From 40cc0f3e38f318065d7c57439d13727713c6ee27 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Sun, 31 Dec 2023 22:05:07 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?e711cf725cb9f80f0f65e77a74fbc619c592af18=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5547548 -> 5547548 bytes ivy/.doctrees/index.doctree | Bin 674193 -> 674193 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 7e4b7e1a5bdee6c502c5925cc7412df0ab6717aa..053e97276c4d1adea603f1aa9a3063e1c49add49 100644 GIT binary patch delta 138 zcmbRCl6Bfk)(zK8*i92n(oD?~CvDobdAg|x6O2Fou0Ep$jI;TpIY$+YvuV>g9I8aN f2A9KBP1g9I8aN f2A9KBP15MElez6?9JsStg!%_77v&J delta 47 qcmeyfi0RKFrVa6i>?tPZY37Dzo6`(WGr>5MElez6?9JsStg!%-6Av8# diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index f34be431f265a06e8ca5b361536c2a66c842630b..0d8d011cd87cc02bd3e849d27c690ceb95177c30 100644 GIT binary patch delta 47 qcmdmgiE;lW#tmVr?52q(X{Kh0n`2c|nPHsCCp9c!?9CjS<_-XiO%DwK delta 47 qcmdmgiE;lW#tmVr>?tPZY37Dzn`2c|nPHsCCp9c!?9CjS<_-XaN)D0$ diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index 027fecbceda14ef73d293e834b248c4a14c3e5e6..4369abe6ca299e5dac09b472c20e9b7b387f1d32 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|er)i>zQF5Ybis9zz9Eyxc+=HCVRR9N840Qki delta 39 lcmX@o&UB=mX+s|eXNrlrQL3qFiqYoj9Eyxc+=HCVRR9Ap3@rcv diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 67ea2df1d27dfe9a00875fae3d99978de276516f..0ecb8641d2e203009063535ddfdbb22474919f48 100644 GIT binary patch delta 859 zcmY+?ze~eF6bEqbG6{l|f;cJq7bG#36ohtg=_)7)E|-^Fk?Q2oL2whn!KFxCY_<4{ zbg>k?t_24{r*1`ba8_D$bMojl_hWo7d3^GHFa1`w-^xC82U9D=qmJ)TyVDzNB2~st z1FxyFv-fr(pGG9k4ADXD^!+J)gSU2@cvY31%a39~mR_wlIEnY?(W`11LgcZt1*C{D z8WZv3B9aF0=|&i_=Oy$fk z09L)%5XeoCL?OJVCxIMGT4=hM?j{iHDt##=@C+pISmj$oNW}O>3i3k4Tor#@A0bz! zAYxTuV|fo^u8R2V$ieC!WU{K;Wi0Q(dwL4uvaW|SJ825A$E(_|D+FvK1=#Gcp&^0z zuj0m)LU>O{0&?7L;<(+kUQ#D7PBL?C$uN2IBza)YjkR7%C#aa19jXaxPEcU}$Wrm? V8cF~F delta 859 zcmY+?ze~eF6bEoFnFK*fL7Wu*3%pA%mw?a?E?or$!NoSDNOf}PAh?O(;8G+mwp#o} zx>yRnt_24{r*1`ba8_D$b22o|y}R+fg!mR{34-koaD#9&@%4AL=+)I!p+^-zu8# UZvL2Z{kW%o84IBDYnDI%0ZL^hCjbBd diff --git a/ivy/.doctrees/environment.pickle b/ivy/.doctrees/environment.pickle index f010016ed653ebee1a1e3517b1135ac281b321e5..17e0684973c0aad48c6faee66cf93f9021232f95 100644 GIT binary patch literal 5547548 zcmc${37BKYbsoxn8SXnNkrFtf$Qg=*UZjHKA zUH}a}CmhY7>Yl1Pb?Tf`XRFV-@KfiWbM86(zrnTLcCFqzQw&=>^-k1khOORkaP|B8 z^+x5C^V3%hkA8f3c6elPe$Z|YpBfyhMCD#53@i1{aB#hb(eKq8#Zo)y)f)AU;oy?e zbG^FWoxNf0%E1Ky+8quq+~DZL z!KFn#NO#y9K8w$~oifL(U3#Q;sCHTH^4b-(EAjuXlGbw6s@6A$gDdoG%)c*sNE+-C zE{%4=PN!Z8yI9fSP==@o;1FTxy#gX;{I@MD>u2b)-j+qH>x zZUtwOT^se*b~&n`>suWFgxU?uJq+0hHo`{on^w?{8e!BL4sLY5*{t_!{f#z;1%hst zhLWCMskhe-v57r2U89@IQG0Kr-|G>MMo0+@u5aSsmo@jgJ#15_%RRWHwISaO2e%Uc z#S#!wEcd&;sHsNi_M6S1vxhar&6Ro=J&3dt*GM?d$KCCEyB%ya!cw*0QtJe+;*YW0 zrAp8Xh9RcgZ?`*Pw_Dl`I<0zZlY20@xZR1ifFMxDW1x(|rCd#?zF8w_E-x-G9>X6i z_Y_`e)vIW}2zaPPn8Jnnhl@L5BMiDg`}vh{XE?aB7dG3Cpci%(ajI=TRI)z~2UnG9 zy=KGxrN2N@T@XTDAek;;+UmdJ4$jH~D14#4hjCjg#ihlCZoL;CYX{|R?hqQdzLMUH zUM&PD`P0`@j+*VLg@e}xMh?kL_zCF3(;X;KUAn!XS1-p4y0|323s_40<^sNYpc*vmjlKIGYxTm;y-SOW_blVT z75vu;H~WpCbI)=7eGUJez<=xb@8selhN?X-BZPx1)YP`(nGLSk>Mm>t?VuRci(8zR z=^PBMjd!RNwRwu!eq?Y(E7;ixI;App5(ffwd?kK4hM$f#>y=6)90r3!x=+}usP$hB zR>D(sth-z9m1{glS1Lkrez-=yIaUWlJI2#SGP$)D29>a*PG7gQ5muv4SgLfQb|uk(1YRPdV7=dN zL_wu{tlMoAcf*ZpBidDnUt3+NZmcX-m&5AXa=E&)yjl%5*2}@d+VR!pmGW{qT&k`u zRV%^j(%Q!Hlgs52M=JGsW{ce&FzQ1xAm#`e&@$r%-EP?H9@}h08-W^89W6yNnd7dV zSUp}|+*n-?R!>x_tBWVsE1^5?vE3SwAfsPERI0-y)Fl%O>cjrv61y8}U-cf9z~aj_ z!&5HV>Vo<8JK)}TnW-BP3+goJ&$?t9pdoPLeqU3X-VsIb=iPlbY2_+81>BWm6s*Ib zYj{Du2ih5216EjgI4bukqH*-e*)Lb5SPgba8^ZxMPSzsQLZM5|DX1^#|1IjKdbF?s z3@B{{Su;-%LCn;*V8xY;(g`pq^Zf^GZc;BB_8-YPfxm9SKA z)q5qJksABq>)XeAfNku6#qZy#+YZb1pb>Zax9*?6Sm5#Cr-7<`4Yil>K%N3ZQ@5r=%6|L$WA( zeY4$z;&ukA;RW~Ke}4g*rqdptQS1YBS_HcfTM>r7$tb*~PI$Us?}U*1yt51k=RoIn zG~03w$0KZj@3)nJyp@bxDR$)srBt^Vkd)<5^6+a#HkkD@(`m z-7TKspzznr$&XGPUtC^VUtU{YK8cTf_{4RAQgyeEJA<>j_2uJ>>-czW?Md zlv#rIA#bx2RO;$N;e2;;d1-BBw81Wz_K3e4|T3tWBwn|d;A-x&2>TM|YBUHS) zxW2r)4ysx^d3*_<-sG8VGsL|!M#}2aB08U3TwPr|PNeugX@%Wh;*%9zB^FmO%VpyK zX3r=su&czPfceD}80Ey8`o@R*PSC1E&BQ>!`|tq8rdL{@JJMjf3wz#&2`K@zFK0@q9o!;m;CsvnM*O%6TcODPl!Rk`E=!!b% zV0~p}ZS@3*cnM50WjxxFcnNgB0^7imS^^z&JcW1;5JHNju|(|E^2rmcD<^>ye53Z) zegl>UB^^@5-7DN1Po6lw4g{_&5q)Z}>?hPip+MGO8~JEyW%Je(=$C#JT-w z{8%k7g5QGCudOMBC%ZSJN*@}3ymA~MFldMdaxy@_HUWK<*jAQTj<18`EuJ{J!re@+ znK#zv*z}iAoLE1xcoMs^dSdL8F2p3536|~7Y4ODR%KFmkiIo#4F{i#<3AC-KBy6jv z7IA64RSC}&J2*v<5V36tM-e($iF#-qrYgk+&f*SHQu;_MXojWIaBxRyw-dCjA*uMD zMufXX_x@rl+_k?ByTPEqD~W4XgK`j7>u0Pc0|oc8y{O;oZ-iE)UtI~CQFj4qKzSS6 z)qxgq*~#W!^>{Dbe&2^)7!Hm|2N)bWtrBkLrH!ClhpA(63G>2T5}Ny7Nlbi~HD3Bq z>BZHLY`=6W!o1TyT$U@a`RJv`J7->c-?60+*Z2EqrPS*L<9CEsvkT3;Og!^ zQ(WaotuExf{c!C=554sCBTGA#C-C82X;VC2Y6P$Cm3F$N5EcR4>n=MJ?5sZeQg!E< zr-74&wC~nRwP?50!zCZ;A8y`}(n_InT~_UfmHuO=p4{GeX`k;;I1>(9yof@e(DHcM z)`^$4pJ_DLpQ*xba4c>7^^xy!kZ4`KtiSSXeRKKoe!z`6DqnB*X#nOv8YF?cl>*Ej z47Fsw+R_`pc^QZ1Dq|)kj`@@c0wqW0n%kRT6iu3Xnsx zgW-x|cfw;pg8r-SOS3^27rU?}B>bKQS*`xpM(6%R*asN7u@yk` zq0wXdh9=HKINREBwgTCv{C70Do{tN?x^f??w|KpHlGk(i3-JF3=iV{gdLGWpkpDRE zl_Nv^ada5Mzo3m^r@G~!4Q=9+{lUeqef}yqzhEVQ6wKiv-rvE{G0Za9SV>ym&{Hx0 zGzJbBi8W~F+eP!OZn7V{|9%7NM!VlD1-Jv#`g>*A?r)S5E|A(|XJI<4J;^`eh=45= zL`&NvCZkYrvDRr|FMm#)hJ|-x?iZmO_6E+fM?mE2rwe=Zxxv=)JpWhybcm|SF&yMF zxbvYWsEW5X+0q}p#WK~{4C0~-YFjVdRF0UzO1Bm)A74B6V7UC^YYVI4GnL2sYaiKr zY~lDv-rs$xwehaz;s+W}Hy?jytGD*ykDUC#2eu!)4-%!^!R-#`1g8j2yr31e_L@0DBWpDPO4}svq*3kZbnNmoh@6_cQak2cnI}B`>n`N({RS5*;0Hfr9z3KH% z6!p#)UpH-MUxzL0Yz)2tfkE>Y?$5&=(h4o4K6Cy+j}iU23)<>hwl`F({8>IMcc!^9pWlI1h`RD z;f-@}X}?!JwtfuG>v)1!Ys(%jcL1b(_k-*2zFS5p!If6tZb!-|9`D1|#+%@NME^_N z<#KJJEJ4u-o!!4Vs8sBAgEmoIh-%Oxz-H{suVx>)yp_1SZrio+>y)AmMYH&{Q%|(M zeY~~Qr7kT4@wme_0Ocu0z-@rh1fPg{#34+X+P47jE7T8XpD$N{#6=Ebv9rChy{DAH zEGPoAA%*n;j&A9pVtKm!%L_9cYK~nN`2y3?zTOR-q2u z9e2)NsoDq-brA0�ZpSxJ@<22j{i-;zeKHLd*+Lrd-^^r=H@8yIOt&&6_xqvuHuX zP;;}9;B7!(!-mm6Q! z#UAxe_m$r*hHQse3<$D~=o$TBAlL&h*Jtm118N`(WJ|y8ki7k%3q1xa|3UY3%G7AVQkQp^ zj;>eB#OakLT;*}e7(O1$X<4!2{0LE?{18PtM!EE$p+-diC+%ijt$@QgQts4Mc+1F+ zNISH3vD+c=D!F6VsPAbVqg{lS6sVqv&#J#hXIH~cq4wU|gO-0^r4&L%;Npynd3)`J z+KZ-NZKt+t{%+!+02&@Zq42m-;;2SN+oft4h=VAWLA5irJp;4${@SDV@6XgeX#f7c z+C%2=1DPw>eJ2>5>)-|%0IF4~--Zt>gw~+cNG)7zr)wPxNIFAnPyq*UeM)>Ev_B(? zuT$Ve5^jOj?}i~Swk;&g&R00F1E2OHf1*pFhTr=oV$w|6?zy9jgowy3e0rVJ(1rW740{N!WtI9) z(W-?7nEY_VaeB(NR_W2h55IBfoO6tixd3j1OZ&6o=BYF7BN8KYwD7vJSio-B@3deq zVc-xK6 zExi8l(@#F97Jjzyyq(d<#E$qe7?*lAnW<1ogn0$_CESf=R;RFPk zqnSZPmTrww3Vsourq14TnxGzRG%TnhXy;T=t{ox53isWwz6Le$a2z>$^xX>1S(ji0 zV4acX#K61NZZ8xbg8sUJKwVG-Ovgci-2*!S_TahfxX(8A*H(fO;K=Nhlt{#U1 z2dvPTEmk9E8br;pm2?JOqvcNVIa3hddmWA0`J;KN$i*bQ=cY zgk+!iZ*>&kEoOS4@ZqSi8y3{Py@0JQa2PBu9tUljb#)8G>fuLEJ$veyvC(x8KcM!W zkby={nUlmUZol0(W4H68GHun@U4osP3SkNL3V2q*t9V-igJbxSnhq!t_j6j;IGh5{ zlVCQ&V1h?MFoEIV!UW?{Ebp$59=WUVF7IyQ=ev#`Dc*hbuA>SpcnNk?Gsg^g3AV}& z9VL~cW6)*Qz&!YZ5F(LDvUvH`c=u%Gk3@a!gr>2$aWm>U8=wd<(HJA#X_FC&y!S^v zp+#p*lEjg?i#bHxV;qBGm%7W5yIyJCb=1YQqA@@r)S~*w5kbCSlE~vGNw+uND7X`s zf9k2aK>1a2`2w>@bHWi06+>s=#FC2bez$hS`8?T|vk{&q80Z%6ywe?QbRLB7Y?44% z%XxYE)g*Uz$xwd`Sq{ub7r@kN;&m>P2&u+dUj`6rCBUaG;GaN9>YX1uaWQju!5_ z@4muacTEaiPPgSck5M^LV7pq-Lj(!sfK`I~RMqK&U}_b%kgh`<7sT3*2whI6s~{Q_ z+hbMiBDLkn4uvTGz*Lo#cV|oaq>mO(kBgNp*i_}5$%%#r#f<<1e^!ZN2vmA`G5RLi z8)rd=8SF&$ii*%U#*`YiD)9^93R2m$^K=GAMw+In!>_asCyuq#3)6G{RqR4~hesCg zDI8l8>Q86{PERNU!`gS&zN>F98RC+VwU%Pz^M%Uz9N$$W`-5SWP@`ck>%v$SUkT(! zCl)x`%Cwz)a9*(xgOHK*mBZRv;wz25wkQv^Ytu2;A(?`?vLMPrY4c)A(pN5o$l&HF z8awvDy_CtVg*GTAFF3cXTh(=l4kP6+Ql>xz%xd%S)&sQ4B&PsIQ^U;$;XRx}Y_d~B ztV)0k!rJXuu!pK7Ik`0t-ff-ol@<~tc=6cjD5r0$-9%=B>igc6g|K^k0b6&h*=!su zbCS%+u|SOj(TAxk&4Akak#rf3gFx^vR5b>j(Y5$8U5l>{L)*`SgCK%SCpIBiFXpoG zV%pu@dXjhWr`(J9RmP>GsR;D*isV~_ipOnH?x?}V41i-togiou|1N@k7P0I|7Yzi&Aps!< zANlEO`3Y&P^iR{C@~R&1t~jY87+CP-_gmx(#0oSJ zv(kV;K^dRH+lEg`kL#t!s4XV}R+%cqV0T_C($l(5K2&Wq5W&(8TcCV*rL^hzWty?& z_Z#JR$FyXOmC}BVv@3_PKH#MJOX!Qkk1!ZsigibwPPB_`Gx_E+{f!uDe;MpRe%JF8 z+grZ8Jzdg+YOCV)N6z#`>6~jGWnwd@Yc8^0`utWft?4IQ<>`f z-`n{C<#&+Im*OaCd!#*fDo=ZG@nc9tV_q$Gay@wbTzlBA;3qK&YZ846e{BZau-(a- zpr>5fi|paKu8VWh2*n%+PXUq@k*gBhNw2|CueYiZ?Ncf#g=bc?0?8d;g)ib5V!{S* ze;Nu0))``k)_~310u(1nDZb)KZ(d(NNezR#+!4#lnn?t6_ghTWUZh1$>;l23o`;L9q;dgy3 z=I>XiURonVj|-4xb0%)SPBqhiZFLu_HOAS(DXKBF3oxP9m`;bzAcdMyeu&zRKfS74 zs*eQuTCmqLeHr>gG6vW-UtMM@I*jbw;U11nMeX|FVnmFgn(rGiH9C8Wyf+>wb8+ogMPd=W2Gw5$bPZRna!wP5K;O7dI$kR7s|~?Z{TJ z6UcGNJWsdO?OBVk?sgFAHRyh}Z-`)jR@ ztOuST7y_6vV=~t4p5B0S4IUFV+R%|&NXJ&=4-sK>sclid*6Zv)O-HC(Pi?&p_Cl@X z`nVZPkcNHbWWF$L9RoYD-ENM%>EVojcW~}f-0jM^n+k#QjPEEXw2JrG zbaAFB5mMT_Y}&7i#}Q}V;1UX&N3mh?THhLX;zfmV3t%sFEraRA%XW}&yGfh}R9-XS zjWH~>c3jt#f-<;jq2KK+Y#=eZR%aSY{E34u3s=6m#(rZO;;#zvKp<6B7Xy4vWm_W{ zI)ZyP#x@cXc7#UbAOXhSs2>%1UPCdN>;muZ&K_i=7AWd|se1TbW^p?e0&_>THqPn~HBzkw)=%m+LmA>@j*fLgj+^qISL8?7OX9!wZa326>C3U5|O9 zDpb>);@WGq*UjGtH?cpKU6OBX5DUI)*3X297%&Xj_B7F5v6^c8ywyMhL~+{0yv>nk zappT>DsjVZgXbh}Qfd{Pl}&qvIEv?H$GgLfXZwL|Ta~3GcQjmZ7;a-fvZM1Oo7N47 zv03TO<50!v2Bawd7#CYo?wu;-k1)?i4}JlgQ51_xxkIVXzxkLT@2$YJB%%zBKj_} zhV}Sm@^s`N#5(`@z`B-(xo*WBBq@lO1}dROm4~BM16K+N6XKAoA7LPpPgbvPufn^8 z*7qD(D6@m)4bmDIv-Zwwi4G^R8Iiv0W*xL=p;=g`w{MXNm z|N8myXJ24{9b9iK9q>-BHN}{QYhP%));<|e_ls&@Y>rIr%^2=CT3c1^U&r75o4CU_ z#ee4F_m8msNe&;rARw?2-$x1H(MC-5(8 zf!zAs#J@f-@vqOvzhZ;m))yrI`Gv`UeiHxOdXs->qaV$s=I?_WVrP;zGb%Y4Lq}0C zguZ}{2fH9H?C@K>uY(3VOPmPT%Hgc0UFmOr~tnJ)1c zSe)SVM>Nsk{3=`Gpg;k@ut>QYx-pG1ewDRAa2L@RVmQ%<&KjhTzHm{gK++IIPD0iQ z4wbq@b|SV4XA#oQpLzI=Zs){_2`){CZUeUl@?EG>Mxb1&@Sv{dDtFqIHLA(nX2ocz zBAMdjH@HFdQTkvBaY|rBEv9xo{u6e9YgLbKe*;{x2X%|JADlsCE71(8q61TK^*i@< z{Ku3D3+848hTF+v5)vk_HrJVqptPdQ*2*{pqD1{QSC|Px+%6JNZO^@?9k)jX2@c8& zU~ndLkuG4}q*HBxw&!^u>yj8TFjOfX7mp%4XUx||&`0J!sJYg~nX`S5uP(OZ zzFUtI5l^_-h|>_q0?p$I)LTsWk!e8ZdikB*SMQCf^hP@YNOY&;*2gb!(C(}oem#`o z6BW)q7q#z>S?yNDS+@Cy@z2EbL1-w9^SZ)GtgGK_Ct^A{DzSlbo$Z9;gUyW=Se=@K zX^+tfg9>&XVc-&G=ANkQs2-ZUaHZF)U^z=0N@F$cys(hQa3WZ9#jI!RZCu>j-OYHL z3)ZBYm#Fk870hT$3Fu8%W#9U7TKVL(L5%h3I3)KQdP1O+bsEY6uHbIN60yWzaC=PWm%FfrgWHU! zPybxp++6s`iyy4)Y`pf=2S4C^=0Y3}?jQXO+QNeF(p@-l^5i;-NUWVeiItPbQ5#_i zxsV1xy>d1dBDH^8`yR8?Tep*n4m+f@br=6}#QCM)-xypWK0Z~x5O$r%&t=FXy?*)^ zF-_veJ-7%CAC|>=sNmIqTE4n-Lq#|;DDWb-z`F#AM-`Ye|0qg1h{0p3i@8Jvs?$P4Ra;U0 z;}%s>NLmm_!>XVqu{C2=C@6^Z`%^wxZsi*vM7JGIT~vPZCw%~Ue~Zi7_@E|xV3wOmU4;2_@Btq@ z?K)tMAs;ZOxwuhRrHD#ra2xj{jrjCI;qM4^YM1yInAK^SRzA)_-8(0zdJ!D%aaA23 z?8Jt;or@qERtLddw2G9M;o!Z#u}mE(A86B7gj7cj36RRB4}?1d6kyHTAGf}sR$bu48|DVf9gzyDBpJ2@=?X0g4%CL6KxL% z@AmD;zI4b&2vLZoAvhMy&)tRHdV66R@`80e;5x!3rXkzmV8i!?OC1YR1IUMMw_8!V5${O7fpQ8{OQ{VT@iLCpL*7B+(q&%YaWe>X zb9p#;Gy{2xDUKsdO5M4~emHpAJ0bVzc#xJ{ZsHIR2ZucnN3fnk&@hpM(fLpyEk&4M zltKq{07fcgPNWY%1~W=z;m2=lV$6dxtWV3!%(rX zB_Z(P;QhXdFf&ru5A?0hX-2GIwMWZU9vXMP^MOqu&FNdD7Zyq}MaR7PKI&R*GRSB+ zc-)7WY@w3u!JuM92@MC2_@KF`#fK2LT|$__D2?jBfFkA~rAmnrBMYiz2mc0!zU3Rs zMeYouyvIO|0O=qw7oDkNuyW>L&QAIk=}ye8(pE&MLZw?nQV&W~2uF|ED*+|XqN5*W zj^gxXh0U$uAjn*WyBC=QxSfkT>cGu=j2^t}^Btq6*YSi8S4pz>At>1cHMT3%hKB<$ zIA@1^u$<;1>Q~?xpcFHs2l8;CDJ5;Nv#BKQ61dQ9_7GNBo&Z^Gq0$LdCKlG@mBhM2 zqHjIAsVFhK{1?2FelsOW|JeA6?x2H)IF8y1PU6F=|FF%`KvGF%6-F*xTa z?m<(6_X?NIaFmXIAS#Xsv1fc(QRkJ`86R3~BRDAQC8{doIA{1fKN${Q@_|fnA!Qcx z!FGFz@vMm07j{Q@;cI~H#afO{*r5$OhvqSh{)B?uus3DjJ{_9R#DUWn=L0d6tQMPM z#YhT$ALwKc&^4$qN<)jF+`J%gn+;_cTNLz4opNps2f18<9wZ z8|)>}y=oX6rOVsZ%-kQ)$$lK)AQ>Q!oHL|Y^qBOTqER`b$G2jq8ISa#sxl?hM>CJC zQ7nBR-LqXZ9buknwQz0_UWn4yvr=dscL3yRc(*u1|8bg&n_;7$M|!2}w28IqyDZ`( zs7o5-ErJLc>tZW~(;;r51!e=IXLx5jGTEUV}DX}YV=qy*QD`9Rt))slenZH1i%!mzK|5kY(XWCqHam~K%H@!m7;-xoYhXR}VtE;A5|=)} z$sR?za*<&MMeU&JsiWvg9K^0#pY$V;wP2$|PjrcGDv}79o9JKj1c%bZgw@rPRVi1l z3E(NCyjN>T90;GO#qnJfg`S6l2Yp8?hyH=GkF4Kb!h6X6OGXYDa;>)a$l3fq@*bW4 zf}bS793;AfLUq(cWJ-o>>-%x0n@(#@Vu~IPKIB7jVzVZ(ac{5^rZRKq@xD)Xp+XfV zrBj>Rf3!W(xf=2n0)ISiodfcI_?=TbgD>w z(du0!CoeAhDoYL~^8^+c!tzZmaR^MuqSk7e6^9t*4xYjZK5)79_y!rpv*-(eL?5oZQg^MnUyt?jy0<@2JFB6+T3*E74WA{wwgVgp{1v- zoU~Jk)g{$;q6%WV7XFmzlN_9njv^KfPzMMRa;R&EtQI~{`@C<#IcZp~uf|ZU?D;0F z$$LL{c$AL-oo2@g|kqOX@Tagb>Y~YPO>Mpk{?2(m>CwoHr@~LpY=_G;StQ!v0{Ndo`%#AWL^v&KKFZLsc zdkpHJ!Xa^g=_t=dgYF=+s8PJKpHa)5Dg=V-$3A;A?>qq$nz@*8i?j`kleN6~jhmUv zwS;T(J@$ek#n9BWlyBPJP2?xWq@`RtT@$TuShpR)O&~y)DNW~v8C4sA@H-ndYG!}rZwH-RZLPUUTC-lJw1aHox^ zs|?0oRlzEj-T_p_aELmDv9@Ru%9Gscs3<;|i5+wL7S$8MFj~Fp!@v90f@5099Kq=e z`+gN6Bi?9ir<)g~b5LLaGN~i8>rE_;lVin>2=-3TwSYK%i>Ppd@Rt4fy^+9PtSHW! zLuYOwG!ZpfwZ`lXZ`{|J+eQh0gdg&07?e;IN&D=n2Ooa&REqwbL$xxt@$t}JVN2Pql#x@H>jF{2Mh-*KI-&v2bW;;Tzk@Q>MkS`vdKhsI=!7B zqm;axOrJov2CaY+-ycMul?02oO%XIt9hUM->#-&w*6YK`$#HnkrTfrJnA!G{WDk~7 z7!KOLy>rn!qt*zLVbuco7fPbHrI-wC*r@L;+eS&1mwHZkgxSm8A+%AH7)$eFdOy|5 zw1Mq*Yj~6!f^SxCMh#*yk0syXP(BQ}JCcZSfV5z8!aSm=v<<;*o44LX4yFV40smto zfRgQvLdgL_!bLj~V)9sEF~xc{fxN1Bk?#nf_AEtC@bVd6rtUEWJ?8V?NRAvUG-*wE zS*y;#Av_3TvM*BfsR>pKB1F+~kPz%ZFJzzh)bce6BGiRAwi`^`91eCA+|PuTulQ-K zM*t0L~<_jOR#DFaAoAC@}rbXTppev>7n+*j^L}&i>Nib>8h1}nYXW= z$wrWeVzH_qoIh7N$9#1Fa9mp<4gjVe1ZxY+P2+(9ow1Z|quAee9^zu>y%^`1Bc79N z<56@K)G50&$4J~VYzN-Nt^QZHEbaB@Xbf9*@-$E@Msu*=+&ijP?C|@cv80_a$pb0nDF& zE-IRdmoV2m9r|Q8*hdMbP2`X^9s0vToO`qnlFQa<#U|?`OU;`?FM34ERV#U8@eQBs z!Ada*%T7dGrSHd>X;}^6_V-k<>cy64@7dm$*``EjOYyi_l+h9683i2PITJnTbRUoH zVq0hs^VZ{0E6z4)Y;<4?EHmp=uC&t|6}u?PX}l#PM4RX2iColzOU-3^VC8-XZ{zfA z@D&QW8P}Cd2+4zNMe;bo*e3UuW~MhIL~~TUk+>YVGieO|ZjBCYiNe3rDi?`(AQXW> zKpI{QFy(Rm?$rsdBj6Y&Qg=p#Si((F2yDBLbJ)gWOxUO~o+HnHGP{(mGG~H~7+Z3! zMYdIv@Ce}ej|=9gdByPrNDs;pnDRSQFH3mJ@=SbNy2CS*D)?$u9vu~*OiJE@#q0h^ zPjW0r#ktipHuXp42bzEFGL%$8r4(i)c{Ky~zT;b<+g|JC|z^U1KJCr=6WW94J%9S~N(cDyi^TWd-tvp`>2aRD&3cwSMqc&p4zs=oAo@rOZ7O zew?{o(v3TXKshN}%Ac5|Y3=MIsjo|M)FTp^8z!~pe&3XGNKC%81J~vJLq=+d5rAtR zrLOU36Aw}lkzUr7W7ev+1BnZ%QYoeuYZ&%zf^95r1@I`%YRYAWC0JU$fs;9T9@CD@ zrOwS&yfr3-T2%)&sA^4>unq)z={)mfqC<(E&pf`gEJ5Pj0g6uFVpWCRO?%>1N;uxi zF*8(HJh)o3J(N9Ag=tf?1DB`z=*Ml>P9~$sjVP_jONb9vvIpWe6a(;jDE7TTh?xea zJiO@3j>gN8j=HfM_SmflYJrCl!v2gBAt2a|5OweCC}V#>dNJh_>U%J8zyt`5pwmVC z3}sLN2F74B>ya^X@E3 zybRA7A&Ug*Irzz(qtmw-C?{>UOU~65GY4=x7xDUI$%Y5H^fkpjRmG%v!_?F7InqL6 z-YMym1UHbXq&pm(^l2&CKKC%hrp!vl;@0!J?UO9nhwo$$6nm#(RNicxZ!s@;`;>-e znbnM2%6$RzR%}ED4Aagr2skD&!0Y?}+6*@0luu6o^9c1ZIsga*5%DNBqKG zCETdTb7SXswp}6n#3g7Y*_{j?SoK;49D(Pf7pIwK5QJt82Y1TyO?uACNP14MYI1Yt z>7%A?r;kO=%SX+S=V{d_<(*8pFphfo54B4?@E7%&9MKEGj->F$?Vi3yz0nVK`(I4R zyh`F2OP@R*IcMj+gyCv-PG3Z#ZU)UJo+uIalr935nyEm$eUJo(=xdl%_(Da>o!NN3 zeDgAGd>se+v{xa@;JQw85yEAA52eJ&Z)a6%5Y~bj9gI?w@O^t1>FkLQPfjy3;>vXh ze07t1hnH(r_VAt-vWVrex0LI%%YnQ@x+J6aT>M*C2|qz{YHvWN))J5xZTwhLox@Pd?5aLD|Y74hW=#&ehIb$8fJ^G(Y( z7V&;&yJY^E$8_!-Eg$5>f}OrB#;Ht>Ue1+NUVLzqJyda{;o!y0qdK9Xe@Q<{_L7G6I2?;b7fI z5t+QHg-73YyjMB~sk~*@vog9!iW-u`b}0rq6Qd;M19WzL+S6}wwmdjURwnDdgpfRC zDd@~pI?*A8(`W7kki4^m#1(b5LX{--MjzqK!5129i0f)Cb6EM$uQ4VrJ?99MgGjl@21jpxrBi(^vF% z9<^D$1_9z4myLvs@yy9&CSN+4l1Prv<@R!LmAPK0FCOv=Ds|;{zudCCYH&J5k|a5` zZ=hrk=8VAyE~?^;LQam$v{^-9+>A7!dFoDe8o24>srwG?8pFcK-et-m^-6}SaIGYg zSSKb0!rCWggvy|lIjsv`jV+1l9Gh_(_sliB%ZaEx@e}J>UiwMbWGO9~Li!%=E8!iA zGt@AGk%G*G(Ovg9f>SfXHhpT9tB%ePjA9gJdAmJJ zfbP$Hos&mDoX5TE(FK*8-z#kuZDfc4*YUUryi;Dg9f13`6hE7Xnve}|Zj~dFB8QGm zS1C2@#5;T5!{pG7Z$eHp<1tn7Qt}3GM15lC(@&|}&6rS8+8VlIj_b-qk5ZX5NP0T6 zZ6J>7<3)u-MF|%%oVR4*UVS;oUa5y88>m?b*C)=bH+Ip83*WpPg5c-`Yfi< z^c^5~Q)jGzpff8GPJoDFL^4z|$1^DKp~szAT>hzvMBiQN=B8v@N{tZr>j`skJ7J}d zlva~A=RJLSIZ2mqk-}`Pi=#|i7Ql)wXcUL7X40(F7mh5%hAjHdgGYd2w{gc) zxrNytm29NBM`5&htcv+!tve(>_0ua?I7{&^+qw4RR=!*b(<)bFX_jt#kwF5pWLZe| zULHQ=(1Uk5$no%tE%lAc+N(a3E*qHv);m?d8Jq)_nm@N z#9|lRgAn>s*(Yr_`}`++=wMGJpncKscGpmX2^G{87n+tFDF>8-uS2E1k&^C__ni>8 zoo|Y&vL|(VpuC(vCvhU#W&?#yj9{+&Saag+y3_DY)9sAp>=t6L;Ff@Iy@*!sTj0?=xfx+)Jlz? zAtkSfE1ftEzl_&;$pgKYWrz#k^zgH>t*F%DvwqJ>OiM zW|$HpzE$C^C6YN6(j|~=Xw%e8^h(-vi;T1&6tvx|;R-{FYN;0;ylxj~@>y%cD?LmD zg9eywFq+K4y@3Y?Qk;u9jx$1rVe#GGg>V8DWg8f>mYl|Q7`gjE5Os598@;4at12)$#<$%>YgVJ0-*(__?+0_jSiXr$LS6*+OL~OMD66b*K9YyqcN|v*>gmLqx3mhDoWZ_0Dfy~iK|5jmJ?TFh)Cve%ho8plp63Xn_zB`KNQ1XNe zID6*XELGRuEOgItQzCujawKa zS1DdB1ghA9PLXD;_(*A@#Zn`9ZLhS`Err1*U(R`lrPXEx%~)CYScIxo2|AVfYwF+A zTPlbqb@&q|(`<2_CCSpRIPeN9wta(Ll^a(#e{Zpg6ERiSeSzx~SGJn2vHjf>=N6Cb z*h}q)8U7+KfjC@i0ojG9&m?Ryb1=6vV&atr!~Kong4(0T2MzkVkiJ&Cyv!oU-KC1E zQFT~i!Rr{B-?%@LD>72M5= zTktA53!_hfoBRRno_AzdUiuD(+g_9mrfMd8OS~*eZ?y-8s zlGes9V;-EX&gNkI5n*D+rel#Y^M?5j2TP*Ijl0KA>f%I!R7t_yKx8x>8tdQ)r^-fP zvWKai4#x$~hS&X;{J^&-$sWZ<-};rj%F_g#8AbMyH;cNW#%epd+*JFVWN#N$7Rg>| zzYyYCRK8IomlUC)fS4$xxX!9s|`-r0iu^HK^=@?z=}rT6CxoZ9gLD%74W-n(VEK6xOD1)Wby^XgRIlf8JfIq>*9_z^VIN$lxyTx5DNrULc+3{zofF7G#EpOGO_fwABf{ilsxkK1fb;QKb~f%^^qb zo-Lam*ZYRfGEWD1xfZEhs_ddclkw~(o0-8E1)u&slS8?8)s*=d5 zN3pdC>YdW<_{vqUCU=B+-?)OxR;1od@M=%{hSu_>TpeC(qq@EBX&V>f!;@`95?*t| z28wtUs2rOHrmmtJbcG79T$n%)Ym}i_hCTvvDR+hhQ^><+iSLnv<)r5ZpV>rwHv;H+ z$uz7fzr(eZoJxn0WhKp#N~0n79+ro~M$iWJIDxXCbkMaGtj zOL!8S1aC)leKQLnfHv};sXH*eJzI)qZJ%RpO}u)*2qLaDf9{f{%{-T*N$+%cxkoIH z*++c(758Bcu@Bx$eYufK3HEr*ofzM*QUXpaVzN#&ZkQ(Y%gaQqNbv!(jqu#YUe`np z;gnE{sKW~WMK6`7f=nUdi24pWI&DudnSV$mld5%1%iGwKF8?(-p z)phcC?6a1ic4Sdr8EVk;nYfrtGwmSH8`HincD?F1hnLp#6hxRP34&EtVPxsHkp^jA zmYr51;VD3!b4aAg6Twt`h<qT1C<->*J8F5;AH_ zH=zi(tJA~F?zpR8Y^?LSXdux~Vv@W}#`1RGvTS1!<@QQ^yD~)%x$E}R2Cq0G(!7_z~GPuYg1zX}`-f zGl8Xy7g_jbtXHy6WkQ#XnilIVc&R2!jyPge(wMVvsB#2+TaX|g?TzR*qX<{ChN%_n zb?;6vOH<9{40CvL+n*S+k0%9S^$uZPK~;u;2_)j=Q$))Tl%dwvTFGN|gP5@#%!Sl+s5g(?P z)UriHvPV%p_mW~L%OS+6g5W)lKFnnGW*GHxP-pj1IOiqLTZfiZeOOE!THBLe#7e2$ zhp(t<3tpGZO(-R%$u&p$hH~2(`+T+cYO5zt3>}XY><(iju z&6M&d8;KEqJl4`Hbc_|yw;a=^UQ*Cci+imw&UX3WIL)X5hQQ3(dAZ!$Ma-o0w_J)} z@;IbuvzFKR)@K`02Sq7z52`IspVz+T7_F3uMx4X-P}^%m0KsB|RGzQ_odt}4(JHa~ zn{q6Ih6AUlw1kO>#U`qj0v5!DHPTRG3T3+I%!ehnz37IlrK!%k0BVlJvfn{8DYENbtc%`BgT9nY<}*`Y z8daqkq9|pihl9&R_15=-1^L%_$jn-)7VYvo#PPu7iFB_3InE&T>`2b!7JE_b+8UDG z4MhOC#>i?;f#$~(Y@d3#+iMQD48%7*+sN!0MjlI=p4YK8!EB&s;ufnGCZRJ^vMaEV z_=!5Hx1WP)87!)xcNG@t6)ZXQ4?NcrwHdV{*>HIiBq(!LEh6u@`+7O3@vuXpcujW2 zj;y_LsnF?LRQw%fRV+(S*vd^vA591yT#GyXa<9)fxVdp4?4;6Vn=ht4Q7Ea6bfS0p*$e^@6p|UL zLzaUAPz;H<&GvTE8%@SA+P!vd!z6rkX4;TLh=4b+F@IQR)|J`y4oRR@N?cJEvK$6M z&j#wD9JK49F0Kc!I8Q1gK71v66uUcMU|yXy*)azw+~j!)&F0`{%X}~s?Avr?&LsR| zFlK1qFoOQb(&nwpZNr4$sh2tdOzkO={s_3hTc<&H8?<|mPj-2Hqx!z)w_jxuDnoDS z22oB0zI)iU$p|0ujqf6K!5}n0=Amaxt-aXuK6*iv%MYJ19S$zkdbu}q%ra%)@V3!< zlEFW0*%MnR(R(A>Z&{|zq&}&ew4V=EqYldHNEYnD90~n`w4WszuD3rnSR(`uc(3)5@)aGe0^+Npd9bUP=E zTGW%t)Lj53W=JtduR~_4y4Ldkju3J>Xlv?I%W(TSS&I5R=1I@U+Qqc%Y%4s|3#v-D z_*f?TryYdmVT4%b@mx7qtLzPq!=UItP~Oh@QjsUaH%~x{d#*EA<#xtgFLuyJQ+h8i=iX0IqnF$k{cxed-$wt?wD7RT;;%M>4y{Zhdu@;oDsjv_$$U@b< z07n)Jk$Yk$NOXG`of-R&%*4%|d#7w3>%Eg(EYhM_2qt?NkWe2xYry z<+4xJ$YnpjD+~6h*e7wLf9k`*j$#8jF4g0n4$`*N%|P8}3`RMr0g2r#;TMr0^>{|! zC%c?n|zlHM%i(s#39*QC*uK)ot981$PR zKWnt=Ojcn!!b#agg3P9^#1+>Qrkt^v(?}`A?#-uF7|O0sXsWHy=7jKQb8(v7 zXg^kSo@?^j$PJDA4uff9WF0g+Rx2xK(w!3m;)ChZsGFRLl5W+Wsoml&hhc*md|+*3 zQI!Ev41vF;TzN7j1N}TDtpR9GraYvlGuQ8`z`mI#5a4#E4((Nd8ku7zZ%3J$FH84(3f5>b8%tS(q+qY4v6i8y?}?G}FdX5h!=% zHGk#Y17$)g;gSQPlg)#Y1n!%fOK+or!`mH}7sxgR&o+v@ucgZNU#Si_MZHos4YkfF zR&`>Ai55wRM%joxP6^X-TV0=I9!<-=Yh~_&+ZpdH*V_%)WT&+mQlvwT(T`iN`Z(ym zDuH@1#yhw~&ihs)Ehg`t4kXxQ_jx#AS(uZ4I3T+a@g#W{o1LhS>y(;+*V&STTN$-T zB@~J=(yKz`Ji@phA+s2XcfQRa@y8-T6?Js!VgJ`*qc(yuQRNf~)k~4ZQ1!{A+a%VK+y#N~v5!CI?pK4N%WTi7L0%I~^ClK5};3 zX*8pafKk_w1nUwpGSZA$hKo8k%b9_h?GhSAH- zO~o7jlH)`f3Qu~6l-CSqAKqbg^1W99b~nVgWVgN8-3{8o8Q#%0eVgUVzZtT3p*NPd zOEjYdVAf&gNIDM5H+y$RN)94ksmPNZwU9wZACNx9Mm!p1>R_L2X`Jj)L~NdtzS&pl zEcTIR{B3N)ZV(Lr(co$v8)QwehFeso=VN$wcw}&?I^)F-VpO)i=VBCDyGpDY&z^el z;U`ZOo0Z|#S6zsoZ%s3H$fy5>pI$9}Bs)ufFF7Eck-mgKzeT!_h91g?zsVljes#KE zFK^@IcY4Kod#|-I-122~o?Vr8w!XhfShPbhUdzoG@v)8-QCcc1&_Rb(DTG?#O zC%?;2bk&w|!_IR4~mZ+;Q*{LzlqzZ3Sn{ceio) zyHmf@8I^1|Uwr5OIC0;aV?cj>3JW;INX}-GI*{bocTs6#manU6hM{n-< z7w(Hs=8Ny<7^yQGtvO`AI?ByDmbRV|E4TUR*ZI-$w2xAPht0=dy6?v+R$KG&Z}Vfl zbK_`Px8wpP1}5JGeSH>p?nK(8Q;P(ek+0{-H^}ErysW+uRk~%?$2M35W!MO$FZCx6LLG{L8RvZTx{ zh{-V@{mcdU$k{I6I5DrXpFQauNscvAUwot@ycz6|`PFK?>XEOO;*wVg=xT)O4MFqm zpAyB+L`S||7JS=?e)Cy@pW&Tday8FHJ%!NCmw(R5-Wh+ntoWdNXZ`b6JrI z)(KLQRHvL^;%cU*d6qCG+-XXf`nD`neE-aw68nGD{Mw|NtOK_%)u`)(%-ncg38H^kI5_ zXP%+93JJJNXJ+^&2ua}mD&a}caQa?Yd95r{Za*hna7^6&TApK)3p9foWx5+AodcQf zm?*uTpbz9l#-vDnoNy%o%f(z$$I68U^?58>{}b_>#VYdwc0}wS92h~2iP|&7grv;O zh>3BL`vpXXlzW>Ic0%<2G_i3Yn>QkYFC;DwBp=KX#ajnP5w1u+OQ@3dF(YbyqWN=( z;RB&!U4uu7(_iPD4}{dlMfJ}g*w#5B`)3IBK+xcd?pF_td`Cq1*AsA-BA$!)SW$i@ zF>oL!I3d!{p?Z2C5@SrXpLbw0PKfyTk#-M65G6(Zh1|1OGA{dLx9V|`Kh^~yQbs=i zM~)#ers=$53_zYS%581A6Gh->sV|G~?tlkk;VjG$7BiJhF2j8(w|Xw?>U9zW{Tw%c zJ_DgxgtMZ*<3Qq)JYWP$Wx>Q?ALn3M1$tZ?%s553tq#FmK*&=3E`1s9w;7Pfl$LYJ zKkihgCh1Zg4aiV(=a)&AQsgPwTMZlkq(V5xH0B;pk2e~J=DU%v!Ck?TP+?Cf^eafA z-qM}^Z(+%9pfnt;;Ha1(AYLMfyzwVVCHLpJ?z}Ts8x`xZ|B|a-@?hA9Gl?;f`Tp4? z$R69+OG!BrT^M7QL;8jtS2+I#KVQx{>x52uC%?>#s}Z&Fu}N^{Dsf-Wy%kGu_G*24 z+K)~&vSTgznMv?Gu5BIS`IAx$*%Mc9B&dUU%_N_ZKWIMB$>yy@;izxlH3@cH4eh5U zA%+np>_UE9%t?Y)&-yG&~*rZzI~od^bI~8lFM!;?;(l!2HKVjW>?WnM2kT;WOUeL-8Ur(FFpPJHhl5 zMUI<#V+a*1WvUk)1UBJh)+^s2HfPN>va-ytk7r^*FOmCSO${WQT%zeq#`B7#%tD&I}aPd_mQNmXPOaQ~6uyu~MS ztux%yw)Q{d0=?1kx!~X}dlV&6kMhdA?nxCqx#4Z}t9Y4Gz|JSo&i`i>Jt$)iIO-~a9WKt0X;B~yjP0wQ0yIBJ1t2njkS*(KO?BoYY z{ay{w+BSU5$2KM&8I~E|!Wnv%efw1=NPVhQnuI|8_0%(;8)|H*xs=->7Wxs^mJ`@U zCkiTjuS2qU^dbADS&~h3;=eFs|+~TS-1*-)&e}pp#sF?1N#evJBvyIxFd|}KXCoCs1yJ>u2OUkfB;50 z-`8=bvk+C{b!OT96~goysdDaq0%i$sU*IvwzHzsGFR?I-O5oJ*m-+r<&UY532n)Yu z0v_T0mRSkch3_z#%~|p6!W}zqPZ9bo>WmA0$laR;A<#ocJ<p|Ytzk4>JOx3Df$U}`X8h^ukj)eC?iG; zv@o3+WmU;ec>zsk*(ba3U;MJ*n)BdB7+lXAueZ8H=Atd)p5{`$cA7jeO7w)v+Wsf0 z&+E|11mx3~6+SdeIgg7ScbSj|euBXL+$0NlYDILx$aizM{g<3f z$Rou>1>i5GOPef!@=}{}wK7>7^)zrd@6@U03GBNFd%6R}^4?`k7*8D;%Vc$WsvCd-%XceVY@VZk4j{!6jaIc+ygW4T(b8mfp zne*2X6MhXm3lpv)Ae%2BzlqcJ-$3$!q>tDTQ!_%wzH%4c$9Yai^_-`!2nlz3q&+FW zPS);q3}iBvabW+RJMZ-x-38Wf;@D!i6pr`u=m$^Mm8{lbad^I5>1=3=m+ zx!OlKJFgz#bkBr_N7{sRekXOY6N1x0Gyexk(JKokfmhKHE`O7HNR3d0TpJ#5G9b5bb5%p<5eZ60Ne;60K2t%RRjM^l9HD}P66DA zzb-e-duN;iXs5neOHBFQ2f2NC2VAiHLqx=^M-=bb>#M~_4}u?AZuyV67qS+@dqC3DhlCp@qEGy$zBc=}-=ndZyflUdJ5 z73Gx#T zC^uz#4|0059y>f@rtbxd+~8UD5rT7x@O;j3<`qYp2EUe5oRuFUiC}3_F!&7zK`?}; z#mSq5H}j4}n_8Uw0#C5llQ_YV!}R1iY+3S`b36jhNMv0DGj zoa#YAwGsI*aIOb{05w-5SU*9+JgBK!#kfTT%&IIRSEk{b2?9IXcKP>2=B&pPbm{WTPaVWG&EtZy z@}D>e7K~cy0_}2ok!GbJyw-vmh?=Q?ifEjbX~r`48iJekeDhgOzVu@R_wqq(bti11 zz-PtieK&DmW))_r{co%wmmLHiu3Fo^^xX9FVt1A37 zk>KZy6G7D(NrHkG33T?U+L#l8x|)7|CYh@1Iy%LP&c0WU<}Fh_!@crr0h3HMQB~o? z2ZPj+dJ8|qnfjU1Br|m@G5kFz>J8&?i%et^s;@@FFY)qo0JC+fHw-vizn@?d1dP{p zxPyTG@?#>vctb^q>MuzDvjdE4L3|&v=~vq(nW0l9B0Lysa_dJt!d1`COGYY7`~@fK zmnD-d9pMJDH=oDNp8dcls!{wFS3WysCf*oSlH?1x_}RJMSOJVbO*c(Ug49H5jDJQX z1ilg=31*T}JHhRnkgR1}i{dM}gV}F%Pdktu=dE1O=G+#f%68Nc3A8PQ`Cqsv;arD{ zHNJn~U>kEAjK&~+-j0xj=Z8g%lqj+Bha`^qEeuc0n35=;Px6@GNE~QQC}WLls?BY) z^xN7oas1Qyo@6}6ptE%U?>P@tHv|3Ee2;ScBCc%M|4W*mA8GJbpd&K=HA!QBr;7v0 zQ@^sXza<{4bECvw4MC-~sG*&8|0kJLbN-_txHCT1|B!Eq`;`_*$S~8fxX}p8+fY9B z+vI}K-{5H3@0uAPnX0(ySVZXzCrSMCNhaB{#eAKAnB;rwvZmk3NBz?b)=FaURxZo? z#Gktb3zLroJ0D*ml=Xa?>*;2a;pC%i2Z)2}ls4dW3z38vc3_*XB*^2_TwrB>L+@gt z#x#7CV`WR3$(Py0;&ww7jMNNJSwR>7`XZ8kHj|uuJlJUAHwZg?QRz^F`(dM|So{m*} z=bW+E(@O6>T+cktt==W6Yb&_>MvhgU1CL-?mXRVTM4yyxHn}$XP0tzmEr-%N;c2pk z#vGP|2y)2?>V})m5cwC)(8S$-JJ+@S85z?=N!`y~`-}|PH9piInHN#+M4b)fXS>4W z$2nHE!r_=>Gj$H9ZxN|8s_Ka59^Afc%Yy@8vcYV<%GXJo^Bl-f$K@O-oBK|?qK$eB z`CzCdB=|drn>D{>!H=;e1N}}u6UVg6Vp+V{1NtbbVk`4dPd`{6Jfs!1SddAU_xOD2 zuu`w;NV#FYlRWLxDs}Z7vMlPJ`O-WhgUd3|HxPT-I>5Axsv5oX%ekOzJ$LGH8c~49 z*P~r?x_)TB2&`J}^f#o6Y=wI2g>@k0Wvd?JlIF+VjpIuOD{-*-EvvTIHnsZxDJd{p zYnv8nx4Lbgn0=2mUr#dn){f?e zhq%J|jIpz&$GDecWU~wj`N%|}jtmJZL7P#srCsa-Z^VsdG+3nvVrFu(pC9I>9VF}Q6md@vL^4S){$-s+j z?uDfg#okdvhY5)44F%;mxtx1aKVVkHLP`!(ENzFKR;axjZ|8sqjl#M;?HA8uhhUY_ zdhWfPy|<#=3U3g+1#MJE>w*LKGN46s&83mtx+p6<$pa|S%xX}rUL1in#DG~C$ zk0Z9TbolCeS5~srt`2Zgw=;Y%7I3NUQem$f?oHw9HC9*sS9AC7Auq zoOjsShBOA{Z{-4W@YI<`Lu8Gtt;%DN9j7$g?lF$11b02r8nsMR%4c)vc^?rBjW8G; zlywbB^~{`)h_+loe6v zdG*K>@6}Or|Fy8>#+&?a96LKIbGDUl*BB{Q>IB-g`W>GM&a~aZ<8kWZ^YAIcA`~vn^DxOl@jP{lFSZzO{!vYGw5vAUG)7jcPje` zxvA2bbnSNLqk>)D5<<-}uH%5&4AO-$>44p+Tvz3NN=Rta4D#8zud|1j(qZ5-X2*;3 z@unHpsRuMB$Wx!G6&iEo+vdHK@e_)8nW}A)aK4elW()P{5er*Ld7GqT^@y7oWRxA{ zHp`HajR#xc;h*dJqDH^j!l^_Sn#j?wAxg7Vv>DbHwaSQvRIe|0;aLh>Cj8?84n0rQ zR@7?%vd(|YGdbVEVx<1ayjKQcZ7XM=&%v^*_-l7cxQE4aC5wOp5>}(_6 z>|^)wW~|B6{}CR+&%}bU%u!>&fRr@X1^4+avZ@)9+uuRmbfCZ_c&4VHriIObOpB z=dIcAIEu#a&RfygaTJaJi-To{;H!denT8T6`=R&O7JabNGK-A0n$bVDt$QIOzL((sOnsw3IiP{2fQg zHV@b$kC}UIdlvhxPOyVoGEU8v|H{#_uPwS*WA<1m5J3e<9uX_y`Ojv*=fp$5mD`g| z0+SBc2+!~nLEr~CMkiAla%)9quM3wHzPQ%u1banPYT!$$E&v(%r#Nzdz9Z|$m&XVH z(|IpDb>yGt$X`0gWqU^EEe2%F8dG?hx6#M{z^I4kp4T+@bMqYxZv}VCQK(aDe~D){J2rRPm6apy@9a@xXJ25Z9;e^5nfLGG zlIA;~Og_e+fxuWW6;gvikhA%2oW%@v7^w-jc0J~wQB%n&(GEj(?nIq!$L zu+&x=fAa2uZaJm@P5?NoSzT>Tc#O>0zG$+9$)>Bvtbfap%>zmwAdFnif`P z6H=+FLoPo?P*YC}pjtuGcyE7%upXIuT2NcuMXnOsv(rLDvBeIaMeVoS(7B)swc04m zsrUXDXF*>%fDgG;)lB9Y((L0?PO=O~k%@kaFSU4h%Cvd-Nkj9s&s2pQ_Z_Lxksm*oCO&dNBDkDab|dJJW?qP=2N8V2dAAMoHjiZ zbkBu8HYK2H)bG?mD~JL>Jg&^_T+Ym^3+5meV=Fdi84-%|Vu&cy6^AIlniKc>n@(60WaiW28qbp<-d|92Cs8vk`xQVXlW0@snS5@_eWSdhlu@@w@=Fv>Y(^bj zl;kyHc3Od>Qh|G+RyO~Zpx!^jEK&6p!3s@HtlvijPAerivrbqI!HzmS@8y1{Yt7EL z67sZbt|2rIdX%2zC0z5gJEKLH*%?cmLO?&xO@CrabQ;i=5EWkIypz8oXPOlzuAVN; zpCAgRWh!Q#{WhK;(oE%_bK%~s#vF&;0Ng==#9#yOp~l=r(E6>j5Ik%zVuVpyCSS>k zPD}9GjN^d&S%RBZvT1Nuq|0LeJr_HzFxMdYiVYa1Gtplm)M=FtK-C5n2jY)%=?_dx z>-L$uZy=ay4>m%So#4U$HWQhECw6UY#*+j!Etw$Bqg*R(?;-+Nvz#B~BB#Z^JoSmE z6;ZR?x{AMv6ZAgMmgB&YX{((a6D{AtiM}x9rnd30%6@X|4)XA6k&2B*h*}2;AV$Ud z70&h4lyf!UjJSS;_?(s_;-MqKClUsYn)NR^yJ@8i0fuMFp}M~^`vlIn81w}MJuTBA zXv1)0kbgoUGwmrjVzSA0#eknI>HLaN_ss%@8T)vh-cToR)KN>B?e0 zM(_Wf81=fgb1)p5qk~3 zk8q~FIcg$8!jO&Rd@uKBYPKdsY2P0H=L9zG9bU3YvAi!}n?OSE zReDDdkQ$HVLheW-g^r>q!g}h70TDquf(>lQNAJBUARa#j;(E>2N!&K3kn8o)ArN)Mv}8#*}yu&9C__NslX5dr}+= z!7v}kyi&dbf`GBLJ;z0?lJ^kzMX9vJ1O{4JPE?Q`Pr2!s5&_Y=62_B3m| zhF0snko`Vcaodj}LTqjurM;c7r#-fNVb6IFWFZQwJwkbA(Kr$(Esf%yCGj&=N5*O2 zA}@?%` z5rbXw)*K~&Hj83s(z&!&8-$SKo&bJ<#!2?I6 zIJ9Yd^z8m@`Lg|7c*wKmt5%46zH+0|Q(s@UUlsR*nbg-;?L_&CNz%hSY5?(;UcA>7 zZ|g%$xVc%5R(W7lvxj+S)U9o=r@rtZVp}F`1Rm7k!nRgki+pN6PNta85WZcQyXh6o zOQ~yIz8ZZ`i~a6S%r^VedwB?oQDXo}=(`GD>`bhHoo#FX|Ean&$E{ z<;$#GB?5xQms*XnL**mjdKlJR4ZEsoEsR_x0)oZQSmfjQlO!h}R~-+mhS&~SThUV5 zE|lVxF|Mfw;HS~tXsuv0ZR*wa_tq`at_JKk11)8s%y|x)19~3ISU~k(aE{xo2&ph7xtau|N zMncZ;F;wlVngd@d%!*IDIvp+A3n$Ya#!_k9>7!a9FrKCv7t1aAW4%JCYt5UOylzF? z1y-(Wxk+g^R61SWx(rs+rc+1TJvtcmthssSbzKaTd)-6ONi=tkyfzstK8|A_)(gXK z+6)tPuN?P~)u`3987A!4r!9reG^&B&A&xsy&!RV{&G5tbt=aEPoQt|mo9@PzooYCL z+O-?KoaA;(564ZL0du%`%(R`#>X3$JjluT%Erumu+SG5NBc3%;zhP-I#!K7Supeq1 z5fnQrBEl$sc^oW{s&dWOKox0^LrGqdhKt?ASz-Dv>8K!D|A}*gapGA-t}ctB%V@rC zV^z&rnvH5$i%)$P4(qG`~V#N<%*n!hSMB-ofWi7?###DhB&Uk zCP$+hHCL(5DxR1WFAK$HoBf)Nyl`O6AWb0sd*A zxK-AE+;A(Z_Ssu2#^^Y=`#TD+Irn%~sp7}Kj+cHX)22dWqQd18vIz`o?qhnDNv9v$ zA4f-e_F~71mn%lw{Wj;(>}ilo$3ZS-04+HT@<*P)@+xo z9XBiUU`6v3cd}MQ=S9^!WhV-CrTP8}Zz;8kg?N15oKE$Ky&U;7Q69gWC0V*;&Edn? zWRI=Pffda$Fj*@h@zLSpho<7C5Wf$n-(d#@hl!tn$laRUa9_>+!ekAzAu2e%U+Rne zX|Ci`FhjrW5$FEI*#uFGV(SaFXB^3;u8pS9oT5@=6+hi&yZd3cftJT5YuElVF%v3H zb7_;3zE&v@qwX|cO?qR^QMyeS<}^dU*}1NpmbrwtUes@sZ*~ zZV}OOvYuwZj`zO6c94`?54r;1(wsy+$d{8nhj-0EwR!LRIFsXK&(^~)rq1`>tT}S` zDeP&^0!iM$LW}^~r+3;4`v(o7>9AsBC?qOEYaU=u0J#PZjM_f6av9FA=^QEAf`I)S zLwS-Mc095pKCX+h+H%zqCDfefJhdk7cnY=OO_Uj#(|nbiqPbY3?QLD&B$pH^8wraK z4YmCscn->@*|+U?lV~-dof#m`-rKJVh)4@#w%=gSOS0DOiKmz|r?GGg%xU&U56y{> zieOd8^Wqd(({y?dtvTiF44P8YA4KQXE@GUxFNSUn6Kg5X(D)?%A!Q?US%#eO%}EXm zDchl&Wo+;CS3X0A_|_0ESPs;*=BvkKZlaMaIH%+CneHf>=HTLir3ip4A|K%asidMGm$5v?B{C<)bR<`rShKlFxwNn*e&WbJQW8$5`OKWmB^S1PE$qYV0OTpvR%~ngUyv8g zuI@oz!lP{G3O|6`r`AlYxMqxN<{-?}qi4G?W4PG#i$zxvU!%cK;_(;f{R1RReDnej zpyHMfIZ?E5jPIUk4>yRjM)(;|sJMT}I3g-$sI(J+n&smu9@w$}EFSr@|3)tXHfnoX zk|E(ygYBQ%TjXe150VcX6)nDOVvH5XZf*5K5A_pZrLm_Opk=SIVVmmEtUwlfW@UXe?Z6h?{YwQIk@KF7^-pXe^v*!^MEe3FbTCV=0D4W_`wan z8Re3Ng2=*4lm#p~jG^&-5uA+(5Qj)i!|4t~>Bk{(o+`;`;3T0K$HZXAeI^qNO!ObbWR$qpNxbnjMd11*wp$zG>>%!0<)x_D<`?%*%GE}F zNLSM|ZkHCnIdE~Rve4144EqnMWZspeMa4dKw739COwgR~#%OTudJ_jr#22&V*}g@P z)2=r$MTu{u*oxKzf@L*}CVJH1s92M2Ywlx6@?y!o%4Cz#nw;C))`FQ67i&FHs$$|x4>7|{#u0&HAQ7hn1`ETsnk))| z!ghfWqY*!XwXL>Jf?L3e8*4uk+ZU|7c2=li7&qbTXzil*cwE~eMn1=r<38{UIrum& zV6fd?a|uR^*qISgwvm!;-$dOw*y3ZY;^&y+RJe4sQ84W&Y>bf(iU(oc#`^z4psL-x zb8Q3;jyHwVcg)37DF_Y7Dx;92%GxU8E*f!l7uC1DK2IZyNhASJ5wijAeik<`*i0A7MTTS+UoFb`^)SIqNx-kwqcJujoy-V*Z2Cv!Xo@b~gy* zm4+eOB$wDU)_#q8d?6`mS#y7(SXw4!M+lPn<;)g`bWIJDiP|N|wv1%O%1|t$p@`O{ zyU=8QenO_JCn0ExjE{=PeHU>?@$(hOfK&xaTGqwoHU{TQ*1kezzo=ndUVz1!{Tt@0 zXh{i&6FpP3o^hlhB3hi{W`(LStC_w{K?+`==}*J5eKdA+)T^jBhhsZhJXD++4HXYQ z$PCuHGJ!Km)id^p#p!)}4_JjPYn9Rd7$i2h;&FqKv^)=$Qb8l@b_J(^NcsQ9{?aHGf&S-f?qxR*3? z;3Df>)i;rsQb}ltc9E0(H5k?^n&W|(dh6MwG7u@g5hd;=qlOmaf#VXmSCXm>F&v?H z2+t79G@Fl}ORB-e^;cqS78Af=W0*)vjCt(T>0!Q{Q~5BfI0oRs;Zec1@oqKp?%XUS ziUNvDy9|!!ayI-Y3|DeDY?tOA`8XB_zaZl^k`%W;^wYx`4TPMGicHnNTkj-tc(P7~X5rX4a9Xm=GCanagTJ?M%kks;FlsIUZTjgnBK zLjc3Y;3O6<_L^|dXBgTpK-+@U#j@QLDxNw-?aR^)L`~H8Ov{$ERLz4dI~GkYB^?na z4vmCFiEH1eABV`@+d)vNrk$GYh8Xv91&JKSTk>LchnsM5<$JWa-!WlaLS^#`VbA=6 zcqBA`E~Lya0{w-!Qb0jKrGY*GDg$&Bs4UQL&?pDgAE-RgX`l)~TSaY}D+0BJMkSyZ z5LX%KN61wH8iBZ%fLcMWDv%M}YCw@d)qyHNE&!+&;sSw+BCZBd7W}D+KR+X`7El$~ zs}1xAP#vHTf$9RC0ICP{2JF=bDu}oSKy_iIAy5;uZXfy%J0=cF@vk=z| z=pImWpfcdL0O}3hmOyuaUIyAD`h~d_P#4Ix2D%E=2IyZ{X$w>us2$KPaN7gzhHeL- zP}u7TR1WF&{$OP0EXdF;Kpmsq0fudn$08oDX8HhjEP@+LVT_G0))E<^! z2l@?M1JK*h9SqbOC>ZEGG(v#ZL&FHv2PhOM8fXYmHfV$a{SIUTIt;EEXfUh{1u6&> z4%7)K0_YgzB7x3BHwtJZxY0lp!5s#)8{8P6%;3fXnZb<%8V3{)G#+xpf&M_;2%!DY z7zwloXcW*u$c+a25@-xiZg9r}rNf_b_>%!~Zvedvdv5||hQ@fHT|jRE?L|$#4fG*2 zCIIb&#ydcdfZhdq3uq!xCZP9#(&Nu0{5c3KlY!!3Sq1t8_TC5T3uFP>2e}V`=0om7 zpc{z$2q+sYTYQ+Jd;LKzkrJ4JbSQe2PE$@Mk*ydxPqnh%r(atnY4 zLvA6^X>b<-^#l46C>-3yKx2WH03AVXdvK|-G#1{f&K-$1i2ePJAiHi z-Gr4}Kt{yf28u_zcYq4w&t3fK2JSte`>=N(C;TqU4fh^q`#2B->9e`ve}6bV!nC@WAk zpp($84pade0YK-F(?FmfAy)(F7UXIIy#TpdKyM(fHqf_-s{_;$adm-eK(`)HM#R+z znvJ*yK#QT#5NI+`BcNZAZeyS+&}ag*4BVzb2NBl{s2Adz1HBD0F?(a z0^Nq?P@uJt8vT;F?Gdab}=*pgR=kIJn_J6TyuD`WIFrfj$E_3g}a4L<5yT z+%TZOAQuDl6et#`GOWY_U4TYB(7VtW4pa|uBY>tOZY0n}piw|~fkp%U11n>ImOx`H z&_i&?0sV>8-T-=vxHo~00F4KF7aDH?or0COfl4B70?=~Ay+a6b?*df;nh2!A%6mWq z5H|@Z7#fp->H(=h8^L`aXc&+Mr~0(UV`arECMKoOAp z3g|k}*Fbw9_YKfqpl^ZNgZmxOOvEh(`W|u1fWAQ7_dvfP?gyYzi2D&JJK}x5w`-UCUpM?^g6gJfsR3U6_5$s)j*dKw+5&oBc zP!FI7Knipp0<}ThBcK<79s_*^^aQ8~`qopRKv+(fUHq8^ZhD~RKpB93fxV1Cn-P}@ zC?im2pawu$fO-NcKp9{;D^NwmWdmA>G_nIdL0k@?zfrcFK+TaxE}#aG%MEl7a(RGy zATBS^H;BszG!`g7(5pZNfbd;=b3q^rGztMN0=F>GuZSxGgiocLivra`TrnVgUEEw8 zC>JzJ0KE)uNuYSdy#SOOIeifb-a0i&82}lfm;ShK^>F@T8X%FK!bqF1APa3 z6@dC6jfz0{~z-WyIA7It#f5KraF{1j+!^2j6{{a6hY%MI)E06PK=Tn736u#a3J4zvFh>Ku2Hjym8BuF7KyN`V7APy? z;(#_lE*@wE&~Tt@kQ)K?5zt7WLP&QM&|09;KrNs#251J*SfCr=jsxn3xHo{ZAnr|| z&tY#oP$k5@1=I*~Zv%aexCuZLA@>eYHlTNbUV_|2pw5VU52z2&Bp}?5Y@Q5+8;#8> zkO}tQ2f7Dc3(#1g4}c8dehAbK=p&$8Kvp1JWNZEy2v^XWrvNPk_Yk0;oIUW&;gD+#I0X z(3lI<4`?1x4CLkmAu9gB>p|K3870~xUEx`Q&Xg<)7Kn8Gs0>Tw$=AVIv!`^Zr zGq}G16-L|&Al%1g{vXg@SXl`a0<;RK5ad<^O#)g2vm7zYG?;gO~~y8ssZjUprWw68z>%e zdw_5&ig_>4G-&Jt8V$MqKzU*BSD*#p{st5P-2*^dA$JhycW@5@odo(Fs0q+vAY2$> z{sZVdbdLbxdIs~KK!uUUQJ}oAcMRx#$Q=hN0xKtg>VkU`XdcjCKv9r81=I|2r-9}G zodL=X%YOs)Mci4S+R!)$v>)g^P$tM-06Gl0i$M5YwfPdzQ^;Kg!ta{RSAdovS66|) z0Qv`L4dku?%>cR%bOrYQ1)2l78$cHkcN6GSpj$xyK;t$Lem-ix1C$53x(n11+x0Ift^MxY$f z$OP0K+{{3kfU*GLM_*v>_9^imjfsax;cSn1LXp$4wM_H6i^ZWDi97eo2vokfFD!`Dg`S6Kuv)Hf#QH_01XAI2~-=X z7Epbl+CXK2>HsM~b%7cqwR%8{fa(MF0BQjAF;GLGKasyiKx2R!1N8*A2~bg>ra&iw zngR6%Y7X=|QfmRU52z*3C2(H`x(R!&fJTAa8t7l3HWUZBwm_#L*AA#G;@SiKh`0_w zIe|I?;V`4Q6VTVN(i!M4XmkN84%8K>GEg_5pCH#As0z?4KwrUL51_vh*Au8J;$8*9 zc{_72psTRb8|VyBAD~r`dkttFbo&Cm1k?}cTcG|x#efC?WrfB-pmne^2hzYs@BgA5@d z;?T3WP%dGTC1Mx#l=O(HVO~y*bZ!cA)ROf#E4&};1??F|iQQg;w`cCvFRmo~2u?3nCRh#s- zechX=yTn^@u`f{%i8pM21EL-gb>WvTM14-wZ()sy`h!wve3)&<5N~3m4#e9;HgB9` z>P?bdwW>Su>XT&sE^IS9QPr>4Bi>x1PS@s~y+l@uJmh-$m8b&yxjqAlYW_w?(mO!Z z;i0XGT2ARztoI607NV9G=9<8JdQ~|*t{L&hQFl3dS@je^DUT9?W`}b5!N%Kf{QJc~MpN)EGz<<~&u|ek6n_ ztTa?*;O+>bu(D8!(^+y!(Fn_5^ zL@v%JW?NP1JSCWTSna4vzSB%$mQ|J zZ71s7SK~=CfT-ece@s*$QNIn~cEGt9RjISpO1x^6!tE9B5;c}m4=*{EsNJL&xbkhH zekR`WE)$30IgqlmYXctaO_NK_bEIZ$pgQGXL}&nTWrG7+ytFRrt2 zqSU#gN%Bjgs?7O-sH>!xy^Tr~o}5JQuRew-tin}gf5x>$;TcI)e#|h1^~g$*9jl1K znp;)AjM_#N*88dw+ifLLc%o93_v^6UDAIfU`xnH+6PT*Ja*^8zPeZEm*CgiQi9^hW zN0yQ#p2oz;o*{uKJeR1-;)cw_bC;^L$}p37c)Aj!#(|HB!n2I3Y$^O5QFuyFm47B| zAqr0vs*=0cdZO?wp(=AXZ6pfMN~)5h-E5-p%qZsmiJVV7GpS0!Rtt%T=OHmpl>VM5 zJoyPL0h|{+FRDtWdNYWJXCpz)Sxyw5o>b+u`3Iu#WTYye-r+jKvy-ZvKk*Ck@C>Oc zD=u((+A$curQ8KetRH9-iw& zy;xThh37coSuNKQg=c0}ne{j41y7Hv((B5P#KVq~s%*V_nJDb|sLI=29uw7(sFV9L z_Q#40`%J2`;q(pSVXsM8$#sh;?1HIE*@#m_Vb4jl`{X-BeM-E~UVli`R-(R`_A61? zp;ML3KmSG)_U1%u?mR>kcH4wUPCh{tc8pZzY)}r$3-<0*<=V@KiT9Lv@1MCs6n5HF z<@NPviNemGs>BRDNEG(ygeR{!O%!(LRAt1SzloYcR!W5Dq!h60C-PG4IPtK%s4Aa@ z?k5U+bgELV*hQialjO92E)j*DGF7?Vu$!kUy=!G7 z$ta>W{eFgc*hdwsgd2YlHHY-RJ%5iV>@SM)m3u%Gb|6)yL}tk&y}yof`F4_Cg`r$8 z*zHr5pJKQ_V0TKaM$fVjMiKS*1a3|2r>RQ9b@qAe;E6t6ghwLmZ>h?`h<_<{>|&{k zp=*9B1NQ&K`mF0$#QTBL3#rH+iG4OznX~UG@vw8IDs3*X*J0OARTkynK|C{2Wn1$| zgdIm!NmpVK@$M6EUp2Nefq36`C`_qiUrzMfNxzdMcJox_#By%GOhmm~ejf3j5@jvK z^)jAHG-d_&Y3ysN%FSzEk|g#q#R{Svk4xBvRFx}xcnrZVrm7Te^aDv^k5r5y-4_tG zh{@OW z>_@6f--QQA68nm((&f{HPhJho#0Q&lcU?IKC+vx=Vj=Fdc7PgYf$WL-uS zc5+qa)iaBUxC&?w&GDP9+j;e$-s>eLi`*M6OqVRS}RrWQnOcdVCsLH9u zZHQ_`R?9L+rCT`-u$V`M@0$}HI1lF?fVmj_e|ocZpJ{O@McRqNfqo$R12a8y;+s0`9#fa z5kS-=O7E*(O^8}eROT+Nh%!(L)8+;eg*RiWV(i_WsB6R?LUUSIXMB)9fsF$@9h+0LG6)uMmg}2?R zQamn(sJ&#fx|w;4i8|Ja^U{U%zAeS67a}Tb8|V54Q6ZsY$qL>r3oj3OhbX+M7wym@ zf+)NzSCuJ&aYW4^$#M_I5Y>pNn=Qu^^%m)cFBwKuCZbC0;L?sD$?B^(*Oka-n@Vqz zBu)#6wrxF>D7-gUmHI2V23wHc;n;ZM;jOuNHeAcKl#Qs^{7fApoBdlENirj~ScjIJ zmybwN9mQqG$pKXf&dqrlODSYr$7RRq169e=G@7j7jlA&P5N?N0$;!{ogNfINsJi)? z*Nvbdo+P-sUlI!d#@uN&Y`GEfz3Y<6-QPsKKX>GZDeJ| z5pT<_4~W9K993D6?JJ_Pl9lh5a6WO`M$9W0mJ%;LNjAT-ny3vV8PNMXqB0P#;M+5a zdPuzZO8QCEj-8jqkmUsQtuCzmfCuGUYQa&otuUoRF&QD8VI~M7$h3=Mt|f zSsC}r_e6a{)N7y5A`0h*M1Nn(Im6i@Rk@gs%YgGaVq~wjl_X~pucBcMQ6(w8S_zwo z!U-oaSJhZZ)C{5wg}IGzno8`jPM=P^7m2$5&gVqoY>`-T?q-_Cg2$i1&o3{h5vsuK`iR#vCB32IXw=gM1{3Q+%qDvE2>gjU~xFvo8?! z4N=)UohRx$qMn}2NP0U-@5h8;}Me-f3EQnQUx z+eCGw6lUKlN;Yw(P|OIc3J|rPs5i#sC8`8T-nmhPsK=Cgo)KAy!bwFj&Kq(Q)q|)R zrOr|ceTbS{GBfculg;DfekERWDsA2@M~SLPyrBgS6P2BK1}o3#*T~Alo;8Tqj(F>` zlqM=KQNPQT+%B?G>g&qH!>J?jbiJz{rT!&RwW^*Z9?njQ=dp?9h`LQyvKQnv(Ji9p zRVYKeEtGou>HiXiUulXb+8JGmnnt|1F_kEV_eihfYgLJQgVO8wK}n);dP+R;ZLdsJ z9O;cMQ=k)NxTn#W}j$Iyqoi?5)Y@a z#B)cLT9n=%k}OyI7V)}MdY??KPCNtgZY(ZEJpAHRRo2!v5!HdLWGJwgDExX7>U%c_5)WtFRHgBE zT=Q4R%E4b=Bwk;l%66_#dS8&<>=8Wj;n%FH^3r*QBr_9l@(S+LI0q+ol(JVMy@kX( ze}vc2{fM_Es1E66Bi^z1c}Dn%cr6AuCEg86eb${0M2#fLd#AcFk0htg=laCSaq-?_ zV>9BdBi>h=s}N-%>doanh{CyUu^;k5f1(13_vC?zsP8F-8N+%Lb)C~&-j^tx#uiU* zPa}xxOjPMh?1OI-)$H5a#JfpUkwM%8A}EEY9S0KcAeCtNnn6T;Mbxs3VMIM3$>B%3 z67`s<4@);9>IqRFOlwXQPU@@5bd}q0DOstwtOoI#6Se19I8m*Mdib~xQBBFp|MpZP zstxg4?FuETI_0|SVNP!{@y0iANxXcdHztf*><6NDgf=8z50bppHH4@HqTa61iKyO0 zMP}+nQ~{!{whbn#5K(KU)g>yFQvZ2DO`@6*WmwgPs253cV^OZ9(nM8S+Jt!LNb;r5 zor%IJdR1B1Y$#FXh`Rnk08#i|f~x!+(|{@k!@1oR;yrxdNW5yK_rlsKL|rFp zRMR;`MG)05-)y3W5p{0+D5B~R)uGpVqBc@3ot(OtsNaaU=*=&Qnohi?37-))ns~dv z|D32XM19$90#UD0&U(E&lc+|-3)!%ks0YM*t@SjbhLO!jQEw52U$BWMsVD1*+Dz2Y z*<*>?Lz1;x&n0RvQT;N^BWfm5HU64U)E7iW7F1xRn&nvq0hC%w(lGCksr*fW}V?TLDE+J{8tB*~v5-Y04b zQEdh#5Y>q!Cl#;~wUKzE`%NV(9i?uVWFhKRlKf=RETWnb@7Dju5EVpv2Taq6Doc{f z^KlvQi!1Slzr`2CTT8V&{KC6LUD2d*Xxzg1F|^)puxb(?IS`jsV(WOL0pm3c(P zcINW^M0z)`aT}S4_hap^NOA@7-urMnQQe4|lwm1R_}!A&yRWvHsG6kr%VKV$cS!Qu zP)-5A&k}EQ_p&eH_m5&fc^mh!hLq10qyI-%N|D~?!fS|%<-Bxf57|Lf=d%Zhrx0~_ z##*8tlis-p{fM#<)%0NmQO7BTr7wI$)G?w4T;d*Ao+KNFaV?!7-u-;PkmLlSE`PI% zsJ2Aq-^PCZ4pB2#?j#<5lP2C2{>o#)>tyrs;)TTfj`I0u{05@lC%sSR>>~=l%~X{! z&DbXzkzUD@+&7Pt-p#EmNwOjF_Ky0Ns1rm*oZ+5&nQR{Z`Y;!hAo+-|4 z+ly>YT=5%8PUIBUv$wV+$=rrtiC2lN?CQUjsP{>7b*_y>Eg{M6Eiw(nQ%D8kWgB0F zsDFq$vLho=Uy2Gq-ikMj=KDmwOI9*Bd_q(eE<=(0WMu$Rzx`2wsA@zVZC{iqmGmywVBR$1 zHQIiItkfgwr?{s?77{?r{x> zcQQ|9;vFSwN&I!nSw2eP_c1kyhuZ{HrAXBPqNWmWQJ+AfPLj zR=U;Z7CS{L3`k#(csKn@!Tq*L>bC) zO;jgpXyH!u=FUXa{J0>Z+EWVO{(OX}Psrx-8;yzDLz4OWa~q8#NyAE>kGc{yEN@4W z97&Q{r_Z1#_WeX%p2symktB~!;hsI`Uo?8ujt-hjgFA-@xKbu*{li6ncqxJyn|&P>@(`OHm{+X}Kz z93#nPSNJ_;LE;sj^&+*(cuLPyT8`dCRjkM-Q1VkPMfc&lHj|YenYPggcAg}UMKvZX zFB7lf8||rHqKR5?ncoQyru3BS#Yu7?>1_&PkNkkBpURgdUJy|m7V-&{4~c5qm*11z zA}c`yc&%TBc;~+3-K|ifEX8^KS(hZ2uYN=}f26!*Ke3YPyPwwfwLA*}yEhou; zi3+~K&*)77PonOTUd}Q@sU}JjHTDue z5jCOI3uNH6)K;=Nr}Qw&S$~qO|8aAovJkJxXI;t4AEbBSi#I8sKNIhR7y1*`ig+iZ zxz2tgE47zYr@VCGTxSg?swVLc4L(X#ThhC9$U^DWBHo@3ykB>ecqiWGR>?wMuwiXS zO0OXC3I*{ShZ97#9>VWJjAUhdr6*+bbE4+mu1(Y|qRKBBL?!x*^co%K(iWwBR;=EL zQaDYLmhJsW?*-y*o62XtdXwIlL*67SWr+7vwm72RC0_GYaz#c~zU-WpY+fbFbUXO@ zy#i6=qv;KJyd`Id`0ls(R&8XkxLGy9k|S7rUz-p8g91o z@$I5my0M>bF%P6$O~p?YNVbBOEL~CTB4?$u{>Z^gS_<~NiQRJIQFbe8S>!CZl*>xD z%jsJSA;Jsvu7!odzx2+-eVGT38u+>R;}F>r`sLuRH#zXC+j!h5|0jkaeLKXjx;w%v zvJR4|wBQ&c-%swr=;$I_Mh;DG!>zN7m2QaCw-N5@?gkHKU(l@)9(mIlpUZ&sxy*q# z#y#*aOEOjJJd<1L-d276Fh=)A*ra<;c+&@F=lZf8yqa|K%dsv<{M6JG7ZgOxLr-Q` zE8RN`&(qEI=ccB>o|Mhv`Qr2?-Cgfj-E$DAdkzlB9C+pWY3vEhbzc)%d|(j5kCHJc z=-CqEvs z-v#PhvJUhdlZxv;J8aTD2e=5rg9W3v<85-otn0JVOx>&CvhLk+jSqB&7~Kcv?a~u; zdv*!XI|G3-1J$(l;T=2s&R-kHK3Zihao)Cf7cH;7jpin1rLWuQx>~9xyM%7bwXw24 z=-(E*rB~=y6+g?W(5+*>B{NW6%h5xH^G3y(MvL3Z#3x!~qhbPa6B+H9Gz%18hz|^l zij6ad#6?Ag2OEOJjDg+hO18k-0X1s`)T|vivR<9QaMR#GzNZYa;tgH&C^AsbvjpSf zaZQ;_9*S1_$ds=0D(=NW2E47aTAmd-INGJSLuGfhxrqBVJw8$%6&@5C9yKB;iY|o{ zb@ZaobTM28gv#=4cueWx)Oms9`9kQCtPKwvATG|S0laNxD}B}tCDwm<+bYYgIg3S# zuT_hV&6AnEU)Rv`Q5R8Xf;(h0y+=`86@?o2qMU&#meUw+#Amlhn0Umq(ueVoif)s| zF4>&AW#B!%S8-pvjfI{Z{_tQ6E4e0h9&xPn$xHZvrz45;%;o(^a@uDWt>=>K;*RCB zeHck$@4>FY1IUNcy0;VRGcQ6KXpI7iS3TnDSA&SHARb71+V7iBeDy7rBpXH zN+0`-?_7{Mv6cBh@3ezu{pmj;?eWtkEpy$y7u%FK~|4O|dH^cOvHvg72P*{#O zXuu$vSHuO(DeN+cky2hmjq9Eh>}MlgI+5Ivh>0=Kvz3*;y$nC|d_iQTuM9&+|6cN? z-VJtDZQcQ=}nAoZux_t10vYh8rV?yFbInn&OPrqs9H<;=b+Jz_?){ z5rN`rb)L#=%W>yLnK;`G85L=WFa-yhBBG;W;>ddERBj-!3G6C3pW(35M;%b0sxAo+ z#x3WOA%Wsfa&Z$n;UICVeMq?MdA16c#h22~5~Vfmxu#uT7WxGjS)(}N93K%R77yZ5 zbFQ5p(z9J_Jvt@|x1aM^(Ege01!bWsemRw<;*1f|$Pnkbr_8f=6QZWy&^3=0+03;ovCYf^w)+WZk=(GP))Br|i*vQduQVUN<-@ zDlS%BpC27$92sYfi8OF!mvbqw&F>7caY13m@Mv3iZIR0KMS`}&?Cnx%!chdn;9&BP zXLq$Ao2jO$%#^4f_OdaufxPpw6uYmLJ_Q3;v-M5;P%8E>#U}u41F4n1?2_0gMIVml zA2LvtrMCUzMn%i^vzk}PqUIDH)1ytx)?L~JM1+VvyHakWh&`vV#$oYdCqj(-lm}aP zu=AbA^|I24t2^36y2CejYC}hy)EN+r9VmgS5pqjN+nnr?7 zQk7&~xJWtj?~t_8O~oG7%@Vh^cgv%r66;Fmv9+9=V1zNwz_q-j`x-j@yU6PekP zT%Ttjh&38wg2l&(_@`PaY#g}?+Xe_XZ*dW_(&zPj##Nqr+AZgJ+AUA|lJm_=KG%-n zsaf)Zj!|cd4|q^sUmE!We5rr$_tc#ad)nT(wqB>%`i$&JnhTWwXt2V~{2r|sYI|Dq zxX)jw3e77kH070-H+#djHG<3fi<`&wWz7svs|X)5@R=C`-%;?$1B&?4z>hCH=;UQ{ zWHYDiWof>?$G0nd#&PD!deC$D>g(w+|Alnk6dz9_e4tcO$qyusRn2)R=o4%2Ii6PW zMNb>;il>4XWj)xsq{s!S93u##FlE=i0?_*MK z>vDOM5+z-{cNWei&cB6*8-}o63P}tJj~Z+UXHj{UC#fW&P0>dBA|_{#a+QJ#awVSB zT=tOg4&8&-1Yx71qvFDhu_oNo5hM4O1EfQxP#NO$u%>W)4>Twg6*3|!W+<2N*>^B) zo8?ye(l*?}=0@(0h|k@M(u?npQcb1snhZ|mEUx(`POd3kMXmG=Y~;i?HrgFjc%9h& z7XHAcxAiXGy|ZmOJH5QH(r2<^D$$-{coZ&7p^_xxIqxTi$rjSTR(_BJMa$$nj>FGv zUK$u8c3+J)ii+IIYo9em@?L+SIA>{)T{wl#qSe2=&pi2vbLOq|&2=fl4I4ga#9cjPpbt^>1i_ad%IG4ndCe2`-S|XkJ+OPOWpRY&ex~8(UPPZ1h zyj`@tR7`3lb$xMVNy0B^NDqw>=XJ#!$ynC}ylBc4#>ylojwEtro13(}6>osW{FPL( zZ6hS{?e7E3a>V%WCiD_=WYB+%x-ZL~+Jk9E(Mf24N^xjU%E^*xPOEu>tf(~aAIUDI zl9^vpoZ`G&hE0;?Yn96WPYx}9%)s+vW3ML(tO~_hd}_f|bT4H}P@CA>z!6%YZ75K*?ILJvi6~D|wlm_%RDsveZsgksvt`ZepOX*d zc;LHMTr+;`wRuTs~71R#_8Cl+M}3pF?k0l*S`c3ah1Odj__e@x4(jBlW4Q zgE~9yFRptTeA#8<3pSlQL=qL{EMglBGzLy5F{^pye?D-wkSWTOM@cPqUDxYN)sWQuC9>n`GqHx%jE}-&fm)8oP0cJh_V;aBacMZG1RRpKT_^WU+a;`K ze1RTG+sw68?%J&AtxxSaB zy}sv59c3-0JhD8ON%WEj>pT09mDKN=oVI(s82(1fvBoDR%Of%~I!psKe9tMb=;swn zeQyR@=6hMP`rg=D$oFa~*!Ox?VOdMhVKDc6Bfx5YpkD_M@x4aL?|Z!|SMon{aGG(S zgC|+dMWvf2HyzryYV3~ZvO|;FZJ)xv*BEPMmXfQD=d?(gCX@DwMN(d0`VC5Y-y26- z_+FOgrz%VGEt%_XucJd7M~YiUOt`XA9C1p#Yiu76+&6aXWuKvB!`St1g zi*-%Ci)?z$4=#F9At}4A)m%vDLGH$XSk`+w`}84Qy=rZ8HSLM3%#hXRg$JhLfYeCW z)Zfy1F3zNL`XhAiI+b)Drhd@5{wM03ehXcDUuT_5pH1iV59#dv8ResK%Cp4tS&M(9 zbNy%4x%^{w9(}Lt{48`|=k!07{-@8%r;pCw-%Z!Ce}m4YH|ad~zNT~E|6Et!&!Thf zZ_%~%<#lfRin{jvb#m0#XVi_8o+p1r66p5o$K{QY`!Bxbul`-%Ht_-fWc3*`VV*o!bC^>kt|JZNlrX>vF27^e@}` zz~%6$#$K)Sbv~N=yGiWRI_uef^OD@=fs?$|Tv^vaE?C#p*XrsX7MXe@FSg_peUY)A zma>L#B~tX{fy!OUYW`Q|*%R&9M0-@5<@(E?N}OAcdH$5=d$L#gQ=S+3VV*ll-?06j zC%Hk_@kw0G8^tubtV5%=RwqwlGO%lj%UXRqd+~nQ;*VsWZJ(D(uEiZ+8n)E&q5+-M zyuf=%Dz5tPkJy zsUCi~(C8!c>{X*%&71vjuW$VLfM;^;}l2MBUb|Lt+deCUMmtf2lTwujIN4 zSJYbD@(R^O&}zOW-P)T|?;d_A#NtW0tmbyI7W6t%mRF{)Uk&V%zUxVSS)P+0#K=78 zaMS9SGU*gA;_*#simgNAJm+(7|ipkY1bo*PpHC#-4ij^SP2FPS&RFhAX$$a{Ee} z)!b5MSI-{yp={L`wB04r7#qi~Qc(&f;VMoSX zN@AQ#bPGWjFKYRD_1YoQDRt-%PozJlJaRst{%}QlOA_h3?2+}AvbF`fo5$h^TTE1V zP-uA6h@hxwdRnrYzmRnspgo7UTyNq0p<$~zpX^ad%svsuIQsgh)tp%-k;IJRw)_8{ zbU0fnT+VSjj^U-|5?~J>v=%0x-~VKy>L+VK2ba$#i=V^@VGK9oUi}fKSUC=VB(wUA zSMoPV`cd4)2@|iI?Fatc96kj#tNDiPF#ebGk+O~aFXuP>)?2p9slfm0e4VUwZw|&f zeZR+({c$I8PtVahRIFx$-+IM1=@nkpt$nR;@u+Sc;vUznUBzk+ly&RLuSgOvgTI#} zjqjH4y3gnE7nwtUI)c+VHMQ#a#FR&V?GX3auk9*U^P4h<{x=@q^xK?Aq-G|uk468* zXm?Pq>3ny*`by^TnMQ-u4dxI0cA9f{}w>dxRw+r5-e*0k8JS_%?|M+Lht$lvT zZR)puu#F%3Lv^>Mqqo~Kll`{$=JQ)W`$6X1wrujY&3gEupC-7CTi%wrx0`+vJJqh+ zkpJmoxPTwFN+Fr&|9n5#V*6=C6786HuUZkNaI(3ZhBVpb$`ongui8Yn9Q)P6KE_~Tvn^j2Tm=X zoDgwQ(DZl5363OF64&d?eA-rI$+<3-!EqpQqkNF@MAhXaht>R>OjXl?lgPKz(MgM~ zqoq`<&N`m_=*~&rYMw63XG<)(s&VUK`t<72{?&ec*3p z9p-QSwYRKcZ-;yF6F#Zw>$A%qe`}Jx{+8jH{+8h{{4K-VQrSx_sb7?xlCJ~(W}10T z){)n1tTs~7lS3@dzepIFdM~n?M@i*WEL^|$w-rl!f6MUV)VHiYtL_f|R>QkxpYz21 z#j}|6FKQB`s^1Ju1*A85yTp2i!8?2Em)zgW-1_>muD!qY(VYI)N2mB(hCBJ2OKkMF z8cyeLWACf}<`T_h4g31=8{}`UTh?ercS-05EFu3fMJNDR}^Kn}`mM5il{OHsuTi13nBiXu& ziiwavhrKP;JXwai{c!cCRMxXeCTTl*l|+@eye@Ink7sAGX=vm+WyW+sxvPp8d?K)qGrfu_t?~E|*gr z^Lh6#FRR41(01$7F7t2V-^rek<ake zy)K>AcW0CDe17bF-wXeBT5x;6>hk7k=U?f1o;+A4x~!>@&wIsjpZAJ}K3|6?d_ISl zeSU=hOy=XJlzX**GpAVzmoOjeNl%?P0gEx<<_n1y=WHC zu1~XX-zBxgbhRqJAntFKUQ2d6{j2V-%!%LlYjCQ&=0krgYGI%0V9QfENIb*gjMhF= z_)XH|^zW=s{mp~JeWvP4{`VgIu1wOlc66D|G+u4G{7%T*>G&CX+Qw8?jn%x(XPWnj z>>0jZ*MG{L48NIf>!otKeFlGQ=rdmRm%p{vyZ$yoR7vI7^9=4aAeBj4&DBz^srt$A zG) zmCgSQ)8|uvTN9P=w?-}RGyP#$suw&L{A~_eEHkYC^d0Uq&A(B0b^Yt)Tc2qitItfE zHGIZTB7G(&xqQY?ZuyL#O!1kVEc2PxDd00XDdICZdF(U2_ywP-lV5#i28{HXUOd@n zTBn!K7nW|nEOuNWX{nI( zN6?+KX*I{{n|vkd2|AU2j4Zu=%^&MCoie|^p76kDD#9ppqLWYFk?o-WV(XB6w%4g5 z?(6H2f9PBKczs94#y&Ge=g_wzKGN3<`}xdha6sR7$ggkm-Q=W@^3uz8l~WR{M5jes zGFQAfq^#y|^ey?fGI{;yqgDD&%&UE7g;HPNF=>sy?Qm1yiTP)JyW=gNdEs)$XL52$ zI;4J&ai@G{n(pZ{!}Z^?PV{S)x%!Ti1?9H6PR~yn^euf;eUrbS?=U^kXBG>sWIO1; zek=yz;M&xz-Wp_Y+z)3#9+}bs5y)6Dz+pZz}>H0^}IzU%4*X*0OP1< zmkVB&#Jr{HTR@18DMHboeQkPlkCxfIl~V_`{)M)c-@lBjy;PHCy{MPXg; z-uJ47+%C=3{%UU$ULh|w_o{*&H{WVsc9uj^P9OdCs(9`frKR?Je_oZ*F&cZP=D7LZ zn{2wA%ky+(^QI>`MtyHw(&bCFUOBVNplx}kZ_Il$#<|?j{hQnsNQ*(Bu#A`lL@xjYiq9t}O`Ua9G_ z8anPJvuL`ahN7!mcv>{~@y$~`w_~4aG8?4gs$@@9oQBm@U4-OmwYZO`o;IHA1m$U| zoCeYcNxQwvw4eA}6BbV^#AP70eeouxF5nm(J=Jh5Of;8x8lG>PXOkRAJngSeL!9L4!Dh1DD_A7YYO+q-FGmKvIas$*5*dTwZ!RBD>a1-oHzaMFwQ zP|;bUVoalrAwhA*NKyBJw#On%hg7B)92FjJ435KtTcAwaYThjikrs26=JtxC_M8WN z50@HNb2gbj+o67qF6HE8R&%=K&gnYx;_S>G=cSLFMU%;klU=KMSsFgkX=ajpobv^M zR`U*-NzKM!1-Eh7YR(`tYP&4irIMX0EzS^Uij6Y`8^XzPHS^>Uw>hlUoLSnpeReDf z`!1c*^Jmg_X;{t4G_8~STFqakVYf-4R$OO4kL&z*nL|wl_5;`9tWz3RV+!M_v&VYg z&Rt~&ZJ(iY@ggo!;tAYpZY?V!nH@040?2AUEc;IieZj2{d0vY1X;{t4OmHqSOF zOO?`2ntdzK^8#IyPdmxfuVaJGYR)aouj!YG2M_x%23%U(A!mPVIVMY(LT@57_T$VR zX2NPND07{HSBQMMY{PhLe|&Pi)lpj8kZRFfFFNG3`oY^W3ER6!mkQ(ef$BN6R6(k%RXdD@AjHX4KcXRGQFFh)S3U(eMKai&Lh8QEFVgrZ7n?j7S z0Wq<036_!^WgKaUhz>W#1{oqlf+&jF#hD#$G{i&(#f2GzghQKxS=Va5B`csEON}r^ z2iA0w3an87W&E$*szR+A!woUwZ;Z%59IS+h?OL(EH4GM!6>7JsP`|bKpI~X9I!i-L zabfYUrmW^rS?bmfo3(=?qC$+Kky6N+hCNFw@69AGpw;}NbhNgE<4xfqfdL^=!ErH0 zV{BmL;MnLeQ{>1%N+&3Biv-0OVjc#ZFh>s&uXFCma&~rPutpGBH$@H! z8XO)KJT%1uC(fy*%QKkMs6VUuUs-bB^p^25cP&$B7vbch1&q-VCec%(jWNMSlbAt* zOi@8~Y6jH|h>k>)?3Pn(TSpz%3KFk>Vhk}R(bOq;pGIRi)tMKDG@D_M%$u*f%RSj3 zjU098eZ4jISXra4EKNP|g|JZhydN4KH9~lXDK4nK=$h;YrG47vv&iAQg$Kn!%cr;~4q^a?2?v=X$%|{-9r&5%ajW^XZ5~b`V;Y0HA>269zUr=B*XB2=SiZYhY9I|+ z&Ap|I=(x_Qn?kjqz2w73O)(kOw!3#3Irg{qzyO9NgLuGn__bIyN5;iO1=(8JYQE~r z50vqitft7|@c0m8NP_w69O=@TzY~AnP3VzO*}R?>)#i_>EzRGNyO~3nT1bU5-{)Wm zN8aV&e=PYc^Il=9wiIFNAybby_?&}3SRsa~O)U8)N7m=a>>SMH;3b(52Z08%gGItapzKR*b3Rtne8J|KrH696Vylx0ou<#x`+KfNjoX>N1P0;UI>MUE<(h z7762E5R2U8AP%lpUnG(sWTkB!@*hRonz{CR{w{C?HmMf5Xiw6&Sy1N7|ZIrnfEhO z#W;A2gSR=@%X&ju?;ukzGVcgekC@8BB3qei#-`JA8>M6F6bHLlkWHv2JeB~xK6@;6hNm8R&VUfCQa}D!8Woj!2zq3da4&G;x zEgT$YD^Ho4!wM%^avoF7IGDmBd6^1eYCi{uIr1_aJHzUkxO!@{NM@$;GH(V)K4gX5 z%qzmYJWS1Dk-|*PW2!GF^aV>saAXt*=Q)_eyo)S(g@cRC+sV8fOx#gKq1qUrSIK~RoS+YA*6F4ZzBBhub$|9GT8o)t04nkOR2nTC8^$i@D zIWnHrud_l;j$FXOdXDVCBEvcI7^@Fw-V^4X<;YenGM9tB%~2L_q%cRW$TuuJ_nOnZ#4%7 zRw%{_*Ohgf7SN6z5L zMjX7wyi6R7;K)iW`2$BzvUI`futyi4ddSp1rnWP+pQ)GG=5I_*VyY^Oe8Ry89Qiv_cR8V%OqFE4 z*H~l*2WL6*MGgvaT@PShM%L@kyrRsj%)DR@)-un+!M_}A=45lT`aPCh#6c&HT**N^ zM?T`<2?q^0sKLf+aWIx6zv19J4t6rH0S6~J+0z`H;oxr$GP1%#mi(223|yi?oR^n5 z@+?bUWj%#OdUE8e9OUAlBP;Y`YCQ)fIPx*8zra)v4*GDgnI)TZvK5)i&eSy)X~$Gv z4tB9f3ow*ej(IJa`jAB`axkBHJDF!vj_kt05LSP}>Q`8#F9%;RFCQDr%+!0Vw~(oR zOl4#0Bc^V!`bdtv!I4`zg>_6BIM~LKflPhR3fDRKg@euH$;3Sh6=$ zn>pCSk$X9q$-x&KY-5pAT!XJM)rNzSEHa9N?>V9N94zL@4ovN4g#-=?FfTjvzGtdE z2RS)%3J0AyawAjeSp8LwY{pa&^U88$ajwXuaPv(yoS;y2bWp$GY)2RWG|MS$U#evti&SkbL0|^tiaSi9DK!*!#SwT zk+oRwE(gIJ`H-o?EV-P6)*NhNk*6#Y&QwX}z01Ky4z@Ax2ut$!ea-bavLOfj8CmnY zEK-H_25?Y~1C@Exn5xG?4vzeksf$b%VVlc2c$0&5%$v@^DUReXwV6wBWO)vTv9Svr zEao7bdHlU6^S2ynWh*t97s){`=G|i66b_bgWC0F}aPXKFUSNtpq+yO^g~=S*i-W@~ zxt)0#IVi)tSxi-6>TQ;QN5hQ<*x+ zlCN;kpCboxP?{rWGo>=MgQ?4GGnRu&%o`&kStLJG512A?aEBxLb~^KYrueotb39vV z%s~zgK4Ou6930@t{2X*+o8K_?EeESOay19_S#J$feEW>~XO`sKSj>DCiun?YoMMHZ zEb=!~b2;EUA2TF#~0Z+iXHh=t8Is;#l(8SkA_? zY!tJ>+sv(b9Lr4{?rFBI&9;0tCbDrQhkK2UUD^Pil6WDJA+umkd0k^Z=+4deAVSeOXHqK|`1NQ69 zael;({n<8`{nlgKk!)+^N4{mpjcg;?S{@I_!@-*Q!RW%^;>5C(X#O8fl!YeA!UURy zmd8S;+(Mgfq0O-{iDq35w*~M;f80Vx(YhbL58ww4xrO$|YQ`hz?^x(@TjyxmiXBUKj@%XI|5>YSQu(q7&};d09}CR(Al*v0zz-?gXG)2V5P&QVuaR-NMWdln@B<@lUhb1Di^m^vfu4&>%+#OY#hc0mWU`E6c8C$A|hj5_QMhp z+5To*0YCBt+jiuru|!0VKxdHgAsfs2k)zpmEr)x79Y12n&)7JT4QMY4{w6;HbwajN z*zpTCs@V~Wjr^cB$k>zp?qOR!Kk^CN^4Jz-<4QKZWj`ztQSeJR_yRV*R4TTk~N}EStJ^ zerq9ZU`;lM6U%ljNG9yXBMSUJ2mXj7zL$*w%)LGvAM+!dvh51C4PqPGK8oc#cHD&x zw0q=;mX8c5a5B*5k#Q#5o?zoOeq?(#j^{@nX9J5z6yQI$q3I&q`}`!DFS4OAAmdbi zqzl`Iuno;7`Mu7LSUe)z#~d8(2ieffk%7e{GPNnSaxfcB>{!jV zdNyw1a9BK|IJ>iL8T(mm^kc_A*mgMEj$tFlj(KeS$HpN{^fnt8vf~LHpqy{vV^!(zuI2mgTs3}?s7*m#H?C-WmM?1;r93f{tg|FRzzkH~Q>KXNe}&$HhyY{TLa zJ+g$uy~)Nfegun03{dHs#=0Jfd*-vg5<- z_&h&(6&q98uLm1HvGF@U`6@qx9x%mn4m*xw<52d?V`CvZZo*IA!j4C=u`~NkVOud9 zukw>vJff&iVn-|O<7_s{+1P~x%wgL@Z1iJCEFMv~{%qTgjd^T5#!v3Vv>UUn zgl*sRBNN%yg^lI>NSuu;*}&ovG5pGp{KCfL92|pH@;ifVN3-8S9Bw-{Fk+=gMzifi zeq>`dFsdZKXV|tA+bY<2jvZ%kxFFjwtfc@L)RBQ<9T~T=?KFO}l8q_sIF*e$4vxhm z3h)g-f>9>fE?_?l0Lhlmwxc=R*Dr_<@Z(*_gt{!EF4@Mgs?Ug^8|V<4<<{hmC*Pz~T`x+{lmY#Kt%_cHl?Gvu!X( zeJtC$vfnLi?8c7E*qF;kH#T~(QOm)%XJcJ<46yMTJD$(B4cNGh9WkCJ0Sno-Is5&< zMgtrBv#|vmkFZEDv+XRlEn(XMY|Q4!MzQTrw(ZYPV$Om19%JJ=Z9e<0&yJXmps2BUL`E4uvXG5m`N=Rp`70Z@v0sF3cd>0c8(2J|ScbFT z5$uS?BXY!?6B*lboCDY|!B0NTMj;!RKB6aE*?5-&yu-$Z?D!tr4rgNm8%MB##Ul#7 zA3u2m$9X*aVeyFkMx~-=zim@-vhg)Pc{Uptvf~_n@+dY&v*RZG$norWH9Ky^w(r=u zh8=pLAl^u)N7|o8SbAT<_ zIEWp$VcXkmbmah8Jfg@>XWRSyuho zvQf+i7LO?0JPvmghkKfBYqKq%jfrer$>CmOV^?;Z#>O~ye4T@T&W>-e4U0!aRKbq# zuw!?&9m3%bV*`sv^rV%Fg&oJRt%;3l4z~~coxsL?Hcn*Y7k*?A+iKa^k{xg5Sbk&2 zgV^>X8;7v5ke|f556OacA2NPtzW^KCbMPnl$-UUIfNgKE-|cK0%eI&Kk*VxBoNW`> zZv@-kW*gRhh_5@_-eV)okDO~8nWn#XTC2nK*V;7wbv}psfaB=R+#j)Hf40qKzxCL5 zB-m41OM=bK@kq5j&xiTH+z8G7?X#@4Fcb|Y5+n)X{KjAd zqoSH*Q`%A;3@wOl*qY39a+UL_S?WCWX3)jZ4_LjEyU7BWYblrgb&_5cv(1^8$H~ z5S=I(P7r%bFdC`JnP20Q;!cW8BSj5W13`-7P_QwFR*~qi4K5{4|6@w#%c-sj%$1Qu z&V2eJIqH@2mz4Z}$ov&G;o6{G`tFQ>Pf1@VXM8t0X^2vuS%$BbGOUzks6r8hVmMl5 zkyk1Ft`y;J`7P+%t}9UcNt{@14t;mmlx%KO8(bmt*VVlWFUb|68*-yQn5Yj{M@e_N zYekh(hM979lr9O!VkScm3oea?8 z`L;DEC5X%E?$NG(>2#E!XLVbml;Tmj;&*G8B14rwS}DW9a#`d@B8{~%qXsNfvTiNs zf4*DCUaVv-ky%TcW29K3P1J!j5`2S_`eK>d?(<~QZ1*bpHVY9t+l>*XET^|5i%TDofD?U9OC}w|IcA&xd_r!XTu8ioiMc>#3w&D(iugSR?wn zu3p{-N^0zN6H<)MP1Jbxhbc+>$my*>Q%@сJ@P}09Ezi#CnUbkkmmD@$hezweB z5oydg!k?$4zgy1x{Qvi6mA?>c7kS1}E6mQt8UWntEJ_6=4c&gDvR zu$5P+8s!)PVjhCFNYmtF$C|_*FKqFjypR{OD4^~oFuCj943qXZY`t&3ojJ7Ws8Otn{)bktC zeq7+dL56fYrKH31Ol!CO_H#VD-+s%uZnjgjugPRlimiD#uW#A3)`HaX)ifSpjUv)y zhvl6tqT=P9R1N)pm04o1Ee)hPyJUJ} zIDjhQ$o8d5>a*pyvsb&4n%r0$r(tJ28EQ_(%~}5AlyV#=7k@F;#=z)!JZLr~XDXTB zk~6;w%)vw;m{!w9`Cq0KVFNkwCG+YR2j(~+-gko-^w)aBUiQV+$kJ9t0^3c)J8&q(K9BS zjcm8|blt&MSDEp4>t9Z!Xyh7eg7~7X;{YXDJQ>Mdk2VefX_}h8{%V>GJGt{P&Rc+VEm#cnoFP=VWa#{ zSCStglb0g{#>VJ60Cd3(_DhuPpUUNL_k3s5jytp9Z&WgWCa1e{Iw>E1_ov!BEIYOb z_bK`Jla){IgwZpN+9LgyBvRC75>8#msG`U6jO|%kNrQEp0yb+~3h(Nq(TLVu}*6+UBNc(k$vtmBi0x zQPiPW6P2{P&Tp;czFkgqez>8j*_=%nr)2FTvzCpc<7@(L8^t>+)R{{1LuK;v*~!oX z>QC}j+Qxgmuaf;RnY{#6ygFG+8#oN=1xjihzaqTW#bcYi61_;tyg+`hOF|7zv;vf9 zbf}agmDD(8MoRRA)C#)!TA!+9URN&ZygH}qzEDYuV|0Y%+DgndTXUU~_-{G2#j~5e zD%agg<^s8Ll|^H9IrE{s8-k0Bcj^fx`4e)o%cfDEl-AMQ%6o;9d`G$AD58`nXe*>S z5B-6X7$-3awXAe}G>n_U7Df^#_qR&!968ZlC(w11Nf1v#IK zXM1)Iwo@{HltnJPdi#@XsOd zMoh{3rd+{F7t%+VG{TC;Voe73flBTzW$xnI80{Q(F(0dBK1I&$;(AP{Qva&9U(8qst z|GAmd&nSualuNgey1Narh`Ar(btUgTa)Qg-wv@R$1D`0_>*e}Yf(F^6FYu$1`V%?f z`J-LEpMRCCd2)jD#snR8t8_zMmn$lh7J3aUdMkOalzHjQ-$Z>~+)=4FQWAeFmu(Sk zuyGG5MktAKOsX)X$e%`=s?0I^PA2PWoASLx)+tqOvj()=rY?!0jw#x1rfAkgveN|c zWHxqXV=5cdZ6h@SJd-Rm0lYvKp=eB`F&K9){m!TG9d|?eCH_{fdsVd57H+~v2Z2en z22K^C&S*=bN)djR({ArJnh>YOCfXw!a4-8TR*JBh{32A1i-l;P7nXd-FACx-d$R@{ zr4(VLoC_7>7Sp*HvV$B=bVMuV1Qi5hV0}98`XP#68 z4BqRNyuIa=mtjO?pKao-`}Zix`^w~%sYC~6g`2VCz)1X)O8%|oOfMf#EkLp%K4;85d~ z;V-2O*UBYcY3Diilz6DxqK$M7&VzCu*gFf_w7psMJ(TR%%c<|$-qhP0jht`X`br6k z{iA$-lmw|6M1AqfOXVv|E^W+M8vty;6c5G*!7+c&8Q9?>lPLV|^o*Rx=)3zeV zQgD-!xiE{OZ|`lIMZZ)@eN7fcZ?8hn#?eJaejlf#zAcMXx6iqn)MqNGaixPW&?;%~ z*qYRrDXBk^Q(ZVN+~WEs^JXRQTXI2{j!rZO>Pg8tH!eP)3{gYJK z5&BZJTc~r(&lhL7bcS2ZEBC@>)y!E_i8lSUcYP^T1OQ#l(d z+D9txK1;Kb{t7t<3a7;C>YNqtP$lmmIoUnYSE380VoCZun`Q**(=Ut^jNCs_DTaNs z;;PrydNu@U4;$?S#<5TI?{&V!xuzJaZN~aLxpYdS!NoWes*$GAjjXxBl*zi3>@-z< zIU859aWxy)+D2-s`g*d^RP`=0cLiG5)%E2Ptgnw`f#4pZ_zF7p-zz25L0l*G7u zP#DwXCz|Ml4&%MrMalY~oZPC^D^1ND&X>juW{5CPDZ)jCV!})Ky9gI`jgtC(xn>vA z;qvuC$GP(RD|s);BFPza`9VtR9cAk7LF^}KQ|Mm3o8y&2oGRD4!p2x5&NDWu+F458 zE^^}YnrZRJAiZ2kIz&!vUTrjDwwJdkNneyn2hi#sO|{$SanVt_t8O?SRLb+Zob%n? z-RiKpi~m`r5MRqGw$xU3jj;yj;Py==_s6oT$#-`fKU1>Wx0bJZG?VM>s{O3w94S}5 z{;Q~Zjxx^~sOvM~rd^>~t!x{#;GhiWps8HR-$gF>yhPY>hEiW8={a%{lr_bZ__ovi z)!!yca$I99yK8-(@QS* zVzh5`%}&tV)-p}Wj2okcoG3(%r$fz*6z`?vy-2Qfg^7Cl-qF#%)+>2&C$^B@qQt^r zQ*e=EbuXzTzC=zieYa9aSD+jDe3+7Uk3uoMrJ4HbCn>ovkZX1O9E`JFIZw&mkY#o| zKK;8|NgI=C%W2S!ZllN4%N+)1kJ{WmzbT_N0q!6$pzgz)qdmS?EWM9Xf}E+awa2}jeIr=Z6h@sT}&35jV_flqk=kg^lsQ!vn3tMzZb>QaW>j7 z{cl+$8@s8T>(3i1d1EqfWh%Qp7s!Sy`G?4_Lif=vv^s|Cw*quTrq@ZnJ1T`3EDMqA zY<725ayH2sUqb6sEi|Ndmig{V>S{T;1ykr)X-5?gD{1RxS{gi>L-e?k^A`E7F6T|E zUb}b>R71NRp)pS;gSF+Dm(l3(>x=Z_tGi^(C>GCU- z0$8#D?YcY^OFF;7xm8KuPtN|rP_lt8)-y+H4=H*7kds~6whuH_@Wx2uIVJz$a=HuX zq_d=B!1k7s_86JAa$=Z{mJ3EbtNZ6l{+OKY-O+^N!v|`Uu5zWx+a!hB9VaE0nB<$W3QyTUU+N9*jEPPs#nZ%w0h5Hht$}&<<46 zUMOdDUPCx&&J1j+Bt1cXvGVAKL{o{4QIeL+Da}nZo1D{?oF`|IP}jS&x03Vf;Hz!=qSMuK_^LK4Od*1WFyla#a>?})=>Fb<3mDKOZuU7du-0n4!E`fP!Z|lLK*_(i z%%AJ*=xwg#+#m~1XFhMMTcbTy0ap_scz$ zo^+H5HJP;38mEaWT6U(->glXoqt9Jyif8RbcA5&_hmHAc1lb7LMruYlOct6EepnWx zC>*JyTRa^HPbDaP$GKp?#FktXxzuMc5_^b}GbwA9idE$G2}=4O1ewzP_mw!#oJyJHgoq{ zC1(#grS0mCHb$DaAm61V56RU$ugN($cw9-^Q%-S7lx{|+6PKxDY*ee4mDGRAuTTNb zwQW;ql)Mkfyj^Q(XJ|bxN1z;_ z;qVAkhYwataE2^FUdZ`r(I_Qp7rDZfQ(9?@e(p~4%LoX5zob=Njs>OHA*fKr0{WC`-!n)DbYYcPwq ziSpV!wElD@X&?D*Dxhw#bI5mzlJ#jA8rd)P zbux9OJ+GBv)#e=~|D|%B=wjE2AWnU!0hqHge5n**f}8=RROB?9hsj*CDg8~!y{W8n z`qOy>VQSL&Rt1_)wCA)#)U>;DB6ofNp~W1! zjNIlZ4yN6Fm9=xQ|5)^l^=?m8v&p>j$0u-`KJh=$&>FwR4uJ8m3PMRzNu z$dje$mu-Xlgi@A;a#?hRk)z0QcMQfl`87D2Uyqsz~CH+ZqL2P8xC+cIgLRL$+9Oukm7!Nklx2Ks$D3g>@70H>x3Ud|XlQ~Km z4wPThKB+1yOk-3lCHX-fukkP?^ZOc8itvXlLa$V2tg=-2iJSn@Bd{3MaemwD0<8+hbtvV7XK&%ENMAU_C5UpEG~KLhLd( z8nBy`>=9XUw>4my$L;qkh1gv#jbdAGVjycI{~0CoxpL+gp(7WKIF3?$T}fOZ=X(W+ z?Fk!q_wf@Y{o``FyW-W)d|l>`N(nZU%Y5A?y2=f^T5!mrt%Nf7WB*l(v#~5rL0ynO zv@oYJN{1Q!$JI8e{-E4MRM6K5u_nrqc$hZ-nBCfSO|h(QWT&b19&GetqYoSXY$G+b z-k&Tqwcae(&fHMU+$Oyl1?@Pe?w9jPxk~nJZsn&?TyNO^vnd*RdKJ2EHW{E7#I(3+5&*lxCuN0=MEKEUo5$S2O zfs86?PnYXLhd0r6qVr-U{Z{f@QQR18YzWhuwmGqUl#+RdoZrQvV5pu(^|dDRX-ekD zwD$n{F%968NfwKc|VAL!Uhkj9PZCeR^) z^m$m@`APIf;`;@6zu_LGm|MtVmZij^n@1cwES^-77iCc+>w}aD^g@_Q;1wnF>vD5k zSQD-d(uw*;t@u#MyOx~Ym9?=X-8fA12jRw$bD8%$CI7>6j#pvV64kp*AMX666k%;S z3ko82!G?yQk@H2vb-j_l(nHDof}G$Y+Nx(Cu45#5eI@Zza+0gs`yM1f zJd8WG4H1SaMR-w8dk;@7Xh^ZWQi?HhBY=ZQoCj)6R?@yKC%#WG!3Tl6<|d2`n5&fJ zm@F~?oesxRc1TIPnOp(8rUyM}W*Y0vaZi&{g41LP3Ou@6OO>=I$obuc_G$8_4QlY+ zw_hp+cuh`sk5Domr}sT)e(L69>RvRPgW)rkQmm9)*|Y+x341A^%akIVCuhVUOxxoV z#SWt`ti0N{WTrY^HSQw1St;2%S!f5lL5hcK!&FjnduD(NE#bUz?*XMGyUVq;i28o? z8K>hkvgJzRb7bPm_6Ex1bFep*{GZB2V7ChnwfL!$c3qjaxSqznF}h^UoE`m1$=pL; zIod4!HqeAU&zRfarAhC@e@fZ*mMcS{Jur3*i_1pnI)=Hjh5)bYe3Cv&-o4~nP-0KR zxW`=^E2(?S)u3mLj@8DNdYmGFjh9h(=WwJ_jDd2Arv@W!Ti#t?!0xORAtZ}X!n4FQ z2sL-TPE}GrAeVoIo%Qyv57)^Bdn)N$W%}N9ZU_#vwg-beEx}(>8GX|_Q;^j*WB#Ko zV4sdF8pb4wA>k5JLMujgnmpg1jRYG>HWu1OYVv$BS!nY7F}WL4*`8HNnn8}5HRWiE zrsG7qU;YYNLv?FA9}QpsghNT}QZn*jnNo(| zP2mS=%GgNy4N3uam9xLJn%8q(`srRJ_dPOq1)X6<-+N&%yo>%RC4ExP`vQ*&|EiMq zZ<)5RDMsI*IF1$hNXh%J%v(&ynzYcKZ^yQ?@0HBk$jlYB5iFZ}e(LtOl75)1Yl~^a zcO+CFb$lRRJW{9IM##*0&A|nxGV7@%Jy6c=@^*#pQs)~e*{_q?bDf`V4pVa8Aaj;S zN3aI5Z?G^l=nhKuXXHXoZzjy#j_;xrV;fnFwIjofl+ROAzAtwjx}thx#nrp@s!>Yt zkt{($i~DlZ{gt#IXGQC}LiQjf?I&5#*1J=CyplFoe!XZZ8)uLiwd*V;?d5WX&U2}+ z%ax=r$)x%5So5~#i*$>Ub!~abT7a88qvj0egG$Xg`bo*7m9GbR1E@{3%Rh}BZJzquaQ1k;$yd6MeS zN)Za>Dpy(;k0oib)Yb9M*+SPXnkDCcAwC16@wk!g2o#(U5GWZ>}5zy}gt&{3C0Z@@VS4c6W#CmF)fH94Myyh8knZXf$HH zRY@iDZZdOGL#!q2nnO8ENjy&`?h%dAxenOH_jrp=rSeEPU#&=+7danU9q^(fO`_#zQ8bQ`J<);t8GU4d$|&J zq4P}fjkmqqj+Wodta;58%vw%%nn-?*jThK>iH#Muk(x+;l`J%oJWhXGWVu{5`?N7*DLxUhH!656 z0so_vBrZ$R6{m-dq}`X^2QHOtsVkH#WeL2l!04rpdYN{+)n1q zLsE@bxK&BoESGD>+c(Zua*vi1OeX|jY}nR>7)ifENq?eTweqIX!B7V2txD33Wzxdb zy^RL%LrUID<#H|_7iN)EKCE^_182< zWYqK)CHGXBn-o4aUwe!`4_A`c$y&$mraI29K3PfoudGz^S{j1psPB9w={Is+E1X5g zb2yiAu2J&tA@g>jw~OvXi_%@wv4sKp2H&V*cPa(AKrZC6@r!7xo6Z%aPeRP<{g{%x ztE^7*raGtiUs96h%PB6NWnY`?EbRA`%ty;_a~?(oMgf1VB)wctZW&Ldc&L!ymE?QM zDYjL}NHfj(TkCpk#d4ZU$Mc?X9Kmnoca@U+Bss~YZ9B$k*M-47z~o+SbIU);S|+_m zxH%bG;5c_=gejM`3E63Cc@P_$u`!s9p|+8lS{_aonp$2Ymq*WLT2X7u7kp#xv6*`( ziml@evtKcOl8dIo-YbhwO59i6Oi|K5AvbKrIHZ{7lpXhY?V)6TP)>MWqPfRO14&&U^1rQ=qCtM) zx+EH6baOe?J=zfGdgH%P3h;{Dz@|2YHPBHqI2_j{!mmmZu8~FPS{;uCYeK;UHMRC( zEvDLAdmCNz`lnn970q$_oEbxOlE86qU8R!#ADKRHLEN!dXB{Q!zcOh_>dIMXqdrJU z{kGiD*;fy_4rJd-NqnPR({i1O9joNrN#?{{5LGQYA1WTh!Z3ZAN@vuVo%{f{dpm@7+ATA!rtmmVF6mzCVz zvf##XXME3zIbrj@lDmh@-K#E4cb8)irhSQd`!&Qy{r^TON3E=KT(|1|q2%0N<}7dD z%pMOqj{7LsR@Z4;SI+sgf_F^QbyIQ&WbWP#_V;JhSHzB6>Nhur>BIx)_u~PjAfL%a zP;85U9jQiz8?0nLU(N!$Gc%fO!1+I}y}zTB>>J4J*qvj(>l2lvm&ut;=PpHXwgYX# zB~|O5kDRR(p_jbwP)UJgbBXVal!#0gal*}*7X)f?M$NU8)?OAey z^XnHkIVShtQL-+P6I&QbglNLa91DM`Q<_)n%-;S=(*5NcTtvryxhvDAO5(Y4YQ6V>Z>=PLOeXG0TkB}+ zhdpN*uEXRtbqgE~(m16U&&e5I+!$We9IT}~ZjJU~rjq%2nYl0#scWoutexzugQa&@a{iN&k&nTN-M(UD5}59K*yboec! zhMlS;-Ca(z=l1XmmAvC+Ua#G$*C}Zi$@MDZ=99aX+>2%I0G;MdgXvI`zCxgB^0u!K z_h%NI$2I> zer?>@ANo_t`mFqBW!Mv3xSg&iwoGQutBKT_1Gnx<(r$9emSf=7eldojKG##Sm&iq& zYqgl2&ml_Ao8=Va&Om3cs3Gi_k>5@!$0S(}x*(-#F*+zlrcY85m&ut>MTO zsWNG9ZDf&=&}t>;u5u1n*q1-p^RGC`$DofX=^v4kTt@qzv8+qCY&*KX2P(;PWMxuJ zttH)iMd>z@eXNpsww&vE(Qw>+sn1Z7?kFeMYpCO_<(DeOm@gN3QCqLX$n=|(#OuqM zp7FEL`<2{%{#0;TGbL$6PHt(i#oh)R zi#lr6HcIZhI(Ko2GPdve0tT5dGe^I0vXc9AxuxvTUbpv79r}8%Qi}cLN}hhf z9NZx#_YJb%&Zqg}X0x?uQnDT|mw5$mK=EAWTdJi0Q7-n3M^+rCazb-!9O=AS$@!kl>GeK4wD$u_DZZ9#cdoN5v|Pz~w#?~yR^J;+ z-V5a%@7_qKMbMdQnTL9xDutLMSMU6|ONsrYWIak|Et^F*(ImnF`x18Jjs8zbK3dNA zJS5p5E!$Do8{0&#Wa*~b(NOhKavv|}b^%W%7)jn(Nqe=N&-t|Rys_S39ci+zwkhI` z-?IoPzs$nORv>p(fb^J!ys z-%8STr>0V;;4vcqd)Mb)-yQ99~Q-0nv!_l0+r*BQkS)Mh0n=92ngyvC#1++Rt3q+G@Fn_N2cASLS{`8}>^Yd1X<*zrpG zy=D4R>KoA|=k)2hV+HvvCHLksce@H}HhU|VE2)o@%eq?wx+n{AdK67;@WFh>`*n*_ zhBM^k)2M@b3kK_hO4hBiU_~Y0%3ys~$yzGsH{D8^bbM(2rjqqcIjwmiXD8@0CFz%P zQuC!{=>jB*%GZzwTB;;5tEm!g$Eb~(9$%Q1c`qgBhB9YCf_8+)&D~t}O4|KpRoSI&299RDgSEksxi+0t z3h;$2Kncx;(JS2$i5MX;CCmi^FwH_4$vI_*9v=m{drx#&t47$!Oi%bCaCW(3{L`s_b4$>TWW1 zK0aPB-`fq9ti5E`BKv5$xRP~_%$iPeqvPnDgO%j3%XPYt zwlPN<9H)J>DtVuh%ekm2mY_4xT1-WKwvsqkCN4z_%%5GEn(GQB_j+qa=QU3o~!yOEsQ!a7`P>X?vtPRVtD~ zf5<`;wh38;Vrrb|bhDt!kn)Q;glh*yYzktA9E3Tj&@W zS4Q+!igSRR5$mKbhOPd zg8MrRRk4#&l0W5K$ffB>gL8_KGc0pf;_8OR)Xf=GCk_5Rl>EQRxt||&ZI-H4vc4)0 zH>;8ftO+-SNf+Su0B6DzN)i5$6JAW5^c{S&qv<_F$^1qZiBE*-b+>Q5qqm;cfNv@JO+xl*rfQ-d2iG zC5zCHF4GR#he!*`=?kSS)8$qn*QpSHRdQY@r@y;c_tqY#>!e*T3y~jmZI`K3vfe9a zcX?)IypEFnKAAl~=o<45QnGF>zvb)J(jHD6;D*Cs63M2f)S;oQb4&%Wl~SDhf zj|(C#bf&od(JJ+dygCMBm6H6Nmy=_i)ITR@(4otgE*of_O0fP8>ohWGpmPQpt!3zu z*@8GSq`ibkw`JPX=d^#pCyD3?Zm08ofO`Xfs0VVlnazU41Y0qOsI9N$tD^pk6owE>z zXrUM#sbVw>qm=xEWqz;gKqi{Bt8E%RB8!vpnvgwBnXKt#r*7p;HfFIghmCo*k(xi> zgDfYuoiVq+RFXHzYAnOOmcJ>P^JV6u zd2~`w6Mc(jD3sg@I?cUYCe9lZOqeTaU6iEH%A}t6hV@tS7H7dbht_i<&E^jKO_jVk z^4QGt{M)USyz}H2*pqjhlJ}+pQEPeM`8ZQa{Is0lj2D6ItK?o=PIShjITt9o^JVS~ ziffUQd7{kh`6?f&tI-dV-CH*)#=e>@3enLt6xK0Dab-mt^b2!6TuDg=CyPVpL!}ax)+=s|7@v3yl5GDO#GQG!a z!FEd4D!BugKbgKEF}vB5l&qFq!8};!C|N(3bJ%M(u3AYuMoz5fG14(5Zh2n3$xaF->vqFvYR1B|FXcUeCsjY~0Mot+tVx@4cNYG~at-p;#C_CdC#8 znqvXllN6{4)9ibYGRc(UQHreN^siqjev#{8&*4KxjtY!h+(>t;h5{{#z^rE4vT7ay z_M%dZL2_nP%%;O$5>1h4I1qB~4}MokUz-K}$RWc<1!iEI7<~X7H)`frO8PD3LMWd; zZr0eqq<2)Cb9F@0PB2!N$b_>`gbb5d-oIs3 z!_Aa}93l&{DQe%SKwFleQj80So2JrnY9AePb|U?LOrCCtwvAG>h4LG+;ph+@oQESJ zA=Qk#wSyx8|F(DWV2WE$HEjfMTvXE*^WVRtoR4Ge9mZjV9AtOcw zMkfM6qEEG=h7609GHfp^us$>sPp#*4T5Pg!&P`QGQs{;xM=2$FLViywH?Z~i7}~hu zZc9#6^6w>=M%UTX1G|l%F=h1F@uWy1&5pWxky3&JIS2YdWzpy1H67JeAl4X|IAe}c z8rLgjc|)!j?DH^QgTItgOpt3sz@9>(eodXd5|6FvTo=&eo#X6q7ERW5I7i6YviZ1h zOE?UK zVh#z{R|-&2Bo0hV?4Gz=ZwysZcbC)NYhIjA%A+!|JK{7n_9}zzm2$i%%h99#jSXN} z5RFvFgK@JlpRAN3ELYRb+N9umYV>+Bb5Na(L~GErHOI^&!saSvJ6D!1A7cfxYKD}o z=gX`cjBl(N+#DNB29zot0)x>&q$wPYG=>9_M%Vk=q?G9cxvo^T&1X?nsj)jeLzWuw6S= zIY7KjDc4-NY82Ca3biMJ;oBHZ?#)W(_2e9}M*%?$irREYI3AeX*c^}5B;9ih4=4pX zQqGD2JXE!ZM}b%^3C3fl38`<@j0{??l&4XyvxD05g>`FvFtQ+-YIRnnS>I4f_N`oW zRl_l>ka^_rsZxZEWD$m#nbTo}&+YQ6a_A?Wc*#~eJ+`r~8AHc}{UP5&m<%}?`!h~K zHM<7r1{Cm}Ks9iC4Cr#C>m{H+fZhYDgYVZsD}jCox*K8h*QKAA@LUzpOt=jI8j0sN z2U-cYZGrxR+XSG$fo1`n3$!258;GR=C=RzJK#wBq(Le{ocNx&u@VywQ1n35!i-GP1 z+7uz40(uGPRiL3j9|5fZ`X1;G#P>H)D^T$O{Gd^MLM#Zw=5ip#6dVM%aUZ4u#wCKz+e>7SN+WmjiVJ?=3**!Rmdl}FMaJw1kJ*4shptaz;9B2>tz5(H{!BE*3}TLK*mbP9aW0Qv&xQlM)1-URe3QglC1U+_Kyv?rc>9q1mo zeF9XE5I+Ka0=IvG^59mwA^k*wdIMbvv=Pv^cy0vHeR=e=6VN4yc{iX1K=XmVMTjWS z&v07|v>C!41vC@5&b*}w;n*(!)<+_B1kY4Xnpu@53~b(Cj*ticP`LC_=bQ^0crv&#B)o5uEBH1 z0o?|-Gl9Oyqo2!wK7rfKKyTr>2Y?O$S`Kt8&>KMCA;hOZrKn9m0d1F0KmP&Uh38iN zv3TC3Sc5rVv(_%=#Kc6(5n2Jh2e)}Z7ZuV^4bb}tyFbt+a61TSN1)?@PDO~bfV#l#a-bn_y9MY)pa+3ohwrmM zUxV#UppOyrXFz!<@SlN3B1FzW`pJh|IZzio*B9s<_-+F97h>50sG^8|Mg#T2bJKt- z;kFmhMF>$3)Dvz=piAI(7|1qgc{Py>9g28sdQ0rWZ0qd*toxfg-HMA&zM zz5)8mcEfWkfu6y0C4=av6mGqMeuLYFKrx`mP=y15b1#}G1=Rh&|{sNQ-wAQBd z^B+(J&>@hjAJE%C1A#7t@0LI(AeJ#e<#3x0bTZub2D$=n5uh(2a|_Tb@I4&pPQ-UI z&^fDQ-x8fYDa_#J2f-10Z0p9Kg}1@sl% z1_131v^mfQK-&V2AYfz&jYo<_idne5c3zd8=m_W=wCdy_U82SDSRt|#v;TzKoJTj0TbROJp23iO4Jpi;j zLM#V52j~r;PvQG1(7HfB0rfyV_z!4rJXbb?esU3CAE3SP+{Qq?@!UwDfp~6bpb*eh zpa<~Wonpr?S6@O>5NZ=jEW z{ssCTXd9rvfrf#tcqILd0O|>JAbd9fx(;X<&<#L406l}}b^+Q3Xdck}khBKqBcT0( zJ_b4n=o6shfpQVcSwNQ~?Bzf&0o?+$HuCC0pnZ{!XMx7R_f4Qr5%x2nZxP?mK!pgA zvjzRkf^Rv{Y@ohCGW=K<{mNv{Ul7;bj}mB8&$pzjglHK2)b`xvMT&<{Y%5#k@9I8e!!^m8RpFQ8{2 z%Z5O|BE)c@Ux0Q5dK@wD3iJY=+a2f(xP^g^#&dC?gAm`rK-&Se0yX2gvw=p#?Fyh1 z5#m;$je#Blx)jen2lNcw-U8YQZl42H0Q~~=9DLW>ihgDwz6ziq-1-6i1o;L6O-6_< zfl5$rV}Ndh+jOAQ5O!~%N}veP6!^9PO$9m}s17lo4D>HzJ|E~Cgt!K151>1NF2Hk- z0d)o2OF;Q>dk^Sn#P>DO<#78QXivE1Z%seNaH|4332p;`enQM6fEK}bC)*9aQ-Gd; zEPDVw2)A0GAW#D6N%$TDG!$+p0NspO&H?%X=t`hFfo=nu0`xG@!9dRg{S5RrPy=H5 z0_YV;^()XdKx=P9KYzlv66hbGb%6c_8U*wj;GTdGOIty;^04;&rmp}&q{RT7}Y`LT8XB6DJ0R0KK{y_U9 z?503-;kGrJ)jaiHw5TrxNQeC z31|{f8GPpeoeES9v@3jLK##!fK%gANd@Rsx_?`i@Bit?pnvdsh0$Lxw_XG7ssXhbr z08;)sP#Hpe1+)-oCD5-3o3}mvgb}tY(62!20^Nq^HUo;lZ5yDw;5Hs;I?!%FuYqGe z&~Q8#1v&!0i-BH*?@>T2fKCJ27Q7b$4Zw5P10@jl9-yazo&+icdIjhoJoh0`E6{g9 z?;@7JfZhQr+JSyHgl`X^_u#fZ(BVKsfhGWL4|D|3WT4L>)m)(c5HmIL zfquku#{rGPb7um*i{~x_+7@m%1HA|I0MOS6yBz3jpf`Xngzu+7a}f3?pre5P0~!tA zvK{GX6NKmkbUb`F2D%!)BY`%8+XSHRfMx+*1K<6CT7VjW2Eum<&AgD0zHW5 zHUT;dXbYeZ;X4}0zD#%;P(S$Y1+*bhJ<$GOO9FiXbQsW8Kqmo3@!Taq_Jyf80$mT^ z`+!ac$J0Q=@Z4)ajX)m*mE*Y|fPTSq{{Wo|gbN_8o8XK47_DwVxFgZ(1%yirt$z>; zZV|Nl!won4S@!jOxNgsCL@c=b&N>#pxR1`71BA=rtk)41*R@$s;W^x&X5|9mHZyBI zJck>`tn=Z9JHM=r;D%ectiuo%cVbzep?q;YmGugq!(CCZ6MrXV|7I=xLC%rZ->EkFV^XB!v!qX`v{9` zQLLFjxU0n43%q5BU-V5tExZx@a>uI>*UI^=J@ZuTkHgSJ+{7soPNRX{it*_sYs z993*x2e-Ay(a-fjl|c8xcO9VnfN;jGwKd|y@v_$aaKrJg*3WtLgR@qx+YuJWoLcr- zr8s-kvJVi&0if1b2yq0^hlu4ApjilkgDS00;D&P|t&4$hK%-@!vWTM+t+nCyGSCh{ zI4RKj0%37tpS2HS#wmK%Sojuk4rm(C-9Y2u`vlPIhBUAig0$hXHK|WPh?d3CKc-IY6Jow;E^+++sjYKnDU*F zGk{J2x)f+W&>cW00zC@!3qrgIGzf0*0@VV21+*o6R|4G%4tyYG{RUrruVftrH+(f@ z{Ro85cC15y@Rf|U5Ml9Yie-Oaf)7Qk=a3utYQy>+&*7U1D*%Kq7p(0OGrky7m-e6a(@+6V}n zO_Hs7%`w^~i$kC7y&@;{r?Z|*tCP`axOsjwl4xFb+A_~Wq3s8Y@x*-Eb=r{Ov4O3X ziKhBU7pHJNb zHwxv)J)j%h6* zL6Y&vves!elx0KP&V3C=helc!53Qktf#*X8*oLG%hrrtIIRsC%3E3uNYe}#%R8L<* z(MN2{>hIu%&(`8}y7`2a{v>{~I%u6oqM^KG@l!E*WH`sz%Z}0NN`_|{_srz6P9~4_ zGI{J6$iR^bi-!*-p<-e-)artx}tbKnK>Vr{{k0p8hRbg;+RST`e;zahvwB(slKy&SreNQXbAlkSX^ET5C+vly^wEL&03;)@)>#yfQ7o-pY~9j9_+>7ga)p2LEOpAIzGF@amwtOMvZGjY<=ky_JRV#; zq(g=|O8ZR`$lqJ&D(%;NXG^xF-P0~@R}$Q1zQVrWzGMDBFY{h>7;`gy))J1d zqTCC1RhN4%MX@@15bn3UuU+n*$#9o_j(;(-Ec<^}SJ`)>!AEP&%9I<8PDGK`I)`*N zA*nvY4H!CQYPB*dvrhLJdW52}L^wgWYh=77b-eHD>#1{8LztA5EM)2?SEIG^=tPY1 zU0GA=B;ASF$&SK*ade^wCk$3RGQiQg)cYlP(=o-NAYE-13ev>Rk;`z|7c1K< zDHZ;@L!Py*b*y4gLXxpyMs@X2CYNXqg^S#>Ji!R)eZ_6!5IjEMUfSK$-S@T}bCmdoQ`9BC9!0S_ zh9K@YyO(1K(v}8ysjur_hAd0HpYND6lzJx`_H^HXn}|+Cksg0s(Anyn8h>1lWtuhD zH>ixz6`$3y7~Qg2Z)hOLf*vF0{V-c*uZUU7} zhqOC1%2B?{#?^)#?mM$Qi`R-%JZ4{^%GM}`_-5<7}D*J0?v z9R?%I93_4$iKOf`+~hlBvMq652=hpUyWFq$FGQB*evR*#|If?4PrB={s1Xlz%6B0O?KyHz1veBHfADv$F|Fbt3*)vz>^F z^nJXpKE!~jezlfowNv#WQsQOVhggRs_Sex))uMDCqK_R##y-TFYgQ_aq&pgvF}{l? zmC*F+=T5%!%CmH>Ary~S7s3$VtxC4{PoJeK+17W=E>*HsXQN1~60S!oRnk)<1lDS9gk+@ahiikh*&|Dxa!_YWA+1vmu%q}N&?zV) zGx-j^a+&WUa_NdZb#_-0+`8og{~~0mTh8?zvrD&})!8W0x`peL zO1CW1NI|+~<(kzkRha9*MpQa^(QCTnV@l5IP%XPER15W;QxayWSw84&8KgDKyLJ>A zHOm^D@t_hilkdOR-V4?-yvWSOifL!HfMgMu_@VX zo^KrYU6DOCQ0s1rW+o-7y&E_|g0{(NXf%&y_*iG_R=Tx`+EHX|ZPwh_xKD;maOj=W zeHWLj%{kR~u6dTYbtuJSlu#>Ay=6#2Z6apbt9_}nrI6M$&)ZS_59k>x zB1iHa8fK;MB64Y%Uwr46w}$zc;xRQ0kC$CZaO;*I{fm&LZu!o4%r4#Xb!VeU>lUt0 zD&4YNBL(S}nQOK~Q@SJ^kCA$bMi!W#Gi^0}_2?AOor9rx*go{$>zm3pzah3{ESOPU zJ-RF-NmzdazEtf=tCC@M6d6^?8XO>(r4#N@B768Q6PFU1>pQ2smB@IC$0(K7N_%*e zmffvAX8GsNQhUts9kWY&Otqs}b3M~4UPn*om!qtYB6<9^>8`Rq+;^^ITh=@c;!J_N z#1HW=L6#-H)OXDP=Ox}VJq?nv)Nj?7`c1xbCfic)bMBCSfe9;sBxmz}N6DOIv^%?>*Hm>U3+bQp`*w8m`8+tr~}W-2C8 zJ1!za&MfCPW_Gq(q}9tbJBt4S_0ror4;*@Cq3^6vEVndYr$LKKgwXZqPa7w>eq z70&+t<;YUuH2RL&rEnH>Hj1>u;hLpVIJ;`3pjnQ;)@Wu^+3ybD!`+B3ugL#&s^o3OHr(j z?x(wadCDp+ySpjK@z0%QDgX2TUnzGnW06j`qcd>2??Q1k7N`2o zD9>`W4yAaELP@P}q-A%jkCXg!XQ@6~eaGxlAIEk!inRLR8l+Mm5sefyZa8<%s*iko zirW}Cyh15h9Rr6Qy%a}Q0|%DLsGJ@e4`Vi><+E2 zLE1vmNLw0OJojg9wcF~^8M}DtjQ0M-syiFOL`uLcXD~;S%>G7Qsj8ILAH(b@{s;62 z6_1g4hbGy>ck#G1$z0#L<*iA^Q#__7>27NhM*`eBWtM*dveYRve8=q4DN{QeMOvqD zT~g_k!5S$@r^MH6-=jzS2a>hXSkQBUgbDT4!&>uM$#5COWksMXG}(Wi9m91>rDIOgNI^R0(KWje+pS&4WLSdzlhU&~G>m3vd0XAge)V-_XGErK)K09kWYSBkU@O31Lzqid*!dLswkZensFFxrYyn9G{g@5ua z%lT5@G5?>JbJz6RrB_+MsW0o-d}m6wWzACNdxd`ivMlcxeaD=kygSi;r@H{$ zAao*%^y=%Z&L$+)1=xDcPGRKRt7S$Pp!aOQO3Aa9wQ9NmES1sXcys}Jkfi=P#i>e@ z?gCWVQT$JI0qit8x&YhxE(=!!v5oIc@+?kk6N<+ukW?3diz-DsvVA6EOaHW4s)`Z5 zV|J;Ep>`B&ybIt}!u2GIvI`LQogvwlaK|n{hH|dAOHuFG%{J*k63-lV_P)A5%O=nY32$M(p+yOHrpg1V8$x&QfuF=R0PX z;`q9=QKS_I*B_PQSgw(RrVlS(vx>vMv?9}&VOz~vJ=#NgX@!pu!bXzB%F)CyJBo}t zWDQOz;?jzA+8v5y58q|uQY3SIXO_1j8Bg(;ilqJ0inRFdiHKSL>9bTOGknMFQYKUF zDArtqk-oGdon?*^KZ->1*Ot3V{BYkHlWmDRF0Du>!d>o%_!lC}a$o8@=Ku3@H!rP7 zXPcw!Z`GImO};ZH+p_n#v?84lcllrMUyv-z{~F&hXDI(p^Z?SG2yQ?+5k-3RF}Sk{ zNsT@>U9uGtGthE-!W0XoOPgr#j-mO9^{gY>@ zLdtx{>{21cosA-`Lbwj8RLGZ|t;s1B^3s}BAw80f=4ll?b=C2b-Px3{t3#J)wqe>* znm0CxXW-22Y<)=UlxcPp{{uROi^|%O2_P~k%HzrhOSv1)4hEgCc39yN8#K-30fU0 zW~!pQ(zc7QLl@ep!ydhsTRU40X$^Ce9mW5EhG{FL%rhTv`Yt4wf_cq%hIuQP$0;78 za9a5SV2?6%>6aD$Wyn&$yy!b-mwtJ!vr(k=3)d)>ez{&F1?iU+YgWH>t&YcnHKAaF zbW1QE4=y$@E9gCM^(Yt3ojC0hwh3s|UJupMgM{|i%}>>(v}&ocqsXXQ*5HI{l{5K{ zuFH15OUR{Jw(*@`-kN0-ipMCM|3}@Iz{yoq>kpD;vhRBW4GkEUo`@jGVlX=i$s{C! zAQ+lEJ$Gih)6+fll4SUUfGnc4s4(#05d{U=6n78>#RpFm#RbvGl0V<8FYR`=0(?tWBmD%KjMv0j4^*eBMUL+_qq@)#!yWe#h7oJSOGDn z(cBm_)p-CZ@)Z1WXT=j<)*8%>z=nvx`R@^DUXKBj4F@l8AP|v}rHO+V@J_Jup{VjU zw0DH4aweKBc~n^iIDAy0*8=kPi%H8CeEEt2WfK}%2q+r}MDse5+3uOG;e382*o5ow z1)pDrW=7TL^c4$PEkw^>g117^^B19!TkiS!ffHQAdH=KK-v1Pu9aZlyB0EW=Y9cD& zUc4oW3b+T29H9V>On@a5v>VZYU;~znZbjSy%eeNow#a@gGO#T!EQE~j@Joj-8d_Yq zc2Qef-~EN_;A8tx;h?B*+yLKijDcxTc)OL~4FXlb1uUuF8p{k)2-hsGgObd9zNE`G z8Op8$U?XnM<60wltzPEnu=(Gq@_)!ovhTy%fS|0ixYf&3YrmBA5SAb4q7jE3@77D zSM>A=XylfAdOGV+rQR-^d%K8cMb+DM{UTfg(c^i%1&SW;K_f?aT%#XnsQ~R3G$2?i z@LS!^$xQ_=YVH}6@#T{9hP&|g=_k-~m1@o4aGGP7+S8{W)71{k2ks&e`$9f2!LN5H zC3q6;5uv;IHkv4@Qwv`L96lwWr_+4X#mMnZe9?-L1MXg>%U!F$jgNnKeO1ROpi@E;B~{8=xXlx=J}>>O;2lB%t-#%S5Vu}*PEQyL7$Wy!9HSXPiC z5Rq9y^STaj46Au4IarH!j9X83nayf6RZ`y;-UK*&azJO7gVu{l!U}xpigDzvXk;Od zyhRs+#Sy9^qd2n2#0uEM^z-JP!Iobh5Y?LU=gk*3jY2fnio}n(-VAR9Yn8x4{w8_*S~{CZn@Xz zvZ=daJU{yF#-4v2K;V)qRnOCtHu8Fi-v2k+M-4^q{{xL2;eCycpXCm;>(GE;V~~q= zE8>npZfb7sFgah^X%+L`vN6a?v~Z=WYZzUHN6k|lge*h16IVqndss>!BD06)btzL^ z&(NxedXrwXYlPmU8_ku}yM--)!)FifO?aH=+~SY%k5X9p;uS;5xoBh|l$@gr!9oeu zkx?i)$;1j6hJ2y9(;16;>ZM#QUoN#};j)qXz(BcDv%SE=9}B+&YKBXOq}pqoX)wFt zSsOH#wzcYrqm(1Bt(Rw&f{pe2~p=UG;>nV7w!WbKI){%&br~e zD#V~i@x~~|ps%2jg&6cDT?iI~sK$(9&<9PdfEd)-+!!>UzfddkU|0M0cmmL7g8&4k z`iCYlC%i_3?YO~!t1T9MUPmDIf#5SQf`m}uITGzIA@D3lvnCHba{z}AJoGBih>D0~ zs6+9FCdGkCSSD6LhI46iGn~;q!rP}$Kn>!EEG7@1QL8wmN>+Cs*X5c; zlE(-{WF%?g>dshF=TPW)3GE9Zbi9BjNgg_W3OJlY+=tJotK4Fb@h4<{i!W9&R6LJH z7DB}{1fqG9Z|>WtG7m327u(td56=S#Tn4Y|;o!q(5q_SHFI>^jGtkH__jBOkGnuc~ zn)`Y+niN%EhaWzR@b?P50gC>9D;hb%-x~clO95zypaH?wY#!AOP>vOl0?cpjoiz*j z@kXxPKTx!H%T{o%LhDy5zQ)#=#vHDximN$S=<17Q3-2Tlk=a7?I+O*$gq@=ylt6q8 z?J}WzxeLvk)a!-+031GnI6xSCa8(hzTEcj4;83mt;nO4(J(}WLeQiv z)@?!v8V?Y0WVn9?`ZzB&=rYeRl@Wu`SiCWcL1+{jSqMV==|Zp|L^Wm3dwtdgZXYOlY7ZN6!ocqJibt*-l7h*?b_B123Q zXGA7DZtG_cb~I)`!p_q5;81(JOQ- z;`SkXnw!Wj@V1JyWryFa^i!x8PQ_9Q8V#a7TbZe|mM~b$piz zG=u`rztAod0?*&kyh*)Y_#NQzoedpCM|;#Y#^l{Fd|Li90462E0d|aO36^!E)T_&y^L6ImZ)-eIVv| zuF7&0gyPM4XjcjGW;>cQdAwN^X8NcZ>QjJOqPk1qEtvfM-D_qVSpmaA2(GRWP1`6Z}BF#q}cf#ki7f6|YC(~td9 zWvm7RHe*OFeZ7*2NH5?o_k#fHZP?NZJjD%`vXZvOmYh{cgDpmJzT zb7lstTrE3bRjl5MHPGiGeqI-GTrpp*W%D(=-$nYIF4Baqda(%S%pAZWaP=RXJI6k8 zvt6{{5O8W+xw3=v_lq(4dzSC-3N0$T%PC6g^TM~GQ0na8X%brap%3wE0ukK_%!dxU zF}7CD)hf0daP_+upx zOX1sx7I!w%Qc{*!1Nm&VW|g|FN_TbW%AwB2V)+m50uc|`m26MN>bD&}=})KRKOOq1 zh{8$3$kr-W&aP0n!