEZKnvbwvYUN>pV_=Xb!;CZ-LuE^;aa?rZMz{AssGL=u25y6$GSE1Q8!0kG!iXVeu* z0J?g1L^<(~#v}8>EKk1!1ps%#&t(5nJM*}Z5_&du^It<$&F4jhb-X<=z;aYX!@??!iUANBziAeIJ7j#UznLu+zxGS~WI5v;VIS)f6?mpr7y@>Jh)Xk@* zHCV6(x*cs^Dq!z%g`mfBAkQ^W-V<@OeJl6axV~V+t}n$}{cnXE{Aj}#noD5VFyRqw z7Ui>YlH={i`P?`Gq&1Fm z8$=RlyS2NM@j0cEF64b=Xe0sXCS|s!0fxRJE1`Lc4phKkgVNJDD5om31m_isCQ9J9 z`@j_uz$r5w%_C?Oo1W5Kx2y#31sSx!Y-8kYI71ah)Y*fZpbA{1XkF|<29Zy z_Ry-?YR8VBbHSwbp4r}Z><)7uwK;faPU@MuozHJWkXWRXhK`T=xfE=)5&?NHRUtb^ zZUEBgn@Px49O~xhWng3ruZGXwEQjN%PoMzlH^R>h%r#IukAW08?1Z0%gP}>X^B5qW zQ{DVevX8>rEI3UqML1BqLXd#+4Y%aE_$p9mxOI&)gieO}h_9PJ1J>WA48HV=H@z86 z7e6{iO}2tT3));a2*k3aChx}Q0A}jz1I7n ztfkk(!zz99cQQU7jfR%1u+Ikyu*Jfiu3I6l5Xe^#hLhp`(Wo|ElIsZ+09-8YZ1L=m zO98Oleh*{m!~02Xxd+wF$Hex2xRm+N3+DQVdqO0Eio=wxh35Upm~Om)Q4;Nt{&B;v`wsq zMJz4zHG25lJ)u_y-LnOLoEy_ea^}5k4i5&cXIeEMg&-M&jx?%0RmY$cX~6+v(1`>R z9(n|w2m-D#=tKhHYWPMe=tQuX_Z4m4>#nhsX$O=V_M|rNEc5QPO)f@m!2f#3Gxs@O zO|#v;2mdWSc%Sucw-pN5`z&HG{^NZU?dNMM8DMhk&GR*#`|o?-Fq9njjEJeo}P;ByA7^Ey35Re&4in&|Lt8N@44&5&4##yeCJ8T40N34$jz@X=Na z>VH#@b(-&MM~3vhYtF=vdl8Sp3*o!HM0>yOr0$9{`8-#S7%=~BA74+rr=7^fvr}~~ zTN+XyJth$AwA0rTwnrY{|{tQGvByEdv<5T=^4G;M{gST z9al66#ud77&H>O0k9;601mG$ZktdV=acz26dz$VE0Cs7AY<{TCqdb)X@zVY|eT8d& zCc|?xUz|hi5iCIB$q6^t>Jiy;Ot(@>jxst1n;mE*;mDv%|cBzz|;y zwJg)!(^6go4n=J_fZXNSa#gHTpa7tY0CFIdcrOd+ivi*Uba^Q){}BOQIe=C^drnsq z=qW1;#qJ{n9!860=_}l5>uM2XvEa=}MFW*@sR9P)vq*JaToD78E2==a7_-Xcy0`*~ zW_zGnTy8{N?*7sU46m_4+Vhh$WuF3L$cnTePYhX+K!Qt;kQG6|HHNH6 zAYA7NSrIIjcn<{c)q~0SlpYnc_2+RnP=I_J;b)O5(N&#I1ybO!6MhyBhF;tP;rG1& z5p8}34)sMFdjQhf$ewl^xkQ_|Jw8*Lgo9`kIRvTWdA_ZUaH^Ysqqk1m#MkuJbxr5l z=f{JZW*BY@oXwR4DbCC2^I7KrZ>*~MHfj3#w(r|C+5NZg1)!ttJRdC7&EJJ)-Eaf% z`H8#nV*4o{+G`?kv~67?zLvBvUufmuC@X5L4EWHy)v-kQ7_FRKv(_ka+iMbzxFvee z8{#{^y>G}yh;EI|^OH$+L8(uQX-9aU38+N&KQ5y;hf;be#h@tw;+z=%tjDhtVR*!B)hGPJhzt8_hZa_cW6@GV&#r2Iw#`hz7FuwA zYq8)h09PomEAn2;eErjXKS6nc`u9%(Xpf-9!G(Lk{# zVz_U@Be-wm(cgWASKa&|=(I4DV}oRnV25*s*j#};?|}M-Mv7b4I7906hDN~G%?I1= z#x36a7Lj{Qz5gvDrf%E(rzG5B$gc^Jo&=w=9gfSbV;tICIc47>hu!pk`U)JB=$GIa7`e{fR5w2@6BTZ= zO9%GtVSj5Txjeii#GQ60BJlAwg)-z#>>ki{b4w)UDOK-%X-Wq>Jf&Bt-I}TYzBHip zbn5Y*Z)W4}q>t-a!NIRwllS}3fbvvC$C^Hp*ihSBc{mWLxJc`+;q9i5rIC-}Y z?o7tj!M=O=iFdEf_w!iqln{j9*gv9&Mcp%tg(t;%pGgw|d};q^Jf50c=l&>{ivhB+ zKOUVQpU`vNlvdbkEMKD{0yw36bZ_wv4kwh8Zc6)uHGLXmvEkK(MGWkg4yLDcQP*O? z3i#p_QWCv|xMGCR%AC#_inaJ+fNUNP=~V^yc!awEY$3T*0~Ih>c8_1slO`6FmndyH zfR@~&TO%`F4D05LbI5sFHwQV#gXM+8!Z)%01`-uQ4Xa0WbupX{56pJv(I8L&aOtSK zaeZ+L>1^C1c3XhFarnGt<1cbYN5kiVbd_h0`;_O0tEn<${xm1&+x1(=O;rNdj>SXOzVC6 zc;mvfEbkrXq*(h!ca-wQDWo$>U8pEkH)ELN_5XyRdRR~9`GmmJ>v`Q%J#@~Q*%L1N z1Us2|MP_l!(&`$>EYd=A$ z4FJ$Y@43D$m}^NTt4VumuUC`um3ceI7NBhh4NSaCfVLGhFfqboe>XeV+J4T&15f)@ zzP0Yt{7$N6Ip;CZoZt1%{VDc5-Jkg!WCpef6P}|qJ;})V{fZE;;(8S%J@Rq~V z`H)e3r{|e{7oH_XF)s7nR*5X1TIPJ9eQ+B5Lk^&SiIrzcV!7Hsi682bjykOVj9W$ry*h=IcKFwFlSR_WH{vxrm4UQNLYzAd&oaEzq$rouOjHb}jiM&I#Q|M6|2cTf z{Mq%mLFh#;m6R_RoGs-A7fR51TYl|OAxYLK2=S1w13k8rm&+{c^FlYF1F5bgg(6(y zLcGu5l}iA??Rruu+>F*rUSmvvqVdnl8jzdd@sipxbd%gc=flg}PsQ6v3))?dzjr8> z#M_7woqhybkx~|)+pli;od#D5Qc%ib0pv=kL^(_bNXlKSkVc!Zw}jvK6opv8;RzgEBE0*fii@j#e|8csgtfi3LJLA&%z-{9AiOp(iI?{Q{DVkh_&-%z+`V) zp;5HmeeY}oCIjg=0BJ~`w1MJKHFVR)aU(w*ldjqd(J_TN|I7f0$Z?_2O zv>T-LWaI`QXWLD2p!{_pHOGI~E!lsP;fgnh1FXhkcQxi*D4Nm^EV;h`5;6mL>GmF5#Fxn(9;q@ zD{Si$2>?k5VJrHc+LO2kdEP>Vq(F%(N~h-;MRS2w>FylZJncmF5mt}1WJ`eKk} zRYCHGVS9LO4D2Ri4Gnl)3%~Da9(D6A;8Bm4vY0(&ljkZiw{5P68ebzV*x_>gU0OEC z9YcFEzDA6+$EQIjI=48tk1*SF3n~RERw5u*LiG|R1LOuE4bhWcqBu}WbRC|uA3u>hYPgZZ{7pob*w7{S(gKOF05L| zX1H~YGYp%oVYR(MN;$O{c=l1DJ$o$9*z{UF2R zrMG8EHr)*Xm90MS5^DAkX~D{T-vD_S3MI3Llvmw+C+M^?J->4{q30vG#jLf05P&S} z@~bp-xswPb;J4*h!5f++okS4gAMdp06aC*3ubMvuhFF`_`$I~#K^N{UQ*daGB%ll( zIRLb?aU(78xEz1)FiFz55hF(VF3^cCme`BH_F_r009+2_xdv)ziVL=O8nmu)Mnfh; zQ^eQJkE6W3U#H+swH(Mh<#kkG>vfHrEpNov&3j>~w{=ts^XILxra!D-5dI~;U|(2{pMOp0?4`ufcj!i6S?17+givEI7*L(m`# z)6d%9qWUurDugCj4&>ePrnq&D>mhHz*Ue9YeQEEuI{lm#58J(4Dg}vY?^Xc0$ZBoL zWPqe?6NNN{PS%!+L)~1Jua*5^+a77%r#0aCz9l`cLVyZnxe7%c&YwK51~AXDZoV5l z;BnrbVWl?03Qy!ohFrFfpREN_&?+u^g@a+`WM4VqR5!0c0DRoHh*+a7^+=IOl<1@~ zNhxB`>WV55E{0x7m{K5Vr;mBf;^DV@orf|8AJm7{`N;i!G3>a}ZV`LdRr6DA1pL8Y zPY2_B@=iOYk(i#Jp86LDJ$LhJrAtTC36g65-F8OA)ohyQk--e7vJ91Ok6q!?$MJkV7bv39El4M;WZw7QHO)lEP9_1eYYh zQj2*Zndf!AVHTIMOuQ!XJ)Ud%{)F_v>l&5`FT(?q@f&fTXWjf7-Go=2`|;Ib?;QjB zKHA)OWl=3+G2xGT6MFTZ3l7-J{dl9P43R1pbc64lot_UUuT*tW4M)`-J5wF6cv3=P z_nT!L;uc#IYmLqQLY|yP63?S;?9KSQG)~gcYULGafk$wdwt9OOkW9`~UUjoCv6FRL ztirT8>6SdUaw$l$5&@lKYmVFiq~V*%*s3_x&6oR@@V>LdUgo~c8PM$Q%x(@gXi6vz z`%kr>tdL_5T!wwC8*^L{0)hVv4Zq?l!JuI=;)P^RDl9(&uC`Fo^v&YJQ#4lyjj|lb z^EOdyrVO{PaYlU0EeB7gJJJUX8 z*{|rE$yxIvma;%E%ulrm+;_6hwB#(7r*I&MB*J1PY`aro+T=1rF1uwyC(KT?!q}&4Ytl|_E>(BT9>Hg1 zROV4F@sbed!APCvrKmN9G6GO?nitS@^99~p+RCrUWN1_$y6>Wg_J{X8Q0JteN0@LY zta7#3H*f+UF~IZLyiSSRhSIzq3%~E>SkJp|UerD224yqbugNKr^_CScIQ|sqJ@cyh zdhKt!*aeCsDGwM1tuXyz&$Ml|by2PGi8K$QiUw>N)@cIH8%VA0OI(8EC@#VDaRV+{ z-DlkD<{Q8t7u-z7vb>+NC*ib zX66MR8lC_N<^jYakO1+31e$r^nAx@EnAx>!cFpX@A6X9-%HOY`fMd-V^wy8a9i|1Gi-YqwMQ5mEnw_}t{K+NoadHMN|Dy>6$Xd^!J3b#4Wx zbq9~4xr0t@*{^-b>HnWHf3DwEd0%_zh|P^Za8IuVVCisaKU!Ce}ayjaPo{74pAl zn)Qon%K0~V;9Z6^tXn!Fq#>S8rUht7gB37=tAYlL!zF1*LzFbZKhp&*YbfXcuo1M3 z^}Y)4Fp!G~U>#xWZnX2rPq^s+yFVlco#fwXQIm)gV3OaWI(}FFo!4QZqy?B{8CF+0 zzrziP0)zL29FYw2Bf{_n@wv%B89a<~uc_rMsI|dEmM`c30e3ezUi(8BbW)x{@KeXz zeBOaqD+hRGIUl^dd^tZscwb$V+bz8b+q#ybGLxSm>|d6D=lX6BO3H6h9ltC8&g-zS z(QHPRVReC{&U-M`fpGbr*h72B<%4e!BH{A!!lq&@E}veDaQT#4EW}z|K2cja|KIr} zK$(4ES{|O=*sooo38T&Lh!J=NvXIG!j*D!CVJi*W9;md1g_eGVYANThAbb15Atd#| z``A?5TF96(Xnw~G)Iv@Mw$f*`(%lSDEpUrG-@BnY`0U}NeM*Dh5c1FSk4@Cdl%|(@ zRVigbtIcGhbUFVo(AfF;YAf+_QXWWoX&4s~($A3x53IvH^=#;`2<;bT0TZv{*_b82gi2a4 zYo3i#LplGyktKWq#=EmHrr2amM~voog#1;tkcnLx^K7NhXr(RqwJ{IXQqJE-a{m%+ z4ZxjM9fxVuj}VuysK2zBISo3oL0tVB)$=v=7haErns%5*Eye09=l=}i_uH!)9*}Oc zEo#@|3xw!P;?Eq8)_bXyFk0eMRKxFxKl2(agtQ$7QG~Pk`^esY8xHfq;(&KKZQ!JA z#1{w)IW(vgG_6iyBR)knkSBt14c%-+5zgknL36+tz(cN<_5}g$J=l?BY@Ty>FU6e5omCH@6ujo`wu5V!S6pJj)z?4;u{1(ZAT;HJ8 zVIib@sG4+ItO^G5QLj`W^HWw|$KqwR_fk(C4V8-$Os~nk*ExG%-|+ zv%H1Ih0j%6Sl-bpwO&N$8~Q84@}2=N};KukpWf5o*eyD@djc{v|5^75-OV-a$cCFL^7iyq+?KK$4$b+%u zO*$KPibMGZF*u|Az|m+1uB?ick5MgORes>LSQMeHij_jFwsQVIBYk|0ZR1)TJrDQj1r3To-L9&K-)wkBkkIpFMN7OPr zu+@BSLRMxJqugt1ISXKIMv>(qM;2K(x!U9nYZQS>nf{6pldDad0w!d|Hq4S_l_E=8 zKx?+4)KJd<3X(GM%;}6`53_R5y!iy-C!V=l)FgpDb6Xw6GuP^{&@nx8R988Ff;fG4 zZ9i;5y(ah#vG_dy*o3cmO?s(Ul~NYKn%5*sm-BxU^-Sn!Gg#a0tjW~WPvsvV%&+mk z^65vL)D%CJe~HR}h5wb8w@}dhR9=GB0})}wL(EyQF1L-2XwHIf5E?OO@xrDiEOVA# zigtF>V?x@%?g-2v|f!%(q1h}TCiJsbyGt* z|1m=S`Sv&!jT*C`krsYiDPjUwqQ;i8U&duE(6y+sT1Pqm8wmSnL8dkvqP-V>L#RK` zKQtI3UOMb+7#ph1EM!DD2a@}}k`Eq_1jTm2Cm521X_tqZBKR~!&!R9-M`nLQb5N&{wl$`Y)|cB+L9+TskSbN3(AS^f zfq<_o?`d{?%N_@i`7r0llzQ(f-$;Kl>p$x#(_rWNnCx@h|=u z5^Qdai-XCyTCNvoUhiAs8F+GMQyuJgCBS;CZ!IH%1OdEssN8wfhpyZ?{aJ5l1Oq~K zon9OUM?{Hs zgMqMJBgcH!i{|uqwBXM57hHpbp)2SAgnK1_kIWOzbZ40xC-rIvm-&{P5xZ67`LoyC zrbgq_=Gh!N6P+828Jx_FcVIi9Ub-ely*8M9zHhMCKN{Iu!3q)ckYz^nst(PErnPw0 z(J~u;Kwc2sRg*DYO|0r=)g;d7hU3-98U0eSEB)j*vYaEufnQI9y#a>63p3ds?Ps&*C`}s6 zjy0185rTU?O($HIyQ6w)b)CJs#7KdG@Li7YZ35fRdurX*y>5~}3iFLHO@YpI{rn_{ zfFRl3YJQ6EKLX^12oZv`Y#ruud`A)R`f3>UjB@@%8XTDa1D=~qy@#(ckHF$Ru$A?q zd3EorZJq=AO!XRmB$v3?XeBO>L9GS)+sIIe`hl`|W;G-Gc-!SAIIBV4LE9pp3B-WV z;uZV?to@{U=uICk-B^V7zZWKp5o-~NYkX}R7V z(TlN&jmKG1sOI#x5wdgBO}(!7c8A*2l*~nwv*4&{65%-C{4s723LOnaqgE_&YU+ta z>+@VLahOGI) zE%oV`J{`ZSYH@SDC1%<(Gt1CbTcot5AoJd}_7TDd&3%efIL!ceC{Onjxcr1XavzKI zYM=;RI2ht`eu3}KQoj#9yNrYh<7g8#Lc1#8YI6YX->aVBRUFyz+*z^K3%;Q%Y@;C7 z!bwV_ScNWc(F&oxV&p%%0ybVSTRch;MrhrA2}P}knp|N7PvlJ~%-Ecn@)(HN8?lag zu?+4Q-6ya{5jGPzkH3ASaU{UEZXlf=@W%eq0XHJoK2t3ITgeQ_whbjIIJTos5e3U`)kJ8)wQCj2 z;dVMTpiQmU=X9ZYE7_zb!Y8iSp5JU{%wqS&tdL}^6j0+`1_2BWjSuALpBAv`rUu&A zNFqasA9kf61hymB0IvNVKXXu^AKK(VG^P=rj)xWrxF45QuN?u zn>+53G=a7hhTe9X0IOw^xaUl1=neLAykOC6P|p7ZEmoVf1B z_Kw-3wPrc|njuzAmNq$!BmyR~a{hNw3d}cKH?d^xG{!-$+J64*54vqcey!TcMQkT; zLn7)usL|6_M4ezSKXurP_)e3BXb#!U9Y4G2tQ6UgYfrwjrWQN;kUOZwR@`{5Z)sT6 z)g}aEdFFCPJTNyadIkVzCg})rf>xE>Gb4LZXo51YB!9wq#9wfj)R5y{K2dIuPuVTr zPhwM6tcccJrv(=apw|sjl6p5ODFrE_BvSh1#nLHBxR!hVHb$}8VZ&k1S^B=61~$cp zV6V9W*&f{?GX^`Jol*lIB{8E`yolb$pa&O{%XhHy5d1hTK@%~eDEdoviVcrqL$JlB z1iajIP}hr01F>sU!oRyCjEIJCQ{a=lQ%V{)MTd#Vh#eOAN*SJ$&-1PwmLR1lAQ2Ja zZvhefq({nuERDaVLPR9g9-=)=l9ENT9wIR!8Y0RMPwJ4T4YMpmTpJbs7NsCW6mBG1 zJc*c?nG+GP1{+ycOYh2s1x;3ppS1gu0xKWAlnSRrKm@g9gO9E%y z0t10U_V_ORl-4m4kmE)s9T!6V0De`Ri*!9cE?$OFA;kCKw{)(Kka65ts$xQDi4{wK zA)R=mtyqFWc<(B%K{~Xq?WXSGUxCE1mh=CR-$X&P4V#F&WdnyLG{bdr<)&If;$*Q9 zw>^BzSiD+3Zo>1ll^?Wj1DFNzl@Z@>+Y#s}sBR8?AkVv;lXpj4P?)*4l-v!$j)Cdo zyNf6%R9fI5vpRHbBgD3Z_7;BWp;lEp-9%b89Eyqijs?}|!WxwOSr5{aA*hjRKF&|W zT+zp>e5A8Dq`4_a@Id6Tb=Zn+Q0nA^^g5B)k!DKz_sV&bM+z%5WB9Ss8gb+%A9yj! zb#=-q=0lJpJ_nGiQ`t9%Vg)G8?O}Rzqp%T^L->;`Cng=8482EUN1P7Ut+`0)=w#3i zg^igIBHzzEtYu(AVIw9-%}J6027wRL_ZtN~VpVMOPoWt+0fJiNk$2=B`}0fPs+^}PE|tUWXKX&E!eUIJ}>LO(0>W6G~~MkR*EPq#}+tTcJ%N;=n^=n zrSK(iQ1#{#n3}_PLn0y*^3Ea{!}Dj~2?&RXQmP?5kg<^SO|3Cj&{P2?UfeF_DZdDee|WZm)b6#)_N>@cIJM!~!J?QPFCi`NaRoQ|JofcTJzJHl9ezK89gWnUjY=x!*~I=fHR5Oyhk98q#*a(-*37bi8(CfVYW5<-GE^le zFX!4*QX>OBBKHCC@sEIbwker-#XUW19Z{$V{Q`2D>dg+kfo*w60?_b`d-DRBp4!mg zDkPi2#~<)zV}*{`9h;vtZ)4{mXJ(uA7um>$yo1}ed9?85;|9nPx3|{y;^|3qv7!3* zkL_A%>wp1srFkaBrH-aW4uiT6-wSac#5NJM9N<65VyXl2u5=*YCf9wFRGkP9LNo$m zG52aMVi5%tAHoWR%ZtvwlRziJyA|X{cm;yIt2P}8s`|4*sxMEf2^_3>BSi14jH>iI ziqh$?F&d{8fVwaGjJQ+!wW@2QeWd6QLlxa!KT@&Rq~`&;MY%y6rRAa|^CG!pD{Pgh z7F5-&Y?NMLbw7l6dJ7z+`p{KkP)o=Nyj<*{>P>T?!&X@=7L$eh zT0k_(1T`w1AFpk!pt?sKIZ{zkv>nH_jPyb6NiJSt(xAFW1hvk?-&+f6D>IL3g?P*k zs#US6J}F%{oTV_Z3_V6bM~n&x&dhz+)~81^1U2GOPU`hj*jIF2tCm7B8G1fPj`++c z^&XaRt9k{-W!tyY*c9bvHpxsS!%Ra^BOVj@OSL-5%)~sk8QU303^(HP@ytKG*0ZB{1#*Mx z9sy{?;)vz^!dsr%XHBnIVIUiN_LqW3tcux7>6sDKI*;0WPc%q$Sx4g;tj`gTgV_eA z_sreiD_#*Kq!ERUn3RVbm?B}Fnwd-nPlh8$d=8GDuAA3w^G)~}G(%w{Cevy=#Nsl; zjNbr9Yz`LFm$JuD*oaB7C^xygeg@x#phi3g-e$;<0Z-srG|XC%qlyk=j}=WL!Rq;CG)lY4v@S)CX9rw2BuVAIDu z9BK(IG@mOQJ{AaEMs#On9JtTt)dJe&F)twL3%q4>=a-uj-lg!)p7LWL4&|D+UG#>} zaB}g7=O6H86y&moMO2mFk|Wb)QlBd2z>~YQa!|E-sfML@(2o^0 z8;v6s|1xky>Z~29_NGtRytB#{l?J7hus3OrkuDJAS{ zMXzT2NU@|l`s{k&ty5HT z(dV^F^5J0tj1*!raz0yj8X0L%o=HX!&!#$hX&6bsEjr>KIG=MnO*)c*5u*WIlO6NDP(T&9r@vu+#jLW0rGJAEyvA9@`W@ThS_AtFhC1oxxCK32VOKegK5U-1en zd10485rYr8|B}hgPc~0VoOb-D-B028bw7pw{j~cj5+{=XnEZXe%D7PUI@ama1yrPn z!^bRS8FSDX7h}W3YV7zvY zd<+I-MLZsEcbQzsWPSoc$T8D+@{d_;*e{;U9!DP+i^K9@Q#^n6qkzD&R#pv07Ba$o zjXwB(jx}&W35EqmnsI9ooAlE^ZJqN|18;4xxGZU`ZxI-S#vpx~Ly=3bW5wZZv;;D% zVmhzEJ@Z~~1j|y6?&kX=w&h1~1EYolQd)gb>?TKW&b{6Tq_TvIRkEArD-bAcG7fi%e>?5<;B!M_{!;w%$zP|Cey_ z&M-6iJQHIJ9mE&12&-LHEZ}hMc(+E<_`>*+eCtuk~bItAq zKVtNFSscSlS0__)Vs*SK58?i`6Yo^57!Bs?p;khO^MYM~HHO&c5YwesnrpZuN0J3% zH;0vCIUdNh$>pzc4v5+D5}wSehN6~h%_m48Zfo{u&U*;EEHe$EmD;7;vJ< z#S$|?Eazl6oh_Z3$`VA=jh9bxfp;8a`HYS?RAaabsG6cP=aaS`FM9?IWbYxvbswqlmCyhD>** zEg|5;BiN)V$0B`ZOqAj66m&N$M_8}NHkc_mr9ZME#wt15AHa$@8xz0%`fk~bBu<3? zy<>Qnx$?fD#6xCM3pc#xIS=d%Bf|au;*ESl_e$6I5XGngiIBsgeUivsZMU#C&1N@V zXL!9RXlOAP&SSM$yaZfyw1`WwUDoyPXq?lq{B{vNdIZLbcudGc8sG|T4y%{JzI3#l z3v~y6$To=mc9-FH_G-O{Jso=2esdS6*MUk@QgsbJk~_=SmD(d51hpw}6TI@t)H2F+ z)rN>mknSm0fqTkN=e1G`tR2{47KkITTa@s^`Pe_jF|d8fE|2a6emgJ!)W_4w zOG}9q`tnbSJe|C>BOS++da+-wpdZ519=^+v-psrruYtA0y_S*zvc)ZAJV3x_JloVu zc!A;3zFhgARS!fVdz;t(RbcJF(PViXCDx~c7ua? zG4O~{Np>w3-uM0lHksM}7$$ zIH|Uit5|h&CM%x721EQZzCQ@bOUb! zNmtqFWa&KuK4NvatWV0~N#(uO5hz7D19@$G1lB&{=n{o;6((4W4zBCyJ z#7}4wbQqrF5C~)-Z6Yd&?Q*@}!AYtbj`a;PcIMG0;(+)~H}&pE`KN8K%VGmxWXf_ZE2TYIdFlsj|>`!^h&9H_~x}A|2t^*RJZ# z64FCMuCHZ9)D#fq`q~?$zKGlpS~(XGvFm}Ums@yfmJCZM9!@SlAt@GB@a{LJ)EyZjZD9Dn#>gAHt9*UPZO z22B}tI#CWA+@Uo_%qOgR-@^v%Yh^|;+vn1unS-H+4Ls^sCzU_{mtOg`SIGbT9v1hg zy=8v+0P^!!^?tFae1`~+w&Vokb!Nh&#*u)DwD9mC;8hflW+ZU0JE1&k1mN-o6lysi zOsh>bIa-w7mm+vHBY`KAxPXZy{%+8-XFz>IG1 zR@Bk?nb+Q%chxOJ^K8G`6er~ZZc>5QAAL>NyHz=4c;y;-*E>S6xpJs6|J5*K-aUT? z`>WIaqVzhaur2Z3NY~`?guCS~%5-;NwC8*RE`R}U_*7(jEvLk&U7bG z(;%t(g5K_eGvhlt5{10o#S5w9kn(odT~=p|Dp?JnPOrDS8a%2>O$bP>p>KD2wSd&? zwQ%&R)>JcdP!{DAQr>&SVIpx0NscyN4vHWC1}IkmHPYr}li#5zSmN)h?XH@TN9MjC zGS(;sRb%}?8FS<(F$ODZ0i*Skoh+j2ME+HU!(~S`51YvclX10NFV4K~HQLEKyIVp= z>^J3vRNrFEdj_Sm)`I72DK@BX$C$V zIpXv2r1m~u-II#fZPr0`!>NlC#9}hpFX6&&?-4V^u%%ACw!Q<2P~0XL|Epet+RM(R z!dIQmj$m}J;Z;EI;CW9v8OAdK9c!lwT7dVYlflv$Zp>v_!Z{J|vlOR?3&V}LOyLdh zWtp9fS2{(IphgXF#AZhSIDm38^cw*kF(PlnFJHz{jp0UIh^>)(RWnaFd2EdUM{MBu zWwF{-3-8piAoG?pP6m&LBjrmW4%C!^5NGhU)QQxf?f6*8BEIuZE@RdS#q> z)j6`EW~wRY&wulkS3Z3H`s;IQ$6xCR*0G58^JiamFPodsR9pR#TqNJ2yL{c|$!Y}O4n(6gi-dEI zwB&w)q7%#a1Fetl~v!_n;xaRL6}s<+$-S zRCNz(+I9~eqAnOczS|;w@r^Qoh$fKGuXK+g&dSh8^7B4$TE>%i;LaEjh@-=}aft!t zC%r(i){&@g9c=1iIw5!2(Dw{nnc1G$+HwP(#YZ|0gz}pFbyvqruWgse7vZi(=q|w} zM`I$wcw}uOj~f|pAECN1O=D_pbC(+uZ5-p7RdA>+UPS%y(8e*I>P6zAjUznQtL^xp zuHjmaGk`dIa0E=V8d zx^ib?w;Q9@2%b#aP^EsRI5TQnNHw>*{TYuckyrC}i+()nY4L5YOx!o?d(K97Y|4t!-TJsHC|G457P24kSSq`)=&MkiesQDZh&`@>B32q_<0Y3l`iP zwRE|OK|tS$0II-2IIncP@el+s#u5n*gzV0`+$`ad#iSyP(Y1;PA-%RK*QN7q!5}Hd z^cjW(p}P(f#Zlp0NCm-bn@c?^f#;Jc6ol`}re3%LMjrLbz8qtL1P4NPwd-(T5VW>g z-lLKc1%j|$-@^IK(s^@^N5xWbF+Xev`mMTdc!$N%$jvsZ^6~fp zY^rQ-4PBjKRi0__ca$n&;n22wp?n2i_-0c))!IVZ`62lc+M}iu2H+drFh@=8sL7vD zJo2r=uvXhL$PsNKT-pF?_!pWWdT>7L$yre?g78y#uVC9>@3a=^kCR&(#6;k_^mTqp!H0TO5`Lo1!~1gDZt0wk^_* zKUAVKs6k`^ce}$gezl?qP1~~0ud0?H&F#riy(qWGY)-I0+3nYW^u^ki@P74-I3gs{ z8xy!B$mPrWRW3ocITn8Pj3^w0@Y>XQHq@_PiLY&e>{rhSz#w$j$=%*`I7*}AHkZ~H z9-u+^ZhPE4?pL=IVWb^$L@FKNL&>(!b;V&n}Vw)0U zq?S1%g!4wVS~;Ib4>iTe(T2i72(MKu*9nYJe35ntU=X^SaBDE6EG4wWw(SW&qT~r~ zz=JT}qc3jLaq zLwXwN5>N>3dyRDAx#ZP$U2k0pIiZl-UX1jshd&-KkRjYRYS=q)y#nFah?H;SI7Q(g zgxA+;2dc;!iJ(FFu0BdBzP1pqpBhGwHVE6TEj+84)~jqw#qtE$0758lZ0p5I$_^80 zgA@)zc+LGlxF2`fMp$q^h^N zqm9-|P;jv=&~7c+5=(q*Q9Olr<4F<6WM-{V&aOXbS&&$Zjbw{l&!0njZf+v7=oxkp zb_IltH>2hh*yCyoM;w~awYl+R|6bMo)$w^==fi4ubYW30%hirl>#_oCySrkq0gt39J~|jk$gdtgXeCJ|a(;!WA!o+wK_!HgkqmC+*CTz%QrXYzRgKU&&C>PkaF^-ydaR%0C zuwh^kA$TU7IT4)kqMYr<+oNh`k75KuFi4sAq6F4xkdlBAu~H{i+oPC)%^QTw`xpXi zGzir=#JSRmY+%bUr;5zyBx4yVh>?zrf#FFeC8Zx204bs(rpHNH**En9g=iRBI@g3i zMBs%>n9Cba=Mw79xRiU{vSogXglkByYs%Ae)47HeBZ4owZn?4FoEa!8L-^^sE+A}y z{$!oS9ZU%Q2|kl1jpoUE`9>D-35|weM3NWq;Z%6088;n#iV?v-Vy64mWUiuw@e|uvMcIr<(&Bl!(F+*GKc?INwnEAlV8JVMTN%oKCfc z8!)P!ed9h>CFYISfi()#;xG{j(Zwr>nOh#n1_Kk>nBlJdSl*_}I0U-M2o>6RA(w zeE}kp{gk^7pq63^j~nHYzxhICpg{`XLEuC*L|hJjCQpdG1Oa;mshi5GB|R@tg2sfF zF2u;G08&In&JB%LGA-Q_&J6-6B4U`==@0vIo#pkA`)T(guyGL`W2oZEKCc&o2S=e^S0zcib+Mq-f z#B9AOCl$O60d7JMx@8f? zh~SH5(Y89w6Aw$bEFusQcrg+|EHX82}+5y@VGzh6yGJ$%53;ENsR-3ESoId+&;sEEwXROds) zOB&|Mzd-MA1dtHMTScnWGXc^(;TsH6Pd2+vP^KA51Wfa8mOe1?ynhp7&q?~6K$$?} z+F6d<#pLyMVu(KFcJaG-;;tBT`CJ_Z)7+ zBTR{oi3pepY?FXO(xf;~pVk2<*7`$!xFFTR4i4ZY(z<*D)!zJW?H9CDvB14GB{O`(9hqOYE-(R#qL>xpfO|=~- z#GbB~>iciEk{!1YVB=?J<9x-<qHs6GC~99~nt2So8kBK++?Q3!%N8?g)#p+W2|EJhK8gQ=L^wic>$Fawp-T6ah5e zFSVRPxtZ$piGUgJ@9D=)ZY4WrB0$FXc;j5j19?m%ZJ&>is7Pd}*WZMc+q6&<=w3T1 zavLxvIw2yIA3ritP)L>(XPTo3iE-kyAGZMdsauy2Oh}sd;V%gfcL<5b-xDZ+A-oU7 zpA*YALEq<+#1ei8h?AZ>5i*XCL@Lmblm%wUC{8oMxPDbI!oOO9W6*$#u;g@tXhLm(-!T26i35yB=u7wal<5!IY6Vmzvc_bvQmBx=*5*b2#UmX5O3pjoh z5Wo=L+v!fD2t$ZpL7K-;ZY4W*B4Ebbt8vccX7W_M_)$vF)B{PTPSi^w$raAny0uMp zVkD)$^&=v85*`f^IO8Lkma`!IUWjx_uli;E@mp~GH31_9_M_&PWV^;X_V^X9f)I_b z9D1@%#B9)wEyWKTPN{Ylb>#7Lumot8d9tlA9eFZyF*e4g4JBC0vj|_Bh?!0x{;aEk z6KR0ckPEvc-cU9g5+|a;J8v>yStpRpkPOfH9zRT%MDSv6ijPfjTu9J2A!9o&(0IQI zAR&ymNLG1Tknw(#k?DRr-Elpk^mu>XJf8#`_pW-XEv@$B9VQhUv(<9` zpZvP|hT1pS<7m#ewf4JeQSF{SfA;mZm(*ky1^-rkQ|ml_-s(Q9&hI^~rapK}>xYgM z*ybzk9j&Gz)Jbpny`kl-5WSsczGZ6&!w#$E&8!E)5nps&$KeL4PbIDa&smeWimg~^ z!50B_)pehdvjO9#vIJ09Pm$U$0``v1>4qrAke~K7!;vn&i$$c^Qefh8D(C+x8W+CS zIxZBOP4RRzEl;WmJhj)n!T2phD(EwHH29HxUGZ&NiEAKGYk@If$xbXF!)?#_k@f~X4#<2*bG3V#C?#-Iq5g=myvDd!iF z&HX{E&B-Bk0*>sis#njSH8YoKd6th=`@4W=qw`ILE-N%^1Y7*Ep#t+WZRF=|AywRR z*`;@t$VOe`Cl_D~v=)2)r5Nfr5FoM}jXzd>YH}?aI`Oi~#svk2B>RB?y`|mCYU=$_ zyCUx1s2MT@TigmVsn<_|7Yw(Fk-HpAU*r-T0{=djdAVHgQsZ{*bot_@xDaF^Z~D`C zQ5~nY?-cTu;1KwCg}k4pM(tYFc}x2#zNN+pfAtl4YQ%IacL%_vFY%6*#ZI(IHbs<8BAVl|6 z;UNOTQ>jmiF!%qfOL0t*2a!y)D&iEbE5(H%3)hwYl*6D?xULc$ z0)M?ovMdu(FjpkDLtUc=3c?5XO(a@>35c%!oGyqG4Mr&!29cdC2}+3up}ehl)Tv;` ztWOj;2wM;}LtQdd7o&5D2BEx}%9|G|kBJxwFbLxf?i;64_xb+uwh_mo zAxz_+3n4}!v^nHAxVL*6WXQ1~8QxJ{+EgfGW_J}2LV6wCssygJP;)U`kuGd8JskallL4>__!37j!rheX3rmh*r78*0wT z?|bai9TZ#G9sa%Ugc16ox>G}Y-T1hCI-VSXy>3Be>plE!3%9X%KBZs*Df+G} z)M%C)bwWWxe9!s$wtN&}{jM1>6gVJ3xTg#^JW{ma8v{&WJy8ejB`661!TXTGTSFFf znPZZ1o$xSwPBY24(IEUEbm5PiYFv*B^?Hcj{0E?}KVq(6A~ku4*s-egkU?w6@- zw%14~+DG6n5f^&=XkYHjG4Z4$=8RBOxM76qBJ; z?qh_s&IOI6BTM55-8F+3h>uvNJKH$1boS?DtiZwn*Xv1p>+j>Vhdnd;&|C-V)X!yS8S1Axk_6{1ql;Wpx`aVc~1L!i}vs zm8KE0s|K=|;UI9uWVVg4T~L0HLFLLUcMA+>yRcbi0vnnTO$%3`Zf|{HHH{-NJ)mNO zUzYVs@oeJ(x;8x8^KwdN5* zwkDaD_CD3j~6CK2r-Oy{UpA=DQ!&;{-}@D>pcHj4rd;+sTZ=`&q5ts*>^8Omxl z3-5#a6xwHim_o}4(0K-k1R^8EW1ih3)zW>pQCp{*8o|$p49k8Eff6!a(bGy~QfFHt z;Sv+0mMayY6<-?;BtOXOgRPqxBmpFwLS4J9ZD36RE|g-{iV$fON&x_&WWL;NQS5f5 z;>?AE)O$)FU(SGmpf+mPp~g7sy##6iKq%oMHe#IhW{LI|!v!ijQZGsB?IVnh(&-7V zYI{s}JddWc?}cMbqI4Zb7u5N-?z&3G?6Ss@ie6Gxp%NGf>U&J{>No3Za=a+Jj^TKq zb!DxX#hHgi5~*M(o9VYff&jDSCH;)_Jjg!Z#yDAhf|$5*gzhdC=MlW;3Y)^PGr#CQ zL1s!qSNorT^vbWjLjL!x4_XWcp=D0b5%eUOJHtDY=V?m(Va4tWDjsxM29`mA( zx6c@9z(7#nrJY)SBb<_WBXFH2Fb4)UL|T9#xNMmRYk0^_+3tEsRP^g!Cd%7InAoV@ z42a|XdJ1lPxby_DKI0&69HC>2(75b?K8sL2Ie^U`a&wOF>Qt+)Cx1*^k%11^AuzKX zvoR|MBr`T1lG%4WuRC8NG~3Z9xo3ThO*D_7F>jXs27^QAQGX9?fg8hgypZi9aBN|} zsEY&+R-c7EX&C`x#=k7O-a)d6N%Y4)#t$tb9BlH3zl!y7%+S?m@<(kWY-~t{he24> zF(Lrc$I3;!2ovjo^i7R%FYW0QXD?{`#jYaFBWUl_4j`a`BRrnL4Tj_frSL&thuLR1 zvqC|TFHy)V$Z(;-q!`odGg!!m5h}L#QlFHY#~a9PL7Bhdk`&#wk4t9n#FXpPde^b%c+NJlYpA z3huL4q&JTcvH-FCgs#}7PZJ@_J^|uZ90)TTfyB2l^6WDL$%YXsw)T-fj?;;QV*n$G# zWufcl%k`#$2yrabKA~$907A)N6vm01(RC)VbeQpOoWzGcCarh+k9o zi4$88Ae_wMlt(@yq}a#dlnoWET&QzZ;5NaD?YsRh`lJ5_mMk4DqcFC3z zE;gfcKciT{25O4Dp+4(I4FrP8wj0TH+;JzB`)oHhts*>ZolSp<$tMsVP#<||t-JB{ zOCm^x&&VBM!?D7kcjkbA*k?F40U#-|1p<7OB3+=*0zqvWA!EY{{0yPJO|k2IY}~bS z=`)-tEhAja(N%sWLtTuY*2mG+n@0$R<#EZ4Pm0C9^KKoN0DD@V1^}TH`XxQ5fNKIG zX4szk-F4A+tFz&jy3RT0qoY{ufo5jy7l!Uvlo#^LPa{IW(7nr4pJRLg$z zy}o;3D6f~8Xrl-X8)Oq5Xz#O#qD>=6%#qx$=oT>DNsk%A z`Z$uPZ5uY420@@f=1YVQdtp=CM%b7$Nv}7Vma_sj_=x2L%0<)!)h9e;2Z7MClnMGF zoLAXYaKSR9vyl-kM%#V%7_Ar(RyMEF?;!JId;qBl<*G*-fbf?3%&U6y2%#cPqVq%n z>fX}SF(9lg*hT5E;54Mx#~oSf6YMhDM;H~2rwO3<*0|C%WA@VPegbuFleDQj8I)W`W_tZfRtYna|s{GbtfTkfvYx-VBOpv z!KK0gtN9`xS)k0c_7S+Zw{U!i-C__kR0ldRN}~wPkH^(^%)MnQr_~vDjo_J%YcAks zpl^13GEyr?&3q+b4c2E{I2rrtQ6hs=L*es*3|Ow8JrQ@ z!J{G*_@`cvc`Y5?mw&cxlZCOd?YfPrvo`U*2*QZueY=_eX_S4bPN8q&DfBX_%5VClb-~p6T}M}@-)K_> zZ2~FhiryAG3f)FZqV8$2Xs@mg0d2CfuR9|i~)f-ZCb>-WvJJheKo z!9zqI*tFC!GdM&ieH+(ffQ|}AHarONO{A3+P+id|7gPiUVSHeddkUz1rE0^&5SQ~W zqDQ)YR;}Bz*i4QfY~{6Tm0znvy|!w-%d7Mo?M0m(t5)%yHs*`wklH*~t(}#k!QZuv z>a3|{3J`Cn!fohqW~sxnI$JS@ewUeb)+QzZ1`bIW0q;D^*x6J@;1#~TLA=BVq#hqZ zs#$WGyZru6L8vmP@Q~ESM7ye2*j*E?KlTP4f-YW8%_DTz%EceJDe)VLI;L1+ zxwa#^fm(VZMVO!mCPb)pxm(G)n!xBvJ@JyFsp*@k`ji0aa!0yB+B(toG@VBvbfw>Q zBUEHq&i?^&KAQK0EGtZUR&;b&!m~le;`y_$wLLt9zf&EKpN!9KHpSD2@S4a)R*lQm zK=pu=@oi%7rCS_`3*?!V^3lHKYUPefrI#O$M>LEC zbdk200+G3g(LrXUG>tIbZ7z4-?$>Kb2d3};wB9n*(TJ3o89VJL3UAlaOUQK?25#I?~&>pgSoika_vy&?)UBbmyDon>dk~sZ?De zYnnw^u9elQUTl-Rhg;TU5Ie&2-#bQ#SYd} zaY_r95o;A8xxoH5Zb=mD;3yRqJ|~KX5uQur(GzlA#k5-5^ESL8naLy_MZwdOZ6j1~ zlZ)F{#VQh!nM~4!h_{Q-T<3R9O-s1adfAqh)={_Ao$1+j6df4=?D(qH3&tk^AbeLi ze8-l2hXkbX!p8;NIzsj~WC_uh<3@&XJLBylG?(D7umVVdD7-JKZ6j3InqSB<$oAuz z-ueso`tz(GO zb<2V64!Y8odPs^%1X@Oj?&+(*;S#?5xT$1BoOqa+%>b=6Ge{;L2qV=D=_w8g~-PUu;>pZpiloZ4vnWw1O63 z<1JhO<73o+jxzbW_F1+N@22S;9s4Z&J9SJ__F3+-YFuLxo6MSe9Q!QI7s@_MQ#mpn zkA0TbiqII-HdnQlZW&X~!yYCnW9^8DyU9$B8f{)hJDR3hB%E{0cqC?WWe157Z4}|S z#I^_tn3lIMI_i{yX`8>>1*5i&Q2ioaIBhFJ2O5w8Ls8DppqIAfZ^+rsSavsasp471sDXimcLn|kPu@E$ zxs$bo))octtb#xT6c`z7dY%Gg3SBLbZ@N>Hty zh3va_8yyi02-U@@O*T0ZVGTOEf<8mlQzIFr^w8A~0#A!o?G3 zEN&2s0tie_<^114Gw)w*oq1*Oq-XB)GzuKp~j8ztb()q~hRS9a7Y}6zZq_qY8d+ymq@GJ82)29^5 zF1x=l5Ie#H>8@JThn-J*#kqij+DF+GM@b-FEBMp4I$YLO-uXa~%h&596U4AuZw4DJ z^J$Kfz`O{p?+-In=Ho?4AYQfNpbx_?UnD`Hf;b*+2Q$fhUJ2o#u^Mb{%g9Qf*H&^R zF^oCp8zChVq_@XS1TX&-H(b0@rG&`-q5Nftc~57YZyjXtLbSP#^G}94<9yMLhOs#{ za2gGlF zRICQGNOCyRE3+qzoFIUh{pz@=;QF)iK?ylT@Z2(_4W58wHc;pDUQC2gbumKR7tNOg zk9--6bkX!`y^}Tn5E<}gT(q5y4Xz!bE`1~>y-z@XL#sv}mRr4dBZib@ky$yEOmo0}7Gf1G$sC!ca z+R4UN0kj>Xec1(|9~tIT*-5=QfIG52JyRJXgpB@J9T9R(Ut+7~;~eI#GCi= z)PU(y`XKM+B8791c4q%=JF=aiUka6FSyfo6Al+@vPx6hzf@~Id(#E8NYsLY0V6OTQ zyFf!x_5mkLU=C5>nxq?iKMLL8qo+J~PuKAJYO^`$dz71nk!ewNi|=E+#rHNjMM^%3 z+~X5CVUzE^?|3H)X}f$@P+X35KkT^2HeXO{Xrs?NDj(E@xz$Ha-q(zSei3UKv=T52*ZquW@0S77ZNk8U45I8~5VXq9c91D}&*h#ZT8tq0 z>V{+BWhvQ9H!VDF0eKpLK~4bp)?4F;Vo08n5MNBXvjqB9wrjpA~F{5 z_;PSFrrFS8aS1O#P2ldap#A0G#-(TL9d!wAW5k&t6;?&t%}6aCZE(AioA<$w;5J5t zh0ZI?c@1uJAYNL)U`4M2tl(YD5JxV8T*e+Js9?>3;mrpkm(d~#3&d+Vfd|jwlz{yb z@btYc<4D4pAby)ky@%kX-vg7#JBhGP@4#(v8*l-PLI*Lerqyir@>?ijfp{&Z)gfda z6$4T8UMPm^t|5Zh!Fyt}$w1UHjw^%(;&lvvsa7WgG4l>5hAWNnK-`XIRo8RjsYVj- z)YEWcKmxH^&lYvD8^dcTgU#aJxkNqKNiv9KHTzU}mV|}QtL0wU^mBN|abyOu4a93c z+dy9$Xc+O1|Maj&LIW{d9&U4;KzJw`Gi&2r7u-fyhKE8{5H5JBw7JCvV-bsJ%U zc)a_H2*Ma~*?EkU2!JGtO_& zgcIt$e8}R_?oZp0#d#spf34}>DEd7t^ObM1OK;;wS!F{YjHZpX=`F$+gwg%Vm0J|GH z;rzYW-0R>Ybp9<5oo)W<$k+hkWb^NX3{TeB72*E#5St@9-TeNuWvhfowZt~VurpHr zsFomxrX)T_53-G-D?0xeZQE4g{W$;Liq1Fxpk?f|@Pqc+{=~4x?S0U`w}YwCLnhAW z_b25pb2jVn=1n*uvhx9yDvq#bO#d;}2pcQ8^(TmBOe0Y> zMh_%5H_QIyjBlj-uw0cJ^7wFbl+pXdDle#>LHhuoLA%K6z7Y5JZ_^N*J-Z!9N;`LE zfrG65u*aFR23&Vb=&YId9d+K-x12HC@T+Jy<#ay@I%($Jv~d%ycM^_w6XG6PMgwUL zZh6Q@P4r>!C#U^6VJ`hnobx!yHvGi7EUNZk?Zo-TCcSkV+lP5QAt%lSLcMqK%2ZIu zCi4{8ndX77nBs0p)2QxjgmA4X_fL{!J{%0Qy`u;Moo`0q=wHo|T(Mz)p?x8GSYj%FFj`)tJn^ zT@}v;#8eLWk)ED#V%r6rg6wrgxhDjJqxU+}vjM>oQ$ciB#k5%O;12I`adHR;w(7+j zK`&c+LXo+(-nqk`HIFO=IvAdP*%_Y2=bEGr;UpK;;Y-U<5@^vO|KK|>s}3ar#IPKw z`@Qe$A$WH`F>KiRWH!ZYe6&6$^pn}}vhn#29y30gPO{9~Vx{W+YLBm>0bpcdA5HUk z9vK;EuEw-n9+Xq!WQ4@4J>?~5+~gjifQ|K$$rH?{58d?}SGhaIz0{*GL5#F8hAS`f zcI@;VbUl1bI0RiH6Wk}fuN(BNc|;*2O~92Ea3T+`G%t2R0Z-2sW&cjTG*W;gMkV)M zGA|L5&w&!RozKhWqi{aDkHY`{viT?yH`31``TKsAe^L79pL^xkULpT`=KTbkXD=P8 z6cD-b=A|2`31Yt^NjK@jJ7uT8`|cB>ZgRZq~q2$|1QrQIJmYY9YlM}fMgEZ>TJF5MF{QE z_85{*au`d_O;YQ(I>}+|HaAHv+O%lQHPiZ9x6|Yc2niqcLP0Cfl6x>(np?MN=!!Vc z5blC^woc&KB1j<3EgOotB0jq6lCRMf{B~lQRu_X2)7Kg+&N$bSLuZzJDX0=aI^)mZ zDRGw}dYtzqet|tsp@C@fnU1?Od7?p@gQT)NjKuC}@@+Yl15Nq;IZNI3Px)O`tFqXPi^XAiuqmED z`&nS_uU1~o1Fdip@HN`fIo42YIw(R7X`%ixTU1g{4{d{p>}1y?O&E*Gw^@`l>U~7B zUt29Xq>qZ}yasPE$l2{BW4T%CpJUmpA;?Cgl#o&%9~8UEQ8^vg`@lO|`-xk!^}fQU zUqd5A3~^q;WpiOEdcEW=srtK3y&8hYQdT&FYBQ~h!x`-E4{5&Mhvs`KlygG5Tu#I8 zUhmhoRHgsIw4W-04(3-@VHsGxnjMZG&_Vn@fj=CL;oV}Q-Fj6lhO}7k$H)6w%}D2l zm_LGFPm0BMNW!^in1&MK`A0{f;c_#sH&gikWxWi13ZkFvrA2SN^V)iKosoqe;{U5^ zRqd)`0mrGwyZrs47-WMPA6Z6O*hq$kfH+9$|u$K;`vUAV0gb!l)C(Giv9B)si zK#-eJsT?aG_0+JHAd+3M{x32WuE(>R_ z1ra!DSf0HAbq_=u$RSPttwtE|_n`v}y4p{M8S8YWNF039gO3J^I_OduXwqv4BJ%%g zV+)qG`U~g~PlquF3t1$TzugGMSi-*mkvtwoBnDL^5bhBS6tvL$$3Px|5yJR8jU8AQ z`Y*s1el?6OSm`2r;5U~J8s5;YB6k2!DBl|F;NBu%J-z^Q7|2`X43P!=buOI&10lKr zo!dz{00j6qqLx1s@ei*n769hKTy=y<(tIfipz( z|Fkg{_Hrm}UP7?_1=vCEjV%jHBnBQy+HLl$30x#FCEFk`Kn?>%k`PTK2)?@5?Z%C( zu&aAKE88#HVcgU<(CWfM772wvku}(sr#?dD&M)HKgKp^}>Ki_44A2=wj%Ds0BF+gh zJsEfi6l{+(uMt#Ui1A}I3=FB@-1dx!AFYx>&ppvu=pp{=!NxFQ-`?+Z^qVwB zj1gx^Q>eqQ&aFwdL656*SvfUjTE9A%ei551O)CkyI+vEvlaviCTx#^L*z{`;o;OFbn1UdA&?@YfapEq^cHUnrb6$_?TJl6ewKDVg#J+- z?1arW91y`z1i_lziCk^BkasqevHIucgfi90*eP?mtHt8wr>v7fl;us|%evkjjR&-5 z{~X~!9d8j8L{}K~ww{qi^yaYo6d1Km22rkU6H<=RSooCQ&t&@!Q#J;OV|gUzpsdXN zkAQlbti+A@6#3>%p`{1jD_c)4mPzs;<8UH~c)$1IYi_pL@EBgy%RUPVO8)o2c68Z4M$|M|Moit0u8cxy>*5&{R_C-BvBns?uZj!TvX z5gzq8S>2;e6j1PvF!gAtCAjc6`O;-pfdk*?z+Vq6Mug!}9|QE%s#v)phDg_c%7w7r z!-4um4X^kVPpY8UN(w1>$5eYXCZvEVA~6V$e+TEMLI%kmcnlNpUdHxlOpqtU5aqwd zH4m9K%kd}WrXF1D-n-^e#05P>|4%sm{feAShaHxo)$W~u8pB?&L*)OKBwsz+mt#oF z-K;Y1K8I&;41Ccx$>K)hU(aK2jK|CMB zfy{bR(KDgr?WD+V@?xpt9Y^oS7PCT}9~HYrS!{RXusig6;227`f{&eN*fn~mpQm=A zp3rC5O?s!Fr*;qUI2e)XVXq1c znmt+>F)lj4K`l5lKf(p`gR2#ausf@INOmCoF)oPT4y~658;HD5CiW2K2vI_8hg$!L z0oVIhlwLg9Vh%A}lC1DW&_y>rnjXkr85fh^ez>(u*71h$+vEG=j%W2^ICkD)>>f5U zB219()<^JOYPE&6=V0SZ)>x~cgIF$)K1DM=81~&ZA1;R-{bwr!Hhhww$U~+;=9Nc|OZ7c4NITBDk!a9DtpB7rb|^QTa+@)0a47Q4JE~%P&`w_L$b2fv z3wBQO`L~^3h~^ve+9s4R`{w8Tdr>cvytXsN58CTnIYS%2_d)v}gDbzUQ0Iuc0Kbk! z-QyWr2;SGRLST2E=hWb z5ZH?$ZES&Y(!=b8y$I5leKCF`-3v;X%eruB?7N|chB>b5VRn&Tgsv@nN-F96TT3sB zw6@Xolv}|7(HEVv_l+qL6PU64#IMB>yEa2l+gTF>8*K`5)?Pi#&Xlh0A?9k!J{9lP zY>Q`TWe-Ezn5!Q*c94G$OV@JNy&k~|nKkdxVkc;5B@fY~1vy0hj~a>a{h^_md*1>T zF@ke$i1?F+_yAjAx`k&=W0$lLUB2$-yCp;HmFT>OSa+-ZkO2M_A(-a5lybGLH)IE8 zfXy;p5>Ij-U~>^gBKe!zm&5F!>9WYWqhw`>grM66+It#$G#t_{5K$zOPa3HWviGE$ zL)JZXl^CMTFG)6bZico1?@N*+=0k%d5{0-Lm%NJiDLviV*a11;sZc~>;GJMsugBTX zRlJB!K#3vBe4+DV=7Av=I+lD2PWoh!WJ_JqLy%_7teQRnJo!%zy%^HQlJwOp|FRa&LoQ7faYH<^m!}te7@iRPv zhpkB%t26AXt22E9HE{3L-B(t$fOd_O0R(l>Nsn8(yjnr`aCu*o=v8&g&07=t+Alm&zgdQi ztzJ#a%+Pm}>S81@W3?P^>izm9<03I5F0*O{>l?U-AU7TFtL(f~K0>e&qY`fEBy|*v zz$0E>4NF_|zVg+p-jRx0<8$_<clU`bq3I|TI-)le{xSyt8hQ9{Xlv9@r+G{{}Xw8x91=dW+Ye1}owqh``aH;iv z4al<{v}o{t4al?dmSw{f9>Q7G`^BOPv2V{dr7xG9jew1mGd?JHMOGsBd>25TA{r6I zh{JSRZK}!9q71sr%d@$R8WFG&n~x8Rg^XAnG&kL6H7)Njfv2uV4QRw< z!(Gvw-JZ1}ZOwbH%a@r>0#RIwU-OIwIy>)$cQ89`WZ=3JJuQbh>g;mqPLM#lBe9ZQ zH5q3cHFSC(q#is}0*KnW`6c5}qLcH!^(W9WwSk3tlRpX#J#WimGa>H_J%9GY!0@vy zs``{4;}G;+UVo%pDH;RM(tD~Ag*4~V3JRIYagUI6P;1D`^p0}`HPPa0@}qA1)uuQp z7vpL*EuVypVL>2_ThYCbx&<}EPcM+>Mg-}Rl!I)R)0m#X;(!D_A{ zm!1sp&BMdq4+BBwJuRpX?;mLDW}n2WoYewqzwIqORzz352?wbko`5-+jH~5(apv{p zEg>`Tc1If_cM~zqf%d<;TAh@e-FRJYmV4s1)j@9`csDQC5#Bf8dDjiwTsjA&w&|jT zONcf>OL6bUB{A>thfX2a z$|;zwrdv8VH*c@`Kix**Zeg)iES^96ap+u3`g>DY9i*q)AT2+O9jIkZFj)Kd7g(?S0y!~Cb&}Lc&aq&pkWDjw=FmF5*f-xR=pXE_()laD6l_Ew9 zX%$hf!se`(g>tpBQ(hIT<)@G`qlG9h531Fq-mk)@?qL0jMVI$xbGR*YCYax(-fSjy zISZP)PbELj1o1nX)F%T``_S7V4;3F|Y@Q%i$3qOW!Y2JakZ@vjx-hxr9$bdvrVXI0 zBk*?W!%Y#CTp8Te<%%GqBOs_??Nz}s_Xv6!EtB!U+!mh_Zj1-!wk+Y9-OOIh5WSA^ zK-?B&UM~kD=bcFvZ1|&w2x7OQe;iPG8OIbs1u;A(fBrPg2#g2fMr?Dvse|4}2(}wJ zALO-7LIkl}KH3+nU9|{$!XtuSM(>$3LHzisZthy=^)#tqCQ_N+r@DhB%6FqUFDq&8 zZ-3fIb6$uvIif}~3bHRJbS3)-tAm|yNeNNq`>Vpi8&<*o`>TBk3u1^izhH6*2Ub_I z_XU%*APbm!Mz9(sTijVrcnGg{c)}JRmlGbs)g7L&#qs5r%TTu}xBsg%&KQ+#Y`UR^ zdNCio=x_O*Vx4sU!AlTBv=vR~_a=4HgJ|0DExGT-9kXF)sr}aAvpWF%WmeBT_ckYCD^)1_O zkLoqamnatF!*Vw+7v-`H+o|vdAXgpU_qTZ0J+iSts^gEk*gg#D_ui0XUL)TL+3DP(SSjs%ai! zx{ydrKkkJ{kx@DS)o-d}%`2y2YtDCZyiy4uUW-rCFHs;FI2 zt;)@4TAoys68b?~XEQ!k=kjwngYIownXBvRwLuRwjX?iM^T1gvNc7iS{n4vB)H{D+ zn1fdxEq(RgxQQfytgZdTt8&9ve5)@=i3Z8=eGU_Dk!Mzs5bUK$umTf;d?8Mv!dWus zH!qct&V%q=6)+=2Cs6gZLIHwdE9d{yXVg()yD?OtHVQPfYhRi)Z4(%`#(%Sz9x z(ZbT@=y}%Hvb2=zvPHG-a8f;6GTcwtwHs$uHSljoq;(N%QggvA|ifD-5v8h{jC*wJ!oJu zeO}S?98-*O$`xq!tW%6r6epq}OlkXQUzVS|45ri|MKq))Jf8ORlv-X*7|-&Qyi;!< z7wh6l%f@hgk8oY67TPFi_3Xs9A(wi}ULDJr+ydVr!{)Q!N$9H!uqiCqaL(_hbjk%(*Pf)WTum?hep>Ha zpiN-~Hh24OO20^;O(I*vuYQo&pB8YhCYUHVHZ+3WN$5BWv?=mduUDeTtf z5AJ8BT|9SHYnZ8c)eg8qq#f=YpR}59oYTQMU`ko3y6$ z;Kmduh}VzAf2rFG;;mV#LbFlZsZdAxmig#Hv861mow}2s^hMe{GZ&(!X)L5ky?#1Q z0;%mhuM3iF9iu9j>)q4wqB^#3o&^Z14=UL@LUnnzsh8vFV%@fX5dh2V&z*%wO7jTU z#TmTHnM7E9>|8XCFuk*Y)Hx7TwEoQbt6NaKZ4FU<_~H;XZDT}BNHsXzRQ5EZPMUHs z=p!TEHbQh|1>^lmnPxmN=h99}aQmrjA0fL?ugdXJZBH)itXGPv&$!t%jqqHAKW<-G zpA(HEOmFQrmFq;hV<46SYCDbXC_EzV8c6oBQ(R9ZdxYc?i2$WhRG*ndw$4zM^ZyHZ zU_PhB7sbkx($C+r5W%SZ_zBuSAA!oZGq@FwSWUAJ7n z&=0n2H_;!qgoX$pX`el9(mv~u_SvbVWF6jKoU~PF?b80vX_NMM9Mb;I>6Nw$4M|&c z&S|;c9X+nLB{@xUlGMs$JEsl}5fE{*>84)Sd%MHc&&*wMGM_=EL4@Fni!+)ZlMddl z&C>wD+W4(QPHG#8AZvr54ms&Ck_fUkl88wL7K3opUBb~ic1mY}kQINx{g1_Vw;b=+ z(_&{|IQQ##uB~4mJ62F3*diNpxnJz6@ljb!$Hi_37gTn?@absRaH3qe;+KvH zxepT;OhoJwnKz?`a}hi@S8iVY2;Sr}obNmAZ%N!hfzP$!<&vq6#gt#v+#>MB$WNO| zsQgr4HKLOVd@=GN?l&n$Q#&$l4y*Jh&7pf)@R@lE8hrGVBD?f9UX^ zozJ@?)!lIAHW)OtP&G#mOSMgPu-}yc%hh9@uv#MOB4Pmdg_H6f=HzU`SP!})2F{wq zim*Y2WGe3HW0&lcips8Vsk1c$xATrZW=?ih3EV0)1YU$Y2%@CIc7;2f^d)G3guq@+ zVH9E>bWPB1fHo_*yo{EhK<07=-N+~iB(qzp>Z24a;Puz6iUpy(lumdq_r@(e@+(61 zu-QzDS1qeZ?v_W0knQg&iZ18B^HieoHcd=2+^ZWE}@Wd40R9*JEx6)>+e|4QYp_ zm+Vm-UV&0TFns0w-$v(weAX|ACA=9?EWFk){9ARr*VZo=S#_=vUoIq?`a0Gx%~zTa z+cbm}pUAVRsyaaIVWl1R0~{4u3{sL z+GPgd=1A-*0tuX)@ngsk^f}+iDz@8lvm0;s>oquXTeyRBy=Y4$_H5jc|GSP=xTpN> zC=n%bF&eqlWV|e3x&36ksyAJC?>i9~TwE6;I%^Ut(cw8roRpJYy*afc6nJ(LaM5*A@zi?gD;*^E3C4{X5zQ=8W&PELd zB!o|}A^76NWBH`owmiDkSM070Os52-*eNIkSfrxO>iwnyN3C2<>Soz=RO#;1v&rPFRoo*TeAEF@!O3v01Ug5b}rJR>;}hjAw9>e^UJM z@>iiD@E`I~pMQ~fs&(ZB_=#QuL%`)e9mLL(O4|&dd3Ja)*lz(60xK3AuxDaeH9nlL*#&lj?CAE?G=}3i!z+V^9*eJweXTEXL?R0}MG{hl5{O=AZAM+hB{1+5Y)Jr!sbJQ%HrD5eP63WMk` zTOAKVdt3Y(9h((UUFRmra&sJ)lB2|T_-j$5VjB6!sAh56=3_P z|Fz*l=&wS!Hac7{!1kAH0|Q~Z27io?%L{P*9ZHS^p}P)$h1n@K059P6U)%~H2;VI= zoSnuN`@0${7KXB%|2{en_0^8YTB>DnSU!LDyY8o2*jH*={141*u=6T- z@u4c?pN`3&$Fu!vBCdv7one|f(;`J)5eRzJ@yQ5Rk3@Z~m`>%o4wA`X7Fod+Ppn(9 zsVx9X+gUD-77jG_}Qix|LMNqYX(im_P1j7TjM{gA_o z5CF{CY2Ht+B>@`I(scz#|Bmz7ULIW$%!t%l)0Ou-0N#F-F^ztdMPC9qq9+D!xP&~X z4JIDADOyBC_yw?j&Ny->_SOhkL_-{Tc$9G#b*1U`80H>r5QRhDW44R>FzW)~e%g-G z;6-Fa|Jc@xldjE7f7uy*K5_q`Xb}pHULC^9=)u`;3Aak@^!pvNa!&ow4Kc z@p$`m2^#_%NGM<{qkKe{X~(+`9*F#VJhYpRo!Fdoo#XQ#dqx}~!u=p|&{=?X9pDQA zZA6*xC3P+ZUe}q00K9rQ`F`3kvViN#cnyK8$Bp0P;n&k^#~dNDQ$LM1tSr z0oBthXO0lbdDdhM!e%doeEDlQ8Av$a!tsu>jI3}GqX&tD*TQrXjeusf`d-plhrpX? z1k__24_SOSgNeBA%L^C-89rnaA1E>048Rkumlco*{fEsDi37~SP!dJMRFnummwwtv zvVfmf`bOxuXn2XpYX$>Kw7I7vMOt`}I5sTgpJ-e(gTeRH27v|OM81|0^}U-i+AGky zvX%ozMJ>GhZt}3M0PMOuAONr}j{6{SG)iDjWW#2_cGo0gTm6=FBZ;0kevoG6>;jJl zmwQR$(LybWTo^q7{Vx0=ZQxlTPG$U-Nb~z5UYpKt1nxu$egY!0jt`WuYzFL!8~_C* zLjNFf%vi`g(V$}ni65p84hzVMTy#q`_#s5+l171(V>ZLSA1I;I(`(lXNMzURj(BJW zMrE35sRKA;S-A{bSK2B$c=;4<7)zp$rx z1fzvEXRi&;RcR&Bo(T; zQVNBtKtfU#z3NFSvBvi*fPyeynv|9O#Db?3q|W<~-vk3fbupQ9*WX{!eY;EPT)PNK zfqRK0b#+=Eo`r`l(+r2^O$MG;Flt~RY*(i3S8IFLE3M1C=Fqc>5krBHU2cE;%(GSr ztiOLiK_FZg%gro}Ci~kxK+rHfaXlB>xg3#_ioo<_jWAs*pR5zPcm4Y!!GKU*hQBP| zNTa_9t0EvUuGykaH3Rj>ML{53x9Fc-7w`vnM)SPBXB8tA3qpBmwrsiZ&9iFR0s7k- z!GKU*Je(vN^ZWNofPgSvJ%ktN+Kx2^3#OYcD5IQb+B`b}{VsHTngzHMR1x+XN zulsvI3a!~6(egFi7=@Q&2^1@@f1Oq~KgZw4su+e{QERi6D7vbPv z8rzT1WsR@FxD1%y_;wmp{d*(@fn-H-CGuzEaA_VbKz-pJEx~}Kbshc!TL<9RrqN{o zohbnX;kzOJoJe*NeUnQHOYkNjtl+-9(-2uzpdcv99|2P%L2v874qG>9} zR129XO*cpoLLtRd5bfi_(xZJ>m&KE6xlc6n_xI2n7)X9sVTp4purU}2+cmh>Wml~i z_6yH~yGMVooZ~>~Zh+f4X18^w8K(R94T%IHytXRgEsCn;ME`*D<2Vqy>oC})bnyDm zasmj#cWqs7tJ5Gojsu~)*mj?Guv+_jp8x@2x(X5Tvk;O_(;fPca}5lH?NYiGVgGm% z!GKWR*p!oMy{W-fNh7rWV~9k85MGD3q>HNcEPb%G_3xzu2*P)HQ}0vlp7&o_P!I?g zJQ{GAC^XXF-UtSS>LLV^(imF*Q3D_#OdzRLDK;^ZTHzhOOWQ}OvK=B&0R|+iE89o= zVv{IJ**~(yP#|R2w)+E;X`LwNqQ9@kaUgUTA@}A*+dV))m@bigpfsTRTbPlPbQzSm z{v-{o{^KbHfusev;KuJ4j|)H`T(>B$Q?i?;VqqxD`M*c62cO@i$=>sSpZ(Xr#{O&b z>m&nw{`Wsa|M_3oZ~rg*uYa9=@=w@*{U!Uaud;uxu`fSn|8<_#@~7;N{~7z|zh>qB zjQ!Ua*+2gr`|@94|NJid<3D1xJY#?SyX>ET$o}~@`|TgI|2kp+^%v})V^;k4*l+(8 z`{$o!zy1HTU3H*T#rH==1XS!ou>)%r?D(p*NJ@yk?%Un>-Y#2gJl;dGH zFQnj=ta788PTOO zvny>bZPgow{z3S)7v8*v=PeNSz^^Of{cd>P6wd?jJP_et zc(Vv)$c*&rcwP+8%iz~9AZK?xFN^RFym<~W=i&J+u>Bps?t}0x{Q5TD|A9AuA^aKf z|HktPc>V?9zj(7Ip5F&{W4!4NCePt{UHtkS!ZhAofagAla{=Dm0qo0o{tDWc!J7dH ze?<5V-nSvnjgasW!VmD~QwlrNCA=vkdOk+=rO^)0@up{dhhbzrKQSJl_0_ za0ucz;r%ao^9H0X3(k}Aeow?%7r!2Wus`0fj5yEW&69|;DLr?lr{dQ$@cvAM=OR25 z@6W^YVR&8&;U&Osg77xH*#Y5&hBEoO+esOy4Oka!mhv5B32!|ou1@BKs%%>6F zh4*_P{0hH5i!`o;H%s8n%ZS;DHz_>ti{~Hl>+uM)c>e*yU-9NrJWs;&Q;7c=-c%5t zjyF%>*ZmM~i8tFI+zxSWMR+^HD-dUU{5lVBl6dnL!hv{`#`7D9(}_3T@%$m)e}eFF zyq}LWeu7_j#QQJsd<4QH5#EXS%i(!lpzgz)jq$uH-cLff8p1~r_C&sqM$C&4^I<%1 zj_2bM=LCeyA?6G`cT$|r^t*_2GTwX$hGo223}G|gKLu%@;@55Q<|2fzB76nE9*g)X zJWodW7Jhvj&ol7rcaZQg-rS6^3-}C0%>Us{1z`umXAu8x{CWu9JdZbrNc?+IzMYsep?@V_G{}u4-MnHXwUmrmD1Hu-(Z$-E)-poY&2;QuOH}8YPcs#EF znd>9Y1_=A${W%CP2kKlrx8T>+5&s&zzX9QPc>fB*9T3ig{2};tW5nMI5@sV@3GY`y z_$$KS5Y7d5Tg2&uH@D%H#`qS*c0J*2w%gmKLPa+-Yg02$KW}MUysAD z$KuU9;5h@&dHi|`o=-uXMe*hZJa^!E1N?d;o@XP>;@2-A=W_h|62i5h_hmf4im(;o z4G4D!wgPNB!XF^vA%u_O*D(lx#+#XV{uJ1M@%$9RMWN+$yuTB2zQpsH`1M=7nF9&m z@N`E7*nAbc0$e8`-Q=bI7UittIK=y!xqBU}qH&p>z%!h0ck z4B{V!a6`QR5zjrq;dQ+E9x;zbI2_@5c%MMH6k@Io)be=#332|xo0AZJ01hkR*HsbD z!TWy@b6d!{2+v30`2{?$jhH3Gd=25f`1LY8zlk_+Abb$-A3`_{zpjesDfsmXJb#S$ zzktb;crzGp9>be|=uKz(AA0Ug?+Vmz2*)DMP&_XUK6~R$FFd~q>>7BpG{xymH$(E8 zcylqHm&EgBczzbopWt~euv_3wKZIK&ToS+L@q9C$Z$Wr8!n+VQflnOa{dn^L!YhHg z8sYJH^9#ZpVy=wm0-l#foL|A=aVHh{^<;#%Koi|5zyycwRC zp*WrC$ANtW*cB1(k2ibac?x1ai8qVjc_Tb;P0yX_vk~V^gwG(H<-|mIKEltT@himt z8WJ`|%*_$rhd0;b`FlLS4%B<}rZYVpZyg!dwx z4$03U&Y^gI0Wnv^uN&a`K!k_k*KZK+g0np5Mgt!+2f|;Y5T_ zAf<~y=D`Tp#`|>;eh1V&c>f@tM!aNM4>5nh`$rHCMfg5YA5hqt z{t0h>MmQJm`ytFDd>GOWhMWnA^C!LOOy7Ywr{T@s2){=BId~p{Utb1xJ-m4l;RL*& zi10YXe+TdP!<&=wW+K8%@cwr^pMmgigij-EMf?oHmk=I+_k9sY5nhV$GK4!p+EsYI z2I1=ncfkT?S$f}@zKWj7Pez;#VaXft>nOw@jqrWE*%Qyx@jM9OA4v7Sc>fZf zSH}AzAT5sfOW}Dw-v5Sh1m5&Qm_eN7@w_s^2?)2q`_=HgB3KphW_7%YLQW2E_Qsng zy!i{yr{cLQe%%J)K6w8u!s&Q(AfE5R^ZyVg@a7miF98YPB1Kd2ya(QI0w#~)c^tyq zfNDe76~BIk_+9YkUr2ZcG4H|qyPTK^f54l;cwQ3WBY5)$;=hUTLWE=S>wJV=@a7|g zC4{E|^(mg$LY%V@cEg*^@aqzI-WTt?JrREu zg!kk9g9wKq{1flr1L|FbC*nA8$q?&Ovw{1nkjx^Du=o(rTWwGkpx+^hUT0 z;w*=7J-m4j*qL~9D#FJQZi)AQ(({aT8=kL6I2ou7@%}}GOXL03K<$F(W<0AY%}&f{ zcBbFKn=KKl>CDb_PsmvT@!wO=6?eKa{WeWo`ZJn+XLeUdMC5bH(yW;)l?tt?Tze#u zS08>$kwQngHJ_U`bICDH>14b-Bv&qW%sQQBL-U_6(j~n{u4|W>-QC+bXU!Dx^}6?UrUO=f{H(&Sd2Lw4Ag0Rb?K6xLldtvyE#YJRCTPPFoW{B zGLcLc!JXq?DKn`0{G1{9mTGdQU0B}DJgyHDx z0O6yFa!0|dA!o0>XqWWlDMF1x4IxMl>$wC}PD1rm3}YpxVu}05ui!u|%8zQLG>Faun$=OXN^+9CAV6%zi|(2QQ{;n%NWzUy8$F79Uj3 zyTuP=r%Gg3RvK-xKCtgTMD#mu8mn?hIsyHWLzhw-upGqStIzzq6&d zS^^Bj2_q;0Lpd2M0UR@&WBRBZbiJNvsZuE9i{)gssG8|HPvW?ifv@C3C0r;;fJIWw zB9};UHH#RCd1J{UC-Br+7U7taI0m(W=+G(oZV5Gt0-DRqC3dKLbf8N>UB4p|!vei{y`2{=}`!>g-k0eBJb9945)#|f?1dKk27!Tro z7TR|L1vN@HNjl-qc;*qH%d4)T#M8J2vriDXjf2q?5>;9)(Hd*YB!$epRbq>7nQ(F= zc!vbhx@8G?NsN*=jvLeJmII*^ITZDX0D)fH-4aiyK9r&X4g7r)#w^<$dG(%@xHGu< zdD#xYp3Sk~NsE`W`EoLCHvRIFa$5ebcUte7mR4xTx+k4p#? zFQ-roxXj*Ul}~xf;7Ry3J_z{*N1|USC84!WO$XCbnHuPBu2fOMxp$eh}eqKT& zy*k>eRc9>Ph2{(BU*9x@yd()hJ<)~mk_7Op5*X!IWvRMi1qCXmrUT3p^@fB*Pf8tV zT{eGPl7Lc$Q-Y%{wD_^r^`D27sdN-otrq7u2$3rlQgn`?JM7I;{FD?QeRU<5YVL63 z4xCDH@0a3kq*~Jioun6yXJRGtf+Nkesy1ItO(XZhIfFUU6r)2}t6GOWMv~q=5VH&U zM1|-$b1>W2DJL@26F&i0G#Y|GP=Xf+ld4?4GFRruK)fCmkE|f9CQxtD_#o z3zkL7r&6W*kg8|;uhYABaVpd{jR=Yi8f(@jNc>n;c%wG)CDJ_g9y?Dct4fgmnUZc! zlGbBfNxWT;Apc7xpVgy!O1YqdUd8hTuRVlk)oKbA-*FXu z%T!%iKw2}Ua%qa{GrU3$9Y1m%^)#AtGVI0%8s>8ie79V^smMhOv0}_?Z=m2eu3*9Q zS#QlC{ZB4^!Sh*3r;+0{uS0~2fBs7qtigneMfPXat)2!`&Ss&(gp#gY$pY4Cr8ghd z8cfJvg3DjPCP^%)J-PS=EJso)U0O-+P7Y&%PNwas_Uk(?P%|B2g>+d?eE}^mm(Ugd zGx>7yT$#&Xz*Z=zY_7&N@Lhp*wL(I{T!Rbe_rlgC+;K!wxfbQKMJKn$$PbJbW8Op} z>cLuE9Y1HRE_Im3qVw3IRN-)0n%@1a%hmAvs~T2gdUHt623%49Ix2?h2}pf^%N^R` zVRDDACf`bPhw3Rzmbl2+s(8~ig7oW@=VrJ@{2DTDm~aKmO@gKyxsS+Ccy3&k?J_~v z%}N(@nf7lyCoI!NVg))D106TAi`qc-Z5}&~s^ty(Z{uklv+&BBX^0-R9bD+Ulj|G4 z@cOK_ADZq_n(VfJ!outFN>sJg_6OQfdp}R$`2SETHH4)MeM)zIR_J_)>-;Yh>gx37 zTA=jN|97Qks|BS`aHV_wx7M{srBM4cSG(tbt5$Qnpz%4b@jqyTC?^G@zQA?yTi6*5GoA5QRXy1j;G_Uuz2pJXfO|H70S%z}a%AT&Xsarky z0Ha&2XO_Ve6qzv2>`Ec=G?Hj`rS-Vu)-;q}ZeNWzOz zDF?3N3hEjE%L?QyxR$G^XK)^dSG!3c`;0FWr`$sA=Hnzx8;;b~Zn}aZ6DFALCL}(k=ov$h zy4p=9l(n0X{wz;?U4=yuZ?~I}|GbjV+ReJ!9YIC8Y}Z^Ud5I^YuA0j=s3WD?qm=@E z>GHf?sCbpDsH^ekDy*gl(%(?h?Z$rrjZ}!y2f4CQpP=Jyo`MC;Y1Xzu{(D^h0%iiq zcN#XD9dSJzsQ8epsH=bBnP4_+5dJY2zM%X`pY8KP#b;baUCqD1A1dtTA4FEWS&cZftfI8ojrc-Zj?5+V}}8E+~Xc2}}V9b%$U zx*OYH%ZBv4!#}#!DJqe$M7_^NZCn?tq?!u zfDp32;BEEaJwuSM-IE^hPs#7WZr<~oBo+NF9I_#D;`|AxQIrXHEcBp$x9KmSg1(k$D{Hw!jNZL%2 zR8N_p9Z&w=Z;0AL5>-#~n8Eu?lIm$7O0+yG;cw*ut!*S>+}VnIr!ja>Zbe+>KJxeW zCwEcv_jv2)!6N?CAXlg%DylqB!}r^k6((PX|Kv%d85zTY1HmTlH!px#y|;weBp1s+ zSNI(LC!MYC*gF$|9oa%XV4jprQ~JCloT+{Vo51mlyr=*Afv4k*N)#>MikiVi1IJM0~Q zNdLp_81}h``j~+vO6y}dI~^G@{um7f1Ju4lL*x*}&gg6SXC6b4@rNdreFXsH-Ff1N zv2tsOH2%=#V_{~IMt+%OuBF`St>}ZE5nK=d1Yn3Z{t)$)3K{MA2B;a$)$oZOL$bb` z@rQFM4=2+APRm2?6Ek>3V>eJ6NkCjqjR%eV+bP_>ijXalyT^=!ytRQB%AMe ztwXlHjU1v6mqhc0AhkuOa&#_P)bR14;3!GKf>>N1(m?XDlH?j~l~~sG#JNo&G|W&M z%*B5TVw$RaW3pV8_?c1y_-9?69`-`B%36%Iv`}A>jTH>~Cv*A>Qk`7s>UK(|<20^= zFS)Nj1+EU-I~{e;n=#UK2G_?wxz?dCS;)lV$tbmq)}dU;__Mi|1*vYlHk_vf{}-)9 zCD%kBC=AnF$Vu~QAHy`sOfs9ym8a5|4_DG=7gE8zlq6|A5?>A(BtsBHvb* z_~4Wur(9W>{mv#zBe{I!v|p$s)EJI(SP7+R&04HX%nz!)zJ<%TSqZ4yIch1`isBYB z70+#kvDT4jAvdbVvOsU$K)jAq6RD>Ew6fVisQRSq0_=DW^N8t39DvyR60x32OFUbM zro2=_`NJ* zzbnN?<)kBrqsjJovS70LAP_LMl@8|NeCA33*oJnd=32Z?A1B4m%L=yXp$r+*=Lit@ zJ1H&_8Y}VGKT5H+ie_Q1xQ>cWikAVaNK2>;N5PRqxf^B?6JdLE7|xokp5e$F^OYrX(BwD*5^x)} ze0>qFskiA21VX!VC_0-weIIJ|yKK~))g*peXJcVbxS6Qk&vVD>Y$Vh}90fhpwbEq* zQD=Rto3S5nPwvO>Qh$sZ=h#j}cDzaqzl}0a$~wz382baqqWV=4>YzUD05%Z)OCpLU z&LC<*pO{BXqcO%5OC)^{S=I}169=PxEG7N*;~@C2M9}f6TdBqNPboy~MI|3mD-$IX zGx}>v#|TcvDiacFG)Gnatrl(Ac=0w=7#@<6fV$_{I9AjlZ~jJ{mTh9TMHlbeRsgNQ zK^`T#o4)FGfYPINQ1T(GeNL2?<_Q)kS)gS(2(2NppW2!%di@7TJt2|O`VSj)$vZ?V zaS*eV)f$Sh77jz9%H?zFz5~NpPfNVCLSx@c^EhRd!-mSk^eMndN94n1XwE9a8gpOJ18RE7pmv7Zy2{n+TP=B+!d~li}ankCq zfq4B(VzeDEL{|Ofm>oF={Z1(vE5=(DDZjS`t(g)n&F7PVkspZNC0vu`^94dL=TOHL zu=DX`i5%J^r_IxieEBa#>PIda_0Dhd7-T+&pj^c(Svrf#^WI~BQn}hnD*0NuvM`H$ zMwAxi@~v_up%&*TXX2}pEmgebpCGlZL`riuNW2Cq{7jr)<!noL7YjNKfTkPUO-pN&;wa4#G@@=8wTdJ4<{pz}785`IYRV|>JcTwB3vn<k7XP-Nh{-cNg%%SVF^40- zL~}XcNmCnKX%SpbEqAo|o2f$kK9_4Tu@N6}gu^7~P2_?}do3n@{2RX^CRr}mW?~@< z9D(XX_fL667E}(Fs5pIUtj!y9A?l%0RJDJB&LyBzpd%_&YbPSD$qb!FTcTUnN^~f# zejww!FH>q>a6BLVp#E*^l2R3@#u9Wf0Nsw|x^58rvJz{LC>j%7ie;T!JPg6FNrKh# zhuZ0O8GC}GG!0~~hXVIEB^7E_Q5`DcxLM4&KFL@t1_kd(3U*&O1xSmrrw6LumsF_* zObeD4eQ_G(ew^5w6tSxUQ(l%p~Os+6P8i79Qp>> zQc|bS#O?hlkUU&UvsxM&lu?25>BC8mws?Cj7sQX0#D~=xLA<(NMI}H~Fh)|abwm71 z^ihVIMz<({_qc@?OXhAOVul-jaf?8Zk$6hAtpU zdR{H8v7aQhp+Z=diq?p-GUt7Lhx`L2`3)69SH4(AVv=~Z_OR|UZi|mLPgNz-N=8D` zqfU%ka6Mc}i=?C>TeZ*)M6R7^&6YQ}f~-hO;`eAI4N5#oMOIhsMk`!%1@kLDlw}uQ z8ExH3(LzXCb*gTzqt$)tYBskKF{(yEQl^%9*PT1+0u3lrJ(MB4B*`AOK(h6Y5B;`T z!P_KFYHe`csc>2iReaHiuEVg(l>6w^|cgf zI-L#%ELO^`fl50irHv=jt2x!J;DP#1kn}a4NKao~i9AVCx?RJT70TbKlH?H!D7j_{ znI&l(yP(?YGTm8{%7z>o+-H}F(lWbZa!Mst^e3=UgU^)|G}N+ArK|G%{?2PdnCo5RZ3tFXQiTQXdJ0(yIC!| zmQ=Rg4C1d<;?3owVPl`FB_oRFVC_^4$htwvGIkw=x%ajxncq#EUzn53gf{2ss?@CK z+k@w=FsXfeU!!8n#iS|r4pHnjb>x(5%?MrWYPL<_d$%Y!%#~nf&@O|3JfGup#(yNpL;I zxJ)1R68Wh)neS7Q*f96Tn zQ^O@W3z==X+q_0{=Mzt@#oebNhNj%=UuyQx+lY$U9b-2bwEiYpC#+klm8Pn0bxpWe zf1v44Nz;A{pUP?;IaQX1PtEzNdEH!t_J1VpqZeK~?SP{bi%QX0yT8sK3KvmdEbJ<{ z_kX95?r)~4={#Ms#Z-5dREJH!)|sc~Y6qlp2}xC$Us#_ivL}_@Si8TX1KN5@+7><& z>DqSMN>QK^t4&uz;nI@AkqeWFUVU`t<;^OxtfVf?@2zP~n!HOymAe&fN#>+_v4W)X zfQ3n6bz+Y+$7zBuhju51tEH`86&7Au(m&=u&|lpjii^&TmS8nW<3i;rW;ak`g&MMk zq%LgWSu;Xb>NwAiiaeeHum*OK(@xiAK0`l6If!=&pGxk?(qwguS~a);;kjE3)Nk!&oI$^GhK%4Uy_R)-A+=aF2e{K ztk%p??rA2s0_?j$`$$w-XS@YW(W2^Nq5*xXwCHLt7DM7-6RzaI^j->W;ypS zyhTpXfAhYLuBmr4Vn-OdBsL3j1^@6m9aslEql2YB*2+ zvQJXU>uwJJ8gxi3$&rCYT6&|*Hl$e0du0NOmQ*7lHe=SHhhXb-ZbvP}nv>;@sB_(f zn@v#K>pvKN**b$_8fiu##nWRqL=F&hfU|Ui-Zzb=%dZ^h#QWLiRqK?u*r%6&< zVwS@GlAgU5E;;3?`B4823EW0f+~9PMZO3+J0R@~BGnv~<+QL?V2}Qr4oM@|oMt{t+MLN)*fv_(amYB#uC+)k_#An9$;vsc) zwY=K+a2VG4g$s^27eKn7;0^X`Dm~`M&M*fzT+yg}!s`-{igo_OR4Cz*@yT-4Xhtg5 zS9;iyYhklPwG$GVlq$DM$~F>}HDWbQ@*uVDwB7S7VYN+|)xtb1J0)B=`-}`Nn=375 z&WEjiu+=E9&8uNF(bJsrZZ?4UEtPn?r3_nL)1ZuzA6AJW{E1ooS!fimpn84ra};!DIbOWJ})7(-by6)quJnE8fR7 zhK<8RH9DP*Y{v(g9mBrvHljwhkD&% zM15hldz;xVY#dgPc-e06@pOcFj&&&tve}1RSJ^riN?2rwNWV*YcgDrQs~`w2&K2 zV=BQ9{!!8sHn0*iCB$6wB?S$4G0yNKC=tI&I>M$V#Y6MRe^M?&V zlwm`LSsYej95xC^%Pe|x7JWkGSS0!|5*vnsWe#g|4r%*4p<_O%o+=6a0CrnM!= zY&L9!%}8|-#kizpmW>-=<4KU&Y{uEF7nrh<`IhnK^#w4_7L3kjb%>Dp^ly}pd7S|G zY||hgM}*90d(J1g7Lk2YUdIC}J25K3wFqdL#V(vha4j08-Ms-40~m?mTBN`-hrygf zuqDQ_GCPcs2(|>!GK)Ppi(pGI5~CQ2U`r^l%wa6&5Nru0W?Q3mAJ0exTLNgA#a^66 zuqDRZO~^isM6e|kSmv;QLmX08GZt-x1A%1@O`OBpfz6N9d?gu;jceg$Can!I5gM+^ zjW7vowQ`)vI>BioN&3wvXfviTDr#IJcbVg>0%WU{IhWvaIw6+x?t=o4sfY z)~|8V>LXbLtP6DC8J&tE$bOT{ZqOp-JRLkMiGGKRRs+cTXw%^&f%bTx3pTxdt$dIi z(kapVNJ+8B=_?upt%dGikD>y;M6*%AO}DrTsFv>CodfpVt_<*=1UHNJYKBTRyON4! zXbGKPvEE&Z^xmNsW%(7$)T^V^&2m&rbDmoT_}yxyk}*Is-EmO@YZ@TxJ|)VmL~1j) zpRcm4>h?A|7BZz)J$lUsWIo7cnq7(^bEw(`G&0taERLt+BD`(kkn{*ks5&VjfSe^r zPVeKKo9TWS+=gZH#e8|9c`*Z+J;j)*!|DQ<8DeB!&vIU7H86M$_Y0O=Ai?T+#!5}a z1hCSCL_+iPCC)9xW+P&$EKMtnrmHOc4RT=jDq|O7GeeAQvo|;|vrRH=W(o{V@Y`Il z>ERlJ$IvEABNyId=?pQKLd(hfkh3s5e}lz1n#9a!1*?C|*r-XNfHI*=ky(AlS*gX1 z^~ejg`IlVoTETL8Q!$Sv({xu1V*xIw?>o-J^c@XBQq%AwV`BP_k^q^@e9k4L{i|{b zugkx2ks)T@m+smy%l4lvaUo^~Tu$0QoW}}Ac4t(N;OQ=}Prc^m)X8hTrrAC^@goBg zu>ws=CI_^&jHRvY{k-!lAz@49CKw%OL{Q3wurxs0R<&FgnNxq0)3yu5seeM|v;*g4 z4mVs*Rr?HfTP~z%XU4^Bacr>6Vb{hu^fx&SY=}eu!7_&-jd9q@B{e*q6}=Oi56AIDl&pk>Mr9s2v9}8iCg6KiCr?TO-c-1X{x?oXw0zU`m2YW{PVM zk>Mr9uttW_2(-plwXBine9Q@oYC#(u_Xa{JpGC&Oocr=&axPT3UeOMN=?2(VbvwJN za8}`LXBlb^EA?}_`qeL9d7>K=x z2bMV;$2o{)Vd&5ahW6u`cCjoFOxAlM*K2<3tQMx>w&GKmV$)&NaI)spxn}cYsVgBt zN8_ga3u;jX&Scs}zi4FEUGZ520a{Po*hSASw+QqahoUHjGuG#dKt7(S>wZo$7 zJ*(}OWwW!ol#3FZ)RDAp$-giIM!bS0Lu>{dq@0kexpuMYjEc3xF*W=9>lgvC>Udz8 z!;Ot`uo|+P8{!bu(cab=2di(pvmp*a-P=8!gKSQ)xVh_?BAc>_0B7fnjvHBZFW+<=U8L!RFK1-G%Gy01&GACB6siY6h zWAmv}DW79@`j_!BCssuXGMh#DHy1Ov&H4LB7p2_Zp9aNRZkw%_6Tdne?dC3EQ8p$w zTQ37iY~$)O7jI8DL^Sc?c(@GJ3|lgiT!v|XlZSJmw^vRiF*&R*K(430Nvj7>HQADx;^wY2)1Lm_7- zmlIa@ORf2-Q94__;C*w3l#?5jq8u@vU8gB2c2zce2s2gmaZjiLXK*rMg{NGkTknN5 zoz2CBRU;DP-;D>OoW})(HINWMUqOswa-n1r)6+Li(q_Ofk>KWc2?IVVS&kV3E>{AK z+0W&T-d0_d?zP9a{6UMVHztJEA(_e$op$Wgxqa%hgYQiOx;ay37HNiN-6+Itsl=F# zk7+SS&PX*|tXQ}S26!vR!K@AzR%Wm*XJC#;^EBa{HNNqly8?CQ>&Fe-nXG+`nr!x1 z1Go_Z&1^DRTUf>#LN-xCOuL!&#+E|Iub5*hh}oQrG5d5TMjw_z#Fk2g-4K{VBTL96 zHxq&1ikTxcA(Lc#Y|9f8m?I+xj2dWA*nv?9%n^l^8SKm%1SSMhnKg*(3*X{ejhw^aqrbIF}Nb$&kVdO0$w+R~xe{DAAoKY9hg3_%K*4_qm?B5Um?E zOQ?^bvs^^@Y}SpLMM9LoYzZc}@XidYq$=f9M!Gz7@wJKmXOwV_KD+=M5OJ==)NW@5 z^h?;x-NsfO(BX@5uz)BXLmtb~0gB#QAc&eLi3;W7-_HsG-$?@06%&yFF655V%|^vy zGEN7(sO2nWwfoGi_>lRdBon1GNMBnJ*tfShC|nWec<+;wO$`c0Aq zUpGk76gt+{5b>uZ0+l651f5mr4@HomewT4Hoz zMUkwcZUvxGY|5J%fV{4fJgh(pmq#Zy2Z>xl5{c>^Bog;MdPk9hS5HX@)+Gc8AvPH` z%yG`<;|X0_5*St}Q*?ZpT4fkFGhkUsP8cy-YAPK}sIUuF9 zvd|llK*GwBgs?o!