{l)G?p&W$>b0{yj<;Sf|Ak$B791ok!>#_#ZGBdEH~g^On3yl+iglRvgZdF! z6lQmU`sX@d<~v^&I$sWOzNDNl2RmO5alRbpd|B*#IRd`ejrM+Pceg!I>l<44Z}_h< zHfIeu$NYyHeDiLMf{@!a^zO!(zI=DLT^hQoG08Q;{fBoq+DrBRE(p8bL#IJHP|MfA zxN@mD2){MHV(nroCV%w`D!c&ZOuhS>kBa$r8!` zNiHd+s-pr?kOqKJ4q}&uXmM`m|4b+Vu%3J5M(aZS%!hcE#1Ks@Ae{F#H=L(7IE^QB zCTTpW6>j58t!823iXrFKEK2biKye&hx^6=rsSnt!D*@IAY$OnoeL$>pi6nU%zYH>s zK0CGb%ne+3T91e8LO0-WyuqVX7AZ1Q+u84B=d2&Cm~&Xxg<#F7NFd@Ib`i4oKWqIm zj^!JnoEQ`>VR=+~chM5*ycxZ*MLq())leH;mrDwUdNjX_hYVFR!)UxjGQ#dWX5|5VDb1p7w zdZWz1h~s5lewo%@BoIyPZ6+<-v^KTHA29?w_Zhi(LgDKGhoi1B89JPNhK*C)q>1%8 zQ{h*%Qa8rrBwYyBUd9uM*!!I6+vwOUDycdSijAWS5_zAIc87hLz+gxq{}^5782N9| zg-D$I@e!Hq+Y%#vLV7r|&(vj#k-bG1B5|@Ot#PKxQd`{_fnadCFfqO-r^!4-#+!!_ z^gXD{7o&WqE=1y#PhI8Ct)y1Fb1OmCZ%K^xX=!g#C*w`(2*mHvWsMPklP*N!#Lw}^ z%4_+Fsv!T5B*y>Tv^VpV2~CskBo zr|3+~4YSkz#f-Q7KmrpjU1$xb>GH>1aH=ju*aaH%9&GA_4yrXEm=(X%9ooB7C$BVj z>SX+eGVJGpJw3356I9ie@u;dX!(V&pX9aO%e9834Wx8Tudb)%_L{5(s+QChci?D@> z@Lj}eP+^Ai^VdU>g_-atvh2#%M_I*}z;d3wdjR$#ICML!c#9w8c;XM)Jt zU{F{M00n1{L1B&aC-v78^r?>lJPhl{d}DQTb9ij&le ziPWp+Wd3P*GUJ>e4KxRL`;5DpX5?0}z{UE747} z@I?>12a+{~>1bq^7nc1@(S=|+7}bzbP=ATaa5ikZlD#Uc-EwE1QH6~-sT!=g`wpsb z?e}!3e;hONV*8zyt~-Tipm1lx(hVS@JUVqfz;tjLfzSwv8oe56t+Tee6>`}1_IC4w z&GQo@cD5fF9eP>m!YHR?&g>3d2-d>-sB@yU9g7Rr=esHv*+Cc_5)3uT1x3Gf!37`C z<&TN`8eNFQT`(iq3O1Cx>&{-ipaVXim;+{VZJ^&RTcH1Qy4*4PKdlQ9reC9jV0{dY za2gQIiV^x4-F7&BOP^I4NOk35uWQiv&nM>l3F)d+WQG(excnJie=(Q;QWqj|vfEef zww&uyd8)_tB-MwHgQYLGK!NBnP%18?bRihg`|Co4iPmTstZmT&l?DW};xXNkh&zY& z(r6gpPK(I?A_pPbY2jknbd*^S=hjbjwjb@i3_)|#Twmp#ThSPb@&Sz&ZT^n%#y;N5+Om!y_h)BAl2hh49vVEg_s)wV~iigg^ zCcxoG&g1+UI5FEk*POp|bRk%KIg3EVFYFnscEeF2Cn={}1OyFV4h6?C+!0Bi389jf z?d}pFWeZXBQeEv!I2_i4n9m2SHN?E2(#g1$X5Zs(`HQBK*lfNsP9 zibaKg*qq@H=|V7t-%Onp_o!#?spVZ{IPbfF98RmA$a&&xiFsmfy05&84C#FjWatqq zLFxakOCnSHf9XPm{h-mgv;2UzHw_48#R&0Ew_};Lwp6oWOPI45mV%RUsWYlpugyu} zwZx<_I}QD{S9%6Y&(uljf)HNO^&%6(%eoMWyI`X8_;@AXRTmZ{=k+Gl)l7m7QGr4Q z!e>LthMD;cU5La9Z{O@J1g6dy;ADPsVq}j?la8Gh%nI_@ri{v zni6Y3Fe~1y+eF+7&lkI$OmTU!oP#66!I4fa9yK)%42*QD`QFl!F1OHZ z7cG>_+a>!7&ev536Ih8rG;y@Ez*(+`GnOeYYqW}FLtJX_o+~((hvH$ma2eomL^kH8 zyQmHR?6_5o*cbN!bB3?cgG`DbF3k98I$piGhJzv4rJ}5(3f0 z%wXo)5>&4U^Sr$&vNs?#kmu9*GveX2uo7@M1{~Ex=|N` zwUPA%BKCY>%t}agAwC6j-Q7@B9R0sY`PekvW#SYkkX+Ygh=s$7E=1xa&km@(rvhs# z)pET8_jCnGzd13|;j&YvbEo)>TfE?e8+93EPPkqdLfHx0OI(Y*g)Q18li4x&qqhqw z=!`EX=8T0T1FpK~HOU-Vzy`r159-p%Jn{g6XkttsPlg!fA}kDW3jal7q)wp23RrKYNQ^Bdc3y43I?t=YoSBHh&f2e)**0`J6Po0_qeGb75o& zz`5zbDPC~GzjPU7LjJohMB+}ExwcxZ!^IuWeEaF}2WR4!pFTPyF&971%}z-0lE-j2WSiy*m#4+GYtr412Aea?2Q`UfBRve|PXLr;y*xXUi_>Cny zMNcy4rqdit}=llpHi2U&? z{@XNfAwMETAcr2|+w4$P!zuO}=ga%yOZZS#r`ka(_xRLYN0Bm z`q15k-;Iad!oz^WG1eHB&UYUzCQsior|lcM5UjuY8i9y?24d8P^=mhCJ<2OkPz>UY z;P;Ipzc1^O!({oQE=1z|j@ekU!$9lTzV|eDS$v!`oL^R{Sp1-}Gad;wj`FjgZksHK!wO;6s%9;ASvT1VY!M5% za4G3vPSX_$)7hy6qKO^Ml&x?Uj}V+%QM9W3z_An$&4ulN!;#mRns$!i5n3}jQm!y& z++ogUpDqMzFE)XQz2BMc-$}9&u7t4?wYT^g<%@Gt&NrBxS#7f&6Q9nPXDE zS{EX5@@F{nR2#}Am@7(cvTC_Lm_y=nfX^ky{!DTmXFn-BGvJji(En*&?il@_(1l2x z{;6a^0-g#bfY#KMX&Wa5kTE}sRQY})GF0$eIk?2z%|=;UdoS4o7vSbg@U+?9OFo#|(q|WY;23R>Eo|$&87zoF_Y!}=yMwL?nJOv22<3~8 zxKWoyrugf1A;ON(2!t%JqU}xtf?2Uqw<2y{^@~wWo$`;m#{K*8XsW^P`3t@|wM7WM)TM;bf>0gt~Gt*#9H5F6;r z<{ZAL3&EPk?+8Tfk#fwITz=Ca&-LtLJRwo!dSbeo%MT1@$XAi+8BnlRLdVoPRTm<8 zrni9;4yG(0s3nkHXGrr)MZ z6Jz>JU5Lb)o&?e3w0teK-nJ?wUfLHYM)-Uui0sJMGDW9UCzkks5$V5BmpexPpe{t> z^pAxV3aeD+iT_Aq#7}lsCZIfLM;Y09 zOocneiex{c%M>H~VO@yC$sV(=Ud&rO*S|@O>xt=tQ(T686`6icmnO#aUR{X9nV#W3 z^tlC|dESxQupVwmx}3NFlaB<6#O>6}wshI|#7K2nz^CjG^_5Q#J0zM_xJzVlq4o*36t)9~Q9 zGu@wYKSjPfb;)9UpQa0uINy`D+NEl_vbqQtBOT3?UQ3Mh`RN)dwFgSg9GwaNMWp|H zUG5nDC0&Tb=^wMHgg%yOtqeMW%;zX<|%&Ko=r$rbn;n+M z^cNE&dVD%ps_n=)UqqTeugejm`E$AuiPPM^X;3n!^7F))o|+yQq_ZmSr^xqHx@0lF zf2<3UINzgJ7wfxuS+|vvN)E@Td!V$8^F^fjpSm0|n*XK?kvPqx)-5}WXE~i1%kAlc zwL1g<7dcKrp@vEJB3+2YIS!^GZ{*2dofz3%D)Po)Dk9nYzCxEfCh@oGLL^WB%2j8j z)?20CI$VOt)1Oa}{%(7Brs$TM3I0V?e~&JAjQ*T1M3{b!B~`X6OPB97Aea^3&|ST9 zS7rBW@@}^+b=bWN2cT2S?LKQ~9`1DDa^4Teqp-%If&E(E<=9oX=xmo?G`HF)S)%=r zu1uKHZYB^-T%w)5YBvm|$enyJ7wp`*19OxW{?eWQiihUHrvQiJurUYjZ+43(hufW< ztE6~g&+3=WxqVOgIVcaPq3Z-&wnC5Uqf}Zf216VLZlX$%@jjTx=q6?9@Cl)Wa zAj8Tz_lB*pVXD(Ay3dHFcI9h*sZ~8a`CQ&E<@iHu8xnKO;c&O2Yfz?_GbrO2l(CsX zLhrFomu2RtHM$UqJ8BZyu_}F}W*{+dz+Nk7e`@qgHT}ALG0F?N5Q$U1c!RY&-=Dw0 zX&mJG_f)wj)d?Ggcfvz1?z;`pUTS>XxGpho91c6*JcH$1!o^VLqAKxM_U5-%sD@(a)>H;hUX>6 zmOnaQUV$&d86MBum~%U?0g!uc=LmXk=Z&~?JAp$wdmSvZLps#KMosh)6D#15&M%ub zg%NmrIQZ!BG&p|mJjI=}v+#<@Kws!F?l}W=j6ojbeksPsxMu<|&VACyh#S(YkmzMf z+~8g^K{5?(g4Sc}7Zpahd+tF-ERbLRjG}U{8+iS>TYIQcg zaK%Tsx1o_;W>~JXRTqL~TvSI!;rv))MWo`iTkTZt5pL&x_~7~b8=%xUX46DfOyeKm zmR?MMoi6h%48EVz*2L%NR>AsCCAG7fDq0r|!jqN#1NkC38OafQe`3VWPuq?KnVnTw z__<&(lM7fNjA=e=&hV#nAy^B$mpUo#3u!0On{0BhyE1&I$4?TYe{$Nr$HpyHp!`R= zd@)gfUl$^A%E!|gFxWD}-{bL*#Q2_&rgL1RNP+CX>N3U1eoYr5akATC5sF-kz(tk= z&rd33k4t;^Fo-?)LMRoNG`qfHM9A;QmvmWTMDNgr2otT*Fj(87V^R$WX2k^EXzWfr z-rlquasvap;H<_3XI6t;x)z$x__(VrGM_Q#AQ+e3wFthD5t{nYna*K#k}0fCInC-eNa-y67vS*I8RO|? zeDc|h?;t6>e*d=p+MNHkd!03l22TvnW#k}Jqvr~=0?D*SWMg<0O|mN(Hlgt+Bw^c! z)cxeQVUOEyTi!g%OZZ|Hr!rnZBfFfi==ob+2o}Ssc8p^9 z$K#>5@BrZO3FCD4pl1d4-;ts#HL*i_%$&(bbs<=z`3ixEzt3NB#>!R%k#lD{j@Th+_pr$R9RskWSj|BGxLZS1fF4@XIa!fo3j4@0t47$vB%yopn{K zl(+fjdLh&(hS=XYQl8257qeu(3k=9Q%c|4>PIr>cJcGJ4vz}omfrxCj(VKa+Q<>B2 z@EUEtx39)E*FEv@Teuo!#mUHC(D8o#Ft!CK3A2t@3C&Y08S zSaj$f;lD#sadbN(+Y{3}oZ>R%s~8>sqDvDK?5nyE$uqqb_B!YI8Sw+^$uV7Xii6Yt z@Kt1b0TgVQea_W|NStYRwP$_kC5dH;k?pPa6bIeao}wg-EY;>rQuKj7Q8NTe<`>j?dMF2y?8F8?p3?_PZJo%!*IyMnX5eI(-amoQgV~6WI@G zpLUwj3AbbQ!f_m!LUyikT2bz{xxvt$c*N8=%+Ig7ZSSV6l3#Wf%7z(aD4WX@Bm?-H zbcMpSb_0QkBsu=c z>q4*=^H~BBDQ(>u`>9*%UH#5{vYnD#cJMS58b`7v(mpL+^$Ldj1<3^n0`Wi7WsQmW zC%O=c6F=5@X*Rq`_;ovz;=A2BO)K9b{BK>37|s9Cg-D#{3CpeA4%kT~Pm%v!_P;Yni%^F0)YkIk^~d{3wk6^!>rO} zl4*arE=1zan06-2_2A0!Y> zOpNJ*e`wFjqw%m@_zd81q&3>%>NzJNl!VK#n6vjKT?p1%zDOWqPlYG0g-4L{&NYnT zb=v2lz&O%ik?TqD@^PS0AxJ)>%NCRCFLfajCw%xm7-Tk@u}vrc+?cN7nj^I zmL>OdDQv7*s;dvyo=+kWP3(T!Ydsx=UT#Lliig(1CcxqQpKWMId7DfJU#gb`S8|`Ywl(;^=uqmd7~nnLuem6ueZIA12Xv=t3k;@i_7-QAZ)q zZ&1B6F`CDx={rbHi2~KP>+-~?{;)1Y;#9X&s(W^GVdEQ#F%4mZyyFc83PgWRmnBB@ zf9pboiPq?rSZ;xF24o2yzgb1WvL1ma)z!sy)_^;<+&1KjI055GgTU^{*xdlHw17*k2XNi88k*+}b&chncLs@i2 zMU1Dv)TNKf{O7t5iF@FH73C5vosoS;@B;O&a%D#fPW#!#s@NdL3?}7>`Ov3%W@O-H zYR8NWtO$ zP%JxZ#9XXh8jrLZDStOxe;MBHA=ge0P zxt3qGcPmbE@)n3BH7gJAigBJT#N^pG_?``CEIk#g-*zI#64-DAn-x7PM)Gv8F2~H% z-2|eE>B~eQxmv5#bG2{_dQUt&7X|@`W3DmD3C^rgVXEt0<~&}m3&C28ZL9iIY5i3!G(uGZb)jRcd|N za-PNJ(vuSsBYZ}>N{Y@v(V3!Kv_SrGy38?!AEOJAIQbLE2k&BK2sMWak}TPs8?%cXM0n3iced3_AgG1{RMFGpl3pcPhlhj`3rTK zWX>4Wg-F~PIkdxBgP-t{6(+(vYCX%CdArdEiiZ?sH%XV%X zVU(s*O&$uoRfkx175*GJH5=D&r5V6SPQv`K*T;zI{wtbfikS3R$&c0 z*c;sq#lXxZ&!ww0G>#cYsrnQkLwb}xPFX4 zG%-TV+g5?&PY@vn%k@gCysMOgr48pkhCxoZFC@n0{PZqrLB_El0~Ta_3xt^QTXTk= z*M(qeeug?J?q_f3dahuxL(&;exiF~+GSBx!pC7#7#v-RT7924VtT4=N$LT^O?g+B& z%;`DdMh@6jXu-C2K8n9FF(1q%w?sIk!=)U4*#iAbbh%@Z<|ti=#Oa^rwF7xJct&F6 zPxl)DWQ9@6->l0Uqkf|yhUJIK6;pCUIw(IOe+d}&SxUN5yFV)H^xkq*<=8?nU zbgplZvoX!>8o(e}ldF|8!#Jw0%QACRMHeD*N2Rv)4W_!wsa0Nz;neK9Cmkk@$?C#9SH-6lxODglr^|}y=`{nRc%ezw0P@J5`PK7)2 zl-<)~!(Nr0He3N192R^zF$W!y?kn%gKuaMOWx_psCTNk+%{-{fGjr7gx)6!G>OiN5 zCu3s^_Ip~z)Q0?SXi2NRCd4`DSBW_&#fHk%j!eH}hrbhAl6?I_ms94JpXx#+?v}%r zmrM2PiGjAW_mZ1no20Wz-Eog?)#|VViSy2=i;~KT)9Eh9oM5}LT~jhWo+(1R*$?b7 z%#QyRmxDCs57`tX9gb>1FqtGY!E(qJyV#R)w*Td;AdMQ?(co;R&FAtpGHeQOZ8#<| zksO+?I>tEL0;w@%kAt(v)-i@8l8!NgOx|EFlZ-Az;trbO3}UiYrD6?cy|jdDv}Y#f z4`(XuSds26x?Hiaxk(oyak{5%u9FMKB2x6h#K?v{g0$q}a`BzIyfNylx)6y|zhJYS z@z`H&!5Ovg2q)}G%n1u&qh`kQLl3cGICtEn%O!Ki4Z09vcW87jtbd{lDjE>XitW1d zf$kF7^UXb4Fl8fLs0ib8n6Y)vCGmOC58@G6<6y}`S=lQ$>l{QH`FV*abp^sS_H6Yo-?$$h)oWYwQ}3dm?{CeC9ixB)+gT)z)_Sr9&4DEiPQQ zsI6`L5dED=Fw@gfgvPcxd8M<(a9=;wk zoO;wtoNe5%cLi%Qht?$Y^9j{uJez^!ETR=kqFEddV=pI|c+Dc?{1rk38G->(Z~-p- zi~q0QNJKKLvYPnBsKKnzg$Oqo3{!5)XGswa=o%2rir-(PIf22fpq;mo72hFqGVzKtC7|8u!VPdz z);TTfe2V*IJe(H30yuo;wJ6=sjL3L5$h-GwOX9`1&3XQ&E(B|-UndZe zsj%+R^hqlROICkAm)ZiyCwLG18A^;}3zO)9$?0xdYNkp`6>^$C>hi^;{Rdr$#3`S% zb#TBYxxkh_3;wjC&(7_D_P~XdITt5I{@ip8$|v1s)hR!d^U4?8FcXY0oZgxS);JohIi#{Hyp??64{7b*~bye?Zz_s8l&Bu@BLa=!{}wSkK;2Awl2 zoZz=7M*1}8mUX)b`)vGz1>(=vWsMQPO&20@;%9m>9#&CmaPv=Ub+NpQBma`b$e-nh zdRR4a3eWU7g$oY2NS8h4fD3dXl6SzeIxNhu%)_RD3g|vB9v8YTK?hh);oYIa1qa-! z%N}#U2X!G5cfjl6SSYN~S=FORze_d~@2t`bpU5O&u?V~7tNmP~cq}oWyxzIyg4jd4 zVRE`?XO&+3MCJoMa|ACvs!K8R(pPjL68F-qE%kwca;27nJ76QWXZ$uXpUj5Wj7aGj zD1Eq18PDtT$6WA?E=1xkSg@=}<|v)5ODWP!U}qrQx+Cnwn0QH2`RT&6#carswgH;~ zJsX4;F%Aqd%u&baLL}~vY4l`!%3TWzUnj66F(*uS54308)gY&2f%>C#d1Ec%a9xPR zsh_wNu4a^;rrMks>yy&XeT>m3sW$4e#Ry-o3z0bCqscQ@Tn}7NjOj7yDqL)3i<++J z^1~=D>q3Mn)|gXe)3S7GPXmHkahL8Cio0U|hvrVpP5}Xxx~)pL>{;7;Dc;U4<}_-AN#tICDFG%MKe}bjpRZUH+vNGaxj1{X1QV#2qqyW!ZU#k+kw^Y8za-$sfF!acNR+n4X417hZs= zW}N#z#a?SF6mOUWPtt`*ocq~MCbrDkU+P>~?z@4@6pl-b|2ZTlBimb@o63Dxh)y_0 zmqFG5-k=K+c7jH~&r%24w`f2xD{j|q$!_ZK_2#AyqltexMU_H|`u#y<)6k3b<0bm> zNBZ#!`H-*aF6}Pos!P1>2v*U#tanMS0!Iqq=$-SI4)(nc=da%PI;c%tpXlWhjd8Gl z$eByb*+T`gXKBZ!d;}QTTpGX|)107gtMS#P(3f|vwyh)wtc9s{z z57A=Zi!XLYbw_?6TXl|=l}p)Dy}t`?oW9CMzS2j24;tAO!Z?@!t!06newUhe=^{<& zs>1|kE$aZfSX4|bq^P>9@PJ=2ThpAv!{iqW9nB3XqspbwdioE+4xD7AQfs_LJE9Pi zIF)(H4a6Nzo6aVwy|5`7isH#6-|-U zlZ9sihjT|`90?l4PeRQ26TVc%nDG)C*)@)}&KGncoYqNMrK&NC5l@&{0UODdG&e>} zDB9MJ!L}^CgjeT!x8vU#PpDWc3l-4WyDvmkW%)n=3f6ani*BE&m&%!)k5_AC-7D%dj4Z*BWflA=QlvHhvx5|~#fUKpjVwfr@dToI*})Xrx5~Y|0*t}6Il;?sMN^{c<>`Ucz-yXlv&^mHT_Z+~56ZT2%c#JCqbe`n-TQLDA>EXygc=Yjo!x^X6*#7OmT}#XBs2K9u6|f% za5sV27czrMftrW1gYTieBJ>;IK~p7lY~jm*!?~p~mBf*N@#2``34Gy-5#(_+vJgQY zBM{BY5N6N}AwXEj+y4fG46}rPplMO{HtjWpDu_P+E8YY}pTCAiZn@9ruuLJ^??+v3 z?DxX~B91YD*vjXJvV}l3MBg8VH$&0)X*6<#?=`x6mNC#yLj!_k40q^?*v%L&Z0^$= z?bUKmZJ=1^&-(5_D^?n28f#?PLSRKfHjNPYc86~q*E2~HhCW^Su!O-T5c@*HFy5r3YQQ6>-ypCz`w^Ay*!N9SN4RGRn;- zy#5MojFQT&u|k$1cq<9A^uYUGhhv#*7}pa?vV%jwSX}n(s)uC<2N8&UAv>7JDjw=L z)}ejkR+DXIT7zav>ej+>fWvvk-HgC&7o*2YeA$Z8V;LG*h#pG`MDsEPcQXRxE9C24 zV2@#rP(!n#>g(WU1Xcsl zpP8UGaUGE)J@}k6&ucTdAEp;yo0(iF<;6R>)mz_JVsC*+CH?n@g|XrAP)jD-YK&au)mk{ zrZ|Qg%do%O15>``3S9lz4No$cs^!X1<76xb9PFsU@6&;*-53k^YE_)u+ku46!VYl7 zl|!9{qWjtJewN6m-DvN(cEfdWwZ5Ts|Azk>qnx|ghdLW$a~7O&FPGqt<15xKhAFuv z{Oy2+3y`j2STLZ9F$xAJn^*zC;L_#>gGpQKxgBubzU%hj(`eU2P2xx%tPzwXh)--2 z!jE*+h}phc$6KXbUm5Ol@3)5}`Ng%mPGQ01eFP#hm_+Y$)Y)7*!eI#Nv#qqH23__5 z+GRqTaUYs0X&+Fy9dP(GV=0-%3|#&aosK0$Q*8Z)>1bry%PKf~Ls=>MOfkzGPrYWgDr z(Y#^DY+fiwDI(TYMDgGO$-Q22=A z+{ByhF4sa4XoZMh8lu4vFPabFq8{&5o*A))__>5Q|rBQ7&J?o2@99FQSoK zE|*zhx$LxaA*H-*u9O$i#HcD|mAO)&#-d1mhqqW!B)>)@w_GHlm_jFooMq3DQWjlh zJo1?j5Xp>ujAII`wkVf5c(WDdG82v5a=9G9#}vw&Hyj8_W}UfY)}R?u4KAIg!G*87 zD4Ugd(-md242|4!*({RD#vLDoRI|%mH8nIrs;b!#k7^=EM(5)#R}@VNjofn494Hk{ zxzcYHVWBM~o7>H0^IuBVb3+EtN#0d;IL(=(|xpe-HCP`H~r^gd>0<{;#^OtDrub4aplW?=0+Nox55*gN_2oY&)repi@=sp|` z2(}O7<4xX&F*nIjvblO6M0-e8y&4N*@=A+Q?*Y8gih{il zjVuV3N<~9$Ot5s9paujJY(sbNkz)mHAbn?ZH;|5Zt}E%PJ1^;SdyW2yR=8B22FFta zhH)DaCHq7FrYjz{KlFbI#J;d)kX%7VJrasKsrMKs?27;*j)Z+8;Ba1XkEaHlCiHgm z@ntIpk2z>$A$ZIr5KY|g$F4MBoQ3?o0cWUo2A z>#Bg$I&cFon5#YaQMFDIF<32@6Hat zfs z&G+%PD*F7pXk?+Y`4)kQZ2hr|V>%OuzrQ|s;%Lm(#@g5)AmT_VMQyxQR~vp+g@Dk8 zH&#&`|NOr!4v3|aU027Li{lM=z7+$9(s4AgkLYl#D#ncr-c&_t9Dzn|dEA)e#|_}C zr|3MCnC~rxI+pXy^|2jIjcN|DLNj;->nn=nY`ndSBH4yUZn;S221Qb=)~e@c;lb1J ze(?92tK>asZd6sWQeP#k!lF#xg*RAHCYPg;TP~B?L77DC*8HNmNIs8dMpY!s^+n=U zSCq)-@a8H?>)FGT!hn6hU4!SI3{ww5X~>cSXjl zs~9_8!rQ7Sju+6#Ef>dBKX!N{zuATP_c_ z@)8)^g#_{=bAfyx&5Wu*bXQ&i)fFZ3UA(!968RPyx#bd>=4TzinK+K!{~F_bv<)DV z$w%L!nRn2dio*CO+I%kfq#3g%KYa)e+s zj=!)IG;}+?1_V1nbDQo4TxJD5v|(h$WhPd@@y{J&n|h9Ce6D|>Et{{F$~Erz=MT{h zP1;Hto5?|*o_ZzteI8ZFQ*e2E|{3KwGU@r5gOo@#??A#qXiU64l?V*u*|{^T>NcwZQ>a zp%CznYW0iOpk0BVr!UtriIA>WqMBm9WLuT2RqVC9Di)%gGI@YdnX!JWlpm-UUH>1c z$XLH!1DjNT+IhrosBx4cwzJBBAQpzN-Q|9D-&KLuTp!Gv3^k5Ww5V!>`Kn@qcm8Sw zT~+AN&TIK_wAr2uz81#riY9Wmogj)$jWRB3pli_2WDu>1mkE6XIj2j+9b0l?W z;Xc6O{LvUk#tp<#ZmAdhdqp0_m#R2q_zD_X7&3f`Ks0YyIB{8}Vhs{Why42*Sb}S9 zf`4B@^P%eBDa60bc5z_%GQMm@FTaRJZn>AIvO9t#Ejj&uV^6050@uT-dU^)&G;hD? z?M3+V6}>$ljU3@^jlP?8|FkR6fMBzlAJmntV+C~oKWXkXKzp^^Q*(}rb16U!7S0D8&LxdW zBz}07i;?4Ee94ND<3cpD5IF{QAz0*~>M@EOZ!@t1BF8_PJ8&4cwI;h!?7yKFxO_$` zv1D!(tJPF*6#Fk-XRv_sWdeZ@C<)vswsouIMzLR`Jtf4GXVEN4on81o;PCN8=|(Z% zogID!T@%?bcQq;Z@(iWh>NmO#1+~Q3|e}3=naoo}#Oj&aa5B z_UkHkHWTo+D*C(~jVyFFqX|Uw(uwIz9R4+1!4oV?!5&<|7PN5^nibVBptK)drVYQU zLO^&k-dII(ya|oma&gRN;s6%q7kTV37f2tP8C8KOZ8(+*gjH9JA2!}xMTvBwky|d2 zIle@ki}iPB>jTbXBcTrFMstl^kETXdBTCmbNHh|xuPBmh@%Ac;EaQT6uhz{dDM6-1xEgf~Ia=P#g_BnHFwYJ z#7;P`YImnB=QIzOH&|%ZN<&TKWRf?KL)5vV)hd>OIDI{~GzHZ=FI)#7aLYjKPmfNZ;wJqvr|luI#IPs+0I7_H zxJ*IXJPHGV!->3cJc-EB-VO?*BUnQ>B3|qtSiA;rqhh$enjjC;W}=)NyN_oF81OgH zhC1LcgSCe4eh^Qk^c7Lj-I6Ix&cobaWR(@W=?Cz}D*F9CG_uf5e}+IbFD*YH$XQRN z+@Gz$olix()LZMThJ^Bau+2~?zd_y3K}^=E*d#J8wSwcO#^}r z18A*5?jJmX2xaRe1HKr}Bkn(EJ3l2#Y;^Jl>t!(`}FXiil9OmBDK?H9d$ zFTQ+5Z{LGPZn?K-a&wh3kN?u#<3C69qU!NE;zT9wD_mmPu=gpv4T@g>F&a6->l(c} zOAKfip#i}XgR^xj;wA?BwKp{}n6N5vL1HjBIPeB+jFQSNskt+*Z<6E-3&DI`^6%=2 z zS_@+6!P~7Uh8!B%HI8)&=Mjj=coF-=Z8}0V~(m<6_xXTG;)M;H1ZLa($HY00m1ZpoNh&!6|^rkvSPN06|nr<*4!DFX{+IW z(sCt#0W1N#TNZ<{`dO$AuE|N;i#zoaT+$k04Y0w0(wIn+OV3@xu%Z)Ruwrs}8X8$h4o@Wz%^Oxs zp>x7=FJB7A;M$zv<#(VdQT6h4;$_Z!aUk&j@Wm_odN&%m<-VT5X0+x0{)D-|KZd47 z)!%f-wNM4o=Xc>vQ1tmn(Z~@#*XYezLO?qQ4G1>)TdZ3V#|lUYzS-Pew-fCCf!bhO zwwT|+uXVo&^}q!vsoEOSmnxK!0%938jO&CXdBN{=NoPZ@UlWLZAupK7DjrG=rrwD4 ziO^|G0tj3NC3S1zA3zu9l?Hv!fY~lakMa1j6{E*kG_nvqMiGeSWe3w~_saMR`T8wj z53ctGpYA+HzAz21vvM%C-{h}UJc z5Ix_Gw?fhL78*Ii^BUbe%M@sLp#i}%g=cj;EjLqmS97NhM)lN-MQ%IX-Dt5&mDYHR z_PhZxiR*?W$-y1Ef?>(QZ3H4RIcQ$5F~+HJC}uo?c7xDUJdUPF>dC?bfWx`NeZ`9S z$u0F_|4_(d_)-;P#G`0rAx3;f7lOqIsv4shajS_HFq-&SbI<;dff@5sFF%l&a1%C> zk!q`PiguK6jpBqUi4*N$C@wX2MZ@C6Xacbh#EEuV=TM~RK)XVS6i1>-l6tc+A8Oss%d@tx+*JdE2~kuCK0LoIOQ z9;v_*dgI1l=i;<02_^+yXRu(>OCa#UB>w$$?OQi*rAvsxWuy0_Jtahw_o7*nI=gTo z;BX#ksJ(IHxwFHspb&W8gEvtz@Vtv4NBXykD^WAN>PH=0{UVr(Ym|bkKab~8x>HVc zwb~muf~){0@1u7$8;tR=`PA&gFS}YcoxlyY8a3lX%@Gr z_&YHCFfiQK$zS1(RTRfB(8w(p$5dY&-jfZ%9%ANy8cSmuK;V*cRcWZbO(BL2ucAUv zF&S^FqA(_)ky|c|nZ7WhE{0xaE{>&WUR1@Q8#nyQik-?ycw-gi@n$q~%jGdUD36FM zp-bih*@0$8RUm3lmx$2=1maa!lt>@mTt$i4XylelWLi)n;$_e`o2%nSG%2d;PsR8=Cmp-U+z3D;Q^%TBz_ ziejmvky|d7MN+ZQ<5{7O=WcVk+<_)YRW54pQivT-P%iGFG}k9=SIBL6s}%)vD;haM zFdECWY^9ej`)EM0onx2lP82gM=;ET072PIQzj8S~!tzYnS+UC0Js(PPh!shqS>KME}ym z3(R&gk6DT@ThYrWp^;ne<*95FxWv=vn|r#1=0w%g^twLYe$m@I@Z~FdyAO>V;cbn+ zn|1%RE6{*oNyzVYJ0!;n=>DH?ZudXVcR7~>dG;I9gQ4nY={Gn+;meL9Dr9j=(B0jSKs)Q59f_;duJYQMQ+5x zUf>S1p~j{-s%!5auq*j~8`@TJsBu~xki9lEQU@&-fAm(Y?mUE7b#5SvvwTiuVSH+6U!m{&fPfS|rw@UeedXbFLV)90*T<^>lM)reiOL=7t*!}z;_wy(2=Tq+IPu(+WR%6lNpF;%!qLxr`#n!z7VWu8sY| z&cJOeS-9G@n$3phl8!g`@v(RwrTf)IA4^`<8rH|KQJvIL9HkzOw^7m89cW}>lzJqA zh-~i(i=w+*5Jfi_WH{Z>R8f?~19%e^ zC2=1bc^{KRO_0Rz%_Z?0G%HC;0;)Jvzy6rE{o0)W3U@7nFBkjwGCYU3RZ$yz(a0^= zM&PZQY&KuYi|UyBA>+Ja7C_t|Yi()yN zl>|eEQ$?{CIR$T`q9jg6BkyC95aUF}ToPq8D@jU%^djNTqlh8!l|MdC2qo-s3?gW(8w*91UGjz0PjDC=dPYG*Tmy!T2wWmF?U7kD2n1S zyp4*YcodD?a#3(eCae&OlUIK=SH){+UQ|_~kz~?Jin4eGZ=|9uUPdFgTo!YJvsaZ$ zwJ+ZzrWJ?XVm$mv14J^zkCX7j55JzGI8t~!6~(a#jofl^1g?|KW+Sw*#atVk(9Ebt zjT1Gr;WhzL8XNFtDoSG=8oA}t;JcG*y-P?kE-@FzMQC1Bg`v}(kV=ZOxBzdYqAYfy zky|bcF7=eD;$CxA+=He?RTUbkXM`y3#M`JSirdl1Ef)osW7H~jyF0&A2p3P83**OV zYE*@xkz@Gv6eGqD@OCPS<4H7f%f-P(jNRpmAdIoM8YiEl03w;>QzK%KI*Ov$4{xKQ zDE<|fC^Yu+v*Q4CYmWv5I}Sj%cWFQ{E9fqD4G3n%on(`lRoDY7S{Ds1F8uzWwzlm< zg%|0^OZ4N9^y3xs;kGgNP{K9MJ(MtIll#P^>?YjJ=(Z(|m`!>cbA&?-8__MubqqVi zu%19f?mvs%X%zp?!pWZ7B)8($(Oz>a%AW75pt+JdzF+|kzr9fD*0RvEryZfny5_Rw z;xgV`#o$;Z$dMjz;tjd;coO_o($K!cTfkt$EoOW0Y)bbXiq4n3C@putayc?27dRtO9L)MnaiCHz*l?Wy95M^Vo4=YX=ruH5stVdJ&hMcW6wQPf zfnLGaL{U;Nqmf%KsRKfi>Zz3bvnw{yge9b+!#->rhtdEM#~@DZwKm0|BChhHa8h{V z6@{}1jofnK%nk|1yK*vkulE*n!E8b^qZ)SB#UL23(n7bj0dKaVRMw%9TP~G!NGg7Z z*gXfO{%&%BL>}w42aR@0(=b=CA15T+;RyW93>&R# z-D|F(d(bSYDrjq*3i1dL1#~CA0*V5<9gW;_0Y%0jkH2ur{FJ$ZevGC`RY9@FAfEwI zLO;OQKv6f`oAZkLx<_cyla+2 zJ=wA5B03uH0>!DqZ87&`9tUD1>cH1QQAS6iky{>#Qp3ndyms0$SJ1g=j#PWH%`q!T z`Ygsdc=Hv-a~2x8<>Hwi5)X9$(%$PDbJ<*tW=B;vam+gV6&It;Rd~Y{1#<-&x#fac zCukQ8Z%D^c!=%Jcp)6 zRWC|+mk+r6GTaavS_AI@y+}Kxy?Cn?rSdcyx#dzhJR}wW^7jzApKa?;qX#WsA={T&(*Y-K;MyEMnFp!yQS&yAw9`6=LgHm;*SM{f?J2tiO_J2Rg)-o9 z4rxpvA<^}fTQ1uib`ic@#SnG@8d(ToyL2H~@Sw^u3Le``tbpM0lhJT{%d~ZEZHHev z)TMknyCQD@$i{?Sefgr@mMxac16%-k1nPm?&LovsV+*;U zG>!m5ETx8Wnw12RhjpF6g2+Pz0`G~~cb`pU^$rD+=g=+^0?A%9QBp4#o&+4uDGmAt z1G8Pshn~iltr$#xhDH{G$xn14STLaqG72VNFtGxH$(x!ROvd$;E0R!h$nEijlG9@g zC19soAUOz3$BjK)C9yzq0D;&C0?Bx<)}b)62JIdpjI2b{Bo8CU01h8UCXsx^vs?@! z%kU*D29c#`WFd&0qzl1<2vv_!5LsYi1q6`~G5RtK?iAN?T`1KA&kGs)+5u(Q(XrkoN<9fj1 zoYI&~qK9v~7(Q;p7p)jRZbc&t;p2k@A~NTXJ=2^RY3Ijcku=&`ukgG$Fnqnb`%;AZ0_|U-HJF?K$`HI=B5ez+k-ZjAS_2qRjRYb$cr-# z{_qImcBlX@e~}8y_<>+z7^h50ocORV+bm9eh(JWfi6#yn#yC|DMT)PXy&*)3|3-5p zb!g$UfW!I2eIS@PN(dGIg)dbxRD2nYEQE>&2}JX{0QZ4liGTkLmf%{O;NL%@`B3$5 z@PS~tm;Zn-ThYtEM$djU3@^ zjlP?8|FkR6fMCOen{{RD4i8=()zt2PLaj2`mbG{1?136LOgIm%R%uX)aa|KE^$g{D zAxT!ST~|#kD>$1#L}mp|>^fMzL#e@KXcq}x$0cZ@q+TwR0f%#nyROM>7snD8;mcMG zCKsTQgrmKOgZ7CK zHddl(l823B0Ecsl8#X+531MRyzF@_$u@sFggpHF3MDw!CDRe1N?&TU7gX_5kFQ1R5 zMAggF11p)4zAoX5SM>D`G;+&*9k|z6?(Ywq`};#^T2%c#JG6=!>GPZMCMf#+Ml^DS z&o%mVmKM;?K?8zKQY_G|h+_q$1z#N7)U;qy2^JN1!tQIUQn3cPaDR# zmK=C1meN6myVBV~ZF5cIIwDDK@N-?_S#IzYf!G&vgUP|FhZ2PS@51^;=sMZ}0+&Zg zU0Zkw2;=vP$bp&)A^&u=&P{Ml%3R9pIjP|^^rhv@xncsmrm zzZH!f;eCy6pJfiT>(GE;nZu8DgO{5*^o?$6<}kjeUM#{0sC3R}yV}Qds#oZt6n=VF< zFW`$-j2!o)k%h?dSpw0#IR$rrv`<&a(=UKIxRhP+^l#CmsCqiMKiaQ==mnedx@pdVSpaYHEauH0X9Y8i~pD$>j+gt+{nh{kE9HABnoN9>@I2Ui0 zq6E%CBkwyB=(Pn2e85}+*Pt1RSprVAL;3&1OfL2VD!E<=S6lJg%jofk> z`1wFl>|xc(Tv0_0jFAG6e!}&Qj|a*jofkx_)|m!@Z3N)v;*T7 za}Df4Q=+N?#n}N;FHrJW5CdL^7j<4n-}vRTHI(k57l~?kR)s|7s4hqC#pd~ zwR<2H6J@XgZeue%-`~a3|h2MKRotMsB$n{D`m{-h2rU9-lH7!jI9E zs0u+bB9MBCBKQH`E=3VMiAHX@2qw`)vCGQsuuJ?cJY(-Q&JjleL^3&|k_5b3xh%6? zWBcLlQk1~I{_ja(ye9$J{(Z%e^R^zn`TJON{~wL#S#gKiVwEvMmjzW4oZo>rO40d8 zqLEwP{$1xg+b%ihTjtI`7tMxh{8w^5sgmIQbMQtfI{z#*a?73X-cj9650M1h{x#;%DxO`yNCyWOJ(*Yux!GKaeK&m7-e+u3xMdwdMBe&f7?!KaY&F-(}FW^T5 z%gqIF3YrnsK%g{H>{m+=!O3{T6h&|X8oA{nXs4Y*KY!e)Z0`OdnhRC;AEwd|K!pUy z=kX>fI=%;u+;Ydep}*9f@8?4Q9&^{{P^B3WbQgr@&G;+(G?=ApUYn6OA z+yxSB{hQ4FzX45%YU@{80P<=jNMIe_E=38fK_f>b?yg&nj-Reaztk8g9 zR?thQG$5E28+Fg^J66Db8>5O~a`8f~ z;CDO7vKV*yhUCt%8+CQe?i{;U2)@9Mh0YaSFcd2-i*scMst0Qw(?a5#&f8H}Tz?`5_iMvRUaV$=`s*h8L$i zho@7ztS!3xWN{{AM0fiY73Vkh;tf^w`_pJ-p_}^|fryL(vEQdMPY{UJmCNS)2lx^1 ztWO#1V>&>@k@brDc#D=k{CWz3VG7<-MS)C2Bez^22ZsgHRViEDIjdUBl3`>ubiiu4 zxl&F+v!vQ_tkh9TxWZyYIT>%TqF_!yBez^IGsA)rw$YT$B~nE5qAHO$>qtbtttO8* zQc)H?Xylg5VzwX)af8hsb79auurTr^xc`{u9o&4vYv%HJ1x=5tJWkP( zN3f=XNM6RuLZ`Do;p%i@4= z>?j510z+e#P38jGfM!TFe7sdBd;}{ij#t*gtg(7q^E_ZNe`VOv>xyW24 z7oh1;Rf$$76RfGw$?U@0swk2g8oA{nS=hZ5J^-@>9)E(-8t~S@kRcLNh zwV^dxPpc_LjVthGDvINsXygcSXly5AJJRTO6%7csBkeP~J0F-8bYql}71x?r0sG>L z&D|F_wp#9~^;^5SS%x2>o0YUpG**+XabEIh6`k#GO9GEalI?Kp+a1m;oPlq5c(!pn zuOwUIzOO4`wk7Vn1Y%#gSZDh&{EjHpB}PbXfcrw}83ox&Hd z=<7vjk$xC$?WR=ijiYSmlJ{k;iIi)yQ$P5doXK}=3I;7w5U`8qUmgwHkl zbe0y-&Orl$B`4p~4OEU5kQUt8+_a#*->&xc!pRdZFSr)1R;kq77k^pDPx1oq0cTlK z;C-*dH|zSgw*A_i|G17wk{i5FS3xW{Xb^~fAvYNB)jt$Q?n67qZ6+)^_zapSsc#D( z1{}^OjY%Yoc$SON)nhE=@hP7(_V`4Ah$A5sTlSn#g5cFb^!hlw4T@eL zgGP?cTG6dR1Xh5(G;oZ9Obu)w)$F{Xa_EC`mOy@`!dBwUN9=xv(!2CX!A#|eU zDvd4%8G>&X*9l1ygVS_{!xDp22}C66O*~^Y-m7*fe4LN=hmaVQ&^$?9TG$RaoKM`u zz_VNo8awbMD+Y}|G_nvhYyuJ4u3|qV{cj@aiCX{i}Ez6utfk8acx28ofG83}_dj z0l^Z3Rk{^%6N86FH8n99-C3^m^Y>MZzmJbjYYu5^+dfoSOFvGd9~dFRqcJU4?uVqO zmL0HQpHamc=yMTA5k!qtKqmoPnrdr1+_?{YapBrUZEbz`7p{X3V3cHL6P8=GT%Y5G zH?HK8vn6OZxV0Wzge&?gZ~+x%?CE`Z;pwj7SP zW!U&}u#bEgL5}oj^LqZ-0RsFZ<)Pl-Y%n(1|EmhRaI#Q&p)6vLoV;EP=!?|PU&PumAbm}5a=&Bcsb}j1wx>!_nth*T5 z32uvc2N*$HM4FfrDbM)h&A9c}pj~m|4Hs>$2RjTUc`ce*RY@+A1sYZlAVqP{VFw=vVNzTX~0LFQp|k3NLwQF=j#*mcmWMngeHtdbaF zzJNDL(Y5!Zk%h+mSzU-L;1_8;paP2_q-a1eD`ekNSN652<`G&K*NzS`Y1 zomy7ut@qodS|};L9~&Q~!L4y>9*~GEIb}&FY%VvVBf7*G?!?3nQ?*j zv}3^>os_u1GNw@kA~Iu&bvlgBL9W_u!7VYN+wqQwhuFeAz~NYHj7!^IfkF@QdUO5` z(S=}bNI3 z`16y*{Bc0KM6Jl=OPR83MaD~cBrf@pE}zUL-`9mm+$Gc2mTGpdT}f@R&#yaEoV*+U zk(e7`Hz+MRQ}s(0`hvge^2VrtO&20@>ZdzrRIIL|9nl01{CrY*(2R7+EqXZJFNE?9 zQ~G(j5MlB)Mt*_8Bawgx1hZm4T@^W2z~FI5a|e&@%kw3xk`FcJZSe@Iv52gr)NA=- zmF%`8f9inqRkTQM&?6ZtZq*e9Yt*L`h~^9xN0|1?_1U={*&cXm*&`q{?R5c~bvF#M zx%FLW#^fWS9>C$e)1cE{yaPMLDv5bY4R4a-wAcA)WS1}2T1x~X&SC8EB3PI!+E%GP zkcBa2w#SC$vnVm#36|l;wt^ULNAsg9h7K~T9Tr1m)kINz7;l=QC_aQnju3@LFTgqy z8g?`wm^3?eE8=z}FE)20|MXS6bM}BUb(1<3#0?uU_~!$khw9+;EES`47Si^L&h~jl zbHPi}wLGKCF6&x;Ng$fjwUEiN8Ebd`f9k#jPOhR_KS+|vHkrv}C2J?m62P9IAVOF) zD+!PxkN|GbxzlrJraL{|O)p6Xp9{(&*oxwS3*znr;jd3c5JlV&+!vHh+)#KRisAyo z1Cjr!s@u12-KyJDr|!Mo1HT_V$zDc8@b3@zJfIecz+e=s0qA~?wug14OK88HzqXi@jCggw-Q*`ZpQX5!n519k#B z^Tdv-mD!!xS@!QxJv25lRwXkYOHw0XNeV1U!5AU4J5{BYNYor`>Q^rKq$xy<)U0M( zQ6`h7AG)u9nm9XK9VWX~ z&a9BX(e5yDmX)vh7L~pd8wJTE2^mm$YA-V-RU@X*KvGHVVWvoNtJoy*OH-e5x8G|D;di@1(#rE*)`=KEa4W{? z%1w7sE_ZwKtp%7AguNPxZ8o$~RjxYot8w+{D|n9%C-|uusS#=hYnXDloCdap%u}bB zLTHm>oL?Q>lofTp)f*c-hcsuWN&a=Xsf&37UQHnaM-zd$t!aax>6bO&zty!bHt(|Z z3rdtleoA=vZ83%5BHv^R!Q&qzaU#aQo-L!LVs+StIk3bQI}cO*V*mH1*m$3t9CnLN z4Le0knaBC2&gU&?uPFqVKun#_YB$VnE?XluY~P2~F(*@WSI|gKA`I$378@mp@<2D( zFoq9#$u*Y zEt3(6awg;cXauL+k3e?4(V}6o$eG0uCYlseboZFbge&dm6e6%wjeb(2!%#O`RSXOgpd{d{6~T zl#$T0D?@P;O&6Or?4;tBV7;m)iGKJuwgNZ9t=okrO1#H3^ZS5A?IqPfL`~b;VVeFb9 z`Ku5;?uXh$u=Z9z#9dW}(GR4l{h+?W(3*ay@H7;jCIMzlP^uz=++*rq9zlLiAp#>v zaL#Hx3%6Wya)K@v5P$FX?FD=$8jt551suVdaQ{@p-6?Q)in!ZZvw%MmGo;MxsqoJJ zhpDqor`;B@6(Nw>9=nhwX9g3MOgUQ;d&Naxi$vE7FCUO(>p&g@QjP(Vf9Hc0Av4<^ zQwSb6yC_7I9VcDdU&V;9_raDl5?`_-u>UjxTlJaf6I*KiLZ~?|HcFBXB@I(j)Ra`Q zK-vHZKQ#=dNaP%2>RBFXUSSFmJ2{Jmh{UML7c*8qKPr%NZfvA15u*{Kq+xql!cU9=w_F}9H!*E#Y5nfac+OD~XQWAvd(=Cs#Z0wq!^N)3 zGau@+9<#EAOujZ?4`#{TQRj@UuCHz81=%mX7F+?@SVyWKjr?V{AHO_SUyuC7O07TL z&zNCH>L4Sv>m6{l7(FTu73s_U8QgjCSYPgO=j&hSSGzt99{C%9lYqlxC%*vy)h7?- zi~VDL^^S~1j|ajZXOykI97}Ns=GT-e%-(pXm*TCLu^p=Qel3g@FnnCp+Tr7@4W8kg z(1hpS7Du_$xmqy!Y>}HPu~dl?IkwCeS2f|mkn2|rOMhh zYv5eiAUtB3T|=8TOd_put#hyE>m9C+j}7Ew6MWdYf5MN^kdb=|{!|y` zoO=?!cWHgfV+igTN0wzZm3HX^Iof5>f8phrqRhcZFt;JHf-uw zo`%>IA~2K%PkEWn!Ypj8NHlZuJEL)O?tH)za=H4Vq%*Iba-0pxwWd-oz! z2%faRjY32|2XkP<{cuGAKRk36>`fwfChVw{q~)T|fguqHU%|;i$p#l-Ov*iY0r$HS zV^S5z7>S@8OuftHf1N3WpCE(y$g@M%2n`^(75%0aamIG9Z0*>ta}#XBt&JogwSlvV zLV$fF8lBZwDMuMLEtkAwLCO_kgJPWbkf~R>!XBg$tqHKrmnE0biRUt0;twYU%Wyr; z9(w@(40oFPmMEux9oy2KrpcEmrvd~n?@%vMJ_X(rNUFcwvqUM7*&A3rc~)qDym^|d zm6OoOj_-I=ex4~N!dblLx|r8+9E`KsdPK!1h@-;`;z+b#bOmwvxPsvIl9g}--Y!ig zq|nH1SHj%EEL;Qzho>MWq$|T#$-j9a6J7|r&~DKc!eN0zkg6r?;2gYJnmTwL8oBK{ zm?Jo>TK0v5_k>r$yUL<-rV_q{MsB+jW(~n(O-us5K=7yV3V0Ol4_yT$ z0|NoCkIekTczZON|2-PH?aVJ5wkl~ju$&!8JE?YN7zR#hGLh+%!oqKa9y81XhKp;}DCf>_DlYkVZUB(6rgM^_TTGfjcjlXdX{ym^|sxDt&VpbLX}XFhe!rZ){B z_`c2;o zR|Qi23f@k96Pvs%<*V@a43cC8xq2BCi%a;O2*xG5*c2jmSI?$yR^L9qAvS+^C26=w zxi`-{9^;pyzuMGe-03HnLd5R$BwW*I!~68~SV5*%sTM~P^m2HcZCOr${srX^#>T{f z?42lPON!aTE~>ZLuH_W83_1K{OnuAg*<}jhr^ldI=ZOL9Obj5n6?dD)Q717tqqT{_ zwC&|0*;*?uXMZFbg#|obRB99{baIOH;A&G*a9w?XLIkDi~>{4Rm*pC@t?s~+?FGW(LdrHseE}|X4JdTBrz&fNn-bZ@kVK~`v)|#V;qmV zzoQU=t=VATUvnAEa%He5d%n;)FZxz!`sV`#F2&Ss(1~UZx|dW%qP+)ij3(_}Xymrj zKG&r^4V#d%)pXi7dAun+`|Hte(PjUjrtCLrBun5`c#AY8a6B40KmrCS8_)V!?_vPK zZ}P^=M=%_+3jOT9@`LqkF8ZJytePUT|wBkO#rEkZJI5&<@fS z$a+nIG^wtvln3zUYAWSEG;-UOa>!sI4VQS?|i#NcK+3uJ#~IN zv}R@iL=?HR98^x#)r?NXW%YF64cAo9WHfTy)pMkldc5Jsr=+#vmGnxq+jOJPYob(= z*9o$!j>1<$Q&lfRBez{ubKumR*Iho%429Rs0NN?KnmJliGrlUyim>n|YAWJfG;-S& zagfhlY1s1N_EAo!N9oNT5NRkda1yc=(}rgGkiMsB-u=GF>6?f7)^ zt?)YeI@&F|IypvDCsHM4RosdPHwn;P0BNg~)qIojc~gP#DVJv{gu#@H$@(DOJ~ZbH zxE6z4AV@AKr4M}x%Lj>Q{G00n9C1>lCrK{kfRgETndG%E#miF5;MZ`&C#TJEmoBCd z1}-&Nq@f<2&2DDgX_rT`1xvi*{nfF#v&*@K5l$tuVjV~DO)Dpa_vKns2p)W1$>@mi zU@mofCv!Rx@z#x-1PNzi^ZD$C&*8q;EIbb{xqO$YzqowQF@^BE+@Q%g13;#6e7wsESjLq-3h5lL&=Ht?Ak!@;_?x( z`F&mz(jtB(lyhaF6ed%qzT+}J%oHMa_b)!XoTVF@T?#fU-_hL>8w*R4dzlHG3I3F? zM8S_d3yw|=Y&1y{)dhC#74-9WQCZ)>44W+1T!R3 zDyAOgq?Ak{Vkf2hOnOfRoNO7Y5iZ2u_Jgs}Fek|_$bbVbje;e|UuEhw?)dkaLd5R) z#zlelKw_g+wGul=OK{SHTq(HG-jgMFvwFLUuf;~h%A|8ipgoWp07Ft$Vn~WyCph33 zA`$ZyQ?GJjZZ?I8otUK?@>ZqdaIsZ>yieti0QeBvOeDaO1syI^dw#s9BMuhvZXq-PFpv-AXFs zm?6=!3Tz2E?pR?85j!o58*QeN*jOv&vl**uC$<;i58@%dEwK@@#BD2;)Ih_8REe1& zk+I3tle~?rH-+$%VKCFeCu`V{-T;DI@v!N{f-_n3+14)9&1np&5@(k!c?R&U(J0Jw zOFf^kX^f=OdmAMSQxA&$(Qh&p3D?>A6rzQbHeDO-Oc7?fi{(VIJm5Pc`LSr+o4Xuv z1n1SelLL)%Q>j6 zNe(wOrU`_|^U~OyKPOpm3J!id;80VqapfOu3K6^Gmv6VqRWg#zj;IWSiY1*dp# zEO)|1Q?GHy=S?AEcYNnrS$nVgBAzQ_^ZM-M9w@cRJv>*K`ir~#a#M)dUEZ^4Uj`oC zBU4*jU=lX(pF+7MHownJ+Kr-{IR7S7&vEB}(G((f=P%fntz_(c-YVF|T1B0B{wg*C z7A8l$#WzVl?>F@zC*dAb2tNr1a~*uTgbk(*Ah;EKO|xicx@1}hJX|;DZvprQ_MZ> zG4&63am5tE?_z`QgZDrzMj1eGD`uEh#OZ-nO)=?#Ob;r|*}`6dO`PGr0_)vr@P%l! z6!b2x`~A_-o#G(&k`@+B_;dO8!+C#cJ@IKWc z^#bbZ$?@O+XF)MN$Ue`(#9!pq?cXs_tX;oxSy!hl;PSpuKK zo1`g$8_>vYm%uzG0UHh$zzwZwc-_hWQ1tJ^i{Q6tzvzm}OLV2+eHvUE8Vs@e$mBnUw?~uwN6^S^Cw~bezp)>ql0Dyc-h=k_ z6ia^)dW>)YK*TdfSko*fDC#DQVgcSZO;OB6Bez`?&ZJSc(m3qv)56y9TG)*Cif&M7 zI%&kKBuiie-Xu*4ygC^9%9l*qZxZ?MoUz;~2huOw*q77jm$qxc2@t#Oa>350OV+>u zYywS_IN=k;p75fm1p6t#J-VW38Xy#Plhske+oq|G5j1k!MKO!@8gSU%KcVo+@GAHi z+8??q@V@mWY(WmLRmXm7(c*Urzwo@qLJG!3@2fzkk?HH$ek@dH9Q|)4bP&zqN|3c2?MW^ zEP9EZaeWy zSuQ|bRcYEMoE=^VJJJ5pjRHqB8$zloC(Gh=ym6Yc=tCp7T^3G?SS{E5oxz3SWpDx7 zAG$JVnj(_Q$h5y1Z;U4GZ$u-vo%VxRG=Nt!;9f&}AYHMC$W4B1@d1X9WoyJgWcWgO zJ$w%BC|x~x-%XT;3{7h(3*`p9m6}4i4vicj6oaD&{PY6b18o4o_s!mIy7kuC**>eI zwL9B)*mRE_oSzd8c>N76X{8=L7em9T?`k>QUn94et$}BD$X7T$H}1vIe=$`C-`f5s z3elRa?eyT>(#^&4Zm1uLc#v?WPdg zZZJf7A1oGnm`=fV2dUe=RnT&vZOaiE3J#;diz{qRMk!)_@EkxE14c z*2aNt1q)w^tp(W50o^EkCiZ5l!wFT#^5@uukVvxlmCABEQpAo_V2ATZQ);<7{+B|u zFtBx;oh=L$eP`fj{y46@bXsz+Q=Zhera_@0Q_v}<5M0$Sp%9U$pi{P4nbUR%F|0Q> zCr?d|Sec??HSlm#|8Rk>Hid}Y#Z%AhuNA5_!N;e^=HrfJjTI;9xX;u>+{veyLin9* z5a4+q!D5jC1h-%V$~+}|+gM?Dx+b@0=F5?7{5 zJbaAo;i*ty$Sie#Q;66-y#LudP8CAIOJj8J-iqSnP2^*tqYcPgnLg3YBPoqbX;c_I;)heuo=y#%X8kdi**w|Lo`6)F%=%Xn+p{Gbt~nMHx|^dBS3OmPH$2FF(rfs$ zG5wASX)qxTGiH@^sbPY!BB{8H?nYDDaOHiTLKviZ#y(GMDek52hPtL`s{1(Re<02jB?qtglQC7x&TyU5_EDY$Zhvf#=f-a_;hr@DBf3%N@Re#7uf= zd?8C;FsWq9*^;=B`>)vCypTpuPw^?IcqxwlGrV*E*4(*~PfB*2M(;)!vycTpjV7a( zB|9xybjp*QHx~*GnN@e2Lh$h4X$rwRAx2@SPUtU81yPTlx=A~NJ_43x6WI}KNbDju z#m4#^+JYcRLBT0jutfiQQ^)h3;8ms&oPOqb1MWEeEIb-Oa4UY?oPOhuYdPt-w(c4I z!&^UCNdO%%Cs#>SU`uGGS}WTFLbp|oO%2Ovx0T&9nu3=M!3ff0d5n;hah@ryTp0xl zVUQyj%uai5xqRO;dK!{$K$;F~UiQA;az*U6-tV~i3i#1_=dNAuPwm<@mb(tVnWI;i zei;7rrm@wzli0z^t?Y~Xv}Ipn(xkrJY4r1If-r`5pn8j$9L{IJ(_T=k6seWO+k4T) zIuM+K4l8Q<<~Oe zdn&uLr4qR`BHegPR0uW?c$tTeL;mpyslN~HI9=-JCSAkbH&f-%b2qwtiTk@uA=<$G zG?=D-oc4NqhAZ9n(NES9O4={RhqA?0TuVsKlQ>YrBkM`W~NwzJT1JwPo)rnLz$Qo5i%$l zzB%WeWSo{MmEo*{@A8rw+S5)8=C3A|(N0p5m9qdxAf&#;b7_T3S}&`I+|?BEc4(eI z&!dqYC-HWfHHF~Ofhj3ebl4ik3WyFJEq+*|-)+?Sav;~qc% zf~i0GH1_8xL|}Xfez!H`REHu$EZEAPt!1y}y1o~Z*Za_}m*U0UXs4;;#qEG2#*3GF z;ss~1H=tUMVf>K$U3kMZ1ISM(av;gA>jYM+ebJkS>$0=eblTTD?DunQLzCG458kQM z=#jbtynOMF`qZ*LSSx48ax&Ymz_9JsQ0_OL!&|6H`!i@{so!|Y6oU5~OnjmGjUQ4g z0%aO~D4Mf%&*-`;yAs6SR4y0A++QV5ygN>*5x4qx|C`p1)!twHfbvHWfXY= z1fZo7v2M%s#h!ui99wvQYQ`S#b!y(8#?P@^IXUc{i#JY_?AN1_rLglFQwSb*nB-nu zVP`I=bG-#ykqQIq^yeDz3oi4NI>Zm5U8|e^cwZS6MJd%u3O(<~TcxSSF^W6^LeFvq zxo-RP1)uMR=lMH$k7@=V?=zCkd3LKOho5iZ&C?|O>u6*t{M>2^!NU)e-HR*yEFcPP z+&aBu*eWSfpGm(69f6)ldsjCC1r5N|)slkHvv|WaHTg6}o&Z5;rJ7>5q59&`Vd2?6 z1R&x`bb|(9O19k^%Ax2$yoH*yuS6qDp=h}&1P?__d@rt0G#hlf(cY8IC_+#MToN(~ z+J*M2ZU{OsaP;M^jud*%!5gHh!Pimb2@rY?5Gi#Vq%Y*WD?GcG;hm|O`lNK&b!#Sv znoIDOY0`Wl8d(Z87nnluP{YLb;tDk+>)A+NRoGrGjufk~Uq+trxf5IyGUVKj_O5Qo z3C?;{)sjNbH}QsPYVtOUJOM%v$$AvNa2u*G1pO^M+ke43RWk$yXFbhoD2Jjy;Vsmp z{ZTZs6p9`;h2WuxiSNY~il%{1<=}JZ-Jyfe!2l6Y623gJM`RU|!c7uyil*)o6nO%K z8#0YYYabL~c7$hiJKl|&0Va6;K&+D-Qnul3(xmoeG_n*@PBMkyA%zL-#T8O!5iRb^ z*z{<#u#{d0hlI>&E=BuPH>dGFPA|?e^2$h|!WzbYUVuNXU_aR zjgob@mU3v?gSS$X{t6md3QZ+b2p*c42w!}msjpbwI#SBp5FI& zhYw9bRg*%~|KN?&)aL)A$P*+q1^B~lw7$^vyYQ_48t>T9p=rEY%Ax6(cq=vOzZZ=x zg{EJaLh#VUMEK$gO=NI(mX)t5*3lQ;8#)@z2Z(qQ_~5~rr#4am>cQKislYCZJOKg_ z8Juw!1jU^7;kkVk-j|v&CwOqCsF)mPj>j9ON%FC1WGT!XZ3@A|43k=%VJ6(waf+i` zbBC?M09-i0lUrXO_(pI`$joOS+OxWuPr!wC z4Iuc*(;LE^Ac8ZW*SGl1;f-*6LSiRu2NBPFeibcXrTXg26qi(!%MH?G2g>*-KEG@# z3x4ABOB5ooCksCDX%IE&^^)DLOB36Q1GT((wd(`XI5zivz!8sQ&Pfu-rif!xBdlO4 zVYn~6Kkqh$;BDkC3K8k~HtPAg-1F|{CSeWmc_;A+-VBjj|(Y83**AVh96yRCU%l*iv)$95SvRExh{3}$?j&8Rk}93cVB4= z!K1`cjG!Prn}+8leZ@jbhl*XXQL!{x02>+#AD51EOnu44{yI|#KOF|S5l^pJlQV$e zR?IW42)BX-&`?&4(}9^vbLqPBP>sDD4(}(D7yIBnxLP4YHtCA#+10UWb6L`A7(rg; zqei$Fjwv27{eUSUT%1>$LU37(Lx^$Tci@g%sZ=b(40i%Xe2Fs)75DFMt|2n>_1Ks> zDCriS0%KA&ZVbIIjAnichHf==FK6f$3K7^>MxV*8(eZo2y|O^0;J2|+aD)~GDXVdn zf`W}-g=gb_LpDsq(ySdN$i=LDVuMu?vz7nE=IPF4g%z60kV2(_%yZ%0_>3t84?9np zLh#;*kr}Etx+lC9tbvEJVw@0cD!v8I=7)qEZxiclLt=wJ_WroWAq$iJ?0y0sVd0r6 zC|(le(O^T!5y_FJ5L}Qkk+6_EA7Vh2ysbqBgCYxWh>e9sp20PQ15!R67b<9Yt*H-r zXLpt#yhF;Mw!#mfW#^7|6!XWZ3u`#iPbb!5U~?5mk`hxSg4x8vR}sK|9RB^jqydG{uhG*Av3y#rVz2azo*ZJ_7Ahq0TWEG zj?MdXlLe>fX46V1n0k(Df2}Em-}wgpK2IH3H)8<7t@xa2BX&}UKTd|1=g{j#rjd2V zMz{nVu97VH25I}EQIs-sAoq?tMG8HhB6Fyjs)7rvYzo0CEt*0&ls??rY_Nk}<|5`P zpNfdk#i}g=^e&w7_Xm93)Q_Cak5Guf_7Qy^*vXu!+8pqmXk41R5paZtP@kO~pe_yE z8St&}p8UEg1aB9&Qi#a2J^h81N5Oz7vObvs?83^!rrzYz{=F$g?1XeVZGi4MgRVjt zW6pRWE)KdIt-vi;8ufHQ;UTlW$)*r~w;N;)Jn>+0%>aU1akZ&_oL=gI*6wASxvo-8 z4BL4!K_v)keKdlquT{Qp;>-|xUOaKW(+g9T>4rT*I9B8(uQC-4Z|=ua2!o!?WO>x{ zjH6>M~71XF@L%T}Q>SS*j&;)UWinh>X*@@G)`(f(3zvEU>r*AR>v)GMH|NW2d(SFrvF+AUp6|XC zZ>1*f7o(9K7xG~Kb_x+?YSmmH2g~}%j*!q?ELc@L4S$9J;oCOc-u9<|anLSx}t}M;I?^DZT;nng8+DE!-IRUK}Z%t*L zJcPGYQzs9ik=w451Doq)Gi<>2X=TB$LPwUl0D&7B=xSwMD6Np%%6jR>TdS#;PBe0W zUJS-2e0akWAp;2BBfgdjKd?uPJ}aIMXBkf|S_8gp__XlaJQdA}t~OVXr%ks?4$J(3 zudR5aG$pv1B2R=Yc%DnCn-}^b&uDmd_uw6=nf<;@mtD7Za-^x?t<$8rghrMk%?O1E zY~zuSipYg^tcmy9`|M1b9mMiU;=jSDkZJBG(XP>L@JDG&!c#$66(7SJsHuu;(8vL* zFz7sZ|HDF%0Yn@7A96XucB?wPISbd5a^xjcOX`Pyi8oAB ziuY3Fz<#K8VTU|6z?tnG1cK9KgM%;dO#gN0z%vyf;>m)K9zXD?swjt^{qZJh@;wQS zEQOxu(PDHUc<5oOiy-tEKyWMAY_kCb4}iy-jy#DKuqX13tzBQ}*g|i85Ci8 zz53C}wFP!tLwVdclTSC5EMHgXqY!~nE_j7J`VrJ@vWL>%SKVe6tRY_)winHW)3W%Y zLKW>SC7HPl;E0O~-p2wPU6?~*udhy0|8*YTD$RISpvZyDwy^&aec+BZeErwQ!QPOG z^GEQ`RF0)&ioNdyHmBIFp4@j`jWkpujrM~M*QwZK`FvW%HHFi@gTBps0nc-rw zVy9s(bD%hqcBu6!^8qj_q%!YAdsjF3s8%!^!ADs+S(kU?jnmZSU1(%Um#tRBoJ_4; zhI=mqw9xUJ&{~)b5K&~=a+Equk!8DD5UVAtU_ZQBnkx9ui%$hh21X0kNH)_@K^hKM z?6Kjjc-a>ljtZ}bm*E|+*=wn$dm4HOte~unUc7;t$~YX2-1hje2(I?nL*j##$=H=j zI$z9K`TVF)7FKv!oQw92ZkM5&7;eZyT{~G5ug6=bsfpL1k=w3`9^$oZu~un>3!fU^ z9bOIZM0-V74caj3v8Kfa*w$MA~yU$m2S6|q)N5vpp+ zD)|H6Oih*i4vpM)mCPY3$yxgX;>7&lh8|z^07UD@7rtuAD(J$SrKy5hXymr5U@mdj z$i6~gf3ZHi4qkqC?Lwtk9?Tc_2I%4Y;q`DQ+Bdp-Xg15BuAQuj+wsXp*zo3!Zu7obQ9yBm>O#UwP2qFOx z@r)o;JB}NfqfjYX0n6}4X)0hb8oBKXn7ub!4GII>!wX;=+9SGQ!23RlKTGh|N#_4# zyiJrVDM(o~s*MyXR`gX(hV=_vBZ0i$}UIM+;b~ zzIwvFd<0hS;0l@k8o6C^O%X~>S81ujJ|4xv?YgNl_y(&>DMa8loM<;#(Kj9DZO-n4 zdL}ko**y8W6Rukye|2tvH7$oIb7VEsuokOiWPSz|0ujezi$e`1JIqO5IhVr zT0@1w|E5+13czINB2_>qoW_G4if~sv+;1ngsQ*BbxGh4;kfmr*vy+2PsVTTwP;o2n zbEZD$G3puSu%K(if@74y5gY2sRcFKV2R3OycUSTKaB1^y?T!QRGK<@KJrVzZf&8HB7IyWV!$CY_z*v{33tD?R(`@SgppDFkm}_cC&#et>PIl-N0wJnFpeCBKhL=d0wr&atFPTK9sf zU%BZ2Z3^M1rdi~=a?+&zCXxTn8Ov=ukbXIhesRJ%kAkcXHp2>l;O2~zVwh%`M{OwE z7JY5RDkQd6Dm6P%gg@*V{li;7SV^3et!}CHCu$YanBfgudjzucsyO0)S#07tGMRCV zgU7g1Sz=rY9`z$lx{?}#nb%r>ikb$ag=)hzsVnUT`$7&94mXAH(`TRnE+RICWdOmg zxY%@%O00m>pno;G=Gu6qKVv8KAM343HX{!6v(ZQ{Xl4@n4OrTvr3%w(ikZnlQ)Tc_ zm7x$V?4M_yWYd8}Vhh~kDdansM&sAqKEM$?SMN*?u|iYivQ9bAxj4KZ-);)Qo5x!z zMC1dG?w!Sr#l)#FfM*d_6!ZUsLZe7BWv9s8`2zD>lgt!4L}Gf z*lPs^_xvHQ;L(#L>%g$sL5qeUQcx^+bV2bUbE{dV5M031DMaL9yOa8UeYv=|VwXj? zzalobcQUv4vr=UdzueSaT*PZkA^aXUNJV)z%bJn_1h*ol?z(e(EuT-EVV_r%R%{1i z<9&9r1f{0RjZ&pyjAhCiC;nVhh}c~|cgF~v-lTCZTdgEc8-ytwA#OKk3(#kzJTY1xT?3h%^6 zO(D3DA2x;HJv*Z^&Ys=4IW1{SeUOETks=Jpi#7OvFtK&xCP4*DABrolUh2+-kmU(t zLketwZYPx;P-NH#fFU6>>;)8}bxms)88{@ik8T*Y$|HhTkB`l(PTE`=&Co)nUgFsB zZamr)f;X-sO(A&WVq`|pxC|h;6>QGZ0D}8sm+5GnSOHVfGpCunxM&#i#eDReOclm^;`1p)V7LfgFE;V* ziHS**4ka5eR_7E?98F#~V2KgrlW2E4p@3gN_%XDL)O!Rk2ONQp`Z9W2UqM?ht%nqp zuEATPxt0Dy6xo17gJs0#6n2rSyO;6#?q2vYn2DSEme~9O-iOLtn`AcGZ5%;tx>b@B zx$ojl(xmk}Xk^Df9y}oN)J6*E>+tqy z@_r&3Ie>SA1c2udtXnaFXybqca)>i_2sy-C!wc_CXgYL-*DQyCdPtHxA8(1KYBVihei(I-5>$rIRxug3?SN=Lriy9qlHA`gz)NH8=Lx81x{@8%1GjSCEgrO@f}5x zCqgzc&#iw@N--3k*8#jEHB$=qaD{4_Os<#Qt5|ruGzmTzjVwi%*Hehr1)giLPR9VEjk(7DJ5JgtWEszf*WS};HgvVOG%(8` z)sXUwC-H`83hwU|c_QQ&v!UienZ<#RhVD*Q0z^FHm4ljb>DEXlbvfQ5O;VSjk)k|D!ePr_I z;_cBSzZ;DlK)yk==N$$MEd~(0!}zADik%MQmX0PJMxQXP828-cF+sQHBoc-x+5X;5}Cxu74MAYkgxhKF$pR zj^N<>%w&xfnX(jjwC*$Y6nA#b6hhnCCL8Oix4RlgreRvQT(t*;si2R<=JIa$m~^9D zCphuls#lvjjr;ur6v80yF?Q!{$R^>cVfrEnTx2PD^XsvBvkNZPXcSBC)sVZPTf;l^ zmgdfkJPyqBxRTvaTFQ#|8U8jlhr<2M+@b6aQc}32(O-pk>;0w>JT}~83cG=Sh%#MJ+H!mTYedSkmZCOZ6YU#(Cvc`!&+7u#omrvWY&w{I; zZ851$$L8(naErTBpycQ`n0kpj`n9GI+Kx8P4>~ty_mKOZ25cK1CJ-Xp+hTJ!h?|z0 za!Qqa{uWb*ai9Meg$PWwBJUOshAZ$3iOO)XmLEuLg)7Y2&1P05VI`_%3#QkydAs~7 z!NZ@3&BF(id+-Y>W=<*#*Oog^6I96E<*qq$0`bxCp8v2Z1Xue9O(A%H!uX$v{mCr% zDLH6(f*$UQO%I((_Z2x(sMO$oV(M_-;C^Td!D)}F1D{UrvxO0LRm|9)jLq9Kz}t-y zC0GC5)KA>ie>H`O-PO}JWMMMOzjU$iPjThO)03G-fs&)=L8&2A<2j}flB1{fyB80= z51xF2=Qo`Dhprgus@bO{z6Svlp%xCyPh)f4ZJT=Lvhu z@Mau)(#mPd@m70vUwxkY*ehK4Pwsr7b4C}B_0_uvY`E=i&3UzKW;gvl_{DbovO3oX zRm^RN58LOXy7v(XO@H-)^Kv_gR+!IbQ=jEFkTU24U#;@S0#@g|ZI$7zTmGyB@y9Io zZ$mY>_pbuJ=&LVc-)W@2X}Iz`O}{00Dotu(k&g^~NbZ`lk+^vbSm+}*U++>o0hCAfa*wQRmq)tX zii19~Lj@`k?hPS-Adc$s{JdRCLq>1YUzy{6e<)w9RIKtS{q`*P+k@75f;-<%+<6iC zxP*LMN@>OF9_rwU)E@#9Eq^TPgon)F zX7E9Hs}fqFkn@!bS7_ADmL3D;r)iE0$-kR6YsG;BdgG~)=_i$~fh@e#D9%Ft8Y++5!>F9-tuJ*0BAErD@pH|PTcWTa zs916RC0G$MxxJS{1UfYOh3aXi?Xk;yvi4qK(EIOb{F(bR;0Ru;Pfs>nEDw19FTDT$ zWeULu2mhoH(MxxwGk=;mvtkXw3wwj~Wz2@2rROnM{5cXyD=1jim{^4wD6oWFJ58>k zZs=V7ROV7JC#1Fypb#z5_Uas6x1PKcuJ{&&{VM9!oaequXXHnJekqBy_C7mPtJ-OD zgLS&$6#pKy%?>+cz*t|kmh`1-cLo3UuCW{)Q_>x1$}#2Y`s96OdvL7&lG5l{y`wZr z-^PT1uNrGAdS6m8*cVBwG1qU%nV}ZA5x@-qigyUFHT5HJ_n$I_ z@Kb?NsuO+qItT0N3?R4_ab+QkH`0lOanp}q#wLj+Nj8_Emv`K2N+{RFFDOJy@($MO z7M=zVO_qxJY-W@^r0nJpLY)7<*c`klNnV>|<&(FPdHGUL`>*ic{ii7e*ZSWWLDBWJ zjD{s{)PotD3Q_!E*&4CQ)S(#umOdU=_=AUDoY5o6s>#D*DUS^j9S49RA(QL{rVz2y z@rsjdm|wHr$15 zb%d(ky3NS7 zggg-EwM3#OZR%G}%^OT1{L~oa20XoB9hw0Iw}Pb?1`yl|HdSQ+!L9g(>1>TN`S`om zo&ub{5heu_usKT{P5*Z^GFL9%2$N@uDaTKm3X*I3V-zAVJ<7$fTznH0>CR-=4{po| zuHloe1#3@s2trC>h%T9CitsKPS>Rf!_}RunM!Gs$a#m3fQv6t@MyAkVLAu`_26V`g zDB>!`k2+yL4L?mxpg(tj;^*iYMYe9cO!3cTd5*qV8T=!31%unYSb;KN@5yGIdZ~=f z7D{<5W2b8+0CRrsKn0HLroCmWRBBX9Wj8!jK4S5jFHwNO2%D^zRjF%K-gZl~%0qO^ zY!e^At5?-B7{q==g+>-i=#Qiu3*&*@v2&x4ZLu{J`g5vjeNqFu%0ho45m3j$GH?j_ z2{TQlRD$FFlm}5&4SQe4hIhP*h4e72>yz^zwD3a}g%j;$3$gO_#6572l;rCeEf@iJVQR7g%9s?7};!7_k?iF?uh3B%UP>_EnV}hzha!d zH?n6v8*y$UaQy~zPQ3SJQ9D%cdrcTCV6OQO&5l$CuAdlO=1(WJXKyN(i{-?YM#H&i zj64~~mY$dVC6WPLor{|^zjC%8)@2JrYiv?7Z?fa{$&0`mBX)V8Jl_<8=T<$Y5KeA& zs}Z}#3%fHm^G?T0?MV?)J5E109;X{ky~#OUMmQi&X+oySDCtyH_ziK#6(Cy`(tzH2_ARCmezzNR2)s{WO~(L&TfzDi z0|;&f8$lXCa4SwU?V_DoffcRY?mc6NeO?WAduOe@pz7~Oqw4xWbO%11M624cBcEQq z*!Trs%@sXl_YNAupjhbS_hPJ`64Ih*r&{oUKLeHSV&cmkViO2p0u z2waY+ORVoX2_>;^#pE8S8*i8{fts4n3_bR%#o!mVJzE0h)A z3}Xc>MyzUW$24~n-2GJ>NtCSWaH4TK%R6SUfZGVB`Rc1_4@J+1d2R-_Y3XTFdb&}% z5D*oe)VZc=3S}3d-J}j>CBP9Vsk6K6 z+1;=T0(+e*$wBPRc#|}P*c;KvQV`omAp-N0$UC$JFaum7=W{CA^X+v1C>+wu_+{_~ zunE`rBpG}T?HOGe97$iaXd(ke{bWttfVWRm6W5`U+pdY8LAdH7P1kHKdc46G7JeIE z55GctMOP1N#?gbnZn75c$J?ffur}a@+N=lzFTKmmg*O^LCS5 z@f+cF@inx6baip8mM&Dal=blyyp@{zxEYPyc6}^hyXVtIxW1sAF58t_zUsg8;qmaw zcns|sU1f|ns#Mia*2E)t`!qH25E?l^69%)4e4>&~U>QL0N!!<$4vCxP*Nw!|{56=uuy*sAE>Q=)NiZY|&l&Z~Eky@{T3<;J`vyfZhMLh$yooRI9NnPht{IS-JkDIWRQZR#nm++kCQ*qzJYO;w92C^*FmcG^3C0qEVPUgM5`rzu42j_-7K4AQeN z;wJtt#pd7F#mM@t4i@W@DrVz2ad_KGx09O-$+O5j&1nh1~Y=O%cg+BAX z*j&GWJP`mpLP7FSI@!seBFlSnY`@#of1HB5OdVm1#wsjO?)1 zE*;Nq+`*LCNzW^LLuuDPBI&(!j!6sIgd!E21*U{d#imn;7N%lzwwGbzuRNM)xL6FC zYohUPZaLrx?yL7eGDb^ocD>b0!+Z2lQwZK#4yF*1=VJ?@r-FHhEIFkNcf6~3GU9o{&AO{$4z?*Bk+?q8II=}l68YFrwwH1#2;;R;iT*lC!zqYB5vtvuZ39?%4C zjg5o(N!U5;6yB^I++ylIPQXp35U~@`(+4w57EG`Qxc|4Yxqoi5;1u1=`M)yt9C!Zx zrVz0^e?A;#+G7{scJxe;|M&Z6TpjQNa+0Z0dNT_CW9mOn!E>e%ehLhR9em`%vReZP zZpBp7iZ~;e|8DJEa>uE~p&^(669&V_MkA^EQsqY1yi=l(ZYxGBM}rk1M=M8Ch}Mi& zns09Hfr-YnQ}Z;rt;e^IE8h z-3K^=KkF;$@7Mbqt|PIK&XAb@4@<{|)c)KbS)B*7Z9I5oMgG)J)&H zXOu0y3yIUrCnFKQf`J(%00*s?O@m@XW=c~`A!2v+?5)D>(SpBwWAk@cQoI&g*7xD2 z9^(;ZwJAjGPVZWm*jX&4HWv355@-2ek~%#$uXiWm)odtt0Lo3#7p$bP(r4;3?)Fnm zA!2v?fjg>2a%*a0HB37t$~J^qxGA&pe@pEu8 z!>pnFkd7IwA*;;fwWcz+MxtoU)W4jf_nJazQ)GPk&kC`-fcg8rY_&QH&*i|EEL@W7 zW#_B0v6JxiA25#(52IH{;pGm;4vCj9n>v;A@+At_Hr7l$isIPVn@m`BNZ5??hEhhyGG@5jv+L2h06e$At~}+3pGS)1kaj!l{bQ? zO(9|@rh6M~LC?ZlD2X%Z`|e^eN<0T|1|ceKh|TR?$ubE>u!!OmD>?nurXJ&JKfx5j?{tGnEItp$IvxWEZbeKZ z^{#d0vNcMcVpWXS%dv3}BN2=|IVO{Vx8T0#Vsqb=BpFxBbAQi-_uEsZ5L~YRV6KmP_%LgG zEuV+^47e(>BHqfr{9kcpsGZ>Gd>*DPSfP?omq5uOv(rVU5PpXnWH~%hV$H<>f?E+& zqBMP@RT=ItTIB(uaczr@^BKtjw?v8XlTF#;k?AB;2*0Zh*y4nLaE|Gy9=0CEK$AP!JlALb}q;{nV}4e;JySyO;iA?ys%g z*f=w9joM|1L+}Qb(4jpJ=6E-!jPDAi{^}I-kkH(7fGDs6=kZCm!EKl0 z$aH+!nsH<*8rg9SZ?XGRh`UHzum{)jB(9G|dqvrJ6EPv zGk!GQ0!_w`L?gGIak?3hK8G93dNw@kgJ{p_vVH(%9To=IqrRS6$joQ(R%kN63ymDW zyg>&~dS@0#S$AOo!6VK?w8!C(ppGAkor*X)!pW`85oVWRBS&$BB?-RgD6T`xR;juA zdR3ah%2nkF>|c7>7n&)6T|%#<$Q3?qsvn*!e1bv*jzn6RD|88U_jMsZM6)7wA>Y$? z)|D@rwBIE1U#`g*H1}ly6c~b|<0Nko>LG`dJM`^n6t5XhzKuqf!pS!%MC($A`K;p= zT;`+x889hi_V5(iG0HZrV4Mv-6_t>A{|DX(P2QhCBe$LR19;cljQfM03C;Z~fQVw0 zAh-6Vz8pfRh|K>Aydj$WFGV8<@NbX<@HB$;BnA*XjrgdkkexK*hpnCPoJl4Y?E#qW zEQp&w2hg%r#+&+asvM%}EGM&w8YFa0isZpERSi!b&ZQ86$wTY9ky*UnzTV>!G!;_f za3R`JN;Y#9z!6As<{7x{a?rQ{U$$n@crzMV3L0-Th2TMhDJWFXczqZv;I*O8Oocoz zXs#?!!p5s4-HdJs8s#B+L6|T}c_&l`m+UCDR)4i|B*oR|1Z}O1+x~50CM3 z;MjyOTr+U2MId{1)9<1Q)px8c@Eqr#uYZduBe2Zs7%Kjp&44HqLHQ0vcD+=4=qenp+d_;rphK(KxnzM zwV|aGj`WPc^RScPUDy%v2umOMGm40^O_ig-8I~+;OSj1V$EsY#`|rJujm$(ryo!9~ z6jK@S(6WU>1csItF4)fYR^1m=&O`Gf1(gEYSL&d04&Vs9)aTGqkJoxRn(W4xt{F{+ z(a2IXu_;90++^hQWAoSor`KaXzCQvM;o76b_tj{>=<>ag@-5dvX8i+r8#GzJ5{=w; z))((J{;Q;53|j94jZbJYO9|VI(2Z26FMhF($E10LIrSP zNvX2>rts+iF-_=t6v@EtrvB#1z&9zxL`Vjv5;lC@#A9eaoR+~4hCPDzk&@EfJ%A(d zQJ>CI0Ya2hDo+F+!k4NUEFMH7OTpqd6ry#Bz$~XLmHA!pZ)|&$_?-(7xP(}jUv}`1 z+b*-*jW1i1n>l*H!V3pfHL^;tB2H0Y87$4Bu6YX*)FqmiY+ z@j(jFx@3S|#n`K6`R8B^F8`KT{wdlex-7E;eJmdcfg$ifxrMW*uQt5p z845E7&q57w(Mc(^ z`es#L;N4%SN)5dK-pgzgx*T$_^^J_+p* zU5437I*;*k$FLD!xF*l*(8z7)c@FPNRb1~4&vg~;6kV>_k!xQCWWLYC8=%Q|0gW8M zw?Qw?69LvC7(nnu;P0m0l9LF$(AqhI9_Pd)+-z;{V~3uEtl(y}YL$|!<4;bqBX`s; zdfsW=eFQg}N{A-}pQjLk2|?@n3`PsN)!W`jYwt@9eu<_<>NxI2yGzMz?he2aQvG^A7kY4zh4>sabWk)kSeDqL=2@pPJy4Ci@jpNWnNO9vBw4an*<_-ZI zF>cJJQ;n|aa{BQKe9@W#b!l_Rq_`Jku7NueYz#S)ID$e1 zW&^G3EM~gZ_N4=_MH3-)6lbCRq~tQU32?-8fQ=+v)8&!G4t&v?0b@HFSqd22Od)u{ zVEPFaFj8TxfPisgYXinScqo|7Jdo?FRS)%j04fwk=umEaYB~u4rqMYFxCpLcn4nk1 zh~i39@ADDG6%=9u#1KM_ul~MZax0n|DVW@Xc9=StTnjh?Id!&ALau`xRc^xDpcz%Z zh(?y8%Kw-`@TkHR6)LJ+9>xlYDp$02d8DIIESztbi^BZGvrva90*UfH9e0zYYMX@n zkG&1M1gR?G$kV3&=5gdn3K1AbS~)Y})Y=z4mhFe-Ly8`Y0Roq@siVhqz!4~MW+obR zIR#(EcS_(3)(jc*(8yBAm_s32muxyS6Ka-E24iroPGb2av`chZ_RdTMa=j5>ye8M{ z(8z7)+A}ku=6i2=zN=`r=<@BKnF!?kJiG~-oEOl@0h}B3=R74~or3`cpPBf(X%|JT zfRv!SwF8aG)ofl|uecelRHe)!xNm`)CiFjwl;B2F;qa8;^Auttqy$q*m3{fZFVTER zJ;l9fA1Nu#-2pfPAI^OXlqjcEo(%i~U#e!X_!$~m3Kl=65UooFock6O{7!vI=uBXL zfQTaBllk@Dx1eTu625FrmY;v|vFy2TLBaHq;h8=H@9k;XLe(x8;I-0s)Zx0l!CE;x zrfA9j`xew}r|{)#vV9mDIiO7&^xixHU|oR$1Wy1yYbskO0qAY*oWSJ4d{%s3qKuZQ zvbTsJ0idP{9gZRaD4Gg~Cjfa0F(DEFQe|HPa3z`#DFL_w?IR_nxeEYC;KNA(C{a=Z za5=tI&0tYSBTK>JQVP-X1VF*>x51K-Qvu&V`$LysZvvoZ`D^&HHCg@&8oBK(dlCQz z(@%tF`f;>RbeZ-i0BW`$!TIjI{|RS#34bqM>naAydZfB-Wbi;vjvST#hy*35IpuU zjfILm2ZgZ$W*_fs?d;<`c-qbva_oJ=>g0Q%Lb&8eDZsjNb+YL;2QbYWXuvK(z>1N` zyG)(W!^~wAVgiJjxl;9g!R1CYF;Z~(JlbDMZgU?69D$oUThNfIAcvIC;!V&DDc7Ts zrI2#1DFhEGOi!Ug$|Yf}fROU%*4_m%lb+No6i2c!<8{&41!Hd-%U!(;9{&9Y)FX;W zqI|i#Y!wEIBdSdf>|c7lRtZ{F#E~aVJL#LoBA$$ebUKH$jv0W6{WM=X@c*Vj-CKVtC&3XxHfSzSwu4q^BA(_gTCdn%obf zkps9l=;?W~z&Z^B2tN1mm}%GL%zZr6+5?+Y_72-+ar?vP&~jC3t*%TH+#QdqOu_xf zUS^fhA1Ts=8%#yR(}e3N#6(CFI%u7JUB+E#E~GBwCuk=r>CD{*I07Ngl~If;r`W69 zjgUXY7poa6zK2GZLd6{vqIIc(b7ho@;s1asA(MjV&<@dM*n4GE0MF0h3)kfNDKv81 zdG=fxrQ-VVDWSPu4G>YJ`*LgcUl|p^_d$3AH2GeIMh@WHp#SD60P7G8Ab1M!X;a}k zDZu1uFj${+@}x|1PxiomRk?EG|QPNXcJr z6mSGK>eJ|8fw1Hh%KQ6E@P%r|g$vQhQe3#e6oSVErkPN2!3tvq%p)Gz+GSB^olUtc z>RY4u5!4Kq#3&V4KN%e{0+!D-)+)Yl$_9@kcT$K65J#2-y1^G+o0iVWOqN#vSppgR+D5Gx>y=x*(z#^j1^4+yElpP&M` zaHUjR{aDoig$Ycxpuzs7mzpDVONxZyQBxoDgyCTd5tuNvt_PV)YV7MVIyi z<|KxnLpwy5Veg&^7A_>7pTQTd$@5cas{W3rc3HwE5Jm)Tx`FJF`GxoG6JvptV5 zhXyddH9X^+(SFfw+3ccwxehYx8}K%0vi@o`ascZF-8;_^SQlXc!3QX}n+7XqfYR04 z0ZIp1dW8FIgn`IA&}vmmt*%_%7wdw`%_t z_kon4WKOgMGqN4^HoZc>t&+W|NNB~CKX zpvx(kCj%C~V9j80E*e=17O$reEl&p2ERTUPA(MgkqFtiPvNstBl)(jqt(a2KpSV$pSmmD}t2Murec-{`ygv<`M zp?#uk!a12|@6tiTewpo)@#Sl>eG(eE?QDCN4jLZwG5)6TjGvG8i!S5-rGrKtWY+iM zZO~-Bibf7#-Jo~p2?FaP3?O)d@U&@1d8mFLeA4&4!c|{2J{gC84<=0*=5) zeJ0&c;E?5%dzHI*@JoETn&IMJG_n*fenBBxmlDiotMN*XXUz(o5KIS%C=x%J<2jUL zuk~`rFcn|ACe!<)k=xF64_}2>vVClLwvR@8MYl!Ir)>LcATxd>-U3a=k3b^_FmBL~ z^HhL!3kDE86}ZtfNI9v%Yg_v|#Y|^YGdZ~^FXnIbPT120v826^Q znyG4dCQzmjftf(-x{6u6-o9kuYBUv2+u$<*?y z8dso^rJ!-SDFhE1OhKW7Mlp;PusQi7t=*hFleAxZU{czDujB(z58NDwQf3B0gIPok z67;DUKHO*OY#uc3rVtY$Xz+Ubg2wY`Dx{$CEZR{@Hgk^wjzCJC1r2Vy95kNBm#rBz zoF`>7xtihP zEHttdE_P6e)@72ONe7AJI@p5ip(TzlMSDb-WB;Usis_5-rE4<%b~JL^nf6UONNj&4 zJli*;y`syuYSKZ)_>FiAG#URq8aaS*gMOT+0<2pwfZ&r3N19fISOKX(v9+l{XW1@Q zvw1jK4Z{fWX8LEKCb;;dlw17-)wIKiUA0sz5aj#4j!n!Yq3=;-15cScoM!|7pb&xC zKnuGIZ_Rxv!IIfnI;8Gm5kTM)Cnck~4!{v;sk83FYrUKp%*U6m89aK>$Wrj=GKJv5 zgQ+M~@OZ*h%TDlkw6(#bqjFx&w$B$|w0a$QGK#RVMHx1%Lbg=PTh(l_pbQ_LfA4Kr zCrDKhLC!Yio=1?K6e2K!v~WBz-Kn)Ndb|nEiWEK0N4rTKJ+go!P}11;?1;%J_$qfq zu@_&kX5grzk)^rdf}*W~)+XymqY z?cMgw9Oi4)_l4*CZnRr;`Ifdl2XTHE-ULm~e}YC1;N0!iubez-ze(i3+$RsFFGPKs zeYuu>`3(DV1O4J)@eG0W5-yfL1Rq|UZdxNJL-^R#mOgj2$hrKL%rC>`P4GV~Ph~T{ z{m=`#uwhH7!MgHVM^dyZRUqH*Wmk%lKZ0?tZ9?y)NEqgVy|_HukpfQ`x+z3p!qB?@ zWTDapzBqF%njojbeA)A8w9k|r=MDlKfuA~iR99IIc@T0W-VDuHa|9Y$iZv-y2p(dX zu0n;F&M;QM48~)v-8M0=VnbLF0*vp$tbI@+Tvnu%UVXi4MA9_8fN9h+C%9-llvOiz zJ`XKr3NZmf%Ur4YzOZsNniwgpd;sk)CAYat07ncfEPauxAcvGI@g``7lq=B4Qb@Vn z6oQ8orl(LLr5MHv2q}-ZHl!?2Wi7s-@&HsRilDL)9aN;AP9v<`XG#DMD|b_f2@qE1 zD;(epEYG9Kkpj!JXpgA_%VU5e29`y1ho_J&LbjT<@>#g!Ogt2Ne76`-URX`Xm-`(`zwFPxOkrO-=oh8n>W9#P z0+%CK?ZH}}j(i$_>CJiz7gX68<TaeNLu0 zQnE5txSFzT4VA6Zu!DFsMGTB2!IPyXuP!%#6L=bIvk|8D+FL z4deN2HJ$eL4RtWp+i~maIahFNdnv80mHRNX5AtUC_z=3hzEp!(w_=U{f)ji(-Y`vq z-;PFhn#A;c7A9AqS&TT1;;j^^brT#*TtQ^YHU!1=9;=+S`tx?hCycLxVIhU_Wwe)c zg>jUQF#Hvi1@a}lftmvO0vg!~PoIZhWZ{V^gJ%QdH!DYDGy7}#JPfso)Et$ufP}}& zadXb3H3}4J^qo=H=4`oAJ=Geu%R92r1q+8jo&;+`s`Kw?igeX^SQB;nD<$)BRh(HI#Pu*7XyPw3FI z7$D-wy_;n^VwI%evk-5TrVQs%VoTdAp$ z-DuIXY|?da=ac*hprq~G?62%iPQ&Oi?>Bnbf2Qg zfqhWx!c7;cc~H-DUwAt2#=B6n=V_K(2$hn9$z6D(GyGS>kI7U|) z{z}RUvG7J}D&$-=a)3e%IuqU>v4CU%(Z=LN{4EldjEN$d$>se5l?Qrs)+&{m63wV^JsRPzYNGXYd%Yn1A|Hn)7l=V z_HGOG#g$ZeRu7Af)x*bU)vcEtSq{P5r5RZcL?cU)WhI4ZUGK8Ep#y)4=hMUMz^;&a z?Ad7V=q3)$_D2QPPu9gwynULwI30}~pbLZUg7-Kq_!vO6GlhMfT`r0fwC@YA#P^{2 z&{bly6qZ#*>TTYIH%3!-mr>-v-llayrkhsX4avUHa$9&pzl!%^1SzaoD>4rs1!>!*;$zPRQt;u1&0EhHim5N;^*P?-Mj@SOBJyteP&cdVz%hrg!w^-f{zkZDFuMgG=8B!#* ziAbToM)y~T^2L5D4~4DO{f*(#Qn5O0SF)9~D}q<*{_;pIU(J@vMYwsULJiga%~G~x z=d%UdDHKt~O0`_eR55f=m6Owwa0{kgP7mg-A^3G|Q^~JG z=!?hta%-HgM>tru|vS2$mfcD}xnezohdT!*Kk4bx6@X>bPI>5M?KD*AeIZOY1fh3k zYY!36t`)LynbssY%9gMFf9kF~K$4<*@4@Aqxq~~nBOYmqO3vJIq$4AFoZFq-ow?na zWoGsQNur{T0XQ&V1Oy}~DuNM3F(*VYAfRAE6vc$`2fym7nyIePv+t{#>zU&Z7TDwK z_ulvQ_g+_bR~t_b^s<6tmq>0079LVR!?XNF;yu`I7_P09*njR8A=M)q$)2;mv@3hQ zfI}qObBe1N)3n@;x$;dgAF>gt*G;d6i{+%WP+>S4F*UIzpBBD7Kwg0#o;W~W1|wSo z=U!ap8gVh@oO-*!Ex2Lkj3IP z4XUwVOAe7Z7NplHrkq&n9UjQJN`4eva;rle4p+*_T44`{qt67!)*_O+Zao_rkGkGI z1doSk76-z}mRaoQ3!%(H$STMzwg`!WU1XHfHH&Gdi_6JH^^-Sl8dtJhuo=fGKmTi6 zO|uRsd4q4Um6Ke;ArhS=#S4si{p^uWzDUD{kX*4h!`27-OTEVI@e!C4%T;cHtLCJ& za2>SH{9cw>w>XLir#bF41(}2P0di^BxY7UcZ@ZRxPTkA(6*eOxS5_ zN#qA`WvCK4JVYW-$hTnRwhLsM6o}J2UJX~q|KO5PmBHVC0?k8YX-neY zc$7p*ybL3^T@q8IBpg<;+ZMrAu``3frg^F$_)FTLAlweIBOW7B4%@-VZI{EG;_zT* zs8nG)RF>G@9GPsn&)g*K>~L9}2^WSci^Gr(;>gu@i_`E}iSjrZMsB-27C1^KZ#Efo z#v8*`aur-3s!Emxs-%7=Q1YR!fiK5HCW_@!7`ZdW;v79b6)u+h;QFK{mZUl4UOZ%? zSnh(6+b))|m0Zreoc(3EES`odL6rr6n~gevM9JB$uZNM_&ha$$aDvVAH^X`U8e9@8&*DicEqt5nui%F#a{VP3Ie}}Bc}d;z8aWweRES$iR zZWM>`Xz)HGRr8OwOc&20B$R#^xb*T=P|bcPxLi*53Ue8bMorCl7hO>(pRb7JB%@N( z!1j1lME6+Ckv+KexKwIR?RF-$-K)x_!RSf&b(ul_JdH8hoz6lJZ2qUlI<0LBOBQSE? zm9m4|Q--p=(X&_1?(_3-sr(c!6jdq*gQlV-YHQ^QJW!%m9)pqFu9bxTQ!SNy`rT3) zzh!X$8N(p3DV{17wEx8Ow3V_M9w$*LuWouu+17HEYAF+UWn-XyO}I|>#_LZUXpN1i zn+>!^mbOavz@sFpWH%T&!B0F^GSp&-xTx}gP>Ug3bGfHCRZnB2MUUw^dtEVHn5$u8 zs0LdQ%J9XRBaU?#Uopaq(rVatHl7U8>T`$1+sNsOrH)TTZVIrFN882p|?%TaHgJ6>N~lV zuT)A!YvQ?yl_anU-T+sXI`J6qcT2l5va!tOop?M%3BHXZcYxW<*K5!?9}TPdayYqP z#EVI^n%$gMlaQEgG@ru*BeMJ;jBFXr{k{;&XoS{UU^E^ODhhG^<^iFu$!`mp^4MMi z{pntlZ_aj#)2<08EkGU8X>YaQr(;=M+6AHGihVqb6`TB|bk!C67!Hx>aVc&kForQ< z7+N>Xh0IS~pYIBn$Vq2mONOJ-QGYs?(PXuxCHO&!X0-#1Y?;-z93t@osO1mN)Sr&E z*gcm85;%*T1($=$uJ&}Si{mr!LlZeZ6-I75$ML6QEuOCp=lL4ABvhWQr(<1QUx^={ z$n_gw$v8ZGFtZgC^=@DvaEA zeJs}eHPc&NKa|Vli>pfR9VU(r*US-ck*JzEuLYWsyYAVAuyu4Oo(NG#2f@f~*U@aD zqkOS9&o=wdWY^_QySXr2Iz_lHROy`50_ntax7D&5kDaKNei*s!YS~&>%g}H&lN~6r zZzwo)^MP>P+zeNUs++T0s2jZswu0V`XF*iZjWBZC6*N^SNPLOG7=^zRu9$Da6`?BT z*cK>8et$xepq`8Q8Xh%KAzy)!+pdrqTp_F#vCF6Ix}4dL{uM5gf51hdisXcFk*LIN zC;2NLI8i5mhLPK@6EV3|GOJ2uwh3Q}eRQbL@RJ?34!%&@mO*Ts3#ArJE?VxkTDHMs zC#q!ujNEp$%xtX0h*cQVR!$Aq%1LllsJ3!qkgb@R+e$eBkDREKV`1dBD`hTw8ooEv zo2_OueYv9ha{3M7YPkfi3{@?s1gXW9y{(w_c=SZYtbvi+u9)rQXP8;(df2<`MZVT6 zrx?C4W17u9;qv(?Tqde~E(nuPImb$nNiK!0rQ7jTh+4W8MsB;7=146S*#_;oUbdpg zt}czS=4avR`7vA=s(Matg?i%2+j{vC9z0PmkHW}p*UL@QT_aof<*J!g`EsS2sgwrR)o8bvEc-;e`Aqij z!X@)-xI$FPgxzawRs~x@&*E7S74!^@+;#=cGi&G6&g@0OS4cA$#KyToIxWa<-1*z8 znTp3xRLvw9x$UaiCaPK`$JaqeG@c{E#d9cJBC7F(J-ykq47P?2!qXsXXnz>F?HZbI z70+os#c=hkhKoa0&*{O|qn$*e0Jd)W@dSvv$-&5N*Ui)c_L+)IX;r3@zsP)0{N`}6 zyc@0vRV-mo$HcR?6>=jUHBlkg!^mw{$hfFh=KZ8^hD+mXa4D$LX!Drq3 z3LY*|6JLUn+pdXi28XM|*@1!euGdXWt^6ZgD}RMcMAb^z#L~13wub(Ur$N-vA7SLS zYiR6H+4@5Iwu^(WjJ9DA8|TXCh@kN#%GOrI0z6uxBId)$35xJ|A5y(iDPEEDfKabg zKIHo^0uP)hpT}V2w##RMLq1$I#q3~Clg#*SgC#SD zL9}9SwN2)5zs}OFQnh5V86GTACa-RKGTGK86Sj##lE1trTr7Lz^(S_uWxirD61F6> z2Ocs}GP}XZZFiQf9g-2>q0d;}vNBvQ8Ms2!cGPsKtw}qICu>RNJUm>YRL+Kx6QtsC zMXN4~#T@Mcp)QKo`P!t4LR_~6MR8V06l}Mn+3D_fG8mUKJ2*rqT>p(RMHhmqSZiSgn*G9LKcWxHTe?8G2ialO`Zrw|F-ve+IEm?(?I zFmi${Jcbc9&xr2i0imX<+kEvcZ#8U4chlzS%Z7_R)qJVAsLI~mW4jS(YZ7@_<4)JA z?N6O(R>^4i?tM`-S_5?4d|2hH8#R*jaEMMANoHlseU%LRm>GMFubRylb7jMGYA_$x zbn<4nU`|R4>lltkPVLZU(}_te+h);7)pnaV;-M1V<|-K3a+}LJM0#_{%zD9A$s1IL zG(OAX37kX^vBfbM$wZr1j}eleXvv|@a~R83$V!_L)KM;{(5Q60T7a@*B0Vbwsk${v9-B=O#GNxTa# z22~RLqn}AzzFR|tOwiWB21kH5Zq_xbEBfpF4TVuV^BYAfSUc%(#S`~gO8yE3*i>y=rxHd@=V++*<$!B-+%Gl-3ICDQa+ zmZZkgxDIcmY-?pJJY=F)=E2Bq*UCIgD=wj|2p7unaBZkwaujsQ>dx0z$#OhiqDq#+ z$Zc22OujRKT>i|IbLJL<7l-R(9b6TvKCoV6W@;;A7>|^wj53Vec4aJz>cs@XCscWE zv3)3uLm9rIsWFq>8LpF$z%`=kBFd&RuU4nb#f*iFi|I`!N_gb$-Jn=#8wmJ(@{p#d2_f--U!!*DiiFw*qyJflB@7| zi7L4qMsB-G=IT`w@5LAzc_3UPpMonx)kxD_F)S-_Wos+sK0I2YLhgl;+pdslqGoRU z_*J+xehHU^Dh+IA)zY*z@iZPLQ4>$X$Zglec3QF6KD9lo*|rz#(bGZp@eXz=TrzI} zPv0r{+GYxa*f^7G)19yrETsOdu_JX`I}`EHiP{+lBez{UOLXn@l}p1+I_%k^YJU>} z9TF~}1L0axji%|IwIc{9DSul<`{D5uRkSaR+;$ZS2WnhJI!;4lh$(~%s1Gg^RX`pN z)GT#dJH2@5MD1i@w-V@cY2cnA-YsE5zP$Zgld;#jE&6Y*cdHS#C8NK}n9 z-Q~$W(8wJ%9F5r4%^&cNpZcZo4`bt}SPW?E3)x=8++jb>T7@h6_ZM33h+6Nz%4n%6QO3y_8_&1ig6dE1O@o_r`kFTQ{L@UNuoAG&^aYqt%-x!4lLFE0FO^^5aN7XkTY0CY+ z;oR?qm)*JhsLlNX&V526HviptAVmImg^?4^dyl5C<_6I~JRsEE@G)N@%ei5zbhl_6 z*E2lGzmyRl7%H%2o!zCj%sDVb_e+X7NT8DCs4nw};QKQ2khv!sXdySjoLED{4RD#9v=**pI2t9j$=pWjbXnuVJMjY(ZR2e)vSk}@;SlMK3)4iW zb+i0c7EIvAL|=wWLSZ#ESn%(3mlLL)oFB>!uub*k-p$&2!XCSz zCgoIIZ9nQpheI+Lx%cvj`yB4Z0>rMBq-xYWurr77m&Pn#{z7JCPB zWsQncVJc*%YAN9)xL8g$3x_fseJW`BIHJL6w~?d_Q!P21fQL!+m}5C|BGu_l2HWU0 z=pG*G%~o^uTdT%AcnOO-a8g*0m(+P#X*1vSTd~cVH?p<|j5T=FL?KjQWUJW>`9i2> zBjgy=Y?kpT5{27(i<+q`_ry}K{<)q{vw#A{`boI5RGVtL=S_35@wP` z^cFl;qDVgoBU>UBUCcvaN~B_m$^%06(j9&0$S4Z-J-MsWy;(VyjoiZn`laRXU{O02 zSzF8(BP;CgV{X+jf3&H){x98w;;`E4mg6?$uYF~qmK~qv5Q#l7`2w%?*YvJpPuwlo zLB=tNRt)AZvr1`%)VAWcD-6=QrDUu*W;7lL(H%x{WDgEo-V0NUx{`seoP5!eioWObD0=Otn z_btHui-c_c&&2~G@_!bL+;;w_%JYBa@Tyh0vi?x;+r!C!D_jvO`P(%+`RmzOmVPZB z50U$8VB`+sK0jc-9rO8c?mq)pgv$Nm=G?Pv?6dyUcr--jKM5nZo%y=!uN-Ez%COm0 zADEvHC;vBaQK;naI3oEXA?w_K4iAZ_fM3AKZCAkLhVSPG^tH-4y9c-YnG9m%4DchK z`BnSOpN2<6x|#7VmjH8Y1tjVC1&*UO(e=YqA5z)&2XziGL4V z5GwJDnw{}cGPcv-gaqc#o2?dH*UN43YOQ!^myt zeWvX2Y^rAq;hElik3QeM98Uh<;Hpr`->KP2AJ540{Fm^Uh#GhiMsB+X=1C2dbA9YR zs$4lE7DNpD->y4&(qF_NHqNBKYcnMndD)Jz5RZ$fhAm;_wyR+)Qw>Aea+d8)lq(y8 zI5}JpC&J~ST0=KU5RKGqO&o`ZM%2VHFml^9QJ)Gc*)`_(i!TjV!9{REs48eW6-LR} zysyQBA@W{@k=xGu9O(s7sWNMG`M&I`}Y* z+;$zzs_US?v^K-Gy&UQ{dcjY^Rq!}m7OD!Gt^rpXDcKtMAs!M@1K)>{+pdB7T>$<( zgngkfdXM1oa1?{sIOAb+1w@bNh=gR3)k|Wpz&ugEMEzeFx$O$5Un{cj=7=>^!vyvU zmq7PMlfVwmT0tWt+XHsRBO-dh5*WGd3YabX0N+B;*$6HO*TA`OU8s$q>3TsdCtC$) z;V}_aa0ZOrb`{j00$~-)o1dw8YdHVc!WE(N-}LSP&&Fo{8ax^z^H;*iZD)R(I{(@8 zQpG;)#?WWNssA)w5-RmgpZ??2N9o7{tN#B2ZVaW{}u5>d1@~PPZX*f(L|B-ZQ?hL&%p)u1)vl zl4-}}in(%jK<;>>KP`JctX`+()z(qByy;&*RI2vpD*1}s^rjN+vYYhUvHhpJ`$RVN z|9iwebI$RVoqBoYbsVA-UVNB(WSQMd?#WiFOUvbwzGcqkFqQKBQd{O+3fIc1hQa{D z(cfV?F)|{5mb;C-E!(;XkDO>*Yhh%|wyGQ=z1Jh=WQT?Z)@Lf&Rk`Z=%&KfpwPfBj zyO)I&_=?0`aABxoIWkd48qGE1?k=w4AnJeqQlBx7(hjQlKl_$gH@)Ni! zRJoiKC>Jw#TPu&_u@klOLm0XJTFDKr%=PxN>r~l;jpf&Idj(s|Xa>=Wf!OXtp;|F> zx3w|~kDaKMS2jJZY-dbs8UE~RCSP1ta*Jo*aPjPg6X1Mx(-zO`1C3_HV%Tcx#*-nc zX;&Dz?anhX+8!ahE^l_HY`ADHfU806PE9u}8TtB#UGIpTZEc*3$4u15Suk?jwJ|xW z)5_=z#HKpl9h!(<= zw$=j^wHvpWyf0iT?}4jBmCEY^ zrIJ(wTRS)5IS{pT1B~2u?Mz#jVV~5z3dyT~jbZYZVuJ)ha9=PK1jjrZpkts2Po z=}$O}-v=Gbonnn*)t1O7Ez`VQAR|h-3@nau{nlCiB0}eKk6xk%{YX| zQwpu$Vsp~b>xN>Aa<5bG|f$^G3#Yr#T6am`MH! zFtXKYj^z;PJ&!Uwu96CS%DI~BTd(=Tl`Nt_jl2P_3)L6GG}6e|GKfp?h>03m4!7};{OpK*vpA8Gkqv{P~g#lwmGs=yG@%zcARWg3IPE+eR>a%Kxf6f1$P zqse#*L>*0lkrQ;}(b7~`6gKAp(Z;Sgr!MDXi}|X%BOV_v-sLbqRPi=lvToWD^@Oc% zxD*eWDApr6awlBlEpn2d)Cq^fbx_8OO6-J9pZ=ulppm=nUL`zsq96ufWXrws93s6g zxSd-$G5a?<;4Lh`z_I#+aG9tk()6taKs>SZZT-9t51*)?_rS;r`tfL8s{09B^MGh$ z_uHZ_WA?^mf2r5q|9&1W-Jik?QKj4T5uv8iHB+`a;1hVzM8Q7BkvpLSZkr&0MjtS2 zY|LwdZEQ0Jv2h0ZQ@jUxLko@UZ5MlWqlw~wFtX)h{}#GR?ZxpOlGGDx1cre24j0fK z8%;o`w@g5>0@xbb4Nrh*EIY%<2^#WfW2zGhd-H&3V<()^d{uOHxNQ4jZm2!*NL;qo z60p_%a(K8zk*?&(ozVRjSfn?c->|J4!}-4+FDUWaujzC2?itABzmd1?R`0;$CJLbj zBU^6uW)6|wb>B9&Vq#Wrh~_ISxWH?^FTo|En#PK7)98++ZtLa?c<4mkd=^Gd(2Yln zQe95imDZEedSHqJF((`Wddy{=j2wrg#JM@|&O0vOqHt@#`xy>7SIRlAt!8^Sr2 zg%{ZGPJ)X>HII{9VIIvp-U)c{MC}|4BPVFbqg|T;hB=l+v;If++vP2Zh&cDbai?GE>GJZho{ z?tzglm-;A&NUy^!H0ze!-JWBi1$MVzzy+e3Mbo!SNP>waZfoW#JaD3Beg-2aXvU*0 zsm>SlBBFo~j^$&nMgS$g)gMI-(A zp34tV9Rd8AfiqGG_7S(!@P7;o>+CE(^8C;7|Hk z>Du}@8xNPLk27K9w(DbR6KT}KrSWFCB2;M{0{cchQ(F~p#3LoD;wl(9K@}bs$Ljie zGydMB2ZUPkd)0SmoG6Onm4(siZYVQmuu>{lwZ}ca11s7oN4bMcy%A*xqD^G>h>pg# z(vSYRTm7m#`d9g@ZV{2TSBYZ>nQ!_EM(rT;H4c%uqPHZyCB1PxXX66+PcRSilu(<; z`~fbKlgh%A3`ZlRHZgJ*NtHaT+6v}*{IEou_zjF~*~D`kB0X-W98oT3WvL8?w>lvB zqGTR}XvIZ|&G2;2a4dMc9n8TGPULwejNEpfXB@?L(qLa^&6UMzVQ{@Xoa?1XO|{`c*izwZ@$&Smn0L(v3R+t&G~ za`|FqcreEHzDz% za*1u_8AZFbGukz|^2$;rUtPZ;SJ+>0u%d7`qyCK>Rut}$Kkt=4KPG>ET>iXI{``de z`APZnQ}XBi^5>`d&s^bXc7WqvWq%cxvVU4pSjPW;3_t8}Va1{@_TNt8f4@1>&-St>~z6D3YgKD$%h#EMp%G+fMIIGpRsWCsScE0Jed z9@rg1w-p`0b)+sg#Fa>{>bwfcRl7wzJe-kS>*v0uR<89^4v|>z6fZ+2tHh1zWz>Nv z6H?deTI3bDQcf}pFESjBmD)5uy{Opj!R5dBv5AArzhGo*aQO#^NIb1te*bl*nCVr$ z46eI%u5aw>8r2p3Md*nZ>ANy4%nzxg&xu{0s8np~m*5c)sow!cZaejJ)rhZZX3&4G zPQMT9XTg=BvOeFqP*GXf%%6crL1g|^7&(D?k1nqU1<^M=Ak@{$6Ta>xuU3AZ?w~NX zXLyiJv)YXCURbV9t<{z~XM}3Dny*yzJ!19JTCr5W?v|lxoyl>P^DbZMsCi)nhvH47NE`V?JSbOA>dZH9#nqCqL7N+ZU`U3k4&O2{J!*t6*=qL{1(Hiy4kahwS>CCwWxW_4mM!N_2?b zU}Vc7cJ_r(4k1(%p$R!CvyEfjGVx=N6%JmUo-&^2z6nw+BXq-VernBFAS_# z8umN{bt9+5+!qFfR~mRgT8D8o{M}iQffok5aEMN5_+z7#jgEgB%!1VuPKImbB(iWA z!_oMVR|cFYc~o^}a3X$GqD34BBU=`642MXs<;(Rz2fvrINCJEQrEoo{{KnS<-7H^( zADhVXS{S+QEXURZ9ZcUF&h%YyO{h$p>w#{z@4$~wWcxN4Ie~4Do~_!xXayb+s_pOO zn}}@tx2JoxKkk@;(#ovyHp3rT4wxr7WmemRU-9?n28MFwO0));sj{8cD&5iFGto;9 z@>kt`G6=1^IJ*7seT%Cu?|;i7I-%Qdanu>7p1O3!>6vAxp0wihr7Mok9Cgx)Wyc<) zt84>;I^?M9;Z zLgDN2K#8=U4p8nlOa;f+mdAt!R9-k>t_YYF6{053*tedeHmedQv@TH;O77 zX<6p;9y~Cj3UA`boiKjPs;A#L8;zBRZ-o>5b-a#5+j$K_a3e$8Z@!90NM!oUFtX)0 zU*r&pLr2RS()5NTRuwbF>|jni;a_Ia1fKAJgKI)P;rE5~P*2Y~@n6CNB+B7M7`e0L zP%Yde)0?UD?XUSn99w1Q;Tf)d~m&444JLD@FvE`NK4=0BU;zYPA zRDXCankTVKl`Ia;d_|ZI_FhFRIZB;41w+guBA!aR*!z zsywiUQcus4!)9uR5)eT2)~)(^dvTy=OTlO4+QH7nyH z=vU#Q{3Xl`Rg`;Enwp-TeFgM19v)GWPr}HSB-0kd98s;tPSMecY$#&-;lXq76b7+z z=HC72iqLYjWib(tktmCCFml^vF{_%(mU~NUi%B+dNVq5tgv&y;3DR1Lm7y(({qP8h zlGqnUZo4GrH43JkNQPMy!gbLH*M_Q#rr(gNkG$?QZE^JCVG_lWg^?4);W3t|$wu5a z_JB~6&98j#Udu-Vem^?ZSA`~5nCbQOM^A#}^fv-N3ai>F$%HqC+3`l$>{ts-yCv;- zX5e;T`KV_GZsic2uxLLup1R>R--TI`=ZSh$;9GF5oWvGB!*DcSYGQkdc=Wb~d>ubJ z(L%loBU={oWe$RKB-}2GMRi2b=Z3;V}?de+foz zJL~geuMH$KzvB_X%x}jaT5$@ULOAhN#@MowVgqvxx!L9`AJ2sJi* z$XCX4Y{p!67Atx7}>IiXE;Q9#xLJ2w%Og{ zNc0S|*qzNFS}`%&?8e_Lc5*xeKQxi!sW5WeIgY(qZ1a3{IL}AGC83_h=9|S%t`Efz zPvrU_7&(D!k6x|Xy=Vd+5bA>9Azx#X7X+V6x7|+@`%QOc@h-(4|vqNK-L{brIDmZ{cBu)hz>FaAd@?7hA@)@cAFWp)88L~BO zQ#Sq)wjG-M!Jbky&#{+O+1J*@chu?_I-q>XdqZufCScLmwe#75{6!pYag#qekX=9W zpDA&f)SBT8mU@Q=*t+ndCdVq4%7ZMsW>qM$54#P@u$%q4N{)T4s~F`N{{mYNqd)or zTd(|?lRsCC00)Lb`Fu~R4J}r z&J>A9pPI|`43sM7t&Rs_BCKilez;yvE(^CZ9Q_KW=@XiYQTZuMm7_iBd;*V=IO%*0 zMz$uMyE#O9S2=Y}RM@DHiC#T1u5f z3#3mp>XpeBdoz{(tfh__M+d88DucjUDODXuG<&Aob__?hwoWGD(Gqns9!74vPPXjn z&-JX%46~2^>MyYw9&%{7N)CdnLsiLPM3p4vYHMVFJXWGcUIQbyT_f8k)s1@!f7#Jc z%j$5o^uu+cs^!=~wWzFZ-Q@77iMm+{Bez{Q^BuZzj3@677t4)saj0TB)L$%7sp_*pUPM`_>}(zU5s!|jgWto*2|Dmt{!%MwVqwJtLape( z)%W5|uIN9N?xv$tj*j}mqWZ#cd=YK0rRbHIQ;M}U)J3%Z^+TmB&YLedGt&Z6ZS;SFlh5SL7~( z3qlph@@9Q&M1jPTw)Jr_9yC!O>tN)z>tlATRMJBYnS3lR>?%>ZmZ=^ zJa(d5J^~}RUoCyPY9>-lcIANFVaia;&%@R7Q@AeasKw6RR?8E3>_oLZ1|zp!Et8{) ziEYRXm5g5&+evjAnW&CeTcr+|viZxg*x}om?sn?4@stQGn|%lT{ZyeQ>>;)D_NTIQj+8j*+P}9&GCt{B_$2$&l3B zm%VsMM9;`_D&?9rg#q;#f{wT{_u7@HX_$= zg^{i4;aXn^)gOf7g8IV+Jc>kZZhX_(TQ{BWv3LR%`E9tcEj1mMkYzgGz(XPm@e#pa z`@j8Rn$F(6jT6%_oqvW?{CB*btu&ojZZ_9{!DAzG{U;dNGMzv8LMYP_irchIXF`3# zIa+&7f6rrr&1QE7(Td9^yZvqLZhvxAJK7fBE_f(J;qAncJ7BVz-QY3FT+Run^mTY0 ziRQ9Xb4nXI+1#Fv$3*1z6d2hul@-1a%2b5HHceC6TQ`*(STzDCn0LYjrA{zSO@$?5 zO)hW4Lm>+9EgZRnOl9w*8z-PKv3xO{($C>_Y=x=BaVTo9#@)8~jQFt$MV+-`}-MC5i07}+wF*}f3URD{AdEmIlG-kV>um+mNMvr+^)%9(IAsg5GH+^oNS zTVLIkSy*;*8XgBxawl`-4zQCMBKM>L<*INpFUN~W98k7*UiBCW*+z0H9uSe$i(q8S zNY?s7C?gTt+O&)$+Nz5g$?4^6u`|W5dZ@h8L0O zD9H^YmXK{EN8texSv?#^wv6NuUkGI+LR*`bk?^Ty?}Vx4N>-D=spSoDS;ME6cskb9 zatR&~QH1L`atBxopITx?X!Lf&W9|v3_oH|v5y8Q(n2T^iQapVrL7CyDa);JAEnRZ+- znUfjB#u-7ArDxV@j4PM#r?Fcos(@U|H5M;a{CV$*)o;C`a&pE5enP1Ol9+B%TCwqWWN)F z?POmDv2iYe+-oUO3YL-Vg$F?tTQ^7U03(^o5>K*_Y&eY<;1wiVho`Yo{8}KNIa=VTr zcYu9Ni!x90k4M6Zd>Ahw(Lc6zUe##n*aq?t9uASw&%?-;fqcdnLK%qA)uv@2?>Umg3@=rVxqU`?8kvqUhX4P3tGLxN73?_7Y z2C;EwO84emR!X*^EXG43GP^a5Y#GW{z7Wb#guXT{Lm7R-X{Vp4naS%}Ap*_he7KfW zGjUHOJO|52&cUM~%I$R=InhW`{I=kkfMHP5D-w)S@dOGjwoJ-w#*=qO%9v4v!AA^w-)Zoz!R6h|m;{l;I zh)sP1z_BOfi@9uB>nJaUOYlXQ5UK>-4@k=_te)}$9tTl!zvIY>JtaL`nIUpdYARc< z2=Z{DdyEIT<74}~ba<2Z5$*vafh`bmy*X*i`9;dLaAsqUM1c22gbti@v@ za$ALwEmOJB7ebkeP}rtvD#lZc53p(kn#!l(g0{p|T(6$rhlfHG-n|^TgG?p%vbJ&A z^UH8bpT_Ih3R8*YWSh#9cuYiYe*z<0rt-KigfbPOuuaocjMqZvpA>8=a~Z_O8I+q& zDy}y}XW^j`g*TlecaW*X-la55<*0B<56A1+3R8*YWShz%cuYiY4}_5|Q`yfKLYazC z*rsJFGfx~IsOFdFvb{%CtI;jLQc+t|xrCJ^aAa8zSC%@mBn-`VM%D$<8ayVV6e}FL z18ioY&1}+@(e2?R--;KM=r?;h*KV66XB*Fl@ZgASzaK`njOV?+5XyLj=2~Dp9uO)D z@l7fZ2(^rSXvl{phF2C&PWOY&|_Kh<3S=zVrz5B905 zJ))zr=ggyj?pD9*=3lWAzha-^6)|aFy6S(xvcNz2>P~%y><=6w(d$yYKRH2WZ46Sg zPe!?rWl|p>o53JjF&lR=9F3CNWNvJAx-5RC;s++0)+89&GOh6(BE6dh(~gKfsa@B$ z!SWF-80?I*SUwakiSwi_*euWFENkK04eB8L@IuuEqh;96TV@IPko0i;ALP8nP?P{zv{NX$i6{q zL5`{5E?@1aso)L{kvJ6;#;@$^x^c6vQC-nr@bx->{^%#=kmPEtxy9o+Lj}UfGc1f%(^))q&Tg zmT_N>xpH&N%vINC(eK%>$@!^3TAx^ z#YK>sFOb+oE#sHADYPVAuw{= zIgU1Klvh4B&y{eVhv1S>c@|f>TKM+)Jcu8j$aMimPT<<3XREd^nt%s{y5f1!w-w1N zo^8^-;u$?uF7;~HIG==7>XcaRsKCC@1JgQ<<6`IIzOqq`{~iv}35|bjl(NzJpMcr0 zdc$LIjhuuQ9%eWiAGHa*H*lilQB~{z0e)1XReTplwyfe?93s8eKUuVX2fv%08r=I| zh3i4(cUr9XyIKAperzJk|Avv<&hm8CJsnK%5zh2(45Ae?ynQCm;!NxD+wFg6{P;w+ zcZ87>*!Jk%s{M;r-~pl9|3`ggE8G9-F{xhlkIm(amEl2c04Tyjb^1wdY2W}LL(^K0 zV+2_3D;+fg^mB+#7y-tMq>UlqI+zi8cBq@6Z-=YoB(-oU!_gS2P2$!e$&$xaW58SS z;}R|7S{T`~jB7YVdSk#;F$Op}eu%{qxCrohxFS@JXT%19B&I)uADzhbr(xu_Gd)wa zQYYJg2xt3wxGGe(=NQ94663$YBOo&V9E_a6xJNHnO?=6d{A{;E5Q zN3%3Xt9ih;#;VnPibHfls~N*GHag5xFb7tL`59ayCyj+~G8~N#dBZuPNgh;PZvGfQ zDA68%1S4Da@F<5!uVcs?&NjOfPDjr$i`}sd0-Lp{?8a|6J2~DQKQxi!E*QD(9LH`r z+dRKEoacSul2CazZ#X---V;AOk?Y-I-N(x( z9nn+GuVD{;mx}r;HG7?bnvzp#wH^7Ya((k~etlp6m+oxr*ji6N-3mBB{eLvgQ3{ zUkK&>LRvxIznn*rD8km;$e3f69%C5EgDi$X@!by>lWHW}@H^Np|L+!=SXS~0JQkwr zJ|@V5-{flfF5uI7>Wwqcxb%BAoX=Q)1zx}+)Z7e?+yQgRv?%k&X=ixJ z(cx?!ftQfzCB~LxCYz0%Y%4hwkBLa@K`^pqCHwnAC@T@-+O(`>!t!jnx3V^0>DMlE zE@jmSoK7x+3rh8q?UK8h%EmI4wRk*4^;J1?2bjw2M*5Aj&~TPJ!g;+7uOrb}b|diG zNX)jE595Im3H|_#Y}w1rz7Wb@gv>TEdpRMOUA_L)oN@8&t0}N)4 z%0J0r2E&;x;Dsa(FuNxYFpkV@i|NB7BU0Q8BU=`e^@UItBZRgIT1;tGbuhb5yF$91 zl_PM3xfQNxi!4T_V_D3H@PLT=dp}3+6pIo0Ct1v+;mm#yFJx;h#>mXJm~Z2e5h?x# zjBHuVBfb#IVua8(EsGh$nnPaSLVLnl!R|7aL2R5sy2;%kk%?t2o8z$%RoBIlJHS|` z^VE|(WuI_9_rz;R^pqxdhxDXuJJ}r%ib(7(FtTMQJNZH=I}!5QwCrT`iRNnV04qe` ztdfUoNu5=i+#TYHSZ1;c4~3|?9**1rW-=|xJjqLL3TN{Myo5wAX>xZ+%gMHqcj7S- zX?+`vY+1=$d?A#T2yty%Rx;*fYw7j}tP+7<@?E%?R4-{VnTSj*Gx-)C3sH4n=g1vk zCewN9NpAA*a6VtgYe;mHCXC z={)r$H~CUHpI^XhNOY4XlZl>`Z6}|_gCY|90E}$e$)|iFl${89ZCZ9R`ZV(qm4C59 z1iHyT;964Mq{(E$6S2(XuXrd#&Hb4pcYv8pi!x90l5NikW^)?`v2o_iCX|XW*d_HFqjU?g%Sk znI~DvHQ{VtiIAUkGI-LR_1cm5g&e+x8HvMWCB} z9xf-Uqgww0|J#KxJBo7qaz!)#mO(GZn4k0W=4tr*XH z8IR*1AI|A=yoxQb6(cR%R+i#n5y?FgMz(C_Fkc8|D?(zMmaU9GjnOtVFs$!Sb2TeQ z;J9)HTumDm zvf@V%|KW79+A*##&JE;?xokO;9q7xgEN5LC|LcFEn+2zBOIP0{ur{HbTa_#4iaogv zg_{?$@ARE*NO0u1g^Fu4dP;*s?8V80q7Ryhwr~+Aj60Qi9W%0eic=R^YKf#YqWcqO!Ie}@_)5)D- z(#qk1fm}5cnS<67aIAt7-f6xWjXOV@N()~co$6O<=T=x>tmL{fJ>^oR(v`^-tL4(r zdTnM{$Rfk^>l9z@Sm(^Z4x6huX9fP7ZV{k}uMwWsjOtTEK{cT*c`>tv_p#aG(hW-r zR8bUEx7kAQk+hj)it~ZwNH2kLS#&tek=02KfotZZxv(3<(fFy&7pp8>X?hm6*BppP zLG+saU}Vc{_T>=i%?%4g_jR2D2LFRBGVC0+_%Fcqq4F=@wMov!RzV*g3sD8VFml^f zut;@hf)d^vu7r2NHKHm(?8nzUA6pF@@OX%7xDG~6P=m+J5H);p$s}5h2ZS0sX8R^0 z$Bu{79Xr^^*ZbCF2aK&Gf5wu)Ow6gf+KJ9V16`bGgs3$$$FT8Z-`cBT<3}8#6BZ*T z*3&i`%>Q6+tOoOMxK2)b3(qqgjgy+VRINvD8_3J}k%!5pznpq0#E{KG7y z!1>?IuP(N=vKiceKb-sTz{R0*zra{E&=Rrv z|0W&?k^is3$O-&=w0<=`hz8;Tp{9rBzKO``;iYk@P7m{XO2su@nZ8^xdK#`PQ!QtU zm7!84r>!SUc|Gc1P65`AcdjR7*XPRa2OIcrx}y;55yk@4`j%r!VIm6}o3y2*)Ic$g zLnICq>Gc>+lU)PDYW9R_k{PR~m{?q^-8Q@2HRg^0b%E(#r7BAvQXKc8@pPGrC@XZSv&+H z=MTWhZRdOob*&OBn!)=Y!+HNbTpB9xTN+m?u{3P%e~X7f}NP*>aL2IYjD{L#$v1+ZVHd0w;%ca9OBq$0vta3O47%cnCz!%P?}=Igd>a zv7#Bg-x<#PN8r*>c{eAASQ<9>x8PwAx&I)HoWQ+D+gFo=Xc`_6YI4}tHxW5Gd^z0} z&hb6{rGZ>!wf?Hs?^qI;Q#s|>uA!_}}F*f|#xAtnm;aLvR31h>=dfJAYOk9a_ zW6ccX7z8$6Iq5CD%!;LPBA=kHM{XO)X#B`T0~rM)TL$uq;C}9LU0pk0u_1cj?|Sy$ zU;hJz8`uxFyTO8_Uo1}g#i5H5pl)J_HTeW}y;=s(`-StoFI*EU&+#Xy>+#!c?}Z+dHtQGQF%Vfl7e-EC-J`>+AwjeV4+u3R zJmcG_Ca`^jfZTt%JzI=_W`tL7c#JPoi3BG<;zGqF%~zU7N67kjk$C>{$@1-HYgF@#7MW<25j{WgL5Ri1daDxfbE%cr}Y9aD3>8D?;Tsz7~}fBoa@0yegApaqmTNZ=oay54ahMPJnma{H4^-g zLv+GOFplSJOa%XdS&=7*nh5?07s*L%;kOJ&BcwKwuVo6V+JVV`@aB+Ql zIM=7ZMWJ#%+qg54a9*##10eE!JdB*cw?`*e!+>ZA9uR66_`a_}$zkA?be~oj!(Y?a zhJhPkp*mI8qG3S9r}ZAkFz`-a`KV#wZ5*N_h5??lF$_EavtqT1Pr*fU5?i>1;b?@& zVL(tN537cO`|!gOP2*k|*)om0I7I5hfQ#W@u~4uf++z5ba6zaH$A^Igo}b1KPUQJX z7`g2{$A$qH*V9)8b3KJYv|{kH&t`KNNZ@-S9srT=aWHZM-yWS@4FjSfctEIO;4Qww zmBYYq(!E_UuCk^#+96&W2Tp>e>hu)%OOg7OKVfa49--EM90S1#z7kRc!Lb~o69$3_ zGHYWbD8tNH4Wk5?$w_YE0*0eeQk%@LDC%^{1FNB606#F%Jn}HIWge?IM0!KPG;xvb zX8D6Gn82~%eQ-&rEQ>AvwD9d!g7@HuCvtrgjNEpvXQ@>JH{ah4=lff5S*U!A7hkOu zY|g)qhd|`~t1xl`=N_G14F{q*ctEJ(V3}_sayU3D-A5Ql_vW*G+GH@P4|OJ|%n}}0 zMBi%Q;b}d{F&2zxA!9?c6ptDU#&C#E7z@TmDH}6EH_VAlP~9`w6|Rw!*20zyN8_V5 zfzJe-D0x&h5G=uuN;HfeU}VcMw&f7%4Fr=#M|JRfE{h~^8aNBC2bJGxoL?2Y-4@Qk zk4guubUTH*VH7sw?`7 zz11u}&n~glG$48c0n3C?)4*oF8Odqj!|6@~6WALJl~TF4RMkd;Z?G&ddvYqSwxT5u z5~vupKIE7S9`UWdnhPH05S=g=Olst93`0}n;ox_0p_~L4e#~$*QflJcB8|{( zH~BSwXrh}u3nN=@@(hPaZ$g+Mx@@Cd2Gd*gqvxT;^lS!!jmlJ}#rm?5fX(*|JOCo! zQ(@$`^F2rP+9b}84(I#`xG+@C#g_pbN!Yv}iU&dD{U8`Qfp?EiuZ9KDC_Et4u<($t zVaZ|P`{_PpFqu7ETF$R??ALr1tXZevTC`uY2$Qy7^X0x;QWL|a9HJ8@hAFYkjZShq z%#hVdZiP$bB)M=s!_j93aaTGPyzM3*!VgY#llQ~OmYcknL!>t~$o-mQ1vA+G5eo>L z-z~Nuh08)^JHG2;ECrkM@8Ka3IsZ0{+;+}myDr9xX7JvX59a;<;L=ceH+Nl(rD1db zA3O{q_y2^E6S((i{c3s;O~V61O%E6OCL*VY%LFacJV$iNkHa#&cwa5OgL7ic4v zw_yM0A0uOu!?_s!?AJ*8q#R=;C;KCD-#*lNeP=7jh+U0e@0$A2Gv zn=%Sc>r0Mt;T&J_sBz(S9HJA(h4CV3!$U5IIk9@jrEry;v=#;!j>d@G3PqA7kE<>* zF2avXG>x?|vSk`o4w2rFAh$wsa(pj~C2&5t3$6&2u6Nlf2?ADzhbZ7_1%nT~CR z;$-{DaJGK}SB1*9xfMzhkgkfoKaJ5NaSe-8T_A5d19Nfnb|T zPj(;|eG0Br?aB<5OTEKA>>u3wv(8_QI+jy_wNqS^!oWz&jv~@1(0ZJ)FtrZlm>K4> z(6NbH>PyWGvp7U2%nVyMD}^yh91L?N6IV|>9RSzPNqb=l!_j!EEf%jxaS0|6E2B~K z#cT0sh#s^LjBI((o*W{*`C@zV3=yD*Jc}@J>R1KWiK>U4VvkQZ%gMe}?ZIOrs^ax9 za@$q0Tf}oWXmk>v*p_0RFc z6S@8=jNEpvV>{2d`JOr$%=aV)(TX9`KC8{0XA(IdkB30yd<=}7z_~{!SHpm44jvF{ z7`WC~ymA=$c)E9KHfI|pX{#A0!a{YrN^QAw5I|QmqUf{^L!7 zzMlmWI0(EKE(euev2Q>lberRM;fE%2ya7gTJIB-13W9wWe>DpU_*%_`B5FrYjkRcldJ&)2 zaU27{SQaxj7)$x60bp|u(Fp^34_2Gma#DgJP$J>PYpE&{01(O zlhnfF3`e6wt^`Ch$%CpP;5q!DM6>t>jBJ_3Qye0_AwaGK*zC?Jq34^$?o0-OO~O=m z<0}D9j;G;=CUQI(Ms7RDv6TRu=Oe>;J`64im1lD$z{&N&_~D6M9{?jKaP85#Rr423 zzym@x|1bC&lWhKT(p?E?>>^jr7FTQc1FnG8>Xce*cah^!YVF4{4P54{B{dCP%pp2q z8mR9g7iDft1-HQrS$*TfaH*Um7v9NmG+N}|4{}#2PMbWqnhrjIADrkWH^a!5o4lJt zq&FStyU01%{vitpo60S=zYmv%%65G3ho+o=2M>YB`8Q$YwsRia`yo~|<1BwAocI62 zrJ?d}?)?x;!@e5$7aj(Y`+va53EX?MelRE3kR~0v1=zO9yKoP$00glTo@arY&gj4VNR^haXwrlC#{7O z7>>q={Co{3N*+}W2=dV7BB`T8lngGca6_QR_dBdEjN=@~e5^ zZyX|V9!RfgOlqWU%mfQAM9GmSi@KvQpFv=Alat@Vc!r~KBEMSG2;IJtn2R5pXd<&< zWXnXR`$8xa5&8)-k(Yc`EKTG;>AssZR(!NtGmvvxAzNV}2RWZe9_iI28IYz-hg+QG z%eHchGdM(|Tco(r?0Av1;T4y`JXl_FFhI#)#ZGPLd^$tF9o{;m0K!#W0L) z8AX{xq}L4O&T&qT?`E-J=bFXwop42{9LIN#OJe#X_|b_>-vT4Io$1)laZa{>8qW3; za8;;mn>)uPG5#1H0g>?^z{m-VdvtI$1cRBUkBHQ%KTQw&L{CaZ1&%d$3bNO ztuS%|`yL~Jnj%E&@PJTL#8lrz1ku5WMfkUJ>K*%SWVg)nU-mZe4j~3gD7z8$3Q`wF`(G*L;=6oR@0+I7AVdS=R z9($rGRy2e6lf!vG5iSjtck_v+SQ<9>$KhcRxjzO*PT=07^Q+-OGz||3H9UOV*SO^H zFlBsKS7O&nG_xgz1;=%D?R>?COE)YjT)(iZtN($*4eZDH8w!h)esL4~eQjd7lxKU@ z59Irb+P#Q(z?yXmu6C%`y$BYRj7e)rj!B{Bs~a^byqQDbHTNj_p^Fko;#^E>q-_|; zCt)(I#_@5uPEI}xA7D5dC-UZHBXrv|?!gaDG>wnK$d+l`?hBzzL+B^SG~O5z1^Zy; zymX&{n7cAx%$C=8WqQh`N~J54D^}S~i|aK5`3p;_6&D}JIt_#!Hdk?d3~PY@rdtFk z;%kJb>DJ*TfAVEPdC4C*M533ZcxzK~q?f?(mDyF4BgTECh!!&mMz$9Ba zm5beI4#Hz0s$hQ@x$P=gq!u<^)iab(3|GQxxJFbZY-cQRy7IBr(2vJMR6`C%PEdo# z%%H{&(P}&()V0dteipwt(=r+dwY=t8G(GrNE(+zTt$DZAPU&N&0U zQCg2sYh{j6<1SwbsZrw&4$%pt#srzQ;VF;8%vjy!dvKYY}L7@STKPz#DCzDP+5-e@0`f>Kk>s8x&Awh+;*;G z`#Zb&-eowL@0}P#E3O&rv)bI>Ig#`2@eqidFNTp5IQQu6YB&(h!2?1K2efMYt!}W5~TUf_%G;V6*=}a>N`*P!rcmza8xe7+M9OZHj zk>12GPb@*0RWo@1EQ=~|ba()+4V8ECRE;|ioBdDWaS++R4@Pb~`wP_4!w3raZMXt{ z1=okF0I>j-oQti3U*fS4Rq!;7oS*`akw8rqqNR91sHx)hzKO`G;-++`iqSm-`5|q+ zVTU!SX*u=g9wY{{#r)9lK(?AM6P=?}s+p)zf5_TXmwefaT- zY`+IaPGH-kd#eFJv;q$ZH2^H|O+*d=)6;!EY6@FRs8qAXDtk#Qt1l@$%QC^7$tkwl ziLNDuc&8tE5|A-Bf80dVPwlq{v|XpH|gm@{CULY568*Zv*Hyq_}(j= z@9vGpcl`CNcn&t}yW%krSziJpx1IIa>sj%t8O&c0&iuJ>ZK!9u`Fd7751ak7@HmL< zp8+E$uwLH8#A9Lv+H}FplSJxX71bR;+p9i*S*g#1`&hI2s}H+f#xnd04fS@HzajMALW> zMz&1jeh!h|QiA;Ul#AgPSt!`VZZZ4BHuG$9HJ9O zf{FFCjj7-gm>a8StcUC5q_@z|a5PS8Q}~n7^~mk3i8c6#9S{rhV1~Xa2*yt>!qeg>i9HJ9OgE1^)!#nne8Ik#^dke3DOXMWA zusy@k=#U?%jA)VvRVxL1;|C?0#U3!SWfr?}i1Y>m`GHEC-5d)fa28kzmxIb~`~#Iv zjx+e7i5#B?Be$L7*as?Yp05w*`5kacs63k=sC05&!w*m7`pqzM0@og$TQz^t1Uw*A z^PlXSh;07Xrn|So46%J*SB9+#6)Qufihk?hhb$Y+nw)y8o#A@uKwk(TEEUMD234q9 zBXZ0I-}fa$%?01#5S=g=%rw(ChJ?SvT**^N4GDjN>*b`o@JoiHaUgJZHm6?t@veddaxmZ!b3Kkhv|=)}&t~(Xgap1v;{g!)9t9&O@a@sb z)i59$f(L{e2CnuMt{eukDZk{%mX`Xp8xF_9I&~UKi@s{j!_zvCV`X8PuXxlba1@8= zgi&B@l(I1i48WXNeIgIn$VqGAEQX`;AzyUlM9HJ7L0}brRH9+@z{r+iyq-g(HwefV z9Uc6>heZ-N2iyeLgUWCGMMpQwH{i!6viwdMx$P{+UUYOY{q=CBzY5oc%Cz~Sqnqt7 zl6hFSie>jEb zo)Y?U>a zDGd%~d#Y^TfpWI5oE_?yh@a<(iL*m`&1J5uF2*47TbMeT{WDxAbGk;9?$>{Orc+P?-GLV^TX-MaxIX$&*T{j&Hl~!gt*HBqq-{4++mB;nJ!`{K zj)%#RIsUD2wk?Ot z7~6zI!5ri6bRA=2wZsM(+cVz6(rATe9Pa5E)lxkwO`#6cc$06zm1$hfArfbj6u(L} zsgbu~8~4I|ShjH&Tqw6~yocdvq{vU)HA1(2;|~1LMBlg#Mz(z8!yF>L!E=UqPq9%h zgXt$(IM|tIG5r&`C{(7!J#ZrdoA1Z*0Em455Jql0-*ePkib^U}Me;B;Ru@?X zSIfz6;S7eOF;f#=#7Mw)lO8+(qMN)PMz*@h`Mwa!O@x+$+~kmuDA?7;t?90pPUq{T zNeiWSvSirgbK|J4QC-nrz&e0adG0;r2@4j{avBe^$y#Y_+2SLbw&Jj17Ax4mO0{MbbA*d9i^d}Ad;WnnXa1s(;F`O9GB1m-=OyqXh4yYPTeOBthl6Ol_9yQKS0=fdG4zx>Fp z>tUb5WM7ctdr0)KCpWA|Hond>!@SEW!P+UFlLL=5(+D)$>!K$|yBPVZFDYu0_%eq` zoFvj~F$_JvU9 zBNP^7K3@!pf?cG1b2M9EfFBcBQoz64aT9x*p*BaFPcg^7ma}reWjaePZ;k037i2p1 z0BLTs1B*HEx@B7qfm7kZMDs7G2#PXV0Suct9;V2$ndNZB+%~fx!_jR<+@}#Xqa|Vc z%ThcDqQ4voBU}D*m@kC#7on*jf7vD^3g$1LPj?YyX1>yu$**D0pZ3)Eb=95$dkaga z6%)-dp5~ITMA5~9)3obY5qXnu{nZ?EHHS!amK0Y+7(06UhOgWUvt#+nU2whJzVaT1 zqj4j5!ZI_kP2~mLkl=143OdU*VgGyk34d-RtF<{Aziqoa@O~T=VMuD^T$| zl~?m^DbbxC869m{oy!6a99Cy>h{TqXp1(xoXxSUiaxhGer`~Eu zg^j2pFio(I@pPSU-PL$H%pnrJB*pQRvBJkwp1NTqAAni0jO1pxR!(9IZ(%qZFY+s~ z@#t+6c{hG^qKVuHBU>hNJ%>oIZOE_0#w%v<{T&t&b{1NEe-o|?mGAghV&gg3tbYxU zfynw-VC1&59{WmcylMvX{|aaRA8>7`%$r|{jpt#r|5rQ?BKv=akrUYW==y4K5Us-l zLS2lMeG`!vBX_1dIE>D-r;oL9VZSR;qjGAkc98eDzyi|Rkz-8QmjxMk$*~uQ=!7w0 zY{Y?K8t1?)Snc9Fwk%==he&TMkh`uq z_IMbhiYeHq(+;z>(_Q&w! z6WP8SMowVcqi3tOFIs^IglhZUzKO`Te`30~wZ=zVLsaq?={u_YjU|DZl2d2?8yeJu z(%Oxq{lDZ}ZM919B8TXN_CK-Cg)sumy$WSRo*QaMgINp$8$!g&thNH1k6JPL%1#kPuckzQ0{o`9OvgIFN z_k~dYAv6@^AGe1@!EQtTHC_K0SE-isy}63Epg7}dbiQ$FtahlcbI6!9eL7rYDvJ{v zmZfNvYfR!0iLR02t;Y$H3Bxk>g}JaSV=uT&PC5&V7>-6sZL;{RlcY-?SY1+d;|C_% z#jY^2Wfx00M0#yuntaDj6w6>a%Yq5KqPPGq36*8>ePJzpyEUAPAD+ndSuk?jxtoL>VYCvfi3%hfm_nu7;~x||sAn~1!e_*c45 zI@Vv#xo|i)%${_t<_B}7Vf|AN-(wkJR^`;4`|FQ{ElI>{9X!BBd|Fp>3<}@&WkC%J z-{265gF1Ft-G<`9X7lH!%e)OhNKm7EH*Vp+*aaIM@{awx;mc##i1#-q1A+Tlcm%w$Q@*RKZF`k3X`g%MDBI|2l(YJ0!eC+Xg-#V)+kKb^JP8bx%aTW~UnEFPP2diUD zVi4Fg<)pIkA66-SLXh8`=TynVs^!V?_+g1QF$PAqY+^GGk=|%f|L%NLDudyJSSZ+; zW-+`!To5Y5+IQ#OJii7%IFaYQVdMm!J-l4C17Q#z5UL$K=WA249lST)WvWT_tz(8t zYqh3u5iC`w&ipsJb#CVIxnFtX(tCvu4N<^%cEe7#x*&u?VW1WpH6!8M`s9Di!Q9>2}@<@oW5Y+ni^ zx1H_SQ}gwT8H|4_obmhMx=jtlAal87R+0EWHHxfZ3!8XRUa2yDP|vRoL&a5Q%0V=j&)Y=4=C2SN0g z$uP3zFB5zrl)nf~1^LVGeU&Z!Wpuj!vK9B2#;*0r+v}gss@n>eIm!1X7CXrrVIrIB zpW-VEWi=}}#Q#(GCGe3HW&2s#-RylI?6M2HoXcTg0lDu(kV^zn6xlGFOg1x2X2N8$ z2Z&sPtBfcRQ4~cG1X1L^1VL0#6hs6?QEox}yigQH5&v&j)l79Aozzp6bm!0S_k9f} zdFrkAdHboStE;L(-<@*)f}m&LAsyZ>RnYhu9n%AU5iXPo;z{hUOMu z2BgZ|$RI|6%0%?EE8W-RybUV06LMmB;ZA9ChWVFtVX5 zkN84JUE%cyG0QK?NNUO~1~CdWg{V;`Act|(g(j>3%i^s&|fQ%~N32jHkD zJHp6@o^0<6A@zjUQjnfZ4~c^GXDPW7Vtnnp6N=uDFi~?zyXUl-5FJFX7GW6y1aLVlZ@^QjZ=&AEJ zzqVeOBJ){13P+I{fRPQ6xzHCviVUx+AdxvGBnlFl^U@WW>9s0-0VrRJzSmH$l+{zy zenWj34skiiQ(P!E78;LCDO-!G{K_};QdNGzAVz_zM6}4RYjW~Gm=;4$-h^{ymy1cwZ-Q6CH+AF{ekC(EuQM-q-g zjL;D!d{akGz?*l}k>g=xLr0Ed5GlS1Y@9q2eJzwu6N~OcjqwX8By2!87(X9Qj4R`O z!@H#uChzOyU_XY7oRFb*BJDmGF;pDh-zsNXBCDsv>|J(3D9QnT)Mo!@0 zWAK;$fe#=a5OSr-JA6A5MM3`Ih;*Mr=7_Hy7s|aQ`f|DD3+w-;4q@75Ex!7@JRe5* zc`714x6jA@)0YGJMDlkAk!U5-8(la-G|9vGVg1(zm&NC!1Q~lN~)3 z?fK+Gl+@u+7T?cO@~ULfx#`LWe5*j}%KI3^D9{y74xdA|smd8JIfkly7*3a6RZb=x zRaN+2DT6;lQ`X@TIBLpj7}?O2K3@o_DZHA3H09WkD9Eq;Jl&VQ^O~QfEa&@b`A+eo zMw$1xm%20@x^kGOV-a6G;{ozJY{=cVcl**HrR7crF$$z*t|bAQXL%l`$WWJO;EdVT z<6dHE+yL& zjzUZ01h_bFqILP;vp3$lqlWAOBO4mBt1pDq5MD(=8Ztj53eu2IrTgHs1=Ene?#dcE zN3y@%(bB%An(OV&SCbdopG`d+4$ty_PtOvqoQwiy@ixLm7TllVOOceD4>O2SAUB&1 zl?_dTu7=4oBDeeo%f5S-KpL$WfLqgOLqcy3`j!$`Y@(AX!=$ z5(UZ9gmkS9Uw|JymPC{MmI;~PQh$a+ghCeJH^Ot9k$K*i0jWCAFo;p0I&1;H(tS;4 zT0e=>W5~={g1}6nU1naRq^U9^7vL*hFdv!5;2}8b%3Hq0Am85n#}`8C3a_UiUHNrL z6r?L3PInE;0x{3a*4~Q=8H>8S6E0tC?bVO;v^adakOdi=_8f9%=0Lb!#a$;QW2MGH03^D2&pN&nu0Xt@{lM< zQ{G5dQ|1c;!)ASx4qTaZ!SD#n5kd9^J#wX$qQ(rrC@HBfV;RIKP!~?q5Qnb39j3{U zm~G&k*(GKH;iwX`kj=$#^P)2;!jSXATj60i>dfXavY|6eeIcaI@VW}pnK26LQ zDVPmIK;iHc;V7Jl;~pE4o8IK(c*~BOaUP6pXvR4VBE6-P;<(2~wltpap=hwX z&fxhjI47<=$B%n##BZ{FJKnw{+qb~TnX?@`?y-?Ejq%@yGyXE17gxsh;~pD*Fj;>Q zkHL}k=V0Un);$Jw=?nM};Q=A1aXWlF5=BA2;Qi_Pf*JAW4`bEIvQMExWv#jT!JhU& z+Eu4@CtFasflnNpGKfTzkm3lU_FdDH!(n2K5#&%fSypa~yAqD-6!-|D#&2rL!FcF@2#)$)DHL&qnm zTbTW^R$krvWJeKZbGon*q*BI~hmeo?@*y8WKFS~x^(DoJkS1Gt8Z@c79%jpsn(N@a zSqU#*N;nEfb#b&~5}_gzIk9mK9*LvqTm>T=qH_g;2U3`Wkp8a9vZDNeYbG-YW0bZ|wCB?!#1xmLth z`u5_4KABZ929L?HD&88ds_<|X(wOie$OA$?` zt5h%YPPm4x1z7i8SI;7A1g4B_7XNV|T$w^ur2p8DK_vQ*^ah`4@t$kKQh-S@hMF!o zRaRb$#}SS~i&$45kKUA!4!m_o2{{QyHU^dxeIcZT@G1(DkiA2qpl6#xx|{zRhZXcz z^Bslgb+#A6#c zO?L5EKsX8|;?-;;a#J$4!drHfjLl(WLo$~7LP*Kr)e|HcV?v@J$@oILPc##vgXc?y zzM7&KCF;a*Sde`@U)RuySZuqtb^|S+6z0_!P{AAsBTy zO?JUJjc^o7>QmU{NP{lXu$(3RINq?MUYrLb8+vgLgGlc|bvmC_w6lB<1%usj2FrKB zDRE_)pUbO+Z;lPO8LaFD>Tb4LN&@-aNbj#bSF_{ zj-Q~}f`Scvme`a*BwB;?Mh+rH_FS_Ehr^^81IM9os;s;gcO@Lv9?Wdm1Ie3cU3!Fr z@zxzR7n5N_!JOD>Qxe7)$1my|_k>1cTpSyM~X&UQKQBc?&X|VnzoElfw`F@cFUFjjkWa`T35^(7=wr6SOaejR}FZ$0cj}s zVB!HGA4<;h?TC0N**x9%8XNak3*{PliBd@zisX;ly%VlwYa!O(<2iN7LX9Hj`_cMn zF`VnC?GA(sS4fOB8v8MbM5B@3xU(oZ58B{UfC)1OpDs9YR?dsZ5sqp(HeuqE+!s@Q zI`CK=)#oG_*%*ON^o5Y>!z(OEefAECf*xnKOjmuzugcZB^Ht>q$+gslxMP~V13Q*= zF2Bs@mj(Q?5xZC`uD-XY%7~DZVr{%1sZXrtyYkh1xg$SN`~sZ^TfACJ_|Vbv%Bj!n zsPy#aI%@5`xoU0|o&VS^5U*s2i8_pR`D(5t`uQU`b5@>< zcMy(3R(/Qv&qQSYMP;*9+OZ+B1?`A!r0`!KS|%*5!8Tsvi_N95*yhLqlrGL1h2 zSowaFV!`f5k@BaSiFpG~j4RcA7AzipW7v>{zmB)=Ncd|ovPjL}nyE>f=~?o@#me^9 z1Ho)>Nf7bpm7yikm2G|mkKO~5@y+lE92s8%BPTE}NBN=CBUEDY%KlP`4p3sR@41%o zu>!{`$^yLHw}y{psVLr;?pZw3@`ZAxm!46o`ObbCh0h&`&T!}1C{RS0QdtYH?)zO_ z9$F(ZWlU-qh@zCGF5gm;15O90U}nOJ^(k6~=}O-<$54lPF-DM&!^yHzTU<*x3Nhk? zmP+`hpqz&{?P9Ql75Mo!@0WAKkgZa!l2 z0mK7B`iGNzJ0ko;E!{;J8+24wE2d$K&!AFet+o1xY|{<-we(eoLQlS2%ayjLbJc6~ zoLA_ef2WuBZPBM6YK2NUS89v?Gyc16vEOZrB38yMi<#JzdVzUvQBKlKY{DQ$!@R>d z>aiv&hr%ow1Iod0imXHzcP1Q#j`{>P-w@Fx8kHvR0K8F00ofNuHUwlZ29btw_{;_^ zV_KqritKwmlevR1Y3`?p0)0aj&WkI}(-_Uo&`q){c+-w#mtf=!$>tnSmyhWt&sT=? zd^wyFSDyKjTqS&y>&x)w9l5>~Mo!?`V_28YfR6?q5Yibe^6iLl20uu5Y1P8!q2ak` z?GjBfh(kB>or+<2p1Or;l(q1@PsVAS9?qkT1*r^57LV|ZFCWq){F*@|dW1BF60R-{ zvKnuKn^bAOVeBO+S>k4rlhm;>RewU%7ncULJz#e-7n)gmeT z!S{x!8!0J!Gl)?jDU%w#)+D40Cc}`B4meF#K8wc?jzWppRoaN$v?(XyEjvoai7>Ju z86Wh8kdncxCrC2(2#JCu3hvi&o_wmy5Q3c6j8+_Xtr6 z6j>}Pi*_spjyZl&T2gz)Fo;p0Jqwevpb5`5Fjn|UxW^bSZ2%t@JRsydnv;Ax5=B7|AD>BgzBIP_vp1hp z57ye^bErUB>n(isCyPuOgDkFKQ;Ih58DkR$F&bQfT>TmKT{8!V!n_y*$H8#2tkf2F zCLDzref1}!PBbq)!U1^mjyke0jBM!0UJN2VkD#yqv@qUJAq856Dx4Ts#;vPA?Yvj; zARKuw!N{5OZd?6n;r_~S?k|UvQ6iWm*Igp@_#9eoWQ@w;4l3HA3!`Hq<>iC z+Y#X(c1d@Q$Ha23+>`Gt<{{XfPI&oBh^I#n?+x#>5R2Th~Dlm;?e znQj{~runf+S_e$Nx5Wc+97vYI$eHs!SFWr~;(SFo=O@64alN~_fwXkO_Za=9f#3s$2ZS^bzw{L>VIYo9_dUeKj$B7KeOaVSH4tBf3)Wg~-V3%^R8dgM zKxA?j#`z{rMV-0BM8z+^z$ekhH7j=5X13AF^zB(PQ(*MGjvln z7U4}h%Ekg1*^rHSz7SG2c>M&)#_PUSES$#U=}uKl=%`ey9hH2SGEN{87Mv%$7wIJ&g_DLCY1El$ zS-$u92;Q=zsGJ5P8=|t7L8Rw4XYi-|1fFlAXt4Xz;Q5;xC|b zX06QnCx*5eEJz-sZ7)gOleF<3@n3Ee9~y}NZ`4QHx5m0CdKh(Z(65@v(QYC28FTNV zUZo$I&ma>0NP2_SaxgiXYuOK`U!+35UD+GXrnQ2K+YyfHT6Sim8Q4Kn`1Zg9bQHc_ zVPr%2cJ_sk!pCbdNciT2L_rfRJEtprQ-sjvPwA&aX5$9~oj&86%xS8H z4isqTaVf=Yc`W*{Z_=dp+Q6{_X2TdbPJr`dCA4@L;V7Jl3Did9re++Ex9q4H$HB;kW*oyH((?#n z0=1DXjpy?znm~iF9?pp?&+!S=M*Jq*=i==mGx;^aXr~@PLrMU`OAM2w(7Ix}O+m?aX)O`b+BWvVT$^ zFnzL?T74hSDTGE$$^c|B1%LO=wVXcqD}xvfreLDzwWb^kzld^Sc!K!^fq5q@oyGBl zqfk z_!+`cn5pxJ3pIXIOTL1)@2DkThLH^|`67czZ`_#2g;&j)#`!NOroiFjaX2%soG*y2 z$WeP?GXGON3P53;;joD29nX(5OX`VP0sn=0a@{WY zZx}hD0z6EB^bvd*@qmy%;&k7R2p@5Ox>L`yI!c9JT7{GEs8z^Jlq=O9<%RVDaQRx5 zr+$d1m59O<(edDvAZl@Bn8^bEy@+)(IQ(|Es#q6)MWpMrDa%KJt! zOQH9}98&6d9FFXN97fKZ{Y7#p)-$J7zE$R_;=YmAVq=0Bj^~!CgrhJbPEr+QiFT!- z*a&aeQA{?3kqt4K%OKJ-6yhXRE5}DsEZF^MaC|tN5$i2oG&zo+q?*L^p?K?#Odkv* zXU=r&BvmWhr-ie<7S4(*+xkhWNsRa75jZklg^?2&_Za1+QQ*UZ2ZS^V|L`50gi-iU zx-$?H*=HOIwY)m<@GZDnt)=F@_$@l)p9Q6iJQgo-hi~0TFK{b^Nb~~f4HlCcz1GaY z(=ZvvK=BluCM%!ChX_ZZM67*lL~cG?Jc+mLC>c+{$cAJ*<_jSugI7|l;>vS;L2V;`lkG0NeMh!CVC2l%jxDHdWK3iH(s0Hvf%D?ZxW1sa(Fc?D zi}4s7S^qSQoWQ!rs4tBJA0j*;e%wQ z^O`RgQe|Fc5Q!?2;>73#-f2x)7F>yPWhl!$f*1~`JC1M^M#RDkL6&G&F1(nHx9cb- zGhk#xOr|o3^ac^J@WRURJ1G|Iel$2f5YC8w^e{P&FT6-%dOy5%N2d3NkuzsHw(!Er zc3(K#y>M1s+13|cBr)EDN8reK5k^j6++&oNMu86t9uV?jc`aP?YCuYQ#6fyH4?lt>|ASNHS_PZNc84T%$9zhC6A#C+7T$o7Gp~isI34KevI=Y8H`EiGH0HE{aCvf@RH zTUxqrFJ4TS69=?D8PNr1Y95bI(B!piY3;T-P-XT+7`_yj}}(>vg;J2L%t z7&&vMV-pZowmZVvJ_*i>E8F@6L=xjC;t@D9{y`WyfpL#fUK#~HEOp3N!UN>{Y1N0rR=zK0E+NIk^W$Hss_k zUkE8Dyq1FGtgsCq}@gN-aWn&oG(3g#TA*8F_NBDJ>^4h(u{gaUV!?+k3PBnzDQx=EqQ$^WcQpm8G9>6mqm} z@69flx^fO4f}^gS2_qZ2ayo-Z&!=kJ-kWLDn7^IE!tP9i`CH)RxH50s_TKD>$^VUb zAddWB4pn(q6eBzbDm_=Yfy2s zR%QJ|p3gLms2jT~@|}&CqmUaBE2Evoiflr?2z<&}#2^x_NP45vR!%9=^yy%jMq`XR z0M4Pc5{kXxZg`{H3aD%D;vvY}MF`$9;i;&m6KR0~3)pqZ9MDerk> zhYeTrU3r>tsj?Mh^i14WSgo!g`zZAavt8DD^xpFp9cJ4MlK!m`qf*-zEjr7W4f$B~ z5e6{|v}i#>5;XO>2BykTpR3@kS=laLOgIWdV#`}XM@+rB0uRJdZ@vU08+!8vUkIr; zytab$=CqI~NN;gFY+JE^!Cwo=a)#d*<}52-lMF^ELP zNpT`(Qls0N#!S2x<;&2R@dSanM7zfPgOa6iB2Fr9L~e@826)SkqS68*8=~@G&V6bt zOTL0FztJYd_b>Hv1HxB9)p(*2$#UotqTSL+#T*e?qgGZR5c3#ty2ViClr|?}kTUK(5 zHxZ7)jQGC08o#L}_u=h3YRNq?vY{n+F^Kdg#KiaA)tqUZ|BYh8+`Pg0U*OERavuM_ zyV?tr`9I=OI5Pix7&&w1W8ZgI^QN)C$=8C}UqleY@oZq;@%s1O)t;CYumF$5u>$77 z$O#qTVFIL&;KPUqg!B=Y`j)cr5ig}X;mJ+|)y~vd0hg>*ZANfQOLPbw1+5HU7GrUO zZ&68OaXf<<4aS0<23ja<@^Ti;l`*({1kRF`?qUz&D2&8T10}LVyK+m*X?VMiVzL%S zHpHZ#L8NCSVyA%`9DkEy2{aI2hcn{JaePaQxGfE)ufC4_QW1^RGi_0ExqO7DBwe*!0SxERGa+S_b+H>L(^+)_Sb3uvrX;1I8P1 z$HVqn2>Q4$U(#OultJL6d2lxP2@K5@y+b5LQ>QmzDh==PI-EsoH56YW9MyYlr!EDJ z6{(GF5ty9LcnuHCQL$cykqyQAlP`o+EM9v-iuFiH6tp<&L+QR_ZH-Qh%xmZU?DqBH zQKOS=Y7~En**^9V13mCGqE@Qg^0@O3>Pg_^&W;QsQIAqwnl(}MS`(ZTV73gwIUY`v zU2qN|9EFnl6ec(gx(q=%4sX~|P>z9-4MBM~gGh7WjB{!=JU$}e%Xj!j4@>n zVPOW#%6xGH!cn-9&VlhJ8kUbDGx3HUm1P=?Y$(fQ29bqxu+V)F1%ut32Fv@yDRE_4 za}IW{_raTYq;8;^k>Gbn}Vh5xi+f-S`oVZ0N=h z7({x$K)gI{rb}bG<@#V}@LxD7u1v>Yo;EvR^8If-07t(62_t9DckJb9Gi4g*Zx82u z8-f@P&u`w{`peU1CrsYA!h>++eRCK&fp?F=UHSt)PxJ67A>T@f-)n0GAI09@2wfSw zEQX@sTWZo!bTNq0U?`gW#Z#cE&!=Gi3~y0~b7n1p;%S7V@Kfjegseo0DCG3R$MGl} z<>x#Y*^r-e7({wDV-cVEw`ES_{~n4ga4zC5I6toZ^UvQT_r)B9ZpUMBtb$u$euY{N39JyA)X6${|;QcYH;YB(4?iI-2_I@aAfzSf@a>4O zB+JrW9Wkq;ROoGK@5$Awg|#j1{npq%-N59Wl_(Z zRsmOsSHP8Ueq1X+|H`7?7qbd3$76ASilS0RD~pqO-Z$aWNj$?KMuU@>-0Zg|B&|1~ ze2Du)T8Oa(fmtpqrN!4MTM8-ST}U%@Q#Z!oO*`twTfXeeJN7@E{nU=V6YoNr>C%|q zIh^U`c)BMP%C&rz<~#@1*T>UoxBb<^fQ9M!yO3rFOupOj037+=7DhJ4iM08Sy$flk zOyfKk&iM*BF|K#F{w}2136u8|@E{y{KORO-;N4?zm;Qhc6dn*#ZGP=5Si&FNo9xN5B>S3l794#Z)-MD&7#BIAK6Ba+1?e9^anq)qrdgBT4q zA!4Q3bxljY2eV>0h3~+*vJzXofp8RF>ihtcc=V=-d>e1wQAEB4BO4-e2ZKm&qG1ky z3lPtk#`mif5$4nlzW)U0#g%VllA|@V{l~scQA71tZyi1{0Cuv@r}XEFC>WJ zcqTCKbUwXg?}y3$d^`?E_UFLJ3G91}`qDV?p~C}08i&vNma#An^>mHHhP}CJtq`rD zSe@^n4>MQj|MKO&iuxth4{0S_*^w>$KZRfV_@$p;*076JdFs733!yBd=*g7}z5OLR z)}~S(axF#tm)k@~qJB^}8of})wT9oQPh=ko$(K9w1H~^arY-*;(8_P<4)XG=)3=j* zdUGAMc4|IHCjs?#3&i&^#L?hF=36tP4Nqsm42uM`(yEtyl^#fWB0mBr(po9SlL<%R zuD+1HW3~3BAyhr|M?8$v@Gu4ys#+6yEsQJ@HL*k|HMLW+dPJ)F8B%&4WicP$tr^s+ z;YJEAZdP1xhvEgzJY5gx$+Zyp=ko^Xj9CuX;lVhT!!=wcZq&*5Y5&H8cwf^o6oA`G?hc`m!R`Lmypp)oN~?vM_Wp1&39&wIu7O4C!ci z3_OG(9Zmd~+X{W6BcdOo8_KZQurx(E_AO+2&lN8tV-xMtbgiGF9OUM6>Si9+(z5kg z0};qY1lE0f@nX81IFR0$wV^!++HkcWOs2T$3&Flx)_t9Bfh#SCH4L78Pu2IkfFkm zG8BJS8d8ShzubJV65%V=ZIPc3`_d!jXB~qW4bM(98is;*Uelc`VfGB&xg5@xU3V@Z z9EBP25Vqx%Oz^gG|nHTn6Nw6;QV1YGp?M+zg(jB z!ess-JPJqVAB2%JXFm4j5;boc`)`J`{|1~LSN8QUm#954E8ulJ62}U74Mt9=01u-e zy#^mfJRs!5&uZU}h=-qP=^nN-yT4pGrJo*nIx6Kp`T}zF6r?=%?0GY)Ue@BP_l%(5 z;C)cKpp0x5&#@bIEB=1OvVzW-J5hRJGXGzgpSmOS|Avt>XFmS!M9G`R{tn^nzkS5mH{P8nJuxd_8$1%n3fKxp zPN)D6ry$J+A4WVNq}jO6x0Hq1I6U2VCzDs^Y8~B{LwhQ4-CBp4`um5Rv53wK>Kk%# z2K%ix7VTh%_{areCEtpYuA;yoMuV%EB0H|>%SA9xhNJitoGB~S#g7n<>L{kOIZ+wA zsVH^4ZAV4g6<9Fc^I5K`a zjGQ^+^W@u)MArWp&ie1+%($}7{iCfHCi5@jQ8+UHB8;5CyvNWl-2)#kJRqcd=<@A| za1Y-~*F8)tlF}8if>SCf34y#?hO-yF` zBFGZ$%4wsqc)N~rG6qIA;J?<^h*cSmEbAe@>|0FI zAbgQQj0S@+QS@4S`g{=PNZc@TzTtatnyfSzZzddt67f;x23?|IX%W7IH|!`Q--eM5 z8Tl52NN=WLIv-^1EWbvm~jtk{busTY`FSu3u7{E+qnd!HerRYom~op{2R z2WclBV-TakPE2n0TN9Um!#o*Q;-7G$tW+0YCLDznF*VT)-ISBR<4rrt$zNe)Lr(t8 zAkwoDVrrt9E{*A}?n3WKgXzr)0(01|Ovk4tnjJ9tUWy0c$oIxDa^`%;rY4#x(>Q-` zIOp$y6XVLcJ~h$ogvt9+co2@f9}XiY@a{3@OWVK)3J(Zr8-C&|Si&~!n67OYTg#oS zzSy`Ju2pNH)!T=34DmSzY(jzst&C9?Dsumo-(n9cIcHNp692 zWF@R8!~bogGkRVOyP?lEd0Jmkzn54;P*K= zAFllJ?YS~`bFg?CZ`+aOr(opFS)L(R7+RQ~@vUH{rxL_)ctZ0|o~`Yvu;0^@@b(?q zZiSH(*!CFLr8VF~fd_=N2A}XPTVV}8obFqTsp2&BmUiPK9Pftf)ha9XRU_yTMD#p( zWo)u|g(G}xOnQZPF^JLN6{f|zu6c$k%$zZ%RN!1$$uF)T9EBJ05#@OF=BQG_TX)o% z0*q|vOc#Sl&pU{ZD91CV@qIZ(6zCx?gY)9bcl;yD@jjTWUy8@z$oeHPa^|eZKB64Y zn#TOY;mkh-=f;(J{Ugfpewge(h{xf`{`X+y1ol0Qf%F!9=Z0qYmf0%%hCzvc*Ypwo)AzYCMKbR|V`$&WEJ2+QXx{JRc9EBG# z!4Qw$RF>c3tvf2q^DwfZEYC2A^qhj2V2Ec-<9q%+=)Gz1J%=DL&+N)~e1aj~2b1-g zcnprLPlJ&&XFWE-5YL*%{6XQ&?+@q3m3e)FA>I#@{eAE_9NFI!MowVg!wN_@!G{hH z2UAyceKfb!M~6)2s@2>&Wo_g+Z~^J{za)k06cT%-Si$G}4va-~E3m)i<`Q7=R%L?4tf&EhrA^sPDR zHBM&`iC!bU0cfrz0h$hd6{gV`fxZG~%vuS>iwH+yr_L8wSvp~g(3kNb97X7hFtQ;+ zpZA53BE)MdNQ6!eiK2gHakq3u=xv1^6v26k!XJ+3m=lK-9RHCz>F>Ipy|nkZ=)<3dNPh6hQrbRozkSRQEz3FU__E=Q_gU{4R6y?KK|#+ zw{#D0a=ueLd~On-CN#KxM>w}T;(4A>DA)4UXy@np`uJ+TtG`+pD4N_(jZJXc7~URl z*^%MxU}R%}NSonla)Qucd1W}u?Qllyj=*G@A1@e>-n^GTgtzX<^ao(%1g1U4acKp( z{Chx1Mfr`dD2eBhXUDd*B#u9c!_TtfqQhERwmxg%^nqo?ix#)Ebl+aQm@X#{6qhFb z;1c?IeP*<3F8RxRSHKl(Ew_4c1f4$LxEBw=QFQKxkqyzglR+fjmmas}K1&jAWOl#K z=LSMcn#THHDJaa(8?65sPK_(;3uA6V>xMbt`~eTck^5I*NDj_g;xzs@zBicv zjR;~mo)pZxeq+XeVpq%>*booJu?FVC$O$#z;TWXp;Dd<=gftzW^DSm!I$lWEbc|o! z*IO#68^TY7Yt||_BYGIV2wNG&Eb|Z_^eroCFy7A~MuWkaz&oue%$YD-#t3sdoFyya z#S-BtjMVvI_<}6auAGlJ6>ry3PS(K4hMd$GM0$2Y9ENY@_yAvH1S4n8v|<%3Y+n-2_Qh~kT-i3Qf}QbC;}JMA{z(`) zfpL#nJCGfsqY4`6Gi! z-6~i)-r_sx9cgg9DM4VS*_GqCRY+ob6TEdtrWe7;nKK=;3Rbp{31|D=a8_K|)~!Mk z<452TI5Pe&7&(D)k8xgF1wJfzKuD|bu&+o7tFS@3d%DKcDrox5oieL%AzZ4~IvY`| zAi`D#CW}?Lz_+ZVRXCqPj0&s3JFQuTTVb}0VdN$_OIE^*UnU%d5n&YsS)yHO6~2kL z>nJB*hmj3Axt2ksZWXK?KTok>=H1}<88{=Z9LKFf64SrNTX$somoReXOvkK(mF;Qw z2eUnyAcn&jns>Br6_OaAfJflS_&69jfpL#| zVC2kMjvYj6VfshmO#cARi7V6kL9}+ZzmK=?$oBm(ast~P+{07J_k;UE7yFdlhy%q zr^A_e0FHd04kIVSfi@*m24+v=yT6{YqEW+C+q`JLwd{?Q^TdFEA8Xll7V5(#- zvk`sKAj1C4n3gdu(Lc)IWN{1M^`%9+h5H!9XmAS?c<(j4@CrM7z>2ynwgss4LIH$cC=`hC!s~7sQqaE5~!chu)e7$Fm3m^Ubat$KN<4 zF+Ck`-I3`jFmmQh$KE(t**+kg?S0{_xU#LkaY$l(FFXQA#&?I26Bzdx@TF(q!-5Bd z^bGg-ij?pSE5@bj8K#z&CmlF@7F@B`avSagXO{y9&VIzVs-#mmjX{hCr!cJ)>$>I_ zu7bHT#*!=GTv_QZewuJpzre?mc=YDe$d~Ze9hKz^FtVX6pJNc|xrWApv&novMiF7Q z-r)Nua9&*bRt}tv^}%HQ$9N2mtp5;3&Ybo5fwQr!X?OZt;mrRB&W$Vc#(}f3ewgh4 z3y;H*{eQs73G91V0qG|A(BT0g-NahojtDn#K)Np}CfDe+*OvBE^VLe9G7Yi!_ffsF zmRvnQg0Cu~*hT2d_+^=a*n_%*J$H%vlD=YB1~D3Z#T40bO>0hqSu;kN6X8r*i7y^O zI0`Fu{>od%ZtBYi@wOfH<^3?Sp)c=c5b1e}S>i0GW|3=Lf0E(}bQGU}v*OA%e?HZF zU^4zOJOW3?KMEsf&iFj}3P9c^8tdN*XZ;R1Gp?*J&<}5F)~?C?t#}lU%-;kfCou0} z1f-YX!-WTg^b$M!c0_oIm(txfF|EH`&8^Ot=mh(6XMU|>C*Gj0U}9yhx%$c>?L=Qb zSMBI7lvfRXVtwN`+eF|ZZe`T6c!}42X^~#yH3l&nyu@^+@0!>wdH`k3uoDXi0yAD# z;)@dqMr2Zym?2JnGGWwDl>yYq~|E+^6^+nna23LC?xDYH5h*)LLzZVb0k^deTIe~u< zYarbPA3!`Hq`P?4cNi1y;!o+G-!QAM(p76|uXR`ReciN}pGJ7aVcZ5+ueJ2*r6C=L z|5qxaE~q_FhBS-UxY@Vbq}RBCL5v2kG27_BHv0S$=Fk{@ehw$hS_Z}M6OKYoeI8RF zqYI|?{0tAlQF|VRkqzy6m_elHITrBY+DMzm{I~~$eaG7fVmO?p$vhu>5;|h?|38?e zx+DK@!pNEPzgT*Yp=w~q@EX{D#A;xP=0A+in02rn9*kohYz-qP)PaYAkRF5&EFKWj zgM7ocpoIr%O?SQKOk@4e;jI4w&WtPT z`uh>t3zPX*@F*Oae+foTVBTZsm+pZN7akDOJ#_naM7W1z(|teE+EvQcYWcF_9Nzu| zRHdxN=I~;~f7+rEw=!H=CM&j~zF<#aqOhci*or}n1`{z+^jg!GqhY>8ALTxeBjGez zDKG9tI0_~8DeNJoL6>M)ZuB?|Z`e^%4uO#kNjZo?q-P(d^XGXx%coN?f!^U%I3=zu z^A}%A_~!7j25;Vx>l%!lIoGr0B!r#s>%#fI22P7B-+bcH=z_`lRd@)FoL>PWCvfgD z-b>5C2L}%bX&E;6?TD}p?@iY-Y}lKt)(SaVQbE3M`t9y~0DbSZqm@qmynt+>AIBhwF@|c$eHsTJL<~D^`;L6 zbG->c4963Mc{l4vT_y0n2oJ!K?*%Y&0^c43yz~fsK=6Q&9^o?I!WACjuyi+?wwCg1 zX#zw2s&@`9Rja1dj~{a4B5K-cPYD0LwnntdSY$B=D}2jInu8M<#Aq-F6Gg8zd+<@1 zC2`BhDT%Y-G+Bu*_7aXliFoDFpi49?4Z=t8h8>0EG#J?slC=yXJ%b=#dDvOLiGm5V z2;YQL;>vRTl}94iU&otw<~@~yw}NaXyNcnFT1{~Sh6 z;M`-BmqvjP4jvHFC>-zG5n&XLOLsD1+^SqpPfmHivG_-*G+FDc{@x*NLX|%IRp}XW z=P3WRHXf-m9$75HLW&+U)1r{1MVQYZMuSCYWqsBR!hSG6qKDET>qVcjUPf zM$Vk)*!+Qw>(7UC{aH9Eu3YQ$2MK%+-~l-DeIbmTz_-VkE^PrH5Ii8HEtuom5n&6y zlddfoyE0!>UBR!Y1DGaRi>!X^FuMX4s4@mwOu;XFvoB4-;|yXnn1b<9mo-oDCd`hw zPoyV!1J03^;NmNUqwpavSo_}%))=-p@V zyCp$j#@LnL_{X*EEN_Ol?a1;H7&&v6V;|SDF#W!8rjLbl;>xuCaVdowp zSqabL(KuGZZ(!tvO7Ivw7GV3wIq%K$dwAG=9Ss%%^yaq z*IIhR{S}5@;42JEsSB7h7gZ(4n~fR7Xc%v%m114jl;#kaD?@1xf^%i1ySNkKs3VQ| z3PUV5VasuQ0?irtw{)hyq8JQ{cR~@~wP@A=U?z^)eoV zBkL!_$eFVq{|ZAaYZ~)cgfssoI5)1$8((3F^}}TU3wRuk?0*hMPGH}|3P?A>hYk-2 z=_WSv?TBy_i_?9YowzbzEm!(WrGnxlo}*r1YGo}rhvjkDdv6)7GGJLAT%Y#kK^lpt z7{q8W5|f+#*0g1VM^K&&7tulxnB%fiUHl7WOChB`jXke4LpSB*zc5Fx$JPBCMmFT+ zpPc=9hqbh9eb&I~1IvmREpBP)zP)%cT}~V*E=u~r(xe~kvm^oP5<;xcC%|q zA)M*Aj~LVZ-Kf?9lkaWt033&ptzhKL`JOAMC6YKlF`V-c!ijOcyZMpWmQI+wzaJ06 zk@xq)$O*iAjQP?w@PWbuLfVEWeFaO{hGWvT4HJ4QtMj?F1@+5Km%;UFEjEXlZ~xN( znt>~0mBm0@>RVdUKwQEgMuUNv)abT0s@w-NX84DD;5=DLFMgeH6i(_>nSW?RZpzAC zc*~BmayyJ{$jU7YBE1=i8GQ6@WJ}}uj}#5&=MA2J59h>{XZ|Ktjo)PZWxRbywqJyi zGiQ5_9Cs5KU+|M)#^({la6B29cQ&7IGW%e%J{yn0k@XocasulfGe2DOXkk;X1 z-|`jK;r;1ahq(%6)Ma;iz_kKd{(X6hX+9c>Q<~j;d3IkqyYJjMOKyM-@SqAtz7b?K;ZI z6ELzNCyz0R^w^!ojlPxRNspp;q``43K@5j!H96)l#pBVNc6BV?x+BwLVC2l1o+S;w zmF-=_+1?q>it8QCkIC12U^2cOkHC@fHW)d9agT9cS_M8VctFSpl$(4-N<5(KJFcZA zaa>9iu4Nu?XxNLG@!h6XSPhq|wa!M=Du}R^fyrVO`h3euT7_N)kw{6JR)Kd~vkI5O zY#GDIC2*Fkgcr{x9EA~K6$DwLUHRm3G2X7DoO~KaHss`!3?lK4^SI##eG5k{JIJ9)Tm{ z{|6%{FzzwVORK<#1rG>m6?%L-BCNueDbFf&l?uK6oyyXw9e;`nleNx9)GCOum4V4( z6}G3YV9!#btfW=gjzNqHtH3+0S%u?Zwv1uq7&uE-!i)P8j>3qr3W6-ruCxm8#@lt2 zlOtecLr&hsAX2vqR*ui6SOTrW8E{5iIgVR}B&I)%x9-UFIv6=~rejvY%JvQ6Y<~mJ ziYwc?RY+p|Yj^~XjDHnIPGH<)oR?OC4+|a;(kg82+Ywo5D%A4TTuJnJ2I0i5*3db$@?ZQfWlo{3&Lv0hMq?uL zfAssD#i@7%gG$bL!sE!3U}TY_iKRkct)24JBeK-WkkWG%8}iwHJ$YIU96(WF_pXrC zCCwD=3#Z7He!juS-Vd_~_QKg{UP=fR0S^=AA z+s5_2m{m}~V{xp4E*LqX3Z!)yS}BE^OkPRbobt8yNK}+@2FEJOqI}77@GD-*Qc?U% zx~s2dtj?ACY0VX#Hrmo24gJd8#SIh_R>#&NtiLP3g|Gml_;`5AVAk*;MLBGJ!?&X3 z`1Cc-#LT39JE?5};^Z{@t_?FkgUK<5nMdJdS@|vAOE?NKb-spI<4&|M$$A)X-%(f| zf{_hjdC(Ukx|6xn;guAmCtnSTg4R_XlI~;8^nO~xNrxfTdgxS&&O%j@lbJso9yvM4 zDku4JVOk6! zSq|sQE+k6`N8zQ;&)Zj-Gjya4Z{ATywuO-m9a-iJA$5e;QIL*I2#JDpWJbC=vSEI0 zzN5cJ&SXuY*3GR6o3c;@rH?u_9RB1zRzY!_B@uzLIGIJ^VJcN@QI}p{KBT(zFo;p0 zE)BA@9B49g2~3tDGZ({2v&+ocgrg8t=a0n+TpD`wX*>=`z4;`JZ0OA=d?BRX@X89( zn_@^5q&GiK_s#8s#iQY|5%&(C(Nsa+~1cIM%`<7&-G=*i6pL zy4Axm;q~xtI8Cngu%$LVo6se*CXT>Ea;%AW!N>_U;o&HxDdB^U2ZWrQeb`s%qA19e zRMRyj^ggt_dMBEgteMfvDT*lTKtRHMMBc`8H6Di}`@e*dGiN{c?pM#8 zRsqwV2(Ez11Th?D)4cQbcfWdH%qp0G$KqH8<6z{3D)6ub(pB&w#REdRiuJzbEL_Dk z>AH&XN3fw?nMgenE?TSR)ZcEi5{1?4+PeD79nqIDa;3KDKe>k(P=+OoWjM^YM5JXn zgh32q878c3p28?jaunw}UK^dl*jlS})T((}+IAWJXLRc0(CZ88QwrsdQh#T@t5C}K z4V*ZztiHP~FHRO~puVT~-!AVQ2rzfcJLBfgKZ+fLqS$emqSz@Yik*}wtjigk*lb_L zUq#Xj$Pz92q?oJ=G%+msbl}N$XTG=Ay{6EYZ;!@81ND8p{qo@(3~@bET+b5Mv&HoscFor(^yJpELL4~kfAmj% z?5a{_<-k$(){Y#llqMpMs!yus*2viVi$~D`xE{i6B5 zt0{)SCx9ziH*(03GoetX<-;_*4y><_rv=&l)xtpWLxiIYvEp-sQPif>yBu%T(dk_V zBO6XHZDuD#Ia=PSar-msNFcY5!nv?IEep5&%o!fH$?n5=yN>KW1S4n8E}OlH`x}kt z|Aq7XCY%*lp7{cP&U4J6iKNQKb#LGiI5Pe^jGQ^+?0()+zn{1JdGP(bH9-u=v%0C( z@_r^qX0W>@-mW9No59GLv&-)1_>+QmKYt*c=l8)`!SCmI4@}07#UpTJ{Ad_CbH>^I zypw)EpBK*aIdCpqd6xGxJ&PLm^O<z z9*@A0@#|pZ%o(2-`5Aq7L{stS!dZVB&WtPT3)pLWTQAIe{V6;ON9Lb|kuzt0LnUX; zxh#$QslNzzYLf_JWSkm*uV(Lu$$l#yha>xAVdTu&pQX<|YP|0e&ik%#R$T9SuJn2j zOvZP{BXDGVIgFe+;}gX!u}1W&aH2cmWVjMNg^7D(dRwGWK56Ihh8_7`0V8M5?*u-L zuhBaYPVa?qE?nv5&Ro2HFxb5SZ`YCC^I_!7*_|4D&7x6!e>lbW!U=Jucm}(JW5Js$ zeK+2?BhPoj$eHsz&-N}%BmB?dg#Q7~j4R>XkK1}-GXDx5g(LGX!N{32KaSp9YD91J zWU%?(kRV3Jd{1C^cJ#W{Q0}>SqmI1Jf{`=lb#n8yvc~SA;p`p^r^EF&=HHBMhHi3v z0N%7C$NR#_nRC4HU~m34+WW(4ufiE}rF|*8sR!$gSqT+98plc~!N>`f;IYh5u2keJ z**qZRO2vbGU)+h6ia#2g>dE_)a-F%JmiE3{zE@eTcq?4G*1D_P&yjH3_8o=BBU4sb zSQatfZQC3=u-y;}gW#BjJllj-=E$D186`F;y#W$-V} z%Ukt7FmmR6$G$w?Oqs^{@^H@EMvQa)%j3;Xn7nU`2jO_1FN2X2c=s6KrAOccg$IQ6 z2w(RtVBrz|k?uh;8x(ULiaF?oOVv7x*w^khHse}1MmB%g7R98DKo(oj<6AINYl;ja z(H5jPVvM5>Yl?9(OoQPEJ`HEc%4G2j!co|$^ErcvCDEvy%l{LGTwZ!TN+7|kYy&i*|NXHLI zEcCI!lp3`t#-qM@mx}Q)gGf}26c2FWthDp4YufP-m=!}i{s!mDN^J3Y!clms^A9vA z#2F&;7rb>x5&0vGY>3G38AN)6!yJCLNjzg3-<$ply$cP#HzA1Oc%m@*=HI3_`(O?o zi|`m6SziDnXU_VD2Ug0p9PQ|;whhAkyTh43Le0%*4s03I68+<{QPa9>#w-E8zQ^7n zvkcy)2ILZlV;Q^?MouULkKtcB2tI~*K*(o|hkR8`JYzhN?jhOJj$k_zm*h&T@++%3 z#X(#ESFm-UslUVKAZ$CQStztWkcXm-O%~5^zHiA$&#<0B4B{CE-9cR}(wsA}ldX6P z{eHA%`bb+s_!^By?`_UX{f)Mc?h5U}K6%|h{jlM|t5*7GW9Om60@j(Qy|VVLstU^v z{p>8{Rt*eO&LXU6r~YttGhd+4hNqhZ)jeF@BrF=4`Ur1$N~2Jw!EU&6R-hf4^`nNR z%1Zt1UG!0%3dLsMY>w7iPp(GmDhBFD4@-E2RxPY;FITEPN&B5W0*oMgD{CS`hBZt& zi0kBm`frq6~%x5Dt~ z-s*hEFy@ZXNRx%`bq>p2As}m&_P&$zYufwP_4MRPTszvi#t!6*ALZuisN&6J>Y`I0 zZV}g8#q~CEy_#*GI(lC*t}jyXK3ZrH-?6C5oS;e>d5P1FmmR+j*p&%HDb>UC-!tW6RyNgWVbAv z3ow{H6>rs%*)=e7=FCoN%yDS!ULVfxb#OLZ+2!MHBXaZJy#{aDk>RUgEb`2@UKM{bXYku&FZ9L*DJ%w7=A?D=paT$$zLZ8W)U@VXvv z)REV7VdTtto!oqVq_KN2PJ2ZyRieZgPAZ-n1jfH^a!8b4*9?MsM^qf?o+I z_$4?Ot_1TV8+hC%yD#AFIfQQH+i0p zH}1&u6c{;ko~MaavDe-j(FcSRy)T>**L#_-sEtQ&GQAhxx+BxO!^oL4-MFKp#RwYF zm2jd#VjXUz(1tVw9^DJ>sG*^gdWM39e_N8!ET*>B#qv<^` z@9azP2pk!|7)H*V@m98WN2B?naGD>4Q{hT8e?sOs+gfn~soC;T^=KhNBKrwXsc)VFhZjXbJGv{^!-&v!Pdww{%>)~9u zlFQ#1iXA})yXWHVIrL>cuLuv7E2 z|2yQSX8@d&*zptnG^j<#PplT#HR8HfT-S-~sp5K?xPDk%PZ!sZi0c{RdZxIZC9Y?S z>p9~3QE@$2T+b8NkBRGgas9ZsenMQ&7uPzw!pBK;)1RezoWuk^25S!gMv5ZvFp29~ zN5T)2IEio+?^Ng0Gr~I<5AfIF?K&FyYhYx<$fwP2E3+jUxldC+0?B;}PKDJ)7fo{c z#42}F2DeY*%{p@X1dN2Rf&F9dCdZr;5m zylF>{3ovr#98YSzMbRj}Je=ao;B2^3%ny8OL~b&CDc-Up!+Cjo~-K8Gaqk2F7qBa`PU34R6_z;a6eg%o&~* ze?P3TyyXkQUV1Zv7#T0kj}?hWZ!*0EZ{3mU#V~T_OivVV@HLW;4JY|%I2o?DGJp5b zSbAV+^^thPj{F`5BWKR<_-J{AM(&y6kf;`JFT%p-wH<3Jfl-C%%RYzvu`u~&JevR3k!~XU^>uxlUOl`0j9m?}YQ= zN-%$4C}TJ8;M?%F9a+8^M$Vk&X-DPzYWdD%^QZLZ%d~qVzK86UaGqa+GvdngY_|SR zi{7}SU%=aUfjYk8f<>-p4+ zKwj6wiLlCNF_BlguMJ+$#T#|x^=ue9b6&?s>ZK8TXE?F9!I^L+mQRK-%{7?48E@5* z*&ATw?3s;57LD1L!kK*m&IHCR8xIX;pT%2sWcD{Oassm+URc^`Zniuiq@CW_wVkfT1 zSeU>&t;xh8Fc0FMSn}AI7JdxOL2#C=R2Fw49EB0FJ6Vur2*v(*yN*J!4~%RG#hwfz zJ$9$!aPF%-} zYb(3L^J)L&OeWdkVK-<~Bq!PcKA$>(-6}$}q)D4Y5SW#<-fhLdP*Rk;sLo%8$=FRX zpNY5aDCW~(WJAo;W_h~E6u)~kq7MoudVe@2u0+pbZ^M-EO|JLBn|I`TPZ&9Ku4jm3 z38~Y_J|&#&GMp1vviYk|HGY%rlkxT)+3tpsGiSSTXY+wcBl}C?WPbrpi7VO4oh`;y zkxsd=@N;h<^=8CEuiKKvVR z)lnb*2_qZ&@ONJbsSmtrg7o2ukSOTYel6W)Fq8N1pfhUOx!-+?OzaESsI|cAJK7#v zEsyTGSR6`0S{~u|qS&wp9Z@V&A9iODiTbdtI5Lm$)+3%{UAH~T$9~+lDqo_*YY(;M zH1=ylp>*e}oqcNxecc1~cLhR~^0|}OwO3hKhlOHQR<-w4x@tYSwF&3q0)6aZ-3!e( z@7Oy7JJwfN)l-R%k`4xHWap63hzO{+)K4=z!+}KoE5|2kI_Tz#7Cm)}YhGNt#C4Up zc8hC4T#Mp*vbdJm6`s_2AN^UHi=@U!ccnJOpG`3YPUoD#x)Hug>L|id6t&KWc%~)B z5dUGkRmUNI9gJ)Y@o6(Vxv7*Iy*E%_0_pt*oDS;%TQuqAyFZ(un~(Hg!<%;G_^U8- z<{VFvLzqVLZ^B9b6`T)OlKGUZjNN4U7kJx_EI$q-XU_7}k~9|@%@bb?f|Idh)JN4`%Zc$aX3cY-tFN-!UbnOhaflhbiK;H^3``*s*P zduAgqt})vY&g@BWCNO5%6NJI+iFm7y%zh9?&Yana;`vA;_tW9zeiBZGE4kv+pX`bM#efzhS~g-aSzYL zTXtl48jPI4u*aJS`7(n~aeF|>mz}%#KIn;;o%^TzvU6Hrtv`$dfVgpQc}KY|D1 z$p4REYI||G2Ziw^ZoJ)x^h~qd4+w+dH~xj~2Z{w;mQUC?5ZN9*uR`#1Mbom#@|+ z2s-^U`o;EK^dA(_K>Y}~Yt#c982`NS&M;h0t~cR3(}Q-2{!H(R^{eU#2=9XRGvb58 z^p|P{L2>kpJ_JX9NA;SEPNK1X_3~wWd2?rTsH_g$W2o2cCk)U$aaw4C@A> zK|9e~?WgaS^A8`^aWeUzM=iw4+q!_pA&M9buL|o&%m)Rc-AdsVs)4XrV!NAmAxVxF z&g?3#yNT=W;<|^p?kTQ&iR<3tx{tW-E3W&A>;B?;fVdtgt_O+h!Q%Q(aXmy_4`o+) z0nXO+XK60LnPZL++VjRLiYV}Tqmy+id^yfi!cm_v=QGb~_QAB9IXnhOySV~JHtc5F ztWR!^=o;Ar)R#cAFND)!^?XH>Y`!?B8M?{w1$fhr9G?#(XU_4)gBdT4_WQ$WzZcGs zEA30!Jw8}(%u2W$kH)bQ?u3yuuY@VmGHbm5Ih^-D!1-|HoiEdpv70Qvg17C+@=Gvs z<}7cN@HCQNtC7CZAA&W0LxR8_px?pmC86JWo=a<6BnR7l@OPEE= z9}Q>yVK_0atn*ibmQI+wKZFP2$oqpZa^}3x>e1#>wOjqoaMIs^v*JoRKgdk)fywym zcm$4&zXl^`&iIsQ5|z(Y&G5DzSzZDoXU_7>MyA9Y z3XSUbg;RYjoD|pFdJY@GwGNnkAB_j#$oG*ja^`$D?rItVHLA}Er}|7dAFfm@cQwUs zvV1z;wj;}@!pNDkJWJdZe8@AozA>EZ>*1`pa?M9;y$2@a*WnR3GJXw=oH^rDV=rm7 z8~f>SvY&zz;z~B(78wiPTE|{FJz(a84`~(;|bI#{#3A5bo7lyNb0h}0D*167GI$`pDJ|2W4 z@9SaY1l~Q?P0OX%e0i=1gj{+((f0+gSbDu>x=XKH56ROP4{{}C_4QBTa<$f)^CuZs zi5Qe6T9(~ekN6geT!8%}29f##Z0mAV(QVrrZ1E$u44XdhO8nIKwJi&FfvB#cb+uiU zgf+2_2<2Q49SUE!F5z^7ps%R3i=G_i+mk-FYPzq#x3^NQ^--^SOF8=Pt#@iVavk0I z_O5cmiEIx2>L?X@+k0~K+3~gQy1dWE_QbT z>aSL5OK1DaT*t}za%X#AtvXQO$CJFyd{>U%OZX=!Unp04`{>xi9DR|eyozYIu5Whe zR}-nTKdPQ!nBIJj`eprGgG)4P3w_b&9uD?QY*(efTF6)1=@ZbEPU_Bwd~y2AbR1}< z+%E1fdY{mlUmcklT2W8`E{bVID13i;@CJPIxGGnpb^HD*$N#>)Oh-n(+p~|WXt{c{ zq&TY3b&)=`_vCvjRoaf=E8Y=ep_V6Iv7V~wP+k#2xxc5qv(Q6D<}1AsN;Th=Cqbx2 z_h3hVwXZ;5-SzHRcdoC!oQpQ{_$FJZe468&h5%z z<8}k8P;Nr`-ro(V{@za73pG$b#Eno%6g}Y+*~-Q{>dY0=X1_mijt!r5uT) zHv(x;U*S|LKVKaplho1Oe)5`Jbrs$8z6oV-NqVal8kPDAJT~7-XGlRKZiLW7WB8C39y_=){^>ycZ8(W2W z3B2F)Zsur}HSJwwiQCsybG^NEAI8hn_c1s^uJ!bi86z^SyE|R-7IoDBu|-rtXJK_A zdR*`p7G6xfl{Nm)g!Dj3F$8!(;b59m0qxu*5u&f^((dlaj<90#?--$!=&8X$QHBxUF^Pwz4J2XtQiqbTz_h`{dg6q0(#+xH z1D?YP&styiU;~QpoyD=6LyE8Jv2T;Lv!@k$%&;DO;E=f0(Q2>Q&icR8Tzj;${vYD{ zy14#RT>mAmZ;0!^#q~ep`lh)4S6tr`*Z+xY%bz*^7;$}@xNab>W5soxxQ-XsR&kvm zt`o&|lDJM5*D2yURa~cu>vVCQA+9sUb(Xl!7S}oAI#*ohiR*lE-B4T?i0eXe-AG&) ziR)r<-B?^V5!WT+x>Q^@71zzgb#rmuLR_~L*R8~LnYeB(uG@&~w&J>-xV~Ln+r)Ky zaos^&my7F;;<}T#?kukF5Z7JAbysoSOu*FD5_PjTH#T=y2&eZ+NNaotZ`_ZQa# z#PvXSg-=lU9hFs@Cn!vgrV80B5p7k_Jxe)J-pbYaUixO}<~!m` z@unT$5nlo$8}EqI=6DiKcd)l_8pRKXQ~VH|4eLwVqDe77#I+H*$?$`C%Z?0x4@S?;hkJNwvh&X0zZ<9cWF!!#2*V)B0^9*86Vhr!61 z^FOJvAVeel%y7a_hqK{II3KMWk(&&kinr{@@ERC7bB1T>3wAW7uMcPXIyft?O!M6~ zdJjy-ufZd5Wc(@^d6Y07TUezr{!}>QPr_O8U_90Xlkq3;2pk!I3`WkJ@tMt40DJ+Q zMtJM1!H#V#L5z%Jp@~_?}CPk@R(n8s|HQbG{r;`2<=Nkgt|$ z@$UNicv?M0>+}XJkK26xy`>W-?`?Pxj=XORBWHe}PZUc^HLi2vT(5wW;VS6-6K0LI zup))>EUFXmh8_7m9!Acb-&xIdy3rFXt@zc5z95|F^Wm(x63xAu-UIWFUXMrM$oRQ1 za^{RrZ{{mnnXS=%cR1a5!YOg3n}4uI3E$-UHoSR9u5X5sM-kW2@_CKxSHih|2~LS8 z*KGB_q2w>%%{y}aER38v*Awz=kAp_?+`k4J@mT~hGDdtd+XBtwHt*!=c)O15PJxj# zXLp9W14U!`fN+-gg>&M1E6-*utMQv`?}fMT$oB3qa^`Gr6)lP!a-Wb^1eNe2D8Z?6 zErM-$5x8{Atc?O5mSb&n!N{4{#@5Z+pmj-nm!@?WnN}T_g;&R=aI##hV>`7v2Je_z zAD7^PIo8L;FmmSgF@f)~)98OFoc;&lT)5KDeSp|oC=w{2*T09i>&WhRVC2l%o!s0( zsS*5oIKi*M>2M{OuY_oZZr;JK;!Qhp{3jSWbB-4#ZE@8o-|TO}-hK%|jEuKm%p^Uj zCuRjK#v^g8fQ2w}<`pn0%3HK0S!4X@aK?{>v*CJ^^LONp$W4Y1!&`P__z)O5bB3oy zd1`DK*H}J1oaIyDjJUEqvw2@PqBogdgSYO;bPYz%oaqG-)0S=h8tK=ClYR}H99Po$ zdZ&brnEYRb2ja;86)m zQO{4LG`e7NzAYYtBj?LtW59h>{aQ+rXjo)PZT)cfpw$FxF2Y`2`|q)~roIQ6%| z338>r@x8vp&X{#@Gaig%9ozsTXI=-BXwNpYb{gp~g_HgQoDEmfxr1*+ZZiBV-m)XZ zzk!i6XLuUrsd+$}#`3Jc2fOy^1o8ie~;50Vg)KtPnBxZ#vT?r;VO zHwY4k$?WXzbY^Fknb{oN$gSf6EcYQED2k#8f_R`P8U+zSc|}o90Z#-3K|pz{t7@jY ztEzXOU)N6e{`q{g(B1vjQ_uIQs;8@~s#}w_i`AH*^(N^_cfqBX$eeHm^5k@u%z<)0PM768s zA9&3~!heO8#{gk@^{qyD;cL#h_W~x-n%r9wZd}@H5Z(l@nMimJteiUGDZ#6WHOhy% zQ(g*tgxZhA6IRfAbF@AXuboJGKUg_+($lr;qczy4y2D-#JB12cG zVCB?#&$iw2twH~iJM=HWo}ogY%kwZ>D@^jA#jPNczX4WGo&5ah8`(Afzj5dPFzg>H z|IIl6=(dQyRD5`*-MT+}HcJbN==}*dtW#VrCCoZ<2lsuboKx z4OlsK(vup#Ds^j|yWBayk4dy9PZ!@xSGJp!7vXgiDZd+5PMz|!@crK!=?}Y;{t)aF zYL6E0xWo3Fw2#H>C(=F&R!*JvCcd|9ceHEVFLLL8KI|PTcX8GrswHLwd=$5Y7y)O& z%Be@d4Bu~!oeustJv8#)awq>y*eg`>;*FTz0+aaHaSMpVzX~g-PJ9CQmwCG68F$i8 z!rq{g7OQOy%T2<6z-uNF{vE8GI^ik4pBi7b(E9V#*PV0nNlc~llZ4`3y8!& z0V}6YocHq37nd~TKXym{L)a};S`;jJ!#R`Rgh{j}lYcjVt1?oH%!rtS zTSSbAjbP=}BVw}eKl$M~4gOMh_y@ucp$-A!n5-MYH-)_i!vmf7p zS5IVpEv%e6>q*jC?1Rl3=!e}w{}T2G6|{Uqsy;St^ymlhx`~v31}mpdxl?{pTSNRm zcf@bO&Y&U|cj7m`1#a+t1Fx9K_cd5Kb-tTKeeqla{=WY>=iiH%L~HVI`A$?^5NdwA z-H3p99BI@e5W%v$y0!~XRL3!bN)K)6e?%2 z8(nLF$@{Cg0Yu(khLuz2J;8U^VE@2cZPb3!9rPbyZ%{#ty$ub^O~Sv!YbFx@f3R}u zgeNjTvCW*tY(+yn=}qT!tdmK!CLI$uAU91n8MotA6B%y+E2qwQYOS(1lP^~DnNqo= zZ%EtKo%07^mr%R1SThNkZ?fJ2ub#+yTUa@D)-%{`|7?|8d_dc>|FFj$cMkRn6}Nb+ zt+&7=ell(Wk@#|0Id$Umg}(^9jxTd(|7qAiRQBTBP;^_&DEI_!3o!~l1}mo?1se&^ z4YTw3hwk*h5Br5me-3{EVz$Ag{vF%~BK5mq<IKH?75jc_xF?5D%Z zsk5IY*blcy^+0#>`@xQ(c6YHe+0qEJ&+mg9LFB$CteiS`Ij;wId1?>pHFxZ%zR_Q|G?1 z7$8U3ulh@O^bf$kp`xD`nBw(znDl>!+d-uN6IeNQ`dc>WllQE?td%w(0Y^f;dt#t(ucyzsgrJB)t?>EQo4`26Fv*} z1eLJ3U)8tTBzrnuE0OG4SUGjFo%>WO*|mqUs~?8WA3A5~j3MvZ1#NBK*WKZM6?O&{ zu6UoS43|z+d(gj(S4|}RMOZm?!V{0E0QPO)|lB5KUn0=kNAnVdDIWCV3PID z{j#;}!rIz_@L)9Wzi8TMjk5Z--Q`?$anE2WS1XiD+2Ufh&C~x+m-@fD{Qud_tjKUH z>Jzf1Twl3T%J%1n`tCGBaARf}mW@h@_9miPTq4rRi@c5%P4`Q`OA0qLmwDcASh&!G z%sYks{_>$k^#g6bXf}LUuXJU_2UEI*iAEFz(u7mpIe#fDVDQLXqk&pv0TkFC$SW|(4CR&j&Km{ z&i7;oi?vLy+&@svuW3jgGzyZ^I+x})tmB?**mmeB*j6aj8ghq?g4|$0Z*Lbp(UJCd zmB_3p)L0jCF{P(a>S2B77za}tqkBdk?a0fBWtJT`8nSH3K%BG)2)i`7Ae!tFuuLIe z$uz=N_5hd8R49eIx|38jv!YxsHsao8v}P+0+JJGe15la+x|S`KmuZ ziGk5&H1hX5Haeyjye>0JP*(PL7as=YLY=~8k`Iao!ud!C)Zpbv`%;k)$n;53)_&J#~d%e=kVQ`!YX z%e=j1xsNROmE{sy?kCIrWqE)s50vFWvOHLpOJ#Y8EDx3CVX|B%%fn@Pge;Ggp3OC(Gky`5{@JAj=bF`C(a}B+KQp{D>?wvOHOqSy`@-Wlomevdqh}N0z;^ z?2~1ImwE3>=HR98uz$R(*uO3FuIB%J4R`yXw`^e>`~ME-|IL>rw`YIGmL;MV9%8IJ z?8(HfiyM4FVoLB)S6lzSk=asR5o2v-Ve{GldfpsF!n&~Gy_e~PmMZGv4M)&=a~=E| zymsRH*_E)ev3`~`>FLZ@!Nf>|{UB?RBkcQOr%+*wvw~U!Oy28o1BkrugOyX~-N6=9 z*gUUce$yTE>##4Vm?!cb3c_xa?yGpcM7l4-%BjVMANc}pgNE&WnC zi*rSK3rymh;}#H!Zwf1?PJD{;SFNnkKE|E)k+4Uow8cyvwB97W46mI?`Vd$-bFONwg+K6DPy0%`n-okDEbc|IYtC_EQ^9gDptr*%puD&_(t3 zO1@{XQW&xc8>d<&P>lV`WB@A@)iCX;AQYA)`xR<@fxcp6?ek@93%Id#h8`35@;@Dg{x zd&924da&3RX!PJc@M?){cY~EvXFD%)=cC4Zz@2wL>>eubP5EoD$flV6+rv#E#y~Hu zoO%o_XgZGVm(jMVYEf{#dlXy)JBS(u3&T-hHpYyDD{*6paWDicryd96`L1G(`2Ft0 z*TJr!5*L}8*bHrq^Y`J^64~AhE2qwOmSwxQM*4Mk(yzjfp^_Hs=$1y9efnkG2qO0v zVdd1hPYvzL*NAVqo^z7EIg@Bjk}lR#L*|>TH^r+bvYrPkj{(-fV-p(dBi&gqgIz-H z-I8_Ce3SJdc=bfq2f@mzv!1~YX@rgjXt>XG$9)>?6)JAAdr5DBNqh}%0g?D1teiUW zY0O{IFG+53=Y2Em6Dn_UGium=llDz`{Y2WIgOyXKJ(GDWd^$|);E%Zje-w5L6}Wgm zVl=^I{s?XYk@-Wga_Y>dFo#9G4jZ?=bE>vJlW0w60J$o#aq(IrkF7>88?L(0~287)MH>~&~dgsO?$hu z-vf3Fwa1Gma-#_*^WAV0h|G6}l~ZRvH|VhF#kYQU@*eCQDtR%#M>NFb--{bUf_1gS@JayZ{m9USfVIYp9SleR;!4Pf+F$gY!l~WIbje|~8 zkHK2Lw=QNB1mNEX`-Tc%e8R%s4wL@9xE)0L_rS`j)1PIz>PbWYsyq6ZVaHI>i;WYO zMwr}R#El?w{~N5FI`;+PyQ79n`ZwRuIqBb&Nwg;E7n|aSX^a^M^KfH`aj-G0oO&F{ z4_7sgeb^HJW$yeBfgOYO|1f{v2$TCkxDiC|`@_nqbDtM>S#^+ypy^8Uf<*FQOqP|Iguu5cz)wR!*J&CSkWl z=Khbm2f!n+cc=ldfUoaIwZx2ohj2@X5%3FGIrRvb9JuRK%lg+J=bZJu13QEYT`cei zj5j&IjaN?O{2y33bO*!j;@&~*TfuIOzkgh!AF^vdDqHF<_lL5~E!xp%3TvFz-*5Y7g5@iA6=6c?UU^5U&VVSE85%meX`CKCLPuN+%u_Rh;`+lAHNmoDnj7y*R=7$1b$vA)o zg8!9_17&%TEDx6DQdu6tOZe*#yRtt^^6L+i1F@nl5G-e=IDQY{MBWG{9v6eV8z7TeXbUgr-{nsE4%j7B%Ho7Z$b7Re--cIDWPK~FoI2}i(phq1)L{R~ z9rn|(PpGiPN!qaeChaHi`iZn3hm}*O-R>ta8sq8XormoyOajY^sf;`Mu+7shW6Yk2 z*GeSY0V}6Ywo|5;8r(hI;eHTy1{JQDlN))l!FLzDVj|z2VC4wDF`m)YW4?F{j3J>O z^XJALg5+cVUdev1eo`^pzoIQOIKV!f9)6{C1{|l>AhUn6w6~J&F62wKs_iki`NJ;X zxQ1<^2L#J1z^QQ~NUZ{_<`ToK0wng;zR7`>Yvad_Fc;ZV)Hd$xVOLqvdUd7~!XlsB z0>+!O|225!#4+SbSlJjuhPXs>UuT@TPoM!`cj!{j0bcMD{Pk$`R~iO!z8i z5R*m>36(R{;xP#q8RA z#hNvUpL7Y^0;Yu~C`;b(0cI}tq$HzAWe^*S=~wrf#{FVum17!l0qh$pcX9m7 z-VT%gxwsuf`e(z+snegoq?t>M5CM0(N5Ji{f2a|#8DCS1Zi^WO-@t7lM#0x$<%lSV zkrJq^LQE+!Bve+hZQO>)tm46hHyj*Vu2%Ea(1wH8SQD^e%NlXy4F~LFj=l+@X~~i@ zyb{;5DrNX5ml!5x=vdL#w)HtfXACX!E?dynwtUFDlofqePZlb;&u78>&7S$iCj9|OC@ zI*@uMa`ApQWWLGzNW6L?>t(QV>a1tmMlTKddG5&1fjvV-E_%7G6(;#JaVv=APlJ^s z$j3;sRGud0@fZ>+Py2h^Y(nN~N3RC+ImX0`_)~ zfIVRUP$R&$`V(x683nuHwh*IWXIMER3Sy)LDytAvN(>2=ReUGzU?#JQY_h9ATk#tJ z+A`I?^6IvX|HZ$y%<4*ZU?5-N@0oJ>woHGyJN%~UEI6vIAz44cwkpz_XK!e;McYz_ z{85*bVQy%Svn(Z@9yi`p{;`%zMCKpKO-5Ue>f-Y1z(2v&V7zL+s`o6OLrJl?@Yp z=xN_Czp9W6k3LVcCSc1l*2p6-PIn6vLP2U7QJ#qFSv8_O&Ltv8lto@^7N_^J4a1_< zwozF8q$|t5O0#NhhW)RIC25L6<7+3r$f2>!$QAS1N+y@h_2s)W{rUb(xg>0|9*!H) zrfzZJhcDsBU455WMscU?5%*6sgS7%X-FJAbzi)oDH}J_`-WK+H$3 z#nSA}*D~2+kw;M0--=glaz+i@bO(nZ3TPS8%u(O5rBVrlW#|~%~^OvJqQ z%(2%|nZc^o=i>Q%pyFSl77-2y#%gZxPTNLTw!ZQjk)E#KFq+Jl-Pj)Te<% zVmU|Vuz|5eL{B_odT$H7cO5rTymxJv<#<_k$g)$G6J$A2mXl;TS(Z~|IaQX^WI0`y zGh{hamK(`(mMmw>a*ixFmgQVoZX(NhvYao=1+v^!mYeYsesBDS$e$8h_noA2AngI` z0M-C3M>QU>mN1FYSowR2IVF_4)~E6ZEM>d-AhkDMH}OGg4_MiFkV=~JROTs_r)r?9 z?w|)?msp=?JQK8dM;tQWWZjQfPh{=E%Bi!S8}T@yQNPih`t`7LsMN*Pt`Q9}`Co$@ zLgarXteiUkY2k@q!~UQ<_WNOhs+UxN8iL~#7l~boZj%Dl`;y2w9zYaTs zinxPM+{|c`>#KOBM6NHx%Bgdmz+A)^Q8c()O>)l4wqz2m$;u`-;ELrR=|pu!>*jdP zM8ccG%Bd5cAHB?_F+awg`H`@Hs2y6ofsJm9+0U2Zwh*J>5Lh|&DA=^=Im^a(#d0V5w@0jeI z`i)}}tx5gF$GC=Rj2Q>(iQUqAQN6vA z?-{HVh9Xz!Lgt&S7vt3vS#JX?r{3o$G~R@2m{+)C&cNQFj_%^wu3@=J_$0h$BH<$4I{yX3>;=(c;4khm@I34wY7B^sZkWcHaqui|3^5L#f|XN` zgN@7$JR1JlQ=Aj}nM|TJ3H=8w6AxkeGTjpDsAzZy`c3b=_~QtiKK^M<y3w`(9W%b>0)3dxAC6ue+0e6?O-e^c0@5HBC1ezl>K+Wc(tmoI2wf`nGKi z^_Ekev-8cFL~F8hF<A)Wf8FW0Y0hcf`b?rVX`DFS5;k5sQ?0VS1M{d8Nxuy%r%t-# zh)TJqP|R0Cm;G+<4ta6QAd5HWO}h=g+u$`5`ECs>NAQhtUx&K#LtF_FLqgq1^jO@B zDdder2PgZLi_QZZ->3>j=_zoOTIY=VwziYJmTzD;KZZ5pt<@O` zdbvsS=fi9Izcy4q$`&zzg8#iWc1XS|u1pXge6ydnCyIL6oSV~w-wAV~S7g_LH@_2S zJtI$SQhA_O=r5d_uQb&Ta`1Y!Rvu`^z>xj&b)sRbvcvb5qq%Q>WkV zPk|ciJ=|IE277|qy~P)>eXC8fJL9zy$?ga%r%rZmBe~JiP7Su_4!ak24i&c8MH|r& zlYcjE2$6plR!*J&IQE2~vA)us^$_d`Dr<4Cf&W+|U8mOXF2O4$a{VN%oI2NGzD|9g zJKuX@hfw*7ye#h&=ubjyFyRhgYObiM2?yWEGqL6&|HlZWY>-HxdmMs+q28-ERp;St0-`!c2vVS%B0nRbOPf(0T+p4Dw=JThrwvB>KwQO!>#M?p0 z-__OGf$SRpZhv=&voAle#<|A;+xa+J&0}w6%e*fKE*yWH4VV7Q&p*iWkFtD1mQTv^ zDOo-(%V%WytStW|%jabIyewak<)3Bw7g_$5m+(u{U$Q?-@+E1zKPqbpU;9kwhq(=y z#ArOs{gk;QG^f_Z(mJ0@WG1DS;M(w7iD}+{ITqx7uaV{@O|~P)=Shw24(@EX#l393 zW5{GXk)Lc5cAH83`|)~-bl(drr%rbY^HMW+(HNiX&UiWO5o;3dnT*Au)S&ey=@aqV ziKLH*l~X4@IgnLqpg-Xb`eU#|sG!ACdcb&-^M!cjM9$~I%Bgd1_tSk1@ORt+-vxVu z3Ruj<{2@g;PtC-4;I$IT-UchDPIgN00Zb$Of;-_q!5*O!7GrhLdb1Bdjn_^j{RFI> zI_VDaXsj{bXd~x*dODM6O+GDhF8N4r^y4Xby+pbbVdd26cFN@n4evhgc=v>zLG8km zcuL(^XEFGG5U-fXcNbVWb-wNX8j=RLq?$6xm{seXgm97|-8!N;{ z-~AC@F_G^NVCB^Lj_1q68r|32>AnKHf=XBRUB0Squ>B`qEs^ctVdd1>PH4Q4(C}_C z%Q<7-j7hX6V-^Q}8e z{=dWdfAgz--Vv=%?px`~cx~vL%NpQ#q%^_b>@^%#K~`^E8ES%Zzf(haqyc4 zD;tBKpd4f5QiGr99x)`;;P+(QPAUh#%i0s&1>3nq?g9u8fFFY6)II=GZ=h+s&1d_{ zCS*&wzB2oqRDXWRG6)_UH&E0dcodfyW)Mtlpja;-ns!cuy)HY!!iU#u6StVHf!$*T z=k+q35Q=&`Ur)@NgTf$QC2>%wz{@Na^>Kt(#9BV`s# zx2d=9pTp}UGW`s!oI2ADO4;xMfk)k;J_5Ue3RN61_DwdZK7?0Fr1}e3Ien^yQctL> zu0O}QtG)xf0i)`hY*2k0uarpjKd^G@RL7U{tFvng;cRBHJK1fR#AsyQ=DaFalp1Cm zbhpMUCenQmtQ%MrrcALO}S^YWOr3trZ->8SF*)6cBqD( zLCbfC#-b7&vDSgaejOZt!mHXIy~R(ud;=TyHO&iUgOXA{3S3V*?m;9{z=$nR?6NPOech=F0O;Oax_MmkKi@eL&o!`rcyh~Zpcc*u=e*?J3)(^ew*uVKd ze_%)c^9M!okSHD&#jizi3SVzrWIvu4Xu55r4g9z(H`qT=DYNsV)+2R+-y{fC2m9T1 z@`V!D+1G{{u%|z}W~jczRV2?IW$MnR6qtysDT0!#Db*T7?JVMRb`@Ebtpsm*eU)_| z|DfY*vi!F!Uzg<@viy%M-<0KBvV2>X|K%loaPbB9XGtDh?3DdZo7ZPhk2Xhk}#x%TpyW`yh_Jws8^-R3- z_#(I4e9+$wua`)7XIMFXx?+;j==QtQ^1-p{f*4eUC1u=l~9pn?^f`FyKQviIV(63N~J zE2mC&Tz^3a`>H$GmtjXx!O9-X9t(^f`yyT`k?Y@J<$Um+TvTtbH(BG=Er$`M>+yf{$r9>j`t3<>pia~)q6i*a$3e7kvAvhN-y z`QOQEYkb-&`10WeI7Y1jW?yb^d_2MWTC@2>wyRj(*Bx3}v%HY_Q``trFC?Dk62rWZ zNNiskyH3B^a&7FGu!(avH=aq1MmG0v=C2TzdgD6%rt#(&vLRkMaST}xRyM|v|A`1l zjPuNWDwXWoV4Q2TcXp?}BkUGyNA^tGv-yTZqX{PS?Qj!_%)4Oa)S1s&QZCi91-6}J z81CKf+_SK2sN6T<+^x+p*?$B#gUJ5FuyO?Z7!$tA8N{R!Lqg>YPsE+NWX{k#F402> z?fyoU?ZZ2uJ`cyMHQ4GOw7q^N?SNtih2|nlig07xfKe&J^;}{sqzL|XpNxVwU;Gs2 zAp3;c=JaFOOIDQLHTqOZwT8JT`l7MUChOSHk{#7-SeI4Zowo*Bf~f8in|R(UpLrphF42uJ0Dg~o$Zw1h^8Sv z${q3Hut%sJSUj=^tv4Uw4#jIHl0Fz#PMvhSKkI0O&vGYxI_wE5VX?`I&y_|WUW?aC zB)bY$jvyN&YgUQ3NXueKs7Lc}$DL^8qxlKRCf?Kh^%!G2^f8q5Kr@NP6Wn;Qan(jnFmyHS<;P)(W2K+82F&d8~ zCg3T2`$5xmGg)1TS50KR09H<&@r1@8tsy?z9q|#cH>|0IXCfBY`Zg>#2_J^nOeDM% zR!*I8r<^i1z-PMyJ_B|J6|guN-I(i*QTkN8Vj|zwuyX2rC#n2JL;N* x8^K}9^3 z57Wwavlo8}ubW8u3$SwflvO^dQU1L<<=?{oz$h!*P0GK)>n2iu7*>v;9AkArEij0O z%@`7Df#F+mQ%AYLa6_^i04MFghJ7Ql(4S}fSi?6K&D|8u8?A9x-@*3mXIWfeUz=5i zgdPJd3k$QEaacww!$mDD%;XZ03kxl}vFK2nH-b&KttkY5-j&VO3ai-VPVDyRq54v1 zIksNG?iDK4nApMYVwF6%Y%~n(&epP-+S&oOd~l$%Vcq#vg&b3IcYnT^_dCn#g1@eD zkh5WO$IECqta;XEG#n=O=?>Mc>tMln95G&tY#(09_H-* z{%ol*Fvu=}WW6ck@-C>Y{rMVeq4hE`NT-yqvh}S4oZBbAZsFd4D%nzZncaKkKHi9T zQ~q9(`hL#stLB-T+&iJ%oG=;@RUKfbz4Do?e->yohMT~hZ==!DLH2R1LTzpE?y)`C zJm{}-?kUT?WVyF2_mSnkvRop|{baenEDw<7fwDYEmIupnsVonX<)N}XOqR=JdAKZ( zkmZrGJc^g_D(klF&thc?Dk~J3f>TyF&BY3~NIbnG*&U&W`2$(-24YAGZ)#L*9?TIT@qG^?0qsQQ{g{*%&3Rj4Po=2@y3;qr_?#E7;@XP023nOv-j= z`>j{6KEoPV zc#PW|obYb$RJ;4{t97{FM0yTn@afz{zBJitMchDa#?u9uR*}*-qm#iqguQ8nvk;b7|c4aJs zCF@no|KG*yB@PtdhLw$h;#*uIxdbq9^{T=6MP>_@nH!A%2783cSigGJM*7cq?L^Yg z!OE$V)~;SPXwTcinfAs^Vl?u7vq#&mUbPXQgU2dmSZ_%T{MLvfxiV9+AAV5LKvC(7*cXBr)6Eh-XIo0WMYc!9*)dgr zzl^gnOochd*%)>xZWN4RD%+2a3~Q79^bI{`RuuTTwG2DV6Lr=F7b}!j<^8)ytyd8N zk=QV`&cfNOf|MgqMi8?^2u&U6_Mkv>@C4b5wJ0)%3j0c2LzS1)aB5T+|5LZs@ zRN^QMPfVqMJ9qE0YvufIaER^2DBxW#lj)YoT|LypzOL-<=brvD3uD*xqc_JyTsu{- ze?~jc{A@o9P484vC?h+CtD_73S#~DWepHoiRH52aC>3g>(ANtrk6_)@b;u}GOMW6@ zKNF0!i(wmup{JN*r+8ga74y}|>jLOa@>Lqaf!!my+8ZE1>G1)XJHX-#k~VO8H)PpTjCP1Gx4b z7Eg`w$X7EB;D8R~V?2*?`~=A6`PzuPDWkD8Qa#0g-gnJts_a?HKiTBkwW@`bmLC-OO|KL@*G)y zRF>z;@;q6dFUt#Ld7&&XlI6v+{Fp31F3Y+sKOxIc%JNgP{Io1Dk>#bbyiAruvbSV|JKI+rZu60Md3U&n*tvF`H%{JLq@oI@| z2VmvY*^Xn25*pbrx|97p>-Dg5>RiWX{kO^**~=BVpVoVyb|?G<><}v9X?#U0V7%FfAIB>va()a} zPM!0#hO5M8OAYmucROd!6PZM7(yN&v)N-?^bf{W~?7-_M(jEsZr%rpL25q$!RwMpF zcjCLiexY{mIU(Yz4Q3zT3AcereS26rb?TEE)XNo(cAq=#JnRoDZSiR^WxGjv1ztCi zat2mTo${=Prvlr^HQblGEjrq0Sv>gvtF=xDiC|byzud?#)b%?FG|#|Hz&9 z4`7E-d51GKehJ z$vzJ&r%ra9`Eq#vdz=&RxlE!piMM#qWPLY08?ThebtbHwI#+fNhw*CoV0W+wz@7km ztbfAF=&?)iT8U)$hLuw%+bPeFX~XdkzM$e2SGUWvX$IZv@p_4LuYr|Qr#qgXE7Rcq${p^5uq&u=#XAXc9L`{S zKVB`7?K)UFb++T!30RHnf8EKx2|I#HR^(Ftv0a1f>v*L^uCKz%V}R?L0gdZ>w{p&r zw_*~l%#r=maR%2d@k)tYH;0u|=i2U{6W72V?+*4D*b~$aE1qh7t4*>;;R?RoBK&w*V*MJs1ne&vACYtO{1C9*vYR!*NSzX?HOdz(AkTVYpVY{fkg z2HRWkYKd%bhLuxiJ0*C_g@*VEcf^mw9-$%@HyZ}6H%I8l@Y;!_ABB}uC*AJfK%xR=MBNvg!$%kNDw`tUfsRwCK;Vdb$vwyba4*~OjgPOvAaeYZiD-DP8t-5#%% zNOm!-oI2TY?4};A%jVs|u7Dju1uLF!{p*Dct{J>iBG;2(<tBJ%%}Vd>5UQjQM^_n*+*dI)X7d{WW^o%+Nj*|KIe359Fu5GIyHsAJ7}72 zGF~6An#lN_|9gxlH65k*;ho$eZ;yMrqfla>b1AXA(=V#GSMoiBmBNtau27jXH{#RM zlNaN46De;4E2rL*Co{^8FH~rKd4)UX4D1l##%Oac0JwoG->JCvv_3R!*I>KWg*-Y#hJ;o;&8dVSi9DH%D!0yGi*@ylx`p z+hOI@DK|%L^Ol9bxMO}Eb_f-7c+|GuvhXZkIg#^IuyX30JLSiav=MvuHqKf0OeWEq zEL-fuYJ9~>x=`JsF%7Sn$agZVJO=oRZ&Yb~m$>uY8+Hb@4@QN8rUCH#vmwyk;Wddtv3&2~T8?mf|Cb z8sgX85x)w%gNj(JXf{nZ8NZBIO=SEcteiUI35~B)YKXUdzjHdhIg@BjIxTu}!*Y}G zrg+Un!t-F|)CrGcUk%mZ9_bEu8SDsZ{}np`{7;=q*Qw{EL-0z8Tn~bkQ|H<#Kjf;h zJ=2}-X|OY>Y{hd@;|sI~-!*u}M81Qta_W59`y6Ap>@DtaZ-zZVg)80^^REIMWN*T2 zC6fIdteiU8N$Q)&TIYSto$sTtKd5}g^O3UM9G@S->n2iu2v$y=^2FxXs5Qvrx|~z1 z^_fI#QY(=?H%&JgzXOw~6B)k^E2qwQJpW9%#&>&nzKdJNSM0(QUpF^K>22_8iEOuq zl~ZTi?ti;oLz{6&dlKvk>i8_?U;f2;gX{@-twgfN!OE$V9cO-kuu;Pix z`u)KR@Jff{dU;#hdTstcUi-uAwRzVrVE=Y5Tt(`DS=TkbLwL74;X7eZPzg7>Zpm`3 z^X+)8!yyik{RXT&2FRXL(f8^+?@snv*b^XGX0@40J%!gwB>P8LId!rf)l&wu75$sP zGZ#DO%F~!cYjS0AJXF|i(w&UgOQbsiR!*JngzDgmS|yv)`|jTEeD{F8LG8O@nYm%P zNq9HBW+LI8Vdc~bk2Ajy+wTt7gB?MIE0QYf=V5#CN{L*%Vdd1hwlf#$Ul6^<9qg5` zC#YaWF6CQo_Shl3RwCI;VCB@wj%Ne%z^U33?mBn0_rb29q7{o5+-#HWy?C`mw)eow zV}b2pDW|c0)t&9juq#lu%xshGi+Hs}wts__Q)fG+R$)%cSU-TW`L@pa@}^9pHTkl* z{x@j7NqQb$JCXFpuyO?HymuX27dc~Sk@vukZEeekyaz?`kSHD&#jklGC9ZC+rW~_{ z@7)*@yEG+^P%nS*0%LILw+kRWv%JE)4PlntTD4Aez3@!AMq1! z^Qa$O!6fSw`?Ix5VNF}c|J1_yLw=oNVd-QoR=3)j8?dz~-Y1Ipi()Y^tYb;N&|S_| z7x%C}Q7e?$S-8c8RcjZs%JP*$f4)>>|3|S<%4aK?Y_T`LqLTH0-lcxM%m1IjU+)V4 zdY7=Dn_r)hE#>;k?8IGveyHzGLATz?PTu7!`BE+~Tee&awUJvUm8R#){R8YNDKn6* zWP924+$R-JmGLaS<_TL9ae5cSFup7WtfNhrGM6PrR0du*r!s- zt_^epjr$$Up6UuU9#Ny+yR_+?+hFHVk z%52mEpe~Z%( z*@i|FLNi(;1@Y7jwkh{?jL}$4Rr3U_s1z~5WMf*m@!G_*A52j8FE#P(1AEIF1m3nx zCq$+`lMg{*`^~{;PrQEO;PXLP*%*9w;S$Lu8neYT9rl^V{1j#r)@u#sCD=1m=3?5h zwZbI761Rd#z7JMTo%|+hsveg94es=>g}pBX~@m_}kqsKj^UxDAo{#+q@7<{PtXwYE%SxuaHQX-B?PEr-*NKe8ra1DG}b>XjC! z9krTlNv2kAv?DabS#pox$Hk>`kKb~Mv9QoF%i;lTGHTl%Wob-C|Ak#<4F~VA#mr1lQU}e!Qd7-;~pj zY>F8JTj8bJjmACLkl5S!|`hkzIw668HsFy zY(Z$Uv*aRI#EmqSi(JMf#zHPKHPm)(9{L{4&&WdVhMi>%0q6Lv$zpN?oYwW zsdJyJa*pBH&)&hA{Y)k?8d;~=+vjW9MyMes|7o}(ME;Xu@Roc+cMqkPSW63k7MDWwT?FR-WI1AzV+Pr&?IKbE{=*DUn;ve zoJ)*_>|#Qr+1fO-2Bv0AGlQ_7tl+(FrW0aPmp8ICfXSNGd$0;#GjVJw!^+0kQsffJ zA@s1y;}HYnI(>? z!AD?!Q2C1OyvlZy@`v%diIhJCE2mC*no0{Sq(A9S`s1)qsH8;_7`ES}eGy(ik@oqp zas=%dbGb?f#8ePNLZt&8aT_Ajfo!trK)Yq%=7X#W*pOt6vU+~xguv<8h%`MkC0SC0 z`{NQ(DZ)A~F&0vU4$){WNq7k+CVP)c68-^u$qL>31Jel+sf$Y-BrI94N)!Hy*Gn8y zUVxR2A>~h8BDpkSikNDxj2G;L_DX~CCQJfLmZ^-z!NZ{S=HxL4uboJGBUm|g(lgXl zYo)!^o%VsSSE#hbksrMUCh`4n3y8$`ft4eO$C&F?x*(>77!oR7xG(M?CDVm<$-aG< zF;Fg4tL0K#rc`8yK8odPHS`+dVmNHAF;{1=2u3<_%Bs#2))M%ybxE^*tA){_Daw*G zTo5-B$r5RET&@JYZ~|8F{`jd-{AiLVBb)=&kO9Y)Z1ZBHNVE~AkzO8teiUi z`D$v`J*P!L`v;sOU;`#G8cC(u^EcC8Q|N6mqo579g%}0@9jz#cku9i%Lrf_#Bvit2 zcHD-@gky2S>l5rUh;lU_N;39`gVs9c)UzWd8U5K(VPLSB^{>4c@wG+pm%F6dp{dN0 zX6y?GtQ=fanz0v`h)gq*n{zruo3#<94~AvTF?rZYR^Hw*OeX|HE=@>QvR;)@tibCf zjwTsc*_cyKiYuW;6A?L1qsi_rR#6_Tnkk4|7$RQ-bxBm6S7DD(83&g)qe#Du*G?q; zBCMP`>A>=)mG+i9JJa5rNsPvGhuNd`<;^JKo8lG_iO++TBZ$YC+*N)criB<1>S^PK zxS=bbHeO0LKbTQ0_qJu^bEai^GY5yQb%Yu9ZdZ%bR*TO!{BL?I6%^F&d*lZVc*s?}k zOP4pL*`cY-vNkcFH3iGjWmu^+V=k8%3u#7&XtXxO>o?s&b#;bd1>*%(efz$KDPDdgIOm2sKb;+RMjVUJK52iGQ|NEh(hiKKgA z<lPzi(Hxmm16$F$pZArZNv+ts8EIN&elq6-4q|z{;tU4_vJq_M1lk zL+iR zh2B1Pp>Bm`8QEU{Ge4mW<4QPst)W*hkDOsR9SZYX5o$zeX0zlRLviCx4ezGo!)v2%(3SV+ydg*a~rH|j6Jt>Dcg;Hwb59VY#!aXX0gpMaH9ryqC~qI*t@fQ@!@j)3V*Vl;A3 zv*+utLiDznQ7{F!g%|}BVdaP@h><*~{6kDBF(g#}@yWR1Ec1_lC7XZD>SHr^zQXR$ zt#tcEf7$=GU?>MU8jfM>5Y+OU{Y6VeLmKS}O?8$u1F(i}4u z?#Im`#=<&SIU*KfWECng5tB>|36+>EjoT2JnDi%m1Z`Tizg(`drIF%xmMx)EKZuTG z*6^ded4W!k2&0+Jv<;z?STnHPUIv#+KRUU@SV%u4u}0&yF=u<2m~5(g^RgKBmKD0U zDbopO9^xJ@4W6uDB^}$~^%Dn~tzl(jka-W6NG|DUym{fhG=h1C+2ojSoCJG@$~^Su zCDaOYdN~2Nf=K>2SUGj_!8b1FC3y6cwbFi{8*gV4}l1nt?s}|jB8uxj-qrKJOzA=-)l5r~c;HwtB9p+Rs3%7$v ze+I0aI{m<_7Tt4N1RUfZ0sF)Lp+2= zaQrClU?vleuOyprOkYtcXS;LRD$6>mec6G0_!7Sh;rO)%Uw!3>TRnnT=3w{hG+WSU zKxlrmyk9vlZmg-?;~XwACUOtG`PvBd6_}tg2Ym_lmo*5yE0|7*jojv;x4;~CzJOam z9CtnoD;wj^4O}9*+#@ji=$_Nq|CU*XJuMjQe*^o6%3hy+^tPB$@Gx!*F$#VOD@Q~@ zjHyG-K4MUbA)#iUGvhWy&OUD@yPiI!Rv9eivNiu(xz$zOp*Q@q_dtW!8hI`MQf{*e zyal20%`*4QWUa#Tc^PSH?wQ6V#=_h)HPm)(@YxmSXAC|cfSqLx0q@;RCj>@*DK})k zIo|AmS5F*owuP0A@#g(pBDq;deknKPGL3i-Gs$tf$-$1H5)XbUH`EA|`^mTwMDELB z<eTQ4OdpmrBHV92x|Z~R#}6so*VJOw&-+*fg2v0yDUk?Lvd-Sq~aG`Vk{&T z?S7NB(d9LmmXS-m0{h4c+^0u zEPS`v6YY%#-_4i=mRM8y2ETk~r#v68n@D*steiUKz?bhVqz`u|eJJb`Drx=8cXrwb zQnfq zESjd9j~}<-RTIaTn_*>Re7T8BB$qQx7hkVwx=SPd1TzOq;|fLHQHcOzZbWGNc|pIIf8nOxnHFZVv2|%q0)za;xTdOBE){sn(!-95ci*OE?;K2bHc^ zQEHlQGCl&Yn#lMtSUGjZQv(Tt!TDTw&S%3ep>m#~=LWX^dCV=9xtQf(@Kv1dQJEoSO5 z3Acq91)Z>R>QS(8Nx4+Zvi)F{E=;S*$oN)+U)e~9&1XfO+^-PsP*m=L@&if76 zEmYpKwWJ}kf4_#CKxF<3tQ^5S#w4%u1Ti_pkWhKTVBChtJYkPyw^)wPc6;T5c8T+D z`=W!BHPY%mBc};YhcFtphvq2DV#Us^J=lYn3@(*6?8qg?MA{%*t)&giVP>+8Ds4Cs zc9RvmcQDflA*qYBp@BFy>pk_(PiH2daaJhv-m0T#GSNcF7f_kzbe(~ zALq^IR^}_A;~C$CBi0&jEkER`tPf3FmSp1VaRW>x6JO;Lk;z1Iv&_V1v$g5vQ5c&s zy*vW@$x7b4m+6F<$TOZz)6LQ4A-rnh=<*9#*%)1Z9#=w*E+T%MMwc(USTVT5yExe= zm1+FAqW`VB?!0-De53u)WXKw7_5KkbSKO|f5oa#_Hjs{!PiM`-l5rVqYNVOMB_c^F`6CGPY; z344c1U;k80xFu!;d>prg7y%c-$`KI|BU?}jhnPlUNT|n|iE$euA7`c~{6>|18F^K< z7{0IlSF8=#h-D49mcLPL*dCh3ERQk|#$}=sjQhF7SV%BBWvjJu=3g)~*@4ue=u5Dh ztk}ILnNA3ae52aHB`a1b#Xsbn@DeNCAc>UFC zB>V$$6NvElgOwxT$C&(8{vc+F7!oRfSQmH1lKI0olg%F{uI$U!D(u#~O12zY5UtZA zR|c##+UkWCuT=>9x%r_v%aTT195=>P8gT)ah)g4rn`I`cc58{m*I{tR6!TTsQC9Ze zwM-`jMZR5Cwl_vOl}mgXubVi;d=XYQhM3RCl~6;Bh#;pS=3Eym*qZ23$*ze`&sMAD zTp?R4tYT}T)m%1w2ltDtHKXyc(#nrZ1zI2)5Q=KcQ1iFAh}2N?XD$&r)FikhIzw;1 zHsVY_03~RQI8&I!Xe71&WljsRksp`RTVRem6LAZO<4y;xY>YeOxI}WZi~O*q?lq13 zp3Ew&=NjBU2>Zr9)0o_YAGXxnVbb3Pw}VK3Cs;Xk`hic2>7LUfV5NHm^uhk2Mu7fl zF}*Ej6y$MRh*7WtR*r~*7>R?*J;am}Lqa{?JQsIjlaDt;3FjWwa?#H^*dtE1)H_(r zhIf5@1&&{9@DVP|aC;%kTM=wTXpXbwA76?aZz})z0+)!)Ka!h_*mt!V!$9k`LFhpk zqA?BK54+162j1OGCxk|(A9@SSp=TX#0deTL4^}pYo_pg;sG&zhlhe@iSr;qVW6yEP z4m}h523O=OZJ8oFn;u$OnRFnUHd%wMe!|ErE6}lcZm%#m6vLL`rIR%QOV?#gso|xa zOGFMY2|nITQVrKemc=kBV`SL|_LLR2H;?IrsK})hWxF}1Y>n4V98=x{D;s0VySPMx zvxwN{t^B32K8e}m_%L$<>=i2O;6`=T0+aZ0xCKPwN5jgg6Ax@uS3c9IU+hl(0@yQD z>iR}?)e4jRxwsWX@@K=!5#(b`{wjYE(?tvk_2{xe+=j?UmzfFY57{bPEoBcb-TCmL zx1X_gU?Y_^;97g=t=cp_G;3LMiJ!#9qH>8JafvaJOJti3*G8JZ!PJag;?JS?dJIM99}nZe0c^|HpZ7HxkTc*L?r8t4?=sW!Fm>xz%pzq>tHUST3`~N zfm=W%J{49@op>OZP(IUo`2OzH_k}$}rLN}^sud>ry>Kgt#iIVq2zAV*k>X8K{)I2Xo;s6rBghuQmAUwUO5)obKU~ zZ4pgrwj?y6S<;Mi;)b3|GtT4^V`B3hfQMlRQ6pd>kAPts zV@^!J#El`w!2_^z>T$5SI>Anfh4l`0j)nihPNK%bmfDqo)&`mJ@D^?mF&^H4l_TOI zMwX!x6*1w&kWh)rX>l7O6P2E1Pv>vIwjPIGmh26Otu^La{_!K$c4!xnk<>Zf8yd%nZm!h#8}7_rUaX=r3{-bMd`^7 zrH;kTXA)ReWeostBGUfBa0xKKi%R^iuxtv0~VAx>Yafow9F^)-$Mh0oJ4(+uVhWPrp1w`WS{NE!U z+-uSFnbyO1a;LsM?(+`z>6(0{lr0WjRBx~3dj>0oAxjT8_F6PsVdfHxaVv=Aw}F)- z`g)8+K;;r*x`-j6a*40U4Plu}EKD|+*tkEt(m&_Es=F;yDwo)Q<$L+r_t3IM4Gv)I z{L=Ex7Jg&=w)jm^EeXwNmOSH>xUr}5j1rd^3wg#Is}HmR=}MTVk#Y>dPP2xDcP`Tj z0g{_7tj#b-q)Tu!h$GS`VP#`P`Z$+JF8h$1Ev&B7BH%t|n&Z;Oy|9C*5fI#LVQq{V z2lwE{5aZyxuyX2g5ZG*Cb)OasFT2OWi?EZZv7m3Zur|nyhri(l5#!;{uyRB^#7Hw# zrXnVs7!oQ|SsAw>GE;dz*|#d4JV)s%76wA8$+m~01DQ4Q>b))A2kK`f-1yLBXURt1 z&l-e1-^ut=*~ojj#8}8iCN!F@4LL`{)MO*oo0KD9KUu+hdoi65llo--CZ%DyIkp^z z*GwE+mcq)$*m5A3NG|7?Cf-0ayrpqIn_1(SW}E^0gvwdmKp(c>qzPr5yZddPW&sdU#P^zJ2SHlCiO4jHV~^* z$*y!v&XtRU{cMG!TFd5EhH{9%vzB0^lr`W8IYj&qGYada@uB(3l0*C@E*h0XJkKS@ zLJlz{*mP}vnR*yX&d4JsF$pZ+vcmV?Vh#&&kvlSi)|=x@Ctf>ooN0%Zjd5lJE|FX= zA$Md1J*M&AomqtSRD<`fuwSUWgF7;UZ7`{S0JniieFs=Mb?Si~89}dU{yZid6v z8f*1ji^}T@i{Ir7Sf4!zscI*@&HWBm{xuU`^XC1yNl_Bc+@-j zas&q@YgL;seuCFZ97=u!D;q<}54c2f>BA)PC~x8W2D8L5ZFmj#2bHh*hPSfaoG@O& z>n2kEC#;-0W$tPozB`R*s+@ zV{TXJftU(nNT~GSGjYRKrUze0_SMCVLa9(IWQ&DU{mXp^jn6rE!$E5uTj~QXP8L)% z8m$P;RF=#k8#m%q=I{|NF%~k1nMV7yG~z;-qwHVmt;Ttpm;Rhdo*PF;L9$!LN( z{+xrGKpcP0gq4l)=QJ*nTuw1p%*%$`H1c;avm6tQ+hFHV$;<3oJYw9l)%S*V;Sil;DW$`k`ROYb>m%#bNz_aJV zh#279rf_bu<=V`%1O_MDsdA3JVOLq%dyAP)2utG)NRXSXT`ghkf!9tPW_E*>jbUcz zxDslZ5mDqc%*=7If_+P1e6o)_>U`RE;YHDpvUXruk~Pp0IiJQ%55=-&h&d}R7B$42 z&Ltv;m?Xa|kd@~?w$m3!Z-S{ABh2SuPg%ixmoS|W743W)gJz5`pTX-UjxX22%EtI| zHJ6B-=|_Dg(axtCtRG?aU_I1e{SfRGDr?*MG#l|>;1&>x{~T6Mow((EnnC>?cj|A$ zo}p5YI-h1E{~z26BKd#A$`RyaBmydz5Yt5r3H8XbHf}@YBg;0)zF8gLUFgmB_h&=< zwe~zBJW8FrD}P=(UlbRL;$l&JoEO$$tDijLdTG9x@6VTNs|(fq;=-!6T|I-PT&+-M zhbp`L|CwJikgpW{-(deo;CH(kR);35Mha2yWT!Fnm3%3eAM&nc4`$v6S%ZQPDZ1VVGfgNjQr&@*UPKI4) zjRo&8rW2x7pTw8V8YE?RKAioUsCYSE@vvjfaZTkDVP)x>&SIfj%P{x!OXnQVm6A&@ zriw*IJMl}IF~Qt|8sy$U(=(rfJwt^pu4)UJ-$*4D@;Y8U5&6ZivW&-zn!ZVz^-Q&x zXy^R{W||}K@4;@N@)mDHj3$`O@5W6aGQSg6j$p3x0cw}3Ph2rrEaqz&f4~UM7`T?F zLU5m`mV zb75s;RGG~slFJ&Vh-uf#_;6+m)*lVVhr%AAG8R`Z2CX;ekAv~riKGvJl~X4@Lru6= z+NZnIUJHALN?R;H=`Apcufi=L60gF_5yWH6^8OSp9(=^K5JN&G3jdBfImtw!KiNcK z!~Sx2Pbf|JE*z-VD621TS(?C24oyjxB;ng}14<zwI}NvyX~~M$LlB3UJNTo(2g;ytHeM| z1u-O4V(`tlgOf}QPDwT~7{@+%TpSE#2CLyXwFX)JLnCGexk{eh)K@Nz_+p~*i(SIn z&?IC@3TknKNhJlRaEY;y6pZI>*0O?YU`DdLsD*b>@@%)vb?kro2PH;+(OI8VDCLTS-T9tEF<%{8 zKD4M_8L`teoibuh-Tck26@^lFCO25EmHRV||2NavCp1LJ;~Rfe1uFGc4YW#nl{YYy zua9S;TPX;~E%VN2{4N+;=3OAm3wfEZcl2l1bms?ZeM3v%VgJ-O>@Aj83@xjV&t(Vv zM-%q16Drx&N^8(t#!fmc^A6|#&G$a760tEm>f{Q3)@As^6q^kTOnXwemKo=mM_$F- zmqkL?dUJn?>4ds!eG8sj4BH$t)3_WrhnQ(x3M(6#M$)k`j`bsr_|I4?9Etw~c7%13 z_e|m)oVeflrR&s_;g9f2iCljGE2qzu4PqMC*W9_j0y_fZ>W{nz*MH)b61n~zR*v8r zBdu3Y1|l_xA)!*kypNXW**B!!gj0yjt>c4Tw<6cF|ib(Lo`|&L5_zR$^N2N4Ud7n zWX0?)VLBlqa=Vd)Weg%m;`I^-k!7&5F^C+(C6ZehR6irs$|!W#`UcoDAz*y!Aq9fOYz|FImNelX zaY?APq`z{Bv5+Q==WW)qgqg>pq-3X2S;90Xf#p(G*xozLQz0Po-J(Dxt5r{slksYa z1IYwf*%(O1bBW}V1o>{!MtE;#3f315!h66Dp%MYM}b7HzEi z-C29EQ>d)&YAann8au#|7Ne&k32^*e-~~7k@-ScIf8kN*VYFr1cb!mweMy{Hc@DD=URY8_Tucz}tU9GaIbsX{((K&ez=1(z5LsY1Ko zWGzqlILt}*7`2>m5$q!?YHu~u3Gt8zm^dg|t4b2i$7>}HA|Hj7jX~rrE|FZ4AP+EE z_IweVGgusJjp zSyF?|Sv#;qT85NL4L0QxV<9yd&)cl!1_#2VWD8YpupjIsD{OBErV|1pUo{9+vRaiK z?1NWJ97y(rm5qVqgIprH2lB_Y-qH__xwV`>)k{J9kE&-Jo{GLlhCI-pP9plW6&KrCP1tfcl$_m<; z1eQ8k8GHX^ZVJ(;iw*47jn4mtvDArU$D6RSF?PHjS3->)B4(V%j^Dai!M+3WX0i_# z8}{g{j{Cx~X$`Cvt~zp)LosU^LH2_ChYTn+g6z&EB1ez}?^bO0o2)%qVu(C0ToWLcLn;hh-qlNFK%o1!8H~4-E_6L=3 zaMjUHxsKOOq>9Tr@}c6CWH&f>WQ#>}1JnOlBd|fq8fW!v%l0@o%??dSmIUFgxI9#X@CKI{ z3kkx6MzggfVe=DEUdAM{DU%qD2aU;0C&Z*anV*zxSZ*GxoQKy;98@-jm5o7V7MDma zQJ5w!Qfhch;^C7TLtXIaXQIE-|uQsbt@5!WE^iW@*GLAZlU43i)Xd#8?fIy*EE+)3h{%YNU# zL}$f_PHH$|#N%U)U+h{@%;r}1XG@vY>@J=1>Y@6FTTn@UZJvGZWMzJckRUcJqc@?C zeWa{V>TR}QL@7}o!9~wG4B_0?9QKhxdq}Yv+N^kmCTBKwVE$xy4iQrR^_{! z{u=pHY`DKV_Qr`c(UQaf+eM{R=V_!9Ip^Iv@ zA;RGvJUFF`YJ<6zdDeoFzkGyO;a~fiX^u`Uyc)T$1ra(}s+KD?Hr7@1z5b^nGyVB& zX{g?tNL7WTYVtp%)spa9Rj#ZkR2vgT-n&R7BFnrdSOVl?d_|W3;$`0Z1T&mpljnVs z{o69{Q~bX_&6{Jn7w=*AXY8F_Vwc`b*Rn8e6=2qh&Z_`3n8awT_WYcACcN4swx?(f zFdqn~;sy{O2q(eH#sgu}yeBjgVh!}Z?x6RAyW+LHTVdc~b zPYXYkXq?OLoQtqesGP;JUf6z2($HmnG zA@fbv3-IcRtT%y`Q)fNXSV`1)AK}jXFxV}`u6}uY+j?#OKXq}(fYBBc{!-i)BK!kk z<<#L%4y^BL*w1jsek$w`BKEpS-2%p&oLA$O6FJvl<GPFuIyAn&b?5sV*clk##w!|w@56Y-M83a-l~dNeas3&jUf|XNeJY9R^r;*;yope{rNQ-4~tpO(Q z_u&Q*`}87MId$HRK3%J5q(9m~{ z&U#94KZu6ZGlo@1C*TIoqDfBwCYg5BvG< zNqDtHwwTKs&H%4jQc`tX?yTh)bcIQp_la;j@X20GQH-pIj1F&-H>}Q)!E0i?! zMR)WC*fUi0b0g5R{dUs1YK^Q1w}MDM2P=<3@@(gzM*eDd@>jr~aU}2We>BKnhFd`- z|7ln`b@Ed~J2^GvKXpg`W7s8B7^X@+&O*#ftMH~?)1D;opQd@hmPZua@&NVt(^n*5JtmN_18KMM8_mH%cu&5Uk~ zISn0-+d_Q0D+kGe;~S+I|&k?<}a3B$L?jE2*3dx+7n7FLdkh8P)z zN=n336GK8JC2z;gu4Gd3V6u1Tbe8gKYT2F|J8BoqL+*uR*BW?)Gn9dkevWuNI`F$) z%I?q>1D+VDg@b8$jgU0V}7@ zdzPApqnPjM&isS0W2nqG)^dqvBTVkQ;6@O+?*uDHaE~$js{}$!6fq=J0`cv*1C~r6 zewl0nF}_;pEv+bozb}3U9In<_BOCw^qy$j<(6Bl*Pg#)jN^u6GmZ^U&DXM_EaNrS0BppvhFc3i9K=ly&0m((;+41@ zRBG{0E-@BTi*~=s+RUCv*x(L` z+u(q;MjPQ327Z5WcEvP9Syt@c51CE~ zOr5mr`Tt5K!)O zne5K)PG@#znVn4n5&=1d0XddSP!takMG*v16hRb45JV6ZMGyp0UU@|jK~R3xRW(yx zM`xaI)lT>R_=83>`PNg60_S$Nw-%4fjJxl>L& zd^$+~Ae{8~V4qM)n-8CE+TX$3C(`~lteisIBde>zK%@c>2~`;E=-Uxl7#y1I!{?L_ z7c1-trm|KWyw3W7#U$r2YwX$fG?;d0&kacHw6xlqgtj4!;SLif0z~6P?T{& zy~}?q?+EgNu5&a;GnkGx4jVK0W0iEcY*!UPZ^7Fo2FtBrWh+<;x*m~E1xsrAnbzIzB!S zv2&f^PaYiv-CG?#E?($6*68mTh~DZbI})){tuS9zJL#;xQhz_?ghF59eWd|*25_O1 zT`1Q2dnreR`gWl|KEJm8F}dFI)rDD zb9uc-UhkFHU&!ly@_N6#{!(5akk?x1(8ki7m{ULTg%NB9*!8Tgy*uVp#iG`(5y z8xu}%FgvgZdTYYzb>5Zm38$->j`ld;5GTbpEw^9Xzlyg^oN{^@R<@>`vL@UeKW-Ux zx9JO}yET)*-Z(pFd?K6fG(Mfk9}=y}#5d!u63K1}D^CQn*2cPrg_AuP_5@1SwUO=t zc&kLR`@_n)lbz9;VlZyp)5Gze0=t8XS8OcQGTn~LC*e&K8Lxtsb7$P`csG7yINs}F zPf+oSxa@u-ejVN_k?ggwa_(fOH|N%joA-%ux{tx$pwbmJRnv0&-hC8rnMn8%SUGpX zv$dH`1M{q6aB(%ANpz;T5(}R-^KI5s@aBoEC&9|Ov+j;3mkq@42}ism>TP2d+4pz>c>@+#8Z@?W0hua4`g9=w1+1h*`Veu{C4HNku4J+r)w>y5P zV!#~>hkHKk2`XH1=khl}7TI(0R*7WKhLv+CJDI)BGQi#u4)!+K5mc~K`IJWd3eMts zE8ZxP>n*Ty?p$Z}tJjDI-{-^mJ_kF5%2yngo-p3#{4Cx$k@M5Aa_*eFTGR?eO6^ycCP1Mg@!-Wu!;DqbD^_}0Y+uHkC9-`HR?eMmcf4B7K)dxoaJ~FyCeg`ynXj?4 z$Zm zN;un-U{6rlisxLuvede7SK+M^$sP|Y=T3I2SRHGyy*`}nb+9j}Y{h*mSM^$Suf^LX z(!Cm1&Yf=R!CsGr1AY{C2NiJJgS{TXn+0zp9jRA`x_X+gk-B>NM=QPcQnjLOgYh4D;5tWLqt^EG^K71@(kM^rzwFRUCJru^G?1ggz4{>3FyH_OOw8^TRj>k1>$Y*q?>AlR5mjK>4P zOs1o8YHYz57Ol2B_7vR)xH-fywH~Z&g{gIYB~+La<18plz2rOEWtjR_cc%N=P8Ov` za?A7{=11%UPIoNo_@~Cx3zgo%YOPWjDvmkg&XK<3LB*ZJxI}8)$#7>|XC?bdn3TL} z)ZT6)(g7{w?ejDr+(OV06Id{V;9- zk@thJatd#c?5+v~kq|s2)N{SCuy9!9vyz zthAN`N|gumxx_>$4_s5$JHwo;-0@!6M^4nyTbYht9jtE3`rUY|#31rcSlJ39+jEKR ziUYavz2lX{GG<9&Z7>M?gUUC#@xA-SL=kVBNO>u&oIB;j#`g}=mxhzR2=)n;w7K!U zoAw2G`$XEGhLuxjdt`N07>HEhA)yL`dA=Qyg~2u1PH;}*UmGS1gGX2guz=(oV;w9E z#8#PY3WJAyIjF+m0WL8i3IoTNtpA2NS%tyBU>`YAN6#=FS7G4(lJzCLRbmi%0amtx z$n#tx^TNQv_btoN`_SUM6_dbvr@+Poy?vxXSfrIpc;iNwb`-Do` zEDYSVm*DLaX@3M(PND6Q)m332Qh|qrDh%%P4NkH!*elx^gURBH$Yf=3Av{iqmeK(u06jFFk#|>3_mLp^`Qyj@-2Wfwxbj{eQ4>3T=;~PSu4X6?jOf z!l35c5m^|llkFR&S@l|}+||Pto3leg_2O{HAv7{M2OHtcquyGv5HHVfyF9-6!^N@H zEu*!Z(68r{vgDHNtjWVj|QCYbU#I_D#*{Iqo|0%ptV(fSVR<>ftW4;n9c8D<(6gz$pVg)JP5cE`;i2BFgx zE*p!Fl$@?JM!-sD8deopBVZJE5OoA>#z(+vI%6lJ8g2}698_WD+{eM@s{E&ng)fJX zg{xpEQOCko#`BD`L-u&M5;urA9TUJjzYv3&tgUWw>*{j?6HNk$t-d$Z=pFFl|Y*BQ<#$8>5H%Aw; z%TZ&|MrnVrdD{Yr-bs@nT_sRv46By z8gp9LyyqLRsKA$o52- zl9e@1fL-JS9W7%z8V>os)OnEYad@M|0J0obwgSiqm&mRtm?56NnWK!F@9WHvz?$Hz zusf)9#Q_p6)9t6nui#A+8GjL0&YkgWHD_RR{%ttthhdjcInOhu3!L}!gLv~q*1v?6 zQ&@Xsb5#(CB;X;T3W5WCJ0c5$k7WCbVeQ`PXuRg3Qmq_ctW~wzVBxW7TyhS!Mt{d@ z18#iFb}cPAs)YHhKUg^}$C#=T=5dLMP$kUP`fg;D_rm04Pt_9Lcf-zd!jIm0AeskWQ-Kx#eZV(@2CI!|IMc6S^;tLat8`^MR ziW@=X-UBP=&V7AVO=xa2*k2UR{sP!J3HBFF>RO{K{wMJU%D(M4G71c>M|J@CG;R@b zAT(g*l!4$;C#X_GWD*YvRcg%k?T9Qjew6Lp!_5A2wZKY^;p&QFO)E4WVjaPPS7P+3 zLD%T(SfRm9mzHbU%u!}M;EP3-8TWCCiBM+DO7z?aJO6^ISw+T6u&bQlqo%N0=Az#)%Q;d05$sFwb#`>`IJv(B7(s-lG=n&6xyNe^Y5MNE8^W zWxfe+0+IQKuyXFq*Hh(1!f6KgkA`z!0=tIFU96jScEi5kKZ2V{qAT0|My9btjtaFBo4C-*iSytg>l|;5r5!6Ll-*j^augHi_zo>q zOq|6fCPFbWqt$OC$lM4Mvy#j8u%n#Nqbr$?2Bjfpz+0xdiHzGX%SY~GLJ1`v5a0xRdvd%nuPY0PJh1T&w` zB*vq3wC`>)H|6Mr&3y`P1d;nBSUH8eNA_0*gh&(~5~_eW!*>A70^-1I-+oLg7i;>b z1aIU zI!O*nwyHj;DB-OVgGfKDYz2{CE|FcaAlFGc_+G&*39J(?gZ)9}n_MU9rhGBpHj(m$ zuyXE{6YC@$r0)(VeHZK#Drs|_q?`7gc>6@!x5LUQv^}!ADhxy_@Q_f2!3TXiA`63^ zvz=L3(ER2$xh;h8NyXGU8ls$|t})PdnxVPbL)&$e%^x~;g%k2#`=6tyEzV%y|AB5-h^90 z3_x4J%2oi{luKk+RBR+3;9Z_GipWEmWr0P;L9l2G!V=Ak&-OHbTvx zVP00z@h8|%PUO*pOh;oPw}WU}ZU>b=;w=+{${%25E2#XAOJrAQ$n7AS-ZD6^I~rVE z%w-Z-K~CkI+zz5?zfF5>ynQ0=8L)Ehv=iGwG(Bbz|3EnLongOFiJRL&H2Yvve=lwW zk@~w~P=IbZHBi1?G8vC@J z!f1CgPa$EUmXaK0!Ybckq{@Wjxx{M9gsDqg8v)79gyhyj*RYL%q7x2Svn#rS{a3u_ z&?!6d&4x}BmovoWQ{r;AxSYa%f7I9_!dsz)AKK3LB!0WNw^$w>BYcIM_&bn3m+x(h z*;jtBQ0p5Rtd%Ou#t4OINGt4ks=+bBag)Anl&b@!`dFiLu3`<0lm>>XrM^yfW4OkN zAKfwHvHrWp2urqoL5%bk%Ei7O!MpwWQQpmPKXp*Q6yMmL8%`tD{(AGy>m2R))HQb7 zb*>w+ezP0x*X{Yjt`F9VBZJj4yY)&PyE9siu+hu!!eVr$$RA6hFR{FJ`q+}_%kuga zdA(X*uaVcU%ImfA`Zam|y1ZT|uiuc@Z_4ZS^7<`#y+K}Y8ZBYF=Pil$$6@%TiaZ6u292l~{-01uI*1c-CYm+hAX3y$A&RD(naLM7GDn%DJz7}trNcn15Id{ra_#?jo__1)n zkHW5?0v30$n5nSt;79OgiEJN&mGfuIXIl)m(^mu+SW}opX9_IAR!kCEY$xH(64|Z+ zE9cI3R$`*dAiQHZ;T>RyQ14#xg?_?#J3eoRH%{cd7*@`mbN7h-2;3JAxBz>C3V0f? zpJS_SvPa{s63HF`D^CEjY>wBsb<=nmQ8_EyZOXUcZ4)Wq1S{uGc?y5KVE}$E9PqQSE2w})btPWPSaRl{0rf8XNGu{Pnn#lNluyXE<=d~Oq->Vv^YvHJ?uve(4=kr?H?14?Zj9Wk?UV@cV zhIE;>;IoDktC=3l1v?c%F zf`_VeoHcsdu3<wUX~^Tp|@nhR0A(6`eN1%0n)jTtLG#DZgNdECrw_cqvIpjau^3iV=FPq9=P869HRV@LVd0osTe9;Xr0 zet&~<;kaULq-}vAezv%2zO-H$?;KOnM_D(-U>foS79HA>h`2;*wUJ#qYC$x;V3Z#h zGJ}(gl|{8 zL)&I7EdD5KwSnABVu^tBOJ5FZO#XsPqz0S}A8%%~`fY@mmtjuww)s5!i{iF<5q6Xl zb@U|D(V)o9TU(|#OJ5aE{*E_I3@3ksm922{S1yrVR*{>xw%lcq-tu_#jZf@S%>V(aGZ`=qX_YcF$ zDcn7BzA76;qVSMVWy8;X16FJWD;xglwH=E0BksP%x;`!XX?UnQ$JsbM;ts{8X^F^D z9W;E$jj9eli8Z%3k-tuT)vA2|fDv2j)&s8vUYrSjq9YBQTYVei;`i&FfsaTPCb$7Ks;cEH70W1O|O zPih}CzIIpHm)Gpe)sf+9Wu!x{5jcfwij67kT=7~-jLId^AKA?jeOs?}fTol&2?5`x6kQiaVLRoJwVI+iW^In&XCVnZxXQMTLV z+N*fm#B%LrSlKGqGN-H}m_d1)j|WrUnn{eu6ImK%WxGxJ&3M~H%3H$9xl^94WfKGR zVd0<;hF#(;j~%zOIMG)#-)4OP-aL`@{;+cHtk+H^cLVk5;iyl6Jwin--XG@^5@HK!x5f1z@*fCV# zVlvIq37h+)xDiC|kHE^gb6>lhcp5Q)&pIKvKAX-YI#Zv?Se~%nCOrjjok)5TteisH zW6o1en~Iqf4+%Acc7yK&MRVFT+ZnWJ2NVmn-oa93KzrM|4?I$xaiy_$+qr~xvuGnN z`?QBf#|-LTzC%dOr0u~ad}q?4-!S&TBwF-1`~6X4gp);EPG~!O*7_wo^rKc-UM%;N zDt*P3V}CSU11TeIH?q^p=Qfzuhs^ZtZSXB@$Fw2|2m&p(>^b|hVaH&2YD zby(Soq=L0a7*vr|+({l1Dw2NCw<9u=emmQBE0cz+)v^{uzt1{=jZ$|IJ)mt6#g?pa zL$xvMh^F85^}dRxH*<;9Xqw$ZhVHn>MhJNvh9hqiwNB;tu#230qkEW+hC^-y$T`VY z)e@E8;;j-R$HTC)6*(UCl~9pGjGCaxabt)TY{I^jZ4EY~uzaAaC#G$zdD~>w_ymyl zZ;P-1!t8CDtBqSn7}=0@0efDNV@idQgTrE>M>W4>s zQKIcB2)o)ejH&1}#}X?3Zo*(EQ?VJH2|i7#^|C z;nt}y?wGY&nsO8m7y1q;RXm)>B_=}g(EQ?VyFMebd>7_q<&&FXM>$bPUuHTQ6#a`k zhDn>tSUpoLt8xvMU|*FYYYT&oFbadfp=a6zmi#X~!3LF5XYz1`v5a z1}o>z+y3ItV!qCa!OZ6{iSeiw?YleWi#r$hS-25I?$crA6z(25UzH6aQFutGvf&)x z0W8aghrKqH@!pGU24CGjTrIQBL$vpvAA^UiGsZO9f1QI(J0$JZvXrBA*w1%RsnTH| zE-?{Ghgpf98^yyY%*skBHP}^7+);t)XjmFzQ}~4OcKJ}n8z+X9GOTQcl@gc8u6$TW z%=;%CX3)Nh85CGRTnW2{N_#ol1}o>zd_6VmpKzMN{r+(7_rk8B za^HY+cXq>Oe>ZLhk^Nn;ateEo8bFm1B58O?s4`+N-;T&KV!LctKg=!EiiIw=Op$#m z=qM)EJ_!w3&T&WB-4rV(VyiWywbbRPC}yyZU{$yrU#g;*$|X`OitG~2JhS&kyx9(h zCi|)uS1pF!<>Vf1%ycv~4Kc-S_P`D`Z^JDhhMGmNvK4CHOo^ zsa_ME9&3&HlH#=vDC)al4m0zya>zNx8Xs!AK(qZS_moXA6Z?k^`8rz#kjPg;WtRb8 z37K7fne9XB{6b&+z5a5xy(N38;e1Pe#W;gJX$(Arn?f7|Pr=H$kAY3q^Pt0d#yD92 z|nx z5LtVlQiXlWxLKh*P+VHmx2ii79>31P*Vr$(4lQ#ddzwaS`ONW5dywy7Qsu_SxWsD8 zjn!^m=K0CxqDFsPSLv>3`{AYj^Tma}sLG}^#v0`gH^jG1VrLk!9g~Z-u|{u)o9nGs z*t!eCChpomLcP~lDh%|q_ezv+V|B;FEmbpUq*xjlYg9W-hBY$S!!|yPeOHb5-0Juk zXDu!-lt;!I^$vGUYzH5I%FK=`=ozk6`$l^iwpxdq9b_J5?Nw`i?B7GxA-31sSYx=u zjg~5*?R@-LR%2V|H3mD~Bi2e$IIq)VbEvSa z*fX-ckL{pX>8TV4*vT2o*#?cBW;PTfTiH`wIo$bZJXGx~vctjH;O{iIq0w@^B$^uP z@DLGAsjhXpJ$CX;d|$V2>Q1MFk!pE)G0q2t%D`y3z`{tUlXiR)^p{I)KrZVryLz!Q zQmwJh6-q3abh^T-*G4P7Y>i7_e4BSZ>(uLPrikC%^=gmk=~$!KX^)CjQ#pyOJx9{Ee;Vlyh?*uF7PIxkV&N1Lt!{L@;M^NET z6>!Z`)39}l~QN?m-oWOc!2z5+La$h;0K z=gxeldhKYyzBU~8)v!OPu*G3j%66Obm+-cUl)nHg=T5mhe&K8IeI%UkL$D{Pe8pTC ze@!i&r)IPtz*{Afy$@E-o$QR*NBkwbfp^lW!L`{MOrkTj+1h-*q-DB&_x=|q(I7H@ z4OY&b@p{hH4F>P+!g(+57;jOFJG)`Ce;aNFk^LfAId}Fm)e;i}_|f6OkAVF_jo%_a zE8A_#hvID$DIWwY=T3Qga|MjS`0Q}TXTsi~G8S(%nwHyyPs3X#68f_RB-{%t=T3O- zbt^G-wC^fidwAu)XcY8 z-;Os=Wc>qJId|6c9ZUBO;xC31|2ym$Dsl1l($NW<``>UQh}{1QE9cIAs`yaPK)u=N z!FBk?OrkS&_zeEkB|k8f4pi?sHo)5@(p?W$PND0ub%5G^KzwuVA)$63*w1%ay4-zW zr|zz<)Q{d%w_5Sut9M#)Xlb#p&phV22Ogu&STgQg{3~m)axRg2 z$9e2ExB7FfdhqTl}{=VDtVeZUB+@S77Dbc_+5`Z@J81 z{`+v|zl9w`Wo~Zq-|B?T{bAe)BKHSj$ohqq-*VKc+G0MJNUbfhOFJ=1hYyTMv~xPi6o9hF zs?K;X>@?>Xh~CO{G(e3F`7?{VA9gT$H*N3 z$#$dgS$qT6(Mo(!Iy+(Jw6T-NR*glMZ_FN~Rop7;+^|7ke~Q~cr2b=AId|#{ z)&8ujA^-1i^8bQ;LnSZj33oqi`Y+*j5b3`FE2q%+C#&hRj)c)z zDdaHNLr%KUo=iuh(GYtu#FS*C>P^bQc%#IqaR97rMUDM^B~;W9V zx50F*$Z;#|BPZbKTBf7%Xo!!^I4CQ0+=91C3>`PY%2w#OflFkU5@yPi4Q;;9F-x$! z&*J+m><=nm@iB_B-A)is<82cuKM5=6PI-U`91y9%Lqa`7T;Mxw=u`{;{%Ln+GTWq4a(eXyM?_?wK^h`Wu9yh|a z*6tnIwx8{1Trb6E1jH}Uwq<*W7i*<>cYF4KfJc;BhhQEy-Yq0JbV@t+OsBNp!L-MF zJ|KPo8Gq4!CVJ>N)9b5MhuOg-@lDhr>6l%Iq+@jBEv;5hj61;o7~pt6Lo(6rNjt|w zuf@dHSoLC0u~Zou9qK6_JIanth!2J!>~jvb`UwME`H)e(2674T{-@@ zV_ffyHI5wTkytCTbBBsOD@v8V>Wc9pK)=5ysnbhPsru2Qka(TUi zU*R({D(tUic}9jh4_G~&8MD1VXC?*C2L6=yD*U{Rex{?(_8R8_t4`PxML))kAWjtB z0V`V*Mfr2z-aKC6U#wSw++Ttn<>T6 zuB`oKylo=ot6=4cL-`$Mk@lN#%D;yF;YXRxt4K$x+U!?&+eFIu!^*i+o@}qgn0$6{ zEw(0;=u9mp&q-o$PAsl(z}~0s`1?AnJOQ}&n=7cc59hjVr@69u9gFKWc%#Job!%8T zcdj#9ui}gXt0$c9k+3_cL0Rkq+A`f{d>Gy|k@3N>@`Pb*l~;{$#-D=S;lWy}>>VoYjpZI1m12#pr?J*w zS@-q;ZV7P&^ufxxj{w>pDxV4Ge+ldxDt~Mbl`-57BK`AW<=pAJJ}&!dIO`w7o}jW` z-N$8j;H?tL-UcgA0J3&5_EI?67hq3-WS!O6^LVR7vd_WFxs#p3*SZ=Bdh>IF>+DUK zL}%*k={!M;CA!jms?y#NZhK;Mjn>BpmKXU|&%0Te0i1u-mS-_r%*J z(%l_a&YkWo;U&K8+d%yBaKtNNhfopE5%(`2nqtkmbr+A~jT1T7VCCF7vr`7e=V{xS zZ;P)9$NXj3A5_fEQwE#1+jsL-c-utESHj8@hqCo*;@9Dne+B!)kFx9C#Qk{NM9TNV z$`gmO^>Sj(bAwB+H(-DGQFgtZcpYz>NcmM*Id{sd+u3p3aL(H>iO!VPl${;7##<+n zelx6`JL&n3Z?%kC?8tE7hry1a-q_-M3r8pHY<)0p1d;mzuyXF)yW`L24A7qn2Yov1 z2`XqY)5Smflg?Am%%|Y363LzfE9Xvjw)P35f%xWd#5ck&p&}Nik!j}Jck%Uj^F-Fy z!OFR_?vB6wG!Q=(j`#`K6I8_FF6LjsT6ghdc&kLRkHX5ilbyo9={3;K`E+oJJ&Q?n zrt}iCn&MMri|us0St8phuyXEf9eba?Kb-7)U`J4I+STlRx+C5wk?Rhya_(H`=-;** zH*XY^P`4EfibVc}S>D3zztQTrD>(Y-GJ@VRdArIHGM@_%J*?onvb}HZ2s! zX?rI)b}oLIKp*Zzl~VY)Oa-SL2NvOCuxIN{3o#s#nTo*#co79H%92)@ZK?hV}Cu%y<=voo5aY= z>#z<4ZXGg*NsPyX)6>i;TG(rd_l(MRyY8BWw@u8>(_v*RJ7-OKst8vG;a$TCzaRF6 zGdo5$VX-DehFPojdJo<%k?xMLa_)4e$$)6!9SX-A!Oo!KoypgOG$XmicK~mg$hQwx z&YkbPvXQ$D(4PqheF^LpDrm9qi`fG^UXS4x5Q(1;E9Xz#tfdU%KMg1TW7sPgakB?D z@jGw}h{SJ$m2)RPN3U%S-Y|E*vDSzO7?D>=fsx zv+YbuyHh)f+A^1HrK@GGXLiIHM^oK*nh>) z9v26{|503Ar@=>$v)>;zwy4qD)<@C@ZKufO?-rLT%Zs&o4?F2%XtXXjn{U6lKiW#U zxHA4L$vuWoWgd*@Q%>Voc%Ed10FXAsqm5F=ezbYoAMCtYi1 zMS=4r=kZP<;lOz-MOCJw-2@GBny=jlJ8GYU+dz!kXTi!=)XtjvG&yh$)VH&q1fu={ z>V{sh~~zi?85;qN;y*X>%J&ds(zJAtR_`wmP1;*xmsU)Y;gff zO5Qr3KaLd=m&YZ=rc7cy>ixBujz&e!wI`riF=ZpXZDLGWA6B+v$^tHtS`3eSr7%w% zYpMKYB#-@=J=k4ovEB#viu1;fY}Vr0&g_9*CG3S;KqS5gteiXX1?qUqRO%;$Q$G&& z43+x&d@|nE3!D6M+zKN35m-5eyhrj^^@B(k9ulg4c-c2;$@*cdY*)R^+_z9E4Ue*e zq~fE-k_E)A@St^$xW>M1A6wf!+7Bg7)Y6lqXt>39AgQ9^CN8m>qM~Z|0>$fNVT`b2GjCl&q!~9ba-7rYxQ!mz>dv|4=U@Z z_hdV9&6-6!@d0L?q_nhFE%f!qo*Nk~46`+Fje!o1iQd6t@3MF_lnb@7MxmoERjVWH zK)jCjrdl2ys<6AM(7SA`QSD@Js+HbCy{Erc9qJijr$H7gy{vDY^k3h|aJj?|%C=VjJ02@=?|pz_RiuMDzL()w{$$i z(f$pIe>aAz%Zr7TC6+6X?%>!OF0jGd$@Dc`U@!3s<(__in+$ifE21S9x!CKUo_e)s zd9in_QOcmn(MopRW1WioCVJW7?v2)a3gs$03selmV>;-{TD86tyK&1MY=SQ$s1LG( zZwJ|6jNdGGG%?f*%UFnrI@qDOh0FletHV940PW=C2#c#jJ;xVoRTlI*S$Z^Y*P#xw z8LgC91>MtIt&9|VN8{(y&h}|}2HAVL$li(X6dq?Y7x8=bC*<{y^7^E_J|(YzlGmr@ z^%;5nv%EeluYZx(zsl=#^7_B>`ZsxfUS9uCUjHtyFUadZ%Zjn z6?uJCUjHqxugUA{^7fA+KE*3O}qNuWQQdTJkzcUMI_IH^0K`5Prp)%k+B< zHH~AuS9lNWK;V0Y9ht;^BJo+yWx;qhaOTiO(#wCNd4yW8tjNhy6ii zEl>Jv*=|!l7jK(L`D|Eu;!w6$0NfEy`8L=eew1DNJ>H79O{9DatUPfjTl+meA5Qr> z*dKnBUHd&gi?>ar{4}hbJLP%iD-povFt}jy8K>NALN#1w`WWVCCG2 zubq62WzgO;oc8XpN2qtU*x@s2y-j*Iymcb!U0~(hNl)z^j9()fj7P&6*I-{z8H?|w zh21vYD&8)UZW&h2o$lJbi5IvA=`O?u`!lzDrNEgWOKotbuV9wH%#PvHLRRF->G8Bpn>F=gxSlSQ~BtK0h4rxv(#&fJNq&Yuc?l_-wpgBHc4#<%vMoF~4zJINe)e zU!Zi|^BcF|?GowU1S{uGcT(x?#(n!-IN4`mKTyd|5l8pF-Hyml<82bDJ_#%5PIX4> zD-;9n!b^e+=J`ybGX=BAx-HXf#`Ex|iHv8%%DFS1-uwi}K)ic6;@x0xQ19Pa{QhlP zZWG=GZ<$E=eXw%wgeSAluMD`gaJW_25mdP1oT>PmG3h$>#;A-pO5|FCm2>C1cJiw? z1MrpMfUkf(LIo_|`6sQnNneJyP9%LXteiXP^_srYzB)9J-y4qnZrC+cq{Wk3v@%D+d{|+nXPP=udYaiem z(BFJ%aP_?5WdH*EHs;bsuoZwxEv&VJ6Y_9e6d{eW=j`@=o~?{v+6oA$nV z`$XD%!^*kSp2ELHHz1!B4tW*q3MyoIvM>LHUb;_J=EvjB64|bRm2+pijkfpYc;D2_WgV{ZUT|{mtf`GnRmzgBp8?<4afWl>*zydCFzM)z~B^(V1#&U4Abc9kB1@HE;uny#M?EAMYuA6B2{+4&juy z!<{^}RH+wh@m6eSHo9xY{?S@#%<*};$joBz6zg7Ij5kYU`!-lP_j`G!+Wo}04mGP)Un(YwSMQ_w-G;4MgfUz{CegIMT6MTOT4#I3Bo7og5FVq>@X=_0LS4CV zT(LINcISHWv&G63QfhAmGHD?QCb|BG=R=$5KN1Hm2s17^I zi8|_KIvSLQShCbI-7W==#hWIElM1YCg_C7mBD>>==8D67TJADPe~FnBxNG1SV5d+? ziwPN{12*r^;RX-VXc72{_u6>1aF}@_Vs(M9Egw8`%HB zTP22$x5CO+=y(g4$gV_~DKe~s?=j4h!0O;A*dJ8BVxCvoZc{!SZ<|Q@5Lh{dvPX1R z2|@%14+)hZrucS5CWt+-q%$}%jMD-Awi?k^}-loq5xCvE3t!S z2FpcuLe_z8hYKb>P#79w79Tv$vcuI9+ljj}mN+8dPBwVrBLaRbuRoF3yX5t!{0eV{ ze>3}QS#E_tqcwVrs^mA!5G){ARmrb;Uy$iGXH1E{!F056AZIUHrjLzYv~JfLUGYEB zHSsylsz&)0ZUZrU-482U*(+<<-Ajx0g28$66~Ua>WD;0~PUS4B&)90aE_nm?e}hQ& zbyzufvNKvS)xf)bINohLhF4BPw$g!gqq=*y!J8&B-WpcUo$(Z&+zh@w;e3yTT|vEl z#VR3@lP$J~;ms1+9tu@*a4YI>%V!u(oA8HowU1 zZJMjqkB-O5pZSg{^*H$xF0q=&$;@6!&Qu*Y0?P9+DS7LtxyI*UPdQ;nk1`#Niag&+ z*>2Z-&*E(pW6IO8vK3RFkU5}T-h&V65~octRMb7iOrSF-Mg!6>yyV;jV+2UU~?yfH%Aw;%TZ&gfoxHPht6hs3f-2D~U7U(d!&~jiuvUNi;2w4d*2Vvs+7Ej*{Y3-(jXoij%oS zDxyWHj64wSyjjXP(AgzCVC0)?VRlw+aW(8RC;sSSrla9$h!qhojM4}->F_1o2x8#* z0<3HWp3iZK?6_|zQnbTy2K`5vVS)3-55exC(%*!yhe_>9;2#&q;zLmud>N=4bWsxgki+a~6hqhMt#rX0>Cva2!VL`Ev>3z-PixBXn2)NOoXCg3h%QKO}4lahWNoIS0cnW$hSqMR-4E3U&utg!h3R;=G9?oA8{(1Vjqwz3|3~ocDm0 zbLTu)O*yz&pAgRaIM^vv*5ZRZqXTwXupBpl$a@4DhporO-r&Y zI6K?*5o_0qeWShX?Z%1{TVKCIs}F94N33(WHI5wT7aPLlro~!Xa?}a8_>L@9C)~s( zCPJMsTkE?~FZ==KWo47!!On6bkABW{G%yWuhNfn|9bbNfH&2W&zlN2q`0^_*kzL&| zU(^kn%M9W(J|A2^Ol1<|Q6bvI#p^3aCv5JMaU+P_*MyaG=f1v5!>eQe?r`?+gq=gZ z+cz>^T4)`y`EQRKLgc?KtenE%qbN{yg-9SC5~{Aa!8d@(y5faw*G0F-Q@~+*gD5tW1qG~MZ1soMiLfkxyn&Q)P0AMDk6^M600d9I`idTp{<`1erWso zUgEclmzFBM)zJ$3BCd07^j2%N-fFRbj8H@-Y=ipITU|cZ=;@f7dPmvkeJeZNLa8!F zSU}|KqCs{iR|jf^p-y(ABtL}g9Ezc0U#Y+xbxg-#R|=J(V%$Xg#azBDcoU)@o%2-O zNIaxE>Z##cm90qYT<|z{v{0#+%Eja-u$Qwa9Df3Pg}i=NUOy+VSIX<><@F2ldX>C> zQC`0!uV0qeugL4w{0e_UdoKHHS$;x0y&1fX2a4O79f1>)Kj2*n|AO{(rlY0hhB(iz zX}MiReh+V%SVevZR<^3h%n3JBr$P8{tSfEnv=`MqnbEi9_^`v9~ z{z5q5&%y4X0v3B3v`n`dUye6TWPB;CoIB&G;z88_d|x==dthHs0gL!7AF!=E_-A;# zM7lqLmGh@7CJ79>uZ7cn1@;9-S59tNbpMIBOQib`SUGpP)8qt=fp^hW!FBVSm_%pl zX0c~Qb7slny9M4bk?*Fka_)R*v}VT)!Uu&D{ut~I>J2RNZ_9K$|L%u3O=P?eteiXJ zsj;K13i^}bfKP;dK?N-Gudv&udjj4rk?wJ@a_)5F2pvxh8~5)w!|{F{b_Nx1D?;-b zZ7V{56>pfx_bae+?tG^=XXOpRzYhoeTi6>^z+&dPX}Ns|Ka96bB>W((oI==R@qt>u zAl_YjNT~G-72gR~xqjh2*?w+0DPF>>EnL{}i)fAL99@L{Zt<@r+V1PHkQt9vr*asn z^$YX4#A?7s)ztU9@m7hU z62ry|u(B04p63$Tl>#%whXXd%K)41Q_K*o z0JrEq0lR}rH(3Ta89#XXnp7Z5k&a;@rc$9ngU2K*CPS(@$=83GQ zz{)ACJ#x4z14I(=kWgj7S-yi-mH~grwhVA>3T+&CzaKnoow0@R9T7G^VC^2t?A9`q zqfpq#cbKU{VJ|K*5ekJCyVj=A+nev2YcM-2wNzo3Iq^qFGaU_2+NRJ9qclPl5@p;7 zV&Eyk%2wd%=Mvc!5^0-4TlBAFh6NTDSHSL}(qHYS(5^9X8Ey)33|tH==RO8jw<)wW z4(<&f2Y16RqK<>Mn?k$B!d1a5b^AQY_Y*dvIi||H?VdG7(vK2PA;1b!D5%RT!P4@_9NMPA;DC`a@ zU2Q(X#rPn+X(Ho~!OFQaPR>VIck!9woKJ&YLgj4DN4Qvj5^tW!`b1bcg|$ZxS7m@m z0v-~o3|P~*BeD#*EZZ_*%0X*TX^ABB~zu(QNhLWLbMrh>xG;t(s?u3QIYyVi7ajV*@KPwKdg^#Dtf z&XG3mCv^x*wXy4nEEoIwU)6ONa*5Q)lHsAEQ+S_^VDf#Kj}=V53p>e)IJ$=EXh7si z9RihXR!#2Qj5kXRA2-6vR`|G{OJtWedEcb8rKQyl276DZD*$x+)7qLhz7KPb25~ z4qW*(a(cF9!OR1O3$>BrW`$adS_1|Ki4AD7n?_!Zvix6J-pmOK5=-I~adwcS6E^oJa3hG^AA^;1=f0i8WvfecMmSjK ztHI%54wD#uZBa zznMvl$8&&vC!2e4xoK~Sw@;+K8LXT_+as5&azLa44+&Kce9?E<%5vZ>*{*V(!H!Yv z>KU$9%iHy7Rly)UTAe|qaah|4XlxZ0v$tukmWv#V$b>mn-EjgY_-U zp1^A1CfF-f*7Nz?f!PC__zk!PMB?9sm2)S)K<#&xO8x0@>QBO+p;8yixm~@m$v=); zK_vfsSUH8fNAg$ogGd)15~_aa@$HDLAI{Ep0Y$f1#jTYNTYU`;QqHl~IB1+p2WhI7 zpd4kx=FEJo$d*G%l?|J4iPW+oyL>WL^x4QFABF+R9;%ArL$H&ajH7oj9SulB9;?Ma z4zMH02k>@@5oBjr*@__V^_5T&M2wuE2(n>_6>Js7SF@dvoXpPbt_*4c&Y zox9i3NI053z6z&KkynGGD zC;K~veQ#N;70R-g*T8;r4uj|-rlX;ftG5M2c^6;8ek5>x8E6mHd z(n!6BIcG?^=1O0s8B0gYW%l`FET|186>_MguW2w7By(X3coSog>@Eo!(lJN1e7or}@Lh!sOUuZ74URPNc@~UwvVyf%<2GW$xZx zU0a_#wrXrqbOHO+b@1lsLUv)1II}k*Gg{p?V$7Vcqp0M4ehcfGxX))XiDaGEe%!mm z%j-;0W6}^iL$pk9Rxt|Ebi8R|h?xQ_OTVa_d6KV0d@~Ezit!T^QvSq;pj!Oco{sE@ z3@OiN98yNA{q>Q-TB)*33n}|CXO2fm>1`WQ66HzTsFL{Y;)LPaD0W1aeSAlTiY$9^ ziPXv^!*9-Js*W46r3N#zVoMeFlsmQ@&2%&>aza(vZU>h#-Zn9~lwf5mxb$<0>=KBa zP*wgiSYOHP!R}9s^%byJsH~F{s;UPz@yl=vh{P|3m2)Sam{3(dGpOGiPW^7!GgRv4 zgsSR=P5v(23L^PCVdWI^9#w!UBt*LKkWl5!9=;usg~YYlPKT`BdNvvDT~^eePi9<) z1}o>7YaG+Im}owBw5=qXKWsgp2&=W6<)|d4vYueIw;Wxnl9%WGx{xj?p zDr_&1P=-Iq|xWw5&5LCDBCH^$>r)mN&ggN>u;bz z$vMh8_~KRAtmPv|f$(P5kHE)^ExE*mC=hs`jRIjGn3R=1_JW<{gdM$`>1aS?fgn)H zW>tZ(2i`0(kbDqUwgSnnTq5%V!A1BuW=ddzupD*>m2k2^NZ~w!H%{a{3@hi(IZ+_E zSbrs)^%r5MP+6M=LJIHC;|36Ue->6w;q8&#Re>N9f`^1E5H|Deh%6Ac&-UAp>9t~S zX}DJHWh-({8;jQgh_|~>vueRDs8tb@nFLlkIpIbxF?VTHV-}INZbk{`NLr46!IRqUX=?XU3f^Si1T~jpe4(Ne`Q-P zOd2VbN3}xX3-DldjMS z6c62TmyMwEW0;dwHrxUG$cZ|-p6O^j{~iR|VQ zR1JP z$w@jYGaZdcW2V@=QjRX!u&NG@#~UU_k`=JB6-ny85-O62u@e+Y4h*q^tz3F7+eeJ) z@u#AWuPlDZx`7oq&LP(5+*cL}!?iK&h$`RrWul_WcezArRLO94(@fQIBeFaRGqWPg z2K2p2;M} zqb#*qC+8|v4{YMoa0`gUyJ6+ri6`bNmCp?7?+d5C6YLr49d6E5s$SUS--TO2B>xUr zIfcAO6`%?UkuE$W)Fa8wzClYqk}Sw}3G}3qV{7`-r;o#f)j84{A9OyCs3p$Mrx5kW zi@9N1GIEp%D}9HJDiKDx#6&0&y5lYzq2qHf4J%<>4*SRnG&+mvXgr!TlJN+Vt*U2^ zOYv5Tq2eM~*$NdGaEa{7g652*&G#N=30AOMe18V}gUVN%k#ti23Eno5@{eHU+$kq# zByG~Kgp>X!>=PRDPG87Y>#divNYbIXf;T|FzcnUxWq)LA~so_D`a(X(d4c*y5fJD zE7=Z*(OPNf5ZH;%(Gl&zbTnX%&H3!+>bhl@9|z*r5JS~RVPz{+E#VT`l^=`LrlhO$ zqEULD!K@4{O-_YFMD*HjN3&V9iM=eQ$~kJ7E*~!L?aIgmB<$Rc0?w! z4`rLk)*314huYu8?8ip0bLcg8b0#bGoa#(b>W|sNno8S^%I@^_waP!YbBT$NexXD@;7bC9+E*GsJ%8 zHr)j`qIa4_cO52y6<}1lVh6gG={Dmzc+*72vtZ@i8P8S;)#m)caL&8JE}?Q3J9ud3 z+pOP@H&0~!9#}brwMWiYXNR#wI(uv_Eid&IwWrlj z!o$@$)*2rPEC9HLO#`*m<9HH1(RUoFO5g-8F%c?(wUb>pN`f!LbgZOt73?b~;OKm& zqj71>#%RAsOh zv@g@q*fhj)E3*f7)HwpTfEaZSg_W(Sa}bxvuF_a2v$VQx`LH**pUbQYtTxVueM99g za*n$nHvKbkJBaj8gOziqzfmGnuYLsF8a@JUf&D`r0h<~xFWSd|n{Zo*qu>TuIb{@h zlntu#5Gln&LRB8`^zDeOJj&V5Tuh4BS!xp&|7IP)f|hf<1uwkghH0tFQAYgB*W0R$ zc!^6)gfgN#?y`|WHogg^VU-RWFbS;GasrK}F&&METzJPp$yP6Ey|h>lZcW&Cp;_VY@S77B7+8()ErGJqMJS0^5f5A5)$@ITbw(AvU4i+jE=PJ9K;o<5W zYlN*wn~Ue#PB=7wxHvYNx~T3(-;t#%gzLG)M5qvEC3zti>e8qcpUMZ(uxI zCc0s>@50R>vj5L`vG+&{DzAtD;vu2(%5}aSk$L5`Z1c*r;&H_;cBttx{bl&>@Q`&z zn8p!pC$gKlf}T{E#lm1MbUB_mcY{Z(j3+9i?7}4`LPnY1?6whH24PZGIw`__a>9-d zWI7s?#w;FOnwHz~WGUV-Zota9(_U9q4k^Tc6i)nyuwSUe#S#d+4>tAh<2Defe-~Cxq3)6JRm~t$ zgolKx8Q$mH5m__*DBGH$bqaXzur?vR#&^&VoVqiXoCFAP;Ryv8L` ztA^}SO7j%(-eDt~Yz3pTs)o&(#CSZC%wakj6a5r$Mocz+No&e_6TE3+NZAlpwnEB6 zUkMdb#P|scDX;jBVi{6?n(f=Iwb(qS7E5}W7qN239ZNz#$BFIIMyDfU9OFw|MU11k zL~6vyaNnuPtj9*MI2~qT1&dQ)7ddf8HKwECXo$~oVoX+;I0-o=aqy z3giM3i|&og5bRE~=w1)IgGx8~IgXR@b$HW6#@E8ixie0Dj$_}&PlR)R40Z{Xv-vrW zll7x`^F-ET~0e^X}Qq5Y^dOVv$g3hXk>B@ zx5m;AOhPsdr@r0Vi1h`lmgNXjHNyH_Vj|QCbB*2`^}=p2H!Gv;0=vtJK3dFl^m;)Y z%4KxGt{vWo8$gUTJHg6Uta%rg$gXx+Pt*>E(+uiWW>jDuQHEVZr7qrbIlE!AFX3ho z+4sZBxwGF;&GD_C{}tiFDK!cwlXrZU>fE@TQ4@<)5&!6BuGYryi z`!0HKTBH{-39Rm>k`{%e(E*$Hn{We&ytjarbLTx@6%(yn#9)4CIP-&G$55FsG|Grp zCv5H?!;K(v-w#$!;qH3a!0T%BXB zBd75+?bR}rqb z0ai|7?h*S{`VaxbLqesGbA3A^)5lKPrVnEVNTtHe;T zE39mViuZGg?9xN?LFJqLfRo>j7Uf~QZ6f6%SUGpfi4Qm(ck&m* zNq-*p36-?@0jHbxXYuxlv_AtYr_lDu-75WyRNx_@(*MT39g*q(iEO8zrw3>~TTy269=fIVOt&VJ zz{)8n_UHxXE{%#jfl=9R7YuK}lp4g~@;a<+1(#O^{{?C9a`3l5tDl0FCon318LYPt zXT5F5SSL?lR6VeXZ-ZMvB)&DQoICNv35?2T2KAnB>PNz!q2A%<35=>2Hu=MFD~RL| zhLuyudsG3ckPzv@LqZi2zx54TvXD3}+ck5OhplZVKL?Li=TIYT0pa@&TiC26Do6Qn zx$lrt<-?_1Vj`3eQ+S_^xN-+f%Bmc0gPr7r9bLzCG$4)Xd~#BtlFeSyDp+pCn^gz+riIFa+yuyXF4=O$h@ z#8KC{n>YM^Fzba(VmzJ$?7La4PcS-Q^PZ0zK;%6SR!-sVk=<2+AQFOygenj&@*TLc zK-fCl&vVxnXSO*vi#i-0vCh!aIHm(j>g7>$@*qhqH92a9LwrY!Wy9(I-!dsJdN8kmOoa7Q!Wjxj6n=7}+;4l7$R=2$L~UG1>G3dx$=4C>c1 zvjXdgt6}F*sc&Sw#@0Gw^ZycV2$BC6VC5A49tlF_7!gQ3Bvg+1sBcGPjyW>h95bWR zSFDT<6>EjMzH!uFSU<2~>l|~0M^Sv^sHDwW6mz7PXMB06^zsy!NKG%GG9OkwuK5pvdxs??{%B zWt(gxOKWqPdR_ZY<0H(O;}KXoxVa3oSR25Ou(GG`kWgV|cP=pj!b)>z9m$W9j2JxneA*Bc_TOnnsuY?LIV*CV!l-)wC7+o5j zmF%dbnvt63rv|Jm{ju>;TFC7(Q zuI3V{F($*Wz+!fK|BYbtOPHM%Y<>Yd%pGjL&vZ064YAzU>Vh3~evX?!3_3rBm93!j zV=j?hy}G`bptjs*kpB-e3%hGA^8bdNLnSYskW)Hh^Zyra2$BCwuyXGFH&!zw?Z&`c zZwnp+Z($PS@%&=n{hJxHBvxnaaj+F`3~?N64lAdO1CPo<6(1t8cu1(3k}vrVX!$&I zakkGhllf7nTDehz2dy*eG(O}kH_FAKVx_*KG*WbKsjdEav9L_bSdMa{-*@1sa-x?@ zOoVb`3h%R#NE$E?E0KH(c9Iimw36v)K;%n#fl4;3o>flAn?9}bXa}aF0g(lQKqZ@1 z1;TE4v&2BM3#@DflJ{|m%nJk;;ZbHvV1ZDB9YQ6XED%ySSMkP)oXfCs?wk_^f{XQ4 z;jFKOokC@876>W4ufPo;^1cjKPT}p5-Bp1g5`u?>DiAjE?T9Q8W@P)4VsfoITItgY zgg>$#U_r?_%7W(!gk@URag+gn@b$MU1AfOPCPo<$(=f__Nw=ds+A05v62-qpqyV)uO+`JFP4IuJ92v$zv?UBP(86XmZhlDBv ze&ZXUWEpTtw(|s&df7aIRt0<(9;ePh);P-fwqWIOu~v#-7!=Ce`c4yYleKK*C=Wj4 zJD^l~a0!=~2<1U{++`zo+zxY+cZ{kIegON(i8}f^)6say{ew6t*{UiIzK6F;3?kow zm8~H1Z7z}B9D&?F$ieq-%o3~`xA^`Q_6L=3a{nMV_#NzLU-UgWR;&#oH&+o(n6d(DumcsxT0#z(Yb624lX%Ru%?-$##BV(ui3Y z90m_lXEfP>$x0l@!9H@Ljs}^I#-q8h zU_7>DtEwU6KVefR!*Vqk=0dUAX0&cgena7_w9%*4A#qb zU*T!B;!vT)zLKkH(+2Z@ghnOjKx^#joHkIa2-__(RMu&U$59B(V-{mIvm8LG5SYy+ zCPE=Fqt$Pt8hAI%MfOrn6TB04loM^V71Pn6G(V1N4Jg^PDham7njZDD0Ad~Cxd zvMUMX={0Gji_DzBx?m~n6e?*k!7RQ{Xm!9Y0ef%*h`f)4m2>BvIK8IjGUM*PAe{N9 zVaHIJo2S>bI$?8f;6@O+e+pJk;qH;+Rhb|Xg@=SH6K48$M3xCRXImyrVI@MTw>Y8| z2@kM7U?Ivm);e-}P19a2LpjQZ`+Pa5vf&;skyB^Z;uXH?Db0_-Ix z>F5cjqY;sZ*EDI#hE>JzJl-%dk~{}1Tan~hUkMdS#MlXnBtHwWf_+YXVz!Zl9b__4 z(Za|(?i`;m^1;Ao4Q`k=Ivw%i?abJ~$Bh5s5~=Yb!_TAHK_&wgBU&5`)3Bn&0kDtU z(PB5Iqw#3YH^w8#3Kjd~trA1UzOb?tD)#0Q*`6@!SHsFFv^{dSO8+7icu1%R ziMRT8L_SFTFxwZAQ%6RZ)@y97kX8cxAL|4bl$_(N@!`-CplO_zb{u8E|N44eJvRJ> zOH70^V0x2@Q3}laF-pZs6|Y^TcVX6Gcb~=ieXvicoJFG0?YC*~gtt$m{VrHJciQW!9Z*t;m&1vd zV82j_uV-w0((Hpxy&t!MNWB+UPND9R+f{iWQiO+uDi5CVO;oZxxHQ}HVCG0~pZuou<4(T@4_W7UYqZ~G&37TQFkM)#5Ly+=8qDhiP_JS0>_ah2~NmKDVxvwhz%d$2GxRH_U(4>TEo2d*>PGz!jn zhve5$_OwB4P&Vaq;1RpJDI(ktdo>z7I z?KpEP-aawToD3^lapn_TBD=a`1C?WRzZu-W!|VzyFTM?Xhsu3pBhBbNu}8qSa7&0I z;2W@V$_VgC6Dre)VB#U6GR@Jx9g&&ljcm{8o*JK|YCX5U%sPP$TIYx(q!{1l)|S~? zAagvlzUa$CrI^2SiHVS6_=)N z4&E{`sLX+tt)McCOJtW;tA_>=Wm$9od|dlip4H?G&;r-ae7` z`(fqWX(uMVn;tWWkAxE+hW$b%ZcchP`(RTa!fhZ@k6`5#>K<8N6%Harcu1(i;cvc) zN)`?qW;^M>?-V=nkf%;b=_dk0Z_xbMMC+B?gdtVPz|T+|4DjD-vdi31OS=nm-M$58i;? zL8ZGkr`s~!P7<%>Ad-NGgenNW>N{v`ox8SW4N#6u3=T3T_ z%B0Ra`nho0&%$1z(w@(0n?110fv0f`h{T_Sl~ag&s;_t|Vi&Gd40fPEA?R4wU;2{c$YusX;&)Ed2QgN*Nt zWWsQ5EIXpir+k^HD04cONR2WXe#1Lcb=-(B--MZ25$5Z#r<~ZM%bAWwr6IobRJPl} z<*Rtx#NhH3SlJ3LU*rmV;sv7cv{2EV~)Oj&stE4q-YPD|u*>?NKE0`(C0)jfcqvKnC zxeWFT6?F3Kq7>X0UkEG9v3NntGg)&^oL%H%eK#{Kko8@#Q>d)Xvx`!A--#PQ z9n6Y%UTrSpo;y|Hg30x~u!