(-CD;>4^HtqU0DEs5K&? zV&sfFjPt@5mcXJJ8Se6mB-@j5YfU?H>PRjVeqX4}vD60+rR#XC^d7^~t4@xqIz9pE z^+iRRNn*5ANP6c{f?y{ni1qI#L1%Zp*X1oUkm};0W-ZnnLYGSwrPjZz(*Q@sagF6n>WPw6p(eOe3&mucVi=37Gf$(L zy!w>noo@!Br${0(8kQ5SM5gi;>cpI*KMj7TOTx6i+0JD(4wmGcDapY$B$<>ZN8PNe zN`9(26_3*XCgr;u9M6$thvc%7ou(a463_D`Swf|E^FztXw&wy;ebE9)qf-+K)^j#INd&KxqzRpkn-}Ew z1mwewk|fN;$d;Q*$E=D8yjcw#^xPtQ=pNMkenWCJS4i+(1PPINhL+7l zwO>4M4nn_|$PM7Vj3&S(=kzbJwpc2I3of)MrjDN^9V6=0;au{mj%dxg71^)Z))k;g z(Jzv=N&lfX-IzuO{Vr)1dTh;5o-I`=)ZQC%|B~bmuP;TG+^}{L*85k|wOxI>oVpa0 zibd77JG)=Sr>tsyQVU{I{z{q^hf$e-mFQ??UavLP=+!AKbqijTB;gGyLE3zT3qnQ7 zsY^-8X`-t@XhWs@lbab}^tL1q%kG?HxLvsE#9yWo^S+rFtt~M@YA`?p0L#0Ch>s-g zn9X#wSMLI&VOz=fyDnRflrKtdpJqwT=`t{ps>?x>C-f1X+Kx6F6B-xMLE7TViL^6Q z^A}{9R5VKQVyfWJIzd=>Nto6bo5JAL(lS~#U1SW#A!|uVme&4<$SQl@E+qAmBn2js zZVrf6a+Q)AL3d=EvIl-gJkc9#AT8#G~-7Oc~wiYy1i_zVUlEKmvLr#t#YkYQnO71oiUwkx+_I) zdg~Y}OJ;WsXBUvS#Lm5{ZM?eOh#T*EkzhdHisEFBvpGks>#DY%Mydy6fhOm6i^xsy z_=3d9oNniw0_`@q+)+r5r6EmTRR_-PE|FWH-2`zm$9p+Pz27qu%vn7kvI?wJ5Fqn- znDfxSRGKwPF8Ys&T=ZVROpN=N%;!nYM|aL#Flyv*nx<{%#(7306j%a$DKeuuoKaw# zGdu^EEVQY3QKYB$N>(C8kuuj;8sIuQU#2e*^ckEcB$Ej_Z(nbWYk)|Z>sy>_U{3E9 z%T$C$?Ol;xU{3o|WJVuwMsk&M=7i|L+iEXrcE@v-7<)vf_2TrcnC3(E-go|L)Qis~ znAVG9osZLs`hW<18K#q1)t%i+hNl+-PL}j)Ce_5yY>h9)^~fRQG)c&Ez6+4ax3p-B zIC`l~HlNXVNR7FsvKkvpimK1XUID$#;b~lNy0y=1F3-Sq<71L3i8wWAXNX zXo2od=E@?h%W{nFMvqYEz;U~sBu|JogTbRxEBvM;&`6!fr4Uka% zISNIqn9q32rBSrjmMCdOO9vFj5}ysYWUFW~NM8==p-faNWc(x7!Dc;)4Qj1pAOrE# zzC`B+E*mbKZyt`hiDQsuCECD{oaQYf2BQrnMp~9xn57h_%eZ_i%Oup59OYQ4Omm+` zG1^$-q+3ZxtTBNYP2#d`D>2Nz9J3U1ZECC#Yxh4;!%Uk=lu$0J8E1hmA4jYPaSdoc zw7ipGLpcm(n|6VidAEf`N-Nts;OPB`(4AbeRkj)A9u7fSqVckBQ5dPe#78Sj7UrPw zL}?V4ZM##>@5??hNP4nx6h&SzuU42@>} z?OQK@Kx#U&f~U2#Du#0WL!|g<^{MGrna5QeCP9!Eb1tayn8Km+UoiY-&=yQJ5A!5)`OC|wOD z&roxf1VD1CYMfNruxlk4YGt8Vp&cm6Y{8!c0kaz<1T5|#g3HrQ5)$q*L$chuRl=ft zsMTG;I`5EhU~A!+#=9jXasa0%8FMy&cc&)dZ)p^Z9B{fp4ja1{wQ?2STw~PicZ31J zb`C_wA)|BothSf)mSu>bq(`{a*uc5@~!?+LhZ~@mA*4E2yu6N#xfDrMyZ)SZ3gh2G^s2)eVBedm@`d4 ztJK}}eE2a%yhZ9++_8I`f4VOs-!4Vg#w&4k&Z;-6?sGWFKckh+D_P?e0d#f%$cY-I z^%mw)svvilL=N_H%1sb>`f)__SFRBgJA=Fl$x!$o9PZiBKaChP@0Dm;HuNF4A57%- z;nD>gTA=*{Kq?*m69G1SKq6<^Py)ZDvic&fQLtek{8A40Y`B$Is9?i~C7PBEeaP@* zh}>ITx?n>K^lku1*>I~M8$KqHvur4V*Xkge+i{J84FlmjayS}kML0_99_h}M49${c z$c-~C`eYz!11i_NXCyGJn{bbH#VS9)gd!K`NHEP%LE!&QBSQ`0DYXn03g4Z>(c~x0 zb6>&pMTw`@TBzSZPQsBs*HDv&V_)C8$lBvM)xFd-}Ch|^_!Tw_%M0dyq? zp(DwZ%HF3S5PDrAgpOWCjXF!)jIQS`388iL0&dD7l#V#JlGV`%A)7f8)x+^QTj`ui z8ev!mRU&ckN>owaG@pbPph^Nhm`t3H;bydE{=+yxL?;)4Axh4lBL>$GB(4~a7W1hn zE#YnPwpStkTq!<=d?ng^M&n9a5gVm%orwya(jc4XQ%M9qcRJ>&M^L<-%(OYrpiPvE zGsx?P>lU>o7lr8s+EqxK-Y0v5AAAvr8JKEpgm~n$1#!?|F7W`e{PAD z9V@?V#HSpA{89%ex>R7ElO^+L`K1FEn?j~}mZ#CmF9vy@Ly%t-k=DnROhTtggtYv! zK@TcYuW=1leu=O*ISlnZl_Ph|Fw+?lE3Lj8h?kBcN{{mzW7T(#d5U9Dep3F(5Sezi z#73*{TKq4k6PKx6u2p_)#59h8yF*Jhs5dlBbDl&-b9YS0j5gx45|?hdI|67`4ss?d zVzii~-Iz>)kuH>YX+Dgz`ozGUkSB6?@)?{F)2%o&f&7HlEX3Qa|}A5Qkyp?0XBC_Y_twYi+|$L#N`EUeX9eq5ifIulV5EK zK@O#4+%8?u)}mxU zwo}8JFS&G^5(mxWAS7IEuclqW#>%dyWofi>rL-VG^J+xkMMQ7yG#lnvUQHl$Jr2d9 zQw1m{o0D|75bfHg(=01=h>hR0g6}mFUvxcc^LLIuXt=EnqF*mX*9Isy=-pE&X=y%^ zw+1L8EX!dytJpmSF{YMsm*~igf;#HJpEw55*%DDya2K9P(zT>&50R0;TO=H;=`>q` z=ru2K=S#Vn131h0D>xnn!cD0;!-~wg zOCpRJPt(XI^y-s{?MSW-g@RjH0FU9|>Us?4Tutv*>wrRauf!Xbh0ZiUaWu-(15$LY zve=-vRT0{n7XhoXh_LNA3=I`UCWliX_pn4xYp5h(=UGJXA#Oygp$ddP%Ash2tAMyW zn`&6`F^Q-)xCsKUav_mjhMNWcL>1&MA)%JUQ2L~#6n!co>4ZgUMg^NbBcb3QRLixD z?Rz3I-I3b{YmKym9fJNJM`P5Z4tO;ZHb>uNpDFgw1&#VK(j)XI2X+(v-zS~Oy8BD7`;0i_tYx9PyruE z0+2|`D*EJ9j5gCpS)&Bal^|NfApx&cb#Y~07p;aP5V{(NqRhI0oHs&)ML(4&qNQ=_ zA%`VSCW3qM{6;qTRWJa!4+o-1sx?wDzp-}|6u*!tI#)3e$lIW+)Y()BJ$nqe|*(q)S9 z`2xj6(Zp#|L3zHI1a+=O0F+KQR7^=e)W^6N??H`CLQDhUXIR4><#@C(wA;Bj#f+2F)t1Cs*FOQO988H6`-M z5rWX^XJ#9+|YsJl4|{tm^hddWO3>r3p=2`Q91hSn(h8%fbM zkIx2eJBv~?i}SKPJ`r{nhdEQ6w0)bquA4~AkbI{^kqQ$v?R27cJlA1Qaf-MTISyG` zE_OtdbcF_e%*&Zg`Q{Qoq=!0)RJ=9gucX-jIGVc}FjeT55YsOsP7`_SigftZlw>MS))ee@BTd7Z#0#cm-T;0^APV%fIY4S^56QKK&NX#%vDq4Cvw81#x@qedN+JBU4 zmDbYRphK>v>^U=_;Q8f8gq_1-Af~Q;iszHfZl-|P{2Ih;P~=u3wmvTbRu?3~HsUaR zg^cID4HDq=o5V@`3aQ0^_)?-Xf+rXS-?x*E7|jv*922il1MO{f1DQW1GVo}ep3sDR zq^j*1Je}}oH9m$OfX?P1kCH#p1xo+aLCJ^gekDOh_umbnB_jDtWa zo1{gB-c%(hEm4D#3F&$jQ96<**rFtWj^QA5AoTGoo3uFflsIV}h=ut|H3Si!WUB*_ zQ2jUx^&kC!T5n-2c7$yePA;)SJF>T7BSxD!MMb~zNXHXx#x74g^I}XAG{HzFH z%Qag&4r+?Hfr~)ZP_x~1k*2=}8bjxVG|{J34TkFT0MWde=bTkFWZZ2Wha9JG1>`d| z=UrohT8l)@NeV^J#j@5+OInJLfe<`8A@NxWfr9IF%mVI$`zZMr@nl%*T!N67awG;3 zu@d&oSHISKQ#FP?3KCnK>RM$RE@ROfiTQ`TaNu-x->;~_1X4ccQXKa%M%SHc7nC9! zOA>7~S?VyW>Pc_LT3f){B$)PLGYI^EO6FIbptWi<6#fl|`-Fv4^+33z9>M~6O*M=v z@Nyv$4uY3B9CbMEelw1$^N`IMze6OxsKwTWTXe96IbnX7ghYRmNH)jl_;aJ!9x27v z`V$Lt-sNPDct8fw$?o}rTCAh$SFXjJ&^bm@q?MQ;@Z38{;{r* zEJ+&j)w!eCXgAK4B5V0-Lb@y8cxRqPR=x_LT{#F&M)lfc>*M(a5-ZJLVyJ1eiP+CP zLo9zu#{J51CpHX$4Q&pR+HMqT~BxtW4Jw(K$Z;KKq}qA!m17hcF=y zdsqDt21`7qDqn`ph+ALXxIO@Ta3HjKcNjZ!Y+eBd$%zt4t7Q)oaOC4ecSWuhh0wX! z-TZ<9jeAQPQOKREG2KFr$ool=9r^i8C7V;HF#Bh;0dk-O!KlVDdt3m{exFj3Qu}?) z!(y!!CV|ilha%6&zo3OM&fRe(8eC8t==E|S8~5(^Nr$}j5>dLB7g zP;!nKH41II1|<`6;>$$oaW37WB!HgcAUG>@Zo4`U!`#t}{L4zrG^a{L?(-rMyo&3x zoRwhgwHym?SS=2t4G)Ix3KB!j8@4d#y-wWzgD1Hd;YqsJk8_ zQm^u)S_MhQy}@xvc{bmcjM4DUFw_YWHEq_{2HpQOF&o8GZ_WCOu(2G5Z;RTI<1p7r z5+|6~$viFo)sGULzj%Vt;QP5}BmU(GP6M_YZsSrTz=JTF5#o*~AQxHfA%9|GQ&gAG%Yft8&ddl{xaS7I!fT9k0`yF`2h z&*lJA2g?}EWjLm$8)jpfe6A(RD*go$aoyA+^nw?N@deykwyA@`7jrPyT@~}?9n3cT zVu_))?#e*C@Fo#kjhg|jtY2z5W(|&k?^nt<(`x2cbwWFpQf<=&+Jnm^Zt!QF8WxD& z?mgl;k?TZ}@p*>h_vU!`ROQ%Yb98v6L{syrbifMAg3EBpmQTeX%X0{ft|A5%zH202 z+D@ea?70sT#V2^%ZS7PFLqE;YD1LOqP}Dno16h2%#8E4L24Vx{kj~&m+bVt>Gm~SG zKeYTf8&&6Uo89$ni4?phr`&PaPpZI0c^+9)LIJ=g4n#*xZMQJ?x=g7F1IS$^b(68Js5z`!I6SBDK0pH@%E$>tSy~{yx5-PbA&E2Te9!s38J?;mu^{70IkVE zRZ9Ah0M>h;CM6xRlA6G|nM-Gs80a<*LRD?TemwmWuu(^<<%DhFv$q^J#cQE9i5>0JrAOYv7da(i5WDN}hp?x{j zA=y8GDZRb$rUM5d_8Pq-A1=Sq#d|yObxL?L6IC!lI@)SanK(y!Uih38|$q zaQEpz38<+I-hVnoLZZqzWU&fAC{uTrz}Ud%g6rIaIzkeJ?!*x!?Lr+bVbH8#6G0Rk z9K3G{SoyH01ksum33&NOR7=j}Mc!&w0-@({D5`FocJ~L!O_0c;1&SqNS>v*tEw&(k zWMAou2CW5RsEyRM6JIKn`Ark$#BYIQ+&qqRRthR^=GiDwip^zM7j0 z)z0E)Y6S8+jzk_M+m(x+j809JTcfmsK9QnBdc08>$Q~q-MJ}oMZo7}DaVaXC5mz*= z=_tiXg=Cdx39YS2tRZ9YGL(aRsbvRd4q7V`>yfe#mx8(5bj+K2M0!&aW8{1$mTi*K zn2``#&I`ECUX-qpoRO9DLC7&2S!GD)RGB3OY0B4R$Z+j{Q`wxTP6;zD<+cy*UzH zrdpevB?q)9(JV?dQKX$wWDxk>waA(=)tZ=GtwkK6@C1jWIaW6}dzHwj7!`>vnihwx zi2UszGHVMrj^*74W78aquH9*l)iyF#gWDydu#LOgt9s!~jP9my!yZGgwb*4xGHo~K zJZSyW8I0{MxSAYL7pZ#S5r0r(`w-#u>(_McGNU}}h*>iiS1ZH3IX=W#TP3M$B1WE_ z69?bJ3ZDCkNbA{=PE^>^q_pUK)YcF>qr=Po@$UoT@K^~g)Fbgi4q@FJ@iuKYWu+*m7GEnG~wEGWH(rxkrv{U&J681%&k5S+GwqwzqdibodJ|7Kdc&&jiB!IL(tl&hH?K!|u&{JLPdj>X zs~K|E`MTxxqK&D%{zVkDDve<^ooY!m)H+@_>I)xH)WK5GMh}W(FsWmq!()6*zb^=L ziiAP!jni_{Vl=KcizL*!UD3Qc_sG+jRT_7b&}b(UPGwRETDk1f%)UvWR}U5%9CRg` z_%UBn%nK#)ScX6`qv~!pSMUk%QuJ<8bfc5yOR8M~-@HWvK9iVX7TnFJD78xVI%-$M zus2A=Q<4a@rtWHBm2;S{C|MTmH<$3cOKCtsZ7EdL@G{mGqdTVP93WTil3x+*Y6*tV zfvx0^sB2Hvmq;fwXuo?grAxS5wWNDX5>R;532t#xPFubG%_&Q&?B7|!Ab%8w2z&kT zk}Bh0lx%})prQxbWti$Gww6?(oYJuj&d8@Emecv461ps*VIKdCxj_A^e?k)Wmn2{m zujYZ|(*BJqlszRNX1f(o&lY_W=>%0A=SucMSpZbso*iu_htWTTY-6QyQAs0u7kr7a zASZlHkb5Kun&v7*9qC0Au3mjRU6s|55(<+Cw9LV*_$R2YcM~Z-(o@ctX*QQPG8-#$ zcLc)%s>GPL3HFs_Js95fEKH&wzE04`B&a?=rBx<9*XAp$jFsrZmKC{#UZdKL=OmS= ze$@_Yu+fmBYZ$8r6^28y5fx%@|A^}o0O)!n0bMfo2&5ZhTW-j;GNsT4Vg#I`1a&oYyBYli&&G_z)V+_^dQOfm{N(w z{cqrv&nfD$QdE4zS5dtiZI)CX?y6E;hd{!csJUhy#e7PN=}67B_)Yfds^^_0#dXMP z2cC|3kD~UHqB>$Jsz>%4Ra+jA;yPk!VCb4Ot2&MArKpZrirU|eoBW32z8o6YqmX@v z;{GO;WjN(csj|vgwU5b_ezzKf93n}FAK@aL19V)_3#vPLQ&NK_*#%{i)ajL4Q_bF9 z#~oB}ke0N;v2uZai+ZzaO1_meVa(tHigYcLrRvBoi*-rAFo*ybS*9+ zkbm){@9#X*lZ3|)6@;T)YNh?Oze(uqV4+%J|7R%@dW0mjx^1+jzcw@ZvSPc8BpBb= z%~J};^&rt>B+)2u#*X(Le<8smB*92qvgpkuJn}Qe+%7m~yLUhKq4O!`04XL+OWPW} z;y(Hxih8#c)uGy6$o6x~;T?-ovgQZIr6IGQyFLFUxsOV5(KjQmb++RzzY-)WLBP6M zJE&srw-ohrsbE*5`sYVn_#H+4L5d3dw#2=2-{oCoEvm80!)Zq}^11V!&BMMpNO1E0Ne zR9uYW{wuMl#?|JydjCa?&y(V!*r!Tl6wgiSrV8lhQe>Dq6ZcNm8K~;sREaJOLDwpJ zU0tLrMeQL)MH{A~nnvFDdt&itV20CWIIhupsb*y#Ni+;WG5dMTE6?msafgJ)^{U@j zit-9lTqkw;7O(oG3$!lk2~~6F)I{X+UN`f$DttRhiEv3lhu=6{xi|s(NC1PB)>-Vb2q8X_NTF`h z=~k(1#VcNasMucz$EK>I#r{m$bh;E9Rn0jFJmVd4dF+xTJS&k$YN_(5b5;3WOuW?=YAvcsX+RLd?}@ie_hq+E2QYCr1~+o z-H6CW5)s&(I>-Krq*s}KQT^CNNiGV#-cD@$G(}xT@-kpSb^bG*%R|M|wcroW6JTEn z0F%(AATc`K&TpIFe}Lj2H%;&tP_b!sm+z4s`8dV>K#B|ACGC>iwtFb*2q`K|r}?qd zo}!qGON6UJeK+=smnrJ;!BMC92O`E^p{TQ@sA!B!bdXNb>k)cBMv1qnls)1UWz$U5{$G_OwT{Q;RTACkc1*1h(KYQo5y`#rMMS{#HB&G z8+TomztbfOa4yP4HGnr=veAzc)R~EIf$O=TmJshf<4gcBAa$878qgSR6Ml>xcx)NPl&mJJpUhb*yu$I@7l=(}%?+ z0s6wEq<`=%PU zirxY)+$1)QKCx+;A?l>-kp0=eTsO-3*G!aDYO=9hs!*Xt-rAX|FZ3Yn;%4?^EM@V{ zYRk-C{(xox+RQXc7`4jDwaZ*pIuAFkiRm9pk6JS78T0S%1p32Fm}Cw**Cvto`m>L> zC)D?*Dk;ZHG@~AG)wY3LybS^GH-Q+zS{!M<&rMbr#qcYWp;YPAxv`q2t3D(P9%Wik zntq|L$7MS8QMo6s#@L?(-O|(ukG_~x=jG5E7qW$S)cbum6Tda2W(67Me3uuI#c_n3 zP^Lc0Tta|ZUVkZ0Fm@8hIz4T(KLG%GYf1Fb(^lzefHNl%t8=+z%uZ;mY{&&1;&inX z(VK<=n{_2NXrg>J9^&;8MCT8FIW#61O*$s#Z;nAfR?K6}DVD#u_JrrT~r=|G-?_{DDO0aBh8+ z5{-^Ox&`7Wj=-lJb$LA9`a(^GdGZHn&6Q|rtILAGyA3CfZ*q<3!F-OP@OL;I)w6oB zypg4!N<6jdX<<$qN%Xq%tg))6gj#~5;BQoYW?ErRH`zzkp{x~uXaZY)A#sEg<`lb7 z38P05<6d01wQ0DvjODltG!?B>42XEXNP|$ixJbXF670X0*yB67!#)Im^zOv{d7hha zdi}ysOTtTB0`g1EBGUGKS|AxMSK^cXF*JC8EAd7n=kN|hpR^0H-h=Bzj`^&^@uN5% zE#KtU7*)AwG3K4k3bH>)WYMZlF8Y@kAnMOjRIOFj0ekF9NtwW@Sgk69OyUqUNh)HJ zS^8Ir5#nbm);DaV;14N2T5XDN+@6f+e@oF(^|ETuFpjP!l zB}B%P^$z6K#;SU?WyH7)WEc+gXs7$vyg5>kUQ8m5Cfg~w9CqzcVtNP9G&pvCkqrRe z&4I`b^}#%<^*`YW;GF)=Qvow;btcXrdvuPsQKP9wC8AIxhgL~mhT+`UY&zM)jc6YXgrsx zK~;u6p{TCQwOLd{z#DKd3O-r|<*d*twKPjnG<<;NC9=*;A+-(a+$X&K1gi!` z2i>tJrD_jO%qqbmY!rt%(|pMs4g1xdd;SUbC?l&%$GRkF%veuz;SkpuzdI;BIb*KTr!#EJxJy{*I=&j3zHK$6{wCpw^FAgSJ z7xHRgWw!vjgo7}qqCMx#T+<{@+L+41y!<~RwHudjjj1HmAdW&(=-Y9$dOsPbH(jEq z4NZfvp5*G#md_(U1>qr`7+xcE0NU-LlAiHK}7d> zuFDEveYM=L~Y`00p$I$qN2G;wgrP^o1{3Y~_N!#-3FY8%&LwL$^F4i1Di+Vzx= zr|{ig-5BXjDud*3iKJ%FAn;v#5Y>5Hqh-%f_;(!c*t2@@bwAUdBPFW3JsIo|HOaUe zuMxIAW#AwVH0bp=>5ZwAo)247IUC1vEdlf_;0zALV9EIa7A<>Iq1(ks&ESf#!T@c& z8{cplfEgxXs$Z>BxExX)eeXI8fb1bbY`?U~!TV1oj^ouSCgvBW>bLh)redfWC8^Oq z%usFg5fdvUdwVY1`Y^*WJ8=xAA!wC4eZo_2a zD0xl5b<>Ibtz2_0^0tUOxCqp>wtTUPb_$u_Wx;wMiM2IS647&%y+?9=7!T9FkT`Xr z-a?yePNc|ZNnNNm9=1XK3IzI5@iXhDH69jW^EnK&oH6Z=N02&KB8BF*+F5FV&0C02 zJC}?!_=6x_2OtM?NR^CV{z2w~nq+*y(}xn7hq?V384L0lhoJeU`$TCI7@Yy&Hh5rk zvBXH5>td)4(nRY*o?vUPOU7Noaqbttv_b1KiI$dY@qEq$oKq%75uR$xPz=(KLr}Kk z`9g=j;th7XQX-_4Z5tHtAW}K5!7AG#Yzl{=lH=-GHASt?cQnj(jl@oyMiG&>Cy8Q$ z=ZMuf1Y=t`7P*;7HGAuTNFB%1s7&k3%pnO_;ZNg3oM;k2Wr~ zFsmIzl$PZ3t#PS@>cvqo5$$O37V?48EfOWoL^@!lEb)1QOSVkJAWw4$W)mnP?X@uq z)a?=-Z8pJ#9CZK@`jR^Z@S**7Qvl85Abi|zPI))=!aR3Le9){pt+*C{N;8qk@uVVu zeKIy;3P-^2qfHug1_G@Jwi?cRB}OO_RYn~5lFGLixgPj_8nXc8D;$Zk)U5SjFxCSS zHLWb^fIkl;PJi=Uu*wpHbm3&+Qa2a1k5FLqu*61lsSU(8$|d-V%eGu>nxPEDm&#Q+k|)|S6vrIH zF=!`KCGOBYBQet2NegpTJ8??z^jhttglgd^SSh3L`+$|^NSrh)8Hi&JBSz11*_M?! z=6Q}mU8DW6-Zvo7c~PRH)ioWEEE1b#xn!%ZF~|xWf_6J&+=mT1uSj&XcH4w}tp>;Y za_LsPEr1T-AlQdKSDIb_>k=W&K007m)fW9!vn^tfUpNHzpqZA;;-?ZXbnT8q5P*GBP0D=0OE5kw`c6R@dM-z!@oc9r5Z;b0aQs5z zs5PDj;)2PF}Dtk*_JkAZYRauR5)Ei-xm}S4zC+AjTm+~Y19v|Lm7xC{rS@g z&rrlZ(rzatMT_~slN9sMzy;l{v0|dsT1@4w9Fcj)Qc1~7aUcy^`>`I)Ey-r zFo^n4X6EH8a|kd{k`05X!wi`(ZruBGZ%h3Z%O$=UAtj(uxNsh&aTrUP@st5Dmh z2|*Xvl%ab~X%m+MmLC*fcY+UraEtCK}q zSLGt^dWaAgN$g+_vIc>?iIu%n?DGO+7xI}7I#JP;-T55F-brGEic-{dwG zH4Wps9^MC7I1&+4N=?I=F8qtr5Xsg-!vdvx(`H!dRPHsguw6-{ucJhm5(W zEFD4!I^|yUt)`nfi|VbXlDnF{HR`O zRW@@W!OoCi=&-m|PCbGEpD6FjKETxg_(>XYI00U%3Gh?W*-3yAk`3UNCHze(-^`?# z#|OvscjRq<4aM9+TF8KUoharDv@6Ze`yJ1v`1?s_(c}AxJmhMMzeO$iej0yK@{@t` zy;X~D+tBwIir+ghrP@x=hpwWS8%RvxG*L{iv0GGS<$F@jV6Br=m+3_LB;7hgrzNTr zlk{EHx12}typ#s4i@;s-eu0b9ww7GdYtCO*RU|DX2sBe#F5h`EMZI0p<3!aG|A{iw z`jS+*YV=*m-w2yIn&K`i#l`r{sVlDi-#>~Xcb6igFBB@)M`sYCx5OIt#I5>%k-O;v z0-R72;Fr0JE+N39H35F1`|~0KTqglA$W)XnIkOEsT8&GmNf5MTIoe%L``@L8<+d4w z++VU7a!sjmjr+W6gU*qZL~8Xn@(BZ2EIo$=YOQ_k4#PNZ01F6nL|+rJSuHlw*#lUN zHpuLGq|+pfUR^(kU^i7xmok~u6ri6c3yT>5@A92?mAX!oLk0?0^ ziXur6IKW$S@DK!#oH;mx91OEFv%51li3xjmCp!(qNgUnUe?lH6oxmCrNbK@SlI?4%xlO8Qk=?o43-z;y@L+RP8q#Hp z$!3m+3+bqVMcQSH$tWC&6yorsk%8x*CE|QQe2u~gQZV5MLs?XtXR%vjZCm>-6t+VO zarn_d$8+ILQF@c%YZNv|3Otwg_R}p>=jlTJg5F6Ry3eRLgsn(&#;mO zO{@3}Ry3eR0^v#dL8uT5npW{ptjP0dPmsJs z(&=k8K7uu*<1zE<;W)G&o-;)!7v_3JtcO^UHhJZ-4f1Ek(&}xG^$;u4C9hh>kUuk) zR&O5Gld#Myo^?^L8kV`<23SwB2Wi2;tEK5E1M*&M3$r!V5^f!AnUTde^#7O}#k4uEyujdgfR z}yy6r0jVq9CEg4MKJ71pY!V^zuKA=l+Q#jdXE^);J^ zD(}K7k_0U&GLOYdnglHskH?CVgEZ&Yyg+O{tBukeq`BTjSWoK9n49wj{Cll0W1Zh& z9Z5eT1|#UioYV6l{Bun|P~}jpBDr}z73gv(U(Ls|M&z?zPOLhL>}VQ+DmAPk^*zkTdISEw*7vZ^%~(gl z(DS&Sj;#g^z0O%!NAmdA{I3sVHO=E&t3HBNCEY-1#|9__O*c?wBdj7>mlSZo5g~6Q zKbm#vHI_j7(uiV-Bl$VPXd{ZH;xDkG)GLiaD8pDq>y^f86|ANq$=!hCSMI_p1|+EV zWvnJyHiffjp)V8o_nKv6ohz`8q$Nwp%(hrb(~_m)4p>oY5ysoxkAJVV2qru!>}9mRO`ckuA;AEEV^`iV~XWYKGvXab!_Lvs7G&71@ToIYAhy6pYs# z*>pE@sLf~1_3puXJg8_`rl_dDA)DG={}9qt{U2Ce3c8JpW~yUN-rkHRT5+{oSX=VA z#(1dBQAnD{HCCH})wEm~G2v7vVP&m*+rp~O#G0FnE37BAMSqN~gnzBIMXxb}H6#xYPq>|rf3A6WsImyFNFy)4{PsTl zdu`;!I_qH_SxV(FwwGUw`vLy7E+wtT<5)v(1H3bL1^&I>2B>ot){!+KEzS9Ty4CT| zbxr71*2F4uE9lR|FkXJv?jihpy%kXBVXPy!f=0@q^YL?dcjBMxte+{aqVOjoQn{!&(-L(rd1WHKo1| zPbZFuN1W6KYJDB5RI!TW*Yy_{??!$!zpmG~2W!YJ(BEl18`;rYpjY`gR$-nz`=^(y z;CaV)B2U_!$5iWGSWDXFq+ErR#4PZ<{4nHfWQ@B;)VB-4o6dt(jBrYJBg9G>{q%Lnn# zHJgGe-^41i7T~eWf8yWkT7WulVI2trAKCma{=J5Qbsoh!(*CLSan50^rtP0vt5&e8 zq#JnK^N%=uXu5$af5s{bg7zfn-|)`?L96l)tRmU3{*ve>*ka9o^%|R5YIq*Y^#15N zSVQwzrdsP`EnX2RIO-#V{Br38*3;Iq_E%4@z`Bxl;N{aR(cNj#JYC>V6{KJdo;M(cGbU%=4o+<sDAn z8@ZH9moGJKiD}}0HGUa(TdXa0AN_UM6Hx$K_t9&df;A))gEwVY!avtc463Y(RisI+ z=gl)8(brC}0iA#OTC8d;NAF{CmyBu+IKiN5cqj&GD#yxzjDN1{U9WN}R$;C@*Fvo}JkmRk+S9h3%=H#xJ=w+rtZ*vB z5By$$m2?|3SG))-N(&d_(D*v=6Ie@IxY%m`1Zx`bno)Wnep`4~l)nW}uem$cRHbQp znRo-Ngwixs+z2ZgS|=^$_*vuMqD(BU(`)`7YjU6W?2@9F-;S=M)HP3KuGhkPQmc&bPJa%oXst3< z`#e^YW)Aw3)tjRXw2@G+F~d^Bvpds6*GC~onthvU9fP$v3ohTsF4ZZqccnX26c=?& z$wgij4};(Cu`1t;-boxy#giB+a8r(~_QrNE^{V51nKHcO%!I!v2rt7-_&2UUnw0KP zp*UPBR2%K^njIs2Ngym=>`_waVS0wqN7*GY%BXbA&H!IQH70KZ$C}KqcEhb>hWIK% z%u3vVdZjpTp^__uG44l;hG;}fjUzXJ6WFpM_w~_j8 zi3OykpkaXTW(r`C{-X%6d-4_#K)c>oyYmkb!RBg8t>!qruuYFvha_G;gj~&xv*_04 zlV1svC)nJKRGm7$a9%uiR^}ImDV<6sde4-JZbd}l`aU178$6goy4Na@hyo*KV%wUC z&9DekC)VVvjtadUO!T&KrDtjJhfG9=9Ej3u9bF+xz11H!5!`wJf`*oV#6)w4L1zM0{X=+JC2|;GWB%@b@kB7HbRwR zSQlx=)yvOJeS>VMR~qf!LM8nZQ{M=w^G)d(BQPj(Xrx2w@XGZz`B6nQn;`ilS{><& zmzJc|Rm}TlNPOo6Dy8%YboaXy9(^(G4`xK0GRFb!EwiEBsC36h>ER(o;M*YWk0g+Z z=Y$N_xINNO(v9e0*}_<~cfumy2}vih6(Ze5TiF?j@0dU?;+Ysl-n(W-Hw?sOVeF1{ zllT;mP!^)D+*rV7h9!~VaDI630 z4iQwnzs(KB(nSBy)W0XFga5ZVi+F@$7o_n6L0%mI_Dmv?q2W%eSS}HQ*Yi{nJ&q{0 zsd#(~B9vbELIsQINkp(2T|5H4Ggc7I2)YVWe+sGFTt__hGAQ8btVq)v3nQvbp3RDM z6-Ymaq;0zZ@dBYog@!3rPyq$=JVMxZ0Vai@6LWfG0Wn@gjAV96&7dpD285RoA+ezP zW{8&&!nRV67Zjy>qTSyDnCL4Au&&KVRK_VIX3%$b?UTR#^f`*ZwJplLM2E7oMN-!g zDb>^3*2@-Z=wq41&j`BUV{NMf8*M3$nyKC>sH(1YPEn`16{XntlB!FZ*|S~|ugB58U8rd$dKnQ_)nhaDN$H}Z7~yh(0E)6rwI)ZA!o`{X zm4d#iGTSKPKwJvPW9nBUb=yqAje59k%H*#@@+l+}g@`lp8<2Pk-sR|UCVw-MPa$|I zGMuU3iqumuF9(G)`P-3v3g)GNaHjqRq@IF#IToDB-<36a)hNG=;9FV#_h5&E|`xb(w zw*=|1o@kbZJEsDx!R`KOV5a@9&P*-ZS|Oo>MU*-ZR7B%a)E?gg?OS6VIZK6jK^S zBs2NdvL+t}7Bl%ZkbDZ|Nr$oa_-2Ovc9d4Q7clgS^9(MiMGC~m% zlB-tV9WNvC$fVcLkFZKopVaJIQF!0{(C}G&peOG91ssfxuJg) z&~O-fME3A<7F9<6vp`mlN#|q_E8RR{)W0C=-0V>?)hdJk6~RB26S$N^lA-@TWze$! zW9WY&^pV-OS}aJzcq_*J58~#aYQohnrZD*b5Il!QD>+;lcgfSCSLJ}K_EJwOfr8H?>q9@%ObDHHyw4_ZH4Y04=kejRZ8za%>lp==_r2)fUld^yp!5V?`0%CaU19@f#*Wvef+BFjkRm1|oBs zA_Y880%Z}_2aUpV)0O>tkKD!~OU`08@+}3tIxjrjrJuPrT2EihpxYp*)9~dAYE9wG z=-VT@TVHe(x45+tUaw%poe;5@rI7ng@gOGoux@2kbfiL~5~V?64t7Qkj?b5aYM6(K z8Q68I8KCEp6(_PgGGMz$V)RHuT3%;v)gFSV{^+*tqOC$U4C_{y+?(i0L&SkDDheq{ z{$~%m^}<2nvL8^8_7j{d!-Lbr)fvp0Ew1lSbKVL^Oz0^3B`9BfP6%$5&ZSji_KbirkG7|gaxtv<~jnysd|$*DBGhxj>2 zyiCteDzNhr_UP=JU9OH68;zoZd?F&}&|nHXEh(_4AnZ}uH<(~4R$c)<9f6%zKZ6tI6T~dz&W(H(JHIs;mrt}LwhN1OJ6?UioiL{_L`Liz2ZnubJMpY zb`HHsOu6W`n&LmcfXF#$nPOkmNx)qQ>$G1qn5U*xF_hhGgwm2##Qu@e@Gm0=Ik=Gp zbetDvE@Q`eFXHAP@DnRNb+Y$0gx$hr)-_sbRyt8=8aLrVq9yI&>^lG*X`#KhN7=f_ z{-)qq*}pj~Ga$?2`db1L_HGWz4z^P%_oGY%EX?nqVw|?ug4sZr(}bygPgRZ6_F70u zR*pZ{=vvkD15l4s_i+ZZsOWK{ifn1+Xbg`|Uc|crVQv7H)|0BVtZ_&{MUvFMf~r+Y zPl1#UcCjXAH4elgou`e`aoT*W7Z*}0NX11ytBS{I^U)(Cv3>y4wF>At5RlW}odb+T zM9&*V6VKaX_L68o-VJ9Xin2%C$uK5N9pjlNU7OtcT(i^^cw4KHN?!!ZwAAJHaxB| z1(2HGeD@SUYJT&*2K#owmPSK)rQMVScq)Zp~M0XnjP@%-MAG zF1aCsW!5DHnA#;bMl`3Dyo*4)^{N;nOcI@ru$f7;+tbF1EfCC>flgU#Q4Ziru~R74 zM=Qe}bthtoNJ_g0ZX#32$*T)4*xiG%E;6fL##V>2x`P z4V0_J(GeO<6$R{u_)bSeN$|C!npsl^U8$DCT5ErdZnSL8B5xA*z zirL7@SWc`^s)1g$Sf@CfLa$Gclc=6)4lM@M6CS-$*ltz3U7C-8TrbTLH~?*mcaU@&nm}N;T?z+(Sv^c4u3 znV`kxTXL(N(W*hvS0V6LE(Y8vHmmJEt#s)DL8TL3O9Um)=Cn~Q6O(+vff9z*%Uv%T zpm;f_5n(_`i^sc3fP=?#T3!yyK(SlsiY0DE9h^Ul`g58g3=ZFIm8!gGDA3J$Rp+-M z6Zy!XM~|n{gFf29!5vc!uN@-XImPhWfx_Jg@3d$c)B;MadcV;mBb45y<8|Xb$bi#I zesBhwC3-Z6pU3M`!t6>@3#Ymd8FAWY8(Vm^toer! z+G)pNP=SwBX{a`C?mdhgIBnhx%mIybv>s7LxQ1On$W(vMY&pG_Gw_?Bl7+G#dCsIseDDLw0# z2%C$ld9R^F`@#zPuMyp84LfL~8?Et5aY0pG!@hvvPO-Ivg13um@A@6$<}!;2HvC5P z?)?X3pgQP6#9{3)6fh9%xwQ)874?3?pO6!$dW*sypiBG>S#Y`_GpIf~t=@-JKlBeocG`{~6q#4(VYVhcKJeej zMJ^+5k4}gbNBCa^cG>|SwD|(qru=F6)MGBn@3q>6@VRZC+%AR4xh!gFQQs)=+roMRrM`&USLDAcvXP4f#&N>; z&MAY23E#UA+Ub5xv(;&+6PfoAC21ef>3$7Ukp}UD1Xb(K-}?lw%FdtDUihRSmc739 z1RU)3Ib9H&9Fha4=xDy9rgeHhsv{%7QOc*@M!*jspwkZS744(;=_R72dBNJ+if>Acb-BX#H5 zOxN0r{7s>XZR%QJ7~Sa1O>jMxD4t zDKgZF_t}V@gR~790zW<_z>NwW>#E197a*|Hj^AMRMMau`+{qnguxlS;o~H1tiSgo%X=pU|WVM&Y?m1V9j5kL9c7=B5q3m`odyyA5oagwXUN>`_291lT?SKs5Phn`|J}!NpG30Vp=MLpLZjzuQLY zI}glrKwWb*U8Ftuh(t@q;W}Ldu8vFLo-CMgB%gqFkG%9aIn!Qhd?L2+Ref2}%#(=sAlr!iIW17{-P!95IdOv6VzT&A(q&q2zA4|+sdJR4b5 z$J6tW^x(aS5=T%p3cG-CKZF^-5UFoq>qSB4)Qczs^#X?E#ZdIEI9w`J8|`r4n%R9;P>1DEG6c%V*`OOMmGEXaBRnS%)FqMCSx3z7 zF4jOtR(oT6hu@gII!-dc^9W!&MIDAp-nsNv{Ba)d(LwCzH`h|)1$Lx^=OT~$d) zyzJW4L%;nArJH^*uA%OzJ;GN^PNSShM6?!!|PA{|UO#M%z5gMw@1c*zitbG-^uO~UoI zHm+AsPrqDg_r~VaD{~_HbX=4Ann>T)e{Hr>?zGyJf=%guYa!V|JB?3Pv+cDrBdiHx z-OLDU7P0{n9@OrRLu?0N35y#<%8!$(}z;LsdlO*H;l11d_!5k`$wd$4bym0ZuNJj}Ib;fHoAVuJI zn2wY=gE5Xl4BIA)qtwb#Y#}2YhX}SAoGSt)3{*56^N2@g5=#imhy2j&Q*w$vg>;|sF`aK zDW&$Q&qpx~+?wkVBjpeD7w!HzlzO?!}P|Ag;ko_wJ2HKp8 z17$Q5X8rHRNI=`JnhTBy#ZsE_FAVjw4UJCpTOwDOg760|-6&BY2 z5XZJGa>1!^+ASp(hGCXO-;_ona{6PYzYNk(BQAQ2u|bbQU^|vWoHUB>ROIk4Zpn&> zV4DNGD5O*AjuqSCc{oF?f)Htx(P`Dgg&osh9qHTV*e*>_QVuY{nh20aMqSFRP>Iqi zF~nL3k*W=H?g9o_8v$$sfs>Ht7u&@JQQl_8SQjzUC|V9oXZjl;{WN;$i%a*VaFxpt z8zDrRCX81r;j2$fe-osiMhzk}3i#N~5W{xR%2@(}f#A}kXdu3eDogV++d(T=lt$o# z#Q!Ir7sE2zSp%og}*rp!C^N(3^K{u+wSHlOuwNC$G;bYGI& zZ8We+a z8%K7V!fm9*cj~n%o7UF_aSlHLCGYj@C}#U9fdB?(TVzg-QlcPo>C!S|JdM(|t)83! zy8ZCJKhu9UOZs%466+}d3xCtisX12FX$k$MW&qj?My ze+h{vXC18OWu%^*^=>b`N6)Okk|}Y`9$(9n_;_@2f;oQ!iQC3K|3-P>Q6Bv-xv3Xu z*p%FqZQQe7MpuaaPK?2dd$NstR(j}`n9V;3%HWo4YZ5zkY3{^y|Ae!K1Vo$RQ4JG) z6^X8I89nBAifxJp2m`3D6H)AssZs2Io5XzFb&zesAK8 ziAA<$S4gl}E*FSl?-n54B_}T|vQE+=-&m_0PP-W3CnkVRpta$Rzo8;AIZik9C}nJ5 zJHJ_r3~?)pXOs*PM;s%Gp~9@-E}^(qvb%-&wjx+kF-(lK8IV32DmP;Xfdqz%Y3T+= zB8Xx>7)La#ORBZzsp zo0Zv3WJo;3LrK5r1+&qD$R93^#oW-3B4~D+Z0KU$Gfy-S=st*sX>pS(v0EK&w5s6{ z%fj40S3raI4njao;Fh?B1lX?kRUdXJB4Xswpoq}p4@Z>r-pt(7k3=X8XdkpemLC2w z#KH@I17lfw_OS?-UQ^JckIw@IdU6R-FoDdVf;08tkz9ZbJ-3QL7#lTki%dPXjz~CF zi;#wk(Pq~8DKu-@_*`Yyf{AR^xSpR(Gy(TW1o=;`Mip>=2S2m|@yCG%&n1QpSzPc!u@8GZw^lf-X$WFxPQBX;Dg7 zatiY*6sBuBzHpqJb!VJ zq{xd?u7ue*nf5HCjr$g^w0jGqxE7|qSBBJ;s2QfdFH*KC+sYS7Se>8Xp(Oi@xI=Ld~@ih&i8I_?(6nit!xaD*ep zx;E;UkvPWNxeSQBh3xk_{qO*eT}CY<+TFr%t5sJ`rh&BMR+WZ6;PLIH zGxSABuQvCGd1O+OMsZ`>`2o^X(fv}dA04MNU>5-~G|NHvUJEH_5@lAE(vCC6IAX-@ zJ4_uf1FBFvZ5j<{{X0uYiiE*9$ zVr)ffBy(T56p;p;@A&eHZf~%(CXj9tuR#e5DW71WI#MVOcgb@oy1oK2@O0RhcBM09 z)knYA8X*8NPo@+b3dB_ik*FCV#F)4dtv2IY#7Hu7mn)SvjTxFAu1DenE{0jZ`U>JE zL00b!Nqi6y7G7Ew`sF)MTVk5{U+uFdlqBX^u8xGSAh3DfhGM~hg~?5)42z#TOf1K3 z>)EWb+^6^A={ky7dx|{DG;i`&-?FG`cVau@w)JdaBlHeV%$(!yj8V+4=pIB#GCue( zQ$_=XBCz`qB$2?p=Px4=brgL7Q4%#pyhCT51$-kTkPZa_m#f`*Vnb)FJhHtauZMB~ zsdZanwnFZW4s)(S4;CKv5eA~M-V5;GKO)4nHA(zl-!ch$LkYuC_=l2TnpCR!ibEc5E?{^J* zM9&~nlHMI5k!jOxQ*|M~L=e0YIC-ClK+I0}*9enHB_jpeDV1`av#q{>#FO+lb8=}$ z_#Gl7ncnETb$<|K_32IA8Ix^bjdnYN<-8R8!Y%j{wjhZDgeNN0T2X)+6Mq$n54fQv zER5Zp*dC8Ag)#Nlk$RHJS-n+M-Spp(ZW5(7is5ZxX7?XRHi>&9vf)%o?Xv$yfF!D< zpbW!GOl?J^B!ID^U2&OjWeMmjYc4$Ps z5Z9LV5G~1;S*IdD(ZZJXex#hFkI0Gu>8JpEjln)?Ol69RA)$Y)J zO9RTLh>~RI*v|$)0Q1x>(#?^6lAccVjT_%HkbDyFD3P}1@7yl4~B++yPqLTkGl25X~g~#t75rp+=ND_BpSXX`2L_3k$ zjJ3k_0_=$PL~$hX4qc)f&i(LcZXZNRvSjO0GWtTRLrJQl8G9^e;0Gb~ zB(r3X`gpYny9|dSKqAYh%WZ{W-WOFo#NkLj$!sQYp!ConY#twp5J|RRD4Q6>PkjtY zC*ht+TXyu0%^U*u^NvS|B;8GFg=sghgeXY{V?r_S<&7ZyB!)`#X(7=m((`_bp;nQ6 zlA%l@FS?pK4Ac=Lp(27N6x5r@>|I-kl2A~>lEmvuil913KFKZ;393o+BJ!!QYuiVJ zBtse@bc*W0vj8b432UKTgAH(`Cn4=bTzANcmK2GfijTq)e60#*Ja~ZWp)t) zC2>RyL>sAvVcI9GL@%$gi}(a$ByNmYl3Uk-pG2S}lXq^6w+f`AQ9bbBQwWk+Vz#B` zrx7E`+F5Fd$a7qvtd%8w3;G&_8gN2cUf3))=w6vg^`8;c^%cW_^QE!v`8m0Qm>Mgd z>c-Tp`>BKqK7>O37NkC)hvlSs20!&Vq>L%Ww9_5&&YN+7{5(royYss7WO49x<*=>J zNWN&I6L+JFzOx7Z@3dy8KAX0W>jn0jy&t5#nq7FmTil#5;7`A}4H4?@Lli@P>T#LRj7EDG9v zh!!_xaYa+kUs!?V=1apP)LVW5pi3#(Q zGTg%m7wg0vt#G6tr5eVm*-$ zR)caZk9ML<_^hy>AXeN3NLLw}p4?`;FXV<3W-DQw-yu#Gqlm~$scPvD2$aPr!a%5|KOtJ& zKJ{eX$~4-)iV$&omyxK5ag~-~^8JYNftZbma_)^bWE_x!{fI6|>s(B5Gsi{bHi?Bh z62l#eQ!W)L%vz1f;6|R0sBx(f+*=r-_QFKujJOC9jKIb}wKR#P{IvkE;;09zM8?9DB)Hfqk+-APJ0ntH_$V6eV z*;^4Z8}CPu_AYumqQ>RN9H^nT-uVT@%*NwVOGWT6cG9~LF*9}c&5&P4$hhnx?t-Nd zUb+T?bB%iuFm6dSIUo%rQhq3Q=wCyObR$&LACW|43d1mNY<{b`r<D`p_+q{=Y!z7+z*1@u(vl?Da7Q3CYP439XP%<${# z>xXeXN+dK}+|xq*|KLT$xQ_2cA5D{+@onQPiE(>>j%dMl#BjLSVZ86+(}{88!hm3< z=mdz-9!0dcoyNh@!qi9%_d|rsP?F{FN;rf42*EOxWH-7t&uBkJvO|T6~e_mn=n`>7_PEwEKqh9rH#Kq&?95U`DCE{ zv|P9=$Ey4-;vSPZZoM+nD|E-IBP#aq5j$?ppRCPMNIbXqkBB)p^Y(T`f;K~g|BT?- zTh;=t#eYH2>|8^s5(P!DeE*7Q*|~ImxcWPSW!SV<^n?pH?O%u%x05oMxt1%V+jOEN zCJgu=1dIzj8W6BLPKkXKAM`)O%g(J=PUuI^8guiOJey|uYS?FXrc&vI+4>l4nOwmZ zgqctnY&itWP>>7Sjja{Et(YeqE$cOhvI@e*Z4eJ;mJCOiTERG1N7U?k-zet@4X-k= z64yk)BQhH)e82+sinS0nZc}y@s$7TpZdvYW37G(&gzAYx`H&Q_S8 znZ>y!f@Rke=)ttDw^BOZHhIITqtf;Wm!Yw=M%6{zPKXwF)HRqNBU#dWixq9y-5DXX zn_d&7$T<%Sw_T?Kv>C;1v!U*epc(c=zopu+zXxJwFI|1{vNwWeH|kTCylNwQca|l) zU#@^O`09WMB4BpoJ?GME*TWpG+{8ojL~K?@>Bd@=a)}WSL&WTS0rd^TxN!tRW+&Em zt6POe9*v0Eja2O@8xc!%E`nv(FK8XQ4XsC&v8sT8*?F8!rBtPNjie_%xRJw%nVs2C znl?(mL>ZElW>yd~yBR>I)z^0Y#t<&MA(@^dRJU#CAzF48s&9Zd5iHB5Y5U(Nw7a9IR(Ki0WFRr^$n$ap$)GLG(I~qXyQeD=CIiLj1IpEil0jqOB=tIk z$)GX1%ew(lGH48(oZg%ljB3ocB247U3F#LQFa69nz_Xl;-i4TP z@p*1eD8SU#^#} zzlA7qadB?uXFB2h4g$qp)pG>G!=vvZPI`BXXE#4UnDi!~pJYCs3y8Lr`Xqv+w=>$W zRriRWLX-^D0_USo=K+J~qR%2s`elsuJoGt4ORu4kh8D*5Jfftx=+TlI`}87$q<1%_ zBi)w}DE-pUew6z%!lhSHwNX@e=3YURxcGWEA8I@(ehrb*cUL?hej^_k{b2Y_gh@a4 z7!HL0i8$%IkbV&S7J{TVH8=o%8&T3vODzY#OJMen48*1#_%4kg=`9)$df$;3jC#Pk z0>Wfq1p2}5%7~Ia*xr1gyBb1eU~j?Mu{sx71F_PtNNk73@6HoUKP-MPf@LB_J`UFw zlj|T>c2d;Wb?YNo`gw!tP!fDDJh8zWHqvD|nFJROnJ8wCxq1-e8;534B~w_6}q z`c@eanuic6y>BufFmH`e=^JG{Sl$ki(vO7tf%1+BlD;pQ4w7dgQ2Id%qVRS>l=S9p zIi}tXvCKV|UIV8`j09Km4o3b+e#L7&Hu;oxj zu=IgBe#63*fI2-N%@NWvZK)w-W+H_FtASwYrxV7|jy58tcf0!eW*0%yyIlz77)O-! z!y$%nEX)T+58XH!VbZ%@YskiFh_-3m^_B(g3cVmjH~XXe4v*eS_xk@%4<$(HCAM{> zF+>qZ)p35@AdK>0djC@C#pP)u?;i3b)6>eWRDOCtoC=B`^@!Eru&|)}2JDhMa zuK;uKKfwW{yr|^Ih3{@lm3o*xlNnj^e7KcY&YcULiDi(9dATz&R_v6!WAtoq_$~ko zWI5!eIyJmhHPx)RxHyp=FUw>V1s(W7WWe+mP;1 zH$w1IZcVp1(oK+uV!k}+eRQ*_<^X)v2a$ug)TyavI78y}Aq?y09+J9la-PKb7zTeFtTxxf8r6kYcLyCZsj zUBEIv?}0qzH)DzRRWxU?H*%5R$Q*HD@(KGPE4d2yFou0%HG=g5Y$@3exfxj) z%~3Jp0YCkrKpyaKMLu#F?R-(tt4!XTP~FO?IEXGZDp9UKX6SZgsFkB&kfG@I6!Y_i z#mrAP3dCi8?m~X@?9t<`&M-aJVd&9cMn>YE@Jc*SvzqR`$iUHgSc+gkT_$`Dk#iaT z&^Yzp@*r}Oi!~r8S~vOT;$lSaAKyYoa+xjLJH~gAgRNcdGJIr4nfZQ?C`x-OvB_ZM zS#L;9+X>hscwp4J74QSm24zFVc?~uYsAV(YaRCpzDMQXuRGzzGxA~+h!q{vRiU{rR z#aM;+6bR4RFU7nXBg0w5_OwxK&RcrYwNl0Wo>gV%+!%?TW`KKoZ@?T$D`2@<3hHwp zMdxMCz`z!HK5vw#^HgzgHj4FnsosiS-C@&xQE;JdN;x04CSZXsPbqqMX^P>sf#qd{ z&(RKstIcAkO3yeeB6tOP$Wa5dw^dW%UqkpDZLrj8FO=_junoR}EI2P$2DiZyC0Xnh znysdIPg@bio5)9wnkZLC!o24!hJPZw^W* zZ;TA&I4Nva7W9fEJzQ1Y$-;3HcN^umy6EqY=`rTy-umgz(P0V1qm2ZoAm& zR!0^VdKIyUtO#Q3spZ6rw=%BPwnI*GoFMp{>P3Bo-f{78p{?9zA{WkQrU~rB(~5Zk zw+ph8zgl1&w;OViXNU0wVqDJ6LQa~ln`?xsn@^_}Dm0}GU$zLA0U~C{8`S)2^ zH?|iC7qEQnA{Y6OEQVF&IP#JI1l7ElT!^gX-(5^=%9D|i{OuH$mZu>X&QVE;y?WdV z^GswYe=o9tZeNDazVW`#Imkx-+Bvb(Q_mpILoRaMd_yT*i1<0~dqDFqM))mV7f+)V zidolUi!UX5Qglb`t59-if=^33THo74upX;V2=0~04(A|hXF$tw`V|5iqB@*+4hMku zR}-B|xnBw&O6DGP6)Mm9ijq462Hnn{ zNwh(+9p`>O5U9m|J}cnCerCA#J&^)UHHO<%3C3n>l6xLg(xkVqpl+4i9U!?Q2V#3N zFpI?QG)l}lj;dZ zsgV(NU;hCCuLk@$Pc{a{?$)bi%SEhjAREqyEUs)6%f+^Mg|$!|A1$<7t@_sLVednW zgNJQY9v+@b9%w6{<)HEK$l~B(TU8FcpJw!E6SPO(C=<`6s3jS`+wB5Zd_; zu&cn!(W9X}Kl<5JU~2yE8N|%o(N`M7m9p@3%E93;5jk@S>)!p>h#C7_Jw)oN8& z>kCr>s<-ra2S_9F0OKp znTk%k5N5>AJGIX6eptsOGt#9NBP&|JTXr$95_lhtmE{*BE1FAK30ZND%No>H%(K;1 zr=9~%9q*ia4m2&i3pvPqB=nch`dsHdQwXiiWZ#F-&fA*<+ManryB;!-`Q*nJJIpcP zKZV%(sQ3ZI&U_vav>OJ;O%dEVB78ut+a{iyBMW&sysiD8qD9KlmUH|? zJrTO)=;0v22b^)aZ~rIbrC6@DXlPOP#tuatJBK_b6v=S0R~n-vXsy0}+2U|y#@(|f zlL>`ytNY(aA`i}CO9=&1t`293zQa4k;3uFf^(jr zgxV09=?at$Mrftg)S@^_$WPwAmiVDOb?W)-2(m$m1>LeICKSsUiG>mwwmOuqUaFjqpB=vmfYwOFT%{Doe>G*7#^RY!*Mb|&*WEp^J!LLTTGG*>+}it{Rk z?s!>TtS{(KukzM;2bpq?VosBPV(LS_)IG6m&i-W>FU)E6!KX68adQ72{;;B4j6Tmlv?3&8a@I*f`OrR-Z&p#;3-DV`o^OLbmdD zfxfCt6Rl4pHw&jmNR!RCu0hV6bJ3>jVe!+h&mdn@zfHrf{aRSRpDreI0q4qJgeQ z>7n@m%J6E+VSP@ zn6|_;@xR)gmn}VQdX0BEeu!M<-R~!}mql?LKP7U~ zX^#6<5hkUd;_yf7@y*W#>&o$sdjzo?oaMac7Xld0Yuv5e72J0`V-&$$DTJ{f1xgmH z3jJ58L-)ghL7C|f(~d8&@Ec^o{UmQd7Ut2*IaM`7m=!!PbY!(R zb^w2rO>d~+tE0X(HvjjC@4jU?D1J-anyGfXw4)1p_~R5Z5-`!M*O8GwBO~rdBLhmL z+i10VV+E69{(@}erWo;PC{12Eqg8`q{)&t^XS8v(&`BM|-;oLTa0y4HjF}z8zYzKe z=he3(w81g_2VtErVY-UlWOx5VT=$?r$L3O|0J|etauJPD>V3k@8HjZN%OC@pj|edx ze>sHDy#28qenn(pJ6D6JR|2c;KE(jg%Z3?@>5ai=I;~ zE~u*0!L^Yk=P@r0OFcSkR;*@SWW;&zClw=|YNH_1$g6VM0NHUqOGv{`zbV3bXu+%q zXCvgs`M@O|H`NpRl>(j7bt|Pl?OLij+XUHip0_1otJtM^HHFty)D5W3kPYYcRWdfZ ztx}a7E?rCSmbB-|K8VcZE0bQmQtb8$TD0|+i-`>_KL*;I}uBFW0eacw?wd^s)EKq1wQHx~V8(DA;dPt%O`;=)vswFW8e9Lv<@f3Bw4Vt10j)V~L`L6)q~sh4VID5+O8N;}uxI zjUf}xyV*&YXcyI9IS=u3oy`Q{10%Y7Xd)xIF82dQg2T;LVZ5Tge{lkG$ti{BQd0l<(;^jtLUZ1~sxzSeHi;x@V;G`t|$lu+JU2I>1 zJUIsgrr^oC=DrO1agM!B#m^*5@5_;|TvvR)?hGsND;F0hFv-1o@o-{Tk6(wJ4YR!4k&j%rIejxRFOo zEiO*LqkI`T$#vc8D@a>C--}#Kg_)Qa(O*MmoWoI5^c~|``a$F+*Rva6J^GURo5;pg z%vpj3Ex46$AwLW9JV+14;$P_G_Z-DCQeR+y2N}zCRjV;(SZ99^IhsmQ*_YctK*n<2 zrtw9EOWntj5$D@5Df)Z-iuXxmD%ZdaUpgWP!WNkE6tXlG3hTAn1@)BhX=G$7#&JXE zdUo+}GLAd&&n+%aU`Fvga+2$*48-lchz#U9e#iBhmynlSH}bHvyo?;=I)k8S7*q7p zE67H!^GtKp(rd^?u194Cm+=O&kZV*~zZn}a^(L~Dt3(X0>z`B30{E=AkcE8{%_k=f zD0y2TEjQ9{mN+{0{NBVF6N_fJVl`Wxh8h*P#6?O-?STVP(&9)D64b3hv`Z6`8bs?H ziq33L24)GHeTRUBuvzB^u-u?I4GAR~>NJ$&)D;A_8ik%Q@Mx#iZzJ%^2<#jz?bhOI zlV*Gr?S$B?A-3}^3pZ@KaUlMXlU*tDUL$|#Z7k65&L7&-Gq(D@25-8ON)%m^feNb%e7FkJ|}g7#=eRr(3hlR=-}aD*k#$ zRM_FJ6A;&C59?34&P346n_I4Ss->}dMa>Gi3nDweW8&J}(PE>aW*FWLQJp7VuBiT1 zI7PX$5Z8Gf?}{4?Oh)V43mI^p1P#o9_FnM5h@DsC&9-&`GT@w-e89$|$sLT~&aspO zf}1RFHo|Z1>Q=gxsJkR?5-YYmhbT%zfpf17scECZVF8MDKsZXYK^YL7=X3*sT84#V z1Uw82&L{MPvEcXOezQ{?uha|GX1TIJ5&vB#{tvg;aU=Nx|R4qt7KS312yyV7a&MVz8`$$DJyp>A3@&yU=hs8<$53Y#UzZ=kb!NTZC|Lh+pCtegzaY%P08=Lt2Lshn|D-V z?NjH7mMDJ6-FZjk-GD89>pZ~%_$BAlM>ZKxo~~^8R#xiMbX*txl)Zs*EV!?+Rq$*aRKk(LhTrHHFkw zi0d3%tQ_4W2 zLRn4J#1wZR1I}BygF7SP4J#T4cOnNl8X|K5Qn(v=$k7lDW5PYiK)z~dcUtN-!26Jc z97m-S`o(6iT34@QK7cGZ2PzG2i~f|wI6i)3ad2WBCLcmh+}B704^+NP^wIKRWWs%K zBq$Eb#W_+xv5go;j_)rHJ`4lMV~c|i!#MH;@{!{--?vlKaPkvmB!62qk19Vy zR;ENI;M<=;M)G&8Mi>7}$TZx zHyg$*BS$OEN+;STdTM1dpTAzB*w9XsSJ%vDZv)Z46H(PvKAMy+S_HHGFM$9Sv0ri& zU*ttfen`2UG$H**psCxW2c(DUbczcNVE;p~xIi*rsb;N&Ssja%_?h;ByZv^Xc4E79 z?$WLoqx@AY(Vf#8q;IYgeMjTDf(rBi!EUTSsX=dtvA*wmH)3cdC@)oie%6D}ah+u7!B%+cjG3(MzHV&f18R-idiQg(xc;i*Q|pii-et z6QLLFtt`$Oa5(+aTH@>8(YW zB_~wH=53FF>6=G+TPe$KhaP>>{P9kRwtwp81!$T>*%`6+Ophg{DP!~46;aZUpETPW zuG4e4)p0379>eX9a2W{DgKM|uD}8Ja#ELtnb@P$>6tCcQZq;Y*jmZ0?Rvle&uG7G+ zG;u!!O7BJph{l|@>P8Mkr1T>xA(8Rdi|U|#2tuXr()83h<*FvXMFX57!ov_P`D)6% zzBvLR_DF0F>;etznxhdUx#x9R&&)-@Pjwxi0WLv)sXNeT9B24R+3L@>5*d{_G zSg(xb0t4%mc?k27(2131;Hv^~ULWK$+JWXCYK_Lk?PHSYMorILY;6Tvwcr2+8ftx}I2s zD9LA1Jo;PK5tks)E{P4A5<{z#jLVRE3U%}0^EfF$@lr4mYZKj#N;$faLDWxV-!tA|#&}nU|Fh zB1CczXd9fO^9yL$ zXyfT2vwxpJfz!j-UE|4-!Y)lYs3_Qzr4}sY8TA2ys-7aIYh1Bhq^D?lmGIqnhWQ4< z#5%-DTgEWz6pn!&LZG-Cy@5>h_hOMS*S5~BzkXwdYlV?uij(PCFElcG^*v&G(@K&TC397VNJjE+tp z_!N1Wr-*tGqu3p4byxqf1e9 z_o35&sm(h~T3c)M0Z4Lx5m2DCI&SdwcrsGOb~DQd3Hs3PxS=Z+!}p_<9cf&86;8hU-I|Fk^DfH;vzT0kf!!s~$*x`tmMXRJN_@Y%uB1#sm+NNx2)yEJoi&jb5^hK+V zMU*UBwXLmH$7hdMuC#k&^Q&EcL2_KvS_$#u26Go%EO%P%RzEyHVG|rdn7H9?02r-r zRdWN<1Xs@uNVC8e0;RR{dbLS0KEZs171TkLxbf6QLG^C0p$**()kmnfOWrO}jefmX zEl>vZa)F<1RW1mNZoB|7<09W&Fgq1-2vC?$SO25)P;TH!2o@J&>H;QC?<(a&xkY!N z>C#8PL{ABe_i3S_ry_RTrcNBTVdOdksmJXdOitb6+s{UvG_BCO?#GdOnpRjxs0$D$ zO)E6Na1l~Z(+cZ|^oi_nVn?D+B2L__HqN$8BhaUieA4NoPhJ~&KAky$X13R44xm}o zXAmH%y&6WC8gju|1ypIOmr)i5$S_8(;S`;e!s*MYGHy}JKHUX6-VeI7G83b2| z+@R+K9IOzJaF$M7yTTCn5COwIf*ARE-0h4tgaKL_tW!I!Zn%VJ%oh?;VHaZ4-J(J=+` zHH6H#r36Xa^<5SA4TR0ua;r_c4x}{oO~lODaw!v!g7{BFjN3y_V7c^e4~n1!Hr%Tk>fH1CT}$C z;xYU?5I*CMM4L96uvb9LjNMdQ?@22oWL$V<0x6%MI*Zj1FfLbO0>Ey)HL4GFYanXI z+U&OKBe5m&KT)_{DV)H70*!jFP1A0Sg1bKA zX6%|gT-5A_h@7!Ckxz|eGxmOUV!VS0}v~tUZBtN4o0Nd^B8xD8rDg(5iFy54?m`ASRc(n z#Ej<6J|eD*jzY+68wu;7V-PW;4F$iE=5^3<2%Axd!1YfNu`+ULu6M#GY79MLk` zX*VyW79w6o-psayIvEi&GE`hTorYK$jedqD)0z2!;Zo@w1j|Towk6Veh*-&{(+{#V zx)8aD4Va{}mP)v3ao80Ub@?kbNOXs|HgIkIgat|d2Es&RPrU6^@i>fG{;e@kG(YNve_U{}a(EpV zsvy(QdgXz|X0_d?>?YES6-@plBCnoY$JwwW0`^nJI#po7v31<|?Ti;39#eKSMS5ol zNVSi~jROPYwVISUMnOCq5#u&}6ChGs=`KgR7;bU1a6gW?ajT#~aVrbjv~QoJgi^BM%qQl{M#`jyIws!TtFkeRkoeovc) zdLshH%@hU}>ilB6xFDJ|GUhFanWf>#$=w<6bBLFv9{b{f=2Cd-&XAu+$SlQ5*UMVq z)4zzAaiO)Ysua0*ly31Q#EIK2aK^#W@hgawg`rT0xOr6kD&oa$(7U$GHX7cKa9Jn} zM!~NmP8MRcj(-1#cv%>TVbuFJBE{`=x+=^x+I<(HvQQR`a*rZT+>WYilW=tVAp&I~ zJJYE4BZSJNP2hHaj6iWqHfQ0PMzNnFRu%>Uqu0+7Cks89My+2UR2Jehj#j@ythoEh z{C0aV4BhlTTI#k>QH;PHrW!qx$1uM{n7EA=SD03VjYezJ zuMsTnOlAPEezQ6vWu51yy?|(GCD`fX`>rt_NSd^a)WWBw*!*z42zvn>1kDlTS~yG zelR<%C_5fwEsI!j{%N3g&8H^;!W|e!TOQHkT(3J?v(*$6A;mUULa?}z%N-2cwJJiz zrJS1_%3u}m%mYKShIb)GoX2u%2TJQbh!W>~Cr2@9|9uD&H%3hkg6&ujA=ZmISEASG z1N(g7ZE}il&?H@Qid)531$U?tdsEE#6-PL8PWq;FmVe@(%Ixq;WyZ$1Urng1YVg<-5gGQr#5G4 zgxPsuy<0T$4x}A7u`r9ur)|*03P?U~!4^y2q=A)@eq#0wl3xwUZx|ZfJU&9zvA3ReQYfOhS7Y0b(sbwiyl3 z$sf88ZbE_>H&|SnjV~l5Mdbhvs+d5w@~U4eAz&CUad9y-x+<{(b&Le8l@(ryTA=O_e; zb=7VlmFOuVMmYviGH8m{VUI(Q^i6?|T11reP3iW+sS?YpoC}ENO-J(p(R+UlLEEeLQY@aU>U_g$ul}S+iaY|a+ zGtMG`qwZ&B0MZOYz!~Hc1c}>bj&F(Hg3B@`u5o@j65l9hmN>stY|~Y-a4ET@2u*I1 z5ld6VZ5-+k6$GWiNWWQ38GId7Z#o0n>b@)QQZDTz|>H&TrLoJfx>`#MY@pI zp?j=k7EMZvNw>(yTIF#6f`NJlpnmP9%a)#Y%Ea{ATc4y>eS!Y5XvG65!)3j)C&m6R zocJUa?fvkyX|-P-xAe5J`^WBQ{%Y$_&|ly9_|ns+*Ls&y>GQ|PrKd)vA9{#NKd01v zC@Nk0PAa|RSh?;$qtZ{@O{L#aN_V_G#C`o5fm`Z+@84gF^Y1sPvDoQ|afFx<8Cce>-!DX|+`w4V6Ax zmP^lyO8;~qmA+#{F1;Ws{pCtjdaojlKS!m#4^Zh0h4NRf4RNpCo=X3sl>R6x{q~Yn zI#;2*&2?ejyZ=q?-ApOnGb+7m4XXQrlFakx4QtB@InGkon zkmT};B$tm$UtEhyYf9biqS94AN~NbNbx(>)Pu-77|E!c=6_u{JHuODbGF9hL64Czal#)O|ZD{omSDdWBNAa(yU`H{VO8i8>-EoK{=5E0;bKmG1v< zs=IDWF8xbX`okTl?h_rk^siBA>-SXm<%V4P->CG;4XEze33BOjGVdq7lreuYYpRZ0(z zO80G1>2H+M*-`0j7g6cNe3|kQQR$l3P-%C8TzYg=dh``kI;51&jY=Q<5|w^ypRVjTnD&0zyUaOS89+hr- zC6(^1lrH(D&~kS9B$d9VaJ5WSy2trcI!7se;wxd@S68K(|Lv#BI+}J*So-oIR664< zxpa%D^nq#ghihIUmo}r)>-VF&-#Sw+y)7!;wNIs=K1VKnFe?4W#zgs&OXbo(-5YYX z*M?O0H>b&^uWF^gRZ2hfRkiNAr^|Ks&`LK^N?Tg#-b(3-TInH5={Z{I(MsuZ_o-Yx zsFbdym3~ht-B2riQYoFGl|HMKUZa%`ogqtOsjsPAovf4&X{FaHrB7<5?@_e>H?4GA zrF4z^RowlR(harJBbCw_TIumh>4&w_x>9GQLx^kAhAuKr+%d&tdH`hddK z^r-ak1F7^cN{i-4rI#K>rFSWm&y7kq-Iq#lQ|jIlm7f0^mA-b7+@go0(j{M~(&cDf z9?9z0QR&h*QRyuT&;O1}Tenc@<4Wm_uZQh@^uJX4fsPsA^=f_kzN2R}6i|THr zc!uku((zNMbmMbnp1<(T5cj?tsPqzrtM5gnTa8ocZHhOW_kUsCv302Q6b1LysPv#W zsB}H0Maw@F);;2AD*d{mqw=@I(noKl(!VQQjcTR;QcB;@N{7#v+xuUwbe>YW;9(W_ zdrIk9TIrKY>BU;l+vBG(y~&zmsZ+PN{d?QnM&y| zwbEZJrLRS$PpwQ0{#EgHOa36_nIAtCFJMM}e}+^Vyj&NR?i7{sJ2&Eux2W{nQ7PxH z6xsiy(tCdx;)dx?qS9xgQoi&lk}pK1<;TLh;eC~;v>TOjyt=q~5tV*6D&?S55u6;A zJ`4{Nkcxn)pULKW(JGx;OuPe|V{m%d*p zeP1Mfzh3%&gY^Ac>HBrk_j9E0=StttlfIuXeP1AbUnqUQTl)TG>HEpj_fw?rpOwDf zDt*64`hKtU{SN8-7o_i}N#9SGzTYN&zg_x%vGn~C>HB@s_pkAP_ZKZ&FAi5IQL-?b z|yNwMJspPW7Xz@p?XU^G&Qkk^}^wFL!s*>E;*#rS|B#!H#=jZ zcFT&>rY(Ahp9pPY(K7oonU7Ble|%!ma*Y<32t#}yU4A|fh@y4cyszB8a_u8|@Aq(mJp}BzuvS{xu%dJv( z%iyr1Sl^P)FSaaoDx9H3{9`C88xsEv%7$9aN_U7l3#72oBxz-A+2shNDqiKQ1&!1C#$9ia}wNp9CLGO-xs;)fs)Ol55>H#WJsvItAU@YpQ8uY{Ar`Y022x!$HM z6l{IH)(r1o6Se1#7uFYj5dZD}X-ex0=?F*;%Fu9!hO*8XWj1m2N_+ zGkdMMfk;?hwGQhh{DZWD>Qw8VTIfF}Y6l%FTrg!TuTS{@N6kp#f(0c{1%fiE;8afq zDO_+s(vyD3b!{CXc=40cSbdI}yw~Gd94wmJ`T|7!5J(CqrnDjI=MvC{0!aJ_`6uq; zg5XSv>M6o@JoOUY6eBm$><4DkpQt^4oNqRL&usd_D$|(_llLf-*<6%`*?1g_Aw#h5 z(XI^%L5m;aIE{}B1R}_XW)pyHEkMK%fuu8=s11tQ1VGyfAn_yQpT=zZ!fXPnivqJ@ zy&jo-kP|d1pru?b`4d0!VTS)^1r*juR^FCg!mz*_eiV= zrZ`ik`#B+bUoJw&DS79KAG>%4@z)D0iXOUx^u_;2I8EFqE7*yez#?6I#nVL!ufyy{ z?GZgQ`sCr%<_N8b9}?ZMS+zl$Ljd4W0#N)AU@=p`$PGxKmoGn!cEIR=EY{jF0$uzN z`oZapkOk{mVz7n~nyY-T>Y-qXID;9bS+ZEGhL0C9c>~dseS^Om%X0bbi zbUA}RP}iL+1`p+%_-9l{3?2t$$$*DRCi-p9M9p>+HekTk@kByqpIcaaj~L;_54Gk9 zljaiO%`A4wkB={;m4*Xp^>u#wjbQtVQozpvVgjAw{lAic~&} zF9o@>Q0KuZ)hW~SmMH?9H2S!w(Nf0rJ%^yRqb4wGXNw*weyCY<)9F=i6|2_!5Nen4 z9uwL%$<#dPIV)Jwt7l7h9Zu?8w%Fx=h5tdV+$)`M1E7hTKp>qx0P|N0J-7;xDV}V~@z>6P(Z{-3XnXrY0l>`go zhgdi^g)!^oXNDi<2G+xdR{OoM@W|SNLV`~<-3j3ey%tY*!Vfcgl&EL=(PFxze3Sl3 zby81vLfSq99wyoKKRmlmHQmvPvuVj6J+#^@!ZnE>5@)K>Sfyfk`~3A1emA3T)Wi9$=_hgy(o zgbwIxHW_^O;Z6~7;)mc;&AueCUWk^k` zDWsZJmBuQid4-XBtLU4b`1cI{_e5<4F(X)!|HS{~|I4c&?9hB9;o3+Q+yf+2e3xg6 z=`2L0?O9{=&BLlKDTY1qLrpR6?+xCPnJlllzKB?cwKav(JV8dHOXVR;^%gzc)GJVq zpent}5lrhh^1sjE@4?!zE)E*jFcpPgWkN!)=8Z5{X_%R#$rdp}`rW|OZ>pJ=O#nPn zAijrP+g#{d{7@6iDTWCH`b_`ZTu+qYx>2;bw!SccKm)q0Q^}!R87cPbJ-YhZXxA$X zBvbH9X80w6F?@G68N<8Gh2eLVoG=LU0gR(TSecxt33kXNw(v|M)$G@b!kyn(>fzU} z7hYTZP(#O3n1vBzrvH`PxTmAgG(_8Ln+wwj^b!1tzokU%q;i4*Kaqd%zXZncxsQ=C ztgL_(o+r1KwVL`zcVNBYHtfAiyxBekr^nNX-CSHp|%$~ z4a6FWF_p&;8p>m{p_}vfK(8wtB|LthSGg$s>J3B@bE!POg*h5!i4oHD?w+PI@pQTX zgvU4Fd)T#K39XAC(s~+?Z$OB2&n$)ATC};gn=pYu1G=nJt;qsTD7&=54CrfM1dq=l zBUs)4b2={$3c_!6*yxiG9zN9?#>f=SiHQYL{{f!*GqL}W=WsF(*dA`}TSE2XhZ=W$ z1|2>`jucOyLbZ#w*7g@_4`i;&H`R_-(8hkq1UElWuJ|0NeeVNE?e8>{gdYnL6`}aq zX_kCu#wKcl3)1|Np609BLnwY;Y7isW4ivfM9LT6LhXz8){YR`4@9p? zIn_!@8o<3>;v)_sB`@QRIl=!^Q};|I=U^2vQ4{1zd&8dgQXLpYth1wz*sqNU9f==e zJl*s%V4Q8jizD)fW6_XWRRD<}0!p>JsJ12A1dze%0!;i6*j{NYPc&+#Ot~nm%h!1( zA}b76d){dP!^{x>oTz=INT#)d^u_-N|F!TJ=2#-vrGRKw2<)MerJdkeT6*n-q&@!- zqIpQQ{lx-M{7^d%O{*Qo@>Dd}lMV~7))tELB*xchrwhnCIz0fn-`T2=QjAMZWfESOC+Fim7#1A#Pox;yp zab^Z3b0Ze~$%wC}+6BU3LS03F=BrxhBO58v!(*{#B$bDTw3pa8+QANg+3qQAvf7 zSur1%3$qF}XON#TtW?8YH5~5vzbLXw1UD_?{Ui8)0!cO8g&-bzQuPgI~nLg0VIA1D3!lefui9~2D?~*i5~(>Gu$!FnKI?;g_-#} zC*rC04#=J;CuFcx<*BXL@x=ET!BW|uYu_f;&uefMt;qkX5)#&)YVXX#+(b<@h4RK&%q9$NT)em^8PPHKp)O{sO4fpVBe;4W% zKP1&O8{!HgDVC8!jf$q#?iU&j#2Se)oi4kD;a02eQS-WUcZT>9=<=W=S(nO3VnVJa z3@V*2Woq8ULBNtOzng_Fb?Tlj<*zi~B)r;FLYLx)8kB0IQ4vo#JMl*u1Mt%VSo{!h zs$D)aur%rzz@HW1;)lSGN--r;uxC~&u3OkqXu>Sv?|3Gxa6z!CA~OjW&uyz+{mAwp zapQM2_%1%F^@Ta7ipMTg8x`LvzCanQS-k;lV&;pMwqn0j#8b3k{yi| zyJN-Sx_mW;tT*@?nDqtX_T%bUAiilNgmI@j2?dIteG3-IzF+t3JFTe&4U{K8o{6g^ z6E%TL@fM_O@k5PEa}o+|V|53Rp~e~WFGAyH`KDWy((SI`*xKu6bfGOe{k%b(UaUl_ zj=qV1Mse11hn`e=rmXOWc9K65>RNlEZet)<$}$mTa>A{*8;os zu9yX0YPz_Kxhk2i@>zVz_6nay&$D3xPBy&ak25hT`7&LoUJaKn4G?B+HKAAWLwZef zg-@f-s@1OWG2RN)LZeL6E=Hpefk3_DOQ77(9ZJfj#pev^BQHjyYQi(6U5rN5Jhci~ zQtP`twWhUUm3pukjlNQ3AK}$56T^-8p$4U0EkwjaI|}DiQJD{Xxd0YF1e|s;8W9hH z75@~K``}j!aPdRnDHo#=Z8l@^&(KA&gx@8MSZrlPe<`ddl?hV{$40AH;XCEtIiUY# zhB!p0L#4WiCtF$l82;OjMfOvltdZDONwg(YuSp!5|8FJcV7Z0*;UpHFWan{ zC6i?m5()-Fg7m}$B2cW8NhTSXnT#`&1R=awJgt!3nZl zAx;%n(3Wx2e);iF8pG^o+|XI>zQIxMiTb=DXFnN?vuX6$so=k?A!@b_UXXLCaC$Qg zHqp3IR4A-XfC$KhcWHD?)aQ;O3`9ksx_LIEfdtA;GHx`0oQr}G^BA2^n-AJ|q9#$u zF&MBMNE~v_rH%WJvq^+U)5r)f%av5jfa%0dq9MZe4TVBT+^-?AZ22^hKdnRxi3(71K_c>{-5?sl)EFytPmvQQ8dnebrlU~<@e=g$XXMpNJeEd_znEMa zWyeUFXf;rjD~0SEii0?LK;vZD3QyJ)TnrhNLGjI7*wi3_qRnNhP*MqU5rXq+d{B8~ z7$3!kpPytBD^%L|!Uw{Gms~daTJ9Tu86HgIBe*IT(m3`U86kJCjG%o(i4Y>EG(;X; z8JK}8CQwc!Fdt)(kU-Z5mMKU)NG?ivAq^86z$`LM=$8WXPgLv58wjq`Cp`fjT;cgC zdp_NR=?Prde@X0;o~>mWF*YVzdsZM^-%t<)#*A&}4k0C(<6(?DH z7D1@;+`Z0}eqSQ$Y+lY-5D&N;f~|=rYMf(5Z4hCDy%)KjW`=zKg)PymhTUSXrXidG zV4zIYiyk37dJo!8O*CM>agt0j0!spC$UQ2Hc?KINBv5^Ef}Ao0sVdio^=4oc^IArf zx~|wcH{Z}c)##jRHcsDgsy(;Z>NT)n6<pQ=550R=uf2d(OR10;O%%zt4xCT69&0aD z0k|XlK0L%@;VW!)iMhs-z;Duz{UfetY@Z?bd0~Xqp zv0AbzZ<((xii>LSU}YdC%=a?thPnUxLdNh}C17rSY2HGPQSUvakd=BT#_et7R^+EA z7c!(LV(i{Qc5$CPaR{@#JIs%e&wvxAyjy1)jfL6_He;0xheFvpp+%G_Mi2YunP-r# zHw0&r4Y&Hsi1){jW~f|H06zec@W^$k8Zi;70hqv>_fwM`>~mtUjWg2?`EnOl!n9`Q zppZ0T)6-Z@qo@1keQoHqJ#r=4ew*V`xx?KKp@Z_^rB0vE04jIr`%%^RxnszRPRLZs zb!vL9-bK)gu$ROxC70|!b++Oq-YXA4+yi4^qJ+#gPb_x0`iP&HYD~={Id^;bV#`#o zQ=i6$z#_rpM&Fn`Zg0Sh-->Efz^rnV%qsW*7MMZ0y<-1AVsa_G;vT9rTb0}NAs~-aju4BD z4nK@1{@@R*{r1R}Wcwa>du5+}-I1<;Mx^kkW=V@tH9b`k)2044A7L^mD5K9T#~Tq- z@%)1_W&#Rb?Ho_dVd)8_g69{ z#{3q6hn9^Ol*6-FgTZ}&C09Po?+|ljF?d!v+#tvq%wY*Izek|ra4#8sX*^5%@R4r5 zK=uWZ{j69ao^76~&DNW&i)uY=bEh>d&Q960Q*yR%j=TaD(zd}1$@YECGnIYHqH>HZ zsw_v>mqt_GsE+;_!m|XHesb4Br_pIVxY+D8<{K@H!-XE|1*%;w&-Y~eG)W5XDNHvnP|yd*!Ae^**mW!0D6l1C^&XRS-)7n4ix;X_ml z4@nNXgAY-&NHH6TQ@pT$reb4MjZ#(jn17No5Rb~Im13O@AjkLL$u|~DrR>C^F@{ma zg^_vmZ-ZYhd~Pl!A0i|h4ifn00y2!o%1x!%YDA>@ieX~bljmS;R7)`w&xaoNVPQ6t zad8Yp`vHio`MOw9+Rgs3Z{G2(><0vAk`4RPyBSo`et^GU$MMMpiRcNC4UYsJao?oQ zKC%mmvo|ICkfMzvLTn6AB^wXmhRR-UhbrCgcoI$}b%WZA3oJ%f*(v!%>)crja0MbM zem%JY$!Kw*;x(@v;MZO8DAXxqQbazw<@57RBvUnMa3P+RhJz%}jHZOtp<)@d5|9rT+l#V*zHtK0 zb!oARf|nIsO)lG;K8Ek;_R_}ydTj~N=FCmjgy-?+KzQC%f``PnH>>5hC4V~EBBAeN zk%ozNtv#!%|EXNfE@p{bN%q4ju~J#39F?#{n%l@EUl6}8mcddFF?|VrsaTC04vvHt6<~X)Jo9ol$mW zSaLCWabl6pP}_vIr!nDVPxsANI~>$;4+K}xh_<&^_N2F?xWqGT6i~UN@@hhQJo?mV zNsd0ct8u2zEsarwiG=IY<7C}!?h;tOa153U?QWA+sn1PekZS6I#@W;D&P<@PLRCiI zmsAd?tSVqtd7-k(8Yz#}%DX`I4$DpM@yy(@>@k?2LSqds2o;R!+R7(B_THdVAzbvi*>~J*!@z5-(&WW8Rgb0R_H;tP9FhFu5BvnVi^MjgYIIJv^A(Y6gbFqGQ~+8Zd8TU5%Zn~2mmk&#D-rB?=Y7zNs2Ex^^|^KnGgbDgbL5WbwPeT9 z^pUK(@t))$q$@20faBCg!z)|wKQzftHCj#9u>*LV;)z_8F>iN1tD>KGFDkOW{tJq$ z`BCP9ND+PNuv{q&@CJ|+voN(V?9ER~){2&^*xZeCt`;lyiF}zE;Qe0m9#(p894)s5 z^8n|cC+ApMDIv2h2bDPI_lwL!N<_35or%t>5BLGWKScJ0p&#uRW_i1)AK?7Uv%rqF|HU`APl+>$??Y)Pk#D|#bfhBv4) zFkMum^^ohN1W3dC zgc<$fm1++6nh|#;*TnP961B&sHCX-YBgoo&>%jSB>rvjyg=SbE$T*~(hxhz5+H*-^ zu!2WIcXRe+viWY@lv%ekM!2SH0`e&1tP_e4l1Bq)zS*5_%+1wX4GvQ0ipXUJSCh*Q zhL2^6%Fx=v+0s|`?u@$3{2>!>JP!`7DjXYpPQosVvH3~Ly7_amjpeSP{gjlckF1KE zOOuHCD>5$1QbQ}DlzEzl^1T0sybBW2&{{ub&EBl*=2q;c($>)bK<0&+Cptx$kDsbb zE;-i!Le|kVGqi`BN^NsTuDOx}`FDbp$Rg!5kwn3TkS;4|*gX1E)FhTNhK@6&nlLd0 zYloOE%mw5*m?Fx>N}3(=T-TFp!HT5lDF1*nGetcgikr!PNTL6lSf>!PT{GxE*s=2T z2;WNoW;B4-`xD9f+uf~9$B!GyOj)3z^Hj)%C!#~>DSv5)xpucjUzZ*y>+ZBm#fcqV z6qw~?$I_-2yY&+dZurnU*_d*-Ow|{f7UFTEZ%iI%hu$l9ky)iZTLH6*vqojl;r$fq z=tzU?q6}Pw*f`UeUhFk=($fir{RgePr@GA(*u`hDgUMR)!j0oUm^}3uWCYl53s&Rg zXe|Z1?)tPjUGZ>GoVHMD<+=wuc6nsFXUruJZ|mX3v17P$z1s2;R^w5gx! zs-rB6-Cld%hk!FS8k%C`ozsOkBs=%YHScoQ1t@OjX2E9~wDFKIymH7L$(6Ut<3)iN z?LcJl+lyEX+n#G;At)O4={2kRC^P>~xSN;uaB}nQ3W~MN7L=mjk^`;eL7`BI#FkpXOOG0{ z+eCjbBmCn=-#;ai-6~RJGy$qF50n3}BpK_uc;@aGCC;Ze1vo~4QEBkV(4eqMtdeFx+AE&{ z2a=J(zliWlPiMnR?qGsq+dfP_D#X1MqFkzqjuBv5at?2k)D{=;xi&lNWY1wGv7GCh zH=jjocT4_svSq(Mj5Wo2Bl6*sVzo{LM46)f`>jv_&qWtHN1odi4nSGSV(S)MpOFoq z=xkez_jG&VY`RdvGT)p%naFY4B_;dlg2fnn_N7p~#hMrBL2>~{TBM~E>yPEQ;8P0X zEiBFrJY&9vF%WY`316TL`wq6sX1<;LWc5dA#n}8uUOw8&+eS1suO+uZtHl{LMAyhfF*$!47qWz*1sO(UrXZq&qmm!chXHO=Z_v3|+eeN-O^odc!<(Vrx zgz(!S8lH+SN{onvR}9-TXm4@oP9?&+p5Ppp1O$iR9Bsr7a%M-!DT`)Yw>gby6O}KC zT}m!tFUTp5CYU?`xaip1Al&H=mQJCAlR^f)20^`Y$Q{X*_vqtZfK0#P)>1Cm)jf%C z)p-f>twz=Unh|#;*Bm7qFUkH~ix)PD&KVEdWU;l_#hkG#H_rZB2hJy3?~+^71y+&+ zqHog;qNE>Jn?f3>+kG3keoYrkIaD{^1c3_fOWbHRrmt@WD_uY!t3Ym*Wm_WEE#-V6 zZ-8O7G6iY2IG=`j*ZD^8WP8R*^q8UdB#)8zE*o7DV83NiIcQnH3(-OTLHnc;nW}B~ z)!?j6XHk|AN`yYX#GT3G(;||Z2)>5X_c+!~u~*Dg8e83!aaa{c=(*aYt%&A_q|Vr%&&#o8vN>j9=9JQJ-br2qDK*xx z&9Y)w#>s^yq0gq~N6E1$dB%n+vy5$4^vrX4)4YfLN94!nMVhr)7)g2_B$^t{PZO#{ z`io8aXW=x%rIo)e@#cL5h~~OIqcw2fkgTvAS7gpRSfS=1et{6B64`S`LfZT!C@zOp zGC9nAkZ>b2RcxLhYp^u7QswZ1smm%sk~05;fF+aAXroGIso4CJx(kUTlYz`f#i(Vn z%;(ha?#i_Ogi$i8ML4=j4y@tqFYj-<(P@+(vB+fwSCh;3 z*`zEM!R82d{VlW`-S`gBX>qg#EZjxzFjuKzG|1WHE=UC1z&dph#>&R1% zlMQ6bpUU;n$d*gMm2txMEaw8)%aqY|edl!wU$DcASQhW`CGJcfe@xj`?ooD_AK_p< z&vq+!D?8{N9h`>}z8@1vh%Xh^{Y;1xXG{KcvSkl%42F~d^n!6rk;a6}fwmpz-T;=! zxn{&&$u(&N<=S$-j2&4vsq%4s?NI6b-O05>rJOA8>oeGqNsJ|N&qIxS{L%;=E3KV8 zyU<3n1Y1zZo69nXFWk3Bt|Z&Of!YKea%-)!z3*|@Xvl9kP^%Ii^| z2CrPo-9M_0WtrJ9l6Uer2BmYEJlm~=+18v-kdoOnHsl_2rDV(?KdL(Gh!o46x0Tc> zb*M|5w&|D&#Z5#hks1#!2WUR3wi0}dj5kh{X--p9?jVjtS(@p}mSLaDDtr$=O>*W6 z@+?SdcaCeUG(U-Nm~t~2X=L)N`ZFDf^< zW7reR-JD#zA50H`X|;l1PwH0eoIGD$cdyyo^j|4T|4zWZAvBt@w?TR2-ss|8$W?O> z>~gl(CzGOuDTPhElu_dhc4T4`%)aaD4RJ~AQgX>{_JN#^(N(7zkzJQtRsaJr1++Ts zEWRPx=>{tAmID! z!_@+^QB2|ZWD1MuaIfLZ5S=XkvFctLznEOQ-#;XMVp-%vHRF>WVN{?z=?;}L&Mmt6 ztqplD*j0~*r9!RKUc~4k_a+gB>(b+7-4R~0+uPjYLNb_@cm8LMCi!=bb^XeHXQTMa#E?k4-8kzLd}5$-|UN_+-EZC*^) z#St8xfU*IMcVzOxYhFrro6t1%QH_ut>TQWm*-1xqJx&gpI4vAvkakd7UC2@2yz|>p zC9qPp-LPam;?nn}qKgjc=aiYUKx+SHNCM#tXROjEcJUW8@Rulke7A);p%jOwTCu?4seP=H=5V2|Gm_2;*cA4&y&!J3 z>MU1$wNJOWEUJ#2i4AQ;yq(22Bs<+~79XzQVXi39hXGz#9}R;0){pCJ3-%Qbd*FI< zg@g8X^Dz;h`VM1)nU}Md?=-4hjt_=^!1@Hm9Ax zkZf~m?GIzTa1_IX1Sx^b*{mO$n3%$qwzRtBW~=0NrSDI!+aJ`1SSNB+T@2RT@}teB zm$!U$wHoyErEwRU#w=QmGn{p4_R=v4?obwr__)zGCXd@A%rIP`%+hfS?rWvY5Quw< zsuyp*(O$*OdM(xJY9Y3Joea8wQ@Gq`sQpi=qZb_~>(wK7C+#(ajb$^)4VvAf;31rYsJgYV{FJm(&+cYVf zxRuAMq_9yX+r}`jAfITf;z_ONX9bXO}4`u5JfHcEPz+s4LFI|eexgLN+=rTQT8y4@bkOT z+O%QbOwO{;?=iSA*B&UE`OnJim^+qlAayy4Z?vAA`OQlO1(YOXXRAgsex^X3-6UTlG`T6L?32`%9l};Pa9*`qf*1US5*p z`M#;mp(B1t>{4>cp_Gxl2*(jvHWi{hea|5SssQMw|0mSJv(fHj!Lz%#eCtHJ(|pM8 z(m7ol_)k7G}EEPX@QkZ*5Un`|98k9SYqt*9U5)}n?}5f+@R z?<9&UI+2Q36qAegBe3lIh0(R`MGW2getG{zm~ISDB^&MANRD~5JzK=wTVSy3Bv@At zxg)vKTT7>GvwP4)+k!