*3Vg9=*u_VpPud?dMv>TEA8}O#3-H zUY&!jv72-9f&S_eZoUKJqF4iaE%@bL#f|XNPd*tjm;flu> zkpw&>RNC+I?TAeKKg#y=shLYl^%bR&Vpq?~s(u*3PgqB=sN@`KjlBc&zci5BrzIXo z9q=Px=c_v4hg@PJ)B&>+JvZusXJIz-Zc+8X)3B?Yc%z4yj)p~U@R2ayt_z;T8z;t* z$6;kFj{KfWWLFo+4L%YMGicAh2fY(5+VhwMRv=SpCpY*=birmm8#jT-d?u`%JM+W_ z9|@-!+;HR!(8>k@QvFAd-fMgsL09?;E&e-EdvD zZyLHwBef!%Z9Z-6fm#DyTp)jIjn4jj7zyhb|r#bEbV0c0J8Aht_OJB~u&JkbrqpAcr9B-5uCJup> ztuS#Qm&mRJkZ%ucy5}%M0`vb_usf)9lWz~4jL*QECNe%1R?eMq;_ZRW`Fr7K-hY*K0E zA=U^zR*V~_Wg17~f7#dDD)GO_B_=}R?~c1{Wd4nQfzpuog?dl0K9j(TBPY;kD$~(; z$YaGgDA}q?{R{9`iJ@X0SlJ2{bGSrysb3x|=HR;*vjn@_EWUfd{-E+r9xLXi{6V~J zBIR9S<=iPJjumr|ULH<*1ojD)w0W$UoAxl?K9TkiteisIBX_IxFH(Vrgi8N^_f1GL z{Z}$h|NU%_Z|xPpP4F;vjo|7$Xd@hIqX4M*4jfegEaMUrp#Ye|`)pJI zV=xbSYp4l;^I<1Bkwzym9Sw;5l2D+M&8iaMT)bIgxHubDw!+1kTq3&?Kz>5#B76rk zC2$JhHrOFl!pTnvQ#jv>H%{by3#^t0LrEK5*v!!SKr3(ANTB`*9=YBLUIR{$s;o>dhwA|w; z2HwgH#-4=a@KMFUTe!qTCXZCsjSLFYG5L*yw#sM`I$-S!r5suLsy0 zZQmce-yvnH@AI3D&1m2>i(m8ShR?G31tv>h*>jf5}oP({gXW-|B$~r9>ISPbleEqHpgr~T~L?{quwEAtt zk(s|lxmXp#G$w&nQckqdE6iIOl!jPN)-v4=AKiG<#PG2etZapkE-sN>i7>ad`JcG| z4AMI>bFe$mBKBsuQ+v`#r%`zC%bA3RiN8iBKrSI~_|dM*jF2OvcI|KY=~vgd2UE>FAY0Yp3Jp zn6g61kMOpMA>@a!vK2zU&n2=e71U10Zr1-~_5{`n|A4(hWo_(qoJ#!va0`gU{})!y zow&Z!v77o94+K-+lu3-ovw(evJ9auwCBG4F1(E#vuyP7{k6f?H1(7a1BviR@h3^oS z<-$7ImJ5@M?BFPU`+)*HTAcwVeC+|ZOiM?O*@UBg2aYNdj^Gj#p-7m*X&CjvsW1NZr;Da4IuLVHLRS% z+argoGC(8*4+&KU9O~NN=S2U_sjgO+hx?r{_Y z8!&^hDp?L6RSc}hB_={KFumDrBU|hWQ<0ri^}zdKKRLlh+b|uCiClZowA`L(eh=O< zF?8$*D_fys2QHCaNg&rAG`(eT9%9x6Rs|946DsHA+JmP3HthkteIo5XSUGpviM0n! zj~T>26HfdR*e_J#=Gud1A8hJlxD7<==flb=)ID;$Di1`8@Q_gD!MeU3k>$aEvi(4D zYNa?(sF#-OOA~*~I)Mc!=U59a4_d})smM_tJnZXrRUSOZB_>39(CoGmL|%ufSmnX1 zu%Db@qi30p#zd9}P0Q`j@iN}>|D*2A1LP>GKfWOsNeB>b$U(vp!nKeP30F7*5#$Qt z3W8yo%+Bu4Fgvr%%;w-mL_tOr2nZ61peQK(M7i%nQBV}*zC{i}5j?mB;aAh$v(;U% zdh)(qJzW$2i5UI%J3jO3RdrQ0vvj-*E0fakFGnKr_MjduCC^(vj{f>co+k?ltX<~j z+20=2?Wft^6n{Q5+Y@1B>)H0T2la?489&lIf?3sqX8aPtwJb0QX&QqIqJkqE zgKs+$tLz{=M1?0boz%k^4M80UHo zArVLKM}N)gON5YouZA1I%=ZXbIV9f^#&FpNxC2523E2izqk`+T0e?#N8%RUM7PsK0 z!?`f0+Ja(yjgezmV9e1p0S8CLMm7NlI1;VU1PrUWtn>gCI2&YyI0254HlexWgiatI z^;-;U1bI)DEkFT(Dzj7^4=a;W(c?%Y*8FJscBmrqyeV^x1w8e?BwY55USH*^V%F%i-T03L;3z z;eWrVj(Ed=A=v|pwH@x+bSh6jfjIg}v@mH|GyVjkXCUhnh$Dr~SbywMB)fs(jzlYT z1EYPOD^0=naBe(56@KMNv_h*e-0@i{AOC>!L7IfW!9midH1~|q2_(dO zd*G(Zd#qeK_$&TcX1RD3Rwm`*Wk({p_P~34pv&-vPocj!lHv7)1lBQgGwgqR5R&J$ z@rN_>ye6z{JJHi+)+W>b!h#(=` zfP14BD6b7TBH1=TE*}(%mB2BCvtVAeu*J4~P_r*E1ZjGLuSTUv_5`On60Oh^3@jfA z&y~*LYB)D!+_(x3l{US(r9vl=mTGYMpq4i8;j%xt5`Q?ejx2|jNgY|{NF>)ED9Z;l z+fNFEu)dsR`!P5y+-&QX541Ud1UG@1^M_$&>p9mfAJDw7^0aZ@KZirZ&3oALfj0M_ z;$|>&|1qo_lKTjQzU&*^K_h~M>>Eyw>WJ4jJe};>gyFrZ#o6Be-ayN+7YwYHw(1uR zZ#$~n78sW_?ZWQDUTp5Q7I2L~}vuqp#E0eNulp~Q`o3Ms^ouEF;=L=&DTZHrAkZ`l?eqJ|VK5Yrl z#UIbi_1Unp^<1wl??Tk)`)>1m-vNh(n{T%zBredL--?^S%=t~Qa!Af2jOns1a0iD7 z60$AWDXJr0Tkv4AyAf9HE0(k5$m0Km6IgZ9qGo(#alp91D5Pl&{u?#wvN8D3k!Xd+ zU}W8Gr8AiL44M`1HzM~Sj29AE1Eo!DZZ)A3$ccAkv2Hmn9UI|KW|ofiVP#S})^Q|~ zYYn^`4eHTS@_dl62K)7qJns+3gqvsok;S_GG~4^)&u3k(5jexiBC z7r}AiW?Vh8SoeWuy@K1o%=!tia!A%AjP0^LaEFKp60$vbFX}+$wFiTfZ4XA(zOCKX zL2p024JKBLoB2J-!amQuz<8wT5pIskkn9m|a3orxM_8?v7}s&7mb?IGhKwH1!jaM@ zH}{~>31p?}-IF|EJFOv4;m>B)kjG(VQbQhfB$DeB>h~lM#7oKbh-ZyEg<(P>j*gJ# zI&e?&fCn_=gK-O(8E=D?t!LbSPx3&_l&tS)p7kBz$Z&t*hD}Nhn1H zM>YvXN1_#)gyD|QO7*w|&IjoaE`o!kO=<3HLMMynGxK~WtZY5czDr;B*Z+ir z!p*h1Niihf|G*7k=KF83a!9@-jN!5ka0i4460!}*M|H$&1HPZ^vcd4qO!u@>sx#0C zOnnY5OIps1HyhM#3yeIPR-j$ji_MHYcw{TEwIk6At-uJ+Yo!@D9L|a7qkN?>7Y>s) zt+_pgP9P=TW`laVya&s6;9&g0%(8I+tW3(revU+P?SQx0K%eC^gfWHpTS|_=3Cut5SsI=aTAz1zY10k$$5k^UA6`8 z;1EGVwgpq7I^wkjnzoOnMF*%piz5?J@7O>6E`5vxE-ytbg8F7LszEf|SEm{~T4!^)&= z3~?k9ZwvHUo+*sMet9IzyTBpgX4&5sgywn%{&;4tr^CwDbM0#j^!d)2=ervY3pd|t zTM(M_PTT}$&Qq{*NX{dS>9Q?w2Zsm}vMqQm>Ja6%1z%0}Xu>FQc-6fTNqKc}4GgT7 zHuFseu6-TCyueVT=?;Dzl_A+3{LqnTh3=q!)>JsIGzbsFnIS{RLvWX@_12`(&Tn9E840u3a zHNT5nz|8o+U}ftW_ir*7h?$c0$uAgZeN!P3#}t76!pSCs0WWCgC*oExGd~_y4#|9k z!Cv+Y?r;%7LiP(kh>Eb+FZ?yx3zS#)dPCj5#0-qBw$fA&G(6GhnaJFlxF9M?vTNvY zBwC?sSR>%OQdZ7}^W*(yF2s8iB!pb4}kI)3jKEfS9B1p(S;ww=d@%o4-lHH|HpWe20 zqzb{U3X@($YnB$e*sfBl*%uh9G%F7igw0sD?NKCqh_Q}DEA$WpS1Ae4mGNXBI5(c3 zvV+(Q4wW{&x$T8cAT7#OO0~3k50`5XyWRdEPIBL&ME`*i}l}++Tv5!OZb!8QrOA7!9QsT6Lz!iw2rH8^k#{7L8~R7N@8fB9 zuM&nBj{H}`;oxR>b>CJ3ZH|}Yk7nk08LVtQ$7{&s+_Ag5I?BYoAoebTE!!a+THAxFvbw9(= zUzo?-Y`D6x7;A|=f@BXc%8_V=9$?gf-%2Mi9nOpArCbG=3I|G?+T28;6YK=sv0}h< zT0h$HM>Ffk*03_EA5$EOKUa1;kl%-R07mROf>$y31q4;C|(%kM7L;m7o@%Pnr(vu*R92 zW&dRd^`9om_4@eZnYmsER<@pN-(?5-U-kax`Q8@}3pd~DWe1@--v>8=ne)A1<&d05 z7}I52;0_KEBxGCg>!^jwYYR?I_VvNgY`Kss1a=Re1EZ?t%=m_6*RsI)qiG4g9u*wf z5}fHsv_eZT-0@i%Dz1g|L57NJ;2>#Jn!7~k1QO!iknE<43=u!ZAImHkKZKP@x%h!2 zkz70A-H@!y@Uy}ctPLj_ehLlEo*#vkt>@WyL$WT{!(K7Y^5=q;X8umx3TEbSgOx)v zA7QkY4TC#eM39gT!){R>@fwEblWiCVXBPJbRt*NdidHBsXvW(PYjy>OB29zvS=3m| z2H_J&q7@p1p~7ROZfpkUf^-IxghU*3j5UQ$ARXSe!&;iWhsxIn6Yz&J%fwh%nUskQ z9Es#w0&m+P&F)-bh+!{qFdPo;k2OcL>)&>$&G7;FqnSD04_3CGW8bzzn&(r^^L!E< z5^kQ=ZHL-iFUB9w%ymDk9Fpq@W40Xj-9aFNgdFxiiaHc|!~U3r4;zXvCgcO-{#`Jo zTEvVG8#;ysMjFk)e|uDHj9Cy)>C zu%VME@2PU=e-3{tvs63{E0a?3gd>sM(C^(fpvmv(*Nn&hkwPMl&W`5Sf7no;<>C0V znOPnJD_hU9@35gJ)4P~wdIlU5?k`zAY^cxnbo}|uY)^%iL$V!V?3Tm7I}}8aki-9t zQHzr|{I9lZTU+Q@6k4#R~V{44y?%pBhfD_hU8 zZ`M!q{DFC%--ScM&9ge|*XH_P_~V(mej8Q}$#sM=TMql~AP_-94*Pvk9r1?!i;|u7 z4;SA~o+dtw85sJ%@H$$Mw3Hd29jMzD7;iMg|1@DQHt+G^k;DIXjzlXA|06uFl@{PA zI47QuvIRH-4wE*mxqXCAASK?}fqJ^U2g^3#Q2fEnvM~o%CS~J5Mrm(T@BFYx(9zeGuIhdIV9H+#%ww4yMsUk2|4V)8FeV~hW)w84*NsW z#d1$zDd0MoQY~V}djK560waxP;QwhkZ*_Q#MyYj_isjZ_kyD;0C3G@M3m{)CCsUBc>`JiKA-N3;3 zqv;2_qH-krfwUvh3jM(9e%F=0pbBTl`@zT+fpg$kX%n1VEOY{Ssg7~3tMyw?mj=F$ zKb=`i&V-doEjithNUlFv$GybQA2B80w+V|3`-Gd}xN!5mzVCWszYjF)H{dofvwl6S zY(486$lLq;QByMiSM$uj3de?<`LRys^?uOozl__#%>Ik8a!B?g4F0lzaEFcv60(0d zE~+D5|8Q)w{lk!SCL26Lu=$&4q0+KuzI;$KEHEr-+J#Mou~pv`g-e>OAAd05$cmi@~IG}Bj_XL>mt6KuB&;aqq>3OV-Q z1&2tR&fK*^Cy)$h2`zewfzkxrRnd8@BW$QWi?HQ!M;*I`poagn0L>wJF{S~Ww2DQ0f2Y);> z*JEJikX%O?v*obw4gwJ*C8<309Ll1>9yp0bZxeu zGSBwoa8$V2cJGZ=J)jwX6t{qx@jt-IAsLS_mdkd)9Tp-;$adh6sE&B;z(dKd0<5+$ zmCtsHJ%p7deZeh+>%J8%Pw&ohKFs;P`^SgwA0NAaeB%6}rA>dUKxe9w>Zm<(yX?Xx z?OpwabR}CXr1I^xe;xSCcE>o+w!j!v?+U6TN|~-qDN{&imgX)Kp9amXCCv6W%quqA z1*tkFUF_{kr7InMsZy%Dl$oj}5>?#F9<9@MMLWbr?BA3hy_c*E+l?SS%BSlJ8Dh8J??z>?L5i)yZ8z_HaLnv?5t{*Sr0lD(^Ztx8{iTSvCs){$D6%H~rG z^1+&OvarhE60JBQTKx1Ak z7asXrzA&mp?YHbk*rmy+qLfXn=wFa4CtFcQh_58Ib#(XjmjgQ)UJ_o!QAlR$Ry0;v zNQ6zUNdZbV1?2gt!IlN&8AqZ8x|5N0ua&|v=pSe*Na6Sl4wJrcye)JBDXETjmNM#= z(}M8{{$yss_y|@e1>^mw60%^p^cWS4Crzvn1!Ie3*FPupqzaw+Oj}2}*i{kp9%txp z>sXj7Wl1}-CycI^yXqm4s)%c-W2a}Pv@$@krm)NumPeTd@arTX*YKZwIasoKAj^_MG!V{x=Fhii)uZ~etFRumt{R@c-GWY!6`qXuF&Fh4{i#x_}mFA zlj3t*R0&ypT)vEo&!r|-)Fw;GF7}REkgY7rmPPYZECr@ZL*9<3)_h4Hcp zShw2i`|EbkzM6Rfcr_i)AYrm$hx3_}z0d-a;2rX-Nyn9vvIU$OQc^a9Bc(4XYYUw~ zR=iKkO514-nS?)^Swkkk%A|&jbtIBozxO^ZE90f)`fyE9+R<@pT-=}3|%#^I3VV?C<;mB~au6|lpdO}9{; z4i^z598rIOyFa@owiFu_{<^q0-7aIw|xXlo|cS4kWL10$8D zf4D0uQ*wfGyCV_WKO{G>Y@m;UQfOX<(?o`sm*JpkGo5=x=mZi}b?>6k`$0?1i?|)k zQu7?FOiInuQ6*%lamg|&HMf{pA*Lq(O?GNBIMo@v!FrQ-&}K-Bn(=9rnq2`@HML}8 zVXNU>WSk=rT1yg~iwqSWE0tq5oC{JpX2BuSrZYEH=mgT?okppp$$RKz@j}9V9l8hp zP-dCf4OS*)VrNGpxk17^jY6|q5{4K~JBn~PxY_leM$zUtk3X83<1DOfJ;%P&C^XN@ z&GWnr4hc8U>S+{ht}n$O&&>73uyRPQBaGQ{*mnnk2oiFJv0+q4YF3D0Ka=dRzeY;z z1uLW~*@a?JQndPkRmqoxFIZvH(xz_#RyeOnl|928y8>g5rUiIDYTV^?;u%LGv;|0R zq!3B*xvumAgZ_yo#rvhmePEx#vC`%>_qNapXG0CVz}e8QZ~|XK1kU(4i1twrMWpmCy9Fuk{NccL{M0@4r<78(QBg9X-t)su9+>w2(h-DmAB-+suVUuf808-7A z;+Uu@m*wLqN1_GF$H=<*NtAG6G(}7w4`o1Ef^=^Pi7X3#jr9d z82wQtWWjLhF)A2Gm{=i}A)ZON|8RD8m;1z#YO$|d93@wFS>7w$iKB98uh|ixH9p-c zjO%c0tD6?URZ~IkiW+@cL2h>>TA+fgrFySal2_r>kV^7094>t&c|_<0QsbR&RXv~; z8KL2qPR2}Rg_yytPmBYKiR`-W7GLeN_^ofol5sKoZ4*i?|4ef zfx6|+6_ysqO3z4SinFn>8f)4;tYn25=SZ|bh1oD92uh)u4JV2enptqv^o3@s&`C91YXL1O?VVX6LYAp()iATaF2>OhI)1eXx4NzXGG10tT(4R5~1}b!PhMHT)C-o zBcK$UpTM~y#pXwF$n?eLLZK5#Pjv&Q*wi{NzKxJ`L zB;JO*_lvj@P^!xVaEeHExgQRhHp{tR2%TVcagWDp^GGVpJ-8Lj3Ueo{Oe)N6Q6*%B zaj7z@FqfKGAu7z#$yS)bsRhAX2Zy{HPdS-oxHeL=D*&oyEo6|e)v!bP%t=>h9Z7I4 zWT^01sT*6sxgd38GdM*0y0Ny<38bTbW=*7tl!;0BLz!h_0<28R#8^inxz@9OW{qU` zaA62GaFguLg~P$kZs5$CF2@Jsk7nlh09e_2j{RrWNS@Cy&-1BpNVs_>XV!GNJ_&z3 zGuMk@<&a!Q7_;TD?+yYHB;;DfCx*lR$1rOBwG++t#dm`JRZY(*K{mno&i6?tN}Y2zL2o4kj%JzDsx(YASb zRys!dmIGHLN^!-*n=W)>VZZLV`ug-)>0xZ6BJ9HI4Q z58M!Dz1a;`CiQ0Ls1mZ?xNI5Kn+;8@5cOtGvZw9`i*_)sYCTAxSP*2#=M5@e?=$q+t9A4v{vAxeJ9(ARXRvMJ-L< zLnq6v8Tdn)#o=;TnG}c19Es%GPj9(`X7>qU2=@CT+5Hn74sLe+%N5!j{}F#QGsnM& zm96L4w_HKYxbNvyl9Fpq@Befjt-9aFNgj}vTDXJqi zE5u-bZL*V#b(~WvjoyOp2~(>@uDWle(Z6=CA@~Mxh0VZBVX)zZVi!juv>8Zl%&4VD z@n2~T(r|jn;Bg!rFl~l&bA(Q?HCW%-zeRnZox*(F24-bB8dfHiWnNSXSy^17j4I0v z6Dvezxh~ntGE{s-M7eh7O5p+4=x9OHAF&5^hr5;qP}NK-mPd`ZoK!4xBtq**f|H8j zj?YT%cmU1^sU7#jLDHr)_Y0vDNJ#zK9S0)sv2tQ@5B^wYxwsQnCgtKbMZPmS^ z%`9ps@wunnkBLf;>;;Z;BtmC6JM7*-|)q(7>JEFdmLMg`;u6D!0#;?86X$k0@}SPov_d9UyQ>uR)! zna?8}%L0&U<`H*Ajkl~Fw>uJ{wIk7aM9pWVYP<^PgH(-|;UH;KntMd(1QJr8M>we> z<>E#BvCMMu9IQ;r#nX;Nasxws9-+zbnjfOSIFjMfLL!ddl4dwCkI?6NB>r$_o`=KA z*7NM2M`&_A(>&L^z(L{un#nvupYIvC0nB_)hm}L}9bpWYZGbxn}vmrL};^++;}pOGF>E;7GimL$}U=^ZBSe7pZQC3AI@_A_}Km96Xy>y z(kz2xs7-(FT%i-lS9Ovz18JCG&l))+xfHjCS&A-(l}RbOFsg(sMJ{eerKoITg_x1t zmF$dU!$QBfLpZx|Nn1y%R7x!oA1TpYDEyM}Dvnvo{*kJXu(4*MXCe1m;pd}fLYALr z9ElbvKkI8lpwyi~AE8Mi<>oUuX8LmTw$KTdn~j`uqjiJ6LHz_bgIQ-jf|W^~c|WRz ztTQfGMs?;%6DvfWc{kY`LszSP{>UjawaqwZEj?rDDNEf?*X;>Yt3|H5N2JmszMxa9 zEH$G7ylUE+nZi(P(&wQg>&Y&TL<`gtk&e3GN)buJ=^#bqI5<$+jOOMDoj_8&&#+6| zY2}!YKbu)Oj)s*<<(L;$LRJo!Afw7L!^8?vIc`dJ@5O}fj5scm%8NU5R@kOoDO`)A zO*uGHEfI#+>~wxuZZpMgRhCChi7YM49ElbvEn`E&pj4U%;AD|Xb3Yt6eWm$@&#)w^Hnn}z^kTR86=D~Y*#*W5*Auh5`0xNtdo9VTkOb6|!***z>J~P{kVdao)M;N>1 z@b3-<5hUbGnokUe{|}NK{@3v?Xl?7rXS%c(gx?Eet7T6AY6fTr>Nm;O>}1{#epghe zmPN1_#)gL^8$msx!^}wB5+(t|VP)$COpt>z zjh#ZlOmhl$fg{AFzA#K|zrS`e#;>6Rfn#o?-s+9P$JB^mh3_TWvhHA_81 z17n+JSz<|4x@70E(2)r3JQ5s&!lIxQpXG4EykFG518WA$;IL_Po;z3Q1X5IWhoCS| zXyLgOw}e@EE{2s!;khuXge*KRT}FkcY+{8dJby`cJKB)iuJk~Kc}X~cExl-Is~RtK z)(i{as;MZ?M~$|uD9<<&p%o?3g-+qJQa%QKf@Xu1kIX%m`zTj&JxQD5k+CCYoM zoUeR>Kb2W3K7y4=sd(R!NN%vGFLcuUwwvd7YatQG429-5u+XW^@)Z2p%q(vXD_hU9 zf1#6R`WW*}9|gyR`%5MZo!V?4fj^&_?L%SZkZea7yXElj4h0b;fcN~`N z28$uJ>l6aR|My@_wTzh$|24w`!;NP6|87)lka>}B|H1yNL_XeS#>-ThF4o-s@l&X4=gMqtB(9d$HStsC3}QJ z9Es2#A-REM!{AcgKoFF!VF{crGO8?uqo&PxE+ce;U4wfscZegjktpMaFpEwftW1hd zZ&V3cbX>NKiq1hMR){6XE0Qfb6Z=X|nc;2gzEwDfbx2wetA}V`csPe{wROk&n|8<4 zh#R|aikcQ#cz)?fv_Rn*-yjf5@p&Fj7%4u_z>(ADJoj6n6D&RxopO3afcR)`YwX0oq_$J8%87Wb94b)>~=P2fH8o-nyu?DTh+ zu5g~@UHvOeb1e&itEnq9g|&tgrCl6}7N{$3VmfLKfaAPUQqpi@NJ%*kj+QpJxj8~7 zkeRA`?V*}I&j8u5%*PF2R+FP)Wl~M%MU{}%#AV5-n#?e6WzM?WMP(iK~ z9>md}?4z3#0Y~U+TVSTGaI4AksPUGa$udVGw1OnK)71Hj$~2{LJOJl|6ps7hAn6Oo zFN998aEx>&J#MN^EVEqP2`iIwahoHN+&jYh?Z-8$l??w!n1cP{NQVCj2ZWp9 z!0pG*Pm<*MANa$WdHx%$Y(3BZ+mAK5-uQFlT#pkHSkuJKHM#v*pYIKE1DN?<4^|Gz zcZ4xqwgK*d5J5t2IJq<`xHT(88?bk>>lSNxhc(50UWJ93QYFw391A0><*j;G1;i({g)Bs+tn9En!w4Au-fuM8k(z!@R~$fH9eGxJx$ z%GNW#5j}CP&HnS|*?$I(4mbPm@zpR-C;?C6mM{r;3|0;yAVM=B`w4d#i69~Si6f#q z;`I}gl3k=6nksbXgKs@HY8wpJD=lvNg-K*t!LckbL}{9b^@X)qkL`gYn}>BAiB@PH zhCA6%#*dkBK0FWQ5td!xAZb&Y+fwKR5>o%Dl9MX$v6Ba0o6f)=%PbeuVP#S-raBVI zwF>oRg<7bT4CjO?h8;pT91w1X1Ir5fJa^&`XXZHtD_hUAe_273>+hQ9dMO+fZm!9) zfa4OykCp#3_gHErA=?{ zb)geTOVu4We8$u1#Jl*znRVn}urjG5Z#xpn^#^MQC*gu~CEJq+p}$0u?M;OQ)+}?g zy`JVSzS>XKGeP!*6LAxmIUf%zThICWbm~p>ewcaQ4}n9&&Aa<$BCQ)V_Xpu-Fmt~@ ztQ?a22!p=t8{9!7f`sfF{t&frd40py$?i%RSt-`{PX@Y%3t(ooz*TqGy@^=i=B7%~ z+cUYsPT|{8xsjbh)sbk0PGQu5-^$2w6Pyh)a{Lkwls2KcD}+w4PgvajcXi<Tofp*1Y$Ypi0N^VNhz9DO1Eb#LJOx;0MFypO<*VCH=otQ?Z}2t&K<4%~qvf`sf2 z&WQ@J*Bx{v+a0Xod>=L4*Dtm|7fZ^wnGc4s)z+EntVk_F?OU3{Fwd^Qh@@FiI3OxO zvQ5~}kqB)Qk{dy4Ns+EAK3FM`^mQzat=F=*2JpOoQ73qPM zNfpUNm5^1$<;bXt%r>z?Ywc(SQ&F#6;4!uiU8)BnT6xvIDmCsQg2TF$Nx6F%kP@sG=^KBE@&=kwy&daVd~^~W8)aIKug z^`VHxFn5*+g-g8KDj8Yv6B8>$*PKnZYaTT_pXtpMDvPq^;P$?sh@fCUG41c8y00_u z_V-Lc>+E~+ukW98vXuTPD$ufry26nN?V&AmkvT8$%K6+Nl#Qqw$l34@qbCg5#onX(ru{Phnrt++%wfon+aaov+{WMAD z|Bc5~+c?wA?;X|`tuXUGZwUkM;Px^ZcnencjFSV;n~p?ib%^~2x3PLyQVZ0N+DsZ^ z49Wx{5k~_}L75pH6yYgtmB!+hG7;GTR<@3aua)-I*7n**sFX?8!RCw{0LOoHyU)i63snM=a^ISbvQs=N=#~r|H>!Xmz;^)%EaV!Sh**Z8|H3lc2 z5f}cKd$L^>rR2;shi4Z!THKOzpgBC!aawt1;D$2+nhq;l2WXSV02NCLI5~50y5T5s z!P&zbIX=%RLg(X_GZ8uu zR<@4N3L50ar0D$G9G&~%Fmcg|p+OcNQ)KSOEoLHf2dr!znUH0?bS9fu2B?3Vv+@oc zA1*5fuLNqYQb^vyO=UvzCai27l8`shbTi9@;l@*^u|lFbQzwHr(AvE$8{n2Q5m^^j zwvI?x9idxU4lrkAKR7-~)Dht-ts}E>Q<;#=f|ad960*y-Gt)h-lu~!IEH>w)9}W?h zlf9z1wVt;Wl@e|(6O|&YY#o&e`q@xtc44+ty_fYWb5gE^Bg7?TPXkgMXDKMlabuaF zEQ6J;gA($JF>^wHO6_1DGw0+HI6z!Z3|=uhzEVsc#%*O{@(`?S9g~n2HdE?Sra7OR zL-Hvc9xfyXEv)dABJweADHD+oVC9xYWO1K@$Tq7Q&vLdD5-m5&$t>=ph)l*UWg@aE ztZW^TkXeohocam6FPk%RBpe@Z88KKbskuraISe!@t5?^C?sb?DY( zmzo1}J{%}6F#AStR02LzY|g`NW@2+LtZW^dkWMAro9b4|%YEjw+zrQvON&9LQgf9; zatCfI6OvnDW$Tbk)Yq15xhq=`cW5f0ykic^TX2lHpv;P1R_g9jSl-0VWy110tZW^Y zkma|mIMb`X>lr)Jc=EG>kZ8{2$6)!*@s(n-E^aFmleJ*w*2Sbi4lwU$j>&8|K-_|2 zgo*H#VloT2m5Iq7u(EYbLiV9#%VG+o?l0&!=cEKjh|7t=J`~qk3Q7?-mI+E8R<;gG z$ZASH-K(@GSDI6@91ahc5`)zg;VDIA8Ez>PkxOA^>xhKRb@G|AdMV%|=8QZH$A`;^ z!Ca^2Duv`B+*Bqczk!vlLlSasuogM(BFd-csC*1ZiHnNCxk2eL1?B_XU?wo{!phcx z2^)Bd>H^A^ql{-elZ8ZcW;-SWPf@devMFvU6OoCqvUNm4ro{PT_tfo`?&L^wNDhMo z#4RTVa~;Q5T1gJUZDnF|5UkwFn5bJI&osy6bT~i>VWQatc?xbT6O$8RW$T!PwXwx+ zbraQeE-_}qlIJi5=3LxhCNO8i z%GQBd!LUScV7l9!m^GAnMMK&KwblNazce>*cI^+(*H^?>n%$477U6JlxiRQ>rRQ~nZY~p+i(zH!u!Ou55X%tS zoh=WW)AA4;BrYum?*sq`TqZ34f|aeq60!@bueeBQbtkWGJT2N(NHk|!WUvcLcuEnOh+E1;WIU{F9g&cQ z7IE|FG;t@Vg2`d#m>dF!h+9q!X3w6t6qSQ;YniC*4=Y=FG?G=A4`Y$A`;_ z!4{XAs}zzGaZ{O)EP|D-LlQD;E@jf$zEV-Vg;q++b>^u26pj)X6@$sLbeID36Wm}X zFh7EotpgJ>|0!j9Q`tf%xliLcb6%c?gT&>3E+|7drw^c``3hADr_^aN`(yBqPQgf9;(vF+Tgk)=2*?KJrnI4Nf z5tJq+WzNX4aCo?bj=}U;cuEmD2Dg-n$WgGebwonzNJ0Gu^LgfsoD0W?%ZO1ODQLdn zayD)%6OyxF<(7rygp#^>@(y!IZiVBM1SG;$T1jrgO=UvzOIX=DBq4WZl*K1GO6n`Y zH_b759gYwe6N5W5TxTgLui(ZqLHRSRY#o%4H$3J31(i}NtyYwE*EF8wtR*CxGs!V{ z!&7&c!m^w_)WFXfnBFg!PZOjUHjH4Wy;3=WMst7--#tGg?4MTfJYC*aq+uN59`~uGt7MB-9 zC}lF$=i=eizGUCX$-tR*C{4vmWo zTwQbyQ)<@04Q5ia8mt^bO@w)poNBr4Py`7%G9DEbe`$r=bsJf+lZh2#s&(P;M5kJ# z_AV9{W=iF3u@IbZ9S8r&w7-z*z9#dnw9mLeYp+iDL5uv5~gvALeM=5!?Cz|Oc;)Vm94|D?m)C;8C8fl-<*i^ z;J|Q+m;n(XeWX~Ni`&S=;%r#iIu@&HCl7a?|NkBWh*^2K_|iq@_s9F<$4huFl~-=T|y_2oaz_oc%x*qUFV-?q1**l z!7XH#niCx5&`c+|cWAsO627f9{tbLT5=I*?P+x&ZRJ(nM=3KMyo{@8(rzHEA#0t?Fos#r6>e??X*cy#n7yWH% ze;C#M<7kbXA4Pd-VEEPaMjHy7u_=W|vFwf3b0k7X%+N|0e{Zx-uoNChQ?v)1BF|mf z9PI{2Oq=E0)oL^z9SJ@7h>;_HrJCGz8{CI8fX=p*eHL1Sa4zZI-@+o6Mx(4Z`{`||FpSR&a zarud*{!Htn)chScnMutXu(EY(R$PCkb;_ThGR+^qp7Hp#k&wV<23&q(sXu<_DM{<& z#xqG;2UfOD(u(WP4r=|`-<+R);XrZuiKYJRps7Fm;3hMv*$Y;-PR)wz&ko`BXOTHS z6*y#EeqyOVe&=cZIRQ7GNm2n;ZgG-2GkukwMcLZ9G%*t+ozRcWNxA|KSz;uq&Qp>u z$Bk!_bQ!E{outVP=VYDYv~;mwy#?`4<^cT>juaQ5eNCrgp3jt<-{Uqjxp@#)w$9BI z4mV^G=reP2K7nJ!CFe^qkuz1(2YrNF&1C0&Sb61OhYVX=uWvj7n<6BdGXaZ>9o-y$ zbKGhsJDb4DD+fDd@^zFsJ4e8=O1kdo=3j^6Rx{a|11no+r}3;kFSf>|O3JFwS?1t; z6%G^^9OGHL>oVuL{rO6^qbHN<>_}BA;(jV|wS`iH{%j7?3vk%DARTTB zk}d$0sAq8pm_$7VD_bXOn}$S{GM)YDOvfVeJwNj0;ng-U?x9BriRSds2brQ2@SHL< z47Z%g&|p~EIzziQWT-4Y9h&Lv=qy$`#CJpmPnFQ>w6i%I9HAi)tlJhOxXeK$|gq5w66JB4)(&4@4yxau`h|7ynebKEK z-j18fq~sP@**YcR^~Jy4MVWEEZO+Tz;ZSjTF{&?qr)hn812>vU&TFu;b#lV%3t3*? zXhY*^)%rrBInyem`l4G?UI#aoNy!*k**YcR^~JxPMX4|Qn)9*`9I8a>i{EKlU-rU{ zW|FfztlXmHsM}W*aw_KJoB)Ta>Ex(RQ*sKp(M)oVhn209qd%vm->Y+lIWU*Q5#j>V z@Em)iV-ul!bS}efWpZ)}tZbbV+ZdqP2T%jxY!1P&h!`q7r!)9k$124sI%wk^^C7>y&JweGA~*W1>uh zzG{xjX>gRdsO%l}1%S_A+O3?7+sou-39M|Lm#wwD=(dt5;QZVioNM85altt-DmXgF zDM8oZhBFEJF|2Hzpv|-d1$K}q=)7Q#&a-fwxaiD|icY{|%FI)^#Y|=%hn1}}qurVg9Cw8< z+VCE*%khY6FOH)**SwHm8o!54SSxMw@L8C9b2iBYF@wl!?d#u(EYTChHJcP%5T6(;|NE7dXobET5Re z@(~;DL=qNNRT78ko zREiXrO>lFWxNHn7TgPRB4wrPQ&`~Qg3MxmKqjD%5A#Qciyq4fpm%6JIlR3DlOiT`h zm91kkR)sTnmS% z$$&V1Qb4Z3?PLP-V_3O00m*6rdBGfzXW{TP84$-$3dmEqolHO;hn1}ZvZ-!}$(B17 z6pQ%|-B2@Pym99`Oh`1RbJe{1=CmULeg zGg-dN9GBbSAaQZgYzXFbFg|Z7EVtm+GGVz9Rt|wB!cGCX*}#1d89_pBc{o1mlC!kJ zeeZ2##Q`Q(h%FC`ll_+PsM+~UuedU-cGY)a)5EG0&^dzk=TV)rf=v$t_nI?9%3L_2SISmdKw}dpj){hB~_mwo^Iqj}a#w};!vjkSQj*oIJzZRc#QRV07=KNd> z$BN6(!E}WP9D?L8N4QP_x&}9$3DA#WW$OTK*tFPIbbEF3H@L383I zsD~o-6mB~cp~qom>j-g%uuk>!Xd^Z@9>RtR32gGf1t`uTtW)!Kkiod+Onlm4W$XBG zhOly0y(D`_bAEP!W5wks&LK>=PV3M1xamxQwuP0g1H>7^L=@E_ENxEEad5D>1jRXo z)qJN2&BtwLB6KvYY#kv^4XUKn8uT4=g1!aEic3(OHAuKl0s1CxIuoF8z{=JE;?y7! z#c4_#eU~{wx5L5W5)@|*s`*Y4x&^nLiO`L(^2&mcI*k3@9HBShU|B*)GmO24+s;Jj zFR-$8gp>~s>sEsnWS!SX9jSskBU^u>@r-O8A<>)}*%9$g>3tEP6=@9a0TZXyVP)$$ zON=5VDCTbzb+XF3fJ+tBTTq@U}fuYg};^_cqdSgX;J<3$2s_vlO2@6D-t5Dp!es`>Gcfxbvk zydJA zav*Lw6Q3`^%GUAW)E~N!jtyIY8fpgT)0X z&XKI=0FSrX#pk9KNtpmkaEb1<0Qk9JQmVcd1ji+d1 zghX?uXfZApdEQfuR>!SpVl)a?wvN%%71t#%kR7`D{$A!V?G6WxTbSm>SC|4Zph)eC z`@lqMCs^4!QroN;scczXrJAj%E06_qnvRF##ii-c_-LxTPeJOz&1Zs?ft9U;#F)8d z#nCQx<>)eViY|eJ#ic05nVaJ~Md%{jb|yj>z{)EJLIrZJ?Ll*d9)N>o1tH-(Md*Iq zb|ymiz{=JUV!TevmPMznz6yEYoT2}~(c&@`#*-{JFX${&6H=PO47O=8)fVN%nYYtJ$Q=Of3bJ~1!ijIZ@#vRHI zi|;+hfd3SwdAR*dln#fLt)s*^2rELFO{emjTWh{)4%0W_ka1y(@gS@(0u-mO;T|w? zIs;Z-nQ$r;)tg0bF~{jfIAj)a5)q&{{Q~!ZiPQhV%GPn>tQ~pPiEM#<&77vcz!Brp z6zAH}KmaIAFX0X_VR{}`whj|8)X_U1#!NPzzpXALnlpcE!ceEZ^I;V30TZWHVP)$$ zF?K=rrWR*=`_*@AyPKo5D;zFvVTy4Vq~|@YN;~1!Gco!Cth`cSBsQ#3jE*_+=vicWr%bEC0gO#o0!)T{P5Y?|@_n7mOfn&wxC&qTV<~prE z3vkn!0Cm91)&XKHDT-07??h!ne~~#s7r?>d5)|W-qT@S7=-asMOoXbi^2&iwe<7_P zbiX-5_rSrjf{^f?B6KHiI}@SXU}ftFF>b)FltdWyH(>wMoTPuiG2@aH;|aVb}b)Ys5KY*QDpx%WwZY$#{*@i-*Ia9LP=0~oD#}t?KaEqC^tPLw$$7Nyz zT&+Kq;6?jA&%JSznZWD`D_aL6jV zRv&IN6PaFE**Y?fhNMpQtDQeI2j&NGh`7MSF(h?%(jn>lxW!Cdz6UE?$E8t)DRk%6 zw-b+=1M>$sNL*mzs4z93DKfvqZDu0#TUgmTGL5+lVD}*$TX@k^hMP? zb7BsMW0Yi#(Y~RYi<`^@=3rRaIxvlDjEJ6kiQ?DHi8%uf5|@}bYD~>%T4PSdZDt~K z60F?n$f(28FU*noKR8GUBcmCXeumr3MCNK(**Y=}woxp|Ru*N;8O`m8FPVe$JRB-6 zI5BLa@Oe%v&NH~>Onjb%m968`U{7E@h}puz4B1vXY8&H@cvT_MoQ^n#J%K^zDMUkY zzEKGu88F}f2D6&Irzn``YotheEoGx50@ zR<@2$gC)asCad0`@egxu{sza0%S{ZgC2B6ydh=J@WF|1L!phcxY4E0;ZpPVgTjMF% zdP1T(Q?MA`lxz3mtc_dD#AQub**Y$b>PxY#t`>gLoR_`f7$sR>gv+$P?1`Jq1ZF0z zY#o?Q!{=7wX0U1Ejx1%XdfA+rJ~&KVX1-)TvGTm8*!1F7GqK6R%GR;jqyaYBh1pJZ zOU@6>srfz}B`!7l#XybYG==7SxY0~#z6&c`ho-^n&x|-_u6DnFFlXj>aFDpn#PIsl z@tGp?Tij+QGQWnEts~Q*{mqoRl%eUr=D>UihlmSI4DGM*nBwvtZZQ*=f5XZxjmu*7 zE2mqu8_$+D6A~>uTN2+>q_|ANEoR~}0amt-OM}^x2%fqf=Wugg=E5=JmX{b-V`?r_ zU=GGjW&(2ntZW^aMjg!JzTTo;t~@_2UGKzB6AXMGZUG`uyQLS)0Hoh z_m=->j?B;CASH;5<1YGwy?j3W?_Q!7=nTHJ2$ctKcRxf%$yp1E#?=yF0C} z0Dr-pmuYzLSIrhGnNlH@UwU?RSSi!hU&=1ctv_LKTXkfrknSmpzv|5_t;R6T79LYv zw!EjW5gvV zhR&wuG6m*l++-#&H^9o)f!QqlMP;_!CBD{MQD0U5%^aG)!g1n4v%mSP%DUSWoL6zP znc%z(D_aMr!BSsVoQ+oBJ*~IB@g!<(A<>*kR18afj?WaCHF2An$c%=STN{}|O8pSX z-sZ^c2?vQ=XktM|_)L+RiQCLXW*1o5Ix-FR(PYbFDy8m;=rd=g7mgB_nHcubxK2}O za=6h(DejaWAh#yDK0iKoVS#Y zQ+WQ38_tC19az~qJdFmYqPjq{*;M0M(&N5=KU|(Q`3w zGZUG9SlK!SM5j7C z#b#M$XnMw+nkV5vaj7}L{Jp_|-xQt4aJ!l4JOV3QN2k&3sg90XafVJa?t@nm63yv@ zQ-nZ6aj?Y)%P;m#Y81WIFQ+&RRTh7GiNLblAK8=Sir}~fs3srM^&VeJv zr6-=D%X6H<^L5;CCOl`t%GTjw3|;hQtlP}#xfu=>m!24FkM?G)8*s~+_*@SwTgRut zp5orr;%slf`eO61=IFc%hlz_$410<_uW8kJ8Mm5=&5N*dOJgH;_fc%t-obdPwWg40 z&QvQ7Y+SD?HluN?nb?ekm91mbU|VQ!f4-9K%P&!uclI>rW+ogbZn=qJTWH;F3eGOL z*-UU|z{=LaY0x5z-EJL~Vn>0DRK4ctJ{;52w0AyzfC8*+YYPR_64Kyk^5 z;dR7--xQtuaJ!l4+zl&RN2fu}=_{7Anws;TIXVA^o?*O*=gchRRx)Y z&5=0(4imS`#4r)}yr$Ufhg;3WW;U#B9h(L_b2P_aPBLd^F&rZBmiG z0#kyOtpn3w0$$3bvwfwacuB65nybyRxeAUH7n>L+;L>pl&y~30On8>V%GTj&Fpnx_ zdQ;g#C%L-hNpp4{g9F87Cx&^{fZr6IM{v8D=sXN7TSuqCM)gv$zo1@{w8|HZ8{*I5 zAaSvYVWYa^Gezc8+-4>+AH&Mlk!jG|l(XIHaq#WTiP=U-G-nDGLvK@anF6yVZZZ>? z$*{6@U>Z!h#g!9EQ}Y#bUcL;6h+AP|m~sn`DK1Ci7Bg`<3|6*|OT+q7P(Su_jyW%1 zhhxO$C6@Y9(0uIYOx$E9FsH-HEe*^G5;vU*&~RAUIzSC}5_?h9e4S&aIX}C&p}J_bwn1&R ze{##lx3!(JbV_c{?6$V~OLKGGKMr&MIKus7p7RH{2F0+Y*cSrI(F{1-+{0AUVda&8 zBh78-IdhJ>;ZP-ykN#5hPTX>48A`#**70fZrosCS(!0^WYfjHnI8t1CVtCUa9jCSD zeB5v*JmOHX`5m;Tz~yK&2z_}l?2TgPYH@cRe6pWwi8 zeDy5(zs(_f2M!n)qQlJZAt3(KO7s?PKNF=lVda$oCAoiFSz?|r!+1_MR!B5wP8J_Z z(tnE52Dtr9l-7lnt)sN!K~1w~=Kynv_Jc#ktw-?e>RD{{Gi zL8X*Rt5*{&HfN_FjuV%i7`7tU-KKS?gqzI-rwA)s2dBY%(F(a%{VH>2u7pFxWhRFA zqQYZ}%W~XeCN9fhW$U;!crPk~r@j|`%$%1;;23dviQ&Cy&1DMA!??*zU><^%tpn3w zZA`4kQkmzWs#b~!#%WIo1iW+L+etlZkj^cT_!GTZEAJd@f|NHk|A z6$>)LXNt^Z+-4>+o5IT0k!kQ=v{Dk`(|^|Y%jV=93CD_CY+`sX>UW(2bQo?r6QDz2 z7m7c`o7eS1{$fgQT*%+#CWZaQ#X_>W+Ciy8wy!@g zwj&e^OV3(bd#Ia{AHlyj?T@8;NM|u!-mWuMNp+<2sd71^{7br6sE7jxnbLOIg-hD~ z|GV~qziRLGTN(J!ZO_eK{O((&&e9c8iGFZE;&MkKnLO-1F(lbef;I{+fQP2*w{W_= zxVRNcGLYPUbP?G3yodA<*~msu0yAWn>?ofZ4zlCDJxb@Z>iyjlb~XlRtdNMKMW+BA5pzY>-VAI>m}YuljwztIUzQ z5{?-csd;fC<%x4n=@B?sT$Ez%m}<^bh91U^XEO8< ztZbbj&PdmnDfRYOGP<(#xj9Rp!a?J*6zfRm4+3TCW84WQQy;*})|ujT;iXJphIHZE z>|#8Z+fqn0XD%0O7w)=GIhu@{&*W%RSlK#9+b}w&Ql{LK>Qhgpec2qOBjI>)%TmJ~ zknB|@Z&ASWpOSPKZaWQZcVyK=pNVjLw9E#lzWXxXB(VB%0G?$6JqT z-cyQ(%is(fU-0lcYw*# zR9M+MOPnsdk|kG&benV32?vYIQLJ5d&3VdD3OAm~(6O+xb%r?oQGY>9e#yAD)EuMp z;dpT|inTxT{HG+HhuhC2>0DUZI!T<7?Zix}sCj>TpE*i*!vW)>6zj-V4*+H94%`7I zOSi(x)>%?cngqHe&7P!p%=vi>4icB2hWDv)mmh0RQ)b@8jb<|QI;?D+8Rg3wL1uJ& zkjCz2JTcoqNHk|+*6`FUo0^clN9*EdGr3s{R<_Pfqb^!(F(24&qfG1fGpA=Z94v0l ziKUD7J5OuREZle|Lwmr=))`XHECp(hZ-0$~P`^1sB{)`GgyzICq4)Vt2`b{YGYQJW z%GL>L)bVKc6kTbK&T=?NTy$dTc=UUTmf=P-nYk2Jw$4nWk;}h*Mkzawn6vXR94sz7 zv5Z`P=V{$}2sfU|&~IR6>kKvOnzeg|J~gN3V>nD)dSdCC!}bb&fSb+a=3Q9XIya3@ zp6T}pZ8_6;x;0ryG-tZi@C#Ag=~n38piObRndD4_m93N0sMFEx2|Cgoo5SEBaqCSi zosNDl&>^_dOlA&(m8~$sd!P#4%QFNwoXO50SlK!| zjk;pZ9-bNI+)Rgq#4R|nbjA9;J5zC^nas4q%GQ}_)Zgg$>~xxAlY-;K#U_^iCUmdP zvAEq#a*lzOt&`Jeq^fUGQC5x5H%I3@I8a=4Vi~FGj?)$6b8*9&?3@iNhp-djZajIt zo_nEH1POV2(H&7QK$2Ftx2hRgahZt~;(EQW4^8%Zz1fS!tBP!IM%-~1yr$~~_}8ZW zsl;==o_LEZtqfe-C;;BqH3e7UiBp=z_Jq(v|E&=Q705%zX}L&ih5n z3)Vh`L#R!D?k%AcNLTgCjb7^e)7&mTGT?byR&L!3iGk;Zyl3%a+zV#W{J>F;z(?%& z@3BJTyOGX+gXWfd7*G8s3yCgCMgh?hg~0iLf#mXU97d$=%PlL-72o z{%0p|S z-fF|AmbdfGc{>jdUJLOi14DT`7k7-w+u5+Pb>4P@y0%JBZC7_OuUfTiz_H`v zc6{@Dwt=`%+HS@DV$yaKtZbb&J?boI#bF`bRkSpq&C>gc%HegkZ8_4bAI!X(yr33g?qvzY7JP~I#J54^dUsaMM$Mq z%{B*X792Egt?FzZSTZ1V6x;)Mh{@M(u(EZ&wqx~NwQy>d$4cgO72%L^=~~cSx@zH| zY~^uxm~3TXW$SDyH`s;Lu6(hZ+!Vds9IRzG!HB%7L=+>abK8JT?{K*r;0Zs zib$5T-Mz)EIz4>Y9Ic1opmEV^;)o~%Lizd)?huo&U%|@O`QlZrz7p-?KQ>3}12|q> zw3=A8oLEq*-o<@kQuQxbc_pE$2Gx#A3qN_5@!W7zA<>+E>vi0*8x> zRuflAYoVY_ort@_WNHztys|Jw_efl4&eTugaJ2$c+Px7!!Chf8^&?o>I#aw^p?vkP z41~{_ll3$lG%i_9oE6G|(3GRR>MMB%i?Y^ zS?hw8Ls*M&Wt_Zq&b>@3f`q*L?p^mjs`d77YuoaSrKc>NlDlAhTU*b~xeLV~^Tof8 z3;CPeq_Dq$ZYA5hSXh`Tm9xb{=&fW|oAZ4YoGvck{9DPyC+R#-)mzCzV&D-YZza1D z_kxM@az{DzRU}aMC zwsa(tgGyQY)k9TZc`DKUL<@wyhW9Xbz)|D&Ui|Y*5L*6l&^g6daCew^eHm7^j@R_y z>WCJv1^HC^c=5%Jjz!r*XK|6TLh@~Mz^ZWExPb8&;1Ix+fKbHF!5v~E_H|ghLx?OwHISRJU*2zXG$FlGG(!yqoY%N0b`+fcc5*+ z_BLm2PdJF&O2&WPjd*Lqqg;minb_|?e3{`^rkAM>|&+s|Gqh5--9E^MU21c7Aa^XBowpn z;w~{UTM8>%$BeVo+E>gkS(wTzaQ)64uHVA(;==WnrgUarAShD5#vNfIbswy39jRRz zmCIXLRMvkK!ag)7>^(SqT*CN=Q;_ndj|&Cv-?(2);NF3itpmqddi4TZUldYE+iYLs zS>_}m(VSUkbCzC}fKbFH;0`en8w)F2M@;!f#NL`$we4O+gNs87Xmia$I~a~0x1{km zs6{Ag!LU%=4#3@F;e*9jo(Nd8@-p|a*yBdxqm%PQzB(G7BD2i9%PBKxv5>~d3qVmC#Ml~<6 zj-;^nj5&Kx!olORmrZ~@cd?Pe_89IJ6ShZSW$Uobkgj9by++Hk~Oe1+BxJvai6gXT-BVpbKoFynQP9g_eRm7@O>TkjtSqHu(Ead z_T+bO6uzv=-fiaW-3-T&%U)kI>zyt*6uld8=a}eS4=bm9qC&bM#(?W7wML ziQrK5UdEkcqW2=KY#lvdfn;H^v>;p7?{ZuFOUConHHAcT=BrIzAPGc;!ZsTBiV53D zSlK#k%4IUzsf52>Rtnpm=8(;VgT^gvsiusn{%BCRcEP=2!Zia{whou_<-<_8)cde{ z&8f=4(c)5dbknHPToK=myTQb%6IQm46X)eTZFT7+^n2!beHV@%7q8~LoY#hBY5zrQ zwhd~l{gb;|+KCEn=J5EDJ15D&K9?L9?716bk-eJE+Enez@tU>fQREQFj1cCD2Lual-yl0%1sN}!1ylS@!vr7 zHFHMJzyr*@frx)#8Dhj23PQ`NxHC*zPJ)$5;aeP4LKZ%k*_EsCO;ieBW}(;y5L)%_ z5>x&fKbZ2*2t%UaBRJx=skb1vj2a@Qsdg3)DMhL2e%s72hx1U+ms6N8>d- zy3At7Uy$qMq2UVxf#ff^8%#)Ef|W^`dp@d!EORcZD_5D@JXq#t=QFkKC-cO85TUhh z;sM6BZoH6a&cuZebjEdck#JQhcws>xKyQS*!327JM>(|WC3w%|b}T@AKYM@e+ut0O zeeoDGYajp2AdHGH90ZzuaEF-C>;)^6D!98Nk=!Igx%epLm)D-k=hOLOS-r7sk+9aV z>#D#p<91#Ay}meJ^?1-VloN1&m~<6jW$Sb)7dM2`)tgdp1^JOVSy#aE;*!q0tbzYRx>-Tfq+oHKEfSh^7THfY@ILWSSUUxkyFsx`at6@Yl@I) z&U~+#V__{8l&Z~fUzk*F0xMgmirK%Xi+xMP$Fz;O}dAJoGe`9M%8XQ$y#F*!RK zR<_O=b8PI)c6BLu{n8w-pTqIu;?>Ntu@(zT)wQ@UOscMdm9107TsiH`c8jayQwmsr zHV5kkIAmO~_`8Gfy5)s~vh^(P4wJ2?U}fuUF)LQ4)Rk7iTJ0d?ZhnN2Soym7S}Z74 z!*E}iR1Joety8r%uixq-mniRS4%LouxVY7d|4A{tT8U6lrgp$xVKTKntZbbre3r0Scn^2$S1u~X@>?lq_CE;wGTK~=GnQgu7-3zMo_U}fu6 zDchz)$HS8N9Ik@Z+vZsP9S#^5EB?0W2qR%F7?i6waA%lYy#^~==Zd)!-(5;|X2lLa z1+9$^Hl7u(FC>~XD{SUUd_5kNu61yKm~@SSm95jotXe%w`id%A`*!9agr^6?2U=Th?v=tC*8@0vs|fS(S}Z74@8iBOsrnDBY@I6J$)@%~sz9$n znKH+CPPn;{XwICFe?J|*+~7uolC=r$4U?>mVP)%NG50GMGK(vzt_pdpbA&luhr&VQ z7OiIPR~`rmYBq>&FMM~4jGrOX3h+~a8R~R#@%7E zwFFkS&K9$SFJ}wt?wOyPgLN$&FD_Wk?BHv$pj2Ih`@*E^$FQ<>s+12BhP~M-_oYhZ zY}b;GN~ZSF2W27t1#`fjg+s>$jDNo--gGHpp{zZHyTxSfaaeh!VXcy?WYZn>r7gZ3>rc3jYoZ{p1mUNIYp3$1A1#QkE@_6=CsI&IjfsX2CimpN#+!(rosmcXc~ zKYe`*?h=!+8)0SZjB#h2ZbhpfI#vqW-_1FD0}dURvjk=V^{~)-_8RUMleNFV%GO!i zjdwQ48zlm#j}_q7pKCnrTt`SWXWCh8{sxW}3s>mz!gD85}k)W(ia?{Tc2{aF>{jT?8vzXH5Al%?egI=uz(9nQ90%!F^&aY0j=S2kja-bX?F9cq>p33+>E)jJw5T?T4_kb=I(oraK<~tT|{;!Exh) zmOw=dIVJu$?h});M`2~_lwm8h`orSG4l|wt3>Fg2nF1uRLK}K!ybbq?N!tHbKGLvy zraL;mgE?p0;~8Oo@+yIP7IK1oTihomWn00@*6SIzo}oENew;aE^Wm^@2h9ZLn)>tP zN8>Ir8Jh}#;Hb;g+AXYlp}X%Cs-Zcf=P zaNxLhOwN7*D_iFb+qpe(!dh9yx zn8=8irx0 zHp4KCsi|QY9aG4BB(jzQWde(6k)4)v$wH+|G=C z_epby_M?M%c1-eISlK#x*jn01GBdDNn&-$@_hQ7R{r|0ysp%W{AEU)}=a^;Ux%70WP&fj|Lo}urm|JBf^%I}T0ATg^h z@%CY*<{sMl*q)x*=Z=-)_>NK@+%$BV`r~xeuWCOY0UHP? z-@p@Lg7S4(nN+*AWr@xarG4*YB&xdCl5-QqxU0=E?^N;T`y9MFzf}L>{t$MJTX*=k z9JA|AZ>+%$I`aQ3JR2rme+esFr)%G)omj7ts$a{g`X%fZm#UQ!l&gvhl%{{ivtZKn zPq1c`I4eIKXVENFo*)A)@HF75<5zTC41)t_xqWb8p_U{`E zAl>c`cnVCEKT%c=9iMfsGu0M4jy4$+7?}je?~CM&9F7~z9H8+RI%?Ze0ww&zAvSm0k`2d9|Za=<&kh;I0DK#m6azzv76n5hQO~o$itjhOa1-&qdW)7k(!UU1+(MiFX1xFP0$FsEHW2QgbCFgSlK#M2RG}r z>R#rPUcyTc#MXG}L}rb)lG`WeD+Zg#?auh8g;2g4J)x+r!gFGxwh~shj+%D1+t3|4 z2`5|dhTWJmJP^xfGRb)fjk8PSoQ=ZHaXI5ZUB~6jU{Zyg2>_XI2!-rrJRv4zTVQ4D zkZJn?rtUJVm)!YO@dR>5B@xX8^0c;3ApOw-MQSRZ2NS6&uyPk6MatD;IZ{W!hH=YP zbV!-H!b9;qm`E*zmAeS3{qqza@bV(u+*VnhM zm9um;>=c)!liJ?nDFbL%cO{+x6QVI#xf>uNi=>aqA$kOM$|6Ml28bTQ6JSEL8CJFq zk@k&P~`rJfmSyWr6dQXnhJFs6|l-j?AQ@4RurMK`jm_WS=D_aMudDlj_Zf30% zPv&MSiD)Ks?eE%@0TiO?cmhm_roqbAA=JIY&3cUU50% zpK9ms<9Q_uXg#_SPk{;2^{}#akeVNF@zMo1m(3)dg8m`db8?)XfgR)G)c)fw0V60> zPvMC$p?U&VwhmSEO_bVx6gg_J?N`O)?nz1_nsImgSG;{6C{iE74L{06>H}E0i;yCl zDD&k=&Fw;@Oq(ck@I07E&4!h`2r06O5|bmf3O0<}^F>#sOq(bx@jRGFt$>xSBQ>|_ zu)I|8i)rI2yHPn*8(_=0P@UfP#e$#{wDY?F&xDE9d9bo|teUSq<>;cpJ#w5j!B%l` zYX90($pMPdMmz&1Mt8u<)-h_nXizdyUo?1C&e6-TS6q(Tzi3dlfP%CIPk{;2i?FhF zkmfb*<{FRaYs*kOo+h5-O;r-n%<=eFxp9}F8oi)sO~G?vqP0D&Y#psbo1;~53SK;B zIHa#(c7zZCf5Hdy_0I#eas174 zux^BH-=Up}d4tDe$7wWlqfkt6mL zY#kS|_MZ$4I6~=q0#AfV*W<8q7tuvGv?rY|9=(4EJ7ym$cp^-w-iMW~L)HA$ zP3;G2*xsHir)rLph-OaM{!=$WCupsjjc3BdYA;yXI#vgAw;}@v!?mH-Dmh#$VdJTm zb-25YHT^D2Zss`0c;H)?f(jCb!2EVnQ|w~2QY#;5_jf6t2NS7_VP)$`vAe%~foxMhBxh=>7+ z$hyCh5frNX@kE$V-3u#QhpPEUiw2tBlGF4iY!#QL_J6c!#^?<^113hV!O9^RweU!s z|IS?Ht*{m(EWRMD)9j^PCwF9W!0pR9p$}^A8xzkv_f`_o%sYV(-O9H_h>a6GAA*VQM+;4uH?BYT;VI2XTzp(J6Yh_u+|`}dO}BUXW=<9 z5gUP(ts}NT+x!l#V|`8`KIkT5nWDNTP6O?BIcT@S)^R~gMP1DroT0egjAzEg?M7JH zI&R!SMQ=Ql)?c)EK~C9ouwz`xfYtrh%2~+}3fD7uLQJ@xf|aeqHJ@9{5}q^AuP(aO z%Gh>a6Ze)3*f4J27&%(X4~o_*JRc@nD`92pXf5P+ zjmpZwSRtn#qjm-|X(y?5k(bCh8-?BDa+Zy{i`31b&~3nzV?uWUtZW@R_VR`Db=XPf zHP-Hvvvv<`8ke=mmoKWGP{cOjIWZC22rFAhOut4fbTl@o>YAI2WpWAie^Z&1OIFKX zm*e&-Y#*#%f+ogJGui!aJZ=D+}6yvMO>ebhohh~hVdXUN2F z09Lk+pZ=L#=x8qGs4415%pJ*UbB1f>%v}xp#$|3Odgf}jP|&W#(_(@)1}j?!jlENl z$|T$vUCDh+j@cuyYh27C-zlh>LLqwyPl^fIW?0!eWcmd@;nl2|EO-XW-jh@I4s08j zvd9k!rE0EF%-+JYVq*3ttZW^#gVJv{wXDW$kCZXxbJI)4cC~(v9 z)R@3cgO$4nxU7>aEqs_)Jx-JZw+!}CUD2V%H0E8^@CXRX~?tX zz?}tqH(`Klw1xsVf~Up=t_Ukz2ktO#ms)kT;RK-8vEC}j?q=9QE_Q{eJ64lH6uukr z1ex$%4=Y=TPrr^TblOn$)^JktIXQFBz{YWz175@_r;dJ)(i`xFqV^P?7ZbH7U}fv5 z9SqjF+7Usm#BCcF&mATyiD>2ynGTh>nl}`=4`DFa?>ocF){$c`@m7DubnR`voVK}< z(H8j2oRYcV-!t6<-_y=bREQ?^jhR^n+fL0bVUTLK;)9FTitTB6uFGY#l-N5^%NmQ1%+mTizolZxiet zm%PYV7CaJo?IY+seb_cH7w7ru2JDtiW-D2Q9|G?^g2 z2rF9$aS;e2Ic=z6xMM;*m7S_2qM6E$bO=LY5`}OIo+J~(?O|o>5TYw~hLf2`$hkWd zHjZ2VI<;bFKA^b}&x?uL0$ABPYDah*D3rO9isRhgJ;OZZwahy9Y1uGSNa&SKk4Zogq9}~Un zU}fv*p(lbI@+wa>`edkS`t%U-8W95)z5;d=s4kO|-8u(Ead(B0fZ zAy!?=D`aAoBB&uasb4(X_z?Dyi(sdAa}7385I?}vWP4m>j^Znwe8)^TGmm>7n_8gwtqq1yr*$b~NQ1rvim6ulSm z{FvxH4=YsdEEmiO#(-s2^S@ zzp~y~bxmoo*r)DJPpbcdHg@}-3R(Eh;I*)E+^PdSKEkUy20v(5dNrO86R|5{W$TFP z??8kjwmKP0c*7cAKbPb67;G9BFW_}u5U+|C6s7uJ~>0&!iJn-LENklX7Kc($Bg)Lc3!gFAv z^kMg*)O`KkJkUB&&eD9m9hmF)r?#D?&?SnwcoIyQ=D^C<>yrM)4DIUlNw~JS+9#(f z2HVE%@SOHj)pSW>6`lfQA+hz|h-3>ab+JI-n#OnfB**ad$ zH-;Lg*&1B;$>F*OHjN8c`!|Lfy`X4q!gFDwwGmdfj#l%IQJ++6aJ?>v>s8n`E?n*J z7F!9;~D~I6K!qG1ObXettPYV(jPlxT*I4wQiNqgC1Qa#3-Nr#>h`^=Dd zPP&JZh-OZ@iap{>1#;C+iiO%x#l}A`wi})Zlj&W{$`j$dn08V&%$&f1so<%x*Sx5ZGo16A%vTw@RXR`EQXayEj*$u(YX_3+PCZBfK?A4^m}UCvh-X^Cha7( zUU#jEU3ipi7*k^?PW5AD4ffD(IFF~tL@x^~TSrg3BC9ES*O^r%)9Yo!5h|V-5<%}+gC|MGwEHg3h^pH6E9I^Pot z*-3a#Ovp}zm90aj9fTYQvV11)sl~NnH`CgAHlY9QH!{$)jgq*-HzwPgzQ#Wx$7XCuS51P za>#xK+cvQvo1dVNy@2P$gzPz3x$7X?Ux(}ulHwWZ$CN}glY-7vvi%K^ZHMQ?glt<_ z**aw0@mXIk<0Rsx4l_UKWLP2{slub|bo zzmuc(6WB5?YW(Y7T0yPi2ZifCJRc@p_rS_s1ec-X{7*St{{dSzQQ#{1LE(BG&xZ-u ztFUs{z~zo)owPpN+$|-ZZSJZhqM2<*Te&KJP`Gx+^I^iZBdly4F72-F(D7Kq5iPBE z{F0opqhRN_1#BqN6KoB(P}COVX)#ed0#>$;8uwIgzdFsWET?J@q@y3EuIe(uB&0?u7azm zkHP*y4%g3N%O(z7MZ;?UV|YGHxE_I(t;3~V-V#0r%OrKQ{!fn9?_k5YXz@SUYh_`g zU%5f6)_Zt1Ot9X8m92xNT@@M%)}ZSQdwF%1OzRc*O^YXwdn<`(CXdm6301d*A~p+8 ziHX=uSlK#a+)>w{X<79YIbSEimT{|Bw4<(y9~7<=@qCzYErXT22rk32>bK-@oeNtw zQQ$H!tDcSL!-VTBSlK#U`!P3!yw7R9;*aED-45Hu1&eA94Lk&ejXCYh1RX9dXqyp@=<)r^H0;8CcmmV%iNtp@aHVX4o}+ z^82xjcuc>Yl89zZ??$?gT62T~wk@6!6R=6JvUR}bFgwPqqpwCBBxmbD*e`DN;y*3X zO3$dwpjgevlVM^t7gn~8759i?*2xt-CmAcP?`R`0SI$=-Y#f)bXpa~MU7?`G@T{1i zt%8-UgT}p_rDkdEvE@u`*o|w%eJ4QN<&%20>M8xRer%tiFE8ooIel#C#L6GbD}S6^ z`Qw!GA5|Y-nzVJ#(06z5=^45Nwvvlpw70YveWDDG;^{FN+yE(v^`4B*kaf*Ze8n(v@b2&LD4z_Plt)tp|G-bv=%bgJj!~x_>1e^Y6CNko%q-xoctf zCJ1u6H59q4@zj{eT?s399dh-HM>OPqE=TS$*u9B`T-_Rq+#`5uOynMdmAe%=ay85E z>t0WigLfkAA-C2QqMbyT4WgawGCV;heoJ9x>-Zgl;TOEF zL__afIeKTq{&CUEb^^ViITX9I@Z^}-jljy*vHK#5UDGRFZkOYCE9@f|zmd-1M@^y_ z-i#;7#PCK~**b>YPuQyuJ{T`}c|i`|bFgz<@S^>My}=fW+B0}sOw^u&mAel$!*>bW z<;2s9ZIwhc(~1tEX8t^35}pIJFDv4;OpwZq7 zuRB9WYg6&en7~bem8}B@j@FE~d@PpJb_DDkx3YC)v=(;R$Dw#yOw<;_%H4;WVQnod zM=b?AH^ERdudNN?X)#e7fR(MI#=WJX+F6hrK(3Wzb~Wr87qe(@X{cL5JI*Wdl$eN( z!OGSV14nB0%P+K%+GBFk9)Zo{lGc%tTHP56+(UR~OyD-d%GQB92%CY{?!wS`dr!{W zJFs_L-jbb|h1QIrxV?oZ#>DMSSlK#m+y_0Y{RO=%WL7~u2c4-TqM3t6`wX7%359Gr zo)Z(YX|S?&$iQ=LwU5RPt7|99XCu~8qn?m(+{^X1UZ zjSRYCCq{h4AqwCeJVPdcvtecH03MD3Sa4RmF(;Wx55x@D{Kn+?t%5D&cDDIW;HUXR z;aiF4$AoVMtZW@Vu$wJpvN8Pu_)$4>8(`zO$aSQfExSTNy8zFM3EFwEvUSkF6D7vE z>^*YQHo?wuN$bdol8P-9wT*aMOw{gxmAehKVbc>uugXz-8Fp?$p;oblqP7K3i;3Ec zuyXgIW;ndG(^#HCnjX~!^+knEca1A0}LH zz{=L)`T}z=pqTc~EV{9HCY^WV#ez4i5BX=V5l7T;?^gBAyQu zt{ki!0+%~^RhM}Cu#&{k&d2uj%szLl6vuZ|JcFBt zE>nM~$NP2*`-_=je{tB15UDGa;^@w*8;(1LSbr{)isfC^F{k5tfBa)P$v=YIhfDIY zt@X#Iv}sp+J03O@*jr&`0&Ejh_GvpSdo&L4mSu9O{F0HZt7fEby5J3e6H6PD{$?n> z!;V>FD&PZU>Qy`sCQ~oN%3Z)zWhiB;Q@gGePxp3K646Ze+FqvuK2WB1#PeV>H5FF2 z&XjiEfsUxEp8@()9&O@xlpL(Zux;F8^|dy4fW!<+*AaL!Ou7z*mAi&6e*&b@m6y|% zg>AD;mv088D}^V+q-zLPwoaG!Jy2-vYM2XYfPGI6*tM{8T)_CJX-X?{P1nbJtL3Y~ z56alpcs@+Vu7s7XGp2pq7|K|1YNR3db2(yYPlrj^Td;EX5Ehs=X@u>)PCR{_r6i)6K1Nl;0(MZs zX5#5E37ZZphY;4n2^jwnO=W|-1qt>cn)aWJn9;Zu{uL*k$fQD#Mtn`q^yzR@ajWJD z?3rt>oTavgZAiTeiGMiat9bBCf=?+cPlUq}`!*vYa5NxzZ03*UYzra>;SvtAx#i`@~#pqXf z226}zfR(Ld)VwYwyqp&wOu7Y)rB9wEu1kNQB%&GEx4$mcZJ=qX#{_$ky~JLKa*2+Icyu3D*i1tT&i?8 zC|=*evti(%ZsWZ1qdo(U7Hond9`Sj}rX|Erp59=#tY2kT3)Y22C>iwdmJLHtp8E=;r* z!^$COwXo6W?-f?|ds>jNxL3GmBjL+kCl?>|(gUH}h3Cte{wCa7T&DSp8~IwI+Gy8o zK$RAM)9@R33QUy0URIt6n}*sosYYi4TV}z1!yn2a`77LE=Ds2SG&BTBzzTxPU*gFy zarp~anN+?XlqEX1d$^EMa%xk|VmjvxyUCcBPPil5jNq3lZsA_yKf~^EE759p?}|ZI z9d9)FLgxnmgy+TN?H^%f>%3`GPjek>FjNEWqwB?>eMCt_Ge1Z~1X_b3l(4PwgqVc& zz{(+nwJ;F#$8wc!xCIG|W4Yb+!deI&#VwK}eK_1s+}g>%L@DnU$oQ=>Y0?!Rf``on z_u#T}=*X>e9jtbmV!7L3Nno539I_?lM0mKh%pu!JK#^-gL?C^_Mn9ealZ`m6Op4mq zT9xpNT7}T=Drz&eqLxuF^o}zy$C-R?;0Q{kpX&=RT`+1| zyjI8wTMiq@EnfUrhxmkr8bg^o0Z)v{-0`rob>`-?nKPHN^W>nN1G~lrjen2>1}(Ir zt;e%r(zOm&4xy`sDWgB@tV|nPkg&Lv_E`<`(s(al@ZwG~bV=<#IoJ2V?ZxF9=%W2p z_1UNYHw`9KnejJAH{oe8f!&c*-zUNklVc;6El` zPO(yYxsWxuLPv8`@T{1mZ4WDVBWa%gk;)Nr(hh~4mk^)i9lD)4@%c&JRc@q_ruE8 z>C$%yLPq}a%&-R5J94nzg6-mhbq0U)$xoO$+*ejmrryL;VKVgwtZbbru92o$(N!Bi~ayOAh#`4SLWG#gq;})!_$ui9rkHNEHlC=a@ zwoaDz<=t}s_uH@nHmFwRGXptCe~0ZXIb0*KXN9e(o`M~l2xL{V{ChX5$Gl`PvIsw$2xGyj8N3%oJD2;aUkh#w}e@j<+gq zP_kCw*)Yjk4l7$Hi{C3|bD4y;YPvy=)&;O-T(lzY6-#zdw$8)TVX}1&tZbbv=1$_7 zMJHYGlKP{#o8)k9ggxWJ73EH1%@0b~9e6%Wx^9D&t<$xDw@+O?&Q#l;)hgJ_a>%y8 z)^Q;lig4dYvxTzuBAynLwdY~wE@Q2>S*x)&^_${3>9VE0pC&jc{67}z9W>d1$ahG!VZ9ytrK<-)N|JN zM6_}?B5Fq?o{63@ckNZy0CBour54oNb1UjmtKrt&&o^PWMAnmIcRUf&T&DD^5c(cm9M%&yU;iAteB*| z1}j@94I8kPJvHnyO+QaO|D2{IqM3hoV8B-Qh0?YQo)?q0onU3_w83@Fursh!&e}1s za}%qsnKuZQ;8`(ATLddxCk>&(z@$M*EhK6h;W*giww*}bP{aMRFb>W|aMhGvHS z#bGl-{ufuM|KX@MV=xhw$(Al*bds?Fw-9raZptMe^KSPo@r+?xB@xYxVSv5d#>dO# z3GG)W;W;r$`>^{+JG^l-!9-ehu5U6|8_OLi2W~#zILvyMjsUoEtfAb^#ZzN)HwRV@ zsch%ICdO8CXtEf=O&zj6N@LEeBRamgOkfSYv+2y zYkPzLo!;`l?o9=w8{OVX#|JaHw3Bkj1~-vW!1`86{^_KxdxpNN`p%(sWr@!CKYlO1 zbL_~HF{gNi!O$l90o+7Y&t9r0{5{w+V=E6`qI4SCXY>oSWYRY64at(U?X`HE%=&kA zSvj=HJ9szy46_-5fp2j9|8o_$@XqYVa8r%_C2jmAg2oTzOE7o@kC=(UL$Go+IKT97 zE=zQ7puc+vFY%<8)dp9;Q=tiAc@H*-TPco^z*0(<4wv4+gJp8^7OZTYlRd&X$)w|s zeu>lG=Zi_1r6k%h@1td9k%*LXx|Effc(_bfro+nCS@~=@D{8)yR*yJ1`j;Rl$%#1; zHi}zYju8@5PnvSG3=f*g%~Dv|IybXIxN%3aPC5}wc&WVBC7mnB=4{v}E;dI?unFW$ zsW}UenMutEtZbc{un|l@9l_i#$K_VoATBPV5lksr%E`@muuM*Fgq5vx64onKUKDao z<>duAFVDe7ad{E-O2MQlH_zZfGr4&RR<_Pf*vL2MW?eG!-R=VM$ah;MF#$)um2@d9 zlkjkvtbEvgtc0z;dRuu=%t!3rDZN2FO!xzu(I{a5;k(l zWs*s4pxY-$B?cSB?TJJqmr}BnlT~=IOiot9%GNoV9x^Y=XVuvs4U|jdpp3!}aX~p! zQd7#=Qc^bH(K1Q709Lk6N?8AsKeOn%>-7HTJ~=D*z#ef~5%oXSd?_uP@OYWDY=o7q z(-K-&3Ql~rR##q^v+^qJ5SJBMT`6TtNqHHMmPyJMSlK!$GsAkIHBQzUarI@noxd%f z1?{LLqL~GKQPc@l6Q;aO#RF#YG6hz)&P&+H)^JVFVmT{Ezy@&(i)dt9N|thRC>|`6 zlZCLdbxy*@E5)?hGa-FYR*p&v_K1s$XuML*m(ntX$IGN;09Lk6OITGI_S`kvaOGM# zDp$h>aZwRfl~S^llPmFHnVgKl%GNmv8?CH!a~Z?l^J8*W9)V5bvLYI-)Dot=JcI|# z!3|Q)(?9QfAZ(SfO^0SForY!^ogFqeQ!N-c=3C0C8kPT{-+VkOW=We{Rt{~~ z4xaA)R71N44!H&o_4cW7h37P5xR=IlCECLKvs*Zj9ck-Tczn#ZUI{B#gY!F%6=jLg zUwhlX)%$cK6vecsR(oR(*+aTS#UMfjk7|+>keBfwnSgA8m8}C}t{=lrvPf6_H;DU|9hC$&0O#_7*N;k$6pyKR zj7&VHz{(+bv@qNBC#;o`ZVM9r=x0u=ocmE!=24<3J}!wuO`F$$q@&a3kB461;=n&F zsxSh zRe#3*?D|~TKVypzWtC3j?AmbOPUUObVEgtuewu+PcUbb(@cn7{*?9QO5_wixxdkfP zKI7WYpK*ow5}3ROr{=e-6ogZ-TXBDlQ*(-k;l3Ry9swH&C^zGYFhRKyRwjMv^<|09 z&EfZHPE_1Y7PVcj7gUr&oSuWd;#Qke!bat-SDW6F2Xs{S44wm%q^DqI>m=>noFod; zc7H4eXO3?*y$*bMZ`=RLy~vtyiZx&8t(%OZAobpw`#*$(f45esTM{(;{N3rKxxlOqQm=%GOz$+kE7dk2^^> z5i<oz940{1mW)a&;)43X`jau(EZo7;Bk%+TCU4K&4=>xIjg*mRa(E zk~DH*VXv%`q&%P`U5V$wBxwv*woVdbW|ze9Z%6EcN^%kB9ld3miW$RS^ zQS)(mVX$<=QYNV{Ld_Z#&+}#~iD>3|QJgQR8$p?xjwixoY8tF;ov8x=rqqPbupD)w z9Ia)rZ`^tnk6^-AN2}@wC2T3450kKCVC4|PS~x`MpTn#ixN1SdKMguk-uMnZM-%CJ zy~UaGQFir6RrqSZ@VMTO<#hZAx0iX2f!CcvbOdZ5oZOBl!sO&uSeX>Nn_HFei(Q4*?kaYH zFL)N`)Md1))P2hL>oU(3p&HLio7 z1_xGMO)La{+QACz{=LK z3Y>y4V&$%NV@Yqd{^9AFa-Pz#SzMk@ZfCdETXTSdv>MNV3DO{}Y#pTeP3lw1O~%%^ z-oRiXmU0R?Z$vu_@#k`)z6-m?C5pFm&F%7t6%?&M!&70RbvdkT9j(2ZprvRcyNy4S z`FBr25+0=Navwi2WCy4imBegq5u$b|8$HrxW(si^Ze#&nSs#rhQJtgn4NS z*dBN`Ou%-7mAenHd@-e!u&>Ag`!Z}Cw}eFum~w*xb{w7!6R#a zT99Dx6}5d^;G@}0a;>`QMML)@Il33ZO~OU@K&&=aGo(14k4MPF@td$R!Lj3;hJh#E zzUUO3SYd6}4P8jTTh7N_ut!`zma+Iq)RGLWq?;43wvE4Ccqbk@6PzEGl|z@(JGTHD zSgA6a5?DzNE~URD=i=A6xy;Q%-ZvI(E&>)1LVk%S!6f9LVP#TU{;5?7zo)Bk8f8z{ z{!ULDS$P7~ zwZQ5Yg&^>Y4i>c~avT=n&N7P{Z*_}-Lm+tq#^HGQOfU|Cl}R}}xK#?b9-ae}q;p_p>m)J8;PFg$t-6yv>q&I$Ml>FX8p~Ye-GKR6M_%q9nR!R9^CclC(XZ1Cyl5u(EZM7^|5H zZ@@{V91W&J#0B!?TS2+HA5VqJ)xEH?b*>maT|eDp zc}ot|o3K}0prYvMN*+*>-oSHUlJpv^+#Muk^gGz5e@8r`M2=Gt_KS;C6f5F2A1F~dJP#&O8CcmmQH<&|xHg;7ak^2C)Ag`fT%4k) zPGu7)OV{B^Fj=|=R<_O(W8Korn~uyqC8y~L*e)(jQLI~5ZJ<0oj;F!o=}}nOI!}z+ zluXc((}!}JK7h^Q(iBB)Dw{xAdLK`M$p4O}2+={(pgE=y6YSe87XB%Oojz$9rstZbbmMqNrfX?k7DMmbA&z;1C_ilQ!6 zT%a`FhG)T~=@wYoI!%m|;c0iI;Pe;B{@fNhP%pxUae<2BWO&^O%GC3CB21>9g_W%{ z#aJIGo#pK#4|Y!(6A#0;R}#?-!=qRqsM*tyl%3)dn zd&MnJQH-5R9#E1Fz;j@dG!Is`PSXC(=XCk3lgoSkYhwksbd9IBy)qz&DgoQZg^G7= zC$?Ls*+Kbo@N}4bodGLb=ZmqDIg-o_tktL*lT&pmY!;WQC{{AdCQz0x#*<*ObP=p< zoh3%Ex6Uo-N5ePEQMw=Yii=Vdy~c`$23@( zRJC2o5}mubCverBiK3jFD8}`dW=>Qw3h(S$20O*AD<`%QqDuC(UtEeu&m`y=SUH5C z7CJS*U#t|l79=e8i-DVokFFl-8|N`oIl)1LT<;CU=ngGtV{~r&8iPW`GfJfgn=A^I#%!Cag>fTe>XKxzT>$p;H4(PQu9+ykR%y3=gPJ>DQ3D%#(%H0Omd>yQ(gIuR#UfyBb)~ps{T_DBB3Ql=v|{})o(L1H|ACdQgB4i#GIfPvJz%e# zr~Q;fH1oveta&1<2dw8$G1>=@pNY|DVdXBth?J$%Yg7bMia3(nW!^+md*>l|Sj`DB5R(L!)IsLFrTylduU8Cg~LP&k%OMN<7>8w33Ksw#ECFg@urB00rq&cmhn2{t#BS4$}C0U$ren za{A*~IY&psW^qeV`!+57{3%9X#N%gTbR?|YB^Z&tuQhUv3b0xBFf#3Zor%ZK#3&6b zcL_#h@9PFRM&F0cvWJmr@9WR;_?Z}e7gn~8QQ#UV!|13~)Qf53p~ffWApHWiiwn}p zZCeuxIzT(NpWzuWQTi#YY#pV*dk6-UDj&PX)_CbeW{tMK_P+u)NRnE@Iuut6j)4tWBa_SVGui&9G;rTMGY#pA!RjYq?0h*z z--He0QpCH}iPMWUdO&gd2A%^Gr?11x)^QrY8_O5SCjFgqh<*s$#D%DR-B>Aeiq2o* zku%ZxOISGsoff`@^*^Vrd>+|?gvEAT|L`VLAWn&G;` zTRwm(33x$x`2?N~lb4Uf%B1#vv@FrNFK$_2If4)5*DdYg&*4<4jaZTKe4F5 zs(L}Y)I;!Gm{=VQD_h4ZaI^Grq4lcIDZ~feL@ZOJuPJ2Ya3x{exNx~q!PVdhMa;u9 zVj|WLD_ch_c-kNov3Mq}f0J~LoUE&0x42|6?+C#A!;%pcs4MV9m_S_yD_aMOGy3dJ zc+Nn-I>Vy%g^$XidKh+$3)R=6Dpxf#C|D2T$uPls09LjRR`57WXr)S!$A;gPGxauX z7MCgB+to?DP$?fMPQS(TVB+)}Sh+iJay|W45k>R9#pg8T0=fTA3 z)3CC2oIW2o@*7&6l#PS2LQbv8I|G@tlhnGu6Xa|i4?D*#RfAD=f4V6Yv}5t4n4ldE zD_aMRwbY?YVgE@Y{wikQ(Eirfu&W=!P14=Y2FYOgPC+V$oV})XTHF=(P zn`_0x|E-inG{b){D%glC6t&;OK#Vd``(IeuI%=#%)z!I-ey(etoUY!;=!$GnwPXYZ zYCk*?CQ$pp%GQBmjm}ceYB!c2PQ=ogbS&)-IHg;Dwa)SkIbo;4_HjGQ$VO*IXDD)~ z;+Zj#I~i8Cj@;)s-DS#As~ICPcO|@B;tqc({Xh_R-&{RrVYU!mJ{|MY#W!b z$PPp|I6@J70MCet*x$m+))8avN)`&S>RL}B6RZ4wHPGIcgZ5k4JT7RF?MfPap}749 z&x?uMzr)JbaSL8T65eH+wjyU-C!S62t|X$FO`Z{1XIZv_LiK4p6(&@lf|Wy{YT-Lt z|5Mz`N0co{So{<>__A##pLfGwwp}S_c?H}|+-k{u*|wZvaB4+Uu7crzbh{i6nn~>m zW#x(R(QWW$TVhGz3)A4&w&%%tI0v`Zf7!Mj585{8A&@*FV?7=|lZll4D zu!2u9TAhp~ykQNY7v%^&4;#fr=*zr876YM5?i8PA@z|O8JPj*b$7lSGEIH3qg0}yj zxCBjB644COPiPxI)#NEa+u*@70on>ywhmBmbDGwlWTx~SyO+NHr{I#R(8 z%xIO$r!twsV9eaxT`C9aV%RV)P|T~e7^9^|4=7F-;W;pIx)4^jj??&^UOv-bT1w9i zc*aieemPM0!j^G?YG0?PyFih;8_$A?)LpQ02vRMqP5R55mF21yBrGm(2Hvwg-bs7e zqPoz;%cMgu8hlR<^E+^3abe~?(31+}8CdEJO}~nYzu@^6o&b~MH_OTsVZk%7r4wdM zVC65k>^bxM;@RSKB@xYRk+-D-5)v?iurdu#g~`e;urjH6JC!9mw*(sKMnj=;^09pB zb_rKM^{`9@D_jU&3R}jlJiHJ8QLcP1XlHs1o(mJKC9tw}unzPWMaKavpNV_r@5y5M zxT7E2I!lh%2y7e|FW#XV9Ir-4C}c%EBPL`ySlK#ctm;)rx=y|jBM;KuEXV6c*fK6& z5mm3c7Zj}P@m!c-T?Z?763Z>a z>qFSGi2;`B0lN?IT$o_J4=Y;-YaU~~70)D#sk9o*JMq=phV)!HT62^{G*d+0H;U+3 zE9eI84rk-pFyYz@R<;gT;P7(jU|!u}tWL+r`g567EbpFKbklMDmWWky$X3GUaqAcF zmKz*0>I#Kz1)dcXw&k$0b=U$=afZT{$Y+zDeq+}LIbIjQc5(6I-Jy!&Rq=rWbsnAv z6R2}wM?eh9Pb=oH6hUck25Kj!JD2ZrB@4Rb~(4Mcs4vN?IcsfkH zCd10s@#5?pmY&T}UmR-F!b9a?Erk8z7A)S)fiPGVBPdb}@I;tM9RMp^M~X8@FJ1GH z%xOdo$%z_(?cx#@%^kNB& zbxcO<@!paX^(O2Xm#An?U)8OkSiOO#!o=z|SlK#OoKe)EX{mGi4dMykG$j$ugfE&= zRK*7h)Gl})OrUmxmAeEe!&2u`IZ(&Ic5#bTR6v=RI+x&iFo9YGD_aL@Z^pK=_c^V{ z8Q+#!uESGdVs#CyY#pn>SB0Uoyi{h`bw)h>8jq*sR6PM3#--|X)|by{m8v;Gp?Vz8 zgbCH7u(EZi_F;5-Sw~+v_)yN%2e4OMo=%N~CuIUf>3uv2CQ9$Z%GOch9LuX+GTl#C zqvqTwp6AV064A`_qB)iqbc4dR7oH6hu03I8>u@b()v4;G?$zs&GqGVeu8pr&$|+j` zyT`3uLlIRjgDn)d<#<|5+)jX%t>YHBB{_7gRr~c8(}rqxft<7RVB5Hy#Utgc;s*un z96TQ;VC!LJ>wqEkOjWU1*d@su<(%CCyT|1$+IrSt3&rg=JS`?}x4_EQabwl9Vj<=v zGwFetVFtNH&e@BwZCuVGs%H&;P{5wY^I-z^EUauDu)uq*p&e!}Q#e>(Kb`Uy;!*$h zN+Oz3|5qdFC(AZaoF?OGFmc)jR<@4Q=NZHO@|8b@!JL~PRI^DhJ)jNs7s}CE06WJm zS-fYQ&_yp|3B~LHJS8S(^I&D`m~jry6x5r*8d(E!vJ$XaT(Y7$I8$Mp=bSHl}~_ zyjc#`{jghHu%a1dm2IFn-HWHe#OZEW**Z>~J7v^uSgF`LH<(;z}9gq)<7g{4b&4_xfbC$F+n>VR<;frr*aLO zjwu)AaOGgTxNt>Nxhg(TpfY$KOrVmma+d&QIHr8P9H{GHyKDnxKBjyPo(B`Ct6=32 zpjxR-OpAbO#;-BaQ@ar4C-tz3t87@%t7y_viEIy13iw|IB zQpw)0khSx%Jw3C}9a}%P&(L>v@97!bG<2Ez2nJ4!C1*`ZSj4+9HF_9A#`GU>PfGkJsn=n!J}uEmf5iK#Aaw9mnmjV48`OOt%AMc z_DStx$j_cKv=Wb=$*y8M=!%}b)2I>{*GL`UWAn=I7gMCk*OZ-_?O~o+EgVG%`~lT^(c@( zFVdW5xT39gh*PJTL2rWohTyxsZUvv73x^Xm<3VkTQil&DJGMiw(|4?6{YYExbMMUaf?d(AgZTNJH>19@R<-@4J%uRXwUI_quxHZ z;As5(gPfnA!!~jGIlgU0sFXQH=P^8TCOVJ6%GS{tzy2h=oEINVy0u3iF5jkStDe$7 z>&J$^s}|0O{!b3l?_kroAhoX$)qS8ey@!X-r0E@4**Z_hfr3 ziD>3`%i30n%BfR$X5pbT;h705TZd=-(R4QB1Ai(9_)p-L;sVU8 zfB9OHffWLC;#ETYMS?%ZLucaq?XvPjSR@F1*=KYmFjWq&6a0-FjK9X+Wv&zOF1BKW z5wL(D@?$&+CL%wAl}UxWy)4nW)q=ohGG>;F>6|m{CSzVY;f`pNzJF7}3KtFj6}F69 zYIx6z@QG?Lg7%yLf+xbH>Q}IG2vsd~dVarIDSs_USnM}<4fdOb&>nNftzwLKR}#_8 z7#6W+40*TE&{sAlOG@CU@o<^2eyXe-+Dmq>umx7Imb(ph1p0Z2hQZ-NLZN^uftlE@QYW4%I+#&y9bI_M%{8Z&XE5+<&dx+J_k0L+YcYh zL${J*u!tFwCg85e!)AiJuB;qd$oA=6B@5i$zMOgz_*n<5*==$pZo$1}Rx{r5y*vkr zK>7rZoA3mfaNGbZldAUpvc!a;DCv%r{MH8e&#NGXh2>e;DsExnEynXGs-{ne^-tsB zGZ}gkRt{mPg>KF787pP31qqA8`k8^AvEUTEe8G!5$O{MJP~@yz(M!rW?uqbMX;wlRF20&++Su-$y~(n6K;-2zy<=! z0z45WCf{?Fll-XR_+#>JpJs=^xMSarfEtdnweTuGh!KCRLSlK#FjFrr^lTNt=r>EpNJptRr#ff(lHZ~Zq+CX`F98ZJE)1$Dmb)FdG zr?QcT0`;Mss1IPnxI{%UeySTmnR*{jgvr#qu(EZg7~`jsm1KrD=XUW7Z?=-?o*7=n z1xnLicos~W_JozK)5PoXvbl`@R`W_ZPAg!$xb-Qb9KO|jYxs$r>fO9Cb*l*$`j$V zOJLv6;7Qc%JuA5)Ubp7qriuis!XgdfFe8%o5qAmK-GYFWY=x<*|&Qo0QM%S+0)fS*|TV|nF|lPiCm zQvRcAXDNze-%xh4x~k-pVON8P-7>yU3)hU7ZxjFM(K#pKsh?lIp^taqU!Spq9$k{i z#Pf3#PQi)AlTJSGYX8B><(##1z2UXJ!T(Ng`Cs>{ZMSM@4L5%cZX&h!j8+-`>7=cD zD!0R&R+i|D^W$IezN3E#+1xnaf*Yr5*h}?n&xH*$w(n3@=`=LX=z(FUZ0fBU7rMoQ7{L+N?J8*D!OvT9N6jNFrPJ8vhqu(`flNv3 z-;Bq~Z2cQy6DQ%MV)=rb)sEo3pn?;E@*Hdtw>Y#2NR zEfbaxyAPJY=A94AKy}C!OSt*C8WqNj;2bCiXFlE(%+4tEO2%4l!8fUzW=63#KgH7UgPAyiPK(-W?Rd}>aSXRQy6BU+R-VDnna#%)TlOl(u zo-KuC10F3CmJ48I>#ziFSoDi@X{{`!9)ii4iMdZs%ssGETw+2WO&q^p(o?3`Y{Elk zVzUuewvJ8UavmQWb%Z+`tJ$p0mtL1M^D1l;mzl+_4T2l;rNF$5$IAp}3#=RhObbh} z{wi)|fu{ute~LfS>UiFdqOzbUisDpB6lyJb+s>{fZ+A-0$!67cLJdpF2mA<~Wg34S zqsKK_N>(q}7aT9`=IC;A{jYl0)FNz{Y#LUS=c%Z%iEWi+e?_^sEHM$*8K=fddB^&T z>3C`1O{;*XzztMQ)n86N33kia#zTvhPD9I#?oTTqZOz`s{Ak5H5s!~q@s`2Lq~a|t zOLT5Iah8)v#MG8ctZt;bf>RxjEzPh3KdW)adnXG+c4 zc+5;{&VrRgsA-{l@q4IBfoeg*?<)X-S3!i`0Gs+VE6jO{)2l+tNvnbCu39Wu9QFUheQrGLq!C+m&u6(D_iH}Q>31h9^uyd zoGaywjKS7$89A)wkw$MRRm#Vuc&JQ1E{2t@^RXM@qmZeN*)>QWl0&i?_J<3JpvS4_ zOG&vOkC#cxy|A)%Ql^_oDW>}~$%LzaPxzLcl{aCBxU4K`y`U&oY8g{n-oPVf(()Rt zY@L=}O|%TVajmFK-zXl&PE!)m%yy0tfufS7jO>C3%VcCHSUH4|7FNjoMYhU>y9Eh< zk?nbSHK3Y^A4O$_M-;{1NTN`iQIB_asc-VpuG$MykBA3PQG4)@%UD83mo{1LtFNrn zRlfRP^$t`6Y*L>DmG1&PN@nRhudE!}-W^=!+r#KZ;OKww=ebFR zEnLFch0S4vynFra3(d>~uGz#VwJOa^X)m8-$|9nURgiO}lM_NBhrA+VJ1Zi>g8 zWHRQeYXy?pkm+R=rVyJguvy%Kv6K#(*x2ZK)6vt5c-%~Uo`;pKni5hES&T^eIdUJbWfh4y@c2FsbDhb>zeZ)0J|V#$eAn4O1X}3e%-{_)M5C zhLtBeOs<#CWb?6{Te_7YJ)rk?56NNL413l=nDq21O!wpAGhw>mW6$ zKm$%;(9LNJ+BeDpx*m3l3s4&>P$g*!&UJXuOmMD&m92x*WHY4VVJxj5GSTd?+XA1K2MvLCfUbS1@%7 z(ffGlOo-lvm90ax&-f4xI{BD-hC&Bu&L;5$Y_^h!W&&ooARJw*uBA=k*$WSw3D2Ie zvUPaojSo+C?@Zk^7SEY3fLvYg7C!a)e%lz2YL&hA~ntZ3@rxc-TyMo`sdI!_#Dzrd%vt)M5f? z%3q5I+1o3LXa?DBn56|%rw~oXLuW#?4XkV(qPa~5+NDWa!5ems94(Y{v;ek@TZm3< z!!Wxsdy3Klc=Sw^=E2I=QEF0;@^Pn7P}?5;NwVuYAm=Cn`^Dv`4fQCPI)%u=LuW#C z2CQryqJ77&M>QwO()E}ep-W-6xCk95FGYUh6rhXoz?lGD1S?wysL2^3wFldmR5yEg z!yegt-7IJ5e%LTBLv1+x(U3dE=w3W_CPsI|%GNPzR);DWWixBEx!Id?hTeeP;xg2Z zI#f@b0`wXlI1`{(U}ft79n_>F(>?>KUP`WShfKR$JX706NklVKGdv}YZinb!!_;h` zaP5Sr!GvoESlK#Udyfy7x>zHr4yS3Q=@>anOJJ+GrRhuZAyPGKiq0ZDY9=~|!^+mt zX|m*~OjKL@*|i!wML9b;*efnOZCG-wrA^_<;9)c2Ny5t3;c0TNNV%xyDM?2^lXktF zp6g(#?1hrv> zD405h=utd$CPWXz%GM#8X&(E8UGVUMoSgSzlepvv?ggpmOL2J@kC%zd+pw~AT=opX z#lO}-D>bw45l^}HQWDWjxeT}Mai?76jljwk78IF1@raqo%z%}xBNMVGR(gWG`2`Lu zn<8DVA%d|#KY#vN+OzJ^SJMPRqs*_In>*bGsR{b zJZ2^~Tfxc`9vj1j3k&4f8~_`|EjaDK#(dGjJUnJ5HodU2b!?`GR2$O;3kf+d4(t$@ z7sD0j+}XJsadl zb0Ms39h{H~W4u7&emOAr!VYnP5mcD4ixcj~gJptp7p!a@l#tDZ`o#fSad|_|%4@Jm zTvh~|3-x?yU3mqMmx;?uu(EYrW|>DW!CL|}Vs^P#JWbk3NklVEI;!49rr&B0r&Ere(d}l zIWOyBf4ICDo^t0-zDuc6NY>$@G9g(5D_e&oYy?wqQ+aQler@+{a!_u8J>r5Q8NpQ3 zrLf$Dhs%WJ23XlTEFmM9+NBMKD^H%61M@8G6Bii4I&d&$3eD4a$V_OSgq5vB^BHqD zRCADAaWeUD#e?2$lteUx-Y>Skb>JsVf!PWVmgd(sZvJo4aAF zxY!6*W3;R(I(OkwGts#dR<@2#$R1PG#JqacIN|EoBE2Rj=M~r~E;)idrpBZxI4|Kr zGr{>atZW^eJwoPBMq+llUp#r*K}ke2c{)-sd8%YfQTYTOEfbZG!^+lC33)#~?Dnz7 z0rBOZ?AfZP^v}>DIYfuU=5fo8;34%eA1GCa;Ndf=Iv7^APE|+&QnvvaZePpD*-63{ zaoG_RplY@h6%UV=iAq1LY#o)5-2`Qx>9)0N%V1^e zu!MYspxjeSrSx{SN9D9U44cHIMeq?qJzt8;gLu45Tpoaxt>Y51`4qfTtZ_gy^sbzk zw_%^S#0WN@f+7`dR}E|21Ck|>IOLm!>2-1y|NJw3C} z9V>bH9p%p8rlHH!AIj35L;hl)q1{6MW@u*EUtFOiM<<_L@RD9(?b!KarT>4G#yIjP z=zP=o`xsrE$i(w=6HdX2#gnBwn6&>;zSV24dg!M&_}}R*|LfjjHL%g`opgLKlS?}( zcWiJ|m7L9!YUCWIg2iUGRf(V0CB9IW=#1-!%?N4Qa&vq#c4X;pw^O{rps8UJaKlt{ zeW{+S1KVY6+o2PbPD9g-&Z7$f4K3MAb0dv;1|A)=%$-(N4sGLoLVsE<{IbSx<7vc) z-k8&;_9jxh zS(fM=AfKXus0%Z-VbHxQC?Ono!`5(1!GSm&DnmNzxeJewiN&3;@`S`9t>1P2njDK) zU~8hpBE6Pk@e&>(6N_KN${|>^Fp~8L!OPdUa>&KtzfVlowz4>Z@4I?kZp!jntXyKsvkIE9E z1E$dKu$8IE_yeY$8u!XfjkE%8r0Vb1A1W<}Ei<804rNZM|;sjMJ*}< z@z9wNJqasYhe+GNAP~{wGkLSP_-vyju;CpSo^dxYnDD5SDKuN*Av2-*efL2VGQu%; zRtLy=nTMOt9N~<6_+orss@YOhdhuwPsO$$TTdyy>8z(=#sgk!^ujI%Y*n)(=DRFG8BXvKD%Br*|ihU(fs7;Ae zww(Z*5`TxzA&tKe*$JI$X&q}=?KW*js9>?#YL#FAgw7w8B|;acLzf%dzZnrYp|f0d z9{O(43b0kiFymoV&3QP#dEwDY@a$wk(tQ^=22PAaO<|aH!CLTAy%GUAN)jz;hs~@Iu z^7C>yo`ucf!m)s^*EEBpoFg3=KaI!8MB_p^93vG>N@`K{?v5k_z247r4 z4AbsrgalKiplpSQ$^_;2-3Q7p22kjd?*Vc^=Hae02OyuvOGv5bp&MMuDTW|lWsWh_YL?r zWvrN^Uu<&VuUstYVZTZZjn^V;7}Faj*I#dyV1IJGwk#1k@d_PQw|{cIgJ1NFO>;fm zG}WK0KfAsT_RHA1Ll-NZhPD~qKdju<+A{C~Og+15eE$6U8azH`t-GqM9NNqsoL}!o zn>jG`3{J2gS1}9cPmkh;8v8fe;D@%*;DJ0z(?5(y%53@vVP(?IJy4bitp#nLVw)Io z^5x>F4U*qikqH@j7xsr+6haqa#wiND)ja7y=xsbsCLzCtm8}!9hoOqZGugE<6C`^* zB!*;9CDD$V6fGp7GpX?)@l&Oo%)mosa4|~J~#c3aXD#e1Y6IPQgRa>DU*^LU}fu+ z>~5eW>810knCQLE^KwX@g$?3Da!4!FoLZukk*D!MnT$LMD^E;DG6N<<@{mR8oPc~U|y#N%WVaz3nVoe^_m=zS739vfE?6HUsFnwvhflgB$JI_!^#ttjiNSQ z-RWWRoMs0l5zU;YRW^#0jZfe~GTHbztZbbP)4t6*HKzG0mRQ=uhC!TJDEi<<9&^1b@p?ORfn^m@%0xcTYX$t08jnY5&bPFCOv-I6m zRt|0N4xW1o^n3v?0!M;^N1vWoVGED7Jd1m3T+5>^Z@Acu+46yG2?I~#@iG~B5>_VN z-!IA%q17SE15iO&2Hd1Rik|$4n3QdlL_0>&l$6jhQqvmITS}FVk+#A^WkT}%?t>(- z?i++;(8(q8YrOoRHs3lxPRcyo{^)B;Jzt7TFCH%wm;GR6>ow&w#sNof(sfp^jpb-% zapb(50lUN%ZtQcOiWtWv|x)c@<50?o`Kdc-AOAA{!{_am@Ik*K0 ze-G-0Ru_u=C@Px}qA0#4i9+o`P3r8&_8(hbx;`;q@YFNF4SP_31OLQ~zmL%`H`#-# zzqvxcxv&3KZ}|a*YLE?^9frNAziyRhe=q9CWr@(eiO|*N_U}dQs@*dk(pWFTjaB^( z`}ujs z2J9BMGdiKI6shDXM5p1wGa)(^R<;h2{t%eosrSaJzs8i8)(E;-PS8cLRa}COZy!M_ zbBfP}c;rlc&WDw)&q%* zipzs|#7tZsfR(M|G9$cWO1X}{jPtIXm$zY$xV()2;#}Z&Fn-DunBU?dGlBUHtZW^a z@#+g%_S^Gk;(5~yB@xZMsU7vjwA{Bl9x)S_Ps7UAaT%w+7?$}?kn?gp>`@2ni+OqP zSUhAVFh|46)`1zPzT^w~_U3vyFY927xV*HXzNn08ceDnNn2AdPR-VwfkO|T)a$IhL zE$SpLrp?P6@Q9hXd>>Yx$hgo|-)H5xJPljaL0pWhy-(s1GjaI^tQ>+%3#U2#1EH1E zU@b`a$5Nkc^#G9{MdduAD2g9RqEN?Dx9#k))Q=vWa}u7LE;L?@@|nlc8G`W#GJ1SF z4y6v%Lu@$jXgHF(hYA~;l~h^wkEHHamIytT*uf*IpK6>Cn;U8g+)&kw{R63sVAG6k zJv2}0G∬r>B?si@wn+Hq7r&uXOpVbsI%NSQ_Okg{@Ut9S4)>dcT<4;;!29!1Tl zz=hYOBym@bCkbi$A3ffVMAP;UWK2l#@R*q-^ux;4;QWp#UX}>06m36-IyV%V>hYC) zA(M^O{MPo+uTjAY0lEsdj9WmK3js3aPiJmd;PEqIx(rsf4wJT%Ua!WzPQpp4lZ0+o z1L#pXKo7$}ng{Winb14{D_e)=vtbpeY+x~)a0>dHAMeVsc^fv0i_N$P zFlvP~A2x8Q{8TDgQ*eHZN6iH1H?XpGaOQ=9Q!_c1aPx6BJ&741+Vkh)&TEE}z@`jb zh)$MuULg)ppmxVIU;_1NSlK#Ip_M426b?&a{)h!%1XE>id`j9sLhb0JG&V&`Dj;t z1g723@tI$sa}48;WOQ+pt&sB7HS}(d%8fPy)xa9o*G(HBDp+hbQ{^|X0aBI-T?!9f z)@=Ws9G~=W-!wJM61ZWixdygAV7rWMJ2X$}G&IfVJUaPnXvx66@U`5k(FL|U@aULj z?vS!_Xd8EMyJH$@05xELBh+7a^K%|~09RXc| z$H_$GGFaIxkrX&RQcRkIEr=7`BKDiDARMNw3jc{`*R%6q5(>NST;C04rO^ zWIx)~IQhJrE5!1}Y&MfC2)TXS5McJy8QHje#YV!IVU&4K5;o|p###> zrNG>Phsy-!`>?WgU;?jW)#gQY2NT7(PRp}$TAqeY;?i5 zM#f0!?0s<9s|wCLG^{ zm94{J*!QXU7E9~b4csl~<1W}BE*~xI`_%KKh}?$0M)EDR~L@h)YT6bBp2QkzlG6lwaeaGC}zztZW^Wz?+;kPzIfREbXLqNOpKq zJhAzNl89zvvk)JT)Y7DYd>jvx3CKrbW$S=^md8PlX%WesV`8p&)yD~lX3`b z6t|o##z`UhQe+Os<7FcAd02TOBjcsb$Ry>+c(73&K&GBAMW!E*mx)XqR<@3eVRBsi z)fvBTyGqW>6|hTOURszOHzrGAxeO1M3Co|t%GO~qj9I*VtbDXX>xmwgWAY&E4;Pab z#w@ioDIgEvVKM>vTUgmTAconGa?TrGYlP%&IV8V@J>o*r!t5uQDh1^?c&JQJ{vB4f z4vJylxawa0G9Im>%y>#X3))>tL^BI&Vc%F!mjd%?JX|I)pMsUG1GA@LHdLA|7rbHD zSX_>m^KvX~6Sue+UPWzoKvMA%%$DMEG#)JzmoLJ~)^XXzgbTTIdYzn+HLy2aMn2!d zd^vBrWV(Qd$OPj|SlK!lh7n3W?i31YGq68N&J^4v2jm9WBQ78Uy`nq^mZ2 zhCOn!V5@%=k70igo5ba$g(FH0xl&aA7mt;R%KyO1)=@FllL{)?%$n+4=ki%STlJLw zSwA-P-Q9b7hI-||?58B6ne?<$Sn3&5TK2&MWzzClSlK!)a}2$Y_CZ+n1{Zy|@H9Cx zr^0@5Ys|6#kGeAfldGr}|FC2sgpd#t60*=?0!bh}LlVNig=}OY5E6(e*!1+=ndwe1 zLobsA{vas(Yeiu|*%TL)CxRf#gC`Hg4Mh<|Q4~Qy#RX+i1VNDhxpi-M-CI?+=bWm0 z=SIKp&A>}I_tZJRI(2G0r7;!-G+PGfRJz(ofKDMxjvXMyy^U%q)sxMOr`;|y=jCFu zd9b`_+}m(lDdX`$x|T>hK0ubdo#K&)BeTM?+tn)za&eJ9T3GyNU$8t8}rhG z*t`GCc+xW#L`0LrYMg{@wo^uA7rLHEL`IS&$Bu|%rEMUcuURR!k}WZQiEJpd3P16$#2Bvg80zG-|BzGHp&RCk+w2rqAKJ)fl)I)0qe(EvA}i0mb6J zFbZbz6IQpi&AV{$yurD-t6)~&cTetW_;u!BV8J4tvSrtT$oeiD;MQ%XFI(&#^wz1m zl-#+LJtLf#b1F?0ef6poh2t*LWtkU_yO4<(9uFLo2yioVjqq}g+EHI5JId|7ynNgj z$VOB8I(IF|@j0mV%Q;Q23I*tSJ6%nADY?(lHAM!&PczAZULVF%a>C0wO>1~ct$91@ z&p>g*YGFU2TUA+5PWFGxcPobUzo*3#2|uRmj3nWQWXaNS_EtdiMAYF4L zKp!AWjvXN3=>a(gsRGc~%<=gO*;H73T0T914?qFY=gV}xk??$pEID>~5<$^NnKnOf zPR(z~Ho{V~%q-|Q4VGigujvXSarq@#^7f63lqT=~bK_aoSP&6Snj8Wys`Pjly240Y zMv^7Rj?2C+qKj%&I?5cF!^u{{#+Mbw@g-nDI)tt=5}8G0$+067xCE$9gR|zu^pK5& zC1$x9F@foChORLZn6t=|V+UrRpctbHFxQ&nay8jRSX>k(A1Ld70nz27bbXPqe3&db z02YlsN4{<8>|SVy;G3tP)LpmaS~xprMp~S2q6KW8{(N{hPe*Smr~CWGz0>E&9ZcCf z>dQ=?+S=04%(o+_*fM=amtekS`V%h z{1q^n&olK-d7yMIcs4xQ;cuHfOZzw3lj!=cWXV#L`=`Umb$bGCCq7Bk-C{lZ@7Fl}R~}t}AjpoJ*D*K#ImN z!bc(}AZdu;1`&2l>(`==yCqKdSVY;5k$a4jg9O&|4Ji#NZCpV1YInLre!1I5gx8VVv z|D_vMd4NZDe#_Z=qeBNc-_u?Rga4sxjKtupWXaM1bQcp57$ZVIz9Vd2abB8-SQL+< z{27!q#O4oVQ(EW^|-{&6bmw-_g}Zvhy5Sa_sB~N55otDymv*dp&6k&z>M6 zjERsOb6W0v4jFSA@Hp+3>6t*+8%fVNvgFw5IZ&OPG`nD?)UU3?w#*!$C1i79qfg7T zJ6M2t(`AN^p{tH$=t#2U*csY?2!^aee^tB!c(yq{MY5%^_$Zztr4L@L)iODo=~^Sn z=_5;yot&Yf53^w^pWQ5;9Q>p?J~xofg~cb7=);>XGxQ0%>PUvJAxn;(q1i)4pKT&M zKQxEu`(!&|;c0nc0y}hB+bo%y@6vTfQu8gcL(8g$1bPl`SkljfTtoY@;iV zOXmFiH`!Rj%a7Y|nV-+o6-V;(S+eBqo}YqM>FX_L#TO2LY0l5j$;KL1ei{vz`S~eb zaU?&FktN5@PjZON*;}?=$e>65$~c4G2}DGbL7yB(2JLOU%uyR%c_c^g{O55r)b3ZQ zXr=l}Vu8X%<_H}`_X2XqJ(S%qx7{*5NxI%hdJZ5ahnOX->;3A%_Z zId+1EiagbFR$Mv!Uvqf=hioV;JfTD$yU{W?U!^OJf=O zb5oPKd5*3$lACA9l4Iv)s52UNZ51)q+4CvmiPi)V5zRy^lrtKv)iOEb=vpJm*_A9g zc5;R~qrq&bN_Li*<8utzT-dl1${7vbbeW+e>8c|cI*cqic7}q^!>5&JQ;X){Y$n?X z3r@@H$wO^Yxb2l`>7(n5q{Sjjj-8hFfVDw>AXCV2ZZHSt6J#@CfoWMVV<=#FlVxVE zp{tB!<|?w}?UosSj80(Y`{vAimu#kCVTLzZX69RTm66PRgDg3AW`a%*dd@!y(EP(3 zn!l0lgoVcFASSDr_U1KCME69># zCq^g$)+DBJyh#A&|Cs}`jcg<=FfD5g4wV5n8Z7fNKvx*aONA_X`{hM_j_be8dHFoq zNW;TR;Q6i3(iKMXax+=-cFRlS_>vG`es0doPsv6a7G4?+mgCD~bcK<;JVKTnJ1;@| zmENOD0y8^3ZJhVEfrx1GUZed=Z=+>y-XVJzTZHQ^vgFvg30nDua{`KUSqGUTlZ*@* zqm^H`y)rEa(Dg+|nK@+1vC|SXPimej5kkzF=DfU@Y$fclWHe7|wpb=+6J28@F&oK} zV<#r)B$itQgs)Htu%=177rBukE+prD(;t{ve_QVnWH zc4srvQPBS}XXvYBdtn(ex(TdkyG+qtbls5@-9eTdJ4G`B_AC|W_LE&TvvQwu8E)q(0oYCh{ZbA6e1)DBg}Cq5rI{Dv zzLSXvtjZi%WH#l*{RDo3hnD$4yHVUiu~3OK$(=mAHRSHk#7Wx$lA;pM&bh z$l1BdtsOxPbyelXxPMAl6&VK~W0C{iK8(e&kTLwUp zMo|FpG+9F7oybsli!50h65nuW8n(AX_6=et(^tw{mCa%~(}T>RNk#^Z;$R>Nnns)D zH0l7l&dBgFhb%dEX7&kW2Ci0#cdO1c2j;zG6JduL#ep3fFm{7wS~k%YM$)p8EID>s zW(3jFZHd(?t}tiiQnG=ttQ>Eal5{|GWl}DptBWM%LbBx8Ntqc)N;cgq%;x{c9F?z< zErdlyv4KtsE8WmunU%Zf`XX7mgDg3ARs!=D+jga5TC6GXJ9A#1BU=f}i)r4{XtT`B zGjyGi%sfSw96K|CBaxLA!^?zcjps(=KtwciBh!%xnk$pCD_vbADWl1fV<#nWBm&d* z2_w-l=BOM=wh%V5n2tntdu3J*qw9-gWieTD?5qTiL}0stbiN|;ve}%MKC+dtyqJze zjW)~7Sah9{%yf|@$IeXP3_4pZO4sT>VGhhSWD{Y5F`YrP2FtWuMOPR}%avrwvC|Tm zw`7Y0!eI1Wb5_1ZHV~E-)4Tk-47!l67HZ<0=x^q*yiB$c z78b>!V$vMiX|c@9U+5YmdHEAra_qe9*MgUFc5A9wDi?$Zv(IzJGo$GsBAS_z;xSGt zG>vA<ZjjU;C>S#s>;>^}rK{iQ8ZBD2;UomFH@VdIUW7_kmItlcs@E9iP7*;z`K z96LKhMV)fGD85Ct%^aNpvZ1i(gcNn`X3OMM=xQU$=_gB$oty)Ph&olUVWq!R5nqG( zyg5FfC0h%NkKzJ@PULB}U1sQJy6#AZZX!#LouR#02Inl~R5{Om;6d=j9@@iLktw<}9qiGA$R<6-Lr> zK3Q_?v;^)KR0hOn>b`2u%3WjwVOcTVFM#ICq})MQ7fH%(WXZ9U5@uRzcro|?Fu5INp($c znKTbG?JPTWXZ8p6S(5*7*LhP9BIzYVPr#LV~y#Gucz5EIg9CPBgt7vmK-}d zftfEXcS?_b_n9+ekxhhU#x(O~4VG!?qAQG~B}JATJ1v3d9|qFJZfSA%8gpE(BHIXy zi|P3Xr^PZaSJE{`@=_;D-i~>(GIA>OEpuMJLAKGb@xodx^Kw63VJ|w1DC^%SN@e1yJu~hICwdp1I zJY^8BA8%6B29CGbdiiRlD2my1>(a}M*`%3>;j#HKiMFhnL>=w79@+vl$lC7omY;FML_&ihZ3<`*jA3fD;+?Khz@v=1+(RD*c zxC@!&KnD+F*_ypY2YZUQcp*+4H#H8}qR%hzKKlmIsSNseHI?l-U?f*AdCa2(skZ+3+k0y79xd zTdBb2>QV$b(wvaP$Tq@8kfU`7X|`16WHDV+Bqs~Wl4Iw@vlZ^=q*l!K$k(9y%t5ip zM#6#;SUu4}U&=c>+%DlZRVJm2t}2q06j^fYq{yR9r4OD%&5P%-t}#dCDzbI3h>%Ac zw~aCzSJHJvvQZ~X4q!uL?Se0VI1?oe5jW+v-LfzGCwZ z*~#cf@ml+S7*}kB+WQ{gdzLl4OE*b#3J!>j0>#Z=A_bmSOFYb>>x~>9XOksM!{aO_ zA~0%%zL+yNup@P(+^3j&t-Sa?%zHsg!)2XKWLqi6jGP=p*2$AHGCiKA%lXwty6Q-P z){`a24p4Gvfcnzq?#h;|RCnuAbBZn^8w^X)hVUqAwqHi+Lc0D)l+Gthjvb}oLA@D^ z@>Y8Dwp3Y;NMAK)=`OOxuqpCHW!wm_2CU>ZtG=?y6D;?F-nmo|3_e?%!#fs$LK1ux#GacX}yfmm2~Zq z7}d#=W5-B%y4<(m=q{evsdaz8*0{2K&5mt5wAueVZ!mWQ92m=e%N(e0kPU|g>XZ=U zl4}QSLb9nwjwh zr)!SHr$Ck*J3cM)9K{OaXU(~}nQS90HzDLX>XpNr=qe+Dxt=U}dj>|aV)&RjFprRJ zG>pKgR|+4dtBeHZA+qGyfoX9VNWDV%jyW@Lk0;Hm{K-Z`ar; zR|F6Elkse74v2_mHWdaoK`Vi?=~^SPnMIZyJ2ta}(_vu+u(9yB$();wWIJKQjiLYt zb?v6nY&j8LPgffW&N{N>0B|%8wDU9ZZ?OZh8Y1|~{5Qy_b=`(=Eu16SMq2#BL<=~X z|A&#odNO~P4OY6G>B|;-edqE&L+)tGUQ%B^#JPM{Us^ts@06XcG*$B*^;Vq5|CBDn z{51ZJOvLtZ8h;|cL$7wucgfCiLFaW6zC|{e(!aU8K#tEj^~G}1C3w?wWsSGb)sUaP z{{~${WWc+hNe=Y%FrK~l6nAb~!gK!Id+PpWP}=a^^k3)}RTfN;eSWN#&pj=by#FV< zu1N2{K$h$(#|N6^?v+m;PXDtpB~w8}78GoT#H2u$96Kh;oTOMPo@13uLMZvHIVCrf z4TPm6u)s!ZO5B#pklaMq6bZ@oWXZ8ZGEFf>=}-ld$IKCVglrxxB7s$$S|bt=MINT> zi3H>!vg80jG!{1a+K4l4(h$KD=lgVXZ?1(iO*hiwIuk8mh33iOt(`D(ZK+bR{AClS zy-3aTm3^YVdWhwj=K7_)MAQ7Ej=ZCvZy7+bMl%I;rcEqdiuoGNBqkzo<{mgB3%_E* zp8ln4g^P|MyU1-WU!*ybY%!&ma|eJNpLgntiZP-;g)5bA3tb)gGR|tD{nW=KNXZ6CnPSXck8?Mt>bdxIAX=JyztdZe#W2M_YZIuA%qHBu;AVrq!D#r($ zGnk0LxDa|xghgsn++*!s*yWfF!C;mK-}#!fgpB3^y;ew?gS#<|uuGY%eTIEzb>NQ1Z20X6Syp=17L_ zBTJ5*q1I8U(w{C@td>#fWpkANLN*%~CF7{1GJs6fpXd!h67>REa_mG2H%i^8gc#qZ z|HXKGn+hUm^9U?SEsw&t3QDSm%LGlPD~=>+B3W|m1PNz%p;+Yt!4TvVU3fL2^G+ zb`rC9b@Gm0z6CGEa^wTL^z!A%uQL&WD^!8Y4&g6HdfwGhxaD_bx40dZFGW5_wwBVf zxyL|`&ojaA>NtM%Y~{Kwb9LiOkk8O{Lq@o#nB+hQ591P~r%t(J2G5e5clmMLUybwY zT|q<``L*ooz;|^5T%vG(UnEgk|IlvofdT*St!PlYs?wBifkM#BU*7}VYf`im2?%6WYo!$ zV<$r$M;3PTt|d&lzh%zIH^^qfGNKhnyp5G6)NB%@t5lO}iWXZ9Up^hVqg5${amyC1PsURYn35`}9@itbDBa`XMB59dO zmb@L((rxuu``|$U*sp{cj+B|KGN)w)*-Y4oLZ(G*tW3*Ny0S=Gjw4HsofdhGq#I7y zlxpJ3p#$cSRLIuBLZUdC=Ukr*ng+XVl-cN~>xg8dK$aXk8=fn4?h1)(H))aNv*vW% zOtue}4)O|Gvz0O*H_^33@^L*`^7hMzG{ih+&c`EU`$Wx$YX18$T}vb%50NErzkEoO zns?0kc#CYGsQFOMYu=!1iR9xovgFwLkY~Jkcx^IW7FIOg-(C8Cg%) z6UoRrvgFtqnIrAe6l(cuHq~dPyHn|E748ba%eg`pOO_lvHJuVQl}tKsb*H*Z)l`4E)LqL|1L?WToSr+#Cd1OBI1<--65OicGDWx1 z6-QEZD_L>?MH(l`_+d2X*ouY-ekATm@|ha9AzTaRbd-@6_nK${N8-i}Z!NW*Hds|( z6}7j?olMz7>MO&zrdt8!d`GVohvMGU<(D6dd!300JTnz|C?@^U^% zJs7tNR5m>Ow1RF=<-J_l+lthB2yc5@DfxXVT~DOnk0VQ#hPR`ch`=Zi`q4Pyy$$BvFrqsGp2_;4@eHwV0GoZrj=5z)+i6eU21%5Qi>Wk_bz z6-7cai!3>INM^}{lWRL=KC{W3lZ|8}VdILT<}{L%pgd+hT~{P3>&TL0M`hnYRMh#) zMdqwrNVXD|6~)OrBrAb=%lUL=k+7UgmK-}Q!Er^IuiRzM${l1QVOi0SD?xe6ZFF6c zsN71H9Ds_(Dm`E5cUA*6MDXo~iMk0F*TPwMHqzqnx~t!|7O>s$>)|a7y34Y3HJzw# z>$m)y4&>gY>>BkG!`O6yLk{T_Q_;7+t=f9fW!ba!z(fQtO9w7GhQIZ&mw)uM9kmhs zn&)8*0 z!KO7li}k)O2~gZ{nRx}>s_HEXkmL7%%W3Uo%nrpA=iXA0!G1NR%ETOO72SVK2;+54l}4lP;$0 z;3N!h@0ers7TH=@jMjyNQKRWHLT}JjMIF*3(;o1Zy2xa_nHu84@f-l)A_qr3=ZX!lJY$B$VuS%kZ2}*Bc4Xxn#-P zKRi9zVvm@4-(?QZ9b{7tGd!%_GCa4@^+v*TD_L^v@Ekc*q2&?6juhGF$d}?viYz;rNW6ufwqt#dy?K3BxFyJCC3ig(P+qO#UU`;^)=(vd^CuN zCN)oojG1f=8MG1f)*wOKkt{iO(1y&TvWlVbFmt39lTC$xx~$wgQr|AskG_mgdg1*+wfZ1|l! z0Lo(k8K?W`4M5^_4_R{TI1RaP2iD9M)vK6)F^B0-WQ$>83TfZY+k6?N7wGCEQTi=e za_lH!GN)P)OH==0JfoWoBBGhmg_k+;_RBC$r0b7_X*^kS>@X#V8s^GY#ooYEtcb5L zM`*=Z^5&Ae;a_k5RwL|#% zC2mLQ2;3v)_&iLu6c(S=W@DDO*)lp0(bYzx^BuC}*wGQLPjYk`=e~sL{9ESOyg{}S z7Mm4j*fg3fBl8+vWh64Mk|oEE%sxT+jp|6-oY#$KS+hYzG_$OwX1uWW%CO9$>x+bC zCRy_K3ybP-$VPKm){{+y4K9YT1RM%kN7ok#%Nnxe?H3l+_UVP@u$)ge(J;Xhux)xS zU0)B=?C=Cmy1|I8 zwnv{b=jTbXwXpmcPP)aW%LqL|R~?Da<7COPBNTWe7VPNR4HV{2qu(&jhev>jX!2ph z8?pX|%lPa_R~(7YyZ?Fk1g_bD6@#{{7MsJfknRKIMSR0G8*j5^bUNv3Bhi^pmK=NJ zX_fi#?LHy!beXf0BAW_3a+zm7yxlT9XVCRV!gD%Va_sQz7qoig+29k`)_omE3J(&F#BHJRLk zSbGld`y0D1g*SnrwlZ9A@mE^<6}hJ=yGi||FiK)UF_fl~zRD?zqFBGs<(U`7`WX`u zSRN^`)J^zBv8MV%WRSDoAv??M!_V)yQ(Nwa8EtL3x5#Ew`aAb0kmGYveMzgZ=<%#@ z8qeESS6f~h>kYcL$Z+@?lN{*#VJwZ+9_V{dsVHx8tU3QQp3uz(5n)W|WC~j5RVWHP zt(JJ0Mb{h2!%VVdX?UE*L*&fOAzDM096Ln98N>jHis@>0KrFR(p*ctAlMRODsO521WE^r!@jxeX z+ApJYE?s{lN?Xa2V@F9i*x^M<8HesL=jS%Em9YG@eAffVkJD%wnp^2gBcZv4EID>) zgv9{?8fDyh%AA`g$%evm6GHyeBHlbf*Bgn><7CMJ=xEHU`NZ7G$~8pr<$+hpQwFyo zTnlGjXr#qYOtgS{*%yq0x!Q!)ZEf=|96WDuZtg0WyY=0ZyBdC-IT)B?>P$?p1(Ee} zYuS_RiFCf#>MEywMYH#RlbS9n`%3+kFjfehch%uxI!9063{ z`C7qJy2{AdcpQ@)h`=ze6$qoH&mx|Avv;+i0?HfC_WJ3TRqo))FtnWQ;bHJJUBaS3 zS00H)jx5<#jt^G7OhjNj4}Hm?RgY@Un=^f-yj9sOE*snox*CFX6WLtb4BtGXY^PCqnTvMv2%pVle)o0T(a9Q zb963Ue1{yrbPHK>>^!07 zZ`oqeDhq+>DRY>fB%2EhQ`qx2W&oL_C+H18lJq!Pa_l6b=5O$1u)xvie;Fsj$M;RT>5-zimA4n+PJJnfHage!vVMlQf>*fL0`3 zGpcQeHv4}$et2y+@+V?P3bj<;FRvslH7DvgvbC^bD(t0lyZtgyN7MCh1(b)QBgm3t z=SV1)qE6J$7S}cV%_%C7ZH1+%WnFEJ!S3v`%utT5J(8hbvgFtq5-vxn8LH$I7wsN4XXzobxv(sSoh&f} z$RvG--T)*?50WLvP7-Rfr83YhEE2q7&e3aRV_`W8d$R?aFH`g?U40})FOen3P7!W& z8|bzV69^>De#dzFHVZ^VGkptvbaPA~(=?Ob1SCz<$dY5HNq8AaohwzXVx?5>E{Vr@ z*PHXSj%+e)WO`4?n=MTv$V9E7Hv&o231rE!6NOq5cZ{jZn$9<8>RhtXuuO%$Bu4JhJ52 zsalRXO5mCkD%eyuTU%0T)8f};PxrDAelAjNeCCAQ>P-Io$M^T{Q zK67~PA)5&cPs>*`2>W*#bzy?L>53!Cxsxn8c5-I58u#RV-xtie`7PN$vZb&gC#*cD(RMk{IfAY`lAlA#l4IwmW!zB|7$}&tlOtOR z%T8EvM_pK;m##OGn{Kk?*tuyLcN&-Jg}8IQIXfRGTMElgSaGM(b~)}0(sf7j^D(mI z*!fx1DogIQpnyO+50A{j?^J)e)LqMnCjcHYhv_?HvteO6Bc#c?(hxFP57HZgBk>tEcmK-}dEobiX1(I29JDb)woe3hM znSzBib64IQnMPL|NzD|p>=d=U0qL4iRa)X! zbBt~wTMLU(ST`WO?Uy1}!&kUYIfmK-}zE$8#9 zQW2fz5X}b>(ag)jn$HK6h?qxL97)dpWXZ9U({gV^Q4!({b8t>4TL~L|!rI$VSAsZ= zt~ZjK4P?o&bCYN_qn9c`Ty9RyC1e|6saX}$Y+hCQ;X`z-k<45`mK-}XEg#xaSA4j~ z9Gtt!hQflgE+lXQD?QvvR~<>u?PSTZ)6+7?QQcMitvNf-lFfu=C#)PNpt8f$bj6Y6 z{E93&c5;qrHCDOrX(@LRg_+m*9gSyRyMc&klIBcU!Kez)l4nv%d&sk}G4%EzIU7Zm z96M(%_r~PPAxE3zbOhN**!UFI-k7pt$f0z#k<=VamK-}Zt+OI!rI4ICIlW{Mx*MKOed?BnMA43bTSN!ZOjY^gRdaq`BAW@z zPgt|FfQlb4(iKON^GCAe*vV;mHb`0NW9ClA^RQ_kBAR(vSZ9NRDtt_#YmQ`R5?S(g z&W@_G#~O2XP9WO}8+JltC!nIoa=PY7c8(`Yj-8#Bd5@=rg^>4bH3z6hHWn73u<{;H z^X0s!OjjRCQHd-$c8ZQ}HUAo-JcU5kE#_o>hHOAASv?^wFAiZ6nYK^Sn}nq8MzZ7p z+N|7-GuqnD8=RXvX?a`QnS;6Y&aVy5uT!00o7gW`#Kk-9)Rwye{;S+^>_K=95wn{j zj@Erso@5Ff6Z~lE94HS>^=1*-K9*WvpZc)r!x6;rD6&Hk}j9i+d8uY z+d8~|r-S{!JM5#(mBIR$bP=kMl#A(tHQ0BLOU;8jHmLclF1!30lRq;N!(;Jd5&>>y zuGl@b#J0$$Y_(5z%EX!RQ9zU2Y z*;S4YBny~`;X`A(h(7vr1Q*KF~hj44J)T`zWJ3+{_oFz+p5xcq8R( zr<<-M5|1=lasVD0sS3|CoUo)JfC{F z0`Awqju zBsafHH>NV#k=-1a>?qyrX`$rsx9K_}9sVX+va1{)M_$(z!N(B?JEL*rN9I~Mq0LB( zFPUfoqgif5+@slvn`N!!7RgQA9%a7G^xu>O)^9Sj=BAx#+vSe2| zKH7amR|FsJ90ZNVnQn6}oRDXv#WE8uV6^+g@UB#kTxJbqGycij@1Y5_uB8lx_0?ev zcioPDzL2Vz#XYZUc0S(yhKZm@!SKhsJ^f)&;iAzasVxF@Zfj=`;}Z5vm9srVfp^ebXzun-x=EFTp6vD|tp>do zZuhiR0$@H}TO`1sy?R1)slzYhtEG+E#r$9ei9G8N`8DuMA zgTzv8T6lZqCGOMd`XYHbjVw8KUgoMJi)%l4^2O(nh{jM!?K zolEFiBiZ>7S#s>`?5$)+jxqO{({c~lI#^nc)QvIFPMMFp>3SmhxRWe7c0Pm>4a-=T z-Vqd2UNEQRw`3b(Dbdbbnyr;td6up%l9i{)k^@-LnC0^6x|2R@h~SF`Z|lz3xE9Wg z%}9%1n`i;k_2Y+kaeCCL)oean-R9eDT`-E8=PA2JeN7ni^_r`oZ%U|`uy=scwCShI zF`uv>$V6-p6ZT2|(Ng84jbtae?d6-V>&Yfl`Z;$T$nm+Set4^a()Fk?WpA|6)smkc zTu0Xu8T!^R$$|bJ#yR^wN`HGMvffGi`JlGpH0)fuO_h^&+4C)@VJ$uHX|2S-R=U1O z25MxiOj8d@a&#Fn+BmxG2qI{? z8y1zL^`i^4R7T`ovLn&YjFTmAw}?p5WT81Co!ccMswgs_t|>B#%p*$v!mk$aaide&DCF*!n2d+Nw?2tq3kh=2&146;{gzMFZz7va>Em1- zs(bbYq)vu>(i41)oXOaW`J*-pp=KVj9Ej*J~?^OL^P}^|k z^$^{r%Bi~SdBs#6>3L6UB?i7j*B8magJj9l@b>@{5f~jp-(lZJ85}w?wSxTyqA=%r z1C%p_6sey&XZLOS4ze?8@iONf4$+4p{GZ2+ZtssyxdlzF;W`T$>rd)DZ zIZmE(5lDf?%Am}oD~kkW8d>u83W}92%Al+_2W1`ELfDXE0E*LC8I(12Ws#tqK$aXk zDAUvtrI6k#gp>2lDLI#H9xNq_6&!3hftJdMY^7_8M5IQR96KVOJMG?NwqT`;0wcGX zGjc20K3GPM(I0Z`rpl1qLRS?D$!ExtV}~Rtj$}nfo-}9V39@;xjF`lctOAk8>6#)D zd6XZ=h+>j6VvKR>x+92)CUrH4BX(2eIPxypmFVpPvgFty35X+=syGo|XwFDy zWQ-WZ5ooE5$b7n{$T%{OEP1;{M4ADo%n><*Y@T5lYLwI8)9IQb5jl-4d3!};D=e_@?8a?wTOi!r65)(xPgj z1#CKYjU3kE6+0iFuJ|wW{({`ClzpOp!VtTS%^RMrYFBjG+WGdg6x)qI(U}L zU!$vr3~{eA$r|1beZOd$&juYSc-gF)ty+atN*LT`?`k}angt@lm`2I2K7!_IZ!_hQ zZ6;k!q}!*FB}*gQ6eeQ$_7kUwd}NE+sszV+(8_QlaUIz<*f`MgGQS)L01l^(G8t>= zIwHw9fh;+8GNi~+35Xo$o5OJ~**sV{=#it@Oqq|ZbTyHD)X0)!=VLD+awy9h-)7Fn ztz^?+*-#X&%`{RWMFP?4jLI!^C6Q!&hAcUDG8PDA*hWpItEtV_wp6AM%Ewh80{7S8 z|5r(MXERkH6M52{nJ36b!!pzIc|O%(GgRZ{DDya7c_d4Zk|oE^(m@24D%RNoN+ZS^ z=Pf&eh-i}9lc-5;E0mz^GD+`}{f*u%AWM#&q$5=%!O7=*qdZN)s`iz-Q(NF2hEz}9 z+M4akTd8!pw<18b&>X7H$e?E5!<^!9rX77)=~rcH#9|ZtXtq|S<#f8XNLo%KOOBnE87f*}ZN{#6B*dG# zIVhKt4TJ^dD6M$oHdJQh61t*DMm|KA96KZX1Ts?H)^7=v+-FY7J!BJMDN!7Qumi>r z;e=6QH&y23Zn~;SPVOX2-hMf$^ra|`ioh<)T)ImaoOBa$QA2#bhb4B>5+ zV@NMuS0pLjWXZ9Ua^v#QvPvEvo3JC4m=C{Z z4$rG(8)4zm8_RfG<;e3AT~{P2FOnt4PKt6R22NHhlb%`Qj3-VrK}0kYC%u)JW>aNO zrqNYJax#T1dAsApo^YOBvuak#K659m*sU|?WDVIw*nmRj#NSkzlN0EwA~{)3mK-}L zGyRzin|su;${NsX>4l9Do6a_p3}2T;P# z(FhUcR&!KtA)5({%JIYrQxg^5T$z{8(A7oq@+q?9*m)856q^RDmTO{AdBU8O$H@l5 zl0w~6^fgpwYp4#VS`*c2{EuI4iZT#=ltNJ;_dUaOQ)EXeL1GwT7Wqt(R$Vf%)5%uDhM~}CYPMdc=`_0bNSZc~CC5(Fe!;OR+iewDEn6Wg zzT6z3OUQ=80<_E^95ov(GxH(3!boN=AWM#&nN9>Va0pl(e(o`+=Wepeu=K18gC5>= znWH=Dsv|kNoh&(aj%KMi@?2{X;?8f)$$6G+BrG|KQi*PEXO&e4eC) zl9gYPCCAQ+a2i}PpE%hXKi+tkr@-zT2K0sF!iOJW=l4Hl@Ks6>quLZyA zfMdeTOJs9ld0DM9eYT;Im%wFyUZksyIR9ga> zvX!pFsk@$3x~l@)0z%%q)tr+W*-%(cw6+Aq2FvlJOjj7mOo=Qxc4lU)@|jw-)C0iS zckuhGeF8GKm?QHUvYoKVC>~yO)07sgxfy?ZWnw->*B435jbzEO6QhhWO$+u}+1@@e z$~`$+p_xM}&{Sy`6~5N-23ClfK&=jXTMm zIZ=z4pq9%K=2vvhkre%cEID?H<|wk0o@}u@)#_%zZWE2u*fAg?nlyHW4nA^|Wo|~% zRYr2NGg8YSr?b zZxOKRHOHo#Y$+@@TE|IZj{lcR4({lu@IuogXY*gK(-VX8@*^Fwpga->vWBg)Z9y!ynRwr zE*0RFlgeiMwUfT?p2Y$+FPT&GBH2>WQX{rlrsj`yjgi#+o-BF$rzTe^6$NUh?P)xb zngSxCnMmoy8ZR|=i)Csi(KSX=vj0?<2uOZuxXZyo2-^b6!40HdCa$_?s*9awA<`Brn&ICCAQ->N;Z| zq`$DMAmlNRnuGEqvVE|iXzg9Q?UV`m0bNfdA>SiQj-3$I^=Q{}&J&RWCvTf`@+R3z zSWdLANBdeU)ABl9TO=)iCrgf<7S%brX7Lk&lzEekXGZ&jh-hX;TIcAREtM&0r)!F& zBte!OJ0+?+YE9d@``XHvZcZ~tW&_z=*x;gd$4K35nV*yCY9skMkt{iOepG9|+>mgD z2Cj*UTLm97N9O{vrLgE|t;0wymZ>?9t}&9DbI6ior)I8V9fsSmxw|WjQg@njb355q zSZ-G8EW;?;ER*v^y3R;)zCe~7J2}d%rY8jt4_B&UoO#-umtT=Bgylsqt7)`UrsNlN zO_7xRj4U~JN>pog?xIVo*53_B_Jq(fX0mYtJPJfalK^Y2)%lw%^RhEtT_i6%kR`{? zi|RIs_;TN&=7=0jwhT6!Xx%2UTj-je-zHf=*AdA@2U&9LTpXatQ+Q>4xRJ)HT4am8 zLOAI*XC+Ox7M7J&I+=>H)iOQrr)!O*=Y3?!vD2f#L|9Cy&mRd*l{vYW zt}2p~uaPCk&WY;gTE3JP&nmoVPRJk0#=#Pzb#u*bq|CF>fzOHabWM?r zWXY0aXGArtDb(`SY)T$+K4nhHjbsZ&OG%@pawNHqt|^j|Ysr#hr$n`K(xe0qz@>U> z#Y{CTozec0IWa#VTMJ8!*2;;p)iOQbqic<%=i6k-vD2fP6Bps-Xm-zDOj+JEN9J|1 ziLl6M&53zaWlsK1R~5<0D`d&BbD}!EQW~(zTgvcswD08=VJfu$6yvE-JBWy8Dx`IK zMcr(fp9EcPBtJ9Al4Iv*zG8h}ZAdZbY%mAtWU{@mL1&H53V%SmWr9wm>y0F6HCb}( z1SJ#%^_Oc!D`ge>tK!M+3(ToGk8C3>HOJ~u<7ul*$~kmhk)&)POOBlsRrOrQddN9Gq~Lt&B8s-7!0 zSZ3yDbcK=3{Ddqyc4ky{%D4&H1-@pu5#bp%)i^2M8AL>r6l>Kf3v9Ve(GGOYkre&= zKaV2S{JUvO5u1a}u~|Sj{^)G6YL$!W{NQEvk!7o=R?ZIQUKq1;TYXHrnCUCQ9~G>@ zy4L)gH&y1OgRUx)lLN_;V~;kfM}oQWQmw;H+MJvBlTC<F#^o4sN>4(fjDCBRP5x zS#sajs z+-OeAb!6jUY0)|hZZ}e9<663sNH(q}OOBll)viIssusPbKI zLy?#EX~t8d1c-=cYNVC#dfFPBtgxM6zwL5k>1| zEvJpH`T2c<)pRY9Y^)?pj-3rXkJ7v}6$gzd4CX$XS zS@L#DM`??2RO*Z7bbNtq94sArGo8ND7MYFD(UnB9@oBQ;*x696=~uvP&C8AHY|$zU zr2N91l%J7Jg(XF6OOK<+tA{KXMs5|9gzW}buNlGRp#VC zx~fP{=8`4H&WY;Qy<@zAY+6y#{r%>sypL=p?4YD|>)zK|nU?p^wMEi$Dp_*uv?$k6 zO66**Yny_V|1xLgGO~@Ztmv(y@V3gNTuj#$Ny-Pwl4B=Db%&&}znsp)i)qqB_V=38 z@-?!Zu(W91Araau6Y~|izDQ!eOqLuwF{+9l)e?}B5l_nf-kg-@$@amLqV=kX+fJE~ z-_Z3$67p-Z%UOV8oyo7q2rX=326mu*7JczV$X%X60(SvPf1wN|qcuE2>#Em=6lU zl+)FcxDD_(p`D+!1jsez^o?Q2peW}N2NwvWl~nsbw!f0j4U~JQdDmi zL69!O1tQpzR=h8MjyWt_$Y#RAqV;Bxzqv9mRl2%JUd|>Ij5O2AD^bHiR9yxWXZAfF+)*Pp<2!s6kCcvGbiLHWCLLdIZCH2U8A8g zBR{4qie%)6WXZ8JqKqMB*mcebr{;Fp$2gPyH`zQ`LiAz?Yo^S{zvyZr`S>SUa_oHU zt%xDDVzx)DYuRCr$AKUsnu(6q$$i#JnU1-1Es=EWN0uBr9ja4KwIX}Aiam`dPKV!T zPRV=7R>B4mty50E*2=V;O4k-i%PC~Z+b1pTEmj*AcqUvJaxOEc@&U5s*lAH!NZ68vB2V2`Pa59fu(Md;CNC}Qf6W}5uaM1!#YU?_g1XrG>sD za_sb|c8HiA;mPDw7d*>p6~%WKcTX74kj8?DXi{LU9U`&8GBdl-6-F{Mk}NrPW&$IQ zJyNx(P||m z3QLYw1rDjjGBp{x#z<<;B1?{)n!s@?xTfW`=FnVCHWU^b{c+0EV40bZ(iKKB^I@{& z*qKq)()IMaJlvU1Rr=GJY*Cz%f7=|LZ<6hWMMtZaZa}+bg8q-LHdEFI zw7^AsA&;3c%XsRvH;9O4>O{SHJBZ+RhuCn>%TFTicm~x%JMk4bHDqonM>SFIU9HJMGk#y8-^I+^g`A zPpwNs#O$Vsmzap$sI&a~NpE8_b*HU^-{OvLcmzV*1WXR3J!YZGjMD_nFe z*+p)1pKmtzD6++rUd|l|a(v#YAKEIsIR5NVwovlw;dC95@#YXFIndd2hcAhksWL@J zD&3VyWefdzU(d{f)|D=e;KJSBLpQ1N-9_2$Ess;RaJ#3i5&#*xwnzZZB1?9aPu8eT;c*!i|OJKrQ*3d>H*5||iv+&0VH{2yIsBsc#{mK-}b^M~Z7 zR7e#|<$@G>UNNWVuVi~+>1p}AG?t!b%VmcCOxGOA&>zT>V`nIdVaPs#4;Tp{Xhys7 z@U=IHpv?}j5Vd?Xm;jO6beW>P=&BJdqu@g6wac)~OnL_{-T(jJilGu{2@x*|E*mn=De6QfN@XRAU(1YfCMq`P3i zw?>`aF(WM|nrH!AqaPmLt^zEiK_B!jkl&v0ks;HQ;2Au;l6@kv7zwOXj zpO7gP;Iwx&)t@e>d&}wmK38HtlQ=w^Vr=(${8}qrE+(pdR-!9i$!7fT|9v7Hu4CS7m@)WX8`iwJk2FPGr75Dmi(UK6u47toJ#!_K z6y{cwv-`iYmhBdhz8^m2-7Olr-AbetRv*>g>wHeK^?jO#^4R(wT@hb{|IqRH5JuKM zW3fjgbR=MlC9%xz>Aqdv-$Z8diS3pfwUY4ZBnvW)DIF*M*Se8wt@1F31f!pp9}bc@LgBICouryc15(u4OZu zVVkgA9lT_4U463i|7Bf21zjJmFR++n|JhjQ&s;$5|IZZX|I;vF3JeI92yEY7GHBJu zW{a784Js4B0r!gi(cH-WfTPj&k1_U-vGBvHk1nLQc3b_`zQHv+)JJ8~{nc!#2*P*n z&6m0cFRzd6%XY&xzroAuySW10|HtL^(ZyP!%YK_~a1BJSYPJd=Di!nF;J+FJ72kM! zYq@oBN^wnl?j-nC@969+6|By3tq2bxc5W$^H`}Lc*#9}lari*fQLcdb*x}39H4&)q z+EvTv;i-8$V7am!7I>yGv@hLwAofHJ5eeJ$tVPaPrXhlBQP4C>&ej6*mDH%=J<6pB z=Es93Ap~=wd-w*^MuL*#0p(cMexsrDD940>2jN-CeJtx!zPd1({){FI6aYTX_~+_V@qwMdDxYY5rX+H_rJ+uE+jh zAN;U#HFB_<1Jeix3YQ zu_d<|{(o*rnBatjPE<&6LZ2rloNf#995zDtW8MiJFB)~i!%eh+PWX}G?Szv~C~Zkp zONm;=N_1P95-UXS4ENXU*tSEP{lD|vKzRi;EsW0D>98k`Yn=xjlCq!1h0>Xz4UAn) zZHDT(fj`=(B|p8_Q{!eO^3h->q;)*+<|@At0|5$F%b=N~Zp+uAR84|Ewz_a#N2!rBs9I*s1+KpeODh70|o1vkxZWgOZ`g z!&kM2T5jmwbVZ1U))=k%fbWET4G~<63w4Qcv+mbM4r|suc|pgbBNEG;3-O78N@4>$ zj_ZSJO*l~1=Q{)amTZ3~>-yYYtgG*G)>-UtoORY<&RMpDOWE+!R-UqK=gdskv5DzACx^7Pf{B`=1Jj(M zG@FR~{(~P1O0&PwP&)Tb_*25tz!3T#IX}@=t2R8d0``g`am|>jRjicCJ^9iWUsIp< zHg()tXYs!lQF}*F{j*apz164k%U+d7opl!cc|^MI(Bb>A13x7-QSWQW@$12M){&EL zM@~XVhJSWCauPan((TAeyCWyFl_YfJWVMvEJ94rM{@Cfr@K-I^lHwiN{yX-vz1@+M ztn0CVWjxPM0(T8Tj61X>4ha(n4(O0G(mTLSh8gK?x+28LOYxaIgz${iNl`RJa4nA4 zZHSwZ&Kuq(sBz61T_OX(`8vVEIiU>V^|?VyP6sy^J}s!%0blneREo9YPSD5@wE0X# zU=|vBcBGy;o)V5}b4x&u&uH~lGslz6&9_!p1n(iMbVcxf>NwG;pUyMU0y2;ut$wO| z^M2f-j)RU!oNSddR(8ND`?~2B(2@{x?KG4iM^TY{|U*?72^Lk`P-IE#B{dThPZON*CH@E65 zx*~YY`K#lYpo%NH=HGo8)I)(q!g4KBt(AqdS5xPP689B6k8iiXoAi8FGW%rsxM3zX zQCCFdX5Yi6enqXAu@B&+^NA%VukuBbqaw4s6G`}|llG@2;~%bTIUb%5(G?N7@yFZ7 zx7YZro|RAi=~z~W8g!)n8yp=&j6_|tVoL~i)8EA7+0uwn@Nw*CzBgOM41w|4eX zSlwVBl}P`9uC=(q|DUc1(cl`>4L)OWMs5ueT#H9qk1^VL6C2}M-qc(R@Vo!6$lULY z@hoxjd|RU64qX>=3T|T}G}2Msp?mC-;Srg z6~Q_FzT=9pbEREvgXgnd<#gGRed4*ec@1DpY1HfH1>P=HGxi;+!f(uy#41x zuFkwimsB2CPGus7b2waOKm3}{L-jeh)8LI5=Z0h3Tn^;;mt}Tq_kC0f8e7fnSko23 zJ4%^}2z}pS)T%;%sa*A69{MDFD}<$Dg{?=oH@+vC`37AZaa=#4D*|n1?d*9xTcSA` zN+84iND1x-BQy8}XN|`DVaf6j=$egN{_9M{Fb0aLPKzvd&(l7{QtCR|9t8)82hA^(0*lBnv-dZsDhNMR2yCbet4+Mm=+FDc#NdkS(Npt;Tty#4De= z_Wqaez0w!OcRnDh$g)qntp;-jQ=@TOBH2(wa>@>%i(xYO@9owpyPuY=)Y5Q+4o-R5 zUh#QhPGnvf-`@Og()q4r_SxoUpQS58>BH?E9N%u*A>C(FF0-sdptVKYZ1>>ZPCFA z`=P!BjN8?+{YF4{Vw08a?W+~^%iTfrn(FzG6obQP33 z&$YT<;GO4cT@jHx@_O@)Lm^Zf(rjOyv;9DUK zJqja_Zf|@~ii{WQ+K2=CL0u7%n>nCX)NPR&x@E1XTXpTkO?`{5h{#Q?