=s*cXAP7F*bdLqGK(0&E++kZijfL!MmDcvpHe122-1BWP8B zPGa5{67wIDJ`TmpM66ZgS*1mynhRbje&+n&K~ax{aqOj-7}L}XXx8`$HtWbX8ndxv z7h}wvltz}>M1EnU#+LcV*w}~+SZyV%d~C+5lNdX%u7;)Wh-=X`JIH-R_{Gw549o^t zB^P<-3Sz`VEn0web2#Q?egHyO^rz?K6Dw#oezt{Vyd{4+*>b0B)W{|SKc6B)RMD4H z(kDHLGDQNu2?C=WM8|R>&+R%f*FKI_y?Ff}uX6U}BP+bEhan;>=vBjR!OKj-pn|PM zlmQnSI|dLW+UJi7(&!PMsnc%gK7}30<%40Uzr>s>k9%>vNL(on5#_6C=~>sqb|(9}B|e=z>u8_?nA8F_FjWNP-TEyzf8Jw5 zy;xDrX;)2;Rx1jd@eHBi8@-bA4z79ss94XVSd;oWTC3t6 z3si{+n&XX=sJ<|)FVivZ^i+DfZyx#5G&W_?8#*F zLEMziZ7?RsG0J@XOmn{Z5UnB;#hf3)ULu%2NGCY3GOU*xrS$#Dbq7<{ej}7a!a8li zD{C4hk|GCfQgx>)xm08BWYQ~0EwMoq$H<2WRub6MAW@c04dyQLACd-QEB+%G40BhU z-R0-0U(GiVqPW1vs!7Kp(4t<+ly$!E7L;{!A3=te>eyQ}j!A&yG;yWU-Qu*V6KHtZ zJyg!;X)&y1i>;Qee6ckR0*_T7V~bs#I)TP4cEQ>~<_Oay*kA!HshKZJSn6qaqtLRK zR_a07GxMU^IHl^UFgvnGC-t@K+`W)HCtqlfk_&H5haz^w9_t(4k6QOTAO=e8Wr6p| z8hf;9pOLqj*HG4gWoDrp@4MmnVsnlaaqT$1&tbpd>&{K-xxRT`gB_Xt>14|-_TkDc z@-UO$6Y@gG5R@a7_#RavGr&_UmfeZPwY2z>A~s;K;$7|rO7fSJtK6W;KD$v9UrXf1 zG+%zpD=BiOgI9>o-awYM1=bgLQr0pclw7tSeeEosgDdF+tE_%k5_^VPALLFampJ9_ zK;v`{+wohaGNXEhO3CL69rFwAQL^zEKjYb{{GT8C{&&$pqg+~bkx>Z)#=L>S7mJZF zOUFd3x)BC%Z{2Exx``poo5_2WW5da>C=PrY6mepR`4r+Ugc#z-FkeNvJ1wjW1J-XN z>q5`vN_4&eRn<-E9ToK*N z2gZEvioU9VS9t1pDc#+U7|9G^3_(-YDEj{$GUK^$q^;mFnZ^~woPg%%skgj4F(^=G zSych&8^j{~@PRi3kML$p6Z*@7Hu)|B-i_JMAzir$se^BTYra)Z8QW%=D@*A8KUD8b zZ>gMk==0#MY>4N+8Z1I?$)8TP97E?wM6JkM>ny^V;hA!9_y+InSvE+uk1XGy6~yh4 zE6Mh|?Ct4iNMu~=wt?I+7=&3v?LsNU09p&5zrbi!Z~7!eu>QCtb}6|8xf}y&d;p_U z_5rAzc@eRk%I@U|zc+v=ymjDwvNiYKm?%4tZ-(irQSGD6e3-$U4YRPxJW_)y`@|9- z6?s=!jb=VZwy}^1TbQGnJD;bY#X!AFy)4d+Xp9^#AScj^kF>pOs5$PFh3;P|&C!4b;b$b`A3$iyc z8hHB$s%fCL_%jeePLeI+ctOs)4%TKO0d00W_+o96tH20u_k_n zL;%B#*2m>(ls3ljDA&JxVUzqo=_)voA?`!Mhk(MC#|_x4AZU znw72f8N=HnSJ2~^+hu(8fV~~qrR%t?PW%c)z0>R>^sL!7hNqH^{D6wP0WgP`78Lq& zMe`x7Ny|o_L%njy9m$pY9upt0WaCt-f+fZaw&>x0D-9>YdVeBWe^(cKtII_womp;N z-mhxNp6r?FM#rp?cSNrxJJi~_Mbyg_RdWA-FJmmA&$u+o)zHk7zpE*HR? zGUt*_vLfHbIFL%WSh7g1MvrfgV0Ciy#L1rX-vf~>jKFN!N%vZ>J6ZrZIkh^RP!n4j6G%NU5$vl$m!&jxs znI%oWn( zLCd!KeH_^=ndU^b&Q;_d%a{AhR`{4b=ryn}Kn-1sw1@9b>dLK)_~zPHHq0~U(HB5} z|EPW5Ew{?d84dHk1MzHSbL$zIWG^jAvlw4xYJ(-%&jGJNQffU zq&uO@m1s4ypMe#1@W9AqL8fv{>EEjJfw;unN#>z9$`*$V&y3NP@li4!Fn`%3k>MWL zS$W?>-Z_g8>5*UrvejL{+ZevDE5n5TJgW9rqF~8;dihJbE?-9MFwkrnagge|;&Sad z+YT?dqd1*}+<0(EMN|^XNUqtN zK3s9_SL7Q!oGM@3ks@{lV2G8o<^cvDgO7qXVinO&h4301;Fm-^B*TYpfhL;UTV zX@kH&k3W<1_U-w47Q}4>x9V*uajyaz?$|wW$F6w{ezDuZaRWQ`F=dxqBE|&eF+=Z3 z9&^yMaNk|1*yX>{tA6Yt>de_zeIB2J=%ONVFq^X{lg+p4O_if^6T}a84so{N9*#2J zVZUp3vN8RD410*=mls`5E*86K0YSAH)YNxn{GdRm;VA0 zxIBK4i#Zw1F|2RS;EA>^>b^W4G@;x+8im z+2O2;UkrF(y>D{F9dz3bc@_6O+BTWzi_d3W-pBbMz`#Je(1aH=aycIRXntm6xzg4r)8 z6qYV5$PUoiueyuQm&Pw9mmbxJxFtn8dn}P3Y--{F>T_7QYS##f(%Lu2w^Cd=xN6uf z$yIwi1KnczsQd1TK<*k05*-k;6GB*%?|`-qUP!j-0GXW*lAB?uNQq!2=-;o@5|KHV zY&wRSjd1UV%Lhf1_KkJ%1$vNNaFp$LhUC^X+roNP{MS3pE15f8*1JA)Q;@3MXBR5j zbY@=5r$;8OD>H0uS;EJg(tKrJM?Ql|%5UI7p_zar5bfvGT$+*0YQBdohNYsN87Yu) ze2P&HZz6|*+;es2F-b3YD&C%+5NG`{q+@wr>niB^&X60K4vT0}B7nLRR`X zS~Y(GaNHTRYVx2mZ#aj2X1G9;6e-K1?}%PYcI?M!DWV8B+bsn72vCB3&hjWTScApR zfM|80J;DMmJ&k9-won)J-5ne^7@nW%Vqy3+Ua1gXmla&a0+;kL?#Mk~v5x^On2gNJ zDdQ!!>mrRN-!Qg-R}H%*xeB8z*x$;wo4Kq$U;yY~6%OiFylQYQ% zFvc!qaxmOnTykvbU*BilH9F z54L_#_(l31&Db>rkDQi-|Mlr3K&hk!C@@SFzp<@PP$bNsvpD5Tg0JDihka-SaVpZ8 zuaZk)AYT=gC5&P7cVrO6@7F{h2_y((P-XZhvKSJk{{7*MQbPhv`Ti^UUX6H>UDFCf z@v(7Z+6U3#3XyWQT$kiRU*M#1Cy6w>Mw0FK*y3&`=|n?!=9x0+p) zGQ&D(ee!b_r=-gu>E9pr%}2f)(rpONBpVKVEyoCNP9YW%>ka0?7^cAAN4=d`Rb~QJty19$cetW_7xC((|mX?*>vy#-XE~fQ23w@ z9KuPV+3oqQq|g02 z!Xaqbz|5JWTcNx0%7>Wa05J+2?59MBaAsp(*AcRAav+xbVR9eh$EU;+?hV+JttKl7 zC0THXHaY5>n-Zjn_5MV%ft$0*YC?&~VC*Z9IKxhvAS=v3G(=MH&ScReyIO6G4{_5D zeAqenMJ*NS${}|ok3H1JFc4ltIWq8gIvyVEdRr(3K2Fbhp2k!cZ@$lB=hsB6{4#%1i}XWXJ_(Ab%R8hb zD-)4lTwseLID=`iR-#?%UpMK+Qk9zc@_%GRpOS|O>eo1`cq<-Kb7>kR+C|l_B z3e_hVGmqWAOIy%7t1bd<2+kxMj_Di;@;=l34L(gonb|L#1oLCUa_hi(e8EY+Uc#iM zcw`?mT%zn7c+IQB3VW{p5ZCF>V=~hYN(;`;;v15kxA9@-cRnojwR;%ILH>&(Yo$3| zx9i#kZFBZyvRSK0cN4gdvc269PS)tF?SnJPhTG-C);(SZvtY0~Dk3tzteUWKwJtqQ z)*W@1O2~w9%Fe>n@g^6;sZ7BcRIt2Uk;^4ya+{VpnbPBAUHJK*5+x@r2g=QKUUL4U zgg}tuxUA}%{}N=b7~OxrW$|q+#_?k2hjH`Pc5m{anzd|RBiSHZRGyr6KnI?e(jdJ^ z8~S2s^PS`pEf>C(HNZz;H!K?AAPrqHTvtc|0JB?U<`kjIu#%?gQmla%BNQ9YR z&-6`u9?4zaDuDm(NvQ`IRQtMZQMwPZ)8DsYcLm%{2m?-A2FsW~PXjL?fpm&Pw9mpaWj z#_Jzi0^(frcn3?`IdwOP=r3jw52OzPF=%iWnlw}c6CL`wQNg<;b_rjSw4S4Wm`HXD z%!1j-LaZR!t4bS!Gx_u%yscWu&=(+)cwKs&tpZ9GBVR();-<+;fP}GMkjOM#d_|zg z*ImzQfI^v%u~f4m=Gkij^qacI^kYR}!&R553A0}#vq<6boBu?4Whw>B)r$AO$+57M z6jcsZYbRqi)>ZFMk#TWp7=yEqb>;lo0nVAIAK|G`=1jnw&y#OaeEV)x)WTs^AfEaX zndMqEerMt+k2HE!%|9ZCOj9Np6$=>nPBdHlwiA5|$7tncRXvexWCY6ZVJ-cXSKp8W zQvZ3sE8#y1S{~Gluh9MkR!g&g>GFIqj}ukGeiTEvT%ZTZ1$S{11~ydVt=?2@d}71s!m22}jIvE?c{Qr}Akzv7^@*hwk-(-D`K{@MLYV&oe+)P?{ix9m zd6QPGN5;n;m>Q zQxF2jbsFfUHD+oY?vhH|p0LB6kD5g}*pxY!Y&xRP$RHPp|j&$H_razHtFGK9db zUh42pEF2IiWYA3?G1pV-0jQu#4jJ5l_C6=HWe{CQAi_aZGy#6;yV$PFoK2Y}c-7C<=`l^t(nd?A4FYVU$ZWyg(0< z3y<-nd@O25hrY$`0>Q|mGl;#$#FLIVcl!~$_)4Kzm}&&U+(b7H+S!lC4&%pHxifOB zmgX5`T3|Qdw;RG)tc0%;(Prk^hcLOXDcP7T9noqD=RL`sdjh8I)AYkl*Z zi-^0+i!LXZ@0EcP41Qn~GGNLG2xh^`%At6O%0n8JMa9L*6H`UvQ^eNzJpaIfyAM*H zr7^q7+5pUM>L=$PJh1=B(wRNgGsCBUF1)kVu!CRM*dTX`VITO6In@vLE;~BKJu0(z z4RwcqO{t7G@X8-Yz~I;%hDc%#GUkRlKdsnGq0P;m!fH%<%^W4`)M>tDTZ+&8ToY?$ zgwH*~$N9@I^eV*%H6gNr<@6GA3Y-x_JMSG(0ZGeu$rT<=dL>+d{t=tUK| zI4;{(tATCnKpb0tB3Xav&~5uFauIBw8Lx$JaE8iQbsF;xm@3ylmi6ZBNxtFMXc?6PR4&8Uj{yddTsA7=>69JJ0< z9wvQQO<)$u^8)dfWZ-xq9AHEjR30XEjLr%p@sDJ?l8n^Um524OWA;sCc9Hc4*##Z) zjOmc_<{MJmOQqxw`{os+9YZFmZsL-7(m`N12?vu!QTLt3GZZFnl#cxZ7R(&`Oh8!R9gVT1?pRk687 zy@PMrO*hj63$imjm%Sm`2?M>b*{dAj!?crs7y^`ZF=mVEnBmnw7Ibs=WU~2~+{EE^ z+)JaCWWKJQAKtHoky2RP+Y0ePOAR zf=!n&BZY}*EPQ@oY95PLkE5BLKV<=*ICv#?bMnMJ!l81MOe+TufGOI?15C^7K3&HP zB-kGV)af3c!h7eugg3Z(1K1W-iP+c*0Z}sGv88FZ z-QjxosT=Y2D}P|Yc82G&HzYfc$^Cr0rg9@bR}ws2-gNV4@B-PCP-nXERI>5li|}G! zMQ;GxV19O3L7r~)9+)DrOxODp$@;yAj=iuV7t8x%;jE@D``7s*e>&N6_^f6$cVl^( zXXh5r;Ps|Ow0)$WS?^CI>-XV2-b=tmFbsydhZ(`t&rIRJWp|M~OfGuCo)=Yk0j$Q4 zlbgaYK)*y}4dWztLncmc3ghIaF$9=toWY!U>%=04;P8H#KX3ws=dw2>J8!-1MU?~g zVZ0?0JPZqLv&}JI_$*6%!S6nZK7Fpb_X}wY{D8MVU1LJIn%A=#l4Ijn3Ky}_>b&x> z{za39RyS{wCXKD}X-vPctcVfnrG>MVhvkoB^8;jaA*wIbnB}-gS*ScLe;k(|5-uA2 z<+w=gj20j3a>wPr2^X!s$;I#eF+?NOv=yndMX|Krbv)lio|~bcub#{FuVeI+!pK&*Jh^)0DxfJv@0+DUi20mKXIZhuU zr**CZB(KpCFUnbYhnfk4qvQkf>n6g%L%swv4YCT3Se#)&Vq**sX zQ&7j_SIOf7skqA7%T_-KIjy)Hqu&sFxk{>>IIMOm50g4Bzb)cOokSJ|qlJO{P}?AC z>nVfJkiq$^hxq(hF1sn?vYVVppCiZ6WjB>%jrsr!rnF|MJRH^zj`bIXb*2)b)I}qC zvXZTa89uyvucI$=#=ez=hWD?0BS+D*CzH*$a{*lCm_A1SMWg5g{FNiRlTY|P=}s2) z_y!)_)thxI^+cw1>2ZReyG0^OQZ$M_$Pg}Gz|fa)yFd?;3tk{6!KY{}c94(MEK{b5 zuCnl2?@uK9dp9qF=NQULS9BKbA*-xAhO+#*8<)V)jr5C9cIlpTnj7htYpFvczAG5% z&nQ}rAedcnVT4~n&dBnE%jASAXs#!#j350xUncWpxdbjWQ)J=&=ilHM^1RwIb)C79 zJhDD3r;YQ8xXawE+PIT&RPc?tj5v71MP~4@9snOD#Ey(DEMJkK9E{buD>8a5SFi-( z6w2eJ@r%i&2M)0_+ipGx$@f8W>^dNKrgJ8q;k_yPIf{3fL3hTdq5$iL! zUmpcp3O_X99Y0Jg==MPM&QiHO)pL`Xh3Q`V-~lpwjBR8GMwYh_LJ!z`(94f`X^12I zHY}sfhTY3W7c*lXXrJ#-A*_O(jj|>zA*+gl(%6Opz^gEwl;Gut zsd}705)C)l_B78V8*JnGm`(u}^|?z~_{?10LY&8+$$2k2u!kjVBBm#%ryW!NOwPM~ z?_M%}k}I}>Tcy;!AUj4|ZQGC%bk9JNN{d3}$xF z`V_&pxnqAJ*`~e2BggEB7H$S)(ez=F$h)Q&XX;ZV7HYjefq}}qZrxLni(q|~EsHrL za%G1zu)W3Q)vOPS?d-S99ciX&F}nF~#!aC!{eFO>L7cf=Pp`wiG(BOyml*3))6?Vy zi(q0F$M&r=b#$yj9mDS@!wbaFWOk^a^2>8`>k{HIpI+^o_wYT!ojI$eH6un8ciyd) zWg7i#V=}$U#CuVbZm2wpigNJdS`LC$=0k0tiY<+0X={r3+SWX8zt#y$bf+Djo#I*f7B0^A&38PEg0^k&LbClHepHV)SN8K$IWsfz0&me$!ziG# zM~V6*ghrYOUVhJ%sOZD;;h1z;rImCu()RGhf<+CwIL2v=9^p%V;beuHWP9WaY@)a4 zn$yACFD29pn}1^cVGAS1vzUxXq~j~9$mjvH;05av;=A=H>G~RlDZ3=9s9_X$k1Ol> zwQ`ENw3Uqq$0{;mqd2X92E%2!dS*p!uefagH4q5gEoGnc8XVKO;ih2<4`!xV4G=Fy^bSgH!n*c7Yza&OKC{1UYFN*%RL(I(df&XOg@c4_Y3>3D1NVd_Hfd&1ALET+x8d$w6 z0Dnq=VXJowCNc+c!rT_`@C)Eq2w1AaUoasxh@4AYwlgMZUnN>$cc@@UVKjoXsf+%< zBh2ttqu)4VL?i@RC>$FVb^eJs#bcwvhXb-8T6*&1gpo#x`4UG4$7!wq8Z=@8QdZ(^z5%>ez>;uq2b0u)L5rK>EUlXxvcRd7r~hATo$D zhvlT=Sv!alUT}jb2hQ3-6xYeU&_p%QDhQ``~&BxnOp4+<`6~PuTWf)b2ut`ZJY6|%zsUp zNg(roJx5IpnHO8KNiI^pSo&`$H3_8t!E;yYQw_A(MBu-tz$6g(zLlz+@VR@`E((~f zZdRrOm|n24G-j=sKG!$B*Q09u(o5JF*o$q9r3K3R@%V~3H3g=?3XV$hq*jt|UU|qe zHKmtvdcjqbVx>QXl?(~Y^Y(L9)}W#kq5p(JlR)T|NiW`B@afVFyu0SBN|E}{DK!bC zUYY8BIiv=U={Dc~6Pf>#GLt~&cb>E10hwp#nhQ04eai~|RSHf5!GHK%7JRPT>psX0 z`%nvs$^Vv;lR)x!oXe8?W|heO50sk(a{sq;S?*Si-%mmFO2qzWicJEs&*@UBO+u0R zUnw&QWIm@$C1sZHby{Qp2L&fN*98w6v|{l`-wVM>Ao#n^<>1b=YDM((DLM&6KX)rj zR$XnZD@D^*q`rt!lR)Zow_TD;fg30^34}g(b4fP;ZKlj5ka=Y~Jb>wuaFW z6TVY}@wD0lnC0&@Yn^)AX6?sP2@)vrqvxy=r_dz9sC=UaCt_z)><%DR&f_UO350+5 znh-wIlYb(`CxQ4UR$?$H4f*PHI;f(Siww1_OiP0ecTAz&w6qbT+|zyY%>RLLq94Kd z88&RNoP*J#lPeMfIU#h+h=O3u=&hd<@BP?n0hbxr$jj@FUF?Ys-_3zY62#tn*N*hT zxRR*x6I6o)YW(b4Qp1lli5@>qJxHL(N7s-ZSiCxSR(j`B$QL?o)0noOBNWAcmWq); zvH!k?6ys+DQQKt7%+FI766o?XYe<*0`yd|qMQT9;Ek3x0v~X#xW*h39;t+*CNQFqC z&~?UtFUq$yk(V^J~z?vz*os zYC)NcF0mph|Cl?rT%d^$t4~u25-9P@YsejG_t`0zjk3>DEfT2JU5S2Z4z}u!UDs_y zw{B%tE%Z7|>yxI>_09P|iQeez?vo{q9j6S8xH792Qef?Y5*$6yk7*BdWmYX@Aj|YU z{R6#@%Vc7uH^54U1m;miZ*vc$WqPS^nqT_MU+_Se=(v+V4f9f?xxUXTaM`iPS&8gD? z872_gH+MzqPf}_UNWDUhu;q}t*YiySk^46(Hwolkp{Bty$lYvVXWiQ30%zZC2KW>O zCxPHA)W28;!P9n_82dAnndF=fl7%|nL+sg#RpkCX%1r{f&)p&!G#*9j->1|h=X7YN z{UR)mv7!AX3QhvSSEysO4597XjbiIRq{t-awymMIAKMne|Ac~*K=2jnVJwHOMR4E4 z5YhjfqLV=MbGTHB=+cE2ssEBvlR)Yf>R~K{!F>-SlL)^`;YlF;3iU9SS@=wQ@NX$T z3B+HS9)^>?+Dn_}g$?$%uE^X)Z*dyC4=k~l5kA{DfAe$bX{^JH1ilO)SAyQg?CJ=w zLZHWS@#n>BE7Y_M^)5SQl{K^;xo8v1ZRCUw38L*it7EQGy`_w@q1-`FL=?D~3Xnj7 zpI93T_+E)3jFw*a6#JQ7x^!z{3L58gn|Z=XmBMpAb|!y zwI)1}wx}C;HBxlAnmUj`hZU-}GfAcFutMgcOeS)TYZ1Rf@k!Q>3sf_GAy{ z!^*6M$<{~9-~!blmyoWd9wg9XWmYV&kRI8*bUoD|fg0~y8>L#^5xgHIarG1`LbBEr z$>-S{s0axZ`T4cvk->C(6ICIBDl4->d4q6`dNBV)6_s zLjq;qzb2K*bS<7mbx5GjIomR?9dCB^HH2EHjkn%rIf{)>@Q6d6OASb%L3<@uyJd<< zRgYZ%b!gA_`J=*PU^!#G)2W}8ZlnC_n-9DldvRW%2gwC{c$wSiRF}?Kd7>ZuEbRx6 z+_7$mkOh}ii$DYOX}%dp0@-Uzmwm8P8bIyV-`M|$Ml+u!BncoJD+^h}J~LhJAt%6} zBQVLT0ME>%z+WIR34mu-TI0rpDefN-mt-|?Pc%~8KO!#4s^H2df#TplB`(Rg_ZP2A zMh;&U6q0DOdN7>*28DwC7sMu64V~w_t^bO+B&&k!ZT)|UOR^fcEwAt25tjtGE1o?T z+NaZ?{zn3n0C>ei3tJxf^zko5CINDDrPD{J(>>Xo^?v?0f|CGzP%NeiQ9lC>`;FbRN1F0Ps^x^=5aLET1Fl9fm04$D^89YiGo>I%0)W*VpDElbh% za^jKzcY0;h*G%v10v68*?3IKi0qpz=!=7!`=kbZZY;0Xk0Z3Nf%gy;Z7FLMb6{3;= zb%m>`X0I{d#g^U{c^8pMfPDYT8hqaMC9WkV$;#WfHPghtcw*!0iAu8asGUX~+er)R zQ;13e)DtSE$9xHxrlyz|R^nXc4av zs$u`S`gu&P`{98*#x57r?N+beY&AME_>dm;&E+4!0K|HK0{i*8TR9N%+{uuXKL#US z1qHxv{0y2(7N2bQmm|Lv-PAaML;?X8C(~zefFc6B+n-BE4rpd`oPv-%B7$gFKm=(} z5E2N|TWyQz$b!gml5&td5_0HBgUIm!M36Y~mIY=H6IlO01Qx1|xLJl3b5PLjCIY=PKs^>C0jv<1469plGAgdm#Zd^ko zc{wE^fh1>FyU+yV93srOQ5X^kb7s|rNyl77mRC_0l1Icvb~r*Lc?~5Yfh4OQwV@yh z1tEDPVkH|+&Y&s;*RP+{@aL>f3eM2Bv z?*nSR@iXRt9s`}J%pH+~Kx1gdnb4cv_d6W@=3dEj1%mVUAB=n9CWKq$ArrseikD}XVg z^vFm3)B;j!bX;8YZ$W=U0>8iR+>k6>FHaXeND)aO;&-1bA_gnsDPxZ^l0e2cog*?H z@3iYP)AeqzCS!{z>EiLz6qN*`zV;juRi{iuyoV?r3B>!(b45Hmw;}?569puJfFr-b z8K#}GDQtMH94pJa?IeuI_j1Zd0{Px>ju^1n!f2|7p^d_Cqm(4)P!#HPgBbBu6psYr zea|^!#4whu6<oo&W-#}4GAnM5NqQala6`zu=%`UcNyKHOWH&Sd8i2Z%%N*FX2=IYap z8gj07E?h17W(rFJVb7H;Z>I<)LHz*bBY}M9N;SFII*zr-*4uBTfFuxbR7Zcz7`2}O z6+2|x@5|YqY0Nd|8?D}HthScvG`z91IM*2bAa*GH?%<)mdCFUn{QfIUkZiooGviF* ziNgZL^>bAX=|c)GE_)lnRl+7WhNFk z{Dh|X_D3i<2?YP)b6N0iuinFA8LV)$CVw|2CxPVk5#9Zz1xR(!&(Wgrw20jXTEHB1 zV;^D4e&`5H0BmXW&Y@!o6$&2&X?cz4|KH4Hk>%B z<5EDBKa6m>8sY1gO?o=cYhdauQzVf7o@E8mq0RtmhEODcddadvrSlS@W+wx;HS;X`hy=>iCk=^|xmb~Lt|6G7x1i4@C<#Ct%Ma>nt?X9ZAD1nsRFwDt|k31TSAU!&HaQ#^A$ok#+eCeCzuoB9MBT(Q7UAutJm z?VCu;t7{Os16toea1wyuGim60?p3IHZyF>LMP@I9m!XuN2j;}J^1N#a@JHYL!iU(> zl;8FbKqhW!IuPZL&^)T4IdMzVF_xJ08kq0pWGxBZGHLnBfN1s%puUe#B!HSYmt>%P z+y!uNAsh+)GGV}xZ8hM1gb}9B2lt6XE3Lw{@;>{03@!O>|4@ZVo#R0IhWrs)$CoLz z9AgPBuYtLTC7uM*PaIkq5Dl#W>cxa20o25ym4Wi16~Ns`I1>70!q6hyYQVcLp(Q84 z-L4{7dYbMwPt3QQGg9B$-+l9vHzU9a!2zX1dISoW1 zv!7leff^IHKl4x;a#_Fw1SA3A#Qmf^pbxw(=$!;50qCI#W6yG~W)T(`foXIAX7V5m z8hvSl?{6@q4H&)D_rCx*c@TO)%pm{>LHP3J3PR6YgV1UqIOZqm9ulZAc@XBHY!GGu ze};f00GvDsbAUk*WLNky_{|!G78NjeO`Mp(YhiA&tEtc)^v&XfdZsu2}$JMRvMB#=$p@d zuM0^zR#5o~&}9ip2dY>I$+to|FkhCCbj;K2D58s2=IKlvB+KL|vKB`L7(bXgN=^bP z-Xvr+b=q^a**Pq)Z7)Qp8uIt-o}OQ*H8qFe=TsAO8++dkcU@?YMh*conOPh%)&5zK3w5K&= zyjGh4uhs5JiBp&1sBacO3?HudC*(Kqd660~w9PEj`{>uZ zm(Q;uyrRObA5yo*Yr-X&H-wQ=>P{%8`P@t3R1#?Sl4WzM1F7Q2y=px%tobFnl-5m6 z8gKM2N!R9Vtubep%rs}G_#1;4tQ;?Lhx{cs(VOx5cv5JEgfl;(&RoWHlu-~P|4tWC z(ma)QB?(mfhGlc5#i%xC?^VMo*ssu$p)r>+W_z8pwZ@t0#)76@98T$B-~9Ib;LQ!e z89A_b)2H^$wcG&6l6;yKL$Tr3PpezwGdaruB&F12E3Wy!_rbX&(6P2`&h;?(fZka+ zSgdX#KSdYQ*6uW*m(k0oPd4!ad76Rc(B|OJuy)-LoUsRK(pW|>XT|6nV#CW{T6QmI zfyB%Hl;WCqu!<#FRxf*)s{C{rnW~yEikJN@EJX3~lxgfv!!oO!@~|0Gt)ZCm>m(-vH?I z2ucFbJC~f?JX>t+uz)t4W_fX#*}_1S2=PHNLH*L0U+C$AVfocJFP3f5^&q)G|3aGy z>X#HknIq&Lt06Z*j!t<>f>S9)bn{8pFC-9p>Gg|ntcHBAq20YbCMf>GwKms$K-*Mu zIK{)hssA{Oe{jYg$lVhb|17Lx!52@SxcFxodxxmdqLW!*!61QGCMf<9C@uc}f+}XZ z1SA3A1jXO;O(#8k@%I-k=qZAd0Cefa-?P;KMB6?M4s*Q}e}4;uVuA)p*~nYmDLty$8vs3lv2xG~2RGcRZir9w zlxj!hI7@*K&MA_)hi)N(8U;hVOR-?uo!C7H`C>wn0J30IW2un7&=11iM_3ZTe*KaI zFyLF|?|WSsNSv6xj7SLL}zBoH;wB+y}kIw1m;4UY`y2M9_6(C9je(q&HBN^oQljxaPr ze*x+CrRVM0#ko06R`}63&wd-C;e4L#+dp7`%jE2pGkkx)`hJ1|s#Ibo2a!~yHXo+x zNhtBs3no;@du+}YrbctCLBMx{ZaR7TW+0DjEAVAM3X|h~J$FKXr)|IqeVan|4T0c+ z2h;hCoEvPrg(&7AlOzdjHo;Ip)@DIv-~>>m%wfWj0B(}n$FYsH{!&pa0GnbMFU0Kf$pGhu9ihn>2b0y z{R#c-7Jm6DnKHGjW25<>D2Tv^Gy*56&qB76{oM)G#5_drkU;tg+CGkJ8V}n2aHlQU zHxY~kU=#Fq9M=@gS2OOC1$;RHNdWkQCC8p)T6I4x_p^+*jQ=MIxAuu3-0VT${7(*i zt-}i&auI9r(w`HCTL7mh2)EZv9&Q0!4L2vbXkzx#AtV!qTOP)STNZ2|!AK?yw>(%7 zZdt(n1SFX(+$>YRzoTAP+r3)D&7B0s1mQN{=$<@*&jUyqatBzI{(gpAdK~-&+yvRp zan$Ta6olKGCl0ret%RF9p_-T@FNH%$ApHc{&2dc=j)t2%ZNcs$7zw~8$Zn2n3g*Mj zU9x~LA|MF>m!91m)2jPnxxeWP%x>vPU`)^rX<<6`R3jMN*As4d|K^`V*lo(3bBBI3 z_XSIDT<77jTLBOeg71Qo&}@R1SDv+mVR%xp%zrR9kN|FiPFBb{jSvmT@R9|6G$Vur zppE4-pXlhrG6H-)fk^Onf_PY0SG{sLmu#*Gh@3C7Rc*x3H0T?2{V zQ~2FCul;F6=SA*Ne(|OWhZqAWg+Ms|9Q1+3Cg?l`T*XWFSP{%GG6+ckGC^t1gJ}F^ zp*~0`5!>auVjCL9UibZ6bA1f1nr#ov3y#o~MOK86_sz_~r%CB#yPnf82a z&4^yvt$%9z8FVSVdS*(`U^(5V5NVsUC*84qj8PZw>FQ(Sz$+l)?xPxa@hWnBz7l!* zn3GymGheB}OC(St-u+x6m_}d>@~;U=0?7E_=Mo`(B*tL>hOi`njShZ}hg#L!@6DR? zBaBNMF768O;w8H*;9{$ZMXU2+c-m8a^Rd4~d|s@arrcR~qUKIOg!oYC5=2l;gy^R< zMB}Ms35>%Sb%Kk2=H5D7M*=AGEtfZtr3(2pz)e|sh|UKngu>iU=jdFYw9s^ z(@4$2{5C_?Mot(g@%i(SnB7LhzPO7YeRKH#A}-J8NesryA82Dg6qc(8O0!n3h`c}4 z$XjC4O(o@^oQNjUnkO8G-AO2EY-pmCpw)ommuccu`}h>uXr?DI`7x)1US0j&H;2B$ z29P`SzaV;iB6J)WWe+?5wc0t}dK-tM6m2K12ygCSl#?*ZqYdG)0kkk@VO~fW62L4m z3tNV1+uj%7EYu-FkpL>Xo};Wn)hyq?Vicvm2J^T-x{Z2g`ed_pBG%qWFJg`C3Ad$< z{_LC2{xgCJi$HmypZ)+)e0U+{RTfAQ5KsTE@f2@NkIhzsD%8PjW(g)KboNp~xJEPs zwUtmLfQr|EOM~*km4Um2a3p|>E*KmO4a-r**W!8eZ;UVJe(;|-yqfxsC_$QdLv-h# zy70o00^tXMCJrwJQUrw8rZ0+pCJrwvzs}is9n1z6a1zKK&n07cAp_#V%bCk;CKL&v zCJwIvDjQxY+*ZPo0B+LoYPKZ2Qr;WkmC);xy65!CMn`Ky1ehH3&D%eR5L=fX2S2G$ zw00@)suWOh5NKCvpvC)~OJM9WS)h%n-w&6NEJFmO8dxA3ZXw(Z;Ya`%?*}ebuT02= zkS7R90>}fg_STq)47-s3l?*%|6hMiO&Xf(*1@%c(DILSp3^IWC@5{Mrkc~~Nhw#>3%dk97Xu=wEo62W}HWdUy` zAPE4YgY)CzRkPf$XSAh}0EqZ9k&+m`#M+3y@AC+>3-rMK1;}la@&3b{oBTJG{3W{rv|QF~wt7N$KGf4*TZyUqCo*2+p_z-p#gIysKUs zOc4-KcW6WvwJFQW&bF9WN4cBV(DEdZw`8ZAvo}Gr z_z1=5*z&*%h48vZ!)vMD_Z%fzS$~A;m>z2l5(r+DOUAI6UkDZhJ54YWfECq=V}cDt zTSmKw2uK3J7cMQ}lwTTi8TNNG>})^;0Z`Nh7^PaXb*j;^do0)}v#0vzF&xCWICs{a zz*l+XNoKbAiqO%~7l11o!f#f?uc$H`N1q_WIblU7a~`|?B#^zRD>yDtCevl%E+iZY z;EFl|0&cAxQvvaA`qk8KzN~1!yn~ZES?0u+$8Asy?^a$Yel0(>KRH7Gyws zGA#i17+Nkh1A1VELI^HSmH|D-FaugiMIH0+FNJ$ZAox-^%4gmyZ9-+Q2V=YF8u_e z?jm>Se*q{yn?n}mffN9-_6jHio(08bES?f=PGV8OJe!^%0YpJYT?&L9?4Zi3hPeV$6_08}6IRfee zJ#c>kP>{C908rKlrSF08;JD;+;6-M|8HjD3#wHC3*cUW3#t_)XDT62kc{)Kz0J7v* z&FbI-CZyqz(b4Hlpk3~-gOD{c|xC|cjV;~x=< z=gV*V2h5+p)LNK)G~~z^A@|c7as@*)V@S(v<|Q^?rQt~+?UJiqCv6y7sZq?|5`qK} z1^wtT<@cE^(BvNoLqfYp8~No>uz{-cr}-&{j5@Vgczyz~i?0C2zZNH72-M5Frx)iJ zI&EFWVt@C|qyL0$D|hIB0kEL*S`wfFA(B3p2f02W_=Kb}$+Oi>VjzoGG0(5P9G9?WT>F6KAs7ZT`D zFr=|$pfvbW)0s~Zjs$Q8_4JbAGNI=oKSM|oK*r}b$38RQz`K<; z?DS{fY~a$;3+++*17H(}od;7CgxwdGDeOFJ$$FtK<_Mia0v#p}yBv^)T?Xzh!jS-O z;;_rX`LN4CzKD<{fSfe!lyNn~|Mw;A>?vSOTm!nLXk2+_{`mJ0aOcS)G@$?}=+c%i zJQhHiBhLOx;v%o>G9mA#+64#xIFkCeKsB;=fdQ z^T)J22}GYfPX!P*q`3HxikLqm5D9=L&r<gSDApOL7Dg&ZH6+nF} zp-2EVah}RR`LGJ$UP(9-`enjAMYh#|_s%adPss^zpEyr-d-f%q9s=vyuQE^J6!H`) z04B~;7C@OJs;-Cp;5%`ia)QhFmlNK+j3t@`5EJLA5JE$WMiDESZy^u~fF{mUA&?I! z5B3UzkpOJcJO!>*&-pq=lk@fD!DKsx((T;IEOj1#DuwKm2a^I|0Y8`{n4Ym*!DI!O zVB!c0`J2W2VRn*b38nzT22%=jhCn3C5=;S55KJl9Hxi6wIf7|%zM4AQJpD@&Oh5wb ziG%4>y(6t#{Oy~c{W}H|e<}sQ#KB|%lsSUwc8CwY6K5tTID;t_-h7;8m;?|LXQmKB zgUJJZfocnsF@MG1?&=3KLPHa0+NFYR_q zS!H44Q=}QrpUHWoVEnx3$Z~nceM6=Qp1U=8;z3!SpZ49k3X^=z=V)FMh#GH2j>}rN zvQGiNKmZZ|#2b2J0{9?FO>X{xAS3{Zz9(A_qv|={CBb2Rxb)y?>Gt6D*4e)KiN9io z;ZLO#1&1k4=8wMltB)c)&X?cz517ZNgG)rSW3GG=Aw7+d_;m0X z3?+YfiOs)oDIN)>jrBxI^2SDH&I+bW`>H7>F>tqj%D$tHAANK1i!?A#_U)fZ4D6UI zUl{nCCp55QC6BwB6ssYcJiGk$=xXx$u-O`n&^X-|%xyDqf2m0pozlHkdH)?S0hCL}CmY}CE5noxt^siCV zx0c9<7B8W(D$iFHYSVLVeoId@`YmW=NTA8;NYJg%H)_4J3r>PhQvwo5aAs9(kV;U) zZbr54$$BcwXDJH_WI466vP_?BOh15aLb{6!3s`{Bn5oS)PBo{URX#^aNFd3}9~nu+ zIx~T%zCf8sAk*Ti%M=Lm2NZ+^f}CDiK_rQUUUGY_*z)s76omw$oLpH^WU;f9bc_9` z#3ljubENVbD+%H=M=l>)hOzWEMv**KZ_d?^<1>J>9hC9Y?al+G6K&+tzWG)(In6AZ zKFN+f?uLrz&E#tr(3a8LamY!hFi691*EFm36y(i^~J%r16sXC3vFdF`~gZs0%;yzO=+<5x=Zuq<+&w+dO3>S!LNe^_ga)g}!rZx;?*u)!x#kvrPnR zw*|^Z0@=zp!6%Na6HYcZRIDgnib4WWUb%`cbfSd41L-cgw0(+#kwCC-Sv|qD>R_3Z znxvJjOU_a#5(u@5DM9*CE@{?W99R!NOqoa^)5})RP+6Jg8@-cUJtAr0n<)_qBwEGr zR*AAD?OQ1d2}F7AY8%IjQag^%*rDx;Hue0%A{UXhU9;eo6psYrefJ|J-iZ#j(3q*A z3D-Lrk@3}(k>n9DVVbduP54@hNAd`mFcoiv3BQXnl0e4tV?VB(XZor`#w!QzmjaO~ znXjiHBoO2^s~m4C$dJO&r*I???z8~@25N@kY^Pu@6(<7f^QC{VHfndevpEZKrr2Hzr>hO%7}4`aTI*XD>tyBS{IMH zytH)GoS17Lug{eoVY7Gl&13&JMt$B6y^@P=R}LKPdD>E7l^Mo(zM^A1?WHgo*0FFZ zPA_&kY>=ky2lUrxn!a) z2D$E|geL*~3YPhLXQq9+mDl}$5u60z<)^8~jy?+>Q~y^f0SP2{dfCY~D?ru$wIMW6 z`yMIn&68&r+P#yFE=s3uj>z={r{N-odibz<+ZKo@pgL-gOQ@vzfvs{sP&n(t(HwG+9p6_c(!dF zY*qaas!9S?Ke4t|ZMJ5xCa7DhpJ_TrKKg!WM*{6W_5X)<7*fQ-w07%6sOS0AlLUHx zWNqu|HZYWecoFp?fnFb9(|RE+kxA=k8ZI<9P&JY@U+}s$d?2p2fc(kTFq%O(Q#%r9 z_rKPvpbVVt<;SKy8YT()eWOUSVf6ZirR@rD_bR8Lj6df-|wzj{W^_$ufcUq z)A-wxmW#A#x@q@VGR$REmITWF>Ka$Jh0Zqzj$5cBY&qOX^+?uoIh64X$)B0Z;W5;W z1iJmoT6LY(OF z9j109(C&Y(UNy43zN2=+(G|3#)QSXJtzKo4QK~9OX;vMYZ&%Uq7>jIl>T@>4%dXdp zB)c4=zS;V5R4D5(&y{SsT|rXi;e~Hnz1Yf0rj-h%L!~mKmC7n+sfaXVRx5c9>7Y55 z0Jf2X#qb+B%SZxSuVNo8FWZRqY@_37cYR?24c~5kw$VFVo2^gxQWY2R6=wyO zU&Yjc>8yvia2xd_fqttvP`>>7%{1qAGOj&4i?w4mLU&L-lC|!>#{BWd%nWAY(sqKl z?{ex#0{wpf5zTfJ=9gSR#1=M)!dFsZ5-7Zit@NCD(jgje6;7T5n-99ALG-$sdXYe{ zkF9M-_G-uZDiWGSqFIHSkwCLmoHNebd-6(x9^-D{HQ5_gblXMUNTAy)P6(`wZgvHj zD0VFsBY|RTy4uqL)fyIy>N+e-axHLpw%i4WGsJS>nce-6Lb}a6@nR=2y&sCh) zUw%E$=#~XC80DP!3@S$ghx|$l1K%+J6B~{RRsY0Ddpwp{XEgxlVT-C$0L=G>k zw2syA`#CC20;S6DT99WvqP*pAPv0I31o=SMC@+=|s)go40}GuSwu&klRJo`6=9)i4P+d`HP#v}$ZTycHR5`{PRAi2z`e6;K z@|&|pm<DA%Qo`Z(5LNJtC~~w`V2Uy|{pt&Rpju8?#u! zuAyKg5Ul*BXnCZG1Vb{yQWr7P<0uWuBWET`vm5=5teKub!AKz3t4gP*WjE9A)6L$= ztYlB3WF)KUz(5QvJL@&hU;tSh_+&~$0%^+cYB!;s2Bir$01&aJC>9CCD*syKgko_3 zEY0jNlk7hs;(RT|A%Qrhb9+vjsylWGb3`&NzfDLNn<7nPH*^;2(G3NAci(&&pSm)y zhEmBzN0q~P+k^zL$_%;tm;OL(WJ;H~fXT3&?QV1K(R~Yay9&|cwe%1PJk(u1^dN3U zjPIftBoO1}t0+dgWwLG@qETR7{Cdhn0-4IU)SSgf)D-TvLC5TtElhM{4Y5t1a*#ld z|Hs^y2gq?$cSC&0l4Z-Xe1Ng>VA;kPM#eT67*1RAA>%_>vW-D79_@}+Q`+5G@9gT} zJ_CdS5mg*SX^o_9@n zGuIT~+B*iJokqeS@%;5ai~WkPh{)qODhoyLnLP|&c4nxQRr;4X5+H$!#rqyn=3}Bh zdQTuwkeqS?s>@&xai!@;l&}5?AIw72_!4N1!7eHGB$JR%WdXG#u}z7-fvJm z5{Ne_oY#-Mcv%PkCgmi7oUi*yl2ccpgeLthib?`eUvkfh%9bJP?cbqjBoM9mhL@Fl zJ0)7y)4xj@Ng(5$KOyF`>x@D#f0$yDK+Kojb7E?%oAvX@C>#ldd-YF@a9L0PA*CdN zl&|^8k#e|3{|N;pfuP05lGRlkyAfm7%b%cFBoM2A57;j&R@T3tqI@Kf?^Qnu@(p|T zFDN1jL@YiVR+(p+2;(*Q(-e#Zg1z$Yw_QZAtaty05|Ti|pZm#>aM-_}p^zjHviLUU zmH9XB+s{)d5(xD(cfaK_LS_B>50s7s(!JuImu}dnU!;H}5U}_ZT4g@XX5lYW91@6g z4|MmuIFUZeT@;N3q7{FpUYVu#taj#SWx#F6LSLmkB#`GG>@)c-{B<(G3imY%M*`vQ zfu_I>)O1EC>}h_3f|1-a0p-3$Bf-+UlNlRpL>lk8#h@OD78hO?>5_qS_@0_ zcz!85zLRsWBol{Q$hyFcQ+Tyb#wdiCQX-n#%JW{zLjrkK0>KT?rEt~5%l|%iUd;4-(9xqwfP|ovC1D2p9J`YpCV@hSQ-(y z&gbJXx%vXt6YC?l;01w|_TJTbc~0yf7}jUz`H@&G7W~Lv*iCxl@QMD$tK7$4Ywlub za9W(R@JWg=24U;VfPTvPBv_he0!WZ*LrJU?sG1LTH_A;Yj$Zf zO2N)8!bv$m(yc1#1D&Kf=q@hwK63?y4?&-(pe_cu{5J^*yb#(sAYXjS_86kq49r&= z_r_bJZD1UKd2%n6d+-D}$_F|=QFVOy1ov+Cj}w(ke{E9GU%SIS$D~LXO~SS_d$DDB z6n|z|T{97@JQKI)SFH&*!i0tdVm_%V-oZ?T_~{gakO1V`NXg#;)!RHDK@e9WMCu+!UT!)Y@S zNPuu_wFp^d&LY+lWF^nID#d>V7r3lT_vh z;ht6ETEdW2=7&Is>&cv?GCz=cR)rlzA*sv{M7hk?hn?h3Qkfrwdsc~C2t!htA9_jC zaT}SFROSaV&#JJSC?wUX(D7Z8CYh5|rvjK~RoFum5};gHNvo7@_1ff50{%Bw$v>;e zJ_3=p?`0-)=wu^51s=2tPmm-g-s0+0aUmP!G#K3O3W36QF3 z@>W`luB&^H%t^q!nkJ9Tvno7;C?r6+L`L9a#|4dGFl|j99VkDvAiHE(tNz=?k$rlA zJJPs#kKsUj8B2QehxW-O1M{nwU}XQNv%pxl)!)fc^o65hCE=ipa>)hb`nT)2eq^^Q zeJdyQlR1aroUYwY3aq4m21yMGB%CcSVPTjpn519eiB+dg8r`&ym- zt7+iBCNRkn1>TSC?C^2O?(8a`lt@hcErCe@Y(I(^uM3HfWTLUCL)Fqtty#Q;mqz|9 zkx7oI%GeT(yQzmN|2=_806cRfoV?O)MlAi0ge3v&jtXFb0w<(Z`)6X10Ao}pN}Sn9 zevZfzTSv(o-)%Rk?)Ln^{Kxf3LTmPN3iF!w{1S2(GtdJI^49y2em<({XXKbMlqnUe z?u14}TC{Z#&5%H<3rFN}dsicU_mE;E+j%}H@3iKzQOt-89$qvsUswS#6ICn zq9=9MK?DuDV11ZaB*418Vs*C6=*N2ww3a*ka1VN1g84CGk^pmLk1M6YX#Mu`I}r1& z!w3p|X&oP~6{J5T5($u+6=|12${O@f2uT9ST@^v%Q>x3|mDR-#KG3ybRr>^SNPzRS zBY~4u>{A3J0pQ3E<^)~~F12d?1yM+VGO~#YZq<%lDp{q@1_yZ|`DwzEROq$+t?B7-^h6(||dZ{PP4R0r1FYZ4&@@@ntM) z$bTSvk_sJ0_F4OVkvJs48QE>0K#gT=tk7LZ#l@EiLjsuH71ibtCacz6#3KRT$YDZB zwesrOSBXmk+>!Gu6X1pk|7+w=0{$cCS0?43HQ+Z0L;|3Z&#oo_N+fUGJI&?D@+{P2D9CjtMe0zvp^ZTBMrkpSpnBf7q! zmm1-LO=$7%seK_h-aXasjtnZbQ(jNCfqHsiRhPImYjdjpx0fa%D| zgfVfVOtV4qByuOIggf4F`}V0RzpPa#v1 z3M?}m<4+@Zl1jLH%UHYLPVOWX*!_}O&pm7R8N!fMV0T|j_mU||1(q4Eq8)N4sf4?? zjJ5kbxsz02_e=Bb-X#nPU>-L`lQcVnSum-n%j8G`j#p2|F&iYSWKA-q#b?_~EBmnA zj9;!i;A`n2awnP6;u-E)C7wwb62M$BjeVB8OI?0wTCDyYawP%Rk;C>e>2X%MW`%w} z*^_|%G(8vpbqp)^i^!J*e5dKTc)nS|UqS#908A6#d-pm^{|q^jfa5gr4USo1UqRL+ zVEyzXvdoHmCwY^A_sHiZ<9N@u7gstf*g;1^`L$$A0=Cn1 z_dAwtR_xc4KgpCX=Sp^iu-2rCIRn}ORL9NS$K12Ks$)#cNSJ$ z@9M1tApyuV-A(Sy+FBmG=CXU;`(FH0^ZW|AlYsj){Z8ecHPAcAodn#c$xT=kni}7} zlYB|QcbeSf`DO)wHvveh5!^Rq?io^``VZp!In$NU0po5l0@(k0+0Y;YI=UvsGFI!A8$kdB%D-W~+?OR*g<`{%^}36JM}AD^Bw#-B>EuMrvnu=) zm%ot!Wn^U$i!>A~C#FYM7M;({tt@(aVE*W*P+4|k^0|NP^}0|8f{m;!31ht*mE}2F zS&GV&a=m4jlBdZTaT3TfvXxF`N!P#>Q@CITUny_mqd=nV9&#tCiaWb8o_m|zNx*$% zj24r9&+6X2T&$y_?;~>(Fdy0DFUlO-q*&Jb$(jVLNA`6mV9f z64rN+H3?Xc99a|-eYSm|GvmZwA#aju#FmfkTCoq3H3?W>HL3|HCU*M(*9eF~o z(A(EN*qmE#En&5}@P8HglT^f?L&z|YUQPZa;6Jj zowCo*6MzH&6{LCqbTBj!)4!3dNx-^-=2ci@nUdxHi{wrM?jz@7iW&ZZW&2BHO9Hl6 zPMs~WiABpY{$(;I0pn3UG8MO>|Lnclj?>7gGA`H2AHB%gfqCEeFjes&NYg*&242r6 z?dOeB*K^f-(Hr|6?Tw9`fbe&v`%PNBr?oP(k3Tt%7lG=u5ecLj8SO>+2Hj!-cqjo# z05EbYdL)1hEqR3%`%-cx0oRc^pcvPz(3g=t3D}=MV&E&>8$#m_9@$UqV#&k8=(Wnp zB?I$@P3X{{JA(jPccZ_PQFP&`C`vf!DrIs(DE%J|rIGn3eQP?Nf^(RmfLlbm2SPeS z0;xu>#t&{ETDu#ZBkRC7f^i`+NPsc29}(~wi-Aw#xVcIJsS|_*AS0{AL?AjDDgX~9 z00{s__G~8rIB30aDS4ArXrY5yH(W*#5`a_@Mf0tNJy!llku?ceR}n>IofZEv#2~52 zMuL%zqQ?`21RzyJk%9zKbOixODsut{q!OT4k~K+XPQWV}P2GtS<8{Hfh8QH3IRO}1 zCp?iLB$YXVAb}HZAOHyfM)s!*R%L&gwbGNwp9K6zE?4w7MiyxY=lsvCJ9ZI>1VAGv zmOY1}Kv|#MN+c2>RguHJKyXZZ$=dBH1R(*)$Wgezd$c;eIdqyNZl6ZZB;b5w@y0i| z1qJ7!{71bvm)O6N{IsTy^>;>gs(S4^ zR{6N3rCYaYr#`*-HMwM9w(<3^ccG`(U$@iWIkr=kaL`T_xu8?^y)TQdBU63))^tb& z=aQdR#`myGN&;h!tenZ6GDV!4k`2xUKa;F1)_5P0NXED=;m}BajG52g``YJ=61hQE7PsO&`UB-vS4>$K>WG_m8jQ}J7m|pHhtb-7?-ymBOu(eTD zUT#dIG-tZY%k3F_8W3YOJh+s}13~&0kw}1KrzWOA>MXPudyE;Y$9Kq`1l(;ZE6=?> z-(EmRr8$oYM$7+y$)5!L?Ht7v{O?%hgszz7`(#W4#`d|_awe%lhAFeHGPx@vXs8Ew9B%;zMc z#7X2%QiT$DgMYC--{j5(NDZQkh1og{VSIkC?sV-hg7PfW_& zT^RSG<~fHrB*2;4zxa-$lm9&OB>`Xiu5)?$R~LI-Z2vOb?6v36!q|+2aK)a!E}$+T zAPE3i- zfFAu75&vA7+RTb?nKvAW++-TKB?UJ-5-#ZASw86Kt=NsPb9#D_3kT-Qr=!bf(2QaC zTznD0?G6Eb?Ua0u_~Qjo-mu12wMKVZg_53PM3XI@g(bw6EWu~zh#yZE-4@tRlRzc= z1=7+g$#6pM-cm?}VALtHEKwE`$YM80zx!l?fv_F|d$!|opBl?rs7I+tAeG(a|L&9O z02)NBXBFpJc@9t>63An}P;$@6!~K@5Oou5G31pf(!hw7M%iUVDK7gM^Xc9m#-A&Nh zzPXhSWyAgg1rD*n+ z+A}s9UrIqpAjnmt8kx~q8qH^t@kg`-c2|Vrl~6w_vMfz&Fhe8^eCD(l4a|ls&;&gP zEBmm+61HcUN904VM^9?t091LR>1k@yGjUrQ@QUPocNVW6t+WqeC*sA{9ILA+@_epS zB!LbKQ|M3_H>j&3z>6pV2?Ut9k~r1e6TPU*Fg?@7Tb)ha<)UeuLaYBv2u}j|_7T#5 z6_X(7J*I(whQK5Mp17}3OmF)&YX^+k7`vaL)%_I|fdnGV9~s@Tk?;ZP-kO=gAgnpx zq+qDLcOGm1()jNnKFN_a zyY4`lhJGiZNdP@_WXz5Uf}ucrH(^NtyXVNj9_*~_%h>t7L?r?0<0kB4*^1S$|80^O z>fx+Rs!VTnkCU<)R^Hq$R^*0(dCs-yZv7`T>u=h*x~FD+Tyw%g-<)Y$du60g8Nty9 zcf>+B>}A>wn|Lsn!#C13id{K_Z)_|#gEN?766L>1-;zMrmsRD2;n|4**}F@6@~s1{ z&OE0!W5Ru#!jV9@JMU)U7MqKl7?pj7Z3~w)d3*J&wc&qLOcIFs=AS?@L(^K3ze|xx zAo8>CUXhvAf^e_`{eS|IK%k$yM+J)aZKSgNm_m|3$mia@LTYO;Y`34{mbWAj>6Qs| zbHL42$_C1Y(qMr!`IsDQ@a@IU@avX#C}qzM%qdqR5C07e+du9KR|tj98P8SkMP7Zg z=2g4EacF!V3KFCzSF8`&FP73wo|ISItEi(@9{joiDqx`c=9_?mPZtD>_Q zpC<+hFmwrU9z-J}-LT1W^mn5*om`AhMx?J9n77d>{|K@ACvH28WZ0Rh*||x`c|qJY zX&&0}kq;d7PIb_YMQ;pRwhUL5!cT{Zoc~N4l0Y{7B0$!LX(kPO=u{f5ZO-HJHlAPd z3!trKtSgBdHFXJWx)C=0Da=;&Pqso=VA6ax3pKoMIz^kU3A`(+txyCh2ny42h;Uv)ozYA_B3>aYP{j zie0Febzz#*C=}^iU^^K;>bH*|1>|^wkN_kn5=(-tVA4wfS9^R; zcz9t?7oX5nl#N6o0ZPt;_~MFi8x3V|xt~JrB;fwkX~SzDK3O2kEt*!M8GIkF*Tj3% zn5z+!olZCsz~wv`F0M=`f@X2fAPz|tIP>i}tRcbFpB1frXvu}ZS;Qd$&eXLNo5uAz zd*% zfs#eU`0{sv^>Jd60PE=!Me>+fl%9giHnx2h?LJ9F5+LSGb(eFQBH9GhW&+9t%bydO z1jv_kZ@nMc?LRcT<%~fRK*_|(2q!pUSM{lBeYq9z z4Qxe7AXr|L<)xn#BX}$)*7ya2kpRrTQaMx|i+~+CjCH@uojpjM?d9bznqOi67P2P+ z`@HT%8TMH<-bNe};N+~t_GV7r_Yh6D1SjAuJDunYts-wH00{u{a&a+5vH)3CevL>Z zK$<4Rpo&|sDBbSRE$<=*2{5J!u_#7Xq4yAs1YkL1VsGuyzR@@KLq*<4-X!3iH&Q9) zmVkFwf!`(w${0jS9Gt9TpCcd%0H+H$*l{)0 zrhkE~Nx*u#fJ<0s#s4Q_kN{(fT%u18o8BAfxJtL=OJq+1_VLx+$t{iKr@cGYgUsoj zVpNT_8BF%^VR>?XV7_x-^iKN_s=sc#ziq^8Zppnm_U8TQou2nEqLzJKGTWI;-xTEa z-~?XNXttJ@@x}v%hs{K?SJ7r9`4JWHNax?+1fJI=ye;cjlQl`MI}!%?Qi?O_2$MD9 ztr|88oWmO^abMVz19KuboV;rmj#zV@-as$pEVK_;>YZ@G#p;5b7aoE;0{gpCK9jS* z?RIM-&Q~FhA%P@0t)JtNHoYs=r&bZpUn6G{aE`wkU~j_ag<`!t1LZt;LU(6x2dgLJ zMt5fi=FpF@Q_iFD0&4%b9rhNQJ?FubyH7)(_rmUvRlD2WxU-=j-Vzwz7rP%;l*jRf zSP}@4Gp+0H5Y>`_o-Yo5U_xKE8bNImMK33J5^&Gyg894C4)w+U$AQi>EZ1%1O7fDy z>IHdu-`_WmZ}Nt)hHbbl1-u)n z;MS3;AazfW3zG7grDarEE6i6Rj3I#(x}{h)@coSq|0`dSjTcEzTMPjgukge3-@goR zcpYnx`p53nV&JVyF4n7{+#Xf#)a2A=eq627o~^e!me;zVq`&TFJzcweJ1u!ea3dZ# z@qO*O#9ABg;ff?1vc>%kSL=l}cOm%PH{gS2c?D~J$qJd!vN3v>B9aA+fo++cT>QjeW=ADfphP1{WsGIP8x zQ>RYVYi+&pwL~O0`*}mG1|h03R%D;nRvxJpdQ+D-ofyP70~nH@F?3H7_f-}lFMcjBPKCVVoC;*U_=U619Sf^XfVdrrZe){DF-wrAA=CE?>SLme$qavp8{$= z8nwma;!qduS;d~zsQ*noKf?3d8J*p7rFE3nSvoMEra~KsPxLolVOi90aSaJqHqm^@ zBzVdl%6>wXec~iHZyu5fSyhsBcLqBfSjq1{=Bobvhtxp$f(##E_k908Hw$oZYt7yYA#N-oM4MZX&?KD&ymMCXF4Ct^s=jX(+xv-U z&rxwkUfDlK1#=f+MHtxCx{KCEwQIl*B3?a_h$+XYfd2g?5$%i-SM<+FxlILfw?mZc z%ZtLWuXBw*7DrioSzFao0>!TD*HU63gnBj0Du|~?MeFo%m25aXsbR!ZLCnWl)#LT= zs?xk|*aODb9`ok}Do{h7P!v_7trm%JiAM8j;*G2Z*G`5s9I~ok&DQ|)x5O+M;a3zz zPkAmKovP{Qh&m>SuPKGbIPpQ3^5#DfvrvRykyCwqvx8;8%k6`$v>*Qk&2am}C%b*~p4RLfhXEq#vG%Bc>=jxJ zhK(`|>nk1kl!S0SUbxz#{_(=Pwo5Jm|HsBX9N5g6Icf1>v6P9;x9QeAi$1hCg4JKF zVZKYIfh8V3A)i`c1oJ~O%j*8f9NWr6G+k|vrc1h5QdF0x1}GYsk6whxIx$n)Kk-Vg zaHw6wx59ZD?E9d?7|Il(bo^ZsN|(mwt{4{x?p>XSr+eMi zWxS{>I@?lICtEr&KVXI0IDDeN@fu};s^l()@_AjcD4ueM{->z^Ic?O?y$xG}m~_x0 zr`bd+#07h3j#s)%Sj)T8>g`tx@USk21M^jUUar3`DB-r-7;^05)%5gvg?K6>XnB@u znODCvlI-mqf_v+G@gf%gue4=jH<9U-=(+wWSII54tMr!IF1ZDAKBADEoADWk`bxL% z69G0@61a`SCt&36!P-i<=5uPB2D!8t5Z>OxgV9CIP%U+k2?gYYbYcI5tL#O!%Xe%S zYhP20IYx!cZR#PLrD3MSGv2$pXqQw9;yDGb?4N_#j^#Er6?T~8aO`TH9Td;YD_Ng9 z#pT5o-Ca;*IoWZoCujO6dlMvuz&`;YN%CwkdY1zv(J#p4wH(&W(U88m|7P zKm~Q}DTxHZIfSdfrIu2#AR-3)b*%1gFLNtMOqnp6Y%rY?J%?!!%nw`{+``ym+&;RP zNwJd#qE>1nhN{F!AWw~-?4Nq2yGc6Kl)!@Kja)J@GZdwEy+qx4(dztw@fY?VFci&} zSt^*HT+A9X-06_UXf4+9!L?Nx>(MB^`W!|wt9$Iw7;}wnOnqYEsFn1R5_k45*=pfx zt;O1Q!f`AJb3U+FySlT2(V!hmw2=2K96bBrc$1pg7#j{Fr3V?`oXJKclj(DMA^{ss z$u*mGNS@wQ&`zmgFssTyq)u<|WDkF%nC7Dsh9H zb2H+2)~I*2Fd5RVR_MnGYbKsp>bq>LIecQ11V*5Q_Z8%wpWFzUOzGy<#j=^%!7Hfxw@o} z0rjxHipO2=`~JO53s{nXW@8rL!x9lTWQ+S7be1)_ zu((f@7bcwX887uoP=ZHdGOsMB!830-A41LzSZCH7mg|DT*Y_{D9;|EIEbH1e zo^|ayu+B)EH?+#QAg~J39|o9hbZsR(HpNb17aMD))g|^RYFF_Fcq(tEChlt5`3?lIQR9S!hE<8F6_p`_uBP1H&>lWJPx+d8yvm=mc zigV^w12(p;j5mg2Tyuzw$F`c|B@UWLW&A9WINeZQ5br4k5~uR6c^-L$&Ew@`8Q3;2 z+oUaaYwjrlU1VNF&V|~)oVn#dW@&|LNsFfXzmy2E)^5Blm0{A*nZDRE-N5BMjSA#a zg^_VGO;Xy%KTF<4ny>NBb4`^R;9X=KHd^P8bzab3nV;wFNn`cEu{Ve9l=)5G9kfx8 z8+*GoTn#CcV`2KW zpf8(tm%sDz2r|v-vRj z4JGBgfdLp`hq+$IE*_E8E{E7&{~FHM2POS=yO`?rG@6jS!BU#1GQwc#zaZF%h9`a3 zX17X`&nB!a>r-X@^={eZHM|6zFUx7tGMrbsv)wu;i*=d}O{Zvj(olK-q+Q)@-P(1y zRHw*f-aKz^I)fs61hW@-7!QOvX}sU!oE$mRKlyrYDa=}V8!qRR@qTJl&}#?xbvZ+i z=O`9qT~N|rck8}xZCAH;IZlITUJoN9KbJhn7!gBFSZk4=hhRW#96r%M`Bq$vXBP`l zZ5H-gY&VFM*Tsk-;f30R+#yIo)(eO$>z^R}uh2_`b>5Sa4C|%U`FT8j!w1atGd@({ zgmhv5gdMmDPu=WAkUOv2nql5sz@l6`jPBLDdoh`9#orV=g`C41#7v!)UhPJ?0dQ9p z3tMUExQWF9oh!G4Hcn&Wd)3}_+8~a)uCK#5y+jt9+R+^!J}E0ml{bf(UEU ztS@wtAGms`ySLt%b-{nXQJ3`Z=MoYa)X1O)2DR?q+V*W%PFf#)3n}VpeQ;%cIShw| zIi0S=R}G4!d0u1Ge4EWgCZXrFHvt=~zwBdU8GTpU8>hO<#TUn$u7DNOZH;MI=L~Hc zHa{f0XyVP8zz$ft%vxj4<AVHc_$uch==8S>@#z89NJhL79$P=9)6`K1JrBJfVnY9lfZ7S0TQRv48dCr_g zocyHrkg-)kTo~pv^8m8Urm@G2W#p7RU)T%Lt|%tVlQPcDMDAzR$vu&cY2MS66+It;lf zwd~G?jwohsWz43Q-339ElhH@=*AOsIBj2p&A6Z;pcrtXZ3fm&nsGA!_IjbKdyxZiR z?mt(oXy2C!A$TukB*?&!DRla2)hQUIjJ$8N?}ejVYu8bTcpHaL^f$V$ zIa`ojGHQZ|!N7VnluYdbWEsY?r*q4KYUc%sW<2L5F#MT6xH)HPyqoE^!^jO zM(*2ecZsiOrBNYI&pX{eeVg4eKO*#Xv5Fi6cc7eScB?4scvF{O+p70gm-vxaYp!z( zUE4p`iNo1wzv%lGWm(&4S;9cE7BeHF`)F@12RfV(wk|IUVrdoD z*X+TrymNJQiL7QddDmmqb^V&W`hjjqzzS2MHDOgFD`>gBgox<>a%?^H3bUB}w4Ag3 z({@3W;I`oP<={nv!oKI$(cMKfJ%YN%9roAUXiq@7V1-p-z7!t@+u1MRa8A}?6SN%vw}V!_I45d&K!A7|4h0Xtu+?L zk_EjSuz*;>_F$@i~=+*0M9^$&oXCTi6UQ2XHWZSXkYC z81LX6JbZo3T6A4d(qG?5j^xp58H>(#dQd`IY-D|T_gw13#^DqFpsZ;xE@@F26j86> z-5r5FIdZ0-6gJ%(2@Ig%IcH&uG7Dhmb}R!Hxa0hBpFf*&3apcNzl(4l-YJ0lEd|Y_ z`A@dg>G#c%*V4`54YAHaZfn>;zH%EAxMnQf_K1e&+e9wZP;HwGAL%;Q*eL4%5OqX* zl)T1K$iA-aQRd$#^RN|4)=(AVM#+)HlU7C9{+Mi|O-{1wK_UM141y`%R4CR_{|2o4 z+crhsmWa11$wYY}B<=w(;!S3 zwYT3MrhAWYKOzjZ1j&nP1wEW(dz;xkz}aG{q4Uy$Pv(o;Z}-XF=W!3SSu8bt0db-u zv;546T3}PT=l(!)Pi6S%920s#x{OArgObC6x&C1o?W_w*`s=p(t109;v5rM@z4YXS z3q~)uK^)u??GmJKk%yG>WE^Y%u^k#WG+Jn5cbr*teMF`+{0+lb^w01z;$gbpUc27j z4gsQbAfBI{dBmfU9OzT{*ktHj{}etXiNQr5MnvG`%iZX?rWM^pwCt(=CW7tcr@mYB zp=!~`5*e&T%+IDeAz+Ap}*@>A_Y$M5yNR!=6p+a=vJHp0zr621c@LJqro%<77lWxcsuXpC+k zquSMu5oC)_td9sTx{*5v%6npUZn%25)yeq!tkDwG_km52QpakP0MF$;EklGTP|^~Au`t+Zj~H7_BIJW=;u zoxHKYaHpV=Zj`L#FDJ`L&nDSYZmg8pzT9?dYDuTYyo!ut{g~LqWsd#XSh4Aj_Bm3W z7;`7#3U^X&oFE2*t_0&C=t^Y!C+2k&qIl;cdB1Y3jnlqEcR~6cwRFG3ypi}tx)u{4 z+YUobdKF2Bz*_%7HjLgZ$OSqNvB}XK@B99MuDWvlhMLRt7W!?3F4QxKO$_B=yT+f7 zWs^>U`Bh>?y8#o_L$>vt3lDn$=AGmmY4sb1Q z{?afj$B&VtZ=#bIPzvx!UeU3!{zv3B)Fw~Rq9m=a3ioj`Ot-_)sZKuWYOWk!viqI# zur7xK^Ytfksxv6*uiJ*xwOzcLU54mXXPTjM!Q90$UzNFwXrCy3%Vv*=SNLXE`OH%! zIccc8f6_K5PwjfW6jDWJ7jq%-Hi3R`)S_%kP?A&qO$iWQFR(WN>!R40ID>^p8Z#Yy zXaveQRo17<;CH=*O30%4Xa_Zit(Ve0AQoet?hvx4`=>iFuSji|JXwZ1(UC|7cM)s4 z@|dfm?lU3m=~t1(YeXF5!a%h<5;A*k&Ttn^dRzaZB0|?LcVEC3`HNH>H^)EI>iLS3D(kOz6aHIy2?99!Mn%SJ zcA;J3BRn>rbK0MlbGCol6?Rpp_XD6D`q-ysHf+h#wtSR_8N5L zjglk;H#$K*`^O$bMEUu|s0qWINS1kd{=&$xBH(KCA!W3YYECA* zp~N0r?-1eRWy3bCvgn7dGN+N{sPrA{QU=_Ev|NiLoI!+f2|Cuj3{ZUDO%khHtYgF7 z+@COGGjOt1W-I|W5Vu@c+@6(886@8tg-ONTIm9cRTCX4N>ms8QSJRvv$;>|i3^5H$b3|qiw(d6 z$zA>mM7J)o75g#*jLBrtH~93U_xkkP{vMboatr)5?y$dR8y>!J^ER{tXGhy)J+F`b zc{BRLdms_6kN3xu>o+Tk?*$9=3F$(7WlU}e`oGZ?sCt)ulJB}cc$`@u>OBd{w7sWz z^FFLv@-Yd4-C&jT#r+LdJzoO5B_HDo5`*%_E1~KR@snxM^`VQREmrDQ-_B4VGe-u) zCQja`9hP8p{u8eI$#rc0i`M+KtllcBZkK#x7K`^3u<#Jmp4evBeUOepx|s{mq!?St zyAL#8e*=R4Ai(Gb)PkTkg)|wO3&%t3u^i)(mZtpCv?W&0>-~5s`-~ zB7cEjG{X%^*ziWcGPck&=DGBHjwh0hAc9aG=Isn7Vwx9|VQ9o?FD=d`v7dPv+0cmI zauZ17jb>iqrLp#E>9=lOx1u$F5il;|%POtqW@~<~y=S?_qAkf4TX>khV#@)1dmdj< zTI??C))jh;U5dE{@{48>^2dio?nrK++ipH0Vkk7~!!JT@ptO$&3PU|KfTEh(9KPjC z0^t2e4p<&lM&LISo&@mSBL~k3OIeE*5#fA_Kmrk-#u|4~5=2vn8NPqaklU>xBr#@w zfzfRP&4<>@Dph`^+wARcA8hsxFJS4_a%ZNw(89k%lJ9MZV`T=fsrzfNzJS*Z%+vRx zCY(L)GIvEY4~#XYbGNCbVxt!QhSs82+-=BV&C0cf7}Y$Iu|@*Z+3H+j=yzmdwO$ z+~xb{(PmA~Y>`bw4>xC)aoEIu`^()W{hYj>sLKg#$S)@b=B67_txt)bbH!<1tiU%^ zE1F7yTKZwFrE}G?m#P>ui{hG7_99wHpxMF^fYwSjLV(jL00{)R;|K_lRG$$-oIxQ- zAjIv_I#VX{8j84EV`#SvNNf2Iu`bx)8;-J^j@39Zh9f@{@)x!c@+YJV?Xi~+M!341 zCx+k$hJc9fPib`DRuNwb>lB(Ing6CINuWftN-z!N802>eNdm}{c`LRjrdBBqu&He?~wO`X`omCswWzaQ`=korVGUSK*}Y;!JBr>Kp1B zeh$p~TM=r<+9Ur1aMx8}KM$uk2)O^%fV;Iy<{EN=KIU0;3rR(B;PntF8+IY!a|uWS z!1!$3WPy+dO!8vrHS+?3k^uCE>4Q%&x#HNzh4~)_pbHM5#5+-ws>WCKR+>w#Sr>>> zP)EVQ?6?i#xE?|zWyvA$VZyzslITf^p~wi(HUBR5jCX3L)6{n3Jg#Dz*V2t7&@4V7 zG(D^j*(~_$2~Gm=c%Nc=@KpF_1$Yw$Ab|i+ts;m$07F?0c1zqyXqjW--r<0%psm2C zHL;KhJH9UHLq$Etdm9UQuzU0jqWbu-$Q{WIjOiy$AJZ8T6c!OB9oUzaw2~7g%_ zKIR${x@Y?OmV(iU48Zmij09j6a~W+K2H;;oM*s`y z7FJifCWmu?~W(%_i2@G68 zM<7JVB+l@Z1;3c!Bml3VBM>5Z@FZ-*(^i0oQ2-JMFnvcL1Zda;mp$oVb1CE5#g`AL z3X%`rmBLr=MQ8mvFn2v2v3#sO@;{(w1!JrPPH_;qTQzbk7-J>OC1yi?%omt$NT5dr z`7Hyb=`;oSPXr_ZUBZY7U1JMNsP~wyQ6Lnj#xBI@< zlI~P$e-F$#?Jte}O+LWaQ@!d^mH62R`5x{0@_2*(iPNsLDyCjhFTOUX4*nh|9&+0qVn zDRm*4{sT+}T}lTtFhoEEwlo5($m&i54&rr57ctB^^au$ws3Ooq7#n!rWad1AkpQfU zlpBHtA(sGNKtK}uXZm;p<3?b++Zk!z{}l{?drR{jZF%L_z}y)+pK;;Af_~ZJ7GxxJAGqo zQ5$L1p2KkTaRQ(!vfv8d%#+p@v!65gUgVj(Bn!#`Vqg9Ps){V=pcDjQ_{!?CpyRDU zC{l|mW)~ep0wt=*f+--I1qJRk_rW_4{8QXpiAw_9D$-#JH;BSO)u#}W1dtV^Lvn5e zQDI)8=}-^>QNfV0cd)h8I%MCTcLxLW%QqngkMqaDPr$}k(M>euahx?L5)Hxl3mS}7 z#7L+W^OVC=&CC<%ClY8=!PwMsms%X8MJt5`-AYgrfVL~>4PWU+Enug7WqFFVR^Ltw*LTA!AQixC;~$9T^foNj6@u3 zNsEaV=KXXE2{fpn7m$L{q!@sGfM6s5t6(IO0!zX!0Q@}ylF&a>ha4F<0`Bi*sA(90 ze+8XFyngGmyZt>dx9?=9&>bef09iq&Fo0AjMBRrp>M96_fV%{q(?XOo*U~#AP^E&F zF$<>QmxjEakR*Vtpi`KIOoA{CyMwSKfStZmXn8l%7{AA8^l<{93Yz6-w3oYn$psH| zxy4;v0eqZ4)}L;fMFq`r2#fh?UH`v!&9dX}L6gvQr!4TX1SSFS&Z%>xW8UBoyM%%cG=IwQl$ddWl9RpKE77+O z@ybphuV1LdFDBe{XgB`%NmcP4;T7$nKhX*lML zye8l%5f~_@2<8g9g#==6kGiEGMnieyjT&zy^I1B>n#vnz`{c$+dxJ;T7kh7qFV-dn z`rAW2eoCl;AppGa74<@iP)du=-m))I?&j-E+9dG6l@oiwb8GOIvp&T(U#9iNINl&R zebiAd#^WINMTCXaa$8_M@Ydb%!1`2~KlHFyOzwv)ES|#x39k5tx+15qI*}&yMu?*r z<`3x*5;)|E6FVei$Y*IZo^uOTFkh!zoW;C};_b~Mwl|HfI%fG6Y`xp$kM=A!k;ksT zc36wzx)x){2q{KCpU-$tj+~Lg3>RjwYoZ=2A&z3hZ{JhD#XDdn7)w4IHi6=q&(en^ z(B;W7A5Mta01{pV7HjWz=C)Yhr9)}lh#lj}ZY1~&-UJj*QrmbW?i`pWaM8)yq(Fbm zrF2<5*%gOU0C?({{}8jqlU;Fs;vlb#ayJ*UxgmkT(PUSQKUPmJ9aeu>#z#Zwj6u4S z$MEbbX5+EKxZRXqJssUX)STIe_s{LlGVTKXC^BnU`%qmkz$8AGtDota#I6ZWM=e5}4@fiM^Mw!{?zV+Lf1!?W~uDpy2q&N z;?o8rgTo1@14}EQ`764D1mZn%Vpo7C29u80qiI&r7|h~xwc{j=Bx3N-Cg3;hgK0Mo zpOCUN3ntw7d;gP*GB5;&6RuV##2*+;&R1#;w8=;=Xl56?!6Z=R)-n!CbEUf?d6bHo ztLQ(PHGKEp|;_ zQ8P>%g5t*|i6zZ$dQr_8NJrb17>STCCWTsyx}%UD)^P}>I1#iiC~*h8ns6mXB563q zfRpyAlS*`q(+s7$B}K~L{0(av31pspB$BXe=uh-Noq5b0ePM0n%o2a<%6oIC=N!iJ z+`)bLfTKj3mSJ8%%Lb;;QOAaCu`9vg)LsZJubjLRMMO|YxTmM?Dbb=wxTbvMWESPj zE9oc_s1V)!h3twNG4WO!WSK6rW=t8aeCmtD2tYO zjWFE!4sk)9%uDG!YtFRoO3Vf?;iFCMW_w|2McW}cuFEk-KJwCeSj3OU`y1%462qZ@ z0|Q23P@4wosS=~_3`cQNP^JjxKI|rtK-#v$O;J=h16wzEo zKaxP5$@}gROy^I6rRKP(p!r35R*gJt&MK7lLzW>&>ImX!rq5I3CvABsnA`-@lxS6l zY~w`3-Uymae_eeYUzAdy{sjJXyyMWcCe?+%?& zG_#I1nFNYVKEpD^wSkhz3=0)A@25v;)?pJ)uc{Aa@DKf|5%qNrA2!8KNogpM+yG;g z$kG|roJja$2jJn?-&enuNLV?XW1dYEHm_!_C4oAVXXyxL#Jd69$LL=gIcCnBei3%1 zkM91i&#$PHf02FUG#v<_oJm!_*yZt>d|E9Y==qY?%#hn05e9$)ujIu|t zeN}@ko}nkK`TiS&DfIB8quH75NAm3s`2fr+mQHr;+=2Z)Fn@25v(~u7{+gThBKB7=Ex}kB zB3S-cgQb*klpV|el$Tj$&yxfqm1oDMl)#}|qv}d~8SPx@8E!^?K=KWL49xyjM9k6h z+x~;3kDHFQaz)sz{hBBqA1W1>lr~DFHAnA*O-U$e%%+7nbBjra+_Dv%p{OE-oKiZ zz2@)~$ZH5f0+4vWXHpQbw;x1G0sTCINC0$2>7coIR>H>l)@)+nI0u7syl-7lh2{#{ zhTc-Qr%%IF{JJk3m}kEP;dIhaxhqQUXTFcW30q1OMMkh~)?kZw4I4k`#CeQs8et)1^QhX;r}wKunPW6+(F0`g>%~3=q6nO)NP(AR zYbsOSC9`1){2W_U3E5P+D@sT46e%z(%D@mA!FKu7DKN|0r@-)p;+Z$mWh5}{6e%#| z97%!UX$$;j0+RrEiWC@f_Q2Wj44fubHg6?33Bb#zzz|zf;3c!E6iA1fC-@W?Ud}k4 zA_ZQWq`*s&0=K`|r9d2M3d9dUOpyW=LU|)9cTAlEt;{Y3I=Ri?(HA6;cZw7kuuoE; z2l*U9NB}ZL3JgHfG3J53Kp+wTl}~|}Y6|pRZ}ce;Mc_O|3cNIy0xwOaz_Sm#6qqX4 z6d2x5QKm?NAuHD1fgv)2tvPiH%(C_=Fg&4n=3#Uh3AC9a1%{k`CJI9_%tBPuJc7U^ z0G=WRMuD^8IRxGyI0?YZr@#Xj#S$Ux1gGCB7`w3mMHxJh_tq-d?Us&*J;T-Bo=|XMYdOcNw*7 z++p$yF!9H9V_T;HM%g1Y@6^zYKc<_6qei4EqTJ1ObO{MWjz6ZG7{JC~3g$+_kkIqf zJHQT6T(qU2ZXy&3prViIiYnA_eib*HS2Lo#ufe?J=y1NX*lsOLrO}@QvuP1wbgVt{ zKLAm3beKRWZ^Y1BHHJz)BS;uZ2!(Q+x3Ik;fxIP0hZ*)7Kq-*75rhOFB}a!DkR(~9 zfZk3Z5&)GO9V)v@az((r zR|BSOkUL3PQ$<3N);x}tlZ29%>fDf7BjEU(G_4u|Jj(_km^N3JW-(0h_O0vjz})dH znE7}@x*|QYH?Tu;Wx13_o&l^v!S)|k+m{XWG*_*$NtvRU+vy1sh+lHDA|t*4*}6Lf zH$ylQz?JM{#o&TkJOsIykR*V-zI3cv|47K~b}pBgFdt&*Nnp5gAe9_2%NnNUzIF?5 zC9bTr7gsvnMF~YYQRfM)Q?@4t=AZT>CQpf;v&9)+Qw*5%L{ljcuAkCyEjeDyV=v(p zJE^$l1vo+tD(`2{vIU!fOh zsKhw&UBSkJ^k!P~c-wroi?1dxcV|~;_VXT^}!in?H>6yw98ufCny=OVPNwJQ; z+!b49_I2mmz5V)@tveW)V}2Sn>o|WL{DfuVy9}lo$KESQUy*`VMAViaYi-Ht2v4P* zOpRD|70-N;{w9G|?RXGQ4XHK4n^H_`zD!^e0Ow3LP7Rzyeg^z5f|CIJmS~ih#cpJf ze#B5t!U%XdBe#hGm%BaPRda^F2If&OMZg}T2kt-M;yZ|>1F=Y`IyePFoSyifV!rq* zm*x3OIuBGbKccTlpiEVj!YLzQHart6ntOKuNdm~6FO=6dx%C|&ZCO5>?IW?+L&MG z;GG1T#9xG-+%3*%jBp!x-hAda2uK3JRy92Vs^jNOg3wDqf0Ljj^j9SfF)z^kZ*>nvhzv}(#<1M}$@B4Ce^;(_}QxQeEBJe&d{P7i9FRy4Ka z`Afv87NU~*LykO2piD)TA`Pb5GlcvTLXrToqN$xUWRgEa*iR6a1hCai?Fe^l?(YM{ z9AG@!C;?1Gea4R64gmiL=Bv+UpOHV60;ZxqqlHljgy2tW2v%03bWa0jNw0`mp;Jhp zMnx@-RU^oa3EV-#kpQl;XixMC1JAn3JcE!VfUKs^2z3y2j{l1pauN>!sHms4&|1N= z14)1Sb6{R}0AY8mJ@P*QnX|@!(m9v}Qn3(!uhICcC@c~HiHuM$b25EI0(~m#&}HB> z3#LF%B`66%E9x6$K$CDx0pEwfBmj7@_qHLxZUW|buG-CFbHD;^xXG&S-&H!0a&HLHiB7v22 zUWh4C8;5{>2)i>D{sV+30erWbNy|XTNN+PZYeo1yia-Jpo>s}&D8OJ?LuI$Y9UX1n z#^APr=0mHZzKn%l>K?Q`P%WrS!NB~=a}eX}Q)TY3sh7YAIm<~(hJhDF(GljqrD2}4 zq;Ogom!KJFf!5|ZOk5<;aG}yj^BM-dhR_eHxOqMWAb|jP96P$ZL~aQCCBl*bwwg&d;ob-_{)usE zqXaM&JvUo&^GN(LFmIekC>|}p?LR2)Z9>&{b4@to)p@a5|WGv+W{*4i)9t07k>jgT0qvBmk=@ zx&yEz)I8w(2}lCKYbyz~JC+-s`wtmp41(%x*PHLoxrK@LH#T&V?Wx^ie~tSE*ovNJ z1h5K+*gN6tRr)DFkeugq5arAq69NfTs;DK*0%|CxVGUtP09(<#NftH<$~5!>p-BK8 z{rK9%GX|D_BaO2jUQ9(yMg78Fcm9CB_$|K%=GF!F3-!SLhi(<6UJs{02+uP$JS)ms zp1%esl~W}1S~`jZ%2d=ZOoQ3L3?N@mND@F+RU5p!nEivG3}D|xSQ5Zi(=QZ78$zu$ z@5gYoQ39B%($@jqDXn(^`$oRvMF_;B_){rhDtZ_To;nsM1VZq^8iG~TD60e=5=fSwXO_O$x%_fUju8;rVOcBq&05yM}B4yG`_KZB9S zsj{+F5BkUGf525Vm=b;(!URGH&uIu()I0M0HFy)1%m?W-5-3wq_c9G;vv2_UAwrS> zvZ6jq8ZyYf0qjQ!O9I$x22+CC5UK%U_A(@s=%{FF`T)M5XCL|K&w;sm2|4yyd*pvm zvub8N6G+8EL>|zHtZ2xS07yuNdYO;1i6((Q6*X8HI1S1a=pPW21fUf)92w9gEK|UL zOkffKSF_Mi**8)stBgz+FhHs*G}|+-D|@6Y>Vi0p2{Z9fl_r(Sp zBr9d$ z76?ZIxab~^6QDJ~8`;P^-~0wcjuGJ99$(g70Hd?GG>_qIQ*732_Ewjcy36jXHuhv) zPuBg(f!WD4bf4Vw{?rg(#^|oHF*-_El?gHX5sle9js%FLqC6>70&_HT5eYOkC38_8 z1m0g0cVXW_e&rKUk@1Q7Fhj#RCTjiCJpm`wY0U^bdny1DEktGWKzg18O2uCupP)i|=6icm9x(l*&KusOtoyAy$`_h5g z^_noklM{(RNm&&U?z!oVAmI_=pQ$LqQ`}P#?$4;o=FM!?NUDf%&pao>{do)iR)UjM z5#gS>2Oo}be~lI3S115U1rhFfClT(8EZpCvB0M<@^wL8|S9ybvLf9hr5eV~+S0c7g z%#`|q;FAFH4=_%U;u0YSf{Kv7OG7&TWVICQR6M(HUr%~PgmWt>EB3g}-Lx-N!-km*g^DLc?w?zHw`)8nM$ zqZQcpLj3u#v-7K6)wV8b2)`W;D1L0|KJfb5C&f( zWEmLBVeVjnkU-_7DFY;;aS|>5WU2=%GW-`~$9XHyALaXuJ?#{0)bw;{GcccLm-V=g zJLXTlZmKc0W1^lW20VSQZ-{wIkEuhZn%tbIqJ_Db{V_ldj#P~09STQ?a&$>44x!QTU~z4uuHkU^sF;5FxQceGZeU3d+F;C zYwHnfNf{55dl+-2XPrYv8h6A)+-=afE8lepB=o)t(FTS{_}VADL;@|!_rzmhwowgE zS;*ffBncqPx8wm|uU{$_y;Cjh9}$)Wuw`eRLjy`o0>lTV*z-jAZ8$#4_mEW0L@~U% zy4eP!FC3WDe-S}?(oi{zBv6w}p?v(snj+np3^NT_Vk2PhuK^o>s8*7>OPF+JqJn5^ z)-%13K%?>ssbKe!(l?@eS~Js+c91!A@?br=M85 z2b|`mUM4WSe3^QAn&v2!(>D)U`3>>RBj{Zcs1tuWUo3E=kiHQN&khv0L0}R9m!E(f zwxdL|&mvpmT0fTHBmj@DW1U=SiD%W*hq74s;SA+i^juj!dOG?|u}-hEI56Miknw2w zZT~^5_-AVisin-7FXHh^jmPcNOUq%Mm)NY*2PBYoij?V05%l|=QOqGikN~3e6J?6* zD^VC&9_E>ZA)(z%XUNVXLdf&n#;8%Jg6kARNPY^+e(Si?(}RKeomV4dFo3Yf!B2pd zek|+wX*weY!e^I;&lE$*Py-2}Pz&>18lMD`UsKxn$`TGp@!m-%Bxah*5i9M5UgsIQ zDz{?~24=o5j&R2Sb3dnYL;$83a71%jM+8i@%iu&6Eliz`Ac5rNr=YSRwh2i?J(N%+ zfGXb^$U+5mI}LX!;Ya{iI>ao?hIg=9?dcj~4iE^Xhw|7}Xl7q?|H0PsoG!zVg1QzA z%$MGPP~!$)Gy7bbJ+${sHI&bSD;~mbQNynEP(I68LN6>-B=fIy5(!NBq>_0cWXmmb zX7=rNwh{B01$s+u=uS)%g7V#0e4cNn-9zTrk49w52IiwLgWon}i-$`fNa_A)hPx(k z0>goa)q$n^qY>Wf!`1nfPNKXjYBti1Bv2>1uXuqjOa@WEq&tLkh`t=MD_~1^gSmQB z@)gE~i_L}hLU&m|cgR(odZON0tm}z^+4l2r>?zT6Qar?q6*RsKxqwmfgi|@-=NGA; zOZUa|0L0m`lZtFUPLGp7J1oZ@-s`ZWat&bGo;apYJBz!mM=b0M>3&*2YUa`_a+a1m zi}<$e{QMAG=|jqCdE^Yii0p(V^K89M5yTwj!K#nA!9hl!V)d*@ra zXvr4TSuikf=UnIdRGB}Nd!}l|v*3yc*S|qsU%C~~G8Sitg^FZ0adMFa?k(Nogna$T zO*@j|DGPZTAxW5j%7%8x*Fz>9%J8&>y)R)&09&@d60+qte;GKtH3}q9%;)|G2TdG6$E&6_t%52NBJ$TXBB!orRu@dNZ%Ncs z6tk1bh6M7L9%m$6ePEQdDQrz^vnd`ovzkR0@JS8IPq`1c7(Jiau3T#N-Dx zCQGjw9%j9HskPi%Xro?R)z&5j{k1#%NhnnMDO&_pYC}p-g*OjkypRB}Z1+5k*TA7| zYtcjVJ~SU-;LwqQvFW!P%SLI6QzJ2>gpBzJ;nD^zy)u z^(X6c(uVGC4)pGWo9of@aw^J~W|=DHJYGiFfuT$Y>`!W7KfQDgA7zoi6=H(?5HH;; zAL$Vn>@h2-1 zm2lkpu2j8n%ic5%{PF8iA5LO@NR>+w#&h~Eh+GP}>FVI1&go9P z;z?H?=a1!QQ%(V_^z()gOflfHe^r;2@8i-OP6L-35-rT%(nTbYyzIg*C%AQuH<7uE z9-*DQamx2^!DIo`P}ItvEowZ8<9tfxnOnH>6i7zU*mc2R>6T=C$YZ>e{t z>H&s~ePwcmiew(m(G>}_D7)M#R6;!kklkWXi}L^IE*jA*ORJS1L|R6(?ZqyjS}R@M zAlP{+D90l7m&1XZVyC23BnoeUU^h>K zk2R45s@*a;PDj2R7PxlmEsqG^E-#5bP8|n1)2`Njn zm^zI+1TWCQ5FYM6?wexs(hvD)z9H`6NJrGn?*>j)!G?idl24scWzDx3VN=&n!& zW><&Q)d+KNu1TiSW(`c6MBdN^5P*&8H?OIp%9!apU z%@-5p*PG`bQ8`>6V5I5AGUiIwClYw#*;5RiMnSo{)jfzul8C9@F7h%noV1y_hT+cG z8XGueUqKkhJFI~s(hb8ku=E;Yg0CzrVS}z@M2}-^?S|(%S8*hNJnNM!k|TEmYs=Ns z1Wo{~V5k^R)rv9I5H8^B^S3Qi9PARZqYSYUk}VluZ2I4mf!Xt zn3sN8!ma35zHntvU0M2N3CBV|d=Gjcw5IWdnU+u(NDfhI|_uCTyyb;4#l&ofW8lQC7uVTfWr;iB*S*=PD8C{r1*%Ah(Vx>8E&s$S#WoC3ua9{e zwG66ea*a%Mi42;X>Dj~N7c|;hx*1P^6aWGD77e)a?P0>xMw=+3{LQE62oi`r zMNB9530mFIQsyrRL;|4l4@NV(gb@~M^=X2U0PL#Lc}_SYwnENtW?Xr%gMIn+Q@XJy z-=fe(9=czXjWT<(Zcp01z_8cs`Fz3YK6aBy>{w#AS+X||l2ci}OorvxPmK^(WkRIB zMOw9XR}FW9ubIb&iIgZSJ_R-dW_4`nP;Udn^PoX!r-VsOzt6g>GdBWBZdbi^L2BBk7`9Io#wKPCHTWaMKYJutt8N*?1R&gZDXYi zCvv-+z<%Zr5n=#NCA+d{!~3v zx-kuSI;SKGnBSs5NTv*FZ=a+wbp{bjncpE034o@FvJ_B~P10b$OE40EU0t#W4+%+)wxf4;g0a2DJW=ZO1M%^^wofSlZ5q+Q4=qugF z&dBMTq)fTunHSP;Bv7a9_8%F};y+c-=Lj0re1?vU*|GE*OCql>Ea|JIbQuo@<}$uM zc$`1xPrZ&#E4{|jG0`ke40!9y>aEhF){v=77J(M#=jb02NM3q2X9z^cc&=CtW(I^J z0n}7g%zK2HDU~on&0a@162O&RJ?b>jkV~9zzQj;VxqX^!j@NqJ#vuqQJsOy2Fj1^c z3i!KePeP~C)3pDexi1Zrr6|uvfeV*S5OIx$Xf)9{7eO&HE~tPg3Mz=W92n=GGv}PC zJ7?xFGv_WSA0mQ5FCl897(Yo&R1yxUW8#u%H2Otj;-0wsJx{$=)m1%x z?y1||b@=X&_jXs$dETeqdY`K5?&@xbB8f&fNVFeFqE)^e8KBxs^Q)qs#|EJR`8wl; z7p-7u3YDQ@(QcjItAGlIJ|}qY2fg&)dwiS)cF>`f1e2#CO~z$j`wtW1FRYw zj)rmvW;))}Vo8f7nR*VFVH_D2>izuB*waF0qXZkPr2!1w(yXJr)eQ4SYIbpUEq61(yRyuIC6E`UWj!)bSL!Wduk z8?BUm$IAcNHu>2$+@|Z#FAsV$r*(UH0nr=TjpPOX_PXNmJ=7s0?