&d+}wnWbCh z=Ref75;yesbw!AV))=b!Xzzr64G~<6qjVeMj`kO{8tsF}9_<Lg$A9GMIyc-Hsf2|zb|w*cSecY#ycq0cGq1d14@nr%$P zFpl^WHm1AsmVM~RepMUlCi{;a?H`V9bCW=hfArs@oqgFpY}EX+G(@$VTQs37f_J1D zOho9Jz#hw>Kz7mIcW-VD`nX;NpA91^kZnJ)z42+j1t`y)R_I!e$I_*`BBD3GbFd^+ zf@8Y&ZBy}-ZazZeJ4Z@ROH)zeiU@%G@&}$PBeVbH zcKho|=j+YOLlv3-x~~1W3oh3cA-X^#5#YImGpJ~Y;99)Ha*5DG;3V&0ua1HbL#YLe*LA(fLAX~}MC2|QfATixyjOp=--7z>{)y>xky(F2yZhl}^TSdQd`8!5-0)B7 zia;A)JKtp|>FpEW-K8zXJe>LUjs81#L^b+5C+Y2j-pvn7mfr!sZkWpcn^}GsQ`s^0 z%>?`Gv~Zhyc4U^^mEB2jKPlO8mbndQ>Wbj>PGcfMkKCgncCzHv2kpwpOudU;ire|1 zWawqOR^nk|iLQvq4Lxe3RjI-x!Dr`OWOg3i-uRwm=3ZSJaWi-8iV)4Lk<9RX$caoE zBDfY2yL2+`0QzH%3_wrCYM)7?Lry(E)?4I=wu98BvQ znH4)?TX9aVtzPmTUr+vSIKFKh4^iB-Wff8FcTVhLv%WPL#irG_bUntM{taCb-0Ao0 zig2C&qn&l`QtLW>*M;`UpEad&F`M@J_SKMl>nT*Y5Z)5AD?VhcO6Nj2^t0Ld>QHWd zN!Osw7T~f$4hq38eCck)y-0Y;Hct@fodoMnv_($Pwn|J5*N$?;Z#1ir|@z z<3x?ol54T2i576G>z}Q5jRGms?xfRBsP*>3V7mh9X(cu`3&F$AQFfy*7}ua(A*`m? zr}IAB*OTJq!l9H!wmRhaTGq8L55y%VVmLag`x3)Er%qZXT}*UY@DKyLj(ZMVI)n0< ziSBF#9%$HR|69fXp29WE;6d*x?A%u^Th7mWS0e{@EfLNwdR|qv@5IHtxwuo zCQI;lT`i?4*;TAjMsG=8sVjnqjJmD}9=IH+DK>X)!L`VnXaQs-hBt6cT+p%bh{O`R zeDAWx54a@PQ%P=aryzd0PP>g{}L(q(@* zRcd}XW!Ga!W#PlV0ZXw0c#|$G9JlM4h+!P#cXR9B*(DUNdcbGfZ-!&r+?PR)&vf;1 zjcR*#l?3>zl$`&cxh4NsR|M}e|HDLtKIV^g%in>;Z}^bU;=hFthLE=^EDrSzof>~& zaQLWX@Mm?c#nF9QR|MMN+AAIV+I8Yt*=qZeX%=SOC$9Bej(O!%gZ|cpxC3)gn{t^gy2UL-~vlHlJn47gR5yKc*<}K|@7oied^Zrl8ep|9sw4m@Z{D4!l z_A_3I=Ra|iuM6xSnduK`cQk@$@7yO}D)!TMpi$D+$UaSLYm~G#l049E?tz4^2;M(t zI8F?^SknIMN{ONcy#lK1z*9J7=qp_%czv?leo>^lt>3Z-hmYLq^V6!x{4}S1T`6g+ zV^`K;>Li&uNn4#HQwO>Us3SRPg|3Bp5L>D%B624!2yjx9W>`<`aZA0i!Tc_tzw(j! zYhjSTnwlj&n%M*XU9#)4x_0NT>(Lbvx$E{~r48KE>V*W9Hl76?>ce00Iq1sB95ki9 z@qPQGW+7>RAKU=nmwHfL*M{5;m+OiU-Jmhs;S(ljxYH29wHPA%(@sYAYbGO5<+|9N z&f8-m^vMBZM;#&zb;w!DRav{sVjoh|Agb5uv3k(?Dh=sZr3LDS$>Cw zQRUpbIahY9r1Me9;Q!XO7DxGCx+0=C_|mck?_((pK088#J0A@)_$>Ic;dExEu87DD zKHfF>N&VGqA$yLnLAo+Bqfcmejm|$Tk-kjVYMk^Xx+0=C{HkIb+7)Hl9C}6O=1- z?Zr)gsji6VP2M=spIBQe`AY@e8KKD=Urn;FN|fKOYcFo{FY1aAO|Fsp^Vx%wnQDmO zS~#-@4G~-mXD>iQ1lQu@x@)rTrqB0U9RUyjz`^eAtW@{$R=El%JK%XE@5#~E!U4O! zud~&oIPTpA-^D$v^r|kVob;D;MR4!F$V7y`Ke3m)CB*L5cU%2d5staQscD}#_F5E9 zy1o<0@ox@IX>1O$d!^p*O95w3_>T<}$qBk5B6q_c&W=r^!a*%Bc;JZ0JOD2Xv(2K$ z#a{Ml$@qurT8{UDgLOrqjjz2*)B3HZGb6J-=B=jp>Y9yPeiIWBxb_lyOgX?_^vX7$ zB4KYZY_QI*Sw%Q|yfmM#RA65&BR`6DUSx(okga?*RdQ-iH&jXrDoOC4WA1`2x*|CI zRb3H0$#6h0N-`oEhHU@1uRb)rnw5$qRR3CSTp(zPac$PaWyMDCE8fevBU7=14J zTVyWTC)g#98j@39*0m^i%3pLvh)&UngYHb}eOgE0b&m~C*mzRnl;tO{U9xmJRDH`< zg_@W%4-O?cuTOENN-#QGRj8B>wOy?OTv@4FLmq{j1{xS<=2LVysg?-DlY0c zjIF&xsHpX`N$X~-Tog9>u87RSbDFCLO?B9cJX42FWL zTW2k0#|!NGU|IVNB*Yf@opj48z)QsbHMZL$^UuEROcUk_TLaJ}$u&tbO(fTRQP-|K zzI;JfMC7iS*XTbU$2jjARNyQ~slfV>Z5RK-+hdWr=zwMy@;J!V2+o6)3e0(qMv|)@ z(X}&o)x)|XL|18Mak(32K^=Iq&9Kt#v*|vIL&>8R3Blxcup@iulYKqe_`1}urh^KGiS$%m5uE7BOho7| zm0w&b86r7I$GcT8;b2q<@?bb}R{8}@AW z2l#fd`MY#&$IYM86%o1ln*pg{qh~Qc{1HFa_u7xxI)eyn8SfV@lx~m*d4)4v*-PWeh*_IfnB$lUph0}3A3J32- zaVYs2vBjx8d^|N!Nm=aUzFE5BM&}Q7N#(GAkBQJ&;Lx3yE2=j9B^R%8rGo=@DH9Pm zqK7`(sQc&b;g~gdBgpZO>8<+b7tPK01zi!mXM9dq1n-}Y6OH=kMJ8H6)wHFp^6v20 zyJq+bEWc;v@ugCws;;d3duUk*btqa?R^Hm%Wq%%b+V*)}L-RiS8(k3`x?eL9q4(}l zZeb2z%p84aC=STI20HsY_vl6;5P1=I1boympWIPbMC4{3Vb|vO@1z_UnUP1bmjD#+ zBF)vc4<~s)T@jI+c)b0ZhkMICVLvG1Lwa3g)}8=Yf!K%H9tHcbG*?=qYc+286LdwO z4X<&e!L2hp#xAuDrOlyozR&1qGouF;lHD7kFuc#q9xv?ffDxf_>Qz{l+3LEEm6x4) z)>*;-S%^hvZPgn^XGgG&YeLH=fQl^|bcMG;lURfNe>?PcP!bJwNnAOUAIaV)W?oMQ zyM*nu%jS@JNRipws2=WS$7RE}g|{m_387pkzsq&-jj(rUZzbNg(%wVN-R}JQvh(XM z=hxlr7uM)w+u@tRtK)Z=Tk$qs5j@V^>Nq0o9n(EFHh0LBR{vRKR-Xt1YOzu(_vA}k zf{p(ZUCZ$x|6^SdksE*a#*-+Gtzz#H>o+2^{P^ZubB*sxk>fR8n{l(hsw*OLv+s3c zsca>zt$pblyd^bY|6>}?!1@<|_dYDDbbU&@{rx2WKK!HeeaQ`bff9!4`<}WYL^n`| zJGUWxYVHgp8X~wB5zW;OSw4`?*PIuMV71G6fp}xK0Hysa9f@_d0^A_AE8DTDwVjNy zhdTVTj#ZJda%ekOFWFEpX{(n6^^%TycA2||dP!G338fXf9Pl2!R98ggPHeu02M6a} z&p|aF_Kb1GcAhkI$w%g~*-c%zo0_`Vo>EU{vbwhA?&;AL5xILNxl@@6oO=gvoM=_c z*^IvnT^X4}CO1-Q__}TX#@D4DQrEQ~cfsYlB19KxL`rvu;Bl=>D;m>O=k1U&>ucG} zW~eh(uKMP3Uk}Hh_3_RQ!P)#PzO^sK{{FqXKHzTr8WRz?8xXvXt8K?wB!lNpV}Er&eSW2%kAW8ksqFYln{}n;(_z_+fK9UZE?3b9|}e zim=CvU2TIqPr3Tv0=YXfdyi%IZhTWR_no@7;@IAQgcPINN4)1ZmaR=FtG&VKrgfp20F>c zkOeD_FemL$CL%EP2>s-cx}%;Mj%{;mL5_dw->Rd&*W7%YbVcwkvQbwA@2HLwjXLVV zCR)IehXq=za=Q8Jq($~q?Jyng%3FzL@PtUMk}VZ|-Srx1P#DJnJ#V%za_^OQE=ny( z!HOV!JY~NU;(Xl4onqPUDqRcnEZ|CA5uCQVt_U|EuNVc_&FP0FwC8_`RRy^8l-OYP z7OWzyxqzFStA~kG*9ir)9}LOqhdYb1igK%2Tb)$JqfYawy;Q9T>I{X!1G*027<`?H z(C~t8cT*nsd@dYY=N~2t-($Xu}xJ8SDy@v*~q z<2VYu66B~MIc1ryMR|~3qAMbDr|f=Owo*&yvlS?>WShh1gxvM~u8~digxraA8X~wBQH?RXpJ=~glvvd$YwYv>brE`>eK*O!D|!D~UDt8% zU(G}eV`emSRWV!5LT5V1-W6I0`6-;X+gK`R`sC#FzQ~LV^-Dc!Bpo%9OpPSVktJK- zV{YrabwzN-?{wT1_G0_NUTd(&8Ehjs(*_ugVSNRjPVG)?va-E>)k@;|FI_5*MZb>B zRg3+ug553VA?Hj2S1#!)mvohr9QaFJ>+{a?b6pXUJ8&;IZ!4rLo9%wp+%)p;xV{^i zkES$IH~0H3Hm%;)wIO%Io4O(*cf-6>Aw{sOFtU9O`=MQT-kaD~s+FDO!G5*%djG?Z z`yLh5Jmr9P(1_)6Oe6cPU00)|t&x*f*w3?rMpBR22h=j0z)aT_A-YNOg|i5uA%bghZ|iBa?xe%L@v#D~T_|sSoEaIPjT;~Kr-N^NyjPbZ9y2!S ziiq6!JHbsOUrKpFWY*rSdo#R%fI)>)M>V?Iv9jqT4j0n!7x{ za9FoN<}b4btbD28&XLk^CapM7%Gc~AaySYKYtiry{pJL0PQagnLwvpR(Qr_xC!K}z z-deWXf@1pzLv4hHMyWIuHz^K)9?cbU_2T$7JGSl6X8$jD>Fk}`oFjlg(sd=L;Rm`R zI1S&^72(qGRIAOBz{NKG<>R$hy6hC&?Mhd~3kd%T$>o#PC2iEc^|*{mWZMR>U*iz0` ztyFekn^V%~lEHPs#eWvUR#CPG^EZ8Ef^3Wkc58ttJ;~W>{ z_Obmj%l^@B|Jcv|F~|Nf&;D_s{UZrKtlW6`4_3bm|I1B)e_EH@1Abnfn+QKI%k9bj zc@q3w)0Uge{$(%tc_t(i>k@5kYdUi$!LRz^oqeT()mg3;i&nYQj;5X9U-p09rA#Hj zULEC1bTD!WxVj#)f`i zNiJWn^zBG0cJo*3x|T%BJF10AHB&Z3Yyy}SjQ6h>cN5Hutm?vA%<=SU8W zOpxW;qwkPu$Y*q|%{%U=bVYFTZqyaw#^h(Te6F2YPHG;BgrYX;gX}*E$>jl~YUe>g z3574{C?fTbbxqA3{zE1r?nwP=I2O)53vzr$YZ<9uGB@9gx*~Xg`J=7~9;qEC8b#{w zn`i-%+R|Db(C)PdHhQhIKG3Me(p=5&s%7)t_ET-uQonC?VBRs|gm3q#b7OS?p5k+l zHrv5E4KoVZCv^h&kYRg&P)RG5=DoO`iHN%wuL{Suxx+vXz89}BH{ViS5xf^4rz?W@ zV#kR_y*Oc_1@z(@hPM}wSOyOm`D;mB2rURBy&CJJSEnprvh2j=Lw3RQb?wHx;JHl1 z@O8oIOUo84kF({`b)~8W^;`9(z|%RQl}_-oiOT)^eU1&K( zQ%N$_*hXeUHRpU56aqk0beseYCXt5&`a(qwD>6sz2Nh9WWmuIsP=;0d zb(KlF%193C(zPykP)b)sCt&B7LxXLt- zqbh3k->Pd}?x0(AMMUnP87JpURW_TmdkU;2Io+n9sJ8gy$UHN%y`cr`E)6Y`4K1WT z^Fv*Ga+iExS48A4nYg&29O4T@gIoeAaPC5Vg7sxVtqMQKj|tMYss6D$sRTgF{`l zAzBqW+pEJ@w&hLenXM06jCz+_^(NGQ2vy$Hx<=GKqgfWCuJ%K)@{nuJ6Su3MF>0DW zR9`(TRr@deKDAlRiSk!8%VN}(e-M;UH@x|8S%1o?ss3QCdQ-7q@s~HNHBtN}&9WGE z#rxgFpEYU<&vFxgMzdNHMel8vMO@KM?7U?2#w*h%ScnuiHv4)KDR_U;k`!I7NI_f3 zd!AU23_XjiBpU=BX>@8sihYH|7uz$a^O`@Ly^v=I`MG9?s*LteH_JlC*(WuNw!2+S z4fibi3P)!FbANk!L4A+-I4T~VW;RM(X=3$qPqW$*h2PyQi&0m2_GN;TR<&oWW{0m5Z5k%I2OexPNVj!?QE?j~lgapgW=HNBE%_%Of%9KfV|$ zX*5{ctVZQ&Skf$uQSX$)*mFl;3KA*9>59#x))j|`AA;4_f=K0w>FB~{wI?00zF8Kd z-T~9_*<)$E{ThDysA+z>{_wHXnoxOvv-%R1?{1dGsH?nSF6HQ4iYW;;bnT-R%}vhL z9Lt=iVgIQ0$qCV2AKjW;jw@du)p3k>u5DYhR8tJUyJd5PdG~091`JZZ* zg>?SMn`IGp{-sTw@?kT)&%+~Ys;FK+KHRJZr5_(? zmWA}=z0I-+`*BfI4{_7yb=p0!ME)4^jgmpS%C$CF=_b=~{1XVXSGQ%2KfGA_w@mk& zl&bjcp7}`0ApNL->aW}1hm$ZZF8L49EK-k0(~tL>*7wZq74meB9Gt>$z@6zlMQ5}} z%jy{7<2*FOvlef!kWX{u;1pG#cq5+Lx^h=!E4S_TfWzqZ6E+AVI2i0Hb-7njUp{Jz zr3HCZIo(KXDo?2OlGfF_wOJN2M_tq`3o-n0=Qgoc5h+g4QnY;-Ox{kb68KKK_mka9 zwY9;$!}CxbNSiTJW1_=vYF5?qQo5m87Nf4}BTg#FYa=?>!UeAT-{j0_?;17b&s%&_ zK|ZFr+#GP>%2tvg(H(DZR+rKpZ)ujr=y%5oyE`_PchGM%=%;AZ9WQy6(;eR$#qL;P zcSj@xbqC3i=#H;9t4ryQuQbbI)VpK$$#!>WH)8a~@QBkFzaO=}n6vm~yDwM(>If1b z(Gia|t3~OEN1A03?}#Q|D)L_96BHY8lZ-`vzrtmzfy!qt^N`iQYUkm#gK zT1%a)a8+Y89Xq3K>6*5@1?^7`c1iWcN)IjM^-Yn*=!SJ?1?t&;FCmdyT*e=%Sv0YX zZ+81TEj)U{^Zeq^IvQTz9u2G0iI1bYVR9H_Cq2B}sMf?oytZ{su4gzpYhnQ zI$t#wJtZcCRBc9v-%R1U)C&(xXPQ@HOt1E-`-8I5Gm^H9GYH9 z9mS&`KdGvg^(&}97#g&`Xz}~kzujF_4UgJ@SQ0*pxUh+ZSxpzr9Q^%V(|7$>(i z+sQIcZqY2B!1dMC@cong0snhOO~2F38z<#w`|oUBk8f+1g^ct!b62!|g{3bi48N}C zyj#9AiVEjSm-p#w8WIEdo6TxV2JY9IWik2+4@Y=%N&Cl9R5(|fwxs=Cv)U4cKiVvd zQCIj3vx*95OJ|TDzHYSEu?Iy9C{u4@oF77!x43wn(JYHmS9`|V>5NfR`nbjA?vs*l z!c&{ol8o;a&9aCqx{2kEteE(H+yo1ef>%sUun;NOcHRUFkz!%9J77pbzu@W5`UOwh z4av)lrv}!8rOsWY^6nw|9%f^-6QQ7c> z#avtBoqR{@n)_n2EaUN&0-vkSh;`PlwoZ%aO$rJmAFPP_t7kF~Pc8*nExjlnz_-J-;H>*7T z(M|1}%&WXwPtGM?PqSl4hGCaxk^1g$`+Ld%6yMe!#j3r;$9?-}J;k@QuD%D zeYBG!)XnIv^xRYAKM-`NorvsEe?u@O(9xtW81vkGqDa&wvImpC{SJjbfnF#0VQ_zdS9WM+>b7^D7xEMwFz1mo1xkY$Sc z6M`{n2C__6ze6xdeHy`d^&RA#r1o*SS2EA%aoW!~axu_Y^(zQ?m>RE;Gl@K3F=}Ln5for}o1FGhpbj+$!5DP|f{0oaTmw8^vSw6**?cyx= z0UfEv0Ue@xIr8lsJjOXc4KCx=n^1hR+KphWdJI`6sy_iuRmXA8lYu(aKBP@hHJ~wS zHqaO~7r|I{IwGg2UjvO-TRGTJvQ_wlH)LCFQ zR(*oG%t5&+>Ta(69z>2&|A*i}wGe4z)sYAeRQDpw1a&OXB=t7tvJB`@^(F3y#}PSB zUBJONIP#syLfr_S9qKbk>rgLebSHvw>PN^jPCc1}=X3EpIQS*Fj8p&Pa&O>rcXQ4+ zF*=8X7juDwm}h~}ce&h;Im>UE*}YtR92C-_PUbA*dF&p9v<~$uj{FxFn9ez8ak&|s z^9@|XOh#{FbOl%RI_A>Hkrih4Afq>M+QXdlQ4StP+8p(Dq>WKiIOktEX9dAzRY1-$ zYB_>&YJekm08Lc8IPya%H&=ZPQcqNeF_-;FTc8wYIf5hq0W?|N2sB4M7r_iwLF7U; zj&uGG!5DQtDjKJL&cW+B?FA^%p{6k!VV-XTnxP(Mo!!M*KF;Mn#la^Kj8W$yn5=$* z0u$6LkaLCF!pv?&FhzDg(uI1oh&hk<&cN#O>!f9XT0zcr$0~npcIVW+sAETnNY79qyfg?K@{foJL zhtXF#?Ylr7Y8CVRKBqmG(Q%yRB^oIJl4_KgGciNB*0G|8j5! z2PZPm6&zg0k?-N)eH?t9>pO$9+|AYA!@<2A+{eLKF7Q^)`8^IgxJ6H6Sypl6{haeL zE;o_0Y~#r798BZj0xoa~qtA121R}?(|8Vj7oMkHqmmwhaaL#kN+M^jA$mn;R<$RzH zbr1*N;4Fh2ydA+I>g!y?UpUL3x%eF@zEFJ!X>--ffX1s^Iqg{}H(s5EphMM=Hbt#u zo-ag}!_?6Twy8HG?IiVepo!{SpmAzC2j605Tew^as6+h`^({~vkY%bm5IQ?peFUgO zy#zTYs2N=CMnq0go0!>7X7*ncrx^@c#;Yq3OjNH!+8A{(cffd{3F=nn`BpA>C3Be! zv{Bv8=#MBqPVMC^f8@wJSy`WBRN~+(9C-pzhx#BF_&o<7=U^iT&*tDy9Q1MVySSov zAsDOv$&vrz;J+OFoNIVL=RB8#H5{DHS=KUI4%Qv&Hbw_?+J_KysI45iA3=w@l+mFa z9L_-xOZH?A7I0)I2M=)MYZ)!(;4K_E3)-b6Dx>2$?e`q?aqx5wPC+n6eUT;mK1aTS z(Y1`8!NGQBb|w(L4H-S1b6yHGOMRImzr~T?=HN9PypDsfAj??w8`j|EKpko=f-!0@ zvdmZe5KzZ)wd*-}2N&PK=$l+%KZ0@UP^67j2eM=z5eGlw zMxVqvZ$ji4^<9qq0fHmcleqSU%%#d)zQzS6GWrkF7OPbNjq=OxrEW+KV~(07o9m!7L8`!v*Fu`X00H=K{BJ#29gNQA;2~yq71y^Kk>k`NE`A#a$8lN@*RUMHcvVKQ zNv%hL3F;-tIYoVob3PN1i`8ZXGt^#0zFd75!D4j_MQ(cT81;RKeVF<@@=R3EMB-g) z0BjCa;}MKi-#{=~eG|cIH5tKpbpRSMMP0__K7euutFHk~RUJTws__V>sPhpVrQVKm z)6|a;j8zvRa+%tUpi`|u4==7eu2nE>M)>*>Uxwr zTRjKCICTiWAQZBURSzO^qFMzsQ4JuNrgos*P3kJ7O;a!6azzAV)C&=eSARy9acUV* zhw9<9Q@QpJgUbx{S5A8tP>1>hg7NBl1XI;D$T>!R6H<>+-$Kx#{?0i&Ip>p6{2+BF za!yiDLF5=U0q8*W6Qqq-9|h`AtAVDf?<32BY7nh!KaUCL>TfF`P&fez9RRFw7@BFC#G2s(y_ zr^8-f4Z6r=zatogxt^nX$~gD6*RFbL?m6rl|LTypKqrt<{JhE>qMCK}LuK>StknC-0`H zQ$bEA5~wRkBgp@|3Pt?^dLYbp*J~*1haf)!`7y{(Kz<7HGmxKy`~u{cAin~+8|2p@ zzX7=i50OUcChd>?%d4x!y?xS%8ja~Onih3rSeg`8LRRLB0=i7s!u5egg6{kY9lO3gp)y_ki37@&L#~Adi4N z3i3F}??L_u@@J60g8UuipF{#}V1*Qg!^a$;P5?O( zo_+U|DC#{R?*(}u$ooM)0P;bQ4}p9bV;~;~`2@%(K|TfYe;}U*`3%TsK|Tla zd5|xFd=cbJAYTT#1LRJSuYi0Nb2l)obH$lDy@@1yUwL({wn%*G=dk;X&4eYyi0cHWf=mLL400gI6p*PP(?F(!%m6tExl%~5Q_3Y zKZK%w0rE?bUxC~W@@tUafZPLeFUWl$_k%nD@*v1VAP<8)LL|_p)vNZasWUqcC@Gj! zQOloaQTks%{tEIpkiUcc1LU6|{{s0p$bX0g+Tx0$_a8w~4}d%f@(>YPd4{v#J@Y8) zUXc4h?gx1Q29P&`yb0vZAa4PAE6CeG-VX8(kavQ-3*_A( z?*Vx)$ooLv5Ap$!4}yFMiCDAm0V~9?17W zegJY8$PYn&1oC4dfr5z{LcL{(qTUMfHjuZ2yaVK&AnyWsH^_TH-V5?RkoSXp0OW%p z9|HL>kw9Cd!T2}VQq(;l_k!F9azDreAP*7=wAq@boPq10CK#bn@VXl){h1)o0(myb z^&mHZJO|`Pkefhm2Dt^~R*>g{+y?SIkmrL8gS-Ibg&?)ax2JlL2d(i9?0`ShCyBc@`3Xp20w_s`oY>R%xL2Kf)je?k5S za=-}k{xY0|Z+a0$-Ap78S`8~)VK>i5wCy+mb`~~E%Ab$h-JIFsk{t5Cgkbi^x2jssX{{uPTB}B%6 zbbyQn83!^RWCD>utqa@urB_qbmqG3TxfA3oL;{8L1~mEAZ=k5xfV>vubs(~BB zLEZ%NW{|glycOhaAa5rUD4a*oF#he^FpO~y0k-?zLFw0mJOku9B7wHQA#nozL{Ciu zIS^zjkwC#Jhr}L4?b1;&av^Hr*%Y-1WHHDRkYhlWfgA_2oJgRJTquzJDej@+gL>%l zuPVMQJ{ag9=V`Z7*n@7T(m$hcL>q<#!9pYm7A2qs6pm=qk|5Za1i@AX^im2(w9!fs ztXG0yy#l(1!Vzu85(ImepqXS11NwIfIcGa)u7l<|2sSn;*Xf`m9R%~6mZnVkaH)6BiiO82*w{lumTB!IY8{Z zu^^a^1;KO-w2s0NZ9^6WW3nJvl?B1PEC_aHK`=NAg5_BdOwfX0ixvc;fg1;I=$ z2=;10FkB0Q1zQkI*@9rx76jwAAXvEt!Q3qfc5gv2fD3|67w9euN3?NQ5Ujj{V7>*~ z`4Do#jtg}2QS_?dC|Gr4QLypGqG0ijMZx}yC}smgupn531;I2d2sUCtFcu4f)mRYB z$AVx-76gN`AXt_K!Ne>Gwq`-FdIKFv;fOYW3xXY75DemiU>O$#6S*MRuYo>F;fOY5 z3xY*k5KP;GVB;19W49n!y#>MiEeLjSK`@95f@NF~Oyq)KD;ET#xgc221;LCi2=;VA zFsuuLgpqEids~-p9$UxF?b|46c2!e2$ zAPC0_f^fbd2nP*H##1!V!J^AqeLnf^Z-r2qzqXC;DgXd(!w zCxUQ{A_!)0pv@Fgk2wg2a7lwjTo6p-f?y*T1Y@}%Sj`2&d@cxfbV0C80ey?Y5pALp z1Y4CL7_9`sdL;;EEI~Mt0J@sO5q&fv2xk<6a9AM-rxt>6d?5(u7=m!1AqXcMf^ftk z2xlFFaOfcjryqiF3?c~UA%bu)A_ylWf^bwK2xlgOaCjmJrznDOoFWM4DuQspA_%5# zpkpZ<(Kc^EFn$Yy6mGT@cLbf?!`41Vg(Z zSlk7{^ezZCctJ463xZW%5X|#}V5b)ZgS{YF?ghbwF9^1LK``nIf^}aI%>062?-vBa zzaX3d2*Oc-Ae;#Z!r_1*oDvAaae*M58wkPyf*_nE2*QzqAe=1-!XbkooDu;2{y;qa zI4%%`a|1y*KoEqJ1VK1b5QMV@K{#X(gwqB=ICc<(^9MmVh!BJm2|+lT5QH-dK{%`s zgi{MaIKB{sa|}T^&=7=^4M8~K5QMW1K{)gfgwqc}I0g}f^AJI>oCB399ML9pL9nF@ zf>B)%tm}ecW)}o|yC4|e1;GL@2&Q;Ju*nO8ab6It^nzfn7X-V#AQARHeE!a0H<94H9F$$}sp zF$lt0gCHC_2*T-uARI#o!g+)s983tp356gWRS3eFg&-VW2*N3bARK21!nuYZ9B>H2 zNrxaDc?iPUhaen+2*PQIARLPb!ug0G9Fz#ciHRT_oe07iiXa@O2*Rm~ARMmGL!ZD>FoL36M!KEOaUWF_zww!Bat9@6bXWBks$aO34*hcAb76;T~FbNc4H9) ze-=S-Y!L(x7eR1!5d@zXL2!N%1TPptaEB2DzZgMqeFS-Rj%c4u zL2%9#1TRfNaMu(BzfD1K;1mQ;PC;<#6a?Q+L2&XE1aD74aQhSl|4%`11Qi62P(g4F z6$BqqL2woo1g}v+a32)}KT<((C=~?HQbBMr6$D>XL2x=11n*Npa6=UYe^f#6NCO&2 z;fQuk69gYMLGbAUx|6~Y?c5~@US5LW?j;C*UxMHOCJ3Hjg5VM+2)<#0;3Osp-eQ8_ zHYN!EV}jsFCI}v7g5X*v2!2&SFQsrqJ6H*VrooE8Pa zdr=VF7zM$fQ4ky(1;N8n5L_Jv!QmU|Gzv$w=eHoZfD3{zxF9%R0o_jFi1xw~1a~Y! z@XHbe2Q5MH)Di@jEkW?z5(FnMLGb1h1h+0h@b3}?M=wF}_!0!yFG27D69lh2ps!Il zqTTNV!4FRm9P$LgGfxm)^aR0IPY|5;1i^bx5Zw3#!JkhM9Qy>p!%q-g{RF}1PY|5{ z1i=eX5ZnO;!7oq{90UcyQ&13G1_i-O5a{g`j%as5LGT+C1P4Mv@FWxjmqJ1CEffSN zLqYI16a=?JLGV8m1V=3WCFQ+ zxWNj7Kdc})#tMRmtRT3`3WCq9AUMwof)}kIxYG)PU#%cG*b0KDtsuDE3WD#gAULuD z-B00&_GlFZ*H%IBaTNq-S3&T46$JNJLGX12`Z|Rp+UZpgyk7;u4OS5RVFkf4RuDX7 z1;JHT5PW6@!Fg5?yl4f%omLS1Y6Zc;RuDXG1;OQ35PWY1!3kFoym1A=Emsiya|OXs zR}egQ1;KS!5PWzA!I@VOym|$}y;l(Yd$Gg5XXM^b`t56r8+)DiqRt%t7!`Mp`$8BidP65WJQJ!F^c}T&96;p>Ra| zP78t)wIFy?3xZp$M>GU<-mXwjg+A3xa#LAoynk{fNR5?I8_x z{CVRDttKjHt%J^Y&;|!x=pcA*gUiJfj%XKdL2%&)I*`H)zRJgr#juk^2$n4ulR6DvDZ&_$n~eCB?2{TRBV;eesx$z8ij{X2tdP}5DB z7(zSCq^@#}1)(;F1*u#ZsjqdIW)S(v_aJ6ycx>0e09dLEFC;(8=a5p=M*7cHh}uF? zo7Kgj!;^L6FB-gPfLc7g7SM+hOSNDNX`!!5F;h*<%E6t4)izypyQW$x>Js|@Hgzdc z`ia5iI-pjMhvMuutCv&Tt)@(jUnhMPb?t;IbyIJ!e|Sl4-#}0t7_9VFYC*9yI9S?O zUAnAuX}Q0XJ~%hjOP>?ovv1k{;aLXwm4|53%ho2CY!jyL<1ncYzYP%}kB+cO{uj5j=9A&ZBB2bCdmHrwH@L*6l%>kz< zKFKZ6cWzV5xM54WdMnkSS}X1;^_IJf-DwTf>hk0@>gwj7bA(*yc9r^zU8QQxr>m)u z&}48FHQ&UV_QkYxh-k^=bjmL>v8H^a2hq<=S3jl%^9j^jC+MH0gzZ>Zt`>JxD!u7? zIT-AmT#iIXI!Q*XShKWlx$~Xu4yU7?B*V$mz$4rSI>k&Y|G}-~A+WGJ=qb@BZtFDC z$;FIH`i}N!EG?#4spw?WV#XdkJ=7C94a2`V;|S{OqAwBm27A+`J1p!1C!?dgWnMP+ zb0XtoK|*~VzJb1uK5FQhQ_$mHRWEin)-`pWU$j zmou7Y(pM0Me6mdfCnP$0niFNG)R>laAF-Ab<>uSvJet+BXcTYN8>oMWKg!dpn5SO` z#T{k;K-MBi7SrTc+bm}3Zu2#Hax}Xhdp@>(=XWrWwFVaIY#tjnaF7vKHGWO%qo}rdn&2Q(y3h1yk(_8a)js= z36GFu$pucyXe`JqsC65~7c35eI^7x6vr?A~x{GzHE438JlsZ{*fm1S)E>&ua16?j* zkBB4a*P-3L1EsFrK6OvikE6+9I_r&2v#~PBo*vA~Kyo>1z^hG?v=~WsxGMw6?r_4& zK#~k6k9v|T11ZKF19hxD#^-nK3c7X|^<(2xlpbSN9;2%7*-VxU_1lxA^kHmWpxf%n zYnYy3Gd;>YQ_=#TfO@f)%xYNvfLVr*(~&y{E2VC%S~Io{`t=si$oxV!OX8`fM`BaB zetqx*8ZY7STNY0>{5(AzTfD?eGT%Ud#wL1oE}>Z`7_7f;)BWSgYm_a5z*^}aGrDWJG_qZ^YW;09v=QE9!q;m2BW~qbTuO>FzoT!G-Oit zg$MFG3dxQhJfY5yGOpY2B*(s(kV!f$nQtnMVx5LMp`9d-5M@iJ9XTC^ng(N?^cfy|R z7nb|$SSR>hYv(eG`lPMz`it1ZNHm{G=5ve~X= znfK6wiaN=MmB@)a#!FTi2C`pGdVr6#7;5KuSc!1=guz0{OEImcH@tWhJK!hMQb;; zglYJ1?MLMpvox!#S3R1&xeepbIHP$1y|*(T53NxQfK5I2u?JCtWCfibP=els-C0_G1FDH4qB&%0Y zX<>7?uB5*l^mhd|ler-il7JJ_SxjC>=Mlj*mBHP(%^K~Hh*)h0M=71_Oa0xw^r83R znQoEgCLvaI#wyxN2L0Vq@GxC4j7}>y{rthwz%EjD-vC`&MAaRtOX*lra2Ok_Yx0IY z`#SYtG%cctqIu%(%8A$gBYwpM$#rXkxkP|h;Xbm2X7fH_mu`k;nW^}48nx;Iu6@bqX(zdOUray#5uY? zNlRxiciYg8@R)9W&^tf}Tc&SG2%d(b9LqU}hZ)^~rr%@wwRww%rfd%{`jEF2M%U9`l5U@4u?u}R3pm}&HPdK%T=SEX9M!*%ZC z;FVnG^EeA%SFaW`!uM6Fz!=WSSJvzAt74t^E6krqr3=*+6nA3QfLMB&MS_|*BiLKQ zx2)#1AcfaZf4OHLxM)M2MyC8#Eawlo4e#V&1_wn>yO@Pv%aP}E@H0;PIHP+xxQT=N zIqd;PS99^lIryp$tW(@sC7h4?7I9iwooa+FaA7rJ6De*cc8I=mdIyL^Q|tsTMmN@> z+`QhPw0j>Nhxd9d^m;caS(ryybfLtXSG=B#Wj$-1iAY|D$6|>$Jfiti_{7dcqzv<- zYs}4VShr~oHMh8{;yr|&f*~HJJCe+^3ndr!dZ(qE=PlhCEA457Hi<{^E|)+ZuZIU& zR&)#I_s}_hhNV`Ie=CpEl1?kZC^gnGS{81NmD%BPl$Bt(MAA#w#E#vqLZ)x7)8pT? zY;LvEQyb_V@{Uz~LT)lR(#$upMwD2CtP^sR(<#5m#G3M+ro>LjO$pPEZ@SM-S7l%y z+ea6c-NcTko5EDAlPu3BZVd@Vecg8ph{uuvPKmE&ND z_79)VMVI6GY^bF6TM3_=_1iVm?Yf4}rMmJ?dc!r!lwJ;JH(I7(*X?xH#YNham21VK z>8eKB=dhLMZe2^_6^ulVoZE_}9bLsTxgC((P=npzidm}BCVR(FEg(gn-x8}rB$FfR z#WY&zh%}tzTaq>MMQTx{Mj}VfE&as-IEJ;VP&&Y;MPUsNTx(m?XDE;(U%bXwfo9dx%*)(x%c)Dp^(_99By6Lhsv&^0X!O7b`|ZV%^Syd2sn zXsa6Kmji@yq%DThnuo1*iD_dA<4-gTY-&-%EVz-+5&mhR@Zlrae%Uv+MRwl|akUY> zGT28Blh?8XRZH`3T=ARRBfJsN(Yz5qnpE1a`}T+*3FwHwBht8r8|c8SI~dfDhP@waXg|@^iq$U&3md5CI6L5Z z*dy;4>LKTogrrot-Z@GZr@@OQ-aP;HcYRXE$n$MuEm;Q(&?)q;qMrxk+Ou^HMEkXq zxmce4nv}BlYUi!q(#$?BVn(_;HOCN(@)t~fj!HL}osdyzoxNF-oh%*BX-XXbUhKkX z-;-f+Bj%-0O~dwy9Qw?&>rb-5G--+Bhy06J`6^Y>V z-v!a5`~RP0kqC}t8?9%x4YD=)rnQ7{q&uGyTAD4QG4|x<#u(S{$aFPZg6Rj)I0-23 z-c_PghvHy~U4iTG%5%(Vd8|4~Hib079PuxYcH+dL0b@e4zQk0V=O`n|rVtm%5%)?v zwIQQHvZjQ<>zf-CNs(COK<(!9bUxWUqN{J9Sg!W_T>`X^OO%5dl+<19tFpk^yU*O2 z;wPcKERg7^Y)+J&24n1uSMT%r2tHA6zFp3lxF%93mfmMl)cZikg{Z*gdVOg*{JG0f1%aSb5GA~&kYKtGdY)3Yu z&E|C$x0p4nI!hQwb(gZ3jd~~4pIGwj{(YL%f*NrgQ7>ju^RMTV>=Tc0vyX|EGT!B~ zG^UyxSQ_V$GtbgE$wrpOp+Js4WoaChY~MJ|vowyXjb2ZV!1hEGs0psCX>Vm`5x$On zrM+6{*fLSOnp%0BhId*Crp2*!uH|ZKWp=n6WhEFco>gzm)zm7)+yZr{vwB@Y1|0vv z7I{PC2aqNBS{H1vfA}OWlswk5v$ zd90O-pS)y}k9IBw{?+T{IFBq2R<0@b2K_s0yVwypzFE&zK_~lnMsMn*$5}2mg}6kH zCNGOps{_5}N|?5Yo1BRn6qf}ugZ~`IKY1=a9#y*N!+X<_-ujsgPHX3zSo0jlo@UF> z+T?V~FEX*FyyrQN`B|G1rX6FNn2wG^bS6uM0h{W3Nd4o02fy>8^Qpp`;1O z`b~+ibZ4xz=TVCNro`bAsBf6pq5e(DJng`rdgX<-M@bf^9SbGiJlC;#!TQC56)L%(nqVH`0p!%B@l)9Cv9fVOlUKg2`9lO6x4|0h00ovF7xlA~wT6xvk0=p)h zdz`iD%(P!`>r+W2I!&DuWlt_ity9TFIl2ox{E;}7^Q_%sr;<`WP!AY+^&0B zjX;?NX<4MJOvusQ{e;VbDjhk_D;9&Nw%INIjLs=XBb*+X zs9Hy!HI&c>ah}xh^J{8#q(MJbhjz3!V4CPBU8f@njog+6X?)}+<)HCW8ypI{%X?Z= zO5@`tsy42dy_Lb%WNBP4x=NNKP%m^AfM=#I0Fw)OT%SO(D~vbA@RQP(gZ0bWi^Glh zU=J8KV^)g^MeD^pc7|A~f-8a3WtU{WpzF3Y##+`6Njra|y!@~6%d!q88m+=H#w9KM zjj~HI%=MQB2734D>p6(y3Vb>VU!B6uk2!aK+5MT=UOzQ4-!|NmbdjCWbG1IRG{1Lj zPitaltrxZ47)MA){_UYTE7y-K>hyx;2AAhfifnFPTWU{KCj7}kHLq7;R4}w3ZE>fh z_+eL`UsPwaEJVqXsE*=;D4ncz)n2-mw>^U=-jZ#tkDi32PD7+mOhZQLp>AiNM53lQ zg$K&$bV{3>Vq2`j>$!H>oo39Mqtlp6+dIOHuuji(+0DssiIq}pHQti_)L-1*mc;F} zmo{pbuOohR^3sMEcO;sl_RA^S^hbLJPb71m%YU-lpL%k%jihed7>NYVV_B{*aC}Vk zMwaJT+4iVA{x-O>^%0&XFb^F1Y@O{kFq?nuqZ<=*<Zg4E&mIT!uAwiL z2F2b=Wx!Wlo6jYSVR5R>Vr~!Z#nKpP&n%O{6n~M~JZV3UBX*SryQ}2sL^t8m0x8x2 z{bQym2XhE#-vv>$>Bg87hxO%>D67Na$SB%ySZxgUvc-sfxg;vWoC5Wb-4%xi`@DV_ z6EP$x&8T39al+6lnAw-odVS!5L`Up7QTEIOk3_lob~#T=V+S5mK2U$Le}*-$Hn^`C z?ClB$yjRldK_gjAljqtlD|5;{#h^D_SjM_syB~$=rtp={keNe2@#?FT*#*m2I!t%8 zHqS1URGj6!`YEu7TGCg?8Zj_Obj_4 zSFm$Ce3sZLhL5LdbHOW$_wWnUE@wm^0cWLD-z@!5M>!mc7DUlToLIB0hdRpYa5yrG zHXI_sQy=Q62y+V5eWthc0pC%n_8r}S1x@!4FHW=M*tu+*4c`u*<%wyPB%{oci5H8N z&VB8u;)Ly<9cQA5?UHj;{Td3}ojOj?_H7{|fN42FM>a|>3;_wc&rJVt^UK??CM#^cKHo%Pfj?1M>zLMCfk=mDf7?)9B zzP?Kwx}mmF(`MpujcQ9hTx+>)i9e3IlqV0%Xsl!$mSt3!Z>)F@#hzrH zPMH^n<0zF;Y0|kOkvaA7>x?>wUkOg~5=;K5Cy^P|hDU48lL7svpDiWWNS!(Ln><9K z5!6(L`9@H(KI+ft^k{VYGh**(mfD$qIF+H;eC@Ojp~79zsXM|i7A>tmOWJSxJoSaF zo%XHRQK|-wE-Q|yFIxe8-J0(q2gcd&|4t4gq>+2QtH9_BX`^l-qIvL8NLGX3jvtlryPjclLXZAFbrzY@q zYC5^Pt2EGXN9B;Lpcy-Lt!QRU~|4ZpXDM@m#5b=lgJPtwb(ZgG8gwj;@!)R%ua@i{U2e88XEZU$ zlZ%H9<^F#9qEXsp-H=4dU&qxgUa+cndTdq7E3qy|TSd)`oy041i(RF6mtkknOWgP@ z7yr?J@<%ImS)^azupumqpNDu}OLaNh3TvhZt?Hc~Tt8Uaxsz_J=qvHD6Iqv?y>@-U zB0FO8*3r6!3sSoy)g>l=sJB*bLALmLU^A0vTogx8I$&q@8A0iLTt)NM%O;0mTDns=Id5`dzCwcBZILu}ua?iuoqi^vFuw!6S{(N2)rmU~)R;7nxX7 z-qQ?ykQc?r_yp=Pb5x~!VlI6dxXwK(VFpKz`A)H9XISkpIi2#0Ol9x4 zDfDOzH6QbW!_PEqA2+PVO;LI@gby*_g%qlajoJH$XD6EA7^6#SHZz>d!Rd~Q!uH#Y z1Df@Q`rsX3#n<2$B-pzdYz3X$Rq5YDAFHHA7JdJmx^NGzT+96fLrL$KP$3R4($z_# zD<=uR^YwFf2I3he8=Z1gy9UbxHC`>*Z>f};wQY%2>#tc@I#r&IPfryqLp5q8ZvfK< zhQpTHs*U2l8WS9y3Qu*CYspVZr8H1asCBEW4LX&bu`}o=m&>6lb!2s4-;PRe>k3V> zbgDdYXF!V7b>-Eh_V(~KO;|ZqtlU+q7PaGGG3=Bsa#pJrEB(F6uOO$W^W?OVn!(!< z;>@x~hP*94KCN~iQ@7gQU?+X_r5c!~2YUx{kD=6ReN3Hd&mE{#tK}W^vm5h>l2>g1 zP+$1z(HswG>eP_RnFR>cuX*O%sss8QdD;t>js<$i$CD;Kd(p(>DoV5GyQ8;+C1R@$ zw+KDzM@V-WMg>#WQPar-gEV&*v33Zp<1VkLlw%dO9_bO1SYuVC~r;3Fc zEhrEthxG~ZB~w}r(KbtaQ>EleESR=A9l4xeQ1&Y-M8T#6!xlv zU!~scc6YDCGKZ{u!Zmd=%#eVFgWlnCYcnzylGQm{zDU0aN_$G>-qH^8v1wf{{Zq#J za%I%(2zW(Lf052qgQEVu7rnl#^b@;cbs*>}_s~IWn3^`_WoU*}c%h8PjEsd`5;#H! zxr*4zZmt2BwXp%VG)`kySMe^D@!FiI`kICM!y;CfBgkd3L|nrZ4TNxHG$-7Ke0t1L zza#M4q5fEr=ET#+^ZL3=)W*UD>fOA*`5eE(-pgnb?{<#l$g`al{k-IKSgO)WUjMw6 z-b9Jzyp?KCcE|IcujILAFx)tQ#`r>^asN-|s0AAOWu@37D1meA=GEo%k`=|{xaZTHbvHq0geo`sE5 zo3*Nu_)u?twoco^Ej~FY&@alOA28Re)Y{@FD~(t=6`jg0#dWYSq0<5~bx$WOsmrXT ziNuHPvza-Sne?X*m6Dfy`bJ-;OajSTz{O#ILfDqQ)QHqKxbUG?EXv}q**F!1^7oW{ zzuRb3e$B;Ue-_KXvsBwfhmLxG&AXXg50SO-kv4`BCs{fbpW{?a+ula&J~2a&VcjlQ zr}`7a>d8xn%nP|1YwZk^jb%Pg6;I|Ws9pNd1)eM6E-hDe+PyVpg7WZmstzCJa+T~a zwNk(5{%+sM$$FH9l~YmJ#@)eSf6z;Ip6+gZM-5GFxs4v4PSwj2b!PRSuyQI2pH+S2m8*`d z+0i*T)92M8R7b2Tk%fPjg^d>yxp)>>ryg+VLWiL2v7 zOAvnW+Lv!wTKl)eu*~Gn;sk0cFW{E)0`5i5el}d8+51^qAn&MD%e8&`&AEUziA$or zd|TS3_x))~j0(}qP5)$#C#@)&z90)jgpqe*y(K39#t{n;-xAYGwPl>Sfv4F^^!K>d z>Yqsx3%d7FhL993q~x|ap6fR})MX+^H>WgEb<8laRO#pE;0=5Bt*nuQS~&{Vh0@TCj?3B5S2nti`v>GLhA8#gp^2BF;hD zVJ(ldEA_WzCR#FBDRp<1s2+wI9Q!n{nRNhu@DTgu<6>C~z<+7CZ$ z&Ej%&!sKen&Skga^gO*{6&C4j3$Pg*)q*RKUuyKln%cgBfDE5~6>LZA^@T6D-HKd& z;b9`JN$m?yDSxXbQLDms%unkDPPZjLDUbejF_ATO4$=Ai(oKbQrkk8?j5|&wk1Zwr zK!<-SsNW(fLo6yPlG;aUrgA+-qP%`-r;)T9@P)=uq1NKv71zpS%bWPwB)`9Pmw2w0Sf3=t=dk_5sdMm#et!wOEvxhBK82Aq%vz|#wcr&Yy_K6QwGDj({85~s zJL<@cR;HC`xRoi4a}o_``q@G@(^ckx>FBW!wnh(C^eAETe?G;^f3Bx!ow5gx73>$kWo=pCRl zfc?YaB>~nN)|buJ?U^+8XwANzymPBCumywO6E_bVYOnPidNLFeterhW%5#{Dk#w>3 z9Of$N@9$0JJ}9t4S5c5ZsMd%(Gw0$hQmraSb9%0l@K=e|@966MJ!EmH6Y?W$8d9mi%!Hnhi=v+iWRriU5Khrm*n?J=y1K~7OIN0K(Gg0MF+&xBnR;s<-8gFNvN*%6FrDvk0 zINl-OpoYhmW#{pYEtjoR?K!BHuYm38rO!z;Ty@6N>u2p$ulu)F8H5jdqmOSLRXbdr zN>63~jfN}qEauFBayUAbopMdN)cjr%g#Yl&l4c9&9ruOUon&T)UVAxQ;raCDUZqm5W8Stsb()FZ2A z?q3_6gz>10m}OpCd8tNsLt3^%#L#KYa-E-@HPedPKS0%{i?odTySMJa*iz{4ve=f| zQ=Ym&8#z5mT1%HXQYVa@sl{??=Q4jU9J6udrd7FwPaQwt;K-h9{OEe41$*lFK{mhS z`Nof1P3rj3)igJLbPeP=OuPHqKI-Ju@xyiCS6_~{s0X%gYqbZqZgY6%>;bAbPY-O} z)>;qP)nxPlRnu$_P!0Kd0CgmK;P{KoKN8F z$P*H%vmE~lkAp0J=gS{}@p&&;srIsE1uj?BcS~tc=2XuSDNfyL{mwz+3o%Yk|DH(x z=u%7CR#cdo>6^D^5)W5+;lot~>Jz-mo5SY(yV)P*9*+D!4i-ATAO59ZHF)|EZP?4? zXz5@2Ss82{F5eavOq;i)q-j|+bS0@Ed>rK^&SbL7%J6k35^qJZM6az6sxR)?SL`l# zHCU^@%!-Giw^mODjtEcImQDJ}SZ%PRztEKS0C>1lqb+|-PX;!dTFjlQPov%I0NKBW z`WtMsW##l%8nJb%JALP15Om|KRJG*w{-NimhaEN2GK6?C6fC|@g=gsZO$i>Ljn-(H zxqLO+jGZda(LX9SKRhId*c?9$mS=^UYMBOn6(`v{)vx39@b`iNY@5vuE9*EfT?}6} zjyUHHX}`B(MZ0ki235KYCiN}isfYAY=kfAYz#;_dUY_fZ<(dC&&MVUMbMxNH&Yk2Y z?EAU7NwViCyG}EHWNOx!6%AO z@CwugPMa2nrzU8W=cgRhtb@VO$>m6Oq?2R>i#1N`nH%S1cQ_sGBpFUoQ>2M{NIosZ=TK-Wmd`LdRWH?+ zGPC(TmA+D6FBzu7EscFnMT};Ek(I|V`3!d*GdVJ>sn6U{r8O4gq(@aeqha@QTc#!0 zK_F+IN5+%aFujwRhAmw{28%u{Q0Vth-Y4)NG}X?;e8S?3>=ZL1Vq?qtHi(_u;j_d} zF?^yCBqJ;KZ4kQ@^9$6E%ov#FUCiZh3Dg}< z3+9$GW{;_8g2~{tVZMnqBR4i?vg2|FL|Pbhsj<&(fP)aethB? zxhW;}27A6dqN_5nFO|5eAn*@cq2w8pcqbZ4w| zq_@=Z>~Nu*upAX+zQnW&q8vsA=hzI6BBueZLVXEQ>MBi-&16=?^2N?GHmASRPbXZJ zRIP^Tu2$_rnOgOg?u?bLuT_Ujpbm20nKS7wG4G(z^D+`0+2=&rlY(3Ga-!UPyPQYl z*t{&|166P|KC`E{?ET`NmKTYxyixW{c@yR4+vV!ZE9C?AU3(r_P8PTD1}wVYrv8FQ z|9~x{j2VVMwnz5j*rp=b>l=^y-I2&?82;9obLZ<>slU=kCOjW6J&Rg-9G!Ps3A%7n z^;#C5g{{mEm!qr%!^P7Pb1?Ts@dc|8bEBQDGY`&6T~O<{iB5Iom@5U6?Xcb^$&w44 zl97xu`^DZS76-bho=@0$^?f*Xo39%tqVbf*0+-au_Ru>nWf=KKhd#(nEnzAcZ_fSo zdbBg#Lk;zp;f3v!P(RmhHb=XQ-89qDu{DR@X7X@x^E>OYYoMNXkZ4r&D!UKn4-5{`?~jANfm+gE&FsCbJch}?oTqVC>PnPX zKv<_bnwTpEGRLgW=9FCEl#EoAI%X{nftqfQ*+Taat=qcbn_j}zuCR>IT8M5|qfzG5 zr2biQRw1LDS2nh@J?gw>fAyuo=j&#CSj z>gn;XCUgtJbhia|q0AQeN_WOe*KdKtB~UY+KA2m*rZiC6>o?!&v1BqhZJ2Lj%~(hu zOD3mNevyeamX2Y#xES!d}bF%ic2SHKt_YCY03c?74cLF+urXnwo`VF)aF$8Z3F&QIQ5qdy^Ur zi`3O%tgP0cl+C9>!y`}?`<=6Z%rIC#ryBfpXWE&J3LbP+FsDj~xPj*u5E@1NICHwA zgn4$Mq!z3RDa`1U?u?c8=pi;CIa~tu274SF!!Onxt8TrB^yW6IdDtGKi(?i^|B6aW zn#gGwK58>ulBnCyQd_n?c@5Kt!wxhzfjd9+pjS2D1dbo^(z-r$&9r~$;m^VcIda~y zoVtZ__Se$R=y0sVYCAjr`>$Lqq`5276&P?K1%7Rwv{nC#uAw30x>-6B+1#8KCGO7g>)tLe zEjuCo;jjz%TezyR@nSO+2~N)`LA)+U2gf$@UeRVqzmhZ?hx5t#-X>gsYJmK8!CoOpL%4N8lCKug>WQfpphu0knvDz_39C zZl4S>eE@_D;b-W1%h-*(h<`qZ8^`JQ>2#MU4>jEpw)09(-qie+`6Vg%D|ZISrg$D` zpat>HZ9zO#?FhFn6s~2ZVZD=6#YSmdrz6gqP@EQ3gvD-y!Xz}ak$z@dB#%zoNYnKz zy=39unY3x=tb_*DISq*9soBxeHcy7|d1_%?t!+)hP=NY^wmj5Y71T5C&i0=D7guwVL`ctU4pq@udYB@_0T1pO2 zF)Q;)WVzqz;n^m0(h#WqHS`;`K$)CU^Q=;yH>G}eNAXfRPy^2E#{bKdF8*#*`j3*W z4EBrUY_=?({t^vXCx_nT?#ix0T=4;WAyaWEePCoX5A3I$1^x3 zK0vK6X2?^r5U?U3qBdM3oWmeC%T%C6TV7Tq&VUvO%JvKkc2uGbN3 zlh#&vD?%IOI;$~tITbsCaX0eK1#OV4L4DcvI%2J+?|<0JY-q&ulueJDYgWk`RI%zD zSx%-z%-EKC?4_b_)KcB9<<6?x;l>pOYKNIr_1x}U@fz4V1FeBCkp^dpwQQg@hW zPf@3?!UrMut)?AabuImpg**l~(!XgddgefqyPH>zF8FyldO9a{+n>opcFnHQJhM=2 z;}^b+PH4ET?r&YgD&t(7R-RF>mGRQjK3|U&;@SNzTfVWfb4#UMrOW*`=IKNCh$U>7 z%fo3^`Vot_thC8JV)15(9;@;S!klS_Jv`fF&R#*pO3kxMtxo=E zCBA|%r33XLV@J@B$hF|2Jm~WDt%|q>|smV+a=n;u3|1(JJ`BR?8kg3 z^C!cpdl`Sq$0nNU;jB90Z(bY0pTc2%IP%fsoW@XtH4j!iY5AjP42B?j&^Kr zy&bk_j_5tE==kVrskcHFq;@yr^7b{t71C+WrQDnp%Vi4>!}`|6XQ3Q%uh8Psh@r{I z>o(Pb#222J&7-}lzk@wMlMdM%|KA$zj%bePS4JPP;n}{ekLku%6do7M5&LPh z9PTc5mujUVKK9F#Qag3Nr4`YA!a3sa4$n|1Bivd0_187Sk>8Ck7__w;u4<_*?8lNW zsnf8l!iK>^D)r0UEj+>(wV^4tY>x0(YSrthr~T7qOV2`FFh}gCgsFOYM5k1PNx$$G zG`^`7jVB~?1P|8`{DRVgYhk#zv?$9G(rM1s@to~%$ktXm z!Y`iFgq_G!4fLySbi1UbO=G5%PJ`%{@mPb}-znQ#?G#7hET7YeOYzy%Vx`CbvBegi ziod#{D`|Xmy zYieO&;DZ&-7N;xAE8(x)0`)cX12t_aJ2r=llY*iy4j{nN#XnO8$Y>1EN0 zFMp$pb*wK>Y(hl(U^RcQkd&6S56_U&E03ef3*l2&?5Bh3c8Hnf_>v)JB!eTGUWw|Y z_USRpF(FGpdSER{95FZX$yeKSm^B?|h-gW{;sxq3$B@1z$MoQt?#Yp52i<@bS<*v$ ze1n$s7#Dj=xtOl>E4B7UbGg&wvN~gqsoTZ^3*>b2Mf3yBmR`CE5wp6vzK9UV5%6NJ zpp~6qLd4dz$n4Bm+;5Jb^sDOR9AmL(s9#?$sb@}o%U$TZm^Jhgh3t`bAsoc;fel)L z^Bror)fMMUW9;mVF&58`OMcv%ozA(|QD>lPj$Wi>DTQuED(7n%=V3Uh${XbYnE}L=rfHZb=B*vXrZu z7;GY?uHF&x0&N&Fp6`P}e!ud#PL}O|>4F2s9Du*!hWa`#fg|7LNF}lKvk|J3jv@L7 z_`;A@2IK{es4`oOn8<^r?lQhbR_@1b*ri&TelA=z`g-C-&J@ED`TU(GZ$p0brb&8s zqBRiBKJX;XJ6X{+)1jggzVnwvNpyYT&;UNl7y;y6uU-AA*Or^T%dkj8bNC5apse! z*4S30Z(R3v#c`UjRu7-nrw9CGI`_NEs?!nX3M--Ak6@Nr)jx zK$f#jrsQeDIO1=_Cm7(2(nCwbrw`FxDESXS;NE*Ubguz^y>;N|=pT7S7DxxgYFX@BVO7ss5-X}0+_w8bFljh*~8w1?BtP9=I8 zB2KG~NlZ>g{J(~_IR@$oV`A2=oYOVb=RGW=_D!L=fWC69)18*hvkN8Lr1i2Ajym4b zow3rMcEm2La%2e9KTJPq!(^VHM-P+-0`gZ3LYsK5pGU{b*k;K!tN4?s>&bz$H~!h~ zwCOX(u+GLHmb>8A=yb;w;rB_x87>?jImL)E?&Rxdc+MmdvrfdbMJ%{dITEjTTeFEi zY?ALxGFBxCm}S$A<&HHKwK`I5-xkzD!7@+Q>a*>%4+5K4AtaD z(q_3f)o*yglFAWxy_J9mp1x84MD%#FR!6FfbDm1a8=hn6yuTxyN!BJTmC#mBatI9Yf__UM;4!T@<9R8%|M>X5{cbQAgo7q3o@YqFP&g z_ZOjY@kvt6&8bDVfF_iD`l;6f_cD*;yMsOS^ParS7p2QkU{0>&+J2Xpd6wjwk;D7g zz&IM`=+=c9a)Xb<`6N33uQy;YM9N(JGTPvcKxNqyvlJeICIC1#m=ec)WKjU zIp>kL1V0#gX9@SWziwSImQHY{ zk;)=pKY@?Kc?DvM*97IAyFzD+95o!1(Gr`VQ`3pnU6pH!WE2_T&pPI)Cu<@RZn0W$ z3u;5dF0+=1n^VgPWEJPRAaCcpzrS|JTg1$%<0QQ)Z%koXPmsmVspmLK2ye{J(Ir_E zm}cbgF6byaM9Dh^WWBr%FQ5l@+ zGv7cx*I8+;<^FH<_to?hGP>@gSNy_4_p&VK9FJR5oQ=JDo4#t0X7a95wYGL}urj!R zxWV58#dsHD?Ch$FrGWu*Sgw|Og4(`f4}I0P!c(bz=S12bxPG&!ZyNkrOZK5M2hO;Xrq!07+AM2J zPGMOrM_lc4(HGDM!>hIYcJ=!8k#@6OF6uMT+BJeXB3}Xx`#)XRl7h3W?m6YvQaQpt zm4D?^r0YQF9ZRku?R^ScoDAc_Iig<~etfSDzm`cpdM&;`UC|t|w^fIB&_@>9{Pblx zjO7>{p-hgT-L-2fz8hQGEcvCh5^MgsD5MGLH06rD?6Otv#Z7qa9pYK%qB%70NXA0b z=TV%4mOM8p>NC`66Ivwaw4M2GQuG$I*L&;M?4zH&l)Kgu%Y2q&A4{5VaV1<@NBfEt ztcso9yeOyfxE@p4dar3gG{50^3;q0rHncnU>1|H4&32A6S`yNT<0x|by3p5hUFa;c zoz_d}=hz)=jfhVjopqAo?UPh79BHp=rQ1`hkU@~;DbkqO{vmNSZ%p)~si&X@ABP-G zxTMi>oXWFc3G4L27E@#c{TQx2<0b3em8p0~1V_p%+A&rf_A*Yg)-?IW^^cLKT54}) zjHHO3wX<$ObW2D_>s!s(AQKAx;IakP(vQaMXy%{xR}2 zOZ}~kkyP=st`TTRd`nPA`y1Q)zRCJ|pkLnj>&}txl9t9soVARKto>#_G5zD=a!buk zjfZrRvs^!OifjqzXn8ZHsQ3_czQNSssw2xu-7Bj{07t^hS{Vl(<}wnpHkWxt^^b)s zEp<0D7Ba=ox*aRG*p`5fwl8SsSjhTqy;ss$<&I?AS{Vm1#xe%7%w>5*^!NXzmU^4% z|5S0acDcF4wFGmtyJmY^_8eKiV(`irRqIHz#S*g_{Y6}*qZ?k`Mm$p2;Op7913L*V zWS+ANpAu-VhWpSPnP|z61&$!7+ELskJ?3Y7k(aS-bXt(F;niP?9FDLTN14jF(W5Pb zHvIbW$lwUMEy~cRSJUkgv*FR`mBJBpV|#l%%SX;PhzoA@j%aih1@&(`_1ExPGa-Q^ z;05iJE$fG_Ud`E+vsi%|XH1XUOMO;fm45A*m}F?;m`oE#L8m$mnkxk;UHhWTR5$}= z*grj4a)DFQKnM`yzkrL+N(?fqK0&m}cU*%qRII$bdwr?m1C*Bcar)`z{Xu?!n(!o*DVt+3znJ`dVD^oGYnmPBRbpom5h>iKv&-oJP(znUigtCOs1` zHP0&LX`%idNE9!125Q9kv*-t8X4=E8TZlwQ);Ur3q_9?pB+AXV%SB>IXT~~2$_MIg zMzgtZZQI#f*-`4vcWax;>l}BizGUmxwVSsW*KNIM^Y*oy*A!P@w0Yfz^U02H4}-Kd zQ^>N;$|}rNNU6)w`iu?av_CjFG(bN($I@{B@Cq6jb?Ps~3pq{9xuG#q#&}7`Wu54x z6!vdhPD8`;UyvtCJ}!qU3~xuP=QgMV!$caNbt8^xyeZ{x^|?L$^>0FpvvQ7vvTl2c z7c7LexoV)u+F-y=*7e4eX-!Kapf*Q@mE?NB3z5vDvUqbGA+qjCj2A3K^*Lf(WZmqb z{m#P+9-0>_Ye$d}Dy4Qu#B*!(loWgVn-{5}@efcU zl4V0NO7U050tM<}bIGb+UM#4RWL>-PKKJ}4n#O`&d)k?thApyFbRQ>|9W$*pl2w_* zXNixGXBnb@*%Zaohb={T)4sc$^b8Q+ksCSAiwXuWoGvpMpcO_0qZ z*%ZAAayC<8euvjFZarp5cp9jE#-n(%$#ZxH>Jz%H>O9kAy~JFe!^OKqpSc^vjV83p zJf8DsxpG_C?N!(sj;F8x^cK75yJSiArcI{8kUAi1CX@7ivN;qqO4W{Ajd@c#LY0-KP zciH8&3^ThkvpcVSFR<+8>#DE2?l)C+YwoS;?pevwk*&uOZW|vnNZ8in=pflxMnaZk zS;vw(7@r04UfesV_g?Ek4knHkrn6YrT9*>8^idG)<0UG#AYW3OPRQpcv*7s8gSa0w z=%;tRuFL4%hIHQq!CvCHN7t|{FivN_uDvKFTJftO+}H7w8|RC?;zy{BJ~>%s#?ScA z*UeADOnl0h2H6YaJ(%fU8bl_#OKl$`V}hAZdBP{iYF$mhIO7TM_F+LU6jbKN+WMPw!VJr~P~N z)A#6M*}>t>eLQ>|@AP>v`Tb=#83;E8{m;7@8?f(tl4YRr@EAq!PV_l@=_l3h)_k

g?IEb+%y|v90oFp{{O@tt){=E%0KkxP;JkOMh!N z>2FOZJ$*IQL6`Kmp6!r^~ctN83P44NIo_O3b1H- zGl~dww)8vifB#3v%5C~P0YT!i{_egM>}>iwQP@&md|?tXd2u;)3x@QHjF~??)1%5%RqS*d>!9M2L>=_4M@P%tHRS$SBJwCuT`=kH|u4DV80E_M1 z?2`grxAYT)rCrh|k?Ew;>)^CY`cixykc+=O&e2hjd-im!i6xFP$Bp_Mfk- z{iodvMQ-zJtl!(;$@qXTebu-=&5$Fshp#Yt)ZHAAcvs!LDofkEYrW#KV;2s+a$@GT z9OPctpnQLmH(dSxriI>4&=kG-H`ii=NfI*y7fJ}~HE4MK?VS^BVdhJ!^u*WrtxN;P zYj#z$F1x5~!-acQzM@To8*gz_8Q5-Fh;zHCE$$Sxu26=(k}d9luA42W?Zr|KZr;R? z56HH!maYWyTv&AkGQ(|XoFQ&<1Ty05<~3PdWy>!6N6dMMNRA!w`CnfQ_FYquTxxax z*T8Ne){s0o|Eqb_&CiLg*)bsFd;yB0DMoo?> z&z}zBm+kN9O49cy9r!w=Cmz#C?>;?=^h9S%|MTA+CMWkqd^VV<)KnqK2R&~oUB$v zgitNGE^mFtu9s^ct&S%Qb<6F;@c=C*Yu)_mph3BHJGw;ry1Cm?~HN%Ohx7ddLb_?TeUBF32M^2$*7J$$cj{*v7C;SXOK zQQFZ_-P;=uMx!3B4b!fudB4T)5gEi{XJ&W3$WF9~{SS{WUNZ{?d~aA3veOc@jJ$cy z5Psja(4K$Y{1vdrD!s`;$EQdBwTxs%h3i5HK)wz6Rb*nlqCC7p=yerJz+aGG1s`OO zJovU$_DE}+V@^N?((gc#7%-^-^;!APOg@p@#iIo-Bcc<`6AVfaIIuXRfSVeD+mu_dp69cEZoX!BB*QtML17 zfOt-I^P}MP8`O}8{RiFgilPB|wpD>hlyt5tUQxur<&r88E2NYinlB_96?yV{~FtA&QeI`GKlME=DN8S7bkbQSV@88xGdJazA z;e-9NJ$fRlD@gDwL>(Z|^X6Fgx%Rvs(e{y(e&?N&e8;d9uik{;JB=ZA|0Fc>n{9AU zuPlyUtMB(lZyeFW%CNuJ^R3A8blw#kg99tRV+^tQa?&Droy{9^3iQ_>^oT7X5kXCsy|TfpyDrJnXjRAoIEg?927Z-k!TmY=#=#Ii!Rj)#bEQtew;%H%9(#H$?!y>uIU* zGt_0z2)`Hj*3It&y%+Zm`zOpasWu*QTp`G_63FukQzK4>+t9cmV{F06h!gR3^P7Fs zZQJf9)ehb7I;MG5W!4dQx|#^&zo1LRmPy^HPFGU{pUb*L_&k%(8Iw*|qddR5`5YKj zmS}fpFVDe7!znLCaw$l%8UcBgsMs+_ZUWK}K8YO_hr0QCkb2dvJ`Ij5bNQDyB!mED z=OwNH%f(k45+?qF{Mu0i$%cd=#QNV2dMwbksMQ!a2BtEQo~~nf;#_bQ1E;8Ug)(fO z#J~Yf&(XsOw9}5?R4L`nK<=+nLeN2i2V|2gr24B)e%I5|j+#mOs}w0U^cO+zrD8b3 z?So4}!_^4L)l%&vM{WYrsH>!XC=PW~VJ}PdXr2k+Ue*mMtt3@Krg#Yixq|SVh+oFG0428Ai2~kEH|)Qh&3cn!g9@{ZvJm?>v(kL%1B<} z?p4EK^+t~_TbO;SKbB$;d)2Du=Y99k{P}OBV>YY(ky{Y6ueWh8Cj3{F+;` zDKg+bBT$HK8MqmKmgbZUS$ZK}z5yI|G7g53(}j5CR5#zNjd6ju2IFlltJ`F;5;`%> zcl%27mfdz0)?HQXyGSOi-Vat@Clk|BE1hUC;{$F#kp!%?6@M=nn*ETC?^ZS2&j62$ z@ps{2n3^3g{GRcuo5$LDHrM|Xl#!AQR6p3GAeFA)QrdP35{h2U9cvjPX8U136ZbW6 z+0!3WN^Q=RS86frBL=N7{R>bRJCtvo7B5{$?Ju=jUcxp_3Bjh9(^9c)(hSrnl_ESp zIRGOYI~Yf90YEM7_|>i(#7^S+(7Uu93WRON0^6M>o+bV)%)6`X2n;3MXW zV%Wn$5}fAz>gIbuzr{WsPPFvmVayeR94mo59}v_qmfx1`#vrUpKjb&2pX z?3J`xjq?0xVFRjt$X{ED?0mW)e$!$gVr;xn$OcrA9IA0 zMkhYWQ2`+A@9Tzt(Xof7Y)Q;LNk%CQuj&q!jY>DM@72BN?8*8U$F9zlicXmQX|4Pf z@(LfjQmk`K&)FOehUURcb~uYz*#2(KcI%YZm+M0cOpXV~<^aZ>FHi}iuLsYSCbi$c zNBzHLI_A_i8c*dpUGuTw4it$aCXUPw!@s$!BexH08m-*-fYTKy5>AFoCr6|K<~i2Q zi`rb5d`#LuJ~`|Pjk&4hq++<=q*?BGx~g*q$-PlZDC~Y*JDo&jF2tszA{RXQgeUO$7DmCgg5|@l8lZ#{@NUu) zeVOn^Yfc6zL3loO^9k*W^zMupsN~Zu5|W8YUV)zPvG!#x*D?Ek!5@?}V_-inot>Oe z{-+E8D&Od2o12ig)!MFc68<;G@i$D&$GgJsyCn`{^1q@@?l!Xb4tlTMcbTQEE{Qu4 zO(f>->kh8%g2&CLRTr#Dh2$Vl`!fVd0(bQc@`6H@kLJk2@~!?g;?6T}ujun_)1%su_NFkN9a_JlDFpq&??}lVP7W z2`QP7@14fPX1ruphKNzGwB1WwYF@ruogUc7KX|3w7mMP5^P6ZHc}+ob_u>lm)-$kM zhz&N0*5{!p{JyJs)Xfjb;TsmjCHNYgjC#YG4ycv`L!bgpcA!WqFmVSJ7y>zPx&lSQ zDX0RZsYhP7PS8Pyz`1w}US%*AHkkFvmDSq_$V8*v~?Xa8#g4Y^{Mou8`GQ zGfuI!YEFiFrPdlb*3G+Qpkg;$JFbq8YTBhY*O|Eu1`5z_GyE*QN74_eJ+eRw9CpIb z!okpp?Gt|A4G_a&Co28*7b%n1bH`P9wZv>~3BMHrtz zfcwXu3wn+Xkv(LNm8mXcI(@?rs zw;>(Dxpg@_eAIWii&P*n^A|$*xOz~z(CXOqHy$E{0HoQFU!~o! z@Ug0uy9g!VFUYTgH&jX7MG&IL--p0vWxu{tQ8H1>>-}X1Uk*~x;q(Z~Yej|qEunn- zbHF>c?+ng{eOf%JkM|0v4%i+@29jLFGO8lse+yJ! zr9;7cgR^6^ZE+VN1fc$g{3=zERITbFgc9%<lKv}n;1p}u zg}V0X53XHb3=(oI-$FWT*T8P6&)J@z)UM`HH;+SOk29Z&!m8uD=2{2y3$v$|5cIj6 zmWrvl(xTs~aVkXszw2qK@C#KGc_!mjij+G04$ynKJd@%&^Ti<3nu2uJnStFxtf56x zXPQUd{QKVDd>7>o>iZ*O{3y8@k@Ac#q4UaA%}?k-@ABT+a7bNzPqMSqxfHf_GI(=; zXV41Me+f}$7(({zNr#X?2{sQyNGKLZNF2);LIMOhh9M*r3rC|;3PVVMdd_w82ee7Q zQXa;ZF4Nt1=hx8vJgo3;Ev>ur{ppF&V)k`Cc3pSz$*{gtQ;iPY+9lQ3h<5U=`eb_* z=!N+wp_f~wNgcg#a%i&S@J0y0-W&3(m^rC972XIX;4jFpf;Xxu32y}9`Opa*&|_Od zjB;iOmI=u~rr_R+McyN*Sx5)3t60{dWiksvoap+qFm`j?(J?Z)aX+3+^s7w%H<2T$ zEftL$SdKg5sAkku(#vTcb+ZYwuN}~OA%?QDjh3reWvu0RSLcEZoX z!B8bx?g|j8iG_AspRM|y(5h*3)&~_6_X>}@<(Ucb{^M2iDRB7}7Xj4vx*<>c+j20% zx(4OmttR~zdOJZI22A$)fJ@zcE)3UB1D7p?>mwPOL<3izX%Il;G|13S1C5?YgUF?B zz8T%wt=-49twaaEVks1$#U=uCJ(N2KQsA%?exBT&1H^Nxn`OBL!~T3_z^Co$ML9Qy z)Q81sB6oroF-Umbq7Y$|E{MZD{%zMn0pA-Ih43{hG`Zz#p~W88poRJ6p7x$rDPJUa ze!PsL2ti)I+@nfG*2D%XjPB&;mwOC;hVDriZS$q944`+rVOzLR!d~sSS&0HP-3&h$ zR8(FaNP)vn_*pm@N+q3ifJiNVKeW+J=gjUHVks{s4}Y2nB)XtWM5v_ZI8^c8tEqv{ zWnChC4CUAh!tc8pCHg&V^^3dmS81bwpMs>dNw-npGXn5el0J!-$W3aI_UTX2p8aDc ziHM!3&jGbp--H3@U6VvO2gTz|kn9=AU`XG_1q5cy6N2Xk58X2FogJber6> zrkyI83o-9)(c+9Ym=DbnjN?rt14CTIGO<8nTNQ62J@5+kuf(A-C0H$5Gl@4Xo^|sj zGEB3sbk3Ao?2d=mCZdV}6D`lcOP5t=mW*P&n&*o_nl%N< zy;03`4eS~SGCkj;tA_Rs3O`d93eaK`fw>+k2n?jaVJG}7o@wZk^mqZ{In~X(L7S~R zeVT_!G7M&$xD;C#s8A*-61mDP2FQWa6(|x;hK5Ot0hnm{q=dSDl%flh{k?-jJFy+t zS)c%!Hp9;%PokNsvp@*lwDk8MgYRf-6?|ItJs{{>wlMog+fO*Aw$@VTr@ginw^_GZaM zL!+cVz8CacC}bewWHD3*QY;H`UK#9%eq2dW>k4Iv%xyIMPE&#Qn|1RiLDJ2`TRbvS z&NKTiG}nYC0@*L<60u;pCNwqhxvWcsPY}OY6B;Eo@i+9uMs8M(o7Hf0qgf3fsHgg+ zyLFYD0ePlX^KNKvU*3O`WlZ`-et)O`Bq+AjlIC^GTL!*v6Ul+ifa#xkmf%KP>LaCXghSjnD1OVKwC56H*C==^BIo6*5J=ePVUqR#Ld!v)X zzIj-KgCJiF60IpnUPCGfGO$~SHIzt#AkCw0{2(`wI5S=!3(ic{GGWQ^a>gH!q_JeM_`(l(`K{{nOuv>^7FT3VJ>*~<`(W!6u5RBED+3vm=Wmk|+*$ph6 z`VOBX?0DHVkGlC|&@?BF3&U=~Xn3y7@Frem4(qPBOSFBGBVP2G6xoVV0%_K9_Y#N2i~JSsLZ} z)y+46N3GLB(^2m;H9awBwP5z@NCGm^9eRM~nyCegNDDkJ#@{=%N){|4Ms)gF=#gk{ zJ*@84hwcP>ZJwCp&9!oyH4@!NGklP%hJt9jV*ck$9&@Su@0g0GAsWxM0 z2w=cDZ0!Jva5n5v*ck%2)aw_6RhCW%Cp|MT^;u_KDac0Ia0HOos2a7I43KoASs@KA zl2Kc6sGASK$gpx)KcI(=%*gY;~2D_DV+;|u3~vV zu0bU60#B@bF(|gCAi3kJiIsufLTpgIII+?^>gK&Lv06UpmfaVl>8nu`NozafFB>>%fzxZPL7({d?|T#+Xz|SZNACO7n$iy zuvvZFFCdv0v1*?4W^9-hO)*_=oQ|}i?G#f{38UYv8C|O%xKl25?|%REpy$Nu(^U#{ zF3x7O$%Xab6gOoduM0c6J22XFH#F2?^Q6Dvxm|%CD(Q&=QK9bDwW|UUxIbAS67GiY zC)chD4E$H>W(XGA*`wD;p4xY**v91fPYFS4_g+QLCU54dA*2Z4cRelbP(Nu1DN^+Q z&s)78e%?vdAHMmJ2DtsR!}_Z^h?0}x)#0u?D1KPIL6<+?e7NmtZs^0~NOJJ!UOuIF zf7sg=-KSa5#I-nXb%mg#dw}xZO|ud5*yW1>!nJjC(%RC5z=pqUKS2||d@C&cvTpq4 zTa$iS6Xsujs$1u$j4#jbp;w$a!yEVeeOhR+GvDx%g+&aCTmy>E*26w;lLO1yp9tcb zI`2!23_9OCX$+b6WmpE!?{#x#H`&{^Z8JUp^IR>k^Py3r-GArX-}X6gbAJyfe15fV z{)SA{Sgo~czdGtsI#2TjC7#Fx3UH;(@U!%rNkF0|GJzC0?1Z0%!!vSWG6uWJL?%Ey zr@HxNJ$88d7 z9=+pRHf?9HO21I`j?8Cw*sMZ;X6+vz+v)sxMUG1Wut2LiMIERNh|m9EW~q@>Io<~ipOn=+az_(|A+KOd3&nvv% z!NRMkiL~rs@e$OvO1}JcbHA9+2faQ7jn4Z#qL)8DKb6SCo~T}%Y6Y6~fn?^sLa!IQ z=3#jhubsE$pvRiuN+`Sx#p7L|0N}JwiF!kD8fr^Wzd7OF!hx?X-=otWb|dD-;)@f= zc^0$ve+^Wjc;_zFaN;99PVxir|! zz8KVAs!BJGxGK3604vp~2w^vE%K=2`I8WYCNvV_O!+Q>q1fWax(aEVf60?9@3V?O~ ziINQ4M|1gGkp!R%^&94KUO)Q1fj+%)XE>lMdxs~517z%NiUz*4?h0<7-JzrjRx@HD zBMCqk@6bBE1>#Q86$1I1`=w|N?jZsN09WayWjeoUr=jKHS_l%@;O-b$OMo!Ssd#Xg zUbe9`^K14k0l+B7}n!_uh2sdy@Nq{zp^a{&?5b4_R?Gdt`NxA+%Me~ z5GW8xJK<&b@_oBd0C15GyOce|6=vjTmf2Y!B0mFidZe^}CW#&`7@J%Z0eq==Ziw46 zmjYm&e<~V~n@S`B=*G+ZvcpH{{yXLVtGBQ19a4%W%EaMjmz4N~S8kEUl(!9++;!j>W@)y;98; z>I#AP;)o7DS&}fhD-@&r9++rOu^PAL7IoSMynLxs?Id|R5OWK$VagaM*Sz}>ey6O? z?pq@JZ<9q_9)CAG#$Q@~fAb-22D-IQt1?}=uE_QFie{lc*+C--Kxs>$y|_yG`^-M2 z-4ak#z<}On;3D40w%;3JCr2`1Au{mHd#nte$}^~&ul7bg-(qgnoI>Ne(oq-H9(C^= z4bj^2<#L^9I$bx5ck9D)-{uOz7HbF9aDQ~aZ_iP=%MBC&q%$nlYj4nAt^GCjfk*<- z4SI;Z=T5K{GWBsBp=bcScvO&;+pa4_@{)i|?h1i?Wz@fWG_c2HKPBnHq zzfvZlHr=yjI9?;nNkL~C4rp57cv&2{xdjRU?(Uz_ofCTQwT=Azsomb*K}9jE#fz7d zyFkExoeu#Q1>@EnNdQX6kw)%h6Fqf7FO`vIy~_QkaHg2=+Y}MNn6mwwj9t2IOJhFR z*nt7&3rCf?V9wzMl>zZZ`eD3keCRHt1V;4KIWQ`z!tKYP1!g<^s&VTGC70p|AteMh z>#b)O;w`TFNCMCc^84`aeR_bz45@e*A)x~%@_ka*s#X1cA_3@5%h&5yV89kg34zVV z$?%M3Ma5}1k4K6Iz?Xf2`#`7TbCnvj!0c*9Q1TFeGMMF7pLW#1FuZcsDVsn3?o#q- zEr1cf*{F(3a488Fy=11g{P|XBk4Hd+RmV1)nqj7Y~i+eVnA7 zdz}A;gcdk$4u2MQ-pPW!1>`9Rt08i5Aq3zXv*+aEug{*zo!QKmwY9CA`DANtnVt73 z0B?;ny{=U!+_$BKP&e_#mh-=_#BxLi;hmLaEt3PrAVhptrPcm?@7?e>XM4YZS^WCt zhHcgS^-Vk}w)J_|EZ5-WZ(j@!F-;;lw&=XyMQT-8b=lN9pVt!tP-FTGa;(gJGx&-s z@*;>;AKZNk0jLrZCG(Q*m?y0`+md9YO##3*U9f zYx<{sTT9IPR3q2bB4sKvmnnGZ#T9}A^mZ)0B!5_$+e5AOJwXDaheSq&oFX395&&%4 z_eRA)JmsJyv=nfYBIXGap7|tnAj7;~?QUgy6wghztT)N_REU={W&= z5!}~^A_AN6bk4!YJOCZ0a|tal3zJNKa=lbdFv$#*z=%z%ALO-Mjk`iu-I@^CuspN@ zM)@)60!KYKGhH^w1C+q%iu=qY4|?-?V2c>oJ?a_OM4T`J}ibGMZTP$2-=8vROrc455c zmFz$PKuU-~Zx0^w^}b`XLuZEpDqui)C!F_o4+`8%q=dlc313=2*sD3ky1U*&DKksm z7vCT$Lx6Sr3b};UC6>Hl;8|)?U^UBA^sQ@M^`A(3aI3BHqM}I+GF|p0F47GBxW$eK z4}%t%&Ev)PR?${2=+DQ<1+*a7H81!iy+0r5w#k9zJA`I%zvnI!_3jU=6S@#S#`CVY z;}zqf@Tuu<-nF)z@l5^Vy~1id$NsJm#9e;coymKN0=(?R3il+T7*MOP(#t#jQElRQ zlv4yASvTJeJMovOZI&*0?N_H2Km7FO!}jo^wObge^dj^oJz`4L*5fCLEFa|XOcQ}- z7x)d-Q+Lj*$bmcdgbtW2SEJK6PRt(GpN-^Vfb85J(pi~30{ZUN99g+*O$mX`W-L85 zpZaF)H4(t+$>QUl6T&hak4QoQunl_Wc<(iuq73Xg3VVd20WduXF&Mes4?6DAr)Q)} zmg7Fnpao`E+t*nsJ^RrKCEqBs;~v+f28LTgQk09wOrQb=m!*iUQAAHx40Al zkIU6j{ZN_nFtdH}7I_f?jBf-o8Xw|oM@81WMc#n{=1cufHMtZ3mx-Q6GpVU!jj)p$ zw7_hO4tRApMRs|hN*IiKw+92tFkNcPo`I$U25w<)Yy;-bFeL;w+f+KH)$s}jk^zg0 zR7Ok32Yw1wQpYdlrj)>lmnyp&EqBcHwa^{`u9gLhM&)6NIJEN;rUNEhRM_3#rCuTx zGN5I*qX8X+DY`i`04iW`9g2E`JESf>cVIR~K6_N42c{d8wS=DgW}&Qci$@TjS=Qrm(xe84*EC6V zAB!Ug?KU~EyzIP;)|$M_@ubsq6zbCUaW1F6q)9& zlwNSr#u-!N?2$zTNO>K}I%}OBsXz}*A48(t-Isi;SI z#>arqI^W1NmDA%gYLY;v7xTC9CROSe{j^9mZK%n^R*4$r#T)R^(*s=0@t*n0o_&{ zL(|3nQHT5<;G!kbh{(B4x3ofz^AuW0c)C{Ic7KJg#t>=621gn zE~x_HVw^YT!6y8kbE}�nO%=_k{D~=&UFrA}bY-L-WYx6{S7ndl~`Sa(*0LD*S?K zk*AR#M9{nDot!!14Ht_T zEU-0}54SO(0tQ#w=Ny2dD33)fmU|UW;m;{Y4||Nx;3GBM?J*hw>axe^QsFn5$7rPJ zU3ri3_ho)P7C@`!7vbJ<*I3~n3-5H&mP9-0x-8q(X3_;-Ifx`+;4QUYXQSC6feIMV zJEL_qq{T5>$J*~5)knR7+ru>l;pnMA4@|fBeWc)u zts0*na5P!lE6@Ye8z)0I1)A77*z_G3V17wY;iyd&8aJ=6=A^*NABCVRYvLcJP0e@| zA|VELeA0tobLrion~VeV&=)(dlS>lx%AYs3|75d%BfK24m!sw2I9 znves_3uoio9oJSu2Ta!68RoOx8nXE~cSS$~=%rVO1A6nX9%ex9hosbF>gENRCh(=i zuDwRNkVz49$6jNk((%aD8Q?ZJ8CyBqDbL6h4VYq{DOuY+=S8QV9|55-}KKA(CLE0$5>QN1n}iyUAhd! z#_`1fS)thPpt4UR_%$+L4xq*1z#f!YD_02QOFT?lR`6#R-J^W~SQ*jzpW1$o(l2QF zasVw+9orA+`LD$H>)Kvob#%WvsUFy|FOM5S0N+`p36j|{u=1`D$X94cE(ylEwB-O= zb!lWu?#iMGfrr)2pM@c<&3$ZUiE%mqXgF)H;#+OiQ|Lyz&PkPvdH;E89Z5u{?~t{X zvBRu1zV2Z*Qfb-VPOJBnN5^+kZ91Lb=#FM#J$&g&Kd0k_d?$Ud{g)kA$2lcWn5hIw zX|udQN+m$LbX?ze4?*PQ>;!G8Snl7_*-Yk@{kUpg1Sjdrc0w+D+8>=#VgtJ9+mY== z)9FfC*`t%I!+{w!u)=LQ*l3x49G#gf=Du&|VuaBB#x9621_)&sFke+`GYmWc;>Dx7 zD&LiHg+RVQhdHf&&ht(#)-09`#2tw%MBbxQ)11tk$`WGRj-L4J2#IM;p(r(#dE&Zx zN!&;F4MGfLp*!Ow+BZP(n0LB%0lo^>fy2iWKXd zPO8nyo~y#6w%!>4EjXQ2#2O0lWHbEE>7*pZJ3U43msQ)$M-!g!teT&P&bjNtzk5cD zu2OYg_!k=J1FGTO&L_CqaxliyQ3=AMIF|xob3_ZTdj}3>@0t0f21Nw$#nR`v5xPQ8 zUN_$e27A0CD5i0WHb@TL>7x6+!3hm&k9lfqu+50I377YdPG}v`YF@ra59&l%bKtL+j=bwc8zICo~ku*Yq$bZE?AguVX?3gj{D;^LCgwbtOAGau1<(B|BmQ z?F#e??@@JhSj;HT-L0Ylqpfv9*(m}A05@sM;6mEsXSsE0BC+^ylrD8_@aG#a_b?r6 zERjlEh4ReaEsW>fKzuQ%#1MO!4v=J|b{R;DiFCMW2myR)<#=%H;&jW!ebnd60kl;7 z5O;uFDmMN-en4)!{s~uUs^*VL)%bB-tt45JvSTS4kak-YFgPFl)c(IB1}>LWfp7`K zU2z;&ATh`{L4?BN`1u|z;c>i$SnRpvmaOH0n!x$`I7s^%&X7t%cTHVsP@ZYEtLWB zQgwXSo_u@mt`q=^Ro7j2R|w=w?w1bfT`2$-=`M;H@q6n~A&@UQ@>^Cb^YXjW9MB;U z0Z^a~Iymnf!@Uz`eTQ4KqJgh%O93bGG#A-;!x_nd#U&{_tZ7ebbkM(Jvf-_*oD^8C zOS!!Z#Up(r0qAA;pN^D}6HSup7XTM#fQ(ExaHueSHo*+E<(kS`P(8#m3g ztDS}xxo=F!p@17xX~& zA5Z~<#r{!cCiP&ATp^HC?h?B7Ls^WhI_1Dk2mrR^lAxF_$<@lGDS*}nt&g;Tbmefl zKO#$*8{6Ehd@+1u;c(Af8splbG9X^0SA)zkp6%ocft->CyK{Z7pV=b$_1!=M&;?2e zY$@)=8en}a5%J9@EpoOKmjZVNnC(3Pk`_-q$}Qd%0{=Dog@O!f_m)sRF$xp_Tn|5+ zU-K3d-uO+IX4x&Qb`H^s2EH4>g$X_nMgk@p06U@i%XXh7LboIU4d3k=1ciM%2(Hi+ zt$$>%NOE7%mctiUs5k2d`EmfQ`n*1e=HXOs@InBvb!wkIpH9K@12#+~0qE*+P1)S& zMz96sFA4#`)~IgE4UQczPylfCWH9P?eoqJhwopjp!Ob+w-$7BrEs6##mAJmza`?hx zsYBx~#}xwky1OGzi`>)@tk1B?BMCs)hV>DpS1vr`!?p_)09+al&g`(5dlN1Nz+x$* zH|rF$dAB=?3p8w4%CM2CEah!aHCo=s7`-iyULTsFv?r%R;J!>-sFj`hmj@VM43O2) z*=?6=!~6<+vJe1lf#x7ZrKt>v7u|%#qGm0!*~}8jbMhIBo-2$?fjNF$ z^kccaen=0zu40++3i`ywBEC%)e&0o$==wm`Tv*r3r2KfmJb$t)eR7EeZnB`#~|h-TV;v z%+ASx@?p~Dj$`+h8Qq4mItb>M5`sRL(^7Hlq=~3IWhnyqT~AAepP_AXrz}N!zIF2z zzRntMD$DfFEahRbl;tY(#U5HU{}ptr%db(chrW3ghOxdF)LB!I&gwR>TZlCbkW{zk zQ8&K;vhUE8rY9EatnQQ$^tqgtO7)bhJ4FD$>uIU*Gqg>rJ4JfFb@ShV-pl*NGkaWT zz8GX$Q;^O&Gq78THMB_TO!KIl7eV&z5oHRZ?Zn=Fnj_fB3%RR8GSKBBmWg$f+EO74 z(gUxnSSGv-9g~m+aZ*pe9dzAsZyQsdGE%s@J2#4%VwvO1MC2LECfFi6?Tu8c9Hpt@yim2OB;L!tt`Nj7SSSF2>)5M=*Wl!|fsb zz8f)~SKZw3F|D6suelza5~bSfZQRTQg=bJTzZZUWNJuSV5;7%F^+-Vh(`_1jGIlzi8!a`xtw5X^EpEtRTD zs$IpyDFXPpH}G_(r&!zt49t(!N!-rjUH4LGC>%w#<}4oH_zhefqhLNVjV!Hnw% zXSZn1WTr~Q26$D{@+>FG3n z%hF(&E6o``{HS2Ufb*_N(qW2=7>$^4vC17-3R$3Dh8ZVgAP16E268P6aju^VBvX{@ zH#=lc0?B}`o38;$H~p5HORI11lk+;hCIZ7qCU_m!lnfzM@KB7BS%$K74{ zeOIHTCN{x8Lr`L$IftM`&V66=U0MiA;`#AJGu`Ie*eBr;f|AH1NFT@Aq#u!>M0nNB zHt2NqsCtcVf85)r%fGbg(Q(#=+nh-a)_=?-k!nbkR&CCN0cYCFE{ST7JxQB0;ZoE8 z7(98^8KiWz-yfA|2|&UPfaOh4O+tkd@E7D)F_%%l$s|+|qQ@VE+NIP8hi6B})ZG`Z z&U1^@L@19g5t))IR4r0d10Twlmxy6kSkfXjO7y!3`q2q#`@9b?)wn{CV1-FJSN{x!H^l=N9A##dpvjf2xKKU3{N>fk zAi$Ac!?Z-RD~j7~FvM;KmD*bJ7v_8)xar@3C_i50osl1t@I;J3^nf z3%!XB5W3+On!AC~4JSN8Hyn8cOGK9_bi=}{Zk}izIUX-s+3(-2j*cp>$z-tSDNkE2 z)%I;Q9V}Ycpj;ib?qH#}6SSd7GUWj-w3{l;k%d{NGn8Go^?fnOzosC$_-f&l zPQvvM&n#bQkIqpkNW2;WxyXF1*mo0521q(XC!ex~=5^wr%&y{4H}CLLKm5Ftsy}@5 z;Z4%0^zaWIYzudDcjNm$51;gy8!m*F#FEwFF6RKTA?@?P8C~7(xx?!y7?}takl@` z!5b&`=`U_0Tndt}MnEpOY9l#v6Oe}3NgGid>gF?G@s<9FA3C!9gU5lk93)@Ypj>t} z4p?Y4pgV373Mzs}Yckto$TLZUWK}I`I?5p>Dp)Te)GO7ba@XRr9N$D%~)%)8lZ} zxI$2LC6MQOs;bFw8yaV5nN&^0(=Z23c$LzFM%PTDBA$r}0m!`}zj7nWW#{kv@lGfK ze?fi~yrDxf6BC5zQ#T(MyYt}Fj$vlTE*SUr+zmR;w)Yhi4toKihn@?!4{6FrS@}9n zNwKRXbYO+m`VGp&(SOa{4P@gB0l>BoD2$!pfEJPgiw(+h+$B11u74m46Ea*xhAl+T!PD(Wr}u-|Ga%lx>D1}b21@rb0lPit>< z-`O8xx5fwVr87!kv_ThZDCu%N?8<+sXaKz89^9bL()u=!O>H@XP6mf>&}L2%)RqHi zt$jaZ&x~1kF*8sA@Iw1D-3X{C$FX^Rk3B!3119qIQ*-Y@fBiJv2j^Zn0L^u40EWXD z43u|C%F6=mAg$2)2=g^R9&nUSE8Ruc=fKOw=0XG-pL;&xp10+sOubQk*PYL!jLP;7 z6|Wqc)F6S&gq$$6myvmHZ4r-QSD2dG?1&iHZQUCTZ&S+mF%1}~JcGLVt1=XDP3L;f zB$#{H3C$+#@?lS%x3Ey4uzNGB$k!MSlk*l9TI}&7FvPDN*AGssJB5oV+++d;NVpk( zmQk8V^f*=EX6{G%Knfgo!q39NP%JsW6dRcXLbfP0^OF5N#RAJ8hZa+>*Ti4B?)cWJ$jLZryxR zY{`Ln8)c6V%-b#7Hy^s&TC{|9W889-0CZS>p4AjO6XhjsSkU&f;{|P>Ja~9xLOJyl z303nzS_XggDbHj4M|Cc$hqosDvIc1@O*!d1=duHl+wn!aN)hjK`^b);y`r6)a!42` zz{StmB3Ae4?Jd_qTaAb(T|xj~q3mR56oYl7q~lQpsDQ!Ze*aE+0o)Y=`Bb|ViYL*;U}JtZkK~@ zn!>vBxiwmiCdk7JwN9JcViS-?fWZ-P_T}jT`B&>IxyUNI%zS1;FPczGk9-uD6fp1(7Wy>~9M@`}70-vp!~bmA3? zL*4ujI+~k!Gjgwe+=Q}BPr45pAskdy&6^VO`uaWhK;Om%xv`W#W&r}-$cZ?^RLN{7 z;_K$iz#nH^*t)EjygH^j$>Af7^1URzn*;kV6YafH7Y54Aebvl8!Hvr_VHqy3FLmC| zgu!sIYm#(WFgb5$!o`%&gH@)Cd1(@;LgidtwaX)vpy37iwL__7mq!qy#}`3Ybj~RS zZG5&fkX&}vv>X-4O&gyPH@;~_eBJy}83@b76Ur&M)JnVfng38KUx}B>cV` z&~@`c@Q|6OH}v#xIzP(wP*+cZ9IQ|G%BmiAIJ#cR(4i3%Q<&i2-0B|S# zO!hC;GoM~e2|b&-S(W!?c%C-Jve}wiY0JA}b@Ea#xz)}0`yCuPqx;09i~h&;==9Bp z?Ndo(_d}SvosoW#AD-gj_x7sZY2EWrx^eE@(kWTKPwcl>a)38x)!dg6@MrGQ;or6W z;oyX_9okp7xK;y&)G7lv!_U%bC!M~EKLROm*a<%i2cz3h;*S6k*Z5^Wel1Kt!EaTzV+)&mo%1?&zeE{Hz|QM;DZ%ea zH#Cv}bcK+}FD;`nfS_CSQ z{m=T|qG2aoJQ)nk(`r1hxk3-Cn!c#)owvH@vI!0j?Ouk1mq-Fu--^FWFOl>!JaYKC zTciaZ7vt~3!{}+!n@K@rF~y&Uj+2reKVY3YGI2x_kcW~U12i9zlunTrcu>;gl*f3T zB1Uw21$2_Zz`j7H2LrjUbozFU z3vIa#=#_5spe~1eiU#bvtqR0x5}nkdfg%PjmsEjpG4x6n4HQV~>85W_-r75q;Jl*7 z+^HSAP)g|8Rn6~gTQv`2T~9i~5$sV-QBB8_ju~+q)ckFzmdo^h8NIDXi7cW!vTc%J znJe3%1p{9*2*l7yb*U7F1_-!5VGsycqxzB*h6Y%w@yEmxZ1{Ig8c!bfkLexHUUhi4 zzCEP(6W=-EIg$jY$At5yLgE&+1<9qYO5=e9sKBt3-%IB2oj>Op!zN8J=7}Z8L*jmE z8VM$zJ?$v7S)p&9Cy5V(=9vYA8O|%0C^MVK4Q^&MO@5$u6q-CiA%E%oiKp7{%riHH z*EzmMU^Oa^k0J@QsPpG?_qzLBQ<5kz@qHfY0|k637xLTW4W{OK(C z>(l3RVfZZBLYcw5-fLiH=SfOmH}8?3TlS(r0baBjewJZ18LU;j z7)XJ`PWV|k7z1+>F9wL`R5x3Ca&zr&eX4`19%ZCEuFdHVZ;9LFo^{oXU;?!1LY=c? zHwCg|Yn}#cB2e~%E)jhbi>Z7gni}|A)+NHnuv@a_uTf&Uzpew)h2gPzDwD@hDifo8 z0T^Ymzi(%;;@PAt1mRZ#c|KoKn?)IJL*oo(lg*-tubW?!*%60p6CX4_tlp@Hw4X5P zLF1NQhi5TJmbt6#Hy9*GTCiNs%$~E_%x;BLA-?l5!drHwWDG%O&V`)!C(LG@$+Z3W zdQ{vJ1=bg2wwOX~lK?akK7953s~QUh&*uh{I{w1G{mO|aj*pf2F1cMHwcVv-3NLei z+YTC-m_dNH6*N$CZMCMKdh}Sh(_s)Q1Lt3)AI!Us+{?H^AfNYod#md_2bY%RIlIqA zI(24VzVf|oYPKauZg%Rtv&5xfxMjZ{VYNR#%8emYJUTn&Q!$qOJk!WYp+VBgt_SWD7M}AVwB@4qPm0=X#t>QA z!AMt77WRu;Xg*g^dn*z)CY^lPFN!>jc|&2pNO;xFC20EZm~^q1a+CB=D7&*ycG6xn zyfN-lC7^VruE*@cR%LiwhQ!BEiLkXF#|)$~rgnHGtUM+yPJ7EUU&Vt7_g zWk9?s&+wLNhu8l!5y0c?zqPy6;$CdOSDW{Rc_&%;Nak*)28Lk?{_MCU5ig4gCr<_} zf=ncd6UcwevOUNI)WC52cejpubWwj` z`Z|XKkp!U2Wk=zj$Z(KLXUBbdGpV=dj$ZAZxgCGYJ2;xmN%8CVx;qw|^!rk9+colN`}ldfFeI z_UW+o^CtJ0M#Q=z`mkWdR;+0tJ4n{7wRY%NHZ$sHS*SZKwk_HC!l*H%d(yb z=*j`K`ubUQeA+)WV^nq@A@DFtIt_jEIk(qVT<0Q~#>aD=Z&;SY z5Z!f_90yugC`0nJ&IDaI|FKAVz8w~tz#jHb-XA+tz4t4XpMQX0l ziT7DJ11c@T42Kof>ZJQDfYMcanQ|c0vSd#aST)Oy-=KvK=^7CnQ%psdB*yXMvwAi; zu)I7WKbFs+ee*ll-}X6gbAMXvrwvNC8rY`W?$IgtvwGB{1^V9TpgJ)}*QeZS?m78@ zYTGZfsXjuhm807Cjo0=L=}A?(#N)EjUw`u*ScLPs6(%M2_UzI8jF|=kd#(UAq^WOW0B%eH`ky_&yzxf z)m)7^H#((eGL#ySgJa83M|C>u-@y_1c_$zmchAKh$J8dt&0FOS3)^rqy-)q zSLW$;jM!m$Y`*JMkcYoK~&M+LG|uE~fqq)vL~h_9PH z-J6{6IgzUQSD@^4Nj_Ndt(g2njGs(4R0T#_Fv7+7yYMhfkyK#BNChrJ2e3GL-9Amk zL#rzU8CC*$cLk=n4UIFTPAf3r>*mjaypQhL9ImH#c0I7uVfDvctQGX?6jJKpSH=$6h)6d_)ln2i?i{7uABc3I$!F?&yM%#n8&@s=?30& z*F+%u1zjQ*P1=IGbEBz&52e{m#IV&$?%ZgU)WpArRz7Q5oofwy(&e!Gt+Vsw6~^+h z{<|px^u3;zitU2e#j4~SXyNw)-?}-3dZn#)JLOTk)qZ>c@~i~%Tqo6)J1W3!Xk3sn z%AWKD5nng!&|;>2vWsiyl6uRl!;nb=0R`5!Q2X*T3pGZ7_e4{Q_fBSHx_ zy&%5|-mojTsqp)*AViNJ^m=&Tm7sg_x3H?_hrpQ@sNPr@t2?7I5Pw;Sb5By;S&DL_ zafiOiLRCQ5%|C$VKI_AE-kp+H?L@Am9@(9IJthFK$F-zTxP{t_ttEMVCIL$2{!g;~ z#KKOKaEyVQp$ig;68$)W_xc4=&@A??!okpqS4zU~vG)>f-UXgU8~f*a?2R?q)*yS_ z;FXOi1w0u?_jN%AmvQ}oHA>vw2T@cAR&W{DJ$df%s_S%AfO8qw11^XbogwKuBff6_ z7w~}Tk{+_D3jfHBK6jV#L*c)_v5oXIvdz{H}T(u2Ts?>1J=6Pk&PB&X)` z9W39p6OF3*HmKKmyhF*Bx{*CoDc151%=_khu{E*5d}o#+!JQw=iiNS^8k`Y5{Jxt( zr7C_OxCt%OP_WBvlOCpBrlC@hiI!;u(COSv21p;?cW96}x8hJY??S21kxbM#$q49_ z8q$#ZCJD%3-&mW8)QUsh{F~r#blCOGKKIVH=2EcOY6Nsk?f3$66Oa=~9XZs^?+05? zo+Fp-wGvY5<|3;hNaxmN+=j*(0w+UI#MjOL0al(o^{baRWQy&S*HM9mH#Ba%yb)hF zOEARK8}mn%%k$T<4lNWQ!6pK8@m0_iNPz>LY0{r24u&F0&=eq^6Ro0nZG3!xz6Xn| z=C^|>DB7_f3u~jDyBOW``$f{9B(Z{WHOCaxrf8@AjID9vY7t*IKLD<_Iy$>ei^+CQ z3_gM)1j+X`EUz~;DKqgG^V1m{^z_M*aKdD&7BS+6-_z=(HiU`jX8B4Hmx?5xKBSFc zw}saNaz)g1Ek|wwGSp#o$|N>a9B7SH+>(V@pjW}z4oMWwtMpU`5-$sJF0XDt32I%T z3|Z3#BATcmp@@OYB~>6?42_b( zLV-NDy7?2*B3QHK{)p1Fnp>#cHTYtXWKBWx%1~W{f!#u^p+M3#XdZR*AId=I{b$d< zBG#UY9)Z-$LY#}N{D+7DwXRTxu!;W!blp4&o=z{$jLh3?9OSt|_$uWkXvuS7RgjnA z=*5|cGsI1Tyoj%xW0dz!;WRVL>k3icK;9{DhTG7%@$yD|-Fz{4@e70Ku9P7 ze?fi~yrD!A2noXTp?AnYk2UJ!tNne_)T#k)U4a55abt-B<~5;abAc2%xZEtr!B8fd z%>{^P^QXX*U zu>tk5L@5}K&4`V?h)Y2N>fi*>=|wqm6Oe}Bi5Dpjb@O*1c3Y$dWwvBL_EI6pyb{QB zk@eV{;x;tS5I7xs1D?iS=uI6XcSo%=)>Jeg{kAHQYERro#hQv3xLi^N!o^T2i8U3- zbE})*i~d6tH_b7E{fA3I4xXiWKwcTD7s`=5O9@Cr_QZb_hr0O~NFD0qcwlb3upETv zIwKm;Ak>F|b3KguNV$aiP+Sb13iT1V)y?0BerbhHDff@g%nN*c1+6Uyja+WQ0Lr!D zh?qTY*FtY6XhRFONBAAN)Xfh=TUk9BjQXdAoDJNw3IXV_A-{@qCrv~}P(lg#3-YVr zgSc@ToQx2H@O_<^V~#)qvTP;Lyh?P;Ve`0{^Ds0@V~&JZ-CTfn zvqZ0o+OuVD?OY0)tVTetglg?Maubk-=t*l=9O~u|LQSmf*LQCX?W8%}Cfah4d|iWb z*;Sjc(Ax>xkUwb?z@=_3gWXr|(uAHKU18r$f>+j{Ek_MBs8a(Ay`7-PYXDs8=HG#S z$wlDYo7(Op5qL`idbkK&LvvMhYY4Q!!$sf;4@04}H3W?3RX6__qL8gt<8mWsF99l$ zY6ps><4HO$p6U4B7s!Fr6(|x;hKk7{2Y`u|e-Bzu7%L08&S0!08jvfDl>*Ky&loFH zE@7-xTnya`V`bo0H-83vah zt>vYtb%ioSP1f=Px^BJ``qwpzr^>CEzaJ<->do-8w7I19@+jq7Zy*H@JK<;HVCa#o zb_9s$R5$McZB}S4FNAZ}XwjB~9P1jC*MS=EEcAAQHgrhFJK$0`zYRQxW~G!$!E*I> zR!XHHJ64%}N#0kUNPp6oMJ%BK_YRU0NEK&>m3A#l=$ z1G;YBj=f`P&x3nMR|sES3FNuMsNOuoZD^b!Zql1aeBFGJJSOaSI!*@nEe~hQQW;3Q zEX296%CaeHU7-w76UzoP^^RcK6^fm2QG9Ai%h6|B4ic|xP%gFVPb~Cyf;Oa2`V-(% zH$Mga$-><|bKqoKQyECUEX29g%GN1rU7-wV6I%y#-FyfnrFZH^<%80$5M*5mlE&0qIcj>kzhC?Q6Fzqfz-hMfz8 zgCs@c6{(tk>cfHN@nbq-vU7TJ)}xdk)xD~JSlzaBRRA_3oaWncL`o z6Qv~(_*GveUYZ+p+id@k5|vO6g5G|8uTQUq->ZiGl3;wYyaOX2`7K(;$ImEc$P<6`_> zcm$`4OP@*D7%`q#-F&Gw+BI(iT`@GLG!LtBk8G2RxqcPQwLrU~#U6voK)Gch&YPd= zF;djJLK(J5dW?Xso7zj-Rt~*?&?c85=d?s-MnEMh{|j%;wwjl!aIYzu&hd1JOF`|` z2*?#z)1e%>2}ncvWICic)Xk6kpiNEdV^!vIxPb*vxH7e@GIJ(R*6B+ z<+ZZ7a8Drw0{@ah&NYL8ZJ7IoO6F#Ofa?PsJ=1O%@}o^cD2DxZ?L$|vUnYm40mJeq?&~aKVf#(cIv1+j<^aYa z43&Z9mW4RCzwVF{)Ve|$_Dwq^LD$WXfjw!coow_@2}SWQ)$Fd*Ydw4Q@o6t+yuJA&ybsdG|Z58_>n{1`~^MUZI0_;IpEbqqWoWknqR8I zdykP|2$In>Qp>ds~N4&5en85ZfW-O<^}3B5o?LxXn*vv+Xm z;W|NLoWG=PeAPwFg!IV+M;${eZ-$uE!uX%-5z;-@==dM8p#YhUeT+Pd6z)d24zP;m@OL7eGd^|4~o`%-!u;KUJ9P4@4 z&Ch9veGJFZGkT1(JbPl%O90QlYJM69-$mDg%Pv8Mpz=x}?{A#=4W)bb{%V@v-Wt5FVIWn{SnRl#>vnz zoVd&2`FjUOKJw*$o!w7E=p=@pxtE7#t~?|YR=+{Z`$XvDC+guj$50s}pZHq+i7Pz+ zQ0p0`X*0*D7O}AXC%S9C(2lw^M$xS0(40l_IG@l7vu{ZTXmS^Gk_z5uLOg>gE}5*;a^fWye1tX|+Li1nJm38R!v~N)(G+A+8$ifDK-u zLq}dlTTQNGTJq63E$C&Is^h!%;+(G`R|=Y~MnJBRuAvOM2}ncyw1y%FI!g*thZ|XP z%p(axSPoG?oa#ucSHQU*>ZD1DOBk^g7elAyq)EoDZXSmgvqrnZ<^G2!et`n&Wi$LN zBXcs^vvs|*1ybNZlW6^EyA>tp3j)M*s+&7{NZ)c%D`Ok9D8{_3RIp^)!b;! z^6>Lcs{ZiJhnJ~;J3FkunuCjd8nk+xKDi$4RxUgCt~c774=;JT8!l)rlllD6an1WZ zJ+{mz`lkoa^2BT#vNM-CQQqd=&QI;8oWJ~rF*y5q2a z`|PwP5#D`1>~8of2=ldMLvfy>=`wv{XmjhFQqbq%`_BY#nnjB9+9G_^%ThOeX^c#nOZWnR>u|iybk(j6Y6WH7b;98t~D&x z3r?z#Fkv>azHTP5!V(nA^_?wrRSbFBI(%NQFwADG z89Ym^m$cRj+f1KLYdImH^Lk!SW#Ej`(4Ymt8X?Dr2&2&lzZ zRFvEi37n%vK09^qr9=T4KP&|}DVwcwpPN}soIY|be_SMu>xJ_%>IY|*HcAAxeOV-K zcVB1jVxE~<(!mfU{DerDZoJMc>Wedrszd^rL#vW3CNs-Ad#fT*K*s0w;kMb@()6R9 zKB~tp=s60b=F?=Rk5|&z?)mwJb~9K?9WrH0eK5JqHd_^b{nTv%uE@2c@CWdi+-#z~ zcY4wIpdWbs3y?HnHo>Nk4_FA0>p7J^X*Q{*_j{EH%C|*2Ao|&EizEWr>3My`bv8py z-xlM+S&2I7mm{AQXXc)M2Cs5LfVE!Wqtx@M!|CN>AwaHI^%3v+i1)s!dkHNINcp@@ zn)KQ7wU~;j^|j~Jm4?}bn!cw97bRMmKG@z^oljLxKNhuOKrMaH9a85=X`ZxW4$=lZ);V zg1tU~NdadQZ2GuNry7)AOugd@-&3#Bo%FFP_#XtW;y+SSr7zj^X2gKoNPBk+Z0QMqdVLVULgrN<%&8=FDWk%C>Unkmt*>h`N%hY+lZ2YgfB|^&H2bT zz5PTEknSbwY*gNxnOBsiALW7|Am59UV(+tUJ&^;Xdrqa-n61rDAAN?T9c|q5!6b3U zY;sNC&p|p4ndRuzDYFSSeWVu?vb0jY9AEIBkC#o~heS!h&t3{|70pM$>04HRIfy43pHb9BCCKJ_?#uaTboAxq8c$jB^~I>r+t z&+8}AKWp_D9$Ihf?*sS}&TMi`zp|y@*J&ktQC`QIk9$oYYls}sOFTy>g61RG^nOnw zfK1QN@2J%DexIF`dV$_zJNe9fY&Cs<%0hs(NG|nc=4_5Xi(DiG$n`4ArE^ft9LP?; z$ERiSQr6A$auJEoo{zipa5xx^>e1Lc4=tHKajxz=yvR((A2#<~I_^7o0(HdPbA}3- z;J!nF4V)=2o$)VV3n$6xoY`?Te51EFBop-L)ctU9;$NGvy`sQ99w;xxa|IyXjLp9f z=6Y^!qLq5Wl4$T@km=>oNj0R$uz;eY3o3kJdaGIAm-h1=a!qWayBm9h<9qdRM0fG2 z5skUKp=otXdcVJ5&)Gcd`@P%M-fOk-p~)4Z zZ^exl;IYC!C%2M|AShXO+*Hpv1 zqv=gvx;mymuf71EeysqOy6WZyJA{=M$A(FRjkdy+cGk9b4Z&5yvfxNF60apb$F^ty9B+&vx)kEmn4 zTDlaMQtEE?y}f6IkGqulvSZa1qa?hjKYd4L<%DL}_yl;>2fD7pO~4F7mOPA|fI}g0 z`M_cIMm_8~`?3q9;mQP@&Lk7Mi2pG8NZ$9PpG=&@e+9hc#mT(Hf74_Kev&VwP9##nQ$Eofozlomxg03e zx#_bZmc6A*M$ad@O+N3LP)-mCELowjJ(^b@k7zyJr(T76VKlRqNwiXSn9o%KVJ~=&b_tUvgnX8x2 z+Bj3uK!Hz66W*t3{@~0$#W7JIww?Bc`O({n_=HZSl?cTBrbOJicHYm=*bBA--$Wlz zMV_l~%t_>=6HG;(Yd10{k&~Vz3^IolWLLv60bs|Nmbvk)L%J6Ty!cb%#fPKQqu$vG zEd|eWH2=VieypSdu_;ry51aTbN$;Sp_Is3Xg_a0ut!R!G|HzE;TjGHtpB6=i_5K+p zJ-^>S-ftfhnNK{G-&Z|f*9UTe=tm;@i1LuR44HHQAa1e&O^E^C_HiqMn}?uza+b*iwd4VbUxA2i9-`(KAtn=!s_|^t5JBqDV;7&z%?$Ge|0vum;k=(zYeB) z_4aU3?e9@Zo7dm;<_VZb+45Qc1n}Kd4v_N2Sb92`UBc4wLOxgKD#-FMCE@7+qSl{cL{{Be}0|Jjs>KMwM| zM339u9t;lE8wE4fTOL_V;z}R{$oDc8Q5F$+f^H@OONZOKTOmpT5>gt69zGK=lYGGIl7IL z5xhRyzI5|vR_W(x`}Af|v^|yBDK=)6evYs7bGV+#kh|F3C zADvsbsU(G(=%=c5q?Vpln@`ML8zb{{*ufQzW4>o|>OHGcT|2nviz#w}p{By|0HG@+ zs-9J$u4TsQ6iV_fAEz#-l1D$1D*Dvi{Z2^?b(D1srIa(XR?_@ChBPBh7#@q+v1ip` ze#2vyJUfJhr6k(3%09o4Fb&3|-Am7?%qsgF?VhIMzAa6=D<$`=^1nK_=4@r`jz>;8 zXZ9oMkh+eXp0A7b>BXTB3b9o=!S}2+Fu%|+&;K2oZYdA=tisQ)>85GIqv(aSd~YGq zlWgMAX^Q!~XBB>qPLrkg4&rkP>qpXN=O;eP2u=2`belQ@_ao8bV{_{}wWy#>7z4Ue zVbAJJ^BV)KOxXugACRQ_kyOaX=T;#gE7ZuIs3WPPABiR(nwusfCMXe_csbMctWGt* zCY~q4R^n4CzDH64^AtbLmmQ*_j=b5knty&#k&#wAjLoI=+OtYOzpx_Bz8z)+#Vp*j z%09mtL6)RDtXjkr*^k8e=eKGR1%>`6I?&+mBhg@v4wR()4t)=0pDm>Rp4Efq*Y~iD zV0jSV&UgLR5+4(Y$L3o~BtEP3b8Nn8p7DJN9jID5@{P}`!H4G-I|Mnwg~GZV6?Z26 zo>h_gt;;D%yH%mow2!1en!hR}DX0?1hVB&NvsTI+$A%y%D3ZC?TYuSC+$&x74YRkd zgygeU$oyt+R=)D6f=?L!NLt4nRWQ<;hZ!56j6XTF6U5D04fC6^iI~tTf)bM3`;k<{ z{FD$eL5VN`Qs>o?ihS0pnBM>xTE{ftkHm@QH(EzQ!Hq(b4(Y-li5~N7(m_s8BTS3R>CI<#sQJz6 z^6ckfT2#z}KCATen-*nB(nC-5sE+N;uO~`R?J2t#a;m?T?0$>~ucGjj_WY5w+BrH+ znwdSUp>||wpVjvBTSGMxxQ8G@5~x3t8kk=|Ct^ak8JaGg>U$*e&#&o{gdlqGes>`8 zk;pzj@6XOmhT*E5J$_c_pWkqmCzn^^my*oCmBdeT(1#sno&WujxX}D|n6;?T4qlnp z{g80^zw0*mWCwE63n8!0?IK7JGQTr>PLJEoZhm~o{W71fB#7CSmu^B^I-!yppVQTj zAmtotJh{v9q3ZbV;kZ0w6B!_0lb(Yuols!QSF3pit-+Xc@XRz!{g9LLt>>9esKlD{ ziX-M}%`|fO5M^1I(>0MG<{W&}2?f?==tX(^lYRgNJ2>`P9$grLF4rF>3zHiG0`8FwZcYv?(cQ_icKT+-;t z@9L_Db&DYE?4xsbzv7j7-Kz*f&K{4Y z7b#wye`q@gOQw`D<$q{?cOQaH zXODOC%MP#1>ykr|a`twV-fDQIp3`lHdCHhvUwD;doX;)jAmr?A-N}@A<=ie;1Tp8} zmDz2I56$lu#T@0#uT6YX-$9sfuQdBYsFn@9;MF@vg%@_uxttT131;_IClg5d%H6$j zk6TRCJ4YdB@0my>kntn)ykQbNb@s8-x>E9ua6Mzb&N}SO{bKPp#7=4;p&W5Ky0Z@m|37zM9%x5W)t!N1 zl}$E5Q6hqb?K%rHFzlI3CYkJ$eP)um)9>EC@AZ9m%UxdbX4p3~@KDsCBDj9;3+}jq zAPRygDkz|!Ac~+U2!bMtey2}$RoAKNrK-EClT7~T^y}MQ=l45x>QvRKO<%kMI9)AT zaf(x2rE<{W>J$OAegidQIm&)l%TNT&`tDU-cXGhldJ_S%e$m$!m>f;lYq%}^^+PKu zGUBZE!`xf9P#xsGvSj2&!02eHh{*iDff0Q3v4gA!vR+B^bJ z9Io;Z8m+%!pa4ej9u()Wp=bEG%J_d-LE1Eo8K4o& zv1Op1FT8+zii{u@TD|~-)f}=KtUly&k%+M5`W>*WRUwCh> z1n*(Kc;iCTF2_aC?sv7AMCi4CYg}DDa>(VX5rMP5@5)*xa$p(;1GhO}ztXos-s(HySBULW37xXKiJbfHOnVTF!_0 zsyZi%7j;wp*aXK#6ulp&Zo36qzug3o2*v~P^m4Z#>$jV%vQtxpOHhhzRlo}tzj^VCW}EZkH({O8_BU;PbrvF zK|YWtO6;Y_Z0(g2-n^wV2xha*(P*<_%5cz@elA)%_eut#9Ec^$B}MqS*-=}DNt462 ziafbtdO62!iS_86K~y$`YA8uN_o--Ih+&%I+^QHR(YjcV4w=^p%EqP)#c33Z)}tGy znNmQYgoHSN1xP?GKAN{DLD|eZL$Ml_q61hA)0C+QxP*|{JQ+Gwuso{WjfS%l|7Iv# z<5RSGvSFHnkA#-c5v8Peag>r6CLtgUY!Xg~i+SiXLtGk|43`iR#eN!2!i%EVGoXZo zvBd*N(oXzBh86<&{_3VV>r!;7$>11wn&?u4kp2w z&{w@zv|iQPo)V~ph$z$julS}uSASE<}LERos#~vGo zE)9x9B}5K7>|=;-dC_==p;flDPQ_uToe6=pD86NkRqs9A?4j2nFuSODWqiaUZju_@ zj-0&!UbG;_RM`?dg8QJuet-b%!jiRy|IKm>+O>*Z*oKUc==iYHmc7uji!zwel!uua zE}QTIZqdvPQ!CDDvmbQWRu^DhSg_VOKjgAeE}$08dotCl-U>hBw)HL0y0C(*=Jp|% z?IMBJiEg!a^-;&|X#uxrq}bRLvKr6_9X6Z=S{G$ZYbhUb+d>v#UD$0_llUlaU%IZ* zT-XA~#%i;$|H^x8+H~^VmM#5V<4ZSfn2eb~vm=~F!*Dc*8H*-kCgg);%mk%9(_n-~ z{up)#oJVUoSTj4f@eKBL(P&NX$MVQchmPEA6*9I@8tS#+0kU@;{^R+Q@5xHrE`mgt!>6W&Ov4UJJ+4|{Ds z3Thp1)KVtI76IA0kzbD~ z$oaF&lnG%NO{R_c6Ms2}Bq*<#*45286Mwvr1mQK7ny}5V^VjW^s1S}Tv&Kx)U%ef3 zP+0lyTL>@Wk(Jt+7^Q9PX3Wu_hfJA}d^?>4g8Wx;%>}n)N`&n5(_fmX_f*FIdI}mZ zLYwEY|H@Eh>@R?sFxIO^PS$@7**ICfzFbSx;Jr#wxq7TNF$Uh&DwvlhR7GbPVtBDa zy!vI8_QYH3Jck`A$1wWUNMuLUwEk+NlnG%t6uIj)TLnRXLrH=N;WrnLo3LI%(_hG4 z<-^%l8*7DWackjp1`FdVjJ3)i7mT%T6Ee0-!x|OFS|xclW3AF>%J@k(GOp2m@mP74 zu~u7w)y7(FrRZa=XfjW?9iH#NQf#)8@@bZ1^Wsa{SZ<{Q^V^ct>zYcE4A@E0oMI9} z;_y@>$v{L*B&skRZy}3VhjCBLLV#`9R57yU$vL&YVo#`z;N@W6`Fyaw9r4I3xd20XOI6`NWhe_97p+smel6QFh(iC4W z^}oV}5WOS$kybZN(KYS|SIAz$)bNQ-KyDaJh?1y`p-=-!$9UQ`t|#s9QN{zd$V zLT;xD@mu3ES!p|X#lHp^Awv0u31zMRYAWN6XIoY%>KZ9ReV$PFTsN!v?4?&gsSuj$ z$!~Elwhg`2s8hPIzj8Z7<+|+Are!{aFdu+`xuyd?L{^0OOVX<+Oz?{y6*=Rf8uU{-$0!$qk8;6*HeS7mGC=~6WF z+*4MIz0azQ5F(UUWsl&i`VvDmxA`z{nE~O}jeoHkLbY*Tg49jENYU`=Tra;KU9({4 zrB{(jh2-5#f5o2{7G%AY!7L^vTs=D6hPkRPc0gQ_cZcI8Fh?lxoWudXYitMjy1_hX z&(~pxwT)zO(0KK2`l&p`cN-nzyN;*7U8P%3F!hhx*V&uC_Lja1DAN=Qggg90BgK?_}e+SuqZLqpoFOB48FpyTg#a z5d)^$gocF}L|DZjFv(Im#1xF{azhe1Mqs^8Upk`Bex1Jjv1|@qY7W~6Vcg?827^X5 zZ9)S(2gU(<)vl?Hv7M@1ejH52r zGFqGo$-*drQygvD1lDp>ZpI5gtYx%f7Ah~h#;di=hIlCfgV9nn3Z@b4fYMN=c`R{) z3e7o~`PFZToJWg{SrA^s&UmtJatfN%Y;4uAN{^m|Ga>w@o$&&Km!t70-kztS3^Weh zS}U?e=n$q+H|q5oBIwaVV-|$hpc^g2%%h+oYQ`N!`@Bnt5Oz^G?R6TW<}ue|7KGPI z&u%V?wKmg=&UkvJwTu>!Agm_6!8m|J8pfv^tLcpA+f-nek|8Xk-d&>g6|+!zjjfh| zTdOoRN{?l&2mOD-tKXYKzq%nOVjLr}R$dEf5N5+=IAu73zGy?_Jho0a6T+{*vOXC% zMb2Z+Aq~Q85Y3wGpn9ye6C#9Nf6%>4lsKe8n89B9)23XBM;{rppuE6o-UV96F$=6d+hHe)7rGCbV}BDaQb|ZRYKKb=|wXUYn8F_(u)d(nAvl7 z{F>*n|1h@7*uOz*L2d4`ctrTF=CU|1;<8?x6mJqCZkGATbV5jF<0j+?eQx0Xqu|XO zxE2%V^HUoMjjMc(=f+je<*YzC&tL!Xa+R-t2c|{O`G!Z{gXk((;|-50=dBu2=SyfB zi>#}ZjhE0=r<@aK=O*nx+^%x=Z_--uJtgZq27f-tDiL|U6taQ9yvo*iDP(nXjz=3v z-OJlsJjUH@tHXa6k@F&?c^)?q!f!s0^?*Kaax@axR|)%Xa%4sMc@8%a>{kiB@^9~NkytTsr%7qK=mR-n@LI2VeEYG;fb@F0(fx;I-R`4934 zVx&sqKDv=n1vR7n`{=AO240T+4>hQK{W~pf;DN8rR>Jko8n^MH}BiSx#tOx&6{`3iID9#kf~zTqsQ4WdN#t$c;ERahu8loD{|lF0HT<8951lh0X}H08UOPQ&h^W3@QRShTiRi1C~hV-aHOQbvR18f*;U zkD4gM#z)$kbD~_TEmG!j5ZJcbc9C-Wsa%4UManyp*`BkyWtgX9vq)JWR7)36Oa?`4 zqRJv=D`})O8&_ObBJ>iCCX%c*Hh1vRFj$5)%1?zp=wc8WyLa}PY#PU@bH5=@SI&V7 zYu8Z-n8aRF$BrK;=AZ!~rqHS2)QzMN6FBCSKu*?MuTLKY>#(c6{rdFeJ2~@}_33*s z<(j$A#6b2NuTN)RDEY5rAqG%oeY&9>Vgkl%sSOj?jespQ<~4e+XEjaTP^wm$8#h%9 z1&FE~@RNKx!->rXuyC%@uGWSSG>*poNJ9aFBc(#e zJZF?QK8gj3{JGL^(elRUN?M|B?RLD>YN8)!d<=@Ip#flGVYhbu)XN?jC>3!x94>|3 zxC*w3<{IiNt&g0ymjrB@AD-Gt{_;a@7_}qch2pSl?;9f~xzL6^1pF3k_Z-xGxGm-| z@>(X0_ir;SZ7qaMa-tWFVEGp85gp8}!hwbo)AH@S;~)Vij6&Xa@!WuRUI(VQv-w2fwkOKIOs6S^YK(L}vzJeR}Lw+Ip>=Y|PIUl9*A>zwydCH&dMJTArzOQ5nkaF`JDypVIEe) zBzbYSSvbj@HVgmx;%>8~EJ#lB6HDWteFkAvgLOW9p7P>a*> zD#Kg2MrG!!%Fu&1yyZC^d5J@*#C$cV0e+?_&gRXusC}7YjGqvLDMx-7iP1sl!%{K_ zoDljPHnG!uLg*kGg~7BP43@*CX>e}i*_JaymG9+Qf)Sk}x(6j~WrFHX79^-)(x7?p zl6||bH5-C-asaP_l(0Bn~HCZ_`3{M5!{uo+|R*l_CI!*@*&1c|M5(IPA zkP^w%(@Vj;vjXR-ju)02T2@nc%GP*;lWKxmgc#vGf}OeSW(rl(cS_Z~*;GjooW3xk zGl-_$C|K^n=ysFlYrLeoVuo@~Brk_uyN#-=$xgG7e;n7kSd97jvvq= z{BDN_D{VLkHO}4fC>S(pvBswvSF@Uy%8f8T1;4HZgISY=eb+DvCBpLsE0DwCv^}17 z;W`}0XSg-Vd1^ebt5VTvWzZx1?}$dxJPHP|*tR`ibXM)Qjjm>SX?ZqY7GF(JOCv|P zk5;E+yG~%GJV@#Ku4!XFgyD;Z!D`r^t##wGoZ6#sIf$1tG-=-;Z@q;le|84JY!=Sq z=D<7vMNV6xd^}dg9L^+2bTA(V;K0wcL0Xf9XJS9lTzasgKbdMV_cU1*5&sLvBlPH4E&T1$apz=4Li&v>h)Jphkp#i=hH}6fK zhpac=kGo>UolxftNv`ufL7S<+)lB!@WZ}$}AOa^1-LvzM-3^fjawMnECdz>4O$Qj% zY+q}}*Qrd2I(VfAFEtc(P_@udrI!#S1I@-Q6&oDErN!E7Hauus70WKFkX|`L1st)JlMh=&DcUFU1AS>U&}_r8>&_K4&aH* z&kT0()*|mco(FSisI|x$5({_<*G_|h5Y+&D4^pTU&%JKfrb{-(|Kv#xuOzQ=Wt|6e z@Ez{V!-kkEg5Vl3>uMHt0|sQY=a z1K%TD87zq!ct~kJU5q-gqP`oChnxpJG!#-IG>Ia3H)B3;CvArLxWZwa)xsXyhF%SI zGcw2$rSOxK8XNmmJ%sOxM!b07*e;Q0)*M67mL#V^#^${H4~HQbW4(hjR;a>#UO^Bu#?63?0cJm(vc zt}K>d+SULPvnuIk!nHPw`SeON0b&!4 z7e8f{456IviaZ>T=PT_7t=W9WtYse02o*wC81-!2i+hsO<>)S8)G8T5IZXYt4<9U= zQ|5~W4YM=FP51=<>J!1`sBzcFkV{4dvgEO-2_nYl2AI|uSvAEfoXq9Dh7gp@cMLJi z8x=jVwpG=8dM!iFxvA(0w}?7Qugsh`%_w%lYgP4!UYR-1GZj7OhCRqL=n_abQAR#_TW0gKidJypd34RclWY6wG;*DvQv zm@HuF^}Iomzx#n8Q2^I}6)|RTYqF`ENXPvw|>@ z|2j>gj#I%56ap(`L#sj63W(BmbjID@3Q}4rAHwrAtX>;;B3wY%o^=ANq4WwkQntn; zDix#vTgr-XJ{8OdVKAGw?KT{%fFot=H*W=>Y@T*|j$QaXmEFfge%ft2cH#3>HcdUf zG#v-sPHefem0%Kjub)KE+G|-=SrHqab;g6ma1>WgomJlr5y97M3q)o_xZVMEE==WV z_om}vdlo`1JhD4Dx0Xd4&v~sNC0-q^F(cfE-PvRiS?y6!0Y~bOjmNwyNNF)HD!)c8 z*fYPF3*`sv&;z>-eky3Tq5NZ92){Y$GB)OjjF)j$P-crzB5X(THbyWDr!k(!TS!#m z$;c3f!+7TGVA>c#ujP?((fKW!>$`a8x1gJCt@g%)=GYlWax0l9Fd=z2S%Je9qZ#x) z8#7O@;YLA+upF-3g=&1pMdf$bsqt5^{Z05q(PfR9r|}q3mGT!|MtDtd7I_DDj%tja z*U~5G5SHWNcr9!qvMu^lFw@Iy%cLrK$k`B%{YlVV6=6IBs|r0JLYU3?@}Nd*L9e}H znGxaoeEtic6+UjSg`LLArq}VPOlpMvg1@pDHJaDP>!PcfGur@(aUy(0ZbKfoD=p-y z04VKNHj>+f8ezYnLvoE7x!>F-BdLV%U^<>((_Ayc_~?%cHq=5YgxwjOuQ6YlhO-rD z<69nUT>(RC$Hv=!RFKlrXc5*gN|t7&15Uopm)uLh}BH zoz6?nC*+kuC}H-=&;G}v&L??gWQs3FR)=z$Hh$y9$d%k4EBPu%QUv(k74jHQ(@HSj zyP}2?WPU^ee1D^?0iUK7VZ6UlEk%?JZ1HX2ni=0xeS+8V117AUG1`@qZXyJBen@LW zV4QR_BVp%*bjG+C-@dD%0V9>Q*N#hK-w8G1=6GH=Gm50LZlY9Yj48>a{SPgjFVf0D z(>k|;2F9CI%Er4&)TqGXs1h-4zIBKgwQ0KA_Bz=p$xT6yQ0E5T%*d3Q+f9_}jB%=z z^j)>C&KSHpo!Ei@F)THgy^i$=R>Z7%i54S4cf}Gd$PwxG0E8y;b=CV#v>>V43?>y zIOB7uw}>cF$;*^Cn;AhVeHDU%^lf@&9J?5SyQ*rZ($qC_RPCt7P{>`65TuVd&k zF+!Q|o~n)9G;IOK8_CwF4>giR6=M6)_z1DP=mO8g4&o(_5=Ej0UI^ynN!$Cnit|wj zkQkxNJ38m59%!O>mocA$lU{3NvZb2QO^{~HGIM$j@c3Ufbbd%{;pf#RmTHUHd|qcn zYiqOD6j$cE+7dLq_TLmz#DoWpIA+1q>&zJ46`yKujlH1gwOg93JM8c&C?JMdF2cXeW)$=f*{r`tL0i__gMop4-XA14$7y4q{1EBrv& z<3|HR3TUUomQ6-d$RqB7^e{oEEhi+2~KUzct231bXziN zh0hfiB_9d3!iN=|i!Fa7)P&C|)^l#B&ceNeQ# zg`Hc*L;JHtlJDg1f^wF~K}@-3e}RdyIZK3nq4XGZEL>}q&k`||Lplw{XNedlp3`mU z!U-ay@nSHDZ0y@mX4;l>&PKo{nbTeh=YdxuhfO;`hAL{shzW;oH=0JBl|g8=%ax%x zk2xY>6E?Rk2g9M?EIHyjOAs<)v6O6s?$xx6!vuzT-AX_cCR5%N^;zthjMUbQM}bV4 zsU!%+q4?F0FHqSTcf76HDV~AnohWHO%u!|MEAIpel6P^?VIFnb-n@oN?}TgTArm0f zCdn@zU5QH0ct0FV%Tyc-wkEH!4L#4oVA@%M)$Zpuo^Ba_PCu2~l(*3k^dX*p&1R(# z1}#hDsz!XIG%hni5i?n>5R$f%Mp~K1aSkgHIc-h82y8K$25aG<9gVu-85f};gIZy^Ffw6?Pxd|Y~JEr5-|hg=4hhiaw57p zVEG$IqqT54Z%@MMa1l4###S4_8jDZ+5ypGN8K(`yTq*~WZQVf#+w)AVy5h#dQ)0&9 z5#zL532?%OFLTmKTh&UY1wgBTji6Z=WX6}vlWx$#Kj3todv|{>{{ct5Hx>ayvjwgRWqfE^LrRAlB^B zHsw(;8r}sdGg^f5a48yf#*2|%)oq=>qSIwO*lcghoC)RE8BeF3aoDq}x-Uq6oC)E# z(ivMF`EIS&wDon;xIu2KKA5q&Mp&&j;bw(RnzumgiD7l2bMx(7n&PH7(9sICcE-!o zz-n@34V(1X5D-*o?nTxy_Zsv(S|;N`xeY@&r_^&z--Kl{9)#N`0-uAYcd{$TWp(?>DX#_eQUc(>v6xf851GwhNl+6XdVr$ z4uGgZ&tnUdGa>x=nqc1i^xM!x#dOllG+q;Itx-N=!+B+r=55lu8fngpkdBve#iQ=t zo7`$9n+J5Q8>lHILY0p}ibhbg8EifVS(UILMriZx37cr-shMoNJt2O`f{KPwo+Ohq zntYsa6D_~y31_qe`A!|!%JAJBR2h2=}|7%QF7vzm2Gp_Ft9-F+y9)Y5$EY zm2@LHtu?iHQ-rrunswU#niq zY=+yDPm~HF0}j_6j!jn?Za0=hMr@3S+l`aY8L2rnp2S1!!Jxey&fDQ29ENtmZDRmw zBiwj14CAz0Su9A_@e?w#UbHFq#*nmODdSUdj79J+M;0eWKJ35$(oLIAp4+mekA?q9 zxpQrT=`>hx$s3=Y+jwH$@NLG+av|T|-WsQNESj(E4Mx#q0Y~71jTMz_Jw+(Z&(I?1 z`fIIhStRcd6b-l9GZ_3dH%Rk*^owGK8s z$(^7(2<42knWj=lQ760C9YtPb;=AwLeTAv4}}XR*&)UX@UE?4g$Wdb zZ`X7@7+eSz7~>$wcIWS8SV3>ktD!dpLa^0lC^37t9SZFRCX!9ujRD|bwwg7WHk0t2)-BQQuI2ML5?7#gUa?jy0B|Qh2{eN!bn~OUP@jG%q;mWk_ zekh!mcMsru=oRP_-B|&EU!~3fBuHdEr@RlKB|uvISL76E?W>&j{d1CC{er@pO-n89 zHD75AAeBT^uvP3U2=mv999;p3t8GExWVso^aczPFXIIaP8X*Nho@NUqkw%bkjjRQO zMWO320Aj5XCXC?-`!BesT*}J&=g?#ir%@cDiKkbW^v}u5Nx3Tt0kV=Lf7l8-ux&c_ z-(g3;+!Z$^AIhcvL|W>%rfF}Nn3a2iJcOAcz+!BY&&Yv8Or|gdSXUBpIC==MZt^*v zDd>cQMM3?Tr|fdgrOxYUPI0ZCb}L3rvgS7bH1w6awev(}vAhyYyR(&PG|Ju?zplVE zPxM9Vb<=L8*h$WW@pFjLta!FEeQ!S}jAG=3&(dJL92Ir$tDAM2J^IESwaFlC!ekj9 z&7$SuILe+*Raaz6$Ah({*a@el$<)6m@Q^zQn=*-sTEC>s`?FO8H zKJUJ+5w|4pgjF!}Z)hHB&KR}ABf1z{05d>Mcr3@K?_8{PXNsM2ii^y}$|=Q8IQ8Z$ zao9KSP}{oYHLY|!w4nub!e}TSgOh8Z`q5|Y)>T?dWx)B_cNt+s4wk>qV93|9%P4=C z(`DS2roFv-mr)XA+GUhJkvcv(aJcTuXN_cJo0TN{E~8cQdY2K+A=%kKV_A3>pDB!l zfiaxhNOpA5H|!|-N;ZU}Y3yKIl4>0*NRj{(*lp53?IiEZ`JaJ;WPVT{cO;z!Lm4F7 zje4bq3F{e-Hr!hpK!hKrhqO<_{z~JbaC#*=V&;O8$2R4nfF>E!4%fr>AX+VoKh~q7 zZ|YfK<|Q`O;%Etn@euaAIvqyKEAuuUL7ctPzPea#5|dHm+BADK^n~0AIM&F#Rca_R zZ5rr1^Hf(;3!xJ90~m>d9ZjG$FbkLCfNeW>IbC(RDI0x}QuS0@na~NlRsEHm#b(uE zq~!Evoz+v#Ag3(K)w#_U+3RzwqiBj7ASd~D?PNSyhXDu-Dde9vR6q>s%BNb@m5D?S z1Dg-|2MT3K?gsOqJzt-M1qTWhekL~{j;9TX>v*~~S`Y#os6{_es0fwh?=yjLePQie zc%V=nDWn-;6bKTG%LwQV3C#Lrdp@(4V>eujI*{*|7mq8GYC8Ew&h&#)relhAavT$Y z?9Q7umH|dql_sBL^hwLsA|qRvKFMOEO3xtCoXpMN$}hu6ley-nqZ#C|&A_7kp`6Xq zz~Xi`kNp^=T_dk0L6G4_x|2SUawP{2$$Hy?MJq|f2#lK8R>|w;fNm>|>R7iz6pl6a;yDSrwaixh14rjKaN^TmZGo!@RX-CCf7prKQ$`wbsED zjtiTb4v|zOLV8bYw^2Om3WJmqu{4i+ARQ0SgiC0;{etdjZb^8X^i4)mTXe+ zgjLYHC|ffzYL!RMUO;t=rdJQvgFY?cvDBMFW7u<{H|pbC+E)ylFbQEtyKa=Xj@VtU zc&Pn3a>8e6WqmR>p6+F(z0|}!qcR#2{?K1m;Ff zeG~Ce-^Zv4kItZpMwotFcwL{;Vz>#H037s1*fNe$6CNGd@5N#SqoVurkS7c`;nEw0 zXXZg~?!6u6p~o+v6Gq**m%L;?nYd#1c<{&xaKa{-!S>jmn=l^ySd5zR7|bRCOknD* zx94Fzj_a9{(deyJ&bJf-gx%5^m^r=fnUjb148kT%g4^>>X02Nzqzy9<_7A*?Ov{L zc+^!s<6;S9U_?Las%o-110uIf!|tMEJmbhnN2#G6aHjVb!^zceKW5LnQ852AnJQ>B z=P&(CHdATLen--=oYgT@o`&g|y+9?K5>G@1!u3^Y%-&cEFLhFT zI{}=NrB>502EjT^=eC=Mk$fX(sx%E_52jcnS6T9qtwz%@*xORR>hej(+D^kTNS|b_ z(NqG1MD@%?*V7BS0qp9x7Pf=6We8i32bUYK?lX{@);LDJB!d)N8GuQK=!~wo*ce?w zqrE93h-YIST{MhRz$A}OdN#I$CjQXK*hHbo#_uU3oa0w4O6dPeKSjei{wryTINI$P z$Jhmjy@`f=&iaGLC5S?L;5h|E{nT9*es%;#HDJ*m22~t+&&}b^UL5eMe zNHl$GG=k_mOzIEj#&HY-NvRJp3c?tq2xl-0poGCm-hT1aD0Ws)rZ}_lU+C==j$du3 z@aGqLJ0-ArjQVY!JoGM~{}XVKm@kVlWgd;c;v>_tchj z)?kPca?BWpO-@rc3&RegQ5a0y!C*ODng-`KuCa*6D&NX6ydVwC?m-D#nSeT>Jc1NL zdS>}gzLGWv-0`s1rEv2bw;J_B ztOYDNi>m3 zzW4xq!e<)qjM0X@8RFcF&p2v=+_EQ!sB$4pBls1T^%rgG97sM$Pli*)#=#0&sW2Iebw$Ue!}SVFjx)S zv$bx#y0AS8mtm`~HS@?|4T`=>XeJ@TdBFBsYJ*E{qDC>A9co_|;IKES8qdTm2)jP? z6yb!WW|}s>+H0HxVYWJ44CYZ&)O_{%1PQ`z!X9(pP1t4VsfwgbC`*`@9oH2NRusNi zQYM6DKX#`jhp;(o&iN{VoC9G7Lo)GndT5ge<~vZ>ySB6$*YRYdG7rLVJfAK`9T*&g zjo;Q9>B#$vQ4k`8<6_RY8*IZU!ZSVkJB}@%aWYcVfC6T@3c6qUBt$>U=sIOf?&crDv)qTO=AShaz9f z)#$D1D6D+IdX36d76nzR(IhPS8_D0~A>tau>NT<)f3=iFs#>Eqm8F23YBvgI?O8nF z5E?iAEd{4luu&Y|GWAx9pJdlKfNG%=VQjArr{NgKFfHY$?2LLfmZ<|f%7SnNc7rgO z&D-Yl0xjjI?EK`Nz@N>_e7@j?$xE3>DDumE9^r+_OIZi8+8GZP!x8wA;xm;=1gJ7I zqbQ|i>M#c&Wk76k2D1YoIMVJ-$3xf{AI>WunJ#)Z=*$8WX}b?3SGs z?KCG3+XzMl8}3AMMEZ5Y!)-&$Y4CU}}9{_%Q4we+In>dONmL9V*i@8kMq4 z9d=%nC=hnNcm@$fT}>kbmXg!#G8#FxOudzWCyc^4!ap$HTE`g_IG?U^?id9`EK_gA$VuL;tc1Z@G=qML_wwVVw8X4KWVan8O;#0%`b%nVc4CIC+$`5+2y5#A#}nfg3+#FJ3bZ1 ze>>94s7Z>S@CqBMt-VAuGHU5li%|sO_BMpAXJKbyGfCgl_)}Nd^U>hadC+`YyNF`~ z47CsQDdW{#C6nKS9(7F^8?>wl)k$0V1EN}Y(&uEwS5u@%>dk*a-pI$lgJ zaO^2Yf*rPEg7O6esJ`GE%>pV{J%LFWoPBZ9}1xf|~ z73nV*Fn$T8f}ffGg|2@ICC6_+g?$Qxz2l+XF2>0>a&;n2VLyl|)~HWd@}^VR+1pZ$ zqRZ#nsWgS%AbnD)7)@a}NHnKfIRO*cN8`m{5Sf-N16iqWaE4yMB+5UwWN|Wu6>y^s zh73|{#Rv)J6WwSUbyfzU@m3uMVmxSEz$EC8TOB=Rh1_UAMS~Pu2$7(^Ihp+J#m0@A zeI~dQkQ_NW->YmULC;__s?G|;-|P;ANI#QZuyi2AA)amxFD!(BBR0xu@qy%vGl6h@ zp*!waPI)$#LY%VE;FNLFIj*_47)^tSiCUF+PK+Khh<+?yaJ!WmF1t}Bb zG}?)~5U6gDn0;2~C&2>bIeH?S^ON{TvLBMpPddcXtdo^21;|dL^OF)ha+c~4NVeLZ zpJXI~WUov#|!h#og|Ym;4}>9E8{NYjL`^#RoX3%oMchh8BeF3 zacF#Is+G*NlzQO9krO_*b;ic)k1J9!+8Ws^ZCIADMp$$@iy>?SZR{~^3_Hyeqp@L2 zB8Xe(V!m&Pl|1iUBD!x@Zw0*j7*1w0j+s}a(FNgDX za%{M1i8KV4XPc_T0wfi+j%Lo3h0| zH|;9#;OG37+o?zkjPt2EeN^#|WRXGyvBO>E9p1vkh{-*t3Y;A4x&hAWgtgoAuxRho zVrZgkS`C)~KoqtcA1@}|;)AISkv*@H#v}*?+c7S+-3@0Q*w4A`3TNJ6AQw2xGPD-| zRe?h=?;ZrhC1*IR=~IHBVw=v+J2nAquSH{Fb9V|FI1I0(wU(D|IS zc>)EM1Aiq`Mp_SCTdBMd5DZ_~zX$R4Ps;W6Fq3r-yNHI<*6C?5nP5c!iFxim<7L_7 zKd&99(S~uYPF!`OK1Q2aVw*K;dSc-6uP}J6Ma7UDIUIDm@m{R)3|+FJt6vR`ef(nxOYX+!Qr^L9J4=oqG$79V{C&oGG=$3f8TD{4F#rc4?T zdhs?)C8rUw2Z~ny9^-~-yHFp;LDaW1p6%x*W1n5s+FCINf@*K^Uc1&xtDdI<2*I}> z9gy@yyw<|2Phb_u>Z%zrzTZc#wekv7+T38BIh=q zP+s5hcZnx$Z{wBBv1q=sBZOKsfRVM%0Cq^*9F2;qyd=F$PpTnoWeOr$Qs}D;6D;vn zhNR$A`hbFAN~!*{Q4&fWPN@T%{=hD% zc=ASWHDicCS?VVhGy_4&By zwhNkuz(;5ZN6Fb1#OVzcsAWZcM@hjE0-_8=vo;=R=+sr#F9RGF0WG`^{0h~d2jKO+ zjtq@}UlIj4b~^FC3Lfz5i=YjyFD ztHNNEutG9k=eF6PPgOF^Oi^;x=m&>MNZrgyL4b1rof4;6v9orcBtbeBKgr??X z-6`h!RTYOtK#O)g{0ilI5V-A&)Nj`dTm-i8@Nh^tYyt$88MKd`>bt&&m!T2xd))+H z#jF#3;KQ^?3LpgEer#wth_DKT`oM=V!km!mEfCmu9!eE>t2a+_U=jTuR)dnY3|D}z z?jck>8EB>G;{}0M!b8!DAf1aSr~}=qcnI1X#jmx)odRmn1c_vi8iAU9z{VTjcmq8gxVydwVQ zMy>Vn3P1$!K~Bd(AW$f`x*wuw2+}<~wB|;k)$NqyAm|Rr@iR9FtCw{d3qg4ZesLDV z6WLw8`>enrSa-s4F7>)_0-!!g&D1Bw7znC8(L5Z^@=nSyOg5byQ^N`q90c6~9*V0S z;1s&6ZiO-yf^r}KrDh~kVBA(Yev=|02yY}|K{v&@dOMteAvpIXKh=#*y3k~HF!CrM zjOUisF3c>QwB%F|AxMabGH>QTxG3Q&-0D73K}8_nl>Eq!Wgj+9dIjwL9m_33q-pq|JCQN<>4aecSB&bc3|9rW)m0$+a7pWKLRemRj)KT4uUS8 zcMkPH-B7oHSG^l4fDn8KN zg=l@IIh27BmYTPUH+MaA3q%s7JU19+4{Q0vFk0u9x9Q&UvT2i*1WyRrpt zqZ9rQu?^UYtT3&TlJrVe79?*eG1){AQNH2Ig2DueWfpm^!c=lBR1De%)8+X4Ol#Hj zlg(Tk`!8xym4HneCjGzoasb5_PeQ0{c6yrRfW zakj?45>&^MQeQu7Swd-7w1x^<=UB?qWA{Eq&Z8Xs2AnGu@3b9K9fyeA<#_6VrKKOrai{tE`n1%Va3R z{x98AE}_W|Jh}ZHm?jPpu<_{JMpBlak|SKaD3{S^r#+r+NkZj?l&1uxRNu9M>7BnK z88c6xD0^plucsg>Qc|B)!aD;>PFdX^%#cNa5fp(Ebzh$EDEPRQh^9*Fj3-62x=U4_ z7TdgXQUocLPEm!!$$TAxLWO5%79?B`RVtmJx}i56!?K&fBa07BnyIMCmw(6B%`X-Z>e;KD(t_9^pW!8 zeyps(u1e7ww!z@6&D#zPbDj zGT&53ic+B@yN(vcFf0=$^=8qeTnrL3#pc7zsXxV%YdG5^cei<4;A+&mXibwLc$Q>4 zK}mEjHX48*XN&C32J12?+GxO<0e~a~#P(u&M;FvZU$niL9eO}Wpo=j~Z?;o7hMAVa zBEwH?M>~^1=-rpqxYK*C$*h&Gnl;K`ZOGdlbU;W<=8#KIBjT%tL-a;wlI2)l zYSC;*qs(eCR79%>VFjHlGj@oSp(054=e6ih$WktXz2^x>Y2 z_mq~95J!yZpjkgf(9cVh^ic|zop9E9DdqG}#GY>Ce1puWnuRX3=1$?BZspLE7AC<+ z^nIf^Xr(rEQ8enQTL2zwLvyVy1<(>e%yom<))vBx6>69w%+i3R&L86(o$HYK0JbVjimKf!b;XCtI~ z8qi$RdK<0(_^UX|^pMg%=@94asljIY0+qz*dSPY7$nB?+KOG4f> z+T2fDiCBVVkJ!K{wu-zR@JlQv1!bR)s(ga(2Jvg|UQfo*@+QLN>x&4_!IitWQxmwf zy_~Ks*vrWnP~LQy0!8V&&F`YSCDki`c@w8qaBo7Phs|U#^n+;u(MAa zEY<}g`?4s@CaB{5rD9Yfnov(y_N@g~K0&t|ewF9-)&r-{uPCw0mLi^DdtUD5E+wg^ zt|D(iPJydXcV^nj_wvcz`^XrLy;aGwiEggvzvS$7WQ-|qdV0QwQpp6-4G9 zlzqFC2q(C%PkzeV%g7j11x;n|U355aP2hra)*gd2d4T{!^5%XybrICuJC5PR0Ql zIHF+!ymYh4Qc)g(D-$@x3_l=s8qSN$cKR6xYOM330hLlkh@(9?Jfd|m!*4Vm#Y=lK zy-pqMh12B9tWRK1&=Kh3bPPXAFB%duS2|)Nu=hDCm|~P$Us+<2U-6a)>fA0w=%55T zM5q+G1KgHto2$TBIA^NVPB|Wu)B9bODFL!@u1_h*tU|QcP2mv;^)QZ&F-oN+?0=9n zKFW4>I6Vy}6Kr>s?Cc<3l$#vSYR8Y;y~POD6OP$V$D_?``qSo|fF4f>+8M2qS6VcA zVkLWmZa0mw;e6d^bC=D7ZvQulIMBxeqoO#$PQbCM)2zM=wLl1@&0 zPaJF&Mq(l#8{Gsx~S?d)iQ6PvRzFGY|+w7H~A>3 zfJ&rk$ctKfC20wLr{D;9vHu_L1>zXDKK5^%djdD&B9Mi?)9p(f<94C%6dVD6obUe^ zu9x))N^(}SlA?ZNNm{A4*FyqV91tn($>LbqMF&Kh!j{kx_~Oj&c=Hy=xQmvf7~=+5 z1hD9MiQQ%#qb}-r*`UUqCJ1!VQ|G(VI7VI+VlYL{q2&NC+BnD9b7|$$3Gl3ab%e(G z9yb@D#yK>iak28Wbhxa#){9o2nwpCYj}QuMru!v1#_gi%nt~(X_qyqp83l#PJapC;j|b8&PEDn9h_Bnc>5@(Hzm1|e zU>VjF7E$Mcw1?mbZY`848iMjhscG#BW}S|T1c%@}5dW~W==H*~)38gjD;?XeljkWK zf^xsBW<9sijXI$t0fu1Q#~aD6vb$&`q9ij~9E*a`O+#HMu@=Itmia#3?7a|l$gvO| z9+ca*u29x#m&kYs(!J2W%H0vuyh$Q5yJ#$;%p4Oa1mAwq{&S_qI%QgbAsBB>!k4LA zs)?1Qm-@;&?Pv`ffqq-^GqhJ1FbvX-I?lT;bs|t1=m`8>4x0bMboB|x#`fRR+WRrG zy6t>d$Y{g$EyjGz?|f-$w@QlFj2X2JG0RHmGf3 zxVRk*mcylKaBd@++NBTKWxg&C+U-pDV%>v@Ze?i}?KGE_D2&_X%~_*hrA3=WAjz&n zMMHO4;`34^qj$Px*(8-SfOlhOWjqLHt3^k5nQ0(((t5kw3MfZJRJyM-9nZ33Nj8b6 zAoaGGO*$=vLlExihDA#qZIzg}XuvETSOiI@zV7Wt!E&bWu%Vr*PjB7Wq|=Jg5bfO< zKN*jL?9mgOv{Q^V?T{lPIAI~FOEuQaWdK9a?S%(LTN;}gPpZM1xg4V*_-=$JFw?hi z+htpfHFKFGA~^R&qft%=znUr5^fm~GAlws;)*Ke+nsx|a2s+q9Za!SNEX#Ud#U>+Q z1GyLv!FU*+O`|jI(RiA@C#j8qw8-dlR&3IVfpSm;?UCdMSQ6vZF!dpzDsT}M!OOJ^ z(}If5cCjt&ZnPVNB4}?)v^$4iW|Q$Od&-23W>SODdwn+PaDx!Y2=0C3#oVbm)bvvb zhalVwvm#wOs+u)YjE3ObeJVSSYm-N5Ugs^QG&A$oDY_Huff;PF@3vK`_xfyzwh}-@ zgZpOV!J5kgQ_}_!4neqQwwAqnqz(5plWW$M0EVDD01x6ek;B@&ZZ0!G1m(ebID&)k zx`ihOnVEU2$(lV{0f`_z%pSY8%9=Hg1d5>D2adh)P%m4Z)+{{;haiMKLq}bwl}ydH z9K)kv3_EU3vo1!&Logne_DOPB)@$0O1d5dB*>Vz=sV}zoT%b<=xo6u!sB677|_W{G_4@?wG^`6HHEY! zu|zprV@c7dC_Yz;CGQm7oDW-xNP=Srdl~zj^)!>W9bXX|IBYZS>;|+SyfeYH7)8C} zu5eD;X?Ep>&~rXS6#=M3GSSr5*$PauDBQvzC)E^=ZH^@(8IG|3A#$>u$q72r2}$QR z3{KFI-WQ^enIueBZgo)?TBN3J`b9|AQ z3zvHmouwRY;&stnI3qoXWf9szbz*yMaZX%j#aov_(e~PQ3#6ygKUDm9~t zA!df7)nZ3Pt>8q*0&4vxg8)XfdNlR^ZUGl9(K6F*ii{vWCV6?ckc(#A8A490N`m=- zvx-L;gdX^`^g%7Hra9oOhH;2et5OcRtV#sXqQxm@d7o8x9Ev?z`Q}hY0@BW&1FRX9 z#9{7r-4-f6XlHAu92YB5VgFNP0^XLA@Rry?=-fuKvq|3EyYx-DgZkVw$aRQs{8Aq0 z5@|uF^r>3C$Ra!99VxgYL=g9}t32RUm>B7N=IvWjm_km6^ZJ4a&X!6IAyT$b+R3*p$}Cq_nDT;7rCO4<``OapH@7(jNkHrgxjrWKWdoSA2}^A^5`UyS8SPcs%WS1P^6bIHirkEv z8u%GK2B^NIgr}Gk;%W92c^aeSh_5M%$1#OvLdx+rBDAs;je;rcSsl-lZHJ@zbUewP z)N6)VU3pOyS}8=GtX#-~N3<-~VEbZF)RHw}KyVT0A`fO0ID#v@VDlgg9wBlxE0;1| zw3!i!mSj=Kr%3l%cnISCBv)KO)kl7fxUw1HyxGz zNrpJ_ym8W;Z*!dY^T4#$E-##%gu2lvrH#bA?eg=0Fo{GZyV$d~m}8h}n{pl$;L+EP z6@J)KWfNqmpDP;I&lPlr7V77U?)lS?EL+#lm5uA?$_)Knc^>s6%O?8S)eR@}mD5pN zCqqfAXGyk}t;#0IwsxU?2GeEh6g9nVTU^u)f^V7Jv-eok4ukq-5}N5eT5WTMK~DZu>SxOK+Hcd7X0WufTgxmIO<@2jyDjCdiL>qa?9_T zv|E2DoEJ6yh&*Wf=?BJ=Hn*81wFGln1N$Vw&G_3jxzLFGFtPBf*D|Q)6;KI5O z=%{2nt`cb)UVYknNeU|71PlSJ>K6}0xj^*Gun@S{r)H8_FO_H{^}2eHyX4bWDw!a< zp}t{?aD_e`Uz{bL3pO!^-?Tuc4AYRSP8AZN~<>*2XjxPjyokKAtjW=uF8ILrf620xs4&VY}mbM z)N^09-M~g{1ong*5I^3got$AA_l)DB;ojfg>cot4@e+DdjoxD9o#1V53F?RmMNwX& z3)t`w8-Xp>PQZc1OXKmtlg}zzJ7Hej2}VLgG*jRezg3ExW{L`vkP##0@RsDBo!9e4 zvlXl|MFL5Pi1ro`frW*hY|Bl1ONK~D$R%XqkA<@ml42w@#A1YLID>VkZ7=PuqV*K! z79}Ah6!tmlJc<5zQT(qQZbonEc-m^mU~~OiTVSo%C|7Y2y&g_~bPa$mTOnW zM9?1K9gEujP#`Uu5nqm!;~^;bx@k5Gi29a3HoarLoxImg``8gay+OR!O*6_7KE2&^ z1nLWi?InS;UI&AKBKCM3esbF|5|Hb8CKVS!eH4C`8W-+Le7$%XMMV%FhTq&Z5`>QH z`BE7ZK^t3f+Fo#{-r822f+BbiNlgQHXp2_Gl)HZk62ltyA4-OaO*TaUXC4o|!MV0D zPtagf1o?eANUv;)uq{p2EKDz@3xWEgN!ZexN~m5EN;1!IQv{=gNx;6y+Kf`m3EGR3 z(O`cch$WO5oRK6ga9?;bTAF+LDi#4_29ju8bY0*#cBF$B4n=(K_70J{Cbb`ws z(~ar#5(jrx)QqP{l;T8$6O^|Yu4*BwDN3CKV zNUM3W!V7S~Bqu~r4A(OF<5Cn9tHLE-X+(&Kpjh6frFj-!XjbYJaQU&ib$|DCY%lUFfj zl2>BZLXua-YvY_SE1I=XJ--BSLQgpE`~w7>aB}Rp_45TpyCC19|j@HjCB5jKO=KoW+cqS z)Lz6rTgj0O{)i6U`nwVyg#1lBwCj$Y7$eb-5UXP5Esl`jKI%B=EI=2{L$GM2Av}Wk zu+!+Wz*{sA!2+)uPCnu`j4a?5jhorPRpZ7t@$l<~YsVZRv5F&Z1H-QMtVM!v;sMnQ zSI-0=N=a~h5ofD3o@Gak3jIvn2bhK49Yw=rlmtK5zS~H$ zfbUlOTIe`Pc!|iX2Lp06@Dy?5&)9z9CMcJfAU*f_%o` zB}HShw)vcyh*3UgeyQej*zc1)-13hiN}V(&TyPYT`lhVq=hDR%sFEU0D`|nY^`nTC zca+)bD1vCc@F*gK#EABbcG637U>jeBax9v!ARIjxK1F<)$zd(sa4qV9p&K05lDsPC zgK}8Qb(ol0MzGW%Cv*psDv!OSWCfE#^1|@2mV)F+ZWOH(EJ#DmkK}-%!+eAkKFxH0 zMtrqJDupZPF(WedCRU{Y8luCSIZRku#Yj2?TNIus)M(PT6qpF)?e#P&s+OXCeT&e+ zZv@Y70kekc1gff5C_pf5VgFjM3#@sL zo_IEoV0-%lzo5TM{leCGTmHBOb7&sSBbHo|U(nLa^b6WsQhQkvL=2?RFBm3R;uj24 z$?*%jJBwj_f45GYU@Nl*mx`C$eZ*2h$P*7xH1Y0qlcVr9& zLAE3B_*+A^XsHSFfNB*I@O#uW2ldIxa1C!zvcB}gfbh&H< zT!)et;G$Is`ge)$jX)7L2NO2qQ3q@Y4qxe&^-p!-TBlTRG8bDmnlM}h1OoAT1`)hs z9A2wo6-9^V=&TZzCSnPqof0C0?Q`|C(`?q8GzO|dOtIiRRI`p-1auQDG>rl_zx^OgfkVcRkU`XP|ysH9O zNl_^P0`DY)H<>O*p^r+YXnJgJrWT_i_)nDKuUFL+&5o%6U#)GD;xik-U{kF9#*0rX znP_!C(<%fET-j_TPblOQa698BbQ=x`gd+muHe-!C!xj}4Oi=B>(jPY)dN4Vz?C2-m zcG5~i?@AR`8dNU9v`74wHXmzfYpazfjZd?NW-2Ho6;9AyFJ72W7j+b7S@RRIS%}z{ z&vnXTB}9o>g6I|o7LIP6&aq5l4`8-f;(vtM{rC7Yb~0&^r4?<0p?{ZTXb~1e>@&#l z&U`Vglj*Lo3oHct5n1n1H$G4oTHp3%hmF&wWxMDof)b4j6a*-9)bZKAU?AcZ7&@!0 zVHI-Gq+CW)#w>NL39{W9vO4a-vd5&$CfK%1zt=%k zG`ydiv8XV*(cmmyrt$31`-hleKf zl^OtxCaB~ZAeBz=B^nfOtil5QAIpqWt1FspDBy_OCN;2Bsjd>K1kVi&Wz_50o48tqR&fwrkW2t=V}Rm7WDWHcO;*b* zbowzy#~7By1Og?ozru0-xKd|BBK8^+UaM$*OD?`V97KNy5HlQk1luw?szQr)zRv@z z11Lf%YONY7t%XtmAShW|t~Utgu+A)P%-MrfOG=ftoCbqHO|o5uTBo62Nue45f^t7I zPFQk7#un`rDhg61O{($<#w63H;~|W6&Q{|Q&y{ZPDtnAhGF^pH2DLvMXU`ytHJ=-r zaSk^SCU`Yw1yg} zszg_aY=Vuo>O~~Y9+z5#t2CX3cmjnjYMWB?&>S?>E{z&Iw?ZMmj9U2Xms)vc0JZWfd(Z%d34e zF%X?Ge;8M~?fy7t{;^dfp^C8y@dO%c#Nuz@96DtOE$BMXrZ!oQ2cy48< z#1@Pp)iJ#)&LR~|P_ZGGF`Ny1dJ0oo$b?^eO^Oh~$D#ECNy5S*;RnXdGx zp~Wf<&Qvf##hPyH$F(S^IWkox3`ArTY>Dq0!<6c!^_s{k`L0wl!NqEH-p+t?N8(94 z_SvaMTB`IL6%Yg_8*YsE+p4!fxyo>3B9-7_{cQZD&NKqiNUNeRMS3y5YI6r%;nSuJ zFn265s61gnK&;}9bpS+*tb+hAxtJwTrGp@gCdimOfuA9?Hx1_FI!kt{xD!b-!NnT7 z(yy_rtJ6-a($H1K6NJL@xaQih^ZX*LgR!FJDF6sck-u@t31D{sdzUNLEjWwC-F#C4QN#cW2tb0jx~Pag=tWy!C9s8%Y+g%NgXkbhSlnOwN9Q#IXW`4Anz%Ij4g=qkyQm9g|s^SSkNt!V;8b$IEi5gxM)S}1}Esy!=LwR;iF^o?UK_MTjABv^KEW#I(Y{@Kc+2U}CMlQ-%k zv(%X)pMbk=2CH`1<^^?JwPgcF5=ziKqaDrKytRya8f|7fe{U|Cq6r%U>1U3_AwX#| zznnM`du4kXPFTOsLf+#_Ahj@6CMfKmv_9nkj%)0WheoFyB(KUlC@QBM9K^)THd17% zfkulal(CnTJ;Rw4qFcjL4hoVZ8}}8pvI^43*}?Aw-^CoKCXL3!sB{~N0wLOj#Ul4x zkdD~NTtY>3dYr?K6M+%o5|2_KN`qV!;x0%>Ku!>yd)+0QF4+|SlWp==88@sLiI3xP zs_>$DA*SdBE~0YS12f*hw*&p*xK!fCOMu>?=8Gm`SYVI4U;vDO7xt3W1P)QxwU-1D zfxB0-`x;P11HC9BT%=hE2Elhj{87DPC$JSol!~w=5D2dQ?1TEnN}wxhiY+W_CvqT{`(I0-xqO9=Kd4dUp@BURqWxf z;z0@h|6mVa$o~2~`|ri{q?u(zmUE12KL_%vj0BLetQH< z^AqghH?qHuvfsX${q+j=*NDCHuk7LD@V~`k<8J-gxfh(<(!Y84rJG)GZsT68X&FE3 zzZhz(-J2F0m%@_U75Sz6$BWUzQwwnZ;}QG(?VzYT``-nk?(Dw_B;DEX;{8v6oICsf zh1X?#@}GG9Eqv$C@%fE-e_{|&zRdc6J?KG}!Y|G{@&g7;sKDf~WO zAA;$;5$`{PzrGc(Q%vEX@%nlEbp@}t;;;XX*9YRSpTp~0@cO6t&N^OSkMFz+pZ_&J z`4+tYTSRgRKDh~>d>rq89N#~QPyQ0`e}+lHYa5^6h;MGkCp+-^*ZBN5@c!@d`f|K} z5}*Gg-rt5_eHO3p#%l|&--g$BBAzGXo6pCu{urPCI^I7LuP?#tOY!ipF72p30 z{Pvsh`CsAv|KR;S@z;0Z{c|w2OHj|7@c!@c`d<9?+wuPA;Qh1xKgB1Xz$gER*YAMq z+5T_g{a@j)SK;-$@X4p~x`a=@gwnqr<=%|Xe;e;t@YjF9`%CeDfY+bG>%XGhx8S!w zhF`7X^{_FAjG<@=Lyg!K7LwNl;eEv4P{{_6iH>UO& zeDZ93azA{s1)qEuUhjp^e-@wr8s2{z5&i?-|200p1Fye|*U#dwUxONcCZ_P4`23Oh z{>SjiC-BMd;Puh?{4sd_d;Il@c>j}l{{*-{+y8w`^RxJ57hd0sPksj9yb9BKD?a}| zynh#7KZw6R3$L%nU*Cz>zrk<+5AS~j-~1T9^J94b9K3!v{`w%iZ{hu);q^oK25bu8ke|{J z{Y|_+53e7^H@_d>Ie_;s!|S8)*GJ?1D*pP>*@nOVC|=)(&v)VdKjW{rRBPJ&W(Z1+M|TdA9#ZeDibo)xY37KZn+$}H_|>}+$?xEk-@_;G!*_lf zuY2+N!|?hAynY$q`Ahuuck#&&;FD+I^(FZHQoNqVCy&Q>eg&Vr60gt0=X>z}K6w30 zeCO_n{5$ch>@{;ha@ z8>TbIU;hw)y$zrLB0jktuV0JT*WvT4@tp(sE2k`ny zeDY0reHiNP1U|nzzJCioe*`|?g3mj6{at*%f!ELD^$$?W1MsUa<2yfz*WLK!xAD5b zC;x-j|HbRm@p>7ia0OnUk57IcuW!QZAK~+-%Zf5h;RM{ru?&b{R%$$DqjB=uOC6= zzlgs+7q8dh_1XCAcD#QIrgkUXpY4AwKK~WG9>ibI;q@q9AA;A1;kAcfJqxejgiki( z^&j!c590l|;PuDx$=9K-?uGYH#^?Wr*CAd{;q|F_eFsW^Ki+>o-rtV*ci{Cfrtl2B z{|erp!gr41{U6}h6@cKr){t#aO5P$tU)bnw?-;UQa@ax(BI==JEnDS1%{xm+h z0q_49-#mxchv4)3;`3j|`<-~bA3phRyza&)@4)*__|;*2@*KQxNN-6XH8x!t1Z$^9b*M6Yuxq^@I5B<@o&N_~g&<$p?_>HJHw$@%aqjc@JLi zh1aj*^9{J3?f(tF`BA(+7N7qu-oFg5*W>l&c>NTne;dB@CQRqm`26$u{2BQCZ}9mw zEFHXl2H$x-UVj*$9Km;9iPx?87r!;qzDE^&NQqLwx>M_|9J=m#gu~HE=!K|2RH* z1^)U3eE$SqpN!X6;q&js`>XN#HTdNF@cy6h{_8NcH{QU(p6w6t`8)8(}C&_rtRAI=ufFzH=j9Z^0+G;&n4V`C+_&72KcgzX$I> zgXzrh`gnZj4)z3peK6jC1@A+={s%t!OT_$Nc>iI%U*NaT#Ov4K^*iy`oALSqeDYwt z?#Fa~9`AnvufKy&-h$Vs;rnmJ`+vuje;wcXBHsT8UjG??{X2Z~5dQiPc>kk#eJE<< zZg~G}ynY(rIf-9w!zbU2PwvF)lkj;DuTQ~igx8(;=J((`e}Ye5fKT?}^$b4wGrYbM zo}BH!AF;h1e|-TwKii++xA(y7d-3|mc)br^HzCer`2H_pI`6^zyW#yk@VW!9KZWmq z5U;!O$v(VZhfh9)UwsOnd>HRPhe#fPPd*|BLYJSqxU5?f3A>Rrusr;oGwqs65+$A>Mx;uP?^yX?!P+QJ%#R z<=Ot1@%d)FJ`2-%7rt`~KDj5}e;A+tI^J)?`}gCod-2KTcz-=UzXI<+0{3_Jz(}{#QTrqn~%VBK7miZ5$})U``?WBufY2e{`#-@f#i^5TzApY|n;11u0mB;cJEjY%o7`s zS09-5>H|_5@(1fT1A}XIBoC$xv`@C{pKve>0_MTxV8jRSJOE(+2!hIrI(0DglRwcv zc~GL61#H&=3pBzR0rjvfP+zZ6);_+a4FI37Q@>CA>FwckOvOAROAKZNzRPS>&g5^% z`rx5);>-Z`&$jOeM8B!?e*`6y^WpF4AEM$QR1e>`*%q}4z$bncO30gU%PS%9$p~Wm zuoztb>bJ7Kx^IjynBfs%vWT~2y^N@s4(KPB#3it$=Ljk-ErA&yU7qvN(iHX->c9ud zIyY`O$p39w;LvawxV(=ae+*zgT$lJwG@A-Pf2967swMqsJ|YD|3xYMQ&tM7 zkx0|Xzhu2DX@q>SdI&V~X+3)sjp*NeM*jv&1HcKVu;m$B1wc#z^Y(LD=&WL01{2=Sx}NAVOx?Fm-cjJcebja@9E91KRjLo!K|Ud6gP?{t zzMKVBsk8DD_`+U5{4=^#^zZOdo>ThoEScDx5$ehKbo+6T_E^0vJWA6~-p7yEKSoyw zP+{uAO1$EYW(gY2|7M}ZY8k%Ec7m4#8Eq)3TF(0LO}7EPSL+CsYB~4Q@6bQRas(gb zw%RVu!pX|RtexZF@0IlpwQc>&?MHyzCLN(}+d1FfUH=ww!YQZ2F>Ev!7bNQU?wf@Z z<&kgN<6gYo^+Kry?w|EF`Z3r7CSGDBms~WH2W5SM=EaOUP;h6KQ1c;luc96mAxhFOEkmz6gFsY zFHeKX3U6>fc>?D2xwxRH0S*>)fEj+X2`u{H?|-Tb?|(e&eXQKs3dN+~_Isz`-G9$| zS6@re3p%hi92S;z+i=RoY&>msCdnNa{f1XTa(C{3?^e{(azhkZH8Em~*x0t5}RgfZF5Zl8AuU=>+sizox181`+Ij8!eBBi0{`$ z=*z%NMGRnJjOyYKdz@SFW--PU38Ae6UViB&)*Lc1CMCJnfh2j_G{V$B2&vPik-qFsS4^=0t(k<9{wkJ4 z2h4Wct484>txQZ>r6}v8u`I30bfUhvU@{r3W5tcx1wJqyP{g$jviy(fT=&-(j@uTi z4P4~=30>X|_2ntPA0>SucdX^~kv)+YLuZ2QCuM0iuR=a8=3&nm>7ki^yu~M@OCH|)_(SZ+woXk+_S9DqW zB2{bG3bHbF`Bhz-New589V4K6SCFQvaMOOxjo(~9(?sp903rqQ?z(7`NW*-pWY6xr907qSwc zwzG2J`MLm;{(rWB>@0YZF2ba9o-0E2b*QM9>O!j85x558;xPSJ=;@nuN-{_Yw+6q- zoe~stRu^O9vP;C!ng|8GS{G#GH(^AB#8N--TJW2ngdUEq-{c9k4j-m|6I1+j+-I`) zn_8lp-^A2EqxZ;+j3py^)o)_@pN-Sk{HBrL$q+H0t0fnOd|oGERC09*@djgOlEVvm z<%%M{sEaUi{<;Xo^ue$g|5x;4aqcRlf{_(7i9=0y?r)I}J%{|x*nLUsQr?RKVlq7TgLOfd8MN5v3)tFGZ94z>E1?S52?ar_0*u^* zoLK8H{za<-OnG-)#7I?Or1{*$wJHIn?9&Ufe!92bGb0Ki9P}s@%DFL?qg4$x8L9Dp zlyq2Ur0?ru#Yl1DDCJlzMRnpeHK+LzlytMs$0VLrkVC@drUN}F>7*{n$YbT39QC{? z*><=*m@RPkP;wS))(o*OhzWkscGXxsL6pZ zaoH9>*2NugqRKqOpXvflLSg0V%&`B3F6&@Da%s)V%v0`MVfLNTMVbU}3+SmLX-$hl z@6d(XyGNLQJY!=D?dcds&S3H{9Kgeyi74lVu^e?m&!aSr;>4vEUis(CKLhpmjSxqZ z>hH%CeaIFKkk1dtVK`DrKejxD)?t#yu{aI2DtV$oGVOM-G)pJoAfKD{xS(ND-L8_< zNj<427@-PJDJk7nHKpZHNvTsgC26J-DypZa^duv8bk-B573pc2X$mIPiuqHR(x7rm zD!*~nlwiAPifO8+WM)zmIM<6Nwa}9?Q##CVQqA*>o>t2!1Ea%RZRjHgOcud0?*vgbbW zr>}{VQvK=U4e~NRdzz&5+NvqVQ#46R-;Bp!N9NC>yLo+9 zQu-tfsq#z~&Z(QHCjT#w{9nT`?0Ll^sTpb zvO`*5|3p?gCj4L-u9$>~{C>J>O4Be9^I|cjpUXQ6gKRjS}I)t}Q-eVTQC(Z(O9`zAeId(FxXK}_|RousPj;MZKFDmM@j>u>0(+M6tC zEMl_1ttV@rVYK0h>AqD@SD&z(7J&3lE(%&B5|e(ro^;W97CA{P4N6S;_w|%3D1)>J zG2M6R>DuR=p6q+{WbJjVH9G%4Z&w{4SCPDfyBzNBvXBJ#IDr^RutSE~nYX)>j4`s= z#SRX4Kiu8j;qb%l;DF=caQ&f&`>(p*y!X2MtA6ulvkQNO?54k}udA!8tNXPux_*Al*K-WVsWTyJh11d2>K7fz)(Jo#+a2zls3j7J000({4jxE@EfL1Ss5Z%RqTwh z20!x{f{Y(Dsqhtm8Lxqr9|N(`5NZ6N%jb=m6`J|^k4=R;`dH7}s0Tj*7^00IL_Pch zjHzZlRD%mUhGaeUzxoDh!#gS6(Ap4lVt}`4?1pPI2^M#c%3h52+cMt1ijXZ4+Kxs4 zU5PgL661H$rfl)E4GVuz35U-%cwDKu{OG=n#*^fYoRif&f_1>?)?9}^?P9r)DY^Dk z5F>H|$;LE{Wj`s&#-|Pw$kxxwvgl_d(Re1Nx#(Q6NS`f@9G?|DFDdAY#q}u-OMX$3 z+$2_szOGj;2!*WSWu?LN_r92>AzxoCXYv1*DuADLb$V@L1uE&zPCDXQNS6)zuOt1w zbf-W%owd$^jyF*UZn;lhgFpuz_)GorBXcx*vcl(R7daNCL09SwXqKSsV8|N?;iKnW=}NXr4IUmatIs!S7Ns)TEM!e z%>i5jfqc$CU+PR%OC7aBx+iFNHr}2Rzr~~G6mYkmN(7fif3dEca3PmNBzs!HZr7AV zP4hGzaLZ-HX*Fyb%hLd|CPJ7Dv}1b{GCE*3wSaaCR?{K_kkb(|pK1v@8DA*n!v4zb z=1F|`DihzYEX>d=h|(rlS#Ig5CrYTz5#_TIys4`hD--kn&BW?|DBor!puR=a{A?>K zTh73KHquz^4@}N z=23=B>uUsD_TN%ju4uZ7rC*myYaPwPYPc)*d~V)w=K~>t&zn6+y;ScV6RZFg^MuE>>Y_2SB1;sWv1^-0Iezr`$d^~XEc~q z6$fxP1kR;=#p^Y_>LZC452w6(Biz0Fe-c6)P6gcG52dQCiN>{tQx|d_M6#(>`F45* zIobxqZS%QA(6Smr=U4aa9FCfJtn8@g!;fsN<10xA2P#z*oBtcByq3TL>Y6Kw&JH*N zSP7hr8;>{+iu3@udj8w=fbS)0+Q?yp_PUjr%{hsJkva3WMh+1+55jz6rA{RFQ!`=~ zsB$_H8;X8!6O&+@AdHC>ylPh`eStK>(yvX3*`SMVA!5H^n^?p|*zXAA3-uZo)nPCn zB#pPM$xj3%;1?=&+72}>V=JU{j*+LtW93%{^x}iJvyuSeRK==vW@Rr8U?{ zsFe`KotespSqD>^Q=-H@K+PmQ>SKH#O9)!}HsZ9P@5=g>Tq`JZnUJ>O=~||10$n*Y zWMtq&3|~aSjafE-S9haf#h1k_jvb0OJX&(brF*@KVqtJt3OMi<2p3jnuq-m*7!^t> zm20^IZNR96_B-)ivft4=(Hh3^qk{W8Ox6*mZCEzC42prr5zw@p$=bpKYZh{%5@N=$ zHH_A?rKs!cxJrQqSRh2j*ew!cjmc9C_|>gg zWAYT)8rNYpVyr<@WNX}rVq&bJ#DFz!k*u+@%ReUuo!v0W?O+oAo+|Z{P=IWgyRbs* zHs#_l&b=thY2%1iwdRGBN{#{dqZt2=&tUA(Ldldd;V8h^hrlqrjY%>LL1mLXiu#@1 zPYIDd<#CkaY-E-Kj`Ea}V0RmHD5%nt$F!cEi*~HN`Z)~+|0Se06qp_wVcMq1@VAv> zV<OxA8m`Iv-SGLQ7q>iNe(AW4ms+Zg!)F6&qc2+u%z=PNh`(F zQoYh0&iz=#MUn{aEG{xV#3IaoSjMH2j5rz{X>ECmMO-0?;C<>28lChAIeh}=E1doJ z8iF9r@~)QT@rl@YdBv<#c7^0z~^3AHLz^cG2A zoKxniG;gk@i_yfHiQO*Ai6chmhKpXFu1U*g)%}0^CRrAEmn3k-n40Fjs_9nuN)qDQ zP|cfWq?L#xn^OPiEvlvcvkG1~*Mb+z6A9ousr>F~_3T9(ID~aZrvfq2G0}n6VOJmW- zgwe(#o<|s^)gwcxE-zo!=3_g(M#wgE5Z27v(4!;U#un5w8dGVNx~f8d)MZ)LU>K1# zizE^U!!yg>2#4q4k*SjjrhBBR>Lpsspxp&ri=aJO#ipoYt5#KXQ^2UDd=nYMw?N_B z&5ZETv;b--*cugRqoin{?%r|q#FN#4+bKClN~HynSTSx?T#!cx(qT1A1)Ks+`U1rQe$00#p z@HPo{rHk2oWd6+S)E6faQtQQ9LKxV-f#MwoUQca&x|r^?giL`tX~|r?9B4#lwF}lq zh!O#_Ojn6shEmtj&~t;ShQ6QyS>EnSo}K*iju_EGZJ9ddniMc4S$j&d1Q!d~S%;P= zk1cjnZf}_|B}o-}LLjwV@wyembcWv8qgNM88A|xWESoFcE{WvXuv}>+GFPh8D>(E9 zq8IHbVqu;nOdFf+R#sC#Nlup}hxbOxq%=9|#vA4NxsF_hE=8=U+}&v9>5}Z2R#vj7 zrF%r4MM;*>>4WxAvI;##N3HkmgS2A3Kwl~)8`dOg>tPhpxv5N$z6(p@W=P^ zXA~Ml=rtoF{9f=Nh2Nr?LxC9R05qbBLt5q(e-5a}q=<42Ua^GDc5M~-@ShySlZ&*mDm4lV+BBIizc0CJai}DjKW8;OEmurea?v-i zjyuTbS0a#>a_GILQM|E)r8d^k)>f3Ts-#w1j|f2AQHu34En;O;9UgriljW@;$>Y!X zel>z2+)UyRzlSQbzF8S9mYAS6A8TcoEMh}RJFjN?+C5qls29|g=d>mmIMKKFk@77~ zkspQJhsuNQiCJEEVVpAAr zwWWHEUi>o84X~_{k}NI$$H=Og1{)(ua#pd^E7DcZ^(tAb+FNKZ<--ujw04k$X-iHf ztxgpTSc+lv@sbcNn>2;cgLsWeeB<{S+E!alm5Nd7$J8cCQnd`hluD1$@zpvhO{hU~ zN=xGMUMIcKN(p&GoYzw}TVWSToYQ&BrD`?TPIvwXUQB5q=SBv_-6fgYnnYM*8qlpZ ziSifJl|G^YT@FeDl3&%;o+e@m|0kscL!u}v%Ap5o=|L%8pG&pV!_T=)xX+J;el7{s z7XBom+?mK&>M=6)2_di(3;aqFsLlFBf%%epv#MS+xqTyvlDc?g^0v;3=VjIN4YhFB zIn(-Hk|lLaO%{LbN~=XqOW046FfE~#>d4VG@K_@@GQVFXky^Iq7TIuLdKJadB7-Ii zbJHe%Q!mq@GcQ%*Rd)X+!Z0>5-`OOg+V>@YOR4_xJU zl&*ByL*soZ5_Gh!C{E`1HF8{4c9`zok$f-`xqT;c(+57oc$yfQ(~ro>X}6K;K;_0M}`H+vEoEf6Vsyn&SI17q|oE{KKks197898IlSpVtk*if;U zNKYS?tV(j0XN#1%F4+Rt38fl+f$-1xdD*a8jJ92-HLebkGS}sitFxtdN$2ZAP+Li) z=WOXnip*$LWF&Vfe@&=y!UKlmHIx{8*;*UL)gEjAqRPP5uYO3Q_;Uo)MseQfSinCey_!iiF|=9}NikUbOA_*@D5BGewoYvm$M#M+mQRDAwE**ZSVfg$~)}vKF5aKUtIK?a^iP2Uy=*_VXI%E^(6xTgK)c2+^tWoEE zS-#PO;%ziIATF)KxAFZ;o7n=itz1#hFsof#VUw}?ERQbs6Sdm+Wfaw&+b?J^7SSn+ z(9DM-?ALf%&NL;*90>UMfo~03h-fd-N6YYAMOr1EFA+ww9`6RX%F}zrs_p@0hP|Rx z*&SqVlY__sQk89-H z%!DlcGZCAB(m7y7Rue!wA!t6IlCd*`O}3iEiNi|3$-o@_JCQmHyRDN)i~O9%W*8EH3^Y`GRd_CUxy%0zq*O+cI3tRt~mNR{;sWFY4G zjp%fvZ0@j8n<1tbG2CQT+IHzhS0FN@^(97HlUbPDg4Fv)PJ!NMHJOAOgDBrhHJWl6 zR@zYFq+3Zx+&337`W$O)TL~~7Hm^oXs>;qQrjDXgCYB(0s&d8LY8& z*2mVxu;mfPzD=7?!%o1YHjzkazO4fuorMTpidD9J8z5I8gnfyIY2BjCXLE^<=1Ugl zwb%r}_CDGE_&IbKwZZg#`sKIJG5%xR6*l{~bg>)fL zxk0pR{PY!Q)H@{dd9IqFmBR*i=$o{}J37uuDOYFrUQJ6GsZ*>C_{`4ck1 zU!?O;%#F{@Dr8`1F8^1lJa6sG*30=^My-ma)fr{_zM-C3qV;h~Rt*t{OCs2#eF*40 zN&@f{n?yH0tI(1(QB9@QHx|-sC_Gleb7tnigOyH@B+R8kx^~YG+vjAdBs)8mjNy2i zgyU~e77n!AWVMO}rF@4t7W<<Ld}CH*3;OAr`k0-&A{9yN!-|pe9MW*JHDsJT>~w^ z6YQvQ-PpAe%L8)*Q7`7yw&K7AndlUWD0`DZ)Pin3C)x6K)W+xefT;w26TzI7Rq3Od zL2ws|pr3zt(Jcj04#(BmT`H~lMAgJhnV0IZFt)Dc6B24sMDg4*UFp=WO3JKA-RPfE zH`nHtCS=D2h|?x0-I`kppv@5!Qp$zjMw!yT5>SdDPpR~KHIyz;vOsGhh%-xKZ;W6} z>Q#x9mRZ`M@xM}k$)h7#nWYFTA&i}>SSqSaG;l%Y^&g3s=2RAD9yK>O8|7P0C85qk z6i@2VR{xbaX_Gnwai0pxPoivVQiqsl5X0jc^=O*>rnG~1U%XE$wv`4zZ9GHRXPXmj z&@M0mw#G9Da5e;TvownHclnQT$Z7y3@4@spjE8690UFff_0P9XO((1uVJR!OH9$ECbGIX5xok7gKSa( zdo5zQ|59gHCxL?g`~0#Lf6tNniq?NE%%DlcZTzm#+*bdUP?HeF{kH&|&X+i8{ntRe zwiz+{c4uH@^LxJU266z;J@yJePX}@I9f=ntakF^M2Bpp> zluXEhlZjFZJCa37096pwSUCt+DcD5QBtEDhD)SqLrURHP0R>*J5HL_C^FV(NfM$ z-XqDYOWB9kI$HV1r%?GrQLe?rMjU|%pGmZ8$4u60#w05L@-Sjj!B)4KScp0zxclVk zsA&*znaa8n6@N^n4e>_NHmRsOr$FbP=z4`V^=C>gzczLf3)gjAGJ^Lhu2L&1FJ!uY7lDvp;_ zsGIZ?sPHc~p>H+yvN{q@+w#qK>R7=^l7j7LP65}&c*l-aohqr?y3eYhIsPWe-!_?i zc2V6_;Z3)VgUwunvm^~0Cey(44{kNXInR|uZV)FjJZ#oM_Y!zBN|ov1^t4S4sV~w1 zIc>q?gX`PYjgb{pl4)t1i+WZiIVV#7p~;DBC|eHQd)rx6=d3cp=8vGxEcq0b+1MRY zo#l5qwNpMFiK8<*(b-!Tf4U?-uFnYK>5~{&KvZz1q+p|#_|p+&{pK0wea=jaC3AP{ z_h7Kt^Cht@nIpq@ztD$5YSig7)c=g;yhu_ov=wu78=hgRyK#FJG2;G*wLG~5;GB%^)-H!Hh+=9STNbvbpJK(3gf14-!` z9k-&>x%HxPe2A6ZB`H(K_Y+6D&On(Op^R>KuOxd+pJeL;ACKE+2fts^q~60xTnj&H zDEH+cQk25TLz0%3Jedda(96UIc~nvom$C&?f+5mRWy-@kC932rlG06EwyfZPuSt@3?4#tS9`c5yZBk#gB{JPxlFF768g9A4rAt~WAoy9W zP!FXkgqEmp(H!13V&}<|M@^WT8a;X9gsGz@j7*J~IAQeIF^1Sp)XZddeyz`c?PEv+ z!DA^^sZ{D^nr%+i1}x^exe^Fxr?zZeDjXtV@mneJ<_7e*xlhBAZHned?In1YwXKq6 zoHB?@?`=^szv0L)E=dNV);*XQzl!V3ZB#IrJz$~=uOI@o`&T+psY&}&8wI{=I zt5bnRe3@a8QG^Y_yGnwSxN(g>>}5+c=%kXw_s^2pxb!CA8;W&P-b<3bevEy)dduoi zca^-&x~1S=^#OJ&ExT%wF)q}gB>(XqTkgy1W6tsvwl%rCx5Utt+xSV{xMJM&Y2NF> zT33<=i@0H_S)CfX+e_M29js|pNz)!PU&}@t`CXQ#PaUO(c>~8~?Q2NdC(OKd+FGl& zTc*-<>93)1ZAsy7{ije}(~{1Y=wew=y`H2xZuvD~o0_{F*sL2!s^ap(WU9!XNnKpt+tix0ctI& zMLK?0G2C=ZN#$NMQ^Ur>9%)u50g8Nu8LyaBtx=UNyp5!PVn66_Y!x@I5n+wPB#krG zrkpIW#|k}Uq@*rx;@PxK8|wIk1#Nb#gnRV4dSfJgJI#ziL7%#*$Z(<^B%S?GN8g+n z;Kob(#?DL~8+XSD9b}TEYo_8jFI(m+^!c({%6F^#Al0R4bf11D7j6gPrkoN>V+LFq1%(wRy|l+volk*G<9cb9ZenVEJ4-9nA`l(f#&aH&4Sq)HvemG9i5DM^*O z71A{|Z`z{97a!KqF6o%52BdS-^e6(|{uK^h{=Jmyw5~aTd6Mq9mC&a3(|5;k^|~Y# zEhgc9M6;6n?M6`&ej!a3v?RPmFEHdb5@G&bXeCy1i8Lc=G3Pc_Wz;qAbgzMSqcLl` zT+-BH!sOIsr4y|1s(x3fda$Y`uvg=^+<|Z43(0icJ&=6>~*Yae@Ru`SKQ{kj_aiMqS6uS zaCaIjJ4jO2VqBK$W$eIWO@~ODX0ki@nGHR$t!}2#o^@e`he--&GR8FS>yUcik&?Q& zjS2~xO@stmt~R3-o9M9O<0Zu{u6x+7(&O(m;8EP{1t&?`;ow`O(ec^PM6BZ| zNyp69#8(+)8?5D6Ny|Dh{>I0NDTh@LL}-gko2wna-R44a+;>__Ok42vSxF8Evdmt! zC)gfmH%m^iEnG(j(FaJPGBFa&j%*h+DgnWVMa#C7b6mqe*Z;mF1oR5nyD@z}HMP z_$uo-8~guEDWMjjk0hPp5jSI|TWr9vUy0PhRDt*jXMhg=sR(2s+EpCOm zHAS)wFF_mb+-gHP>(=J4M4;DQj#}gTWNbypQgo56c@a{T=HP_x&%SDwpLRL~U_XJyDzL!*L$?2-q%exg@Cy*?Ny*ed0cWCsyXN-;<~> zE(H?x#o6u|uwC3dEQxs8ZqH*q;xflXid;5(5p~7QT18z`#S!>ruvW_hQz+Ou{QVp0 z$L;AA>9^N&d3wXk&bwY$qU}jb%cDX#Eeba_Yh(E7^ADP3kos?}X`HmYDXDBZ1cWL% z!`9R_w7er}X}N7eEsYc#^}H|XiJM`Gts~j3QIU@%1uc&?{yc$I>1>y0xCp6VW$R{n!JW z{U4HoX1%qE0&D4#^*k{UdW4pETGG>O;;q+5zp;>+KPO3Cil$y|>MaAWqn>Y5ua$N4 zk*#o+xZTcb&Tg(%FXsZajT*Oe;7<%ZL#-McOGm56VPTwSA!jQg<_ggYPAOwXjj=eK z2OQRnN6RcOL>9}($gxOV0wnk~63OyyW5|j!hs%+JS{@V|ux)$Va$lX1tA@|Ku`#a# zBI`DnAhWr)6*l9%^z`1zo@JIBT3{1OklEafY*uyFY+R{xO0Kg|%7veR**LcWo%Irk zkonx%DxXqEO}np&`P|bYA76yb=kLhJ-HXURxp2^7Dh~n`cQ0bJ%;FJb;qFD_ZRdRq zNVt2E0?QnpL=J9COah;M21vLq!DyMq^T@(&2_W$zkZ@ZBgY z;kE>$Wfrd^3%4bv*dgRiAmO%z0?QoUX^BJ53S;lL!hygthmVlMO3v^jg|Ghu8f!Ph z%S=9RiHQ)nzG{U@T-5ponXK%t6Gt^oqJy22e26@Pw(hwk9Py6b!mSKVj(?(y6>v@m9 zuu4MSQyHX@&8anz$doa1)Xsu}nm6`X-{qLyhf1)S;i=_`79`Un6VvOG=uc)^^mN*^ zNheSJE5sUCH!12w6?kzksGn`vjKgT-Xp+g2(FRzCvRs0AU1Pv}x)R!1W%wF@zcyjYtbhjLeR z%f(P}B2?2%R}5n@T&~|K$ivJX4M9?9I31XnxuYaN=5i)-iHUy=F7bW&926O2=0DTx z5vFgS50#5CGsESoU4%RqHJY1W{RwsNGMYxsTj)5AHd>qU(J$XNESsjc&bqx}-JO%@ zaQ5JEsfH!ot`6iF19qFB6oo(?SlV4mnmKkR;WWhLbZ?(H4av%!?nh4MbR)1+!#*Q} z$i+2!2)LLL#|FzB9&L@o5R=2>EpZq!Qs(efYaE7}9G-27!%zo@7m&j;lDnyi(_oXp zOF+O}mTWYHkCZL&3Tls$F_oTGs?w*Da9<+(!)rjpT-r2fgd$`QN4a+${1scwpxIFU<)E*-vtcqcc{{aoB zHHJ2`#<$4FT%c$;+Q>{e5n})R0XUdzUlB}hg`ZKcXor#XfMyqc72!1w%Q=4o4x$|_ z5i*}yaIt7vDPoMQl**;LX^YumsfeEd57&4CTli2}|6HhF96d$_ry329m=_p`qelpq zIV^x2L|+&^da9v)VbCu60>Naxi=tlhJ7>dyV{OGtfMPRY)Nr!qrBSo_u{4m7rORHm z7udNAEC<@f9As<*D>GOT8HjZsH)ZO0!|1DkcCqdXCu?3EHJjOTqwXw09ffFQ&+5Qp z%^a-OLQ!H!9Y^Pjq9-8Oi0eW%#4z9^<%+bScCqV>Pxo+QYL54Vfq>X`La@wXqt-ZB zfo#*3IJgGdEn4GXjcr@E#KASZZHF9WbE=naxA)T7Vd~az{nABCDNSySmTW^GnUt!z)M}S7p)~Uc-b;!M)M#eb3wNu zjXpF_D&?xxQW5MlKkzXZRz(Rin}v{#+1lnJ`*-V7YcE3^*0k0(qnBU4u^Jt;F2j~r z``nDyHKUh-B(@p#JW0wBv62#Dwr0Ex6^1PttD+3k{w9xhdhk?R7w4L+p+wA0$4JZc zHLCYC|GHOm7`KJc_EMuJYaqYopwPnaovc-M6bQEQFccGaRHJA&{q({P4<*bVrKfLNxBVqN`jl;B@Fm@ua-6h zv?~F|IKd-~`oOBLdgN<{h`6~9wC77SFb&&VHD<6|yb+iA^J+Gj8LKCDx}&8{hK-b9 ztkZv+&;{kL1QbNOAQ@_tOC z{7${GR;r~algiRre}{Q?mqc)M_03aFAZV@WWTt1ajyy0&W=bsT1r#;EGD4=SMB5Ce zhlife`#0(Bkt(o=D(+Xn27Q+%&}7uGgn~q5McB>=n}><1c~{UunAQFgEACPaRyyKh zk0>36vU#qcQ3A}7h+)6VdSTkcYz~sxuwVIXwDK<%iOV1i2OJ3_E;eE|M9i%$lg&kk z?U~9U5|ss`=F$PnbP|^{v5wrj8W&9mL(V}6`;U^X&VU##b(lm*^B)`3)kCBX#_C%B zBf<_v7`GRtaRH~!L+Bmmt}bDy)!IudKXELT-_V0$(rPaoF%%KpUMisssBn87Bbi5Q zFCDPk{$!dfv5r=I0puElaC=cfnukQk5SY;M0-^d^$7wBQ!#>)JXf206VYQeDTM=R0 z<8wtyJ`6*hB=9;;>+uHSgDg?n4`o|D9x(?ZhCL`(4D&>`(y0;~&4aY^m+nnm)EiHkP5v@rM9h|mPArZu^gP&*-tJ%?{lH@e}i5+}`b48*zn5u@`_w&gj9 zxd<^lU{$-rC0n-89TFRDz|zX^Ss*T-qV=r-%SL>G2*16$vntClY;(87MsF_@vv&tE zIsxU|?Ioa2MikeYzC~3_^zxCJ$loXN;x_Po8c;8*6#8P+!C%uO*OqaYA&&jSFKx6n zx8Va4J1wvaxOddpvkCf$71&+K%@N7oP7ys5F6J}0hb3;Bw;PCSXArAylx=xCVtNt7 zNlrIy%(VjdKO{n0l4C+{ZYM^2VtZIgjsQv_$fx9GZ0~xa86^X<*a1Z8W~{JH2|>3Z zh+CrDQ}=(TAn$rw;-&eOfIDa(BDW1z-SR6Jau_0crMFR@mZ_`Ly&0)$Z-EZrS8^Ha z6%O{e=Oor^M>E}ovffjRE3YD-^_8Tk2e%^aKPZjY(%ShWaw?-Ch?D{0wWwEE1(TT0@ng;@c&g<4GA z9*tpzSr>9gL~?>ochRTyx6a^T<=pBXx2li4s#iidB0W2+WZ+)kqC@2Vh>*OQ?g3UvKfif3#HA0ffHhDs+r1({bn zN@!z+*?UGyFz##&qfTISwy{!i-#bVPotLE-{i3rsT(5Bw#NP?ufY6ri5<%12!%2*s zC?R<;SKL&j=7+JMPLm~EXo_;h%g_l3G{w#mEL2CYP1e0sEm!cg0}D)ZHwowG$wZSM zz;U(t9um~wT*Oe?*Q7S9q-N0OCfZ8qYWuwYdfCos z^Q=@>TXry>`1wio>o)A1Jilo)ST@(4v)r&#(xJ_7MCABmNLLzlS@Rn=Hj7w4i1?00 zpC$}LOp{3JK?Gn&A3+Q^MlE&_k%5~b&|mGN>3TNWV9gC$khtlqeI{n5!-&`tD4*S3 zi*5pHX+-%^s$MRaDm68(__4;{a}zE~GR?9?lV^5~INU_YStk7YY_{x|H)LdTac2~A`cs z$8lew>V;_4gsXmlR9s84Y|yA9sW#gpFDuCsVZ#yTFDKKA6=sWnk(hDyeUBm)ChDvM ziQ1z$K6A8*Tu8<}jyP`8TBSGT8Bn%_k5f>7PEu`XF5U@e(UPwKyv`4em3lUa97!%8s zDwRyh>jOUmK6T^44{HAL!nly42rx!Y*OJtR(MBkGvh zt|e0QU~^z20&0Fl@hG!zovy0O<-<&lO|`c~OB?=d(6?6*uNSf2)+i&wUPc(t8B4qd zL|4G8BjjG*E6^v-z;-WRPGj^L5=rgLTbzLXuOq_Cqe-kUZ%sw4gd(_WsI^CrsvGW< zaeY26jSr^OGd?BJ=8&bn(>C@!7+W?N_N)Zc zJ~O$%n_f@VToe6_dtp?~Sok^!j|dApKA7+eNeBzzoz5r1yP`!U!Y=rq5zc)$6MU>n z)q2ZTcX>(T%e^>Luh12mHCjyO_ipKu40HMN6$#1XN!IH~(>(@;+rB21*2WVHGv|3^ zj?q{jZU8S=ES0ON3Y~JJExMiI2*C~ThNMXI7#DbRl^b1#8m$J1gT5Xju-07N*f$Vs@+^C4v-#dl%2P*fr1Gb^(IzgQfSnJqoI`m% zG;uJ){s$64Er&88J!cTJ-_QzH4kdtQK}wu{bd>6q9DN<|XwGh}tA8v}<4nSDV;Oq7 z>H*_X8?W<55iABg3BkN=EI4`_j5F$dpV!SR6}+DVgT$v&4c1jFAE7K-dGSZB=F+~9 zq;b1;rfXf%_D1f`|C0)9?P@~qIF*d{eA9LnKrbSQlMKIT%KDV~t;9;pmjLy(8jl9! zfMVrKGHxTpu@|WPv+1|wA0(x4(h4A3q>HXur+JeZS!S1t zYf}yzw8ObnwXLx4SyK)Xwk^WArGtfHHQ>>%fv~F?^_oi}%6V)6&w6xiu0CDi_M2D2 zu{HhnbE4~)Q%xU4%6wl%6r$qsk09RQOpBlb=LHgS2K0w&J+v2fIylSt0}#&+5!BQ? z>CQ%8SR$+q0y6ZbD~atJsLdJ#V!&@9n5!BzMk!I1S4 z!U+>yq0voy52GBI8J#aN(h?>>74INgm!h*;36qSw0&(1SUDa|v7fx)L*hLaC&7Dlh zd-oHoC9vjJ+Xg^I+&Y%JV`qdOA{Gdj}!?3CN447`xW-^XM8SGdA|2nOjTVudo5^*izl%Xfw zM2x4RwXB3Q2D~eR4O5eWm7RTi8K%BhVl0?ilra59B0d^*J524CF&1U`rmm~Wc8Oke zhK_%~L|iwu2z^KerV47aP3;EP5zO01>6xL;!=TK4?jebxwtdtEWsY z(|lZ_spV8U;NrW8*+bYmR!#+wM-jqCR|Q?p_msqodz>Gj9M~K0BZ@zuKI?Q#9QtQO zv-{Ob<&-%ud{*M9xu1c!^>Jc$0yc}~euz04G2A}1f3}dKXVaqBXShLMkVtXX)G!>t z#yvvJCZiVa>QTo)eGJ?gft&#fvHK;7nwFHBkne6IS|?#+SQ(%IIu$`Y5Z8-2+I^>P zVXV>$T1{I(W6QlF(c`e?Th0yN;bx+`H)`d(<{}F=5s*d!Y{_m+?_ZOsYL+x1`M(pr zS+SigOA4Sl5Y(Wgr`>G5H=0t?A#14_$NVTAC;@081aWt0=W|l};rJ)_qqUo#JB76y z*5WrR!VbEXs2zZ9VRZ)w@Gl5tdYzS0y=;64W_rIhp@*=8|3UQ1XatL%16V~MC&D>C zm`kU4z<{$zm#t~*IU;fk)pw6TQ&^wK+}NWL%kG^Y%nbR#$S})N?L50gQ%k=k;7Jb? z%k9x3R{HIP?ubyIa|#evECffCSOoKmZPXnyPmn8q%(w3;F;;c^=sARf?s0KA#J`B>h} zVltzjB}ST|0QG@d!M)SrYtaxW0|BJGOPR+BBv&9@V$v$4L`YO;hn4^gbAUaZh<=Xtd+-|Gpu?QsCP`(jdu z)MB@YoLkL5_CyO6g)H#UaHfUT6(70_Rt>5UtM<}k9 zJd5LEbU5D$zCi->QMTYPNx}o57fN5s8h+~KQ&MJUJT?m{}e#)ZjUC6VLkna-vQw1vzI%OAWjx$-B{9W`3? z1k}T?P)+thI@T~F<1&czH-;*1<~Lhr_nE|w{n$^5S&NDLY9*@G$LazU)6(|FP}IoC zPZ7y&obnHR1;GubaCvfN6ld=Nmm=+{zFj#`0e+7MLDsLg+7 z?HK)?gw{5oHj(k(KdA*5!qbhU0;?8#5L@3%Un~V>)wG4m*+2G3JoiYH5Io^gbr4 zb+re|Ynaj@6bt=)rSKMA{6W06ulYxVm-^-#V*NT2(aFC zYaM;O%G2OadyNBK&n!pPzmgCX%L|O6_%&v!PW}@$T@TrtADljBlagTw}~@ z!+uuO*siS%l&+9ylK~k zZN<4@1B1%90OiI8--e5Ta#_%{TSKip(lxY>RxON(twA-%8>=6H>KJL$?g{mC2H4O) zwkT-d4z#bA#Oh92(;fZ=r8hNPhfe?{o3gyv|M^*fV7(022H=Gwm!XpWK)FnB=F#Gm>Nl{`lh&$}|H zWQx94gh$&7UsCbuQgLIbjCMXYh=t+)SjB7}i5X9~gLX<$RI)d}2bDYadlK=W#DSx! z+OMp(aI2Q%iEY)g=uN5(pONtFsGa4ynk1&X)49C5h$&F}+}8vr$=yL_hX`ly6uKc%%3fBsUH{Zu*984{Y!6J68h)c=?or)H6=%5!lw;g`LA;b|cI7(4W$x#cIsYT^fX?OakznAplg=tE#4|Q&oaALqZy+=!tZ_^duo_c_BOE_RDxtzO&IsRCIPpIQymM z?c<)Nl1I6PYR-P|2UPUSf}o$L*jcZ0h_=4C-D^~Ov{ah6LzuS?c6~yHSCRO#4;d%* z%P&ybXC=m5H?I<|2P~xwHqBkKCtQMF_+2XbcZn>UmQHzu?*64R?SgKqJ>|mSzz+|8 zmdai(5#VaklsRhM!~RWWw~{FE*vw_=_=tX2W6y^K`ALE>>kjR9kw>1PqUTCX8bzZ^ zKd$^Q75%FumF?S^3H#x9Wl7^a;o zL~j9p`UVy4k&5z&m8*8B$Hl`zW2@(=_>Gc5xM|d#$)O)z`XZJ6G^VV!Qg!CrRQ76# z2D^Q(N=6COq?4Ya!Usu$+0^+=cpXyqO)7buB$f?9k64C7-Q23FPmzRj3{yo-BR~Es z0ftDjeHNwgDZy($rjkoJeV?8w8XWF6-Sr77yN^VJ4XnzB-S5?ZQQ3JV27c{IoniOe z=Orroog|hsOA?#T(l^~u^be|?@0QB@)(Fan3T}O#0FOuje-*yenNzz!v>|Fk<#|Pk zy@4o3FYlc8G9ea|5CJLH5e0`k|3iR3O8`TKHdrjDOgczHaNndW$#R8y=w6dvq0%e3 zOHTB-UXK$`tKsQ!sVG}eU7<{uDUn+SvcI{W0JBaPhH5qm9iyeUuC@1r zR(pub50XsCos~A?MH$(b_fy$-B-zZnsy!(@{9!7(pd^+}r{%H#x|vFD93wPJV>iB= zik{&vx^J{=;h3AK=xS0?4#riw{iqU-2nRk!g~v!_*{iGdc6HZxm@59J>b8_roa?3~ z)0I1@WJO}Z2BVT;emu`@RCJ0|l-q#_l=lnT_<-xE?B~*+g+^JLlm}&d{!V3|mE>}A zQLCs4yqR2_d<#Lgl_0z@V$JF(;(D}8nm!aqPPozhHl8uJ=l-#QAhDU3n0glb`io!~EdHen(&Q!u8=#KcH_s zb<9f)Ea?P$B&B zlqF3pZxUJ37?N(>#_XU z*1o3iNd35wF6PR0BCTyT|Qf5U0K4+@qH3f?! zt-uD=`a*S=t;}jkVNh+i(=N&J0j{11`NJPic)C&enTUI%!`0ge{KiQ0+J7<9`hlt48 zV!*p0*w2n@(PASL+(;tGS$%_`23Tn$qO~|mW+P~{Y{*gw;R#7PJFP_DwS%zHc?gN$ zUE2T53p73-3o~{&VO~P{)*fF8^$Ma`51$gEZ*?X8WoqWOr^HR$lqDjs96}6dL0$ZD zFfy7OJ3C^7{3#sRnO;hwr!{4!6iuS;7*DM79(b75lmICqgl8w}UKw?riqV$s5+T;$ zx1|l*eOn@REmoHYxX4r@>;{DKJV<*HmW|{|oTBu;O)J0nc0}iPl*?YC(TUbo7;zUO zIH-BF22TS6g^F}%sThrxOl!JCOABi*@a3Bm#}sO`!gegY9pT(P2}HY;!c2#G7A2lq z_p~r?jwE{Dp?s@*N~j+Z#d%eb+UAOs;-=Ic&h=35(p`v()G;yLn7?@CjbOI6b0 zRnAOyKZz_y)#;V!j0+b%P%5fLRUPp5)>M@<(R@}^1;{xF;gF;XdSK~;B}Uvg3hHz| zy%JAH1B>(`nz>BLwK-J6YJDSC!l64-^(LUDt-jG*#!e`MEy`El^w8^e;qp0?K0+eR zG1Yf1gq1cVrtfB8c;n0~@+k-K0|fdD%e3~B(gp}7ceF%K8|2is86A`zO4R1V2Db(| z5w;-0*iU%HTUWx&j+2;aM_K@N-Zn(-V${KLOS2l?sGQTaG43+Nu@!tRc6FHGi4s9A zIhLWTsxjqL)Mh2eG2kx{%v6KBWQ6E;N)xIwbi=_!^)vJ)i)sw`O9ZpyS4(-?ElHt` zZk?v(5;GK^E|K*YktsH)8|I8O?M$h-=D{kU=%8)KQLT2vE^K+Q2-^c;{tB>Hr1b|i zZ;oE1U>`Y0BFCEiz8~Cnqyy*Mfe3DanmC_|{MZTI8ljxx@G`YpPg610FyZ+UOKoN# zB3D*AQj8ejAjykLJ7Rk zEA+feC9>MGf(dzDO;J}wyI9K#0%#Qk@tD+Ar<3BTJgsI1E&l$Aq+?5I-mHyD2wQdx z!4^T+vc@C_aB&2(#ipx8-f$hAscj=s(=28}Zr_AxZHkq*EGB@qKoHLx=<)?H*D#5b zHgB*n#}6Y?PojKl-XNi#K@?YozRaf@N3@aNNQs^{{c?dTn-b4qsL`5!#llA-oCybH zi?k^l>^Y_hVHfz!jfwEusL>)E3ttc6JX%x>r4k(qwHk$8atDd7Hqy(`6}BX@Rn%q; zpE2NW1hZ{(DcJ%^|A3qGe)kL=3NI(Qy{~D6QsOUZ+|pr6V}e*urKQEAi9TvtlJ|S|q+B(H7Qv zR&yC+PzLt~L`Jh)raw-iul0sF0ZZ11{b{J#>J3droPi=_^3`aEB$J=mDtS%7VtW($ z-IV~-4V#g-MeKpB?n2|^lVBL8PH*EJ;*0d6P}ncdJ?fs6&&10lRqmeUYnu1DwYCCqIShVz^PDVw2o?g!hs0$02DKEgdB;n*B> zu%0e6p!1*6Z6iM@P4`L&HV0Wle~2KjTz?5?>2fLGO9ul2HkaQ;rB9Mdb4T$HKGF?+ zLHUL6pz=kjJiA$=Jne~0cce4nwHTYL;J1_1M7ow*xS0Ek>hG^h{oN=ZM&my#n?4}1 z;`VE>GWU%wqfWqoBI#(_cf;#Q1FH;I!|`o2bZXsBI@oOtn&#bb`>WjJLbK;K9e0KM z%s8dG)RePkvoO*)5D`>|^Psa#8BL86@pC@p_N>}NI48~bqC2K} zhC|op)0N@0kv83}Hiwn+(RPr(okzx8NNQUd8SR|d`!Yfv+#E>@XRI?qUUM)Z$4UDg zc?hAqBGU9?2u=E^2Wp*rc?BCO!FXuHx=lWx082{@4M0R}!BYsZhx94j07Tm})<2K{ z%Sn_tBg;l7c9yxEN**I|@k>U>6)(P&N_I;nxkqO!r7|7ai(2rqgQ)z55(m9}RLRWQ zRQ_$Ll6v{5j_>qR`A<}OYA4WK-Yc|wS^bI0;t^E-N{J8Gv?HqN2bWOEyi`-pnW$tK z7FRrnivFKOnm5V$y^@}5@aWwxy2MmnWTqdj|BI@_2T~n)D}lNbR&%%%o%tzxVc=iq zNCMw1RfuWkv{t_QC@T7hyQo(AbyVfsrOI z6{UL7jAX~DX1ZO{!I4be@j#a#=osE|-I~F>tvpkZbTf^SQ0P}^oWCDg=NmPf zh$_=mfPSCGL={}#HU;q8D#21jaHXntcTbyfxdy+t_=72-sXfh`Huwp$|CwfJnux%) z8~ilapUj4pUTZLnsolZx7d1q0Z{pW%)~eQp9Q*{)a{@h41@vU~cSx9w5;y^GY>hGLzq&uKDl6U3pes5N=I@*cLPtjofE zh&a?0wIxq=K2y^KvtP-&EZmof({#zxq-)R?mM$50J>oQf&=N|XVwJFUEq|~P6-01m z@B1^AHYaAEqnWkhFhP0@*;`+w0P-Y4bPXDRo>zIu-_~G5x)8#HvtMPLj;(>^xw)fG zjF`0%!wE@42QGQ=%xr6{yS16gHK*GSky;Q8Mg?nL_cW5Uf}jKV90CPxQ4i%w;o3;i zp^bp24;nPfAobt0O%9!X&|1@2!g?q{P#bkto?6b0TpemH;Cu+wj-V*Zi1X6Bkfe2p z!3n(=p&TQ8r}00RN;A$4k*T%A(~TX9SgpIkjP)TbZgn?+Jcj1jM7UKSzNPE8TE0>ZR5 zr_a-YQ}J!ib*#PB<~E`S5n7ArU&{Fo=v}b5)gl1d9U)rZ!>gme!YE`#F2sBTnEG1B z8CvX1r(Zx;pvA_#gcxlsb6!?G9AVa2=7f$ysMb2L*X0W=ZnX|T{)Z6FzqAb-yhUa^ z^hV3SY{UpeXk&_FW6h;V${JG~z$*}_^-FPA&L&9E>X#yHbA)OBMw@i34Lv`DhaPA7 z8)AM#jAlE>Mxfo0m}NT$a1R7(HNss)*Q2ei8X@K;#ArHj_tAf_yrly%|3!>8X>jdY zS{-X|O&VOtwGgTGQQ8?2o@wPhPd_3(tB(TY7lh~Uu}jHV6cLhgr1ElR>GbaScaqRgqJ6(s>OFG93j$$q@1-lUlt3Ad4YHZv}XF@G7ja-3oxY7BQL*e6Mg@thJ>BF~bp~ z&F;9o^%N1mbNDO5tl6CtItVSNwGBLzcmW#0Y8!xDj1WVE^}6EWSQpS>L5@O*=D+r% zj2~lZ%YSXerw)W4v81OQry#`a8+jxeo<;TyW8)T{)m+9cDEtFAcR@@5rt|kJac*T*PJ z*KE{BUA14fp0fQ9IS?OTBM@hA-ukO7P7M{TG(DMnW6$ zssrKso%B@jn~1RdTSC2qC~c&IM~0um;?_t7kY^F1S&ELx1-as>-;k4?j~RevDI0MS zA~gS^m!r*7co)qw8$AeFf+ZWvzhvA9#A$U&w}&U=7X6y)avUS7~KM1FnE zv!6)8r&!!-4S;-s5H0&r#ls`n&wWQK?#A*~_Jf%F5Tjcu8=jaS{5ffujHPWWS%{qx zq1U0DKTI3|?FflhEM$40ewQhPOHZa)x%Cj~>W>%i$LT-*o9=QGZ9-wl?ZZCSSyzo0! zZWRPtpI>6Yt2@A^*1XrDuIA1~o2{QyKK@@c5g)&g)`kPk4gqhY04>7_z@${Rg?%JqPeGrJsx5Onvi;7txmD=G-+`>l&7+<+}MqX*e>m;J+)u##y1^eU;mm zO1EcHxk5QSYseZNR2t?<*XT0oc6zAuw4-aM9dg=nTlZN@r}q7x6+GhG#;bMFN~kZr z?{(m9EHiS^*vBd!Llqk2a(oI1V=UOX%HW~AEb_8Bi49$DxfBot2H^H+Nz zf*GPI{U#FyPRzpgmV~YEFr+Q4$VVp)d1*=Bkfib)HO@*x+Y$(+w{EJ+lyQ_0&1DI7u1eyP*pa9e9o6lYWb%#fWAc^| z7K-mnt9I1YJ7wBUUo8Aw6uxC2nv||vpp)#GaN5nXFX$)PbkQEjzPNv67rbg$Cq3I` zc*|udd)q$P#1BG(H(rVI`_hf*>ETpY^i_gQehrH5i?5LAD*DRxD16gC*hM`rW7zwq zev=#S@MUA%igNoBQ`F-Hf;H|y={y@2dOiQD)>{s{M`l@y{a?}Op~e1<9HtDxTFe-k zuBE4vyfB4hf#0a%$cX-~Fcd2j<3CIPUP*`e?+O<28tCaS+ZsP9@#ZGFQGKyUTl6*< zk20o-enl;=R6M>0k(OHcvIU!I(7sR)m(#^-pjY}*>W#FZtFZLhP`WF0#7oaY1I*c9 zqC0ZM4$~&{^q1%yh@KxsyH)|>4ML9*wbOk`DKyMNsKT`h&{PF&L8JE~P{$&uqi=pm z)u2Pwf`-LWL!S**msKoBSM*&q1unWQDp=kXBfM_9Ks4w(_s>f4b{wsJ zYVp=JDf7P;>A@C7O;XFKMx=GkmmShD#xlhzN-o4$*Q~%Ln|^Opd>35wZIv!ff_!a; z;N4NMYuQ1##`5;rs8RMJ5n7|TcxiC0Wk%&a_39k0+l4L7LibU;jOKB+Nmgk_>{e=NL&!e@fJ z{@IVkS5W*+7+(A2$I|O4eJ053U;9{m4~m}&^4ga^mcBnqp9%8%M?MyRP=AXzo$?SA z?^*WoZ!GR84LC0Am817tl%qMjXRS`U7-V_nCfE?4@KyiUKHfE^%1`8v9gm;+01)_whfMzoQg{N-WBx&P%Qm#D826y)*c)Xzof zt|YO!J6T7bSiuFTz_oglK!I^WisfI7^7|eJjdM;c{xTHb_omejIkE67`&D>!!ij}n zgTnjnH~Q%&mVP}-p9!<;2b);@P5mj}IMc-9Z$ncDFp7JeTJ?|WFV&K0qO2T;N2J`XYCQ6g6JFskW$6X?f?So%Lux@(!Bxf|KX zhgicCsG;xO%s4s3;-Btc@!Fvw7XKWI?|bYwj|;K=pcLD9J5DWho3h%q?=;wr3 z`l~3t?`a&K4q_euK^-$;p6F;03;!<)@4IKxS&--?5sQDjzr}|Kf>``}D1IgyS33;E z(mzD$eP8i_GeE536I3x1{sSj}SjT6mqwkryaNLKLd^r$Gv@<@eIuY`RnhczsS8u~s0X-9Hc_@7XC-}{1f7Karqh6?&V zNYE~s@H0D0UlOJF-A(Z>QP!~x>gc-@!4;ycVtG{2_dLM3J(R_-gyQ?&2KvpREPYj! z-gp1BSC`j7;WI-$I)1{`*X~#8+I68UeLa-k_sreAD3s-Ifb#nudh82AS;G+2(D$ab z*WNcq;eBsf5^k=IZ-&zQ-ldF7LD@1}_OE#DHc%G74T|sk+KO}oC~FypT2^(fA87C8 z1m8=`N7Kj789m0w&J7aarK2G%Yd=%gPA$sPzM^VpL`J!oA4uBFFRFX=yF&cb$`w6W zsfJIjyY#<${YqBWe5lfFZb{m?|J7>eT3G85sCCc&*NXSHvht%*`JV?yxgLaA^>L_r z*ZxKy=klV0oW2`fJZl@CCrjr(6&@9BStUgJ(!)_W%E-K+l_S-2sV zwV#992Oy5<*T%Bi^ZyvN+Fi1&_99d}0FI4U%d+xI{}AOWh?rN@vhpiX`2Y-8;We^s&R{AZ*1O5 z)OIZ?bfg-$E7g!{xXv8WCrWy0Tx~$3cM^j`DTd+hG7ab4q9F;=t=2g3;xyU4V6sGc zO2D~^Du=P|7mbyyt=uPg^g6aV?mK2De@Lk}le4Kw`dQLS+gBg6(nnEgqTws4Qs?!* zto?D+o~$n>G`BjK5uTu6jZdM*bblJTUQ};rQVgqlovI_H3SM+01v7XS8SFE#407R> z7);=WKbinN18oG6mym$#sE8Pm+N?XFxmK?zq4u-buCug;*l_2zLGm?{rwtL~lQdB% zNsB)t>0k@*`_|)tq3I39+!!7bCCrJHIilTLN-YcxuA|JR#f<&qZ2osmb2;}2>H~vg zx3|+!AAq3}1&ah~947i$G*P0=L))xiH1?;aof1_*lchPt8%r_3WrRm1J~i&9^f2 za$GG{EEUyZO{3~_q5c7|c$VJGG}O+EYIpDdYG-qu=|UlGXkGv{4?u-!XKBVzyD+Lv zGzn>~ojY>j#Ww6+i=x&<33-cJ`P3eL4z_yp5~zIuOxZo@BqDQWZslZyOc>rph z&)SW=F6teCu9WvGrf;>O+THp;Oy@C54@SiUP~So+YYs~rq1pkcFYRHnXR({2;sHpy zie67G-BGi`^cJXl0D6&TNv=77_i?>6yiI#0zi_~-}3*95uK^K5| zY8l6<_y}Y$0AZwuzN&?HgmK^;jd};b;QM(sGv^wMYS&E?MmoKsSBbW1aTUgqENv-e zYzuO<`R*8BvU9FGQ86}_QKs~pBF7wevQi04D3kh6t^X{z;fFh8!z5be3bKLl_7HBG z-OQ#*w8|Aq(i^9dYgC=hvj;R!qVAJenWKsJ7MsX*fg6qC(FYK9R>fRZNSoGj?#Tfu znx)1nsZJ|p!AcX8coS2NQ{u2rr)Zr-Yk>K5FI~E5xaKs|Jc-r-eK8vKaV*zqpaK{u z(Gpq$H4YP%MH3|&>60i;XVYc6(AG<(yE{{5x~^q#cykwb(5g~zE@Tay?jfe`?mt2| zO$E8$mhN8EJvm8FNMv)_)Cc?lDy>@nHag!J}n=zBc!v|7Vbd@)E zl%r5rzeNVG(C%fkxnidg?v6!`{btDyt9B=#F6VUu`skCS)ks%(p*@@Ob zN-CZ2^x7-tYQQ}tQk%giGnpYy&+z#lhWTooiT>YJEsW`WqFpj(C6Z`$s;?;{@F>Abm^@o!Y0A0RU{)=cS|Q(8Msl`Hf(jx~{b9mz}^ATnLlCd8st z$0YYZomE>w=-Gx&Pn?H^PeJE31Q|g!BBa4A@2GuP(@;TEPe?tA40cs2X zGa-#&X=_8?ugGDbQa3){ORE61Xw+z*yB`|pT4mwm>1;?P(Wa(8 zgeYO8m=m=p`@~UF584@#ZXOb)O@xwt;$SiQRD^%wocYYJ=o&MhWDA+i)i|a)3n_&# z)k(H<5`$y`54C+M;WkauIBm35oh?0+rM0*85y|WjK$Li=(-<2KuTD3TZ$8`S8v&T1`Xt=(_(2dlT%@i+g2)mv-&TcP?y^M+PEAXCcM3q^85 z?IAQCl(t0zi6+yn6DVfrl@@-Ftx7jEd&TG_5hgMmi6mO;YL!T~TFzTL3P=56s=@r* z|3Rv0zO3D=&j#NSRVSLXw`%Z?91Ydt`q~6!kZAp+Wd=0T(Uia#d3HkG1LAIKa+o)l zji&yAs_W)}vn#4jl&Q3A@lxJY{AW}=AR~R3m+qz;lC$O~>Ag_Rx4d7b$jWaoH?P)qw+*sOj}i6 zPMf`}gn9=giwM@-I_&OUK?1o}Cn5>v4s8K}VA-pb>h{cS`gLTI=&G33o4{Xwtkb)E zR;=qm3Il2kGJ$&JT3GbjADIk{G3qt?XkVh82hb%BLJEn_iL}}tl~QeUGY%bsniH*v zx2l5Ej7U;&5 z>#RRaHKbhUqUuBkJ&L7D!AvDCAW7OvT%v;>EJYheCn%}TwYQ5ES7Yrh(Q0&4C63j$ z%al4;ZA)}gskuttJw)H9E9NynS7LMYlfq8A0)=-<*kluo)i}^Ah>bxFx zCi-yFTqmt{t3tg0!RXvK4V=m$4wbhKoJzkPv6gqB%0wUSDzws4G9B@55~cO#L?7*Z zFO(}h{E0*f{e9myahp|x-?PE<+&35|; z>OW9fzf~`rtK>3WdC%P2^aN^5v==!^_3*&_)2J=c7?4C;<3pX%c+a7}^^@c#RoWGt z>9SMnf08t@4h9#6?v{232Hg7}QBsv0B^=fVfj`ny@Y>z~T($$rW zw*P);+GT7ayZCZ+>i%z>_W1z7KYc}#VK zL>8^lchPE1JqBgS``T=sWb7kZy5XYV{y%Zw0cKZK?H{BFB$Pnt?Lv^IGjxOz1rid7 z5C|jzq+RaZduHaI+?HD=89VpT*0%E}je-y-Cuvh+T zty6Yc`<&VLl!@QxC3Ds}>$looyYC(8r9U$-*%foadS<`~Z~e{aEvwENG)V*7S-`{T zZFHoVV&;Exx8(p`ZnoRyrlX$Q@*;<}+S)Xj*5#(U3g{)5usF3E5E>A*2S=Ex>3q{! z1J;%zZq9*o2<{0e#7#J>L2Y=?<=8n`+i+ss*0Ta!cVJ>wo!Feufvv{e28%B^jffp9 zynrL;;AcW+TJOZMbMP}_Yr(xM2hPXbxG6))oO^KO95UzHUa8To*3`kh0*AJ01;H>O zti4cA7g`9sq*lCDE6C>~)j6v@&XM)&ekifhg12e~Sph}Vs|O+^YrR{ILfgSM;n)t` zvs4^+x<&t(DJ4Q)!QHfHM3YE6H0jX)g`1U*eZAtDsFj8Or;;=LbCLpCh}m(#Om)CW zyeOO>w=;2Ggq)e32j>o__!gC`QoCK6GB7`xGe3E7=CC@r-7R){ ztroP2JJ6A9)kOQ7Vt)Z=|H{FohqV&jaEgQYUc~txH!$C^X0Kg^#r?3J5cXv$DW}Z&4=y+Cc7x4` z3g0o#ckpcE@hyt|#$=KzXZ`AdO@h@yqgRJDcVbS7xYs!MV+Q6v0c)A@EK0>BP0l&$ ziqh!(;wP?R#eu6m{)5}U+9^_XqS*fu z&Ux^-0nQK&2JV+}?t>>tpF7MKcVVxZR-~@v2*(c`nSjvn*0^&6UCjZGOaLGn{}hwg zaIS-!9Tw!n>eM!DBh>QlwVeB_29`PCt|gkcao&U1NYG^*t-)T{>ZG*bk_>Y_XP-cH zkG*tbH1U2X=N;8)h|V>7YpLiJS2e4>nFxCV8qk_X<;84sRe zKw_vqT46VhtbP;cJb0xCobejLl3JgBh_fEN6v62Uuo{I@KsX*kf`62AFGQ81;0V#c zrmfqd8+3@;L5;d6DE638h2i0>FB)0&0)gbtka$)aEf=fxmKe82agQ=~JCh;6(U5i6 zGvbKt&4_Re?^Z@8Ya#3j*ateh+MPHld`9fmdXg-DEC-018cVHv=V z<6z0Osg>%ZCV)lR0kk_NfF&FtYPnEg5P3JL@CObk)bV;16UxaPC9;VZdRXjP6(}%F z+bRZvCi4MaJq##Dm03&sz;;2D*@lgum z`Ydu~qZE5YaP|)S3dH)>ub|W|yvP*zNaEz zrejn)D~dO?5GTbRL1KJ5GFAs+q8jG$T=AfUMyDm+)kOTyQeT*!f5mBaC)UBOW4QWsQnPxA^N%XOQL$2KH(PKH znNs{Job8~6#%HU=_IPHDHAA?WG1ela&KVCHciyQQih*04Yg7X>%5Sw!x2{!P6w)2e zdhuZCbJ#oc26mTKinNzd-Z@VglN=*z9ZHn=*ffSiRN!c#-~_G+tSOH5vM7C&L+}EF zf9)x#P|m(gsZgSt+;#_`D4fp)&T9Pxt zv*vWxgq z4w2Fy`o>|>q{d-V+DbZtkPw<2A*HSGq(Q}2Z4QyrR{kM^Dol^Vq>NoUBv4UhJ;zAt zk7^@aHADWmgd?1ouAsyAQAp~F8kcd9sF5Yh0^%P@CC`?TI#+U}*QQnn&&5;j(<7*> zIaD@EK}$N^b45tkaHOc?lm;^&YqS&GwHz*GU@K?O62{v&M#?nM(j)tN4iPo}U}?3r z;qV&i@J;)iXX4j^wX#))hNb^|}L_V9Wl(5T!o-97m5F@S+pg zg0EN1hyKZumeN0o9Pl!q-KMZQ8CaREtgKCQ`qj0mxn701EZ3P1!o>6B>F*!!NMeJRLuqlmtrYu z4DmbAqpC(L{!KisOF=k8PilNB6sun|F=!XZ-WAfH`80H<+)sEWYK zNb5?i(t2@tF=3p+G153%UYJh&S8@Jn{LsTq_vNscOAu#sh%_opR-N$bBjSH9=by$6 zcs2>ku@`WRsEJlOB_OB>UfdY!;BVVaw9#04>W+-rUW*tuFR}AnK-W`aVnTukL&!tO>NazPS+o;xY z9NT8yKY2ot`5T;h)I`Y)%;CJ8G3k5~68&M$eNc;ZCVFFIVtE;{eU!5;L^QXvx5%Rj6lPsuriM;rq3}eJ!!UTFFYF{S z*CA&XLQxfeq_o43;pD>;i1)?FTW#4yIwlY@T+q4Fe^O^`U(eY_X17STUh+WR;`DqH z`U=iHY8?uG4aaX7Y|UhT1LwL=R4|F-4}uuzZw|4v=aou8MY>3QE(<1}DopnVrfOhC z^=xL`$<1>ViM=l(umFqdWX_CIhDGGkre(s|A2HNGi|RdD0d#ux>36M~v(X&E*dn%{3y;m zx#%o>j^W&si{9ym8|q2)V>4y0#mjM7GM^MXC`j@}oOx6Q=x;3#VtK`vp#nS(Ql8Xi zimCu3ccm-L7GeHW+D=gwU?e}DpGeFl$eHD*sLn|=cc~FYd{5>XKLOK*n6p8fp2C^# z6;X|>YnNKEEFfG-^}8qF`)|Xx70D-2qXogY!$tg8aje%U%S#i9)#JDWX7iBrmhSYG z)BULaSIDqbsT4tAZ#y7tDu;B8$4|m+-$b(#w!aAAdnSPWn6}~8zu^)HISE_!;Oy8S zc7FRDDh(Z1Noij77+DM#7YCaPaev7P5zHUQUa=CGe96s#{CS{~8s9@C7O4Dux`ENC zN-V>954E0Rw;%EjKR*IADcVG-UFpDT>u^~a>G*#flAoxN6cR29S~CTE=`}U~AIDr} z7iG~QGK_cP!0BIbnb>#{kMfr4Vp8-c95g#m)^)S~G*2{U(4TWOem-teCw8ji^=37! zV#%1l$`#Pyz29;`ev(^a4FRxK>!~^H1&+v<5DkjRO8lQVO8RVOF6n>eP<&;X9#K*GIqp*^^2}j{4$qZ^ZQwe@)E>q;pz^?Rce$!gp`SF&i%8 zSy0ukQ!f^S1_FtAD(@ih@tqks<6Y<)+tWGQfdz&EM1#O*a?X4NGG1VP5RDA68u_xO z89($mo;6ZoZ%%QI1IxB1;5Z99bqOy)>A(t&ayXbwkmqn!__FBacyO7X;_CA_-0NZ* zNf^y)L=NMwx^59RBh`Yok=N)iu7lP!98=+}ui~)}IF6_wU&xW;TJX`xwD_oq6J}wb ziY!^;0DL0G!jgDEPQ?i~7!dCY=gr40YAPAY1KT!?7#ulN>Ux zy_o<~FYi+vF_H5-wJLP)A)~3zzm&62R4!or)Zn4Z({snd49lhP@DHf>lmNSmbLXRl zvEfB=i-~ZoRMTqxH*)5D;hi0GQH?0#znLQpnC?RHyX{^$6GtiItr_v|6i1uQni?{1 z=e*;3m4-6l$?ctM=$jBOQ0|RV&7_-K5ct9F5P*SZE}*iIiCW0Ovno+rWzniN6|jH*)|! z?rf`o%KF3Eur4?2u+m>Gh9Bds`SSCbr3TjZW<#o>6x-j*K?ZE4lkMSWtQrndQ;dEB zIqNleTrVvuN_`dM3i<6^i_}QwvhW#>G+=wjx0l$)LDssH^G%X9;N(I$Sg=?fE0#t( zkU11z-^DTbG_h}Or#&3$k6yPq1_0PjhO;&lh`TvNA~iyY3EUd3s&OC3NK$iG9H#|! zhUSN_aOMMchRMHr58^>&s~3hOIS3eImR5}Z4HNSuQCX>ug|{G3R6fkD!51vd95EHv z=Xum5a@=TMR4`V0aAP}cN5L*9o}&!SC9l)1Sm;|^kGOHRD6lcO2PdYf@mR(v<_z=% zM@dpG;E9s3V^h=%iot%sK@u5E2T?1}A90jKs^C3zk(K|`8G*E65pbp2S%c#^6P2+e z6?^?S2N1W@3{NYh()b();oF90E{$WdCar3D4IC_^DDyLplce`TI2dL{`6x=#TB6RB&OlUSa+h&OAv| zDP->FUBl4O-#Jo}(k+l6w4sryrjUPe5WXXD<}x8b%t?37RZxGcOVbj$WUL4Sq|#aE z6ssF^=1Iz%`EY4M*o-42Y1Qb1bXy=>y;T!8wG>scib0N`7cVV&Ar0nn4U#wjGf~lP zigjtkd>hVuz;P^$FiLYcDlRsK5%=vl_au$8TC=34=^Z%VBu=fD!rj6o?#`TTlJo{_ z!={p2WOw5LNn8nQF$^7$J(0N{l8M;EO%PQ$xIi_|-dy%1@$Q`%hbF2v*t#t8!oD0R zNl4;R|I{#6U9dmro}?0J!YclCZ5Ucr=DU>Y<{*v~w-zBPL70(LrG_}vfP>vsioF4S zr`{5G5s^m@;p~(2p0)V`#aM@Ph$Ovd4MMfjQ5+*lze`|HGfyONMWJIjSdu6X!Bka_ z<=m5uf(q`%I9-n8Xh}xO+Kzlh3q{r<&N)dLflDi(m{5nV<}}7(I<^KUHmhSNOE^@L zew`21YQug@1Io!9CCPxXe;NP)tWifsPvQKNlyu;49Pd7jvrm#8CHA71tw!(}94SfD zpaYlmD&=k!=bI#v!19ae%zieoW*ZLaf^%^VZJZj1 zNmBPjOno;w_av=kkNae`#6}s~93WBT!{)Z)D2XD)5Jn zM7spn`ze8XEoYykDwEh_QB$jdw{eVwjtEpJsymS>yI#*x5*i9432#?Y4E0XVKFKH& z7^(s7BFL$1)b`yRAxV`62kYoZK@wXms;l`Wj*+DAEGdHL92eo#%CbHLeJ_U^ut8awYLx1*oy_F=`;oie zV;Hc#G;t(dCs)L#v687CNG-a5lu*%!P`H1cb009n(xG{VJoOOg%iV*omcPSJ!TZd5RW^NceMWeFR-I^WA(7KxD+q3(6%csj$pnS zJ3uY2Tv+kvJ6cJNEsTe%#ci9gMDsUaV$)5m4kyTY{IIpS#oGhpc~^x7K~9j{aLBmH zcRNUfYTI#~^p3+u9o>GasI&uzS{PFtXl)q;alqs9??DVdscuD&OIX48dH~~+HJ$BK zxNBV5>=ai$&A^$*Es6dNVzBK#am|z&ar}ra!EtZmmTv-k7QxgB8CC_uHxM6WyrEsa7H_oD<{eq*#HCb%Yl=&C3;IBDQ7HScYGQ>=1zvF0egH+aP zO@$RR!Tf>4#O?pGh4Gg7)SwX)o=-|}f97zpNz5_|$9m%EF~a#9$BCO{vQ`UlxU2rj z!Q%EH+k!zm5LcuuVBuYz1x^7^W+?32$?b zmqj{kLeqVs8BTc-)LaggMa%F^@Pr=I3*;ER=%oZ+M0vDYYOsobZqm z!r6)AWKoOYxs)FK4L-LwZsiyNn&DK(jD`vQlE8@rqdBBGXGm@P^~rMn+T zNmJ=Y)q)3dm^3Csm{B-rSKJmuA^i%DlBNxdbu16CgE>gt5X(&7H`aNFWsG5}>yFG8 z!&t{1%`wvC%*eX!RU9Wxp*PiOui+4BV#{2|oWMcSRA_$RD5A8S$idPygoB}jcC`mf z>|p*-tE^AraB-7jGnE@wZ@xBj{%U=>obyi;%OJnmPAfQ0np7E4O|Il9`^F4JR7%}a zQQlHC_XQY1t+ zC~Pz$uEB4C6pTl7n6+-<=i02cF?p25!V!tlHmp-FmtdK-x+a5^yp5yAoq%Akp+N11 z2ayxvr#NCY`j`!rv5sIiW|(g4@QKj>n z95b7Y3!38MUtUPR!x1xcXU`1zT@D#{sEEB`VF@p61L19r?{mPoZr99!P?1Q-LQz70 zl4GQ+xkMdlsF|PQXmK+kGixN!v>N#tjuh9VoEgbj6F zKMzb&<7J4%0yA#p&k`*dj2I2OI)rxs;;Abm;%bEf!OCL(htOWm(c;D#2S*FfLn63g z4ws=NE8&K40y~t0WoXHc*fdXQM{u+ZEeU9 zoj06n%i}p*++7KS6@t+!rN$zh&7$bIn1h}jQ_CjR9kC>W?7Nzy zWtYgpU0mZ54*ac>K$b{rhumKW}nrB_Nn`Z;GA=YhEsD7A( zW>^+|O|^>uV;nPk>+0Q?TRCWU^*)@ESFMZdX34Uj$Q2N(Umfsv4wzkyPiN`1YT+5J zq~d4tL~J~#;hA4@)VMttc8z_wrA1NgHyk8xag-&9KC1kCjuN+|-5y1a z!as7D3@oNidj5rjWS~o9T%4{&>FMtrCIiRl70SOjN(RcXxzssrHszjyGJ49}n4@H% z44XUMEH4-}n780C>1&Iqxzc$YEPdr0fEngUx8Zo{TfPBa#N6n195Zfxo?Q|OFtvXD z4je0ezdpc9oeK#g@M)Ww2mfk~Sb!{QrB94+iqQ}eX>Zc_fBz?LuP3oS^fzo&V zq9=1t;c)3)RIQiPk-5`2O5FN-yBunqDn5fFr7y00ig;B%F#6Q+*&HT)-D8*%K9}R9 zFGBiM@C6(seWpGm(Ob<6MxEfTahME(K%dxc za+LJT?adRqZ4Q+|yajW|YFnhovC{WQq9%>k=Lx1y7GJ`_GO;2}hije5%Q#kcR@D1- zS8}lQ?FQ4N@YT5h8770T;Xvu@a^ocMwHzsZP(T%1#N$-8IrX=3tn^wLCz`M4Na=Hv zd4l}2D=D@P?3b}O>EQvReUpQwZ%!DOc6^5;rBA#1{N{H#NcyzPmU4Wbqol76 z`4WyN^MTQqZal?d(x=_XB^%FhwEg2YxU6qEaDx==?H4;9e)$^M*?)RR+1Y=%C68fP zaa5h8%MHR+9>niVm0#RBZIInVnPh(2u>mK9NK2#-f~6${x*9;$69h&R=wXG+PZl5v z&Or&-$pTJ(Quyh%?9{^3Gf9y1P!RRVflBUD=t5k`g;gZ zmg=m?BBwi&q{1bsN>+No;M>T)Ua50p-GtZN9A`i77N{bG=% z#bt4G50&l&oMJT5tcA0C6tx{L$_2TJ!qV9!M~~g{FVzqOS1H4K8k^$a<=j+{NMDz7 z8A`dzz%s?a-yphY0p9xxRJr3VI zoA8K!l+wC-D~HdoNfA|Fy`2k@UmEJ@9(c#BqU*KfG)K>`2t?G5@8L4!*Ip1~30g9^ zkxP+Zy(pwG<%AD#QF1p3PYpM304aEe_%N3u#|+VhZfCj3%IL?q5Ut#5NQhnUcMaZuM7K&hU$Y;1D*5e)0rI(6!cLGo8cuwo_ z4vC*O?yxw#^)zz4<1SQ0Il$A}se|H1jCb6P60q@(Lu|`iaOsF*%KKDP#;($r+xY=A z-Hv!H3|zh$X~nNFD_XZG27rt(;Dbg3S~u+n5+F!ca08k;So94PLLDr!&QOC$Fj|A# z8tbsSU>$7P6ni3o;+b)j6Nih!G zTL2@!laQkg0r3PED3@a43uKVs2V4T{rrjVWse>WbIdt4$y#)6Ztyj|FkGK@EhdU-r ziNmdCZE8}R6?mFsTeq_Zv4EeM;_}0fxhT2hC|?v~ns|=OVBLgCV2+q<@iQ*TSRUEJ zw?rW6d@tNe0T$o&HIX`Gj3FR+bgz+35 zgO}Fnm*Y`||937&F14L+3b={Ly9cS`jN{~MvF?Zy?nt12ae#NtzuXJal;o+Wy+*&c-pDhwrhGcHKnwN;7RX_2A31sC9Tc|-~dpmr1HapYX8 zKOUTVY1xKLl1nsjNwi|J-G&lGFCRN_L2_v=M;DBpxdeyW#$|Z1iqi7k4LC|;DzOKk z$gSRxo7N>eF}PGSawuR=)Ik|gvF?Kn1R60Ius6c9(Uf6pD=JsKP}>4csHM%4Lx94Ed})u zW<~36&cMJC_B`BZPwS@Q;9`_&wQ{W~?wX;{Jqo2z2c@hhTN8)?8-^4=95c)CTE%iK zhtDw%Myridy9!qqD<(LO%aEf7U~J1(;1_ZD9AmKDY)#2~8z=^sa1pG#D}%>i84ecg z78}h5-XX1+;$$vIj-IGg$HLRT$qc7(c>?DXs{_bIYs~fl!)>n1LR z^%By==FmG_AL2q-&)OyzBBI~*Q7%mWeqr6OTQ-aoS}*K2E`{~7hvbf7ov}}GG4fBT z#y;5{T$20^!naf06&DE}<79yT3@ zH+)fF|2tfa{JnFr(^ZGwzsse_anOrf;rkpv$MFWH{*xU3VB1d1xC2YIwI#Jr0Y7O` zL+k}W@{GLCOPf(X$wP>oO@0QYR~9r_uN}4qjF?4!7NOZ<2I~>K0pR_d-*zg!a(F8) zm7wRj^Q?E~*b86){sjlNUJMg7^wa}YehnO@xUpUg6LQld#~UCKw{4X7Gbe}8ZBnM ze5h8Ma@uOpy{MYZdijvYN>k%h;vZ?Wm-O^-vtDsy2^V3uO%a#{nsuJE2KUp{*qAz= zzB$6H>s+iG8-rqZYSl`_{-e2E4C~1aTQN$NQVTEKES4t6i>+p}cBneZy7h*T;V@N( z`Lihl455=9G#M6f8P2s$AlAMxyI`kTgx0j)brzuySDn5Ghqm5!YHRR{xSNsMCWYC+ z)N;*2j+uFqb?T!|1+$DYS+*ZX&fLO!W<8K&#$JgfSNgVIt?F)l#cY7;njXwSts98e zngVEe5iLdVVH`E{TC>`K8F1K1RO+gYxg$At<|#7B&RQ*X^ejSaDe_gb2(6{a*Kla- z{n@r5h6e973=M-5IC$nIxvdwf6FF$+g$hB{LUj^HwI1%UwR21}@U0UTagYIAoCW7Z+6zOo0vsxy((J6u`{oH1HD;|)ZpOOOOFTi zdQ@v~Ef*oLq!*-Jtr=AEuq_q>H;XWj*1pnVQ{ zl=VOyoYPcl7fZEqXSA(Osa^+crMVpY_PxSVA6_To2_9VJDEoh)M#`j)^~!@Uj#S@OtHepxd_$=u_W{c z9z|A!<3G?V&4#vq;lH>%d6!y{2M#7vXC^<%#ekFK?2gMzXqE{u3!GfnY{Q{-#d;IZ z@libWX)coWGNyzg!QGSHYN-Z0w~O6gd5yMX^Rrx_ypzeAc2jLKe4fhyGl04Jsa{&+ z6g!g@+(}*3@0Xle9D*6Vi@ddfT4ujpvoI`83<W`6Wy1&9C^13=sr^> z$XB@_^}OSySL;@xKpV{Rwb_>jHk@IRHkIf9o_%TjUYM!f^gmphPR^e4rHO7n{V$iv ze)Kw7lfjpXwW7YwMX}!OlrYEmq8J-fk8^SIPI-YiTAS*78%z?tY4t-c$>i)raBK_f z|F~Frr$FCTriRx4i z_75)9ECmwwdd6y1_1KPob8+(SD*KM}4o!fe1UR!^=_+qD$=1BiQrnR(Qia7t73?7@ zGHt?Tnx%@a3+DmTx$nhp({#|pOSxouk5C2<HlPS= z;8K$6q~hrVIK1^vDAWZmZYeGfZf-fd+MPI+9?ISxF8UUz9m>^zImfpjoEsFsi90i@ zoeqqhGCvH@q9B0~jarQhawr$XeiC9pi*)MEW_O}!a?BB2jNBZ9_c1~zTIOdgH z5c@R&miCA!njAhzr+ zA+NKOjxg~kr`^0%yJ1! zu4)wAGf^3(VPV}cO8_0w$XJa+utvt(Bu2HgL0H|6RiSz@&U2r`-E7^APGlOt0nqAo zVa-qzE{Q9xud2OdnBR&6-yxW+ga!@6^tOpH#mT!j<|`+VUR zZ#B=kT$p@q(yckAPPeG7=B;laF|;MUtqmlGwwa;B#mF^6M%&F&rHpRrOq5z$w|bHb zlWUSIH*39m1G``4HA<43;(}PuPb4WfkVeX-ZgH&Ltiz?&kXRbpVJ4Syfvh{?Nd&5N zS~czL-^*uR1m>2jW?2MSu~X6(NWPJaU_F9i4F~5BSh|p7O*>`Xeth*(NJkhMF0!(uOa&5{_IHk#I2U;6SFuaFLk!vta z@EmpHtc$>M)Caf-)?MTz!B9O!al*|UKG#s7$*VFfLRF;rFqgvmB;O=Ps5d7a)@Aw_ z7s7hzHi;0el3FTn<@mX_W`bGiF+Dwef(w#s2RjfXm@{h@Cmr=5|J%7l*2`p)xyD;q z*=sQ4e1?lME5-qnL`?bK$tB9yIMJgHcX3gy_g*IPQ@hzcM$Kn;a|x^$#3hk{hX1+~ zZKpE<#YjKN=DyjM#y>5=+`IqE29n0yuYPdDN~3kJzp-JZ(R$erb7`#Cyd;WZ|7wc3 z&i12RChIk3DP)T5bAOA=W4)v^l{_>MxYq_#6R9}l4xDy=eQ)+E5=e3YSzm88J8p1VNO3x%pK)l za$#m8Pz?R$-)tyJSVs9hmn7GItM4GK_xwjL#cYI$xfA^tE{ydm#}sA9*q8o0mnGM^ z8{a*8m-=5^jM-?j1RYwIR_3gO*=zOu-t~D-U594z_X*O)bl8p5JJ=g@!E)`@YJwU1 z*_&~RX46#B-R&*7V7U&{_@?4r-FaLP>rECZ%6oi|cN;ELu1g_&>)^73sHG6wagk=j zVclk{sLm4Zzy+C&dfZUBcHS_OO!5)<-8PgYtVOXWmn7F&8MabpZ!SQt^>p&haEcxlU3U3hNLTA=edDGb~j)go~4_MGQ&f@L3muWs9S@ z2+I<+*D2@ROF0E+2@Kwr27)0j&EHB4Wxf`%wNDoux=m?Btm59Uo>kHM3sQ@tVs}65XQI! z*4s4OuvD+9X74Jnld4ARZJHh{t-3ms_(xWbH56T`9Idx$TEazCk4*$-)nn%1usO5Q z?A2;jC11C>!&ccgKy1|>)o-QjanQ`wtyJ69@2!1K~r&g>sD$aT(mE6D`YQ0!}Fj1mqct4ln<@Q0P zRs=TzFDaa?hYC7QmjzNcGK4;a5-TBOeQ(-~KoMc{QG{e+bFj6YnlLk^UH^8AYO6B_ zCJKbtoJAwON z;3?%Dd$$UHdUy*;WSP1jHBs`AeexFU?SLc7)&nR4%S+bteiSmEJ#EGCqpaM6=D1p! zeVsdYmITp`QhR8F2+}Au>Y5;ra6zmGa0YkHXthyp_Ouh&zd5TSl$-5#x#^54+3!1C zgbNZBc*_7SH`SAhzRS_=^WDIu)KDzGKkEW$QTQYmAjdp40r|NJm))yFPETNav1XWrd*C3Tep6En9}&>T#)=@ z#GK9Na#3c*CM>6J%>~Inp&3)_d@hOgC=r~O1gDEkDUIg^z)$MgT8|R>ytGF1Y7Zf@ zN4pbBuk>iGM~SQfBYLvCA~fsCTCat(hi|rUWC*U48F#uxr{=IrtM=e7wBB25FNR;j zXOyPErP(K@_cZP_oVFMpS^wFM=eWH~lo&dC=FhdTImy6uJup>6Wl>VTJR(T!OAvuY z#A}nI_$DvG`F3!akY=RI5KSE&JT*O3yIqqX1?J69g4M&H;ZDvYj-oWwF>os2L!i|Uu&igq|`XuJz6vZ)IWWt*` zRNTT>I}>6(+33~bOi;1Jme4-L(c)(O?9e9Q%tmN!s-f{wj&x?~5cKn7vEr25N-Kbr zyCqLZ7^yWt-o_!*7l1&^UaJCkd?3`;t}ldJay4wzm&I4BhM(zoIA8Z94xiKCs8TD<^GODOkptn@V-w8KVgaN%Zk zQaUS*;^ck~mw{>?T&uZGiT(#TR@}UyUG~x&Uq!FjsoCu79Qowb4usvVHKud9X=&n^2$5J% z;`v-)SP$YC9Ok&>+VGykuQ~tZE%}%p!|ymway<+^g+Flq$&-z_hwx_(u_Uo8B6|jZ z<0vO2MltpX{>c%NS2#f%+1wL&F%Kwn58x%2vO%cifgEUMX!&o-agzJT*y7)uBP5Tr z$d>+Gj*`43MYVrK3x8`4^y)ObS)ZJ&*#&NZ#=C2e(;lE#x4{i%0-s3bFk-Q1aa6 z19_KssJ*8HInMFPgN$wmQ2}1T0g{iATXhHz=7`BvGIazG;{eGMjIjfFBu7ZzbTN1Q zj^+@_b68}D?^PUS-?;EBa46z(D@Io6wHrXtDi@8PQ-hY(%^t&7lf0iK1FBiD}34 zH-!ZAvn!M=bHq#^Ygu3!WB5y8sAiYfB;m=k3W@t0pEwEIzj;nk732kjAZ&>b8lu0FMKP_5IgYgIQveU3xL?F+Vns`qN$Y7vgB zt`zBDb9qlGVSa&Q#;qE&!E8G?OkZ3FyT!$fC4qg3gT*b+v;o8UHK$UnG-2B;Y*gr# z;igqQ!JR33FUO7>0E@#m)Li#-?r~!WGjor~?GJFAG+Jmy_v@T{8Z9DgsE0UC8ZETE z@CfIgMvKTA>6_W%#MVUL;W%-v+PK&<)j;3n?2|ShefC<-^Zm>Lw6J|La{w)(p5g#W zzfNmP5oXONoP+u||2GW5o>$$6-a+B){MwNvlfh8syg;^T4>? zTeSgeZQ-!%ac8t09{hCV-=Gh;i`wsvZM7&|^j;egPcR_t&N{-ejdN=d-a{mX_A>U2 z&$6~ooL=Gb@G{)o<#g7B>vjlvA4FEWjIn_*fTlq|6|N=^yYPhhGL9KHzU~$IAP}rn zt%&o<2=M@p7&n-i1hHBg58Ay1`Em}Ku|HvN?KtjZQDBETY{r^8)$s`h@=y+$v8DhC z!}T2%_6QD}apYDTu$4wp^_3hmTNK0*ju52bRjubo4 zZm$(~G!%bb&Y?2$m$6TC6^F}6GuD@RBZtaJGh-j-%^WUvK;PbH{%$4M0}g$dU}#@) z;#)a(Mx}uFo8Hc`GAadnEAJf~DRw@_-lB$n(liIlsNF+1UmE&H@8O6UwVQoJ-Y>e5 zLuRWa>koZ^BW5(9;45kF2i?qJGb#|g|MOvvl~GD#{hp6;sMr~D`x2q`cW&iCaqF}O zsOn7poKJAHjJ(BL!MAg)(QH~v{ut@Z+4?hFgp4w%-nF`uBW2}ALzn61%z4g|i$2mIEx9jONOx!${;qkUv{689VS0hv6q# zIDfL#o+?rw4UU89!fLW`E{tFgM_6?(EVlGmU`B%-#lg}l*n#`FaWNitLX8R@!!cu1 zQH+8!8uM6=6+4X`gB7jNaU3M6LNgj~5y#p;CLhQ*PY3<3&mIls@wv8A9^;lO$UL-C zxxCbKCKXTl-UeKVp&iWRNf+}Y^5$s<$Y?clk z(;fPEj+do*y}Lm0tQm2373ujej+cOTTDZKpF)YK0Rs1i3MX z%+i_dW-XjJCcMo!UfdkppeicYsuSQA9573pcGmVB=VH~S^EhOtI?7itlaAYPz_^ye zz(!qHYL(WDMk8Tv$1$@E9QiMXAYUASz&uwljZc?IA+|^ zT3c7*={QQAwI|1k8!fQL;kD!594U)HfhFSRT5(^F7dJp}t65ZSxIc%>!eOiyJc#3D zVaCYXZ;0b%5g>+I?+}g@H_~bAFjH-JIETu@S*(^jisQtMsM@N;Yqw)KP!_f`)oRCb zs7!QXY4#Tg0)l2nbetE#Wv>_{mgjoy?)KFrTruI)!7!?N6rbzJqFL zYyot2FNPK0(%JQK`;#N@3Rf7u9+!|S$J58{2UBCx-Q6$W2h91{Rf#EST-Qs{9!s&CI)auZ|cd9zq zahO*P?Dq(d{0HY9*RU{~%I9tH#Jf2AxDHz^dy@y=%lRi3-(dOoarXPfSsw0nsy4#K z*o*Fm1aLZ>S12WbxXZm_uWt{s3Nbws4?$ECL2TOd#L|;X@U%2qE>`QUu%r^gYD8cO zA#ThmR{F3sL7j&$D%zaGk93S}o&ELqi zDRjW=TVZ<)L#cC={o--MzY`% z&7U_UNR6K&63ZKLGq6-%J7C*VEe_2u)^LHle7h)N{+xRtZgys1z)ml`GLP_n#qnZ0 zICkdr6|9TaI)VL`gT*Gtfxwt4U*KrjsixcUPkDk(ifd`ej(_D~v9+0%9Zk{r4-ORD z__PJmt@rOdaNsHu9cLrn0gCO&S?ME2$-U64`6pTtKvJx_urXdgG>$0(m3XK zFIe&&E`lYh-C|JzC?bGbGHn%dN^DU-dnTP1Lx)y z?h~AQax1~P23`y)5NkLD&r!At07S1b)~r>;_yW12!9nBU zb6!7vfP2-|kRgtMKl*c*!)dWKX9?`1nVNnlkluIgoH_1WmTxj=;`0-qr?T$;7~ihl zx5=CX+|tcJee5)u`m#5M)JtywYDJ-*FQ|`Q57g%r&hHb{kGu(}Co9yS3hMZ+Kt1Dh z8MpqX5ckXP2kH$9?p=b~ng(h?q5hAc{@3k5y-VS|-8CWS;dcXdMEUlFH;2?+?gZ-A zD`crw3+i=00qR@Mkg1;*)bIZWs81=>y9M=E-vDY~;k@HpLfpsi0qT(obr(TBU zRydz1sO294b%jEGtDxTW6`(d0&i^H-V_yJjL80C$sBgR*s6z_%9zp%ny+D1HLVaFP zTfYVB&lIV)zBbhNfo}u#N#)y~pnm^(png;N_6k8g`42$d;!N2KZxz%}-Vf9Z70w?N z)Dq%8u28pnTPW3s7jHDjz4|Pf^Pz$|yfaWATPahI5Y+VxfqLC4nR=U`{^Qj^JzU}Z zQ$f9F1yEO=Er0uSL49I(pzfh?Uh(!&=Hr(D^=5_hxS-Y!0qWRlne&GP^`3ozdX>WY z4naL;B~T|7sqPWf*Bk`Ye=FZUEvT)%fm&0je;3r94hQPAB319YP@{M32-Ghqc7Cs* z9={sDRit|P_2IWW?gG?jly6TH)Ps@prxogIK|N(#pq`^p?-JCrmIC#&ik&ZiM~HjR zu0Z{l^6ia+`sbGebyr2-wKs&{p7uOYR}^I*^#pZ%$Cu1;Pa2h}eL;P6cc9*)P_Glz zi=GC~k6kE#dxM}J^e>=(_9B`3O+o$LmcY4RlBuWO7|LAT2dIBna4&gZNIhUrpx&oY zFB83CLj-j$Qg2YGhYM;0alfeG9wn$_ZvpE6PRLSyNl?eH1nOA|^cf-i2XyyJ^P@CHU^_-SW-Swm4w{L#{sMjdpULdID-GKUg<=giP z>X%;v)Ki->=i3DJ^BV*80)_h2$3ooJTY$Q5z5MMn8uem@dceokZ$GV257($)RHzqf z)E_F;sz&{ZLhWkQUn$f-Xw*}uWQ|^Oiz@Ru3Uw=uT2iPxYgAXEzCokjEmPmM(VUIu z;Q!oTXs>N?u`J&FTUGJ)SE!%Xs5dFp$297f6zU5a^*ai6qyJKIpHisvH0tvTbvKRr z2ZegBMqPM`tZ!9N5B*;Vzhhy1R1}%N3To?ipdO-pyVq@@%nxn?|9t8S`P+j8^;^G! zZWqs#;GSq0r zm*LyvlyCPE)ZaY;)Nd<3I!I7|`y5ggjb1OPKiv{QmMXaY+e6%+{{_C?Sh3Z|1@-dp z0rg1*_qCr6zn%L6P;XLf^{Al!aZ`Bl1%>m^1a+r9;oH5|%GOx?*^u)uUjx+BJ2G{t zMm7P?^ck9Zy=W5h_6{@3AhZO3HJ5|n4Db%t?{k1}EXw*L| z)G3YnqC!3T^D6FjJz1kaXw=;&W$IC1P`^E0p{~74r5?LZ{`M0ZwW?5`)~MGj)E6}B zO$zm28ub>1y7L!RsqR&%Z`G&^*2^+~P*CY6?w*qCZv9foneGh5i(^Hed|Xh&3m*mb zX+fpyq3~)%L3QsAIn$A^cxi^9UT{xH4NnOY)GGv)_DbWKC4xHl-tgOSo0p*ODyX#0 z12-%Q>T*G)wcNO-Ur?_QR9gRti(3WtHbD(nz6t6Rf=Y9XxZXuj_r5QbIh<@0)MEuT zoCp!rlLR%KBnYWJ_X=nLoHD1^-?-iBPU9fyxu@V@sd$dFp76Xs7baQ9@$ymF+zb!= z_YUZ90;i+HQ1zpyZZhXh)9xcBXiWUC_wOga3{u}NJ^!@y{4VMF7p3PnOV9sPdj1vZ z`B$aqcS_GcFFpT^^!&5Z^IN6o|0O-YPkR1k>G|E#^LwP{AC{hfM0)-)>G{W{=kJ!D zzejrhE$R8UrRO(F&)+9Ke^7e{1eji zPfE|9ke+{!{@v?uRx6DLebZ44tak~yFXcl(I+0@zx`KJMqkJWAw3|7zQa;SpTd`-FMQ&mxPOD{j($@4 zCgeKOZJr;PgzV)WO1=qSNNcEewdT16{xR)NoeLh>1Wu-}P5b`=H5Mh0YUJd(06BvT zUhTQyl=Lh;>xWXi$6=wsACNdru=)}cd#}WkImk5bA_T!707;R=0<#c^DCZK;5(L5@ zw146vjtoa6uE%2Rc;+-dn|8mp!VjCC7dAbN%5-5v>^;s9Hm7D0HlD;- zF{1b$Z}%HmUhxMcP8T+UeHb|dso)Ux& z`St8nWw!@Qb}H4f(+R_8$bT^Ho>zo0nuoyQGw;vf8w{)0W(V&fLU^6$g;$E!0ty{S zNty*=7CiK@+$k*A_yd|a*=fQPNhpmEd?^Cs4*;)B6&Zm>6d~safB7)yVyKV{LjnLU zORgzyLH1&W{spz{84x6!dVd7}1&GBNKzPg{9wxkaSe^k-@{A<9`&}%e_ya9nTjjvJQzW^udxT z9(g$Ko#++(0n=TOl@3xHf&t!zfcOJ|rAz@u#lS%CMo|0#(9_e!9@*0iz@Y1Z4s+WW zhF*k(LGe1Hew9+URP0W*98=ddBo3E4wD`4xZ&GG0b%wx&L-b(UJ@P!PGn8ler}zfz zj8n4|z{7;dyvmDAbGU>G45%GOry@RS=q|(bjX$8xStidVz#Az+uMhB`gMr5N^m4C6 z2Qmwqd$#tV4H%@Dgf*_R7rkeJBbS^Bj@$+usXWFfMfqcN=jkckDf7dSf*b(g;L*2v z9xZ3g-^&A<9)#)s081qPfLiCL^Q){Cxz>9SdKYzc`{-ShP0e+kwSy(Uda<+-jx23f z>d;@|KS0Z+>5LlyO}mHyK6|g{GjrR0aQVIRCvQ~Nw(Pm|$p0R5$ci*!7-C2QdH4{JANK;%+`3PrF@~m&?4i2bqbuPaI0)9t?#~*-i<^nH5I6{P7Pz3w|5iUp(%sTs#@WJ^(^iZI=AHxV2(H0N^ zK2>ukge!KN)Z7Ul40YiwruR^DM|swt7yb#~q;BrW%)H7GF(Ix$@5Obh=8n#sLQ8(= zY3MFTZ{iP_GgWOY^Cojrey7wclYH0}2#Y@eJDyD(`(8v?Qw#?_byp%Z{s8pqOyalO zlw&spx)bA;g-ojIvs`KvF+G!k;g2EwW7_@vDUgph5C5ir(t8-A=8mFedXxb@9Ei`a zdGTo;UrWH4VlzPUP~2;=xrRTWL8=-$;H$-C@YsiY8^Ylaz@=(|2Yf>~5sLxIhrAvk z@dqG{b4vqSas>FF?|Gd9!hI0q52GRsg;cGo@`O`fQyi-`OMdv_-$V2_G!f5&2%Jl= z_>cU*ybmxA%`*|UN~+)YOqVJ{mTOJ8o2y%dW1y;V@k-FFU+6y{qUS;1a1~~f?M`~ej!DXIwr`iTGRe9x3&zY%qIpTYnL zJfPb;l^rV1SgBX*!tQ1`6w6sJg@R8R@+mvFzgy zSoQ1-oJ_ohb7iPMqE7>}3Nxn4_<^ESHyesMJrDf)aU2cYKJcqd3ZHrvkq|Cb#*Ywg z+C@RY({sK;X3r$k=?1`zZ@~Ak-Tyn!uj|t^ginA z?ttD8Os`ovRZmH(z`ar8{c-Kzre2*B{1;SRlFH6OF9JqIfjxL{Z_j(FCX9sWl&FRH z?r*Vt;tvR(u6Y>|fT=*D z_{(5*1j8QyOH=%b=ZMUCgo?lS1ekZyr21f|L$T9qwdmAouPNzegMc~|QoXhXB!^$% z8pBrJkcO%U+V?!y8O(8^;lp5CW|MBdj*C8{(#c06nQ2R zXC$DUFGTPgBfgv5Wf(A_uf%JbQ| z$*~H~1Et=*6-Rdj@f?vk7ctCyp9Aw$ zV+RmVPP-U%RjCQ;6+C=C6m*s8IV@tvbuio0CmP9rsxrc8Pc?QHA)F@&gk{qU%T!}$ z5g1;Oa^rZ|?jD$N@CQ^(Gj?V`AE9TES-k0sup5oWcN^$>&jY~=Vw^Hn)`weJv?S-%+1;D0SnF+Xj-nQD&r)*!qS-Nf6b9|(JkKw!` zO-og0=tVT*Lqtz|5uG-?3>rg+N=Ke{5!L+|dKiB|vs9DAI{z@Vl?YR0^F_E7MZg~r z;lgx5rm&|t^PhyFMoPaEL(S;iRI3NU1Z?iC<1Oq7Qs$C#AkwymNK>W^;eq@mM%ig8 zqf8S7wh#a^#Mpm&F_yMeY3zfvDLwWO-Mz66#2?TpT@zC=Q5aoe;^ff#A~gO0bh^f! z8CnT!4!=Lb;}5`}n=Y&+<`mTQcNo&>S@&iPX+s>PnhAxloG5iBN~1M-YYaqh@H7bP zpPU9^J)aZsnZ^QxJJn1mdBAn=z!Zi*pj?`n zP^KHXJAe#5PMEi&$IbRl*DHn1X~DF$SIl5To0$Fl6fSR?2d);+@K5m#IylvaHkp~{ zTf_w4-tGA|ZI0Ho^V}LfoOTh-eKVF``~hv!mZ6Y0&srhLhkYx;;t#;4jp2}Y2&-hQ zknBUh9ij0Dpwn#Olif$*3qWDyl5M|)k;`HxU8hXly%xl+x5X^TQZ5|U)!zm}S9y$2 zvfaX`@$+IB!6Akp_F_0~NXeV&LicL8(=KAV|ABtRAMk6MEqoexa;>(7kMJHs@0x6y zwlgZ02n6oMCxLU9tOn;o=W|GUNS#sf8D^%mol(Kfb1TAvTfghMHEj&5+=Et?cnXaw zz;pkF)eZiDLTP&of_WH6VVg?OeBe14OZWr8X*;8Wc?hiJCqehYH%4&$0q~TaQNf$S z82=1Y6j}Ij3}PJ05N~4iqzYj;P_W+YI<%+Un+Not4B;d?Oe$@J$JA`4J`Df%K1&_K zOb8DaLipJXLYQ%<5LTXgcef^Amm;LlV&iBMLSXy>;56HwB+et=zrEDv!~6{+)(@L7P*N4) zjspvpBX_(2HJq{Y2iAh-*LyC62;L?71)`Z*V|1tLvBnAwTW3Kui1jVLO72LtA|n=w zB0usCPY!o2He&DxlwO-6%SGah00r7I!L*+~{)xtLHwRP9;E+@u6j?Yi84ORu=<%n5 zuU`&PGoKUaS)hcN&Pp|IWE5)JMG+u67I@K-s?TjiU{N8d?tTdK1pYuYq!~A2$XXQ0 znA@ZC(dOK~shUJGM`^&4@+Hth*Ap#B8$01T%blXgL^as)z5EF-GtQ6s=}d zp@bM(guwGKK2Ul0K#UJ`h}rP-_16a@C59qokqaYC=T9hCm3==efdjy6F`X$2rscK!? zfe>{1s3+hJuHf?_|9N-@)1lbW+TKL+o)%R`7#pe9o<#^Z?V=zM7{_~okt&TwU{F*T zXdbq^9zz0uK*cm`&kP77`0V_^l;T_>)Y&}_V}U#nydWJ-l&WzKD{7?(QF#F{+57M?=rUi1HiRW!xURy@}*M4TbbRNSk6J zgoC=r+aY>Z1}P>2!w@Nw5!|^LA^4Lr#Td|8WXQOyDa9DR!cw~Q;O3;$o~$~MYaFLl ztiZXScm^t*2HWtC=z%}rIALg2;6GrkSg+G<)?vw5#TgodYwAl~xB&=8b61RkpI>J8 za(};N!0S|CI#Pgt?cXUZCa#6Wz_qYca0LMiGYRNHLoO(Jo;`4;4;BU*`$BIX{@vgF zbl(_gnj>apk9CpP_}S3emH`#N6iQe z(cz4@>9(AqQlm1|>)=g1UYzYK0mKQ4oTLLO2qXsgVNw3(AUD0t;9I3t=4i z?r<-{!hV2KyncMe4RHl*-#F}m=E?7lA$O&a#F=#@CaX2zSHCbbZlHfLw zb9~4j5yv0GnSwU7Y=NSE#J4~j*~doqp>f=$xTW}%g4&%#*3l7sKpbBsP^pZ#7b80s zva#N#=qv=$>RyH%lsJ8Pl)JldIGESZz-Xnvrrq8pP$g_39`v_>xGb!~S25`Ko{^cy z0#f_?Koa=kuo=Hth|rjkTh*2WwH71{l44u-yuU390OD#aJ+Pf#(CAuf~;#-N!6)luRYXU*BI(_ z;d^I%%4fby^b7r6&h|bo;Kv2{xDb8};F0waTG4ZJz0U- zRy&9%XlRz3pl}mgALQiiO{D(zLC_UW6d!<+htCWZC=u`tfaY^Te}14=07udA+L=M5 zlz_A2z8|V^=^Id*)aoL$`$`^Q{XSF!Qf=5AE3EY516UW3H8#D3A# zoio&MoXXIIQ)|I?wjdz~#@TD8*ZPICC#DLOW?`LEKt=_RQ6Xe>92S66W|oIq9v}~d zvNNOy;*c{o=9KXm`&v*S4z&NEe;_qpKt^O<&_lH#GY4TUj29-LQoCC%)rRWT^~2tq`=gn)G3Z`2AfJLnU26L|>sz&Ix!R>1 z13BB5ZQqV#@os{G4Bdb`ydj%n;7nv? zkzLxo2HcG~&Pw=vPUz1+(|cJhv#*}n&uwQYU^iB(*1*4dGTSZgmHuvLIzs{WQevQr zuwO*0g#3w3*8=^^vzdD%wkXtAz)&m${21$KwK{iiMn1+0eE(Q>BHn$0K7x$28vGTp zEb!c!f_E#a*Hgf%$GrvlnCkJPVww5%h@lpy8qNI#vW>5+qZ-Se0|Ee{xZ;mbBmdY6 z`H)!o1OFEEy4d|3a*nEchhv!rG6&54Oyu5$EX~#Il30dPjah(dP}HzqHK^m_Kf+p7jZ0(Ur~?yJT)N+tip#@&5OD{q?v9NWAS|Q<3H$L6{!9$2e-s7?v0DJo-OHRXN_ zfvqc{_!5W4)vFuNkB=itRCN?z;`|x{#}}0J@O@-yu6mA+^@^xc3SOTC-ifn8vt#S+~}n_P1WFz6KH=JBV32z0rEJ(yKYp zU+PrHVQ7nNvMqbw-*#p2D)f}-)u?t%ltvIgL#0;Lhj?l5XaA+kAh1qYu?)@o%0Yx5 zg=>hRRVp!^D?jSbUF5wGFgG?YqofrU;5`|#(XKIX^mi53I+;2`Y7^YpG>ei12Aw-F z>IkP2wW`!6^es4_6Z-Sd@?I{i4qpbVju?ug0c}J)qnHKb8X1CBSR~-~ z03OorF38ys#;>%LIrIXwGDHNsdmvk5%$ky&Nm@*IVYs?`BR@G(53`idk4TBt%aD~G zo2Kf-B$ZHC?-zSf;U0+GX9z!2dNzUi0anl=&mBSxbEp{$a1%xXyqpZl#=k8#d^SYS zU~lN_AsKI@KkjdHdhl^!Iev^;Vt-SX2)`_bARbdlz$byg@ZDm|?-q{NnxoJQZgJQO~jc0b*K476SF zfkf$Vx6*&TuqfbydFUWhxe2~k0X^=JiX6}sJ~fUBnm=9Wby=|N<3wwx3x+MVE55ut zMo{}ZdP8jR8CB*hgUHvxRg&9KrwY!*T_RBDvb_ui;d&F>Hlt*dq?a1ZSG7di7$o3QdvX%!t2DJxDBYuv#}XiuL>b1D1!Zz10CYBy<|IT_$0nfB zaGd8?w}BAR1>RIm1}r2kN(H5?7lK!OkT!zEmg?gM()SGaD9T;XT;as z52CCROJ#`{zIX6wuUf;>RvfK0%WJ&3?%>&w_iWmI!#H+i^vC^e7Wp3+7SYGpfY?_T z+JxY71SM|qlu!nEqQ&wDM?^xzaT3VKB;HQJK#5N7?-mT2h;)bJC!NBN-~UE7LKBIO zy#bZA54@d$(%*3z^tDyI0M60}zOob0G^#o6&-Z6In-kPAk!R0UGh#a({LGxHc(SHnrk!kk= z7xbs4TtuGsCUH-|n|V>&Ls^l4Z#CPh%srN%_Y>GX@cjz2C*Ex`&*Z!`vTN%#czYED5u*-Cxb-)b48Qdp+reTKzFSq^9o=COy| z@(<8rkjM`OqRRz9AX%ps6{+pCV8InEcJgNe32STZ zX@Bc8)z<*;B-=8r>&6U z+Zia(o4%Et$hL#ButFp>#^#1&tLiNskxQYHmG5-aCLkFPx~VOZKFT#Z*!XWA}j{>UIa*aOv%cX)OHB* zJuLU{ScUN_#kP73*^R)zM3N^x+&K>d?|F-50?2LKf)K3Lg60dp2{Jb%dwG+Poms+k zE^2plgS$B*m=n9akiZT^q;StR^N_ik%;lMWJEn3Tceh23QVw5i*^Cl)_L4N^;~=y> zVHY6lh;(h++7vKe#*i|#yEF3F6Z9zq%P%r-K@AzdV7a>^&I~ztaMwb%ElBCtEg*`T zcjc9rcCIz1RnHsyBLBz)J9t_E&*-_;JpeIyLLEFU&_ZA}nqGmtSq8Oj^@}+2vt*bP zJ?k8T+)ep%nQes+y}7P4)~gkvYY`501P{GMR-c)KhWWPGFjt;KUjW+XEB)_-{xIgd}Q0nFvY+BPT#B=}2%Kl?9T?h^*7!gMhgRvWOz3L6G6 zG3i6hQ=awbEt6jXFzaRj18cUrIOipxwv?Xqw>({t0p>)@93rDoH5okcmMfvv+zTy&Oqt!bSAuxlTtXqvq~MBk7*Zcn2>E@@f)qT3L2#lxK0hqIYI9d{X&1w#o@<= zp#2K@20jjzk8bh^ImAG&c;=zImtp|Y_6b8=$SVoetSk781fJ6d^nD3QNB1g3v2bK$ zu95K2Q-M?9G5F9QkwR-@WuE6Y`Qr9Asg@<+!rE9FTma0Se z@3edWWl&Hz#((xVUV6eASPA4C3fONcQ- z***51{_e{Ki$XB3#0JA5Tcf8eu>r-G(Pw<|n zJnPRpX~pV7_zG~@hjXEl3k%#^wdNG|<$e2Z%bxeQrE&@j+{0Ia<9?iDU@{1~E`&B- zP_)kHy1+>5F9@s($pJqpEX7aE+)F*!*;}c?4%IeDTlI(i$g&HJwElt<@RJj@Pk_7B z1`AvVT?AZG1yfj%*r|Iz*`YPK-g?(s4R*$N>b^GnS-#!h|4g6lE6BSvPB7V_CA&3R z1{?4Np`_WbKqy#=fj2+nQ7K_%69niEW@3MbmEK2qeneQ!P~=O;c?1BZ8Z2D(*9ei) zUZ>sL%1Wl)E$)^6ZYKx^1=4OMjs6k?&}ktL60ck4PYA&%aiGt9PUz3~2FU#BAbJ^? z8cGCKf?~TP2|iDG)}OZuDn9wtf}OZ%)V}duys7s`f76xNe#em9Hq5qQy%G4o_ojOz z=FTAN9jLq{rK&ls-1t{L0inzi#DBd3Ddyw-WDPbQ)b-%z< z!48_9e(7=VN7m6rUz~%2QcFd;Kr-v4-hB|+%~ZJeRHXBYuRpaX%C-C7$jV%h)p){| zsal5JNAO!#a<@}(r9$g|3*Q$d_GO}o!)|~gyxHzL6>7D>-`H8lzo*?3C!qB*SANu= z3;P4G>rO8~;ol{amG?QcYF-3zcvEWC=%6%jSi@Qy7HHxxsOzIIFw*)9mccM8L=n6U z>&oyKKLHf!gfATh&e2v2e{&HTS$0hjj}zC9#T7wEeOaIlaAPAu!d!tgR|sUTiE zMo?jaOZZs@C4Se1YF*JV_5pW`d!@e{jIO}RPJX)?s%`wI)Dx6e zk(r>!nl(5U%tzW1k^Cq9ErBtdzeVJDbKy#V@@9*=VbGBuf)xaTxgx0j9anmv!8umc z9mBN;_!(fu1y85bgY!+Wd9oJ%ffKAy_{lK~swNr)4?U)Ye@6HTpcKLaBpGG|{ter_ zr6S?}8;g@(5=0Fre=I^nic^x#-Q;V)B{GnAGs+^zu)8@jkmC2{#!n;(K=_!Dy*f}C)}D;oun=U$tM1scHdP2>9&-f^tW6d zzKw-)XCa|@3)y(zf{cqi8AXLC-h+|70NH!pJptv^Af!XO#QO)=Yen20-^6{cp4c_m zLEt}_c9-LNka>0aS%2R0Q(^x=@Cpbo)qydbJ!YWEDV`?cfRTugM(Q=%#XaRp6Rd74UR&cuJX zu(QU2(d07q0!gwhr6>I@R|+!7v&0lL2WzU3);P6OtI}k8duj+eo%q1%!WjA_RJ;VV zd+a;?-51L&umOq>0u~^Qw2E^E9pR*^K*kQ8Sm{eJpA-H+b#DSE*;ST}gIQ+JWM;CE zkc3KxKmybZ35!q&WHL)K$;@QPOco^AQ`22NQzzY3O;`6U7!(i`^lA_aKlnrt1la^Z zcEk@A5fw#IaRV1n{@@3Sh>deb2e)+*{{X-Ri2I%*^jMr|aH(?)$vkdCz`s zvT;Y7EhI5xM^34f-Auu%g#lpfpy^sfR-6vkB3@MRG`WZ!IbE5^iqmmGC-AFji;-&% zCp|)dDmDk`yD`V|`=a~N^tKm^nP-w*&L#X9ejiF1OVgCR;Y_KtpH12WZSL0*_CdpW zVon_$IkFL3K13aLViXwIPl@)S%*MQ~BV^s=KrHnJsrRwtW1@uzN5V|V3PLG1JTOhJ zy5|M%eFYq6$SDy-g_B?no)qkvEP7>gtBvs?9@^2UHo2)w zim+{#2}_su$&oy4UmL?f*oJa@&+F-UcyQipAs0=|)?zjd+widSeHw=jPa|pw{HEBW z3)TyXHCQ)6i=y3X@VsZtJc>W!k|#dP zMC9=%TNJ?^OpCP|75f9=9?QO2 z8_qhJE_|#G?j)-Z>eL9rJ+Zg?=ny5QU29e!O2mqGe$V~n{5zye%~)l#f_%_kiIQ*N zMCEzb(=+wwa(V77<}mG8w6K0jafalQoqU;Loi9r@?Oq0Q5cZ(1$R)d@^M8TgV-RR{60S+wKBas^Ky5S^A4uj-1@2DD4jy$ znNV+GtjHHcpCuP$ssi^4WGSo;G>@p(am}H?U|?QEx-kAQxzI_*L0$jS5)fyahv%`> zoio?Hi2h*~aZmaZ5QBDRp-MwBFu$Se#{_Rv>`}5Qln?XA@&d4eNytL1AlR!&tAjiF z@E>eaEhOj*kZ@d71(YmCzJ#d8%|EdcU;_F4N%k>rd_|z{bIrA^2FR58EK4=pU!J@c zK!3Dql%mr<+7(h62(izTSfudyGk>DAGL?cW1j^nQNwKh$6jcsNgO!#1%KEwz{#Oz% zE)7Fa_P(x^|E-5|#_I=ID&#ri@aF5JTjbxq_Y~D|SQUt+zDZ)a7L7k2I7%by&F0&r zkZH;UgJA&y-*;vs-}aq<=Q-><`y0s`dZ0Y)*V0dEbqy&X^grbH#r+3C%ZnQE724mx zB58IjU7Qc5Z=yojuRsWubMzuP=MMMjl6b2(WqWfFP(*^HUx%pw+^{Ag^A{S966S+Ah-fvwAnz^6gAP2n;vhKrgK^HIeREw>Ru4 z=l3{8u{LurS$n&_BV(KFd0y&U_<3?&LkcJdPX`mo>bVYcV!eQHA!BX&ig_Bj?tu!b z!7PNK5!=;J4F-VaUHhnvNzFE4n|64El}W#{pl-32zIjy7Iaekzqnbx z`62A+H$OIN*ED2>O1)rSz7-<}C!~^DIqWmWi$KPRI6jsaGgSkXbR^Ph%G^Zl_o~N_ zp7x{1jn^5zm2I<^L<__X_S|JiYpKY^jD`Fgq_Lrm~tl9(9ExA9ei1L=mSDw$&-l-m~Y>J*jHDn2pPz_hgfv82~!Z*n);d;^o!HWMH&wx!IG zv>!loHnEQ}0j_pTO%^we-%HR}yErON$z{>Z^XOGkn-}=JqvI5TQTo=2%6&}lQx%w> zAkA~cS`vZdg|LSZO;EXysU!4LLP+c*(XJ#RRdwY){p*PR42i9<)*!i{7o1TYLY^M@ zqeaJGcFh+!1GhT3ldRsA<|fUn3*5)Q!ir7_p@{r4c*0x3+GP5pw z69>C(JGf`tjTM^-#DhVqe#ASI%{lDrV`@pS32!B94oo)ppR8zx@?`M^uF0cSNgdhn z77k)!hKgn=Pqwu<3vMNKWW!s@nthA2;8rt$Y%p0rKneHaLqao+`aHgvHrY%sEXXC{ zy=;c$5-8}_=0ar;U#6b?%V40Si7`%H$84(pv7qa+Hmr#m<( zh<_aM?9F7|etC*RWh7I1it?$lp%Z??0&#&1Edl^YqN(32Y@=MB7K| znN|KqvT7IZV-Elxf?zPV+)oLnexi#1mfQ+=nXI^F+uapD0IA{q@y;))?=jN=edepnspN-Me1n$Eoq!16<0ZZ z+3E)_rxlkY^!K7KS4ov)ht*EyKBkV!=Y<`qlSslZzbKLjwGF(so)Y*X37pM(i0=<& zvgLX#YZp@P z*i~9+c<(>Xq3i6;WZg|%o@S3M=sR@XLtiPPJ9+&lq&r#EBcOs^CC z+#(!N(qPF@#=yMa?WUOoL-)#294ORV4OZ9Xf1+Zu7e39^a^4| zmL5zdH&j6LgCv!)qn}(WHe)R?p?L~Pc>DR?5`ErRU8bfpPbZD6&B{sRY$E0|+f^EO z6NU=D=ayjyyGdl)43qHq03eP>Y+=oa%r9W9&OMRQYkAT&Kf|e{3*!%y3-|7+-rhnvb_Bc;XW)>zF+I#nq*k!hn9Vl5={D&5>dC<#`S*ed9{E;Vv)rkE(DfK)D=7;HH z#Rm7sZm90zj)UoRpyDhN%`fe}n5=tOydyJ6O|=ldm|Jrn9lw;D6$O|9p5gjgsaKd65;Ervew)!yE?i3;!Tcnt zIzLz{xzq*BPYXHg0l}fw8TM=(=*%@HoA?M7&vw%YV9UOHz$Fc6J$-N8u>@+7-k(H13CGe1p6850VYqJG}j%9nqSX zD!6F+u!!Z&lZ#XJDiaH}%HP01_@?yq11bXiR_h-e3@?Zr9VBXJ48wWZp=ORjKOfB?U`ZVj8bem*`j{bp+o+g6D{$ zNo-$1<(H@C)+NM!K7HCX*Dk>EFUe^wtr;<*c*&hwS*G64HYUTX^Z|>Sbba|zRFs1c zYdHv(cK6kN%Cy0wvN+^sMlS_)kQ06gvHgP0Rz+h+N`v#M{%lQTaQKkxpKhHPH0*Q`qHcL;MCa? z&KL|&h;i%yiSRJ|5Y;8N4y4Q)`4BuS2$R^;E+ikK8LG@s&BW27a9Pm5=+P?n&&M&% zXBqDcf^oqROD}aq&2Wt~g)yHe;oddQE*bG>c5g|ZYH?2 z{JF7Xk^kRB{+qyNW*)(Rr?$WUMV1H(*{_pqbctX=$DvntSDJd3@e05<3D9pDZ^4Xa zFHRWS;yr%>{5Ang_52HFrh1Wcfy?&F1ns|xR@g5p7+V;O;B;yulzH$U0H%Md(Vtc^ zz!QQf6b_P#IOhjN=WlUQbdBvnITithtpLa3UJg zetoC{@(cJ};3U=>B6Z}$TUeXPM_6ab4B)=7AsSbd_Tp!7{Dv$Io58wLv8)|U2_Lx8 zlszZyXbLg|uxM_tKpyF_3WRo4SMF;p&bRlsr${TU3YA%$-{=?S$U8Pe)e;X|L`BVH ze;&&KSFc&3J*Z|2OH)BByr|;pQFqO{Smi$Z1EU+1$vmFaS2{0uLb;D5;C*n#P_>!acLqbiRjMR#PZLhq}quc<|4A&2d#5a(p9Uy`?k!-(B}###?1z`1VFgDx{Sl}Okgr;PNPc{_ zv~r+cs}I#u0xcOP;Pv&VE3aE7u&J!MFfn0Gdq0_G0;b<^`Z8TVJUPKL!YtP>C)Z5C z^)H{cT%-6+wz=y;3ehXcGZXOqrqh|{>6zx-1i$cM8GjWSX9C85^>k)@rnAs_4o?R{ zoE4S-A~|OQ&fj=CbB;Oq2F4(Adr*)}p zVXva)`Hke633xuOOC@=hZ-QCI-%Q4tobHS-v~45AGX6F)&IF9V`E+(}FuvH5(rTm_i?h! z1T4S%v}IZA7Oo{m!*AkVOlr(GC+6#I8@2y{LNI|4Z#`{=IEE$(1|b>~sB~~d8FocV zmGen5&jifB{fuBf)06)c*=GXwk1XrJOl>k9R8h@EhFX@VrNM?fMvSgs+6YnZ?XIc+ zGRBGiVjsqd*6+8JgVCa+%i;q$CiDOVGJ-Lqu8tYK?NkAm89B=H>#m*ei4Ok?Iy6k+ zd+#}OxDUpaM2x?s7)&6>d(R{>{793?@j1%D1af@*43YzDb!JXV?_3J`+xEBF(ob4HHOnCN&FCax#wg9m>H3a=iZxvI^wL`PY9_ z5+;yjc{9w zM?W+NTXWa0>o%ZUw>+yB7Uq}MCr#h$n)_aj-slvZ8Y?#DoiI@1@~m1&fwc!paP&Yw zvYe|HGLU8Zp8kaee36$YYFRBEVfkkQ^(@cqfQQBjg-hc#=v|6w4Vh*Frk7`UWGqbk zzNBzHORkxK>*bl#7zfvBr$l(3BhO4uYfT5$vvA!Z*G$0m@(i|*L(`ecSol6hzL|jU zzx3d<+SG83@8JZlxk!t(q?*01j)+f2ar^33~>iS4{=|2P?E0>+nT`h0wh z`=+M2$_vRl6R>{zMs133+m^!hi^(+;aJ@VeG2>8p+L8n@orn?UUqa@YfcfQ_h#5EY zna0V_kbNd#e_1ACQtt7E9oJ4QY&|Yhb9Z5h&0Y6i*ZjrH(A@nZ=Bv=$U2tMRWy{pu zb->!(B{-V9|FEph-4L==6Eb~aVZnKnXz9zG+G7IsEK_qgg)ZCNO^D_s9Oxn=^cm#Gmp4z3p#eA7Vq{yO<)0=}22X)p%9n=PCuII%d# z*>@WO{)>z=0prWmzZe7KX**1m{Vnp$`xn!IP7+jQbvju)d0{GXd+Taj6v6r3)=wuO-(^!1XfqFvg&8-^0iR!u4dH37B7|9>$oN z&$I_Ol6@v%e|dTsj{Dj|+B7e0u)lU$<}MZ%C$ZUbiM@>Q-L84#Pok%BGb#|Ah%8Tn z-p2H)VP2U)kK^n=6ss*$(=wF1?37hj(R$^)O*D5a>t81Dws)Kwb(QKZWrPj+4tgRY zz&;AV1OmMC%n-o$N<@NZPy!}rj0ybC2oc~Q1z-XJe(j7fLE7RM{_i6HOwJe=3K~cv z!4FdcCXnD=XM_dP7Igz#nM8(XQwAoGVVSD!Oi(F1tdMyr6Ny~oTG&5C_L-bHCQ!+A zL$Js&Ng0?xhUHlcldX@&U;>pP7m%hY2NTG#JS&!$Nseq>YEld)5aWGkMyXbF1pA}J zuVyF+lQT__e4K4l5GD}h180&&dc*BJMPUL_mS=_XGL?}`)Lo<$Od!RF&Ip6}POFv` zof?y3a)QDzfiS;$MhcVZTKp)*VFGbZ+m`vn;bup-AxzA-vFmM`qu5x9BnJ60O27mX zw3lPGTc(KA^vd;L`}S;a7~~#3$Hvt8Wpn8^%CD|D@>U!@c8*>o=g5cLd5lhN>6Dcw z`oY&}Kls^8C)L|WRQ`ih(ab@vNMr)uCzcg(3l77e(#&0iWCF;>@!oO zFoBtz65y$+6!_T$W&+@;<(9bdoD}yEahaS7Tzp5|DSDE)Oil@|oP8t)o+d66;0_$T z>QlrE9tEW*7)BA~CXtz(3W;aDre}!D=QF&+aaBA!q5Sa;(m)*-k;1>~?$*HjQ!u(=ms(CDx`lkra=1TE=oat8Bv)mKPr!tw5YEjDifeCa~ou; zaZL7DinPB#TqeMsT;A|CwQzFIDf!ieWdhjQWrjW3s?XxXMp@r_4H;mv{8nzx*0HQY zwEa4wG6Cu`S5wV}#%u@Yms;dE5Sa;(4=u04XI)R?O~hof{5oz;HF3h6==d!}WwQLJ z^Nl)A$Q0DK6O{>2m$@8uj@Hw1^iIMuS$<&yXL>hLnE-W}E8q@J>6vO^1GQ-Ry#!_g z;HL~2vWQm*HEGRQa*st%J{TOhdFXO6*={Y=o2|yY3_YY*UGve`VEAE`zk$^1|c+F_9gP z5KexdoG<|=r`&5pM*fhDFnJ(+B^W0Wt^6^WVe&v|#g3Z@BY#Rpn1GS(!!}ma#!fB$ zW!qgp%0_FpIeGWcMWXlH6&wcickQQMy5<|dz>hHYK1ep~O23fd=JX)vuJLf9xM<+M zRU5bmhE<WmAsZ)jm!jm`qT7@{Ml)TrL5+D^w@7s_0lxtFZn zC+}1=3sksmWYn%95VZFjs=eVOW{(^_ovBQY$VDKr+025#1k$}=Wa)Z43lVs00)3+9 z@E_u!cFZHl6caG@(g%zwIbCla6B#p&){%vy=;sP^*OECVVD2RkJae77ndXAy?J?wy z33%H*Y`F|gRnrUW`6~FkSsHta#PbHJASB!Sp`P&R7LN2vrx&a07H1m0pXcex-8FCf zbvVoiG3=0>eIo~oA^Cx2U`c^cZhu$H?N2TP#(>fz+EEQisnKz9k^eV2_QC|x-+y{= z7EJRBi~ox(G69P(J6%}x>*0mR-yx4oz~lcoO?W&!->y$h);kLmGPa14F0B3@S!DuN zf95n{Ri{jZy-$!mCSdPpPZ##=+=?*xM`Vx*7)(wV26Ylf`1=#`#{~Sn{50XO*}`b5 zx}o*LKO>h+P9rbW=>}2aUywZ}VDA;Di4wyq%xdwk$R?B1$kvukT_Y;W{9AI#1YG|7 zX`;;e`jI1O)6drDtSUc8CYgZA(@<4sI2w&bvEtKlz@Z6;v*)u)RaH0EaNlZ^>Ttep#2OMa2eG6A!vOO&@$gi@xy zO#YaFztg3fTx=c2N@Q#8uaH3|U~o`Je@Gv#1?|^t`+c14nZ`_Gw$WNRjjQ8EYMtlE`6^m4i9g(Q^_ zE(JvCLka6t3C|cC_cWZB!2C6L-Y^08ca0T9hdKkOzatbAKs{@$ zQ0crxDB0f=jtT7&@u6YOQVT>`OaD^ik3(-q>+@3`)Y(VHztXF&dF2~fr2LKWH-Ja> z>6Efo!i0m*U8X)avW+s-rQS{NsAy&r+gnT^Onp?BNQsLU>F4T#>3s`&5kZ*%v@w2A z?~HliO9;#az_*X+ktyw3`pb&