$NMENW<Nj zn{Mp9rn>6t$Q@{C8dSFYsz9UeW#}uCIGQAAKw>R@4DxQONaR=&p#hQYW!+R0!Dtt~ z9!?Q>ISA+F^UoUIm%1w}T|FDsTba7_&yn~C%Z~jYj?0IhCLD`PB>PrqgF7K((pn~N~#u{@g3GO>TpU!FEy!=XJW6tx$_6a9eTVsQ`}`6+(wL9 zlU{c`zl?WlZ8&3bzudMq9Cvs22Dlo#(A%y1Zc~C=3Mk3c8(zzqXjtg><p!bH81Js%B%aM@;(5wVm}dNV1}fYKG4Nhz048Lhu1 zEgI0ecta7@Znd`I!21y{lhuQ$E1S-F`aUxvO!)j>l(yt|_^8Lu-WX5K^u{Y|Q@l&r zj3-ju@`^Kc?mM8d+m;-$g+2<^w!B$%g&XAdXpvh?hBp)^zWsD2gu+L?fc-HIVsZ6m z#X@%hd5W(~?hi?h2IO{aoaeQ}g^#x|)8>LC(K)5gWVV~c3J!x>`HG`p(lXgkZiC)# z{)rw&%r-va@pjIe>~6jV3gwrDnxY`Ck-O(h?ncbY>r|Lm!fY*drPVGb0u8DBwFuI*n#681X_!6Ek<03V1weoW(ez8fJgL?NIB5zq^6 zkpOZWm<_IQQ=jCVf(9YFa^t?X$q41&bda_(&r}&=^UOZ`O^0G*UXwVG_RgbMUEL?= z-+2gFHl)!FR#Xb`Ix zq)pF~HV?kiP)JfXxf(J__tCsbd(0BTI!UFx6=vv9_y(6_%MRJnpzBTEW3EF!QzVMS zykrx4%yl^EtSmVu+|#!T(e9cIa2u`S<|Qs5;% zJGk$Nv&KH&RgMoG4%YA=ZUxD5sP&Sxh5N+jZ(8y!@h~i2S#ryw1uRnep3~av+K_v2b1fXlNtdg>fxzp^DduDq^lx)~u{FzNxT!G&@HcR5xkIB$3Xq zS2EB#=IXJeKm!U12T|MD#pJg%&LIsN(1^HJS-lmI^48}~%yyk~a2l~f3lF+hnnum9 zVTF#|=9SG%{VVT1Z83Xp12h&Qrs=h5h=1h$yCm;Zre0om-Sm1_{HqtSucJY|V{Ww9 zuD2eJ%sAi^xsF6=KqTdmREWh0%N_f}-gujz73zADp#ho2jn8gs1*IK$ekb){lM>z& zOTv8fk`(w&%16J(N&Fb56a(ZRf ztlsdq98cr`#uKvv8VSdfoJOYTA8Pq_^6?~hsx#D7RQp#?=VXEg^-d_*0tFdQ0wNcY z2n~oN98U^Fa(M(~x+FsbGU>(>aoG+$e@l-irU>2>N@AtA(C^A>YT3-xK{rwoX3uSa zMnXyCG{iq7@zdmz$en6Q`1Mzpv16n`y%S2JKtUuC5P1%X(11unNfe0Wk_gCLNisAb zlTH%ivK@H-iI#*Zg7=6gDXLDfhTY*x&uGGIXX@L$JbQ@U&9^`$;l(eHico+q4*h`+ zf5JJY=T!^C)>;Qa{T{nT8dSaf6)ufjd@GU=X@pd^kqQl{B%I$BspR4a>6}P9G@!Gb zY%*nh;y$8IQ^^Z;2(lu`%GCMch7HYwdwAFCO*{w53;b=wB;h%T^C{;bBm$}2L8Owf z{|@}-V#&jyKFcnXW)pJMwMl*n*AbM~QJ*Ir8qi624&vO(WIMQ*;f@(fUmztKP)c_W z;=GD*ycW7WrQ>BSXe69)k%zgKA)EN(+FLl`GJ9?VG!jm@avI_vYPpxFCE;b>+^Lfa zFD0@5>NIwqG^lrC!FrdH@=?VRc@&AzfJnj#S0NVRnBvGhhGb|!Cf$TfxM*QG&-bJ% zY*NB|+6mX{cqE^41{H4OyJr8#Ot|!}9@_L4sHB~6St>#Sx;R;Mk#<0}Uac^6U3C!D z<;(#ZR6Xs4D4$lFNlPNp98mypPzZr|GkorFt9tVfw^kp)z8x~L@K&0*iImWeHpNT^qE z9zlcJC+xVbS2wc}q1a+W=1)n624oU08L?g+nOrLNkRkNvBt!#3>6VOGr)|4oyq`w3 zw9XT0MLaItlxr<78<`*kI%?`hCKC-J67h^@qqIbB`ylsP zlA{5+h^KiPC6~)@9|UhAK^hQz)`r&!n&8*AZ06XQd=HbS0d+3L>4Xq8HyA#?G~*-Q z|I{4}Iz99Q1Fb>qwe()5?)q*BZ);wlx8B>UIIQ~WHiy~97SfMdVd~Rm z@-Z3m1US2L4981YL%%qZgc~p6nUBR0-mmxu&Xc-!UvKK)G22dW!kPF$vRy36_QWPY zCD%-q#Dn@dyAB#Kulm|X1VY!ojSW6?U_+!<*%XYE3r=d)wu22LMeHmBG>pU6bCnd_<9 zVCpL7qNGTk6y;Y+W1LMUd$SsC=DdXh5d);!t%iZ3zP&%`@M0;4tc?sJf0)F?s5K*R{h^@z@@Fc1D6XX6r>7EAeOJB8Fq2g`&!l&(Zrt#&;HmlU@nan!1ig{Eo zsdx6~r=xKpsin{)_1*a1C`oF++>r79zJ5}BU^2C*ZzT15nn>ybc%IbWflSe(THyqX zrgl<$*eiLJOVQ0E$)tr*LvX(B()b+ebaGPSWS0aB*B9Cp5h&V<*e?s!P(;&8_vweQZ z@YfYpzh*~8gX&yR@pQq(N|5o$oOx0SFEe1ArE2QqY|uQgc^J!I4II-$u8qgIwBOm@ zo!`;pt3RglG3$9LZ<+EI$}@G!tI)2;mK}1XJ`mft@>LJx#mAFAizLv-UywGgJ|?bH zaXmK89+S$eIkq(os#f~YWVMjv5g6SJbGEve4%>jMe`2HCsM{at<8}12&|B=T4a__I zWjj+ZX9FK%4rTck9GzBGOr9fgfX4ebX}rqG;bCfFTE@Bp>KSY#8qhw!0ovMyj4Gj{ zc{-wjqeoR#zCmn<$X{ohyM_RK>rFhf9GB8d<9p^j?h`PB?^n8A7V)H~Su(4Zpq zHA7&RK!x1(oW7e*Y2dVc=~%=7SYF4Hto0nfmyT)Rxaz081HWFrdTxHrWHpK7B})BF zUF~&ctQ8VSN|t2m@A!aFo~gRf?t_5dZzNMK0da{;y-ib@YLUZC)y#GE)YWV|nnp4; za97Aw&*@$|rD-Hn1E(dK>N&oaj%k|6RN{J>>bW@z&DUt6?8ej3@-^n3-ptg`cpA6G z?70n8>yefFP3J_=k%o7ZG^~6PSLnH}%jd2RlM1Df$Q@tre_G;HoLfesx!(sx-aw9=8!!Er_ZaLGHb(m ze!IfnVd^b(7J57Ni&6PT)P?+N*P{8Qy`|b)XqjK?_n^uzGxd&lA_v8F``*crD zRG#TsCj0cjb{6W8%0omdFGwF!UUP}!C*0I)*$dJjAXimQvzP{NTUPG&WDhS9HO*~a zDe5=4dNA|Swfa6|&DN|R+qI#&ZyJ%X-fv4&_MKc$^gFi7tqp#j|FYx#(gsJrN7#f0 z6|LU=*=E|e4@q2B0Ev61B<{7f6L({u()q`6%oO>lK9iRQVR?StdjQg^zHH*xXf5we-7L-oUZW^eBnvw=8Oo^a+)1RdFNu4G5$31<$e z8{d%B+|?;;TN-e#JmD-jkdZ!c^ANhBft$(`&VrkKWDi`ON>?;+RdvECfcUZ@8(i8! zJ&}3lwQ%K2!GhWu$|G;G*BauXw@Y4+-fU}LV7Kv8cDI&tSTlWMC=0tW+Hy_(TlXSnJ5)i!H;>N^fN}-XmQZo{GUi`2x-atL<8HFjG(E zgz%1hYNqtKK2(ZJvQJ7uRyZMfS0#DNpURB5ptsM6=v-bWWWqqbhMf!zYFhf#dJPV3 z{g4JiZa%{>;rcQx0ntrn{EwI&Y?^iBUwyOyXn)$16-{h>?qsUNm+v0x_VuRz9UHsy zGJ4j)Iujpg+-FMTR$gP~gUX0!yod*NI+aTU=2h32Ss&6^d5F{{Y#GMM1*d#bX7HMn zmF}>=x;D_?BHZwSH~+`my3;|gJDGOwFQbXsZQUQ;$ifHEVuyJpZU?_+t3^D`=KHEc zOxU1puadScUmuz#CX{m?CSjru93Tg15Qm6|5u1vGPDdHQW+-hTB^pq=qO|u+7oU8X zo1wLpv}izUn>JIEs4c816+nMKlG_5diApItPR;q%L*(L`>p$Y!RFXV7y!*azI9~DWvx5ubB$A5#T>Qmt>Ave z6e~A%Cp@nUuu>BRnR@-d=x)R>Lza4flfE1AoROe#LW;a?GrEz2bLmFBLSds8SCB3= zXs)EwL_hRy%#^vSf5_14lNJqVmEY59DviC6I9mBoUP5g^YBZphwBz-dVLddHovUJ9 za;v|Uj@SDcQ##@m8a4X6(Qv*y?JSN*E1e0RyvIFB(+%qbEgopu1DSfk7ofr0A)5H3 z!ZBMMVzC0#q@(LP6%ek_=7&X_*W3~$j7DceEbP?r%sd)I>BYAgL95wyY2Jf0X+ZO( zw-`-d!|PJL7pc;KYUz#C#(J4q3Vg-^y1)a45Dk=V&a6g~&aM_Ft9VtC z?hIu!Q}6i_XIEy=Z6Ih#XID89VE}o4UgVi{c9px;g7jmc9>#>BLEU$y%(3M2`dke$~#Df22>KuBcS5T z!=v+V(xCyJwDO=+$iwsfZ$=)v2>z4G10yCDjOo!sHZyh2XDAP|=QcnjsXTHb!T|F4 z(I&_vcdO;$$3VT0NkD_TCzVHmgvcYH@Ck{qN_mJ=to>z@ zN?xcRYI&HV)Ztj{?9+m-Ojap1enJ*>PlnQy4v8tGJ$+@q8;>qXocpZ4UXH)b2pgQdCPdg09F_etUR8UAe65xF?1G!7Ls5dh;eJ^KoX3uSaNYdGy z_+t+z44{+W5}hQy7LdC&GGRD`f%+0xZPB3aNoR8f5@y)(nnV2ysnCE*(%D>riZ2l_ zGXF|CG@z4mHYaQ#5YPAV)Q3$^_)jj6H96TKi8V|qzkjop2lj*rHb5k~JcNiafIRNE zN%AoDXZP*LKrOSIq(R-2%flm)%fmK@+CeHbppsl39+glYj?R#DXh0{mJk}PpJe=W1_AL6QJgBGNZTpcT5CzTnyWuzv(uo~ zX(x9+0V9W;#*0aV1~k&@(x>4`A*b>ZQlViUq&yRWOFT$vb5K2uB9KH(-4@He?#}+C zZyp79dzrfQA0URUd4azTQb~2`yvlrvRG^J>L>ozSBJixIRIWrqqQ1?Xpg|ClPWPQ- zciJpcapi{4f07Ul2qj%4>Kr>lxoF%mL+X1ZMFUd9gvxP#+iuG+IGY;s@)tys_NvSI zT}j!@)cxMasg~Ju8z7Q&s+AKF22jq0qMW2>BDq_UjShz}P~YHun+A1HE8n~k^3!#{ zIn=+C3Js_vooW^0;Yr1h%zuy$4d|qtY6+Wm5Q;e}#HJ_wCzc2A?&zLl+1&g2j**AH z?L#8={!e0gSR$Ds1IS~rDe|yxjXZQ^H3RisCIL-)c?2ZPc;YpO`T?oXq?boP#g~T{ znIDr5O>%kADdge#-eKgSi{QVP@Rja@Jx|H z(%GG@D^AE!OI=@eU(Oe3P~W6i*FEQw{*J;4q(B1-Nl$+~3VGT)8Yhtk4QQ0U!4x+F zd*eR8_tqVpQ2pv{|9)-f^Ae^yQ!aJY^^3jd`Euvqw`7$ z3Kb~f`J#lR)0M!p9v57R@KB#-2S|e;Bt6@3j@{&5lCDyiq2tLX zr1S(*q5-8r!gF=YsBJe)3tdm`Te4M-&IC43UO5ON~FCJ`DC z*`81X@Yv41-pI_?*$1~t7c#7N$J0K(7R-yxddx5dExGD^AlJ_y5tO-I{WqK$CVi&0 zNHA061cm&qC?x6Rr|4XdBYvTBDHgZ#Vz3;>lam(E5GSq5-YvrR_;_ z-;S0qr~I&?)+RL?P)qqRnjbI-O!L5#EBclS6G^?5QnMNEQo8*8evS3@5)Lfpn&1;d z(@_T>c?rZPM_SWS3r8~b-p@gW#~Jpm@SrR21aQ=4;*N8jN(fyD^g|-hYd0hDg1Wm5 zw2dDe6@KcgoZQeLP}kjZ6hrNn5&b%e(tzm8ZaJc}YAz%DO_HSn*{hQdmnGSk>szSd z6Fj3iYRfeF2Pt(cqglCZ%1E+?FAWz)S}DrZo{vK1M_HAdQdfXCI_h2vfgNr}7UV>Q z83g?gBIu-N_g1pG`(Vs9LC~>MPhzssASRnKycI}=+6|~(Kx#Cgwkcytf!eHE1A0#* zJsQy4vk5X4=ea%uGM}R?ZQgrnzA14-@4x|AI*ecp#t{y{awJpF{IWj=hX?acC4k$s zF*xwbN(fy@_TM&f44z>TC^tAN{M4g438X<9Zps)OkZ{w4P{+Y<4AIAuC=G~i$`~Aw za71TS9sJIaJ%?mzKz1|6;DAG}aTLn{>?=rpJs5+7Kc!sKj=^huPvmI0)NxlxSJ(Jf zPZYISgwKe7Qjfu5DLSX%FG)1*7#z40L6aE-{lm=|gJ;}}l7nK2mHK0jBs7Rg+A%or z?j&Kf8yqy$UO{R!pq6$l3A{UMo?3$+7issKAGPj85)pTOsE#^v+aAn6|%w0#iW<_ zCZok^XSzJ@O_p(%*dH$G&V;2czcf?7|IZN0F|!AxEP$YjlU~O!B`p*orej1*Nymm# z23lA%M}(I;m+3@<;9QeZWHSWZ@E{}C%yC2Td=jJq!57{#1al#-NAf8oNduCXB^2e1 z|29i7yY!S|;&wFEs)Z3A1;eCkMW)>yvUY_VnL3sO*+F{S{09O_pBS+O#5aU@ya+Gp z;!W#RYb~$2I)aHogIXtDG8GUIMR_!CLmD)ok#xOIKqJ?UN9DGpLc=^rC>6SFdwzeD zdXPkf=cEe@=(Tu$#j@Z8>yO_9Vce!zEG6C_bI?jU|0*GyDUyS7P7viJ9qCK_I}!PD z(45r!c^8@nVYxcxXs{lwTw1f_K16afAeVG3U5{KSxLJaKPl7Zc_^ia*^So;r7S6Sp zVQL#SsWssJI{C@gbhO%$b@te5;YG9eWCDjA`2htED@a^u{AuEjh(*OYdgthdjSJ%qx){`88FdlJ>#@F<}F#oGnsG zn;wB{8IoL)Fi~@y%g`VWX=fD9bK$Is4P)9uHzK9dhJ5n%x3>=5N7 zy|S3QwX)Ic_80^8d1eC*>YiG@wh{8{t)UEg+ z%xz1K*g_wL6TR`~6Bm}y*d?N|q-Xr=#Ez*xdq|k6hcm-y5TB&WJ7*cVal#H<#g;b| zPa{PdP<-*`H=*vYe0{D%^HHQp1Dcm7Jky#DBy>wob3wjqd8j?quF*(v7$lR9cRTa9 zG{|PAj`lp-C@~fQl~?H6hX&r7L<6BSJs{*o;#=K^mtSd`*Ff&8a7L0JFeF+eLDReja$k-_u7UiZ zA#y(wp=n$LxvRF`v>IRnsJCbhhmt<%_X5-ZXRk^eWCyF+_v{av^KxUG$X?>iO z=elm1!AZV8Zu*$khhGLt-ruCqhX*hEAPeZ@>uK~+a3}ik3NuCjYRpWaNuUqUTTvh0 zAwy)1L}(J|!}I2dc>3@T8#22|hNgLac+T2`lLCF{2Kk!k!}}SNvFRRTG>;d?;2DKg z-fz)b5t*>OWy{UX>&bk7-?4*|L#8wYBHf4uX#3Tvl+(==sX;SLc$!{=h`5I+j`(jK`-pC# zhBvK=yr#P9>RB9XX;9gSv+26-&1Fv88WI3?8A;H9M1(5qlE}4CjK*_Fga$-5epy{b z9_^yn!_oTb^KRNTxj*e@>Vkhn+8?yNhi&s8YW$SulU>7It|y5U4B1HZGj+ou zw?1I+(KF?y$oqQ^B#$f2w2EZJH`4e%`%2@A;5v1SArO!1n(#m|~MJZ~iq#Hmtoua<_sbrm*9q zFh9QQ4pVfj`zT9!AfEf#NTC!3T8b$N2FCbht}Ik7*d18h8<#io>y1`#ZuI7MeL-7fToBmCc; zj^vBNdAoT>GWCqFLA%G5A2j8fng2%!%MlwdsXj2^UwM{pIIPnP!{X?da)k%aHDzqU}o&M<)#zAJ=J}zBtm$|ly+>X zOk5D7$2UwYQzU^D=t>IIR6)SEp!ndJ_*G-do(5Gb{a8(O^9Sg*@ok~)%UM_T3^u() zeKx)|$L`f}Z@!O<-Gw=yDK^diKI-3$-N6w%!uTi+jNLw*$es+)<^yT-nqzkn-kak4 zhcZR4>Xj5c4O+b3*zJSc1~+B4y|u?3Y;QAm`+vj8*3>x`#^ZUCDL$q&TAS*07cuMd zmMPEF_9Jthhlgw)20$cMQ|AGmv^hzj&384T^BH`v(Su`BdG%1v+-Yj-JV3Y2t_v|; zmxeGtcX~Px{)+J}e}*)=x0x(=SMd^)vXgjyC^(fr;Ak}e?Ikm2j+z6VA|gqiTd%V( zLP{Qx4f5bQk_Y80tm?%fAM=Y0GDYv|LS_RE>R5UqzOsLt5ZZC!tY5pnoJk>VQ5y2g z>xO)^tHTRFon7PZD!#MkouzyI176#r0T1{U#)rGxeA&k@&5ux#^}RBW z%2(m+N08Ttmz*MF-d8NU%Esfnd23G2%Udk4gSo*O$ziJJ4b_bYQ z^e3HRcc?oKUC`=JS}4fWtNs;T#1TQ6*)@N|hI@2V&cz?v?a!s%Dqr!KsTHN{7m6qK zVonliP>b@#wh^lJadimkOb^**E?+{IG;mpYR#@sXzj5IoHZ^@2-O|AAxfS!%hi&Vf zIb;EDLfcGHf5z;Tbn)`zjLP}3(p{CL#73red9)odrp^vYxmOj0-WDjoZE_7EqlW9-5 zbFam{O#RM-&~0zc3uIgWbRXTd#Vx%xWe}V4)GuE7s+17`~cN_Y;76j&cz{e@?(;d>r5f` zBZfJ4o|S&()T`M~&@_@JMR$2-22THiPHEt@*I@i~9ShkRIQ}a-rh()0>gJ~)n+y%y z+{_%+Y2zizIwzxXjoI7HcY5?XyZY1RPTq~;9_BsFp%xFd+@VZ8g!kBQzs^y2pn%9e zcAcB8b%_ciB=?sjx!1W7UDu7yf%0$(1NAkYG|`~0szwr&J87F@oFbt?=JLie-oMD) zu+35u{dHynabaQe>)8M|GW8OkYagVy&3~x!>2(BW9SAlW^PAF`XEy<=n=WUrp23Eq zA?q3qMMyl8XCtD%!6uNf0C`lGI;T6hJ2si;|I!b*HsGdIiK zN2hguWyn04WN1L<(v&gDN3DGmdMXLgfKch@sO_Iu3yzivvl6HOlF@T^2-6v&zDMo2 z+_gWlzX7Q;>qJR)uKwdTAYv~!yG9^O&o`0;d1 z1IKmdydH9!+j+;p22_Wk`DPNOW|od8VU~_3E=za+l4oXvZeApN&1Gre9LsCq5LtTX zMzS=(Hd*S*#FsjkvmcuJS?Zu&!q_ZzM~u_+>6E5^mO5zX)X!3P)Hr?$9n;j#QiqHz z9pgfwoprGR)tyY1x*u^;RjUseVKwXu9wHz6sp<+{zJB>P(W@RkQ|=X6q9F8yI>Vgv z;StId{Ud$vE$LgU11fW%bGUdwysC>XM$^)uX6r1%GE?CV<}5{gmspa`#lyyZm+ooc zzSdm7i0|Czd0qU8p|C&-G@x){jrl+kzU>O~G-pGr-({NT+2*BIt>JaTSJK-Frmj9q z+(m~>{e&l+M}~#6@BWN}t97#X#sQ`bD3%bY7Zr-AbeYNT?2-R53?sl?Rt_nE{xnS$i0b@g2C zCgHI|4XJ~zi&`ksd7P;a@U-KoLa8a}*uP{Jue0bpF7~rT#52+zYrH**tt#OSqFH`w$MdSfqefjkceJz1M^NO872bZP z9@gf`i(j<&@JHl-z-IgX(!q6OM*@!aIak`J{2t)OIJzO0dV@6qR9hzqKMlB@QIVU* zT<(q+CcFBRWdnQ!foTBzs5-!dUU$bHJOJ+~--gIEKrTPuj|{_LwAA5O>{hzF4e8qw zng-CdBD|6Z;y7Z`)W!5da7SX&0JC!HGD?&F(#oihi?vK$br-_Y)P@bBdN;z-0Ji-4 zZ)Ah9u~r9b_(-&-`&-1NX#y9Kz~T>$``g5&0q(=fMwxxnZTlU7AU=`ZPO&Q}U+PhU zjWLlgSDQ+Yvocy(8}wTH`dy|T`!k$w+!X`m-mRzEzh?Jya;y>qpMr0cimEh#Cxg zyX2eEn&o{7N(0b#WU9KRZM!W)u_R&2C(Gr@Hyw`#oy7sx4USeNSK)w#Ef%&=n5mCF zkY}PZ<$I4lO@4Yje|kKBiW==tV$3)fUr5@^C26CF3PUce32Qu$^?v+9J?o%8%f$vX z;935JSZt7T=-~*rLNxm4iB1Fb@_TaogT6Q#cLt*o7Px5eFA$st;N=V1_6NMb*y#=U zK%K_^GO=lZU4EfkkY}<) z=GhzrO4B^PzZ&=S)Ki~1%$uD|js7prdk=N{dk;O$9zr!95Z%>y;DQP5yhOBfY84RO z-*@q1fF&dcIjZk)0R##$kccRaC4dxGsNdwI2$<++z z{AhKLJjGyOe@s}KT9xmutWIs^e?ml>T0}KsXVB+2lXWZooUk;2jqicI?2&grxy&HDyWPUjp)B_zY`JhJ=l%^KwN^i2f zH0G&_Zlz-hN(0d7^VXT9!t=!VQc)n&+Y^`uz}0({(XiK9=4h_T-ieqrz^tB9z{KQ3 z1O5g9X#iL~r3mP!)Nc}%rWWdS6w37OM5U=!d3;mR>gk>Yq^S#tYalwBze_+G09MZ> zFkHh63>NzHu9<$1z%&4^KHiz{p=zqzh)4s(>SL2e^jrQ!!qNaXex6+HO!!D}Z(-8I z6M=XWxC!n92u%a%2gOdQ4078F)?i)7DO51KiJq8Xg>APp-LopoY`NFsUZ$=;9w#JQ z^MbuwPshRI^+8aMK4A_V2rTALpO*Pk^aZd0MJ7;_4#tztLe5t0;0+xb@QXeYqL)r%Q5~9)oHM+YgL0#_6@8C&l*8*QkU>X2NpSPC)4@MIxxr58~ z{e>X$o=pcdaPaupnar$%h2CO!Z7{`m%~nV?O$ z*O3pnUrh%za1ed&yFT|m7j}9o+DmvEz?Z+3tmM>sefYH^{~gsFCruj zAfu=LC6pP3&i4M)O8z?H($u56h^uo}>(>*K29V_s7ez(a-Y)7))>c4pYw%Aa7|KR0;9wA|4RbVO4xM13zruOuW5AZzq5K*V|#D9c+wdi2G*SqTAsw!?Y@v1x!^qr(FB zau=@!;9Gh8z`Tj@G=Q%$Fay5WRlSwSG(fH~0|Ii%4Cw6yrvZ4KEX4A`BJXz+nx-D~ zDy~_K@H`H?Mcc8whtM>DE`Oa>RL2rPcSehRCEJ?oci%@RG;mU5>Vg;4bNu(lwht1R z2Ea9XU%vj+b}VIL`Uu_7z)g*W_ucpje>34}>a~FnKP%c#&wp@EwkJxJ)Lm|9<_6B;-ve+N%gYK2Z_lIxrFLIW=~`l;Dz z#J31c1K=82Yx*eDMfq+09Xg}yWSu@f{0|6E1Na(4vVlk1 z_~1V#I1RvSOtB0&)5S;s3DIeQ9(xnr&9K_slFLPMIpR~iNEKd0IwksCxwjLS5A}Vi z1-+T6Ke;!qPi--Kd$*h}#bA2U{(}k{E=#q4qAMGHcSqc7UaPpHx6+&Pc8R98H80q^ z^$G4E2u9zP@X#s#uDRmX+bJ&8uh~8{0F6J3%tL8F?Nra<-kNuNX@Fb4oU*Jh3UTML zJZ+4tJM+sp(_87SbntF!)Wy{0A-*39J(#2=DssaBA4*^v0Jrx)5%iVCoaW&~ zqXAm{nSYVy&d%DD7wMT6>L^0e05X0s2_ehQrS&f`#A_$V&JM$rIg^vVP^>^gsg-Rhx8m%(>aV za`L|PLIW@HLwXn|{~RFb!A>AJ4Z!24BeURsN@8iGP5P4vPXqX>dLsA9>YzXEEMiIL z$c%XEWJ1#bI{F@*)ZMK(DS>?uVQByxKl3XDMA-5riTDtl?Ta5wWEvpH-_i+@c~@7L z7!5s)m^3xwI~`5&6}y>1^AUumsRLc!6`oFL8bDV~y71H^2+Em+rvZHY*+Cd+fnO)9 z&!PhwIH;NDo4!uEd1+P88;}bIZ_x3Y&#&`Izv0t?J@H6s1 z*srHbJQVgt0*(`c=gJ8|bPE-54c=I&2zZKDVzp9lb|%U13KyBDF=;t7BOjR69uLX z=-C9NsZA6QJQ$)+ASO+1qQE@KfSyNCnkGPP?Vn6g8h}PmI?B=sw>sGu@DVk`_o;-Y z0d({gkbObpCRuN6Isi3CbQ+*X&sg_`KIq{@VY1v`v>rP2Km!laBiFt>a5|>*csr44 zfE;~2d|$}p{?c+tzDE}{aM4J+?sn{#2~7j&T3zLQkLTVxB0Gpl1I$`IdfxjE2}x6% z=7>)SYMK`llLnZTM@n9yS?DdDgoi{8?3A!HfQ??XQ3Bt9+q^XZNvXXic zF=>EVD^Hi^E#!5Cqyc0t@h@?$D9;Uau3k@A8o)+hvM6gU1KaWC`f`HP)D3NarMqMZ z-#||lPyG}TRnqyc2DesIv6*t4295R(R&wWdYH43hOtM5d`7fRWAB zw-S;DkhO9O58j`6KNHor6O^V2P&;J3lb|#Jt=CkeB|BujhnO_LjJ}ssrc~6vyRd-4 z&_v*U1f~ISy&SN>mhuOQOatUv^HxyqfUHY^5*9QGdxO9R+iqs|J}arIXRcp_0Z z-4}^V1Ke7vjNze!OU}5PC z^!b#UA^c6^(g3&Cz_vQtWgx#rNE$%a%3YjmXv%0JGK{bb_<{v6bo}M5O_0tzLGr zww<5Lw%5`QBQ6baYc*7UjrB-E($ozqAno;?qlrla%vy<$y02bhWO^(?Y3hUGE~x>% zJwa&zTI(EtI_9m{;2i%>#HImu?8}6_S!3JVHf*opji%xqp!hCpH{hW``P<3X`2j(i-s-$Z=eZ@R}%bwEnL4OFt|%E!Sc4vK`; z-2pdCGx{|}=8IQ49A+CIy5y%N53##@4>_|p?2R#8p#Jxdt-l8>fT;R?rRveofqNMD z@a{Qkdh0K~i+<0X58q$Fr8EtEAU6wlGb=*kWW++A)DYzTbIAKQ1o?m*@&OG&o}5FT zT!f774}<36;z+C^GuNaTRkgs^C( zBCgVE%n31RfEhjF6lu>7`m3FlE?zvayE7b(ajK-TcM_YXHulaQmp%E|dx%W~?C2{B zGraMFButU{1y^~1Nz;B7p=kgey*6hCdTl($(AL?G*TnSjp4G_|SB5qGWrU{zeDtKL z2ya%n7|7=klBQ0ed;KBac82#`^5GTzsw7SKN@CLhJ9=y{(skGiYg{?3f&YNOG>rhS z;^MmjegT1L037|Yiy6kd`x8EGrm6lR5ov%JeX>_XTpX>9`$#psl0vTz)W|O+G7XR~ ztT34C^)Bl#Pu8!N)lV4Ms$_IX1Bad34oj9Q&$@gmUDDKP4_qr*=9#RH+8+~<28fl% z1wriaOjd)wf}k`2jb2<`Y-GE-S{?vH|IJl}qcJW^X&-+|A2je$d61+J++VT1?4J{p z2AI(&cV)b}l6axNVl(A6#H9gl%;f1I)_JXvST;K;Es#H_iBZ`k;Z2=$m`RkXs)MJ-l3or$Gk%ZwOA)1bBZK zg1?2}Gyt#MlUe5WlM=cu-$rB_AV)s}v0hBEw4)oLh@n4(*VBm z^a}9iQ71pzA0;#mprfDrnn@IWX-_BK$B9P+yc!uX!4=r99bi61OqyDl=%Xk2B#LRV z&k~acn3b~(lkEBB&W>H(@sjQEK2Ka4;8t!bxqX7m(71csAL7Ef4(%5RO#|rY=TnMJ z#bITg;qc4ErvZNS(<4Rv{PB@>ynKaTXzBzW=`qFX4!pa<%`?A7TpHj;U#l&$x43Q^ z@(rTW0JU-t%?CzwG&=Gmif+w+Co&C?E02ss?(LrM;d4KDz>pV%d%lnVpbr}OsNChz zhaF=){{Ka68emrzy2j2YPv0jd4KOQBF_qG3w_bR zSLLfz^fkr1!Wa5>VB1Pq8o*Y%@XKrBIy@%Pk02lo04tB?-Y9t+;?V%F^5q7T)Asg< zmdtGlOatKRy|su%-?7%H#}SnVsFg3~;Mx$@_uBFNj)bHEWc6-Zo*;Ht5Y4BrtdG0U z2Mv5w?)I=Of-_z}8}3G2nmXYC?f@5GOoIIuA!z_vd3wVY9P)-;pY3lGng-C72NYQx zvTDyIeutPez^r^}0+_*c^gaZo0cd4W=vUa|{rI?wI<&)7i@-DhuH4njgMu@?<^70F z1MJF^JHg(^gya77LIW?+kE0YPVdAA^%JD#=(*V8lWK7Tt6NFQUOatWTCp61>6M1%u z@DMtnfrH935TRZ+NjR18H1*?NGEI0S(P^HSt^ICY`ejpvGw6T@^rN3MDi8lUlZ8jq z0}VVpt?Fb!;y+p5aJukVdZU52$~}a53nvWc5SRwQl}8Hs-kQD~VDCFUk+?L#tvqko zxzfejRXq?tiFh=?tK9GEKFph~UO-S9fL5M_ne_HxpGH_3z&s!<0e73vLUBL~y9&(A8>S=tgn+D|K#Z(S!uaRot3kggE;P|QC z3~+BZuA}3vi@W;MW%o@;OzpIfXV3=?e8k`Vn(@I{8^n1c(f~2~4LU(v>AO_61Y^}i z-YBw)H&$ULqG>PE2@RaYpP0jSZX4&Mray9$Il{Xpk(b&f}khG4){5! zprJoI?q|BP(QC$X2rV<*D8Ng<$V~kWzjs3eM$wuofjbdBfd+gF0cijjokOL7yx@Tk zzTo}t2KsG;rm4yGB+K<31f;3S^`wOvuJ0x^O--)%w_M*#K$@Cd??21+1B9jlbo6OJ zNt1QVi~-k@a0Q&V<8(%RnD8`!k3Nmr7kn`MZxV3mx8P8S?IeA^l~-(*QpD4TA;JL#}GjWWPc*8lXjA z^C_T>M}54mOn;_TV}6a8G{B6$^ zmj6r$ZifNJAFQHpAV_MW>Px-tPmDBhd_$jF`(KJhZw4SMbPQUCMRxG+-Hh##<5^o>|O~M|{Fo<35|X zG{B7)UpeK49xjh+)GLTe1JvkKpmo?T^!YTnhP{fgG=QxeU&4-te7;FTUrlJ52IA1` zTf%#ZO4C3bfQm;)G}&tjOVdCc0E;Ou-#Vh9UqomcK-bN){t$~;4eoWsrD-6(csGwh zy`HEvK#e|~S|`u2hyne*0e(4wX#gC3*0Vlvz64nZ`39oX06l(eDi@tu;EbC;F4nIk zJWX@tF)zkg1*e7{!dZk_5NEbA4Q8x)O4|0KdEpcgpTen+U&9m?( z!qNaX`YPW#$#St3%o_+w1JLM;{Of>D@PK;WIlqa>Gz~;|G8*vFTit4JB`ytc>kcK8 zotVpO)VC9rrinQ0Twq^kkl#sU8X!ksAXq2Dm>f<Q0da;aQ{Xyc=0Jm;;x)Ya7obWzEV45a?d-HjmZzeEJ191)>=g_(L38K>g{i2#( zok8bK)E&KDoyndRye59!pEpmam=^dnJ<`DA>5&)V!<1~xuA9}0iXOq)b;*P`{yGz; zj6HLmNpEIqxCOK7E%+K94rG|R%La(YUuSZlf`-}il`?yd9~B*ho;7dBf+TztUC(gw zOaneN&U@fws{VAK}HoXnn7AhyB$xTwcM+uRgo-3o`Y|t;m8Sg0j6wobCM$okc$p>*LUw;3F?G z$&2XWwFo5VRCppx5Y?ev@urz>;?j}lujF0jB?&_{~cXP>`2EH$WX#iYL z68P?ijll^7rKufTtc&oXa1wE8YDa-zzxFzvlL<@%;Mn&O_!-vrcT8ko%&}-@kchtH zj){|8=i^4EKJyja?>b0t?>*>j7J=&hVn=ujCO8;r-X$YV^krBJphuX+(Moq^U~b!! znA*eZqck8DeLX+GEFwOOh%`Wq&r2IKCOSGirle2vGJ?`Dc99cLvTV~x?9@BitgZ#3 zo0AK<^u&T2nfe-Ev2l>z-h0qFEZU#uv|xgR=KPp6XY}Pl3!s~muM=Pau7SHx*OQ;R zf;WI^_NP??=y}XcHMTHSR}qm0h|%jA0>p(ieBJ_65xYj5Z&}*inP0{OTIkX=?W^g8 z22P?^&;(8dltl(|FCl3F8NFt$0I6RufX}U9JuHB6i-FPZ?KU2+r3V^#h+dx(;{o4` zvVnOKebB&1^kg;gp%;DWAYVr;8em0VxhZ0mM&f!R(*QYo0=O?^F9I(oHVv?&htUw5 zFT0bL^Ar090@DDvTF%i66xbc&R8B|um4u`LWb_;@;A$bqOS|v@HwI^o`zqqn)TNpy z!;OTbsT@{ARqjRRz^^4R4S=J^svridcpFo%(_2}c+PL0COd4QT%P+yCo1%)}Kx`Ud zM_&;u;p<_0+50A<(*V7i=InDvMc!{EGEL=}6p%gEZznbluww^Z*1t_-a`t9D=$^v@ zphUlfh%ZEu%Q<>0Q@=bE!|uVdv-jY0c$k1E#?GT0pg>{d{rP@Qq#S}CdiBj=^KKP# zQ@`Ye5E`&LDRPFQA=}ytE%h^oE3aPk^)K82Ss1P8X^L!S>gx~U^)Iuxcgwl@7mQi- z^{*UM&=9mOKi3tEKAFoQbkuY&!RPXLW0M5c51C^$AQnCUETD21!?QvBZz9qFF}n9H zK^(2<=5FsurvCI~`$5L(Q|x0t-*|cWf9MFsq5l?*)*gdOtB~fEg{y zQl4g_p;13XR2ra0pTf%C+$MX#-CqX;o?jotnN<<(tuukZ;@9^$HBl(_kI{KB5bJe8O^r1ALAJf^?79aY zaH|9OPul76>{^PdAC=BE{P!-OAWNH1ppNW&5YfeO*ZR$P5A`9Mlu1XmuJ?e9z|4&`;uq zt!2nOiDYO%=F-g}Q-BPlU z(y7UK7hLtnbWOv&O6uCn@7(<>=$?k{+H_jOP1}p|GnvDZOz_r8QCV3~MW2`$eEzXW z-h*Yw{tw4bP3Bl!B7a{X`8%J?lXT*FHP!#{iWdzk*iY*=Phk^d^)ouBf%BEL&ch_O z1b#^ZG$8P_1X(=PX>7ecpLuNZ3J#y%c#Vf9jfe2~?@!~UnK3rS!r=vp9Evlf?;lJ0 zHm^`qG2Q#x%BlCW3!*{Qp4@cf4bgPY)63X!I+k#Cann(p4EngJzvRz4O_7^+zUE12 z%%cjWuD~1Dx2GqUDY8Lpzgk**Exk+KYlUGF7HY&Cph3etbCZZjKUPX-Ogc26bJ-@* z$$Pd^N^7J<14=6mt0Z*THoN%@l!>BVMe*3&^-{I*Dd=Qsrl8!&)LBpG6jX1U{}6%3 zr=ZrU_=76mEUIXH3ThpR7F-S0huOX~s9obz(7>t5``q6!+v8=ry(uDu-3-G7|! zY1pn!XExm6a)iwz^(H2CNA^167IiyCo&#SLMnC(n$c{mdK5WAai zMMgjHP=k;VL8iZ7GJRJ>Ki8CRo%}WeIw0!loWju{3^6DC%~IiO;%#e5VAMqxy;q-7pOJ^vvP)RAGK+m}D%#k`maU$aCrMQV`PXGCIGq)wyRP;sgqlnN(xZzd8A z0(12(Lrcb?GIIANIU10==9VFs3$Tpf2_#4Zg3nAW!@z&r?9G|9)(NIQO-)(>dk35T51K?Pp1de~9g0MQq9CZXN5vERTS?Kj$+vsD1K5 zH6S61@~AwJRA`u|o7E6D9`YfRZ62LdNQZ`bkyti#+xC2al^T)cg!h<}-CEM%+feus z2`vx1lc{r`0*M^z_PtGz8l-L^>zAa23*_=WkxR@SpXMUMVac))ChC<;4jM!v`JBS~ z*3CmQA{|?7D7}i5Xh13X*lm3~N=RNKA$!Qsx{HDYPLqu4S5$<~NVrZe2E1iT zcNF^7Sig7-#lTImAdp-PhCrt19AY@?7dqz2#b7JWOmvl3UtzP;pz6uR;8T!sBPa4T z5}^T+q;I*B5J`&mBa`DR4^BVYF#_L;g`$b+sXO*$s@(MHc zaLVLp{x~R?BLDAswP1QnkQR;|31x~zAj|uTER&zr`@t}3%mbos#rZ!C!jSw@ zd69}6@H|2Xkq`}Yc@rdO+of=&!DfeUEp-S<(STIyOXbEhb>)TS_oya6XOs7s_U+yJ zMWOZ$!&*}2NJ}4SnRgFo>YTG7u;a=Px^g^%j`xmQI1Y}F zqLZ)msBlz=GXZH3u$QG)MJW;8^7$!S>2D0#qezwpWM6U1lFf(CeGxu}glRx{Z{qQ@ zl!yIB&z#6(&gnyoO0_9|tE^cCy&!drmodacw0MUm?8=B=9@pt07^b;gX z1ER@$sS+BlkIH3V@+%Y7Pm?SS$o@fM(U-7jOBrsyQB`wBR)*VSD0rix8MQnwbqe%{ z{VCp2fbWoZrfc&%dSi*JD{V<>rvC6@koqzC&+P%f%s^1)$uFklOg!R36C!`Ah&*|3 zS;|67eCCL7Q)e<2X%M6r-a@VG?pv%!@+^|10ma#+d3VC`LZd#+9HBul@M(smi%(rE=tS{ZT+VFqT4^&< zX0X;-?9NX|GOHe}wPY_-Q$Aw2H80?{`6PA7E*h4&bS|J%83oU=}(O4*&8y%d~am$8OWGJ-99(vcO;d3 z1(>p7c>}Lo5uuD!`*TUP za^4FZ<@dRQqD-SYXRyVBnnvKNso4ag?HYF|pkka~x8 z>JO98)9Dhs!(UV1$DA|Tf*r+#g452|hk}ugUAtdK{ z`2j=gt)xW*TFI{k=iW=zS%}!%NsR{7QeP*@nL&r-F{g7^r?z?{rDyWnrgZYl&nu$^ zd<4fVD&vh;(v9}x~imW?n`?_$2tAYYQN z)3?4|A{%`fj)v0TkrK_Oh`tyfZ{!PUy`QvbKr8ip)&{E0jX9mEI&swBQB^vVZTcp^ z@Fj27ccS7~3`AAG{RpUPt3Ip?%(f+#{A@WOmMPMKus$WiN`8SQ@Ghg5{=kFoaL7gV znJ_d+nB?oIX6YDh6-W(8iUy>TujHL2<*BPcY(!!-AeQ>tg5%ZJTSj2I(LPCmNmAQH z-lVp(nwOcPmKlpgYloc!tsSM=Vws02H3hhFEu$VsvvKNsMG`yfl4LVQc97mzM0%T) zRz3w!f3{dyspEKxLW9^OzwbO78%@ktVu9WrNsk8fuHF2m)AWj(EKs})Dbj%A|4Mz5 zr#l5pz^aq`Mx)F$^)J+@h#|=R2sLym zLM1y0^}jYrsIwGw!iB||j+y#RrWws<2sLC-n2v@A4ZXXQ9?fP5HDuuE` z6lp;5(!@dy3AD{_zTSd~rv6jwH2f)3KluQmuK@Fzhwg9*pXQbOJi3sN3Yo%8y^pW% zIeMnt6nTG7(#fA7DkCi%q1a!FVv|2XR7OH;ws=68sUBx-G>A~@=U$2w@S6L+t-`=cg(Ehw~2gGnIact)SozuU_f>zhnu((hLE41roBTrYv^T^DEudt4sZ&Qu3ec6KAXCqIJhXL0P-b`K zZ>X`=)N|`1N#O;Z-9dDgd~RAKpta@~3L|xIW)TgdlKk4W@82c3XwE-msNI*;Xh1Fb zxtj0aQOjpo{$WG!1k$4cy*-KNSHAnU>~NrS39oKX9h$7q(>!?xI>kpZ`3>C#-cJ)T z+7jN`&eVT#LBx^nXS&ea=burJ$=3`z29~H$gCOrEf=u4A&oB^0+HmPe=y0jO8+ZMUcIKpQ&uq%d;< z*o05tpG`aFejL6NEj@?z3-VV~E0liB$7GQ05c<32|z(Osnh`COl`RZKC zQPMyEh5P{g`Vqs({t;Z;j@KFFlH{%t;`Z|)#KV^J60_sTT$GkfrpN$N+b&XzSeBFpQ>1bksnCE*uW7kB zXKmdQRvEe}x>Sbbqf5bV(g7D0r$HTeBz7$M9=N}O?rGqDl-PZq=K+ORk^&7VT-b1qi=+0A z0oGI4^ir$LZ7;Rvo38iZ#JrOqoM?LZ&pZ^FeTd!VmJ`;~6B5W29V5A)Ey=x<(3j3` zTQBWbJ(P`0gT`%qO!4EKKXMWhcsL2rfI!Si>V9?RMFM$-ha^rT2^x^VGP{kQJ*~o_ zJvh;J;B0Vp8I#;kvY0c|{c}88>a33XlL?;ta&wx&XsKliP2S(0d4Kdwxh@L+p1u4+ z0FF2WinH5LwY>+Z5nY#sMa2a&FGdQLoSDO+xRd(Ss9I{ z%N>6-m!g)PuBqGcyyU1tsV%U7NpdmYKHaZwX_j23*+5!1iL@H;bY@*@VTHxQLcNeZ zG7ah;bIrMC-8B&rRVkf}bZ9`Q@u4*ISR$zK2PQ% z*OZb;UO!ixPn^*r?<$R#`redqfG`BY14@lg3D=EJK3WxjVrX4MS~Q^5 z^pvpZ5=(Fw^(|5+vmLFNIqDsHv?~6d`5Pg!mF}>=iiO+L{%E-2jUNBU+q#p^1nYqp zda^jFJ87BSOnsG)D<0;RaL4|d#3JsJ`o8KA6E=|7&C&8|%C!s_dBt^H)PzYxgE&MC z6U~y5&$SjQ?Ia}{P>PUOqm*)yc_|{1+Cy42ptbQT+$LDHyAv!hlB|}*Q6Htc3h5hh zGq4Vu$!NZ>UuDyo%y(rSZWot2OksfxkB14?Pfz*$P3-rPY$ z>on4$0j;ECpmW?dp_$8L^Y1bSx}T((B4Qzc1*+&#k4P>c;$L08#&m!|rI$9mOIm|LTRdZZvx&ai zf{GWy9_&N_FXfAs3De3+=x5{{Dz1Dh-g!6zL!@ZYy~au^6fWuR(5j zVNw5QC-Q>^`7uhEAF^)O<%mz=80Lv-9=LW9~z%xW7Vk`Hnv zl+Gh18cdL=dev1Yv%zWD;7KbgXLfqh=M#7k3DAH*vc5^0nRO4d z-!!^}aQxydy+jW~nc|5jh)!}p;9h0b(n}kn&h9?R% z2+TDp1Xb$1aJ8cJH-_LpkRS~RzHsvi<^tRo$$uhA8jyT;0zsDgZrf5^DimGd5kn^o z^&m>tsl)!nsUYGae-n9VUbJDU<_hKuH;&l}0pG6lSYDhn$Dbg+5ihxEj<|4ydLJ$7 zjkwU?oO3+{+2{me(2-N8au}dNR3a|)H%v_KXzzpGBT0`2^dc_wH%xC|!nL`l&LBk^ zP~7;9gv~H4m91lRCROVs5i~kDZjNXtYb&~gwr%S~ivyYZt4m8o%VQl0f?v^l*uksb}`ZH{PtdixMpNu55O_W<*uEh@%H|tvkRxAqg`69Qqq!=OnsbV>ycrh-8X+ma!D?C z&5#p1P~@U0GRftx8LwK3L8}W95mWrcPW%@*e8; zy-m0y#U8oQ;sNSF`F-(09H}ScHT6E-&BHp!N}u)HFv!?sT!9Y^F;laglIrWZ77_&eA)%?V`?T(Rd9&7BvzTkN_V&JPP*90RBH(`IY@7t z|KL7inS5RM;u+F-jz}Zore0l_ayib`TCK6sX;9;c>u}Au7dhl4c9R4RNJLzkZ-j&= zgPh1SNrZ;&pH2dB*v>OgUCz{(^n>4|X>TqgbXRzy^!L1z2fx@h|FPN$M+JDI>clhB z{)L;6_NK;qG;p<6@8%?d1~pEa_P%?Q_BQnDy(B>c5=qnEBjKmLBk}(#CJ- zs?Dff^#3Q+jhD4)GZk@Ax{bJzsh3STX6SA6AKWJ#Gpu{@42`@#`Iuo{YI)?fR=>wy zk_I(SIA#RyMHC*1Z6rYh5()c>fCP4?c+WBVPmjonBtpaXPc~-IVcYZiIz49S0{BgM zLOnlP-81Pg$zv6ECsXr#kp73deQy(V5}r_7k1|}41*Gt9kwU@~YTvDqgM>vQp>{9{ zXi)ovC)6`EtSkaDLz1BZnS>|QGh~pBP96cFi%EzEgwmZ*TRxCU;Qd{cN}j5zTWAdn z4e-HV%(6yixIhWNtId*3y`=}?963Mo3(da$GtL4No&js$)|cprq@bgZi;j}!OffvN zD8(z45UDOF7c>Y)#Ojc$vx}Kv$aMjIh7uezv=&H<2DBnpUNlR~7uamXmPm~T)HeRU zZX?VfHSo|MxX!a%eT;&W6t`){lumdSvCv;!)MDdCrmh)sZl<@*e{i30Zf4z!X9(%b zBBX>Owk~zL=CxM;$RwaajT6qz0{1cqc_h9_5;V-jbeB;A61g@!BL7SxG;IH5b2B<@ zdtSf9{Fn5D--y*=RkgU#U+S)`bWP^#?M&V28A$#^%%Lpb0+n9Mws2I00#xuHqJpGp z=)4*sctKEyvh`_D^@tmUO|*i(x~2yY+W@*f)ZwH;11bqGCin><1FM~pg>;T09U9PC zPN)mr8jyzHD&M9$Tz-N;!f~NDUYytJ;6|p7Tj98%x6OZWpKx5T?!_|{@w4RPf_16o zkk?whpDj*<8YdKF;9kZBkHm*af(9fKjtc>ad|dE|{5^@#u>F(eKOMF`uRqn}f-ZpH zgp&if=nv&(y|S69D=tLpZ!vpr12iHYJE__+<}}1V1hDnjI_3$lSL9Bu1P}`GufEAu zwKU1|&xSuA5B!Eu-y#tj5J`Bspb(2d3VBq%LozfVvzSs0a7j7jo)1Mf__>&HezMq? z``q|HQx`8n3v7f0=a{_d@Uu5>=4|tZIGA%=DLI;BQ9T7yrj<6UMcFSIwFi{_8TF@X232(7^ zj`iF$A0xaYhSH}P3^Z*2bfXD)v^}pUGy5g|;5TKj zJ?`z6kA^RDD^vf;wX_Gzj{P4LBA!vM+!0s`;vBhuhU9+2YiqiGt~2ziu71k)ra`4s zPGW4O{h3tW0_qo}K?52IuWp5L@CF5s%CAX<22>W(DS#f^eoLHA4VX-X>x7fqrEzzm zkM-y}A?!}3{_3gemE})mdo^go8Se_jzeh`-HPO z>(!}K#s*t#$ZR1Q8jwkNN7H(BWO9kvLx#{+5~2a2ba%n6)3)6(-p`{}@>B(fgk#3? zp4E|PMQ>&5TU=Ovuf7!o*0Z=3(%KH*g*>s~w~|NltxKjBp+>r&F+)mk0Nwx&Ui6OKxO zdz1V*iK9t^1|$+*RSHOWsh<-$mPBaS{>jd%$)imp?XRw7-b?zyZ^|Ud7w!zq>X857 zTN1aJJ+}cG32#x0H#v=_e+b}DL;wjdCge^<0$%;q1#EVj#QB$pKfnFpH-vf`iO_&Z z!gKjTEIcXrQMr(0Xh0_2Eo$M?4#IE)1!0pC-V=@lE29Nj#LA6KovQCI=Hpw9 z;YeWJi)RSob;(Bp>r%@=S5enmeUF#+X;9;YBSGL^Mgot-4@rUsBodAU0f{{QJtF^2 zA~bCOWFr9`wmq*m>5)Je{6FfxJV3Idz8~C$WdQ}jU_?m}yv;1^YCPJApeTX@$|dS* z+dK1Srfd5cx_gFQyuk}u5A+cfqv9->OfYuiks$EwLwP)mnJ2jb1*J!&EJ|*%O#g?f^1M>Y$#cuw3)n}lOV6uL`3y7CzDsEYNV{U+OYVl{Nex8FfoiP!&jHQEcibxG=@RK0R1YTp6!!TyDW60iR` z3F%eG?zjJb{HIl*q8+r~0W6sktGOfB{gRgl>UuWC1PCbcLSSBi4AFcU@1zU@WRy5o z%*)8CjW6Y0ltO@%@-75w#){9o2`=!gSmLnklB6eha`PZno9Y~v>0|Q;k(W3uv-H9Y z|KC>pU*fRLQfm8WQL7iQtO*EUd-=_crir~Afm)!Sx!V|eNV_sDTKiCFRhy( zVZ~!TioO^7fp>%!cp<@av1*M~A5(08x22QJEzinhn&mK6-{I=kf##Dt0R8sWJMZ!7 zg%^guix_@{Dn34$wz?m$x+5272#9lpz9x`bY@QQvCkh}yzzDT1P(Wt!oQS(p1OXye ze*x8a8Y(%)JJaCSY+$`=1do|b;N8_tZhyH2&n%p)&MtR*c%7)-kz1W#Zq4@UZF!~| ze=#G!n6bZ@vA;;w$Jq}Yv-cm#_d{toTN$DIw&YR6lK@b={!(h!%O{o1oGk3MFhr@k zn$0Z%nfB6Eo7?Dl#)n+aZ8t@^-C1V4^Nf*sZ`xPeVz0$M!fnmtgrHVr&l3Ko>Z^R< z%my9`BIBM=PAMB&p@gSS7EdLmvgsz<1*(pqKL`kOdnx_^S0&?n5DQx8E(l91&J`ua ziNC3OPnE^VL&5Tj)6fbfit`br7N-r84S@?(ZDes0N-IuqRWiOabaC?YX!%ODwlk8;#u!=svdC(it-Tu)Sg35$^HW+JbLxIvqlL*i{iXM zit};N8FY=DP58=EMyQ^`!2<#DJhmLRjO^(oBY^Bl<&Z7bI&p-7H71 zAseAYwyX}ml57O9mDJL7+w;9#OLHwb3E(WL7IwYjdmZTr<%LMLT!?QZCjp$*avGZ6 zVkhY?wi~wMUq?y;C`Y&}c$})?C{aJWHsEb!CV=_ERY$99Ag=hM3TaZ$=g_8qeDRF% z9LACXJ=2o`4t69iHi4aaF(L+gnO~$^QG*$PlVHkOk`@H9%hnU|n7te}ID{RQb%Ow*>Sn*!f z3Vu}l@s37qc4xEJvTvl*0ji@p6Cfa{2u+{OE_bCe*_~7y^__`CsE#2W0dx_%%K^GY zJQ=p$TFA$EEJ+ChWYGfH6V`J-~?7lKO1YHJN%BvJt@6j%!Rk0NGi? z`v^PL9Z46Xg6bTmVJm2F?He*#Pt@HhfdB~+dhLOLjf5QMUyzdk&JngqueriB5$wfD zePOXzZPt1nK0;5&dIEU~;4Q;Wt+}MN+{9&to~T^j=*jLp0{nMKI0#Xw|U51HsuMRfhK9-yWaGn!BbT)&&iZ!!gc^)SzxdCj18OmI( zSF84RFUjTX5oajwKc(t&ynaPJ0io~Nd@7PUmPtjLp*R+fLxl;0>kq}6p}6ELJQCqU z!?`59?#?AE81CsY^{Cmb|3|7$$3120`^@75PnA>f*&|~r5)S0=W-b-@C|10AGYll|_8| zk>i@|y(A-mEW#2~AzAi_W|N~IASt1|@{_0F>JUFnHUiipEZP-@C=WW-bRQ)h0dyrb zGIl$T$<9xZkx*WM=IMAkz)zEo0J@T@yL;Z4Cj4g-63UCuJl9FneV%j#(3RB1%hPl; z+ZV}309#3|i+xy$=KC`F2<1hGQ8%7VqS?MiHbQyP*&FaR-#5rd0AEQ%81K$yP5Et7 z5=x>*=65PStJx22;UJ z_T!#Sr^%LoP65x1N-0#B{@r?ieGgWI1x7z0`q=ITXH05k7fOtPNFEhDYd2ICn^8L7 z)Zqvvmt_%#e|D@OSH|5ZJZs=;l+@Mj%IgkNUL)K_uv%M^ zOJ7gcSJ}Kx1!^k`l7NDYa6Nobgx;5{sqRfGLRnOL�!lFR2Ki3g1-Vf^ts?$JJBK zb9-7e@04@H>vf~HJL!l+Cfv)>anq3YvCfD|Y-aIQ7ZhC^7_xS@n z*l3{*{~Hn!Ks3Tb99A2U^%2S7wwF|sIv?LyO)gs2TL%sKjU*?4Ji=x30rH;TELX7; zqLpA9jgI>!QWHwa;QE|vQEny?p&X*jGJhly0Yn!>ZzA#X`W~(l>Ac(j5-<_K6k+__ zS8URg8mf(?B7iEw+E^i#-)V0m9|3&vJ8e54at-srq$89{=UV1ll8#U+ookv8CmjKF z5!S`}3Xhq&+{%rok0c=hgz?AIt)zwx`?)s7xb!IU62Ke3wPuKh=yoI`fGEP1g}xk> z)eg5&RoC@9kdaVIXq~M2`g0NyKor0EB9U#rjw2HRO!52hPRsJ#nLGsWL|BRLE39s# z&T&b;wC+YqLMf%y?YZ&EJxN3WQTPrP39TZ3jMeYKWd?83AK}`0qs}T^tu+>s9UXa! zj+~k?r&9I!*J91#R()sp-0G3~e;#Xp7RfjRa)cji5tqnXM1)Os1u=6BSDRC9bhJXK zzR0B`0s@P0=g|<(9kt%a5lZF5R(})UcgaTpUyMmaaeTbBpo$&8 z%-nX18{&0|{($5Jke63sK#o25SOe9ZKPD#uoUI6B?c#vVr2$N0@X(~{QU~|6aay4j z{09{fprBEjf<^k~ik(~hc zaykY!k~i;7t0i@+sFCbEl3MF3TV z?MMv5*n>uHZ1uysgj@u0#b{&uxZ2#SQ15mzV)63wsU#(oLTU+HjfPM943ZK+8l#oT zN7`+++r7nVK65W4C83l!`9K}qBi~u5=Q8&>Bqe|}!lIfEvmzcc{(QeIs_AdIlO{rL z;t3h`C3OAnNu~aYRQ>ikG-rqA&h0t$Oz;0t#yQ~=NS{GAn~@m}+*hQ5i%>)QDP(g` zx7y{JM1n4vjOt4EoPx6(j_tyO3YeLvKyG& z>kzvnB$Q0JY|CV2%w8_J)w|pF{!Q8yBIZ?Jbel|2_@#~ zqTd2MorHu^3B4BJQW6qC7~!6V!d$JNXtML!BqNkqgnC7F7FQ+==kv%(0B0G)YIZu! z_DWLQRkx#pD@aKIWrR(ng?YMEv(@m0WFvsBtTBjP$(+xsqvhJAcae|)!Uz|Z3O%&ks$+&!<@0Ql*=4y}s_V;pNlqv++7*AG z^Z^nQN+t9LN*^X60fdhWzRT3l-HQLgGzeejg5bb<+)9M?IQyQu5g)+S)UUHU`B_*& zI}|IRdp4fQ6Uc)z;%P}0)5n_NmRsl>hR+DkUcL`)sPqWg*usWmeS7tY*~s6gs{0yb z<43ToVb8|1cp^?VS}l@3vhhB#vXLp{eegr1M|k;2tKDhJWj1}3sxvRevh)G+Vb1|) z@oVPNBf`z*sDuRB^dQNm2qSctwqAPH`zf)dq|+2C^&39Moxr9eVkDYvq0?So^4V@A z8v$$)I-Y!NxLpVjbDvFo!kb7)0AYl2VV)3|e|SRgH8a_HGx-Rm@NFC5`y=@X;EOQ9 z>Wi<9g1%d7O})1Cv*(GN{#3liZfeMTodXhJTC)`VnivWu)F5mF%JviBP?cWCW0fKdZ^aSTTPM$CFvX z{IZI$?5`h$hUK$Pr-r9bb$iFli5Yz&Rd;6anQ z@Xh7on+SJ&^izm=x>b~A)&EYY)k!Q+0sdlpO%wu6(e2Qn_}|iG%6!NS%lT| z!h#WH@|9N;)EVR^fIGtd1cls#tY?yy0M_soI-j&6A52x&wOu`rt;|3jk1*lJ1iM%7 z_Uf1yN=uV{PSpcniiYM8?%XsNig3zLsd6l#>5jIftG02>!-qKIZ z7CQACj-m;OsU*hPcBeDjPVh)n=Bv7qj07;o=n1oOadmmNjV;NV>?V>CKo()uq$opY zmofjr+mJNh&EzAL%g389G~XY|M*v@p4!9sQ7g0^xcpx6u*)-+;Yyb%5g;+OpO3k;C ze1!7&nh7>C*(}{eJ_7hkXlU5g;*q^g{rVgo;K3v$lvjqD(2Mbwq$HG=r=)Z?J)C@m zQuCDe2pf|gNkRe$OKR5eFsD|p-oV9WU5ZDMkpRZeS0QJ+mM8Y&u_l#EEQ#>6u3%{0w~Z>VsK%EXWC~4e8DEQEG!v+tj_HJwJn| zaL(AL20iWNDA^;6zRJ$}kL^UxjIgIair`dH9K7&3@xs&hRYozNZI1Y{Ydz}GtmFh_ z#k2RRBt0b_F6=xCBS6^Y`%)M-DfDnJXwunBu04k02oSex)fK8>|5R)?ZD#>)cMqMV zqts_v1)b;p5{9_)tK+u0;_AqIJC1sOVRgh;1%h!Fg3GUtB3Q(sI(}QP&0EJCT(F{5?!eOWLbE^I4>5lXF&1;PrdWA-btn7TK`5z4HN8LL+vaZ-9m zYj^e2e09wJ*S@Ka_v-5%!LO?$Z$fDr&$F@xWu}~@qU5GR8bS^ z-$5Jn&eq-gBxiKx>r*32)K&Bl0Xc9{>YzW^IT`Y2gw?qaF{z>gc;iU%#t2tWL+E6LyKuQw3hB&fHZvIars3TY_=ts|jrPT*J zy)gBG!>m)D;nxS8$;9A8ne{=$hyv7y<4Ud%-lWv#wvAtXnWaxCvp)C&WI$pH-O2bG zWf01&51x#{`rxE|gHj03O_%RhT8-dj+^&c@>O1CY1WqG2N~;lOFa{NFVE?@5`85J# zo2*92K&P}GLd2ws3Q!}qmRuvefvBw!9O;o=J%W=!LYXzf7m%wFPR3c3K`66EcrpfS zgp=}UN+Cc>Sv>@Y-?lzD;uCZA0jD8ggqu^>Hfq2dQgm;v-<0ypJ*WX2cqjHqkB>ClFo#1y5XLvF5DFR0dUjc6HG$DN zj7SHk?$3Kr2?#B|Sv^Www#0#w3ij_xr&Q<`Mw7!;KxYgsi zC_zB5BfNYzl-`)TPs9@`f&dZG7qDE}x{0u7^gbaq3L!wqj@WIp<*GPErVO4y>w6vq zd07>}%sY$%j`pAOX0HO^gcBlT{<1272oZWzfM&TBz?*LMg|1Fu3r8ri0(kVf3SjeJ zZKDW6i50*TF;D@VkiVo5LU|Pc)6M=eX!sRCd{|HjhwZ1@P!|6~N}dTBHaQjoL zGvd3Em;mDF6IP!%GjT?KPm&Wr9(%$HmP*F-a#~h92vpG<#1EPxi|hdHwiI_WJR6z5*Wm)1lvIUk$vu96^lm z7}B*_#OmlLV-TsLR`~PX;?K+XX%4cP9i~o{sWwNE1mw)6kS0eSMY=;kXThV^>6%|_ev zivE$tW04k#hRW!@XWdb1i#Mo<#4d|9~`l?`cU>MLwA0b7GF@y{9G8R?y*S zM)fYXIs`-)z4y$KO7H1Wzn9bmP)A?I&QWKBK9Bwbq$jXkBU_#{6_4w)G_!M2eCuMI zpxehf4pQ|aPR=*#WAmpJ>l#wwgLS`EmUUfp=tQ#!)t%U85lXSHPim~|GFRP|)Pz#3 z>r;Ey&FJqzdO{i21x>}vRz6V1T&X)?w6TZG!a;Ij zg`0mbZcfUh5<7dbs)Jaf1jM*Kc9*J&Dke8|-m05erZ$7Y8GjU^N!xf(eBza?{+z1s zUxng5#2ZrM**^X!2#Via<^_oel=jAr`hJCWIi>Ao0K4E!gYc`PIg}zGsRhQX6!+m@46!Qf+`62D})(gRysGZIyfN z@XA~I^{lVKPAAKioUQDW}0QKTXsTa}vw>+J03A0neuC8GD6Hxxq@72iI z`YJ{Cg^}?>${;{S^m{cjHYX#i64{qV%9WHtfRxxfaWgW!pTXSz#+Pf-2Q{p zU}^QiY?=U@y94~yukq^xb}M9JWa~m{^+Cj>iV9F4jw`u7cpFA+ZgZaq+11Bc`h+s; zgC{^bi2)g(q6|Wr^}&-dSRY)D{1c@RN~{mqI)g08?#|XlamQSJ5DS)8AIu&KTOYV> z;$}Xm*YyuLlhp^=$xvE-5HX?v^ke$k&lRInSUR0_4;q&ntX2QcwEGAH7itK| zii;y#sDKskq|(KiyWVG{oJB*~!s{=l=vPYE`sxbLgH(NiPoUVSkIf%sNc4+*mQ?s) zhR2B+qOU<(B3=4fgzDvNF$jzv+(weQtXv zu^&_Q>o34&2YY97A3%OqxHBx9jJn7O-F zowaG6^!X$ufON<;v=CC?qA`KMB@zml@g-u$A@3+0Cj{MMW?`uBvRDWRAiU?X0cgJ) z1A1gXAQ=H<;ax$F%rl-x_+t_hKv?`X-!MT+bKo#78=cqD! zd328^9f9Q%*rYMpikJ4a^p+GpQXlf(;nB_8ty^coSeJYT#@c{WxZj5eg406VE<+%R z!&UDPR|Pk|Ryf-&YSrS^0UYoUAbrSN9oC*V*)$^~I*3FB5Cu1nek{JBY*dGki~zES z1^bD1vMFCrH`%g|&`z}$^Z3Uze+oWV>%Xppg%%8B_xtQ9QBcC?UYe(EM+24 z&u8uvpgux7<&oHS%4U{&0jUU}iqKAZR5@GO$X-l30?Q@bSBo^3P5Z;9osv=yx7I}+ z+40-OL8@wB*4E-Nti?Z3tYt_feOT)Yv8-hhmM)NTbp$G90T7~C%O^3`%BZd;6(NeX zd@9dc8QnFcBgC*4lC5Oru0Ai;A{kN-AD`d`ppI;J>*~W)9sCK{>p=6#9f0hN;O@|o z2@6d29WhyWcjb~cHe*=AqCU$J2_a7DyA1QXMlb8s7f43{-HdT*p^$v2My+Z~TY(I}wxM09v zhylZgF<#B?k)2dR4dzi`B+kIf&D1WyJmiKGul9ejY^7alw)unFsSEQ>(Rv1SvXK6o;aBXOoO znWYv;MF3UsWFSYCvz4V&q$99g0w)7xqp@t-n^7uRsfSnhPHpKD-3p@zUAiPy$9x6m zIzT?yzX&6E;Z>(dBB6l4ZYTZwy1OyP?n7EwEMrvN3sn?K<0J7kP z*L+N#$-L-ZPeK9+Ll<5(U&RmSPw6w`0}w<^T~Y2;k=ZV zx{QPb5QaMr>B4bY>UTAc-{h&iiMM4fV141Nt4sF7}cPrWa=T`eEYhA>|yCQae41S{=jw zkbsCUDnDXPFP`^A97_=dh*;i7A~N@TLXM{p0?WV9^|8vL;;}xI_80qsHz_Xztn0Pu zKm2K!egh8$K|Q2hjS;hDqJU#=cnV%ykz#_0~?^%4Z)_ z^(ii`AMBmUeSoaR@?4Rz%AAf`P#5N;E?m5?h;<{JX^}ipU!^Sx$b+ZuQz_CP3<&x+ z3L-$zGxw>Wthx+{`W8hIAgWbbt;uLB*`X}TsXj3~D24zrW!Gfu z4CYB+wZT^=cM=LBK#(f8(tuQ|Ovc_}g~_Z64JB6>x7NvWkyXgAebiPL{aNJbL&zz) zx>z}>q6$=(OZQ22v9zwY(cx+h>g_ZH0nwLSU2-zAp2idN4vHZ_Ov%+HCnjHAJVAd? zK?DdYx4Mv2R~L`{nXbC%lh9D&AidFEsLQ?@eUz$eK7xvJfPAojAz{e1(-<=oCqc+j zKdzMe(JZeWcbvL%c%iE+S@r}3U1EQh7a-NbmyuEi0WwM)m*!<;6~dQtHKhy3nXOO@YR9!wJIZy1 zpC24rWLhLo)QNNj0eMhjqn+`(k)Nw9xk6I+q96hUl{i}|5R|Jnc~SSFC;~*4H(SXx zu>$24yqdMhH!zfx*q;sf;|T?yn2s7t)q)5UG($y}9l7+n?Q z^NdV%?({WOh(r8S_LKe(yog<5{p^#LD#}3>`Mgw-5+}rc%(|j@=R}EmAFm7$kPRa| zKV{qt6drNk;L7{PNctcp5g_TZ^5$h8v6GZlAn#iv>m!s!fUJv3o11vN6*=B6Hr2*a zpJSaeW_I=+vRfg>gt=>nSUgBo{fnqe8}+gIgUl%L;<=?4W>lMROSLKS;<=@i`r@Ki zEfzn4#b2T;ZH8x86SJ&W7f}QOBFbz}eGy)r$a14cAq19xd6fZ#6)*g6(fwjS@Rn(N zyVTv)OUw6spSC@ZLC-%7yF?Qh`c#n_w*Ptgwl|bwdxogFRfU5G0wONc_CCFgrn0P8 z52OeJM3iZJUxa7-EH_T35CY4;Jllg1w>P>n_?g(AC%{|cptjqd?|GNfvyZ8|EpHV% z*gKQ^09hq2PGzj@s6`7Z#UG?nlsLN16HC=_StL5tgV_=ikOw6$P8CQo)udn0Ln(*= zK_xCu6$tXGOuwjyQxpNB%3GYuG*z-gQ%=8UCGrgnC1sBLv&o1|Lw>`Ds~ynQAM9U9 zC~;n{xunLB95rV1f%=A(5-)Z*PN^(e=<0TK00BXlHw)GL70G4AsMSG;*~{+|TTce- zwVv6>RLy^gt*3V;_W?OlV(Xc)iWjH_Ubu~Tp~TiRPpl1*osv9JU3RDh6v6hwfa5?jxV*9pp6&+JPhYBxm@Aga99Go#hFQ;C(0f+Jard;>#CiNnF( zA|6n?*lx&0GWRJ}i(f@W+MJ#6k0GhVDS_jZT0|kJMaN4mDsfPnjGpqBwzZgKIY z{|nKie$BR+fLytJ-{y+0{e6|rWSSB8TZ$t<+zTckuAmC$1^$i#2@v??@@t|Y&njdx zw_QA~?XR}7V)}K!8GeLu(JUU8%iEDwy;H&daLbNHZFXm~)~a5NXN|Tm))mv9n~`&= zddmkEob9@pp6glPst}w)Cg;?!J_a27IAMw+*?XB%P9RS z&1s8wPBf^e(;x&GWP~-g;Lvpq@=fbR8bOy*5CMXAmM|LevH*5%wKA`=Ow>+#RXfD< zL@7gQjPmQVNmsfbIZoBJpMpU*nXl692$?bD@rC|IjzvM`ifN)p8f;u)k-rK9QULsbzSmZ9xL49Qzqn@2LymO~h-H~*$XQ7IhNz_*` z0rlp3@`D-q!HoHVYq@^HT?Tj9>u>DW#T*>K_9hWns;C{ldY1U=s!52@X4_j4h)Q)T z9Y{cKy?SCov-WWW$)`~=0g_)-LW8+C2^INryRjUe<|4k%8da9Px{NidKW;S4x@q46yo@!_OA=X7SqPU;Jby=t@8>(qDY z0Rzs?$k`b=o2t)o>EhOdU+8oBB-j^}vZ_)jR;0nyuM$&_aNTF^RjH6!8++gz(WAD~ zM+9U>DeG|q#BQZQ7CZ*NH^S~sVFU;p;UYrJyvl0cFmd;#I0D4&Dxvlb@K$gJ-HEON z+f5ZP8TCq5LppxY-K9(|@d~ikax>}Fda`WjeNNST{}I*i5dT#E6Y{H+sintAe~A!O zwzo@VE2UHI~VRrc>+@1&_M{$3=#Nzh&baC5Ab>Qj&>=XzHx0Ds? ze)_DR$_qJ(LI@@K&amOFyV?Vi_3C5VclI2pOQ~_48ZHYrtFudb7$Ki#W|va+BEB+p zb9TZW%@!l$n{Lji^+cpFz>~R&xCAT3WMkK%?H2tDE$&AU9uIZs0HfgKjVMd8{w%^E3K8r9A4{AFfeU^uE-0=9VH~>eD99Y)R=b`82M`cq;jIYcvsW}L7fE&AjyVFC}1qV7`Zt;#u5SO6D8w+HgDQZ>=dl{qHcv?eeDZe_+0Ia=oN!kjKU|h?lZ- zCzJ-8{IA%gxUY?pJ!~ZMX7RM7iaOMBvMOV?Z&&ox=XVjJp$ZH^Gz6i;(wz8i#<0+tG}Z(F{0; zUpeb&3Ad(oq?CpfMNkFC0!w|)8?@-p)**NQE*x@*f69EyI?P9e_@IwGRU|~wA0tKo z_=suiR>I>GE_D|cFaZU8Za@KhDOdEdD@2B*?!ZEnjLfp`?Bei}73@|i9MtJ=w$!>+ zI2T@6(e=C5oxw*8GgngeFW*Ob9qgUq2m5Q*+EZgt3J;3uZcI6KK zl}wu3QAWlPj9fjChLF-I&hsJN<7#Gf^LhP4?R+O1RB&`4;TSnLlU zuh<7A2q#MWbSdp2J>(d%v5@n8!lk~#y{tQB z+^mz{Q8)Ex{}ko4fro;KEO=xX&Gm*{m< z-Raa=v=|;xw0aGbCm{JTM<7Vd^#s`kqKxA8q#%Ieuf}Q)kQRJmC7(-g=<*B7lIn7= z-Y^w;WriP8b;Y+~je|fXpY@^s9jonw$1YY!B@A%NtT<)-9Ct}tyNFC3fjW>mPJrsu z#?5h^AhUhDpY#r9K66M;f?&w%#%iXV$1CZ0qh__cytLHr^w8rXRkQ%IGuwVWYN!bor;0VkY*5TngM1#74jWhwV z7T#JfS-F>4#c+y>{c3xb4Yu(%Wuuxji7TM&ceaFC2BF!5g^Il!$NNEMozuP!>)gSH zFjMrK?CYxcwJ-gGK>HLVD+Z!E7-+W`Xvpg7$OalhqZQJAdi3ljHrLh{3 zy^(k}@^pGe(i(QrNUpdF#X{YfgWLsNrl~a=dP1ys26p}NKE9p7w|X`$-?|b1)*rw` zw;TQg{ata=bpDtVX4to z9fuE`*Qav-pI$g)yr!f`iZH_hFA@tBZ+Ba@|A;ZtvBffEqTh2s@?U&0kg zKoMhkrY~333t6_z+JSr=)9<(uZLX12`CK~Fz*kplow_Ss`F@7qn?7X5exIuMal!od zd;5v~wvd3uKjz}nDzZfyoN$deVaS^KYK_4vEZP)%`HiSh7t$XDgxem=AA8~8orEYr z3`I~vw)5ET%Fsx7Ic;MKDt1v|V=^`#EmvpTcsQ1xP2dc+hb_4z{^1OdKMvb zF`sK=PKcQfT9K^0_yO^70p}omIio-8L;X7z(3rD7pGp`|Ht&$K8FTjMC+UhMi$Hym z12+O~HCBzY3{n_g($}*Xm_sgGito=_wU=QMn95WK$6ffQXv}pQuW0{C@t6AiU~(+A zfGjSQmnsTD5q?05aLk3~;o)>r8%(=*37<3gM^1ZOD9!)_&h~q7|4@tjb&SMD(rO?0N&dAj#X$)H$MR`8v z&}<1Wj~+6H*WIlCe%K7{_CJC}Zojvmm~V$q62=^wts*;Blm@$eN$fJ_&}BDm~)xjMob-xwhm5XG;j7{ z>eE;^fkCm>ihxobq#I*dxcAxfM$ie%RvMVvFKC)>iFRixbyw82m~&)xk6Y z0WobKYqT(!G+qy(N8@(8rI*L*TP$y8bU~g5gzZn^n(aB6oP#AdcjFgWg6Hz_Z3@5B zr*l&T{a=tZXN_OnMbbnC3j8Nh;6wIL>5SXUGA*;QDEZ^L+r63e5^OQo;cm`O?AiP% z_ay=wve$WRW)5JAWQh><0}f6JpstN=xBi&La6Fq$0<*$aH_&q|@qx_ZpkTbqm_?~o zvRu~Lu6{w{e14C)_@wEU8ueZkH=y*|aw7pw&UATlMowZE6PvNa2hQtLRsB=*{~7q0 zi%&&Tgc*MRz4$qx!S+?^=Gr;R3t#xuE!cPw5Y2dtPyN9dCy{Eq%_^O%>L!*YvvwdK z$6U}I2sB@mSNt4Bd1&sO`Dk?^=!cEjEO}YUJVxaN8;Wn^L3(rUn42U9BGN_YaS4xl zKZ}ik2+kg_5%3bNXxgl_7>e3}KnAmG%+(MR7p_=hPf0^A8k>T_Icy4Q;M(y^c~#)B z{?q16mDfV_e`duyJ*d=dN>Xs7MZp~=1^0w#Da)uqve`09km`{vJ_16yAf)(gx~>Fq zg1dWccB)&k6eUmdIe6xHarW9~nO8R~y|!7@g)OeU+k`v-e%oXo9b+?@^l;REN*DewOW^wm0bFDYg+ z`c7%=?=D6hv#%~nS~nW~UkIOiHw%w|!h7tPg_qA)lp#*^uSzgDbvG8Kaz}P&XZW|lI;cg8mOWGFkci-FCR7D*g&-Z!aSuz`ny2(0*uyO+X< z1d=$~BZM3#--3Z!ZV^-5)nXDT%E=w%Et8>**wVz zAbVJm)7HjS$x^P;Sh~cKbn$d?EoslTjhk?gs^y=+P8(}HHh(};d|SsDB$7TH)fPt; z&lJZXoKyr*6%WD3rSfc*(d{7}f#nkFD`ze-TD_8)k`w0{(h`tTxQ1>gtuXaMAC=H{wY=)W)c>QQLc_ay^Uo+fco$@EJq>+%c!m=6#-P?ZJ1Bx z*(;-aC+P?*m(Vs0$yRh(ORjxJ+AxwK_3$#)cpH|daTc>=UnLmM&CDyRA)R(?)^}KV!r=G&rfq+6wLN6(J$?H7L z*3Z0e4Dr)ROaO7c4C2hBgXEWzoB;B|D^KI)bHy;>?k4LZbt8Ritz^wJ&%*U8HJV&?@ z#av{qXcfDW;MV!>VtqdEb)KHlr&D!*-miCr^}F|tJ6X+Aq3?^IuQG-=vSe8iMG3rr z8}WWKmIv}QIsa#03A<8k;0TDb_z^h4acTkidN3fPNf`vlxVXf87_1KiQkE!%04ej4 z>O@A8)eD}(g92z(Qx-?Ea#&;bc`$goVXLRPRm0l9-AUEoag*S|-Wm6yim#Ck#k(UM?gHq8}!DGr@-JgTh*^gO8{;0=CCl@K|?$0 z-;$aD>hmKRx!uVO?1+w|Z>@ifWuo<`9sSD7!4_Sgw@vz``)$BW6Rd;%uiV+Hmk>Q2 zyh3Ch=A|pGI>o@;+r-?_diFk^T(j1n*Zy%y%e;05OF(riW!pRyQ=YYu$B;Y-KI69_@Eyv{~w|zV;oT zQ+3p@{aGqcWfKj4LT&^v{MqVY1PCdr!6{M=qRmoG`Z@bE1|6h2fCWrINYUmJK4pF! zlMx?8VgiVx4Q74fL3?N9hmf2A@>sJ}q@LM1qdJ)`cC%ET2WRjFiP^+F`jiK$`sahu zoNv^}<_}1MFGyGtNgvjHlvp$PqN+_;doqha%{~pqLSV6kHhnn~aiK>wPbvbag4>cD zRpvX7u1-1v%O!AV!DK65+Go>YQus(cc$X3OXz4Bje^d36|A&Tf0}lm35WLIC5J=*1 zRaIOS+@MUvgn0;C7;GV&>mrED&#can$zqTtDgPvjZOk-dv#1dxU9G6Gj6 z%daQWO}fO9ba*>uw?={htJ!}%RJT(+hGY2$B;oCpA(8aqs8+0Y$|Nl96y@p&)H7L| z2~Z#2PWdFxRF>*lq#}SSyq)r?a<;N`&m|p!v;t8Z4yk~VTS=iR8 z$t4DJoT`82z-^QLm>q#IxMB1Ng$Pc2syHp!1YX+OY&HTNkUEUDoq#Zc=l=avV!1rw z5hNslFnC41pD;6Cp7c*hN&x9uf!;GI{#ch(Z%2p;Mr7cH9?sq3RuRsIL<-U0H# z{smF+rV&RZ6mZ-t#BssRw@X5kMB)wC2e&v-yON zCLsZYp_@i@x)ne5Yv?rN0}urFc}ZtpPX_QeRUi8;Cj&eb1VQj*zz|5{u-99}Ug0&w z2XDUbbK#~za7CIR~P?apduA`lF zi6iN7GwoUuGws6b-=B7)HWLm(00cp}nS?+Rhne0N%S=YNHj@>vPGPnaAU)hn9)&TJ zBRZ8t1Q3Or$s_X2VcF`!R__%v;WLsBo>?MY**3|8RGsxl*lD9a zHh(}8JhQYUl0F>u8F5tbxX~soou7+9y^pz1fcoG`MUKRo%4C-MAgKtT3Le(wsB*Tl zbRQudf#ni7x+fcrWz+sNoh5~j)WiFZT}#cawxw!rP1U<^fg$|?AjAjz7ewKsD@!C4 z@YmPHU*V%Go3b^S4MW|?av&gp7>$X^DK?GHVvg)4k`X`_KDx@qlrxzlyqSaq5C)H~ z$VZ#G)W1fb86SWk*l2hgxw-nJk5YB;|8W>EAM9Tc1slx~2?dOHLnNcQl(o^kFx1Cc z6a)kiY_vR$7|kd96v+r63pQGwEHj!<_)jDxfH2f(I^Bw&`j55I`Ps@`N+Cp}{) zsqg$9YpnziN#g+3(y7+ z{N|hHeo`K!>Ic8#z)v5WKOhMn_*oK3A0FL!u-L=VpM}Yd^fnScq zcrl~;8L0@M3Lg07s66jwbiX7Wf#ni7@FQD=AmySqpj5I_k6^8~Tu+#9wsEh*tNv50 zg=3Q7PaJCriKGu}9U0A9Mm@)3Sp@3WEC50rYk4HrS~j!PZ%IXnV=a%$x0a*(9q9;B ztks@_wOraq7;8zX2d{lB%!;${H&ti+H;lD`hk}qFy!K%TByqUvIB`|*7}W}=shoIq zJUbEsqzA8k_!MHPjOZ>TB7i7(6zLOXhRVq9PBH?>Lf1Z!Y9&kgj&zeQaU>l)yIbfa zHM|-?Pf^Wrs$TdTm}-;#m>q#I+`Sp05W!$u#bCjml^={YnQ#e@x*dyzfG~mw_We}G zY&pU^kdOev;1Ov*p=Y`r>7SF70MgJ)pN6wy{+fI|kp^_`08Q|vHIsfdyXaxg%$N%j zPrMn1yk-8R`z-&B9cu89YCuS;NDYggEEWyky*|L8M{l{a!l|xgK@t#H@UF%jfv)V? zDogG=L!OeH0P<$&#cfE-fm<+r0UN$ z!D0uw&)y+IDt=Mb8fNM?U3yx$V7DiV-Gawde&S*|6QVGwtt=b@A_?wu2FQ%{@|5=` zB>|MdZT|qJXTdz}eMw6I?W00%Xp*j2dXt+^pdB-#fGK!@U&m8&yhAuXe}> z`xivPi_nfpDB!`ScrbW8>{2!cL_or!{*OHp0Rcp?y2~kdwZqFZbqgAR0J7k*YCb04 zbXjxoc zf3h(e&wwC&1k}akN?!6**N3S(kXx4yG@sl7qX{0KI5J^@+pZ9|MHnn(acH~oqp+wM zmIwhcgb%S?47vfehV$r7Bpm^C5qj}lT)yQz%6pNL0Lsu!nNsjDotOUe={jo(a0D-s zG-jK6)_}jMdNA*F*uXy2O!m@Eo*}bmcZI9;9l^M$SR?vH1g% z;5n!zk@VrH>%>vPEwD{kHz!#HYBO`60QJFh&>V>|mCG!3D5(gb3T_~CRGzIey2D6E zV7UYi{>fI+xpvhP_S=6y{?i6fZ>Gh>1)vG9E8vl36KS{b(XQP+?!VAq9!w49jC{xz zS%RN%!L&2-RFM%5e6Kh#cvO>5-uci3pxM;TynIAJW(Lm_3kWk$=4k&&S^{W;w;vSH z=KYzY-k*Ic0o0*SxX75bSKZPa3sSv@PSyS~{2&bPVB4}R*Jxu^?pD0zc>@mxK@i@- z3V|dJGk#jk7~a7e;ktvh;?-l>WDr;wp~FyQge+OQnW@VqwVgx+5QR4y9+BrX7gd#H z1ds)Hu!<(WE)WCV~!FwT_Of(Wl8(S~37s;4jpnjx|2MtmN z{9}X_J`J`hO9x6icy7ZXdNXE>GV;PQZJQsO>T@o1N4i2%0!Whx z1H--;b7ssD?Gk;}M%N)6t_3t7Q}xERRV46mJ4L#6RUe*{58` z7?k<~QbkgD_KxD&;3a;e-UVn(YdM8aeV%1VKpDnp=xp+X?W_I95Py-x1Q6FFw6HdL zN1QXR{nn6wndAhJhdzAH%V)N;WHOIPXMw6?XMz8#Y4a%2oTNc8}Y-v}|?>r=W$w~zQF5))#&*C!ry zZx;0_Bqv04FH+Ckn^B#Rb1%<>GsaLs=cl>z(wdh~#C+oc@GjeW{$K`Y+=p1tbv9`u zIT;vb!~j=7#1J_nHgiK&`+3mt)o4bv;@$`7%KGB4tmy6A5Urm zsDoF%#T+QW%(0H>BpTNG$5Yl}yR>h8tbQ$J$#r2YNYmZ!4T);w!8T5D?rq>7|4 z?OBmqTa$jSwPg&NPko=gCIN*QZLHu^=6#zH|A@o{5Jwv;_{4+G&B%X3astR>jTMl3 z=G~0y%v@{B^WY3#qi)uA)tk$*F~S_D>JN17Ci^iv0%7n)B9Bmr;M6CGQ-ha5ytK7T zZ3H?X^>daL0bvBU90vj0BPv0DkkMho?$zU=-dIC za1&zBwKJg{r|JeSU2Vd>r2Hz)jzAc0!i-ReV8TW$6J}|P3H^Z7Q&~I&gb{ASJ}P6v z9N{xaNC08D3Ht~=6Xr-SBPju-!6uZHE7l3x7;2}O(6E9g_zG=vxzVdHHFoPx+%UD`Mw{e<6Q3+j3?51QiHj9Yh!T}*a@<8gB*7~R17yaGdCDbH z5>VP^;5O8zD{UybVAGdJYD4|R#iS-giAueiEeipW1h=6B zWX7O*%GZ*T0LtJtbb!(`XP)*Aq$Pkhv<1PMiPUKNiED4#6B3nr0}G3QNP-(po3`s-#hLcBp?otb z37`yaG;P|BGV`VV%Fw=*v;@$GHkvl+iajtK@79f`I|-)X`SDWwVjUa)rfSE5=)E`a zP!I&cJ9!O(Bo60&N}LzG7HWlabmzpYyRz#dKzfAgDtVI)ATy$Skca@H;L*Pyi*GPf zBx;6a1dxU9YgNe8d);3Xj2@SX>4D07^u|KS7iH`$Nb5eS3b>k$eO z4E9wqSnzPdOIx>WHUb@xI-k{@fG~n*Nc~jOuH^|YBq0HW!JT|RVP?8K>ElUC0BPvz zj!C(aXZQ*Y=-dICJDo6>G~3-1F0L<~&`G+jq*vW~zb*Bp-K`zR%jcP`_e<3!w?R|2 z`5gTNp0LNq;uxtMJvs0*;^B(mUv<7<)IVDSlQJb-X zPdC0KAwoX=Lh|X^QR7`b&@EM+ffv_%i(Y1#@c))AA^}mqXexw3?vB}Ny}5+@f^`Y~ z9VHSV@%hssaUp3e8+HFcb%g23z{Of;u6uEvZ>iE5_#R3mK;nz1BLf>rZRhT4C(Fk7 zQzHQyubdK%?S*Q$J>SEn9FvhBqDaE@II)=(^FLA@VS3bg1^jWUBS75?rlWwn^@V1; zj)zz3TJk9hButUOocsQX0tpcK!YRo?2wZ9`<8E%9g`cBB0u;)MLU<2a8SJwPyX>%0 z1jcPENvAvFD8l=7s($(?j3Q<(<0#@GSt{Y92#-BFv}nY2)MboeJCd__RPUmRpjpAk`yBn;PkFbXnK?nNmCNV#MZ zQd)XB->A6{)exZO=@U^iP*(S+BmyKod0$Jabr!m`P*z@lML7h>dD^7p+6+t>}6LiklNS7Z;R5(1R$-q#t#i@SaedpN}qCgC5787QbnP!R!& zf_g!(0PxaT*Fl-4rLfCc3M&pgONcXRz3#O4iS(@bX{tW3AHu!Oi_rfa^bmUzk(+ye z{Z3^KQ)rvK^n9d1&vzH;`JNIl#$nF4`H;<=tsoQcZ4s{`AkybdQjb4d)+KQ?l@Xxq zSrb)O>*{p}lVitF7XiASJ5gP;?WNsPutwUklt!4iw4}Mz+g)wccP2*K@svh@wC7DU z*XBFzW_7NygmItIb{A?RK-*;N!2EKf;pf`jsf+++f#YP`66|d(YJW4>T5M_5TU}(C zEzZB7Fv8@8wHJJ0Cr}t+;=-CqcX6S^S-Eb`wow=X!Y-d^1&~okuHpDgiX%YWWZT+y zE2%E>HZGlM_oFTXbWOHqLRZ(XnGc{c0+c;-qQ%+k)Um*^B20rQtSf6#r%)6D zq9)s4UXpa$xk5aZ(g=`trrtObILfQ^jjjeqlbs;1XnDQeOR~vs?*m)++f-e923B@H zb}2@-n@`2XsbiS}*LBPTR>ut55y;qz473Ew0wpu8?f|ER_+UEbKx{1Z6uq z?b_Td^huuDqWuCj5}KEzvD3AbwVOM+N2*jH?YrUMpA5tL!3Mbx@APeiQyuKT#k1!=gyxcGFrxZwlz$+%* z6l0?fZUCx!jmj@5j{tdRhYa(a0V_O`VbsvURU<4Tl9l@GNW(n+L)?hHj4|HJpN%oz zfv3tTL~HhHYTaw!ku>KtNb(rnb!2oGwrroJJ9KC#%wA9HNBK91QV|g0Gh*fPux`It zi9eRpIsa;EB0y8v)w;2BXAAzP@xg1UhA_b#!X*U>#b|m1H4&ic^q^X(i=>iEyx;g? z2KC~BF^oKT*X42|m|B{|;g>A+2NMyQ2B2>srV_Zbp*w6ZBcb#Lc#?x>ryg0qVj!`>5)$M^IsU z6C<^}cTgT-y5!li{d>wIKwj9U-e_&!j=COM=m!T%9=@9*2@shE4U40TtaHx?7N2xk zzmGZz(D}0I(%DGnd)4k@eco#QAhi;pHEba?dYTRJ~KLX8AyeED?cXQ#ffn9tCU zQ7i#sr>rLF$8G5x{Uk*aAaY6uV6zFY@@aLSp*jN8P083b8y$X@;s{feb#2~2qO_5M&OqykN|;UOOf#e)>rCtc7*s9>LWnklnnmO8|`)Zex33N zkT)e&BkACMw_4mcDUL8j;&$PM7h2qRD2@PeQ_|$&l?HZr_&us4Op)z&Ej72A%=;nb z5vE5Tu5!2m!VQ#1fV`JX#{fagtIqjN%TKA2Fg*^O$8+aQ5&wef2v9dAEz82J?KS?B z;s_8oCEeNr_Yx*{i254}BtYOxr^A6ppm~;yG=eu$CIK?TE>%YBeY1DW>t^~UDkMPR zl=Q#mwd7jf&6G!&CV6uemfuyNT)uP&XwL_3R~_M&rTMNSLDH<+~wu@!pc+2oN_VEeoEe&Nu&Qd52RT zVY=km;q#G{M}WL(sT}%^V>^m#)vLcg_e@>Bv=@W@Z=NXa5Q6yoiO541)!f3oRH4>&TBeRvtyHO+oBBx~J z?;aSho1S}8AmO>`^4+FJqJ3bwmbiry3CP1K8TDt6m(~imQXye_s*CsVVCkUmO^t-< z$wl`pSy6ajDkMPRl=Onx!