Fs1F2J5Ss+2R0`n@M7=3NAo%PKDstX~KhT^-!9 z7m}OJMmu%2^q80hS44Q}qt#38-nVg)7dQ2Yie}DdEMWq9?2^i{0;;3-z-}Te6TluB zvkh53ysP#=UqomofWBiyU-iUm^79_`4RIawD7vfqPwFxwN1mDXk%>-wdSSMHLV^LV ztM?{Kc3a729)7t%$Blu93zIv^{r+DTfHkg?}q>&?C zUZ+0522U*TB?M*yV7n7(ys`$K+avX51ZM*9yGC_gPrU{)?@66RyvRJ6&P!KH?*nt> zT6xyB1o)$C-t#85H08Jb1CWthnhr$i!!>uSYmVH~bcDqxy#(e;)_zQAmQl-B21KK0 z0QGP}F#*)bu_OcK{VsreB;lCQE+aY|$<_keH`Bw^_@F+rYo%4VR^DfEZTQ*p+y0>l zqZ-G7bPeglweB91YdON=T3!NkKTA9la6htZWkA%m0;rc0iV2`bcC8GQcdY>Km4stL zyNu{sBwGt;-zBakH$dI4B3OEu?lh0gwwqH@-`d|@^SC#|!B)6S{|kV(j_PIspaQ|u zj;N=N>;wUAaW*G`2xK0|0?!0ujNJarL#fMU0iQ@fCIB3{pOgpmj+X^}GC`RDbl-@+ zXDQdR2-Eby)H?t(x)TPCzO=#j#orJo)JI(a+Ft-1-3dKl*ANI!cx+rw=xM7HTD}Fx ze2wN|0x?E+!W@)!!VKVl5|9Z1M|Z*;VBmxq&~Fly2|!17LZw`D_E$YFsuNmNz}zu% zU;?eVnZ=HVLVM9Q&wUZxa3#U{up9gY=$>(cDi%EP#p;P8_x~N!>Bx$^p-5&6dy7mU z$;f>hM>_@c&M1l#MVjjf$pnxicgcGov+fwcKAx~l0K0$GplDq|95TRo5k1m73XsO) zl8C*n)FpY*HP68ZJQPW;gP#B$i%U9C#ez$A$LNxdcp4qOROa(E6q7L-iloI*0mds* zL&;4b#hZlmrup{F#Pkf7*S6=PQw{k%TPA1cCYl;U@Uz;)+(!FXV6JoRmHa>sj#nIv zMvpwn*bGNLPXMcUFxl(WWbuNXCom+4m`+7iJhOrkp9$oOcHc)ptO4mB>P%E=UQ7E? zpH_|WT5SZpR(nB8oSF<*UGpzL2OF;PH{>_)`H&Ki+me%(UBcVp?2Od4VnnCu>%w*YZ>H z(XMxn&#oc7qQb22Q?tfv!X>FUgppF}ZYZW%&vMEH(miWzMs*-H{J2N8CyF)irAevX zRHgAo?~-I~PERyu?2?)0bd|rm=F`6ld#-So{3V%a&3Ju0Dzrkvn7^&Y9Ah}j2#Aq? zCyNMaw$hYLAlfs>W=e}uYfj&zic_$U(vYDt$LO;Q^Cu@7Cng(n8g_A6)k_3?T61-9 zM=oq`+SKk`%ME}m$);I06dPv!q?$E8lQRY&DWx7;am}M?TqcllVr<6sF!+4lNf=nP zZXy4OCZ?|4Z9tFF%Eym3v4K2|z;bD0@Tb{AS{>Z67irKKqm{F4pzs14R{pE8TR96P zR`$0P*Q}wHnT*xS9;PNgT|}m+<}+etpM`}eKAtj((`mTICfYW%&oEhEZynK9i~6%` zF2(1xlXLA=`U5aK;a3;QIx(p#35WJ;ColJ{FP@LN5%w{ z|A_{0>H+oLqi7{}XzlY}0M)05)=CeY_T4@Ph^`@V=>4mz_xPknNxeI^)7eO+ZdS6% z$%NiAg4RLbozp|E%~z;%s~3O=A)x$k zsq*8~edUzzsY*<8T#FFqX1YBSuwKxqDdqQh5IJ2r3w0}@m;kDv1HKd}*2sFIQWkC> z;g|p}Iwv!X_G($$|A+3C+8+S%5%E$8{N6;c|C^U?_xBTD%xW^YqZgW+Fay`Vs-X`}Kf6 zji5{bdfSqNnu)s0a6BT!oW{R0)u+(AGl z034zCd%EeQhcEvAp#{C0piBU|^y2Tysso~JpE`$mm=u4Xg-$U-1Eg`%I^jup-!r(L z=`7spY6{ZZmfp6pq?IfjZL2!kD6z^i%L;~E3d81dcCeU$-5Zu1b3w1>X>OsGMH3)e zFs4+d_K>4Hre@}FWU-D(&bMc)dfheu>nEV@HO%5}>D7eI0O%2vm4j9|n4zX-h|fHh zYDeTKOMwsWDUx|O<1iD5Q82{26b+``i7ma5k0c}$Ko*Q@EEUoh`d-*a5ta#HpRr^I z4CvPQ`yS^8;wR?G^hj|QcOPgYR6>L}yf{5=k0te&U9MmXrUnx<#)G1+cj||4m zbdJzs5b&m@NABsxnHddN_|Y{Vd=>oRY~JkJKOleO=;W0$tbeCke}o~blw*bm;Z(Rb z_pm}{LXMYSG$A^6vN>ItJE(3|2C(@dbV5e5UYIt!`;$AAiDZXp~Kz>QM>II@xUU&@Mw z+)GF%fZRKhw~5}w%)QxLf;3;BNM!Yvx}m?&hum z=Y9fi6n6{Y6b0_~*q>w=CG>2*w0pqqtihEO56h z;1dbR1b`#Bn*AM<1CZtf;9MsT;;M(5}ed>25ZNa`rFeU&S!QC9y6wJGu zdt?E>Pe3LBT)MkCqBZx!QvX?TxAZ13M(BUEFpqky5sd2V4L7d;HEy?9o4MyM{n-93 zOK(%>;k$;2aKT?v7aXC%l_xE37~WJY^Hds(2^2X(?<%C6dWgDX_{f6ZKu{(CZH!NS zBBOW92=I0SGXbz3NVJqTQAoI^7wKp}4QO6NAGLnt9c6@p^EOVjKWZ00;&&ClyXFTt z61Boz$}eUbacnVwQV6)?ucrClnJvjZnPu zP~PjZa23Ka0h}JGyA+4BG;8>KkC<3&Z{AKfqXRgzkI=&e6QYqoU8wNmszSSX#{m@a!aldl zV_7_0Uzj{fZm-9YP{Pngc1)On8yl|NJ4>S*oZ~A17ZQL8jZ;coF|T97GCos3*_bEe zmhFd-Dict(9_8K`g6))Qp6Q2@JQI+Agm_dR>NPQc+`x8XApUlHZlO7g&$`VQ`;O1j zHTVBB9O$LbfCH_*Eq#+-^r(Jn^%S(pODb@s&!{We_)&_#j6Vfr>r-`@MYv1AonZp5 z_Lt`>Yw;ZEz&3($KQWj9!`4qDv%jU&z=287gF?$j7Acta|Dehq5Qj~%mkF}(ATJx^S1anA(#MS z95E2g_mqr3AO;g)jKgsSBPbZ3Bz-2J|JXjQsMLCBfBS}wsyf!*>D#F4G@i4F1ALox zof?fb$bFWs`I~=7qv{{PW3u`{`sTn!m8YPMDpEnCYSkZ$tbId$_SI~IA$aD0S{^@7 zWio*>`xZ|BW;!h6oD&|9Dku2qqq1n@Ux>tHfZ05Sn*Z5Hqc>=SaB-nIqZ@eT*Oq#x z)0me7M1|kLVEN}=^VLtlS_#_a$?9$CYqZwG%h1;MVW$h#PIj&20EXD4%X6}2@@Ql7 z-ibP=nuVwP*%l6@t~G67lZRZHg^ zA0wZbY|qa(CKo2K&v3TBu+VJbbJ-%mtBAw|NOk~q1f(Vo>F)5*SxfyFNu3F(+fcT2 z>O8}kC)v+5x%5T2e=X@V0sWn2d`$|run;=9x(x~;zcnp{Ur)kJK-gANBQSmf96Ob~ zk(8N?gXQVE?C2Dh-%P?xK=}4ib#bJ=a1RGyC zEJ|xC0`v|7F#(Y6$czBQ8TQ7!mEm0^%><>a9t1g~br>Cv_&{5aM2p;xuL^=5QuCLc@f9hg@JjL>MN3u>)L7*VRm;?b9J z@W)A*2?*O$FqW=&{p3_sJ%2zPCcqilzWh$8bq*A^7@|*^O5+a8rHZWE55ugRk_d9Q-EP z(ZBtFZ0jskECI@Ehvf6xw{U|QP}(xVoc=b z>>PY+0sBuoY#gzY5ZSI{bDIf7vS0UHvPeOzqZA84uTyw=Jb7UPUS4>L)v*N%f@`!f zy^1gMh_bAPevn)-0ay2(YOao9XmOL zZw#gmd;_7G0DA5eLFXNJJ9%IN9y+IrhsKG<;Cl$n1i(YLHJoJq<(@j(s?Xw+PZk)XF|A`5TuW^~K^B;R zg_-4%eQv&SjI!4!C(#MRu`!bvCBtx&nEo*FnE-!!`S6?V#g5Z~MQ#w836SloxAGyW zoboxzk+t|yf-(W<(D8U^(20e%#Ng&MJOF0r_?VUcUNXW2j4YGSQ+iWBk<&nnz)S!< zbhD(q24+vRdX)bhLNi%j=+@#aPKn6ceSy$S0DW|M+??v>C<@MT%3>cUHWOekQxPZj z0>)q4^Ku?%7XP`#XR^F%Uue%y9?gmVJVG-8wB1)a?lO)6f*wbEK4F;v_VDsp`*?F9 zFYHecl?hOv)~_EQ=?L3`g)bjTGsp&so)*r+u)=f}4?B}ggoU@Ti4}RFYhL#|Xl}JI zz>;h_uz0v)-K*l5g}epBv^Hl%;0TUR+z|`Suvcj_Z0OEh0o_Q`D3)^)AM?TYvAxnT z#3aH$heJ$EAnQxVWrW^lVt|~QOIq^vWA)|?hc;u(Es!}TVD1&Cn7P&j+Bb~}_Iq6o z=c~MFeQI@hoNO`yo3A?!*$h={S$-~AW&)Oaul{2=~Iu8G?yOH6A(5`?8btd_d1?2ADam!qoe zq~l`3@MEb=CQ#<}(E^brQnQy%w!UH)&6_tck-0d_$s5eU#I>8r(ly`wEhzUXRPMT+ z@^VFA=5Ws=qrbH2Qn0QM=nO?>s&41q#hRvwe8XT%#WkuRVt8DVZ*}{63Ak zWdbG(rsJ~&vqK2kXATSzr!zU<5HT;QC)or@HZ9Ry(l zkOEK4vfEFT49EgTzXakYLNFPJwvIGf6N|0I4krvx&K_>hIBnfR6ed6^n2|3p$Pw1f zLf*=-m(-bny4}&VbXy#)+r|_8fe8vE?ND zFCsAklHG4z=(z#kgC#pM-)KyoM76wtPjiY;-y#$fK-uHP#{(s+iR)Z$lwy5{SWJNR zBja=uX(_m9W9w&;?!Sr11c(J=-b*u?BH94dU;xTF%Y$wQG7}(=wLmP+O>vUGElc<2 z8=b`&wi86!vxvzAm_HP4=|zO~Q7;HJO0RDyx}m^;a+E$-hZeN@(&t_Cu}>r3eHQUK zS-sQW2J;UuLtEcRbo-7*w}Q@yp6#D96a=*ta*JKwr>ad~unhhKYY`@3tf`*wg8!r#wJjlz$@<6CjP^Vi08>D>o)F ztuD>(&@BH!3?{%B#l@l+d4aw`FeU&i=p3io)!!7J1HLK(oziKD5a9h{0rJi$pN;0)3xgOaNxLX)m$Rha&s{>pmu+ zI$9_Zs(Gf*A$cYsU$A(-q#LE#Y>-+>%1l7Hs3%&^iBigW=GPE{2_On4G}3qbmjNyT zIuWYFd12}0-U^HmlKc)07r8;=y5RpvM}? zbQ^Rgoc%d<#snM{cvL_m+X4z6VB$^=?y)Nfh4g1gnn|HKJb{}3*+*ryxb!&N?g+M` z#BE_8cFoP-fFV|)Ta&EVqc6}31uO0YlKLi0aD$p)$6zLWOUKdSLRR(eu1;S?D6c1FCZHVOBVb?R$$->ek%9_lpwQfz#uvy62Ibw;u6f6A zL+d|+MoF@AzkP*jFPMRH@2TtaUFdy}>iubPy@#&^j-TFkKP)SCHjgjAV;YC#!I-x@^KZxj}W z4M{Tr>G%|xqg-=83T;|oAS`1$+{OZY{qzZ(e{rT!^=eHYcTJrg`M(4+$*McuOLUga zam%M~s<-fMc*{L~y(RNb;4c3D0YMJ?Ks)q@$6;}%ic`Z?Z{*T?xui3<3ydUMrYoY>2S?m#p2+u}+r-uZL#CX#Fg_c)@wo zDt{wcwLN`^w?d^)HZvAmnO-L=x4TDpWv!IK8k{yQe`XrxDlB{FYaUyYDz0pq8RpBC zsS7o)EjMW?5$82?d?8kX;MM3(u-Rh^kCY01X@M`D7x*_F7@S|)^Nx3Xee(q0EG!x8 z^?iMbH1(zX_)@ksY|@-rpV!>aXYO9_M}en2siSM=7cq0jz(#uGx$62i=y<2MLE;DBx)aoVmMa}psX3Tiy zBe%9ufgEc#j&BXQkg6iQ(KT0LZ9+1rG+kOuPAQ-=`8_ZJ{azIX#^=z2@+qL^V^Li^ zEe^Hy@M3dDc8Ft&LB6>wvbeid+^xdD5F)>XtDs7nv)G?hZMSGs2vt40h@;>{KUXO` zeRC#PDPt}Z77c-1rQNbRs@x26VDYA*Sj-qk8BF)G2y2)2$&p-|F`F{vUI#0Cm(B{^ zzRLCBSU+R+Wp!1_Fciy|R5EPAg*p{WD)6T#N6U0?k*qm9DPhD@M$8|xsK?9St|im9 zZV#BW^q4;

B+9Ls?Yuwo1gq#T(6E5wCACxMet`UYAw*DrpHYe@D!c9)4q4^o-@Q z-l>xQ15pP!@y$y@qo1Tsm$Bv-h*`=*pHxtMWDHza%_6Kwl_9sPGU$g}UGu1aLw#{x z?rw74PEJr(ZsvXnW+Dc(Z8bFXTEmsPp!n%Dj#L|+};;qkd>4jyD~3VU@a zno0;#u2Cs#rQX^+-8=#FR;RI{f`1npazK;tbV2l4a=|WnrLs$3sT`D7z~>K^Lp<6( zUR`Kc(Ju55ShwFVXPxN<<)g@JjE7Df-|nh5;@vMzfwS+~n( zs%+c8TeN+1IpS!s&o?NC9D0OaXiC@}r*09iDv>j}3O&*J1|=18=zltLm6RL=FN!NU z?{e=}Wr4b$5+>4bj66v;?s6*d*@5-sa(Zy=Rl@_-1Z-36QL<^*VoN3$D!cp%Y=A54 zuIWoX!d>7w2%f=R(^o1P0ZSsHBUZ)Y%*H&AbVGNR-egUCLG&5AsOY=x3|^sc(Qltp zPNmop53iNdh;9TiJmiJ(hslLI-AmHgAqN(;s8yNsnI12-)16gkMJw}_gEJ;q_IR@; zmT~60%V|SDYKYKOZ&jO}&Z4x#sgzFj2wItohi$h7<3RYD?F`m^Sx&EC!kfwU+vO8v z=)crkmEDA6J00qLWT$dda{(=N+s>;a?pZik_R;Yw)$14sha#j05#Ow4C6bHuPZ&r> zLvqE2>q-!=&G{r)7@V&kNE+dn0Vp4r%>`Q9#RBn`fka)vsrVRd9zue>fp_~rV&Z!J zgQP@xa~Tmz#?*q=P++=L1|L2Yrb3v4@cH zE{uqSNu%6V!eB_VTBaW(q#1Z(q3?+U)sY4^319^Bv>!{_#UZYsTM?MB$8&lDlIrL2 z1S%K44h)pY#UF+eiChdN5DcM2BUc(qvXRR?iCjFsC=z|)`LFI9i;9|{n5E@l#>C>B zG{Ws=brDk$-~S|=purs;HY~X-cgVCuQ4=&vQwgC7T899LiZ>QS`0QJo;s5utwnOKp zIyuvBxtedjG1s=dUDh{GavAD)l7ObCDwc$}k&plcF=$rHNjGa;K81gk&n!%D#3m#`1)69O>xSY_ruwwJ}wPS)!Pn9o?=CQ1u~ zfybOpf;*V5kTE}b44OqljX96gZhcjDtii(Aw!|Pi;(1lpspBf=zWlEu zFXu^|;PKn4h2gcCd&$~^nAQpRr5E%OyaYIU!}F$6*q!Q6PbBZE>-_M zb|9qGLKR=5sr<)?5UcG5>rx5&iq1S&beXN-3T6rd>#M+sIJqh*tK%Od?K0KZVB@)} zN)_-wNjR*u9x+gpL49R@lCS&9>X8Fq4(loNTD~3BQBNEAx-W9lm$o%aR#!hqs)OsG z-2=f`onU#3RzDSA{Zv@}u#U*$zMQy2RV)Ra&cHhYd09pHI>r0~(Tb{&hYyr34cz7p zB;?|D!LUQXk?jiQL$>)OgJ~iYwXhY~DtCJwdssV*mm;DXP<))bV-=?Q+>Q zCqB>4QgA0(eUPDEAEOE>>MUhxDj{^1z5vGhR6NeXYffHtyxope&WoM0O4t-%E)~TJ8AJHb>|&k76-a2X~UycO7k44z?@X@EA0U zS{OP0IUOy1MD|uOWr8M|sA)s*gJk1f$c(v*S%@|TeYF}jA{8|;Vo2BzcO0jKSdg^> z;_fBug#L}1MMxLTjO0kqEzZnf_6^_Kk=Y&*U|sfRvTi>zVb;xN0^dc=)*SK9EEY`K zZgi*Gp2lFdWq(ub5n>Ks5H&RyI+fex1;Fhp=eAPOaS!@29V@q;HV$Lfp>d}=tq}X= zOSBuOS!5xg?cH(mNlAgLqA~oO66P0MI*vgNqkCZw85K=m7=M^tc)Px&GivBK=t}^- zuAC~wJ6wZDpw@)9k~QKlDis}ZTRE~Wygz9fBzbmN46Ym$gn)Gs=Vr&_k9%&%~k$J zvT6q&RPeAm{8jNNW+$13dss8yqHPaK0`o zHsM(Aaf;e49$Eh}@V!2NJ6XSNe!ec#(pteW^al%r`+{^0i9)8^RHmRQ()Yd1X;q85 z%TAUGdmDNmBpY1)OE*bZwFIr_{!r3?2gp3e1o-(h!8tE?H#txH^9NlvC?ObYFNMHG z0jzojV4Vf9HiA6-A@n?8^i zlT5=O)J-0(rp!SSjr)^t0Th!Jn}T5IO6G3TjJS^VRg7*}2h_nZIL>a!R(@NGE%#`rm;{idhJI8nsreL41eiYH^T=9htMyMqyNeA|d zNIcbmCj|6OgrFY)-6vTp!UCh=HT^l@j=l`NRsKe@ zYBwtUlu|J16lG4h3RazpQqIfWP0kZ~nN_F7!9=ypCdd&RLM9hG3+-7<>GC6Ex+YvV z(Fxk-GFg+&yFI~*62t_r5Y(AAh)va1dMi0=J1zFs@aDO6p1|mSbTY4}ni{JjN>Kxv z=kx6zvu!TMhJi8!UPJ;}Q~3eb9u5RLSb|HvnU|16#4?5Dwu60GsZpXj1eaF8gv870 zJlaCA3oGz}I+@Fm7J^$!X76>)bGgfBeg1Z`{zm;0TjhYhT-ZX0fGANE&tHZJaEPbJ z%2MRL&GsbMYMvWq^5UY$$;CVD@wO4B_ml;9pd3tc%Z#enD#cG@R6C1v{34rG*TYNY zO&;#p;gD0hvhz+QSvg=yLP4<_(?U4oxi9QhGKMp+qm#sJRf`maJV|$OuDzcl{U(y` zr`elIKseIWfKzJ4Dz%bPs(CB%N~Sy__X&HtT73JguT22lOPhzty)JB67 z%vMEwte?On`eB@$cch9Yk(I16Fke!U_1$Qe1f($TQ4vxVl7f`Gm%t*7fg#A=J!GQt ziwd457aasE!E3?(v0$}uY1{L7M>)VnP*=FiWW{av0fY;dQIw`j_MtHDM3cQSR^R9M z+{b_s1cKWjtL{3ZK7*}rr6FlbR1;Wq3t%jj=wN64{Nm&S+I-ktFY;a1H&1dIO^wviq{c?nm(72w(cTBi27eDTqAIaZp$r))24U&QMp4W$PZ1(0qi*r7Ef&!{H-b$0{2|{cWQ5sgL|x?Na)6 zb&nGNJrWOVA-_^WoSZf?Qq%Lm$j8NIy#E-?7lIPGNTW7c$BBlM8q#dh2V%@po>Z%3=TX~>v zNU8q~spo5rrw^wQ4bWKipVk3tfX|V3yoMOE92`2N7-76mMffMe6jTU9dhMY@VYp8b z{)GrVHG$uaQqsabkv#?YvS_O3xzymp+2YWlG`Od6JcaqHXsR~@aiTr5;>d_nU_*II z{Xa-O6XBy{OlSe=T)7Sh`OB{P{l7tPXLWEVS-m~YO(w63)$cyPwB&>edM{V~ne_6b zO@izzo6}1y@WpvFJW*n{f#V6LFeW5CUD_u{a_M%*BWBF>^~zrRI(Uwbfu!{8$Rnmk z3ZO6Gv`Npi_aArvh-Es?`&VSF~z2yr^y z7I62v2}p+5;8p{lGwTYKKYWXbl*_rn*E@)b^q-Y?a2v;{Ed_+;gN^bk1Gct>pGDM+)pkCqw$EZ5AI)X`*0rFc&KVoDI+Kxu2ZB z*JiEUZnFYz*jR&42+3&eRFmVSR`&C9ca!sOr~0>JpP^<0(9p4lD^S9vDpG{j>%1o$ zM>cfEmIDl{L!KDX#+R6Kb;bET_mlJY+pJ+tFs!FzjUTp#&R}e&31`RmB2h~@Z*um# zynm+Ta;yXtB3NVOh@^fbwMcXnypJPIHvMFV#;Y~qtz_f&-4!>XQTf7aU;nia-p}F` zEMqPef*2&N+ng=Gld~D(NGdwS)raG76|^O}Hghjo8!q`H#ITk2RK0WbaJxQ_fphV{ zRsIInV5JX1+3)rlqy}jvYgH~Qon4zr5X>&N>H0LQ_7t?9d)o%UVUwtG4b{ALZXR`A z+Kyr2VLL`K_YkvWv&SzI9VjPSJZ_~8m1p)7MrPF0rcO~`AR5NnlW?pZ6C1dU`zTI!l_pHQ&5>!un0p9Ux{-3*5IztzCFlo1QzG9! zF^9-R`NoIeL^V*yS=*txAnlGyw%uW-h+n2@F$A)0FjS;f;Tr^2``21GIx5H|8V|9- z(E{tI?EzhN<=PDu7wIkZ453T43}ORA1=z0g=d`SE6qq?;MVkRbltb3_919Oy0A_)d zBeni8bhtP(r#)YttdiRMoVikI9GeI z6#ppMj_jQ!d>Eu^?RR z5b}?ciyc@hNadi+EJK`VPb7!i!kVrk;ws%k`(;TUx(@{U@DS~xX}D&_Ofh=6 zf7T~2+BuGdjBwoHNmh0^SC^u9dkM!Y16fT!9_bXfb=cREt!0?5Y;#|!6#mN;95=>~ z4=JVvCvz`Z>jwO{GYcFzx}zdzHM_9R+X&OW$IBjwgPVMoYK(3sQCc>Zq9cx|&C~4gFfz>V6vF>iZM3{jQ*q?_N3&1t_E!Pz{rX*4Z!M8$YGJf|J z;*}1qd;8nE3~nVKRn6DP!cqd|0MBz%YCcAqZxE^{GRF1+1y*ybjZ@v>n0pr#&9_Lg zPXHX?)t;t}eNs-GGkllC`-Qn!2Q1*+#V>DmzdBlq&G!i~Ad*FQ@aczXb@to-?wa@f zEgHou+-0(2hkO}V;_<_xb+SI!X@9o5|mL}Px0!#S2TZOyuhxv!lk#9^;W#}4(eO~HIyJQC~a&B z<%f#lTcl?m1x05}6s@r`ucq~k5O^#J^s4v=Vf=duVEl`g{4B4jR#e<4 zk#0<5@s9%9%NXKA`G0?|n~a{-#%#(B~13t3!L!i$=H}4r{3ru#7FVjJcV1FR+B)?Hv@BUfNKd zC`<%5`$&-LbV`i2(&ALS{><$pLnWq~8-kluY39z98>_E);B@TRfSq1;%}+6AuTIs6 z4U?-=x0T2pAIL~4Xz(T#xakpa1Di!7N&1Gj6+#hTG}9C!2OBMx=|^vKU)XTpH4gSW ze)9t?mgx)rNwRUL%bwZy7%i6R`x(HlA$7<*r}9RJ2I8+uF-jll&PgSgY+@13KT0<3 z#&pQel;iE(8Od@Hojpw7&alh%ansEsi}SLMi|ufp%ES*RPTtE;>rJ9vF6z2+aK_}y z?Ex|AZ^=oN2S^MnUPuhwMfbcEa7VG(3a%cX$ASv%c$vfSvy8V2Qx7S8o;-xQ;j0t& z)yjVRDp&{(7xJaMfCZ^58eaL>1Jjtqk^s!aSk*kVUzX&u8}xDTO=pbFI|^XthFHum zU zPm+z>T=sNys3>6f;`#4a2fJS>qG>Z26qM0eCoV!89)oJYe(PK}6RRL*k;IFNRBZe{ zC6ksY&cmjqNm}bt0HieWo06_HnUlmSS6uuzsrtEUjdB5gs!=->di^2vSc4K{o=4!m zWg|8p6_M0p^*Z+<{&zQD7i3k~qOh6($vhTy~$+|7S*r}lMJNE><|;PV2_6WLGg$VR2$I9=})QM9fh zZB$3U0_G8HqN^36Z*Iom49`4j&dUlvC6t_(yPK@XkaUnu*n4~|qQyb%-eNh2UbN8f z9Qx>hVVo}ZkZ{o)eBZ5*6zb>q+)vKuE)pz-LsmOY2sK3)cE^#pBmz;{mu` zh86+M8>9^Eih5;isHB&4)`1+|w~%hkmrA)(=ImtQ^Vdi(cXo1YxTTjrcu3YARPc9^ zVANM)3&VTKsz;>pN|<~vY4-X?Y@o20VER!DXJPLa=7S_$>;ut$0GfTX7=A1f=t*K%iH*^E7s3;Ho9v~h%qHQ}vf z%^qZ^Y(LtV)K8_wgK)~J$c2D|!{|MbKb=tk9#Z%`dB_328hp4aJfpFUO5yof>#5(D zP?ZLE^!pO_G4vDda(K2ymSY{z#ujzP_ZNVnoY5{PIS0uBwL+`ph_2T-wQU+KGV_j=cs^)(xRr4uEiCjs( zHZnrzU#yW2{f?R~k>)>0Bwr9?YdQidQpQ*-*?{9u4y1j|-;iYA(l$WSpjb)KFrO1i z=|;YQUEN>OV;!tWa%Ic>6A6UHYQWpB2r2x($lJkJL1JxPuMSyd$&Ur`17x-c^oaCj z(i~h^qIGhrc=lHi@ws~kjp<;Ej@aR=gy^$wG&U#|NFl!BudUPl7m3EaH#(@}`kE8z z=&)8!_A7!o56doS=$cF3&p{pcLhuBQX!p^+HwlgRgf7P5LM|n`ILSy5iVI!9@}GHcny%AQn@k(y1~k1M?-7{oGF? zq+~kqRwad_#GGECsCZ*I&RVlIhvR`|Nj)NjNW3<4FIl^rS@f_n8HE^zJkK6>Vmk7f zd&yd!F6`K6RNNVj+;Q%wIO{GtwG%21%gJ(SpB#xk6g}$eIQ%P6WAJIwffjBp&K|}B z0-0#SuonlL(s38Z%jNwuC7170BJ3vLW{ISuF{1hCj8}mhOL)KlT!+WtVi&FBVngqP zWW#R85*#{nAk7Rz3{${cSWKSZS*is*@}y|LVywU4D_zaq3allLYc`><7X^>lz`i5o z0{}*{+=K(UHUvQXAX*5YdYi$9RcT8(vH50}5trvwsB37B?0rd|Ob;WI94* zOM|HrZg9bicEV%Y*J6|_bLKjt#0yzTpLeCGM}Q}gbiw}L=$7zQQLsfq9Aq4b6w%nq`W!u5n!?aR7c@UCQ7c-mVske+s+ls=L;FWayI<*vEpN;rh%@(4 zK1|B7vQmO)TMqDo+WZn1tp8Lu92bh)n_w7-<^rrqj|BUq9N9)(= zXen8jy_u}z!62D+J43i@IuV>l8D^bOe2_fqII}o6vN1DLZ#6LZmM zDJp$y3#Ut8*}FSxGV^l`yzw~Lx2kYtuz)lhpTtC_OR}-p)wiFL67`-{k$Y*_GOr@x zqA1n35=x1uVJJ`gHKbh-kowm8DQWg*T{qXSs%9)Qzf9tVktaGunfITX3obd*ZzSnx znCaWYO}VzQBiCHXfxLwvC89_#vIn>NdY7lEgwr-*JXi5(b7~?T{$`U8LC? zBFgzn8XfXf-%F|mE0Ut4{5{6Z6!p9-evst*6#D3AC~*426#5VL13l?g*L>xFqXD$a z-$+*7J3K1~U!dcONG=PHb+Hgv4$hcdX~*CycaRvrM#qzoZnD~_;7mL+bs#o$>=1Ri zEP3D}#KwunZh{GIFmg* z+TBc*jSiN0`X$8~l1sMh;np`fle;cJaWmK9xQ#8;aUVCl6dxfk%8^{ULmn16UbF*| z#pm}^=h`z(ECj{sqx6{-{o$;G$fBY^s11#^u4Md&=*p-6Lx&fOKu8$a)f?^e`j z8$5u*Y5k%7vfv|YPT?qH{QMoh(U1}V3wI6nRsBrWj6Z^&Y`E>Gvaf3z=PqT>2XV|j zVQDWXPq<0GjWts_;Lg1#>vn6a9;yjY9I_vthbOL7BCw?zNC~k?-ND)A{FIJ-LO}fa z%E1|vD|b0{ro`Cj4v9g_vG3kEvvq3eFLfsK_pF4nRYh$2JAEx(zhvM4XTG0__OYXT z{p&tZ1hLsY<`=vy-7k@Dxk!Get9G{fsW(TlBcB14mT`?I-xh?|L$T;8fyR7=j4U-e z@9)c6Js&p*^J%s7H8M4P+>Lc3yrwjwrconRi7j8|8wBkiTVo9_51>KQ#YJ~NF#5NM zFd%%!dMu7qr^c_K#sZ+)^1GzpFG$9EE}ppiMUL~~O#!}7fI(sK_P$PGgP8w<2KAMX zfIY!T;m`UDz%MQ9C>eZH~?ii<3a_$mOG!~(`tR|Js_U{hlXbhX;lq95OIjLNM-`VR zuH@jtw}Lequ+&@pT;DtnlE8=7c|@mhgmpc^JuV3dE`}6by&xwznqcw*;G$!1y>Q2Io-8{!DP%AOA!1$HCr5JWUHZCbAk%M%en6&|ht5$P zz~DK^w;ENwR}9FNTycP8JSV$*8=uiR<6eFiTZZ;hm)TU||{|wA*OG76>*VkVNON zGa3yxhT^_&6xb6>ANC=%{WeCPV1g_r#S6}+2k z5elD!T7-kEwWs6k;ub6<7-kPh!+B$C1tMOO zX-m43s>zsnHEWoHI3HVx86}=+TMF6Nk!(-fa$qwlpu520hp{$Y#a^_>CSrF828&+9qd=lF*=tSa~`2-<{id464ZTF!9Rz0r@Y!Vo z_ih_u;3hJ_1PnZDWcLjLYWCtD^&4?5^MC2j&c9NJ8bk2Gmvb8R1qq<~6T2h73tv9h zUZp=E=bq6O?co#$o_pS3iW2V{CvoxFP#$wD?ZpIgj3K^xIRr}mGy}MgfJ^{bAG>Vc zH#4BmASe@n?i<-Fm2@qGunyJ=ed3OBh$gFXtq;oYu6gPA;e;#Z8+z$~L9o4Jg;Xf` z;pOUwW2k8@*CG&ur;|d2GB2i$m_U>A@Y!+GlsA~Ls%w& z-9H9z6xwjd5aTlXW9laW8bgzkC*rC%%F)7~VLUurj}_KGfVpK1PH17eh6wP$$EXL6 zBdR+I#Qjn!%pJ4{6G$))M-O4F<9V>V3C09q;|RGSSm1IV@L2?8Li>#FZy;RL!;xtp z^JscnYX4`9ZvPIZ54Gl%UtP26|H9GE(F^w%qTD)0C<;g|q!41qN(mv^`j@+2Xd0CLaB9w(G*A^jSC&UyqO#$hd-qSAP7 zL&94}e|JsuJan2@xJ&;FkYlK9EnPw?6x{C?b-yvhpn$sgg_A;rGTRQoKupHu6M^>V z?Hcp4kUI#;1dwB>Z1eI3ju@KH+(cL=fE~TEwWzhMXuIi-shVxBOjexwmp}nD4=3<5jCXi+fT~enfDZD{6%z|D@P$mFvj8}ys zW8jim;L8cj1i-hCUN>9fH7B*z=@I&-cNt)fp#!qeoY5MZKf31Q59XM*{I-7pGlmX` zgHZ&y;&FAwF?2v2X)%$P!n~fLf(axTL*<`=(O4LOy^&x{05*mWNCwQiT>$uI0y3d} zMs_(8t_9SO(bd!qKz|HvL41RaF;&X1{oOS`|2+=8xJ&;FkYi{I29OE`ulq^$x-qyz zKwTWqNg+a+30j8WWPmrdw6q{nDME~ZQO6rXX9QV_iw3-#z6GwyGhZqL?dXD0C78#~1;*Vq8uz)bTGej9;ujb_nX z?n+*uZ*GgXcZPse7`Wpb)g22uTtiS44-5oT1oH%%g$dZ+9W_fy3>^1OrQM@S5G|Qs zp)stgQswL(UO8E7@XFd^=YtR-R{0zHJB51sh)`Wa09fJI)e1{+r7Y`gEvI*sy1Abg zU;+#59NGdYwHkjp?UQZuPHJD2lPaX3joQz|m<3{6L`X;}w>PW>R&WSuZRTEjnZn*U zydCneT|*?8;=^i+g0|{VlF%9v}0V4-3HS?-S6a7e@&knXX1y2q*8V*MTsO65lM7!P)R z!MQtBD2X*?UoG=@%_BKAy2{_s-;$LkiwC>%PznG`{h3-S9_-4~69c8fD0TA!+Jy-i zjt0AO^l_%++)1^ECH$u}f+#0dNPBo6PIq45NbULhNgBFwVq)@W9ZMC(9BBq@UPK0# zu*L~|GKLwt<|G@em-WpPJdR+{j`7t(ef5$eMo5xvZy4S(SvbXjssBGUb-czOihmf^V<>&|Xx5QTprV_GHlrtp zz4|CXt|U`E=8Lq8>L^u9e4W_Td_gMM8NI=d7P=|f+_v`QP3NYr6I!&1ux0v=t0xeM@N zeLi79T|h66hCtbs>(mtHKj;tE9x)EV()e_ewxSB`uiq?x>RE7+hxW_jp7t;-1i*5< zL$?%fd5@OjI~ao{+~L$ zc4q538i2p3%oruk;!jN>>ywvEQpv$|D?TGyi;o}lbq>dz_Ao7j=F>C<6R`KBp-lmr z=v6ve=YqFX*7%_9APyse81(Z2_;oB@8+sqey(|d^+?$r9_ADK3BoP=!*r-N`&m1g4 zL~D{PV%HGOeCYpi_uc`L9o4zGKyj5pLLdP@gat^1S%Cxynq)~R5Cj4wkrp+*Gd(+9 zJJUVt?%CA}i6{_)6-aQ&CMWaIvj{fW7(_N1;|G=uh6lz30}k-W@U#8CuTE9ns@v5) z-F5GsW#9gB_J*GGeW%WMs_JGYhz5Z?F(pBvSEeh{k7}q}F@J2<@K4x;JH2=8#&gT@ssqE39Ky-JLo?#5^Ilo-n7Dv=BS5%jZ28UdF{xN?Pinr z_Y~UM3AGxbA*e{{Ns`iplP8+6$4+L2JUv&y6D)NFlSzXpE||Sg3r-sv#T}sJEvZgq z7Nt2oc5J(ZBN6(=*`Zb!=eY(${qA_acBi{5Q-j|iZ3oK_^cK6qUlT6jNF;<43?%7P zNm9bZICQAXE#D;m)f^K;1J1J_iRA9|ORn1sn19;lQKv8$rj2Z~#4o?n&DisF7NfsS ze?m7%h1rH%ftimZGeeR(26Zxz<7vuN58SzYe-oD;VhE z^pEGb-EL~SzbB1^VJJo;Q$$6ME|4503_~%uL8kP;;UZKIWD(IIirI&uB3hm`!fa{g zI8R{mOml{9mvCBm6`#6qH`^<#Lm7wk`kY?R)Khue=OO+kvnGGQbR`@P6(9u$nQBU= z5{|wL9(9tuZGxbF$o$ZNcJy*8Q!sX<@ccFO@)pwwx|P($Oo}vB-Z%+!cYz_3@T8dD zUOXE6(GkecQL$ZSt3Tbu`7;JS`v5hD5_&1XBX3IbmN0i8>o9>sjqAgJcdlapvn(TsbLL*`tXJl3=c^D%tp-1lTo zbz^I>rmteQZ#B9@Zwpu3{}57kK-{{4K4qJGcm&rz{mdaF-J{{b2!p_eX%W+`Qg@TlAu zOI{N?tTCQrnau-M58-G_gK%c=r6ZV;?0Rr7Vt(1kvF02zFY5JI2GQ}JJ2o%3cD4J> zE|&GQRW(Rv)%!>Xst1^C54gYv*KtVy`UMYziGcB6MrOsF$mLRBOnJ5|- zVSIKlGl<-GI|6kFLeWqY6+z`UHIBgDiEuQ4i%qPWJyW;Xk8^N;Q@DoM;wK$ug%v0W?(HJD_}P?M zy=u+*>~%ouBTNm=SS2I@iS9<>K1Mhiz{T%!N`lL^HwyVlLec;-`T*7}h;mNSmxOv7 z^%v*@K=E;7T_pYhmwC1L%yOn)wF$yI(5~i7fQcXU%>pCtA+|pkvBi7nSv+c?S+<(I z+LzM{8c>eklQ=Vg2rPs-fG{+GiFcqg!{ovWp*9hU22c-=O@*gLYJ`5@PcgY%!+B!y z3%u?ROzs9KP{6&Yf! zQq(7?OCuNC(7-EEWe8)f+gZdo?s~i4%ADDR+cXY9r+2tecU$cS`r5RD;)ov)q{0O%4MD$2P#S>7PamX$j_5Q5{x*SW033a| zWky`5)DY(HC{?2zUnplr=eg@*4%%&bynhnq#ZM(n z&y@F4PMqr$0i>8im?H^81DM2KxCoP%ZwPf1 zp=bb=HrFx!8lm5xP(?1+a30Ucpxx@vFX6SSvH6DEiMNexTWQICtFoA>M;!(+9bnen z0)XO|ww$kNfdm11`n~8We$+X$TQkjIID()~Wd>-*COZ`bx96LdGf?*@6b+!_BVZa- zE-pVi>Vbr#0o=K^{Fjzjr>mzb1nJ--1Yh6_F|>cIxdi}~mX`nt z0_1h@O}c$b%ggZR@ZiUw?#v|6fP1_znIQ`Sh?SRZE_D||(EzHnygaB-UJmX=!qEV( zth_p1EidPL6SCrGy=;2&`(BV7xwA!`_n$aQJIJkjiwr0_>zF=O4lvU=5ZbXKwD>V+ zf@9m0dC{m2XCpKfD8NNvfQ;OHxMjl804{zUm>O3gIUlk|NE$#!PdLqpNZI-RZ%5(f zq5w+#uCXa$y1g!+57%9rS;mX-_*Rtz?P|URu=wnBb}#{f>P`~X#V1R%`_)>o%yl5@ zRm=zt=*Q1IB*MtdEChQk!Ds*$zoL~0mJ2Qfd_4ha02qC-%4~Rz(EEv0n^OWH;+M0h z#KUi*#7|%Ka)Ny2wr6d_mJ3WBC%3+l2hjZ>d{x9VFGACyj0&ALWsD0 zpwAPC20*2B90KLS^1;4DFdBfJU1DmceKvg0_ot*x&fz?M{D>=v@p<@gGmiK1cE2Vb zCf1#ntj=LIQ~&lr$mw8ji(TQbdAcZms6I8AAV5)Pi=xKODW~O5DdpjaclDnaqUCA8 zcU-SH3xEh|1ZJO$07CMolW@s@vsNe)F2KH|RqXF2sF>yw)5w!);{gi+-0F1t#V%n@Y z%?0i+pzMqwJOPY51XwS$PIm{ss3mW;Gb%HiGWD`EpuNKjTkQrs{haV>js|e!4g_X}8_{40`7A=x z0P?)}2s$OAQ(*`&e-mVAwBbu3wFi`sW%+}u{e0HoHeL^CHo5{Z>xeS72h4%-zzU!s z!2x1}$JFsJ_vrV4hN;F-@8HP+8o;FXfCZR9e*xIL2u1_2)E=+^Hln@&@OlE$05Gu! z6n{>8f%`tCXL~@ihe+{r68I$gxD&XtizlQ8ShOeDxSXkd&WGv_G`q5V2|)3yIsCKf zfdl|rd#-40Oxeuj)0~OW!H9qL$R{EbG@w1EM@@k+Cp+?%Qs)tf20&v3Jv&gYGMfjT z7Ii+sXaE*JJeV4bCpf$?oCsmIheri8AUtNGF#}ft%39c!E#7}f^q?W0NJp@wRPcNJQ;5`0V z@-(p+=i(QVy8+~{%GORAcamlXzD!2WS>2sYPXoTm126r#Ov~iUgSZzVXaF&09yud_ zPfYkrX(e?sVQAR$iCr04H$3Wpb`wM+X&p~~h>w8c!{GDsWzgb>K=Jx&yLBAZY1E#01}CPBrC!JcDoDsn`f~K;b;IiW~5Gr3#6Ar9!5wSK*q0b&WcFk<^I2T6Le=K0gTeJYvUDU zMs~88;T0v6omq1W04puK986FkyKf>OxGpWb+_moY{8-d755{N!R9bcgAdy`F*CQMa z;7ZG`0GG=yfb0{J29RZCCypC||9{l7Gn;@>dIYpLqv^Z2j=KW{hZmt;s$YbrpZ^|n zP&<9`7=TRCIdt|D(b<@})XaXh$Q*ff6bBp{v`uL#8|vO6K@M~bfoK3U=13hoXKbiYna$lc<}e=Mkt|U4+)B0sGRk!T?12ED!2vLeT)KbO#wgd9rf3QMV-= z4f7H`B$zEN4KI}6-o!%#y#e0K_fzIBI({|q*0a)pN3O6$5 z?R5~c;c{KNpK=G8T*%bNAIE-5FPs0szjQxkLBu~4bvsd1>3+&O*5gthf!c~`hc;ke zx}OR_L{uJBn@}`>D&0>7P`Ru;xFy2TFfS$hDZ0h$JZ#?8ZEt2jr8mHP>3(W3G>_p7 zA*|;;nEezsp`W4!KO}B|-_re*C9cnZS@P;m93f}`QM#Y=+cI9H>%0zy1bao0iizZyz&AqCY+A|04%td z7n1;Fiq0XX`&T6g(Ap{?F9@9P;+%qSz|LWB|lD#B>(u!*A)H$r7iS9C`I5 zHaiURj0Rw3dnR~onsRAP5aWqEE_Bhr#b48QM>{nd0C& zT&9b|yqj3Rb@!&zwK(tsUO1N55T}bn9A}D7A&z;_1<`bI7^3V^99h-ltbhit)5YPt z7IE+$#3Ziz1fT&xx;Q)lPaF4>gkerOQM#xNMPR@%+s zu2sw6MPxt&2A6I~8#o4dar{Dau+(x~t|1p1aM@8Wm-(gk{C2!3WU#inin}oIDS(Cc z4!qFNMXam;(N4eSk?0@O;tt%>^hZT%)L{#m9jJps-8Qe1`HedO6j)W=iq@X4lqNGV3* z9?kkrY1U_y@-}IVD+Z?T>2Ko8f^If#LVX#py3!!H%Ql|QV!ziNw!4@s>xO>?+0cN^ zjce1oyBmGa(q5-YxXOSa4DxLH=`zvyz0k`R=;H8zd&2r;J#Wd50NreVfp1*-9 zv{d|~1AVw;yX}vX7!8O$XXA*;(7~G1BS|+LOFltTG$6HsU4lN2a`k6*U^4h=a-spJ zXKq|Wg`8H}!zJEDpymBpGNJ*a4V1Sq3M=gkq(TEKFW%_JF;tpcTl3p7cg37~Wp#}= zk?{anx73$Oj|TLv-Ba|o_3;vog(jwO!=(tvzavMQJln#TmEvxr&GC2O5N-|4HnkAEf~8t~b`!Fy*P-{Kt^j`VyB2kY&>vHkbs@b;O+uB;5_6(c(H9lT~CpXopIBB^1z;na{Pxjn5 z1y-El9M6yB98WLB$)p1d8{+(0zt0J&OBjyV7dzWbF!$$aP#VOstu6}qJVv|UUt7hA zdiF^M`hkR|0rd1|@N8J?99G$%6`(gaF){B9n@z*v!Q?;#4o|Nue8#-c8nz7P!-z=( z%ud~y#emNsI1Rw3Kjm&)bIL}y0dHRHHoG{RZ2~`w*fbl3J?ytF_PNBS0k*2W(K~~t z9d~t?@hGCx0Dbyv0;#QDyeihT2UeQPW5|VOL$aXfAd8sqYV5}mn+Dj6b!7ps&sxK| zfYpw<+@p~%ATkY*x7Um8I$E!vNr#jZ{HgRpMiyTdYFip&Wx8D8v}1e;Lr#!zVx>gV_FP&@cA-+X(}Y+c&1iM%_bqd|0E z`+p-koKnP%X}#_?KhAqGP8!7dsl7W+`wBx{h$k~H8pQRPy*e()5GksduwbsD}=i!ah9UF zt=$cWgamKHz43-ALeqk>Uwu=)_JaOE` z7-8!0bcRQ>H`k#)pP~EDU~qUiW1~TApW9ngXJXScZ@f6a&*x=$WOELKqd{2{MGo0N& zU(W7tU~fCZWzyXs>$R{s*ROq|W_5GFl~?U(pz#ennO|*OyiCzt>@4FB6cg4v7#0n} z+Q2j1wT0y-x$8^1;Y{wXXLK}(?h_j~j8vODMyEa6Lc4)c(IBdg z8%%%SPhU-me$w>^z^ek)hv*XMu6pPc_81?{-X33jWovt30hg-W zK&s>GGd>!`_pLqJ9h5A444K1Z{RexKu;er%yyef(F4aq@qP&vv(ICFPdg9V=>$HWV-c^i_2GMQcF>&>> z9IS1{jncL!c@e{+L0B7j8K?TNhC6#>PDASAyM}SnAkGcEL|lEGm&()c`n-ls;!_G+-Vr!UncQm!mk=DmHZba^`VW!tFe=HgL!JXTGghR>a;#~0V!yls|Tl1O$}y0M?nv+p!$;0-*rU7$4k zyrBWqR1~I*0!}_DJjT^G+DspnMPXBbw%G&a4T^48w-x5_URn8pGoZx%Q%~K2wKFp&+4;v zOoY1-p`t-h(?0-Tbi7Wz6@Ts?MDmDSP9iiQa?Z4pEI4iy*4NA8^rBkrthRB_Y}*V` z`cQcNM`H?qm8pl`1ETsb)ZOkQ&Nm*7{$~?a!Lf*n&LOHdiKwQ3&u7HhBvBQAZbY?& zo2Hj}B}d123r=`wkj?3ze=oXTM^?q3hfFrFt>UIx-ZG@$@nMMVM`AP}HvRjxib$o1 zK{vQ-LO0WaWJ9y(nu%;S<9H)%rh`e02E<-4b@xWCc&f}V$aDg#aD7}B8u zovHiw0-J_iw;kp>o$2&%oEYH!I`eq3Hj8@wKHdB}Q>%AIU%t$~{Jt)|f@4I0pR_6E{$Z{L-7 zP>2dlir2`A2Arm!so54^XQZ${8%@k+{Wc7FM}uygOUZ)rhbCm5Wy$0bnTC;=IP%Eq2H#k+Tt6caX(8FFF)Ki zZI2TB(@fp=RCF&H`pn%&Ux0^2j(5I~*S^`;O#hbX7=%n334@O3i_-B-e{p@B$4R|V z^luh+A(x$b24#YN6-NsiggE`&BkFt|)kpuvBjj~YIvuYiGnzfm48q0ab{n2S(ac^? zW;9?n{oC}S@u#$z?Y``Lq3Bp-D)in&dNiPyP2I28Pp_EZw~{9fc)scniKpDm;5X?z zNR;5npj^_9CBuN93)4vhBvi!z#`z4a10jU>le9IL`74!NPvZDdJYxX?5(VTvj z1ZhBU`cr6?<+Ruf-$XhzptA?2dyYj_ErSnA6i z6Yl#dV$1d2`~r{EsfqPNh*i-byxE3;3K@~H;qwvlp#h)i?`kN9JjIzXpT23KpkY2n zA~YZ}{dJXUhCk}Ab7$(M zs-@!|E77bzM^-d@npL2nFOn4vSS@c5m@Tb0ZTM)4Bx{*593$D{c zo+NRiciM~_*oW=KwPoF1xyy8O^UM6oCvMSu48C8y`&OencHio3`?b#F?T-<`F>%l0 z2fgaurB^*c-+<)fHyng>r?J&Z_=_=M$L3)C-nI-UdMQ({d?0x5FDtwEzmU6mN$04@ zpU96v?i3++v?Hhgyy1CN_aU3y-MySU{l@Lc$D>)(CR>=H-Ug%&w5z)hyg&vo61&SZ zp2P!~K1i6JXqk>dx4MwOQw@^$K_4ZcRs+20HWvh*=LDqeJd4}T!hMXxeYse0 zb?!{A#x-$!dCfH8t9Yj#4QM{DD&OAu0iCDU5`+dIkE{e_TYH-e;q~-R1Mg3$&U-P4 zHxY&gFpsDR#>MbfI;Vki^QQIb3T12+Z9|TWA-sbqG(dSwB_S-~ZS;ekoxzfk)4Pa3 z1B545i%<;adP31u7R++HwS8AVuZyeUqH^Vfu+sWcpcD28(*v1ou*P5*`Lbof#m zj$$9DcN%!FrvK93i$Q#fFf@RvrvF;W>;5xzP6OxF^j~yd4B_)cp{Xnnt6sT(iQZ`{ z%Y*h_4B{(ivZNY2g3D zD*YD&`F8@*R2N7v-u;aJX{rk(KG^+&Kr{e4ubLJE(CYFU4)FDO_iF;s0N|oZ0g5^K z9g%2&RLzh#Y<2Ba_dn^J2F|M)^60!6!ah#|3Jp+B(MRCx9v3vcgK5*`(F5gsPw6f{ ztd;ydnn(8G0q(@c#nS^j+I`$eJO0o<|4F8fITmxGf5JJc-3OoP{*p)0_n4%W+=JW- zOD{OCe}f#?Pn=eTf69Aa^K%Z~KDlE$-(Z-2kEhgVz;I!DhEv0A#>KQ1UWB={DGUtm z4~a_y+;(laORdiKwGjBn1g5DKcst%lhOhhe7S@*We3jP3zY&-Qz~-xV@mk1pWUq@% zl~8Hv)z$(YeG8F)N@SW^L&iI;_&RJqba{B^0hI?Vn|oy?1V?*Y5r2cFwrUPa%<9_Yj=eaqjY z`}u%$KNF7`eNI8&V|R!mLTc}4>(PMKJtp+y=C2yzUylSfah&Jn=}v1IuZNz{gZn?q z)T53>^F4{pcjzO$zh)bnv)J*<^}R?xPETmak4Zy5c2WY0e;jtP!Coi{1iCl^*G#vt zHEFO9I1FWZ49M0x>`TEL^R=>k9uVBWdF}D(v2AC6P zTtNhr<6Gp5{Fht1APRgc8($vPNNpm~0I69~bOoehgDw%029Ot21c`59_Ity%ZUm7=F|aNHX#hBJf;mIhyq}t|E+GmHP$mvB-k-`uF6gX+z23?=Ne&51 zQ(@M&w>m4hFxf@U__-4;$eqNYsW58+PM)<_9KFvi_TfK4zKqB;K%O{3^IB`Yh7FO& zRQnYKrUCH8i*7Rj_wbD))1uF&dzuO}NB4O{O8Y&JI5fbSIDelZj6U9L&|3)v@&dxp z0A@=?W$nWh!@8PyG{Bp9ypR~yxPseFTpHj`Jkc@(uHW;&l>TYpf8vRjS^XCq@MQ#| z0no&YSTg{HJ^d?)Km&w{7qMnXCOrncT7bHKxA5k*V**RONpbPI}Gu)!oT||6Zyz&|eXV20#@Ca*7S)!}L#6Z6K#C6a)DvfoK5q@aYm6&qyH? zpP*kF_?>t#wq7Qz-y-o(6M&`~;;!XCOTRSL5Fc&vFA#vH8seu~$$Xi9X{sT9>WEbS zjsP?On6@*C^dg&i*27io*XWc6PA8sKSVt$~v?!9B>7Aw$?|7)aJHS1oIDe-*fp5?| z4ZKgB&`rhNc`pX>EyB=L(C$v=-=R~Q3R-4Vx z{YQkMsi56mmHsQ8(p1ngqb2$u^iETWch@qe-Tx20(^Syzr;cy;UlN7}Fb^#;BrVM2 zbeJyG-_RosJf2g|V^Ji(r)!#$ExyoR9WLR%Gk$|`hpW>6qIa5-Ene_m4B{5N@<#)h zGs?72zqi`sCxdmX??@Y7$IvAWTu!|EcO6~OWs&Z& z^i2cb6EB>s=X;^u9d?FzfsK~(9q5(@Zp%#fJH~C1_MPaTrerHG4~96qt115xUDA|n zWx6cVy(@jw!1u&^tk-E}?VB&=GY7H!Ai&Vhu1+Ed4M56FH~C`J7T)}+Tjic~N&}~5 zrkmol*e;vtod({^bV;}=G&roi5B<`>Z<#L1`7IK^F9B$(A@0Vn)99C`8sei9%?1Hz zsv+*CX%C@anreuT&eZ;x05oL*`1a?eHcp7(MMvnedbn_hGGziNpaigGtP;Wh@$g`|!PhG~o7>iQ{St zh?gSW8v7EB256I~Vw2Iv1ako0)4=`2E0$~klfm%JfNU?iFNU#+I5fbSc!$oKL(uIg|5Z2uBcw1}GDYMYl*pu*PV5VzJ0++_A+XyEFBxd!ks5 z!vpZU4>(V5)B&-H#gaRgzecg_kYbsZPmp@!F5q)VK9x@cE)z%ToJ&}Nfm5Vl9-oqO7-Z^`5-cO)+8hD?m(doEvU0Yn_%{r2(yU{rfoKKwSPwN~nCo!(?PS-SW zJ#mUVgKOR(h3TBu*uChVraJ04{L!vYrfV9wo_Ihp9rcCwj?TQLeF}ZkR6|>TE!EJz zA6?VH_1Tk#faz$rckmto-5?L3XPRm};|nTQB@d!!8hD;K6P=E;{HnRo;i(!;{ht;cRGN6ds}C~SKdk;8IaQnLIaSAUGrkXqqT05*P&!J};c%FF8 zc)AGaxw*65*|x+F%V_S8BmxZ(D(DXeOTC@VZT;3N?l#x{&!c~uiv07)(HGMB^iKo- z6Q?}WwGi(34Elv9&^-;@S5OEz)jHn}+UFty&;X!`BH$B<%mbWA0XeenX@2s?8S4wP5V7Gch+6c-MDMc?3#1CGIfWi<7EiPjM*zY zMm_Rsy}A84CsLN8aKS9_2AKtJue=S|Qt>7dY;_u+DWO4p3;GDOn(*`u+FNWpZfO?U zU;P;(p48S)O=}8ww!X=zange~uDXqLvN2Pau0aAvj%@cfnZIY+O`Xr$F3!70MUav3 z4@tt!Z9Y}F*0cB`rr@aypNu5aAR2S~VP%l5e!sPA^BCYK5ts(RoeDE*WIaU3-0qJ9 ze=5Og0RF@zX&0kvxD8vZKD3n7Us27up6pHlo8y?7o7-Ht(ekyIhTgQyx44*VI$6F1 z7<2qs0wz;*4{3f*q-jRx5*|g7K6&+R_BJ%2Y%cqk1u*&xV7^Nj8fHFGc3uJsY73yg zPbeBdJv>ch;;&)zs`H>eOGUX{!?~Hr%-US$Y&&&i&*rO3Afp4!np*(GAEz}{4v{JP zhKBw@G-M`^B{=Jm-du&CZ*?aYH4XThgPfA?ML>Szs6QeI4M5CoizPuY@R-gj0Jrry(mhz{{L$(s2Cj+H zeuR)TfIKfvak?l=bXYA){2n%DKHXNv5Q>f1}Ich=NGEVxNrgopY9 zE0G2foA1C?9kCXo%yOn6^kovF0ioyA*f#lCF$Jl=BPkk?x+JM=CV@0$=N4*lixqq@ zh)^=>IF^@D^?2EinVIUtB-G`$_SSwYddf8T#pd~?9v%zdzDrk|UBTJe7Aor?x9%;X zWz5z6qJ9F$GeQd@s^uP1En_CaWgxUXT|_!U^;qVc22qVUCsrC#Dxv`VcmmS^c+5Gm z(!ja$3*Z+LoCe?*MOB`P-6$a4ol?$a1iUdvZZiY&t{~AYmooL1HUzuBz5yn){{!x^ z@t!3aPJp1(2Z~OgT(N%eBtCZ@ z#D~3#urz=@zZz9C(1wrk0P4}G1TbT!U$aKH&>m_j;{Qy2tqURU%SEw(88cB$gb@fx z@LZ8#MHOX(pe9@(>OYwj8iY~Nh~ooE-)s-uE1EM}?}QdaNODmmSyhMON2hy3 z8U_9dggN9jgrosvHN!M~H*)_&s!r@V;afhuij^^b8Ku z+=yXX{|BgwhG`2WC{W#%qPmKPY3p8hPMW%oM!lU`p+O`S4buUX6P{^4^```+0boVL zbO0Dg&w{?2pft=^CBrl^DL#wvJgU!WqPhykEzNjoKCk-&Os{0>U!KNc+O2zw2(O}H z+Ip8^nuw6(%SDpabr^YcrZ@B=RL62|MT4j+8m9fIykXjImZnvAATSMpD;lOPg3csk z4P@#^eJ6s`0KA%E+G10#KGMr5*<41zt7wGlba^`$HLI60^@9Znc7Iv1{{ya~Q#%e$ zfS}X2h)ydywd4G2#dsm9oy-*tf~lw|LNMt)eaOoQNdw4=PVIz{xiEd$D+o&i*lJGg zXzzG;7o;M2Q*WjojY5Y`G3SifggGNEU@Dq38W@3q1m7zXtgNC; z5a>C`TL+>}U{YuhMnxlz3B&6fbGW+^js|d*sXdR&7oLsq?u4WPWHoa}gagr8|L>vX ztP(1k{w%LG7xB9Op7emrYjd)ese^dK-llv5m(5Qp#EPb@&Zmsr1ce+wCUUH3!WCd> zt+*``rn)^RTr>#m$(2mF971DxZHsL--KOfJ%wpJ>70sGgT0`7IqWce7%+x(NmK|W$ z+ycTJ^H{;G=hJdX!9w!BAjzw!#B%_hIX^D7!g`}YJQZoB04F0_0J=(08h}zJyS1Rf=CYm4Y$dz=|5n1 zQ_;vI7>EN>ABX^p9`Q`|;qPFfYsOHFvIy`AQ0LN?6l z4Vk)I9~wV2*k)JpS!?{wgj<6WW#Fg?I%NJMk@=Y0L(9V04w@P8qE>h3=t_e$uT-iu z7oj%;^z$Hrt9y|E4G3IPBY~jfF1EtSBtZibxXWgKaB|rTOn#(J?S8}m3*~M!my4{r zk&+?e6`R}r9-Zr%y0+)_=z5bYJH3WBsJ2J9Gz1z_|4kh|x<&DouH(@Gs{@&08iZGE zj~)OAJ-P>fFyUzcUu};bz>lchqi`50(11dvJvuR*#y!Aa`#rkeUU}QQhe&;yyN#Lp z4zKJSX?pg2yWQkHgbHfr)j<`NzC$B5VFKwN_{|z55J36*cRK`MT}KJfAlkJ`J6nh3 zCKo{^xZQ?GMj|vIva4nyBQ;SZ^D2^|0hw)8_WlmYRfpSR+Tj4mAuh&>x?sFP)J%Ew zQl@UlTaxyd75hKpuIL1+gA*VK{umK_MJG_5f30#aB=vL7S7{JTMW>WPFwwIQ`71)w z0J5TqY6zJt*N6QrVQBzc%?VWPz2RfrhPpH=0Zc_FlveFIK`vzK(W{W+etOyb2dIj! zfm$d*fe!B~I;`kyj&-kPm`9^-#jb<~kyLaNFn|&fdVoh0kOqJiO&$ZlT!J3xZ3#-l zd{xq6(s{!}xC`|s(f~$9ozo?99`zDjCD^_N(z_*=v;l;9D^J<6Um(OkM0Z~iT}9<% z`16c~jX~|t&VU9nRMf|MFd{bxb`Zg609KK@J+NGA4)72H(g5(0l?d&Ue#3b`l_H}E zs%yIe-iByzGBwM1-{25pJJ7D?OMtED%9IByaM0eFqP>dp5P`swfi#6XXI>KjH{RgD@((>Sn^wN;l%O?WX>fa5R9cO6^`; zUT^3i|AUY;fUM@iIs$CuE%6#_LR;P0d zD{v6us)(?vVcHAK2$6__re4fc(IBL%I;H}k6Ql?G62j5|wyI&e02>I?gT9W?G=Q#X zm=X zI;&7weBrPzXPn>X+s?1w2~qDaEB1fDRdg_={fdMM1PQ-hBwW$#$oUuX<{_y8lSYGJ zDwU~=w#{TzbnP1q+J2UKCl;Ax{pVCF#edp3E_l2JuuhU=`p*lmX}# zg3+7X+pO za7EJ8?i;>V)Q3cx0$gdk;y!zK^XUn|#Jaf$_L+P?{2~4(yXJ0GtZ0rZ7>-7!2o24C zUNl=>K7(L6RrHVrRXvDZ4GmhkqGKNq#2x)O30q1A{-K1Y0enSs)EImq<^qM&Nr46w zs<~szV?bF0&)x&eM61tH+(u|lT31&zNNczzzP&Nn-rm_9>{`Kh8~UC3rraH+^C6Vx zhP^rdX3qU)PJWZA@9`yjcUtdf_7`Kpc*U)v$01FNP6|tCql&&RRdmh9HK#z;$T;18LHL=BqZA=18TkL-ij?l?GH_SjiFQI$CoTJ?w4KMFwlD zY>O!~lkIi<^UhJ z8?-~Q>u6<1v3tH3-_mh(bf4WE`YO>qkE50;vVedO_?B+z#O`^Vd#&TxPQg`2Fv&DX za$@%!^X?=js*e4{5V$o7(11W<_Z;)?2;>@%{mhWK4N1^|L|XS8bKa1RqunzzuJ%X1 z$Ez%UN_(Z%?X0dXxA+O|*eu20zj=PSv#Ohc3z@p_4v2j}y=?wNu<(002Iy%C^Vy2cAq;`N=a|?ir-wixlJPuB9Ah^4T;NmA!6P=6X zym-{d*+_e3gI0VLkp*u2M7v83H|31R9^z zl!CA_b>R!9>aY)?L1gh0LgitdWQ*X-1g8Obd`?jw9NEm}TO`mU0U8i^YWW`2h>1#} zlr6%e$dy={W1&SJkrgRtULiyo_+@BPN+hi2F2&Y&rsgnrT7U{0@O>KQMA zau4d*buP;9sM&{C0VWub>ElGE@j{q60$k2J8o)(AZZrd0ql1%EUh>uXlv$AW`01$WFmN#-)EPEdt-a_u9Q&cQ zd>dDr?r*5Mb4zH>IpU#KricgKJzaDcKR8K>O0?(D1WEmjBOMK*h)<+a!JGz*kiQ@# z4Itw)npDU@i$&O96P5e=9>_F{1_^cj9^2sJrQhtJWq74N7a!KbhPRROeYN@ijU`IKm+mS zttZewA~X%4pAwrLCLrf(Dx!6%sAwX~7EiZ57~;Eb600XH*={?)FTEJrI?8A(*u||{ zUcMuChw*by)3=K6PkKd?fXFTvk(JGN(Z8=Ve_y7Et5!LZ(IB)|xqSQH^OVb0*O6$@ zXE5#K8o12x-Nnhj9qlmdvdw1vH7`TPk3hzQ&D_%T|CpJ6REdGl_a#{-FtU7=WVy_6 zRP=2#>~BZc1w3^lvrB_;;NzW2JstTlXlKyD_b$(VE(E)uUN-+Bs`w|; zrwU7)i(lyRm7>Q-lxM5wV3x7^J;xCmur1ML+NSX2<{R@4$>0FOtb2<9D{%;!g9!%Y z^LCL>i9^WTsp-f3DAbM2F%6iXo80)~5(x-=zl}-Ao2gVHhV7L>=Q4R5qhnSwb<5}J zMA&tJ*~L1K^qXAs9#Ei>^OR%)s4I(iM2!!NAdE5*+ztr5mv(?`wj}Yq(bFv{*7hVgg@y(9& zOLm)CHGfm;P`(H*c#z#kMRv)D@V3C-H`@Ht7TY$u z`P7Zfmb9VWQAUFL{-o{792QQSPb1w@kPqXq9WA0;pn_<2cS z@_aPnTXMLzJnZDbOQ7nD?9OQrPW0m-)1)!<+$b*8rxOiR1KXr;A%%bw&*A*O-2`ezck6x6(|(WVPSH zh1Aya@`zh~RHS#$VRu9i7rq>NIBvo(%+9EHY9s!Y_|l|NFJK0Rd`A?rmU<+xPTTN^ zar{q&h59VjLW6i$6V);vq@i~~HOtF!>98f#w<#S-)Yx1kkK&ks4)Jcx<|1xW(vmS7 z=C~nK4}CsI@nD-<)qhiJ6fc4c9#a1kNqzDtUUaNG1%IO;sXH^hG)Qmqh~xV$oQv>x z8OXa3l7{_Hs@w(={ zNFvp_E^ZPz_F2&7!R80t;#QhiL5ydYZCU{pBq;KCqR7&9W@2IIlZPiL>T8^g(13sP zaYpXd2}2HQ@*M{5X2Q_`uC(~QxJGqoGp4>lNE$$%m)M==apW3w0KcUItuBld(tD9M zhSq++wX3<(TQIMQYY$~8o#UoVeUP)|!w2D3y}|oS>M?%n<`jb^e0#2#Q$d9$H~nwj zkQXFNeZ=(%xFfrT2jch%F&)~be8cWd=ewN2BvHfa3bt0@)IzI495%KMD@F8BF%C|I|1 zPVY3*oqr*udpk78Ty($Q)pWZ&zm#(+&BdIGu*nI+zP$+h;xfV>2jWXyH^F#`C(p_$ zxv}`V>mT!jOp%g$BnN96wDk580*rBx0&sh_NMda*X!zqOPAVfB1k)eAv#Eqs{rb=p zjvuX$QXNjGyShA57iOdF%CA8^9LahJw(Ctep3DE94Ul|UpRMXUGaWjxq5C<}eez}f zm~+>;`l#q$fvB#e&S(%(>b3PErs&InSy^ecdoibM;GhB6n#tE2v@@K{)KeX-%<*(5 zrZ?9il?SBuwjlHGIjE9WaLn0#BI~7?r$iA0%?gVA*Qv2a(3nLc7}oR12?R zaCLNzFq32J!Ns>TTA0t^!zAaq4sKW2kJ-UZXzx?Gqk+O1|t{5h-kR!n-h zLvIURl`V{8fYx~ zI>0G47Wfv0*-dsxX3*+M)E5&RHV~6prW>=d(D2x&)ZA{h-=6Q_IpW|T z-E1^MK8g1g>$zR9U1lTx-!t-3b35OebXvrQinoi3lTVs6Nk!+rh;@kLMOzq%(5cS!LDE=u>rfj7}G;i2IxM8l;z#1Zdq*bVkb z$m%id5NVLnG96;zTjZoS;qX@)-r!x%|0>{=!%;MP@06Ghd3@iMe2sWqa87bX zViL9b5c@D1v~21%;uy9FPlFcDL9zwZRTLjHA5HOvB~Ant#RbO5c}f0gjz5|+KMKxIUdPGj@n{Xy!Gz!GpP<3UG!gUpLYCx_M5mJnS4`V$c!#?cB)zK59L!KYDcztGHkB1<>fhMx)$fSDIV_X!^Z10jMBBnqL)ZreAvq z+{)nKHVKM4g=wMz|FSh;8;u1JDAF~bx*y?a0GEDtzy&d0i#g;22uTCT1ry+^12S z4o3W|qnHR9&@Q3rynTF~`9Q}Ihz3CEm$(YC_`RJEb}YeY0CskAKc_uHTfXOiqOM%l z;XeINn6=f_UVq5@;pKAu+Ui1UXjNu*&Y7KaW+$G}d?{piyTQ2q`L3d0c82M9!b~75 zoS@X7iBi+=M4130(jD^yVW3{itkWRUoyjFQ2E+AgrV}0WGehO|q(TEK&!~-xC;!QG z-b6YyprcajVGKmWYLO2TXeDoH25MD5Wz9Ir+F!XJfm3qNgZGJ}!;w=^IzxC5J~qhN zNIYlB=hY7lwsAH88x}?Km3-e3!37V6u+O)3ODA`8MaNqF{zgGkA7WZ*5Jl=GFyC#1 zZ$U@%;U(yD6vOsY|IPG`v|93D3c%&gzPyFtrV$TS~p3Kr{d${!gj$^k7wR!5Kiig915Ow{vN~Zag%^c-F!MtL=E)~cqscccIjRw3q44@qmVX1q4JTYna3F z9T1!H4P0)TorvkI)ES-gB0?h!gmzyMTJjn6z^hf7ABy?}uMyIKe3|jWYpq~t3cx;1 zFdBd*-zzg3Q=qm0@UsM@0pO$32PpBW^%l54m4XWekY29+UCs6~?*Hlbx^gak*xxnB zEpyzGsh@C&IxO6%*YiJPPnUeo6`pfXqC!GKg=dNi)4PYFXHlZRRl-wGVfR3TK%!sx zp5oF+5C=Zdi8(70Vh~dd1hPBi|Ych-{ zi&*ms3-!O*Mbkhay~HkhJP#`sN1$*SohedJqG}{hV^dMGVCswH+5G>GfsQabRR z+x(kt_NGg=w3=tyrMX91HhC%}q4VZ=_Xvq3l#e3FLnNp1Jni9yt!6{;NJR3(wxc9) zS_r5}ZBJ5La-<95<9shf6g2fprj!OLO?~V&bZpZJeEUcV<5FFwQkpbq!Q^Kva#-(a z27Oem_vpueyghi1imw;HO?;=>9((v9`4Dm}L7{?7UnZH}UaoUzroBLQ6NCx(_6oLo zA@fdyyf2h0_3`?6D(^?}gL*l4G~;j->D?EEpi?*GkSyj@?D~-q`K$ z5>)l4EO;8kRc`F|o!f+)Z8qPGQ@xb=He&mU#@CNJ`vIuCcf z;<$Zou@C=QK?WYluw=mp{v`QigXF)il7b)c?`1#Omnq_^J2L$=2(4Vf2i|S|^+xXr z2aWk!ui%5fV*4iFX)oQ5zE0pBKYAk2yMkl-3;DeLG1A|U>@_>&qM7HBB;((HntJjc zBZ;?t$rJeR5FI4nfiR&R^1i>wK+x5*sRkOvxUJOaUj(p%(Ax`#{|sEcouZIjM4SAo z=v)Y2q-po@_zb>`uza%lq@q5R6Z^`H|KrX6k2l+EJ9r=jXYu4@J717*FEr`xBAraV z_08-(V!Q0trth438SDY_LKGd#dqq$$-UA$T=M!mM;ijJbRLTtoO>|{UZhpq9O>aY3 z;d+n_~`Bm~xccFtn%ptD8lZ7y8_KbslR3=8mZ1CyxtUv9pcLvgJB2P z3fCVk^51U8H`M2QYhAh5#ja%Po^L``9pu)%MI1@yEZ5poZracT_DpV85)p@KU7$GDs-FVS2qiU`XodHLeX3ID&^BC zp#Kf4Dwira)L1U_y?%eb*Iv|Pm0iiy>T6jpZrxi1of^x}EseE+j((GBuWqMb*k+?dIiTcNsz_k`N6D)mJVS6yIzO za`X4PT--)*h@YXUq-N)PJ4~hQzz5P_fg;%#n=-M0j-L>#5?WwU72lVth#!$xiD(MK z1g!pvN1-$bx7LnHS~?#!*wDJo)%Qq&1{7)>L~XK*;%~m%{}#yofO%PS3!t%3-vmO?WHcZ?bpH#{eVx+FW7nzo z;#XI)ucJZS@vHk)H@{Z^K9Q?Pga$?wU)&qhO{+ULw>FNrVPOYAy+nh&L_r$^4jPXh5dklE8=Bf_&T(YVfrfzd@^# zZfXff=)G-tBe)(Y+*+pY{y$I{oAM3*G8!a)-L!g2LIf3ZYpIYL<>_M8O~FpvZ4nmg z->C>1G(i0MwCWo`&)uX{igbQPIy9j3tolZ92kY7;FBrGaw9qd|i3XIGYa2!!YQrrV z{9CbdJk^3mjpIpYTMKh6X%@Yhsl(pL@kDlDJTVKPQR8@$(-3@A%bjZRQ83Jp?Fmh_|^4HJ`LioaTF_1kdg?9 z+(05UAW~yV6o}*{5s-Nw$IiC-W&Zg^-6in<0yty5g;zaG5o?02(zOh2%5@ zAJy_Ssg@egYUQA=RCrd8@vB!;1vH4e=7RN3Cdq`$PlS3MiO_&ZjT5dyTZHA|TICHS zLjyAPO}K=ME)0jfg;ili3G{j=T=)*Od{YusxSXkduQwAey{d;cy#y-tPPi-;p@6zr zmb$2SK((m0Fm$ZC5!3;kR?r~ydM8`~30E2(l})5V11j}SxB@Ccad>nNB^?^jsdd6d zOqPd-y`A;J376gm0yXxVm#nqA!_KliOmA0kp!`mh$U$!1TLhgNZyK?PGS?ytRLL`> zN@~13?8E9Zu^Xf%)K}P7(jfX8J8p~W&aXJRQLzLEwq_m#5anQQFY|8{qpj%BH z$BvfeK9yc$qf zvp8KL1nCCD$3~lQil=*8%gfC+`hjI#gIJr>Ynl2er*@n24SHFA$`U)P5V`vB+eFF=8>cBRUdM8uCc5;oAUi)y;#fQt~ zebQ`ty_TuNd86~De1l$=pO&kAA5dVBj`x?Xec!9ghZl;vBd1j~WvauXNJf13@004V zKVTE3cVz5O{2rO>woiTupMp9>kF92tS7OYblXZReom35x*m6avx!Fn)jXG=paZFrQp_kxOf;`w^4|ppT8sDQ3fj z5|K04Q!`=eBh;cuBo{^eOzAXWgF(BG&;1nMxGY__-Zy9Wp&QrlT+YA$PbBj2Ie*J4W#c}Iq5x*-n#qq%e16u#4Xgzs~<2%(us@)(6>R9HD2F;W@ z#j!3MdI8@bGfkxak%^IZGL4fwB+M^&R+}p=d^zD#ypXXkw`6kToNUC)F8eEZk<6bV zGe?eWmrefPGgHZLN{o>aY-H?*lCk8mDCS%;S7-u3RCnPK0}UdIU-O-!^u~hfk!f>r zw}C#9&@_Nf9-4~2BL_*vpBVUi5S|9`sqcs^x^8d-UKyj6#&>^ORjD6P%vxGS9hDRH zj`lo0Jzo&DY&4>N+#8&z{q2T~_xI&R?Kxu}GDU2N`d3wmy5Kw)wYNhM)dlR9XiAIP z^X-)7iQ3z3pr1%+n$n{7d^_lTJk`qceq!LCLU@|8qV`-HQOg!9YGzjbG8eV?d+I3p zt-UV7=5W`lIV5%4=Jd8qz4z^q^by6)-WK^|5_weWfspf_6A@tOdH;XX4cx5Ix5(K( zL1g&rK-CABQyPTx#KgmeLNs`24)2}mblZKr&VcPKp{e~4ShN|F-)=R(*6-ugKHf_? zzrD?ue+=cTnr1s*PN}!gVSA>IdI$1)RBV^q>N{e7lh1mLAtoe{<0B=<>0{!Uzh=eEf0_DOXfL+bmgSm` zSbB^*Ase=MO3|WHCsN8rS>8@SC!efz*b8g(1wnI5rY_B( z=ELM?P`Tb{*TF%rgFy0E5k?3IBt(3gh&XwEHR3r`a2}qznU^nU5J>r&p<^eYf_6R7 zZxECQpz&MBrWgR@F-BDD0e_3YGyqQh5^aF%>D7a|KgDW<;|Zm_Qdiq88Eb_EM9D39 zCj@Wv&XuY++I0}n>y;?g5)eoz_3WyYYCVTa)y#ExYJYY&G?gedfGa4~13ieKG?ged z0F5Zs13rYnG*u{-em$jnFlU8I)q6?_AB>v!7yW*cv^Ghc}}o91Lwre48=jKd3C-3IfQ zoMt9}>0p$Eph9j7BDdt}^r&mCig2@_sYfzdG>9en06p|v7^1_S2KGF{(f~GjUK@IL zuzA-P{=h(=PiPuIUzjM*&~d}8;_|6hlmVKjUaf}gE`VN@TIGvt-T7gs*R@xe+6(x= z!4CauRK62+AwSz?e`znNwio8iFZG*H<(HYd4{s>G>vTWPe>V}HHIY2ivrHx;NY6~_ zD3yVf%8To7Qg(P#@snm%pQX%b&>$~JmDw~2Z&+6D@?;yY5jE*HFBSC@uKLua%lgE& zW;V;WE#Ap3*G;DotoPffWWUcBpPXnzo?GYV`7fK^FKy%KHwl}jL7?f~pH0(b3=u8^ zfN-BF!hLCJ;jWJePT|ogm4NQ^QIEzPBzOTJ{$3JPB_h)TR=M{PdIZB@eXxdE$T>~aON&`@_p{=OPmSPfOGPMvj89y z&H&~sgrNaU@`SShlaK5H)K>{b1E|yqr#Nf`eqTtP*;K=K@~L3)+U&|BZ?ZPm#Y1mD z=gk6}@(p$wKV{dOd}nk3C@@gft3_2MlWxP{faq`pLv7~ua2k+Lo}N3WZbs+Ji%p~3 zP2GoJGyqGUE02N|MV15Jmw+??OuaMO;TfsnTBwcZRg{|%1GfTYC3Se<6EVEUTDRN) zcOo@c+AF=je0iEr#bBp=(P4nQ?dD`>rjFs!^zFv(*Sn&AN%n#|$OcPb;EK@kMC#Q6*j zn5W)jW-%mLc@wGkGBa!^*Eq=+^yma19d9mlR^&7nHt;L)bKH=r8*V^G4h^>HRrfc{ z%(-RC&<7VhWalH2o%9a97?mwIizZ0w0qkFC5JmER5hG1VFf)L7JPhQ62uTCTUtKxb3*zdQZ$Lg`7T58BbIQLDOFpP4~(aiwn5W7*^hq{erK) z$o_~1VW!@zJSH6?1qaP*ok23x7pMwmWL&!^k0VR10iNvXO3#HAJOk84ul2}3;W*;f z^`ib=sd2;y6AWbaX31*uIO03iLyB#3UFypp4i$?B%6t?JFz4Y$_@8+V(WI| z1yTHz!0pT*kM4K7?1VZ0Q?y6&#C8%{;RMb8Ks1{?v7H2>H9YPI!a)6m6I&WY8huf~ z6cgKV5Dl{FR_3aYfi@ky?T!rj(P{g7Yh zvfw!2w`z9VaJ*@^RiSX_jbadZD14vq>c%du@W6YZaJNS=)eh#ErV52S=VKJ^_8ahB z1gEJ&;m)}OA62;fjUjM33D8uaaOXQ$xZ7ml{yR{3z8C1phmN+u)>aoA3pI@oZ)SvVH6}LAo@C8%j!uyHai*HAc0PwIX`QT(7;zAC>|NlhzJ8Nqo zoVA(2MR=&6bM8umkXK8N;gOci)#7$~7ugMmJ5oC~TjTN(pWy^APF`tsJF9EU_$p_w zyY4Hn{2y;#7!2`5hSrrV;;iSFA)y1znp;3CP4SvI-*+kzVE~=nU33yZx~V>Xo_g`y zKz;LRPzViTkBhY)64IdtRK86rG@vrY%M`0fgC0!sPBx(PUDBZeo#;8JN*ksTV4uXA zvGN3dt>u9@aC?+44_VCAn?Aa`4+g-H{@oLF~1b zM}dTtM?mFxQlSBrTFawAB`=SF&IzPL13Gn9E%-XC&ufs zxAnT_)ot8@D^9W{Q}_5w6w6`ZMp<`%#wkawH9SI6XrY46kqUZNbRvQ#Z1+2SFC@Nl zo!+62pzA^kwhABhZeG}-L4!Ph<0(m5#fbeGiP3=A6mM{>x~=jei;;UT$&!FlKw5$0N$i$DrswX2P zP-7QKjm3|Ks>hY;@*6_!WN%D^@ORZ(S6(jiE5|ksIxFfjlA!^aD>jmhS4BbVTtPxK zAQU}?Uu}*WVRKx_l5t7}g?dKOs^24Pvi#Hdi2Fh8-^*>Y=1U11h!7<_c8&67gE*bkd;#ojPZ8 z!UhH6VK1;gtUQ5VdwHzM!465RVM=-WS8RD;O^9FtL~1V&AtDS=9>WbP4--GTZ@&%H zPbmT##9n)OcqH=ju<1}gClwk{sl7ZrDq(pzI=>ymJhs}q@a8bn?1 zAnNj z=PL7~54YVAdK(GRfY5X5JpORNj!<4SZl59bPLiSlscwyx<8T{p$uPK%HRS0RL~89- zmj*0?_A(y?Q z@iWq(0gdSUIx9N%?cBTJFmI&PDY?2s*RQdj?_4JL?zuI*W%KKf%OF*&9vv!6 zP^h31zATkcYkwRd>v6$t5gw{dHPE0DYCYO;z;1Fc<>9s)LQ5n>146YPZ8%^@C@&Vb z&yduh_ax1-&{Td{QG*p*DZ`%5UJgWS5e2trGB zjw2RRYKS~gL*J4bihq@)qJGQ=mJ%{eBdwvn%qav7TA} z5jtM^gp|HUN;IIfT;s92Wz?_>CPUw3?c|~bi&`&fueRizFaFQeaes}1*_VrA0Up1Z zx+1k2Z~;bz{Hs(*{3+aOF?Dgcpw(B|XVM_#TDvL}vWAzE$VuEp5;P!DYcJuG$O|DS z@^uoS0g(P9!Ay}8D&+T4A+=6^ir}VH@+K2D>T^^H4O-)Q8`&B`@r=;=B5BcpR{V8> zmGvY!c4S)SH=}8>za=#qP+P0Du5xB5Fuj5gKj}*<6q5QKOU)|WNjm;EyNX*2H**c} zL7ic*iBFmY#V32_hP^rL$<%LnlhN%X;(4e7SvF9k-fiKdShUk?fN&}*=*>gnw!ErpkLiAfdCJUk$cBPw*Q< z^lTEP0nrT^g98$d=x9|3zcXYXL9#R;yAfk>z#*@3Y?cAouOM||Fa`&I%5tf93|`|~ z5qsTjO?QTLb&c=1#HKlJ%G4)#x#94_R=vUdOA@Vj3?3mW%uvv$ZNwNn0xy*uY!*hU zN3qeMP3j$k19VpsW(*E?8ftw~qXD&g$C3cuQS+)b_<^CfMtU@$cUhfdZ~)$bw)qZG zNFM(=&8z#%ARPRbI^SOBT(jRBK2WZ2>!nQHj*n>UFDv$ckf`+vyCWg+sIjx9#%jIX z>`--SdEu-3@DPdyf!BHjA5xG)@`>D+L});y)^m^{k-ThtGN+LY4ah9kSS=c};Uk~L z$}pM)c&(@R2ED~$bGX!R50-G0*y(Q5oe8(j`CBvfsZXO&ZZ*0?wgoO&#kHQtkCGOO zD5eXgm}(sxq6~CljqDL#YMyeULE~IgXBRg@zzq*la3lK-!9^0J0m19`48gn*$C2!i zBn?PDtHz=n!EbO2W|v;2n0C8>)v604+zW=a-YYU}ZI^pjxR9y0{1xhRKfP@J1A$tf z7_kHd8-=$Zg;(p%n-)~pS{}LjDCagbh`QEWrUC*|Q67y?kOmEC)Ox>8KqIdkkIJV> zg@!t)u~Z1z@Nnl@4>=Tzek6F2lmH78R!YtVvx1-mhyv*c$d$oAUNAEX{4lYso&#gDqLn|2MajM6Cx~ zj)cIY*q$rJR&TMp(0RH~a}a#>V$NV_5O}QzTP|>2<))lS%Mf`9iO_&Ztp{5n5wCPS zGS`s|4ajV(vtWqX0HZCg9iGG5peRL*_2vZc{Apg+?)T(w$stzf^lGLa{VCMO!QK{G zkzcb)RIR;mKup-6RIZa!saGBWv;3&4@n9nWW))mTuUl6pi=7% z&;=@ay##b#PC7K8Q|BXH0@?_$-^dcN@&x|#>+Idvx}8hb+D$aW0N-30+Hd2?<~eUO zzPa%}l+CRpd+bKv3x}ot#uFEoD6Jc$v}!#*8Pj&0){X8GX6mUF77f~`)|=5r8MraR zmR~XRhT_GfNCS#5-}n^jZptsqF*IAGNdubCsc|?PZAg?WIc*8_uFFIH8Eeq+kpar%OB+%i7S@!94puWznEpH0JR=YS}&>+?+j?GHKOBsxixSS+t zKw^p$PbEp@1u#P7StLROBJ=Ccv(k7pG%CKo=LD$!k@^=EI^k7Z1Kaw&wbi@^^s1?W zXa5arz}sS09F>Y|Af%Eh;-dzBQcDelV0u8vHwm^{Vb@1feGTMTg(H%Dhas^_5;WD< zK#t`|#?}09Sil!oTPePKc4fi>g|g{;Iulb|%bZ0RML1n2 z{zk!9XR*hmLBthLUwkyzc}tb}y9|+YNrVPOrnp#Dx-Ie=iI8~|$Y+MgoCQ011HvhlaV`+1;s|ompmP_wED&VL&3R zEW!vdGSMW10TT=c!w(E5V{BnCHa1@qWrMLrw6QVp`+VN3s;=(oy{(<@THPP-I?R4P zpQ?JVQdd_O=rlfpi(^B6^9@#(GzsD(U@OK)aLWq$CWX)>h>w8H3kl*QxNXIJhhk{z zkB@+?(cP7c4=IpaXnX`eqchfBWAtaSy#-cOFY|ee_`QY+ug|#aw&%6L@8O-)ExBc{ z=7A_TV!6zwDwT4%V?${Oq2JXIig-_|23C!vNkyv0`~$028f3$2t-TK^fqY&!9A^Fo3OH@I!Ze4Juv zAg1OHNkG=V0NWvv0@{NMv?VljDf%h)A-$}Wqp6t8k>LnJluZU z-ZqZye;~cEerH!w<%6F;PW`-=Fd1zqCsM7ue&{&??PzZ?XO!Ae@+oJ5K(*G z?a91|%-Q`tE95UIga$(DuDd-~!yj4Ji>2<)u7W&b5`1&hO^KjU=Z5dBh`^D&(1C zhXUSA0W=Ws<9v$Qn#B0 z0+bjoeW|*1?cIZbOPt!JP!eoj$=Zr0g=ZD1wdT$Xcr^vkKtSz{M^QlL+<6hNp$Hm? zxVUEbwoDDjc=gO-habj&S^&?auY0!xe?;RoY_|rpi`WBU!(pfYCDs5BTC44Dv(uYv zACP9uUYU_AV{{bWYEONVvN$S})ub#M$lCbTp317Q09ssok9AVCJ zeIuSsW8>LTRBY+*PVMwo+k;Vaxjk4~8MQ_o+py^6nc(u+yy**wv746MaTh}rMq9-9 z2kMcl+7NEnXt>3Acuo0)RRxn-sCvx%=t?xmi-@-;>d6bK0x}n0SKJ3Ejt1iPZ`f*7 z*M_wQ^t3%WClQ}Auco(K$I9J?w1~$ro7L8BAK;%zGh&a&X8CjMK)KWG2ofTOz!fAY zHGKDN>bnu$^9pR@9WIrUXmd3kfd)y9Sm98WTpNVEgjZ1l4J1TtD^gWL79DvR*H8ux zWNiE;rYTi4@|oaW?o;1j-7pHa4k`fXR)$0>Z z$_zArNhdu-@s{sfzR>Qq2d!>d6=QEPU^?p=&-drMEuhJ=#Z@R+47~0wIxaw!#Dq0ee?OH zzF8Zc9hYvD-KxsGpap-VK|Ykej#`T@jJ%)+E{B4}mqSppdz=Sg2RgdI9`OMy>WlP3 zE#VCd?@85ibF{SF#ALXg=YYr=T$#a@u{q_-r~@%D3@_UAru{Q|&tqy6pp7=Cr?RiuBX9(Mn6ZF#1Q|q;? zrK_HQK9fa%}%YVjfl%Tyf!aKT)Tfx*DP|9hlJB zykaxni>#-i+G(>MaE$=-$INKW3ZR}}o(F^0T&LX|mA(?X;BKDUnrkgJhoiP?=h+O; z#^#e>L+tO!F6goR^bpmx!!7N@xSM%Wr9uh(N=sm!mdO3_CXl5G_X$)U^Hhcc4RWr0 zn#5<$rl~kg$r5J?pGHC&5SA~1nVK+*`C=+(NlF9Kb4$H$llj>o19~3bH_ZRh3B^IY zQ&caymF2nCNO!Ll*VFT{`SB?T{$s;Sde*c*Kr$a&ISev#C4^5N_dUtNb-ECn$ioaf z^U5%B<~r6BG_|-%kuLMh9O?H-N(0h%jrk{OEO=**_=hB>0rB}&{Zo;xhvsOGMe$8I zO8Eo*$RKPV;6_R9=KjuTvFZOtDt>!whPP(?t+Dw%c7Sib&Ru__fXF)biB(EueW9ud z&V6fj?((O=J^_cW1=pt$A1J@A3e54Wq-c;mv4&1j{e>Iwx# zNWAFma>U$;MWERNs8DeMv5}!ZlvywN0oY0vLASNEH>|06?rW#D?d9 zmbQ;1gqJ?K7B9_VTQBw3uv0I%%w_ET&{X$Q5A7Ysd8xl+NuNtnn(AKap*?BnrT(rZ zzMRA~mA%v>!%GL4D0ICp$<&Lim--*kQ7Y8|{pC?-2|IHPLRa+{y}$nIZ_${YIB`9= z(Kw2^faKa z)YmWKm-uz@CpHHTXMcbO5}sP2KTw2k_zRhvv!Kl)-8}QQz_lthuS0&7z;!Ss`MlyM z9mb~peR%ot`HOn)|BL}wX|y;YLTTaL2h_ROd8QIKpqoG!2g_YmJ~L>dP-&2$O7WBf z_fDlgox5j=S4d0);_@|cu81}m1LVLxaaK#`?pyK$B&PxSlPb7!4!gm#Y^uak?WYrq zGv%D8((JiDO~Sj}0x4;hOEb76empk+-?i}J6AD-Dg{J#Udht0`>as~8$_zKYLfyDh zt27BOew@FojOIwzPBchU=}SM6?vw|2&+3q4TC$eya+a!QZ!R~>hjtuSalrwXTerHW z^0bAMRat+nA1w*a$L5@WMd2MAURpc$;n^Rs*zQ+aY#S3PILhZ`T0Z5^05`^wf>>yG zR}|2k&xoRdwnt8>O)wW*gSp}U&T!EJKas#R0De>z;BLFM?;v&+@sckhG7XT+$NQ1l z(CsfY`60ul)&VPe520xQT`7l`vW#dFlcp+WkOg~*NdwHOU6;8u>?|zxJD9Ac>zX!U zX)43!a&?igG=MFi|BWm#7S?ii1>Xr5x%-GqQwJ_`0*~|sw?|wW;69|Rl{vKBMpywT z;!9cW6sv;rr5+{NXcM{p-$-j5EM!~hwz&?tSU36KVSk{TV+?l&1~h9sPIG_F>gPVO zk?675N+}*HpLc2H^T4T4q?*7QJkfS0M_e=z^`PnDmOB>jY~s-X@4?gK$+`{^_&5U6 zR0Hhv=B>i>2}lFLhgVS8-mjkx7nM&WC=Eaxk*?~Cw&9Pg#1e-o?<|))-)PY9Hs`xo zrrBRsUj+d#&hX+4E{@G#-v%=$Cr(^nJMlFA=_&l_Df}r?v>C^kAXhFp?O&?XMmH5! zTs|dC@hsN+b!-~UJDBq{(0S%2igQAzgoQ%)`Uo}Vka-u;X@Fk-OfI$vD4-%fH7Wn;( zoo+kKnGX}5hB*@-PPsB=RPjRQ$(l1CXB$xJ=JEB_pq;(?H)~JE=4te(*St- z8l~TBHy7EOi`XNGNdwI3T?&}!dDwkj z3`_pjgrxy&d_TEZnZTV!?YUtaABw~06>R3-me4eSzJF|&$|5&hz*?-YvI~{#-9&dx zu)?<0935QNWwtz<;n~>S?N{hL?Z_^y?KmAbPm!CD96eyp5hyJBPdB+v5*|GPmP64F zl)kMxm#H-$cp9>l2Ku502c^ii{tLlBL~t5_N7sL4;DO+e5R(R&(PO1a%)NttYi_nR z9BID_l_3kye2nNcK(CO|8TzPikv~CX8X!kkvy-}KTfHV_Thvbxl?JHM)lCWNVtaNU z2dOOw{8<9i062QwUIN_h4-v^t%&2$fnxSuefdn)lI5)N@Gf6Plo^P#mNBCIe(lXw% z&ry7d6f~fSu8G#C2-ROpXqsx-Y_SS+BC^8%q8LA!z^^-SscY5#~a3Z)fB}{+q<5sU~$EvvV%ize7kGK$gE; zR5EcfDb+nLY7SSHm$7?E+eVO6ejRCOKvVt(IRa_W_?s7c|Xh2XQ__2e{MAh{ZLeo@)9ya&(G0PdM{yCv(09~PV!wacp72+?5 zP6PDl$+}6u1o~u!^-E&Y0J}nk1?Q9nMvSG(fJ< z0|IhM4`>^~X#ifu3$c8#sCzr1X{tdlW6q+F_iX2dsC~I{fvZ@`g6SmE(150b!-q7X!{40nG}X!= zgr5xBTaknYBo#VgAxY6qZ$k+YnX0ZoM(Bu`Uxty4)t1CsNm zucq=O6VA1hEHq%LP)|*EBkoOL8UR=DTI)`>iVDm6ek7m)L4`Kc5`@SNBGUl5LfvPP z#eG8f2NRwK@D-Y53lFym!5>C&8h}^mVp(vyONf3N(P@Al`w-ptuo^tl=^~wuI1y7m zg-N6bL_2zW71M|ETxw1Z$L2@evFIp!wszF%dKpT0Z5~w7FfDb7PD@2U-BEhcg-y>| zOYIRKmx#0-*@d+okMlPnF#4%PfX;TMWoNwFt4d+6V)@VjG=3DBWu*mmT|JNcGUCzz zw|qHeSu>Z%oyGFB0cLk*7ctUXYA-eWJ@i1F@~g=}1BUo|D9>P>mZ7&ZzTr}IN}E#1&(DrfEYGgtF2C# zgE5;+ZznVjpyQj|JoF+K(qeSS1$fpGF+Diw1T60)3k_JN4btAqQgarGnC)YPVAcOA zacO`%t#1-{VVUa&#cke4NE$%KPo(8Dgpli%?073^=PZ*&jK>Xi?Xfd&lI z7U}YUeX~RPf$dDnFh%5 zk96|Le5xx~Yz%#gm^2mgchn!@)1VWL=Cy>TsRCVI6@G=#G=QGg>GDI5T&8@D@HBvr zA06Z~TH)96>aUZ41_aak$VzFA@(m)>0D0Q#+xAp)S@KQd(g1hb>KnuRc`Vd(@%J4< z(g5<_kx!IWQzIwsAUoH0gZ#)P^XvfV$M*lAtsIjqY@mxf33B zvM%5&YF6*92~7j&=oyehLF;E8Ec$JUP6PDl9_yjdyKM{EV zsYcIg-+K{~rn1aF-w+g;yNO8y%&A*S&d|)Y7k0`1S^|4t!qNaXdeKgqKg@MjI~-34 z>H~;M1Jp{*4_3#uTtPjEpfmujR8Z{!-ZB!M4<#f`Wyk|~T|^)sK}Z@vR&vqyfn`_y zK9ZO;m9z7}^3qN#^w9*RsS1k8Z6BbIB`6I*qo2Q*xs!lmTkF87&LK8U)tsGQ^3D3= ziAhr(v+o+8ClHecn3eo=Vb(!DiI6matQ7nUTr0}4f%xi^2}=Xm=qZb`(z3A4FkGKX zaGI)F+gWNYSiw&tCJiv7$6aNDJ438y>Wo}{HA`F?;8v=yI_TZG%4MFQG}S@nMN28N z4nb)ETB*M74B-l{YV8u02B?)>wmZ9Ii>gmZ8bDU62fOW|8`TVmNdwGE-6CSq|=L};42pyl0HsSvItG))cp zA*y{_{t_b7)FnFW$G@D=G=Q$uo?$bJ&eDpjb6!DMn#!t4s75CZ;@;xhy`$po@0Jl<9!+&%2@0$rs zQ&sSCf7sy%xUAr}5tjzIl^V9?{(cMj4nooZvXbv&5Vi}0F$?=H!qNb?QY9QT>+c~Z z4KOP?*q}Yz!MrjmHLLdhM5Y09B}W*vms%`twQkTlh0`YFaw5|gGf=Fad zsFiBj;mTfq=*p@6B5`SeTdAP3Io7`+Bu&*!1*Dtb`7$wSfLY1$k@n?FY?ywPpfuG% z@s!kp{sTd209t8`KN|4SYi^AHPsFAHcI;+CL9ek999y-Yj0J(bojIh zJDTAU&>hhc^%utGF1N+QrsHzg){c8*_!Fe#{;?~LLL7bGM0`ANn*CSFkkW4hl`Ogn zaqx+QqF}QZaFa5lw<)rppOWmb$7Ay^|A7}nx4YA|?PutR3i-HgcWn9tU;I|k1jMc(?0@1pma3*kF+m`W4iBY0R?&o?C`1|tq~S51(+GsxXFLEbxqymw8I z_sJmdQ-qAJ4|B!C#gSM;X6K}stL7toy_yDY8Qsa6039sgJrBMLCzu~2CJivB7YfWC zR*GV#LqI=4P#SrWm69v!tM@ zlEtz@v^kGwnu7TSV$uLJy2UBVp6zy)n@cThJaC}d>klwg66`M#o2D}MYMaZRLhNga zO#|%c8HEYm*dPgAWPZU_Utkj1Um-LNprhC3OhB&;2K=_iUThQ7#y+dV5xU_5|24wX z06x0YRD`!HTrA|*2}x5WquZSxc00rVmV9|dwn`GY-yk*(u%p}dqFj$Xx5Aaf0{l$^ z)6@dIjLCNk{2c<*062QHiwVUCIzzr~CQ`2>A`K9u2YW@t`TokF16RYA6tX%{kiSo4 z8X!M)ipE^lyR5%FS+(Z5H>3lmMm4Cq`aP#G*!w2b0v!$$x5#Mgordi zoVs05#3o0w0{U};(f~Aiadokf-Rf$60SxswR~7aLn3fWbUyy?a98))vhx5H$nkw0W zH-7mQR402IF=>D~burp@*Da9u>+x+dZYKu~IHDi!6|>xN%(bz(42MA${1}4M)B)b< z<-w09I1Rw3uF0Ho_elvU%M*!A1LWveAlAzhx1@jQx=rNZLginuhuow{#jak-bHbX6?&ZHP?+?5R5`7F)MV%4Nyz2u}m} zsk>Kzx34;dxqSyh(*Qd9y{`#Jk*Pg#ygLz(26z=bVu%^omTO?{LQI-Un5d(N_#}!g zvAYwK2AETO89Ldsi_LxeTZ08x;hjoc8sJV{RQmV?)6jT&+v#EAT(Wj2p=kge{eDWZ zsMxHm(;VKL_%y(eetV>dpS?b^4$J+>LQ^H<;T|Kb?!ev^zMt73E)8&_=W2`U9j@<& zJea67K%KgV<_jZ|8%=!^MN0EwM5Y1q)GZ^Cbt7DSilE8K;C9Gy8aZgdF?E$k4%fy6 z`X5DX8emTy=z^Vfo*qL?8emQxl*GikCye#D`>^EoS;VCQ?$p(@!<}pQ`oM3=n?C}7 zF5zhaKXnI$@T~e}yObcG&m%Yuz$=yEGM{Z>@o<2B0kLVS3dh!dE7*4g^T+)a*K@j% z;4}cAy1HVnU<(;+^E44aPa!@H@GqQp?43B^om-wT3#uV1 z4N#|^e8F4}*5kVNcZrZRfSkTs)i-|qjGz5fmE%|@2Msu;uBNbzfj!i)^oGQxsgfPQ z?P9XTI>ag=X#hEOcZ4f0WN}1J?Lk7*0D9^MKo@f?yT1Q3iAe*@sizWvnd?42o1ioR zojNFF%X#c)k6F*2YgT@bz%&4!x@y)J`zC6)=M$R-*i(1L6#Ebzgcp#71}xF9j}$vi z%2LurcrnpwfIfBSNzn@p`tK8&2FTHGRF>-|@??|#QWDUBVCo)&N-t~F$AqV;p6?~i z`YVY}Q(b&n!~SZ*(*QpDt)TMEU#Dq*4H;;_@Z@QmcFq0a;)ad;>&Zp~wyEm}Wy?43 ze?(v!08iac=m*SX@a~=xy@j|mz@2)`zPi-HN>gcu|Co3*z?-_(l^QJQTmA__X#hHP zm&rPJ0Q+vj(g60pk#FW&-)q?aZL0TiaX|R^K6V>w2UmFNZk|uT{9ZTlof`KcNL_5; z&c^1l6S44OhyU0e9vGkDZz2n#_o4O(y554YSafjjf7@jFIBt>2-e+sBwS>oMZTJ!~ z%@6n%HVwqZ2U9t$o6!{D{~$08fa5!M6Ts~QnDxdUiTgXFMgIjybnJxVN93RZNBpy@ z2@dA9Mf@odX@D5L-%YNp!-xsl@={D#0Z0FLj-Ok{!obglb1t)kzEFRs%7J-!z`fu8%k zsLhch2~7j&_&($Ww6+rdL!c`AXkyaZZ6}9eiT6YnUrlQtea}!$cLui_c zT6a6G_a`7tMXkFhwLXy0G=PpC1e6q6)AkrJ^Mm}OXS3iuwpu~!5#XjB%-G>P`sy7Fi%`{LMJwz?Z8V&_!2YtT4 zD!9)eE)8(wgRfljTpP2Qg8D3?(f~DjOu3HQxei~p7TD(ymIkm@^OvyvD!7Gy9-(P! z$cJ{v3BH1;G&SS{Q1NDlyOH)HW02X~xZt5Y>R}z{A&{h4c)5983i~ADd($tW@ z*!sqzzMQBuK#lH{uj6Ok6~9fOWaJG6_ zWd9-2X@DNz?v)3$U7L*OK)xJbM|hh0#G{jpPeO|LHxiu&=;uZcFAga_=xYhZn@K?f zimDEdPLa=;w-J{HxK*pX<;=t1L0B5VMo;;z<19~i!T2tM(f~AizJDFiA>J*|D*pEn znWl!^9rn9?YgS6_{lujKZq;ULxQdRwpnj03G|>KyA)i~M0C(*U_@#e|OMus=W_ z%wm6(*fhYdT7M{ZnA0C8It|dP#)qtPv8q2wTpHk3txi`lf8qo0(*&le1Gqh#<@4tV zOjAQX=ibB+-}@rbX@Gul#j4Jt^LgsN_WtJZ;1YItA9QBz%O$o1{)UV+U_3o?Mm`_( z4L$WeW{sjt*>f-HOvg_;p*z~PlTLCtHrsY^*L-})4mZXa7U%(l$4@$WP(?$}{FB-< zk8c${g!IVwVl5HAXD+>GypDixg!6GYm6{P}HEEc&(S@0ZFT>qWTpHj`D;uBk9pG_z z8T=)LrvZHQ*iBS7Y|&`)KcQncxx<;k==ff0^*YNdm}|knT1IZ+g|YecP5Clw?%LXM zX9s^nvgnstLmZMRKK$a#>KDB|@-oNo*QmSIgx2ER%0dP@2lQ zfrVsCe9{yszAeFN0A8&G2W@@DN;2a1grxy&bTv_$$=F|?i|uUT{SI+yDrfMZ&t1nw z?C%nk2B6Vhu2QkGS-M5N8&PR0X92cqXt%jcT-44Gm!`Vfk$j?FQ13-l8lX;JsmbEM z{jKHJ0j_=%;N1kK0dTdDz$ZIg9^99pG?nufizI?vcmQ!}D(3<}Tpd(8479#!>2IwDdryyL`6^T=P-+ipCuv<5aa#Q>C^elR&f~`u;?-7v(h|!B1a)@&)_%a2$B5rv% zH%L0roL$7bRjATL_VYke8Jpq zAFvEBCIbx^q8F>gFyK>9E@OV595mpF?yTlGWCfUH@=J+D1FYzon<7?ePK=361LWuq z;GvL%9C#(MX@DKwjOMYqPo0)r=-96&Fb#mG^Et900$V){wI zVL#rzM&m5FuO}`|RjHXX{1G8(rp{I?RiATaz;7Wi4S=KDs$3o{VOI=w}X%G$S$nyIN$x0o*v!D_Xs+vM_4%fMVqW4awytCA1q)qU)5>8%o>6Q%A#wX za!hXZPm$)U#H0acbWoOJ+Kz^x{sU2IfEqo7n?%LyQyi^ZssBV!nk&XDcZu(6O~Qss z{~tkVpfq;bt4D13BP;PjI%wX7qWAejGitpP718zI!yxepTpF((aXu{6-7~hOvOo#~ zFYKxpMpuqb2wN#sG??Pz7akSPJd{m3&E`s0lNKP(Vk25^(!_+CM-Y?-pqp^Q2~hbS z5m&kj>LZCtQ&Flcmv&MgO;8$uo*LOoBSYaSwp7hN`iLvk=;|6zUq`i`Jtn?-%`jZ8MNx`pu3?DLKvwi(%`m-mo23BowFIOA zU~~gr1k}*wRW^LgN%IEc(f~L5RjCQwEa7h=9u4qfUq7;N4g0@U_DuRrSiI2>1Tcp> z!W+Ka!(MBb>>RH)-2(n|Z19uu+Og*cKY;G&4tIc}Z6LwnOTVwaG__zB{_M&Umwu{X z(_*&LKwf-pktIv=!NLx?IXsn`Iik{3Ma71B8R`O2X@D9ZP9<8U7a&3nA!z^^-wP;% zZ1eMYg1JOYn#wZSu@J~*Lef-~8I=5xm^4*o4oA+JRtZT{8Pa>wK|<10g~V1`HZz|| zNE$%KZU7wwWFt7Xh*z>kDF%CVYs8PVcSe|K$KKEOcx>+bUG!PDyVJGp7wC`JcZqI| z0$>G14e}1HL8cPNFqh5?#hE*?@uq>K>ESp{CvbNm91Y;2+lwHD(pGl+eEuzXcPAcA z6}(}K3)TehRN~P9FSh-$@*4Jki}ZGBe=f)hw7fdk#q{@Nrn`+T(d_V4@0`llLd0qG z<*6TD$44P@Z2yDO@_uSG^w1o;xlX+S=G6&P|$6}W3IR|T>_%};$582+5jQ=tmnomGK+ z?fsp%cU2(HvU?y%nm!06z0OPx4ce z(14^u6&R4@easX67l~*YRe`VnI}9qM)y`da zmx5?QA}jO)i&Dmh%y71wsAKV{~a6;j#zhM88g}*nwI8_6OxQ9B#N_tAE1oPRXD$IFv za1R=!{TW*%L|f@nITuh44dgs~i{xY#W~rnLDTxM>mdXMsbjeDd+pzq5oIi@&n!7Wa zobS3@5cAa9^Jg?~*C^m%Y)-j1VrJWr$M!#vmhY}zB?~O6@*yf7s8P{MmO56Lk}64| zxhcz+2B|Brn`=m&1fcbMpSk8_QqzEXU()mjKAzFvlJqnz*Sb9$G?kt#>k_0w;OS?or|;j& z%#hK!W{&DG*U}4UkPVk^xfFiv$CZ{9^c4!CfuQGXwV*6eoS%r>n6FV34Md@rF+03x z_6Us5dC$-r@0s_;DV?{GSMV4{koR85h-n`y`RrbP(gtrX$Q~pTO7_Z(-Ie5RyAV*v z=P&wm{WJEdVmf^F3LP6tLx^3ZA@a0U1`FTLh0)Fsp z_SAS0JvI3c*|WG+B9tG&wy43DJluWi8Do-M$pO=8!#QY>`s9sjPK2L#w1r{1ltM#4 z-Kv6cQ(f6JYA2^pIW+W(#9_mX;q-vxUSN!PuZ$V&R%#2l=^j4?Che6w8Jmk9iV!*4 zp9hD?l5Xk}a=a9!S`aS#HCzsECAqkWQ=>}EAG1!SK~5y^Q#fuZ9_frq571qzqh^QmDmz7#5i5WiEp=2!N2%*b0g!;)t$mReYR(9`V;?4W$4m3!5`g$#p zpv_Gt1hJAS8J( zghH}l$i(cX7#fI49SmS?WXxj;2A+fZ`Kc>N@GRm1AD+YLmd7qK7O}v_UmTmaJOE*G zB7dB_u9w2Ur|8iQAzC#en%<<*lzfO@nsYX^a#^a%%pO*+G{~W=ZipNTrm~CLt;8lJ z(m>+NZ!n3ua4gHoy_8714ki_j}UFhmo zv;T5BB6hpIg?A9$5d>{T3+n{owH63LSiVogGWqa6%nTciS%#RO(sgK%4aw)si&A`p z7YO<<3ZkJeZ$Zepaw$wXIPZ|sGXFzSG!T_~&fGFHu7YfNFQX~++2l2*`@D;6Oz*yE zAtB`!r^uZd`>l(ydHJIeU?-Q~^w+U15%#%vaBLit_iWZph)PB%enLYrc@4j=5^=uL zyQV4FsqCRAy84DH>n!xw7uumv z8VF5ZOO?p*byODiCBL${+ND?;h-8G0$p@u*dWqBQlBzMkVp~Cj{8&lsQW<$e5BEq(NI{wZq!ZcFas`xp zjmEx#{on)-#^zfOhR1A^WBVU+CHWc+Cqnt*AOEZVk$jDYBUaDwIbg1)PtYLs$vdz) z5jp~s0+7Nmuc8zhNJ+j%BPS*6Xa#bvp&T0eMe1llfiwc{|6zcrb8c0+w0#$eI^=9@ z{_->g$&Tzocno1%60=^I%0bNR`1h^z5zp=eC&(J}J^Ba@G6SFMO1cWwmx4G-sN!hk zN1^5v>Kyi5?O}WF1#Ek^+LmUScV=*B26txMow0fDW8q3Cm*3Ru6L4EH zueNSNR5IM{X6kOq=hfC#BCc0@S2dc)vad)3H%vZaEfwNBwpy!~{>F+uhhk|UHu=0- zsSqzVtM^NPX9Yi=f@vW5%EUolssrCV+1K8~@Yus}gR${u1)jwCm(aSQLI~aR15K>B zw-o?SXK*?;{d=)rt{)YZEAE89-jaT~{h+B8r-~5NchsOx-Y?J7+emiVrE1JKxdfdC z4wig%U5OwUvjth-p)4B6NjRw+Ek7P1sh(qewBfcxHZSKI(v;OT| zI{5_AQhyGgF0;$NcrqhvuI6?l){ge)ddS}~&XO;w4MmL&wIIrNX_O_O83@TW#%va; z5_2^BX*9@*pqdg{i`Qa6}mcxRmp z2kAIwC!p{afk#RnC?J)=?enul-*B)8>)J$Ay94}o&R@L5;LL0~;x11tG3 zImfP%C7L}T* z9UH1c=siwDZ;RY2ln}(9yR53r_vuzN$eZL(h9>hygoTk}~KaG}|XK+P-gvmP3#`I}bWe^4IHRs?EZ zftQyBYW@dS;*Thi1`;n#9H@B#4SSkB5oH*dizQC;KV=)0ynz_@yQ^5+FzB>;3;3YA zu5XZwT+DATj?IT2g;+gt;<~*Q{5?e{U*lgUS~VhKdm6FH*Z7x-keDsrP-W&=&H&ON zhf=RhFG|3tNl?tPG(A_OW{G~M$agb0z0?<-3#=>=|x%#XYr zdnRJ*xZE{&s(-^6TTb1#E{arLh_e@HoF(s@76nMGg%?$kxgWiV2Dy@a?mFc64z4j5 z-m=mfltu$-$;WCTzn7Nvu)^C`-h(NR2J#Lj?q7xU4LxB)=N;Z$!8o*DpSgMR3Uq`| z8S~5Mb9|nr!RW5=$@bXXiHnDh_dk=1!8!ko@tAy7k5}M?sx$=TD>WdKSL_oCG$LJg zNlr+1nHO_}O@oX{-oq=GWn;2L-0xEy4a8lUycP`wltpEDUrW@ylmclWF!e@Dxy)<$ zGkF4S<-CG{nFWAz`1JMJsA-?ajrvWkF*H6$GkSey)SuDo_%ab^DNY)d+~U;_U49LhW^jo z2KOj?<`0l{CV9Q>#f%MAAYA`U!!`McTa)YCiZCzCZP+x>APacJKVV5XSc zQ4S5{r0=QuB9WRah_+DD9Vm$glDeq_Oo$t~5_&&l$hj;ubRs;pKODA)8}C#qKRb1C zWiQ@o?BYaRL{4XTIySdH1L1N^aK)a;ui4~XoK}n~K&bqchDyu>^D1fQ>V_;kl-=Bz zgBlv7H)h|4ssc1DCS=@{GH4(prl(O=MiveeQck868c1nx91>G1X$bEg^)+!t^GU{n z`lENjR^2YRuZs^H=%+9Db@BO$)v@`&ec5c-Gam34^#3QPBUe`V{@t5!|QqNlr zAf2r{-QAs8CEwj?YxpZ44$t21PI=@5>nRBZj17t5+}~E`j@e&rQ`JbASk~$;UBYWV z!@{LOKG)u+6sgs}^8!9k0W=U0(+{qc_RPccBL12pXdnVBc{X|hWf~2Q?oL;Mv%t-_ z=;Wc3#dLl*N8Dd%F84dbAzm%vAdg_pIgTYLA2xkz+$m z2#FtSNW?sLs-80v8wEA0#5{!VL4zEK>5JDR#zsrIq=!=y4J5_PPSztSh@WyPtCB?;j32jr=(xkYts6lAmSVOD!N@tQ%0xN%6RhVTu3k}j9 zGp$uI?IJ{js#MO9a%do@_NFw?SQ1eAAJ`mPr6d|iirCMuLIyRIA7SMCg7jN+0{o=R zSL=72{yZnH2Me8`OE|>J_Z|5OojIsEb(Y zUatTfdp_4RDfrk_!W!# z6e2#o9t5fn1oJ>?1B1KX_0zV2qi(x395r{^Hc(Gzc47hGOV34o9@EOM_!Im(eH)k) zrfLw4kKKwkFh{L%=r5@f^BnpQ4g4o<8|aw}9Zg#>EDI?r^E^tTfuyu;;H0D=-uz7~ z>k7)Efvlu$peJtFtl5+0&6(N;`k$olTUx4J`MBDJ!a9;0j`_I46@Svi334fI-!dmm z)gZ2(yoGUP^MrHy&WT;Vn1AAcgl4PaDiot_n$IB39P|GuiDs+fDv&f8S3ak{MOidk z6j!_EvbgdhF3QD~y6={>SG)6ZwHtBu8NNQ^;|f>&NfReq6;~=u)gZ1qTNqb1Pr|rz z`C=Z81cFr`qV9l3UD7dInE>f4 z7H_C3^E}qqG{~8xgQ6n8?>A;nU;K%ccm*ZWKw`>4QIWpkFJMR{?q>z z#1ql!2W|KQ{p>!DzuX(=a)HwpxG*;N~K;F!6ylkfqA*ujA@)GrthzG%S&|2@v^1$4SwG0i?zVW8hRW-mP0`9Bm z3PIkdtw#FYm8BkLV_UQPq!ON$3wX+a3uE(3ZY6MB?wUK*ze!(>6a=a!xX3kIQH>PH z)lq_rs>U=~jnKedl1^)ANd(0u9ck&ihPSM&y_7`*SrKnvS8(GXOG=vZ5@~Hpqk*)f z6>p%dp*r~N!8^BkwN|{r&*;(-FUD5MExy&_o+>Noh zmLC+q89GLj_uSoitfs}~VZM8{(+uFd&$vKB|XdowL zzf(yYIqpAausHVwe}sF?4%%^RTHFs$#Z&(-zBxJ9nYHsbyf9-gjLoB#*x$@u(^L01 zY}+EUoDim35G8J zZ0^@X0GwQYGrNxNSO&+MJBi;o6*)FWtI9;cd{+Y|VhCJk*3pSdwW%)iaMqwS$e4(c zQr*(DGju3{r&Aye1imyy#FvtXV>sJID*c_!#WN_91|ly@5Rj$Z4R@6z4smhp+~Nbn ze1{?Hqr?3~e*u{h56S8%Y`cGlt%-3TNAXQyh8+S zCUFlX(m>*t1TCn`f;LlhIQ(pV-;da1X!AA8YJae|Gi>h1aJ0W)qE)ZV=#{bgcne{A zeEy<4w|~aKY^Uf_O^8!Dh{&60L`KZF)sZFa{N}W%4)X$f5DhXQNtK!-E$K_L=(!<~SRAw#RvbxQjWFer$cl-JzO|eWcxObI7*8Gi+}-@f7^_)K<4Ui?^}$ z$&))7o8vEn^B(QbgG0!Pn5YgYrk0~B;Ip??pN$CPI%sv?!DfqUFh|ifXps7d2l4gE z(DjIUF*_)R24W(X&(tO+Ya6^@h@Y6_D2N7v%!YweRZpY9{@aY1%vGTwVoGdk5lgKD zQk}GLFgE+2h%nhE$M!$aM{EsHm0p<<8Z#Oi`w~_VF2$_Nvs9b!ate$FDUO(jtD53q zHZTzJuM|N85fM}KwTKA9!25vt0fo@8{L_U12pd82??KmB_XBTIx3|*>ttAeW-rZNX z$1&;gACsNZ2bEr#;r0*O0=Ks*R=0PlHWzTfN`n+9b^DNBTLGW-=0b{~frzATABYIu z-si?sD1?UPpU~|)J-EGReV}!F^}B?nu(#7|4LX-#-2>*4@959Q=5+%Ez>e%fc#Nz_ z7>S;fl2i!d;jtPI34I~QE0wXoqAJX#^aUDZK*TfjY3pK7>wEP&r1saXoXaSO267@E zmewaH3zVXy=TZ_4ByGI$ab-n~BLA6;o4{++dMfh4NEz{9Y|h=wHbai>f1pp;W;l9f zMvOc;d7I%VB|NfJo2%GAra_7m)>b)s4T?a-%P4{dA`;dUIT1L?){R*oFjrFu4a+}S zn?W6173Nqkk~TvwfH&cQdbYoOaM)SUtt8yZ*!+}_N{{yE!6D=%98fz(Z7!$+q0rG# zNI0MlX>B-YwrEb6$FeGNCac;dmscNVCXv=rc6PjEL1C)AlZM)KXqDK(g;11Y)hME@ja`R>aDS zdS!(HHYu%7X*7_w@yiFbC_|`02R6Y}f46zGp8=;X?(aZT!coLrXMSD^j|XG(qAvSp za%}$teZsz(qgQ4G(iIv=34_>CN@J9z+T4RqK!X$~?3?B2wGj$L+>;_`=!xm3QF0=( z*a(E|q7WLEf3m(A2^#_H<@A4bKk!DZ4x2U>=Q<0mrKOhjd^sMQvmXcN-)?V>vm;1p zrz{IEMI|5#UZGKt)D1nW4TK;Q%o-;#X^`}Y2ZVK$Le_Y=0+8}BS5XQLq$He72pvKj zRySbD%Xt~)&_K?{3-T*w3_>F;m8%&Y-ajEAVY|>C%+E@6@L+7NGi(>+*!~ClgzbW( zS7t=So0GQ-j#9!QOSQQfYeE{NIAK8M=(Sx4MBIWRXdohCyO0x+wF`le-=Yv2mVdH# zfrO2K^-a<)$OZ5wtc>S7`cM!5kIlYiIQx^}=)D=j?!{p#@%-z1y1mT`$? zediNwnk-=&BsbygNJy^ko=MnC2{e$9aB3oykU4uMqfHq!knyx+z7D=d#`!*ay7(MO z6Gr-cw~tqjm;3weBMmvnhg@(zHs9e$``GZ3J<~tnC_ANF=B23|1jHvbAQDaz6*ENw zBU7VF%#dzDgKS9nJfTdC4U`EM9 zDQoRP`@ph{80L92HgDVq$3Id}-2ade@j~X*6@inWj%#^yIqV4I;Q?te%~*k*VMN{;yWP4YIwb4qXoNjHDX&I%0@oiIT2 z0yHc_8GlC^G?0<7&B)8h0wR?1_mn~dDe2k_VQhrFzm_&buYfvX527>7Uc0czWAhgm zAP}~@)9eUR63%`FQd9!M;e`K`yieGF4_GB2T&g7#%-87vG--XYC_;lGFXbDQLIWuY zA4L?UWPy>F^G(X3ft+-YA}nVk&wV_+BIlI}TZ!(R8(GNF*zA51TM0dJ|053)wh~@~ zk|QjBTf-t@z2G?|D1xM$|75|_Akhh1iM#*}h)~9lDT4+w61Ea~8CfudQhr7$G?0?6 zl@P{8$a@=xf%QaCC!AI4wg)=8=E2xJWrz^iCdc+a&?lT#a`eg!|G$U&f5KTMN2%`b zQ*Ewb|Ck0TPS`5t=&kc-B3?uhG!T(+Rw*YUaQ#fkl@vn5@=rFVrj7=UmcO|>{a)P< zyeXX^TcyyokHSBG0Iq+OJ@W^U5wQ*2v@=V}ro(9RBLE(#0g!MqAtTig2-0udn0N#X^Z?DyJJA&xp*qlJuKgyo@1IS2N`DQYd9|7>BZPnS`}Rz$yXbQZ1Qa44r`nNl!SRQWT-V zl9#eXDKwChFmj7hvOvkpS*9Es$VoTTX*nBt?h!-8`zHh>tjdR-o-VrP!PwkQ7G2Bn z+BW$Q^a;lqj$WA&5zo_zNZ7@6lr|h(s?9MRR?;BFNdwYmcs9C~e3q;?$5R9iL?moT zb9oSkfX|H+DTIdQpKP2#9dLfn`doUx_q&A8#)r$T!LT!busLdT-)VV7?yk+~wXu2h z)6h=bxOh3cV*i+HQ&To!lTuY0qUGfpEfKreO*;+cQXgg%J-2XO6`2uhO&Vm$73r4W z70CSp2ivaXGt5fcPiZue_TsIV76e(Tyh|vL2J#N3i?=*?!)4?i=gQ*q=4A{+@A&Q> zlqG!RcA(o|I4C74M`P3LAo`Bf6ZbzPBz)xNB`7)K>x~*;38UL{N^=w>-5kamm8kzRse|_1iv8}O z9*)gvT#k2?J@W^k-?MR>Jw3hh!r?!z4j&QX)02s-hv_w+<~$}1(izd#RHRln&k6V( z1<*i1M6^{DkhyqH#1|=o1|l~8uFZ5B8ac*~(ZQXwf%WPLAG6D?hZ{S&`{k+F3T>`A zyD}W%W1DX6Yjb|3H#_R|b*m=+Vn%;4<9;#Yela%3u`Bf3hyIb?Uzdi1l!)frk=L3$ zO#q_nZ#268;D*X(4qOgd7^>9#AFEp$WZKI&tZr-1Gwz)?x5pOc9`7>vz@+sVEAvZq zUvY~=7JI}C#M30ftm^6@{698d?xhGbPff;p4{bZ|a4 zSFNBZj}0%a9sBU?4=CaB8%OFUB`7V5^G8~oPp+LoI#IK2ehHB&G;d=_(jYw-rD4m+ z-a#@NkUcF8*1fhrD(LW}WvSnpvz#9!Cr!E}E)O!l`7r5d($SIazBY9qB^?duB3g}2#<)b_aJJQL z&ou+D`8Y{wK$8x7bJ#r?29Kgz}Z=g3I|&O}i-42tiI zq@zifM6%_Q_&4OF0cSH!MKf9)w1fH3tZ{8XEu`R|7dJ3#+HxfF35wm9j7@c zc0|stS(-AT8*Wdrc3ZRi@P&K#{VAa|CviMZgVfbf z2fBRo&kfrL+s$rgUt2TQ+?;eYpsS(XoS<98K9HT>LOzYRA}I|>Yv|vVkoF3>dK)s* zfU$;_dV&#?7@gVn&}QoG$VLOUe!U(lJ&}Dae0^-t+}j?ad(fQ2=x7xculpVz1IFBe z5@;ZyhUR-B!B#?!^G@WX0cXU5a=&|Uwbiw`xsz-(V2gMVvFTDAwD2Lv zrRFTAUZnKyO+Fg%rKn~tA65gj=3BG7EbINqN|QE~BW(93scevsCNUpIn8Np9^3i}V zMf}@b9j(mn9`7m7bnC=0~7}`Yck@Y!$V9ZC0qyB{dDGQ#f(%L!mag z=aG{Joaa^VL)%VY!#T5MIR)Lyd{4H9p~_rq)M}0nF6%c&BZn&fkH+Q^=cD8BXP6sa z+i^OeP9aoHLlw`$eyB2`bA3TwLlqC-;E@VnH#wJ7kKMWUD!O~pr;g2L`HQi6#w_yq z^>DAXqfXaL@Uye(RHPip-KT2qo>SS0HMI@>Z=EDWJOSINQVN!BO3nu7WAj$z+uE_= zrL|)pnSF}4rm6h^UmcaS$jW)m${ISC1qSKPXWv;Rop~#3AR2f^4V}wUM%gz}*xpVy znv`s8OoZ*7WTOFF4PAt?wBdoWeoN3&{wXPG(j^e{Bl!H4B=CJ?qXAnYcgemYB#a** zBMlfM)-7!|3i52glsfmOHkD?k^W-V zpCB6z*lKv9R~8ns2ey!Xiexk(t6|Eglq}mb*t*MSNlKG0KXqGHN#YmCMgz7QCecch zs5@^8-Iqv51G+>(?-q2}?7WtYH0cs(w`-FGeuZ>2pi2~fegiBa{2B>q(xuOCG$eFi zCmjvw5;eKHy^FAYgKRWlt6_$v%sbsy9>Vuc^3kMA9eTmoxkK2#LpGXpsk85*E8lhG zqXA!{E=BNOuO#vNq@)35qHyqUNebZ)Nl25f1oh1{VY{AeG+>KZYc@@f!o7^+-nY@B z{0WI^K%A)Bw(mMfI)6?&nsm9UE6j!M7i6OWTlI&bLC`mXV;h5QPA?S4M;BBdW!iECBfK6Fh4>vI}cF&TtF2Yntcr*gAYBAPeS%appsN0~ z-zUm%S&gTe!t)-wXx>xKuO8Rk*1`5bJyZ|JX8wh6&!gXSwI-fJwTE;5XcC)p*fN!GoyF0NIhlw-SE~3b2kf<%--Q{?{LSCA*yqHyz z^m^W}k(UO%H4HV2`HabRJP*QlL3n~G4`(HlzfMvbkk-(PD3TV-^c$q3NlNFl^qZuk zNlLfddCqr8M+3Si)Ef0N=Q4|j0a9q!k%uM?&%ERLK6z-sQ^QEF;2d*<{&Ih1&tVnBg7uG|lZ^&!_50zx_m5wYhXy<~beIeN z0Uj(s5QqOIiD*C+vDLsv9isw~b}~opX1l{p2Al1tugFUimi*TwrvZ5lkCP|JM`5+x z#0r648_P>1-G_HTO_L;pJ9EB9*+wFoG(?%pY$p*7h@Mz`6^TzckMQ(F^6nTi(SWIj zer%!Gv?aAv$CHW%R5i>|l~RR`_KD=90bl)%w(FSqiuokc(IlnwHS^6$N0XG!SIxH~ z9S!Jen4c;X9y4>Lm+RNwhJ-XAtiNB|YqzkXJy)k#FTEXkX~0{5ZOtTFqC1d?21GT? z@E3AaXC3?kPKot9k&z}z(gs=ebr%xRfT;fJi$t#ax;vR@z*K)5KIl1~Q^`XEo*HI^ z3xzf8cGxe;m)1^F(j+OZ;mG$-?oA>Z5LI8f^1PdcDkQBlu z328uB$5cQ$;asP+Fps$aOS+e&G$5^`7qbp&-|@A{N0XEfOW}*+ z`zBVxGIRSqE)v$yV>68bX=H+)9u4sxt&!@ z^$=3gfU1TiD@=qfCHhl$XPB&qlZysibyRf)u0Eej?IIN{37R{%En8&)hRfNs}a<+zkcqH4hd#xy(JAq%^FT3FW@_CFGHax!eWa$T$7#!{N8NS{ z6ZCw%BBVW%(rf`KAF>GP(@9FR1*Ck`BBUdd(j+X|y@P&hZk8E5Tx>0KmkFWXPih)a z*Dw|@Em_PP&hDc-NpD(cFCi@rXlodYuS47K4>2Yc!b?d=lQNzC?#faRQHw2EEbV2a zr2%ckrr;a(?aI^HXD7NjKfs0vLp-Bz_hwzHpG$h0gxNedT<&sDI?3kCNl25FFv#E+ zl8`1LA*L9x-Goiy8VPAYSi@7w(h{BTpqr9SluFKCMP3^4*6{GKoEMEP27@-GFC!yO z!mQ<3w~HaRB=Kqz(j+Eaab@``64HRMhT%eap2{9-lD=z5M+3SV=DJJi7Tc}W&Jeu@ zo2RcOCr!dUT?}i0H;|AfDPd3pyorP~Agp2CdugtA?q##{tt6vKScEdMIg43y%lUS4 z(ttBXx0;R4Qh&AGI?!>wf_IXV29z}{a4gN!<(3P>KP4Lt*i!XD+=SwM7LM;DEe&XE zm}y!kk#-(azM93!rqwpS8Yk7k2gpwY{u(Ct4#~gL3ljbz64Pu!!jar?icJ#!5%SZd zO!&$OO9lE^ViCCY$4E>A;u@ahmge}NKYDF zrU7@VwrzxmK-QT*OFA0R)i7aPnpDzF7U~zsOp~xsNB!ld>(YOTd^F%oHTK82f2ny% zd(d|k^0g$T0coo7Qm&5p3JGaISi`fH((+vCbue0Ka%0f;?20}>6yN4)f(o;+~>CA1mAY@(SWap!A>E4eN3`q z^Yq~|+te^yk0C8hl4PpOgxPvL`Dnm*R^=L4QrQq|i|zAl(z1}Q;lZ_TMk>{?9*)hs zuHl1gd$xAed9vv&YmgcqTxWF3gDT|PwN)V*xYi+fcdEbA?RJ#P{G7cH8YHELHy$R~ z_$f~2o%sccXh2j$T~#2O>kK-xi`_QbLSg$Q*=WF4!%GMSwgqfL?$Y&ZGSPskhNtlb zCi}43rs{A5E*fxEe|D=>4gJqDe2cLZcy|r6XhSU3pIyXgRN~2>jm=Y@iICcnU0B<3 zzWXTy>)h%Mn#b0MwIoDr{aja%@&c`{@{g~Q>C_0MqH(HF3uH2$PGV-!i zb`3S+u#ag!=lps+HvN~v^|#ww`TE+pLqgnMjE85j(Q}>NLi@VK0qm&Lh~e&(SWS_-a0mo4g0_4*p58R zl~oN>@Un3grm_ZumVUuqFU-h=v6*`t9Oby&wYB5U=a=Z)r|3_R-Wpc66lEwg{N`l! zn;PB>C{n2N44Wv+W_VAj&7ZKXqd@{AzU#ZuGR1iVdn(B-4VZu*JM`O!zOyVx=zIA%b!sh4V2X|lU-Uc zs!VSMkzoFu+%({>;Wdgp)ApEZpK<>BF1YNaASZy>I_F6 zj0?3ZmYt8y<*!FYb8PUF@!GNH2R}g4YnYY^@U=@uTGTRk(^{s6#S8@o9rJX0vg5F( z(ll6{G)Pk-#@YU0Fxziq3ri-@JeZ6$V63Ah%*w^b@@yZ=gN5v2B%=XY4YMX?89KXy z@ejTxBYdZkk0vc2-$xL>N0E;Pe04OyC7HR1FzI6hGt9FIXLkZL=t!&32D-mp%4aXynvK6>GG76-c2tgA5GFc z<-4TTNuNSO8W1L`*0AYMZ`A4HL9dkJ#bl%bWAzWLiL4bZ&gMypIwfGX%{`_#&i-IWX1Eh zRFVvd*B5qE3ZsFr7jC66EK(TZ^~m<%5V>|T#nC|AfemM@=(r|Q{WiF#* z(I6|*hhr$IJRH5S=TaCAgryJ1K-eL|(TlsB;%Fc)c{uKxD+@=jWxhNdaUbH+g`?ZD z&gPt}FlKOFT1V=82j=awzzc6>SMf@r-;@`E(}iQkqf-SGhj3g?9gcZk=|j293ezr` zWzOQW9U5dsx^OI$ln=-37g~zuTneLsuyo;=(FPL{6Rl(RD=Y3iilc$JWZ{^x2H}W{ z+B!OSH!JyY%>IhuxKew+qOirZHjTJAliPRtw;6~hVwb}Fb-fhsg-VeT&vZ7~!6*?q zHq?apd%nis!7a%dX$uQ#REasAK172YczWGEtO8|&C9x-$?~)znd2}8rr`%0Q>eQY; zexGplnP54gE*rbQ##EcCUz&Bo^z7g@brV5=_$zFl7n_IDo zr$Ks$i8Ei_l27cy9r>9F<~Ec;0~!0bKt|B}Ddx!SD1`=6+I2^WCu`&e9FhlDF)HYf zfeR*!2iKpm@xXfh1a1f5;{jJPF*r#X4=P3#ARb8iCRcDWQL^&0Y^n!fi%!}CA)37k>?svGn%=$eU@s%W|0deh>T1cFEaz_3V zlGA|vi8Xg|z|zQ=K0==r4+2&F&N^?MmHTqP@lE2aI0PXq2lafwt4$a^ zhiQ?-nN=1W4U$&Bvj&v9tS%!yNMafg*YB(Wap0^z)z2h34ajSE)_FLqXZnIVtNKpu zGj#r=L|VUQpD23sv*5Tp{Oxggj5J5AEZAgC=%^`VY)B7R{wHK^-`HLCAe6ga$(P)?GI{u7+1+%i!yD z{lEu7o+<$BsKY8?Z-4gHK>*-_7ovUsQ~{tulpX=_gR}t<47LhMH{aq2izZ!^7VTM(}?)|s%97XU8*&3{k?O~L>OL`(#L7xE(tp-C42 z7+)64;1^*4Knuug4*>r)L1_p589s1(IRhZO5FSHF?E&DKvnQ)uj~E@PJaXs)graE4_GbX*pLh^ehYQ++Gkf>!q~U< zi8Eae-Dr@s+6Sy5r8;y*+$S*&h-)9PhQyf@XXFEt(}2A00V`M<8Pm<_vf@FYs=bl~ z&o1Y!_+0Ak_$vQ4UL4#1KpOGt_U6WGj#T;Jv3FLFjd<;NIwGl$B~_9_^Y83_(jaxU zH-Ij6Lh7B?X0G{9QqwSFYaaTMnV#dg?nKwo(gfS{>z?{t@58s^PwwW7eie5n`zr3U z*%7|wy7#kN6Ccz?A|iGm+?-;^N4)U5Sr=SS{Mb+>9PlCPfC)l)J!+}F_+CV?_{wF1s50+m z4~_OqV5T=gYzCKm&fjZ5J$XDzPX0l6DuYBcR~F(Vu!jZnY8X@f|b+U zk>yB(1lB(4^$85dE}E^9$L7u?rvZ8GD_Qg8c_((MzbggMK)}Y^O-zyJ;>M0`o_=io z3WW7HuswVvdRaYL4##HqJK)MkX`gHC51888>tau?tnlVl_2zauDs|@|t>*7oqBKb3 zp1SKLA!^v%l)N=7EK`@k;HPlRk`q$6*za61*OmIa`f@Sixuf)xZ z85=4PB-ngE-B;q?2mGCjDGiP5DC z$>Kr9j13ha9$uF?9)blUF1NW(gzV}60Xir41iL0vFeJlHi9&ilD+;_H7Hwhy?H#e=S7NEQz&Min3)-jz5W zg7qWL5ncMtk*p1AQpQ6dARiB2#?h2PlQJFx8I$qgr5sBsGzsGYD`|W@c;a{F;sKW- zAW5HLrKdaeNNdT6a2LjAjn6Rfao^yYoHqSWAS&V;dYc<4(<>bTMX3%%#z!?WYG2$^ zB=mhJr$QB&53p{eN#&M~&v#t1_;9zZln+q~4W!h*aYbo<W(Im7h0i?Ws6?YeAKtH)Kme8pGu8$y`LSE4Mg*wIeS%i5}0Q+PM)H{I1Jx%ofHSx?Gtgr8;jUh%FP7`Eo*slRPKbw=emZ?sI! zl8;()Ok25zC^9pKbTQ_9ibD{Ru{FR}zqaD&4vL@t=zi*xK{)L5X zYs@Sf$>*p#5Je!q@a1D?Ss%M^Q30F0&ti~VlY)a&G1FCV3v_5b`D7 zuhwuZANI1Vr);jryViw$JIy=Lhf(t6D~xOLS+2#OLR`xkvEj?LhDEuS3)nV+;F=gD zHzxy-LR>2};#?~;^;?)i3URH_RNz{fxm#flDZ;fBY%R<8WMEwjV+uXKf1;Oz`*tb( zzv(sSevq+0if&U~Yq~;+v~9Xy;}`%UVg!qDO)hlly6cQB`_Z z3(Wly<`9{iF)6q8{LQPHbIfQc^A#g#TEa&bx$c#AnyW-eJGt zUe6u4i&643I`=20*TF|37VUn4QEN*M_$=#y@!gmpaO;A(SS2?ki;zORV%(T>!@S8G zV-k_c=qW#+DbrjrZ}ujbMPzpR;e6Y0e;0Jko45IvJQIh^97UF*2Lr=~?NjUTDCxgR zj<}1DR%IZ1FyIW>z~y-_w4N6|81Ud!M=5;Lrwu}c9$j2R6V}x-LmL=EWGK26g@&@a zE;DuzV~C8!4h9rzEerVtc$CR;1s&aEQ@D08z=u(C(%;f!GoRfb8HpYYcq2A^dDQEy zM@4rEe88q2%VLn+pVUW0A3Yez8A+YWC06psm_lSKdN7bPm2)d^?!lNt$d||l6l*w^ z5Bs%vmd$*H9$(!1jrEI6Evy!F{i0Fwh*!(GjrZFowuj^u%jEPJxpJvHLCt5gCk~cs2HFVRYVs zpE*B}fdU+Dqr2oBO`k@|!FO0k;{rqcm7xM0%^9*LP7W#*rqj9IO7}b|s`&-L) zBx;Q9wl_w}GhZ*ayL#@PyLA5ti2KA24ovs~gtaSQ{4eW^(a$2s4P-9qqhVs2+=;wH z6szbb=2MLZ4w^T82Bs02p0T=Z>s|M$rpMehZ~jcoBQpQs*hUzCb-`QbJwI>kQ#i5p zD*wgo1V6am?6+8H(rDjCqt@2`21k<*rY`#ke!D05?VhD(d&AVGd>AFKdM8~%^V$88 z`MuM5b}Sj*B6x+wZQ8C;{MkCWVgAv1n^#Ooc>+!mDBIyqg9!nQLh#eXJ>kpU{)Ug zW9#u-Sa2DX+ijI`A6fdFX@rwMWI_Z{bbE_W>8!JxA>0`RLr5r0zqM29G?dD7HPA0Qzfy5CJ{rr~+lhWdiDDKp}$COHxaN z+pMT_Lk~pV5ta7aG>fP$Gqbhqqsyn0z6wp-cr zhqjLa-2os(K*>T24LqjE@WJKH4Jk00tBPTPy^eNowPn`_m`|hR_gT<>oW1aWg)rk8 zP!W|!ieQbaeB9EOkIv#8Gqq_PA&7eN1LoNfMS6h+G!I}~ln~>`U?9R+U_+b7$l8$* z*x zuwhAAM#i{`&fOQ@u%tFk!(wA=tS7IeCypr63v5{O0Jf}z7_R{X5yk?mkUU0KLPC@) zKtY7ExQ4}8tc7;ZG!2WrBhw2k4HSmko6=xDjgsHBFS>ABkHPFsAuO;EqzKly3c+~` zF9fMgQwV~nCs&f?h$6kfLXZcrg&@TEBp8S=7FY=K7+E0*Q9ca{B9z4y0%K9{cHwu% z36lqyLSXO6^a7``2YPR|xm-_&UiNyo9r3*7J!%zB32*r;^B;ITx4`l_hBivTQ4v|T zMPz{^<1x#opal0UN%9+X9}p$OqZT(B3Jj0+vVw0M(k(zjg!H(hi>ljFPo?sVp69KD$3kj0HXx^yaN) z6`O%AHVb?#=uO)4lEyl@idqyQ`xoeyKEbo+Bw5lYKLi31#3Jj{5F#iOS!(Ik=O%5Y_@`sWPkd9W09q#WQW8SYYouZ`c-%G>I%n z@)_nX5v9QbXQ`&3xMDI6^gjS00$SiK)fAwh$c#gM5hz4Zi<_m&m}=Qamru{25QPpb zl129Wv%!cRhCG|Yd5#;H3;$OL3mlglTeietTqWiOw!|#(sYhzl7M3jP$(48jqDU`p z6l(0(Y$_+jI(a_%?$TYR7g&1|*`W5!E=S3SUq|g3+{s-CYk{?AX4U!vEb@g{F1+^4 z8#WG+-Lh$t+=vDhQ5r0;_RQ>#jXtw49MG=`MoAQ=kw*Ew1*= z%$oN@tSdW$SD4x}`vo151$GCAYub%_t=G0s%hIb+^3^x1Af1%m2tNyHfkT4SrY%K) zs1&`$mZAlAN^^E?A@Yf1lOy?4yaQ1JJbZD3l1UKT0ZH#WoF{>U2xoyaN~zgt1!ydV z4ugaUslBjndrDMGKe;6NJ4#RBwMQvsG$qRHt4W{~skywHo1^4jZ%|RX_Qd_%E%W~= z>)oT^R{^f2Q~7$oEnf?q1`HA)OD!f}#=o#k$=Uc4qEva((M=Uo`o{{LOEd>}4seLz zo>~H2(1!UUm3HZ&dj@F}*e)&F^UEws782 z9Ei2AqVy$Ol(sMyk27e>kWUJ0Jz2&b5ZqxAe(LR|eKT8X{B4J^3I-yKh19p+UW$>G z6aSS%NkBn_viV7o^XEuScF(uoW*jm3B1HmkOkHpbV~OqCUu$$at?p{r@VHxPyR-iv zRW7bMb~n8d6xJ=QWiJA7lt84Ca+NJ9TXyUDj^ft!HwaD@`&1L$T zi%98x4W0DRukURRv}U2M-SJ!dH2@8c4zoYlZGW)a{UEKm?#>p!zjDOi_^+qipaVNB zBVsyQPweum8(Y76b{P=H*^ZP2mNMBx?Sm+_o?jYhRzGe5`81FbAwPWq!?zN}cR90?j%gRCqJ`+~M!VxA*^0&AaBG+2TJj!&G3HQ%Iy%{J(P`$`I7Dy<7f|{p?ACNg&50=i=er`{66$v;hIss>cQ0gUsWXkb8=Ypq zF|^Z$!SyKl0qw{s;jR3Y(rY0@%fKT3WkFQf?q&P zefw@4SgZw~o%Oro9J%}u#zF>i8cfK%t(V>BQPO5n&k6oA`y_~k4CDd`Yg{gHu62Qh z4CDfPF8fU)Slh`jk@bk8yNH3Dv#x9pt=^j~Pt$x+*}dLtAKKsW2X~v#qvWN3M|Qif zG;a5w7M0xrgf*`0e#io|JFsW6+sDsDJb4D$jVQVcnV}vxpS4qYkV^qU7UXx%nvNI` z@;!O5@jHJ{rWaD;`VFn_>eQFkO*g_`?Os|RCD&%d?~}3{{4?~Rf>uxG@z>`!;6xBZ=ZdWU3Mpl^6PwpRj_Jfv?uWFaG^X^F$6_t<@#K*@cX zYebX`i+JiiW;OL0pDYgJLOjQ1RxWE6S%(bW(VV76**)x!lAo{u-Pa+y;Xl{)dBJsv zg|P_okVh`Q4sp>Be8VR}@+lUgBa5v=hW*qZQqzwJ>kyml3-tlJ?UJh|h8j3Lgb9Sy z2XsJ_uh8`6qJ6-?SOodN6OV!q*yx8o;F2JDC+!HbU?0$t^`-#o9bRwxlAI5iWM9Yt z&Q(ssjir75m|j;Gm^-87Mr_P~4euQGroXP+|AtR2WL9(n&f>@~F13EK$fh+&lF&DT zWJ$hC9f2qT7BK;ti+|=LA;Pop6PG)pB@B_I2M zeBzYwR(i#Mz#q;n7{D4;&i|Fo`58m!`6Eak2a&e+k|BKqWVVaPnRM#}v($Em4`3LP z;TaROafY*j(`2kK!Z;%151iV6p38R4Svuc1iSeT3dHAn)CGR}zem1Dqu6V$zqTk+f}w8WJ{q&tQQ8RPQVl*Q_*z^ z;hF&oWi0c%z}(50L&%p%ha*^R67KUoc@-XJGhd^nZ!k*E`JfzY7ay(4 zz*z+uuz|~~-e$cjxYxc_Kv}5&C%rp&P$-F6C1xc?yOQ8G3M$h60C5jXe!x zh>XRau%&dXrJ0?)6>l;*uAt-Vsoubzuq6Z9b@gpuH1!mp<+1#ck@$Mb8L{EZqyD+5 zdddZC>nU(e43ckll=_J1&JJR=D$hEwM z|G)!N?~s}3o=k8Yl0OJ(?W=OZGbU45q^oBA$@M)G0$Hi#k+ z-I2&(^ic++g*cNnU;~#k z{ZdiRQpYVlIvg!k*VlzUCva_t-QJGVGbc*B765(!?AqWH^;NmT#s)%4z71jv&|l# zM#-Z;Y-@D2g%Q;zU@KqQ@WH7pSg+1IX4gI$GS(g9Nj<(Y7xu;L&(iL*LWGcGjmopXkUS{q^m_x{y$c`V@YKYC3 zu4Rqb@a0$M_I3m?xT8eoGOJ+zDUX=LXVzE3r$#;$_#x4Lx>DT4_87%nL}m9 zzJ@VG#$qSZ6lyIC`C`1u_R*)a zS#y6~IzAN#41FT{(V7dto;~z%cXqo662niamb*s&W_oS^8x3l7mudoJlweve`aJ8R zGhRmBdLMtng6X~G?pmA4G8u^|Vy)Qzea?XC@=`u>PV173YH&>ql7nOpBKqh`J7>gtWMJyym_qP_SVzp6%KR@dcQNJ=@+H#k z2(}i4{Yrc+&GqQ6PHV8z>bBfV_5Na%-0>rFu@lql;G?2+PIL+eMy)Nm+gq)>Mfa&Z zbXq_88`e_tI);CUViMiv_^?xB&h=aboypf@5|PR1x_`oC;DULxZ^SGjv-gR0Ll<<- zn|D!r3+|XXiY!HU@LPjc*FNMopGL`F|C^lgID6s$%24#vj?|DfAs_sJ^}*==a2m3$ z^N5hOk$jCjK@@=kTs=*xv>gu8Ecph;5E+Z^tLEbrI$ajKZ(|UV!PuuA#-7|Q3;q50 zn)3r0D8SLW4Lft!8tBs~`SZ_ON8oADOV7#L#Tsc}6`jyVnxFZAcJ)nUGSMG%j z^Kq0s`!v7Lp=UqZJq9;k(OC8fM(ce+B{NHl8 zU3|1E1JP4_&VUVEe)fIqXVDe22WNDd!Y79*^N7%+T{$#i>$A+z(=mj|P;}K98p<3i zGxjWuAu<*_#ivkfS;$x6PbS9|bo3ast<6)dH|fJDIng}j;^ye^vF4AAM2|te5gWcd z>iF-Qgo&K$KO{!^0^CGgr)+y&Yx|nT=j`FvV=%Epw)SAJd3TpI3l$ z+Q5yArZaM6WO6+`)%cIIFN5*zYR}HbwR@V3d(~G=yQ+_>Yo#&}->zB%HgGxP&8;)W zx2q1^w5uLIxgl#X5HcgWI0Yu0-=&6bj3GpZ;wz27P~d5)v72BFk+JA@wYOSJGdsB% zKIQYeh&(y%R9o-$R!=*1lsxeLa;W2EP8a^K;t)LuH6dcinvh%F*1A>nY)2Zht=_U| zBp1*KAqC~QOR4OsgH0xrX2}x95E+ZFw~2+x7L4T_%x6-vf*|AsJc9`c?CuKLn&oW$uPiKa$ zIr-cL*5``Iqbzjah=x&1-a;NBicIt(kTjXn_APb6oYA*q6p_(p0Ug7!IOd!&XZW2M zMr8PY@g8Zz#w~MJ>iA~hGcs00uhiN|Ye087O5X483mK0e%K8Wz@>NrZ=2Nzdw}$Q`dqq?{t))i0t_=wN5QOX9x*jE`vdrWZIc$0>z2ZMG(k-G> z8Uk3O^4W{6&qmMeJNh(&&S||(YcJ{2zd{tHA}Tr`{AB&=zj1~y#4sYmtpaLTAAD*! z=eYh`XMBipM8;$HoD0&KdKOFP8z(VdlsppW^{(Wdr!epB_UwkD-c@xyN=6?Ky_Z`V z09QqNuLH0~<-JcW*n3_0zGqW2#i~c za@@ zy=^61@AWf}O%44e4ohFb!QnE6)wX_rTJNxCf7)MRF3DH$X3N_2%5O1RSYN>bj1r8> zX4?eCjjC3Eia(x=%6~?}V8_Ye-J`{-T^P3)?!O<2DgWUO@IB ziblK>j+t^!m^1id3?ecZ?}TFp11HQGeJMr}8I5*A8*rijC=0Dhc zOTK67(DbG(MUM$IEoGOuS)c3;{SwNX(!V@OU;7o5e9l(GML!x%L$iK~Ir-&rKQIXx zJ?oGQ-8yDUpI|F_4pj-FRE+NUO`3DAIcD^^7)4|>dKO^PXyBYA!Mj_h1&0 z+1N_c2d$G{t;0AQzlcv}jv`CZ-*lEG;24GdaCasqmpA%3j3P1`JG4n{R8*iw4j;YncldhToKR~O}={{>$?XQmpmlp%mlO?$sh8% z3Zh6~IL!}Y<6JWY+7Z>};rTWbbxkfhh;wlmn_2#MVP2CVz2cIo)t&7_`p$b$^C$A4 z8{|DG``Uez;--NDJH4uyD<#u#arjXJlziu*)^`dlS~)wW8q9l6`n_dHev029if*Sc zze%l3c#XbEeTGCx9)i!z9 zS`_doflF?)V%=tAQHG}YO%O#xk$eHiK`7LPIZkF~!gKg4bsZ8SY2rFImu6%|Q~}=K zXt$PwR?1v^54rjO%0o^GZ@DX1Au3g-_s_RjdyE+$B^XrJUud&_de36MuuX0U_N=XB zHyMm5DpO~Qwr{OwtfZMpl#+Ea(I#Y;bkoPT%gz0*rRg0F^Ua>dpsu!3zOdhv@5W%a zF4eEtKT6L1f%5C*;0_o5*Oc13O)pH_GimK8n;v1aY5JIOyYZm?4`5APlJ}E6h}fs@ zCbA7HwZ`Cl(n2}o(<*s5`7)M9)8_=XVyJ5#cZ4}(@7T=w`u{0&uA$5cZgO4E{u@~| zeKuwL=0^zzl}ne{T$<5I+(Oo8e8%BiMrC)crR2fn6{1K?eII3eaWL6sjkp{mKFObw zW0R>ieXZA~7MI%1M!&w)SXyf?*E`Klz1K~%&wRJrez#lS?e2ALMxOR9W#kQJeeJ%P z43x~BKK6^j93|i=o1bN~xieo0KT<-F;WNIs){_BQk0^?3Q=7@n+-yepHFN)bmzd|1 zMdvGzoI?=vL9J`y|z>!pwlkL;z z5;o2DNd#+Cx&1tw+cR3oIpRhp=j~Zr$#Fg9Euwf#Zy~p5O^3Uh@v+H6(#IrYav9m^ z(=tf9yUgd$N?Vs@Y8Eg3uJUP@ZfVXMRZRXcDp(t&vf*-@4QED$X1XSD8PMb}DNKkk zXY{T%PjMT2Q&so-4YJk;|5pT$DEK*hAPOvP39|W`%)|>Zfyl%i=c*1Ami)vczYO2- zIX8cj)HjALyT6=*-p$1*>3mbJabkLHKAPX*BxlT>t*I$%L7ws^>nZc6cp9X47mI0P zknAJH5mBEtZ;G1$N%r%@px;R1lS1~U49u9_*vu*Yv{`+yvA*8x57pu-RMh}>$1MN# z?(}O~TfWwakc#$3NBBkdvSO4A17U49Q7U z(um^Po-6-no2dD(&d-v;SKcmfl6T=GX$ED#^Epfqj>Dvswbv^hxME~PR_n8u`b0E>lfj(p%XvXa7mK|t@8B<~S6qp*tp(DZYK^!T~uBou1o3oR$CtI23V$#<@_zB6M2aWmgJq7CCXGk;+Tk`LiE2>CLX*UYp~ z(>HoSwyn2hRSW79T^SAH(*XcUkbDA{A#-MDz?|LW)%A^fYfx|OZ?xKty>0s#M>lu3 z2D{UnqvRvsk#}5s;=Z|+`~UdD^qp&MOE>jFjmg11(@?BsxxoKe7nr_yX0D)Z&W}ak z+Dk4a!x6>iLGxw!Sim*KPFbv+9ZS{ZbL1^aJCTla`um#R$!|C7gWd`c>gZn7_c!