$d`5g%SzVlZo!xlA`c|R7ilrDVd_^XBX;vax%pcAZ|)p zL-%YuE$|@}NPxg8875+##$H%@7}XJ=Zc4^ron*GY)M?|DU#3?+of-+yI3<<1lQe7f z)|^}HdL$(hAaP1&Ql0j)8z7!dd4%clAf8`kmuSwRIs(*9N&AxRKsuk|2-B2xZUfSV zR7aR1br-o^ACIRx0@O{(+FSRcR0ch*$h&q^@s3Sq6z=Wc6?RQ)*HY4{^Im~kW0d<1yq~A)VaMUVpYJ~%Hyj-L zQ2z_$!kJN32^DTRIQEwMxqYvWn)=Xt4!oGQcu!Eoj{Z)kw!80Hz}Pb2a?)hYPmnc= zfDE~A$|d`^Dd=+j8O0MI{`J!?epWvOSL^;IbrYcbb%s02?jCcj)&C#W6V^kvFUbR>weVX!1HuXGK{$2a$N1#{3MWALTc_RVU91@;b5*aN z9z^*B$e;Sow43!xhfp_RUFgo*^jlFk0lKHYH|6v3yMAwaYpN%#2laG$PW^4Do&fbz zKkDr*;+YML?FKGk>jv_+6i3v&AI6ia~E2~3Yh6g!Z| ze?i%V2^nPg<4OHI-m;^CN4qxhz^jXKRfg|1(~Zgr6iaBlUnsQ zswP171cqFrs%|EY>cxq^*{@l{11a&I87==WDW3rOlV}A;bPOM%X=kGMqhtakUq8J* zS#EXPogVs}ZnD6Y!)i0(HfNpd4`2ucgz&fPDFohap(8kn5fIi{1YN#jTSssTBOoAx zOD9+cOYO$)6<$5ps!pXU0#vY)Z&+@uScg}CajodRRmjJmFSXpt>R+Br>Q=UoT z1PH%s0{LA0(5iwQK9@oX5ITVd+C1wjTg#UdzR-cZy?~MllacIQ5%O%|o%O{VA8)5* z0whmhHs*<2UGhMFS1FzV@e^29UYqz@qcPiP6k4mqq{}j1n8dn3d(nu$aXJn^oyvS z0PSzz_Z{WhD(EbB(e^H<{mK0EG2mnz{Ns9!8)u{$lDTK=+%bJ>%!<3$4f!=<#_x9w$bP;e=2nop!>yMs8`Goc0^Z9J>ayfMq)`#x4z3i}ux(U!df!XF7?b5+K!&J`~ zQ8)p@r+xsifIA}USg+>~ zE;IToD4YP{Q$L++Bpq8pUq#&n=$`tXzu}LyUPI-C^^oJu_M9EwzMi@X>mkQ+FJ-oH z{3a?VK>5_K6}6IGz1qBf&W~;s-$L;Oh@bjKk<(B-Mb)(DZ>My^dT=^!NwTwwcThJ0 zx+ieGYHgzyyr~iIrk~$k?IpZ^WwQS783F+zO#Q%X7d9f|746#Y@1}6VdhpC8Nzcxp z-$&g9=)QX2&qNoJR?@+(4%xE5Ia9E7{t-$gKka&5lKNsZhS16MJnXlaU23}R>K)!yRf(Z~jfeWsU+U}&|n^#U0*KSQ6$&qYD>NPN>Z(@EL4~92D+_wQRjygPgqCdw^{KwP&{EB zh{yV$&Uq*PrxZ_EN8;~gbN&|;Pk{Jq_k9C6lIQ!a{-4xLn10R9B)_3%!t`r)-nfyP z3D7)&t;VBxV~!6E&;z@hD3&nAV)?cWE%s)LB|z+yc8*DNM>028Z{e|-TJj$$nJ~Ti zJMZ#$|7Suh0b;M2&Q=X#@wi2uwHv9HFuiK)Sw-7KwS*~Fn>pcNswF_}1m=6Av|-q* z(6jr2Z%MfX$eq9{z({giSO&#zTRipL`1f#%CP4I*jv?%z%?+22q-MhOYj$IZqo|oM z{hHkv;&#+bfaVF@jWUX%>5b)9ZZdTTswP171onZ9qFPq9^0)r{Ib{4MqT6#Lw|i18VM4iFZzZ)( zwbocjc64gq0%AjdVa^vUcWtF^0(4K{RwR+P7Tp7@U-xDN1Vr$*35=Q7oby|1bE;i; z8*J`N{RHTL=ep3pqt=^U#GP&J_T0s>hdjVJ=aZIgJrj9!X(B=r-Z|NZNtAj}o@YQ2SP?NvNN85etPbv~QX z5D?9K*F`jouoc2+ckq}w=;C&E+IALjA;lBcO$BMzb|%&C${g?Ksb+5q(AE9%jD~<{Ca|Y!jQ&oZx=_Uk z+|-LFG6VubSRZ2!?A}bObFSa6F#rMrSRXS7{n8FEf;mP&Km>okE}ABZpsyen7zSb8 zgn>`wt6~_0byFeOIL$ZewnjG@009B~-MX-oZ1Ti#5U)ot&C(KsARvhKF&ouS zn#Q6&p0u)JCv;s#K|mDiV*u5|17h@pd8)m3e)H`LV<8}x3EU(%Mqig3HSMN+0_0C( z<5#=eO>!H*^ofF%u%}Zf0YWEnZF_a01500*QZfOOC-4AAJjY?Ryxp>hb={=uF3MN= ze@s*JY^oe2j(-L=I2o}0h<420&V;Vns+w%*nN}7S5PkjdMB_?bQFg) zw)z?TLJB58@C5F}8cA@QTNvxzF6JekHLj#`!t^S)s#}eQuRNu40+dhU3egCr?l#-) z-eNWHm8+?nFugg>r`Dol?<~}FUb%+K2~a+P?GkwQVtr{D%g6P0%ez+OpDySiucc@L zL{DHK;;S1$^gw6%I?5+N{sfjd*DAl(t#-Lio7ge!8>ycF{Sz3OuU&t)JzIyxu<09* z`nL0n>lg)Los>eak<_}qs@s3_HtHv=Fa2&W&h^w!SYP_xzMOYbKLPqDuvIKf*}wP z!UV1ZtvLjY^RUooTAxo-JYju!hs&!CdmH*cQ#)b(XkWIYx6e~M0oo@puU)fgvX?!4 zk;(~Bz7B@{i%D&z-o?1t82-zYPgozOS@b)puTeW;y=eD3sc%p_0oo_9sIXSU*H1Kl z`8IVE)`#8oMT1%FRWS0uOZf!IpTLsvTC=^`UP)@Z>UK%^2UJgh`UyNXV6EzxYIEsT zNAI`)e*7mJk$%hw2#8=E%uno<*!irz{|`n$Km_mE_edRJ57HRl>S_BiTC!DNr21=Y!_Ko=DOn~AEY*tu3kLxX5U&Cc7U-VrmngG!g z*j%={Xl!NSkMw;erg6RpH4~;*^R@xaGt^9&TFv5RKc7#eW&$)%U`uKTSHs#(Zwrf@ zC}@uFL!kr+oxqmV5rhsj$oHpY!t_eUmd;jtxzVVbYWG)^On~GGJbhx6T;7pA8u&p} zOPJmao~w82vx|+y-U9ewN+v+^1Rj_%N(TFn)PE@D5+HX1gP>95nvI;szz?Tj!esKd ziziRaa-X-?q`7kit=d_XOMu)7Eb=>PtH~W`+a68f1PGtNh5yloFSk0i6}<5ouh&lO zo1V|3cml+~Xy4CZyGbvX-@O83JdP3xkT`+oHttp8fEk`Zu>^>nz$4oEa_PP*Cua)s zb(T^IkUD_@{76y<@^_x12@pMjvCn9t8_6#I(6qyKN+wK5au2(0yS@5s?#ca_8ric2 z)@V~Q0g@-tq-Em#)*(CVOCGRDhvEqkKY;~BFK0&(kC&P1*Hap=EK@sSJ!qe8cRI7} z#J;;{7qt_heF9IJTU)-*w(Y%8Po``FWKZD2(Hdnh<9(X8?|vGU6V{7zcRTSjshj}i zQ{TQUqV;U!)e&~7?pYL1SP$8rdjsopshqGLls6M>u(kVBpHJlkD4)Rf^|e(}ycevQ zIO#8-bi#V@x|Z(c`->@_upS&k@vez^DU}n}iDUSvCo>56Yf2|T`qU3#E?Ta&di93A zlK66JCqVlI=0CWoiJLigdjl_X#vd`7Y<@MR5+HQ~^PiEV4h(KzOVI>~p1@{>(L}fL zQWri&uDX!)s^(2|CezOH7|T)Ee^X4eF~$_r5xmfm zT)`khF>V-Kz|Y1el;hrMCEdPjzB}o?=g_MS0#gK`6M8i@5Wtks0||r#evpum5J(6K zBoIgl2?T!M&+N?Z>@}TqD|R>jbkYCA-stb2eC@+Fjy%JAi_)fU*_vsJ!@U5F*EZ?2owY_VKZed;xf$+#<+XGw z@a1B;?pe|6)4+I0Rv6I@RzDK{1 z&`g;Avt$h4*Oi5aH!mX}H*1>u6BqDvig%hUA;y z>b>aI&^EtSp+ZEJWBC-71~VzLCCCtw<=AtyWLl5i*HN2sb-Mx`BDyPbET>c+(c4)W zh}%RBfkOoMq&(r6=`;046CxzvY^KwUbf7|4N595>pAKY*$exj3TsgA1;q1YMh%3jQ ztY+2sHFS1#eckNKH;K6p8j^FAMQEM&0h`GV!G(zHML8zrz(}|fH3P1Ne*%<&XEds=|9?4H zh_G^O$n|0m?Osx&sXnbu#^*wYi0omrOefn}%*FI<=Fr4#cebM6tuEE|4vgNy6f?-~ z+RgA9N6O^auGAdz_0NhwmEnhG2NT^y^T>C;k(oz+a&|$Fok@09{JCWJnKk_lnGO-T zov|n6LN-x9ZgM-mDC#X9sP|X(;NPZMrMj}mxMx?!(il=QrMyn`ZnWjEESYmp7x<8g(izN7^j- zBLEQroRnrl_blt1H12?VP!8GrZ2NWbxB4P#bsn+5D2Hq-SOW z5CyKb?Lkr7rl-s^Jaz}o#&?LeONX#?Ewf8&}@^7GXVAa&3Kq&s;WCf zg@|glDS@3+MQxL~W$q4Ln46vz>*rb3A4}^~N~8&CO>!Pj`?b?+E@wpb*pry z&(D}Gx}7@J>rtnAwvqV2`{^dk4GmnG4BVnGoZ~1mE>L8Ih$3LNd8>ij&J5^x!A-hd z1S%rbmu8$+V+Sg!4CGDhrs8s;w%Tq4z5ROXVMs556cOo+B|m-t*(0^4WA-#fVlW>K zCL+w)*2HF>_DdY9VIUs|BqGS!o>OKIsdvj;$|{sd@$zQ!RtFQGOOPVPOLV>J-bUvN zkVx?oU68AmGK3N-UZRUq4;Oomv+rlCS=#}+RK?G~(7&aj@%&^`fLq_9z| z89AK>Y+#=ZEF#$1j*i@|sP*O#4e`?;Mnqh&+Dh{)aV~f!n20b7)-&lO)z#%tBBGq_ zd1dCwf2k`^&xH{Y<7@{NX3p4av{#bO=<@+ZikCBc?FOeGn*#JgFcD!EtYdH9U2h;a zfkXMKA+gj%pRKSK3$>8pW71Y59bUM&)v zGEF}HeJ~MW7OcOwt`k<{=I9M@A_e3OYDpe_Gn`2A@@Q&TsY(2|0gDLss$zBaEi6l0 z_Xh_my+h4rpjRo>?9N@Ad*6uxL6yMtF?w!OC_R@WPZk_5-~#*yk>Pjn#od$INY%_kkJ+1EN)~ea`|zV3nOwk z<5Rw!lKAtqCgwj06C$P=AIt2RNvF_NyN4=fwo}_t`+790$ytN<8SoI{&9;Z7v17bZ zT%U&v$uZh`dQTdUwwWXzh_)|+hX`-B$3!O97Nf`;Q&L^Be#*f% zh@8(hy!8X0kN<@^iJz&d{k`pv+H2yb$hyZ6hk2q7nHg7w(h`$685#nsa z?~D<(pH7R{dHZBkEPo9sBGB2o;#q>~tS0rt?QVIKDX&SV3n^5lyCA`b@;DO8Gg zf^JjuYko{#4^Tv)#VI}AAUY4kB=!*?B0`*Pf-TET*$sND)sDunhVdvEkwRt2Zo8p} z6$bFe03rf>ex}XrxPEmivPUJBOs7lw#bD9@!^Xzw5zlNprlOaF zZ9M=p*KLL`yhJ0f_sHwU;pg!lzu9+8#Q;&@8f*PB8f*1tYGUGG$F(id1xaON{L~Hv1l~gdqxEdHe=Pn;q}7?cqwo9hb@N6-h3S zKCmv|$xsbZ8qPK`xnmMPr<<66H%y3_W?RL+b0)K1ywz^jIWpByy$>p6=JL05Dt=jS zX+FRZeE=dvM6=D1&PLR3+Sf2zt`EV5h-%2+p4>qp5*M25@51B19Mgc{AJ#L`d=b=&U zGuwMde1GFgoxQi$Z%J8wE9)%~xt#6f#93hcTFIoqJHSGOHQRxlGhwM`$M0>nco$HJ zpl0l(Cpltl(=jgL7MdQ?dqF~kG-E$_7Nn@(09T-g=q3gK05U{mv(5L-l!9Jd{UJn% zh-NzT(gH2o|BtIQW}6xFU!6Ba{gu4qbu(w4SQ1!NmvJN2 zWsi&MvKc$a>A=Sp3-2Pp(jb8p~=)MabQlO|~BE`Uc4>+VaQRkJ~e})bz zPSo}K>J^x%`yp^hf#Bl$x1!!P`=dNAM7&~oFt7e#L-W&UTjQJ9Aj-9SB;CuK1T^8y~%u(?Z;j)DEe zTKz|c(uiEnHVSihn$SwPONLIwN@=UP|bM#3TOKwayi>`lK4IovVD9_b!jPi z-;&lbVFsyS43HI%k2s~xyf*2 z5r>kBu1fqdBT6qKZM2-k$$E%llziCO!6?mkrIHXa`$VaV`cK5%TXB zGiwaBG`|BgBIef>lzFIyc`VRKadWcQvOFGIq`0(Ri&BFY5$&ssnIY0G$uhu5fq_#k zNF88Az*`<0m`^=Sht6v`8W1BQe)JYY@a+OG4v+3e4to2UqfE=nQc-pS zXo%3ZT(7XJQI@Us@)tFzXxRC_uy zp{B)92KW?!5dps{(@J1c&)JxY)5ZKX5x5szYIzsoMZ}xU_!zt;Ka8Mb*Zp7NsmEHW_S>UhzPe_ z>9G5RswnkNQk|r2;7$V$5!{vsh5d%$`iD3)!{D6>9#R}Ud!~oMI~zPicv~(4`pv|i z!E=S<9QY9Nivb`@<{p+{*8 zc@;cFcw4Tb+s)e1R6g`6mUW`EYg(3|LqxabBG}&uUDBzv5x4>(BE(#K4sitbyK64~ zLg0{M!1XHo+HKAYHw|+WI7D#S%$)47E{tNX*9*F)Z^#I`SLv;ts?}VTpT6 z{91pFZK)=Xdk`Zc-tru&-7i2<9M_k0(rjG=2n)FmBqGRH<~b7cGeQihK~6eO4}psa zcgtn(yC0|CK-b3S697a6nCoyWicb&F75yheh=_2@6-vLMD0FO3gAFMJTdm#H8O^RZ zKNB`YY+If+yX)~Lwr0EKb$M<6yBtbHl)270n*1kO=7njdK71}{h|sotN5yX-0?l;o z=*H&xpd!UX9jp;w2r44fT!*kW!8ya+B=;s@h`{o1{%YNzs$*O0%i2iQQxj+*e-B7R zkXs&%y8C%@t>0c2Arnw~g|}sV1&l~BA~I%NvR9{}UU~dBq5!ja7mUq3(E_t)D z?}Q8ySvKo}W*Jp2t#veCL#=0al+ss-9?95vd^fa+Xt#W~(XPkia$V<>j~e*B4@{(3 zn1k)`2f##xnSb|iS#N~U+pLoQp-uA-L5UP2G6yN$IN)k9kzz!qPSHy})3lNKaVU{u zPny2w*z?hgr)$AIo3k#;5982kaGNFlNyZE_`SbM}X6 z_5KYyM0B}6E~k<(JqA{h@j48H_wV2#!pnce-)L7|pX)yWLj;z8xoB4PiYgOf{{dSI( z=|-cvXgv~EM69_kt~9Mlv;;3`cKU7{btCu?@#X()WnhV*P48o1M8uf?L#hErm(Vu@ z5)own)5-~?nS4lkV>U`}0WBih{41lF)O$zfaU?RfI ze|eLAKc@)yyEMN$fQSI|Z*v4Vus&=aK16)^cQrh|iyp5o-RUtzLEArSVCC zAp*<4P1Gj5Q605=1BnPS|Czf%NSDU3GsbbP-JA0oc|AEo;{haLzSBC`D3 zz0{=fgF!=tR)B)L+Sc1b%`or`zz~7u-^ld@7SBg$S$E(TmOKPZM40(cXZPxt1(kMp zNv{)HN)KBf1}7rU{5!HkdvDGI4-sDelTQ)edcEpBNP7f?hzJW%`{@M(m3@aiz6;?) z#Fzg7)pcd64L!w=7du@HBO=E9AC&gn{x0s{fek4{{28{P)enz_5h)s@xAx)jFd|~i zzuxxZF}?Dk1|}lR{0Aq(99;LX3?L%F{OcP5YLc;A?YCXSSBDP~U;Z6ykB>UhbqO0l zB1OrJE)py5{ZXc`(*_eMN?KE%t2%qZ_QksJA>zybX|vM0rLnSlINma$H4qUY=HJB@ zVz=sgvIjv!gqHut&VIMv^tuhd3mj66c_1KisA=XCR)IA4OM5y^c zJ2j}<^wX^eJyyq33A$u|9;Ap!^KX<5sTST;_9=S?Ew=#T1wbOjiB3{{#6qpr8QwydMX zDwfgWy$L)-c)4~Ld)n3%9Tws0@VA172<@`p?5d4Qy;m9N`o9AjL^QqMFikh;xY6dj zz(9nt)!RO%UNpSOt_qtW?xclV$yuJ+yy-(AytKI9ZcY295APS7;fG$QGe)n}d#*N) zI4ub&yElD!H;Z0k$qjYl=wIIWaH2VzjVl8;nRKF|f2msxtJO_93()(vP3?lJm>Il3S^5|zVI<8&Ph>c8p3q~uFLMuhyvOiGf^G4j1S+eWs>FfyCM>1~Gl zWpE?neoNuGTRKOQhrb5>m7pU+&*o&#%%eON)vtjUDQ>Q2^2Lwh*MW=(Ig>M>y%=8f z{ynKW-13d|aXFZD5~w*;L3Q=SSAxYMEx5}!!{gUgPrvP%s;94a8V55d3@YhIWK&jb zh*1sAtyDw*Fsh-mnHF|NwygCW$v~CoEJyM1PQ^orCoc&Q2Nn@*Hm5db z9>Ie3v+oxnMns&=$@EzhYYvMUESHDB1Ta!u;P#3S{1t$a!U8vg-s(!1_m!DU{8fMv z0cZ1`q^z?<)LT!rb6*D<5p*%T5^YVzuC}$_-9++V!HbBunAMtiHGOAb{{~n@u*Iy_ zfc2}jzk?VlZ1n0`muoe?11wTxSiL6If5W0{-5jEFg#OH2i$;NtsNr>cF&Wg;STOeC!xs zzZtIHM$a9esMqgqT>o^1GH1?iRy)zJ$XF+7_&Acn@s?*m#rQ>CKslsm-!sm z8o`>#cnU8hMlvg9$(^_85GEInLG+(L8rY`;iwHKGCM;o?9o9X9>_sPn8{%g{jEMNH z*=Mpz&leJFW24s+@9XNQwOUnY)wyGv4Eq(ZBVx~H^-Y45S!^fl{kF~08*n4y&ZgV2 z3*0rmP?0FN%vZvUi216b<`cKrU+Fc;)mZ z;3LA%<~h|aMxlFe2b=Ha}!o z5iA=8tI?`ByY`K6XO=U^bn=U|o;ark&iX{QAon36 z=h+-=H#3<(mv2(&w_rrXn9V^E88F%jafM{_(OsZKM43^aaMm=AHxFrFVPx5|-W^s% ztl7NlWA+$LVsaijq(FIcFb0o@5fS4fGO067VlSqWX|QU_X5)O&2%0+I;&J{iyoPW(YHIlSvQ9{7cgnsrQYImOoOo zgotuQHj8|{du;U_*S~Zus9(97l>9Wvh>)|{W8rgb@$k;SbON$_T)Iz_>jwIBKqG>F zeJ1U-Pm(QkjV0iQ`U_AaqRwXOYgeiDQh9^@r(h!`$RSJGI%J^#3}~bTIi$y1-wgF% zK#i0jhltwckpBlZQi90tS6yWPCDcd>B3sla+C1{tU?b(gc6sD)!A6ArwqjS=`|751 zRMFdrZJhr-@QC2wSq}I*r|8(;Q}_??BjSHgIrtmFa=+4BtuH$d|AYrb9JFjP$QzwX5GlH715<&<-{&;yft~`mw+Pz&t?U~?t$0W z^-6Hd{cE@paTk0v6kNJibw%=;&k!~u?1C4`pu242`f#9;52{OpR zPV)qdeFWG@@v-%2Fm51^0vi$b+l$>rG}wB(j8~c576tC#Bv~0d=kY9=H*47reD^)S5PH-x+8`&;=jsG=iR+9lsmYh^PxbzK1$h z4c-%Wqy*Wdy<)S;aX=%2E_e;tXs?`byv05dY@{66t~Yxxun}Pwy->DS++_28phiTU z&GFQ`*1ju`RF{^5c=&KX&=H{*e7Z{L^_pJhm`pf70C=Q4@GVZ1Gkw}qfky;i^qSnp zd^`*~9d@KV5uZ$Qo&`K2_=1mun$?5#=9=rVJQQ%G1mGG(B;e-)jtIQqwA4Ed zy?DSB(uYHi6ra2mtk^^G4f$Tk5s??XO;Vkh>L)%Dbfox^-f8#h(aRo8q(2IBMC1h@ z2z7YNxq*HR(1@T5ULR^c|3uB}Tks0th`^D@ zrQw?Gmw}5EIO8TA(N{u?6gYCd9RjZb7b$S$CS8ixL5mbPa=je^Zv+=9Hm1Mg(2Z!H9!St^B_VZbaM#ok?=sLo5E@13M!2Y)%8oym5By@$;ki z!;FZzpidng^Y9A)4+4(}zThP@dFb_FpbI6Rh-eGimrr`fp8ysqaMUI% z_&)_LBHCvpI(+dtiT&?H|L7h_|4FC4X(|pMZ-9x1dEWS)u=B zV37jD#!GAd99TrK1+8+m4#=%x`Wm!IfwQf*f8ZP7BE`k^_YHg#Ttv79efTtDzreSk zMv9w*mz(ji0N;id5p6+hvXz?KkM><)5y2L;8BTA(_#VKBfD1YmKWgj6KZA`FHw)LB zRkxzyhtMLT&E}NE%==>7MTA?>zHe$H$j{+L z#9PoRIN1R53t$n!7PNonZT$EZw1{X6I?Xe*;o};-8xtvTc8E86TpL(Kum!Ej{0$!0 z1s5qcuG`pg18@=H7PYV?8#-hBP5g`|~esFtF+?ewwFe73v=uGPH zrjwfkjT9d`*=%x4ppio74zs-{en@Z|n33W~bTZF=d!P|P7j#^g-c)i&fRO?Nr#6$^ z31CFP1sx*|Y$CZU#E6IsS~Y9PQPJVOt$44|Jzz$P8_NS5UKSumL|o7|dvK%62_PfI zjpTt1E+<2bh`68wykuj`DZnCvEofbw-q5lLFe2cBc9OkQAMOt=BHDshYeU;^9t1NY z=7LrdgWGLR0~rx=LC2;3Hk&iSMT(n;z3nw;LyL&Ep!Hd@n(-W9ks?QJymtS5XpsWb zCfjH(fEE#LL1$W1+h;C<7ZGnkA1J!>=)Kj$mq3k(x}XDoOYJ=we>BiY;i0{Up^pO^ z5p+QtXB*SWGtnx{NZ}*edt|o+G$QDNZsfHQ9nToL>9-Zok;0=74NpVRk-}#cufyB~ z8WD6sXD$Y|I(8sNL|oABQL-PQ2P`7kf{vcNt&Qu@BBCv5x8C2PKhsx-4(?$D;RdyWex<>#3fR&8fBrJ3+V33$&_@DPK3J9#{O6 z&F~9v(fhN0cDdf4b>tcT7mAsSc7-syrQV?RwVNDH{J(2g?lSQeTAt4ZZ8xv4>pY)! ztGAGT=Tq{{h#32&Vk|`D;6vqd;JC&W%FYDT(zLFW;63OuaF%?c0N*4 zJBgdaaf8UsCrj#Pwc1_kt#<3J{WgiNhbcs+K2c^<^*GlZfhDBmmZF}MsTYpI5+X~V zDrqY9bP`msRPkKh7*~i~m9@6(CHd~A*g<5cto1{$z1&aL565B(DX}TCT*}m~Fonp} zACoRinHc_hvdIV)SOJv5K;D9j)- zQ?^GRar)S<+GFs7$V=HKqGK=VyjH;yB1<_xTdTEs>w9m+v$f=#5zp2F93c5;u!M8) z>0t7W?_lWJ+A3ZUdCBMiHvj2mx7VNgNoS2WeJU*m9&@^neH*rPw17thpL5sWQBDCr zlm?e#1CfoKr;@g1!?h{hr2F5;3L+~xHzeD!vaeCC?Qd%9(*eETg7=}ANtgqeL1ZT9 zS=a5D2@VC7Mt#2y>NPGd!v!K2IX8#faj{x$>O`NFbc#F?FNnN+Am1L?_Pn$Pver{D zg2+hDUCHej*qf^KD>Ug#M#DtZ%4eO--vs?awy7N5 z&RmHnM4n32Xj)GL&CQE2gUC$IBbFT`(8yNjC0Iga>7(T-I5vG&tAmZt%kYE9&zDN) zXNorHl^8^1@Z)7Qm}-h%gCj(aa$f4RgHkoFMS2~s5V^%Gx3A7=FIZvqd8HXt^(sB%?Cm&1bQ?$2`N{J8MYKxZlAyrQgTO0t@bG#A#zlrsghCE z*=MnW$jUqNtpt{;{c5Fus1poK#mAqIc#!ZX;3LA%d0sKboCbgBQNouog2+flukhaK z1c>yyU#Dc?Vu}(4_6ie-9r>Ieo;Pk$=Vq zQpSR^uimP5>z4&xneYhobYy%!v0VctPYP=jo*F z7x-FxO*1a7c1wAzZ4>7|F@%&clP%Skm#vSV;{%b8oICB?Pnf0piXN+1t(9M31u0{a z=v`oXUAZYMzrqJ1A34vZY(GilLvJ9pPOkABIYHzk=LJpMcd{HmX}&f#5ZTE2!TAns zG}_gEMTf`6?c;T^gOstHEGM0>8{h*er;oPVPj*9mAo7v(XnhCStE+LBE$&BS1d)-_ zby!w(WN}?jR;-ts-~}mTqO2b3w4ITgV+4_r(lzk)ojd8sABcREuE(V_B$GM#JK+S8lhVz2wSt5F>T*BssN5AZ zh|H9(>SFM#cdgszr}NnX8BO1AF!OlCd~<0 zLP}{V+SM0NufF6ahh5_^{)>i^C*uu~x6+MV?9!KN(&Ik`J4mVR#Ivr8*g<3`=f%G} zC`?h#8=QQ-Kc0{hCy_S?`ylKfvQxhLE=r<-so2x7gvioo@_n|w<6JjtM)pj6Atlav z-o)(L*g<3`=QUzGPNwwy>^V3>N}NF6H0}A=L1d?Nk2GxCnwqV>07Hlj<$Suqj&ocx zX?qcF5V^^DiTTdm49(qMf-9uNWyqVteKdBEQrn4Vavz5sM0RrCS+nyz=S}EV@q@@u zS$jVN^SVn|LQ0%O{`Bq&eh~R7Yd0Z1%NybdDRBzC4sIedpZNxCQ~ge`5n*3d0_>r9e>VmY8OV9} zUZZ+QCu0uep6J67G5-O;k!NqN-8Jw1dsCth#r}sdfhhKKZqBB*VB3M^Ww&nTYD^$9 zk#qNZyC!;#`qI#ee;>yWB0o8=&zjaxb*b9XI~#*ab$vza$lHw*+`{EgVg@O(nG>Cv z&tL{Ap&6}^F)0(9`8;Nj5}P^6rOX#GgUHN#@@)sFE;EBgX{|9s-S3VH=$a%TJ z)IRK<@My6!`RdH@r0D$Q{1#1i6=y!a^CZ}-SRXz=W!#f zAf>eu=d@$6f|S-uoWX8}6+~7_(hs&z1(MO=E%1Pp&qF*Pa%(&w@{sd``fV2U!D*4( z;RKPBk_-=Rj`AiL?tlrTd?u1U@o!-Qk%^LwOI%8LUE{mp0+EZHkCEAC$rzq>xI11D zc_~+O?s{ACml zvJYn;fgePEa^CN~!xY+A?blZIil_Ekas<|exI*MA@8*4HsiebH+(MpdLYnD%w2vI~YP_DDRQV&QfP7J}2_ActJ|*Mem5U>GF8IAo7y)8_{-{(Rkl& zMQ^7f!?j!S>tbsdLu9O+m9~uO?YHiwe9QPjacthkZ=RJ`-%!Kt;y&&C`gb9pbj*;&WQn)8N-&%qNSPdOh|D}Od>K_&M6LCrwk1; z--MQjS8UVPZ>QgS^G8@jWU-u&%U#~|pGW(j93Mp;g8&zriDXtK?Drap!zP9)?ydm zmG?@Z?Ydgqr=<&?m%qmgA}@Kb+1#d={f){}-MxMMAMk<5N6zP061!8B@`Z}cX^j*7 z1o(>=z1P#y1TTyI3yzTTIdX1VjfU^&UvY%UQQj-FwwXq~X1m>A zt)%nZkMV<)FNJ#TWrjW7m3k`A{S-%t9Oe9at7)r)2@THAaD&KA-upAA%x|lM4b6Y! z0g;DymZLY5YG8f|KO+8|59pmXN2Lq-uQ7ngK;CiaqfyhM8 zBY2;5N)tn)$eUsZk)6-y+jQ*6j_v0!*VT(0SmS>z)(~0Cc^+vNYn`>e_S&^uE0yZO zx*I0n3U7$KOU z!w(`qInNgE%ulaftD6lOm0qpta^XF3g_Jav`i-F4>sR8VL5{-@Qf@!-`5-6a2PwCo z_>ho$;Rh*aDcaX>%aLWUGFo`53$) zW%c4Uniaet@{;ou{Z0x@{dk+d_Td95XK^trTWdO ztRS*d!iOm4d3b-d8}wFHnv(b6Jq24xNp0EpzYIQWcsjO_a@!i5oPQR!kpC05;yL;& zu!a1euoX|$Z(s|NtuK_X0k-QJ#?07Xi8(~(K3iIIBPQ-&gfT?MzEomkW9RQ*fE0s zr4l}wvDJ7ybN)f>Af+x!gA?c<#uXx0pDb+!F))w*QA{B+_0iIrN~Y64fgePE$~%T~ z6SZFR^eK!XGWO*XCzL&5H)!?RT_$Xk$@S0T5Rtc9Qz+*4f#Kjc%!D; z{{)AK9G37gmQ6f=cKXXWLgeU+r7dvdCaM1%cZl5macSML(`0xX&DZdTlsYf=+ntJA z`T7kUA#zmS`K45q_)RP!rM9&0FXH(YmXMNL@&+c~#u6e+C0zXG?L_-7P7paMVefr( zP4_)aAu?6Mhrxao_s>{CWTk`y5pBy#?-2YUeh~R7;gEiCXW);pgUHT@%GX~=H9bGU z3nDL{DWjJ$yBq%#Ur0IADAkt!94|;&y?Bl2FYtoM%WDgi-zIEG`W48Ckl&Cma;x2K z4xRvLJ{xh2!?m9$Y(&^sl>mF_;D+mB0Fi-rmBD~{`;K0%)@|A)k~hEsQWgg*-S%3? zcW^@-Aad~DGNeJhrRfW8CiG1ljR{01-ctq>I(ms*WZtJ}v(ioQfRx6=i9;T4jt8VP z9-^|~r^7ArfXGA6Ywf3M3>NHc-ca3i8;l?&Gcr^~-5w)|jO5%K-&Tr@s;TaX7eroi z9>Z?S%ZLi=PFO+8W@WhEx+_+YvRN6fzV3k)L{{FEZ&TRScIb4hh3KkGqczZcgVPDX%TKYxkk@6(KQoUQRtu_L8 zpv3*LfXKo-%8>vo)n?PBz=Oa?grD=6bjs>y!JfTov(RZ6Kx822X8_Y0a2>#bqI@P! z5IMnoV#~%_t6N5Lw81Da-U0Z0j&KU7mm`M5b~cWo+A2I(eRq z6Qlq+jI7`5*K5_rU^|g~Gos#lCKeD`$h*BxK&P`XRDWHL8AN7sUYcwQ!FJLke&tnd zO*0CvJM~-~A!TV@EH<5h6!9Kcd-wuG?2{)!J(<*Whg81u3JK zTD#k=wS#5bc>W$<5P5lj&b`TPS8cVndwbt2uz|=%-p%FqZTOYht8s#q)k$3Be;+4^ zoRqHBTvb1zz0$3^bv$pt3{u8qsrwUjZ^j8yMkfv5$=h&(l+j5u(3^bRDD0g$LF6Ro zhyL4d9ckx-*vh-Hg2+ngO1-h-rOW#;gOo9crTSkVzzI^)9MjxV>kW4b?bUceweiejDg{7edJ8r4kuU2Y}YOfaz{GrW^{c61xbdRgAA6oFQ zTZq3}@bmMc|A(C%{@LZ%K5XO2GY;ypah>R`Ha2zZ%QA`4l|XQM4%hAV_cYr}YmH!j z0;#=vGyK{O6$d}PQe4+PD+&Rmhi8ox-DveA;WdvvoanwH>l^IZ+U!6bl#YU*DGEYF za4#+loL{q;l=^Ql5n;ZvK$y0$RrNw`y?RjjI?7nT1Q!wRs|$$R?N$$^fPW1zBH(OR zGWq3lr+GAfOiRV2WhcG0PDkrCdRhe6X;gX5qsbiCe1YH*!N0zEv0c+E+$!eO!-IA! zsi8g`YNWu_I+Cof^W@mTW#jsKP$R{p4(hFTr&sA}rK^^Luecm?1k{MAvsqi1Y4(n( zm)7D;eH6$@!I3*bRnN0cj=nL-h>%}aymA;E)U!Cf#@Ddk6jns6zh6Ao<@Q>)9&{^u znQfal^BLx2VMdA>zbn=LYM@tD8rECEiiov<4R*v@;VrHP_qO07!hKEgvI9et)>^Z& zRByTrJO?o%;#U-pc(vNAXbz>f`H~wRc8$aMFN)|rU?alL<^+^XYhv56s4NAwt{n-Q z{BdWnkz!+OeNhVgZeSzAE?_O^VtcKlfu*bE?g=we%#2;{Rp?tBvK7a1&?2HOV8tO? zb-q)?Cqj&f_;tmrI7Hmi>e_W3Ke%5F;XfRq>+P z5yvgy{oqB!`_cmPnm4YRy7&Q*A|fqdXI@hR`x=3o>UHx@WrKVw$VfpmLxkLEAF!GC zba)Z*X0tgz(^h(L9-tC6Ag*h47W9bdUtYYdtkc;W8j0AbekibrU<=rf6RbL(9oO8Q z3oRnr0(R>~tBS2rb)%4ngNq2afUWa-wXqgdOpB)#e5R(@3o#<%0?o$`PH;XFOhlM3 zDNYeHU53=e=A!^b1X`fp&g2Qr#{i88x zZwD3;Y=L?s7PhB%87&2Fj`}KC5wX6oK-E(U@;yKzf-KO&x-F*v-w!oXtf);-`+pEf zM34mF z%BG6xR+s8pzu%j7wY|H3GrW59TG|2sY^}Gy{#o&-ii8WY2a9f|HTN%y*4$s2{VgW0 zx_9;l*WJ6%ZDf2vkr5(_g^Ze3cL$R^lNMda7gpj;90%(CRh?5})3;LHSF6;U9W7`# zDfb~@5y572*ne^_c5ciD8@I4}x2p@+f?o|dQp8xUE>)YAUO(tq*pCB?2sWe1syIbw zj%5SuW>ie3_$0W9aI@KN=MpcfU}nk`E+{SK>(x|e*);+-rauEZQpA{URGa(KxSt0X zDJE{Wm&W}fxQK8wT6UOSK4xQFQ!^UfH1n5WM#P-amYwXFb%xYX&Gr?55dmMENms)0 zF1oU#!OFOHdp(mzwcf0*1XFe<%(Vh~sX7v0lkJVe&*s-`+dD5?nCK?zK)fsJKs-I$ z;3qY9QG}#hW#9NWNOVN5pH~1Zf1{pBnQsD!2=M$Ya;0&<=*Pi8;vdW;8XDC@L3i4I zZFI3Vw_ZzTAEI4z8`n9<{GQBse#Sh}ZIl~766MBcWgPyb>}X>pogY)~AI8Q(M9#B$ zly2|2MSo=inV%<33Y`ZdBF1cH+cIFZeOC3q*H7R?Dzefe07V3v&C1rSK`VW2tLt^z zJ+0O^$QOc)6f|y6ba8tzph!XE_Qa*3xcwcFk%GqUNiJ?53n)_1xIJk&ZXXXaQb6RT zpwnMHQ11oQyX$cdu7QjQIh$Fo>}rRlZoAW7<6vXzv1LdRk!CXypE+q<=hk6Gipv`3 zfCj8caarR!p$#h{)}l4K4IOC08gY|ZyMQ7B&1SJ}cA2%&>o?F3Ko|mday456)6zvn4as4K}Cd`&FZ_^OMAM< z`ceoH5f)_{!xF|l)tAGF6pt~ki(UmIQar}EjK3B}M2tmg98*2g*8_+MFq^d@vlo}) zp6HvPL`0d*!^+tyC-gwy3N9ktY}SL$jytO7`3^V{aTcY6KShu8U0@@^enb}Y{!#2M zM*p+D^1-S0%d?pZH>1HywXqWH>sF_H8Wj~-_oK~l{?_vU4K3{1IO-e|-kc4OM*6Z^8W&UMEuztkH716XX?aX(*XPm6NpT_uQZ9!tskuDWT?0tT;qju zfs`&Ov~*#=%}>|H1R@h3ELBo?3ouNkx-L!-IVnl4st3h!Zn^>Zi116&De5HE>J6bs zME}-uWTQ)6dv-MJh}f?x2Yav4UP=1XH^Bf>o}AxnH`cXs$`st2gO3QmB>jorx>o!c z_*(*xlqmD8FVP#d25y4^Lb-VXkA1C$+hYNdg_87%A`5;gxFaSInJ7u~ zr52b|`b{~w6ZnYmOVY1iueO%r=J&4fBPHSwYDpQm2mDBR%0TK!I+KYOFoDR#XUkC+ zSrcr;-5(sN^bR$ffwqpX3t*v4wTg^Hx@g~ zq^4;vfEy8a!N;`2)3X-=j|jftQ&AS)pO(D@dZaW_?@h-(8hAwT1%I$^qkeE2_Hj5s zUF4 zU7Bu^_qiBCWT=|S%J0-n>0;E)iI-DH&t1l?w9e=-7_B%BralbDT)Y|X{XHE_^tU?s zMu)*fA1OjIIt(V}iEg76-_MFxd}nkROdS5i)yL6Q0}G}jtC9P^=kOmy&NJFYH7l9F zhTEjjKfs8HF{3tSc1GI++*fZ^yN4=fMqjUf?(0wmE!;NP{{%K7?2I;0XNEnB_g~;e z3K-43PPNP78ay}|h~|F<8xeL!o0?{h<_Wpt$KWEu&1h58%($bX^`~$m1&Y=Qx!`Bu zBErpPGn0wc#fJIcn5N}iji!l%>0{V#OgPDCPkkF zH6rS4rk{3&+U@yi)O9AV0e>psh`_TMi|;CUyQNn_Tl8mujtD)Q6_&ext*$3 z`I)$XHU7NHUQi`0@3A#-!>Gos( z1sFhNp!lV>8$>UMG@0hbpd&)hW=;2QX8LZ>Tdj7q9MQ196n3N(8NSvcY zz_VE?wwsaO>on@Fl7AKCNGY;Q@6xp(xXfjj*TRmJBi8%Xn)dIQ{PKFp5s_yz&AqGn zuW9bXW|_54%m@W_&Fy{opo>zZYOcz}cK+yeq(dZ~YHIMuc44QmIq)27Bp$2sk3}Y#u-DMqCf~ z&OZV-Qs_+W^~yg6FjD9oGNL#BM}Q*&FK%f}^};_5G9u(`miX*OrcU?1KL;~X=nU=k zy1xK0BH-8T%H-ap=Sisq89(i|;P%*&^M`{xg`7V#l)ASNaQx5fNvz+9;LQ zTbvP;x^_~&NcXD$AJB-Pi`z%?deeUiFjDBeobE;cHOxq%bH+gL`EP+n1pU}7Rw(#6 zbkYCA_I^h{KFQ{lNv(FbIqlK}bM0pMhFj~APUp#bq;vRr{5rc=CdDw(P4p1wU!sRN zPtT+^iG!cij6@fu>k0FjHQtl)5K-!9bKK`_SpK6KlQQc7A_C0jble#M&6$f80C(b+Sbbv)W(u+(l&`4}|1cr%Es`h-$h5qRgiGoSl*ok|Om3 z2oVuxvq~!)!oi~SZ*U^w%;uFnnQ^9z(7ywU6e!8lMdv>tL`0a$3bH6B7o-2#@;TT^ z$>t^RJ-r&KwpwqkOxbUWuip&+`(^4n{g2koZCrn^3x(cOHZOUPZveOd5`a~)k?AC!ZC<`m&&BvVV4UQ5o|Wo zfeFJFb3Vz1V_|LIs@h#?Ru9_fy%xks(TVFVOMD%O5fNuIubo6)mT`PwHR!4zVDiQF zVMfH9&EtbzU~aWrO#4{mBSA)loK3HA7m)opz7fEPfU_AOWC)xpbH_l66qPhCYd3=w z5otE7inEPVKmBh3Dn>#MD^qJc7P%Ry*P_$tC({!{+F$9 zMs#|*8TCl|Q}@HvDZ2Vs>Vf@4Q{5Za+N&22$oM%~VnjDkuj@Whuj`3f20ppJ)n6Fw z892ND$@D%Vx6jTM$nQ~^l=wMlh|sc`Nb3breyFb>T3D*~tCd=#YBnosVMxEKos-=K zE*Xleg^KMzX(XjJfO>I_rlt(zFJMH(_~M+SFU?qMueJJGG-oh>1tucQYzEO;MWv2y z3bdcha$bWMAt8l}PMv;*18knGz>) z`$T|)1%P&EQ6f7?L+Gwsrzdh2gK#GWTZzj!q6i16TO2@UUPs^sHVyGui)yA~L z?&KGn;VXWs;rGcJq--3q*ZW*iap7*@MK@H_--(+3jAmmJ@-3e+c$W_3;p7_|EvGPm zLlhes%_1lF$OP2y5}1@+1Q`)>Hd{hWWA5dzNp*wgZfxAf!}{7u{GfL2OJT2 zHd{h=6TG*kg=U8PL2x7D&Sv59u5mY+W;W2L0gVVcn*$+s4cf~hXF`n>KdO`baW>FM z@uAnNdeN52ALjs#2s)!@QC`)s)fmXTbbKw6u075N7!hzbOTaSE&;m|!#Rc#p#pMm^ zt%Ua?coFetG}81^Ig<=w94F9FGGQDQ?ty z4Mr7Oq_|Pr>$?un60k^tVdGxU3b06VVUyM@1QrqOqca)bC3V-LS2ftibL3zun`zxO z?ZvA14^27FvsZ71Kj~?V_w;8nt$R@v0*_g+ZTm3+65x3FnXDOiEn=CL+vi#>ejdvtgR7UW=Z?8qf_uk%EG@ zbQGxpy%JDFpxJDw$|Oe36Kw=+BXH6Fe_SQ?giI!(4s@#> zy^Lep^}+7)&G4EWE!k4jv2neNZ5ULYkI0-Vx|QnA_e6DPHb-kZBU{Zi#n)B%S7mvv zRpT^H>;F>PPejhMS(FyvZ;J{kzOK5oRMEs!Qh(}wU#gB;wV2YWIVE?e_k8?bDejYq9b-7HiAD2A6ms}cQF-`xOI_&hs$dwUKVJndnM;2U3f{`>`JJp7zfPdj6A{zCHw zpUt_?=AzGJ@%CHXA_`FH@TDjn?jAWECR*&b=N!wN#}fW2R!86bczg5UU{$t)UPb$E zD&_{Jkh+iO^|47-W$bS~Q1*@)@y*6DXV_5Ybh$}Fle2C+@g7ltviJ4K-aR6FF8l;& z(S2k>H&;c!4gVkh#@zh=V{d+3wGkX_1$|@Jrltz@y#3hb;)@?5w@06?&rj9m=LP-f zbMw)h{b&vta_c>}bFe61&{Hq*KHT8%^gSNEt$U~s5@?g%!TGzA>uc?$z*OEY``4)tnmR+@ zr2gHk?S)h0Uy&N|uUz36{MAPMgSoqsI{d)Y#IEQJ{yCjeTJN+lMK~&e zCWD55OJzWTjdOx4ohMEiu3w6xF#mxtk4zP>={YG#b3+9w{J!BFRdi0DlGF1aXEidr zS7yQ=a+fK}Mbxw&=c?GG)=kHGQXssX7sb(!xzpI}f6{cGl<$WE{tp5k&g>UX7oyAM zbL8?Q`?-uWnEfIzKj)S^$hi}$@O?oy)za*l7tcJOx`yUHYG`h>XI?pX{=s~FI*p1x znIkXrN!%&A+xT)ma2u6c1*1~h>)rxsMT5hN{AcB+QKmO zb^OhoeyDPp{7@z4x2Fc*qlD421rvO;y|kvTiM{hNXAgg~VLvqYbeB)AbO-HHN(Y)d ze44gxisnwM6O>%NQ3Yu5PNaKWUgrXT4Kr6~=@yuHE`m$C}*d`Z-yOSjbezDj6 z;xtyTC%-TkCq-zE;OE@Ma|0JEhR)p{x8gQv46-DZf=!}50B?2a23O6Qs|IeR12hvbrkxo34Khd zAK%s_>?0aw;^X!NJF-7}?liQD;kcYeMbDM&xltuM+{5iC-h)4zP-4%V5@d9iF`ZUA zv{7*g?*hTJCGml?+&V6T;XSzLmIdw9S#IW)u<$r;XSzV6qr{b>>iCjfZ&p`=N-tQ6 z`@3woif7wMH*sm+DlY% zCqYH|iM(PiQ2~0;tiTbEdI#qyiYC`>Q^x?Uwwh{V^tw?~-P_!V|E0TVwsKrkIptl3 z+iG*WY1`_HW(KIO_4@6m=`M8JwLlGUYsGrL>1ok-42P5NHtfe{l$?C5*r?15(`Z+h zOh3uQ-n{L?&;R(fFa79`K6ItUy4^XGui7vdn2Oc}GiQUDbHNBzPv~Y$xb=E(t=g#f zG_U|w&Rlkf0 z)0X;o>p?WT;a3f}JKMkNyyz-3d0{Jt)CF_V1<~wATrI54oJ=WHS9wKMnZ~htajSMo zF3leZ>MN`L-u!po`RpX0ot!e@DzxagDiZFu7pH%_k@}e#@KDJ`RbKM5Is3CYdrPIu zB{Q3~Ww}}H?I&fDhYhAqIo1~Ep|3aWH*@xzx%h{o3TLKTQyF3873En?GTT;V{!n|Z z8p=IRcMLTu%jGfy>L@nY|?4`T2c%oq$G? z7W$YAlQ}f^&4%~kocmB1r_YRGIv^%duceu@%?+apxifRfZjM1u0F-1D7+b#8ef8$h z=G)7DSwGHArA0rZtc?9x)GJ7SVUkb3n2Ua)H1lsX*ItfmgWuV4ovqHd>S&iY%z!j1 zkTN)zbZ5ec(Z7oNG+T67#&_w=ttND^>_EVFEW$@{OTSO?(4D&+9tn^~!i%`Y$dSN# zJHJ;{*O(>_Do`VFNkie~8Hmyf!MTfbc#-EM1wZOjbP)}_PiHJEWe z#WO0bNrOFS8*JBlMhVb_ZpY2|jAvuWTzx>>D)gir*K5*)C z)1^pVIhR}+%_#Pw63Lb7cDR)VBObXVL@Dge5F8EH-=nBf2p5b^qM-m5eaCaj*D0{r zarkc1VmoFgOzi6oAF7P}hwN(%mrXY*`ffA4=Yti^M_*(b{`i?A%hNWXuH{?mJUI=*RR|?T?kd58V#N zR+Aql0!eZ+|lm?%|~+=^U>r+eDjUeMd^-G ze31y3c1)(hT*W#bs&2{4+C`Q$y>4Pkq-iH|^ zMW04@3_nDdXJmilgt6T$KUn)P)axvSA1BCkk3sqJp3?>A_YJ~N5mMYiP$1J;9iG~t zH1Z$cibYxZCxC6U@tY-2xOOJ|-h@11 zT921p^RR0i#(x{xWRCdG|1wqPh+43jGKXtFRGrwSXK04XWR8EElsQ}=N&7Y8A<={< z&ZeW98fEYChsyJvLs3`O6k&g6;H#%-$ogBUnSqBNiaN9YwPso%b=jP~EH(7Da{?3A zj}L=xhA?Psdxu+_>45Qb;QnvZGXd6Kip5L=5Og@FfYTl)!A}^s9bD1gkX~vMAQj8@ zdvD_9!)#KyZ7O;%IqSg$5?y5CHTC_R{XR9xG9f~TnKnc2stCP%6rm@N@4F2D*e+Pq z@YkTnjdiNoK5<(i_JbZvDNJ~WUugc=u>Ys&*;ZIIrOdjR)tqYiZLmk5<9$w#K>L8~ zN2YlV`n$9%nEzR~&=_d~Z-g~Y3ED|!QtRgETrO$%fSNWB@% zulE+_TWd`%7i3<`Bs$-9b(}I=`%F6D`;6q*W;&QFE_A;>FaEWuwD|6V=+_(G59izu z=lJ2AZaWwKkQp)e!#Vpy*_*HeXG8=Kds^;R%}&Z5wiq2)FMAwEV&F{w(x_&LuS#g+ zs{nSD#e=t%2)455wOc@G`((FXb8&n#Ta@jW=h`nfywAC@`&=ExBD_O0v@HoPb+X!)w-Su`{Dip6t2u~u6q&*nFYbF(f zZ3s;5p5%b=6apJr^{SdhQ|x+F{!}J25G%wt=G}X zFs+qJRYNOn;H;P-k=rqye6Nk;uD@Zf(1OVMeQWi`(!5%Oe!H_7UU{KR+(XTi3sOIE zeUZ^WNnNe|->Kmii`~o(=GyF&>ku7o3v^_23I`FDV(W@1w%o3-sRP(!viSU(^LIVd z!p~pS+1!Z!Ij4V$>>@uICW0+01G^ZKXIEXA7#i|yA~n36g!E%}nz*t%O{Q?VXgtn2 zkKyyVUCQ0>4CI^>E1n7EoYiW5|JsC{W4=!oNT&16MQ1DD+%27NCjB6FtzyDl8x4zx z;%`Kr*^+%Tgh+Yjr^n%L@f$s$)l-(_ zaz#n%7IXF%bJ3F^E?0?mlReuq60s=fUcHKQKgDts>~ux)d9 zvFTmc8pDI;V2}Qq8fI-r=$UyKw+3l5yo!4B=3~CyxcPK$G%xlT?zG}}5`pn&r9{OAZ6D~Dl7JI4gcuALH?g}I$DJAJxbP#W@FOJOgjl?dACid&-?T}c@Q(;%WQ-i+ z|Jsj?@H70z>$Tm^ztS=K=c*6~;UDv>G3TndnNQ6g5Nlrgz$CG48+i{Hb5r_V2fFosV0Qb}+Dq=_AM>GE z#>R)6;m1#x#iK6fQnQKQd}=>1OFzs9LOyPrcZ!0R@#mBw@eKc#eh8-fKN?Td{puQ(LiP4=B}r95Y3*XZ*;@6%`@`& zKFQziHm7YfqB+pfO|;Ih>I@^T5w&r46Oqq9INH53{}B7t2A|H^Pv_jH^5jW-5CLhl6q3-H7pKj}}9N8Ewule^hM=R}hpPM_H!&}@(?ta_O^vM`2%JgH# zSf`AxKZeVaPFz#THVa3R@*e&@^+{CdQ)S%FKy4j6i|N7{{u2SFiskf#NqGb_O4RTN zhH$tH+WEpM2;;)%h592x9WHUdJ#}mf(9MHsu;mrC@TUYlu4LJ{xGAV9QgeevD*P`3 zA61I%RLv9tL!K0$xw!a*zaZ=}#pS-+iWpZ;yug1=;3G@M^jR$#l2atYYu!dcrh4;k z1T-8ACu*O2eVG#vo9Gfd+~Wn)_g-{_*T7_BpOfR6kiqyj(`_yd>JO#wCpQ06?}He4eBW>M zoi;;)R(hNkrN{VYaP;rJG%<|h(qwESGZ<_G|DRa#jSkHe85f!hJ;4>F7UxT;F0atfY()@8J?b zMUihGIGi&!A@5yTZ69EroR&~(im%qz=DBvaXUm$twq%3bcEH53yr<$;$#1z-qKK?kafz%71NqAloD$KFtopE6%W!%`kf*_|X z6jx#kuR&AA`R*Z49% zks`XE%J{40OTmoK)f0p9S|G!}?OZ)3bgy&d`!$gizKWzsVrno(#-{YRdnGB2hw$}7 zDeaCb9Bx4GGmz5eIq}GJHs5T9@4KH;`6lU9j=u6fHIAZBl{DkKLKE&D-AU;g1Yt>Y1Zj@PTo3hb_b=5v^^&YT2i_|?fnz>GYeYU2N>^FKuWjv=J zn~m>OZb7pda#yAF$D)+B3w5^P%1+3ovE()iIs7Ow7nvH3{#&-Q)2#Pu$LW;~H5*O* z(@g8rq-}=(#PIrt=byg!G&8GzIv+-Vn+ZSjw=&bsM~4>uUN%1$*>p$u4&GGU^Hn{J zo7cLdX226rduKBzYrfH1OZ!bU$yDvhSMs44?mn7f^t86|wY_QWJC6x}X!hEKJ>Bf} zqzFl7*`i5m6YO>-soitWQL*jj*u0>por`vl5eI`^(c4N^=hdp$cy3^5k37qKrkaz_ zHljaS_RF7JB$-Kdg%-7}E<}@L<|~EbzKZ5cO^)zBRrupjX{KHDI@DAB&o++KpYc2= zsCOKb`UK@#_Q>=RgycTj;4i=FpPLYltyN9bU7t{*4>tIBRQ*75+o-b{NB<&4*38T& zMK=5_<=>RsR5`WJYLnlptzr~r(NNfY6NIY0a^0hpK^k7n$>Q!pUSkG=EgTWYv{|f z=>_olocmFDAW}tTJ-) z*>HXBs{SEZ!iw{^32JhMeFs}%j||9WcoWR{8r#+RLqR0d3nqkd12J1hlb|DO=?QS&0im= zcaA&0VipoJa@yButCH3y$43u8?fBsMh2s}>j;9`VZidUO`MH7l#LnKEKjxx8|>1R1BO8M10{~zf-&{2qOg@bPmGes zZNZp20I#$d%5e!~XXT~{S4ni@B0XMf%eW7pK(v}DNISM0DW(ZGDLs&ePa8@ow*ZX5 z^nSv4DW?87e&nOk6R5!ko{!%2Or_N^=9__sq~^mpK1@AHJIut-|#*uB)FQ-TgR$YEnr-K+5@M~HiXYC?PwAtn!9ygF)&KvIbmzLa46 z^zlm376A<;O!x|d@=`~MZ6C=_5pzk2H11wQSW$Y|=cw-dyb)oYpq;UH9#7|8Hv+RC z+x9F@pjnH*){*b_>&@`T4^Zj6h50_7@tfZpe;<97Oa|&4Zue6en^4jw&_p*?d3~Sk zDHOkr9*FD-p}10O3=EfAH^0Blh>Ej?2{z6Vsl4GgU)$jIGKvY@%OeB%#Vs1zCVSE| zFyW6Y$M#g8X#-bjRtF)@J36)9WdM_R!uOI#O$Hj5OT4bgG|}bCHzvYAB=n?w+eaQ# zv!{|Xyqdt`G*!;?+Tf|k29hxR1Oa;Ks37ffr>O~(5^wx|nh;YZ-W`20BE%CbRlQa> zSu_zBc6E!)JZ`-DVKaQ{eO1nH^8dNJ^FW)c?|=L%rGykI5;r7-5Q>yC%NQbLb`9Hb zjhRxCO57;32uYDjNR&#_tdfc%k|ZHfDizXqt^HiVrzzxba#fRV(HH&GRHl-6?{v)a96vL%$btQp%t8YATe0aMx;-t3 zgZ=L@?QaRCKOVP#jL1!Y)J{;cE@4JWzGpCESHK^#M$=peo^ z?fKCuHjNy=vUTI@n#b%8;Y;1wPPFyYzbbyf>VU&$jhS}9p7_#t?EK~9>h>HY#@VWI zxWQy+vfo}y$F@&Hj+d;@%8;b<4QY1fO1Y^{ceYOB5y*|meb7pM(M)}S}d z)}ZTi;th7fQ6QZhu!m(*65}LS;uFRwXp^v^XR^V`FLQZG0-xjGV;fS z(wy9>UH|U#RbgF{i{WK3@f`p+qQN*hVyh${(rGYCtgU(*hlr`=b5i5Bd_^%OX<_IYdgEoETb>> zKqiDmmF2p1exy3F(*)F#tR{zwe`Z3Dm6HWVFu5w_ku{aa+4mZs_+b?_ZBpV$LT=q0 zaX1MBNW34t79VBmd(E{ntzOA}IwZ?C#rY@vuhp3mCxqW_lgVX^+R(dB03@ZsF;hHQ z285I;7Q_@2E@a1lSVc{qbj*-K0i9(W*U`gBe9n*%ue9ERwC^q-v+mldlYB}mrKfGl zYxU&;w3T3++&t-@>|Y!k8^;HhsOArpcWu@6{zC#LrMWCZ;tS&G$c{X+7R9j^3AeT< zeY7lz3;?4}I%d@2YF(KV4>56p;$N4yNs+acd#se6eUJT0iP&Butv%sw?U@Z^fpS;T z?-(f2fC11!-@>-Gq_no9-rn|4Rq396icw4mnoAa`92P0@sn97NTG0M@Q-9TO+zJGe zKd|g6E7x7Vr6FQkU4ETUI>}Z{eA)Aq8StIr5^LK1mLLoMhFar`$(NO*i-eb|g!i8Z zPsiNjr_AE>S$%rgRem6{NB4vmvwoR5L4K<+Zi)i3=y>Lry{r{`%GXo- z`;^uxsb1ZLmo8!_8DNuyWAaq<@6e@PPx*abzDUwnZxvH|Cd-@Q@;~|VLH#5^iEUG! zuyGcxn(harTHmx+VEXD+OM=V$obo^US}zTrq`_s>{)NQpS=OE@@|`HMMsn*a9}Daw zE7v|nZdBuE?)nYtm8{!t%sd-%;ri+8ohlvWdr*?)m*G;9V%Ve@Hh$AtQVc8mfP|I7 z`j-R!9|p@MkLRuAKKfhtai3mf<1T%Iai8RYsq&cPPJxe!ryEPA2h1X!P2!s+r`loS z>m2cELzmP<8L2-1 zvX8%|Wwdp=xUn?)S0~i)7r*7wB+f5SNOQ@2Iwv)GexXONeJCKFU$Rt#)srKxyPVWe zO+xiF!*}SDEMHl0boi<;507eE_{68@r`p3Td`d6*Ld33v^;4s92H7n|1A3~FT%^3K z%;a=Zb?w41ja?n+QhN0Vk+xNu`U@B?paQ_VJgO!q_i6e z+zZH|h%}+B-m~Ct;zV~02`{IeIFDcN^~_|~`%qD1^P-Oy8F#|_WhaT3cbENZPT`xVEag|O>cH#>uCRsxVaC(`J^hReuN(b~so$6lKfUYt7d_O)ooT$Dm5 zjdknSzOSt}o5ThRNij%Ihs9tK)K5U3Ru&0Ln@AV~J@%+M)ly+eWePTSn zy6|d}cqfN~Ejz$f(5ryK3?y>|&$%9Z*>nfa^6w^(8@bgL4d zx~5$_6MN`Wi*|AwB~NaTx|$}wEtrt^#G{)KG`l=^oh#Foi%#O(+vy5$>@(On8D7lf z_ERo%$GNyAegq($d5(G>8`JnjPO=>Ld2He<38$09zTPdqC5apjeWoo`+>}BmgUdwJHmfEq_WLED;OUv_Yv}78H@kzx}N&d zHXMdw8!&hST4eecS0z*O!QA2TPHqaiYn`p<`8kKTGaPbsBXN zp7W<~8ulcCD=W{X@j&_doVZQ%*i(k%^+>fwo@Vqpvp-yh<3F34{#CUH$FIKhj5d&* zRq_7n(QWd>@Zk7`hJ1)5KmDV$LzmywgvD>#9GOL=s$}{m0I0^={h z`@XL6kG*)E#;W70WtSujd1YMnW3N@!(w_33YE5ts;+~jzl|hDgG{ea+M*WMV+HZKK zXI(I&q&I!&$oPQH<(~u`8OE4=cIK_ds|kz$|cJGpjD3{AHZ>j zi&4lkrd;{sGp58BFi-NZf_RfQzTf2E%N(b3VH16qR-f{veL*u!pXAYGfQcViJXxl= z>2+E3OV(|tim5KDrZ15n-I7X-Cj@jqjb!lwa$hZPS?c!~%bT>enJ%iAA}_=r-I5BF z^M68jNtXB&Syq(ME&vG{#CwFn<<2K4mHsVQm5Kpsxk9}fvvaIsz z0QaH{xX=eA|!J(%*C6Q!F)0;+L+0^HI z9a9GM)L#knG}Vsv)a*t{>?&zWr}r3_a2j6U?1-ByvqsY&ozySLNUTWEYtk9iU$(K3 z=lY8^@{K<%O1Q+&Je+LB^=H;(Gg`Dv`rDgYO=amchL-kG;W*oK8|lvg{`a?jYNcKL zjyp2>u?RUg9`y-2?{`(-w2z$lxiMTU=cLqP@dSC?v);C0Q~Mr!-b;9e%wr#Q+N+3< zk;FH%6VF`XGEH{;Q&qx8c#j{`&ru1-M%*t#ehqqpbJ8iJ#*@*}XBR{*7^B8B($USb zNfT}-_fwg1}d4;1i!>P8mDl-148LxH`s`J=xDb2|Z-o39k_!f873iP&_SQ z$k%AtjdjfVpvbAB$STI`8V=oXgT^@O z6kxv>al%V`#iNe>P+0>c9`>gkLD~n=^>`0e;|StGZ+{$i%Sq2^3HL&{PfEP+(Vs=@ z+^heDuwMUK^RjAoE0uVwqg`q?yj{N5#9I@Oa{bveZIzwo%5)6_spKA~yUar#<-cHj z{PpADyY}qYC#9p`1;o*2shw!@{4}vDk^Q?zPZ>FWB1(TZu1iYKYfD}q-_n-rR{vh{ zE~i^^pPurrKUS!)J+qddj5}%XRPQLi7H1vfI~6f(Jk~6%jI(CC)~#TN_-PHjNsza) z;u!Vccv|W!ufFw?d)T-vS5!S^$5ix*JZU5S5}_}}vu z_oY7l@gqTc=$9-hpX80hx}ec9oT?HNct=^2#1BZEB!z_4U#P+#0`S#sB)a(cjj8VP zJY9a_F!4q3bROUm*RrPl6q>)3j?|Z(tV=3elhQu*oH&e=KS|*7`Y7ac(#Om^$MKp{ zU6bSiiRn&rsqxnrN6*)n)c!QX8`G8=e<$EB+c(}7^}Xgq=L~7aNi^{WNzZ{iiH2@^ zem>Q?(te%yglYbJx(mHE?te~l_BFXD2^7z6`U8$QyB+^D6nBr%UsIgMnd|10T|B#{ zRE(#rlb&UecaY{y-#O`|ceRqzPDbfCUm*2RO?`T2nS{Ss_q`$QrdEa^r5-0|+0O>YJKmAtVNGzEB#0-L z> z?)BREZEc&bJrlm}RJ!PgX5&Bp$uRF(LjI^su1ym{m5OpBRj@j`>OcN;u|z|Awyj-j z>!-vMdg(K&c$=Bzz2v1}ed{;wA^*#0F%r4YS|Up!Q}*xf)iZ_6Ae~c|H`-GA=u=hu zelPih5SyaCW`A^(zmhL%U&o{mknElRmnq2a`Sp{R-S9iCdKbaPj@Q<9CDJZaX&0Kf z{$=W(;*m}MdxcEJgY4IQ^}fQ>;RAa|{a|Rq6{Fq%G_?Wpt=D~$?MEql^z7OfAHdd^ zOFE_Wk$Wcj8$|!%KU?wQ%@Q9|uYT>uP2z{Pk9v&%o}&EuOta)9Nnziv8@tC3V@vlW zNg<~w`P({nmu=Mif0{_YWZgyNTfI3J{Y0q!6`FjS60gg|tx~87``Qz_cpGbfo#uU0 z)4C=3^FF=vvu^S^nix_BocOl{>EEUO<$-u#Du*oJT*RS!=}|9a$`M$iK7K%SLMof$ z>0O$Vyy<^mJwK1=r-SeZB=WnZ-MjWn`yxI+;0pOEqJ)0>^hAAS_54ht-LUIg$fIAP zZ1g{E?q1zf`o;5s9*_Ne^!$bKxScO=c+yU(Y>(^cLHIM}vY3e<$VmT|?c44y8IzAo z|6U|TKd+7Lnyc}#t??xr`P*u3NE?ZKG8GLnjN8)gZ_+V}iqglf5BjPaPUk#_$mv{m zHVh`bq?f1kp8jt+y;1O#op1(@OAua-S6h6n=s#!Zwx^dRo|;c`u1q^M^OhcictZzK zR?g4y^+Nn~diqbcElzKg0}@Yx@htn_Q{d5O+3=Q*@3haIjZSY|JZW+`dWN%;rk~-k zUhnF7(tS!y_$YRI_E8F3QBwyaBFHN@ZlQN*MzV#EQb|bzW{eKOTipM9(IJ1#KjB;btwP$6-m69%Q*&LUL+Ste63+0d5$G7?b`eG(vCk+OKX>> zONlT2j;$|yus${GPMKD|FHBFUa?2Ap*?CO}@|`>^OVk<(H=?JCTDl~^eMSE6 z*1mUM|L}9dY|C?*bm6r4=V8_*Ra*JxWimhB-d8@;CIL=!EM*eMf-fJIXS*_%@sImh zq)XaZ>c(F`Vwcp*$|R13tuht~AY-X|8tZax;#lG(MF*1ls14*&X-^wSyuY>fRB1|B z5j4pVaqKZ0GRkq2zN0eXHP{npm5)s854|0GaKxQ0 zWY%0KIerpO(kIDq)N~RLoRCf9pYSk|&lvSc!E4ATiOxd+L%v8u9(`a`PEQ=!p}Fp9 zPw=oqBXTZ{e5xHkUAbh3P0PhS9y=^@<%zjYv18kBI_nL@iPuMV%d}kBqp@2eQ9ey{ zvVFIIYUXx5Q+jr9*FL#>-w8t}6bU!4m3L3|e_fV8I3d*5+O1w|pf&wpY-^%5{a>s# z(^`?n88U=Bq$Ce*=@6S+c`eLo5u4i(tbcojaZM#a2PsK_P7X0Z7q5lY2oMOL0J;;_ z0(ufGVsC|S+DeK(Qj!$?9b$?BUJEr_#^yl;>wmXG{ZZ!@c`cMgfboRVfQf{%fXM`l__)IR^(4hKDM^YM z4l%_nuZ1>P$JvDTfH?#UFjrxZZv1&tl8Dba#E36=Ej*6^FA}W(VukZ{NH0lA0xWfi z0bcQ1xE%qO6Yc=KPG|{OL9mE#DeSpZQmm4aq{Z$OG#3k>kw09_F5Q>09gn_0oe${0NDu^F^58CU8tN=k`$LX z#1y%`7S6;nTt=||`4qbAahhLB5}<%X3{c2xp%?-bCRqQX3hyPSff)OUyh8hS0PLV!jD>wmjK&AJkxsgxu@bB7q9rPo3|1ZYLD{%sYS z)|UY7q$B}4I>Z2-ycRkkKo>$+Kp=DnbSGHE6oty|BtF-3o`g*w>K0|?fC zu)^p%5@3jwB)~lmF~Bgdg{m0Aa6%2h2tsYZg9MBCutI%3vy76Gq_JnkXd+FvTGTc-(8@AOcJ$SpS&{d-UWuOG*;pDTf%~X|IKm2r!p08t^P( z4B$C}MO>iptnMr?N=Z^Ic8DpKcrDz9080th|5b(UdgfX#B?<6`Lk#ey*TMk=c#B~D z-%+UFOaiLkzImYhfJ%d`$QXu!it8U@gHSei1=$QPxRGQhenQQ*88FxEXuf zCPG!fHv|i?RpBB%nSLiFiMZV%M%>}G&=H43NibVH_rzmoO2Kk1z$0M6iej6}s#B zw2+h}#Z?Y5MNzMX6$o%O!TOg}$gCHoYosIr$~eRTWxW;(W0K_w*1v*6cfBN3l#&Fv z(IEz??6t5BBe;d|1E4BlC!jjPBGytEr5mEQlq5x6hnS+i*FsK=u_3|wH&)owMglaE zk_2ex5Cb&#TBw8oEeY1YwL+`*5}=KgBtUzI7@(uqLURP@M6mu{6*}srJ4i_a^l*p) zQoI(XV-0!}tbad+QuBj9GjEr4o->VR5=+JL$Q8+QYOJ){xAMtVEJMtTRqM%t2KBW+Evk+vh)NIMd2 zV4W5A^^pbbA|+YSZVquldw4DMM00OKA3%S?U4TJ^!GNKJdjR(lh65fTJP3H0FbePp z!G`%L!3H*-U;~>(uz^h_*ubU}Y+y49Hn7Sb5|#m$6J7(XAiN1!MR*(V9^rk!YJ!dG6M~InEy2d|1;NJgCBeqAkznK4 zOt5i$OR#ZlQz$=JR_A*u$?EKIh^w>HYhf3f_Yi&t{6hE@@H^oTz+Z&F0f!0y05Yue zL7X8a8AL|H*?@Bi=K-=1vI4RbY$7=bHuPKs8+vYn4LvWxhMu2bLoYzEphH2uozPa7GoO0V$4vu z{2m$AOex8zW;?`D&GA}z8qMy32y=3A-oIt zfbb#UV}ecOQ-TfsbAk)fnY=5M6jW6A=uErBiPWl6Kv=|5^U(Z2{!bf6|U+n z+hDJhWE=eI5Vyf^UJJjY`A@=MfJ21CfPV=Y*2jov$v;Su5s-;+F5rAZ7Qh9B?0_7E zoPbLRmjW&$*vtwLY%W(4Y%WCzHkYdjHkXnFn@eee&7~~C=5igu=2DShbGeaV zbGeydbE&G3tWQ3wNlCU+O^3LZYI`l*ispKR`heRAjR3b3ngW^=S^!!RS_9e<+5?ga zHmWWJ8%H;SjiV>Q#?hN#?eY)*j|FI*slazvEK={Vt*2B#SRi|#r{!f(_QwsBT|w*?u;)D;vRRF z*Fr`qNpmK`xq$NtSpXLhvIBAuasnnS|lGRCdh^sTkYu@~rLgi%XKMwsTI>i2yy%wgR zc^Y9lU?yP};3>i!z+8f*m`|{vFAyx~LV^W-iC{sOD*V_{#=T5RGSB4>aon$a&70p; zxT>r4Uy1&2JH-C)dM&(%<_`(00iO`o06rsp4p>jH6dMQ@bQ8gXZXsCE?+6xjyF&R< zGVULwB=g+q5XZgSYvCs}??iyNI6(LlaFB2aaD?zL;LNXl5NAnA25}A{6Cg9; zd_XqB1%QhPIRLo`mjLn*E(7Ev*xaum*lY_CY_?YsY_`P+Hro;en{6qA&GuS?&9*$j zW?O+^v#mt1*;XdlY^xA#w$%wX+gb{l^xmenlw^_XI>aqq-)o@(ni~-s1DX<=0a_3& zVk?5hXiKmd9S9bqlS26iWK^A{B%=xraa7&C7J8t$7oj(xAE7^BAi*LIAy|xi2o~c$ zg2fo2&>_gE9*~lZYNSIP)hMrp(P$n+7z-Fj7!R04m<)KFFbyz+FcUDF@D$(~!d$?7 z!gGKHgckve2`>Sb5|#m$6J7(XAlTgBBG_!-A=qr+C)jLP6KuAh5Nx(<2{zj=2sYa< z2{zk}1e@(VH zghPNMgnt2NZt$FENl9{^L&yZkOt4X9CD=H!6Kotg2sVyf1RFJaJz8W0)+8WSuzq^k%v(svb7ddPylCnebcA3DSZ{m5(K zV>EwCSPS@qunzDQVFO?jVKd-c!dAfdgzbPI30<*%y9hSSJp>!rK7tKwKfwm}2f+sR z7r_R0h+qRdLa>3Iu~C+*ik@rEl#(ph*$#2JGI=eWi{|qQSpXLhvIBAuasnYFEJj_0&-%+C>Pblk-OwQpqLJ4^V>CALXDakPVIK*N0^IGVS=7EGkfV&Ap0mBIQ0Y(rk z#X|%OI*MRHA0b%KM-`guF7TL?WSA2i;xH$9Elfu9j421*IgrabbtJ z8yE3fD2nFdgc5*KgwlYrgmQrE2^9d92$r)l!Ln2#SeEJp%TkMAS?VaH+$9sKDN%#uzHDMEA3*lS9Hp2IS z9fThNy9qx5_7e61_7i>s93cD&I7m1II6|fN9lw_k6bch?}O0R{&Xf8@91}H%&2`Eh{11Lu* z52!$>2)L18gSeSsX{!<}Z4H8@txd4BbqSWXfkMr9WU8B6$Eh}Qh*NFiweT&Pn-aDG z?jZaCXhGNsxRdY`pfzDHpe^B7KzqXPfQ|$kW@m+dkIA^Vwv6Kr4sqPwy%xSlb5Ft! zKrg~BKp(;$KtIAhz+Hs>fPsWR0D}pC0q!Oo0^CD50vJX(QwUcA9w*pVdP1SXTe8{aVZ+XH zh?{M;*TQpXoTh6D9)I5T*du z5~cw@C(Hn>BRmQCk}wCbfiM^FHDNwrGvNim7Q#ZnR>DhwZG@$O?F5_qj|z`2mc@7% zJ$5_9#n|Ju@By0l505cOSlP8o?r`FLE-f$WrZtBN$wkNbcicl*=u3_ow4~A!UjN9!X`jlJGB}72!s4@f3t19T=_2ZKt3K&Ev z4j4kX1~8OR25>K-9N<2J?NK8XE_q#cu?M6iyVyvFxQmVQT4;lPG?maEFouu}c$Clu zFpkg-FoDn$Fp1C`Fon<$@Hk-rU^-ziU0E*U^d}?z#PJZfM*B~1LhG@0rLrC z0nZc00TvK!K^G|;m@g~5SW2?OFFV8)UgkA#Uaru5x%7Vx{Z}}|{wuu}sw3elLM^~M zggSut2=xIU5G=(<3co%sIlJ8%$GFBJ=3MKw&=bv{6M6&I5&8kXBn$v-APfe4O&AK; zOc(~(LbxBWmGB^78{uKVc0wv(2VpE=Ct)05H(?@R4`B*mFJT(s7s3p{euAyv9}2~1 z$b!yBkG~w^f*$l*cpA-z3G)C)2+sjBd~;01vlMFT-AYC&$$pi|A*MLbYu=niVd4Vm zpB4SHJH-AMdCi+IRw$?YL@xBt?GXE4=C#lc1H7Ej5s;tI8E^%`A{J7(ak8YiQc5y~ zA`US{F|UOi5TH2WCO}ETEr3!4i+HWVj9HSRtdu0hbq+B_1+Rs75a0&F`+yq>s{xe> z7O{%L8xti(RVhh|8V)f52yiQ*IG`@!8bE!5MZ8Vn)i)(YBPmIW+Z|$xW?l=E zaDX=_Oa-(gOb4_gSj4spgQiM~c2bfQ9UWqdPF@SmFvc!~7Jxu#1?Wz&h$#v!r$~xk zQj!#X9b$_9UJJDmU;v>mU=X1JUT4-yswMiO2I zj3QXXM-(=`ASuR3Nm4xK5L1lzS{TtPHcuox1ei=11(-^(h|?7|O_CH(NJ&!6a)>Er zdo5gtG0q`a|G5fPpOXOdq$B~JbBF<6@LFi!DmK4Ju>Ok``mdA#FG)!PEOm$hUh!I( zh23d6!TP_UkX2t#Ss^6}@Rmai@V3{&rk1h!U4r%hKw*%s!G}_k03SQV0BgJ!uEiRx zC0PG26ux*_0<4pg1o+A!2H5DeaIjTu-bAqeTNJ+1HTYIa5@4G{46xm6VGh<{2f_O9 zQn*A9soheN06#m#0QaEK`idM&KMGF(Zp{zVkpJud-@N=X6~cZdN>dM)(A z2ucz90?H8X0+c0K#OoA#>)v*~lqAIs4l%`zUJC~hpfbVwS5c^_w~1AyBmrtT!~nIt z7MdZzt%MeUx`bAM`UH!3o5Bk-B}F4CNs8MYVv1&73$J1wn-g9Kv?N%7)(VyM>e@z1 z60yBQjM&j@VI=}|B3S>f3imuK0fLkyKo5r)AjNB;9_G}W&=Am<&=}C4U=ar@T(0Nq zK~jg0AmR?0FM!B z1I809;v|KZuStr@Qj!#pJH!;zy%rj^j?FU&w*zJo?f}dtSj49l%IWJl&qzs9JnIls zJm-Ga7OFc|3yMZz#@W0T%s^~k)(K8N|NFghnQly*TQn7c%ASDU|P6*F~*AsSphi-*#Wr-7BRQNlba+(9w|wR%N=5h{9X&~ z+Q#N92ps_h37r8~5-eg7g>kzjMNuh9isBA2MMg;tv- z#r0B>6gN1;6gPS;bi)`c6M6z}A@l}RC0N873Xg4(6g8zJDQ=+(b!;9&$j~OjP{LV&dkGeC zxWdJ&CB^+xk`xa*#1tdF7Am!g&7%mF0jY#4fH4G%_?W_%yClUpDM^Zn4l%`KuZ6N$ z>8XV40MiH+0Z$Mt;w*)dze?2r_1N=Z_za)>G3@mly7d;NQaGZFCv z!r6e;1dI5ILa*N?#TqF|iq9NkiZ8qtK0|=@gmr+g2wwp<5-j3oh0J(_~C0wu}4ahVxL1y@vGNDGc43^gcg852(18r5-j3D zg|>f6ibGP86h|CliVR!5`EQKzOu}J6M#8^`IS4-iE+$ySOBL3CBPnuANmAr>h$-@UE!^8SHYX8=0}2ox02Crv#H$nv?~@co zq$DY>c8DoTcrDz6FRkt+TjJN|K_YLrhW0YoUMJ*nAUVAmC=g z5I_}zMXau{^Qj!#%9b$^EUJC&Mx)FK+dJuX6QV15YkHXLI zN{YTxk`#A2#1sR)7XHR1X)wY14^^o5tpvD7N)q5chZx{~uZ8h#WAg(9>pxOq^XC%a z(>AfkXonc!5wC^M(L9#09`G1p17JL16JR1?3t%$gJHS-JcEB{kkANo#Hq2QH!*%0y z!rDIN5Xb$r*SvY2!e@GAu7QZpImG@icrDaM^NWPKfJKA`fR_l3052162P`Ap0eF?r z67U+KHQ)_GJHVTSj)1oaodItX0^nUj55W6`UVsk?eE}a4?gD&57zFr~a5vyH!o7em z2*UyE2@e3iB8&uVB#Z`ZB8&liLwF4EEnx!SJHlkZ_k_m*KMY#GPZG*TNh$|4Nt(_>C|h@CV@qz@LPLfWHYZ0S*zC0{$Vq3iy}sI^c}&eB5sW z&LXS=oK1KakcsdC;5@=dfb$8q7}*ro>yy0;q$KB04fr$1XLmv0o+8m8gMhAB%lhRG@u%xET9JAIzTN#MZm3u8v%6* zHv{SuY&+hj@aaa`u+`9`i9_75O}!RsqWKQOt$-GUdVo6#4FRnQjR9>5ma~IG_V;BF z=VIsR8d@4j4wb1~8mZ1~7t94)7r1dca76E!Sv;34hD_U4rMyV;ti8J?gcP2hHOMmjfmc zk^qwk7ICV=i+WQs85?oBLrgKlYvFM;&muelm`$(%Pb=ixDG@Ji7f%559Ad=zUJI9@ z`FTP;PmW>;jxa*aJA1 zun&-#upf|x@CP6p;V(dT!Xdy#1lu_-R@kjC3(ad655h|w;@*F=vHwk8^X6L=E-fVetDt{%huFWS*Sz^wh3yrkf41Z}o_Y?ke*>?DhEkH@ zHYPLyG$UMy0L=+G0WAra09q090NM~P2ecz30Xh&00+I=Z0i6j&0bL2j0o@4K0D2J0 z08$9$0KEy<1Nstf0Q4u^1Q(MAsO%(p$lL!eGEmg6*WU z3APtLtuVKY?8YBN74_Hjt09ZoU1XxPg0(gb+ z9bh@ZhWUoVPxWNnnL5RBuXKpxUgfor8O`qytpEE8o3luOrR`&Y)ebSh$6gDsqInJB zb--G}n}E*=s{rc=?*hIgd;r)$_z3VdVGUq2;WNM%!aBfK!dHN8gs%bH3Eu#A5Vit# z621rQChP$0A?yO|CF}wGLf8k`PuLImo$v?X0O2pdUxY(|gM=f1!vx!G|0?v;^L7dB zDrbIg5VvDSuZ2=*K8J8E;9Np^KxRS(Ko&wJKsG{UKz2eEz(s`WfSiO{fLw$+fJ+JW z0eJ|w0rC=>0P+!<0g?zU00juG0EGx`0fh-207VF$0L2Jh0mTX30VN43fKr4$fHH*s zfU<;vfbxVPfa?kO04fsh15_f60Ng})2yioD6rc*>5kNJQFoW@C;!hU>;!#U_N0Q;CaFfzyiXP zfQ5uPfW-vcY%eP;*3aq`MUPh;;&xo_wNL`huMwUxRRCKE z)d5=xwE)`)bpYE5^#MBww*ht%ngDhangR9@S^)MES^<6`v<2)ZbO8KL=ma=Gu#NJ! zLN&c%dmh{IutVHRN4yqZM01Ai-hVOROo9bCTjA^^iMXRf-0tT(#E6-_7IvXI3tAjckP(oNkO`1P$P6ez$O z$N?xq$OR}y$PFk?$O|Y*$PXw*C;%u!xDrs7Py|q(U>l`^LJ@tUT~SK%O!`KLxRok< z&6}$ze1D1b4_LqI4zYhtuZ13Hu1)9#s6*%rs7JU9(10)qa2w%nKx4wafZGYf0nG>x z0Gbm<0$LJmBCQoJs3J4F2Uo#%4sm83ycX_5b24EBpflkiKv%*jKsUl8fF6WL0V#y> zfZl{jfWCyOfc}K(fB}S=fI)=WfFXpZ0YeG%0QVA}1KdYg0Jxv92=D;G)^DW3J-5n& z{)`@@9pZvM;(RhPe(8 zdD0;c^C_=|uh9H7;cLKLf(4kb@RUZ}f*vn8#E36?EqsUOMFi`=B*KLf;7shS%N$~W zSG^X_M)PZga{+G<&Ii0n$Od?ea3SDrLQcTDgi8SL6Y>B)BwP;oh>!&MgkTd{t8i;| znc2&j`xg#zX6wBcUP1F$gx3HY2`d1b2yX$tA-n_lmhe8{JHl$f_k>RXKM>Xeek9nq zcPspxMe-fSn{7rZkaES0c;2*+^fPV># z0cZT+<9-=%7U31Z*@V{snFuQY=MmlloKJWMkd^R0-~z&Gz=ecQ067S20T&a#09-=& z5|Ep)5pWq{GvIQt-vwGJ_2Ij@CXXugiH2T*}v0V*jBJR-O8H{j;0vO|n`i`T+UXs$}Q1yG$( zErNVeLQPUl^r=m_6;Ovz4^WTL5YT|o7;qb*DWEaIM&48*uU;f}B*(>R?hvQa(raNC znp+X9e_Mq^>^l}Jp{|Lk6>B$E8JH>X7-zuWF-zb z#F_o&weUBZ4-@_YWY}>`fU^kpkaGz3knoR*j(-;*j(BWY%c8yHkV|A&7}*$ z=F*K|bLmO2x%5_8d`PYf%Yq$T}#h(QqpssL)_#3@>=*C&4&s905bgO0nU(;1jtA@8*nb+ zJU|vgRzP;bg@BxdivgDsas%=bE(atLt^gDwTnQ*bC<-V}u(@ADu-TR&*lf!YY_``E zY_>NLY_>NMY__)$Y_`=1Hrtv6o9(Rxn{7RU&9))IX4{xxvu&zS_*~i2&7>q7s)a+` z(sz0-v_f-RLOVc5LNcHWp(~&}!BV6UENCBs1?^9;paTgObcjNVzCd=jlw{oZI>d3` z=QVF0p->@{^nU>TM>@p*qr4VIqj?NrEMOdAJYW)GGT?E-G{6jk<$RK0S>_Nd%UptG znNP4RFAyxtLWLi73oeq9ti%$BIJ2c*3(L^FobVc81>sG=D#F`<_Xw8aLxKhUm|#Ia zC0NkU2^Ms{!U%n;{-u;;+#4O@xHow%Y)139gsp(@2^L@n!5*@UU=P`&Fz-Cc`LmQH z=PwR1=YFq+-_U%3@F(CP;Sk^m;a|X+J3Yl&Qj!$s5HbNW6V3-@BU}Kuh>!!2i*N}b z58*OEK0QrKHZ_Q{M=l6^9hL)<6N z^IFJ^=B$KlfC~v10WK!w0^}y-0bEYV2e^Vz0B|LtFrX-*7@!29B%m~*44@pLJfH%> zrdo+$ldDXy$yFiPFaS01dB11U@@jEjOZw%dO}Jvs#y+kRI|Mnk~+uc zIfR0MX9$G>^9UC4Ifd4pB*pVmk`ymG#1xCX7OqEtmk2iiUMAcGSVpjj%M}_mkQA>; zNm8tEh$&WjE#&MJn^zGo0lY)V19*>M5kFKY)=pBamXf6S#382m)NA1Y0(?gJ8}J3; zFkn5wB5qLF(pge$l#-;_>=09I@mjbQ%dnMD53r5U5U`zK5r0(3*h*6Dl#-D-k1%&B<3keo6r$WXKlHy`1Ns3DyVv0Oo3)!&J zc?lN+@)2?Zk_Z;Dpu&XPB}E}ANs6l+Vv3?(3tceAs|nozB?vtM*AOgX8HL%&lHyt^ zNs96gF~#*>3nekeiiFaDN`$h2n+O*17KI(HB}Ek}Ns8(YF-1+Uh0PdaZNj&JI)rV2 zdIXEuP@(v3lHxWgNs1;8F-23ah2jWs2jLn(3ql#dodk>6Mxj?jNzqnHlA?n{Op)xh zPyhis6RrewB@_X4BUr?q3LmtP6e&`Y6nz|Gihf=T^AX@K!V7?bgoS{?1dBLSA&aKC zM@o|7K8Kj%ey@dD2=D;mDZoR7X8;cqEMlrc-X@ab5h+QEM;&5{ab62e5MTnK8DJ8j z1z-xnB2H77(@0WGmy)EI=@3&q>9ue(0z5^i3V51O12C6h5$7w6XelY4lai!Z;1E+R z^jcVg0E-FB080qV0ZR!M@l}PkjU~l$DM^Yq9Ab($y%ugofVT+s0B;i-0^TK9#19m9 z=q2exDM^Zt9b$?#UJDs;?5-u81^AqB4qzR@B7UWiM=wbmq$DXeIm8s-cr8>xfNu%b zf15(5wi4ibDM^4G4l%$^uZ6vsq#`Dlq5hVhZx{IuZ3b*gYya2Kbyh_dPTfI zN)q5AhZrEI*TRDsK`w&z&#f@KjReReB?)l3Lky7LYhechTtTq@g%pb2Apx$Gk_0H? z5CatRS{Q`@#R=B`8ij0nek>&=32?1L3{cK%As+%_r05^Lr ztVMt-1nXa2;qfjKpoWwrKy8N@ppMr<6KsWg1nb{W;bz^DZj+J(XyOn9H1%3off3w6 zu>LI-3h1r!ol=qjZ5(2Nc3um4F@g>R>)$DY?unhHBmsg$4A9+cVI4-$lVJUOE2QdX z>?0)!(BB~j7~r)q1_1^UtpD8#Kk0Ljp;D3n!yICO;a&^b5nu$t`ah)bfga8yr6d7H zJH!BwcrENlfUyMYKTct#-dBy6k_4FK5Ccr{TDTO8_&CA(KcR59o{?rqNdi3S5Cc5r zwNL{Ao+eoTc?ubI3eQSO0zB^!11#`b*o`SHBv}8K6lS-V086AK0hT$$0Izy2WX1?y zBUt|x3VU@kz9}UMu*x9@c*kpD97gaS!TNuw(6FflSS=+9@QFhV@Tu2A9|ZV}&>!#x zVIW{V!6I%@*r3<>jZ%^nn;l|`Enbr+cCmRYp&eiwp(9{B!6N>suv2gAc1lT7{NxZ* z{Oq+*9s%|dDgb^ZR08})u!si~HU&xXr<5ecL5G;)u-8I=Y^o!Kfq)EqJirjZnS^@) z83~pmlR~%tlJi_CNzU^fV$Q5y3mLn_<_iec|00FUhe?1OQj!3<9Abb=y%xqHKpw(G zKwiQWKt6&+yh35hiVj{2Wf35m za2=pCp(3Cw!6J57`13wV(L+j-qL)KV(Z_3HJ_7V3SpNYEZ*-La1EnMZhB(9kL%kL{ z;GnpdVEuK?mMN|Iu;Lrk&7YvCD; zaVx?4f3I-HKnbv2N)q5lhZta&*Fs?g_=#Zs_bPPI0Q;mQ0roq@0Ka=J6hnXmgc5+i z2&DiA2^R4mg|i=&6i1{aDbD!WAf`CWYhfz_oK5&1kcqGZa2~-TW>KgxQc`4B!fRnSQWPZo47if;3*ah( zMJ%T9sUCM%OG#3cbciWRc`eMx?o@{G0-!8mA)q|LB34lNt*@l0C?!d8qeDzl*=yk! z1h|Fp8=xxT0H8X-BGytktj}O-OG#4Hb%-hIdo46afQE!S0gVW408I!Mv6;eIy(PsR zQj!!c9b$@BUJD-}KpVnGfOdp6fDQzU*h%3{P0?9Ok|H?76y3cRK1YC_g!O=4gbjc` z1dG^T;j{ZC#a&X86oVXMiXmPLtFXTeCA2UDJDosQcQM;DW-ZYT!aAA2p0pMAY2NVNwA2s6-K8> zil?L`DV}kNDdu@CEWt|8CoBUzPgo9EK(L656rR3EQY@B|qQ-u<`xz|cbQhebM zQ>^z|2ng^Mp$A|ip%-8i!6I%^7}7^ld@ChMvCSc-*zUEk87sYm@GW2`VH;pK!6N>w zFs-|!*efMT@vB2j@tfB|DgyjL7z_B5Fb?oH!6F`3Xg*w0{39hvkzubvOmU{y!U8Nq zM#3V%IfNyEa|ssle1-h_oGgo!B*g^|F~x;m3!O2>9E1S4n9u`o3Be-fQE1jfQd}k_ zNs-SXrbzNyn1lcY2vY%t2-5+D2^O)a!XqOjMKLK!iV_Yn#Wh|FA7dFx6Fvo8OZXg6 zj$je5SNKGqNLG-Nq^RT&Q{3dWa4rJeOgJA@r#1waWEsR8f)`Zc3wuCW&_5_QVtZ=bj zFFHv{Qgn5QDY|(ryn+Bd2(JNB2rB@+2^O)RLd{;1qQ8_R#XyIcVzAf33arcBgtq|q z5Z(a{BUr@y6|U1ekP%Xn6c0JX6c2kX>_C9ggk69~2zvly2^MjjLi?GLV!V_j#UzKA zVv5(o8omO9%n5l+Xk43c(`2rqEc&__~xN#hVT>#amtr88ODU3D*BTg?zIl z!242?0IMBhfRDWvu0nt{gkpfTgc5+y2^Mj^LX(M-;!7z>ij592#U`(XnV94^gxP>^ z2~PvQBUr@k3iHNDiXWsTDRw%<6uZ3^Y9qiNLS4XKLIc1r1dI5a!j#7(#qUy*6n{Fz z6n}dy^hSU~1nYl9;cH##f2AY=&fI4Z17!4CD2;VIhfo%9F5x;rW`ae`sxWf0q{t>E zNpYb=Op(KD^7=BQa0%gUKyHFX%&Tz83`udhlq5xxLrhV?Yat89Scq@|pfJG# z6jk^`pVt+Wl0+=w5F=jWwQwGWRGMJ@%PJIkL;{qPk_5QkAqJ@EwQwB*R3cOa+(ft$ za5KRoR#iBt8^4;ABt=b!n4-4VLVpCPLl_9CM;HQVK(L676qb&Y6pf`MDVjRO6nA(n z+=~D$2-d%qLibb&&{|3opq)bu(7|h=1Og-zN&z|(t_5@@Sj6rM+a8w`J)|TldO5@t zeY_TaM1Xz->pwtY#lsR{pp+!Q5Qi9GsMo@U2yidK`VUvAHbny5FC_`^phFBW(re*; z1Q+ca~*Rk`&7w zVv5(j7T!SfNz%GXv;3uzz^$74Y!TSHAFzHDN z@T-(0!0!$*zyYs?8?deaB3S=J3iC!wfWuOf0RK9~0B8K-%~xUsXA!LbISOA)lK`2d zBmpuz!~j{m7P6u_J7GT}UPQ0}7ZdCumnxK-E-7+LNmAr>h$-@UE#yaY0m1>KC`7OT zR}t(X#T2%Wk`z}WeC>4oI;WYC@&=mP{APvxWQ|o5}GR$E=I&# z2o|6k!5&gmp@!aM)RK~7CLj~7Fr?VWI|iOR6+;9G=fE(q411eoMuW%Qp|RUDdu=Be1rhc z5Y_m zFj&X=F=lg!0kV57WbGE4FCt_IjFkyX0Jjj90jd%#Vhx2xuStrUQj!$6I>Z!py%t7ejP(g) z01XKips~W&uS&!wQj&#pbfzywpZBxyrk$LB}viAA*Sf! zweTrs9SGLHhr+O>5}>D)BtUP67@)7$LOqP2Kf(GBRQOBpzy?W40^IEo1Ki`aa5F|Q zj9~rmS9oTL1Q;PD3Gk3Z4DhhmLOG0JG{O3hQMh}a1Q;tN2{6tf2AJTrFdieAM3@Aa zLYNA8oL~{3P$>D5q?jQkN%5pZO!1W0!W9_f(}Y5RxrD0#&k`)+^9paxmJ}~YNm49y zh$$9(E!4somk{azmJ;d%ULjb-*A%|fJ^XbkNs2ceVv4uC7RF(WZxbd0-X%-{yic%* zs}*WJBPl+TlB8JU5L2x6TIi24eohz&SVtHF_>y1|H!2j-UH)q+Ns4bAVv29Q7T!gG z?+70Nz9)PH_<>*%cPh+SCMkAFNmA@_h$;4ZEwsck{6c6A*iUE&_?=)8|5V60S5o{X zB}s9}A*T4pYvEpu@n6Dlz#02JzypA@2o~`ih26T-W|ESm$m|ePWbsf%?W80rIy%G@oxBznU>Uj)76Afb37|W{BBm&mUnnVhNl8-l zb%-hYdo3Ko7zYrn|6qj{uSkF)Qj!4oIK%+MycUu%g5d<~|A4|1uS30b>cX0gn+Z;sk{=7f6bUQj!!?9Ab*cy%xT~B&QR$0%j1t2h1W^#HSQ? zJS{2aNJ&!6b%-gR^;+nS0M8Mu{{n>-I>r~JBmovX!~jdY7Jfv4rG(vpR|r1?mJ=-E z8w&aK{%D1iB*j|}F~!?n3q7!o?-F_e-Y4`0d`Pf}A1h4J-RTo4Ns6@&F~#Rz3;$w_ z>;4~CcO4kzwQT_$4esvl?jGEoA}LS`6zjpYK(PW%ad%09rnnW!#frOIkrW9*id&Hs z32&dX&R&1K_t)OP`R-b0zL`u0dS5TWUw_p?g-{8&CX)pGt>6M~>So#_;5NZuA8BE+ z4Y(_l1Uyi10S|RE9TD)D@EzbO!3Vss5NW@%y_883|5b2_Z*?=xaZ}zCS_1wfv;ll1 z_{3-nz1B&^7n!6Y*1sNHMI7DCZk#cIuon=YZ~%~y;1iQr*l&LUCY4DlQYg5JRJxgo z2uMSi0!T-g4#+_8iJ2{YurGcVnWQ4Sf~&}>n~9Cvked(y$V*57$WQQzg)9`bKW2qx zl8RyquA+o)raR79ieLa`2)zO22tKi*h24KjMJ1V}B2d9qRMX9@#Tjc5{Pndh?6IGS zb!3u&`U)F1T1T-f2>zi4KZ+`_hmq`LzD!72wx|s?H2qIJlv?Wvpv?ut)Z!HYp zBo!THl8WyXTt!#i%q!fb?u0jh?+Nb#JqbRskA<)8ee5ffR18pX6@zp$D{;ml1b_W7 z3*Xvr=)+}_fRPF=V6<+g7EbUJ!Cyb#LYKo5@Uu)3FhRiuOw!H7?&ThyLI?m%BP0OK zAo#@D7RDZtia9b##e4-So>`U^T&C zzs^E-d!+R;Nx&ur7x0H}CJ6$z68!aH7B=0Ifd9!P0lO4jz#iR9x8CmIy@c-p`w6`O z2MIp$h=s}5rQ)beQgK4TRh-hzWJkamLN35LLSDcHf=|3`Vc*|U@s~_eaZSNhgzIJk z5paW09dL_K3lKr@iFYkrxF8kxWRi-16kNq4-OLW$=_iEUfMUalBEnig z5`s@mZeg)~Pp6PcDpD)BinO|!CJANh~6(-~hoV9=34cvQ!+ANh*#jxQdgynF!p5(}cT#vxEnL^8}xG$-=OcQgK-( zsko}(Dz58hS|Z?YLL0zMLR-LXf=`UJ@Z$}sxGR%XJWy~I4|Oy3a2p;I8UmgYngE^? zeBvt$OV3HgYni0tt%9p~ubWwfGyX?d3iwD^2KY?yi80t0(3KJ zamM(B41k1$%z(rMpP0--xtmgvTqdbVrQj;k=w@0VARVC;V7US;RK)p z!6#O>kjMT?sv?tAR8w#jHFPt@d}2cj|Jv80kxWw2RKZm=*UhxY zZTO1tEua;lGoTH@C$_av|B_U+lSwK%D7cD_x|!2BV`suSKo`PAKsSO<{N6%b`vGEP zl8W96uA;AQ<_ZG(6RraW5^ewn6MW)O3o-47`7oKJVuXUL7^R!3hJZ1Int-u{I)L#6 zpZJS~6i20Ef=p5|S;19I)y1;Ho&ZlU&ZsaPqKRIE{O73*{}Wf8D}Pyw)sP#N$C!6$CBP&ZsEw#y_H zI}}{SF5OH)ye0P#iU9T!iUal&eBvPsW$YKu!!k+5F$Gs~LO0U^XFNsd1UN(J0yszT zi5D%Lu`l-}nWW;1f~&Zuo5_iQa6%ry4MKjvErL(HV`0N-sfd(GD()+|ihp!70}$|t zFc|QJFck2N;1ge3Xl=hoy^={P-YB?=cehYt`0GDfxNiTV{gX@*@I}D|#C)d@ z??gas!X7|e!ahJef=^6n;rlaEkw_+~NUGo}lIvzh;7O(=j0U78j0L16_{0nr+FX^2 zj50|@76n(4O*az@Z@3(UxPV-Q_<%eFpP1i5NW56`UplU zQWo+im4MPRNkBOT7f?YrQ@fvgxDvr%A829Q7kQFZWs-mz3NE0QZl(`TP>0~JuWw;! z3^_pqnIxdGf(vM>n;C+D<^+FzOA8$%VOd$B{CtD~TEl**JOcF3%!3E6J&9uio zm`(84&$G}wft+BzOcJn2!38YQ&BVkBLJ0o)j(=08wfsevxT0wrQ#2nq+*+bs|eH0^hdxBg1>&Zg?#1ZN$!zJ0`@7mfCIXj2Ls&0 zhX{`VM+i>=#|S?0q=npf<&39fl8UnmuHw9I=69U&B4IV)GGQIy3c)8{w@}%BXoSlo z6*m=J#ckb8Bwp(~1b_WK3-j!o<-SZ3@KC`8Jl4&0M8H#mzy5`VTFK-DFJ+Q|e-&K7 zTiwi8c(c4GvSkKtK4vGh0^}qF0df<3 zVm=EuvdOc^FOyUhQg9VTbTb|LyN8PrIsr-$x&TTMd}3J(QTE+XP9~|SsNgCp>t?#( zjDdvifNBH-s6p_FwJjXBFJ>K?q@uopt7xd3sg66{nBcE(W+AYm1T>dP0$M7#fY!R1 z1Owf}L4?GBwuEGW_Jovx4umv-j)e4p&V)>WE`+RrZiF0w9)#QgL-0?ew}plu!~~gpe07lu!ULoKP4rg5WzxTR2@-ZtobG>y+S>>^|a>>*?W>?Py`>?h;_93P594C|joFtS6oF@3!@tlPP+2!qa zUM6{AFDbYe_AlK`PkdxuCG-JYC-evWO&A2YN%#S9n=l-3hcFUwmoNr!pD+&a4Js||}A7MG*BOw&4p7Ep>11t>%C zKThQ>{8~VMzADHhKVOv<+|O5_Zl)?8u0i;M#9D+{_-w92hzqDkh!1E$NCap^ND62| zNC9X@NDXK~NC#+1$Ovdn$N~r=WCye*B|tAiAfOMSI-nn+7GMCOE?^L$0bmHBF<>a68DKc!E5HbXe{+l`__xDY3$>rh z@7-}S$=fGb!M%MZ=w>S6^L-K_5HN*M9Waeh3owIF7ch&^05FHp7%-2}46uOk6<`se zHDC$hYd{F0JzyE(TfhoJXFw>SD_|v|2Vga!Ctxk14`4l^KVTza5MVRm2f!A>aKJXg zNI)223}6Rg9AFnA7_f&h5wMpq1+bqm9dM8^3vie)7jTrY0C1eJ7;ush0ys@r4me8) z1)L|W0$e1l1zaX<09+w#23#X-1%wmA05=Fb0k;Ty01;2j|X5Jk8P_&|67_(XUFh$cJ*#Q0A?8eRZm z5nco05Z(d;2vLCegpYuPglIrwLQMRDB`F~eAUPo(ASEFoAT=QgAT1#|AUz=!AR{3y zATuEYAS=OtGUl)_xP<(s%_)<7ROV4|AC>uZ(}xRM=xqOPT<&=1gpFc8p^Fa*$=Fbohx z7y)QY7!7Do7z^k?_!-cVFagk+Fd5K=Fb&X+FcZ*&Fb7}=^8vjGivWEHO9A}|%K!ri zzX1jjRsx0))&PbQ)&qtUHUUNuwg5&Ewgbixb^yi_b_2!}_5y+l2LKZYhXIoa#{g3Z zCjrw4X8 z6<{^t4PY(dJzzcI17IWJGhj0z2EJl%A;bo3BLo1#2nhf?2#Eo^2+06@2q^)3326ZP z3F!d`37G(g30VP02{{1A3Aq6$3Hbo02?YUX2}J^y38es+31tCS2o(U=2$cch zgsOlWgc=UyUuSTOR2$bs5b6OU2@L`F2u%PF2+aWx2`vGS32gvR32gz-3H~?1D}w)+ zeq*6nG5KBbRwnt~5~bjNSA5XTw8ad&5DaKSm*0vJj-4j4{21sFj%3m8SX02o8??}c#|`UJ?EW4uiA z=J-Xyy*Vc8X09P%GU0E)RKhL5bb?QuW#OFt$IG*2l8Si>u3~|1CO&>&E+QlXEFmNX zgb-2ymJw0|RuIwwLJ1iGD+yTus|ncwYYDjk>j`-Q8wmvfn+b&hTL{Gf+Xy8AVT3Y( z9Rz>7c3Ze;|IzmzndJWMQ*ih1fNo|OJ^&68MgWcwMgxu!eBwz9k@n9rr(}|fvkI=_ zyl!S3KE*E*f&rHa69HEUQvlZp(*faxS%4daxqw@Q1%L>`Vn8Gz1aObA9Poe;3V29Z z1$azY3wTP{0C-N=40uV{3V2Nj1H2*Z1iT~oJN%!8&++A!e~?LT`DX=p%fIMmKI6wK z=EwhceH;sS?SG*mu1pdTU%>?=)Xn^h6C@_Q10*H<2S`r%1V~Bv0!U4Wg@2}*mf#PO z!NRgKa;l6n$*Hm^xKm}*&Fn{F4#FWoF2Yej9>NJgKEi200fO%=Y$1ldw?$-yxmv@oEByn?-Cl4sUe!9BD7x|!yK+`|J2EdhfGZ2&(IeBy8m z^V&$ok1|QcCb^0OJWu0l@^HIMKqDhEg#}CaIXJ;3}r;X5QncX(r(V zU^d}1U@pNYF0k;htyCDn`wvpc!JOYaEj0gaE9O$&s%6!St>5bBo&txT*VdLOaTO3BNPUN6N&+D5Pafo z3xUm~B0?sqxU1kQ?(1es;Wqq3C<}N*r~r6E@QKeYvt;scHpC^20mLJW10*2$#Kaap)t8DSGD$^p z1y_+$H**^SsR@yQw1oSB^aP)n$wD<-ky$3G$fn>ba_DCMLO?FUH9#K1-++7spIFes ztVU8%NG7Q$s^BV$>t$xX76#ehM^j{y zfawY@V5V;JKLO+(o=x!A&$BS4wgk+VNdgurxPT?Pncoo*Lh#oww@~ye30NVM1pKbx z0#@l}+Tk{@A#?z&BXk06Ao#@17S`60ia%tMifsz6B1|{46=&Q*2m|aQ>;&u~_{4n{ zy4976{W3|#Aq7`)L^ty%0*(>(15OYQ0ZtKo;#mv1t4qZ>nWW;Pf~&Z!oB19AR|vfT z*9d(9;RK&}(?Y@~QgKTrsko!yD(>oL(%??tC!`1bL&yYpMDU4EEgZEK&t#H{mkO@p zwQeRG0^SgE0^Skw0HO#!@uP)<_Ba10nWW;2f~$!6Ss(6-+Yp=JuMe;g)?5PO$s_>@ z6<$|<;t3c8u8IAbNk z3_umaY(Q0lPpn}f>DN+GQzogXqu?s)>1Ng;paEecpb_B@Kof#bY;NJP{RClXrXf}spuq=RCG~r72R|*!w}GeFalr*qXE4LKC!Qb z^R=X+pG;CQP{CCU*3B%&i}?c~1Tc)S9PlH-Cyugkv5HiTmPsncD!7XAx|u2n2qshm zOd!+*Od|NisTR`OifJ-Q#Y_cPFbKllC38R3@odrr;`8 z=w`O#PKOe909F!q16C7!;yMed?Q5}KCaKt@;41#m&CJ9Zw-V+6wiD(9{zveMyDS9N zl#1OlNyT0TSFv9=^9uqF5+(r-6Q%-=5`5wb3la7g&Pkc1;*5f;IH#K#h=2=(A%IJS zVSv8~KJl7`9Sx-7x=d1WL%~(t(#I`aF5^<|FQ7F{t4=#Oj7Yg!Bsrd z%~ZjQ`GQal@QP3q@Grq9zO#_kehj{sNh&@lxQb7@nQ;h+CIkawL~FoAKrDh!jBDZd z9#Rn?lT;*7a21JkGZP29hm#Qe^~o)CA0+`PWRif?3N9e6Zf4gI_i%cGzdne&6GhvaYA`ONkSz+X@XBI zXCa`yRFs!VDk>?siYmI9i@5Jq34Z~q6RrVj5`1DE3n_+3MO~SsqJe^|Xr!B|iZeDL z)BrRi)CRO5_{3Hg){T^k)-p-O*9xwpoo;3`0=^+^1$;{g19T$z#4Z-j*k{pICaLJ5 z;3|x6ral6C5gGyd5PU#?3nltV;sBW>aj=3*{6RPK0`J&igx7!{32y--2|jU*g(BUh z;wPD;V!VQ@2-eLEM!*EZP{1U@kANuzpE%vZ3HxI+Lnf)1t>7x=>Sp%hHq0j+04yXN z1}rA{#1IR4j8yz8lT@rwa227tnZ-EcNc60grb1|5lR4d5`5ww3*QZsia%wNiv0?%;-GG(Cjt%=`T&j+`U8#=eBvn!+q+7| zX_=(roPw*kpquH0+i;1{1@IT4JK!q8Cx%;?+D9t>mPsmZDY%LV-ON=4L=wUQ_Xsxu z4+uW-k%bH$rQ)$nQt?c|RlLy6#7Dp@LL$JwgrtDC1fLjXAx&?o_)jLO_@v+}qIENe z5D?>wUVju2i*N!Ehu{ii`@bBC~F$C(f9a&xVK;1ly$xL|KoUYVq#fP$+iq?`P&O}dAR5Y7XN z5iS8r5PV{33m-d3MH!i-qP&8usHmIyfZI@+@EH(Dh=Gb~1fN*b!ZZ6xTT3RXsH@;A z>g#6yLqJ2qCqQGu7eG^jPi$dfO@FEQN+zjjt>7wxbThH>v)h&s0BBE00O&yQiJdGw zvLEK1Ws-`n3a+BNZe}#j_&s4PpeNyHKyQLi>}O%sP^suIlT-{+a1}#zGo5h8p@c4g z;e_sh5d@z&+QQGHrDBXsQZY`!Rs5`*IgWr|2&VuO311Ns>;CDh>z$(HwfHef4xZXll z`*X2DCaKu0;3~H0W?tgQU>o6IKp5d2UdJ*9SxbViSB~fQ6+!r6Qh8Qjt)>RV3EUY{D6n z61D)66Sf0V5`1DB3-P{}inKCGMFs^|kx4f*6#-cYGXU8LvjI5>J~6k2oAw=*M<%Jr zuiz>Q>Sl7_{Zg2a8&H&x4^W)o6H8e*WS>Q8nWUnef~%;Yo0*R@RwDT811j5JO{{D@&kj>uE!MI|qg1e#Pb<>A`u~4p)Tt7i3c>yLX zxa+6tW-{UxoKDCBm`TVEm`%t9m`lhDm`^AGSV$-gSWGAeSV|}f_?1uwu$)jH@Ef5L z;CDhGU=^V{U=5)bU>%_@U<086U=yJ+;15DGz*fRnfbE3Vfd3J`2J9sG7iEuyiS|!S z-{6XU3hq@ppqoB?*g}2#8}kmXKc?WWKcSmGeA>dAsdD`pndDt?Ucp^|Q8zRH2lt_W znXm|Og|HNGjj#+5PWTOQgRl~Ci?9X|L0AunBy0lQBWwXYAZ!ObB2sSir)bKcu3dOj1!q!BrH~%^Vr#&RBwQ98ijI3Q&e{ z7Eq3G0Z@T(8BmFE6;Oo`4ya1F38+qp0MsPh1=J=y0MsQs0@Now1vDhQ05m4N1~etS z1vDo_0lp%91hgVV1KJQ`4tMwTYeF1AJ3>6bH-v)g$m`w5(9HHRef}?aZ=kXpM zL%0MOOSl3UPq+>UCfoo_AlwE_B18hF5bgt}5gr0&5S{>L5uO9)5MBZ15#9h65Z(h8 z5k3Hx5IzG!2r=+}T1JQsSV0H?gc1?}RuU2eRuhr|))GMi>b=K^Ox# zMHmM-LkI?(Blu%pwD4w)ocoeYa_%b%?%daOGj;I9!wK~PHwcXYw+KxE5rh_iNJ1;X zJwg!R0ihk>A)y1{F`*OSDWMDCIiWk?CBXn*6M6&Q5c&b$5e5RH2txoL2*UuM2qOT| zgwcQ)vGkUY1;ir!42VOR00!10*EO1SBTR0VE~N2P7vf0;D7?1*9e{1EeMV z21rj>3CKuT1ISER56DW`1jtU<0?0|&4#-W|0mw_(4aiT}3n)nN@9QEKs*RU7dSd)2 z6jyL>^pd*i!(}WCTrSt|!^c;71$TW#-Spuq78;M0>jPzyAEfFE?)sX#nb-JJT5ZBx zKwUx!L9F0@YfHpaPC(LScNMFE4Y9k zbkm22TPSX?|4}9>9Hro{AETRDhPbhW-vHwYKHwJ%`4&jx1eqjpvVu#Ts+$Q!z;r@& zz)V6dz-&TYz+6HDz+rr=JsLO1gouS_W6Enp=f3b2~+ z5wMmJ4OmZziBoMP!~tw3!~<+0Bm`_DBmsmGk^^=SQUP`m(gOAn{Bz%Dq1HsX8T)0D zn{i0N-Hao;nIJroV+4QwNeiPEO28?ZB;c%q3plTvX^s0vpQw3M?TsKn`0WS$90Ivz9 z0dELC@x6tm^Q0n5CaL(S;3_`rW^&^;d?Dlm#Eh*01p%=MJ~6;TuMnw-CzDhpRB#oE zbu)7jkd)xBPhnx^PZE$)CJ9KR-~!U=X71s$H3Q)vKqkUtKo){e%x&o4H56P$E#1r{1k@o+1=J(V05l-@#KsoN+pnEXWRi;J3a;WS-Ao1i zI&Vd&3}{2B3iz7f6Wd#;xJW9#kx42#D!7Wyx|w!($8;fd0CXdC0`wsG#GV#Ltd@#i zGD$^W1y|8uH&YB}97re$7)&Sw_<`UPhg*1OpT&)#KWs-nH3NGM?ZpPrY9V7VbPg?ljG6^^(lLVYqZ~^Ca zGuv^3i-aA3%Y@y4D+Hf--NHTl;)ly56*m=J#ckb8Zk+KBAs^r_p&;Ns!6!bn(93@F zek7ArJXLTN&vi4&5%7|b3hwTAB%r;53+SMmS%?#KB>3yUvrzVg z1ay%}0=g@>fbVrP$$oSv=t)Qk=uJoi=u7a411!8cD-{D}l8PY;u41TerY!=76TShA zAan$bBKX9gEZo{F6=P+Rik}r+#V@*WDh?>PibJ}YNeDPX zm<}0C5REF}{Tj=cFQmOj40p!Br&H&2+&T zlM}iFQW6XxHNhvQvykPoRHTlLfb-5g|LE2_YAt8NnxhWnu3zsc0#aRJ2iW6<_OSKH`k+ z2+@FV2r*IdEx{*tws6$`=zS-XRCH5t6+Lt_e<9Hjt^s-x{s#0R_{9Dep4*>`0WwL& zU<~IZ!CaeS;C9DA)C-}ru7II&aiqkSl#W@96aX~k;6Yu&Sq62|h90 z!uRK;;%}Lx;+BG|h|taSK|my-Kj0o=5a0p9CqA-JXs1*>mPsm}DY%Lkx|xc&4X+4Q z0RIxI0p1dPVw8n+_P5@DGD*cJ1y>QRo2h{_#t6{sYXf2t>H*>qd}2HcukCl*_%caF zA_Z5GL^qQG0m%sd`ji&B{V4&dWRifi3N9eMZe}2!WJbaeKxV=)KvsfJ%weI&Us91% zCaK7y;41RzW;WrB1qfRJg$UaLMF>8zxP@5uqq>AlQc+sLRg~4uyuumF6W#zS65azU z6MSM-3v2gCMKzhEqNakYsI8m%9szX;y#VzIeE|&#KCy{~ zZD>s>2nZq+0kkFf#BVI*xgZrCWRi+b3a;Wi-ONw~bS3-<=uYqf#=SmtdK8_~%>&II7$Np%KlSu-C6o%#E7R4=R`m( zg1X2<#aPM5Kw{Oudi&Ow>?1>nIxc^f(xjjo2iC?S_FT6T?f}Bpq@+;&``kzG}g^r z#yhbo!C&9PLeobQ@Rdvw&|1L-1nFi%aDujk<$(5tP(TNQPwZr2@(rozER$4pRd5yE zbu$47_@3ae?`7fHbqVM#lLYirZ~+5!GY{}22NC@BKUk=HRRV^}BmqAvxPXzmnd1l; zP4L%`wNN5b0>;TC0l^9`V1jO@9-hJ^g1>&Mg+z}fV46%4FjK(=%+}4UM!;NxzkY#* zo%W|?p-d96M8O4w=w^Ztu#DiZ|II=o`&J8;Ndi_WxPUdfnaT)QNATBgbYS0Vn`DxJ zEebARn{MVjZeke0U%%5rUHgf#OC|~UQ^5u7)6JB|2@Vka^@lCIy)OYrWRig63NGNJ zZe|byP80m~=PYEpCjsYWl7LGJF5oZSOnU@eCHU*ZEj+Vt<-cW;fLjVKAVN2j5CM?{ zfBk(6lkHpiflLzcNWld>(ak)?!!HPtxT~)SKHv?(|3}_iC}7VRC6iQqRB#oabu+PW z#xDeaeXRKQj87yWwoDQbpx^@H>t=Q#AR)nDpTxp!`_qzCCJ9KP-~v+VW*Q+N4Z&ZZ z-oj-2$(}(b3COJA0{s}lxCJCsn-~wvuW)35uHo;$C&%#@K zo9oLY0gV(~Koi|eGdzW61b_Wk7S`C0#g;NjKpO=Y@U?E{G)~Zt;IHpsVWjA0S8x>rbu+;T7)+Q5_<=A5FpS_6 zM_5Q?zY2|%Nh-!DxQem5ne+%4PsjuaCS(OnAo#?|7S=qKiYYQl#dHN%F;h2l909Wl zrvP&aX94pGK5>!2+|dVPxc@V=?U$0pLedptFSX#hmg#2ZAZZ0*J|L8^2(Xgi6W3U1 zdQ&Ra$|MyV6kNq7-Aqyh{6RaYi?@9s%bFn*bLGTL6~`KJki$uFs_6s!UQ5uHY(e z=w>b=;1=O8Km_3$Ad=t{?_22ow^TfkNh%&GxQZvbnJD}aKO=kuydXpaUJ-oa8w)$_ zA2!~~Bo$E#uHu7kW(3aoi7*-vO&AM^k>LL&#xQdp#neRrq zXVIF_4G={59?+KH6Th)A>$5zI4l+qaCk0pWoo;3m&e)Z(1<;+a9q>KDC-$-somiel zZ<(Z`pMt9xpqu##XB?CIF0@eboji+0GD*c!1y}K_ zZl)p5xSY@g@Ef5y;CF&gTy5dt8>v_$lT@r%a1|SMGvyGlnNSh1g-`{sjo=giXJOP^ zsn{WtRP0u86@Thxsv}?@p%&l(p)TMM!6zQI&?H(aj>#kyCly@9Y2D0D1e_)80h}l7 z16(Bd#J?TkdW{gkeKickd)vPQ&#V_Oj6NY!Bu>vo0*FbxmJV)fHs81fUgNYvAu={TlT?gS za1~>8GmB9%mJk9MPgo8JCiujO76R;t`6QX7Vyc3xn68^Cf`FNX;(*zNQh>PxpSZw6 z4g0%$p-fV-M8Q>r=w^PvZCFMa4p>1L2?!QSo2iX}8-#j*TZD#y2!c<% zYvHkdE$+!A75^x>ibuMcR0w!NNDFvI$N+dj@QJT2>`EdP|H>p4?-X1`lx}7+0zMF? z0X`9C0-^~%F=isEDEObe+_7Ymint1{BA#w$AYRM_gdu=LgkgXr1fQ7P!io=4kwPY^ zNUh*1(&}b@K|p%KBtS;OR6u5ePt0cFsQr47T_&l>rQj;^=w{9!ARpm8pa9_#pb)_) z7PSy=KWU4}Bo!qUTt#W!OeNguvV=fDc|vtSMS@SPVqs-msR)!wDyl2EikiBaEC{Gg z$PTDW$OWiR@QIBq1jdw##xhAoGX+=CLN{{)|(MQ2m^wZ6ZM8E*T7{DOHIKU8sPaI|; zIFUSy;WA0ZNCj6hS~t@hclswnKfpM`K)}xgpE$un4*P9zqD)dTMZr}})6Lw(2kQ(% z1Yj27E?^G9C(gG}GMPM!1u{v+Vg*;RR5$Z0&iE@~1z8}v-06*kUVzPnzJM(RpSaz^75nudOeU$=so*Mh>t=pOz@LQGfPI8@fCB`d zc-TVc0J%{|WRi;G3a;X$ZYCdY!)Zc6z*#~Oz{S)hDnWW;Xf~&Z$n`wnJ z{!Iu1+$6LE+$Q+MNDISL%d@yElT4<0nAZy)*Rx-H_w_!fH#C~fOmxd0ip=I03Qf{0zMJ;1EL9s z05KBlF^>Xb5l#T&5KaRE2>zKRu<)pvJk=uO++PwUR&Y->scxn?9!^du1xQIK3rJ0< z07y%y3`kF?3dl&P0mw|K4aiEU2gpun2*^qBPb80p-7(}}-SOu6zSPNJ{*Z^2W*bG=g*a`?CgaMWjb^=xq_5eZ& z`v5Bm2LY=IM*wRH#{ugJrvMuXX91fD7XVubmjT-dR{>#!aKH}2O~5Wf1Yi&0E?_U= z0boDj5#S)h**HQ+emE#M>}3UHe65pb3e4LDDTIm^8#FB0MaE)(Jbt`HIe zt`U*|!U@R%HwdW!w+Lwg5rhnYNJ3`7Jwi6X142%~LqZHQa37Yrbu<6q;k<;$fc%7KfP#dVfWm}-0YwS#0L2Oa0ZI}+0ZJ3T0Ll_#jdABL zPlyYsNQe)pOh^O>BqRk?BcuS-AfyJ=BBTSVF6$kVKHD1Ap|gwupF>}5DHjCSOr)@SPKXtYyd1H zYzC|#Yz2f8!T>7?I{~W+`v7YR2LbB|M*tfMrvRG?X8~IXmjT-dR{>#!n}8jJ2*57F zUBDi~1HfLwBfx&bQ@}yO3&3H*Yrs*$TflKb6yPM`Bj7Y48gP~n^C$ONc%BdkaFGxX zaG8)0aD|WraE*{05Kc%1xIst@xJAeSh#+JJL=v(A?h$eV9uV>X9uo2c9uo=yo)Ss` zo)by~UJ}XyUK1(;-Vmw)-Vv$+q6jqs9|&~-p9u8<(S$~T7)kY)ZBsxjLJL3~LMuQ3 zAqWtk&<>E0&;gK`&fJHU;wEJy#Z+n{Q&6+0|6NcLjaix!vI+cqXF3o zV*xn{KLc_TCIIphCIj*lrU42PW&#Qm<^YNk<^zfo76D2UmH|o=egl*xtOS%NtN~Oc ztOrykYyt!lwg9RTwgYMqb^vM-b_41V_5$h=4geYu4g(qyjscnwP6C<{&H!2v&I4K! zE&*B-t^k4v*8yz_HvsJkw*egpk${eb`+&}bhk!1GCxC8*=YSrBR{%qJ1L#F~59mYq z0O&{f3>ZL&fxq||M2HO-LI?m1B_se0CnN@pAS45fBBTV2A*2C}C1e7OCu9W#6LJ71 z5OM=15%K}15DEgO5sCn25Q+n45y}GQ5GnxX5h?=~5UK(e5o!RI5NZQL2=xHV2u%Ph z2+aYZgqDDngtmaygl_Pxu9JkT3~wm@pM^lrRHuoG=@3k}wZ&ny?UXmhda!JYfakBH?$yWrF`> z=T!?|EtWrr=A7WZ!-OliKZoAX&E&zuw+Q(G5rjg3NJ3G-Jwge<143!QLqa*gV?ss1 zQ$iKMb3!%1OF~V+YeF5s8$x}+J3=Es6rm~L1EB@r6QLC#nh*qtkxXxBJ3uT#2S6M` zCqMw93m`tBJ0Ky!01^{=1CkQ@0g@920#Xu&08$f%0n!pi0MZji12PiE0x}bR24p2n z0Awdj2IM68cU&F|F%!$*8(+rX_2*Y`Z^44PnX7oXFd-aJlyDPJoDcyhNw^CrO?Ut( zOLzn*Pk0KbNO%FLOz`KfY9Sz_Jdr~)+|N=C1@}a1>1K}N;W~s9fO-TU(9pt4`;QO* z!#^NvqTmvn>1ICR;TD81fR=<<`1_mIgt&kpLVQ45LLxwWLQ+5nLJB}fLTW%~LOMVf zLPkJ0LKZ*|LUw>5p-u76<%TM_8#-J!(*h5V zAhZIEA_M`(5ZVF85;_3J6FLEc30(ja2;Bjb2nH~P&>Jv~&<`+!Fc2_{Fa$7%Fbpt{ zFaofEFdDFkFcz?c@G~HUFafZPFd49dFbxn&mSOi#4SPIxkSO(Zk z_zkdyuoAG1um%uDSP$4i@b8x07Mg|1+h;dE%=Rj{x6gjv%w9ZvkZ=HSm~a?ylyD4i zoNy9wlHfbfSZLW;4)N0e+E;LgxTu@?*Zf*m6Vd^m5;6jw6S4qa60!qc6LJCG5b^@v5efjJ2>uR# zv@kPBZuw?h5v|~Ed5q-x@K!t=ix38gL)ZxjAo#=t7V_1XiZ!_9i4|N$Qr*mYJe-`c z36PSo1(2Gs9gvo=1CXAu8<3H(7m%6YPnFHW#20eR7gOEuxSR^^n7MT`ukmnR!dpOo zLKL7N;Ul0hAsSGW5ObRAEKZ06C`s_ADq|tmD>-I-Tv1-Z9kZftCJ`R4Oh^g{B%}aT zBcuk@AfyA-B4h;AA^1bow-DzyIo0p@*>0rZPSr#=vlVwrP1ptq zBK!}~mf#QZjfK9y%c;)dijE5IRGoD*7w~Ww!eu}=!c{;ILO8$>ZUTA{A^?2|cLDtf z4*&xQj{t)RPXR*+F91UcuK~je{;7_%aN@H(_ei{EV-(zTAFG?WkB7$-9s+_1PXH4L z&jFJNzGA9{5c@Up48HcwP;i~IbTjAi@EpP=z&wHvSZLu+I(Zhw@x5n>f=dk1&6L8! z%LruwD+m<;p@hnSm4vE*)r1;=wS?M$^@MtWjf94P&4ea^ErjNPZG@J9FhU!^4nkYN zF2Xl}J%o;cy@c-o`w86u2MON;4ikC-juQMWKVf0WNO=wN1iKHZ(+ci2IIEkiUKYZN&v19N&~JD$^pU&6#+L0RRFgL)c_HMnt(_`9l$+8eZT`kBfvvKQ@~?F z3&2xCE5LI?5a1=D9pE*g1K~QSPWTOwlduwyo3I9um#`j?pRfr~kgx?%n6MpCl&}L(oUj{ElCT$0ns5M6mT(wQ zo^T9Mk#G`FnQ#UWNH`CuMz{p1LAU~_MYs;AL%0E`N4O1WK!^l1BHRZwAv^>$BRm1L zAUp@OB)kH&CcFUz5#9sZ5{&)i2*$b$pD6s z63~l~2GEC)9?*}F2{3?=6)=d912BY;8!(iR4=|ii5HNyJ1TczF959AZ3NV&X7BHSr z0T4{6446Qu3YbKw0hmIl4VXr#2be)<2$)4^0+>T+4wy%130OdA16V|83s^$<1`tB% z2v|n=4zPmI4G>EB9i`!C z8v&OI{u|9z3pyd!J}L=koXJ`i>TJ`wf;q6r58F;eO= z4+CNmjsfBjP67f5X8`dD=K%=`mjH`+)R>hk%TP zCxFa^=YXt)SAgt1_NXP`JOvnldB;){8Blx#*O$$9T%lmpH{>V{B!M(5R>1M{@;Rb|p zfJTI1Koi15Kr_M=KnucjKuf|bKx@KWKoDU8pedx2FxMk1I!~7 z1S}vF0W2aE2P`4@L;Px?_1AK$Kk*l%D-_(RLUl9y@$gE*A;47X~0Ip zIlyMZMZgxqUx00dYk)Aq-+TYz1JJAgfedw{)!e*pUlj{ye>&j5!BF9Amh{{oH^ z-T_V${sWvQd;**$d;y#%#2W9uOlS{CO86F#oX{DNlF${9 zn$QD~me3QBp3n!7k&+marI5o)7}4NLUW2Ob7)85>^4K5!M1~5HSrd2nPWz2uA=d3C97g38w%-gtLIQgbRT7gv)>qgsXs#gm6G- z!c9OILIj{2;Vz&D;Q_!99szn0o&x$1UI6+LUIPXY-U0>@q5wk(9|1!N(SYHEnD{n4 zf)EEViVzPlhL8|2mXHK6o{$_6Oh^ToKu8OiM92V`LdXo5M#u)3LC6W1MaTn~L&y)9 zM<@hXKqv}WL?{7RLMROgA(R6wBUA*eAXEW_5~=}K5^4fg6Y2og66yoi6B+?F5}E=w z6IuYa5LyAY5rP0=gm!=(gbsjRgie4xgf4)+gzkX-1o__zwEwn(gM{9I!-Rf-qlAHg zaF37_@PLp4@Q{!i@R*Pe@RX1d@SKnZ@RE=n@S2bd@P?2V@QzRb z5Je~q_&_KI_(UiPh$fT)#7M2TygVQlp%NetArKHis1Arvs0Bz!s0&C;XaGn`XbebB zXa-10_zIAk&>E1I@HHSkp*;$wV>;beU>;nW54g%T|jsV&dP60X) z&H_3TE(1Cft^&FcZUVXyA^<%IcL9d*0MLu@2+)V{6wr_G0x*E^8Ze0P7BGYm1sF>B z2pCR?28a|n3=^9cC?3kZb(iwH#lO9&+ZA%xO^WrT8o6@-d_P(l^JNK2y+0p2=f6E zghhZz!cxFJ!f${Fgq47Yg!O>OgiQ|YzafIO9oIZ3>;SwZ>;}9h>;=3b900r{90o)Y zjsZRpP69p=&H$nb=K(R&=r@o{fLMepfH;KffB?b`Kzzb&Kte(!ATi-SASvM?AUWX) zASK~BAT{9?AT8kyAU)wdAS2-eAT!}JAS)rpWcLx9oe&$4lMn#NO-KO9OGpgJPe=wR zNJt4NOh^MLN=OeVPRIl(NyrK)O~?T#OUMlAyfv`BUA-6Ak+XfBGd*nAv6RuBQycDAT$TGB(wyyCbR(r5!wRU68^8X`wx(* z>i+<~N|E2>H%Tf<+GYKWlH^e#Ns&s%?9S}&T(dK4ey}7V3Ei@3lO)L_c~p`lzY?XA zBuSDa$wR5+K_&X?`#JahIqzMxJ=N16&CGe7ANO<4J@?*o@675BK!3tOzyLxfU?3q2 zkUj85J?*rx%HUZ`lwgR3bdH@Y9&H-#CGz4rToDbMeXbjjvxEQdL&#=0M!UX0o4h^ z0W}GC0csOQ0qPR&0n{gq12iB^05l}HfJTH#fC~td0gVZd0Gbe{0-6#Y2Q(wh0HhM0 z0yHPg2BZ_70kk5_1GFJL4`@eN0BBEm32-@KF`y%1DWDT!1)wwGH9!}_>wvC=Hv!iY z)&jZ_-Uaj^Yyk8md;sW0*bL}R_!w|AVH=L8u5ALZ|}BC!7r!PN)eO zL8t>5NvIDPMK~8QhR_HwmT)0p9H9wdJmC_+L_!OIOK1gnkkA%TKxhw`Ot=D2NazHZ zLbw_*mCzM1jc^@cI-v((2H^(4OhRwKEJ8oPY{Kn;IfMa#xdcC89w8g>9Kiw1C*%PZ z5aNJ^gdu=MgkgZigb{!xgu4OD2=@Y35XJ*m67C1AB0LCqo$wG~4WSV57U5CATEaBI zI>Hlx^@N##4TOIJHWKClHWB^>*i3j1u!ZmfU@KuEU>o6Oz;?nCzz)K4z)r$Sz%IgS zz;41Cz#hWefUgMa0Q(5<0lp<{1neh#2sl940ys$c1aO$J9q=Pz7vKot-+-fpuK>Rg zz5yI3=yzPDYRURzb4B?(u|xO=2TEJ;zVtfNrko#5-I^|6RHC05~>606KVk(5b6RN63ziMA~XbCKsX=Jn9vx|gm5vS zDWMsl86gdjN=OGZC$t8n6WRe<5jp_c5IO?d5v~HXCv*W^PPhipk{07eq#0Y(v?2aF*s0E{KP1QZ&X3YbV(0dNVg0UjjiDe55u%M0a; z`i1x-f=2lc!dS8#g#VYbVv3o zLQlZ!gc|{C2sZ=XBHRL4OSlcNj&KKHJz*eV10fTzk&p%0Lk#93AY0>2m=5Cf*+7Y2mo>j*#L*&0K$Y^K!lJ7$Ror7 zF~Sf)f-np)gfIe-Pq-T}oG=D3f^aWjBw;*Y6ybir7=oS}?lo}JqjJ65f$P_J3*Nb6 zqD?tpAloJE20TdE3n(D$1574-2Ph;Q08Akq0!$_R2$)9DFrP5+&`%O~KK|rnrUftV zSvKX|iR{^gk$^db(SW&xv4DAm`vA`oCIaRY9sn#L6aW?y9tJETOaUw=JO)@om=0J* zcoMLJFblAf@HAi*VJ_fx!n1%ig!zEC2rmNG5*7j05nchTCoBVOAiN6LNLU5fM0f+R zneY~13*jBWR>FF~Hp2UW?SxH$9fXenI|*9>y9l2Gb`y30_7HS}eQn^M^<>87;ZLu= zwcyRT{Wj&qk$r$L1aOcr3~-pBE&gPnVKv#rM*O>eM=f}p_{FB250QPGumzA($2RZ@ z;55Q^Kxx9~fHMiZ0A&gP29zUw1*kyy22hExA5ewxA3!z2VL)|)cD0s)pQlRSkK&N8 zYr*S#eVcOr57`X}DfsPgL&E8RMual~7ZA<@G$vF4G$B+5G$m96G$Ygiq!MZaniJ{) z(g_U!tq9uHwg#3Tm%bmw-*(4<@|u`j)WtCPK0BC&V=KDE`(B8HFhPG23$)h z1L#I52k1el2SutMmT1{>si94oVLgwLTC@jCtLv- zPUr*}LAV+)lF$_}if|oZ450^LEa3*gI6`m0ctRh*L_$A+OSm2IAYlNYfZzvACIkS5 zglxbRf&-XJ&;fniz`?kT@ICl@ff*LO5uRyN&NyVxB1{0xCb)n(gh_z8gvo$;ghv3+ z5j2Pw44h^b9udU7(1I7$BAapsBYQC+0a!xN29_I0=^@9+3i%{|j`5lWuf^3i<-CsU zHwjvPEkR4XYhX-wX>mQOyl=s4@dKN(*_#b~cBPd62<5k0@XBwqDVzP7fm^PX@;gxe z3kzQPFKx=%jqJUIuK?c=z6E?wH~=_AI1KoSa0GCSpg|lb=w?gRwPEUJOA~anWeB?2 zas=IMMS^a&iU;ka?^WfK?5*k+yuR18DW?{)>k{e#8W7F}G$Nc2XiT^W(3EfqAeE2? zNGE7itqB@OJA%g1fuM18BxoF05j2i21dZbwg2vI!z^=<>bh^tY8J(UMywT}pQ_hXZ zzM0Sm(2sB{pg-Xbz(9f@5Fi8rIfM`(OvnY~5e5Sigd`xJFbpt)a2H?{VKiVYLHm9m zL3=xqpuK&7puH_1Xm1}TXm6(ww6~8Dw71g<+S?}y+S^$K?d{V9?d@EG_V!tV_IAF3 z0cKCXAfIGUFSOw8=|whWvtKdLth1C~g7V8Pc;#QUDQ6|JR})?byh(Tq@D5=e;61_y zzz2j)fR6}U0G|-H0X`$_0DM8%1^72%58!LUKEQW`{eb@v4g!84=wKWnX!nm1wEM>i z+Wk`X?0{hf|a08$>;U+*|!YzQ?2->qd2-=r{1no;ELHm+L(7uES+Ltgv`w}H+Ut$F9 zOOl{{$tP%E?j&emMj9w*P5^hyC)ulGEO>iqtWDYM`wUFFS;~(``TH$+%Ox^9-`*5w!gC1TC?^ zz`4Dp#TQX!kp-{C#WrQLml}B9M7#{;U$x+sf6b5 zLiQ-aXuw#)y@2tA2>_R%o0vq`nZ9K=KMTeK1tk9TJYk2%BGxI z$bOoj<>wN##Ipt#c90gILzNdScrCtYQ_ezUzf92bO9)zGxq)$}#TBUXngy@L)i!0b z*BIDq=J}f_zt)0Rew|G@?;?8x;eEg+!iRt@gpUE+2%iFW5IzU&B76zhL)Z)0NB9P? zpYT24AVE9w13^PSLeS8U5j6DU1P#5^Id*h3^wIo6vdUw0 z#@&gakzP&ENV^g=((4EsX%B)%dILct?M=`~`w%qJeguv5b^}@F`r2PU$q4%_cq8n$ zDJKKjL4uagA!vy~2Kt#5br@Bm7Q7Y*+msVSc9Njw^9fqwP6NN1HT?)wx!Z!*;%J+4 z#vuD%f|ego&=U6>sNPjtbWvrJ1+T@2Y|5F8>_-Sw0FM!-0iGbt06ay|P0S`}qt6hu z(Rl=I^m&3dy1>AJjuQ8a@=5mAA`4#Ji*3qz1=-68%K6;yxyyB<|xDytq>u*z8jBNwP~5&H$7poCT;r&=xBbw2f*6 zZKDQ3+o)~eMe_)?j(n2M*0>l+A8xV6?e&xCG@> zEqLXd+my|2Y2e8lqi;&j>lsJ9gpb*9gimoIv%qKIv!6OSY_^v=g23S zz5lY{&6a0v%6SgiFAx?0ULq_4yh2z4SWZ|0c#W_M@CIQG;BCTMz`KO?fcFU-0Ur`J z13o5f1$;`_4)~m~6YwQrH()P8M`s^F$KyMKj>iFlj>jQ_j>nG#9gm+07!UbJ9DX6` zi2O>>5jpK#yW=$0GYC2&WeGYWl?XZ_RS7yG)eTf{Bh#aXe3I!=+k!Ve>e`f3 z57`X}=K>lL&IdFmTm)!JxCD?&NCTu3S_0Y-+5*}WIsiHnt^{-@Tn*?-(4JjK(7yB_ zXkTt1XkU60v@d-K+LwL=?aS>1?aKgy_Qg-oz61!`mu!Oe#WC=aSwIbvPqLRH7QDTb zXH(8#WG4toKt5p@UlJWb=f;WCY+mv$@+5bn-@+l2%16tyA1Cx46i>2k0v{=T1*Wy_= z<&;BqMM5P&RYEmD4MI&o9YS5eIfMp)^9UNm1q9vfMFib!Q-W^xQi5)_IYBqul7P)7 zow21-Qo5(OXC#8L+<4(#g-zVDd7->uI1~vMIu(be$p6OhcJt2{xD`S}hBeIaXATNR z0&&fnjI4?#D=QX_B#Pxdj=Zz7V*cFV&}eLs*0~2>$<#^2{E>KGC>)Gw=Imk(W=ea0 z3B%@1MV=Q&W;C~WwMVqg?3h0i2p<#|c5-5sx9P%scsGO8L0l9Vk$wV~Qp9p12V1b~#M1}-oaoLs~#bLUcyjUpL zACr;PSZw}F$ggGk6^(~9%#%yqrNQKe@`Hg>+IR-J)#C~2fj=CL1Wzfl7)7c@f>J0W zd}@K`QJ{v`gGeYC$vm~pD3qxXkq!?DHuT40{$V7FSAl^u*1y5-|}IiW~?YBCWD7rIrt%2bNTbn6od4ek=kOcXv` zc=71MCQj*^DJhfWeYpJZkqg}VfnaVl?i(7)^TmSkNHF1R(azVRrLTEvUL?Cvj{gs} zxcPNTfqN;62lM^8dEsE(Cj;mM`NP3{Q{AL|?WDew=hfeILjBY~R=;KIq6U^|1Lj8% z1#agO8}Np~7Y}CV2IW{W6GM8H$nnV#`;uPA(u*2h`gb*&-lk}%7XNLHURKoTD}Ps` zEn5{ey6o?2v{iFo3p-QZ)JDy35`J%{=sfc#N(&Q|&Xmu!zWJiMz%6;E^0KWK34O~{#z^=d2Kr(2mP^#FOd`UW%%Qv z%($<4TOY3$atIFdg+m!JIa~T#G%wo6i~h%^icObiv?+7PQs6d0ROXZs2nO?VLvjv~ zQ&eV9PI56{DC%p~qNqa~w5nM~7q}PwUR9}?UM&9i|6I-VqHVtS=V}(~=*B-+vrW-9 zU(}jrFB|H?#_Sr>+FBI`kPc4g`M8466%&M-yy`ZR}oGhO# zDdN#sRyaCTMn07AwJqA)yS18Gx)r#W6jd{)Kfj!)i)M`Mqevna^%ZS2X|4wiJITuL z8uL=#yi_$WmCQ>=^K!9yX=h%pH!pR~OEdG*!MvPrUee4<7xPlfyi_+Y-ONk6d1-B4 zt}-u;&C5CRQjp=6352ucIwe>4GX>m=U7|xH;ix}gE?#k5vD|9WSSULrs}Ubg@yS?7 z)@JTmiD0hGK!3t-Qsra8ET35=1@jXoU0tpO{#d4*{v&~4zAq6*gxy z<<&SbFV~-!C%enks&`_J*PO3de(e+U{o!!2O`cR45y?d=7Q$w0o>)1W;UtFTm6XL` z>)>)PGa(+zj`%X;abKn^$+Cli!U=Bq++lKtl<~+4WlNvERGvQ;55`h~skt&23*AcB z2YPvYHHvy`1heq1EDNmMXhhavgM86Qc$l<5tB{;v(X`4=0G8Xp5GjoC%`zB5YDcjSL^Paq3;l0XN z04Y6_*tG#!Hil%C*wd|+WfogzP6tAagvLN#oxP46n zl>}v$4M8Nsm8s>L;) z=g$nDTr?mDOu`gB8$|=rq}f}ch<7V9!L5|clLIFxGdPjs$c`HCR@RTc%&6Nl=!a61**C z7N&Z_OFMO4npS*W$|~|}W4(<1Ru!2>SY6oiX6fl(i9mj16aQ`Hsm-{JN^Btb(@#iXl`y^EGX*)xyZ=em)&gZnFX5Lw8VPF)@Qbc`K{sajIr!( zIn$oF5wnW>ohro_ads=_w`^`2;>u2j^!C)9Vm(w_)!+ zY?S8bUAm}EJ9$B8x;Zo^=L2swV2&qS%lxRx?y6I3rOSc?%3@jJCUZG1U$nv-di zj0a^XzFT>!evvpD@47&uQGYB?Wz%?m0gy zN$h4G$g0b3+5Ec3t%2&fp?GFmG!W0UndWC7ZcStkPKM;7mGH+BHrM=Q!5%~A4B6b5 zkqm{s3m2|%BF!-eY!&mH1iM>Gs?tJszxT+_Ohv4NUz*NX>w(iYRP(&f~#)y$XMZhDEE zZ0QROlVw#X)67@d0rGgt)-+#0yN!!#rt7ViT-?&+ae{A9G!_Z@ZE5rMbMewGF(=|_ z@;s&J7Ri=2Up^P#RmDoTFkzT0b|93MB{QmM1k5+k?!`p`d3S`qs4P6ZM;_)$4xV|~ zt(Y$%iw_xgJ)Vz5v*d(@7VHx=Tg}|+xfd2~=Qr>4Y+-YAr?)EJmHgDgp{OluZjkJO zXm^jAJ7Hsbo z3jfPfGq+448Vx5xd4)Zb-XcaCGpm%78Y%e+NAWd_kI%wRX!aIa!br1bWnyA{+uS|< z56{N<9LIS_T9UA*%A2%rmKgG8Rt(%s$tm z*yjc|D07LCR?X!?-ppxV-pmPJ-prX?-ptuq-pu({-pu(^-pmP6-psj8-psj5-pq+d z-pm=r4a#Hit25|JBDGwlQ;Hv#~$+ z$ir4OM>?zismC7LLej0mLw{%}kS%u^ay!`se=dUuUX@wEpUjt=&O*0sT23@Km=;S$ nQAM(Y0qX-cH# diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index 2c97a8cd042e0e8a970a20ded9babbceea4543f5..ae9942b24adc0217e9aa97d9b29a9437d2f1d030 100644 GIT binary patch delta 120795 zcmZU6cVJXS_qKcQ&2F;0>5xVXy#^9`2_*Cmp?8uc1+t`(gsPGtiV`CPi5x4%-l#V8 zRRMbk>=lAtQHrQo;d`E$y9@rle>TrO(`U|{IdkUBU(@6(>1F zvg8e8m8zWsy zD+`MXD_2V9dLv$TkGI;J^|f(~6eqj)p`7iX8r@~jQ>IIHk2FIaD`eBtMh7XIYz>x_ z$yTJK`Vn*ctxm6_wJh1;X^rGFWm29w)wRG^kzZe1DA6a(Y}H9}gP`7taV}!Qzh+DfC9?xAWIdg#$-P%3&YU+y^<(puI|0C%K~G+R5G$>0N?csc!o z$0>U|sBvyDMY%?E>E6a1=vd0Z9}?orEv;B2JH9YRO2zBQxOAwQZWNYC+6iNv9NlU* zR_u`#ZCP?E+KQE*?=-Sx>{YDj4MsPqogCtk_m&ug9mB*|XrzZOFZY#|6_zYy?g>)8 z(@Zh)D`oHv=#{eNMq7Ek()7xX_wf0@AB|4BF{d9f`pVo0^kexQ$Qaz(OWyh2@ah_6 zIITfaJ;;og?d{DzQc-H?Ivrbw-Zc7|tt4ZF*-t7vn|&p9y5W|6_aPJH-pce96)6_K zZ0Mg4H6!JhsYaqyjYpQ77K7cgUPSs9Um0FUKQ^L;)W(}pau9ieu~MaFf!Rqi$}wju zZbQAd&$OZ?E#4d=-Leg*^f-yqsy{M1TjlvhOEv4CX^K$va${*IFgnX2zu7^yeT3@9 z97hH@HAafto&xo??PX&%#^lf65&U8w(=X+1%yc<;of#oz*O_5tD9r6L4RuA< z149;-7nUrR=x8(`=PFD|RR_hmcMP&(P-*ZoC&0tU%vjm|xlyVoKwX^GM&|T4qZ-BL ztzwS4CmTqWaoS;;S~=n-v(uw37%w zv&8HsWo=M$=2u2~NC~*Rznqb!R1DvV1IAp5@mcY5 z@K;Zi96u8hA}{nYTWh&i^fNef(>^ywcnK<)-XC>_{7axPHW!xr#PJ$N0+X_{oQXD_ zGGsltcKbT8z}kO}*^=>w8G_pO56Y?-S+f^y-xyI9y!yIf;Tu7=1;=OE^F-ZD0HDlzfGFLxGE7|+5 z5i7MBW;A=Iv0?|S!nZ76mXxA8Wp41^I}c-eew6~YD62I)gf1<~&CcZMzSy3>Z`_9zQ{m()BZGb3ba?&AD%T^2PVXJLh^ zGnT)2IWo*@E0G5vhEG^#lKede;s7&rq*?_pbx=rN<;t>riTu!*A*W6vHhMx2TvR1^ z_t<{u3*Q)E3FOz(Rk3JkK|v9w7S$)k;TK;(nyf#JE{-;`WMXmi zcZEsW8^##Uv&@jfiV|N5X9Cuc0wYzMpi zjadPX>MPCSp!qFmf&isA&fgA|am~NR+>j!0cbP1yHKxhleW)tr#b7BvO~r(>IQb^@ z#5IG^33Ycta;Swvt^RLSfMK-oqKfx$2-ex5H-L*VO?yCNX<6rOhAItKx6wl!7t4_eA(3jWRf0b!3Ni~dPLQP8XztB@pmtr7>8lPI z5e|E~Qp@G%n=lw^p;lae`g-V62Z}IMnHgZc78k(+#%%BgrM_7KfrAABD<5^Sld%Z= z@;2zsncta%m4c#bpt#_4G8PZ0lhE7#f%G05f+6niK`$$*nOb1PNcU?3LtOP9<|-Iu zvb1>Hj5gD-98$5Ax{c(;D6=~ku9+dAQ?aE4y5WAPjO^cFiQcmE{M^Ed{Osb=ynH!4 z6D7}I3rGHC*ghvk-dA#Q|7el{STiwhzXjsrZ(9n#z*fz^TiE zi`ro6ILQi^9H<^ByS-Gj!vbJ*!5Vtc7Z^tLQ>yHnhAB`#37@K?Hq?L*lme(eSKNd# zS1V&yqGh>#<>kJWy4HvCjQA~XPx@uc!NCKj1qoI)%Sw>YSyqJ7yR6*&!XiESxgoI% zN{jNSfvbJPD5{iM?8z`U7J=-t($bu3wv-d;-j;fa2=2NY~9NuYqgPsZLwv0yh^Q19b{Eo z2F)9{U5clWMzGAy5_Qt6RbuEZYf8*dRs=+*Lw77rB~G8hLzLISy^0`omVKn zCgy0tq_Tu8q`5BrM(m)5Eixuaqvg<=21Q}31QzWp4c|k$aTB2gv|KeAtNk>s_J5IQ zc6R3%3W6LF(tI21M5~}1#x$Pi?R!%jRBnX}nR$ifRp_0N| zp2RlrgIA2%TMj{Zs(L^%9nSeN$}B0Zr2d&6Wvd(umlo#bSJc-wk{x?I9OYEmB%V}? zhhdU@ozX-qJE8j_-_#gEZS10z0i^{sw6Q#r+6>l=*l4t8dvr)A*>%nxp$!$gn`3=S zj>JlOv)2RZ^RO{iwtZuIQBEQ^!;R$N>z)uT2h~WWW>`(-#bp>}wK(P*;C4))IgUz+ z_|V8@SB=o?6Bhty?$Tne0S)gNex?0~EW@&E8$as)veMZVS11X+dmw zMXll^)w;H2D#imX9wU!kZA_3uMaEpmBH8=0IZNJr9lO&r>mlMNe@_jci{$u!F*hO9 z^0_^1B{|Pwr=+Y5InTN~p=sI_<18wzr~u1BH?NevTcKNJb~igahN=>S1{bIqO{5^) zh=_{Rv#PkTBDY&5D`28q zYK$Vanr}I6X3}Dy_qI}X5t|UsRK4$ZKVn2`zEZ1z>dO4W5_Y9Z12wOkRRKeZR38o< zAV+hsBdN&umFF&!NnN0csku|S0eL2Gz}$H673|{1w>I6;QMwIFmKNqN#y+SV`_7=@ zY5qTU9aNik4oAWTWEmxD_X~ua+85n95tbme#ZGNuwY7>0p?jj{qh<3xw>G@VU-x2` zP$KGGlf+n2w3k56>~nY32%2eoS4nBfs{Ha&Z3`MO7_5jf&z3#YV1RowIxIp9r-ohF zHeq^$d5g^+7`|!fd2DveK7f9%Hd{FZtgg~90D4SN^)OH?wfn>lBTY8dgh3&jX(T(A z2iN6^0Ul43=s&TGQ>!s$Ran8&qN41g!o~TQDK{)1a&@_536l`EmX^(0VV5JXn~hTgDV zY7=P{7DFbYh0qrtc7{qr2TvGC3~WoNt-RdLHeofMAmE2JE4hrW2i7Uz@9Jr1I<|=y0`RRmx!MQZyE^vC%wdbnA-%N>*MPXzp!UoHhz$W0`)--DW3QcD+5q$}AfK?F*x< z7#`-9u5#BJjLw%eVX+d^JYbPI{xdj6*@!7q&F;u^?`(5KXmE=MCP|m9J#I@kzAoKt zDg9?-cRDy9!oF+(y6o>?4A{a~l-1XE&{pV_aI9mn>gwr?bqTp~!RM}$7EI~X3%$q9 zQ>d?GVUe~bQ|X@f5NepS4nJSbz)GC+8ixJC4sf8}z)&HR z{TC%2B#)}<)V?K3>&iNMidZO+cV{tD~(z5>weT0mc(Y_ z9Rw=?T0KP0wZdMp+p8D_?2U&>MY!2lCN_b9qj^Q~J52g87Ege<*;)vtRVjv?=_bvT zlg?x32$O@o#xy)hg$Bx{i@U3!1#j0Zj5o!m%J9~2&}`LnSnN8=_C{uSRAlM0{PJam z`OCXuU8e|FBU+YZ^}M9TL$;UXQnX-O)fu}CtYxjYe1R1M>XDK*1Dwzk>T8p<2`Og| z)E>y-AvDUQm5~P%wse5?2y1GXZ0v*{fW2se-d_eaX9H@z(#WXfOUF9w%j!PED%j2I zbsCte(Ql#hbJC|JO4E5;URP-tr5lfi{wOH8Y?kLH--63+#?-)YeWXNDHjV-_VEMQ6l0ySB&8jcOVv4A#U6r& zD#KNo%hN-m>R|&=$`>@kKJv+L0luF2EEc-mA3z zkT|u+cR|G~D=*EH-Cu>Y=kC6hsKwE9FYFczEVH}pd&GDi!E;?3@)ZDqhZ6i$scnz^L71P6zBQHmwh9Y+xUCX$|h&9^I^) zO@ngDi;xM*-Z5YprZ6lNdc{-6Uuo&)7{}#X{YSXfS1RC<9WaO7bvK5DHn%NPF>Iwj zV7K}1-RRn4sNIe(GPpam=XQI+ze@X7n}*IO5lLx%YN8&w7o80=RZoed5m;%;qaZVt z@}lg=2M-$|7B&bSY0{6A_h#bAX)%91!ps=js8 z{BB#0xDw~f^CQd-R9NO~Nr(OTKxK0`Ay{NdIP9j%ShM;muw4tOtM#-%4vRSFT2jp( zX6D0oMin)nKR6{L8CyLyhw5%IGF`XiT;aIliYw%3cWZQLe&Isw(RrHo9`var*I;Co zsY`9kp#4}zQTe6iOd6b~#btlIWGsbNuJ$rjOTcG=ZNnhieX=zF5Bkt_qH=Aee)m@oH%cHO{S-^G#e3N&46(-`eW|0UUB!3J@;V^DuPCP?0_*vwa#f9X-K2y zr$k0u*qXI`!04<-UZS4C5{8|UUWqVlZL~d2_3eREFv$OM5R+9O+~t}vkWT7MT1mQ# z;htDqL$LR`oJXVda{t;4iU^)ME1Ta2nz2xO*fV%sdDRlA!P;^Y4O{4O%WNvQuZI<} zl{Vg9sKaE(Hg34g`vl{SwOE~Pq-YBeYZqFKCDOM7<^*QrDXh?{6~#b+VG|)*I=cxvVV@N0!mDFGtEzHLOhp!0R3|(+YWjQUZ;QK)o*t4NR6VzV22YrH;@!m(Tr$>jM#z>3_{^e-!u zGa2SQeIlq-l!0uL8YiqN-7$Wx#WxWOzsgc|>xE}w{J|08pr9b^D+hSePAj+^EH>Jy zHQ9|$hsIf4T9~I*?lbF^h+L#iYNBNAREQxZ zmGb|9F<d}dwFo+r0Nwd_6jsxooPt&1IrRl97H{Gtng6#aF3cY95b9=YRg9KPL zU}Aw`d1DV?44CJrtJ>9Xww6s5Qd!-n#PK>y;&qgpV=eGJKageGD~olv-MO+5|7t9*w#IY*wiJ^E%)6|Y4#hI2erop z-*uJbW!RW1CGF=%h%$AgIaMYUVOXKTD@T=q(y#!vgh$P6E$q}G^AqJ5%D&=TX!J5s z8;Z91A?2l&{Zh3qqt3XFpMhw&#~m_MuKgX2S4Lj0LNe$+XM1Tg4K&4!2MciSYwsM7 zaObGbTq(O;6<|QfzTnACtUiOl*pIr@Q}nBn`!>M33X#%7Vku% z9hNx{A|iMiTs0kL4BLaLSExBowjD=5sAD!b=M3h_oL-!qJ{;^o&6)J3dypJlg{(3^ zcEf06JJ+<5rY2}G8s@+@4^*Cr{apbLh-}0B2>EHD5#|`B4xuf2PEl<3mB!bid%4wc z+ZqiIgC-5}G!06HDPZUx?Xbmen4{cHlC^)+&c{8`?^dkeM$F0Z(h8oJx?l{)!Mc)mSSu*|slbQecnl&KU9BZK&e+4G8fT%GZQl2E zz*GxzU#K#tDg*UGuxoXu$>X7pQZ&KrsDM&;zsSN8Fu&U9gsng72b*`CKJg2G5V~@4 z2_&l@svC{XE<{0pQ7%^7sANFnPS~;nrYaa**h2BdsL$n^E6qrg?an+0Jh{&nrM6hQh zBa$2BF5<|BrCo^+bQr`36u8J@UuEv1?8VD5CJ-66Q_+TR;Z(%!juHh*gT8(qEJ{iq zV0?SX=EcTB8t5mI`C98$-TR)IAU%#?zJvX9ti|Oxp{H$(0^O3cU%+U#;RhJ)F+|EC zYk;i@C7azZQ`LWNX@!Fe;Vm>$R{NkX-80H;n{Z?N6<5^S25s%s(6uGvb8NrZf4EI1u9guc^6fVcE)(1@->w z1gRWtwlTc%5U_mGvyrpxGD5SRm$mC@m7=LYB1Q!p z3(0%{tiuaK39{q`(p}-t6bBV2VCE1)M}%8oyz|o?td{ zE@1^a%Apb9qWKfdP-A+cESg~UGE$Rd+XNhMgvy)vV{A^8KPDifCd>%3tHfv;tX9t? znK#kwX1tXs8z!1997AN+M6}e6SR|6@n$QRjs@qG$xsaMX28J9cKmQ#^n@t} z??&D^k^>nO*cQclR6rFo&b%xQtOVhqI@=+zL`;EgZs!y;+VPM$rkR6rUKQ>1u^hc+ zY6Od^a>rZbWK(O`mfDV%9~oj+XG(x+yckQ>CCz;x5JFFkpnt9M!T`-UigJV zSyf?#T$KZlwFEgZ1%p}lhS9;EAO~fm&m0~5pCQO)O;js~bNz@iCaKmE$eAv{`yu(iI{8k}E>K&ZrBEXcsgJN80_|C{dyo!o~v^ zW3N-q@ZQppZw|0hQBxVbo=VA1*ook29_>=$SZ#9(%zloa7_W;&^)Nkdu8ECUK$<>X z!+y%8W528NPj`GJ;}@EPj0Y3tc|VHF$u&ad;6gLR5u&rne9mxd3Db?dXy=pM)^urs zRD=e~-unX8*|XV*)X`sLkJ`~2`amPvy$HE}&EmSq!6imSC@YtQOt++)Fk}~+Zfgjt zs=lCkS@sZgXR)@Q%Z5Ts;U(|iR`%z86sXkV`GBsy$yBY-qp(!8J*Xa339X<^1?QAfL*(v;$+WZ#3V^R zFEPW6e_?7$){%P2gddGiw@&QmxGnhyXdDCxa@@amJt|iC&M^ zs+@4cAqM6_Uken?698$p6ztlUeR%XVd4HEX#j5vzlps6qK^lCjqZzom`x909^6yft zb?cRIV1ly8+}*5`!B2R8c9bJexSb9ho~=jkC|A%uPq{7R`dmEwXOzRQTMFAAd<^`e z83azlJ#3Dv7e^B62miI+vbq{f>0*Nvp`)xmqVx($aK6x91lvpr9rU@Y{vmYk6&6|QQysZ?rMa`2ejLKW|2;f{VV6w!;# zZdcO;nfN_N^@KZB(!X@ap_qaM&7#TQxKojCYOt-xzH`T;fcd&vfdf*H-P-e-3@7#e z#%k5A8Pagd-3U20Q^F%r8h+-mmKh$q^v+-g)ppy*DF$&T*^?WFl0Nu6pQz<>)zIED|8z$oLY|UU8T642=y&hO>sjBhm#)JX+!2VD23Ayp22SAho=CK70J%-~ z2hZ2aOi!%Q$*zz(aa(_l=`pq>>byW1W~D>+s!@guXC^ZJ1A|0iqN2k`Jj&V@9AOyb z6OHOb-Mz|0uUyYlqdnoa$oYX4P~4zGSe&&lI7pY0L|q3}SH0py;YKdpOqHVi;FGq5@YwbX8U;X=PUhrnWGZGBPyb)FdEGomKgy@Mn z*ixPcf&vK^7$)I$SWw+M4;=FMb{w=^>P(j-N(a&#K*nxD%I||I zyU6XEkZrfi2tR^gbhNuaU@{K%z*$Cj$3CpTlxr$z!fmrT)Cm8-rEIB3?S|`?PpC)5{?_fii*z^!vF#^G@2zJGitHi- zZZW;a2E~A?R%!P5i~#3SU}SAUq+_?BRVU-PnhlkdEzl#Plk~@x_;7rxy9iOchIQBN z+yK#FC+`|ooTiB(;y@j|1x2N$<(l%RRB>ok@ z%7=GAfK_Uqw%&yWx9l#6AHS`& zBGv%MTUsAr3Uwd$5>vivb5bx!O15HHM+Pg~RSs-5!;NPDH=YMqYISw4u*ZNmx9H%6 z3%J`*f$!{PN0Fb|29@wCt!aSJ&+&>lHiIW|=OoJUs-~*}fah7LJpiaQbqGav?l2=A z=4J6_?|{&46<~!OV1+B}@^J9f*YT#F3ghnv!)&*EBH-l^X^gU!d{QFwi*aQMK8d<9 zmG-F9BjVr+Bfy1^UgAQ}CAGUd$9%lw9zE2&QK>T-Mphf{h8v;&eo`EfftJ8Y!s{4M zjcph`y+iFe*Ed1Z?t{v?S8=I_ep)*1uWI6i<1%>JDoxp8&o9M-mF1ARn!Zj6OIyCc z&)jQg-Ak!i!|A!=wf8@^W}(iPaeE~on2*~%rRX?63)9g*w4*mXfXl-@uB; z6*gmz#}g#>PC&oLDbE>q#~9L-8WtrY=BdAK;U(+n}bQoS); zaBy$;_a>X)7%}2MhM+#O=8&mQJk#xEc?cD)J^OIL&y$VF;CAsWmTQA;GW%P zh*w=Z(GA4W;aTK@lf6uP?m!6GlyvVUUiul!$6lP*!fP%>HtvCLV^Oz(SL+^guAJY4 z5j(1*gsT%3oqK2Oq4t`K9GQ}_AEnU2MEdT-ynRXN`?Ec#Gge`0Xi*_eoe~X2_<$QIaCyW?F=u$2+onzd2LjA{lL*!wh;FcRI#A zg~4qh*{1^W@mN7CN0B5ykC=gn3!L`!`V%VKezU|FnIwDmqnjR*w0{HX;N0)Bqb*c< z=UEY~tQucc6JGN7=Gub2_P-4YJOB`3MNw(|PohwdEwCbj{1V77G}IP5Gj)ZLO}L!- zA4Kx4=#=jRodV~%7^4g1>yZHEnP;)<-Ydl%5IRUn>T}R`=d$}ZdEulS^{km8&7U)4 zyoI*ip^z2+Pgt}E?y!2q|HU!F^QPbNm)-H|0`RLrv%^nJs~Ck2<`Hx-*XefrCqQsX z%x(S24$wo)Y;emm%pSid$%ONHCov$a-_*R%Tybe70%}p@A#;hU!q9gcYf&nq+PD%LH$L;`rsVKEmaPz!F%+*)d+%0|s}~2wb`Ko3xdIO7{iOM8*ou9{sH(R?8|irI zvXbFw>9X6N^54#)8?dg%UkOt3x>@eXX9Wu#*{W6%tAbKGp9#;d!hFR&lim{bCIrz^ z6j_TqZI{0V&`dTU$T3+Q1|CdNF9e)^6D$2|Hq(MK(E8ctj5d<%ZVJkcFaI0T zZCNnH#W{oasWc-jC+idV938HR2RAHQ-RRCBJKx2$=*Whs`Iof}hxQTg;iBSb&~TF!JvmWu z_q3^T0(E6FoK2^D@^bCE{B38(6Ki`w=d&MR7MLWv-Uk=-X66kCaK{clTLEcTr^Fb1 z;omoVdP|FNu%*ZRZg#*_?albf2T*Zvs2(K1z0vC^xI~E19)UXL3MHxYt?f3`*?wY+ zKQa@IMVGZ$CDKU@)=Y`RfQMDA<8f`N%={|Yod0qBRdaaDI?NVX4Qd}XMY2CpYOY#- zRW9%aZ-f&^W$$DUdw45QmzP2b(oQ)|L~E~XJ0K1{cFA?y^_dy#yp@c+P+!@s`V3>_ z4UW-~fpGUY{h1kV^|M*i7Y?r;UBuZtfm zEzj6Zlp7krn)mBXD^Swap zpyJRonRxl5;Y%z-H!Atimi?I_$%Yvc8SI4&R&I%I#(}SJNFB}YvP@kUE)vr`IEdu?0J8lXGuoPp9Mza9QvA1OjI;Ez&V&C$ zqH`FlVLRz~zr)$!PR3ZM9~)`j+iYYn>R%`^(2jS+yUG{eVZ!Dm$f@tlY-2_|&0jgj z-AaxW8Vl9mDfFw3vqp2Q)zVj;Vy4@9eW%3m6e$~IM%f1*ZR~3Be#(Yxg5t}`nW9=% z{Uba?Qcj|u#v#kV{qaHX8*V#?x$HjsS~f^xD*=b z-oXq}-K#vm@tR7EV>TDs9Kk&vul4?a!^fR6V`RotFwF*Bc#|BfxyI#4|I@HKEXSVY zEUwR$z~#+m?XOjEguY&+$MhYWQB)pq`3si~XJA5m&z>s!WtYeTNFm(p&`Hk5G2`5@ zB3nK3=|bV3?ZrM#Er}|(fxloK{s*`G_EY;Y%%S!ujIb+~a1IF;tHj}pl%uH5zmSVr zJJl+8p}j|UVB^AURK~bf5$SBk(ZC$zz`gk^CQ6N7@o~FrsP$s7tB(8zCz?lpGu_Tm z4hLqdeG{p%U7KEN&Z?Y;@N$yV9@gW?;0x&D z{yY!Kei7Bf6qqM)VvIMA+3P=Vs>rcF%rIv(t6!pP6aIw}FtTOZ8L5Z|{zSE-IW27V zf`4n?4iV zzUm|M4Xg$oWv*%E2;6%U9nZ^g!@9~ilpym=YlX8Dv)K^zs&D03MW$`XH#>00{GOmS z4unj6_yyq1d+ctJI zMaQc`UZd=C3cQ>HQ~W7*emg!w7En22P&&3#nmo0GTdrx+^6jgDn9P?#oF;tCGc!7L6LFs&?V1@F4$siUl-h}&S%+UU<}0{ z9H=&jA9Pt9=KExt8`I^nIAk~!MotcFL!8ye7_3eg^+@2tW+Pb?Z{^~wT}8(`Y%$gt zHBWImgRX5OGZWDMbebPA4tx~i!36O0d39KoE@A!6czcMq*$qUbIIL%Crr=q+))9C- z4!0fcEj^w#V!fDC6rO706)ju;9~5Nj_Od%1cTBR9z`ZfH;R`oL`x}2=D#8-nTZl29 z)4`~zy6?dijAsJs`{pKAoOPCs!A_BlQLh^|wP!t^Z^0B*)Z* zlI)t5a{{Q2Ki1T8JKmvz7iWgeFu8XPHv>nw*Qf(>CKb;acn?=KL-l_SPDwbe#s&94 z1623Ta^Qr7y|J)4nzB@RE~tTt#KkDSG@yCuI-4Kx06{xxdK6wFku8w*AzO-ooa(?U zd@Zc8Mh9isO%%{tOLCbJFyP*zB*_4Moefviq8#&ha5UF=T-$3=Ygh~UJQW@$iouZ< z{RV=>$o~%1RCO8{3>7%{+JiM*`?FjMf;(=kkp+)_c)wht4sC@pzT<%cmI)S$3wGi5 z0L)ef(Lh{vAHR`fH`m}`eF6@SSL<;oYlRoQ9&HW3UzkJKn~P7<6IH47vjZdN;Y%Ev zHjh?Wc-ry0BOXnQG;UVL-7I6G@@`2~H>kR|wVFC$eQ0bYsqc+#At2`lCOwnlj#V?G zPLG+&%;Wdj)(iNoW4>j?6#0r5WG^k_%YM4(C<^jSdB2?%ZG0EUgGu`xKU|)V!-<2k zeXEM$9%i6NhVn?$t}os_iIC&%F~7%4RcEWeBzLgf);@|}@MoO5FzHUSO$eXc=W^;6 zC7jn|tQ4-5!H7ZA!w33sA#mF=#+vxw3h~KEgq^LSj^)}jBXEs5+5ruL z{h|nPgimtzqaKs4?vlv1E>@Uv&K?~`i3+~9std+V{WOd%yy)@xUtpE0#`H~P~&htB0rdu%|IySjo!hN=_V(UE-prnJOYq@!KWk)7hW z`Lfu2jmQ?9?R1)`!1Yj_CR^8m7aIfal2_TXP}Kpq({x0f$MF=D#3=aV7YDqAJ?vBE zl*J%Esu1uT$xRernl;Bd%GvRs7%qv*H!OSdv?aG3EW#;$AOn~9yJN!q5Jv}r(O&i9 zu&%`S`ovj9OzMG-_}caZP?XXh&;=*k?jfW^+IM4gVy6-tQ;n^cwNJ`=Vg$EcmL?ik z1bKZ{ry0e{!T&>5uD@O5ftNR^j~u8C9>u<{k1tVncMtEK>r7f*>N@Gr8_W9rHsh*V zMkw$ zR24f9gd~4dC&PQbfu4ki7Tx!7gRz4g9*Fw<4;hTdsa}Kq>_w#YBZo?P(1F%b<`06H z?8U=SER=lN8BgCP7=zG3Or|J!-7lbqeQfuwqT|`8R@QW8r-Y@VtqA2GF<1Ma%m&Xd|)XxXhH@2~@+-U{R0v?nT!_kMj@ zYzmeCV}Rh4=0mYwcd-vUFOl&ac4OnB^5C$0?wO%hykpU2$@zwpYK*m#{pQ0(DoGz^ zb#)BWa$7xUhPTu_vS%2^r8BG2pLgH`npX~88?igKAK45X&g|9$sK|ImEeifJSol;t z^*~zS$fgG~9BDmqsquIWREkDeVOG_DXl^Jongt)Ud1FD)&Gv+@1D~*nv|nq|QEOD! zk1<-P#VA2N9__}%v^o^;{gO9%X;`|9g3xG8;iNc`v`G6Rv5x#O7Nt&Lz&l1+U5(bZ ze-qy%iQpwFT%Oj^TIf6x&=s>mF>&DGl7Mn!21lPE-b-mO+5^akv?A>XD|D`@_6p1p zxnT_E`5ZmZ72y*Qj8$;GA7>5a+lV^NIbAxhS9|c@fhI;^8?9mmI`dvRI@X$C%v1Dn z#?301VeY_5-e)@gmhsrs?Uk(Y)J0r&#A{_Epo5??y-Qps$f7Br8EqPq6wqC!ptQ2L<28 z3K))Zq;#S+#JCndi4&32@rmI2Q7TCnKARdihdrQ58e#Ob;{~2h4lJ)l@iJ(VRm_Jl zV~sQFquLmW6?&3&jq@+stgZ|eJc-wE>n6pxA3=2C z`9+sxO|e`djNO?xxI2f|`=4by+VUO5w)kqzFg$P7SAA9JFT5ey7H+4wBRtjWZ2S_h zv)}qhm`D34?39wJR;sZO9&%Hyj?Q?dO6E25rgD0Y*Xg{41UyA)KQ0^Ye3sqcUO#w+ zSIcY%{hJuAo#1WEcBqNLuP&0d%G=d}>#0+*TUvdsm!70sv3gC#2CK#!fq0vlSF+CQ zLXFo0()T2_RPVgXky=#X2nl!!!G2&X(s&|4R!_HvIiF>39XEaY`mU-?R1)_V-Z!}^bT;!&5uOc*bNpY_oH_gBfBiKoba72iy&wXrc# zn$O~1a;6pUOk+z^g72Cn8j}*`)J#Z;zv3BdoekvrhS{$Y#!G4^PaOP?pF!7(ZwD$4 zLYRK(AURbzcs~tu-(2+8C%C{d*J|f%$}w#xgU5I};JIcb%gpy+5{~nPV^E&s5Ow1F zY@P7+6u(;VN$VCU@=olD=b{GH?ajcAo>OdWC-vmFR4w;7o$GYB@|~V7SHls#KjtlK zy=Sc_4jJCd4DrAeUW~Do{5hCl^Q|uUR~K*3MlYi%1y`6(u$)0@UvL~2htdwP2 zgN&XyV9d5U87-3J^K2`{Ii7{J4E~FVz|x3!fpXAqsRun_C{kEt%izCsz<(z2H)e!3 z&S?y3FD>8kw3c^rET=P_qm!mzygHMEZEQxOMEW2FLU35%L%}ieQtX2awvbZx%yi+6 zd0f4>4MB3{k)PbV6U6#f}RynpMTNyLk{{#iuT zq|GMsGVL6qbxb>#=q1wT5k16s^NDz&)}Kwp8?^qMq$>RGC-jlHhiCy2FVFgOiFjq! zpGU-tvi^LcDa^2dXcI#h67ia>e-RPy$NCG2o@S_@D1<+Y`NMm#{vsk?e68{q6Q(d? z2@x;7`b&v^V>`=;c;D5(glIZL%ZXC?Q^B85hE@`7X6RBP-gxydBkIYY<@|Yzv=u}{ zSlUXW{#E>4#UEaD^aQUhLUbe1Lkz7Y z;`LMiO+>tI>fb=b8>aq^L?xuv5gjLO6A^Ed`fn!UHBx`oWe?x_D3qF6@U zLc|-Qejz%;c()SqPN@GjqN5DGorw29{dW-Y0;vB^BHsG+-$ir>(N-ef?(}aXDor5& zZ71aYP5%y}i9~l3CGzJU{uDCty+pjV>A#PtInn(@yrk)Wfap4=eUNAXe;(owuVwll zCgOce|06_^{CN~VRes*W^zY>N0is<*i-~ptFaG?byA5?#Tc&-n8)X`d5)!xUc- z^&ssS(E~)smHhjJ*))*2kr7W2T}kvM(N7$wuZaF7?Q0_5{PTZ9^d-@^L~WVjcSLtF z-uFbY{P}@Dz4-GZe|~3*lSJ17Rr!A+{E5V$iAFG+Q$(?(ohIta49^g~&Cs(%5e)r> z=r)F)BN|5ZE75z5_Z!h5{`}6LR-~OL;-x$PA4DHjG0C5Vi6s6-w4SuTiFmut{|`|- z6aP!}9MJ_LKSM7P3DaKD1V8l*br882Y7m8!W)j^>WDzZ6ijXGczf~kUN#qqdzl(@> z-V6hYLQ`9%`(BAY*os43G%6BQ6u#Srqo znm?9kK8cNp&J#5zTFu09M9qlei8?by0?{PKOC&l^S`txvR-p+|9%)U9-e=loL}^UX zoM?cOe=P_*F=8^&7NV9!>CC1T(H~6Qnuxc>{B4M;8LutT56rL~5$}Te+Y{YE)Pbl! zQAeUArszcUBm1{AP?i6426rJbk|>4fE~2hPyu;=1M#Rfo{#2q*7@9`Zj1}xo^a5!; zi0T=yClRk^`Fjx^WCeQ@@d}o|577feeX9t6W8!{9Gf3=D)ShSnQ7N-YC%TRC1`_cq zm46V?dZG-X6%5TJvRJLbM8A_ZglG`s4JBI5oQDx5CzAh$6Lu$Y1krv*97$Bp#G{B3 zh(;5+89IjO7*mWTI!M|$qA1eF6MawG1fp(46Nx%9G>d2-(Ild(FBm+T@Mn(66e5GP zsYKz7IE`pHY14`RW@Tm&dnwuL>q`^6OCXm%pp3-oaYinlQxg&Q|3Is3D@5Z z%qE*e?z8WuqmHewDypF_2nPeSNcSgLP=pKgNKs1cB^+ZoHUJcQB zhTcfjm$X`J#9+(z^|v))d$ zf@lYkgXnIemW+1~QFCT}FVR;-_YrL(x}T^I<2^t$gatoHbe6e1M3m0Zhk>g6JqaHn z@nAdN;24R|vbf_!j}SEw zy~e~Rh;m5#lIU@wuZRvao3Dw!BJCTZmx#V4N@3`CM1PU?JyAZ<4@B9>xyt{eA~NDh zqNNP}iD)tl{+Z}ChMpq&nY7bHUlN@ma?O}YN|W<-m`ItGUj-OXSpQ3oOyQ2|jX(F&q4qU}uKCR#+~Au^bs zm*{cE3n!vWyFY@cfwV}Xk)%~c5r&c&O_aiHVu<2MizT9Gy1x;TmsvL^>c_-!MBg%A zJkdXlmq66O&_tppOp!!HM{|D@q70&@M2!p)b&Ds%*@^1BE-kvNqRI}??X)`e&o zvq>S^Nm^H;FNnGk_`#qFzL8m~-zcLMOB7Lo|-T zeTn9h)=$wGu|E;Lto;Ls1{0+d&1NA3iQXq|5K%Hw2GMHfmr1mow82DQlQx9t9VP#U z623>`Fru^U%;7{n(nb*7!^9(r{$X*Wh(?e$nrJcOjUg&z=vX2LY2%3K((E5kR6{g@ z=tZWTNK_Td)@2d)V(=uQ;|!imbRRRELi8=sR3bVd`==2dBbrVWO*DfjlksLM8qqAG zn;1Hqs6TU_LqsoP|J~GNMk5w}faFL(7StVTuZ(NYW~aVwhqn(ZfpqEhB8lh|7uE5Un68BU(xH6ceu^ zieVvF68%luRYXaQcQw%)M5~F$FjTR3CX1^kZ3596qBHFNYn1$3&LnF|?8M+}iT-8c z>xi~6bRE%cq+L&Rn&<|i` zC7MXudqnx9y-zfk=mVlUX80kILE1+|QKWrL^c}hX6QVbn%cn#`8Ty%$f8$B~oWy-3 zenIp((J`VFw&^(02aMN1G?Aevh!zliNpymtUlC;!eNA))L%$(9%xZm0bc(d^h~5CI z@_$dboWvi9;)#AF>c@gl5}hOMC!$bh^D|L3(J7)G3_VShN7@;pJ4riBG?bP3h3I;s zb3`{Y^jD&GO85PZFq_2RiLN3#Pt=v@4aWmW$n`hi{jFVXiz z7l^)Qyo*GWnf8ii_;E6YqZ#>cD~Se)+lWk}Q4F?-1~PF7(d%rTlc*Krxrpv(XeiOk zL}5g08P84h4C8r-J|xXc^fBXw6MewYstCdbBt{Z7VZ(jbpr6qB*2B zBI?I%8WX+C&^RJDs~=DF07DaqHZe4jD1o#jq8F9^*Mx8vgPRgP%HU>1?O8~3qW_WB zg6K!aOD5{Y(3V7lh*}YSOw^iaI^(q=x`U`Kk%OV_h*C*w4^-v9lEe-qu3;e^i82`6 ziKqu@or&HitqajW(o%??XWFhr4>GhHQAdWR5_Mr{8qr1aLU*D?4DCU*k|}yt5e_4< z7g1*tdlTi5)`w^}v*}CJjiLRBdJy#|dV-+?h}2S^PV^vY1Bp&BmqA1|Op!s zA(}zdit%O=Wf9FHn!s{rH>3WS!-#W8yq3XpiAE94BRas)`9wWQ%O)x!Er;j~k&kF3 zGh9GKXCHqq(H5r2BYKsg`9wD{MFCM9LaY1>37=)~BBItzQb<%mp_nMsxreNVKU=m^mY zq9+({CDD^CcoorAq+Ll=Omr1dJ<-)ft;t)fiT)r>vHT-UTdm~Z7!ubo_&uU)hz2uw zEzz$m_*#WXyN+lh(K@0uhF(uJiL@Jt{vvHX(P^R@A|bkwXc|#1(G;erx`}WNi5rM& zN!&=3MN~($l%bo5!brQB=pNEG6MaNlJ<*Ruw-8-mL$(l^L_+j8x#Cu$=IoE#h+a_V zAGZ_kXT&>*o*}xE=xJtn7ttrAZ6#{T#M_8WqU}V_F?0vfQ$%+Y-N_2xLv)JhUZQnG z_Yw7H&i4aVDW?_x10>EN@j;?AqKAn7VXYq~8qDGzAsWj<9wq9@csq$&FmxBucowpo zD2!+ikub$xqQ<1{Bbr9qV~W4ina$%QW)M9=6hibQQ4EtjMPxC_exmU#?rEY*hCV|y zi|BtuzcAjjM2`_YN0gNCRLXVm<*lkl#x<_W4=>DoG{&ip*J@moT|cR>^D1n|>Oa*N zPqAuTQ%~qG9?8|X?#Vl;!sa968dv|~-_+M(_4V`kpVb!+t7=@2Hqs?Lr@q$q`%;BD zs#K<9mz`CgAE|`(Pk*ew(sZV4{#IWF>g(z^oJ`g;BYoy`_i(azcbsxVPs2Nry- zzUozhvk&X9sVXe??5`@!MTVC0uZ7Tz5a9yPM~BHLlN_ zUQ|&}s;?^^Xi#7AD&fGDC)5{DH)~w}&8O7Y`zma|OZQWrDsbkFf2pv0RoJGFe^Fnp zRoIv>b#FIASXGUy?bP!su#*aW@q%tebCvL=b9xLrtFRN({!lR|sj7XnUw<`KUteVD zf%!qj%s>C5in&VVvg~&KwO++6+jm@rEo00o*W5`zs833<8rP~G#Ti`VIvLSieQ~zbxC&=?R$srWubY$YFBS8|j1DS{v#G|_>`ooV*^eQ7 z|4*F_MQn|${_%DyDko2kYxB~s>Wj0!#`R|7w(5(LtHu>EG+cdgF4wqruIi}1I8AF@ zU;Lnppa8FNy|Gc}NdZ;kdZ>G26_X;Y#&x#p))@84xm@Eq_)LoWqNu2GebQRj`(70` z&J5NCa)qmLg}$!)km9|@)$YN_DixLTtH$-~zq%Ea>8Q-SSQSS34?!~_N_}y$ zsBx8MM5r%{*&5ehpX-WJ{9@4Z+NdxJ)EZaVe%*SC;TqSwH?~({Tp?;)bAOGWRYhjw zI$Yyg5!q4&axtiJJ)Ye{eU+=PofrG4uRbbf&Ah(qi&_kdziy!Vq9#-0a=klPeNmgK zaZRils=lbu)VQLa8Ku6c)YP~}4e`x-vMBgZfab8*A%NSYB)8nJ5QFV zFKRh8u65@s)E70K8rR;fmFg>AgWlgkVm7N$ zU(}h-C;DF)T?bP&KZ7#p=_4qYAv|%8j!gl{ap(Mmwq{ zc@x~w``=@=m*E?&E@qv7gG}0bImxQy8^4=2S=aDo->OUE`VS3R%>O@G zfOPo(C;cIV@Ay9jJr^%6>hNFbv+l;f!3o)JP38m2D*KiHkF)mAR$KA``d-rZa zNJ2<~Gekv<~71&Ul=Nv5>^GTcGt3~sIt&NQI&6Z%D5T+PN*Hk7(g z=OBP}WY`Atot+)`pP~aM;)0o2@e~svF#4Zf*ZxW8I`+l-5(Ba^c=sg0iL0ysQH-ab zqKi=dt@OUl$#LKS@YCXx5D7#J_QLRysrI| z=49qb@&0S^B7zAr0-aiwxeHUo+%=H1r1j2tBacT(iZ96B{t7VRXR+A4A!*yv0XGq*U);JUGQw>XO_Cu79dTae!kw>mS4 z-E1Tb=PtZkab{swjM%!>nab+(+=Z++!yttj25HJLNJWN0x-kq=ieZp841?5Q7_>PJ z#u@pI6kfPU(}h7QE)3FbVUSV_gS1%~q{hO~X}%67DXuU`V}(JgDh$$5VUThP54E& zNrXY#Aq-LrVURuugA_p+qyfSp%?}2td@xAYgF#9j4ASmkkXlEE^dvu)SuUTKatVXv5(dd743bM2B$qHqE@6;d z!XUYXL2?O$5S>#Y6CNj|$EE%7m_Qy6 z#JeUC$q!u4#i?qN_<=n4NzcbS(Q`K0g@d>c_TlhSE4Lahw!?|DTuk=OT6i|S&~A97 zN{_v(RNMka9s{LE<>%EDagRJa(qrZxXSf*j0X!DVBu(3)Iz_^EwXpb@e1-JA@EAPR z*aHu|07?9%3miTY>eFS_w_dlBY! zaqu7>^=-Bf_NnsYgg%IJKY7%ZS-JId@Lpm+JnBe_J%_3>VlF(y;g68|Vh3<85z*o9 z8ZM{;`|<4SVDeZYDK6QE3tvu=$7tyhI~_dNIRKAqR&H!l%ZTmp5HC`GUR$CTa8wgH zhrlv!tDt1|+<+W?`5=NsNv?M6z-iCBhIfM|3W9>pc%K8e6;@<@<0&YEh1i2VqB9K4DEJr<~?g%?g7wPP+?w1*J=+7@rx zUn5@}#-@nMMW{tYza#KyE0Ytu$C)U;BoExCL~;DQ$63m8QYHvVz5v>z4#I!!QD7!Z z+EsTsqa43T3@%3c9+)os)F|=n$G}XGF%2D~#wyTv=IwXZ!sA^Wd%aJb;~a-%Jh^9} z`26^Zvz=qN{8;-t)Qdr%g2GK1OQo|Ia(qo5bs4evpoUi>K7;!nxno4*n@HVy>A`6p z+(9dZ>-ZXehQg>Xsn+>eD<;N%jzBL8}^iQ)=*G?a)Z&+COmqhs*sDiOCn)sn=! z@SqcXR3F8(=9(&6N9u7nrcK1@Y$Jd8{!3>e@XrxK>W|`GGmAW;1TJn~7&Ir9zbc&R0fCFGHr_!}fY1+)T}=wGkJlNKcmZ>MogV{vWk49*JaHg$Tt-EU)w{E-DGi(kN&niJ;Fu@9nv++I==m)eST4P?C2CniJ(g}U zrX>F+y=s51m6RT)^k{uWRYk%HWW*8akL!p?n9~m-)n7_4G;dS`08MaQlwP1pUcba> zVR%Q1W7s9d`S?RE%JHZ4YAMTN?lCP{(MpIr@fx0uKIRNTjp6qD!q?6yrC{KP4`l4! z2WtsRa^QzV3IW0W!Wpkr2>g&FNqJp*j8Z%BLp8}_W^uiU(j@RhM~b7MDDWk;|IQ^u z+LvfLt)l1voL|;j%It6Xsk5*$G?2hP$>bYfpjOrT9wPQYdK~DfM~JoLfmWHa=j?F= zogWx zFJU`U8%L$p@*;|OthB#L_E2fB-^CRn{=NwOZ?bi)cgb1Pu|<~DoJ-ES4%~Q8oL;)* zOh+rs4N~>X@LwbeymA?-*(ot$r(7}O_GM>jJT$?vR{Q}Uhf90z56&zw#noe9h*417 z`T?=dv4B^c4IPTKzkCIQz7`UA{t5y?W~muWu4+Vy);}W90{QW^A8}>dqVwp3o+Uqid)3*T)m+bxBrIsW2DQWU3E4>5^?Xe>(sw;S zkd0Jc&n>c%*6aC;Y^3;ljAZzpZ;$$NY*i)Hoqy&4?$wqpxr#ab374~#a z&c#2e!=C=+NgABXK|WFyts^E%md3bBT4q#t|UBO9s6o)5`JTC(RD z*+^0LoFyCS%ATLdM(VQXF4;(9&hzBMsWq zkZgQBsukHtkM?vY8>!Ns!DJ(C+B2SPq)>ZaAR8?fc;=Fgv}(^XvL)t{=LWKpa_!kk zHqx&>hsj1Nw&x_-NXzz|CmSi+o?pmDy0+&&*+|{?IE&$rS282WMoPD*1ldUM_S7UB zuiRyljkIr1+hVj`gfwtZFY+WM+%uGHylgg+Y`nxbgKWHnI-hL3Ft&nhyqdR}Y`hw| zn{1?*dybNgm)tIpjns3`b+Yjy;{&qs5@fDg99B})J&|PNCB7uGk-F|FPd3unJ!xbk zrQMT7HeOn6Pc~iv>_axv-aXHfjTCs#OJpMz-ZPJEq{VxdlZ_O4&nB|{#>=I<$V&RW z=Lp$IrT2VEHeR*7NH$XJJvYcky1nO5vhk9kRsuHC@I3{|MoPXXnQXi!TY+q(>U(OF zjkJAF6S9%Q@96+ru3X+6N}jyxI+1KNBK6E58?UR*CmT(pdsdLGCVkyZHk#=2>?YeB zO7T&$(X_eeE3(m)x#tqucn`p@WE)FgACist0O+|TVWqh%PZZf`dfZc#Y&2ixsYtdM z@~cBOny2zKCEHH=+L3HD@#N`CHkxkoj3gUPGI^$uji#17Ub4~5w`VcgXx7{F7TGX~ zR2d7pWaTXa`^d&y1U@4hZxJ{{wjC7sN3vN>*Tr9)jW80L_t;s&%)0KpoDV~xoX^#k zaws(87Ut2aRab|JQn#IL#O>JLwDMaiaY=*XxaO!D>v%?fxSgODb3A4ui+{sCW)E@ANg<=H7%^Ve z#Hx>>$yT)}RSu?I(-646#^)gC3_lCY5TF>MkGF~hKNp|Vmx>5zB88?C|cJQ zE!592GMxLsIg8%D_#H!=Z_XlzbtSP_ zHA$^U#63!%6jAg(E)nYq^O18Jl$DK zLykB{IEJW6nDOM;uUfI6=Gdz%KUfi8lo5Y#M~u)M@m?$92cqaJ5MbW`TPaO0Um|w{_``ON2QDiZp#74?f{MB7j!M`US`_sv$+8?2~bFGI3kQCVw6 z{gxH=N(Ayt=Hz8YXjn>_g)D$&NzeP6SFjvaDo(S%?~mK|7FX4qUMo zfdE`vOQSB8fTT1IRU>fI8-L*1T7~RY#DSiwu2cdMO3upXG)<)C2c^N1(tuz}ZHI%> z5Bb#?N8bQSz5j*Mcb7?ga30Gk}ll6lo17%J~b)#pjX>JiYumifrF1wFKV(izu#U zir8alX6W5edL+~>Cane+RYgQR3g=RBHAJagPO?(@ErjVxVJeD~k1#UoM4(Dy+i|s! z(zqP1$%X#^3xV3xhc=EjlE_NrvZJN6hnJBANr=#xawK_6ke>r(?$9h0=75;5<=ep5 z?H}Al#J%Ui5{kvo(tICF&#Q)bWxY`-#Fpzl0UYk4FcydF%87=9&>(wq)zZ+#nZx%a zP3G_&X=e^WpE;Z>{g^|KG)64t#*;QUP1l6D5*1^k?p9?Z>ZU~N-7k!o^gRVTmHM-x) z51c{Y$_Tk3_`1AURoZB~=!_b#gjJAze~37h>dR#i8T~4Vyy{Tn@rnz7U?M8nt=0rY zB1)n2pQEVBN*#+ztzas-H6bsV`OuD451>-TrsBYbyOmMKyX>r4Tp4}p+Olc|kxZGh zP`2?jDT;Zuh`1q!RESgp&)JWxt#m8R( zd|Zd}Qv!A8&j1$wuvt*nj{k;RbqPDKyY{;GRBk;b3N| zuCH)>q^N-w3redIN>__ir(jatD&JgTXd*iWtw{R-dToN~arcEZa?Y%(sn&Fk@9WWJ zou(OS<@JhE)qvJD5RDC(NmJ&-k9zz~$q=B;~i<| z?qI&y)(EnKo`cfK(ve?E2Tgw~53TsuHBoz_QQ`RSRg`72s;OE~NvI?>j>45#qLM6z+RY(P&8;v^WEjOjyFjw^OLJ(unO4Y#c1WsM;!-wJ z`>YjmoE?%Y)q)oIINAz1!VXFKiz!=9B04315?`kz4pDYilDT{06?KsEJ{+V_Z3C;M z)qLeu6O^-7gx^>Z9;rmNxQgzIKaEsBD>}hz@kBM>92V%@dNz0F#;5xFB z(;|_QXK}H6sM;4Zel{1cVqX)9;;vz+81GwLY$Jfh#R>q1s}(RI$$rehMzW_V>+p$+ zqWcInQMtrn(}F{ykHwRTBQYm^E+F`s;Nb32kk|a;P7c!K7OPP1QnfAq&m^+42tzil}^HB6}@*qh^u> zs|i_EM9~^rUvYUdx|orYg<&=exLbBqUkq&LJ%`UjBnJa+4)CZnbHl0=NHG@~(vMXq zYzm^WJ*~qzwh|wi;&fNF7v}pp9J8>#iY$N=-5{w@f+-iipzl^L?5iRMc2~>cZhiQ* zaeN|!at0hhP|E)iJ<#9(ErUJ^4jR%Ejr0Q<^!I-W8rKV*Je0Q~D9#ipzchSBj9h_E z_EM9Sl2v6ZTdb;VWf3Q5I@spqu8~AJxhrJVr&UHQrh=xWn}u~!hbx1s%C@gROcHyH zHdPVd8S2>_8U3qP^pgOni&^acE#1-LuX50vXIebGWbrV)s()w+YQ%<;!(O$puF0(r zt!v`JXJ(<#bak@wsTKQCm^HK<@$3r#+>#OBup<5r=8I}2<(d`UPgZnS?C21jqdROx zcg@n?v1+PRtR^cu)b}yS(s|>Md@kV>e4rF>epgLV+F~_TR&)TYB2KR+4jx8|hrNe^ zO*VyW<7g@gu!i1P+F8s%jPt#u^rL(iojXFgHG|j z#ltoN_$pg9aby{y-$H(E92;d=Sc7FjF*^DS}+;tvE@lJ=+RvMY zs?Az3D9LJX<-|mWY9N)gCZZ2!p1KgKe&#kT&ZWC!H9IR zq_ZHHjxSq^;Jq!*k)y$Md^u9saae{w5F9==9JyFsN<{{JN>i}ik~<(;n#Vxkj#uVG zuAQz{17|g*ByOoD9jjOk%ork?8vcr> z)Q~Yg;TSQn=ZvSNe^h;r5cRGd4X;y_K~}8&17cm+8v4N;8SAT7tdnX`uaDV~HqhW^ zT2a4*s7bw>ZpYnU#;xSAS1oKa;AWP#8KBbJk=OqdddJLNm`?iC;@~K8&{w3F1M-%P z{Du|zcN}?~c)J2-QLkB%|71merG{VWaEqJe(Nf2YgL9FqJRg9^DCWb?138f4#uM5{ zk^^sR(Fg7`3zFRuVIMhYA7P?mHYOk5si=lRHf@?&!8CokNSNqd39)Ac5N;4mnCr$- zD~AqSIrO$Hp7FOZhJS@($)vfe9u7P}MNDyRc%i1O4To>zg@sK4tgH`UMPNac2J*x1 z;PU-7)`#wDaX$|(ESa)I^K4b0-$3iz09tq-%b!)C#Umo)F2=-P$`71XC;mwd1EP5G z{_AS4f>0Rzq>8?8sI!z6HDy}>-nmu8NPj+L{KYw#8gJ88Eh~6q$%7?oW13*h5sR0q zZ5AKGFf?VjE96}}B$V%Dv2iPwRzqr{BfM<||5XOZMC!qnsFf?pute+4T2c)!E9(SpoI&GI zbe(JgqQ&w0T`9Oq!!3eYZqAGfkwr&`r%> z1bwuf{J`ban(S$4aG4hCqoBnFQr_|-eKb*KsDJAY#`HE{n7^qj4ouF6M>yMo{6ZOy z1#_Oo7Xl_aK9GEw^xfiXZ5qwxM2p|vG9pF%XBZA|mtUE=cgddS*eVG!b0Emfy=M6l zbLg;1Rihn580g!4&5BS5IR218=H_mitR{0JApr5UWp5rQ99w+7hO4&h#OfDBBNI&@ z+Td}rh&y{HR>wB~!F- zONpr?nSuL-&>5plvKYW93Ny#Y+#$j<1M)HoakfnEu;h;86erztj=wh1Iec5O5Cs&T%WhAsDGlAhAA}U&tt+$Zld(`Y z;?sRKdHQiRQ*q%PPMR;8I1U6*iND}Vj8E3sGaPVh2{ln^W`)fXzOYz0twvRsf;Avt zI~Zp*)=Z0wtmDWkM8uOe-#)7rTl@vG3zTIItt+z&HI#Cir_JWdRAHlGF>}KS^=%E? z4SCIww;S&K1{s*^)@zBvC)ENX^Njk2XcnRuR+iPHZCx4S&2ws`_#i}&7u~;AKM>wf ztXq^ki){QoRF4%4&Z_T=1Nn92`Z@Sj3DXnBXXn((BL6uxP2?+peQKJRejcg==tPSN z1@suKJkPs?I)qn|FR4`)pHs6$gK$0BQO1vp6lSQq;Y z`p-OrDaqY3ZM07k>sN>;Lv+Z|>p6OJP^CwGF*-_XCF1*n{lb^j#>(jWBDb$zN#tEp z$0?KQi+NFcJ<+$HUR3nIEI)tNPp|G+&EZAd4{B{fo%#hMf%p3Bg)x$*#1NT+1M~{m zTE{FN^0BDFL*|fLILFaV@Dq{f`oc&@rCDL4ho?hMmPs^5;l8v$wz!lU)k7&Avf*#n(WN zxQ~^W>+7YIt2X*>eLcA1y7&k655$iDF+L^Y>)ioOu&7 z$*U~xSKh?T;&O&b?w2w{*u?Rp+BIrh2A)UJ@f`7(Ap^!P?71+d6&{nJ_gl=Rx73S{ zCbL6_jOaIPeE$IhhYXVd&u0kYIYxh9(BDb=`;z`n)89Ar_bvUMqrdOz??Q$cdR0wy zhqfCq3@?=SPwp(R=7?ItMbu?WuaX(2t3m*i8I=k|FXsYJ;0y zf)7&dsX(5U=r0w213W*#zxfmVJXc_A<++M~ujeQHzvB51+keJ?Hg;XI=tuy11WrlQ7q#YCQlOMzUU5{E)>_2Bq!qv{DL!W^ zeKMt3jgW|;Opbe}!I`oF&6)x9LO+_@@Ocvb+CR~wUe+QUc;DQj&8_!#iGJ6Q#^#m0 zNINarR$7`ez?YVnW#>ev8PNW7TD~Z&WnddSr{$VV%hGaM9Cn%9jz?Pl&J>TzY30!a zT<)0$WjY3b-kkL<2Ri`f;C z8|`F})@V=K z+^~vP$+1V0-Q@>DR7aPwGxVC3p+9kkDlO`ZS&yCV1)T#?{%9;)o~~2%N{+isNV(nk ze<9&fEa7SvOE^n*E4+GksW*fA09CS zo7@LR<1|HXK$t21Fo8V;BI8B3{W`LEb+fAgV8=j~+MU_cfVMS}|XK2ABv_|>F=qkvZXPQcVJA1NLLMdfq zc23r6;xGwe&>_I!_6_rt2h-7DVZJq1X=bCJJg1ezVJAjsJcX_=E=)m&471T`&ub}I z=V0`}r_l98)KsmYGS^0rn5va>%$8`cAFU){(JDYPkPctMS-PI2YlW2kHkI!65a%9A zWtU9_`NZ&7h9J_*HaxFBBE2Bt-vz+~BSo=uq|eDh@ClSEJ4ZT`hSQM^8)}*2L|M%( z3LjJQi@d!`q_{d5ok=vF!u4rm1)IrYIDZD`IMYN%|x|t)zVl8@#C;%5cV{s zax=+xp|gNvXPN~cb{6oi0dQ>OvEba#G&zU0Crn#g@D=B<)H@{rKFJRcOeJ{ZN*B&Z zUn0MvT2ov!xQ8>Gbl48f2dA{$Ygz@&iP|i`%S0Vp*~?dD^YNllOY!kn&N#;v3fV;@ z_jDEz{nnu4ykrMg&Nma&8|kfuu~v&Fp>3vRmWR{&(8`*O zby_T@0{r;Z>mZ`o{^Z9elN~$DE&R0gXlzjmKKf_YYsDebHa^3T56m2}$C-1ES@vbl zSvga}M+~PE%}kmrDI_j!1QSyOh(0G$n?q4rv`H)MSY<_?*IfLu37NP&0Jl^|{(5sN z_j=;YW*o-*$i~;%qNO?x2H^Jx;?qUaR^b0*<6qngt@FnK{AE9$=M@IMqa`ZtY}sOf zpJVT6RTLd=YMY%{HKw*%GLtUe-KG^$D%jwH?`jp5vKF}XQ{a2=YGsr*Hn{(LT3w~3 z1#bQnxc&Q}Jk|#9cpsEUS>WMMffsK_o3z*l|Gr%-r!26*c~5~ezrZ_=yKQjIomypO zrv-lhDR5y^E2?~NgI_SUYRXv){EZC`l#Az@OSzcHne3Abr<4miXR1WC@Q=)Jitfjd z{9@g1$bN)K?FF$6Yatti79XHts@6i5MDZ44?FVR>QW=Ap8$hMrS+0d_5OViu;Yw#4 z{>>gpaR&)+8w78gh54f`dqI7&4cGT+rE%DlIB<*$f^#c*c^}|!+VDF2!ORi~7eR2! z3Qjb7v@ns3ksqd|h+AJy7*b=R!hcO%p7f;g3p1xoshg83*zl< zSxR)yS83BymeR#rT0^BJ&aYApXx>s5&c@pij8X8Up1yZW5qSrKG28-qTFPoNsHH5L zKkwks>jE3x=Qq@;JPSPMDRASvT5)Bk4SwgYRzrE;0&jZ?{Q5og-DhoZzTW}<#sYt3 zgE2EyPyG5jqW#MT5Bx*RQvS5Sf7oCy@ZR^)h$e~A!_gffef#gD`NHA$VZJsuj_hd) zlE}2*e4tfvH1flv|J1VR@VFn2!{-(}u&N+8xfgB1O!(EZWl}=;X!T^GnIUQ|!Qkat zo1ikTl`M#x7qo&9MCQ}mN;JI)xfC`Iqe_l=UMr~;m0O1C!F_)Cf@NquanRVur(#-U zTfM23z$qdh+1+nKCpu^2pb0bC)2(C)zqK5N_DpLj4qzky3avW2B|lwg!#;dq`Vkwa zAKY=K4_OI8sbrHmxl*gDl!u!{uS{zxRg{#W(8TtEmWVTb0Z?yN?I9&d-peoHH*jIqEYZEzsF$aC)TMsvb^^*K_O7M*%mwqU$Ub53vF zRqHAnEo$pp%c2@`4||r6TT$+9Ee_pN%PF6=7LNXy`LbgCsI|DJV|mLR3Mv{Cz;fu|1hGEq@!CX+FBH2f)_wWBWV+wyK4#{1mqC zpIDUX>c=kq6UUD_S=jbAmi4QbAA;@_KlZ{yByCa~tiFTYr=a^D0lLBuE%XZDsB$ZG&=e(N5I0a(-yIL#v>qSkRKeP;uLV_5)&Vk;NAB1hMa2 zNP+ycPCKg}4|uYzuuX%*Mrtj)v>GrjfW6UvI!p3Fi5Ovp8yXx=OmISx!>)ZRP98O1 za$*EB&kFF`QvuegNRa6d;Lwnu?H2akU~Gh%HEjIE0G`hIgVoZt(#jbt*y-S4;m+m_ zy99)K><=~ArIl13TA}U-hY}48Xf(;~WP1XcM)uXj2yEUWlqK}%MONSMlWMOU@C+ON zvm0_as)#cR)|06X_e%Vcf)_wI-=@)IK$6l zgUI-HvPO^i84KY{t$1H;C%*ext&WLLj(3qA?|iXp0UE5s*VLlQejAO2UQFZuf}zqL z8D!T#f`nbi%Kv3M$k^-HB78xjzxxNe{S6G9F$u+;GT7O616w>CV)PPZ!{2_iGQVBW z_z{VrR!#giU-Pe86{0rHnivQ%x(5ILY=N*bE~>4hDSmXGLK6 zRMUq48i9GAY7(9r1P|=r*LRRLVZ;WU0A0LRtKjS6$H^|9Zl4kNHe*Qp!zjJI7`BDd zKU(jt%(Y^g+EEl4gK5LrGA6G-CLCS9yai3bA7k_|JN?@09Kf1s1b0sXa& z9ybo?FD3efAFaIHF{nNd=_s`n?4U=s_>%Cx)a?1Toc!X>4isXQ16cBMi=sPFSM*NY zqS3+`PNCp)rV`&t^gf6hhm)c}&^==&3@l3SK|=UW9CXAMaMdA@$Nv2Z(pYt`5Bp~jmgl;QiGzD(CUyJ_!-}NNQe%kk%o>9)n{dZa z2^=8tLDzh))l?c;(E7npx)}(IHa_Sd$DsNSu%LYE)Je_ zwc<;VMC?Hb>#SG|0be}`VcmHEtzA}}p5!L-oUyFMiMI)|I+G~eoj7io%FjVS@} zNx|^nn(7JILga&YYK8@r6#?*NemIr@>xtUU^+MQ5|#eSh1uXHOnEYLM8_Mf`RTKG;kfFrxhoCVm~9ksFm+?2DSP`zn# z)d&8zJ2qQXx4{*A=*5&O7PyiP4onxg;&dHl2K?#5VmVzM_nyE4)EtYADcwbQSFNn_s>Q}ki;b6X&mC{Cx{U2r zx4J@|+-8U9)D3fETP&&@CDo|z7?z#1F`Pp|7Oi%bMSFkPEYH=%~KXK3-v{GNT7A z4K^1i&tuK5UO&vtY_fs8Ctzzo>iaCGoG^v zH5~vY<&30p+Rq$M-<2PTKK!u_T{95#cMm1>z8@Nx6N9Xr=+DLAm$brC(nvj0s`r#a zHfVyLsZ{AHrMyy4S#PR8i$e&wdpcNB@TB2(ac$cHCm|HcSWs&e(bWQ zTU)jY_WED%o=E8xxO<|qm?uIii}OFKBXd2zofGKHeM-CrQY0UT$BSe9p)cOuw{e)Ec_J&cq zXp2!e`}%bCO)_8TMoFcwl`rYBP@H=QWJ!-+VpXg*KK2E~hWnESm&2YZPkF4QFN)%= zabk2~%!QBcC3?nbwb2#(Gn1|?)buoEQZFf7%?o4lWKAzAiNJ3t49$CW0DgrZ&wGDg zDT1m0Pi*|{BADyNjhVi}LQm|Y&z;%Xcr9AFZsThtVEOXr0Q^-yo&~I6BG!U%G$0(c z2JDPagnl0)+J<406dQX(CFiWDbxy**C7ds?kb9FbSjCM7gv6fSK;-IVAUpVxdQl+p zNC6?So!3Hg>^JDsvwq}&VrZqtN#y8YWRK!d*q8W`hl^v-B*|ntmkfWBE$)8n7=#14>~=<-A0m^CLM|o0jH9;X6?>m)4X7R?SmbsQIZUzL!#>X$PqYYH z_qFinpP;|JY~e5b6TfID8c{t*RtnG$b3lc}8fH;Qj6*n*AceaSDnQEzW1LT%29C6h z=%-*vQp2Y5rJ~nC&&pJA{{yJ_l6){9TG6gHvW!!&2A!IaO8Xo;2bD=ShPMggPz>>e zb4kS0s2o|RV>LRDU_&Qq*n0nlgf8|&1KCF;+(eHLP8CXzy*qMN$;~#{PSvuo+)l-V z)=Q#KaXnM)e+ApV&P$fh<%ot}?D%>{v@M4Mx|Jh$KtATL;%;$WZk@WHBd~hV8k-Y* zFisP8-ITIgeoXqpo~8iF)${r+6l0bj&U+uR?Zyvp;D-k$4(xE*oS~%qH&4YQ5h;30 zaq(;H;h0J^Geo%ysGHB(1eJ-Hr=$ZByw0{5+_*U@; zt)zOnFWPz$QA;Z;H%Wn!B|jkluwBQW1DLm@4EwgPxYGhdr8lo&w^dv}Njte;AZ;zh za~A}~V?;*~A z0LQthRSk5%lD3CkJelgtsNDacUwh6^=jMOV8&0(8DC7Id{NMI7CVZFradFqs>AY^^ z=tdo4Z+<^1Cyrmx@&R(0RJu+{+}CKdBxdZ zwhl;rw_j1R4)JbnUuOO7#|Mfb(!yf6C@51V`ZEQM0hOb#jr~Bjv3vn^)BaLD!eV@s zs9ZKAQd}8~uA;FWr_u=LzDZJfL)T!7xz7Cs&-f0oftYy*qiIU-{(?_8?De4Qm}TQD z(Bf*xy81Xmps(p5N~Podj0BeCvKzCpm(>m$*Q$Kb|2Qi~B~w^3Rh+9lrvvJ@dsWlFxeuWU9N zy-aNziZks6#s1N_+PtR3;{c+C=ZN_TP){4rM}V+Ax@JX zZHdulm4V`u)>^z;1^$684ycxEgSv!El3GC6w~fcr3v6lrw8XT<;J5!kS%5%KZHsxk z?3Mwk?cWYdp$V;IYCma*ng7MDp548kDNV7juBK( zuM&Z)cU~flQ>fOi-a_KQry(jHW`hL3Y{##>IEXUGTFg6=2gU0>$?U2@c)|-p^iBYH z^B}p+x8Gc}6JHY!_p=;xI(>_JU&=UnQ4itynuEOg=+#eH%+Si-F($})^eJ0?116$Q z1Evi!!!It-!s*msj*hL7pjKlcG)G8e57cRu44KasnitM+=+B4dm9ugZo$?PfFP!1b zpAXILXe)`%_M?>z!6kycVg{!%+dlEb(galag>OIsp!x7hqW7K~qJn#zlV zrDi+qyc$L4{W#v&2aAu-;{t)TGTyiR@j6zDwu2#Zt1n>VE6)4*(BT(xBK=c|KKc~8 zKJLHA-7Gli=R@aQ!tGx-BpR>H`SQ!6opBip){#SGT?QwcF5|du0WsQx+zll|F1oE8 z93+!Shm`|F&zA!j{?LGd9tu#J50O>(k1sG=g#F{7r(_P1n_c&vKnLQn;_Nzvr`s?U z$8n;A^TnAngqqHJ;=xHww9K*LJx*a=@Kp()`7}ITH24x~|27-G`Af*s775?@Pq_FB zgOsmqxPBT8pOo<9|AhZ>8a>hRsh9qIPv7K@V<y8~TZrqR&gX;C^v(P@hfiQ8I z=*$NaJYe{Mc&21xa;P82JaqE)4P4wa(^Ph*TsmReEbJsMRkX$&S-4;Ak>Ml)@l z4gny47QB7Hx>?vmy?vC^0?Lj!Wr zZXWv1S&fYm$6;-dRY@_Ubj@!BJoG>VGRA z$BB1eb0wKiUPTh{<%^@P7_-f6eUpPe;r5wmv1N;1$V_=nPi3#st93lky4xrqeqFDJ zm@DV%&r`U{E?2Sukhy(51nwhyu zFGv0+a_10*^JjbLAFO{WcSV~H$li4u zpUPg5{EqGvEf4s@#cbB6`r|QCfLZLKvNHh{K`e>}@99qS=WR#=IQJKs3Gc;0Kr`QV zJ1tzSX73&P8-xkl4Y3I~_2wK;!)v%{rOkIJK9UI0>M*V^;w*k^mp;u07l22Ln}-d} z?EC@l5g>VcDqx!rbX_EU7E|z^#L%`QY)MY}j-98VRQQksd-H8rCsl#L&A)z>3fHB4&#tIEkmsi7{V0 zO64~vMx6arZySJh2|GeJ~v$Eif{DF4uGhhn77a9!{IP{oz>4V zm~!4kk#%R+ic}+7e3KL!E$a7l$BDeVkj2N}>n~IIHrI9BvvNt#Z|=WNJOjVE{lhjw{@(g_Hi5L z@tb-(B9MIBiU7BxCrL)%`N~ku(!XJI0tnZ6gp`tx7@330k6f6=gdu(wynbJ|ZnpVd z@&jp<-ve^5FLH0_ZRB3h2UH`GSN^z6;~{E3*g!Os9O!wufyWzB5u)H@6eo^xp_MlW zJ=Q}VO7U26;wV)r%F-2KE?unn#)vex{Eaq^K8{YIwB|!H63!T*Eaf|@xL*Aq0u~T= z9WLCRHCK-|7Cqy8-J*fw`ol-d1g%{h8n-4@FsrMsDl(q(u2N!J2;$$?ACHr8rQV{s z(3lsGH398yqeh)I3YrkSIX0P@Ay1Jp%wIxX3mJera7u}7-=Q_w9OkM(`Elt@)NZ6T zzp012-t_y79O#ZQzmITLC!dIAz~sfbLd3}k{C)Tx+KO#(nmr4;a&5W|2BDF57Ye2u zB1V3Xyy{a5@X67xSNt&`&JeR=tgE3f1`{!Cw5c7q04@g?d5W5OFy6Hyn8xfxn}*~P zJ|W`71s|7j$*w6(mu?I+w-j}yv#Y>v6g8ShtEjsUfmkOMccH1Ub43?nmy81DwGyrx zel{DFa-rXbIPhhG39DRgDJ!GOxOB5{imM_ab5^4*ArUg+y`14FxKiS^%jh-hmvdDn zFLQKx*8%>#DNFIi&IHwwzBAQQ0H$J+|>(yQJ>7xn4oq}nO{Lu(AL(*K?9C-R4)T&ag zfWIof`w>-RQEe&yCIqW11@?)PF6Le}!lmf$OSeR~Vf{eS&1;0*InluN22;nk3Z`fj zD7pX`;++vb&7nZ1BqJDlpz%{sT^#?95o%Uw;#$lEk+-G9il4#ce$Gy94SJfli%4cKZBd%>x}F zmUOKGjgtATx*nZDE>yC$t+UJFp!dm<&q<=U2i5gr7m~D4nd9&Y6Dw~(wiR;0NV6>|Zk>MKL`W{s9 zClgSIrjK<&SGD+rcZ67R7ulU}{6BIL9}AijC%7^Q&h-I4G3MQ8U3JKZ>ZaLx653jd z-0pRe#{8o7L_D03^qlKg$8S<^O233xay?TZ3D}!O%G3TSF3q9*784NiX5&x|S3{sV z{o{G66!-`oG)a)Z3IEmXMFSA_5<~xhLSJk;wICo0rAT&oOa|W!F>Mm+-2Ok%p)P&_ z1TjIvQc2U4qTEa1WeZEC$bHH61a_pToS62&aGG0ZxXL?}ErGJLVuq`L>7GeNvqcs% z`G_f#Q3Uf}A(`Jol4%im;&tW0$IP4M>Jb#cjGsd-^A;14L3?^SiV$(&A>yx-7aWiD z7GYBm+2MH{nTg2u6QKhO|DDjvM~0=q_F3$z705)0z&E@Q`aIN>uY{x)@rLU#VPr!* z!xge~sjD{gC!0(7h*2wCZgbQ!S6lYydXGE^5tXO9qfEzg5)?aYLQKHXf+2;}znJJ> z=(`DVocwR;F8>6LN};!1b%VGNuRTE-&s;-HVt$e?tiiLEg+%FfD7`^ag?(js7-|kXMC}QZifhDQ@I@dH zL4>H`!Y%3rK0_T`aD)T^AS7%e6Cjqwtr<{`rhMXR&0gq<;>GN)p^@VD47byK@~Pzy z!WGQtKX>(Hj!$F$fpe_4+np#%A4ju*i)*NZz+0q|V%!%fg+;O|e)5Iuf1KekF~b3! zX{Vf_C~yib>rN>G6HmFI_U??Mo-tk=yNKnY3;EsQ=Eq;6#{>w2gBX!i8H!lqX{c^M zn(M!It!GQSGp@C4dHAjC5)(nA1KpX*?ZhLOYv*^=3xGDpEhR*r*PSFq8Rhn^R9#Bfat}Dt@RM}o!?z9aiD;^uzB;M3j-fSS>m#5h6B5nIOTX~HBuN? zkn$-eRQFO2WlF4o#Kns#H(cRjP6X7T)jyKnIz@_{&pXyk_{p_|;WD-TLra;D{zJVb zC|z^Sq7dlW6C|O(Bf&z!>&Pp7h9G%4Br0|E&YP}5>_7oqu}*sp&uhIl2g8(=w_F&5 zf+Y-Mqs{zxP-#IH{%`3U}a{ zTFyy4Q=2Fb{f(R)E^Bi16IU30b)0sU6f5)L4cZlX?t(i;8|V**i$e}$i1=i_UPxb5 zM{Y1X<-p5+ecsS@bGTyU2gZCZpK*lDhN|%nnRhf}6`2cM21fM5p}yQkuC#I+MQP;6 z69af4w;Al*x0MJrzyKU2(b2WZZw$p)E{3$Jc=K$S5y4}4lKzTU@W^-DaH9qW^*nrA z6K+61nj;f=B*H)<6`4ppu^TJu6a-X}(76STLi82QQ91Kul#%056xK4LMdg+T#+lK^ zK>Cg%OAzIsMM;cW7&#TXD2g)`QKjDxknU;@GN3wJShLGxi@1M;nKd$YK;p^FO7 zh88df#T(F%6%zu6rb*!v6(~{79GPSc3-S^02@@BJy9=4|MU7Sz3e2JfZXt6FF9jzG zqXd$K%L7Oy=vl(Zhp#5G4XsiOu{_mC#Zn}~mo05T$!cMaN--c7EojCi(F`wZpuKDn zL-RoK=InBm1#ppQa~4oqT;jx(&{(s41)~XnL>)$ZRSqKYxHQtZtD=E+41qAy5^bV^ zm`brA-l`7V-NDk8RMp6aor~v{s#JK(Nz@a>s5Tf5zEj2>ZJw=W)O9G!W6hWv#`pA{ zWK=wEW<;4uwG1>K%UNYFE8q$lqjUf)e6Q5eMoSg+#A6(b*+8N3|T-z?ey4pt!|| ztZAVUV%l;LPO5-TzeFPg?FugALv`fB!<>F-NB|%&!+1L=LbFd})E<9ay&4;Z%v)Io z`gcT6S0$ToHZ_`35U!s{`}^deeodfX)66fj4QS&4Q}LLP&|UPM`m&v^4a~2|Of`|I z7)Sz!rVV?8+C!(CQU^JZ+fH(fDxDyi&0Xm(%sI5PgRz2wmMC~$b5v(z zo-Z!Qag<12jV!3y)u`r+m5LHKT&#BE8)e+*zt#_ubYT2 zGxS7rYF{JNLDmRy36Gsi^c%B6K}JeS=JcCI&9 z2BO|5Cu5|d^>`4zkc+#q17o20C#`WCqD2jNsQJPWRBHN&4m#ev=rMYb%S<0;VDb#! zsSn{@X@oI?T~t*OYG7mgwJR+0MHkmm6l}%sGgsDbnwoJ%1G{$4mJ4w7b&G?x< z&zz2YC(uZh!WzPImU5*@jYAN=iXt^TkqLUe&`*pyLjat20if(gWh+CL65t` zpqJgV^YOFp2yjMzqX*sbjb3wyK`*((pl94+&>QYR(gW^r(d+GS>A4a^54XcfueQUW zC);7rd+mVIW9@L=mq>c19WHvJ9pC7Eb{O7fM)e#P_spmeEt@B&z@TG^;0i{>e@sXZT zho_*J-28YtJn7|hc+#`!aM7FT*&+O1I-;k?(h;0qN=NkcOgapDBRxBcA4ms;UPsS1 z_-S;w=w0+&kfB%6L57}0M+kZkJv$7Kp~G9EC`T0ZJ~=S-I5|>?m&u>WF3hiz142)d!=U%b@r@oM zM*y@?Kg}~5nW zaTpUPKAUgUQ)(fy>ht3ocW=p`rJ2ORF!`{Fk=QUAh6^#3$$vehHrF3D@d!v!9+{K$$n~nB3d-KH- zql0oHR>ZG0+J{j`PBlMf6Yd2sEe;wXg~XC2P~Kx#8O4-+G2+2eW3hrObn=!N+m$o1 zV$mw2dKh)_{!nE^>RW1@D6`q9p$v=_a@50`_p{4v5@ZG3m)nc!lw!<85)|4KPtWPN?q~4RLCu$W~(=uCCa$5n5`Z*z=arMkyC3 zvfea)QQF3eW2=nTN_?#7wA$#cT#FOMHW(RrKRI=|@v-8K6(4Oi>MIlCMD{x4!cfu# za5?fJ&Lq|Z;JV2f&6)sQvWKu5de#Ks2~B{)$yS~f0k}vJfI*4?3?VaqwsTa@kTDBq zmk^h>8HL4wcQLwGWvpMtiZ|Xhx;dL|#zBof{q({j;yokT-2%>5<51AeM4k7Hv_SXN z_l%-}?hWr5se$ev-!m!%x{JJTlnZpXc|SP(bMG6a1HW&6%6)7jf|ES)d8$~p*TqQg5i_~>0WS=?gfK%FBqhI!RRhahjcHhI2lwr7q%I7a~ncA z!go@`V2~CDgS0Rhq=msCEewV!jl$B9eLibp_(ob74AR12kQN4mv@jT?g~1>#3-Y^pf_GggDJBgQ2bd}hqRE{eF%jbGffz$))V_v#g^~5M9mOsGCMEHGUu8Y#_x!S?u z?uIVRIc|(~Uw6{{A)=2nw~b`@~F$}nVQQE8gzMi%mpSGL?bRQ54gNM-tzKr%gduJ zFAui7Jl68^P|M3BEiVtWygbhGVwgn~XprUQF_zauLo6?ku)I9L0?jz6T3#Msd3ku{ z<+?0B`CG~Pc>g9IS%grcqf|EoIrk4j( zUarqxs?NFaqU!ABkrYzEcB;!>uF77n$zC2rAp*`Ps=HpUx?ZliUaq)auD4#Uwq71P zp=dZt8aa8n%6hrRBK1s%>T51ChaFU1yULF;Bc~Io#F_D)>5PG`1t#+j>1{H0@!DgtcW76Hx+P*6A*d{$zr@P~& z$NS==boc)w>%0TAD4zfSAwWXzjwJLB3BC6kT0%7tLT{lY0RrTJB!pfcn$*w(tAGL) z5J^H&igXl3DFUKc=%|Q-fY_z@d(Y0^5Wl~Fp1FO^?Ck8`?%qAm?cP(LkN2u4Ev>5R zeiVLxY}Lvt;J>jUvV6o@l3H2C@WPjsZLDJIrB+rcR-RGswX!Ps4`>9#^I{kjG9klV zv-5xdtLkda#qH|m3wZkWN-HaW@PAd8lrI7v2eq~e`@d8TURtx4C9UCBgEs2j)>cLT zz?x9v?KV`ON3E@5{$~jcW6*5?p0!ksu!;w0I%2z;H45boia<3rajBRZ{)=iMPcr8@ zLCUSQ0q{_Xy#5nm74i?P1Av_&QJ7n6Mj|K;=Bf^nRvkW`ucp!Qhh(_exQetY1Zc2y zyXx8%CFf~lm1mO`T*0<&;45EC=HEe6uwZYiEV}e_j=!34>Mbtg`-FngQTF@f7B%c2+t6VvPatM+?+S zx!YR>{i{&t>cHS(d;A6*-rma3G)jebw8B)ffM_+ly;V(hZG|XKP-fKxneR#F;tU>e zzB(PO`~lkH(RNj*H=3n?2P@3KGF1-`nkb}<4pvqFtu+Aff*%U$QU`dwOQ$wXyxJ;% zM}(y51ae)Qk0+~M9ns&@sLptG5@kozl=L4!qa%~S&Q7?TUg-#@v+IIpFwOS@+DZeZ zYQJDL=HqqBeF42;Pg5BF!-ns?U{wjw;HmESHU0C2LmNoZqfbk z7Xx&Gyy{$M44;klKwo3}q%-=G25+j+Xscm>K7LD|)?z9x8qL{`dK%u&NT)S38s?*D zP{(ur@1jvmOLF)sgYsQ4s2bBGfxnidGdH*kCW$H3pYc~A1lD)4hWNLnS?hfUI~E=GkF98L5lq``&5Q9xkf&-K-k4+CNZXS-+K|xYX`e8+P$^ zrrJ3Y@xTS1vuy|{@Z4%`56|d&PNU#gvAP^9`YqM6F9)=uht-k-JJ-W%&tC6j(qOEi zu!=u#kTe6@=WeF@rMFd`6nWIKH~$mVx}IJm{bCwv=F$H&QfM!3q`|$ccK*7G|EQR* zR!v&QpEuaMglNT6TIG3Z2 z^|5NHu2_8^^q=yARj$4W1d5Oxo(}b~T2sS3?PGQ1hAEz<;(RD~Fp5;Z6L>7^GmW^g zuk`{Kg3i&~su|QPA$jEUGE_)EuhJFO1qGDk4km!lh8*qFNSTGg1avtst@oSWWQY|29$q^i!}KlchFvLq{uj zCa_#S(*ALupHA=PTI)tk#3o~0g7pz(7jpkxk%D}$}BD57SZ)sO8`vgi_APHAsgBQO0` z7nPR9!`0K~QJEJ4t>^LE@m2@8>k)6oKx~e;`a=92Z?%SKmSA;+n4Mrna@-44dS9<3 zEP>CbvOdSqq2L#=ise>LgIVHhk(`-Wjgq1#J$Tb4RH#;U9y4#T~gCb)pP0JP*>MI>4QY`4SM zVZFMgW&*SEZZ-xDR0k5R0_6N`qScIKzTs9R$ojI~`8Hs|lsw9c8uVMt+KJ7lqrEkkPoV>8$@# z>!zW1+%Jdc-?WZfVI8-nl1F=|C3iO6rB)7#?%Au$^HxwhM`MnG>t9A&Q6yW8v6^ua z!PzSRaI2DDx1FO=4~)Sas7oxOW+h`b!;0;kjovDmD>XgYt5jKaWQ=DYIP>rVl285 zq;IShzPD#LDv+VybppOK zIcmfNs|!0%HqMjBY^jK;m>;wXyX9wMexNnUw9>dB*4HkdilM5NnH<~QsaE9x4R+uU zntJ0}^Y1i#*U)*e*w|LxrlGdlV0X5RzCd;DAKdz+PqXsD>6&Ti*V<%1mq@FSX}K|# z7&hH2@d%YzUL`*c43_Jp&UKusP*X*%&4-oZ)4k|VurF`1aRKdbc-GpPR%bYfo{2N6%e<7W>d@Ea9W$+RP@J2I2G@!!rf1Cb zSs}`KBZm*w--nBmHoC>dzw5I?14ht=`gXRuHvl&Q-nwDAvC`Tfv-vXaX=zn)0lyJg z6gtalK+Act)VLYR^RsZ5NxVo_S{%wzd`<4arHtgJW}U%oU5V$k$O ztF&4%*D6Eh@0e?06E=len6z~jRu30(cnE8ZZ;@2ypm|npvR^vS>Pqt3JY0SuLtn&? zC)yDI(QOP%t5^CvPEIHI8*fvS(zI?kKjnP(qScLLxA|5Cd#J-!hc=Z;E>>rMdJym8wGdPd-&zEC zzo1p!>yy(}aysr_@WV*D6%7%z6gO}>$9T?>vJ|~tgGuVb6043Zoh=0GXG^Uv5Yfx5 zE^LF}Q`TahII;|zkvMa4I5a}zeDXhkCTGR&RR^c{x zj2gVk8pZrg=HITu+0=gCV$gE6Rf>MJj$I7}{YK~RV8y$u(JwXF%^**P6-Ga3SINNG zTuPzfuidGvIT=8LvE3Wk#)LPR|n7;ZZYW*b4 z3iHmDp9))xIZoT0V;h`LEZbCv)><*lzn~LPORre~9J1wltB*e|1aa{P-LK)t z$%oag0y0BuMSzN2ZxvC$ug5?_jyfCARkb2ND_*N%HSh)=^k+BV7F6pCk-ny^E-gU0 z$G(Dot+m*pN^U=W#cIT$w7Rf?z5%xnES$q#_gAex0XjqZo&0-M-i>I?tFK!5I9ny{ zXYEF-4*9RQ5uHYx*I@tY8!^j5aeO2Ch*s2NMVU=jLsInIgp;ThO;~~1B$5>WLP4_Y zW-FE>h}cQLFcei+Hlnp@EvVeO!R-EK+`2)wd=2**+F#U8`JR_o?P*|zh&k4H9()aV zp^#5r!yO%D-hRdOL5#-ll#o;RxKuj48Z`gRoOSJ5PAYr_YK_P(V`u9 z*iQQ9RYW!0f+sMtZqsW@nC^H36@z^AhSkAeXBk6HUPcXg)2hZkQcV#U1Pz#sGX#@C z1r@Z#a>zsJE!GRHp7LB>hcr93pjEL#^ZPCMp$D?`R{jMdcB@sIzCKUhYLyv4-K|{~ z-ooTR(tpwTjM*9P#@#^2_R9R*>Q zdrIYD4lBKls$E=#Lt?_{yA8G1F>a`4_c_=FsM zVh*0f$39)Kn?o@?M}`qO_@Eqoa1Nf9gOAI>Q*!Xs9K3H1-Y*jm;81&AF>_lr$TmG5o+dstAfps^2kMNmAT(a4(3OB1lnkysq5(^zK0nfZsxv+vlm!X z{q!EH0NL??HPGeI=7T5cdc*h9G+_Nln{aVp~vSxr@~ zLzYueKk*wzIq73TM*1L?t3~c2WYLM0BS=XfP$r17sVen>WtE<%L7T~WM8|5iVj_QPjYrBDBsOBBE#`!I(rT#u_rI8$S#2OvUPaMfXGC5EWr}?!~ z%UnOFPlXA~egWtE}8O$XxmqtZt zwhj8gDi^G6=aY&)7O2@@;3R2R(?78Cqo~CnVBy4vbyS`c)=Zloc%sPj`_O6QzQmb7 zIyrY?wdW)*?+;H{`5b;iO5PT4S7AYR8#ajj&?>{arKH0X)7j@yDV_Q253R6Zoo@x{ z=wpFOeSj!JKf*6cD0$3B))c>dE!CZm(8!PjPgVJp{xs~O1Q|8Vl&alxKDZQW2-plZ$SC!1NnQadMB**g~z9a4@tvMKtmJ8jUN~{ zJ|)9NiIqOF#`yizTxEP>4JY~J6U;39q?SCC%cNmYN*ybnw~p#^3fohTp0YyNpgbAi z@hzsFHfs54{3HkiOVv4T6=H)*WPnGyF{iEGTy;| zoj+|g!D}0>0uDd>rL3hg)zdQ=L&y?))|%rNQdM0$Yb^*2!Q)P3&9|S=!_H5wdNwh) z4mEQfyfXr42Nbu&=d9wCZNNEeng0qrdrU8)F8J9+Ro?UH-76}qspqYk1xewSp}h2g z1{!5ts0z;jwdg1QUC~Drsx8g8Q|TvAgpYRd<5z2z6{~?gHxe1>7HAZlM0U zU`-&I@);%xel$&PkC0ont7`6IYF4h?4ONqi_)!98oi1AQ{64R$&R;~W=)pB=Rn62Y z^b5ql=X0y9%}=z+PZO>hR5d7DmoKdOep{NUFTSv5lk9iNni#yL84UAM^U=owwPQE+ z`h|XVRCH(e;}>9wj~e%IaooO)K(WP>ua7Pa*8R#V@K= zs;gaJTZ2f3d}9p`;>YfkzXLw#N)e&TP0t;uO58(NKL3psU~7{oGKo?*uiysb; zjPMqQ@6MZO(U9+~BIK>gch*F|yS3ED?@)KhXWyajyx@Scr{RO^?z@e;@Aw{d=YdmL$MK z%x~6IzeknTso!vYgKYIXu5Y{sgeo6KElJlmuH7H_qF?r&6<8uEdAxTUVb+JhxFU=> zf|NfH0WS?9FIC73--P3n!+*MFny@Ujy!yoC?$I<5akXGO1ZicQE7xwibC zEWf87)B%r;{BU*r2iH)2Hfle%f`hfu9WtU1?o~J!)!A4*M%O~g+aIG7Pid?wJwYUp z8=hbQ@ER7%dX2L3<)!XZJl=rCq^DN8U;7#=?=x#P$#u`HIR$x<3+3oVIWp46@Dy=A zCU1WA@ELl@tbg&17UmoOMPJ@nZ%sKng~STmEy!zODD!Ka8Goga%kD-e%)eAx;+Ld74#1pY&ATvStc20DdYUh+fE zUL|ML=sMW=Ggz3kA)j4_{2a_@ukve*ZzO^CQj*sK?U@C6Z4l*b&N-9R&3tI_BNl>y z(Paynrr>77Mlg`M9DA0{>xU@Q0hR99;~5O1Rw$|>Z}}D5S3bWz-_NgQL-lsBy^&<+ z5PPx1%Zw=B`&i}`V$XnPUwi@kkKBGEunW3~-Hzm|MeHUdzbs<+rB}<>Eou)WxvZ$& zh2+(u_AHWd#q8DoZ{P*->3Dz;<6lA*C~l7+#nj^VizIWEuqTk5T*7t($m*S$=m9j^$?tRjgDuG^8skGgk z*+;~dmw@*#N8;412(=5Su4VA<@yyb8A-_ef)bY}GEXguu?2aUdm$BnWo-BhJLRKnk zCz4Dri;6)0UKT?Ga(Fqr56L6t>==?kp>|i2aiMk(lJA6~r68R!r18Hl@nL95$Sq-Z zOOoG**>V13;&n@He2SJDS{{y|c&EG_O)^&ny93Fn3J3&pYXy5YXTa0>igq#8zM|cp z6zLT?hR;W5f@ds!N!qNM{&V+O3R?Y3+ zfmDinfx@`a7!6XSrd>vbHb<*`+1xHd*7uvE%8;E}pb;Urwy^t?^lNDkB{{;#GcD0) zkq&KT_hPTVkXN2QT5;9CXoY6Pf2CAyZAX$E)!J@Gvh@(OPvIFTKjNA{);C4sTzuEs zu0XoL2>W%C*%9_pk|~k)W|9Tl*waa_Xk$+!nZK<)#eXUO%O<^)n)Q=^Y4uiHdm4jA z>RwyBv5ISlVX7^{)Zun^d6lm{dK9w8wnuo7>)P9W0?ELwco3n7-SDrd%5*?Cg>G60 zdo{_Bj`ldVsY^C>+t}sQj@mdyI`WS@+GSYVkhHUZz~5ZhFWBMCniAV_$G@Z+`GVbw zSqreWKjE)I&c0yxV-!JV2)4OOisE+4jIu}iJ&ICAJJ~%+j_QOn35mfufMov8c5jly zI@_Hz?~HEyC~9pq<}2WsXiP_tYohHJ=q2;lqcJ~2*6srLkYl@GVuk#yi#^`Ie-fIo zq&o7Mej6tUgxWh8&k0W|7Z9-}qNhwfmSV^+Ai_pD!=>!N7zJ?~6$T5>>6Bw)91NAn|iw zID{P74_y~>XFofcWN3d}@*#KhwqFqvj4W(;u zjG8gj#!rqh>d{cT*2bv*!{}NXquw5d%LJs8h!%i!6YY+HNwgSPyFy`*2j;rSFpakIx_}cr9?974})dNI1P|?3ho^shozwFKweD2d<)q+6}JSC z3sTX~AkUk0@v-O$NT-ZN--bLl785ySwKU9xkkixb;eiynyO7!~t3KZOUUVGpN1z)x z4&4#*%s6yI$adp#g9dqUJmzo6S`+L^B)3dJSAldUvd_4QXkDZaOhjzY+NsKu>^S=w zHr1m?{6M7~AA%DTIu%3k;3Q1)F!^i}dKYB)WDGUPS0Nn6iepe>_g^z(Oye((~CHpab4EVM{6NDbUwx|$)nqZcJ9x%owEp5AYnO0x&=NE{aMluxRmi|}gabJ`9p@kNWIF4MEyYQyI#?wy z1&91(Df$;=@G`XM;a)0v8Tt+6@nt9;ve0rn)&FoW6px<@gZ(j4FUMeq;@NU^M97IN z&|Z*NR=_c2gO&E+K+53mM#GbNakYD;-Im#2Vv!;Ezly@EFuY;ke-+vbf2w_C6#{@P zvl;(DTeHtfr%dSSOz8;$g*oN?Ly93gFy-T=NgP&$T4f}*(4vX<@^H` zPBhYADo(e33GI*c&X+h{`eig2(vx3CLqdM>GU^A}WF4n7)}bMgzP%0&1{t{?ryFwf zdJNWE{ZP*bRHw0>1Inmc8!#n7m$HFv&TZfr8@$40EPsV#|M?Zn>-Yz$zOQ1WK^}b- zGZbXVMw~RraU0RqAg^s?eTPkm1?kr}VZwoYvI+hm`)$Te?k648&du-(8T1-rg^YjA zo=Nh?Yp6TqfY)(*1o`#rI9HIZ-$410+ulGqkcHpGxxinm_J0$75OUU=`0@jJ^i53k zkd?RC-TlYn^&Ysp9=ru7bj=nFU?{%Wf}04)a$E780CK`s1Oj<+E8UJ$hRUkMTewIj zzh(DjP()?Fg?rPRZ`qy6vi3F%6G*iU{S)$sZCrHax9zHw?)Emm1wk%*8*?h;rMGc4 zfGn{cO$|9$p&kq*to)B-s*lWx8diM#p;P7{hPrT)ycYcNy9Vz${~ zDmu#!Bm0yrJDlY9EDTG?%aq>HR~5@fT#$Vr{de?5%?jg{c!8*mQT&{3cVY!@ym#Px zQm-9$F9z5sR|fw*aB2q{3oZ)pw0n4#F*{*7cc^)Ic4QzG?p~+BkCwt$z{0!j#-xkhjr%*ub-U33kT-YRUD@^l*}`Q>)$<*@yx&Jr zYSKG)Ly}qV*wsjW^^V=#FK-7`$$~7k2PXrv{~nxf z{QuJqBlGUH+fX`cFHR=p?!CB0glxDElgCRV(O5;*;hXp?x#RmV!9!7GKd$wV!}g;i zLmu0YfdX0aJ$qmvWpJAwMbI!Wt=@dkuH*Mzw7T>jIw@qS19r6kchPW)S6}oFD5Vx2 zum>|Jq%It=3$Hzht^~tw2QgY8w;jY6Qp(`=hEr%O;1#WQWxwL>)QCfNcrd+o23NzO zP~zvGvMTbBT_~6y_J@v6N={6}BY#+ab_geLLq}EmFq#C?J&Z4+kZ&BubOrh6VGLEs zxFhyxl4p-F4?T*DAkw3b;$8r<=qbCAs(Z|~oW#iqV^T-ciUMH${k!BbyIuj_IhKiN z+v5WPsf17H%jq#YZ^>}}Q=jo^2}2X(Mx-UAj;vY@f9yjJRvg1=hy3ywx(sBQ<95$L z?Q06Pp{sT-|kk3BA{Rw393EYoB-Z;VOZXdE9^)9DA`w)W)N?qGBAK4A;UOiD! zMYUCGz(?qP(5jEn+aSOD2(uYv|+k)Jju-?RKZVJ z_WA@rh9SN56Eq3r#ZOReNQ4qa5>a$0$XoF!fJ|=gYAW(5ZW{F;-+gwP8ezA~!9 z1)N$KkGX&=9OTCrFx5hae8xQXGdQmrrH=oJ`=_rz!zn}}@FLweM5(S9>3$+gZMjJI z6H$0+B$@)U&F2^gkUKx;%z3^*|3|vZ7l;gU9ildj+JgeTi#6WY4c~U4-2E72Dfi;~oL&>0jH6NCteve8@Mr<|BRX z8{A7kwz-Va6q&cEpvmvj3TS{wQ*-(sjhPWhHA{Q0-2V1;NE`=?z=#e9cO zhs3n+&^sXye}`TKX@8I4A^U!h!Xe-O-mXvb+V|*nkP){rP9T@u#<+p}^frQkEcgS0 zhwT3Y=G_MgXr&@*(+}vrWB$R#_5KeS)?;cJOgWUf)C$`#9^j4&GU6dhhn(>ccV3W>AL0TB8TSkB^dNWsf}VUWR-OCXZmD`a!bF9{ zl1DhZke@$7y&=p0ie3Xb_E)>H|Fu{I8LDPK#0^8WN2tfozp_>H-*C?btCxSnu!X$& z8+)n#JNjPfK5FLgxUq)3`nw(FU%C&xn8~QiA2^>-to#EpLt-cnB#BOwND|{cjWax- zWy+}JztGj7#YtFB60I|xBx*8;t)KUXCZyQ%56&87$;W6;$ZyA zA|X#b!7n|KHJ)NHLvDC#kJgUeFV(*f@rz`QXE=dSjD2PgXT^1O{73xg{rDN~5ZVo* z3e{05|KbNFBsTwxW`cb1FKX3p(3(EZAQF3=p+rmOauP_+$mP^0xht15KA_zo^pL54gLQxE-|aPm?!x6^~~8RWC;X$kS<)13PJ-`HGW zQ-=%O=x~8g9IwFpRN(zgb+v{GHZV0UaWr1g0dL3hbFL~u&HxVYPqO|K`@O?qy)(#Z zN`?Lu#D%;N%;r0SxezDBE5skGpdI0dQfX9b+WBnKCCMvy#N(1{~iwU9HCLoQ2s%bK$Bs~+}W zL;s+VGmPwd7uF|HtuO3!ru3b{ILS+kspuk3yFl6sjhW@m_f;6R&a5JM&v@OUPBokp znEX-1nMkI|MV(0`e=st>m@}Eu-xPBu*?Kp1IE4_dj+S*Qh?DB->sUN-hux{-Tx9JM zP8&+6m2d`Qv-O1%PHTt)C7oD^(IuUh3=69xC7o{ARUBN(q5akUOF3~6@0D^!K~yU3 zjDvW&w37spyNr_tF|mv@0^(X3Cl#V=Stk)41we`C8(G=`x^{^;{ zty{*ap$3IIp)i~oim(o;tD(*aHk?3)c&|nc&+wHnCkPgqVNMD}>GIAbM|+$}hBLjh z3zvn)C8Z@MXYe}u*`%HAom(m}x`Gn|2ZJg&2@ppsI4(r>in=PVRMfS7TG1H^IJ}ZW zyRp#{CDq53a3--YHK?+q_ee)qMlVEqTV-d2qu1oWLM6Ro;y6~-!QaSLaSF0-6X`aY zD75ZK6{i&Czg)%XW9$4|$YzT=k1Pr%m4oXIs~s1Yl$wJN-$Ps>60u z>ahMs9j6!Z#&t1EL$0ao^dtG8E?2W#J*OL&{2P`08~$gd6^09%sGRz_9%eq+KCS2A zb_UP2>pQU|GwVCOxmEv{jXeKT4_b1omcx@grx2M8ZNORfHgICuG>}XK)r~06bWlU5 zIGIjr$Zc|_AxB=lk<*7GDneO`WUC7W5m9Ipr*et^bJCzLPBz7})vHyVNY%QD6X0K; z8?1R_uHc5op1UwI4SVjc0hdydaK-01RBdj;mDtnK$y=%H5mC-O;Mbt&@A2xI9GHyb+ zNw%6@1{HknAt)Ss;%0<9HWjuw976%}hj2`KkX@Q17|2D z+rk+HagIf;md-$=7PrJKX)XEuv)DuqiZSC|&Y8MMT!ih&}bc8bu z;z9%_8AmmX)F!JVF|e`XC{jD?-A0Q&ZJfc5-sC)kYBa+%=CMepvKrCW$&U;Z+UjD@ zx77jGZs+s?e6gL=58_%or#S?wQdre)kBJl;Ytq`InvmJ;ot}=~t-P9CuQsk%ba3#t z{SHo1vKiI^eH`*Y2lR2s5*=}EgY4N6vtE|k-O*_e@mEJQ7`pch&QM!#wB14uw@{D7 zgO(`AfwDvtYM!O0Mxk-C)TJmiK$dFW3881HwVj-y5dU=2Fs`$ElZ2@2FhW;?3gv!?)Qzv9hcMKoM%fRnsE0TZoz?~Fir=A!eklTAYy&b(}>2Hep?`+k2HX=>!=~Sn`5h_kLqkF+O?k6&P5brn`*-M9}Th1}2wlesRb0OcyM zLq#q&CD|j=5);NJrs;g~eKB>x{$yV+wNgJ$r}x7Q4gOs}+%7CgJ@{hhwH_FIko zR#VF+qjTsAU~6w)g}?p@p|@G9(Xs5{M68oS4jK)>)dq6h0H-bO<=sEPX-V?W0Zs#w zH3vG=XfN)zfoMX=yn~#XBwrllEGAiCu#-V@>tJUY$tH2mDw3z;oGBzb#5;3Ho{D!~ zB-uT|nL+Y=g0p~R{~?%*A>SF|Ou~NK8bh6)5Wb<#c!=MIIY?o5IBX}Hc1H^Nzn)SVI9GGU}M6{#yM`X)Kkkh++p^YwJK?o$^x5z|%s zQO*R2gQGBmOjr3wJL%Y9c6_W8rVfsFIt9|!SVRW)-;rlFY?oIzZ0!yOvn9P zwEA(nGZtdN44kHD^~DU_-9@XYnNC*-I1f_?W}@R^PiN#Jr^%xaLMXF0=dy?xKZ20hnOo0p-R&z$E}DLf=$=%~cxVTqH6CZ>*0O2OS3>>JI- zL;$&QwljqD6{38F)T?uycB7`-+t()h+A3nPiB6TC?^vAa+>7{{rK`}8j2iC5ODbUH zn}_Sftocp}asX*fDB2*5t$zrF!qxVMk zBu72j(b~o2Cn&*F(DTG7J;QmzJT& zK>oeV8DQ&;w-YJMiK^~Wr=>cV7FdMdyRY6|jynm+0xK}eAUm(Xbcjuyudl!~2zhe_ zii51X62(J~Ug=b)x2(Rj(kVl7-%6(<$*U`!h9nEEf*;5(t1xXsrknIftMJ_%>AzPw zbxGD(&2rFc_(wWstv~D-fzCTBoF8yr+6vsbJXf-0(`X35gBF(p+YBC|9U9Ry`?m+gS1Q`2u1oSS%^*DlqS3RH|Z1Pfi zt0UB}383wb0B`7O%05PrEn;F^ZX=*KD!z>)SY&xXm$Ac3=`D;s5pAylV3(w&QCZBmgm+`rm!gfWiz9fJ)D#HFN0kkm@;2QzP<5dEB!{Id?!Q$pV zyx>?9UB0mi;Q0iWz0gonmN2xt#Yy_DX02z9ss z+G_~Vl7MUu1c>y2cF@*K=?#TYw--R02?1W%PxC+T3S<&ZCIqyH7%!!_6e2@60kn${ zpoak3I|$HAKopJu`V!Ea2KzA>-~lSa=MM6cdQ%}X#0fANh7i!(1&87Y7Q;QDgB-Sc5MZfdy_DWj2=#IS6S!6@1<O2By_aA`20NUgSkWT=)1h5I{4Sf!d0D?WBizwiw+-pAeP)LZ$P?Uh) z;8zSs@KDkN+CynCrMLb;T~>gx46W+@QeWaJtJNE$E z3NZE^2B?3>g(Nl<2d(3QWMa*CwnRE z+T{@@$HnA*1|JHb4SUG*i2&Lk2yjM#DfgTJQ|@O1Ou1hO@R@SI5@O1|EWng|jliN- z__&TElzYnqy7u3BDffF;-x2U5gL?vgX7CWg$1ZuA#pDrSN(m6~JGDQmVi6fb8~tn?0R(wK*Db_Lxdm8VSU?d5#RZgLP+CA42B8AN z7*y22M}<~mQdLZ7yCI^eDWDdEx&rDkXehu0-b8@O5-z}m+EM_8N|Sel5EE-#0VdWC z0!*k;0!*mU0!(CG3CNyAl+x1!x=DMR6eiC;IE22xr*~r+3=%MyL4trG3=#zlXOJYo zWiUoSGJ~-K(lqe76NJ#_Ndz)kfQf9H02A3v0VcB90!(D{1enMc2r!W?W~XMlLAa2rwHf`l&5io$UgOeZlCjB zO7E|P`f~wau>DsD=;ld#_?pQTF}cd%hJc$4z7z00gF6C#WN=Tw&kP<4_=Ul50)D6V zM`(WuF;#gi-~wAb6JUbRg)MFWi9L@16MKLF6T2nA#Gd~k^*`MJCioCBF~JuSV1h3y z;CGI!1OdHmvm}mCnKB;Gr=gseazj~NK>)US`Y1ycAywI=hJcz3>Ik51pUBcc0PXYy zXd-~Nc>**SKzlp^S__~Zo&aqjd>nZ@CLP7ZRHc&u6MPo|v_}RM#!RcrZ=+ltwrQ8%&r)l7$4C9zg z6q88|rV21FX9zG(W(hDp<_a)A<`a;erwD7Y2Xt7zbT8>H#S!!?1gvC`Az%%Imjt}b zV1s~H7;F--nZX+Z-emBW0T}<=m}H6xZD&OwI|b}w@U8&bL<@_30!-`&1en+l3ox-C z6Tq?i+z*79;6D;zg8xK-3I2=#6Z<&9ipt$^Jm7OpZ3=nBHMJ=!z|^LM08^XN0!(en2{4r@FThl$k^oZ~UsWNd zHZ=(7t-LjHg!hM%ym{ zjYe4x3NUSUM1X0t;{r^Zoe*H!>?E~6H-KrhQ(|Ho?W_RPXy*l(HoGXmwAm#Arp>+< zVA|}8fHzG4zb?cy+ARU5(Y`03w^ZN85gOn}59n@p*GswgSp7i2Lk7PJ_>IAz1bo`% zUrZj0$rA?u3iuy(yrR(D5dVq7Uw|n$P=G1d5n##<7Jy>){Z~ODrraU|Ou5Ag(Drb* z1db3$X%Fbym-SL^IaZe!P=P^Z0aX}OXF%iMxU3~6#z|cP#z_MK#z|uWw3Xa#f+K_# z?g1TE3oqriWOamqNCxeELfSKVK|mCPXaQXqbQ92>K`#Nl8T1oi!WtmJ1TxqIKG#H& z;1SmZGE9I8WP|_{h%3MZGDd(2B$dED7awDBg!UQl0o^_m57YR|sh>i6+WPKJa7H@XCC!`i!*FDgzty4yp)^G>Rke8lRXO9BY<|;1H32T0E5E< zOcBQf7^fc`rv5Km_u=FtF)?005n#NYA)t4`pT!ZfocDmP>1STby~yfI0={JMjeyH^ z{^8-8kn3!6OTf1bZVUKf9-`BCoc#vPC5%PPGSgrg1vceR~*4d4-e?DdU+|gH>>*z=+9uF0jU2VCh=lo zTn-groD3IWoFoY_K1LJJuO1kKBZQUe0UcJFmvYCkdg2ipe>%e?CR4>^8iSbvd<^CY zn9E?kfCUT|3s}NnnSkXCRtfOYI}#A+S|Rj;1b}q{)-!ljz(xkI33#2s76GRA+XR^U zW(qLX-9eS&1~B#AEx^=wj{sBO{Q^vV4+=2#JtDx=_qYI4-4h=0xu(7+J>r`Bo)Tc{ zdscv{?|A|{`r_jPj?iYGdqAJiYN*);NFAtsP#0!$#ej(U|ff#eZj0tpac0+EIY<+KGUE zp+#pLp_mvC=)k*qDYrYTdkLTyV8Fhg0OMc)10VdFJcGr=Z<}wsG9|tP~Q+>LfuN|pBuo$`nH&u zShEP|S7v162raV91G-J$@lx))tllSJKZAn;4ly_?;24hR`ul;96Krx)z{d02Yg%*VB-8-fQjr&0Vc9<2>5i}OlVidghGSY8v;yZ-wH61-4+0OPW@0OO>d0OO+}0ebO>+XzR9x~T_r6yaXVZBA+|-fAVJHIWRrjexcc zItb{xcwfK=3_cRzJIUmfkkbr46<}KZf&kNIp9?VU{G|ZX&ff@F zf+L){s{%|j-ymPy0H&S46=2%=wgA)4KMFAId{2OB=LZ5zJ3kU&n)!DR_*~P@e|f|; z?fh7PY3FAGOgrZ~?!|7}IgbF-&H(~WA~PDmB2Xb3A2yBvd_f-3ojJryxdm8XSU?d5 z#RZgLP+CA42B8AN7*rHs3auibfR9b83o*si5@3p{E5H=ffB?Pq#%+irRHcarbWNIh zDL0(eEd{h<5J|wNJ+xucUQ9YLh!SARh!$YHb`@Z}_7Gs4_9nn@!@&{a?C$}J)8`KG zlI}p(#|faf3FJoyqFi0_HGyQNVl#iv$>t=>m+8<#hhJP~&73fork&SdAk@vDO1RikG~U`!cIH z2zZ6TCIOonydmIC25$*ieH`^i8QX;zuh{~O*IfdP*LMlfyM5d}ID(J;9?)?f@KWwU zRv!^?l)?KN_{hTtOg<8mlMGG?IL+Ww0p}QeCg382O9H-R@Qr}W46X^djw8DNyd~sY zHn}ap)a^$BrZ)EknA$uLU@G%SfT_&y0!(H8BH+_aXlnCVOiXQ_2{5(E^}g5YrZ#y5 zP;F3|00Qj>;Ugc80BjHF^OE07xj|a(a|;Nemkc385dlRRln_voK^XyM8H5Qa&!Cb3 z6Gc@4T&`P#0gXRXZf!9!<<=8m%55mXl-qb0FA%NLg;->08<70!eF|9-x$mkKrd}VmRSP+VK7I)QwH+{ z{4YyqnNPr{Pi}4|3&n)q=>)Hf1q3ok7eH@yg2gfc^cp9C6#@z}SS6qcgA4)1v-tOy zwL(g<$x8z01yAt0PCyug4FW1McvXPushb6uuJ{IlrN!`3m9uOG!1^x`-I=$Ez6R^J z3#iQ?OF%saI|MXjuuDJ_2JZ-<_e7y4djzy3fd0QvNCca_C%^=Hh(J*qw)C&XaB|cG zI`HFO%I(PN4+I$dj|k}3HPIg%!@(yW@M#aHy`&q%`m+MMGdL%p7lR7|`ZBmEAeO-w z0tPYoQb0U|uivNNUvykUnOqi=;S8<{NMdkZ0KLl!Rk|^qykZBC=3ZNHUAqg8~9}FeoH|-j4+zMFh}Wu>gtz__!+jnUoNdgA7UuIKrTefa46x2{^$Z zOu$J76$G4OP)WeqEWZD%BIG=qR17kN|q87qY|&ptpGeBp879ufk-gm{ezwD8LM~kp%SXx@xn97t8Sj*tBfR`B@6|jN9aRF2W z-G81Sl0_Y86Puj$fG+eCFXg_@>eB+~4QX(2R=_p}=LBRjxFBE$gNp`W{OxA)g_!JN z@TGwL489g{kilgEM;KfcaGb$)0Vf#T6hLoaqu*b?6>^GAz87$o!4Cq?Gx$-!MFw{T zTw?IEfUg-m5O9UTFAQk>UuW{GnA~FUy8v@u{vt4fzOme9i^m?&C+ew}a(`s?zXI+t z$aUiXILPB8QjE_1LpBNUfOZ+^rQBaxZ43B=L4E=BdN_23U;$4U6cF$)gF*uQcJTNs zB81)-2Pee@*?!VJO$6k|}~1YLi1?MpJLBqn7TR1px$ zpqhXR3~C6d%%GM4dfglXsUx5!gL(q$_?R>hQlCL10p`3kC9sB0R5KjGYYPwP6V=K~ zdFn_4d#SI4v&VKG(Dofn3iWTv`WHOC8^NHHfVK>x1$1B#BOr=FHv!QMdI;#spqGFi z8u;8kLVB}FKLPz1#0oG~8AM<@wZ%ZTi1&c5+Ym41#<6;sfFTTq3-Bc}87X8W16RN( z2BQTeGe{ONmO-k3@eI-gOkyxzz*Ghk_4w0OnZabTn9O1@Rlr;Z(*?|DFjK%H2D1dD zGngY_IfHo~@Oe$RfXEnX)75OU*aNyv)4i0tmetDyyv$&QfDH^*3E0RWL%?ec*6Q)6 z3w@KxOJedCgLMK-Sg#N`MBm~w*;kR0{&reTYw4tM*{lgg3s9E z9)M31U6uQy&$Uxm<)MH)3?2yxVDOs&dgUT&|A&D54E_=j!r&hP^tMI%{pX30qHOX^ zKnVu_`_PNLGy^{YF~}#NDg#RcANATAOdK(xS2V&&kbrs&LIlwJ z8DUXSKobUq1%xvwDxf8U;sWS>jWqsB3TewGr3KL28evgZ0KKRYAXI=kmlX);H!yZ# zi^?9*=eDYsa=Wp*x&gTU(JLF_vZk0A4|NFWcQf{7i~1hWE*p9&Habh>5A&HUXw?nGDqHKRH$X^~%yY>cUS>k#K!HOh0Hy&!04LO6c&kl;rVv zp1oHU8fWur>fI;ost!Gx&7Eduz5>v=*WcRVb9$UP=WWH z3cOCXGg}r&O-mY+kcL`LNY-z5^=kPd>x)r@DdUpprLPI2|39m)ro1splM{#if7&Um zEj$i?XE7{cH2ocMI!IbnR##Kh2qw6p}g zwp6R8vnr6ntT7yN^WGyg{wpZOmm{s&cj>Lgx}@l(I@_CZb8 z1fE&T$vS;ABd;;XZf9U|A)VDc{UI}N!gN0-UM*Bb8<}{G<)DhDonc@oO-jtruAQQh lp*uAZSR{bJ^moj>A=7=Cc{NeBE@S3323oxRHZyNMGXR0XXm|hs delta 121080 zcmZ^McU)A*_jdN)%P#CLU1=7;-camav3CV~hZRs+X#%zs(Ilo23o3e2E$LM;&2%w6 zF|njKBc@kNOi$GJd1mge0=32+&M!v%_djCR) zkviT{EI!jJmZLk3xw5K->2!-=mr;SPSR*?~^bKdov(M*mGwi2bjwb@E`RTvW-UF2-Iks$k5 z8i{h}G~{Kc`yZX3hFoIT`MZ1xOReY$Hz2Zp-p|C%kOHq`7U9S)(G3OTvV$d*B0qJ~$` zM}_O2H#*4HPmB?cW>TMRHIltE43FgAXk=QYB_)M&GR7S3EMJ~iv%aOI9`>}9rL{E-;*qG(8kKF65G%YUap6zu8Vw&Z9NQ8ks{SYKajdv2iAN;%4;5f)9*w zjuDC{Li2nTzU+!srBYXl!DQW~_Ey6y!wwr6a$%z3lB_o7!0l5_kNgsW?5j(SR#J7P z5hY(8MO)HW86B(@i}TC255RCmEi-y=53?*e-`R9YZbx&V6niZXhQd*5#xeI1^5ryR zoV-+uwCKnd@>NGO+R;;n97n-xV$rH0hmD~jzTA@X#j^JXqrG&y0@dDopV3tY^*6)C zF$68!`V7WC`8w1oIxf(0)o&TmQoqc|!89-|nOkE-=wi}0fm`Yf)9KExDDxGUmzH2y zz%yzjQ>F6;Gfc8R!RP6LRx@u|erZKPVSaXbMSiI`@szL6(?mA};kf*zcM98DF%@H!Ghv}BdnW#qT zE--W)hdoZ`xvQ<&SuzJ;xa(UP+v@LAp2jCA-UE6?=F!Bn%gWPFP> z$G=7U*UU#l)g-U|#R!*{dr|hTe~tb!=pDmlcFU`geIZsWsdZRG7OFKXYhkasDD-MZt2#{SzpR21xY@cL@5evmWXC$DElI(q1AT4heT8N!PcGSjm}Vxn%QV)b{8hcRQ&* z1=5;%MkiUY!04{$L-TQ#M>g+Alu|buBVEh{d&W{+ z{p|wtm3KG0O6)CQPBqP*5(rF`HbDL@L(ikrF3nP>WVp@dYFt8d%kt6Ql41(qR zf6klujJ-c(lA4bp1?9!QVoITbl3oGMDy;_Rod3xku3HXH@2=&w673tSFmv`tq0UEl zo1LtZWyN_??e#$L-izg@9m|%A;(^IBX0H zDJ)skwbbtW;Z|$8X@uoQ24l6j=1g$qw@)UBJ|R z_Y^{va4EhV9Qj}qGfBGN1<9AQ7{x0oTH6Y~~K0?RBV@QWn&bofBm_&1|qq)>Na_ z_TMm8^RGca?EMUSz?Ki$0!V+8Z0ozg4&l7HBN@X}9S6Rr0^uwz%P(A3BTMI4jip5^ zuu|??q*E~;ino#^@_N?*8CL9U?r1JYCt?Bx=4_goTUa2~`!SbGKSGjscA_POZ4zz1!-j#T%IqVd!cJ6=?E3TZB~@jNcvhVH`S>j&7}KWq=z!p*#tjI?F&Y! zZ1H*;%bEf#Jv+a~oL0+5{Z6w}m~Ul45&5S`D+eVVz+GR)m?N!%;^j5c^$JWv#UDuK z3@I-ugiu?03hG?)Ms$oh04rEv@go_u6sxp|D`m3iL= z24Q0)2H|3))m#>A2aWSxR{w)#r-hvKnu%eBpO7gfWe8r1v*3aZpFx5ph zg>nE3RwG^OLz}f4G(D)$w2~%%=#lMY=|xXFJ!FAp)sotFs0-$}VyWhGAj68{X!W;> ze5DP$5Q|~BT=Ts#(zzUSJ-VUjgpD;o*4px6leoR8QpXmefj#=4J zB*vmVZzo+Z_qNkrp=MoXH1x4k(N?UyH5amRp{Z5?}tspivxr&A3v|HFw5|nNNA3bSjKw*EXIw+0@AyCdoU%bdy7=qhjA;mFMT@QA=U!xw_NtUV6=va>@U-{L+&07ccN8qctZ42k#mQU<}5EzI#7C7%<|n~W_w9DA+%2Y z0Y&BPE@Qf@pg0e!Wx0|kv3X$Zn)Mz%)(FX8siqEAtaptRX?j2QUoY0V8%s{EF=G1{ zMu_9m$c0Ms@0eLfU&ewK^(+)I@4Jw@Y9kiZG|gg62E}n+$WkzRb*X+WQ@^bR*6#3>wiRNOtIil9DQ6%`)n1n)7gDmU0%AnT3fsGM`!*r`&%WY*-NDEoRP09NQv)VxU8@+yRcvh zL~lF2drJ#PMZw~l+qQp#DXxY|3EB%Cp}VSG3MO@{(3J({73DSS?H%o*0?c0QiN=Uy zk*lTF0qS1`$6{PY>Ydz#)=)Fla+UeIIYjHJfrTs7UF2Jt%^h!dm>>STf4{i})bsj# zjUke^9ZGrKqed?-QA3^BCqd`soaiC9y@BaOe=SzuslZ1DR-{DqRh2K{2GUp4ilGwjYEZsn`rW+Jy#-sZ#$W7E-7(V@fFwsQGI7R|8kyiv2p;93{8UMs8{! zu2yasJK|lOo;B-Nin6n$O|~MVYSw#8mgko(FUVifWub4WV#|Rn%`1bi!A43ggAib? zW#9-b$ymCFVoO=%Hv`)#5Q%VZ-HAv6d1_nTB=)3kBv*gzZ2t(G= zQ|K!z&t6uFy*ei9CXA`tbSdTTrp-nKcALt8ay-xM=*ch4FUl{jSWy7gGpLry;7G4i zd>=z|P-Y(JRhBgGh+-8_DE;yB8z6wOs5X@ye}=iGMIM++_t9VAbx6;~GHH+}RO;J# z!f2C;mt-GU9}^}{YL`(_zZ?0f9T4n8gN*zFIWrH_LMb?dAH*U+<e@A zDPBS0+Z8QUJJ>UkP=wUB37eoE&XPhj`H~UiE^}TPhAhNvy0#7DGFk zK1X|5dNXSC?o6z9=_zI(CAY~FYQKd|T48VwwG=A5(&asv7$(kyf*i1c4c1Ceb)3~j zs;|Ymg3jq1qRchg9-#Wj+ON^0ke7Nnah8=-^i5Zd zv2{x9Il^fVQF?Vp+50J1z~x3?z1idTaIsQaWF8hG$K*>JEjchBJrGbS2gt-zSg0Td zl@8ul4hZxnrLSYPYO9+}=64k@E6QF}x@_ATsGMrd54~YVq8YXUPFXXKWMh*NXm}qd zh6|doB;RK=m%1TfA}nWd0-+qKO_R&DX>#C5WLfq+_yGekTL!E)y&|Q z&8hZlt@KcZ&axt)X;oK+B}A={$ScV$?^3XQRcC5+<=RN2#NQ?u<{S-nnocelSUPDP zmHGdI?_e&8bLW;6S755;m#MT$b!crBLRKm>nCV+k{=ds2RI=cnE7euLc-g{*h533H z9<+aibcNamgWm+$AG-WxL_6kjIh+<+mR*rwjJ+fWqEIXDXR5I7qr(a?Q8D)uB=fY< zX?rpRL!$>U%o%&!?OfT5OQ4?UJY--VgDJw$J}PRWG*qnFg9&y zX>4QfyRU(wH~(|2bT6JWW;+YYbI}hH{VEDlx?Xw=x_wtiC4KNB^Z*GMT%>re=0QiMC+DijpS7y=Ei5hSE^!swgUj#h`54TC>%5+JNf5 zG((iuPot-aO^z}#ML}CHDJ{>|D^|_=Zjw`Fw3DXSxxCUUkE4Q3vazgKcK>WNmCWsC zC!=hkWW-=coBWp9!}KpN)eFYaYp~WS6E9FliyK`%xB3sa+W-HSRH(ub^y3`~+=wMm zswQl|9h>qO?f}!mypyoK%Ig;2T4VaQYtSc@oMB7KN{aJymtg%lI>7)51LPnFZx zV|uEyBJ!zxzCesN2Vq1x=2Mn~T1*sh|Yk4x@Sy)o!D=O3n151w?qoHk#hMj;NI=;c4B)5!v znZPmGAbI+AXiv`3W*_O?7;1^KLXxYk>zhx8>?gIILcET~JRWPzZd;-i1IjrW z)C5YnvI22H!xsC>^2(v#E!LBIu|5=obz-a*5ZGJ~aKTJc%;Pp?HQzNGmN&KM#FmqL zOUa0W7Oj@*U9W(7P>ohJRQFT%8L8|AJD_da9S~8771dXk?JHcAzo5(~j;3ZOt()Q~ zvKyi$NLH)|KU0ljNxctBh?Rn&L zyk2*?86H}*teBbhd@`5~wq4`E% zm)h=Qf0#4J94QYk!GtcaMLVvnz$8GQBuLaYvtvlXawbqBCF(hIuwWhYFrsazJ2S*` zg%&LXDpsgMpR^Ea8Hnzk5gMY zn}iIM_=BmGtYpD>-pxMcgT}x853pols~0Ne*T9aX^u$YR?3rlPU!Ny(`>CurJEN^o zcJl(s>uHWReR+A8EV+V%8>g)Hf!T0iH_!8(kUC! zAoj=he~l5~^ySnKChI+{+9(x1gv~x?+(__w;Y71N2D(I|FJg;cyB{5*jB#MHZgSyQ zuqedkFsaE5^vaGWaNGff6uYtwSne~{gU8O?1e)GnlBo~x1=J>WqCQ7nF))>uzKx9@)aN**Wl7OqhzLmE0Vej=;`j_F=xlV5 zx6@?O1?U<)b(Usv=t*_XP~RKE0^7bZ^7aVyILwpw0zp;PDlIEf>o=qVOuQ6BIZ!iIAvu$R2xTwV{oZKOaKdR9B+IP?Yq@w8Qre2+m<$Kuc-+8C>_ zd*tp%apa`uu+-_D9mKwz$;6`iYm%9tM)m6NMu*gQUdQl%@hA3IRt35ak z>ua1Gxe~CwVT+)x6u?qYF1tIS;Ytfku7?nTg?4}(K94=gsc@qc`x^XXD^oH0a4jj5g?z#^4pgq^S z!sOjP&?_^R!`7gVG}Oi=B?oQ6fo{9)^T2_MKa~+{&|i=x^jLt2eNiC{2Fl%__B{0F zl=GOV(ZkIZj_#@pw?mHxd+5VEvlu*gqP1D36<8SShD$~#b8bi>*2q#N%B~)RqXDID1)J-|Ay_W#FWE&USag)YY3@Z@G_Hp%Jde@iJ`o!T zC{1eDj`Ktu-nYk2t6NvJI=RvlsnwpHFBz`D0l=bVSi;IRr{sJEp}nwRB`rL;+8U&+ zR_TMW-m0@Xa86sY{^GOssg2(Bv^Sg8lYjgI%O|VBcK<>!tD* z;R%@&yIGu&Nya_!XTYw-g$(P$olWJJncxfTXxmH5UN_Dq1E(K?N{7h6hcQCRnzW`d z*!|*jMw+9oto_5&R;y+duPz+kDha#!nUFy>9*;b+7OGzMRp3EoupKuC0#!}OixIo&Ca=$jEdTk(_?ELvQVUB0*ghYHXO5~Rzw)HTLfAu_2A7W_Xx#gePcX0S8$ z*A^C@Xs6TrO1VM|(PMG+J4~d2A-N-ts$jNLJKTY;z$w2vELY0p_);7`{^tzbS?F6u z`-8HzpZXMHAuul(F;$kf^E8#}9ylnt=ly!z|F>;o5Fk`>8qD zz`=r=iHeE8=?5nUrJX}S^$s4g^pJXP0+jVmP0Q#1#k5qWq@Bw#clDuAtOdg@_uV{m z3tNz1R$Kxrc>!mTUKK3LtpAy8aykXp40LxP+=!Inq_hJ3w{I2n#a%OTET<|*v8>G? z%GCwRX$#onN^yYDK*v1425HnOSf`J$CaAs-81kI*&SXeB9x~Cx$;|f^b9X*p9(e>a zr$_Mgw7CJT{#YMOICYYswBS0P9_>00)l?~TYW}TRXf$#(lHIj9ltK;XN~Q~nh;oU! z{zWKp=zD#7VEUHi>t5NEWAt@sw=HqM3mxKz3s@-c{tM$m+v)a4Oe*auvN;PpvwAl8 z{gO@zoy{d(rl3{Oyay%}6!{im!xN=<)JvBYQa{>k+4H*ugxXnZVb!^;yrRbcTZ2?;_o2xx7#-UZ zx-d-~V>(++hzB9=f2-8FpmbI7f*Sv%B!o7XNi)F<)njnTxFtcN$C=IKZ?EZf2Vy-H zFK>@AI~(7}$@wwn2>>~unHf7Q9LX_ z?j=#<%;r=%8W~R{vh=Qwd>J;*>}B*zlq<%WJ)J)?%TAISiIMqioEhr)P`(~#_A^lF z)bVBy=U6tngVt1TdLBE`%JF8X^Wg^6+ro`Y&FQL=H5Dj#QNcFektk=!o86u7vTZ$e zUhu+ND- zPvi1L**Ved==fL;;g9iHy!<&4>64khh1@XMY#OZ1jCh$h2}w7^%f?A&vLjpeOftJU z`!H&nl;&X>3eQ9vd$6`$NN6rmWes}u7MYNVp0hZSBWth9pSWELiOxN|0>+9iJo{vdr$uGnk-p(54IqugJ&NKyzR71UZpqCO98u*SD0- z4@1K~YAEKBb{Sd zqAgu+oNjuY6G_nJNX~4-8LIR7Ax=`~2l8(Oj(GJ~fndx@dgeAct*qrVxX5VHtNQ@0gr14ZDJ8pDL!!f&tF&h?x zGwNt#5SlR;r-6qPrP^nXj&W_IQQAL$6E#fs>aN7?A{Y__lA4hn}t9^+n>XtWHIPBXrWXRnTyE(^>E zV_dupUSKY89%B;a%c_jFkxnnGyh!^gdC)N z>hs|VunKnS+e466FOy%FA4j1-@>P8De~#sPdunq%EeZ*g89-&Wla2^&{q^ zWQD>sq3aTBMrwi9qd`oVM_jUZF>>6HC==NxDBlrbT-H4t`vyuS93kByH#2Pm;(-T^ zkTBK4uh9_kEx=9~o7lkQe>2#+G`s7X=?;*K1(-5#qaXcd52IUxZXfnqp}GTpPLwr% zbig8c-f#AG%*B=r9vs-8_cRV9%G%3ee^bWqswMDw9wGZ~LZ~9Z8XjddOO#{XVFp)} z?uGC`zg1^If(Hi-i}monCRumc32};FxJ*;ON|4>Hbn0%>xyW=HU)mI9jlZhM3^SS} z%D!7r2~hePJ1%{6@$y!O&gV2-x0@lKpo(dC!N4S`J%Y3WdYGIjMj^Mr#G0a`4|Cu! z|3=h|Q6g+dQ=RE;vSytfKvTEd&a*o@g^s-{PwZNvjK)cl*&5lw+S6KYD>c2wHP9=T zV?zO#)DU|P?+{-ybORM9eW@AlIIDX^5nuz0GPc->4lRX*xDY2sV_&zY z7IQ*VCX+JWu~G(A;7^V?A_G;2du5E{b=?-8!Ai4brrS7}AQ9zgZ)UCAvb!n9E-s5Dev&R3l&Ab7Rc)LFq$gWoC0XWL{azcNGsFK}RB1h#pU;DN@4oTC=M@drJ3uc+R zBXloB%wUQQm%v-Lxepnwu>0^!LT$ zEjZ^{jUl}7liO?e8GMvhf>M9V-3a~tZ@iq`Kz`*lgpxDvXd}mNwQ}X#bIu)uSi9}f z$ob9P8=w7c;i96z+b_nE94x+vU2<+bWfZu#+6cEv!{HjoS)cQ-yN8^);Eq66?|>aC zX}|+*Ydn!?q>G9Sdqy(v4#}`9{g#y8k6MD#U2eP@^RQ>4&a2er8E!4&z-O(2r8D5B z6ls*&vP300?SUWVk3sfeVHi3yRxVxxvGZu6>h}hAZo2Nkiv8dz%r zBiJAv?BmhKR=aAK;+L+2q@S+j(>zC|=2;br3qH|shB(<6{1mX12jrR96IIdM&kFY9 zI(vK+9sBusyLbC1Y00GM@BwRN`PtyL^D!S3?V;<;{0SjPIjkr+cy5Y&N~Y5a39_FGICBH`T|?t36ed|Wu{SUT%A2#lJ!&_~(q$Mm z6&tsTVyz6s3YH#e`|6Zy*><-$k^0ggk^caO=ha2rR?sb z6Sa_AZZhM+h*$`xI@anrh>}~#ko9I`t2^tbq)q91v%AqaUb4t`h@c#_LhVkxE`jpQ zZaMBvMatcMaj>Xb06)+;qq7o%eFZ+3QFeU>%I4bwtqdGIH8PedL53eXw}RZ%u}!ZG zDlZ&81vIIZYMh5j$|hJNuow@QVju^)gZTMPrUzD^UBuzlxDvTk)8|x!eo~H&L+jU6 zLnkP+Ta?obM$ik@Fkmhkgsm_V+%J2NPzrA~hdE%& z>W*p$VtDMn?`ShH=(s~tgSP&r+kFRdTiw>W8nm^yEi_aP{kCDzj@IL?2;>y)vyahM@i&A8Jqst?V#YdN z(Me%C@8p5`N|)AGEv8wH1Cq(Lj&^l-LGeNzI3-97?9f)I35i7u@u1NKwufgmm$?gb zi*(98x-6bmx%12IIoMf`UEmfE)Uw;aH+QH8xM54yNgvQXqHN2W5@mNBow38ZmTKZ! z-Mu^))&#$;wpQO^_K;F|2RXjy)EObq-2wS{(Plm7p{@>IV!fwr(GUoc;vI@3RO07% zAaR%flXzuGnJ#st?s6LXW${k1#tRJy&wyZDP(3_MJiD+{>c}b$m-)M(`TeK^q5_xw zbcVCk%4QG0b2m!wrk2NHGJ7{NXsS632a}zpb~k3(PMcfd^U?=SQfkVo>njuQL@PGw z@~-+PsK_3+^JkpMfMcyL8i!y?-$96nm)$h=O4ZSxOKLZqtnM-=IL>IU#6>U57F9KR zNa*~glODEpI>oK<;@cld!GN=aQXyJQe1YRkwl#fZt%MduighOv4<8HFnig}Sg6?)l+Ka@i?5D& zx24fKEK)J5dTt;eC@Z?ap;04KuRb?scq&s!JHYZ9}8ssE1<_*$tO`d5_RFXYK`4v80 z)F>^Cn}<{$^S2mw*6na6`H-1~qi(f!25!iP=@KT|d0SecONX^*ILZj?{N0K&zu*o?&#@)_TXmOK69~g1$Hh^VIzoI_LV-5Vx_7G zHl^>SYM-Z~5O5>!8(t9D65rXdIejH>H|pd66*51!lz7hLQUSF6X#y){T(~ z&jgzSk5QZao*aAJtT3L7mx<4qGX%~hjiD&ket@WfOQsQyYju|?0-SOp?D7|333&>M za9JSQkt>x?n=@tXet5{vKV`Pn$#FK)!f^#o-U9gr4od?#;260_4M|&2Z~F)n6R`fM-vjUlzce@{Cz%9St%_AchN4LTC3nRZ7J? z!LYCjo9EXxsIPL$g~O0j&O8e)ErwwJ4r8ej!F40XxDUI)qXEh@&zT3SZ6Vekdh@5t0cpxh4N zlpktu5^hpWb?O%{m4@3P z5m0Kneu7a^DRCDzutm8i$g)u{n*H1hZQUSM)fpG2UNlGG91hcVzL!@Mbl&R{bQh}3 zn!N;T*?p|W!E?qO502e+q~8;h++=}3S6*}GPob~g)%27dA=R4I1!Nni9k#(v5eP!%x z81QYuN-+-$o(T)(N2ir0^t6=buVdHPNwH*WQbrk5?fzlxXfB=$3T)0B{hyp7=v1mJ z&^*Xfs+zc4(AaSgt65+@@}D%kpd46q@0G*G3?O}6HST|dd$OuM=GM1^$ z`dm0uL2;iJw$SdHFxF>ISXVp6LVo5tnux=&+UQ&T2ae(#cH=Q*5BD0($tm;%jx^%b zu6T+}dIz?{q$F*t<0VOX{B${?`!UC!+yd&(|65Dg0}*iLSQS)A7Tu) zW#9L<(GR2nlKCE{_(@I%m=CgK&wF5s(abmX7d&55^1d06c6VZz`ZU=T7jVMW1spxR zHzcq>rl=d9a{PUDwuvsA>kf1fTr~p`qKt$j+4q5&?+E7*OyzS3v9kI@3}Q*Jn*Aeq z=S*iF6BLx{@q-@|;SZ`qUP7+4T*B>rusy-v4Yp#}N2V2Ki>Om-Or}Wo$7pExOAPm& zF~H6$ra{Mg%PRt-77t_kK{S}Y_p!b_e@Q{HJ)XnRKe!?bUd*N+Z$P9BWVaoA+3-o_ zrx=~Htd1I;+IHr6IsK^_Zp0_ag-^{wqm%lZD@Q&9yIv#Nr@+4~C-_K7z!ufNK_#@u z^nv4$U!JlJ(ObpJCY# zf;S3ucm71ZKnZ?TjT`D=AOA^G&jjiP|HDY@W+qfE%IR-T3|H6Qb@GF%KC6ugRYb0O z;3OP-L>)RMkZ${z=!lQMzzW!liwesN-q47|y=)!*Gd5+Z?q0b2Hge8E`Tzkp@dIo4 z0la#2${rxNgz+d`9Vt8+C{Ew($IaHjlGBdEe_|O%2>145oX@k1>~Z`Y*OBehtABYS zsYFe-Z2SgY`6bIQ&=vB23#ose`Cz1RQT1C0#b_|lVf0ks;gm>gGRGb>NZn*ji&#Q; z_~p8Ge=CD!j?qKOngWMN?RS_7xGEiIS3D}9&ygANU&oJe8&il2uPr3*~1M30&{ihe^a<+<4@qNI=0`=_}jg~ zeqPSnDt5rjA*1<#LA2vluD&^P;%D^I7wm*U_!L{7?k2NeZv3m3xNPZn8r!FfDp9z8 z#!2^*Q<0+d`yZM#z-F0wvi6J_YqYkPCFNNO*VDj`9-BL1inxK{dO?6 zO6XGY{9}fPFws(-@5+D71jl*R_YwN;pzhiSZ9c(eKCkgaf*ko5ixj-XqKxz;e)zE1 zL+j2rO0hpZ3}JxV3Vm!=o4}R14JpdUJKAv*wWTG-Cu%`bQPoAWXvYUyVNh>6Tz3%* zZ+Cl1;G0~6=N9l(!bOPP-__y_RcN}=+aBYY97HUg`bCIskKkFWCNl9ml&f;X3lZVQ zPilwKT3QbD!*@xK2(O z)|JMuaIP_}mCkP|sWt{*hic(~(*ie$bVrjnEi1x^vQ8+$IwB~;jrK|0j| z1f1hMaE{ZXI;cUmber?$?Mmisn@D zx~;KB<3#a|!tNZtlHH7^>M#?m$hRU+xX~XkT?%d`9X+^Zip#;Ywdsw47@O~ zH`?ki+q;+n>-l1yHVhDW>qaWP_yBxeY7AeicF?9U` z=XbV)daT`5kEz2^7&l1A6BaIc0nuUNRd#t$I|&ZZ<2F#^SlP`4K?_)=quK9JqoOIC{nnS1&Td zYf(}5plz}TQ^oAk*h(-4Df<$7ky+yHy9j%3r*YlO$~5|Va39I$>WA6ZvBrA4pHz~9 zI4c~6Rb|_R^KMV0#%81XIIFjjoWw(2dw6gmvym*0w{jh|v_^sh=wFY=cRY5P@3BmM zFwBsd309=zU)>?pagz)T2TwqmF-8{zVVLQ(RUTJ7%Y`0G>Npbsqwy`3N z=NuV=%b|f2wr;9~!SY@k2>cbecF0M2v5hs*c*tgNm1q55uu%z$kY$Est))$Lrn z;r6J~+a2#N*?ZF2m?qt*&|$dh*!zmE~T5EW`S6gPCcSW}EdJDPfHwD3WchHTU= zhk)x;7geB4NQa^bU!*S9SR72+%2*w}Ot3hj z9LJ#s0eA*Auo(0vzhL)izbB$!8|{YKGF(meF<$jRlFqxI?p&33Qg<}&aj155QB#zX z?$8M5+meGXaYo=|GT13eD!Zx1d|QwsLO&zc_CUZ#kBH^ILR)-pDb2_AwTwo&Uc^oAyA=sq9X>Q z4n1*XxPG`ocgifS5g|@z`5w=B7`NLw4Cs#>@M0QIKyfd-kCA1ww|XzSzCU_vX)v@i z&L?x1=p64-K2C6Ru-}yqoHd?>n+vP<$pB zx)hH0CmX|iLMctVtKg*Lq(NcuU+PwZpN{ z{f4gOID_2Tu}fzic=ak0jHcaY?N?%>jH_W%?x>@u!WTT>wvT(L&y8|CqdOEg7Sp6; zBzhRHWU+^N`86z{SHD4R48BGqt@d8NH*G6BIN~0!$!#L-8_~MoZ&&?3*728AcEpsx zQ&p{P3BFcqkq3I20WETVfGrWLMI@v&F7Vm;@3p&~A@claOt?^c>A^Fc9qb(Qx%edo zZyb7zaBwgEU;|He##nDD!AE6)G!Nb1bv-xhNy+Pwk@j^+9pJQ8Jch^(V^Q*Y`%GL> zJ_g0{Gh08L&$sC`19ZnD0^C*t`|JyP-%Db!Hw)OC6OC$INf>X9H$G8+hld3Y^!5gm zblg4x%WbThjRV|;_BwSL1l$B`xHUJ(_;_e4&AO}MXUizOl4$p0B4=E$;JZ5kC%zN7 zxRZ&Sj+-W0N!AP|K6x*^eX6f>1(c9y66N$ntFQA6Mrb`=B*s(4cAu}7l1bK3$3Ff^ z<4ZV=v0*?J_}POT79fBe!;Fe z%evZG%<5jj(h4N)bzIv!FxhfCU8LfH`*3duxRkys#Z&QcJ1)0IIZbFNyaiyt2=9{2 zDV8e)BaUmvzUJPJ@Y~Gfq))YQU9GO2*A2qdAmMahMYt_Uz%yI8E9$>rqNif_{!^lq zOogWb9%b`rCxg{2I^FmZ@2yU?+B;um-=wHF@8$FyuhZ#e$*Cm3OSH@z?tFwX+6JFO zw%z=z8LbT;Lu?aT;~&h{b>icposGX$&WW=6S}(m&m+4PDR1|@TKQLknGiz$wr(L?d z)M_vON5Fbiz{B!d=<<$Mdn1j@kk@o;xHE%k`^nNp-hRmGAAXJG%c3Lk<=|H$U)pIr zM04{#QsNpst&z{?o&r2IkD;**LN9svEKZa?Gpsmg38P?FR_jS^fuOqMk_Gj9Nh26 z)2RtYER2S8A=w5u^Uy(hGaS7b)}^I~oH9nG#Ipq*JaORhHLSH`2Wp*j0#Dedq&_axhjM>~w{e5;e=DtUW8D*1A}oS$#?a`s}x9()a}2RPy{T&=JM885@`lx=k| z&c(}T*;bmffRR#z|4JgDvqa0<94tZUb)GO3c^R9F*%|I^CYdjL=$?L@5n4H$FnL@3 zpC%6HK;kqa8*~l+$BbqM%z}|VO#Q_P=mQkoAxVmSR$9miM%1qtZT#NT*zSx}c1Azx zI?CjKl<>5~h}?l9WXS7 zyU(4C_v7W~1y)ieuL1j~BEbI#3ieMU;^klebRu5&_0J&U4PXCEB3|wF&m!VAUjJjeqNf--m*{)gx&8BqcyZT1pNO|~{nE+E5`82-LE-|Ue4<>Uenfdh zypQY8C;E`ZEhI9C77>jlT1>5le|IqNPM*`BTQ9%SkII`j}}eh#q6wWkkGO>t9YZgJ=cO2BMWj*+i>|`cx8L zPRKj8{ws)XA?->c-lO$j#UDRutBH7Z)?Z09gaxl5dWdK((Rlt`%^%*F^9T9KF`mam6tnxDdJ&brgiM$i*zkxrz2kXC)i1%OpRYac>-9(hapY{CVomc+` zB3^R!Z{!c}wE8y@eM3}DRL-=UiFkF@zlDgmR{fP*33*@DU&9|>RP}G;&ktmu?L@qj z>KCF>OmZ_3FQEEwA>y4=|E)yNGTv=Oyk+XYorsr9{dW+ZA#Dc{FOd3o@<$TLf4c~I zNz}iasF3JRB3=#k-$fM0pS$_P`=I`Nh@N8Ty+pkE>A#O?5YygIbeN$J5b=_y|3M;N z?DRiGWD-3LROyf7_apq-#fW=|9w*vM#M_(xTB3VN+eg%rKacWf2(x*N=w^mKPQ(kC z{wIh$L{AcZMYNx29MMxmymje+S}_vuTl$|Nkryrf&k{XP^c>NPM9&lPQl+a`iSTNLq8@OLG%exGonw4Ze_gBh+boU$BDio z`kd%Xq7zE~HDQu^5_b@tBs$I3eL*x(#pcf~O!5_xlkvVLx{ZZ=L)4wLZ;2Z7=R5vf zL)!O5I~eZ=qO;89N1`nVt@Qsyc!9TbL$sX8OSFQa;Y1Nc5k%=s8%e}VaQ-NwKiJdJM9+{`8AHhHZvI%J zo=nn+=oZo%6Rl#zIHG@v;)!yI5{PyaB@*>#iX@_B=F)^Hm!VCGhLhHe=pDvuPUKSj zmrVE;i77-qiBgFcF-Z%eQlgebyj$jPMf51+wI<@tF@GB(UKR7VCECi+c0|*O+7qe8 zt^-kD#_I@F=@$lfB5@swX+-@wsGW)YEUpU??{oRniJB61CHj+{*^MZKwC+ShnM)6% zn}~W6-N;;e5%FG@zcxC zqU)FXWLx?()HdN7wh7m1eF2jkoDfu^oa3zT&iJoG_QABr>Hkzm>GaN&-l(ex# zCyB-pl`(WY(GI4aK=d#}ClY0`FDDUIk(NpH3sYnfRi+Y7ChW-IDMa^^HkHWB#M4wL z(R8BU7&?QfEmO=S>P<9@D4J+Ck&kE&QAehjOLUSIoJVwmwE0cA{)RH^Y!cI$B!}o$ zA|KHbMqEI&inLs!Pf5!oYD1Jy)Rt%=(JPF%h^Q~oVxj{qxPWL1k)LP92Ky)?H zCWc-^beJiwRr0Tl#C0TIN#b=xEr_lsIzw~=Q4P_JM2DH8is)*hn~2_I=z5~#q-`KN zO4>#uleA4lzp^sbLu)61Na7B-%=JHxt(oo#QOuM)WLc+lht|2~i!hzM1F< z)80a~ouRi9IT?Bz(PoC;PBfFDcMy$AB>(LoEMo9ZqIL}4MO4AWyNM=}b|+CDX?GEg zWBu*b4`UCNXUt(H{&wNHmt{MWX8%`V!Fs zCI4O~Jjx7TA>u^||Eomnh+ZQqCVHLdKB6~>?jm}VD3t{tB6@+jyhU`3=xw4*7I&D4 zcNhFei24&9C91qgc#QBWqIZa1WRiD@e5AccbPs9o6Qz>&0Z}7X;X|Tzqf!e@e85w9kmvlXhImzqd*JoW$`&Cx~8Wa6Qp?q@5(nBJB$zUI6faNz{tf z`iiI%<9$sum7(7djVAh*s5wKwBf5vQ?}_NhU+MpW@Lp!~BT*HDeHM5l;i znaydUmzd%VQ903BqHh@Q7ourI=ZNZ=;#Z=d$;!VGWsvqe(XvWL{DW{Xv-y)KjI_Uq z783nU)P!UF50RVk{w0cIHs^_w7AL~WS%vZnZ{UBx&t|D*f#ku>*)gB z%oOQFe=|i_q8^ObjYt^Uoya1s2hlIguP0F&bLmw{xRVik6J15rhv-=*=}R<~w0=Z& zOx&M{Uex{pM6WV*Akh~@gNSxBbTHAsL>WXE89Ic>Ni>vbfU>^~BW%sAhZEgTG=eCF z5l0feNZKf(zO40VqIsl^Av(jhk0lyO+Bl*_qVYuZXZBAZif3ge648m-KZ&UFO%gK+ zTN7mwJ;Z`16I~#hLX^bNsYG-^_D>`FhS^Lf8pUeOAo_@*GZl?!7SXqiH=AfMK(vsk zJ9Ak?^gGioCYp&9mHq<4CM5caej-{zL~mbzA<;C_iik!tn_{BtSX_yU$IwzDdiMI4 zs(7T85k;{I^@ts;tGHkT6(BJB#IE-d6q zqOMGF6;T@FttNV&G{xSHiPn(Tlxf!zy+qp8O8&KHl50qGka#W8VrIRL=rn295v7xM zJ<%IXaRX65(rzSrjPa_7ybQgG=rx9}CyHn22BOayx{+uCQRODWHmp}Qk;#agiQZ=7 zEkxCfxRvNZ(rSnd#@j~p1JQP(5+Wh`hw*ME`j+SxqQ8i4CAyvY-A1%s>3_Eq#*ugj zQ8!j*2hmQ_b`rH`*1L!{F`L~)gGjrRD2=qch#n@on`k{l?;(1D=w6~4=64@aGRwFh zsM7yCi4Txi%ft^7y+`yA(Z5XmFi{869wBPZ#CwR|XXsv{@eHjcN+8-tbTvaCB|1df zV?=)vJx(;7p-(6V2_t-x#I6k9PxL9P^%PMgX-^aFCwhixB&+Z&Q4-TWN3@IRd7=-9 zULY!9iUUOZnO_~z9-@OpMm*Qw7YQF>#FvQX5xq?G8nbzYXbzLSO4O4DzeY5SwAYE6 zF~u817dZjnBs#^khlr*#-djW;k@hxG5mOu{s{Dn)M+n^vK1wv0=oryHqIZavFy6aF zBZ%H3>cPsqPqdx14~W8;^@l{=nD!&06%75D=poWRAyO0nQzidqGWatR6NruzZ6x}f z=mTbWf@mCR^+ZEi@JXUVX7~ls0LJ^0=snWDB61OZO>{X!zai?!wBHhiBfm=jcZ59P z_J2<_o`w8C)PfOzBs$7$ej<8|p+6H%BkdGXCgYtZ8bI0^qS?&vEYZ76@e5I7qH{!v z4E>d;b0ri1M%abuccL6d{DY{D5&tCG#H{}!`k1u8i4KwW4^eN@{v{etbe^ambGbnD zIOAO;nortg&G3`Nc#dY|zxjj)iLpc`(MBe*h`uH*gyG>#~bD4r;b)k+{*N?Ib(T|`MlXXCj3HX$6!Y?>0)6E!3HoQazg^&v_odXOlE zXb`hWB^t)owIF(jw3bAFGF~g9+03ss(LbD?ZHS6UYYSBA&tT$qB!0-m?TJP*xC7Aw zqK-tnnPDfQe~8kEK4OZ_M7gAOA(}#3I#C&EU5Q>Hts7AX=GUF*0n&O@5`Il$Pom#g z!(K$Y7~Gp^DMR}ZT}@hFA`fZ(h@K(pPt=8I0MQ#Pcpy<{rWizYJ86T7{vygCTAM)r z8$vjr#GyociG~q{5)CKHXEq~M6;Wb|5mexb4c7rG?(Z!lguOfj1lJ()evP9WivE~D4NJe^b3b>0Z}n& zxkN6aJfc^L@`+3~WFb);N~`oQBFtpgi;1QZ6%gG<yOP8T!evCuh<;%3av~RLD~LSIW+l;OM5~B0 z81HhTe~7Liau8ifw2$a2qIpECi54@hV)+u%)+qTmoE@^3!7UklHBl&ouOYgORk)UD zC_~o~O(wdIs1MU#Pqcw4ZXl{9x{>HK(^e5hGQ~|qO-Wl%w1ud01L5a{8;KrZ;!Q+- zh^mRYvXIS0W0=hrq9+-;m1r;1))3V)bQ_V6wCzN0#uK7e4855smb6=lHmmdBTM5T7 z$!$by7<@ZXA`8BQs0|bEAR0p2PNHUvw~Hu~Xg5&`eLvAv41R#7O1bBTN2e*6fK-p zuKHe$)aPpTHR*Uu^_8ol7ENidzDiZ`v+6skufFQ*1#c7e6{FJqyve1$cB^z>Zqx8kO(ugbN5WD6DZWo|gCTz7xaSbYvxnWnw13tX-eM*Z4Uh5e|)9_Xq2iKnAg zF872m6}C#n{5`w1`g%frwVbHaxm3(A=XX?LPph!vsR`=q78+cuTuYwTUHXg)-1D5S z+icaQiU)KHC#m8e{6lwJsET>Acf86bS%uZ@Yp1^6Qt7H+(gluHF~2*mhv}FKduTzV ziun${Dyv*Qhjmb&=_>G!MM>)G50z>8+$i;Ry~<|T*ShsRRm>)B^-%n)!XD|~M#Y@2 zzRKrD=sZ;}azb-Lf0ZsWOILIe!zx{`T(7gC6svL-+}BejB)?a=x@?@KzBq}hTptdc zroK2Gt6Zs$O!dWSTIG7}l}YN0QnAWa`|3>f#ko@DI?`y4`r?$Wa-FZ>|GXu7hKz zs)Q62Rj#TW-9n1dD%Yti`l~QXIrL$~X!S*jSmnC;vSI3rGPBBc`$HM(i?XB2b;wt# zi=bera;-b8`+@?r%JugPBUDt1*ech+(L>bNITaRn?L_rOFbjUsh3HX{`e(p{rbZN5-iziq|SvR%Mp@q7bce zEqY&b0wr6OtMLq7Z7!#1{ZU;tt`=zTzQHOTWonh{^$WV!C?%_015VDlvyxKpeHHjp z{Q?!0i!B(VNVnoq^|c}+Uxj_AV!nT;{-PFxo_W!)!l=nqxi(i8t1oIZRj!{;mZ&c( zG?232R;Vv3HC3+cPuJghXC;cKW>e+bzImexykBK{>rXeUFKRd#r#ZK(FKRheuHlP! zsxN9fRj%YlyVMu8ohny6<}#Z^ji<`>=56|ms!5e={Pg=(7}XOn_rM47Rq0eZN|kHG zfQM8d6(mGm^@#eSl2ql2d{}=`Q34}w+pEIJ>FOZ3wWOHv9HSZ}2I^mkB!q0VRTyi?xXV2yD+D#v!hy?o?W{?u4) z&1(M~slC~{#OMzRr5*cJ8G;{>3o~zm8n}S{HGbXp>DI5%89L(7r8~~ zY`WZugzs#z8iSOh3s|84ME&1#R%=q!-PQ~|e5Pts`aeY@o4)^-6eBzTA7@`47}NFs zZLYcZ&YeUgWR=Kbi7k>4TP#_cSR)eqPGTvB5{lXrTGiARic__>Rchypi`G_4TWV`d zshuuLDb-qw_w$@{XYNeu{r-OMJAces?z5e9o^#G~_W9OUtY|)jX*$nZ6#}jZVk?Sp z4#AZ|#9hI*@cB3?=MINUnmysb;h>uw>BYE#%;@5zfpY8LV7P_bGm9)^d79`RYEPD+ zsbY)q`_?Izog&!_i)9WVb`{40*KWnY5S3L-5JcGoP3%JUC`EkvrWiih;9~E833sY^ zVOzc}h6q}CbGNugJ!FgLSu42d$h6|bfrlrMJn$d`F0tk^aOFv!#mf_yn0uBTXZf!b zH4@ag3Jv&of)BF^pI|Te(A9Xr?)8<{C@{k4ICa_f6YNv&5W*&Y zf}PqNa^ELVq@GdNoMIMIE){;+FA~xPh#U&W2ZV!M3~-w-z=I5w6ZGmqnsnaA}RG&Fa_ARIE!8#|9(UTdubdem|e z_S@^MQPK>&Xt>7u3LC%9>V-5Vvo-6GCY;4syUtpfJ*EIoV!XW;hu(@X-eWD-TL<7I z?&kG4<%$jSr`KDfEG<~x8r)eiaRaVK_Npg!!CH&k(zC@C>u|_= zhC^mE9I}_;kf98REMz!j8p9!*7>=)qBqJChvVP%^*$ap4T{vXu!XXP64w<%a$fkvJ zkZftVWW~ZE^A!%+t#HU-g+rDq95PYikZlTwj8ZtTM#&*76b_l6aLDe2Lk1@tvNYk4 zi3x{nOE_dy!ughLX}DxY!Xf(+4jGPc$YO*;rXn1&5#huO5V8spB6AQ9nSpS~{)0n? z9~`py;E<^Yhip7JWZc0as}2s#xqNcTj)Ox692~OT;E>4%hio-CWTe3%>kJN=WfUo> zksXE*8DMb8@`6Jq7aX#+;E<68hpa0&WLCi;dnz9;8B%b_f`UV)6CARc;E=IIA>ojD zgb>+9aL6E{kccD;2q7|k;E>G&hm0LKWaYpi^9BytHE_tFnO$Zcw`33`69x|Sa>!=u zWUiMJg0ghP4>hx8H-=_MS}OE{#La7ZuVkY2(ey@W%0 z35WC&4(TNv(n~m`mvFdV!X>?gLwX5^^b!u~B^=UAIHZ?wNH5`#UQ(o>MtX@5=_MS} zOE{#La7ZuVkY2(ey@W%035V+?T+&N8q?d3=FX510!Xdq+kZ?#Z5hA^WLwZRe5lMQ9 z5a}fx(n~m`mvBfg;gDX!A-#k{dO6Y1O9V+T;Xp6PZM8OpZMS)wHINgIIez+ zhlk@2;BWLce0)QEOr9!7uqzZ%m-$@)bT(e@VF5Z0er0Y)Y^nfj^BFG7_=8>DW=*tI zVt#u7*bJ9r;rQ%=1i77uV7B)A4CJne2;_~Govb96#wA>YE5Ri6`_>x3j_b0< za<;^{;Qp&E0tT1!kl zhJyMI1mpY50j%{NP#EhM$6>_aZ_SdB0>2kl&(+odRO$S8^zO zOc4u7wqU021w`L{h}b0{dRLIW+1*HFRuw#Qgq-h2fI%!{pEVedK=P<8k&ODgP(G<5 z$|kT|@3ux*+K8wK0oCIPitLRqz~LK_9Vb4LtFUVn(MlkNCCFhc?EoT935eMJc)4{A zMSLqFX77Z35PT33@ggGs1-k#R=SV;iV%Z%^=PY1ZJ{7#D3CinVmt)xAL%^#m@HRb$ zD)g=@mt#LtEYy-Rzs*uPlC?dIh)yD6$d{nJlOp0pBIX@{Uf&e78xg5E_STp9JV1Q@ zpp#r#g5_FEw>Ge}6RaY8%QBmB0=k&s0D6TDKLVqux`@9uMhRfnqlm93sD1sN)t|jV5v4`M zl5cRZ_7{r4)8?qR^DnAC(p-ajeF5{;QCv{9%!s>4IgsqNu|kOwulLCvD9^xKs)zA{ zXY6qt2V93EuNUQ73yxS-%Y7kkz*x1MbkIO9D+q2n2UGTx5m!QF>1=PDw>x_rg5YE= zH8(xa0O*zhR3H#v0U}#<0zf4wfo0j{V>qE`tH??phxzEx*{ShrT}iHJN?{Syd+t&y zOJNm7rbP(`<)hR{shSZ76k=NK1P(*jGvY#tX<7EikFYzNRb(OOtzi~}MVcFnN-XLd zsMo|}xWlQNfx1Po{pvNPo;1LSD=*S8^8_vt8)?Kv3$`;_DCNpf6t-ad=da6uN&|HCQ^~ zg5zoFNJ)sSuhDe&5>ftw)?!HkkMmHPB|@s$@2xfPMi!@ZTEO()rbMz8 z7XV`uFbl(#0LxqfvqePpyl8E}j{byfUVjn79~QCCE?Se2YR-J|0X2XPxP*7+d5)I* z7Qr2ttW_}xyn4yn(b7SPop~APi-dm(`Ekyjy3FJ*Hb3_KGT?s~ADdi36`v$N&bVT2 zV!18|mtJKHW`AD+;9;SAb+1|*<4!%!wfAvb0Q=x7KBfpvpHp}&>+V%+72HC{`NUpB zIxWJVf6dy=vR<&;?WIB6uK}}2kg9RrnvM&effU51UAHD%o{0D#uVcn%l<QRE{#+cAZF-;!@O`N-II zEGFN>d_w+|ykv7bwv&&{ZpQ)gk>%|;Nj@^Z9T&+*_P66E`N#x!JR~1k;SMYM2C>@d zM?SK}9hJz(7uo8Qk1TRWI{EnWUE2z@q|cX1dr>4`JR3|tzJ51`e6Y~5kV-zX(H(Qi zM`pTX8Tt4M-8%B|MZ$yRBYWL(ihN|UJ1&urFE!pG9~thBNBk=lPQF|b|75>A!pKJ^ zyrUZV`1)==@{u9$NFyKF@{Vrg<13Z}$VV2vV=sCP^zA7A^MMLxc!w}^aX+&fm2 zkL-KLHuBx)OR8UxmoKTF;E^QE1@e)x@A!>;d}Z?i`N-sVl&nN?^wpPqWcWMElaFkF zM|JY?_00O@;|q-G?0qXe|4(xMp^Rg)Nl5 zERWnM{B2UeI3@QnF2;NFPwPkw^pMOmVE{H-P!QKMcgpLF1Sw zxOl6TBs*Ber`E;vA(EYcYMnDb9wR~3Do5xu|3S}*;RU2>!?HfZ_^Qrx;MCuPK@Z-U zjAOfEklWXvJ9B$PO^ik=vEe1C@~5KaEXm8FCB}{Nf8xtku}%t}5<7^G6NBxXC5Qt3r;xFvuuHyc*39Ky6rT5LxI! zB#Y5NGY~`;xDk2JoyZXBYXcSbAMr8x?;nT)@m?s~*_|NZA8^Cp=fdZifyD64NTcZ5 zEbE)1Cl%82q`q)VY9C5!E(QqBRMrr$u@)V* zt8Dxpl>C0T^zMQ9RPqUXZF~aL_xV11X=ZzhBA+NI<#b0=JdQ<$ zBf(zDa+vgy!GF2nKf4CwYPKgCxwJ$G@qsA>o>vg*up%Af083Tw4H1`J2BaqmLHLx| zH6aKpT@So-$niM)3&cJ^^iLrT$F=o!9t3l_f*^xS#_`EbO7@2U+Efe~Rs`k|v)^g}soyyp z)$5MHx@BVBD+w*kD?(>_!$|$l#Sn+gLG21ohc!OJp z{Iyw8ZMhVqoCfa!W3G8!FEqo7=&x@+x?uipR*ljuzmg? zv^*afY?m8sXM3|v+Uvy`2vB>PI&V%gP7 z@)G1M=X=56TP_-%D>9VKOG%0|s(Y;HSr0@bFJ2hT{xO(6Hkg3|XLe37qxo)bu(;;C zrSv$F;f+2fQ#cCK;PET*Hud@_IfV6TDkq3;J}FLQJn*8W0fr>~3`yF@v066tIn#Gw zDm6DwBB^`X^om?o z`r6=lSa8Iod0LuWO*&xk+Gp_E9VhB_%XB$JdSKw(ci~)1m*b?n2F`60XGInCDt|OZ zt6ni)xPQj6_;?vw}8IPsq%3dx??AbWyix z%|Pk{P_oO>m^G%CwM(;gg^;p$yhv`3c*@{$(o{o&DTV~Y~T&a0g&gm(6v3NW9?l<`E;e4@OXO)asUOtrrrC$vR zeljHZ4wOm1zxfmsj#mvaE*WB+H^cxLF2-j<43_Z*EPq-Fk)msfbk83mzlM3#s2JP!ORN^#dll@u48VEtF-oNdMZh$^+3&oizxYb`e15SPRP{gu7sy zT;X4c+3dt1bVxEw9SCKTYGa#_oQ{`Acz^V^1M503I5HoCVgW=XnoJ`wre4)DMI=67 zeBzeHSfiEOjZPICoCZ2O7T&4S+w!b)XGoh`Tj*gDxXzUOv&-3XAeKnDB>ifO+R(l> zb*Le1c3b36Zf&EU*EZ@otO&9wrnEy6<_W|(CZe-X)z~ZTfj!H>o?Z+a9jgy})&aJ9 zW(V0DJvtX)k4XpJYefPGls+>^><}a{ystGF1)oHY7_3Q+YKuy-P2@p=jteI-Jun1j z9>%Y{dkbJ;>rfq@8OeWATPP(!(ebHrFjN-svCOv?sceGCh|&q7Oirk<5y~eRZ9#&_ zh@b>sGch4+3i410B4O(nZ+>ZU4@;$7k`vwJK2q-lqZt4ZQo-Zh!FsA2>nR57;Ry`J zSs59ZtGqh9W_-QQ0N#S)w3vm1^nVuV*GZLkQw~xliec17@ zk@u-}M2%0PPlh2?vkn`01jFD)B90qU4ajelY~4CyEHLsY+PR?yfx(^xZalDtvAA!L zkptbR^!KE~lg)?IamVCfX^}zdeNR%xNZQVZZPH4y#^0cwneRq(u1OQqCBrB31i}%* z!W!g)^AX2Fw&D_+MrAKD=0_uAP!;=GejuPk%lDKq0W7`_W)&{?k;_TX42hlye%#Fb ztqxVhAU3Bj68BJi;92yS;6(PG<(}|g@sm|hHKjQv;<+@tL^1suDOZ&mV|PH5ybT6n z?i5JQNB8yWit5m(0swl~73I`}0E}|Vz<$vI==!57%2g~~#Ro1)C-Ns++6!VNgal%w zBNnI#G2jAp6WKv4)Y4KeKpN|vhwNA+fVdRzb18CJ&T#6u3@P>yfYa=*%bpCE<1C+v zI4-~r@+ZPl;LNxHpu+{2FXFfWS)z-k^>C>KR${4(MvZLDPJUzeVn6Oe7x7Ghb5Wku zWwkz&$4C|H8HPeVqeZAEs%6UOpi{n{(IS8znLt7HL|+YL&i|nsf14a`pLHSuyzdfZoFPc_ zm2$M@BOwUJ`z}Fd*C)F-h&5Y>_kqGcL8GuleC5($_)pScO!N}hwO)H@Q z5eb+MyyhkiTFb_4X98rz9Dqxt3x-G&>YyJU^}d`h-K)<6>mqBaER?5X)z)MNP|ge^ zY!|arBI$gS#=#HdrVPWZCan4x%&j>V(JUOzeP17gk$d^Yn0TE!7P@tWe4|1!ZQ6RW ztd$;8wc5O?^Cr)mI1gjVc@0E0n1crkU@x=9i{)SzJ)S!F2BHp3Z(x`Qn35s$;P)x$ z;HylKOG*0;+&w0488&G>=4h9`iJ|gYg89s#vcsf8-3^<)L>>uCiqBNi1{0|ShOwRG ze0Ka9Uamb_9tO>`2BQ8vX&|&|N;r(siit+GO*E=4wiC@o8k@daxw&4FM(?0*o~T=z(|=pew?tNh~23JqT@?kq#Q1QH))s{RY21h@=){ zdp^cizZ(30GWdN58llu;6kxb{)nItZV0a!BLNOLXK?h3y4MlVB$NV@KHE37qz{Yt^D4!PK1OprQIO#l{kVoA>tjZt|N6*~W4W6gvm3Jg z2T+B7AB8H8JqVPL4@@~wdxcDV-VU%R2F%;>IBs3n6}sTsn7MFbYv-MBzls@?8+UxFMF{RS%aN^JE+;E$;>2nY7Z~+$3p_y;9V* z3|@|Pmt6Xgjm;YzpO1CAqvfRvjXuJQ4O@Z!XP!Z2jwh8UqqDHH+iNvH(N4}1^rm~# z<0YO1lMnL*;tNk$Cy}sWUy=eE3BxF^m*u1Y;>kHi$uaDvsu-wA4-9Fr*U6Q;*Ba3v zu7>3<#bx7x3RiNlLqhl|caJp^xqC#!aUn2V-mkP_^AA9Xx{XEdVv#3Ts@+)B^0>xA z)s)3B%-;V3Eps}avP4tJwl2nB<^g%S)Vi@~Q2@)eItF1>XjA}h6n;g!`hGizW|=qs zm+xDvuo;J(&GJWoVHROmW3Dr7%wf4R%lz9K&Tbw?^V~lG&2!5Kn8^B707ySUtWPn{ z*>f0;`J)HcO43y@rRMDtq^IU>Lt{~ZFn%ja{@8~}YnOh^a@^2Gw)-%~ge0BMV-*#wr@i1@@DL^;lR8mWHu2w z<_6LfLHO}MHTe5DP4Vj2gw;~|Diab(*N~&Y|?XOWyB2cK|}iv8P%`< ztAmChvgf?24kZO^_BQ&nr?A6zCET}6%h6*ab6=0ljchg|_qG0Suse38x8$3`X1-85 zSpMSdoC1R*7x;TK7KMX168IRKHeSLOoO~PY;M;SR#!~GRR_h_U(YO>Uk2b9JdrGvW zBLSpK=_zdIdrDoYodJ`TLi-dONUc*uX{?y1L}6c=6IPqA#7m z(*pimPxuv+l#bF<6SPUbQXe}>D5aLaJwc-;Lk+7ID1I1}MLkDVK%xr@kmyi0{3*bL zS*}G%r1SzZ3nqjUNS_R#BmsnFR|AMLg)Nw(_+ody6Y};H2%0M(d$}NaEBE!As4LT4 zkg;zmX_mJHa`4Zrq!O%)2cJ+;kD(LS1+VMN&4+r7a1C zN;SzBVQOberHKkmS(k)d@qJe*E!8uD{ib5q<=A%>e<{Jhh&M5KN>ZjPWu>kr#s|~U zlyowH+nd0g{P-ClKfwe(HAAT)jZI^1pP>{@SWbBDOu#NPVJ)+;2YazWc%cU{&!r&g z3lkXmQJyImy-M>Hk?Bdi^Vn-3e_jl^Vv!Og{cIvnE>h}C*9_pxCa`-Ghq}ny^=4dC zoh=+@8fYI9ZIj3B{;ASRI{Wjv63hPh1pA%KrHecdN*C4my;Vv%EDHcCt)wF+o&B{6 zIoHqts-G?jrcSzO+`nIqE#5gMaDz|Ly7x4IyA=ZtT?37M(*!P9qtucL4B&~yfcvdg zLM@+|z=zi=vC>Bd@NyH_J@rTeZ^8WeXIBGXS|pzi1z0W-#dMZZL1`wPH>jO8Qtn$( z@wYrTSl&)&c~7u;|ILahg{KDOBZKeX=|V5tRDv=@H5Ez>46c`YC6Eb+g@}#_lQV&e z(e44sU087C!k+dNb{H3yA6V$xR5Z5n7MMFYqXB|a`=+9lu31#5sKI$)Q`S|2kuzE_ zecg>|UQ;TlB-Xs78YC??;a8SaYgiTv_yzxhZ^GWRsuiTYCj9SKwXWrJ0l)Jl@ZZaz zf6auit*F&$`h_w9tK6Ec7A8*9m*Ct0j5O55$@NmxErU&*fiJ=7 z;*Db$b4;AQ-fDtnmWea{B{(ZfsnOC_6Q_)inuv$*T8F?JE6Xg6Ecot=g=r zl0c?14iOQaXX4X*Q7BJLj1|6WbvCz}f$^6oMyj8hDV1;TDv{HEYDK9W!qgxKH5c_B z+3K#t&_>?e;3NP_*h%xW%FxkI25 zB8@T__iN6!1}ZVq2m@%CU<^CLuQpEo6kL<5vG;;N<$ZyGzH)PIr7Tl}l`v_(fi%|> zDZU+&{X?+gCw*peDY%OvOS2HgN7`XvZS%z9tkiN!pmfQ^>Q@fE)OiEp>`M?*LeU*S z!MI){G3!EMa6UH>p1uTug+cI2Cc=|2CC(DXuGU7yK_gPzS*Amp^PJ~RIz}8>ETs{e zgVvm)tEIb0X~2VMOlG*YgGq!F2+WnZx>xq5+y~ zmN(rb_S*`j7HmLHCy5+qw}4c-4JDBXGtsah8o=s)-K4VQBc&=%cycPQnN%!1kCNE1 zM76B6zyzOEphegWJL5fpRb*mG6FhmN&^hn+Jd>Q(!+kM6;z!<&gY;N+GQD7o{E)tC zNrhiY6iwrCXwL2!yf3z7pN>Owc1r->z{b~_at4d6u3Fh^;~}I^D^?JL-L3DBSA(Mh zS~<_%`Q_x`YK7RwulFB05;>ZblQYkywuEDwpoWnf-cn7Iz+~_Q^m|^IDKYvD8~2K4 z5H$hwYz+m|t`osD&0xB>rXsV#iD(^LwPGJmR4Z6S#RyGaTYwpqk?zV=o@TKbEj_o z%*)96>z2*^3MY^BCa85wMRE6n|HCP8vV(9dOlXVL21YM};5Ei%~cR!|?fPTJWS(9x!X z>?@vRxwYT8wHk@dt8>~a=@LZws5N@^Hw5^|mw*>$s^u{k?gYP`sm5bYoD0o7!QHDo zN{3gw4|z^Ht6d2(cl*Z?ynuU}NT#t{-b%a$yI_zB(us`!#jHdbF)Q&CGQv44!7M)L z`0!?>%+8lmnzwY$N<1c*r}Xy>f5m4T+We363n^@{52h4;=gD-o;1H6h>>D2IOj)F8 zQ0OQuh9kM1VUNQ^cm+2Bwe61L4PyIyVb1S^pOqktL-3i#A+6b?pOxyCh61EMIfe$* zY0V}Fs7dV1FPLY_G2xSbRq9xJ3ixh<u(tKFBeElUV_x`CPvPOO{B9ol@!YX0l)7h@JDZ<>;27ykNF+= zzX;?#vl~*^Dn)6m{-zmk)qVHk^-Q9#lW>uED7?2$^g+17gyRLaq5TNoV zZd{me?%|Z~yC#kJKQTOVzJp+Qw46yj~ zY;x*YfoK`&XtnfnCbf)jN!JWomor&ZqM9pVrk$HFwkWLV9WiAIZoSkP-j>Wye*p?i|GPvTb(2904XNR&3>&Chbr8i zof-jMZ{OxCip{PK^sO#|w!j$2z|ST8hAh!tI}&g>{CgMJ z=>*KCopOO$j=S+ZO4O6+ERezu)lte=9=g!N>teR?FB9$FztR4wiwr7&y3|7k z1+lho8b%eW)|+UU4IT;gF-h3O1w6Ap)&kHjJAu(Q16VqWWV@NQNRpWg!mP!Z&dHEl zwS!C=uL_1d%Y;#j*=gAgoKx|p_QA&cdX|RZnHD?zFA72vH zH0JNCw8Fk>XBwpa*`fe$_@Zz4Rd7C&&F1_r`?Gydl~R_UT(Fj_g7Kwn-b(mcGh4T8 zXWB9LwxW#@*ikr7mOIPHRV#TDB_Q$%(I#avAzIS|+@GDlEtkS20xldJEHrT3GZ*6W z%-zGKa;7s%bhG?Ii2iNGP<%?1+8nzlo%E#MZAC)cS5W<>sRr|r0CuHxiVGNLqB!#j zIQ~F0-)~k_{iM|%I8oT&>!giAo)es>Z&M}JS32qeZlv!k6X%c%$31cLte4yS!U6PQm^0|ALDRpCpEB4?RL(F zCeyv4k>c7>lU`GdlF`!ClVSvAsaiYUxGd;`4xkI-Xb!7+J2tfo=HxmWFzwojMuk|g zSLP~lyh)Mt3T*dWrH+^(2M$j7Rgp#+oTw#{M({ubX&851!vn0_z7K85YA0qMn|4=A zOPfvJi@IaBW`n_dtw937yshSg$nQ;Hs&3LL1Ne9`U_OL=Xac);jei+9_XLh5i-dBS zBh`e6(QbmHb+1HfSdkTMSE`HKMB>_u!piK0W#68sBs-fOqg1xw{LcqyWN;|*1LrU( zn){vlyhYU8qp!hC=x)$R8;T~e3&)f?wx@0#TYQIM9cp}gUMyG+KlL%%>%3vG{Kg0l zqf8Fci1xyGY>=mfOG^cg>9+i{26|Dy=(;Qft(a1-F77-_itYM&3jzt)nR9>>n^4@=q(^ z3^Q?hW+=5-^akX^;mt}N7i_!6UjAOLiKV$F{L0oC70!0?V0AV+^Tf&KolH!cZ8I_M zWMa~6iwncD(Nn7L+MvkJn&5S_V4j?IfwQ+a7iSQdjcL)RCdS*@SRQ`l!m#}9$zW7l zFbMDD%B3ILf&tD1ZZ|SBn7qzhN@6?PK?71v@Syg5`P2p8$Q`^1;;XbjGPs}0Q-9Yp?VtIT3>0hv^`t562Z0JSlbPl`n;sZ>{?4K({BC19%-*;W<0 zirF8WoI3>*p(Z)T>`(QsLNTO4nAz-P!Vegv*1{1A4xjxJ_zVX|(PK?`-J#M6Ko0-< zOW;2otX7j2oA70ZsEx6H%HbEh1m5x*#?pID_`a`Uee-hxzw;&V=|eHOaLt6@K2%Mj zO|X>S3on6RH4O8dxIpb9Mr_EQfILitOKkF4fMWyfzq4n!T9dBTGr&g=S5vTZ%E2p; zQ!FgbAorPhDq#S1jXy!$eQPC6J;f>J55?Qk$k(ey)kN>bG~|4b+tZyyI&n@ z1DDSqgKh5`YL-P|em^5;a9!HZPRq3fyLUrr#Q1VYpBT(Jry6uyc+j<0b%b_jT1~YU z0U&euXd_Sp<;gYGme?c2DP!lZC*>qIF&66&Bbna~ls}+v#H#gigC~bZK{%nM5}c}Q z5OJLizwRt+XU;T_N8x?sqV%756dv|@BSq4Z?xHe|s)ZF2T>fD&yHrc9Yr*{=l<3_i zGs`YYbP_vUTa8BEI-wI1Pl}j_kjiktxB(^VJmRZ*@G+*;gq|d|DI+nQ{Nt)fu%xh_z34`gQ zC=4(-;f*F?%Q|*SL1Vl&9Ji;QHNm|j&^w(L;NP0y(z;$A7AClnW=IgvJ;f++9zBPb zgUjH!Pa1=H2ih?b{-ZTW3hONljvHC%%|h6m(kO#Ka*P(HEcZJVZjNXH_+6nb49sU| zaD*u5rffqmNa)fly+!&j{($4A1AB{N?%bOtot0xOI4(;pa5a#Vh19#ZD2PhuqyGYJ!p>ii zBc;Dg_*X9C3=IyzlIV9l;oUPGDd)8mTlkSWXQmw#wY1bR9H)rE^-snCC|RnOBN~$E z9FbuIs=yR)jYz5&jdIwTD!5X%We$sq1KS+Y*rZ`GkDAN9Rbf33GhwS%gUvt0AULQP zuvc}AMCY2o4qgjH^53qjMRjD0p?#C^bQ)S zd3AyoA>A~Xo&%LQG`J@xXu-}UrC$w%p9}%6=FpsP8*IRyQ(jG%fHL|Zruyw{MJUp* zl4CRsfaIBwc?heU@he$mS?g zW-b*&U(4$*kQ!f!eI>*n`%0YrF*P*25^AjSHP|n3K@a^J?6IGOps}B%ICRG&N(7x_ zH`w#+I8Jff1h6QJEnbFAJpGy@-(0JbJ$$*|h7m28-Kk1Mmco6E>4j?l=fXn8wSY zeR-zx3!b1oU;cqJqUk0q43c_MssWqi30v+St|b^?!tyOD^X}o0Tt5RL*At=dpZNB! ziE#K&-1#!ifPKpocJ+N3OUx#0g}-DhF&nU}JYhrsmSd!oChV-gj&uP?&*gB-1{VO=m+{YW2zh2>0fm+2WY**b=7Bml zQJYeVub#w&{N@*O82hS;Nojt863vz;agh19v2GKQtd4{YLA8fgd{XPH4Ol^K)rJlg z)84Lb{;_LbAy|q*mrGqv>@lS^1_djcBPG%OMUBDixRu$CV`i&$f1}&!&-xt4o|2Xv z(9(3ys@JMG@X|4&1RK{UemSkXZmTFA;gYcYg z7$Y4#g*-UW6sc|0pM`&`RAG&pAusTmua!Oi7ANbTD)E{xAW{t_>;*XfW zU1hTP*u{dU?z8il`Z;EThg?7*9WlYb^aOu!0n_JqP4LbaG39>S1i$G5ckfW37Q7*@ z$V<`L5c>)H<@iY)RjoQeC=-SmiI&RDueZoQslouEP`Vm_Y z1%x8jdXh1iq0VJU4$PjxCJq|6vg}R{jztVK5&L^0x=Rh-TZE_+n&lU|BG_cco#Mk%sP9v1j@h55%&i z`;M7M_qQ24XfWD$QoxA6I0Zjzn@;XRXahwaLWm!)!PHX_=98|t51-bzz}P(xkP@B; zIBO2d&O8_>@__Enmr@6^d!y8$Qj#EqGs44j)PVnfey^0+DVIHv@04TDN2?QiI=9C4 zr^o^HHwb^lx5mv-()+(YXu#0_`3Rod3A`Z#+1WSLRH+M3qig?Eqk%kaQUkYWSfU|@ zB}&f#Nbe35dfECi`j}}(5^?Y=2TPx2ub?knW8~+;fo${@^o6U8{QTI+&lSikQbx>5 z%dF>BY~wj*Vqj{zu5<(}#zE_gA$)ob#=%_^)_z^CDcv@x-z)}v^E&QBD$Akuz8Ea+J3?RPq|3J*buwVv7lS?a zD=yTU;DW7l1HJ!PY%`%_T_&iza=m2~z+_PXPVMp+?E)=PVA~FOr?Dl`*fx)KolH&!kfZ^l=W|ik-A7{@AC(QwG2qGG=}5 z4HCrxkBQdN+SdPajik6tUHorzc?dP=^u(7-`TG#`h2?+rKFwb~A9*Rt5= z4Ol7a;t+MRxr2Fc#K@qd3l4Yc0tFip972nJ-H7I3yb0cT6F=_jB#Q?XJivW71AM6o z-hVT|7n#)GcY(VX3uNPUK8^!A6NFu{wA{wmgwF5;rLmQm8N%F{lf87(LDR+AY}5lB z|9D{V{n^2eJwPvU-vx(z4Y-)M9iju?@DQ7ELI#UW0J!`J!^%K}sbMNRSg5Z7T&BZ7 zoX&RJE8f_|OMDEx#KEj>9!5$g8n*!gpTHRDZNlQXS)A0v;L+6t=9RVGQvgpffnCkD zly6{6FfrV-4jI6+?wCi`VVgXi2&DHwq+PiDi>#*Ky|EwTSvbrA-5|MjFwKnr4=10E zmhKV(e*aIc=g))LqDbt+IK`9f zn%&;YCKo_6H@n56@x(eeCH0lbYBQLVDc5b~*(a0LSAt%8n)_igi#lNo)yqv$S4-?j zu9ij5qWG~2Q`LGbr;irSMo<0kxRvz#Q`Nd9u{6PNy?A~RSGdn8RO=yv^S)B3K8JtP zEL)`h;$3J30>=;Ag7oYe>RJj!uE(V+>({FRdevE2!;%gMv*91AHCV%)T4{EBwd$oW zpRG5W8t5kF~OAJ2l)MLRfp}s#EB@xu#eJsP^|cHOBcNpBAzIUY7pm`5bZ)pUa=}v7S3maw z79|jo7viM9ysaJ5&>yGYW3l?C6Jz^Q>`e0jj&EnT>ywtL?@_cXSJ=LGc12HLfdwjL zjgGAOg1)=*LeKeFNJsggBOgBUK-UXaxo0XuGMl{@32w6m34XM?SkAKS4#?V7Yl>wp zi`>be8?`&v48KP@6NfAa=WfP1Eyst7$x4lOL!NoR@xOkNN=tnYq7eUon~S z{*T>9$P@Mj&R$A*NtWLyfM?nUhf#(E zdG2d9h3)uK_15#hQoHbPh+4@#1xJNP0QLG>E2WP-rgr3b5jOx=xYm5%cj|3Sp>b;) z^F*0ac8C!F)zfN83xznsJ%knAhblh1puP4ha!Y>|Xkdt5_2T(}vg8^DaseCy_JRKVt#UNl6DKs0pr_`5t=2r63?S zxVOCw8+;d{jJknZLE!v8BB;0EqDS7Ovd-2a;!z?{v{H=}{F~(1OX;0%s|g%!MMosB zO)HxrT;^RB_f6&4HT~EfwH*e+t_aS9&bGl}b#t$mQKJS{yRp{CMD7b{(Rf))W%fXi45Hiq%y z#cNi6tn4!^1>ucjuA&2;sooX}nR&g;$ELDnXS6c<`sZls=;QFJl-80+M)@B!Z?5;- zYTMrZzaW-o_bs+qZNA0%*v95nY6aF>vfXsj(m`tn$HskmHTAl(4ONKv#Mq))ffx91 z>W7PHd3|56*rw1&9iY8UsJwGpSsmIq(g1qXD=PE3 zqLtQvt7NO^5;G;*ww4p%SLB7Sfa-GsdDU#HUaqPQN8M3Ot*Y4$awwEnG@Er5eQ0tG zTRi`U^4-V3@!NkPkgwh~773-Y_moQC5NDgu<8e?fS|41?hDzB%R1VJc(qOxfezLZ0 z1_#0u7ieH9HIYM51!vX~!W7qPe6;De>e}WKk`Bt9Jc$nbN%PUY5^Wh2jT*-lL}iG^ zxw4;7Bjz_0TCYQ&x)P96i&QrIXU$h=?CvIp#-=8_Yi!Xg$fgr1wuM|`e5G-zQ zLbxd9NOmF*b;YYKRD`1D>_Y3`wVmyA9^!olr&n|fnVQjoYSbczK0}aVhz{2Gb%ajh zOy`_YY8#f)#pcU;bOyQA+^W+L{Qz1#%_ix{%TD8`2^{~Zd}w3{v6 zBU<0l-3BvawXh30;GGdD`^279Wma=jLsS9!rhnQ?K$FQTIvgHdAxA`$Vd4h8DA(4E zh`5XhE{X2jS40QDOHngUfvU<{Gqh7uRA+g%jq{ee(DX*DiGhB2Ze zeh2{-?E?Ew4y3qds<&M)HN=)e(VXCf*KC;_114jHkmJ!%TYLKMnHZKg8olS#JdshJ z-}FbrZP|p9`yrTQ{RNZ!#b{Kc$*iTUmX~Xj>X5LS=)P zApQOuwnh}ghXq+N`!n6_%BchV;Qi)C=I|eF(*(XdTfXa&X=#aLB zc>F4x)goOF(kHLB^(PNI^#kh8tPWPM`32B|O!|Wn=cU(LL#lwWA5BEpxe7Xm*FrB3 z8+uu8olVBjAw-8>j^&=k8-#~6HCAuB$<~3Q*^mla7#nib=EsUAqs6?u8I1tNLlJAT zh>|F)UjLz*hC$_rDjJ{=O%dQRQ_wYE-HQ57;OHT1>e<@`B+SGheWPyc#TnyM0r#L0 zF5K?b74f`Nq}t7o$ZveHLT9p5`dngA%IZ48GZso5V>VIfWU%9h2W&@Y9t8C|{0 zu)9<3R{h1-Mm#9j)F&Rb^`xwT;a*U-!lG-71Q)O)59q98VBB{&@N(~#6;k<_=ZL2IW_c?{#vd@N*2Y=;xjc2P6M@9={t(FJd1h5+lS@Nx0liX3ewU!B;~J;IsxI_ z@fh$*F?$7Q{*!VVDgjT0xSl7uq6cC+bGB0h0(pL0g5gKeF zw-|;PA9kstJwOkO(%KLfq(!rh_Yr6w{o-{LpH>NJ!uA_TJy1VaM{7*+dQd&>0tcXCWY1b^{(3|M4O4W$LHk;r zA>^YkOC+_z*+5rPdNtB8$pj#DO6AeldE1$93@U8z#h408X{>1rI%wXy+C-bpp`7e} zSW*gXywgb<#*n}U`>JeTk`};vEkSn~*$S2T)f8pa?%R4*?FC{Is7AWhN9!@un&HMR!i2c}|chJ5~=%L-V+!R$7FL(#AZ+b$#Z;C1#*-P`X zAOPDbh(-2CSMphcJyh@4TZ2h;lh-o_Lx4wPt{_Kyik*2}{et@-FI7Fak51&a5ae}`=K=b{@Fkq}8L9ngDItW!E9U-e`zWoRRKk$dK3cO_D8%2s z2%O^`#2UV#-DZd{h9wAq7pkZQ#;0= zyU&mu^wxcbl|OWk5WR8_hn~1cB)xB+QIbDyj}X0V4~L$$heL1L1Ck!JM~GgtheJ=< zBa)u6heL1J!=VT4;n3^#aOmlJI0y3uBE4FV;AruY-m6E59;*j6dZ```JyVZJdZQj8 zdY>K+Jx-5EdYK*$JxdRV-lT^^57GmKUZY2do}!0C@6f}cN9ghG+mL)7r1$3$`;b7b z4tjVVA$oNl4m~-K)OQk*^w>Ni>7{u<(lhf2wWE;CADBlZy)KUsJuRPM;qS^LL~qI? zL=Vbm`19A~5s9bd^NBV+B%k5KUy;vH9rT2JhQ{BI2Q_*;9+C8NJn-q+_zZ9UW;{Sj z5H-7l9*YMgy%Z0Jo{0w}y%C?G@CV`%qSxUwZ2W0>fY7_}8D9KR_#Pr@Te@4>^N z$Kc`Ir;yD-ufT)FeZijIe+N-|{2gTI<#&M4v+oGeo9`KA_=E3A3%&M^l+jb~_(t!% zLkfE29SHv78@=wHk#FU1yMrh_>`syjhn{pth~9J0sLUU8M|uM(QsU3JXN2%K+%szP z2i%cC^m;oY>E(7LiJooG2y)Py?T~^VY)6P*YX?nwsvQZWciJ<`wB)a}LnwNp9ia3+ zJ6O=;?0}({*^zoY%U&X*9DkA>AoLzP9D0l$-{>WFAfSc%WsderK9zd$%id`noywo$ z|9`I%r}8KK;+K9=&QiRw;|bSc7+anwJLyC51^q3-?8sa#NxBil?C)ub$xZ1!@{=o`ceKGlAb@`72$Vpw^J><~CeWkT4WOSHPuiXgUfy_O|i z!A*@zwfgkd?t}GOZ|PtNdvArdOG*!B^*@DCJ(>+zr)5jGg4y^_w5}44(5+voeS@dd znti1GENu&74;E?d>8Z$fKi1AlJ3)1$c1c71_E3rlW-mT~$low!otA@}zFI8Tnn|ZZ*juZ#4brzEtlCnoyA&V7S`(9p z!K}_|#81O0W|h_#xl?f&hG74&UTd{gQl}u+Z=;qh#Rs#nwOT5+poV{-U6uv}vzi}k z-Fs3OkH;7W@>Z31@d$~=o_FyGi6)+R@d(uukm%wGk9v4G^@T${JlfnD*1X(7Bj(Mh z!0v3)%CV8#waB>pf)DljfETSk@AVNXFe1^5Qj49s4tF>IzDY~*B?AE8$pC;;F@)9K ztaY=rWks8{CZ#$6tj$Qkw08H!)%6Nu&$nu!_1t3dB8M$|P+ouB1KfY!j8Y@}k9e)7E9~$9WZCf;Nc7#Nm2($k z+BU6zvFuF_#d85SwrLfE4E+Aw5OWsSjBqMyT;{23q4||Wagk|;QY$YCmrOH+nuO5|NVw`K*AE@rdya@#B!D% z`nUEaUppZdZ0RE`fcQStX4`0q15s7@lsh;^;H^DO)pV$a`Gp!gu{z^tu}539`997G z%KDN$Q<{NSiaU6R>1!qXIaR`V_-(tr1x<9H1g>m(st@$Fr(#)FUlVMT%`&3u7Egub|veWsPBOCZq`4KotetJx!Ij>68e z6YO^}0g+mVNMTNZ6V9t^KUb1Q=*WQ(wmlKERIex6$IxK;cA~uvADb2Op;;jxnHBPZ zSs@>n74l(OAs>|$@f74qR2-kU+O7xKYaAs>qs@}XFv z;~3#G$0a~Q?v5mMLQUws_nOd4fY2e7gc8aTk`Q{!LlX=g39JGNC`AN95d=Xgf+9^o z6huG}1O<_zC`$AF&d%PD-}}!qx1X7vovnAzbGP^CWfr6muD#OqcdInLvZm>8R%v=Z zqw#e>GqUEDF}SXvU)1^)by?9BV?eHBC=e zUz+|Jg?ea2Gc`?5)HFR$)ATe=)3X!}t~1jWW}2R&Y5KcUn*QpProTBMAnl=>{#>a) zKhXB{r3oWOAJbPRPcUnT|)* zf#G%ID$*($pux?}s#7PF9KRjE)~<@Qg4pgh6<zNg5`WvGpjg` zr=w|A({@;<=&zxJOruq+CBt!kWz*{nu1 zx61nmQ)E}zG^4o{=0A%1B^&q4ug$Fz{wFH~Ok#^QtX&sPIj#o$B>tGItuS%9((vbMBx`}ZjifLoQ+cMn@ywrbGQ%E`333TthJ zt3&~<)by4Jw?!jlDb3LxB_E5+0AP=@@llXL7-z5A%E}p_ElO@yRlB39d$+Q}{ku}P z&80k{>g`q-GwrD|-?Ebnt>E<$_4GjTYO9>B5t*j(gX;u~D3Vzha zDjT3dQ9T_EshTQ8X0Z;%xKVV`2u=AbX8#iJs4{&a}sL z8bw3sQ#O0v9z#fjgDNb_suiG*KiA#J|9|YQPm3tX`c0E=`)fbH;ZWjBgx+m2Y!#uE)bU;V+{Q8boIBh}rs-x8~fPO!7_is@vC*v`L#Jz!`-Z+6lyG~YPHaNUR zotXfGDxU-v&SY@5lhuek1w~se*zg2;ZWJ!Ink>O%>)3i=sfE#20NJQ$t1a7{H8w9l z!y-}*+YG$c(y^RZE2FK7v@0P{Vf%rVskr3MRx@^SX^YxE4DrAP?%S;j$o0xFFH8R8~P>jMkm!l5#uqvxg*eMY7Kjj6hEIknj6d|t~ zP<`6NYDx|BqKDO*8>Zk^73)K}{ZXXy9mU;VpJ~K5dRlF`5Dbp)R;8eB0}_Y5Dno_z z@+w_QJsXCls7XG@$-yUYd@oqo%W6*F56<_pdXlWv+v@F~71ug$bycmm6{(^NI6<$> zZ}hfe$gD|>XVySfkA>HaUbrI{^>sjq)K5EUtac1yt*wfNI>D-1AIm>Lt0K0l9XL(W z3AY%&lO*-Anm}aqvFhR}^xH@U(6x};ajRMtje%DD6#jI@tf0{6L_s@^h%I-(qS~y*P-sFt?J-NtBiU$7?*LHY@zX8M$t3yDk9zrV7qO`4iC^M{(gwyw~5c7x~F9d9Yr{DN9L6otNe zuKhYnra+$zv-Bp0s>7`&lujCMHDgydC`%dr_`13`oU8laaH|1XHFUX}K9}40GZ%AH z7xakcW?5Bbgk@{P5$tyI2&*ooca5-`awEUMuxpDma7Y3!6Li+s)QZU%9rugp&`+P| zPB#=fx1NeV^|_qGdxS4xzU>>a;2sudX*}s4ve&_IGG!Nd6K6rr8=i#cwTq$$TvMU zo_UNeNWw1xi0Mj_RfB$g2uZeDlI)pmbtd^?G8Qe!2gz1@l8r`T7(x0*S#AC4TNADu zuhZbaKgtTiGruoJ;rfTZN4c$a-HPcamG!gRDk%jGrFHExRP+$Eq<$Xy!xSq7Irpbn z%^+T~h#YOT^w+ld{&A!SDhN*AHE38n~Hr|Rbp}kDLjrH;LUeD@I6NR={&}Y zn!F}!Z}HqX+7UgO?F~w;#6RUxQ2`^pqB@PW3Lwa#W33MC zJkdB$9GL^Jw;qdi;sf>9Sga}^sK(=PuGMbFXQ-F`5CM#W)t+&f+Zs<|?>EL-m0=z- z-fG3>({O#-1LhC^#MhC<@JPnZRlbJE&nSp_bZdW6Rhg= zH1whgSPCFdOh6w)=9*|VB-wGI)jWW{^}4Gv)bn8|nSNT56**O%m}u4Wr!U0r`!oY8 z=;xso9(=Y`#3ZZ_TD5^1k{@-ZC!llFPv?^`RkaeA&D4;;O|r@aXs|7Vt}=?L|0d(> z20dP_@DQ}Eq9>!a+F)mf%)UVN<5OJv%%5!KfYW7@F|M`AUM`UykEZ9Ksl@OpUWo^& z#1bm;Szxf7Cv~pFRE0{a?eZLsx<18=9)F%d(R+_U=Yp@QQ$1fNIC_k@3LM<&47H#q zqDMR7aTGlNtnmDEpx5H5%Tq17a}bq^9@S-D$WT@3OZ2u>d~-}yXHwDNT5-jUj8vZ$ zqMUV^e5l?&oRqZD4K99{&k75mA0*t{8R}jiTm*OzGRuXP*51kB)3~Rl$DDJ~!_RTk zteW&RFP?p_Px9yfee9z#xZM6j9r=S^nPq($+RBOU=ZWFAahi)O+13q887z zicRFz2M4FJHH!Nk-4MBG^M!w)%7pMr}vSs_HG;F#3HqR#5zk z8a~IWN6!@ZnPashxp9uwgXDj6tN|nkzG3wtdGHM@mSk9()r#b>G^-=Yy=iE6NM|nR z?={!zO6je0t$KKD_4Zt=1w_SpRy4$vdAL@3h9_jK_WpDW-yOyQ`j#WW`?;+O-k5x* z66fRU1yB0Ux1u0|7T^L-=NQ8|k``dJYcO7&n`c#(=XUeJ`sD(v14Pt9s{`9iQ-_yh zoj9-%-K;asWG{2(V_166=jI9EPI{&qE%Gv^v0cav#Fw!M!${|z&op%dX#2rVh}ts3 z36k7J7h^rmqT&}@-TdhnHy1B*qYgj6*lGt}Y>71zV*V0qBCA)ky7-&8%*~?uziEwN zzMlEbH_@Bg5B9r|pTCjubP}tuQ>R`hGgv34f@bjy7(pnk+-F(6bXR_DPc!*LoRht?6;5@2*F!pNCuF zUSDAk|8lHx+U5+~pg$YIKI8Kv#NXZw%S@k2x7iB4hDh)q?7 z!d2^2bzfPL5Y^s7Thj9!?k&ntT-lXzuKDaOt02=~+0BEutm?21e;e!BQ#JB!D~i>4 zzarJ={M%N2@SH2G80Jryw|xs9*Q~ILK>67UT)yE^$-h=$m_s&RY4z}@M@aD7R^)qD zIrXrDl}lD=tq4$&E3JI$ua%fc$We6_hN@QNWW{?Gt(xA%gZ}g?T!LzS9@1BmhgEY? z?osbxTx%^J>La&bzhl*AP(+C@!($5e~5L*>nXNAzcnriECg-1VR zyMwpWH?MrE{s#O8Do=WPO$pO&>rgSsKh{~T{B@R*)Z|4~pY>LG_K|Fgz$B>2WV9hz z3`(k?4VFV5ifpjjuzKPvbyd=A+kjTZO`}^ItlA`tY~)`cVm4Yu=5s z74MSuALgGnCVhIkyLu^ea_o-Yozw@CL<4eQ6_1WoeZu~KkJC~3DrA#9-@q|o#OeQ`y6Yrae_shhm zX5y)t_$WU1>4H--DH1bfNXo?HGw~sr_@qpHawa}L6Q7WY$7bSjTX3fiwbwNsm`O1x zQ-&^?c-KsPekQ&k6Yr6U_sqnnW#ZF4j`H0_nG}mX1^Dbtd`>3bI}?w|#AjyWvoi5v znfUNb{7oDOdVRli&xkGfxy7$?6?Js0)r(}Y3@av>Z+UG-IH~xUqaOA0E1)7Wtnz^k zk`nRv!!8WZW?1ols=BJX%^FH_%{FVW&9}xV<2n_*-5TuhJuw0sH>>Oa;^Kqc;MYd{ zmVSD>70Nk2B!dstqwTm7gR8bXEZ6TwL$!McTtgPy3DbH-re8Jizh%(WK*U)6sX%Bu~f$v^>tPy^v%Be5* zSjmBO%WjyzJ8O>$*=|Ls)V)?ooA2vU!1dLZy;fo{-`6A1NY`LM8g@_ft!b;*0}}cC4&HO8S6ufGF#!!bdEt@TB;Zq|vbn!$-uY zyL>~DtZS3CdRQ+jz7c(DRSjvN&H9R+n)R7A+V4?a_3vj^3dxZNtb`E02}$|?(50zr z)3Y{K$H!-N@-!GQx^FE0^|^2C;4u@EQ5N#FJZMe!TU1efZe-I#R*KE{Ey+iJ<@?8K zrd}ShN|IH{!&X9;-D>e+Yd|2~%S2-w-b1}ySRG3BE3cY-ZsoK2CMV@ysQQ0y#W7ey zU`xwsX506?o9KK;nj;?Q3;X!sYHi-GcD$2T>q{9u=>1RNgry!d5#p@k-oyE$$MW}1v&pIGNBLT$KN>}wOZyKlhj~f3V!t&G+^|Y zzOiGHu)5SzrH@-9{mxfV>Bp@hB%dG062NzB$wN18&$B0SeY*H0em3iH0{d7Fp0Gk3 za|ahjxQ&YyrK)UCP z#($ybn>MVguAj1U1@p~d@^OXgqVybtpBk#|X)BoW$DFoi_>HQsemrf>2^>{l`^mAF zduaRDR&|G%n~kP^wk>K+kR7Rjae;isDoFYIoUs<_JIeF(;SK0^e*A+C2K~v(YSLLN zHJEQTQ~8sq{AJTIR~~+kFNI+bv*lDV=d41uHp#sgkBz~>HEa+0HQ0_&hbCpsrEZ_Y zmEzXg>YsDgSdvNKScxHgpPF2LPcG9{mgKDY+3BHgusYT~j~^*u-0r+J%P+X5I(r@! zqkGwCpz@|-$>00sQMw+~d znD2m-^(rb`#Vx>K)b)w$=NG6dU9|Gs+NLJeCznbJwDYNf7qLP`l~t!MTC)P_mN^1x zx>q&5hb~7TIaI{=_*Jm@GsOP&Hy8m2zPFrUzO_yzmDMF>X~ZoTZEH;v@}FBRw$b1} z@5Y5af+(lLrew`wl{9NdpYm$QC99twWXKOz{~*3MPaY%iL92X(Dn2D^pbEW*k$?6F zE5Oz!&B>&>`sqijIqR!jMy<4}6{%XOPM7h!2;8o@jMHBW{IBvAD}m&sE7mZF@8{ES zDZNGAzhd7{xM>K}iB7 zDS~DSwmHe!>TA{;eqF1o^4G1m1L;WswD0J>YJOJq=Hl?|fvVbizYsP4CeF5vGXitv zartQh@-!D8nBd9k+yuXdY`o?t{P+WJXMeKR__eRCQf^qQgXwVscuhsC!+f$jcin2K z8r{HS8&hst;ko%~19JE+I~*ep3#;uvp?O1o#=5J`rc%!pR^cV_+UKaB@!R;LifZ-G zXcowqKciXrNdOTMZ+t zVcb@}+h{A4u<*7u#V@0*a(=<2$l$T~mYEc1_Fz&xylwfbC%@o^_n3dITxxxg-AHLg z(yy5B$eH%5mFkDbAp-AUPC`z*gE@JJo>e(Z<F206cQGen+~+RN z7+q_q@9rWqWYlj~Vh}$`L76k~!6%Ow_i(TF;9bO0_?}hJ=4UI&WQS^U&q@i_U>5=U zn4=4c zXi*h)4br9uK@iL(1j9vb{?n=)%#VkVry1IlUYoS1j6boy)Ol>>Cl4JTTa)}YG*TxX z6Y|=qsCRe`a&kUw>l&ptKxMa5Yo8u6i9Zm>xz!J^tiI9b_7HTGrgE|34V&{HzL9 z=q_F4#8bZ8{~-FUmDIq0>5NcGUHTUTXlo_dB#t<2?HmXJfj;Q&pZ>!NJ-ng^cLKj4Cu?Ev24eRH3}h&*+k;nkxMqYw)Ms9vwhMMX%-Bk1Odj>5* zU%$ZUnD!sO3d3^se;C4}YA!2oCy`ieySe#+8Y=2jT@)@=r)ROFsgL{%r^JsQn=mGp zFCFGMaaEV;6_R>@iIoNBzk9jvBh zvqNlcR{az0WWYu|n7=!lJ>2h60~MCto^I14J{Sv)p*Pc~XLd*Zlidyv=BIzCt@2Y_ z@kuv&UG|zP#osPW9v1oAi~R;RR^b8m(j4?`5InU}YhGe`jOdxYfchmXPQ$CF`8j!9 zesYMM)$|%(2MevOR^_mZlArxK>^J>}?X(ULp2WX!gYAvj5KN*QBfJmCtTL^4)xPU6L2`***RC;s2cT z+kHtc%x`xfc{RU1jbv;Adnw7s1?*WQCl$0`Cz&PG9!qjUsO<*sYlqUdPzNM6z;1?R zeerDm^*(r2Nclo`ezJ-zWV$R}{8~vhH)z6%NH{DP6>F z$m~mEi$dZ3;xKf{;xIdx>QvOuuC^4h^Z4Qaf({q4V@MV)YPTjiq^KQB@>o$+46<}F zJD%kHV)jsye-*>rfE-fX?m_ZEal0eQpfI}=$=EQv3(1ed&_Iw*IMVq0skm@7AmoN{ zyD`aI;dZS5rhe!Zyv-tiK&Tp20*;{gsDvFwGD}Ij70I?G5eVeQlJ<1YfcyHTunnSR zDZ3>p=9l7(S4!F4C|#qpt^e?9d}+HgrB9T$qe&JiV>cz)uZ-P@1%W4<{P!y|fyPhJcIuskK+kHrpwFU+YB&tzWb!vtNjk}gTNQG6y z06ba4Efpq@RBc`=1b;-y3NF*%`_S06J3@{juVV3Jr8s;W5+ zFbI)2)xb_B*`%S}J&=lX&rv+r>!2<2RkDk!u!i`for?|ad}MXMA?gmRxlZj*4x8iK=sktLk;|QqdeOF^*sv(-M(Eu4rlZ2qXiy)P6)=HNq~d z!djuG&`oZIbrUkAwLO|`s*w!}FRr##K{p+2ZI@w1EmCZ2W{0VuHdvIAsdXEyU63EN zv8S?41lb^VOa+zv*C)A=#!Q&NYx{JL0?m*`*Wn zuR7tBg>+1`y^!SHXnVPTiQZ`LVk)jPD!aZj&ec$abg`2IN#V|+x;%=q^Qcu_>}sU@ zx(gZ>GOR1Q269?g&huMW4kD@>RyOc$-LRTK7VD1b2)U@cJ(^^;9`*>5qk5oCDn+Tw zJut-}8}!74heTycstr9+V2`7+!dtvNBZtrC$k__vOQ#Rzb-u5_>Wn=7B{*|Io zlQL>$47&DVj6IMP-TGiHg5251p3Mg3@Tx-p@@i;bOe84I_eIk~R_KSZ0Qq`9EH98( z`=Ki!%lF4DfLz$0!~Lf}CLGfJV=*EjFUQ(LNH&k-2vwXtiqh5qJJsLqiik?90R!wZ zYS#d}lT83uEtNk-t9Gt~<>7i~JDWN?$PRRp#>J@aHvEV~G@u)YX8*jG`BnNICDs%Hd{KUL$ z6bjznFIzVCAl@!QRyl{D4v)xwyoH{N1(J zl3YB(Uc!dOmnUGBwNAj$1^+C8^>HKZ#jG!(PL0G!2~9*pz+hn_`UBEV!paFbILRK# zhJ}~?hgYZknS}lXZ<=hk3ZxL-1Zt2+ckz!jYm@EDq&o{8$%3OWCLohWVTePX8HH6E zvV00wH^?a|=yS-QQ!x4<`;Nw_ggiCc9>>1Z$@foBvR6{$$JotCw|@-QWXQ^6?eQcx zjKw&DbjGpI*l}ojr1y=(xE$PCl^Jix+Jjr`;qnW4J3J7*7B&epasPNM+%WlOJi>r% zFaa|T@|_9j4ah$xu#5f^Z6BqtP2_a@NvHnEXlkk2P!m4S?!Y_}z;Cfj`jsYv%Z z6{vS(hEBoq30?0g$a}S|`e+KufXp!!0~E6FRQnD8t8LNaMby+O0Yz0nD%Kt-7Ny!d zNH+6fXhE*^VO~Jyon|j1xp|uXh9CZSwf1zoZ?Lbgu4lc^^cRarwPTiDQJtJ_7bJ^Y z)3N45#?8P`fxI%qo=!4$CN9Jw|D0(rCpm8xMgU}v*EzlBb@ZOE@ABDb9pFK;F_9s^ znvH8p$m(;@5s)9w!FmK);0>0u-arkbhp9_%*i}ddrrD)QR!hSGY7wEPq+$Jo{5s8U z@81G%W|&`K`CN2O-MLuH!PDoWwOd3ipU265^U%n^TjycoLI%!9IFJeR(ch5A=Ci)Q z0(8o~rYdm(IOOpKxO9aKUP#Mh3zfJK;{@{XLKF{~XA#B|^XeDf+#x17x zsfD_-nAWuxs^$`0uvKb-PTh&tRjU>u)SXK(ouPZO1d9b^?>Fg8AFmF)iLxMzE=5_8 z$xBfc$SX_HcaWXZv6Mp|O2@2*EVc}bEaZ%3n1hf{mSM6&j$Do&f_%7~^Y>NgL8LD# zPB(uGO^x*Sw>VwoZMp)9R}{Vrk-ohGZ37v(5#HY2ltjI#>T zZ9le$`d4hKm*4RNvHYI@7*}CX)Y^mP0dm70TtGqQ+lz`q4&I9)40&j;Jur|my0s1> z*v^9j@b{aa*b&U?5j(ucE~3_dVpsLUzr9`f1Va_F@IC|xIeecz)xYjg6r4w$+h^xp zz8~WVJbFK-3go8!_zp>Ww>x}6TN3YswafVZ++Gd+)NT+=@1Vhj&>$%BQ&KVYQ%?Up z!E`r2j9w^^f_wU~{N_^(^LCw7kKjphpIP^;hOXhwSRPcz+oE3=_pa7pVcq@m&R3 zva4~2a2kU3;zQ_W$cu+CL?DYE#y5AJaU!+W)C0JFe(SJZfpkX?W41sBe2(seYzfJm z(9-Z{A9gwIIcJ0aiRSRIyL|!+8*-F6i5`ZGJBj55a^*=hAmpW!n2*^bRiRTT8M5yw zyE@55r!b+94976UKaiZp8j|C*UC|H!CRY2j-O$mBtiuOaPsdHPMW5j7^P8uU59%*Y zW4=K?K8-UCWRI_L(udsqH5woC->>aB{|nLZi)R(i;FLN346b)BM5~i$FbW`ZpGDI^ z#u~ZhtX(^&&QL66d{WAY(Um1%QC0FBx)#PG&*A(9`PDfrs*oYyFpv2L&eNKx!%uM8 zbLks&ArgV-(WsD}&f`Q5x#2uALuUCFO##{LTMT;0?cZ|dY~Nw9Bi-RULEjvIHN;${T^pP$nD>=y?qH+ z07y@{WT%k~_<{MrA8YPwfB8pU_B1=efb{(eno9Uvq=YxqSnT41L*~m?4l8Z*o1qy=iyFzl-;N zf-iI(f5uSzx`&$lGsYz3XFp@?K-#wuJ7mvWC>!#_TXqeSKi>VAlx#9hax5)%XWcyqI;U!{6vsD3<(< zm?1F>`;v@#f=fF{O!XAb@M?i6suKUfaDx^-v4|v^XbMTxWCmNm8WQ-M_nvCQQ*<3< zp=W4Q$k9fgdWLb1bcyF^65`L%n~*1-ZLt|71z|^JNP~N*-Kmi+`_*O{*50Rlm5eRK}f9q4~+@=;6K#rmbV%N1N?DyQB&TI{+L1h!)v4}>m-GFX)u~9bQZ}a~$y%K{ z0-f^83UGqRrci*>m*j*1C!XZB0H+VhMme0poc9Ff#is9fBROx4Z1mzEl`YU2PKHT= zP8`W|Cf&$Fb0NLja$J(O&FMtk*QE3hHWygW;R07XT;OxZEAT!Qcz=t!TG0d>n4A)y zfcJAC_o1Aet89?dhr@e9)=#i|y8*1X2RZeqkh?)#NSk0b-xkb;I3Zpk{&=?8_1~(h z2RZF?j2>>>pAo%7dS|P8*w_S-5C0ZBGHE!r(diZqCVlW$wY`JUtGl_J+*J0U7o)tzOxa`fZffWs8y6^`EP7YMp8MoFM#Y?vzKLz~t|I&Nwnn%$ zGkho934+Cza3=|(NC{`WqdlgQVXD`=aG7WH@RayOyk#pCis_`C?)5Dd7*)~y5{1-PrO}hvWg1k*(L0`_%3u^Cy{U{d z)X`7aze6RxW8yee&Iwcf%R0GPw}y0UOcYvopsZ7v@?S3N^ssgQ4P>)Hoz0C3!=y}b z^}$tQV}~aW9}^p!j+djV^m0xQ%5tw91|ejJ@?O@Rly&E;tm;X5CnuM@n^e2Es_C_y zNNZ41;<)M<^~l_(0%jHDCq@>ih}ng7YDK3j$@3LiU%e8`MU|X*_IR2+p3da4CVOmO znJqUN8Bm2iCRTBx$>X6aPH&QhtFqn1s;s|W)#*mOPBkpmkXTiFk$g~%s~KJ0iRO|Y zQ^}9F;uSWSE@-0S>i6nc`C$8^y3?6tbPXqlG*De{>zVee3PSxVbE7W#+a76hiOTG+sE;k|ytLu~r z{ePVXbwRQzn4#V+=R~Teb)5kJ8r)zF>u?2E)$!bglWF)XcQv_`QiMyr!eMG{U9QB( zb)8`pVOTv!?-}n~&*@2fn|If98U@ncW~?v6kMODDL47pXn)*(DtS>O>Uf)S@^!Ddk zV#fvO*=O_oMtCS%WXq;}T5nHIa7IsF~IM|mpMW2$Mr zLy=AyHMF^t6B))f*TtS~t^=&n!s!9{dJCr)#E&hUh7hPqUR9+fR!;1TNok2{LT0pd zx;lEZ@ltZV)VN;U$|a2W^gMEYRG-9FsLCzTjOK~*|jy6xm2~YwbK&fpVnxw zR2ALE8D#5yvKz?Z1{#7LmDAR7pbTw`ny0EsZP7TX>OxyIK&ook4xy*wZ9&c;h^Or| zjBT$i54G32!cki1i^5q_`#wg#kC|Zgw%_d?ogykJ%E_)8cW?sWsAUJVU8-8&0n1;i z3hIbeK2=TVsJ&n9h{jG;bvro&Ay#zK-d}do8Tv;%%>mzw#(20{K;`I+wGy&pXUrGK zEuAq+A@g@ZLqf)M!7Rmo(~rA2O-TOT1(!~c?Yh$0HB@cx>U4MXj-!7m=6^F()9Hvb zxvNuw{*Z^#qf=nNgIDs*>xa-Qti2;^qprVh_So`>C>ih&b`j~;{HS73D& zR%BhL2c4fo)v6v?y>&^sC|9m+DsrwV$sU>#KLGEL)cN9i(zQpZI@Xg*E!~UL^Lt@Q z2LHJiT_0d3^k)6$-cC$7xPmargFd8k2m|$EiuOQeS5>ZKd7R7flG6y`Pgx^7VesT#~u^JLx1h_IDPN ztQ+gRN%CZ@Gm&JgIA;dQ6LHS#Bs&jqrjk56z?nm`_dqPZkRJ_n#$&r|#X(M22;U%Q z48-F>&NPUz7*LcN>`Z_d8Sl)1co^^aAd-hT6Cv&n(HUZgI&UEL>ribuV3;!rsVgjc z4tFLab$+e%Nu^VD>mnpQh^0I1M|E$I{bOZ5{6Rh4FKrs(O=g zh4fT?Fd5}PRk^3&0_Q32gy912sk$@883oa2D!S>Z`fe&N=boyzsZJ*dI1g9*QZewb zB{MP&qbF2pcTo#m9xI}raX z9-lZke!`&m~wjBUtMGw`Ji zvieMP1>~}s&Iry`f^wC>|2A=Hm2gIbzSk^{YR@c;VWe}t?hIi2Dr8?pMa(tPsUou- zi!+^h9p9^T6>5=Dt?hWn1gw0saGsbp+X*E{D`#VJLOOGtAtcAlagx|^1m(d$bcy2y zZ+MO)-tg+!ii}#R0kd%a$A6;a;o{m7#dg=GeK2IuWL7YKd^L@Q#R|os3u0)S>)E;J zid|{w3M8(kp>mLQ=Q_O|y|u9`IqJ%emd_eM}_$qw0L8E<~&OIFI25{i^wx9+2P9cRG+Py8sIv z^KT@oT|3KX{^qq1m>d`?yFska3ukm zYcXaSWc$Tf4qppZ?=QwO2>H`u6bD&t35thISmIQmx2e9h#3@R0&l0B;$*W78S|szl z2|th>-o&yAIp3ted=p>Bk^c8hry9wMOIh|?3jauVT<+9V*OoekDDliFE2le^DBUNW z3z?pdZ}3Q?umb9{bX*%EaWNeWGbBnZtjaFquuyEc8oCVMA)%SPjNNQnh93fuzF;KE zE~JVscd8OZ0BuO3?9jZy!)f9)7?d<}y*Ybo79B5bdShb$ECb>MjB{GU&F)=Xs!Q zi7@FQCdOrN0(w7U431#Y&jY%QSTE&<;~PKJ0|XfR!36Y9!+0FQVweZWfzNflr299A zkRX6IE+RvsfaeU71sIp33F!TWV{n8l<2|5*oam*nT~Vti3-Hl)MP!&Ngf=Gv_yic2 zGYIJYhBI*li`gE~WxU~~-1;2kTmg+3%okuBECTSkdPCx39Kz*NG9jQ{F7s0EZ1$i8 z82c3j^k%}9ID&(BJ)j+|@ltxnBGm5*sKFlB>1xV$M3`(46XS9d0lneyLma_ks|R!$ z+q{(CiU{=%0mgn80lnLBH;!Pj*8_0iOLzBqNw+@-^{D`p;UEFMi|`PR;Nge|bO>K~ zDR&_|I3|ELB*Ol<0NQ~FaMA-l*SP$eh~6l821hXY#sj*HZ@m<@9%}Uk0kr85_TLM* z&EN+C#^Y52dh_6qI6{`6_TWXvn&>iaivCOXa7zGfG(?791kkoZfI9+=%X=rQB}p!1q{4PbPm0pnZez@Q(oF@)-fWEATmvVDX;^bQxK&7lYMT*g;kS z#@?U6sQUN_@Zk_1ERSdpj+fGV2B8iT5Wx1i2*|EKSmg77c2K}e=`Dj$hYFxwf&fJb zU>hLXzbKP1LwN3$@KSn*ATpE^VC>5h&|Ck?;RqHLJ)lFV?4{hj+zM3%82cIoe6rOK z9_kPwpgq*{QhK8x)C~mC)gXUgJ@Bf3kr2yLd2he6Ot^ayoURx$n zWI{lD=;)>Nem`W07C>A40J;ch#h{x2Fs?`&tgFBKNW`{bBO3&cW*G5=K<|uftS*I`e46E zKs?uKi2&NR2aBZwjK}2!Xv?0fa0H7LH2*ZwWvud2ZbkO+t^ku^Edjk%?>!vB!+H;B z2OGVV-oyv>CIQBN3jw|LZYz#x{on2p?O~^v(mVO!VV8g%9Mi`FXx|Z>~9dzJLqoW2o|?J zpdI|`rSuLxsPFEj^-uQVf!q@l+I|OcUx0D>h=AT!_Xmz(@s|g58Be^FdzY*EuK;8J zoPgdX_X0;gczEp-L$n7!FQs?lL7hzi?Y#r=7eHI=0CET*mjE^ay`|2<5kRm9bP>6{ zl>3&CJ>(H$GUO+qci0uc5j+&~fc8+tOX!l01dGxh&<@I)6xyG5 z;Xz;C)9cN402Kw$4m*I#0*uRQ1Y}PfENXc`mr=({=}mP|*AqZ{=l~jiLhFy-9M_0R zQ!?R=bkIk7DZOnDpt%5J-->|V5Z4+W8as6-Xlj_;$RWy0qtO*mvYx|GY%F2d-d@;r(F%bQ*Jcp9!F{d zI`;%Gg*|lI`6LFa#(L+NuL(W-{yyj1Knemn-v?gGQ*S09+v5=BHVt0!+DQ1ekKa5n#&wPJqvp z`@IlT?qva{+#d<_jK#+_9HHDB9?-S_*-N>%SpBPjI}Gj#_?^K+2p_wA#N@G<{KeoO z0jAJr0!%S41(;&8?DOI@#bgs;N(m6~7qvgCViD21>}(tX1bIN$EyPQ?xmcZ7Kt2Wq z1%xsvBA_UPFahBVN@?Jut$n4LloONk3@Qnz%%GZp>I`ZLFoD+3FMdn6UYey zdi&x@93ir=J)qm?te4We8=?MIz;|r_{XV*Q(jG1`xgsW48C)0e6N8@x++y&nfIAHC z3HY7CLjjK%JQna5wLe1pM~JD)GXdw=;-vr+d=~7y`=8je2{5q-2r#i*0!-{V_tW^( z4Pb%~5fc-99swr!`~v>s$U+I|os)%dgvu24fbNFkUdjz)bx8r(Y3ZX3WrdVulZpZ= zF{mnlc3vV&O#!sy5}>YtdJGy0XvCnY0NQ|wEX^T&9C-^St;NJtrJVp1d)Kb-UxVuFtqV1gegzyu#Jz{Ea`z&qXWF&sy5n&1K54T)aL zO=5M520qF#n#njZ8P8yn0ONA10OMqu0OMn(0OMmeffBv(L0d%;)?5$huzd5qq`QFi ziv=uUkS<^ugSP~{&0v*)cNnY@u$I9(0qYrjU;yU-CMH|NWGjR10(LOiCBRf=j{p<< zJ^?27&jgs*4+-GdeeMwOdc#5J|aFTm6$RDh{X5do$)#RZtkln`Jl zQ(AzjjIW#!Q=5te^p4z0I6{4^dO&wnbuZ=CV0CQ)w1XG+^#wFw&{#kd29W}q`Ixj6 z(uzS_0qq!c5MaWJ7GMJDD!>HNLx2gSw*V7J-%siMqbu7CIs_jpCMJ-90!$$B1oQ^o zA)IBn2Xy<4@KSpJE<7d)NM`%d0>*sG=b!OHCa}q50aF-IGjXBQ7|awfi@_WLZ!nlA zU_OII0v0n^3gKg~v>zC;DlvJB!Ab$E7_1hshQa#+)-l*9-~$Gm1#DrkO~4Rpf0VmZ zNCKPe7GN4}uK+X}W!W#lwAldxrp*ouFl}~JfN8U1)c)K6rqND_iD|Uc0!*Ww6=2%z zya3Z?7X+9#yClH0*%bln%=o`1#5CFs0jAMz5zw2TZ{r9JaK{6B*!||E+~S;lo3#tK?Mdh|BcJaVq%iwakGeQQSPeX&!)oNE+{Ubq5D>|rg-=LJCT#??We_Ex1A}M*of&i!(49dq0Vb?I z0!$$NJ>YXqBm+F+nm`5%Fo6seU;=Rkm_SAfFo7f!h^E)kjKUGxXN(7Q`;7aH=3i$0 zMAFlyb$1eHnCbzYLARDxPh<5=PwmcPFh{@}4CV=#&tQ=NDuRB0cvFb+x=eua`j!CW zb)^8~^<4t@n&M+Mj^Ok?59q+xc_~l5kpQ;6qy8UohRufX_0U!?b0`@WZOn@okkO1TK$Y(VEW%oV2ekmr#>u~|b>nQ>a=#KLq^A;BNs>7(9jWaaEo% zc_}9UG4R7qX|~9UBZTTNz|=lafT^z|z|=Qb0P0IVatpXd?GKVqh^cQu0j9o%1(^C4 z6JY8aF2K~clmJuTvI0zXD;%Klr~A^>x3ZX+`c@<0(CbL5;|QVF@__E`I$p}H%jyOK z8Zu}ipeci90>~rHzm`IblQsg3llB6Pla2%$(!TdjID(HZ9?)TR^HOeiR`(Lnn?YX# zQ2%~R;>5(b93;Rv86vohx7-gM|VXF?dsek6w9zJj;d9`wjqB2w2JBT>+~ZyeHs& z1{(yJ+HVqI>bpgNsqQwa6gPmW?@j@xzPkmO`tB8A>bqZnsqX;+roM*-nCc$&fX_Ac zJ?0VD)c1q{Q{U49OnuK1xI}~S9FEXt-+Dmz_60BHUS#zT0xmQ7QO`f^;Tn@0Vsewg zZ2`Y9xGUf{2KNO#VDN_k6V_h>Od$UVxNI8vnGh4mO93X3EC;>Hnn1D%Fo6UJFo9SE z^nX{_I70gbc|f;M2&MSHEsQ=7k>exqk(VZLq&5dsxs@lg~ID&oogFf;AqBB$k)hV|U>#GW=#-OGEdMyP!)D=MQqyT6rz?9KMfN>fr z08aJ!uZ0lfwY31_wH*Qdx{CHVLNOgZpaYNgQf_BfcN0Lbw}5>w0meZe20r*TdHRcq z$uocey$Hh{h$A?O_kb>RsF(88E&=_Pi77)OQ7#P}d4D zp{^5PLfuIH&kbN={ZLFytXm1_cVuMX2raV11G-H=@>1?DR__t8m%)AkpE5Wo;1G`J z{Ch;mQ8qay;420v1)O4VMnH4Er+rRl0sk;~Cg3@P{{+x0Lr_MR zL;tVPYy!9#H$Z?X#bV$?MpH~qF)_u25Xc^hk6buHF?l_ptCHVKdFoIC^iC1C5Zf2^ zfVMC0rQ9%9mxRFYzm%aAld@t`jzL8M#$^=&#z}Pn#z!pz^rjKFHjWT=JrC$88h9zU zA*u23RudsjiKM&D1T<&RNPrz~yp9!MyiOp{pN7Fi93jpr9?)^7 zdMVe(>KOuNGMFu34uiP@=9xSTg)Cx|Hw7$Zuv~y*utLB}2JZ@3&EP!&?=#pSU?YPM z57GG7b=%A&Lrk_Y*eT#61|JL9!(g9){R|EWILP300Y?~oDZqD($q6AR8GJ3kwE8&# zrp>+;VA}bj0MpJt2$+W>^xRberkSskFKz(S&Nl^^cD^mZwDTPSrk(EzFzx(6fNAGH z1ej+2%L6{wwDUh6aZNiv6JXl;r2x~;Sq^)#n|977z_fFKfMdvv2CxWx-2)#sjsSc? z9?^q2#7nukSf5uwJ_ZE^gfb{1peTbd0pScv2{4706_CrvCKZI3Vk!$T#Z(huim6F} zUU=iy!V#)c*8{pH^}UqafYpr!G+_`)z^6SlW71MgS}|xVz?2aszz7V4RK;V4RL&K=a>t z9Z!T_wc}2}5z3wH0o|Zey_B2E>gfVzFnC?SYzAopjK}!`jE_as|6HhX@+JX#-;TQ! zM~Gs%2Xqu~c`5g8R<9E94udrU)-qTpU_FBm1S~y_`lF1^LX6i80mkbN0mkbt0`x{7 zcQ=mUW3LBvocp|#yPwqu1RP}WxduM+aD>U1VsebZ2>~Y=d@bM%gKq?!XK+ElMFu|z zxXj>30oQOu*Pl0p++>s60!-cR2r#v|C&1L^fdEsPKLnV{{3XCt<{tt+-Grt#&&0&k z=A{5rn=GGut!`?QO#syfl?fnVULvG{?E&2{IlYt{gd>`NxrERgh2SBdfcy+X1r%aX zR6sEX;Q~r9C@mldgK`46T(=?vnt!I;Dq>>FtuDZnTT6f`w=RL51@Tc2M~JS`2mwsLS9Z0rX-h)MU4S#so0__Xvq#lTQSgKtCmr zpQbJS=`fre^nechu$OXMv-*etWB(ZE!FK}sF}Nroj=`nR>Gu~M*B~aB#bgMBs{)2IxF&#JUWKasBp`{wO#vwk zZV8~*SRuy8wEL6~F@lvlu)QFo(gP0_HOKOTYpKPd=yh zUpK&FCjW}bQU=cin67(Cpd0li{fjgL$#TR1-IZCrl)Hk}*#*!$v0xt{058JQzkdb_ zd7n*e0rVa$L;Us)k%*`&OH^9(8qxWJ&YfJ+Rj3b?|cx`1m8 zY6`f)p!N|O|GF=4F{vvizcQ#V;5QA%mU9~ly3aO^1w3NVQ~&D}(j|{26o*KyU9tmQDg32Au^2Gw^j4lAB3)0rWmEIO!>X zUfu=JTR>q3eFPL^&`$up#0yzs1<>oe00tO<_Akq1keF0p5HG+?v|$8R(#)&E79%{M zXWmFJJk91&m;@Qa~bucLa=Luv)+v25SY3&*1t0zK}_5vR(kaunax5QNT0? zn*_{cuvx%t23rNBG1w+xK7$>4{%7vGU1V~PhS*{@+2aA-m!Ehkyyr}ZwO_z;2A>Id zo54W=s~8*>Kt<5?=TRd1tz>K1e`sE)2H|aX?Hd{RNfbOUl zUdp}0>i-1XW02+O|8tPdM?}9H?ID{4ctE=h^iuAhthNRG%^;@$dOaKlL$HA73~~wh zk3k**e%pBdsy-$)h16hBTY%}8dITKm`}#P7 z*G3-D9o583dFn_45p-5)z#dz8K-;%6Db&9)>)UvGH-bSs0nHgi324Qjqky&yq6I`T z=pvvKgKh%4Xy9{u2Djb-&<0RtHf5#Wnw zGEB%Y2Cje+3=#w+GDs9Kib1k~F$_`!jAt-Lz$6Ca^!(FRnaX5>m`r0ZNx)17Qv}Rr zkSZXJ!88H$8O#u{h`}rm_`D{ZLxkSt=PqTFxgOAMI^RpV%UQipz}pNK3s}YAO#!PJ zqzibD!E!zSbfN2+yd@?dFjyhLg!K-At#pRm!WL^hpyPbcOS#)vy-vVR1{(yB13Le0 zBC?pK*2iqJ#RJ-9hL>_bVfA(a#{MG$O{wiZV~dYHpdIY>QtlyE?-Ovu%>Pe?e90yU z1RQ5@NWduup9?s{;HZFa7xT9t)sXE~55-3&_df9|0i@o(iD1 zEz<8l&xPb?la~TQ8NBv|7kLo|egcX!$R>c^#)v@t1(arxLqItOmIgj*kBUqjF`-v9 z!by;T>I^~z(EAx-ky}7r26+WEV31!xV+I8U(EA!`{uL6^oK1=dptm)`qL=`BQ6oT@ z0MnNx3FtR4c3_J#9?*ST&P%z`tgc`H&VTgEM!2jbCdNZm0{Y#IJ=vm$2eivtUdoMO zbsYiy7}OJB95f`L-@iD3Et-5m^N)yj86ofe7l3Yo|z(E_G0=pw*G-krc}vm2fpS8*l}PY_iStAd863`idK|CK}3lHZ*Fn=r(!)zeqK=8=Z5E2f`*%_F4(wl@J{ z06+AUT!oCpycC4-$)W+Gp8HA`#P{0lsc7fJo{zYuY*f2iUM{z1f<|D%e} z{0|ZTgDO6C5--U3sb6{fpr&gA&#dKSoxYio*O=qGJ+Qct&T5|ikeN4Ox*rp-mh2Cp zkY?kQ+9?_ttQl+>?6Ffaw5J{g=6?{FEa)jQeLW*D>-3dOyhbqX(?Hr2r~5MVYNFb) QjG5OMX!-Wr%)Ir?070|}kpKVy diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index c0561cf2dc..4fdee348c7 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1418,7 +1418,7 @@