{j zG*&IY)nCkZHDLF-UGli9>L!xk{Y3U^62KdY8cS$ufN*@20H`7SxElHazTi z>6>YNuCLQ^zy9=;fk<3LDx#hVt zcOq^!r*(Tuw~81i*Cgjj|LN&GXF9Am`%6tNY1kM{PPn`8cJp0+!kziM8_fDT{boE+ z++ofM_ak6x%3C-p(>JmXG3Qw12o_8cpYgr5p8Oe3fhdaeO}Nhpzvk|13P`yyG2yP5 zC%=qi_}rM5=5uz<*8416m_0r--_IJMy^r-TH$Ku&+_%#W;3{)=%{IXvC7{V&ZeiVJ z&aT-eR;7%p>~w%A{10q~&saaTS@|Owrv-nr^+vzZ zY3g`c7u}Px8;4K2Px_@IwmRQr=1j|UV5WU(L6U1w=O8lOnA_dP<7^#{yV)Qx%j~3v z&ynL3iG|nA_ZV|pXtgYrjh7{N#&ABp=bU^p=GNOSEhKI%4c-1%y19G6&E58obewZScOs(stn6H+th{>ep1bs1iuB#*EWKl%r00^drtEu=&AvGo zNle7ZR0e@9YbSX<*@h?v=gwCN1cBC!*(|q+O7cK*%cfqCTyxHbxOi!yzt)tr?L%Xi zF}kNkL2W%dKKEzJuWOCpc6aJLa54Xxf_HXQuKAGcGb79@XBe{W zHRSKxNG8{z4o4J~sT&b&*It@~0$_EIPtIg7xoFcgpMulh`PtO2Hq5ZUF%^sU%dl6Y ze{TDb1a$*(_~V5$3`RhL$U`^_RLw3(;(9d z*uG$v-gl<%j44E>=4{x~AX8J>8j|!oXYQ_;LnuRY)f;JuHFmrRb3f_eYx!)SJ4!?C z4?MPhaM;t$+&sp)-=?jexbJQS|39LwHlYVWSx3aO9PyFX5$9~Hrv>f&F&}-^8nTx> zhDsk%<~?}M%*zL?Jk*WxSqWq85oD%K+aUHNu}=X-&2@EzV^g@b8F(E z)tvn=g`Nw_<|&qyr%#N_(F4jX5o=^?ubrQ`^?vOuqibSQR5M@sI32$b%K3G8wlKB+`hG)+!IGY@vO**kUTT3bSous~(ZUXAPVhMI^amy@9;QOA;S`lH=u zyV=nLqXVtM)OVtSulF?e+UL9aJ4$|$MLE0pXjKuL{=_{9VOsQpue|{qxN_(XHiyog zS{#G_xW#Zy{-p59lgJZ9=+mD~%xl7|2+s^1#tXZJ@&roYxPhY=gTJnG%nqo$7(=Lp!k zR2qZiE2KUm`spLZxs6z-%1nI?Q;1AW?}E>3DsZdJ+&3_XkT263sBK!SnY=dnp8Nxz zWiwx)#}{`|ubHj~HrCX_GVynuz3_i!XnLEn&3G6?)`a})U#)*lpTC?ZYk)(A4ynecik5*+MzCpAGY~XUQ&sz72FCh-xi7@yS`^G8PF zyI{_U4PQR?bL(UAT`(80bun;F43dvh-VxEqcfoQ-tb=8yK87horsBI`p{c;VGIO86 z974XtcEJ>^b^u6I?PvH_n(Og(m_l}4Fg|I*`WvPTW-e5RnZJrgd>!TuSrhWFYyQY2 zP<$86hnzZ?i$?M=@&Qo<;+wC$nbgI+u?sMU$XI+GmNS-jGH-ARgNO`9*J0Q*ZstS3 zhH@v!|M)s=*l=~2K8%u=|Jc-Fe3m!!N3n>n!<-QtzI^Ogt&hdmVJ=|nV&Iw>B;O$q z5YfliVL2n#!7@`K|}_l>oDvYH}j$Yj;+JEPxVrWqq)XXVXCIQf~B*@(bh)(uM8F9 zXl}j&6LPdaDA3Vt6wHt^i$?Nt3Ou3+6yj)snbgr-nkBEo7$ReZI9g^b?`YoOYcYt( zU=fa{#xh8|TIy(Pvmdl?V+Lk#%gpnq=McMVd(iS17-gOk-b%0hS-H`kJ_ayKFe*3v zBkP9K*G)u35N8Z*T6@WDsT~kyS~K?9LJ+(eOJx&j!8gwE?J^cep~>0!t#>8wJkc9w`zW=#`5 z^hVwNObKwmqEbJDvDW3x54O%+m}g}sOe>yG25U9>H8K}b+@?Rho+Ee14BP49spfwJ z^N7s%iceY-?@8Zw*=ce;xdjM_5FQrUvCPLY^YEO(2jS%2*8_H? zI=6S5+j{E2l+AU$zX#u>H|tp_G$GSBTA9N)vS6w8EQx%7&H8?)C?Ck1$@zcwm9?IH zlC~I8JO>K|$d`i&j8B7s2;;y4F(%8y1j=VYL4>kWP?^Y#WaWZ;+A#oEb$PK$;qZ<* z=7Z6_KwmuFI~(5pIe7XPSyOa!a3{Uc8Pybk>C4CFC;-;DwJ66wU>!fY(>WHmumj`c zm)wPHMHHXuEA{4%j~yqPesxA-BbnR{vxv-2UnLf2cG98K7@vh{M5bfUEYISVIdE!d zKYr`|$GJ>l?PH0JqQS&j-Da%NfLx>Yjt4c+<$7F zyReph%ucRa55CiWjch=AfXqh})#-2d&f#}~nHk;o;1>?$B0vy<94e}256q+>lO-Ye zm4kUCFoY)y8MCkVQoAu2G}RbuR9p8Kru{Ta zw!+)#>H{6lrfr^kUAsD{(_7wXH`%|!o&(|nnf&!Ax$M0fdc5@!LObOyIzPmPLIH7a z7Ki5MN3w=gDn_Kzprc0w~qyG*?KS31hr&j_@xOU$eY`}N(N7R%yqm%ZL)%8*DYU40qAh{xjZ*c39Lk@7f(YfJ zs8TW~iajC2(KMhzMDwUpXeRP%86-qV4?o&SjsEHY7s~Q$6&yr37ng;T%d-R`L`07( zjc6j@I$$BfDz>tlF@y;HKbK|ekRT#)!`h=)+C`GftpPAd8U6#zL`Ln02oX_KD;Q)z zE%dD^?x{#~L*|L}=-^*0rBxAtIO#|TKQ3AKD5 zwk_Wyii_hc&-d1|k@Hx5pG;2&QB41|OrCJGY;xkMkRc*_e5quOftk2*9`X#h5OG~n zD%VnP-R*kn&@KfHDIKlZSsxy%w_E$Ph~MPqb3j9c_QXi0Re=fZ}F zt=uxOvY|5sf>gTVWdrpFpb$Zo+g@JO?Duk+_$JU0q20@@ z5(sO>?F{x^%~|u+tc&|(Z?YfdD+Vt;_Wj5m+w`}iWa-B0*?vnM`NJpOP0yolYK|ON zoZY5Db4EHfU}tqOqQ31_wr?9ZN01A8*3?P%qpWw!Jz}ScJQL~fGK4`C+qhacvv!2p zoa{$akis6Wf%`sih~VOCx6JO`aE*aIh~AL>2r@)uaSvJwAluvTHI|peXVcVY?N4Du z#CW*CQZ-{Jl|^J))@F>uo^!opE)*XkzPKK5W_s@2U21f-7b45mO#beI4G~*hzp?q3{wF0oK1BM7J?r~HBS*atf_V#*hcM!StwQB*02r%wx zPceWi?OsD0h6he}T?i2omR^%62|27FO4(Jh&Q98B59>kx z-WWVYc<07+^HK+_@yT|hW_GUHaS36zYv02BrQhK0?{zj*a*kGkA3pwW=Ku2G&TYeC zxcwre+{F=BB-x;C?~dTrySvekO)ADs+h^g;MKieTqJIH7jVPz%mf{6rn~a!INW-5^1q+L-$)P0>5h2En3q#vS=$?l^ zn~rFw||>$nms~hD*E+=#UB}9=m)vyo2B&6-qq4QSIm+4jodV#1ox17BHT7F?dL| z@O<7r20TP~af^BjtMmMuE9Tu}lZKB65)tGms#{z*q8Gk`?|Td|UKFip`*fkXsZkq+2Wlc#(p z37-QUBD#w7U9;ZdbAdxDlyqh%T$6N{L5GMgZnCtn;=J5kJ-y%X9mMAYhzKxlDzZ4h z*8Ubp9hwAu5qyaFD$@CHUbxZlMdKylA;POj(P;KpT-sd@98w{;gX<3NmB1l_t4NjC zJh<+=hp&MSsgThkxq;33t*^PT(8gNF#ODutuB>O1#ef({W~MIIL_ zZ*|6n1|TkfzX~EE#Hy5EkLZ)}>o6i>tjNrolCh-|nCJ0Gb03rgcNT0u> z)pf1)wzerSh2dB>%BoMNW^PGh={Nv1C;gN0as400~{i_iqwUA>~OjsKRCea0f-2&BAvuw z@OcC15Ybhnn&~%}TI>CuIyf!`Zv-PE#)=f;ezVhPb(hnLxL*Yk5n@HgQT^Tq+wYjh zxFy+zdKIbQP&zvei+)2^>yk@FL1E2ci7jCX0G6#4k04KiWH4(?c42uL#pF^_NWt6=lwo(i0CR( zB`aswFLF8i2jC%9!rSOBIlTV|9wNMoJlh=hg_nP}c^4=VQAX{g6g;`91)p7FOnvX* zVBGVzgX_(HtJCZb8||&U3laQ$l&n8VFGCzSsFxwGerEWEQsG{OQdv`a9pVG_b%^H| z8v4xlA%ZyV33hkX+Xn0-KekV?W)sttbV>6_B~5}TL0(>Q=ldq2k9ufRsR~>%I zY|v}C9|t!g?iW{`JH!4{un}RuqUzXY?*w|=KpXbMup?rB zN!8hza#yF!fIl5@WGA?cz|(Dv4gIsAM|MK8uiFix4fwMGM|J`@+_!iB^5=jf0)J)I z9etpAm*#RkD5rl3J|g_eH%No5X8$X=ksZO^;=lmo=P!gC5qITVq=7d09)vB@Uqg@V z1bVzYNB=VD5z$w^=Qv!`o(yZfwr2T^*H)=J&364j(;VW~X=uYqog-uL{|S6V_+`|BTl5&V$n?FIe+C&5 z@@uQ>CmY>CuRm0qGia_d`&REXStx8${li27Q50UYlcK=e6eb2AB?ib2i@|^;B_;+R zBL;|K@YoXbV7=Eqw4W!?hUybgA)@-rqfce_@L}VvpbAg#O=&0p3tU9FCCsd(Xq(|q zw3MF#91-}lOGxMGn^H|l;V%M;2(*L>+U;eP&4=3?A?QTfeg$Nt9OU4sO5hg3-4Nat zyKjJu2)TsOSOB*<@u3`GWVjJ=zpUyBzua1F zbUF=(ehtu(osi_(-a$)IOp;$4ZbaNA%=&E4*H_Xp{4auy2)l$Sh;3q<&6~BVI<3`z z34CNHc*{!G1^8vSk)6Ta^ON_#0yiS=62@%XbeFz*>#lhI8sLb)E8mQ+YHfZ?(>{*< zH(*D0LZYu7TIW?dQzza6a75shZ-!cfaBOi)(2<>x=5713s!8+T0UQx{dU5Ie-Cm*PJ4~I`uq<;M|Ogz>*W~VH@`F7h`395>a)FGi_SCD3GOS0>cb{a zfn3txl_(&JLghPN2eq6}ZwMQAzdPW_PVkwFnnOPhJsWOB+<$iT+oRQHx7pXC`)u;u z-I+20eJ-eoP+wS4)QO4b`vHvz`md@A-ES^$aO$b?nZ8G3??GX=N)|q-V}2p zT~`4{1YE*n%XZ^XvmZLIy)h+aJAfhrE#a}{7C6hu;r8vIF2X|7TJ@g+By5BKQ{^{W@ezZZqyJkANAeK69GR zkAfMgKJ#t8V?P#VM9d|udEJU{Eb|7q=^H%(Sfs+RD<1ZVz#^B7Hf~wf7N*(R+gx65 zb+ti@N#UmejZ`;Q;dP}%n%_VB#r#9Gj{`)+j5kXh97vXz8X`k~2FeBAx zPJ0nAh8d|obJ~k|Da?qNOL#G2D-MlsY;LwJl$6S? zZnM#^H`=Ssz5PZo)7ds(xcgJ)jNSn^BJL92im`ax;hva6dKWQ36oXfl&}ZIu%I|3` zCp{eo?|LEcfgch7-|Ptfy^Z10nqIQ%ZDdbp-$yJE#iERfyzS?L)(ZP6gAV|Y2)=~% zwsRDMLMO|6vLmwgnh$2wJDy?}UkS=!m7ub;(64UAq4p?1)H`lPfUGr z{uHr66q`5ih}f*jtrU%3Uz_IEJ3ZdLbvg6j#061Y-nb*;!r4r%MqBT|)Q1~O`_eVj zpCcxSVzM)uxPASe9|e2?cx1;EkWOP?vp(3r%&R5!Y~y!R+`mk05XGj1g-LU?cXk7S zx_aQQT>LLlKoo_Y(dW<-$Yy;xZMXlA2q22U&KNnEGZ=yxe2W+$ioxr5MAc+tFqRSD zB^t<%iH26{QN!k|*Y6VzWXBW;DyNlp%a`aM5dlOIxMD}RlU*sP?x1$Nch%BQi3FlZ z?2OT<**I8}`r7nkzaP*YbCF_!C>A@T12xoMC1#Hp&S1%{VBJMr5XGg0H_hf~>vFxO zslZqLN4P0))tW0Huh>npv?#T zNbR~XBVxX+gj#Y7%=_BxL+&cX>%)tPw}j=2q}(R{yQh6xn7}s#7!hy@F9dA~xW`Jm z)?lEXec&25h8(Fbxu@>7+adW)AV)-A#xs^JILV;X>kZfHd0+W;xRL6nI9rgaY3#4I za=vnN$Ptm3u;4%&>9y83Gy&V{b%UoZ;q56+%&mY%1YJT?9@1?AdZM}64L&0L5+(_^ zi{BX32h4OfeXsCT_!04!(6`+_|DdB^Qn!jFi*gn66omV%{Td!y4;N!IqIu1j_&Vt^upOiFlex80a557yi1ORZ? zw*2&J8+t_aCA_`9UHbKguikrrBLd$6!xH}pb0w?h`@{fI4Bm9~XSTPW^zI?7*)E00 zPWzjFUb6yn}Dh9s@ce^b*#IY!}_kn5PFYWpBbho@gM7#t!H}54HZwHOZGi zj)=U3l@;5~0LUi`z>|ptvNH<6u(w|K6K+oh9TEBtnE2PEf2YoF)V@>n4EPc8?|^Bx zTr+kl?1ApXF>2ipX zsuHjEdmHN^@hc%lL|no{{>{_4)zxz;Jb5HZM+9EN1M{teZ*=>O{W|tmXAC#}akrlY9ufT0kNyaD&>ZH{dpN~0J_{lu z#1i%lJR)M?49{La=4!|A&%X5hd8iRlm$20~N9~T4J$q+L0)G`$M5rb7mcWz=mMTv$zH zcSGa}7x^LZh~P_@SqxHk3-CJH(Hz$2eB~#wBRhe8sn_o>^_u<+mY>6ph`of3&bF8C zOFjQG(Jwq)*od%8cm%Ue>KAxk2XaK@B|NF#ULn=_PMv0oem&5Uo#5*RJxKQ(0FUeh zj{!cdVr~REvO_$E-G*Ez;8#IMgkJd$%!M0`?y%MNj}&hTJ0kWH#y@(xskb2x1syMU zC+so0Wd2Q15uuha{@D`hMCbOmfkp&f!ejrfLHBex2OF8ySDVASJ2A{9`mNzd#DCs$ zZ)tFw<;Jj4Uurjar#gSp==U3kZqwR-XixZ?J?8eFFhgtMg)?+O$D<#<`kBFLI3t0UiBNh~}d{pnGs3wSF`MAc1 zf!zZzL}1S>5lodre^?)EtgmZ6WuPg{^>%|d^-SvB6G%jmPc9E~NpJJ`jbiMheM5I| z=#UD~X#wl7*LP3E4c&dALqzwO^3ra(xzgBZYo^RVJpd@A+$3wZy1n&5y{{)3di=8L z-R*(UA)>payd+EM>~Vf3;T{4SQW3QECfnc|w19yJzYV%OXv;q?%rV<-<%T(vBTa%3~un=MWX?fX5 zC%3!N(F?U5?_h1n5RpB$JhC-yx4~i4F1>nCA)=D1t-yRMXBB~P0r>HcT$&pu4k2)m185}x@`u03;!G_5mA;ns?&R`+G4~vPR|7jDIKb`n= zpPICMRB=JioJsak3FngiJs0WQ^0WX^Y$JO@K4g>hvnIFGAKBjGf!1(M5B`^1Iy!?F zruHt?Tb*@H-kKb_J#a`B;B+Fob}}0_+4vlHxdU*B;3CI*X#(K1bETYt^8*%xcSrCL z;l({B%<^Y$JRgKcq=O}8wQE#eO5O=nqzWn7ZglqM@y-AbsRmwukjFa{JVbcUD7jME z!*j`wc9rSp8SeojBF3kd&8W3T>vivu&IRuYAR@qXqgpv%mTTUEdXBT2mn14FTAjvf za|`X9`Q0da&#{W)rys30?zpr0pFAbKdochuaJ6lpv2B~4GDkdj&f+zrDzrby8jvu8 zpH&1CM6r8h2^e7;W>Wm~03iZ8D>_+fVO+;DvmF&(cVg-0-6s3PQSvWeQzLlyN6DX# zKc{i1*&pCgXBEU?gO^8r&3e@Sg2J8Ey3RPS)y48`#WFz@!?-6bK`PI1?inPZUzwCY z2PP!i(dTEB|#o^&rrYlGBQvn@w6h6dg$ifZ`?>BY+0OPCCpnRn-70L{xE80`pVZ!}7G7?Q-4h-^@BumuUOJLxdN%DbDQ+H@Ro#}H6X0zthss5#(nZ%77iH{wTc7(a1v0r8bH~WQ;u}zGJC@~U5 z2@p4LHD)#%FzkYxe0vzEh)|zXa9+(EsN@_-NIW=Z7B!cadzRLE?dD*go_ZM43m`>A z8d>u5_Tv+ENgLK_io{?pfr$t+ZcS|AdB4o=8U}I&NJNlv&nb(C)bZwyvIQklJ>SfZ zMKI~vh7_q@rkf-04P*~Uqy-U!8U?SD? z%~n^hR~z4aIFN`SN7ZVEw9CBuqmJ`pI1zEiZ8uVQ#pw>AweJ>~M12gfh+yM3sah1Q zR?e`V&Cos`TBNc`s~I`%t7~8{0TvN#+#ZsPO4?xl&=5ZvVnoChtF1J@l6t{Y!9;{v zv7X6#R$V;o>HC+pG|LZ@o)0J@(25O_?HTTx-EkTJB2W>bR; z1Xx6{6|3geBJonD@zcw}M1)zf{@#9VwVF0ZuY?n+AZK$a^U>G9iB!)=b8nTJ%)bIy zM6j=}R%hSAvb1$y^FV!YsMBfcP=Y1*=C1SJHxL0t5qNOa>~3x*s%9J7bo$g5m02^Z zkxM1)!Q)$)?KM9fCHJ|GW_izCH%le#Ek!8o5*=4R_`Yr2R!O z^Jt@FV|fq7GC>r>$ftbsl7#cLCgtx56C$R_$1-y>X&1Ui|4`k`cItK1p&pHDa@OG8 z8$3jKaqqCS=f<1HbziuU5|eG96UTV8%_Q+yvONGiM0jzJiA<{1Y~sx*tOuj2+T2k( zn^zm*&qvAAAFs;e=4P*zdo{YP^$orK#4|lb`(A}oSyQS=y0#*Tdj&I$#F18n=YE$} zD&cLH2EU~=ND#$5Zg?989?2F~HYTTT1tlWNxCd-SQnG`FOUB&*A_9!tn7B~D9>;|{ z#8W{;gcvvcE*Meo(`oU#Ilj?k_H6-01RB>BFA`LHHK`x&-j+92 z0Ekp7$Jd+vj^@|Gl)NLLh(N1TdiqVfABf59JAsG@F>ZpbNT=*K2WyRWjbRPr889N1 za>#zKt%nr`@Js*^0Y0tJW_DJ;I+xhf8^S&AcrHVD4+xP;W%EGipfx#F*f8D`MxqqtK&f(+k&4GULZ%m~CHgJu#F0*5;K~xiy20N>5u|LQv z8*}X<_%U8kLX@L%YkTLz2uDyR#XkWMBA~dX>vIB`1*2{&KST7N5FsLpdWXvZ)xy*t zbFa9GNq3ad<_>OuI7;?^UULg?)@1DApHNaIm(qvceWM zhUh~OAtH*Jt+gptvwvLR<26{^9wOPfUz=B?>2F8L6<<+ZdL6yCaQLMA`xDxzPUH3v zNewVhX^p5xedo_iLdNYOk_&oPrJDUHt5?%|F4EWIg$+cpjoU*c4f#m3ve}QOAcb|T z$&niXhX^iiXPwM0elg?q-Rwux;2Ql^bGVElyAfnaRmj-y&5->nWQfS(o&sda5tC*I zv{9-m62o>=*buSBy=GhhTesI`eB{t>1{xx?xaOb$v@p$n6EH+z=f*s9Pq}L8Cl~iA z72itKn1<5g#S zYzO_8TvUgOYJw=1aXTl*z=XAu$$whB6^d@s17^j{=t1k`<%FXEDOxmWf)Rj_A^_TMRtz!fzK=! z!Owy^ExYTY|Lcl=f+*H;PxQw#Vpc_)A*eRhS51nT&5Ye2DlWXHWv?ippR!Phk@8 zRNxT7J-Hg0YY+c4bhm{LsZi1}kz(L(4;)gRqzg*z9iT(1lXQcjdIcuw?g$)GA-J?Y zxf5_mb>Q~1m$*r}Gk`+`cmJr-R#unPf`-GHnc8iL8-@9^FE{VSxL<0u_TOt1b|-b! z4xezIJ(-mGpSV$2fME@&=W>&uoAitug#`i6YS{cwvW|hflnm76Ef0M3o&X^NiW*b61gg2evx>la zR7-uJ-&of>+pAlcg7rTgCExtG;`vb>6>#{(2fF`HVLZDq5^F-GagQyHakG#f+{AH4 zM>zdWolo_ZjqZ}&P|d{kV~T5nD3)>0Nm4sUaQpN(jpgO+yd|C3sk*tl)U4}myS3i3 z=G+Y1CtyRwcCVOLz?-f44>L1*(AxA{M z=}us21H6qcM0}$ev^?K~77=YloA~h-=LaAoLViItU1Or9`7z9hm|s{?=7|>OXFwy> z_2i&sxti81B}jE?gBImjXc5squbK{#Z%Ix77^yIDt_3+6U_`*1ZW~xmJxqr#XgRI{ zF(TrJZZZVlE^uvfbT@U-J1oQ(_cjJcK4~h&-@{Kw$rn#n)bFl2=)=dJ!40Lry$U6< zCN%C&es0ot(?wt@;gMSAG@cXFLFs=t5!{nr2GKp6d3QvS-E?JY8bI+ld+HjB4qL-! zr(SnCaSmvR&^CR6VzFqgZflrwoeLLIev)ZfSuV-$2O1)@P1h?dG|93ie47*l11XtLqr}?)t{C-WX`hge5J8GQbZ47!mMgg;oMb>N%T8 zrTJp6jtD$xUg&rq3NIqwVkU2*5?BXjv~}*NW<<4u2yMkn$-!EyPz4j596 zgky0{uFMYLL&R6i06nTgT<>pmo0~N{`(Z}JT+BSkf|#>*=Mcz9HQZp(Zt0<-+IC-l z9swUBz6#WiT0NKZ(no=Zl#WNEqSsaQ!U{b~SI8d=9wNL=SJ5r9b~Kd_eTo(BDD9h; zCqRdYZqr4uM};oyRJsIwB8Z3(OYJ$N2{`O;`1E@Ua7Z=a2KBwY9{YuxhWTm0A%ZJr z=48&g(5BpA(CnMO;m`~j1{-^`=hlw+nGhqDB_1gAmxdd>mTJ;?1TiAwP4|&nd;zj) z+*;O7vn>rE9ORz?i3sv9%N&V?j*voXkdsf-zW^5z?xxG$7oVoVK-Z<`^8iEySn6=g zre^@?i~b8BL`1mh3Zy zmqUq&veX$z9u_2H{PLxi^J85Kt%0lTvso7aMhR1bB$M*JI45uuhkgmoFt z9_A*y{}wPrVC6S|OZ{d;+qSk=^di+jO`wB(GmwZNH{BR@@jkgR?5&892`C-m?HJz* zBT|ioOc~cWX3!_(JAgz4S^ijNx!GJ-4>I+|cR`1UuGEJerjTT_i|>I85m)(bvAF1P zIk$TsY>3#(uUM8_D=QA{1Arj{+w`^Ng_qgoU^ezckRc)~W?fLssA_p*UGp{6dghH% z`U>`uj7!IVfff<%re_;1JRMhB+Mj&d!0+F{M5={3-VT2pOhlOFcMn%|B7{z}%KC>c z&;J8Tq#B7iPU*)1p8^x9Mq+9gz1%ZRmze(zB~lH_zV;$qZVmSFtaWX9<#vwpb5J7H zqf7=mw8ZunzW^m7%3@xah^abP!n9m(E$wTwHHGQcei=|ipyf}C8c+&*z1?CnK!f0u>Qz`Hgmls@|67O?+$kQz#KpZhEB5!aHgi z<#-q9n8%6}sfJsw)U_IBF!ZUo3pzw}{O3v{hB0?;Gn3}CdI0-I9 zT+b=}Awl*S&_5*7Tgfg3uMR0v2^XYIt|vYA{xGfHwV*>pSL)+(DhbnLU=jQ=eto(A(Y3PV5lVCT53lUfOJq2;41886A-55edgyr`X^k!pj zX7eV{A=RMUXb)RDnbzm-uS183uKZfhY|0OvdeXtB1I7<;4k;qi^6QnZR^gZ#C+~#6 z1s)>2@;ih*?TUJ!uVpy7b;_{am9Zs)F28RJBO=D~A5x7m`i#Ckkcc45pH|Kw&E!MY8*@o|2WSz|mR}jA zv_3KK2p%H5@)x{hc=hS2c_(lY;gzt7_b0EP&x{5DZ9;Z5tPJrGDlkmb+ZjYIl8 zeh8F^D9bM{8KviY7<`EM%72s|zBzOOWQfShZ})PO#!H|fLaRW*UF+$zP%{i%0SpmX z`HkE_VCj5>mUTD%!jcx4h%n2a&K|TbYSw%GWgRE9oFBHf;Y7q)en)oV-J2eGi15mv ze6o1^TaDmBS|370gcYd$bihD;@1cNi13pB27J4na;%7@2;i3qd&!HF=(*F9VUAR@r> z>l*=TlCj?y_I$(lWcU#AmEW-r_^18jsiWw%+tpWE zS`E#tlWViz4I5H+(hb%&RCUj1|p2j4*A&fTHzWmQ#gmnZ{b1MvkdKIwczuSs>4kWqEE}gkv0G|dnu@{-r`wI{^z6QQJ+vf{Yf1_b@;@) zvLA!Oppw3CF=fStXlrOpsfIpmYv^KTgMCCct@S*~Se56aY}4V>oW_MH1&SFW7sMCV z$0o-<3n?PfVwTJmM(V2JM!(TrRb6IqKMyV<+=A*dpP`$z9sYOIGk%ZXv$ruY>!Tg- zm*7RjTTlz_ISS%sCk^{-+#!DzWJJittVk`|Biuq{;}Bnm7O89k8(O!{&LDpiWJJit zjQtBw;6uK=eFs)Vti|jFTQsYEox80W3%%-O()TKu5iviv@aE@;eRp3rH>o35Hrm>w z&%pi=SVXYJY}QzK0t+^D-=9E?h`5*y>5C@T92PTJ-iLn}q!14R+|mzX~!UaEsza5}RIF&DF(tf+2F zFf{lhAdxCU`XRx+fJ6jYt?EiCIiBtJ0TvN#wR)=)1AzO3iU{?*B95T-4qEdcT&HOA zLEpuN%(QC5v__p>m$&%*G5!50Ipy1W0Qr0!zkB$kyD5~Ln!THq4)-e_%o@`p$j{qH zkj17| zhE!N;XY9kCbLrQ>jflILZo>k&mvo>aN$!}hfEf||vPvvs%iy>XT| z5CKFHcxBZiu%f*Mb;d?ePTvGRBK%?=SS`S3Lg2Rmj8qv|d-|{VQu%g(5dmLORR>ww z=q|A;N&6P8uj_qry)b7I-M5zSBoc@s@%qX~LT@=ukH))+22y3`X$8*nUVsq+zoe?^ zt|j3dv6!n@-VZn;@XEIT0-si;e-L&=>@TfwqEFW5AAuYZd1ZSpN_DpX3M=)0g&V23 zn{SMR|2yD_z+YTdSJ7@H%bq>ur@1}e8Nk|cqR<2K*^}%!F zhfl+dh`E@>69uMj#+;5DJ_|1*-eR7O705d_Uidt$h**nxj8haH1mpYOnoh`DkzO=6zx^IQcnBI3%`wp02# zKZF;ls2fl8aee|YBH&`)f+(=co$TBE99%@W4=iGuKc%hl$xfZmoKQblOee6pUys(d zI?Zo>JW9TMoFe{hy=Qg!_`BI#N`Z3==CNipyMODenO8uI*=$7zaQgV_t-?Jf#h2O* zo!ma)RZ90#rTf*`tZo?l@A0Y`qL>%6v0XG-IG1m7=m#(&Vk~B(hyobhgt$U-e)MA~ z5m6S@CydSG^erO2U}&T4Sbqj9BGzKg`iM`_EG4hTAy!C*d~!SmkA)Et<9!RMGfigK za@jOqH5Ky)eY4%{Xn&Ift-)67%iw>Ek{jGa4@Q6OLf)W1GYhG>H|PUnROi;9s?R&y z>a&<3%$SiQJsb;vny*NMZ(OqchLR;g&D?Scq69+_bDCYU-!dg%7Kh*JAN5o#tiiU-=_gkxL`3yLhNFa*D z4k^J0(;T=T@QC0m-eX*9@?xg(oAaPXL|yUDdDhK+5YWgDNb26ew@(j+8WD9d>qZt< zM3HNI0XHJ<><-vS^|AG6Fl`{$!A6ArifVTe4Yp2~2`ZBT z^oZyyUVE?d5-hI+8z^zctVr4xJF<68;g8 zBORbCKz>SEz;;nsqspDMxi9jQQ zuJ~A|-5mJY@uxtIh`QqAd#H2O;L~77c7U7oR-KzX6KF)x6|Vu?z17oBb=V`Yk)46< zd$WHAHX`h*7s}qMpKSgMs1Z>YvrqNH+IRU#V|lrm4j-NeIwJInPge=OwWPxwvkB)H z0FUe(_%2(^nLh1{fky;i^_twJd^!wz>Hp{M%LC-7s`Wu+4~y)(jR9F_vVt&*7?J>y zBrHi}x6|pVndwR|LobsIo1iEvjiQX8xZv_!K@ennpn?M8f}-M%PoAJpo;*>X_!OV| ze&2Vux>eoPT|HCzb(Q(!Wct*tbHDHI_uQq3ogzI6?>RX?P4E-|pYT~wDYvmuYUmNm z%>+)70^pcLc))KZa0&oV`244Y6D@`DBECQ%D(US+PLX`%WoJ~~jxUhkN#qnjp71^i zZK7|Scn_gdBtOx|E470B>Vru1`-q$Z$P+#h8s}He1?VpkGzCB>ygh_Je?I*B3iy`^ zoC3fT-h)=1d||v=!SF?4e~8#AfIZ>Wv+9)a@fm#2T|s|@&?x{t;WMIYrD1j_e1otl z06XDRi&|k+Z@>8#QBweQ!dnz?gVuKlnj#HJZT4q9PSg}BKz)JPwDLourU2@M`wVMX zAgpT7@=u7H0=N@CCag8q)vLL@p1A#t$SHt4;Z@Sx#`h#aQzXA|1GL_5@Dx!~0CmE< z8kCUn3sn#KE5fEo18m&TqF_Hm*c5=B@Wst~6|nt_o6izG1<=QHyHMeq~=pYWRLEqd)s&=dfj&;h5lqyGS+r2yK5j^(}4@qq+Ok>I5DcJLoW zv=l%a&uvGsHy8e$`-c!P1pvo$4^RAn?M=3a6E6kuCUml7?@b*bTnfNVXjSue=+7ls ziUfl-TWb~&ECs+Ow8_OjAiam_XriS^aIv+{4;)Ll6v>5apBs1;;Zgu@LKmOfoEJEr zs40?Lf=5c`T7VOXmI7!K+LDdt^?9_V1WN(13GIgcM=(w%ULe3;y3cyY1*w=Ru zO=@NH4s=wAmI7!KdP80CAV-yuDF8XC?SnphqUW3qVx|D* zgnCk251nizXo}>6_70m|M9>t8E*;`{k69$Rl$a@!pU|G4{c?h)0O*9y>->jGt{`BF z1OxURCb^P;DF8U3bELo_lD88v1rR5+X~vWzi_3e<=B&}x#7vRgR1O??xrT@-fHaJi0%DS$Yk6Fl!=%linH0$>x`7W)she1L!{063w8Wb4+48;OS^^IpShcODS$Vj3yS(adTaOay+lm`)CryN zE7aD?_!kM9BJrTD#n1-`ngXB`+BvI~_SQrnBxZ`lC$zO>_f>+X0O*7sFJ|{PLcScVhxxdBWMbMPN?T1aMba8L`(t12^}7J=MjEDuoM8B(Akr9 zwDHG8O98YA9oE}N8lNCsiX_AJjxzq7a47&cp~Is#M;L!W)D%E{ZXBP>vUYzAS%0hZ zo-f70sFu%DT@lZ%wj0NtYJnfn$`vDiZV)3b^U9R_?5pwptW#?MIBTi>04cL(lOU8) z;tN{!7l{uL-m*zz>G%mPi{~JYn-?ZTqqWS}3nqS(GCw z3Xr-##iZmgLsX(+QlbE*ucVYx4c8_)!&!^fC|OZ}Ra%>dTER38F6mIDxH8o$BXwV8 zDv=aLib=7^`AChE6a`2GLV$Wc9BTq(K21x2KGT z*RM{J1qE3AYsy%(^rsh-3B3sO)bf4~i6)FYv(9 zU8z#gE!Ue#h9ZTTGG6s6{aeX{B85Ci<7id5t|AW#@JQPfr*)9|4zi&Do3!I8f#?pX)>b# zv$VC^EtCJ7NrnPs(&k(@`J;wvw~`A5xTMY1X}I{y+U=x70ZM&dy~$VjUGZ9*)f?|g zo7J0p$bh2%1z3KriY3ktC4b9dMai?Lh@cgBqRbL2bZ zLIEy!_ICu<8<%pRXgy9M6d=;)p=2*a*5?W}rfOXCFo{d7`??_WjIL34N+C*G|II~wT{7Q z%^BtX=4{Ey;bU!r+26^G0?ZyxT~@U+8dfU zluYBc3mH+QoRQb6?M_A%V3ZNp-k_tr{vjkt8!UwTMT{)dRD8Qr7+kkq{k`c2$yP7m8 zK%>vg&C{S!tmNuhTbk{3&7Nx&NQEMec~Ttq zDoT+=C_p52lg6S`)fK)%9u#ThQK}5mtt-6zoNQEMeH3c^)>k<8>V{Kq++-7PU_#=MD6)Bpr%W(=jf}x04P9==6D~ z>@@0-EO0?j<<;awk>V_}9G2IR4h86>ubGos6!2SKOG*@=^iY2nf~Q^T+PN>UBQJ^+ zmpsdh`99L20G&Q>sG4>*`JI^`AR~$tXOQL7ypeP$K&Q_q=ck=Po@?`?WJ3Wqecrx2 zeKsu~&X1E7MT(1@<>>qr=}@Gaj`4TiL^>3p)8|tg(=T(D+w&Ikp#Yz>4i*C5&)Z0e zBE?x`J3;Rt9}4hEYp?3}h2Bj@6e-Rj+a-E0`A~pQTBod*XY`AtLy=-SmV@*G(xCvI z)NOiD4h5f|^g$A$0HL(b!GrG7uaXl5IHk3b^LtIdPDT_du0@vf^ik5G0G&P`+?w{l zr@asLF*2h7v$PKBHsX5JN#zs%9{EtDxZqvr)b)O%ACL|O=%j9kft@cuCJ_n{N!`M! zl_5`%2L*V<^wG2Fo(33o%1#v@nel%lMQPjYME?b$QviCOFRO?Qy=4dbFG+#|B>KGI z+XD$Tkf}PujlAA}{%bO!0Fypn+7_LOkHK%qfC3Eqd_qajf`eDK8GW1j@O#3i0Q^3; ztp;YWGOMjkH5ZbT$*!XTLz$6oCEN z6u`DJK&JcONPq$a`g}yJn484)i-BS!m2Fb~MGXL_0PsE^5sL`CCGEE)1qx8;bFUVe zg6a-NM)W3=ZAgLwB>FrG@0CQYSQu`(RBn6np#YygZ)S?hCpVlM$A{;fY;Ix{o31Ox zd3u-cjwC~oVlwkJnU|0ZMGDDaUx~;WLuNOUp#YiB^|#}QT+D){Yfo~ZNFN825Brb< zMfx}_&=q5Ua-aZ*KHu6KwJZ(ib^nnec#0H(H=W;Xf~NrZlng?g(mH3D-JTl3zMK>& z(v$w);NviYrvUiRq@xurct!t6qNhj^dN1wg5IqIZ_jw8(wbjA7&APrFYd+yq0Deja z--R-^spFoxTwOb2jv@&PkVwfWLXU*Z81)!(phzDFGm3a6IZ&jJgBeAFmv%vgAOKJ`Toru#Oxkz@g8}!97;=pbNnv6ACa% z$y7>}C~Go4MiLb1BjJr7*OLSVNTg&8uXDm0MwZEf0xbG`rALo7qjiRU0l83sOS-yq zJu)#9^*X6gq?U^5&Nq+>MQW*-?)*Yhp#YVXtXHZk-)8oH3CU1^OuBj!YZ8AMNl<`9 zx*B17F8?O7pa6?>4HK(n?T>g1IZ&joIMwQAocK19pa6-Kc(g3^O`@j&`hL5F3S}o( z&E|@u&bn$YxX(yDRL|OMH+naDP=H6D&p8yQ#iM2S(R;{<0*v~-ac6pra>H%~BQCX& z`Cjs&0G~deDxPKzt;^N(WB5o-rQuyi^nS9U0IPm?@6*dA+;E{cDtw4!C_tvqC%UGY zMZ<;M=m-|zRGIq-2~mJhzh^4b%bj6!XWze&3q@+V;47CZUp`4L6yVb5Z#qr0pz({H zS$toI1+G#yAH4hwiBW)9IvZ^e!}mM&XT?5CJ`~{dwLWj)m|g`MLq_2vxRoltf152; z_;oQ=2tP+|6yVn9lXufBgoSdUUdR=3IefO>$gekd;>U@5oW$<`)@dB=LT?2P8P8CVsq7Nf6_5d|1Mn9e#S7zHxwVbY>VEiGI|$rjz;oPUk9 zC{jyHc@+HJn=}5Dlqf*y(KI&~AydbHBR>l8OJ|>~N}+!S z`R}Af0a}lxIorY~l24N&1t@+i%@o7tlm9`26d;)D&di!t{wFz6fYW!=oN1kAm;XhQ z6d;*S7l&$7S|*vlBQpvxOZ8YJFopSV@}dB*bb3a0js>Qie?yRFKk{B{M_BXZ`00-H~O8wI$fdUjo} zHp+P%sT-yXRk;{nOmY+;m+C=fy`EKFTfO4{0?F2-NCArJTrSsT(_Wd_j;tuaDxJRJ zKohb92~mL1ms2^6Y}0n^Oi~o7Eqm=6ja|u#0<6;6+K0CmdypFixb^v_^plIDNukyzxT{UrJ%Z+vBo+q z@)z-z8Ydh~E)?L>@7;|(a#>%@4i_dAk3-3W0zCSBpCD5=LVXy_syr#qvoquf5}^Q* zelMl=N~FTey9%`$7V)hjHb_Pk>0_kXl#4~1(L6Gu0Hc2IVd^oDYNbl0K9=>DxrO9I zk-i+NRYo{LsE!tVW$qPZL;*(q-uoXhhgzEEA#$Jqhnv&UQ~H|Z+DIdkXqlm`Asq_Pd8EHx$F%6E zk?}|YhmJxj2Kl5rR;@HwW4z>M_v@*)#t4?GvU=J7cOWx{Dwu%$v3P`*TdvT0e*d+ z;Y^2Lu7=4qj-EJrIb@W4D6X7p9NO>Ig6T1;Rq_R~FFsq#=k(Tpm%J!anosqjldILU z=7xq6`B0>rkGZB{oO~$K&Bxr;P$M4-@aglK+jMHtx@sjioM(xvjpfE2-I`C36$MzO zu;0yBij7j4?!^3h)$dM{5d|3ad0W$T@(CRh7PPY?)k-N_bI?VV&6j&FCNl~!>$CHH zI?RS^}&D8Q!ATO+1Z$i{QJQT{ZEP=H7Z zr)hfQ_=wld+)PFkV3a~Xy=J60NLI2FPF~faTS<)q)cSlPYI>zk9y4#0t?as;oG8+r zUC5+ta5MFtq(+g_>}t21at}FCfK#7uuANR1tXAsB>JIikQlS8qJ|BIZ4i&L{{}5?W{8P{}KKe&Ui{hVxmT}d8gS03> ztIx-qrqyJ~x)tKF{}#znfLxysfzE(j8^`^3NQ?r+`g~G;M#Mt>_m7hx1qi0lx2krg z_}utEBqfTJQ?eWrKOrTGR8#Uf^?yc66rhyC35nhk<#U8TNlp~0&L*Ef{3%kRNIfOv z7XK9~QGimPk95wUO}FO3&yWxW2&HfrfT~JCC;78vMUm=~=kt|6M@kear)2d^e;_3a zP)gy-j4FG^bN)Q(P^7vl1s&*rCMycC>hqcJ8MJr-Kl)!uiUOokxF=GTJkOo}ck-bC zpY+b5v=7?qo;KS6ViX|u?es0*n2b^vojT=OrAmjb=Um@{3@N}ch3f_ZhCUzrR-{Jp zPmy`;TwFfF3q@MFSiR2C1HzsJV+u;Pyv4l(k$RF!3) zG{$WPCzAmM81(tFjA(_ZP{#Zbr|)bMr;r2%Nc8z~rD!B@tq%i=@4%^|w2~YsQo~_> z3y0Imfg&{=WL>cHVKq5WfJ2`*r$;MG%AL~EHl0Z#6e%Op(nOs@A`~Ff=h1jiInu7B zI-gu9z@^WVzMiK0FJSf1U&&_Pj$yM`XID!@!DH(m6!P2#aPXYLSo}?O>QQ)@>nXV%d3J~e@ z9{ApfsJhW8S923iFr29>TP66nB9&liPVl?P2>3<7J zP=G|AZ`z1XqEMc2s`c!+Q!O=kO0lBvrMiu5D8Q!Alj`Vfiq1v`R;}qBq(A`*ect;K zor3BeLi6QrlA-{qKF>0GCgsnbd&z_%0VRw@zg92gbH!jk;XP^7ZaqK>6rj-W{@Mc? zjY3QN^&rVmfJ~qF@`_5(OMaLS5ak>2DCptTSILMX?TpNKKEF;z6lrEu&Xr4s(W7KU z0Y-gZqUpWVtt*uCl}1^2IFFGFMH;!}E7fYg;*6-y^Lyk%0WP2K^Juc?rY&F5-%|Sl zX;6Shzq`xcY1oa~kI950txQane}YUXz$A6O<`~8amC$%G=M zC2YJ}(Kk{4o>VA6C3OR^3mUm{y-?Jbo&J$rD8Qx92c~+j_~MOxHZZ3AA5x-7F{QxJ z@&!_&0HuCA%6cA?sa*0#n13T13b5(-I>dC@1P3+$M@|&r)aP4Xrd^MGW1AOk1R;tP z6Y>plwj?165K5i1M%5wzNM{=|qDXN)3J!R-Cnt(@=aMyA*pZAVz$mRfY+%sv5>lc7 zr9Q8l;j?x4qRwQ%fvdD_{Lgz5It8HjdEG2B^cKJKJ|sZ_5`8`b8l6OCoNHydVs_N2 zXPu%`a*P*nfAXOKpFZDj9G#D9k~`4KkQN1Koj+X3*X9i8>bY#bn5)&Czz>|5tLF-3 zr#h!FF*#_58#Ipw?eaWi|4<&tQ)@5YtT}7xMyyR1n7p~-6r#Q`7GLD318`XEsn+VV zOO@e9(HZD~RE3^$H-3H#>=L~QxVAn?S|Fs;;)Wz68oSGV`<7cWx!)Fd1hc!74YWc2 zB-n@~a47)p+QfjfTNaU17ZD}}V7@;=FjZyC;fuidARNlIELfKkE(PFzFoAHZ)!d{H z@Z|(d0l@KWm$B>Rbjzq&3uMEDy$!X-_&7EN)UeZPyqM$1_e9~ig5W6t{-eoD?L0oL zl@)i%5l zoII=}l}5GTRI~WRXocTP6PVve%oNE?-_cxs%)ti)1=bG`D+RD7u)~&Ev;4NEfO{k1 zQULCUl2;r!H7Per+2KM-7vPT)F$ECckUYd=_}DpoC>rg@iIxIr79ZrpAmW{PB%=Rz&ZA;qL>FK#1R z3ZPA3djYfj_0=tr=7Otci=BVr05PLOjm=q>yKVNw9* zdy-SdL`UrN68@M#DF8Gks5F2KEz1@oCzA?xAS7|PpA|LOVXhCGDDmcz?mTDgxYvz)%n>3N&%n= zYC<(of7O3E!BPNhg8F&|wuXFA(0PDLFRQY`%k0eM6fK1RHurAK^IYdp7 ztfcij)#no=1wbZfZW3^&A4QZDK$)N^Y0!y&3}I3LW`c&KZJg(?BvJ|>T@}YJakXkS zr2bb!wU#~Dm&Vh?RCB`xY&EY%-59RJPr36R#n$kBF2UCDZBH^R zAHxL>Dx%Q!A`3GFO98O)+=A}K#nT2e18cfkd?ixbRlsKxI7JduIX9du zWovb3T!DQ#!BPNhOgp0a47&co+Dy9^JGgiqe7ugVINv8kH$+a z#jBJ)lF%uVn9{{uX`LVL9KxkYCfsVx4|hJ{QUGpDd*J z$4uhGjLUUeTDD^dm;!*$jAcxr@eb*_gIP;h2R;!??^-D3MxBVG3K4e7J#S0Ue&#Za zD7IY2w|UfTWxQZyBp6A|mm`Tc#cRG(XD1WH-z(e1p9OK30<5o204)1(naG*v2#^8* zPmQBg3id;G8U!+bV=T!~%uPDgr~_OXc*;FucZ_bY97kE)YPooyh4Ivw@yKXU8ec6- z<6C03->EpNRPmQbAN#k1y-NY+@vK;@IJ=BjIv}&lq{yMGiID;r<8iyifKiQEG5(&I zhm#Wm=rsgN0if}0AdMSnwvMA-4$Q!FkG#S zR~pzlEE;C?62$cd*;?B7)>4jIWbZIV^TUt--z@V1V{mZ@oW;Ad39+WiT;u(DS$Gb#mbqZ z>@WiTHQ`bKZamvAXAZaB$n!VENdcTm8Q@14asHODDFFNQIQ;%Hb%*4CYE&L{wZAnU zSGbrBW^=_+XI(WHaWzU-SpCwJd(;b93fLR#9?cz>3ws%5k4pk)ZX%pATHc5#mj>cl zxAar%wwELjIpJB86Pg?=8< zQ=}*TfgXEdYns7AGN1s1l(apCGA=|`8So0irvUtvv_1G-sscYm@Du=lb2@r1-13Uy zyuyDR@lybQJXgAJ^0w1=OReYtUPBTTAaQ$YGND@7n8gK5rXDON3yRcb1-34%SLNwM zlAr*IyHb@E)&>kwsFsll1(>9yRmDQFDNV}>p91hxGAJ7Nn$=T@o&xAUm5yR`f$q=F zAa)91|7<$2*NT-f!C7&1qj@lj?#}6b$nYM%f5<2jua?BAthrXNx`lK!z4ig5-I7v&;#>kc~K8W z37-P+Q!=ie$d!jp_v;crMT+n{d9MzXh@T=ob-;J?nh_Me@@-;P-qhky8Nq z=abzEs_O*sO(^(1_3lE|m|sO26rhptCee1=zJstS06XDLqUTq57eP}1^uHv#$oSl} zQ^ZXH+zFr4wz_ApCwK~gPq-^efw$eVHxNBVYLeb^$9|CDDF8m<3+pQBgKpRllK}-7 zB)oOB-LD@bYzn|m_}I&GyMBVGDS$ej`vo@Hh|#!PKTXUOz#PvFDw_es;R%h^+2%ZAq6W)p1PT(&SHU(fOe6;R!{ys$96e+-MJAEG^Zi?iW@m6Q= zHwc~r;J=vcekq!h_gf@H0YbT0c7FRjr9*OBC zqM9i(dk?qBp}E9J0gN&AF*C=gMu6)I_#D?Ix6TyY(jDq!QbfW3gQDF8dB1Jtp> zZin}1;-yGnGS|j)RbH;ag_A%sA4}L2fF0AJrWq%5hf?t>!leM*m<~0~7;d{{J)Srz z5|peRO2G+)O98m?9A*-!I#d+@g>)5H#4;Et<;sQe2EL(+yB8uJWwKwHazB3zy0KqX z(T&YoVcFs_rZt-cp^Oq;+RJ2@7SDw-HmPn$n0#UV-JAVLrOh))8Hl@XX7}wHsSlmC2aB&`2S4&6saimBVM8ZD}hs_ zqU4M_)e^RJ+bREd5}*Kqw;*=fISiC!Bo7IY)OEs;~CqPWy9XgCf(nk7bq@u*&dishr5ZjmFDF8m6OCB~wapz~aRS`dcfGGeto|}v}31EA)ejp)J0CI9` zC2r9Rj?xbza0&pAXZdMUq;>1){1D=%NOYmLM&*YSFh!zENSo340D)5gcyeo_ZxlY4 zkSPE;o-IC`qEP!s-wTMDBGCof8g(B{z!U)dp-tl4>$INa%aCxl+n_z#K9-0n5?w6( zqwH4^Gexpf*%~VyPs9{J9M5heUtV{)BghxFQ@QYus!t$j3V=@T7|9wJf=Q2rVtm5Tij!QQ1ne#f(qXU53v zS|f7kC&WkrjPZQ7AqI?U`BGd%TdtG}yn9Zd{Tb0x0BtqEfvb}XA7iH5-A0c z#fcWy#nboL`ngq z@!Uf_^Q3L9TF(+C1yIJ*ea;*uEqGPxIU=M0!gzLR#e*90c1 z6DUQ3vfN*F{!D}vKp4voGMSP?@;_BSgM*ZKzV=?jr;+kwh4N^`agzx@H~5B_0Cu(9KI+zjiJ1N{$Z5StHijOAL*q)D#Y`V zcN0Umonl_V5Qz4WO61(F1WN(1@wfv$3|)LaUcgYWYHXFOj+Sy8Rr20W#1u(KT)>C0 zL>k{o#1udrk6+tMx;WE#!&hnOjVIiBT%O@O&vDbwwvAm2yG6o4GhsBjZN zw$u1a1WW9K#gaZ7$a0WO}|B;6aac=9BwOvbIAOq+M70mo@z`Zl6vHE7zRb#{~jZ-OK@_b zxy34ccmTwg#|cA5fKk^Maoj98OMF2N|R#tp>Ad{Dhel_5k9;HE>M{jBg=E z3Shjp&&lV_F@@a8Hk`bX#{;}+n z-xhZS9s6aKG=cucmjq`Z30w-WkEw%Ev38sAb^>Sj)gq_X5GDm+#^kDr1*Yfs!0q2C zMB^<=5x?WOP2^K5|);A z95lzJ-xksmkx~HZs#v;rnMOk@NyGZpH^x&_NvH-+xnk65xA(@B`}MD(%l~(fZ*ITJ z(jzHWZwh!aLUjGl%dS5rZ;Xe$>l%XIs68YQIr$%i zOaaL890?JfxmCV8wG9@#(6lwv`h24_Uag?B6~O?CxWI(KIn-YKC~su$6pAV z0-$4Bi?W)AZgU_jXm~5)Z$18(fGGeto-JUp7ia+XO2t2jmm;}%okH2eyE)e-D1bMn znWmM?u@nfg#4bwjiwTwjVB^_m8GB(UIXT@HZ%wom2~JwmacoDh6v<6mtHaoVXepAL zw6(e(0PRe$6bS}vMm@U{EJbp`dcD~m1WN(1=f*O>^V+TR|p6gVL%b z*d9sXQhWrI!U>9M1dQK9WzDBI3>uGZ8`a>K(}IG()r6W{wnb5zbdS$xHDtTK#E0wS;05Gw_+ zu8E_s*ARyEAEAY!>%#g-E?=)y3l}=WS@|J>IW4}lmLP-cay6%8f8YLNoN6fjBqIuTq^Lx}Ps|j++|~cwrz8gEMtP)C z9OixikNXzb7KxM%{%ok9{3bPuS zFv~#d{nzvTuJO-Pq`7CdUYj#_9;y=B*IeBhER0W<*Uhe125=8m5np&88mJfQJPSLp z5DEN})u#@evGla%ixw{(8dxnJP?yoVjMRbROS?oN4I&>3G9M0?Oj{8R)hii|C1YW6 z$4Iq(#YpeS*MQzGZJsoDS*omL5L{%TC|Ub= zj6)g(y{e>lgrukKdw_~@6DgN#v zu-$nX^otODrBj!Bp~@&#hG1A)kL)F~DVMfE{31#G*j`?qEk@u)d2he8)SR`9qjIea z`~c?3tvFu52gln3e+ zoGn#RA7JN#FVt!gs>uK*PfUPJp`4Kc0BccCuw=J6QmkwM7KKWI*=@B`#txGc{m+_~ z8u98^5b;n?5xcpKEivx!+C^ts$|isN<2bjcI4~)9aO!;Hz@aSl`O2^(8gE_vIgE5l z_^6D?{lgUP!A0gR=7xDoSB~IYP4hzLQ05L_5G}E;I>8r^R7Z!k0KOVK1l0J*lc>V7 z0*V6aUdYCP71oplT|4JTv}@NQY4bALoaL)t(Q&dOWm+nddxgN+uIem_h|}V4iW&>M zRcG9{GL{JSLUyflbQ9~fy8blxDuh+?WEwRYQ)uyD5RDVceT(61Xt=eoua0I>m+}lt zxmWyj!3h>W$z_UBPNU>@Xu{VyRbNjtdjNO_s8t=!77NhP>@<4-C3oNis+X`+fhNPU zOpO^79Tr~C1JO*mG>bmw7BK4E`~}|B9n3&|%mG3+6;8gu;~)a)o~kmmJZ|bI8N7&k z>Ai^PUlkenY-9}f@d@*oAvQ2HQ8Dkbto2D#DMg$*IO6Nj=mzPsmioIp!Bg~Y5xP5U z*F$#I+Et)nOw4yvUk5f6>SF^n2S=>f1fOujI5YetEZ2N^` zdo98=`M5nOJ_eeTV?d)CXpy;MP}4rGtU*otWD)^@DZFDdWp8M9rT}LAtvXA_?tYdH zUArbGyg%?vsv&4gMHelE`+1t~)EFGqy~Yg5R=`)SrS-dMJ*3u$_cb2&)=pWZ$9**0 zc09Wx3fk7Hr)zemUCnmyXLLQ**b^fHXyCjXK$yGit`eSvIU$R4KTraC}z!0z@!0=3X$_ zyd&5EgH5^L8A2zYSw?dMt6IXL?HO2uDdv<4f`;2OC7W^t$%r7R_OF>KV2KB#gJ+OL zo!hp^DZpMEU9}*(wd|^EQ%&<1V!`rVSXUV_me#&nL>INMUNd6=`9`f?DT(1iwUT$x z0hdP==iL^|XPgdu&zedtX33r!sga#Am|`V2EXGN)_^BcM!0&Io?hC)W=bZ}H0n0mw zYKj1&p%rE_%1lO^0aR>RnPJ9F6l#rJu~5U*o>f3$+v#-yb<@*iWWZQr5A?D+_7xS5 zX_lGEdUGeC$#|MrvWbgHxZkmGAswb=jPE8K>D{oKh69$_p;pRJ!g-+@248@T3?RK5 zrdeprIGcP>b>k(QGR$M~C39RGFg&oqDU6QQYXeW+e5F^;7WxS222H+;Dxu#!)BkSM z_nMgSu#uBZp7&Zty_Qi?B45s$FPg1D2vqKj zQ8iFUIP;Qa7EWf>s|-w58dX_)YN+BjT&7C#VQV74&}3LWq;iUI7i5(242{bgS3|{z zad25RV=mrseqbHGuY;MS0=>&>&xfX;G%aODD*2oDvGIxT|c&D#1Z;!IM_lw zNZo6PHEIy^d{$3cS-lQBqdIKed&&&hmguJ4{hmI3%&IQ5be|H|4usXIi_K3zX7sHQ zyFZELCB)KOr@4Ik=)B(2bbk`Y?t~H2J03Uv_)NFx?#&2vuUMGAMbjP1W~WmxWpyL_ zGxq89aA$}2-zA)Jm1E8;q;PyQeTOdLh%nv5!w)p)s--*&CcLi(!&{Hs!j9aglwE&~qGghEo%65UCRL z0i^=%Bf|5$B`#?iNw!8N*)cu5t5-n8$VXxHuK~6$2`=c#zF5e>m`2by!x`Verl*8$ z^^3@aT@r1{erYe@QL(TyKu%JyHHKr`Vs4#N)O7YnEeQ$G)XzlwfR{O5RWBodU)u|e zZq5&p0C6}!UfByOGuF|54gtd(<|uXBflr5tPD}BgEvJXx+K>#fV4*5gdx_zW=i5*f z3(uSKk>}*d$O?u>$byxhKni zLHHX@2KJAcbl|o=gBZ&2QFA+&VLT5j!*~>T88&Eq#dDxd873}Ypmt?gB8;O9A2oMo zWmvzD);i2L7gmOknj4`E&*`NM7l!AlOy7ck_FC$~7ZhbfB*q{^V)P*y(t;dS5Y8S)`~ z-es2!(Mx*{32f4}`$e}(>mB>!lOkcaJ7T{#A`syOBkbBp$)Ujcy+=*|ppLPt6GEi# zg#;AV&P3`fPmKh#W#%8=i^-z=4g%}3^P5ST(EW`2#tvmd_8#$+2@~O4B9#dl^^D4d z?l#bhs2-=qF(t~x+dGvBZN%%g+N=$ASZEgGQ{Uuzwmm~07@w3QSW$Crhrss-F;hLr z=MXq;QjTHmu)-VQ3zkvAd^2w43h1zHycOt_OAMIOeh~?TCMewXZNKYx04RDsEMoRg z)9x3T@{z%Jn67Oc#gUMjZ|?6)W%b*C|l6QY!@}70l2{a-DiFEZn<-%5uB zZN)U@GFBw$S7m}O3?H(zzO42sV%965n?BmtThH&wV%@262ZgY=69I*;(~ds^$p^OYGw;g zRU9ON#;;Ydh8DNCfGl3DwmDiBd|K@FG%sg-(ffjlqa%#or{#2^gJ%fggT)w?#aqi1 zIki2CrcpKd%eZf0{rH{|(sKbDi?TQ<@2@zJpw~vVOPESK$_}2RHiUG8r>)BPcG7K| zRyVcAj;X_JuT4y)3cNR)GG+&}pyH7CkV4HnRv=s0f>wwWGY1C@5&12+y`25|6RFBhi^DEIl zO~dUP;_#V=&njEsb`7bt{%czA)YzUEEnU1;Hltf497_AL&!``P?n#@( zD|#%_{uN(n9Q*c7x46emM3AZQc-%OXL!W$>G$SyOsE}F*%hb|`y&@Z!EsFR+L-X54 z^zZ{~#;2O{&kX(qvNd)#bObhp0<2RAoON>{QmBQqNL2SAW~806QPN5sFp0o)NN~(( zj_%=%&d2VYK*^b(wMd}kjO7aJ8y!lHc<$|s^p~5fPDHsm%wKLgz2FOrln`O%w74bx z+LW2D*r!|~LYX;AmYG%ltnKiAAZt4T6LGi;nbJ1(?sS5cctId5>LVTU!Rz`P(t4Fy#NZ{3*p(KZ>G@Yvont=m%xxGuaB0bQk>D-Iy^hDvq)fY}=|<^KFtC_YCnF?PGWgLPRfu6V(bB)%vz zDvFF;0Ag^|XzlFjiHO9860}m5AhpLfq759a(@E6@BOK{6Dt85Qpl5Q2sQfNqYvD#Q zNT@f^G2;|MP55E-)}tx+%?BZ^_Xv5~++($VEwcz0dn{GAd@%iX4n`quA#Ki-X>(vO z!0aNv^o?#FJEd`VjhOU_*mrKxV`9RfV$Pz1BE~&i49av@B-)L9X1BbencMf82o$~C zYw|MLn2XdMGHEAfI@-Pj<-U&D*C7@6vn`2qut|&DanGZTwkfiU{kEML?pnTM4FM0Z zLu!onbt+5)cbIR5T&JQvs{&*enV6M1BT83G4!YYNhjJA)XZKav)Xw&lFoj~(063I_ zLnM=6&>^AlB_1KT_0Yt7bx5QfcWtN^>W(<%$7?H8BPNt$_ZpQ`?nS%~XU8)cRGi%x zTBQ&>K7<00=kyqpG!4p^O3Kh4XpCiO`*wH z8bqeuZIL4*OMOTQJ#KEipyJzwBu`Ygj^fFp)0W}lEpqgf87dL0K6Bbrth~C|8EM#Y ziW`+yX}yS1+}Wa4I=-F@y*I~_g+64C^@{fGM{8Ze&7-K7(L3n*7QtZ3Y(sVb`dtwAwf}c5ER`n zG07xPLrtv&bVg@Qsff#csE4!{b4T2@Y^6P1CcG^MnK9*lfNSR4VVbQq>W2Xsp7yPl zr8%ViW8Koe^<69N1*V?U-ZsgJao$mBPjl|KMcNCVhFWOa`%HP|UKsj*OWKDIffgE< zNHG0{-%aPiqC+?c1U6f1DGcE7L16osrd*mvemp7jBfLLs|Gt$c0%KU7g!VQ;v&Lbe z^M+>KpEF54{)TR7+tgy#%Ohd%mo0gu*Rxye*-_bI?!w9JL@n#!z-m>E)2YLX?tsuu zxlbI09NJ;IQZ8k{Dft`guNnCpZOve4!_YPsX&2e^JDEMxm!3d;*Z2Bd0_j%g#vL&(&D?i-72pc9dLMuiP2W;56;Qozv z{K-EzY-|y<<<&8!ySv%;FeMXTtvoCb&B&v(W0eiuFo!La@b%>@I6POW)>K`?Gp^y_ z8PY~Sn{waBrKsIcZu?N^>0{@fOzR~Sr|?loM-(zX)WzMv3ueL_jE-h>ofP0(>*RE; zs_eGI$ zcV)q3xoHyu85`OzgvF&=SrTyfrfsh-_iW3`M|Xc=OJ*i;g^uyVa0PPDJ&^XSEQHO_ z`A(QkuZ|142h(K4I{pf4tdlEGW{ZV&)m(K_)o}wBKGVqo^=!)hcaHpbM;fS+kNwcn z!^t?A(Jz5lcpdMELdJ(Wek^#wOn9m8XvXS+1pb~&b%=FqaAflpiR2!`tngAQm?EJ$ z9Tu0D)8yd3x+SOeRfVk`=rMtu77NC0^I1HZa{qP&a(P#OF3U%jRxpxUWKH-`s6*^B zCgkrjnZMy4!wyEQ+!eT0?qW?^*980tgz7qyh{+SkTPtDQlbQ5h>iE+k)X&nEfi+Jg zc6X(fs}i-|4A=_$Smm(J$yHl))o_y1eXVjWvs~Qvt>@J9Xma+Ql2?KEU=Z9-Lsf-l2m)>2dTkMsZh($!8eTZ zDw+7F@b9xrn{prK)NY4Um#kVW-1|$Yl)r`NPy9w<+M~TS`95f_lQi|!y}?Lxn_LqxgK+*Z?}pJQolI+F2(F9a>K6n(`<2 z|MF*-EEBm7YqDq67DbkcN3fzFNq?y*5tbJA!=SR8*2$}(F0ysaS@>!EoP_$akld#! z-Lp&5+tZR(HTlc#`ZFEus8&@Z-L|wM6;1vvn;#zo@sq zda4#}y?0UbG9uvuHP0QT0pZSVt!eUGDs%i+)GkfWolP3;J)+UwLQ6C{ zmGx?)u)m{M{^UxdrO*XZcg-ypb)l4vwy-yAm2VZ%{OoFrg_Enu(u*!_q4D%|%~|TF zac62zdJ8TjpX|QvLMu%6)?9}YN13$RYY7$w+0(VQ*ShI%0ZUt^d<#>Z8|(vBgWcAU zD)7Qgc#Eyu{1y|QdqG$Tn~148>b*YX{V7Ym`#IJ&yVkH|$|~xG9YVTks%7bqR3@Df01LT5gnl0vh)mH-DZ}ZJy3%gGXc)n#i_FI%%-fhw#jDQ|HX zn?vM;TMP|L_b*Jg0J}k%LEUV589-$2KUy+CU#=8pXdc!+OE_Dg_h8K(oHvAaTd432 zusO(tSwgp1>EzFh{)x2I3p){`kXDfu+s+bM(XEIC5qj;KKo^!7>QaiXppYH&hEUrr z#_l#i*2=R>_8Od)qk#zB9cj&1E3|Jd44k)l-OHBwxXV`0N~YZ9yzPF+xr5N6T~f;! zQo$*ZQXq5mS&Yb0N!!Sty=C_3vlx*LShYo<49g(pm5X2(Su}r$BVI*Iuy^-jvWg_| zGgc=mqS*Cn50SbDv}Bat2}Wc1KB3u@i63*@E{)D(3l>-(y_+W|b`ehki=;xCq0+aK zHpgn5qQpAoG74nbVKU3?#x2VGdR;~UZC#hKD`+HhrZNeGTkEExY5qdFw2M_FqgM6{ zvz9YI=-BTu`K$sfEQb|XwU4QLSr}qo+$tl1@}f5l z^@!aY83_Af^;li+6V*6sGX@Bz?BLdRT>wPcaaXX6iUJf?O01zsl;qO&ne! zwd4^QyDvN4Gil7^DN3Hz2S-8{$U^sA8np5eCe?PQ$Oyd}FZgC@(O2X39T;sa&d=uX zSzT|_gsJQp770JD+5Ir(KF6W#uJbrzTEx|WC3-i-l+>60WfL@A?4qZ(P1lZO(t(SzN+cWtuESjwM6$1S!zvx!2Vj%2VB_L25I&|~xlhEpn zh3T+Le4IBw>XJ36zZg9VzhiiiCo`wE~APbLqcexI-NaH|$H2t#lITKVbFwX;8*z)rTuX zxElyxR>wu_6NQ|jQCi=X1Mf+KMSL0uaf!4b*mmb_ED!W`}w8C2=~!0O79Y4BJb z7mpKX%%dqO;Jy%%6&YlOzIh4v*^fe`T?5ZRKK6~dgz3Y0;0KTx!~kG2@qSMx&kwTrlWJzJIz zH9UMA)us*&saRxjaX(1gc8v^gPTLvt;rs|~S=I3Gp?y(1Q=%2b=P0JO%PYTm(>ae9aU0x~m7Z2#p>ogIbtG#zwGDl(oTK(SK{ z(j+L}FDY6bS^L+97%m zsNF}HGT{*I1QN&0vlXN*##p$@E_kTGq2lVA0F_m`w09Iz}S<%+njK`6c7_&Of~ zAs218XV)0yo#L?d{x_)zX34|Uv=1FFE0;lF9zS7Te;zyncd^S%%x5`0EZ_r?rK07` z`u&Yl_*S9FikBhL<;<7MWDL1t`GDuv5+QLtwO*%Gfif$WTdoTc2mn`Gb+Q}({8+Ax z@9r8WNsU9rO4-3;I0SAXii{QJ zHnOo7OS%;p;pY(3hB2o!fO>c!()#M#73MuzFelqQZki{&h@zC?i-;dDB7VJnH%e+^ zsb1C-Gy>(}T#;opP^p@_QXOn6l@%EE%A^LMBXE=9q@TeH$Esz*0V%=(sXmhu1u5rW zYWtfPqe`dUSK*<)L*Yd2{6^OVy}3of(SbNo`0MWk8S|W8TP~(bd)a1{M z{Mn=VeAU6-1%C63rB0idKRxsI^t@XMQ|2qG-HOulZ-czkYfQVMp=gw=LEPNY_p zU5&TdP?o^$XtK3`iDXZAEE%t3ad#BpEh^6g3*7hXy5{bI!O>Dcv z;7r7|tDGdO%ih!@?3)#+)NN2oi)6Hyoub983ys>~D9ZtOeOSf6w=M{+0h;ES+AAnt z#yA2m1B*Vp&ZaLK7HeFuV&9&ldDSw)dB`!m{)HHN&&*nmpROMet%HhU)+$?v?a<;U zzMq9rDQTQy&H1CzP?H3cvY1QD7jb=#$kTn)l%ZXSrg~_a8P1vY>wu#_n;Jb;)yv`z zOdX>FvfE<0$J74|ABLA|akHU$1(Ek&OY>t+em%c{i3Kv;I45iAVxO|PgZRylc!@xW zXHCy(E=h8XUMq+!E<25?b<^wbZ~UY#(FaL(UBWiKU>Ru=(|?-8f8z33lyjH_*xpN_ zDj;eWDVr2kB=j^-{`97Ky+*}mU)^0KACakra5)G2On(=h*%+$>t5nA0LYcQ|!_bl2E zc3wTCy6m-7mn0#dCsIAwS1s|Tyxr17wn3&O+P#d7VJ&0m(iy2Qct%MTiO2DGDKe&E z#uVD;^ibwSXJh&iY5X!8Z>_^CqozOQAh0vo85!EhB=pgq$X&R+y5X=Z9YGmRCjH(RS_NNg8*_?S%r&!TjAaG6-B-1J2!{>y z8TpcFWNXausIkH~U`kprNzJ`JfmF5i{)Dv`IXZFGU&vmhaVlV;nt8C@-^ z#=>g>q{YXC#dgiZ;a$sjpj~hur>#JHaA-FxNJY`F$*SxAh&Fspfck7iXxBdEtNZQ~ zG+4qZ%nyoFU0U?-z91&We;^2 zS2IhKvehoNaa#V;ub<qkf6*+};Cma#7*-_9fs4BaY|1bKhgcOW z4|8U&jA3pCV*qw)G+@dJVZ%~eEU|9`o8k$XCNY{401wk?Xz>Vnp{c_P#{u_t;~fLb0O(X=*q?hdru(#WYxayu9jtsB4NC|kGo&5$S_?n@X&4=vYg zI(43f%8+QXI<_)0-rX5*v^J^Zs1{MG#wbF2A*0@#QTNu$Sm)JsY48TMfPm)3*J{X! z_Gd)C7UikSKEYPjTIp_UPSu$}t00XYNTa*M5F497hzNyQw+8L%yNuvqMzAj;5DiPa zaEPYk*cl0;8QAq(nm>%@ch&gq=RG8hzYa^o1HOduhk)s`te(w*=LnaOi~rPEFRO>O z*+SX6>=Z$`Wmf#B_l4<@12|HKzG=#RhM$?8y;KI}e|ow&aGIKJGw3qz5w}8dMkR)s z8666aU@rWM5;7gM5(&mxry(goS>N2tmI4eSQpPe{rOK(Qy4?%MK@>&hvG+gHetc-v zWlVelv5!uN0zT_khucklj+LVblh~qf%?)_nl-JRS^q;@H%bTlPd&s7INqy9p;|d*} z+^*;QZm88`#g9DGerLtXWvf<; zE!)0#^k)@uc;-wegDBM9x+1vPijCkIM1dv>C+kdbI@q8 zQcAy!$d!Xuo3Ls^Cx)?0)M-~0w&?}S=y@MUekvGt(Fl_OY@Z~EUZk~qK#WUKWzEu} zth#&o9GR$r11sfH@Kn=063sgvW%Q%zr=D&{xHm{1AHnBKi-o#(4WF)X2k9nafO}8F z!Xou_OTu8X=qi(b7v&k#%I@)Er7qe7*2lU=Z$30G@_GN$ItFT*=OP`o5%aZjB&NL` zBYMu(audL$aq+ZBg}b$7zV5Lq_*A%TaI%^YJS5ncDjxvG>E8Gz0*WDoQT+qGYO*;u zZ3vok6gCOQJ(b;4)aHLtZzxQYZMDE63EVZJx0RcUT3YC}y~QG$<_>M8*EE|Uy##SK zK`cc3Ec}J?3+mAu+jDwDxxsD%MJwCd1o~T9_k7~(x$QioH(aLCG;r9$sYX+`a5BAe z#1pwmv^HW#DY3dO6vZFK(`>4caXXB=W2@IIZ(S|e+=aDGGVX%ptzYQUn4QvF`s-HA ztM;r9zE;dF5kU8*%36(&lHzQmyjZyj-fN@W3m9dG_Q<|}Xlx|w)iK-zQ_$D`jx|O{ z!Da;4B-;ZdhM01%;9=c;PnJPWWDsj4w8SZ_hMUiNYJVzSJVm3Z?||h%G7N-_2!qde zff3%Z$4FuC%$8T3=X2$Obq=m)s5Np$oL?ChV}#*C4R-}h@>gwOtj-flxVn+9$#vDr zh8mZC1hwPj-RRRb(vs@BaytxSik%&{j^ zUgo&huncs|gV%e-y-g(YqU;D9)~+QB9BU8q5Q*ttM<_E-5xX--8zZkSLI)`?HLPNe z1=p@xug7zFJk5KK>5}dGJ!COTFlRBrW0_-tC|Af%uXYdq*!hhB%$F8-lKpdntsJbgFC^ zRMfk9NyF4r&zhE+DW=qj*4}5=HCo&j#s(Eb9+73+t~LtX$YcJ7)f26OXg90#2F=|o zICZOTo#(O7sgJ67_C*jw%N!0`xd%jyZ`JcA9$6_O9{~bh z1q7>e3(c7!JdqWxZb}-Q7r{E~eweL^*vlTcYQLpcT0YqDSg~Q6pLq*b4pG?LPcW_y z^~Y+YJH+6lV^V1Wy)dY58_q z?pE+4#f1Xv#brvoEU+@JyF^@F3by*9GY1gi>4ReF#U)F$ES55&dl^y3vU`wKeX#4i z?9{XKj#1r={5>%5m?`&vPe6aN?HM8f75eWC{zeVhC)|pB7d^uFfdxVL_p-~xHzfa} zF%gsdIB~1!WE73&cDZt;T+FR=inXarrVe$tdjQM46k~V2Wy;-^zjo8V_U11N@$3Np zq7c6hOO05u4oTh)dk4TJX7{xcFVzp6xODbMx6w2b+RGgbd6zAYC zL~*`Wh$yo9mpdsj=8WQEsmL3JGB85L)2GAYDE@*)S1W|YqW6GD3ry^s5t6eL~%L(LKIhMg^1!U`j@** zl6cTjOX)A3IHg(&XP3K7M<`j@*x8u)@yoF)}tGKy7F@qke%iw{z9*C~kNA^e3X z9?=RB#n<&O_w6#JziAX#OU1X0;u@)V%qWz_?@_V&>k!4`_zO||P%A_fKi0q8ttG~v z8ifk~Z&a)%#-HOa82E)&2m?>+U+!BZf?pYh3jYih%h$rdf8s9~_%E#x2Ah(uh$!BNbyt@vKz1MxiX0sCb%fTN!^LiVL(t zL{Zbf-2ElShEb^S8>v`Dl9Tug1}@eLVc=5z%RN&XxXdV2_%~5eT@C|R;4c`sQY(ak zx9MN*l%#N#QCu$-R~y9*Qt?isP!``!#ecI>UyHvG#dTUCqIj?V<$gjMxWOnsEfpUy z3T5C%DwduFiyy{cu=p{p5EehKf4K)r)}J(rgQViqMsbK#++-BW;w@A>y%JH}ioX!W z?OGwCxI_PPZ<84BG71&`U#Yl-ZQ;H63kJTZ6~e&%`j`7wiQvmdag|g&XcX^|iieFt zS^OFmZVpj=9e*K;N3}vk@ooLfeYZ659ivd;AE#pJ8W{LK{(^xYX@xNG6aCBmyCnI9 zQEVnH{+m&3Ar(&=g|he*6`OPH_cZ=O6#tn{714#QtCaHLiU1B3dPo0kUW z8ifkKfQmdbdLjOTfmdjSFmSB?w{(^xMv_cqIqJOy?rGXQT zLWN&O#S6@Z*Wxc2SfLfdz^VF|+mIAaHwqPgH5GYw-D~g{44kDE!oWHDm%F_*aGp`9 z@L4KO8-anf_zMQ|S|JQL`j%& z+$a>PD~v+nxY8&Tj<*|y!f~}xC>+-qg~D;IQ79bO8HK{}J}Md)A$4xRUr3z~YK2Ih z8}%>u!}9URjN)IU;*&=4DXF;0C~lUDTaDs#Qt^4CxI-%LHi~hjZ6c0$n zgGTX?R6Jr7Uz3V&8pWeh@t9G3M=BmSitkIskBs8SQt^aQ{7fpIGzyhmPZ@Cs08}6QK$s^t5K)~`nyr61lsIDozp6TwlE5n zKwBAwN}z3xLM6~FqfiO7lToMy+J%an8YoY@;xCk^J+wlUr@izqcW?Q4Kcm=RDl$fK zpi~@W6bDPip+<3-R2*p(15z>9C=`eVMxmlT+9*`C#~Ou-_EkoqqCMUyRJ11;g^G45 z6;EFR?kD0ea9^esg8M1@m%Cg(KGi5rlZsVFv05t5Gzw+$9HUS+&Nm8WW35pr8+j@| zR|cwK`~_5_S|Lys^e@+yk4r{TmWm6EqAC>)qnMD2Nu#(>DlRdKOQqs+qj;lKyxAxe zs<#@2!f};RC>-xF3WeicMxk&_8HK`ey-_F}HyDM&@j)tnT0!c32!A1UKB5&Obv~wl z>Bpa-;!UFn|4AACGg=|S->iSRpOue4XB4+d#T`a*r&Qcy6#ps}UoZ+4#r;O1jDE!^ zl+lNcLK*#p{!zg|&6~8eG6~%9jLK*$NQ7EH-Gzw+(e~dyIeSwO}N#On~{sPax zYlXo5fBKiZ*+b&-7Whwwf3Z|-Z4}!`#r8%qODc9Uik+omSEJZXD)uyry`*Aaqu5U> zUTPE>shDjP2T8>tMscWA9AOkkO2r(bm@5?vj6!ig+9(v;V~s+weU(utw#OTVVtay7 zD7H(DLa{yBC=}aMj6$(pX%vd>=|-X0t~LtA_DrKtY|k+Y#rAwEZl6F-zaD=fr*m2% zayqYnxx@1Ds8Nhb#d@PCN=3yel*Ou1C>srD<1gabL zFZaXp@yCqfU!>xbM)4`BxXCDPmWo@A;&W2*d84>PD(*Ild!*t%qxgbU+;0>QNX3Ij z@sLzJViaGKif_F1D)Y@ag<#r6+Iq1Zle6pHPijY6^gt5GPnf2U%}7;^d__zO9``NK*fa(WB> z%Y8Ba!sD%tVjHR0-Y8~C#ZE@CvsCPA6uU{qo<^~kRP1XM`$@%1jY6S%nNcVl2OEXL zai~!!97h<1!ZBzR3dcO7P&gJEg~IU)DjubC<{111`mfXqkvhleU;6QDsCdsX!Y`8H zmuQ6uf1>`SA1|X~1$&>@%J3_+LWDn6|I&}opyCUcA^a*C{&iX*!k?voxo6AA=NZNM zQnA)3a#AsD6pmDk8HI{sy-_HmWus6=FE9#av~Cp2=msiAIhxprzmSd>X@$UjiT>qY zDj#2N6mOJ@HyedA@K&QxuUusm>Xmm;v7vxC--*8v=exB+#5tvZ>BrYoapX9{zgLET zzgCFwAJo6x56QI%??*8&|#wZSyii3>eV5vCNC=Qc~BaPyZlKY@hs5s{tg^FdNQK(p6 zVH7HsA)`>S97o09*l4~Qe}Tv%tq?>O>tFiuiBv48A^b@){A;!1|8a4Tfp#rhw5Vfi z$F^6a?C{v?wA3(nI*WqoUj70ny?12p0EM1nXm=0ov;J2o3ID4pKt(hm~aGeoNxkg zns5eio^SzhnQ#Sgop1win{WqkpYQax{W}$uSB3CC4H7mmHtq zUveUXf5}M+{w1d%_?MiT;9qh&f`7>wEmZ6-U*k+N$=5img8Le0*UjX><=likfc%64 zfWm|#fZ~J_fYJotS&raaDiVB46@qW6PVgnBoFtqAoF({*3j`l}nczdO5q#)P z3qhL5F>lEv$GofHj(J}<^8lA06P^H`6J7vb6W##c6FvYw6TSex6Mg`G6aD}K9oJ(9 zmPw8oj1U|UiVzwQj^LjxBEdgPWP*Q|XaxT(F$w-z;t>3^#3%S?Nks6^l9b?|B?ZAh zOKO6DmUI@5+3!wzndE6RDYy?Mi*6<>F6SWR1mq#)1r#6@1Qa0@1(YC^1e788LzE}@ z+DZgpTb1BzYY=>GZGx|@XJPgzdDM~R+@m&BaF5zpH!}v8n-azYniD1gS`wxL3}FVK z4PiE*9bq1z17RVc6CnW5g|H0Jjj$5XgRlnBi?ANhhp-9IkFXUmfUpBFh_D+lgs=}V zjBpSzf^Y;dif|k-hHwfnj&K$*f#5%-$rc(dkdN(BdH1nRQ*a;K4BgCCT%JX^0hmL$ z4VXu`2UtLO2v|gT0tg^H2P`GL0xT!I1*{}|0IVi_2COA~1FR?f1Z*Vy0c<7&s^DJ6 zRzgs~c7lIhyDapXDetc-GWIIC_qSg+(*l&L9 zD3kpCn?=FB;cU8@s`%rbgHQvIi%=VohfoiYkI)cMfY1a`h|nBRgwP65jL-&9g3umN ziqHvAhR_vIj?e>8fzTUJiO>&Fg)k6MjW7gIgD@OWi!cgMhcFgUk1zqyfG`=*h%gP% zgfJ7(j4%h#f-oP@im(XKny>`WmarVqp0Engk+2rfnXm!Sm9QDmo#4Muy)5jTBVVxI zGRYULpMv{>4baWZ!Ows}g!zCWghha1ge8Cxgyn!ygjIksgtdTigbjcRgw23Sgl&K+ zgq?tCggt;6g#Cb7ghPNigrk6YgcE=TgwudUgmZuZf`6gQEPR?KZ+N*(@`hI_xHr5; zH@&>xLWe1G{|4N@S;5`ERX39ah1&_q0Xqq)0J{lk0ecC);(&#f>!fo#z9)wjT<1~U z%r0C$PS^`LNjLyFO*jlVOE?BNPdEvN_Yi$PVn#Vm4)>7L(h#@{#L=g(D%BTe7O9PP!RB$Pz3Om;1hpX zsA~W6{V9`tul^{wihsK4$-L7TPbCfO#@Wz(NHVuvj+}5)ZkA z;O}2<;qf>LSRs=HtX6OVYjrahaf0;(fBz;6S?nL}%`!>AHU$^3LpKus_wTiE zVW|Y{lSu*&D!72dx|s|JI7;yMpRmy02Aq^h0?sJ7fOEQ;Gzhpr@b_P~aKXOBD>6yI zbp;o2Q#TV90k;YM{(BZ;+kaZ$mq`L1DY$?qx|xRf1M`gF?|*5b??4H7C6ffaRd50C zbu*#xDSRaO`@dKyI9&q1$|M0l6kNbB-AqZG;18h;;2)tpAn>XGOAKZq`%tL}E|XM* zQg9VvbTc_|#&Co@fCz;AfJg+N7{$UzTM<!f*Q;638S0 zi4|NxQr%2tJY;f0H9$&2O+adbPfTZ_lKlytUM8u?q~I#D=w{;K%aV=Y@6Tyr?_deY zC6ff?Rd50Mbu&rvkOc`T0EG#u0YwQuv4n+i_J83lDU(!`QE(OIbTfkxP=PSiLD!U~ z63ItYwXl7LWLA?&GHWWh%-Xt{x_EJQ3I6^D7FI2nfQB+jKobQQ&`dW|0xzxwp){Zs zp&Xz!!6&w}P;awTw3kULIw`n{F1neZ72V}-gb;upgwTLq1fST~LZ_)x(N89+7^vVX z2J2=r;x!Bc>SppGU@@T}UU(DuCx%ue$7|OBo%8FT*Z3bOl*7yHxl9j zHWLy8wi0~e4hxU%PtBb&NyQ!oSFukw6Al3f2>$-V7GiCYfC%`wk14o-6S|qmxO|Eb z4RD4K6L5|Y2XKMlD=u3Y|42GVR&s~FrruQwpz}d4S6i36BB)5qv;Y3$Kq! z;uw50Vko%8Sh|_2*^h`0w_Q@4k$!81t>x|3n)hLA4*9J zmv_sjR7xiKky2K{eM;qZ)611CRJtkmr^n}BRl(g~T{n{nmunKT0%{X-0O}HQ1L_m< z0U8nt0vZ#F0Gbkt1DX>`0a_Bu0t~@FNLvd{Zp)KZ#2p>?E%~ZkVE`;iUZiHHZ z9)!ApUW5jKK7_`AeuQR#0fd%-L4?+TA%u2-VT6u=5ri&)QH1V*F@#=#afH5r34{TF zNrb_GDFpxirdybQKwfA&eEDW6xEDG{H`5W9=MlO977)4v77=;@0tkHpO9=x2%L#)4 zD+&HoYb-S1CdW*OJJu_>V{X*VB*Ep)gyev&1Rt=&!q8okm=1UBR&a@Xbu$@pc|XD5 zf5^g@Jra-ycN|r40mpSS`EmIqp%CCSp(x-ip#m@DuQ!@CWdb z5U8^IA^4dP6!4Yc&;7%~p$qaLxA3UH72JdT)y>?+*FITuiz3Z>Sh|@ za%DnOKvhBuKy`uv)Fk+dIu;t)FZ^ZPQD4DzHq^~r!{x>Ve}6LzEuKq2bD88fjaCXS zptWwM4KBAQbO3ZFbOCfH^Z@iG^a1oI3;+x!3;_%$i~x)#i~)=%OaM$KOaV+M%mBb@DI0;;2$o4;2&-o!9Uzef`7O*1pjdB3I5?W5&Xk#CHRNiLGTZ^o8TXAAHhG| zK?{lPUrvW)lF#v|g8Lkg>!z1aS$JmuHav~{&ndY3FX(12;_?;3Rlp6xO~4((UBCmv zL%a5)MgDj)_SCLj(WE+7FRAs`7MDIf(Q zB_ItUEg%CSBOnVQDCK4tArV^$BW)fxr<`U)s77`W#mJpT#RuEPK z))4#)T~F|@a1+75!mR}V3U?6vE8I=+uW%p1zruqA{|b)~{KFk5_*Zy};Ggy^!N0-_ z1pf*z6Z|W@M({7_Cc(d;I|ToN?px^bK)!JgWRh>(V+Hq(d#amxhRZJruK;fe?*JbO zp8#J8-vB=ezW{#;{{TVG>8XOsB&P~N2nh&72n&cnhzN*GhysXChyjRA@XsEP;GZ@j z!9Q&hf`8iN1plxl)68zIi(1(7 zT0ZGwGRZqFso*~8(z@y8auy;UlKac!{z?k&{wlhes<>Q(P!mvxP#4gE&=Ams&=k;u z;5!Y$x3nermJS5p(wX2}x)FR!PYbX2$&>YxN!~!tb1zbG=MK=#EWzdFgcX3*1Rt=D;Qy12 z1pl9Gv2f(9bZ(VNI(I0z&Rx2h-MGAuupe-Ua2Rlma2#-oa2jxqa2{}pa2aroa2;@q za2s%sa3Ao9@EGun@Eq`p@EY)r@E-7q;9tg9f`9xU1poNI3I6f_5&Yu^Ij?WnKYnn6 zfBaAc|M+1E{_!Ia{Nw*e@Q)vr;2%E*!9RX%f`9yY1poL6EgZcr--Sdn$#)^Cg8MEc z*UhBB<@UL(u!N0;i1pf;66Z|VYMDVZhD8awN69oSXPg^)~ zRlbvFWRmaXc?I{Kyr`SGgv(b6*8n#Ow*Yqu_W%zGj{r{z&j2q8uK;fe?*JbOp8#J8 z-vB=ezW{#;{{TTQ{NJMnC-{d8Meq+7mf#;Q0>MAre+2(|K{22>+d2h<|?#JU8Z(SYDH8WVg*GYiA* zyJ{|zoT`%*hA;uGY?IeP)ol5YvGYGzRHo@1LIuCcc!6I9TwN+kd6q)3OMptkzG^TDQ7B0sn!~-NGBmyKQ zBm<-*qynTRqyuCmWCCO*WCP?R_+#cF_=Dvq_=6Q9_=6QC_=A-o_=A-u_=A-r_=8m> z_=8ok5dWjRzp66H`>Ubg-d`=d+1b>cx1b>c!1b>bp1b>d<1b>cE1b>dP7RDcuw=+&Ac{>vo+}oL~o0)>k(+M*G zvk7wm^9c(8iwOaMWrXE`RfN@mb%gbRO@z&WZG`QBT?GFidkOyN2MGS?hY9}Z#|ZxD zCkg)OX9)i2=L!Dkmk9poR|)>;Hwgadw=KMSDWAa|ndCFLui!p|hq{?Zxcrpx4Dgch z3hriU1^!*ROJ-hsVeAZD&le#LRCNwLQOy&LR~-u zLPJ0kLQ_BsLQ6nvLK{GPLI*%+LKi@Hf`5=+1b_6t1b_4a1b_6w1b_5l1b_6A1b_4~ z1b_7L1b_5N1b_6Y1b_4y782}`&tRrZ@)^ugaG$|E-OPMkUPM?7SV~w1SV>p~SW8$3 z*hts}*h<(2*h$z0*h|<4I7m1II7&DMI7#qNc81`e%epXE8hKg%nEf0nlv1_lW%|5vwVl27TQg8P&{>t9&BD_pe5lO*S zMApreK|oYOc|deRB|uDqPmE(>Y7Q(L%V zpCXM+QjuQ4RbL|F1 zdb*icIAa6CTRVpyqYA(K=X1y|8VHxmPAY)6O<=s<`E=tS^|T`e35 zEEU~kl8T-RuA;YYW+BelmkK)Ehm(LOGD*O51sCvAH<(1q6gA`1>PSm~T(;pG*=ERlx;B*UjueKum(aKaPbdU*%(rE0Y8yP;dc>bTiQq zkc8mxPj2Ce{Q;grCJ9Kb-~!U>X8Ix^J;C3f$wKGv5|CLY3CO140&?hP(jg!h!QY?P z!WA2kPbLW{sNez$>t-?`peVuLU&6u*`$Z}#lLVAeZ~^6XGa2wjszC7fSGF+I{yeB6 zlLS;(Z~--SGr4er+5~@pJqva0-yij5l7L1EE})5S<{1K-5&ZovExd>*0j*?`fHn#) zpq*}}3Lc>Y!QbE6LNXiBMJ5U8uHXWC>SoFypf|za-_OEu8_-`S2^gf{0*2^jDj;AO z!QVg9!Y}(0N691sV-;M$c->4syn~4ZfBzH*_NzQqCJC6K-~wjpW?~^=4k0dJ9w7l> z0l_COwh%a&JY;}OQn5_IRjkm>>_NaP!hXOS!Xdyqf=}FNVR~q(*d&uwY*la-+jTQR z@g8>)LI8FXLId^^eBuEM+rG(*Iw+G=98qu;$8oP4;1iQu2yK7$Od*q0q*ibhX>~Kx5s;oR3y_g87m%6Y6SG;^ zWB=@Cmq{veDY%L}x|w4L$VWH{C_p#^C`9myMJ>F^B^AYFl8TZFuA;PV=1(-yBKCz00qba4Ls!UQ*L%~(l(#^cA>MqwIyaCiByazNO_{7E*CKZ;7CNfDy za|Kt?Qa97Hy1Q%$eE@9;{Q>O=KCz>P&e5czlT1?4Rl!ws*Uc=&SF$Hz1)w)!HJ~rS zCl0U>sG?L1lu0UvD7cDYx|z~7+~pC3a)42UihwZ$pE%ya&74v(K_;n~tl%o9>SjLT zno4wy~wiSsOMFDMoBWs-_T3a%nRH`A!PyS$Xp6tJAo0*UhxSH|8OsJ>W5+6W}SqC%&){JFZl`lu0VyD7cDux|t|=4Ic>60iOu50AC0` z@wnWQ3>f~!cQn@NE8k&ciUkb#g4kcr?EvsxHZRVuQ{Bo#RoTt#l( z%%~dfa$dq%Kz_mmKtX~}EMg(JeNjbal8O=vuA-D~re+OyxeTEWpd6t-paQ`sR<>}w zid0mQNh+!IKCaGwq;3`_^X4>OTw<2@` zv?g=~v?ch&4i*yGkGrExQqe`hRdmzM#6dt0g1^7Fg)a7tePoh={t7N&pl+r$0tOTO z{lhFQE+PR#aK}gm7cg2kGaQ%45=H^W6UG825+(p96D9+u5~cyB6J`Qt66OGA6Z|pf zSx9gH++V_<)`bf0+>3S7%S$cvNFw)-#}BI&3hw?@x|vD1yoN9pu#PYTuz@feu!%4a zu!XP?u#FG^*g;qZ*hN?g*h5$Y*hg3oI6&A0I7HYAI6~L~I7ZkFI6>G4I7K)JI72uB zI7c`RxIj1sxI{P$xI(x9xJI}PxIwrExJ9@LxI?%DxJS4TctCgrctm&#ctY^sh36K2 z*z#l?+z&}DI zK;Y~8AXNcD2{i!03AF(s3H1P>3I1h-v#{I#ej8pU`56;Q!M&Zxy6NR;7OvV~EaKsP z$5e3l$JWgx#O1hzB!KvY%z%`HY=G2+oPe~1Jb?6s{D6#v zLV(PKqJXS~5`gT4(twVSfTT7bfYx`3jD27uy(#(xXp>P6 z(H#GhX{z83(Ofsv3YS|F+5ilpJ)jMt6QCWTE1(0R2cQ$7H=qllAD|myAfN|f2%r~X zIG_(<6rdkrEMNd(0$>oqzl@<4b|;p%GYB8z2nF|cM(JjT;_?{62*5bPXut%5Pn>Ka zm;KGFTMhT)V48xfn4z2LiOaJHeE@R^K489u{HZ1JFFF?~xWoY6Okh0qQbI7mazaSJ zNE{`V!%zp zQowD(3cy{$YQTNMI>1B1M!;jj7Qj=&cEEGOF2GB|UchU@0l-_rVZeLBF~CQ{Nx)~q z8NgSG1S32FgdjWzgd)5Ggdw~Igd_Mb zM??z~qszBt8-9Y5Fjq$C?G!J1Rx>dG$1kI93Uyd zA2Wr8^7h{?DP@vhO42B}bEnfyFK4tc&HfLjnQ(tr1$TdT-Sl!U3o-2fZkQYQ=TmU^ z7tl>F7q(Ean%qAHKjn%kxcf`!W=hH=$1OuB3#dStj(|#pS%4~pxqxbf1%Mia#eiCb zrGPqw6@Yq#)qnFSwIBB1wbUiWk6)YH9%CtO+a+Q9Y9RNeL!r&BS2ijQ$T#e3qV4` zYd~VcJ3vyxM?iAI7eGqFcR*^wFF;ztUqE_7VEi!4NC*bVOb7|cN(ckUP6!XkNr(i< zO^5=>ONb80PlyF5NQet4Oh^DIN=OVSPDlnQNk|DOO-KVMOGpnWPsjwQNXQDPOvnMK zO2`eUPRIwSNhk=YO(+7WODGPgPw;=f8d=yKTmHcP!5_({3hobFbKOiJ{ClM(At=BQ zLIBzjLIc_n!T~xEA_6)Q{2{tp_?kve6&t_!_E2!A>ZO~Bhs%8k2?6~GNdN-~$pM21 zsQ^O=X#v9s82}>)nE|5+*#Kh*IRWDcc>og#`2mv%g#c3sMFG*!Br2(@DsP~JX8Fqxzxq=Ksmt()0|fUpFAe*_EjI!i!AnIs^xf(wYMo5_dw7@gqn zk7XfcYYB)glLW+5Z~+N)GpBHZM1-?|B!mlqWCWj>(!$q9Qjtm~sYt8fD$?s_Dj*;u zp)w#dp&B47!6)Xhu&9|-@5|8Ws-_v3a(;=Ze|GrMiG_+#t>Ek#u0qtL<`UBNyQ|Yq++Uq ztC+5viG?>klMoj$n~(r7m*5i@Sa{l0Di+El6#)vaVySMXI|7yydI44v`T|xHeBwF_ z0rjO~y-ZTENx@ZY(aj`5z&1j1zz#wxz%GJM+-o6}{aL?HCaE~6;3^L5X5!#YA0_zv zPgqE8U&Be6B;bsK3pl5nX^RtFAanp+B6J2^A^61W7ACcniW@RX#cc&waaT990s;34 zs{s!Q>i~}lKJl4_)y+&qKzPCwKt#fHz<&gv z7}Y{d`*Sp!Oi~e3!Bxc8&3wX}j!XCoh)?(dNJ#LBNi3A@AQeevl8O`xt|FCg=0BV< z4IwHZ9U%rF1HmU|w$Qq+RAiA!DzYoMik!Nc;5cJ$LMT99LRdh4f=?`DVRsj)C@hmy z6jN{&C3G`oaK=)E@_;ggN`P_%pIFhtoL*8t<#npeA7+pf+J4pf15D zHn32)tyDCWNh+EsxQb@FnHP8sEeNjxtqAV`tqDG{orU_%rJ}t|Qqf7lRdmtKj7C5= z!Z<(=!bCtXf=}#g;i~1MLvO-~_Y2TUX60?Z)z#Mu^BcbAGeGD*dJ1y`|9H`5sbiwWHTO9(vy%LqPk zrG<@+rDBy#Qn6OSRjk*|)WU1nNT>_gOlSbuO7Mw0EJW=i6+2~;iaiRhVxMki9nN@w zun};Gumy00;1iEq=x6^KcS0tqIIZ9+&gy3J;Ed-9`2iORg#eccKJl7`$M*N`>oQ5j zEd^I`M>lf?0rv>k0S^eb0FMYh@u`JC_6Nu_nWW;Sf~$C~n<<3X@Rm>%@Sact@R8sX zzgTG4Kq|htlT;K{a23UMGsSSml7y0g(u6XAvIL)4!9wqGQc+PRsi>mhDyr#b#?*F~ zYY@f*Y7r&@>JWTleG8)oN<{;iq@uBct7xj5`GD8ZobVaYlJE^+2tKi`g_#4SqMb}q z(NV!wbk@y0ML<`=3qW^*59np#%xFpMEt4enQ*em`bTb|B)Po5A{-G9TPLhCOGD*Nl z1s5<{H?tQ3V+jWU;|YfW6A3v2Nx#0-h55{Vy!!A1VPaWs-n5 z3NGNCZYB`|J`j=uJ`qv?z7TxkcMGxlOT`bFq~f=NtN5#%xs10I=&s&>4G@HI6A+Bx z6GK|qWPXHxmJu|0A47VibZ8h)(eTNh}LZMo2|$nWQ3~f~!cNn@Nbv zNeHF!UXl@fKuUuDPtsV}HdZRq$|MyT6kJ6n-OLaqW+C|dvs;KYQ37(vBmub(t>!cLrV62S*dCHVhjhJ}gtP0y4`D&{D-ig~)3`MA7@&;y4KAoze~1pl9`w6NFy z3|}RaRIF8S73*~~5s|o&;P2mJ;ivuSv{fbv*rDJ8cIjr)AYcz6JzyWf2OP9eZj>Y* zl1UPeD!9bsx|#Y2I7w&(I8A5@I7{$}7c7h%CKVTDl8P$|uHu?*CNlzV5V8So5pn|V z5Paf&3kiov#RHk7;<19Oc&eL;f`I3Q=zy1mSb*0ApZLzg%<)q3UM8vdq~I#P=w@ai z;2U8s;0Iv=;1|Is{z$s_?46g`vjl($U@esQt?dJVroh!ZScv!b?DSf=`TOA=OH$_)jLOh^pW!qU&bfA|NK=10XixGaxR(Cnm5E ze!f&Blu0U*D7cDbx|#YeK>lAeNI`0Z%v6M?fHVZ3ncl*e04d2Jlaypua3xuFGpiAh zov;p&ldutxo8S}kStzkeD)P%D6@?UBMG@W1Zv+%0`~#FA1gYx+N)dcwSqtxHNJTlB zq@tpNtEjA-iHO9igvfyEglK@81fN*PLf^$wQCB9ZXrSOK8tG=u5Kn00_GE<02UIW0~Ql};!+Ehr%A;!nWSQ+f~#1qn|X&Hb889y{tXr)*dNv# zWs-m`3NB!qZYCby;|_wqf47Bk_HU#;GD*OG1s8BoH8Ha#Ngo%JFgeib)1fO`*!s?k)aZ4ttxU1kQ?(1e^A>bjw-~Yry zj1LARlYB!+0eDA94fsItiJvW0nkN-sWRi;S3a;X(Zl)^E_?u7z z@Rv{<5a_}GB?h&yVTn`(lSwKxDxQ!BW{w7Qu^2uM#@ z0?0^M4#-UKiPP6y_t`1Qa0L0Td$m#G)3m+P^xA$s`pe z6Qt^Nh)e6xQbf3nO`_#9l~EgJwjkqG$8oI z#uld9Pq&FoQqf$&RkYO2ltzFdlmoOOR0Omm_{5GDGTFa6I>{szT@_qKciqf!1oR~M z`};=fBlyIV7AD&-%PE(`1`L|C_P64uF507SP06ZZ0#K#ui+kfjkkx43^E4Yf6x|vt_AYK#v{qHPvwLg>J%OnAx6kNa; z-OOH`;2Yrp;0NI_;1|Is{q#~h$t4OSy`Ghx}l;H1A zVd2DC2}miE1f)@L0qJxzx9hpf83^|PnFtR7SqMHcyM+b&r6Pw+QjuH1Rpiyp#6v)S zLP9`6LJ~k>f=?`FA@z2tC@zy!lu~dNWpp#E@TaOAVJ)BnVFREN!6#O=koTBWRFg?6 zYAU#j+PazUIAdKxFF<`lUqC~GPi$i0@TI1K5>GDcH5+4qD)dTMZr}})6FczhdF}~0GLHs2AD(eiSsQy-X|3cWRi-- z3a(;_ZYB!OxQq}Tu!0Z^u!`Ul*IF2QPAb;PBo!MKT*YSH%u@txCA2QV z7C!HmioG&P#Q_CZaY#4w3a{Y^;Vs}8;RE0V!6%-!5Mq;5oRLW?&MUZzi@KR+2)ImW z3AjpV4Y*G5iMK4QIwKXgWs-_}3a;XTZssgr!z024z!Sn{z%znRd}$%}E~$7WlT^G_ za24-$Gna72kA$m$&x9L*uLPg?!$SR?Qt?wJsraMdD*owaP9PxgBfbALASmG+AUMG% zhO+S8{)`GOlT?ILa1{}BGXwD&A`ylFA`^xKq7r;!3=88nNJUJUq#}-jtB9wYsf05o zAXEh;BGdpRA^61P7Fw^DiWD+QMQR0CkybZT1Oe#@#Q_-!r2v@;J~5kxgZ4|CT_&l> zrQj;^=w{j@ARnOGnw$F%M!8z$`f(`DiVBR z6$^)tNJUkdq@sp`tEi=$X@Y<{gyw*HgjRqC1fSU0!lE5g(L^SxXs+NYTIy!@;WZe- zK|mYA5kNbFPwZ%6{T`|4B$HHhRd5yEbu(WO(39{T(3|iJ(3jv72UysATq*|2Bo#vx zT*WZm%xJuZ5rlDoQG|(rF$AAD-a^^KQZYd$shF(bDyHgYDj;Awp)z15p&DQ|!6(kM z@O6t+%$G?j7Ad%j0Nu=3yoRNO34rB<$$*svpSZ?C>5WpcRwk*~px`Pt>1OI6U<;u> zU>l(kU>K!s}*=;fxUpB?12t$^fDed}4G9SMA^3F=Ud8 z*b1&9u5RWI&KRF?ACQpn2#}cI6O&nJVgHqsTqdbVrQj;k=w`0tjOhse{)`r~oR)x0 zGD$#I1s9NAH?tD~ISG3Jxe5CLc?mwTfQ5IqqM%GtQAEL26w}QdMnDO|F+eH8NkAEb zPb_cY`AMm$Ad^&7R&W(nbu%jvP@S+EP?N9@P@CWr>sfee|0P#nCaGwo;3}HvX13s? zYDU-&XhGNoXhraeZ7ig&M!Qa2%LR$M9?g5!3;IM)VII5c|hk)Y* zfBz{9PC zH}e!{j7)d|h)Q@3h)(c{u`CR-A60Cbq#~Yzt4N@m36C=-BKZ50S{QH7m`o-KNU7ig zQtM_O;sj|4{{9RW9@`USlt}`zD7b)Zx|#oQf*gdXfLw$afII}BnBPKw`*kWHlT;K| za1}*$Gc6EMoZ#;-WnoN6dC1Z-NkBOT7f?YrQxAV4DiIn2st}q0su6r*O$%RRNkuK0 zq@u2ZtEjJ=8G!fLkT4j~m@o{`l;9IvSomZAx3iWqNkwY~SJ75C^9w(k+7tc)IuZio zMRg|l#BLUvy^xCTGD$@*1y|8WH`A$syWEe^6)=F%12Bl-6Ng&ZdqFCO$s`pc6GYHiIvk0{Sa|m?-^9T(93kZz?iwMmC z0fd%-rG(ai<%D*Cl?4AFYb>;gF5jUN_zJ97a8I^TH&YsyHxtSMwh}4=wiBuVb`q)s zb`yN(J_~2!$|3g4B(L|7f;+?!-OMTk93!j+oFHrfoFZ%noFQxjoFnW6Tp;*ET(;2g zo_y$6WRg=|S8%7gshhcqZ_RDO4ZvN(ZNPoPJ-|c4L%?Ig6Tnl#bHH=LE5J*_Tfl3= z2f$mxXTW>HH^4{2PrzrwAHY{aAbgX)6M_PM5<&oe6G8+262bujJ=HfH5fFqB84!#R z4G@A56A+3J2M~r39}te@hKmx)MKqA6%KoY_!Kr+HvKnlVIKq|szKpMg|Ksv%rKnB7cKqkU{Ko-IyKsLft zKn}tSKrX^-Kpw(7Kt94pKmo!RKq10+KoP<(KrzB!KnX%%{0&)(5DZX;5E4+15C%|z z5FSv85D8F)5Cu?;5FJp15DQR?5EoE~kN{ARkQmT_kPOg>kP^^@kOt6mRkPpz2P!Q0WPz2DG;Qu)Fu<+jgW1y!@^5?6Mg8TE;PdC#amj@BX zBXI~}5?~l%DqsX*24ECnHed{49$*|{Az%U_05FNL3^0YT5-^Rh1~7xL9x#ir2{4DS z6)=ym1F(Rw8?cD54-h~&2v|xu0$5Hs4p>Pz1z1fu3s_6I09a4B4A@Ax2G~rv3D`=w z1K3Wu57 zl>k8qRRO^WH2@(9wE>|B^#EZA4FTZ@O#l%H%>j`JtpJe;Z2(aT?E%pVod7WjT>-HP zJpgeDy#etF{QwCG0|AK%LjXw$!vV<&qW~!hV*#lN698!mlL6@o(*PL>GXa?ia{yTh z^8wijivT$ZO8~hE%K>=_s{r{4YXJob8vum~n*l`$+W^H0I{_sLdjO>g`vGMMhXCaX zM*$THCjgZRrvX(7=K$3S7XdX1R{*sM*8z12w*d7C{wHH23n}BvkIKd}$&bor3hqZ` z3*Gdxv2gE={N~#l_qS7U_jl0Ebj0N@gsy-dgr0ytguZ|Qgn@t|grR^Dgx&ZBeH39I zU<~0PU>xBHU;^PdU=raJU<%e~9U4yTU=HCXU>@NPU;*JiU=iUFAb{`` zu$1ruu$=H3u#)f&u$u4@u$J%zu%7T8u#xZ!u$k}|u$2%PzfNx_1Ox0Ogaqs+gaPa& zga_;=L;@TnL;)NoLA!Gp5BV-0NAY=nHBIE=#A>;uxBjg9PAQS?$A`}I*CX@iQ zC6orVCzJzpBvb@+CR71*B~%A=C)5J;B>4B&$HLqj@ zFpSU-FoG};Fp4k)ForN3Fpe+^Fo7@@Fo`e$FoiG~FpV$`FoQ4?FpDq;Fo!T7FpsbZ zuz;`xu!yi65I|T3SV~w6SWeggSV`CnSWValSWDOmSWnmk*htt9*i1MC*h)AG*iJYB z*hx4I*iASG*h}zVjsq5gg_fT*2W66P%Mk_lZ8@f!>4HDx9UFn}le9+k}{ayM#D^`-J#_hlE6c$AqMSr-T%M=Y-UN zmxOeH*My9Kw}dQ!_k`?#kAz%+&xE{yuLS?Pepr}l|5fo*CV78<6x{p!r<*x~fWR;G z{^Nk4gj0av1fLknLZX-QGb6N2QV~wURYcIu^v5r&kqCnTkqJWqQ3)de(FvmgF$v=U zu?Z6aaS2lZ@d?ub2??_Ri3xK7NeK%8$q9=ADG5sfsR=6pX$h+V=?Uuq83`K!nF(6} zSqc6P=dkcCntZA`Ws+B(N5Q@Fe7cz;_{<6r{QZS3WC|exMP!nI;tDRHq;94({#=$O zlmnC{R0NbKQ~^{ZR0mWh)B;o`_(RmN&?JGJs-{eGsyYhpRP}T-7x7pP2v-1&2-g8k z2)7)_|5FIfNOy5h3xaPo7T!Iv|FV`zj?qrR9ixM8rT{*kPK3gME`(x$ZiJG69t2;} z+roMKe;=ifOw!q3!F3MQ&CJH32NUK2h7uM6h7$q+BMH7@jD>qKq;srH(m6rFbxzXF zG(x}>LQ}vrLJPnQf&t7Tv<1u|bO6jFbOtOSbOS6R^aKPD`T&*^{DZ8pko~cIf-7Z` zCtIW7o@||NCK*1C4TO|{O@uUnErj%dZ3JJj)57bg(z#0}>D;T}I``{l$|B$(!QX$x zLKgeAJ1Ua|oKSE9r*t!!5paf(4RDT-6L5jx6E9o1X#c{#B9l~HS8x?Kbu<0&C-gR9 zAmA=x2;e@!CqA;UF}74ZmPsm}DY%Lkx|vb<>|PPZ0^SfN0NxRN;ztW5LrKLanWW;Y zf~)whn`wbF{v;T{Z$ewZUxH5z{8B2`B$A3CGD$^n1y>PLH}f863{Ch12ut`12v6{d zkt{5@Bp>&GGD$^L1y>PWHxmcHeZ?fi2gD{M0>mZw!~_=l+CSh4Ws-^{3a%oVZl*TQ zn1bN%Pi^64P6AS-{I9%)w0>%+`045N8;$#aIN=d~OnWSR6f~%ORn@NY)Fq@DOFqe=8FrVNP7g<=E zODY!2Bo#{)T*Y$TOkJFDC7}UeHK8$JEx{*luyC)aRBV(s|c@~d4hn51b=^I3xmr@KoprIAi9DJh^dZcmzm8cnU~I@QE2MG|eIvnPifRtO~9oyKW{F zUPDeoSU_$<1VCPbPb^?zZhomKD3eqaQE(N-bTji2P=c@sP>QewP=??W%Ueid|L|9k zNh&HUxQeQ}nHLDCPIwKdNq7gSP4J2JEM&|i74>D3ibe{qqKR(iCEj#1!W%#f!h1j~ zf=_H?VMlSPXe*OcbWm^=opdu{@qOt+@b`DOP@t>?^pHscdMmhqzPg!e2}EiDzpWs-_f3a(;|ZYBo;#u0J@CJ^!gCJ}t%R13-MAO2}FNySVBS20^R zGa4V&T*5fOe8NP)LV`~Wu<+V`m`h}miscHfVx?~8Gd`--gl~Yggr9)*1fRIc!fpF| z+Gd%gVw-}i*rA(=i!<&bBmnFoBnIpw_{4)2;*^kzLo!LlQ3Y3VTsIRDZ~7!5GT<~J z8sIF!Ctk3yHM>+?lu0VCD7cDix|ysv;|)R%z%4>Z__{8uQ;^&cy2r@~4ku#guZ~}gaLq*1fQ73!ZrJ)O)HaBWKeJwnRGL; z@RiI$hzrO@NC3z|@QJxC{IS1&D%$F13gL|H2}J=N2_*oX2|lr#g=u-EqPt8|(M!Qq^wG@> z!5RAzh64r=e86A}8SJYcB9kNzS8$0Vbu)c&q|pR_|2PX(?a#FFGD*NB1s5Y)L}0Wy?+o3E6j& z5c(hI`8kh|?)&~d&;S4Y{?G6A`ptbF@9X@2j`KRd*Z2BfQ}q0)mH7w(_X%l$zX+27 zj|e_7;F`3^*G*calaaK@sNh;;*2=UGcZahO-UVbMbOGcb_{66zYzUSXxn(3Ro>6cu z@@r*AA>diUSio}xA5hpr&UYoTh>Rq$n1V|zu9eA*fD(kPfRcn9fYJn?Sk6M9_R^xf zjHE>+1=pgAR^}`&k7|SqfL92Y0k0B#Vr>gcW2MDwGLjbc6kLl2TA6lu?*a)O0SyVA z0gVYh@huB8 zRlr9CpO|Lh?N-v_V;M<{DGIK|RIN-3F3IVH@qihG34mDypZK|j^F~_Ck&(3cLcz6I zpq0soH7+7N3;2>y2(Xmk6IWR16(=pel99AnrQlku*2)ASU=1Mzu#ON0SWobY8!h~1 z-|kH^k`_NGxE9;AG6@LSLFf(mkTS{&BOJj6~PCHxII zMo5p(#R-B>{MEwjUee-}jHJbH3a-UDtxQp@@dDvRz$HQnz!ic|yl&y3{RX-rBWZD4 z!L_)fm6?WsyM!5ldxXyb4+uW-k%hn8N{h!bk{0Q%dvGl>Xl3?cUosI60-hoq24p4p z#2gmZwv!e)Wh5Spa9_%pdi5~K5wB~2We4QM$+O11=r$5t;}@< zyhOMKc$shqP>SFa%UbB1AT7$tNLo}>a4jlpWkzDBs}jZlsuMm0)FAl8S{61WON-hv zk`{FpT#NcznV%8xI^hK14T2A7Y++|>NqkdAlGs$iB{tW}%)(i>AbbvJMVJR@L-2|1 zEab8++RI2?X zm`G{ynT({x90k{6o>nFRYn)HW09Z)K3|LI?iAybHv`?(dWF#%VQgAK4*2)aR8owb7 z1$;{w4p>X@iR&%AVefk1%Sc*mQgAJ{Xl1tIlH5wz0oYF11=vaOiMuW2up6~UM$%%x zf@^V5EAtR*{E6V_AGPq4{k8088A-qi1s8BqD^nNyc#7cX|7PKay(ylRkpx^&Z~>RJ zGWT!_R|tOobqnK@B;baOB;dA!3%H||nU59RB`gBmBP;+s0g#!n8IXmr6_Aav1CWET3y_Pj7m%B90FamP6CfYKZ`ZRHy4h#W(wI?5 z!R=pRt@Q8<7IxTQtcuA<_WLCTH~(d=%rm%TN)ZYG$`GCdlp_=dR3N+ns6;3Zs6u!d zP>oO;@Cuhr3wl-$UllLSm4Dn;)!|9uBqe zg`FQJBe@D96x@8HmH7g3QG|tn7{Zr;IKnbOJmD)qB4HJvH{n}AGGQH{AK`nz0Kz7~ zAi@uTA%yLKVT2z6!wGu;BMAEeqX>rpV+cn8DTHHyafDw0sf1I2354GOX@v8DNrX#) zDTJ$lse~JV>4e*W8H7Iovk3P9vkCsKpKBqzy%y%lNUnti3hr81q?MVDfG-Jt{xS8{i<}Jm4q7CBPBFRlv`L8-U}4+kjsPe*k_Z+yk5@ z`~~=p@ECB8kS@~g#|1)0z$L;{fGdP-fNO-DfE$F|fLnxT0KXFo0RA962l$gv7;vBP z0^lz~alj+O%YeTLr2*+~>cvqGkbzJUkcm(Q@D!msAS=ONU^y)G94c2_P8rD+ms`PI zae1{e?_$gI5xM{h5P|>&2_b+&gfKv1LIj{Fp%X zVGf`%!N0L@SvWUd-sz??l6U%T1@}(3)XKbuOQkiT9^f6q>wtEIhJX%)Hv#VwngTi# z-Uf6f_*HecuycYeGgwBl%uofl%y6wt1Og%my#R&~1BfEL2Z$jg0^$gL0P%!=fJDMT zKyShjKr-QdKtI9=zyQK%z#u{jUIQnU^wApzzD(=z$n5rz!<^|KnmeAz&OGj zKq}!2zy!iVKpNpoz$C&lz!bt)fT@I4fa!#90W%2e0J8|+17;I80p<{X0L&w72h1n@ z2v|ti16WMh4_HDt1XxBm0$4#f23Se>1+a?XFXL}5%;+cA^&R{IvrfTX*Xy;?!y7HM z>?`w6WBwKeH-D>EdU%J0oi=}`jO25(TfxoWtCjf+ar+660S5``a0mH`kP&c%@D$)@ zLN>s0LQcRh1iz|N7M4u2rzIm<=2-=|%=22AKd_G%3HJb(34Z~u5*`Dt6Ve&i;wHiO z{M|z50rtI+ku2g*1-FR%TA6$}i@ykd{$mS+he$vZ%t&|3gA2%@l^)J)A@(Dg|CEfR zVKxOfKZjPPElwd9p#vZ{!3R8JA#}bZ=97^mKC9popVP`L#vVLRSPCdYSOIu}@HOB? z!fL=vgtdT|34Rf!EsU5Yt12TSSyg!jx2lR-nc4`bOsET}N@xJ6PIv=QgU}dIlkgUx zHlaD74xuHW9-$4O0ihirkkAp(kkA>>n9vQ-gy7G;nT5miWHXw}NH(LTg4>MNTA9fR zc!%KUx3@6qQwiuGBMIoF-~zg6Wu8VrH$q-OcS3$Z2*D?YS?D%bT7=6;T0|X;1d%qEV7@KBpFGIWChovpH`+hK1u@!EdhfFZ2&_EKJk4EMQn@V zGLjY}6pG)Wl_<|4&SU~WJi!D?bC@sE}k+fK*;99KE$`r;ntR%bu zSVbrfSWWPWYb_MA*Yr9WNsI3lT#JobnK9Ug&4dpDKM+y@+Xy~!r-j*bq{WXik`{Xu zT#J2LncfIEKK@#Oz??6TbMgYS{##+wD?8AwfI#lQyJTEnote!8=(f^9Kk1E zw9sR!w74WAX>nD-wYaX8IgK~-CgCjLHsJ!`4#6k>Y2l20LbxX*Y4MkWYw<`ca~WUo ze-o|&(%sg8n}7@ipP1P~%m``ml#HZBHU-xrhgN1jwjmc`5g<2V2_P@QC+4?s{&Q(j zKt|HyIR)3^d96$o-pnF|SilQ}c)*JUpIE}e3-+1gWf@6}(h9CcS*^?!>~wj;bwEXe z52#{cu-*EqGLpns6kOt~TAB0M*jfZXzmA2nBPF1&j3l6ef(r=L%B;Y)H6-}?Z(3M5 zN&=e5NCKKExPZ5{GFuSPlCTZXny?e_4#6k3w@}u;GaY0kEjlT<7G1P5A=vkBgfKvN zLIfa$;1k0v0lY`>iHR1fEs_>VGLja_3a&*z zt;|6L3?TUVgDnIPmVhBLl7ROWT)+ofncCRLk%YQ{(S!zou>_wu&O)Ds(qg=fq{RdU z*CI_Tvjc0KMA!wGLf8wKO7MxFTDWAt8)nEzT70J9T70gRDTy`CC6obtK`0McK=6r+ zEgYLJExweIv{71s0O%7@R>I(tX&{YZpuiS z{I1}d{GpZk9sz$6HUaJvegOPM@QIHt%(pxFw~VAk`rkdc78$iNGZB!PFdLACFc*-G z;1hFNXkzbzxnv|Q@+i0#&uC>fV6XEN{QQCz?ktgj=VT-Sg%w;tQLRk+UhZ%)LMA|Q zLKZ*?f=?`Ep~NO>QCddQqMU+jQ9&yc5akY6B4hwmA!G(rBlyG`7H)noEnbz8w5YA% zTGY|XoWUCF5zYY`5H11&2|lrrg}}|yqOpvm#ajxlMKi5TF0AowLLNX%LOwuif=_H~ z;inbSqMeMSMMnkKqLWtU6|Aufp(dak;Wa>af=}#W;gvPgB2-4wqNjpu5vi4#jDTK* zseow0r+`?3PmH%PX1TOTkdd_Lt>9WDYh_9xpdXkU=YD44z)0Fo3t1vBWdx0 zf@?8SEAu9HdNiRaU@YNnz=s5%m}=p%eY-!Bk+euta4jZjWeOr-3gLOcR6d9_F#>N2>Stt35Nhj2|n?-g^#|H7AIsREq+ySElz7?>LcJcLLlHAp%LH$ z!6#m}uy}*CxFREIab3Z+xT%%7ih$dM8-P26+km?SpLpNG#;wxgfsCZZBL&yuZ>>yS zT$1VT===tN41_lTnFu~Hi-lYE29i}q(jtd~YmrMU^BLBdn=l8Em+%E3AHgR+Yax?8 zi-Ize7SAiV7Dco&)v(4F2sHpN5^4cnBKX9T7HZmWy;3rg7G)J&i}G5Td$=Sk68-{I zCOigICHTZwEKJ)jEo#U}TGUc-End^gw8I+f5;_9v6FLK4C-}sM7QS37EgH#4S~O8` zEt+a&7GbBG6P5s45S9a45q#o17OLAX*0wT|79A8^i+8m$M-kAOa2(K;a1szi@QEQ7 z)@+d$J!B*;!WCSL2(3(UY=a@Z42U9>2E-72;(Hb%HcE?l8A*#I1=pgFR^~3&*q3l0 z(4X)SFp%IAhgev)R9Xy`k+c}D;988(%H%-6D8kc#F@(H;6oOA2Z=u^_X^|=;X)#g3 zwfI;oa|)N_WWsNNPYCA$(+ECshJ}yq?}{^JBrRquxE6D?GDi_GkKpGou&`&D1T2)1 z1bnIB0+woJ3gIM|6N&)7A`}CBP4J1UEnHqLExwhJv{VJDzI z!6yb1N;OTNx;VnE?}}&=Cc15A^7>zEgae@0iVi90%j?=fZ1A^ zMC`#FLLb09LO;NKf=^szq54H>u~CaI_Y-~x z932L#;JfJ1=v z1fQ76LP2}cW|on($g1F4WY@|V1mq+{1D+=1=pgCRwfsAx*Q=7paLNupc26+R<$r>kF=;J zBWY1X!L_KVm6?Zas7+V^s6$u`s7LULuUi=Yv$P15k+f)};99(?m8pYmc#BXU(2NiW zc>4*+ND^CFNWLH~S_9fDxEAfTG7k{Yk?;u6i4cH|>O$~|K^C^`mKNP*Bt3g5xE5hr znd#Vuo`jizNWyGDFM>~uu`vInw1}0Fw1`)5EfTdd!?5Vygbx78gi(Ng1fMw2LV&$T z4U&h}yswoxkAM#dmjELPR{^65J~73@Lwk?k&o34;Ku2tM&!3w8ENi#0Nm7T+nj7T;@Smf?EYNcak{nXn4*1HmV5w=n0R zwAdjdX|YSewb-MTxr%^&gd2bZgxi2a1fO`s!j#j};;4+I#c>7K;uo#VLTtmYgf9W7 z3CjS#5q#o#3#mU!iwiQ67MB%Vi>q3hL0IE;!cf3X!f?QCf=~RzLg=s3;;xLO#eD_W z;xDaC3fB0DFdpzXVFDoCpZ}Ja(Lxq`1IZ*KX^}<2waBKGnSeFsAbbqSMVJD}P4J1& zSlE74TI7?Fw0Ks*wRlb|Qx$7`p708w2%#q61%gj3Zej5yY4MVbq(w;u*P^smrXcR4 zWeLv%$`gtLDiVBR6$>49NQUL%A9>Jofn0}Drgk`}Ma zNLn;ha4i~ZWwK!#nhd#4>JBWW>2!L=Bsm5ISl4=20_7(qw`j3W5Nu@=$}ON$g4 zNsI9cuEj@MnS2PCNO%_TF`*D(GQlTKwXpiQw3sF%X)!~=wV0)q>4bpUgsy-&gzkWO z1fRITLScK+E|ih9_)@{OSgMr?K)`ZB2EbQ@%z&>6K5?~$R!5}8w=$9z>l9pz^;(&t z2-rY)5wM9+08A*#v3a-T!t;|ZS@fzV9zzxD0 zz%7DLykp^_J&QkNBrWbKxE2qzGH0;HhlF#0$ApW3fP4Rzn889Z`(9*}k+gV9!L`V$ zm6?P!W+!|C$Vr$Ec$(l7^IFJZzmlGjk+dkF;93;a%9KVxAwoGoVM0YfQG!o=(ZZ;+ z(xSMGq{Yh$u0<)W%mDq!T2xnXEox|GP9UHr;a5Oy z!Wlpvf={e(VVC`NvVn}G#TyE)MI)`ub_Bdh_!00HVGp1g!6&w`u>7jDXelFU(MG|w zXseZ}i*M%k1V8^>3tpp%RwpsRul2-3kb|r&_3TO9DQUkp!eExPVDonFIt(A^7>zER=a90n=q9 z0W%d`z-L;SOtJ3p=LA20o`s2bB;X4fNx(t{7qD0>GYu4kvr2!8$s3uEm`Zj_M(Y*BClTeUJ-agy5!e*TXR{*-`SGLnG3 z3NB#3R%RnsaFF2VAGWaEUMWXpBmu`1T)+vf%x(mnB>4HKE$sbW0?x=t0?sM8fD2lg zi3qqv@bj-)XlXyM*JLCCHx*pKZLLf#1l%F``F~pInm&U(CCW$w{!(xOkF+vxViW%+ z`1$GYOTabzamyeh3COJA0T6{h;P4xSoLEvLf)8jy@Gog*VXytT zHJ6dJXsO^@wARYRVvX+*{QUM7qVGyT2N_8~Cj}SKMJw|a0=g0W{9p?$A4@=pj3gjT z!3Ffx%H+X0MH2k{C<~vZlWR3vMiLOG-~!^cGIbG&t~fE2Av6$FeU`1v1MSZ-G^K}Hhrv4RVj ztd;oy0iO{3{OK0__roe2cRIqCq8ds!C%s%u#BX|3kt5qi(1KlyVMu4(vBkZ5c_6x(cpEeXYy_tnqci zV!#`OrGQ2RpV-90IeSIDB_nCkT*0+yp_QqIHMSzu0JI_00<|ufF-pO;7^9WxgMbu5 zKfpM`KtL+NCr-35eXG3PYX`U%lN4NwDO#EJI6RfG5ip&w1u%oK4KRza6EK^w8!(5k z4=|5#5HO!`7_gA=Ghi{{1YillpV@K?v3ccGJI1+FU8&$sb(L18GY+pNbOWp*1OwI) zLILXuJpmgC2C#_`4cJ1618gNE0Jal)19lSpiR`v8ZnK=(NSymV1$Sl#v@&CG_z>Yk zz+plv;3#1t;22>N-~{0lz)8Y%z$wB^z!}19z*)jvzz;(h( zz)iw8fZGJWU4K~U@x1KcE$r|;1-E|>v@&;a_#xp>z+=J#K)_#`_y~}m5b&P6_%aeQ z05TIY1F{gZ0`2=2jnFb1mq(;4=6zJoAI25@9po9&2hIatl)O1 zs8*&G4i_W511L^t4=6!+7f_PmTa>Y|DueXwiW%h@Cl$jVLG5AVJ4sxVK$%(VJ@H>VLqTcVG$sNumliFSPlp$tOP_5z5y7* z8bB1`J3tI!10asD84yp{3P>dE0Q4s80wfdm0{RgS00t0#0t_M?1q>k^2Mi;e1Pmvf z28&=X060nb7;uU(1#pHi4RDq)18|=38Q>ye z4&XB33&2&vLcn#xmw=muuK>3Rs{nTh>i~BN-vjOuHUStTmQ9?#QF~U=T;)HB~5`>(9l7!rV(u8LKWeEiU^(46oV zpar2NpcSDFpbeoNpe>;@pgo}*pd%p^&`IIrE}sUt|7UvQNEba~q5<6qae(fG1V9L( zHz1VI7Z6Su0Ei$A1{lIHKosEvKn!7&1NqMu#F55gPCQ{8Ad&D9pf@26kW82i=tr0e z7(nIQ@U^rm`U<6??U=(2~U<_deAcgQXU>spJAeFElFoCcUkVe=7 zm_*nHm_pbIm`d0Um`>OSm_axQm_;}Ym`(T@Fo$pgFpuynU_RjtU?JfgU@_q$UV^$U*( zosb`}lTZ+_i|{;P51}YvAK^v70YVADAwpTeVL}DKQ9@SU^TXJRmb636O=549G_456D3n1jt1g3dl_u4#-Ow3CKqn z11LcF5Kxei3MfRF2q;XL1Sm@Q1W=4H9Z;Mw8&HBU7f_NgA5faG2vC-=1W=x^98i(4 z5>T1&4WKIFJ3w{920#tMWfQ5wNfW?H7 zfF*=6fMtXa0V@cpfR%)afK`M^fYpRg0BZ=-0qY1e0qY5~0UHQ&0h;Bck zmW=Y_ISx1oi!GM#X^Frh1;D4{!`7@-HCI3XNRf)EKP zNr(cJCd2~D65;{n2}yv8gk(TvLVrM2!XQ9(!cagB!f-%M!bm`E!Wcju!iRu*gj7HS z!bCtIVG^Jr;S)e(!gN3r!c0I@!fZfu!dyTL!hAq0!XiK$!V*AR!g4@+!b(6#g1=fi zTWFO>E}usDr?K4>+~w0(=Feut-7_&bCA*pEB)3edHs|UF|(_#hJVu@B}Ee;$YK z>;|kO_*H#xVfiIlW**#PHz~MfZqdr*!{M!jX93#@g#bGVMF6`9#Q=Kc z1KfLjRl%+5x>hC;hi?-40B#fd0qzh60`3xq0PYdq2RtD7MLe>Ql0|+L9qLvU@V5uI zs`Of!7jZZvp#&f^p%fqsp)4R9p#mTWp)w#Bp&B4Jp#~r?p%x$?p$?z`p+2A>ArMfA z;7_%Pg;w9oJ5nFJQ%u2~dvUEyAP$!xGy;?)Gy#+*Gy{|+_!bo`+&nBj_YZXYU0K2P ztg4kcgu~SdM*uYlKA@I`8|Q4|AeUH2!6nwy${fPs281JkK*BLVL&7hB#)MOVCWPMr zO$p}#%?XzPEeKZutq3;&Z3wpkZ3%w>+7s>pIuiZ@bRs+kbRnc0>~^OcAtRtW;VD1} zAsZl+kP{G2@LL{f;e0mv(HPfSl!AK?Vze@E;cy(GIUt_U5|Bt}1L#d?2S_G#1oR_x z1`Hr{0}LVr1BMVn0mBGA0mBIfFoF;b7)6K!j3FcdQV6{P;|P5Lse}Q5353CbG{P{z zB*F)PDTGmgsf4kB>4b5B8HA4jvj}N`*@Ve}IfSWzd4x{^^9i#63kjbC78B+HmJk*I zmJt>MRuGl~RuWbKRuR4itR}1mtRbugtRt)ktS4*)Y#?j_Y$9v}Y$5CfY$falY$xmk z>?9ln>>?Zn>>>ON*he@4I6(LnaENdQaF}ooaFlQnaEx#TaDs3haFTEfaEfpTaE9!@09?gCzJwYB$NeYCR6}qAyfurBUA(AAk+ZlBGdxpCe#7sCDaGx zBLo5p5E=mr5}E)C5t;!C6IuX@5?TX_5!wQZ6FLA&5IO-$61oCP6S@P+5_$m26T$%% z36X%xgeX8&LM)&0K^e?0pbaJ0f_|vMAOH@r9b5{GXs8!?Wf=# zaRz8*GUMKLJq(%!qb4^guH+eg#3U}1iy%}76u=YRUOCU@i+yys#LAaNgSR) zI1NZ6oCQoGTmVcVTn0=fTmwue+yu-Z{0^8!xC@v~xDS{^cnFwB_!}^vkRFe=3kjJ3 ziwRi(O9?FJb*hQ!b*h6>?u#Zp=aDebS;1Ho9;4tA$z)?a|z%jzxfD?pPfRluG z0H+B4GXBj%_S-wTrW;PCACd>s~CCmq0CoBToBrE~kCM*ZsA*=-4 zC42+8M_2=RK==;ukgx&pn6McTkWNo^D0SwI281wcW2yMW?^`+yRJhk%lVzX7EQ z{_-hj;Z7#`1@$)Wq!kt1^;B6a^9K%BCENp4C;SDdL3j+PNl1qW-P(kVfI0-fi24?u zEh<;}3;6pefeLO_4Ye}Gakw$zWk3@`X+Tp#IY4tlML-Ke6+kOObwC@!tAMtI+JN?i zx`2*^27pe4HvnA-jRD;VZvna!ngc=zEdil~Hh^$KJ3s`XBft3eAq)TvBMb%%Ckz9OAbbEAMHmGbLl_H4 zA&dizBYXr%C8Pl+5GDiC2vY%*2%iF`5M}|U5q^vPxu+I zfp7w_iSR363*ii4E8!eqJK-W=C*cZU7vVZ!58)PIAK?z*0O3!-A;JT|VZtN8Q9?kx z`?^0y$N)G&$P741$OCkRNc7P!MpL@I2rup(x-w;YGkrLJ7ca zLMgx#14vJ(56DOe1Y{;O0%RdH0c0aI z1LPpI0OTUH2IMBR1>_}k0OTWd0u&&01r#K72NWXo02C&K1BwzN0mTSWfZ~K$KnX%T zpd=v)P@0eoC`;%MC{Gv!s7M$Js7x3Rs7e?Ks7@FIs6qG;P?L}fs7;s%s6&_ps7Lq& z(10)<5J;E_Xh@h1XiS(3XhN6|Xi8WFXiiuHXhB#GXhm2FXhZl0(3Y?U(4O!epd(=e zpc7#;pbKFupc`QapgUm~AcU|N5K1@z2q*jmh#(vV7{YNt6yYQwhHx4XNAM4Y2^Ox@ zlc&U%3GU|DTfsdgCTnHd;c!1fN5B9=XTTsrH^2}=Fkl!V6fm676EK2c0HX-efH8zP zKnfuNFpkh0kV@zam_Qf+NFxjeOd<>eOd)&#m`WH0m`)fAm_Zl^m__&qFq@DDm_wKh zm`9ijm{0f=u#hkdu$b^UURWnU#v2U_D_A zU;|+rU=v{{U<+Y4U@KuCU_0R;U?<@)U>D(Mz#hU0z&^sSfCGdxfJ20HfWw4~fTM&f zfMbN~fD?pUfRltffK!A&0cQvg0A~r00Ott-iSAQ;k&pp!nUEQ9m5>#1osa`?lkha) zHX$$I4k16_E}ngH?=ngQ|=S^x?VS_29a+5!p@Isgh2Isu9jx&n$3x&w+6dH_lg z!T}`-k$}>KC_q_4ETB9g9#D~x1gK0%22>^V2UI5v0@NT31=J)A2h=8v1k@pn0n{UW z2xve^1q2c%0vZw~0U8rN0W={@2Q($j1T-hi2DBi|1+*f}2ect90<Y#1oDK z5(%dPy$NRl$%G4leuT?_0fd`?L4@A{LkRZ)!w3%n!wKn=-0gD&AroK}Aq!v(Av++2 zkP9%5kOz=T$Oo7}covXGCgf{^z2~7d32yX*c6Iub*5Z(c-BeVysC%g;T zK-;S``C;Wt1b!g)Yp!X-da!c{;q!VN%i!fika!XJQ= zgnNL}gueh~36BBg3F&&fdvZlWMnGl4Q-G?3Y=G*7oPZjH+<=;dX8^Sc1psvj&jIQY zUH~*86bA$nUIsKIlm;{=lmj#&R0K37Q~@+6R0p&myb5SVs10aCs0(OIXaHzWcmvRp z&=}B(@D`v8p*f%%p$(urp&cNE&=C+y=nM!abOS^Xf&qpQ3Wy@~bRhqch!~Q=oH#-> zAf6BhNF*cxdJ}pBk_mkQ{Rjg90|qh7-mDMi9mUMiD*&j3J}} zQV5d);|Nm$sf14f69}^aX@t)KlL+$wQwR$HQwfU!(+NufGYBgHvj|@UW)oHe<`C8b z<`LEd<`Xso7814q78AAsmJoIVmJxOXRuJ|9RuT>ZRuK*ZRug^(tRb8LtRwsiSWh?u z*g!Z3*hIJp*h07h*h;t#*iN_w*h#np*hTmgu!ryfu#fNvaDWid$K8Yv5i$S{6EXvi z60!o05pn=d5S|8{B;*C0BIF00Aru6hB|Hx}PbdnwNO%!&nNR|7l~4+Bolq8VlTZP0 zn@|~Whfoc0mrw(6k5CKnfKVUskPrxXOlSlM$fQpoO#tZ$%>Wq*EdZGbtpQmGZ2{Q` z9RN89odCHAT>-fX-2r(CJplO#;eY~!C_q6%ET9k}9#EK&1Sm>K1{5Ro2NWj^0+b*O z1(YNV2b3m^1e7I=0hA|v2&hPy2&hb$1gJ{*1W=tY9Z-WX8&H!l7f_q92vCQx1W=E# z9MFKU5)erE2GEeO2GE$W0nmi78PJrl70{fp1JHu73($(N7tn@q0MM536QDieD4-+Z zIG_{ZB%ll7G@u*dETB8#0w9EN84yai1_&qI1Vj*i2N=R#KosFVAcpV|5J&hM5Kl;t zzsQzI$OPz3$O1?vWC!#k45o!nSh0a*?`4_xqu~v`G94FMSvBAC4iNL<$zU$m4MZRZvbluYXIvA z-vQPWHUKsdHUl;hwgR>gb^x{#b^*2%_5yYi4ghu$egfuTmT#+Tn3yVTmzgW+ytB={0=xnxC=N-xDPl_cnG*i_#1GUkRE?k@hTw`;5s1- z;3gqE;5H!_;0_@V;4UE_;2z;wzym@dz(Yb2z+*x&KtN{woWBG}Pbdk{5~OYTU8@Q1hyD!4mRA+1ai94<^K1}I8+ z2~dns5>T8_22g@f9#E1{2~e6)6;PJ&3ZOipCZHn0pGXx8UF;tyz3BgdsDeAQ8d{kv z{!fPzt^;Zld_Y|bM;t zU^w9#U4P(g-gDCJ{;lrVz>jrV=Uw zrW2|FW)P|aW)WTm%qG+Z%pueT%p)`a%qP47SV(9LSWI{eu!PVYu#C_Wu!7JAu#(UY zu!_(Tu$s^ru!hhLu#ON6SWgHAY#{UmY$6!I7D6;&Dj4%#xg76XGBq0rOiZB^)hA;BO6CEtI_?_lmOkD;7Bv+`S@~R;B_D=O$DJLS{f6LRLUMLJmL!!qb32LS8^aLViGFLP01Tt9s8#woZfE?z4$5Qh^9Ljb)A?*ozvKC!=ra>eE0 z^C14V>L3NzVu)7eFb)qR{0taQH~|3)+&<${&5Dd6T2nAdw^aNZb7{GNxG~gz|pUCePc5Ih3JB1l{ z72KKK)5`pY!w(4O0S^h60FMb*0RdUG#SK7u!filC!XJRlgnNK2guejU2#*0d24_fP?+F1^aTqIo|3y^7W_TS;tFnuOK4@X z<8VnrEBHWYwPOWF$Q^5;6g@5V8Vt5OM-? z6Y>D^5%L2H5}pGTCKLe_BlvTFiQvz+B*C9;8G=9C@&tdjl?eW9s}lU#zC!S4Ta)0= z_BDb(+j<0lwyzWX*)}Bjvwf4`&$g+By@B#hHrV|c#C3FJ>6G8xCgm6G4!2qHOF@X07@qi>kZ$Mu{Kfpl3Aiz+dAo$Z?Oz@|_l;D@X zg5Xd8Yl1)h)dYX~Yb_kAC~y5b8Of#cy@Gq|H)^Gaw^+DSL+1a0`P&uT{GD2vA8~jO zVK3kS;UM5J;RxUu;W*$V;a9*J!f$}{gbRSnge!pSgd2d{gx>*o3I5FP6a2Y6B=~dr zo8ZqSeKy@4e=eB_{#>#U{JCT&_;blc@aK|;;Ljx=!Jo^s1b;4tEVO=E-lgYdB=2fb z1@|r$(@GD&WTB>g%qfBSr4-!!GFq9kI9!3?=T|298PzO|Z7hk^@sd{+Tw*P)^l%*u z$#2U1x|rWU!OaiU%DjQYjR}7KTLeF&xrLK;B=K#$q?Lk8Y@?MPZfD_x5;DI%=D(}p z=6BZ0biv^uLU%w9LMWgo!6zDm&xj`Yj5vbNNU)HtuB<9iM)FSfQE;p3tCb!eV4=T# zTpWn`LloTnVOp8@ad-q_Bw!3-EMOdAJYWK0B483>GGHoU8ej%tCSW$fFLN%zFKj-+ zFKiLPFKh|HFKju%FKi{jFYFtFU)UOgU)XmRy4d|*FC*FSjS6o6Hfv?J;P5trpTCpf zXY95x-QF?x;3fMNT;f5k%pn{;Lh$pC5&Vo_EWBPy5>MhKrxje{Z(5nNIDCQN=U*oH z8P_Zve?=0n<0ZEgT;lIqnL9ZAC*dC8FTz8>--LkdZXYwq|NKjf%mg2rmEc2j5Pay< z1Rt8$!YB4V_l%6>-728q)?H95^BfKrCKLe_BfJPGL3kNZn&4ZMBlysY1Rq+3;6tku zeCVqdPT8xhri^6WuPL~7*VW3@!{OHnettuOpYf)Jhvg)(30~4n!6m+}m1%*)tqFd9 zTY{g_!NN+r#*TPNX9btoRVzK*-NFy{stm^bPz5(XTr1NPhYg_@AchbNh$kcfdK3Bp z`VsmA1`!4Wh7sNej3A5zj3JB#j3f9H`H0|`o<{IXpG@#epGxpc|CHdDK8xU&{yD)f zeICIteF4EQeKEl=eW`_=HRU~6CL_77zEW`S!Pi=uRXF@DVGZCr!g|0)!Y05Egsp%b zgq?uhggt=$gad$|2!{bb6a2bQ5d2DiCHR$|A^4S^BlwkGB>0tHA^4SEC-{}#BKVcw zA^4U4X26t_uDd(y=|r7*4;)c^9~NTCv*UGB6J3HBLo3L2);!a!G}f=d}uF%4~-%C z(Dy7{x7S3xjAY$O3U1wfv@*#!+@CN2Fqkj|@IGNUU?jn}7(?)(9};|MD#3?NB>2!t z7CM!bbx)R&tb3}0TlaLW%%?a!i|`p>4q+}}KEWq0BKV9Y1fQ{-;4@ZQ2(Y{PwTxs{ zs}aXTmYSFNBkT(}XjCbA2m6s zrI(THbS6S(KvqIFKu$s~KpukMoqPnpAI}o}eiS13{U}24`%#SG_v0mk-;a_6zaM1? zem}|+{C-p-`2DC#@cZ!!!S6>+g5QtV2!2265&V9d2Zb9q4U=kkc)&m|z2z6btXG7$W^WVZ0G{TG8z$w=O%YzppO%Au9XiNm=Gc>wtc z`2ht9&jAV(iU5icUIdgNybLH!C<7=@r~s%;@awKd@GGrB@GGrF@GGrD@GGrP@GA`@ z_?0#y_?0#x_?0#z_?5P>aMAu#&XzKg9d4uGcDSuprX3DD0~YM>gXW-&WH%2hxN|?M zl|P(hhNKG!Xcmx?DKRWQIw5UfTIrN5aglLhQIRoWX=Yb&fcyi-=Jsz}wL^gJTlnBBR3M z{lQKD2<#zw!LkfJwhG7GI(o!L|MO*E`OKd2!Eq7A{_WsG9L(k$_F&-mIFQ$^J}IV0 zVq|Pga8$A2xJbX6b(oNcr%)^+I41PTYUkki(|%X}?dTUcS|~UvF*Z6lF|vm&EHq4h z#Pkk}Pmo@^i<5nuxcJEE;CR_dzZN~dAIG1y=M|d}>6iKMv!?mQL`Novh5kpz4>+1H zAyLjCI4U+K>_4U)!j!x*VKONs>OUv^hza@K8N@_}#q{{kIWsUPM~s|s@33OQ@$tcZ z{cdi@p{#bh|LI@C3ne6lM8}3EN#lsHsJO8B|5)G=H!&$GDJ8RPRL`)4w3O@#aS@R* z$rY0lBcsw%ayOPsDMl{0b}^CfHH_?$m^Lx3%+R#bWnr|$dwsQ6o&?PB0rn3{ zq^1P^mjUj)f)c`dMu*A8Z{O*lK9PwLL9%B-Np@vbsy+#w_P-TcwT6Vo#kfq+RR|68Hesy_*x{=XGky>d_$J^e%+QeHPEGl* zuaxATA+fOu{z|J}^T`4x{9gssdJ>TOe-rRZwI=}+|E~h7KM9!a1MI(wNKL7Ui#;kV zI6fvQF(ND|Bsd|mM?z5LSA%%_myclIps2`@c)9%rRjK^sJ^t+fXVgC~mjOP?{>qY? zQW~r36B#ET_OQ6p=(zvcD{DOIIoH3^KFy}4)Od29^0gk67#rmNCtkjjBV&37=~F^b zWQ@B#Rr|+HWP}g0k9DajC7uLDga^qpLPBhOcvNg3+4;!CpjV%~+e`h+?6X^HO1UR5 zv$wxsxlup4V&pxFNsNyT`bX0*{j2TMPijixC$ILO)hhBStHx$Y_WPh)MR{84X@3m1 zKRVhUE$t6ufAqCKI@=#_*dLAUk5Kz#fc=qRf3&ebg6)sy_D4JWBhLO9W`8uWKcelA zx9pGJ@*_1Q<*Cr9aQU8+Z}-;(QgSwo?GqCf8ysrCyb|z@m6A6$KC)+|JdFh58zCt^ zQl8CHvL=Q_%LN;p7;LNT@nPXX_9-bWInmbn~r|KmkTE$vS&|b~of1x|e;-kVk8IC+!N8;-i8RdPIa_ z?@OCkWo`>2|7J~o)^b1P`5>T065iTSd2Ec7r^FU1dBg3)mi-8XM#hK9gKF=vH0hl; zCMh~ZZddlXGAJY}wns0ysO0JoNO>CXmV9O-!h%EPiFb6$({^M(xWO?!B4Xnc(&VW> zk6J=hQqLg!L@CX(MkGc@1x1I+MP{1WuxG+!V-sUy6T|TFa}S_tqf&CqLw#t1y=w-^ z?K3GcEUnr0l$`PummtmMfy_PNwy^=Z1m!)8ij0nwy^u9_aItoOBE$Pi-+ukRO5i8>g{g@b zGQqK676%UefvULpTPcpbC(YBy9#3%Kkm@+rYqgeM)j6DPdIYQ2hZy#rx#=Nh2IbnV zHkOtfP7>B`$KX_%gQR2wR~wR=<8X}2yepxe-k0-w3&pl29aSGSL0Uo`P7!QN8bJ79w27Y%GIfmr=L_g0P`L z$1(&Nv*mY0ImLqa6$gN7k&t{ncCS0+q)n9IYYd73 z*=JjBi(I4mcASo$hC5LiM7~{uqtSdhPLC=XJ*F6Rpvz*t#*ONBfX~P7Z6}b==Q4{p zz!xm4p55UKV!CDF=tFhGu3@kO2Nkp=91}J7s+;Fzo~FS}&Duo6@JRcE3#+kAZ={GE zdq#F6C=(j@vXiNw&uAobm~@v0Qy2k!6VHo|bRb{PWU=NVR*Vn8iatNGIXoo;( zR6uAgKxhU)sMsJ>R}iXS6#x8kiNvKsM)+S#CMrS*O%;vke=S6a8I?9NJFgfaD7833 zA5@SK2dZ`CaDP#vg*5JIRP?)I`3Xq^lD#+Ktv%EgpTq%q^9?EC-d&n&d%H4av&Dmn e;d6_D#qmE&yQqx!+U5ek*X0VHLk#xK)x{sRx|rYq literal 5547548 zcmc${2b^Tbc^`;KEEZ{z0RkW!OAy!vu|08TXF;STumnK_f=DC?g3UMGue;w&Cv=$E z0kD#&2uiJRr?W*@x)mLAAxxV_mOTXr07hHG&|2Mp@*QrOXbH%W=9d+BSX4vYFhDY8v zh#Hl%&QD)GI{vBA`O&fA#X+YtdS-aI(k}PAVOWW}qu~u2#-JZHilt7_uQ#HN(eO~| z`F{6V{B88r`0&Do(eRRbyBUs#Z|e?Ptq>nxveWKvjfNLT+qHvd0K>=>lcGTzl}MJhSwV`;m0yR4{BJ4+qH>x zZU*O)T^mtrtK6=j>unAILhXg+K89=r8(|~)O)KcM8)3UO8s6l5Q;Yib!A1we0ztP( zLrG7s)Zgud*u*}XuGLNDc4v2E(C-tDMo0+@j%xV(70umVAKTRJaSsl)HsqVp@OI+A zSOP+dAOGEL8_BwNBtF{usMm zss#OD6k@uAPNy68dZnG9+lpE>?!oY~PPe@Y1c5T10A&m>=W4o9txnQhUR+*0fq$*s zS9q}%Rnh!5;Gy2e6fV_2T-FU6VbBBGFRp~!qv6&4u-Rz@{jjHqQ*HC%lKpWsyrxv| zHyiFRg9Vc6f)MHg$#enJR{s>YaaI;U;R~HzjN4i%E-fzfqJDUy6O^~OLulaoN_sE) z^$?)s-@cY|yV+^CaPWG-$YGfYKLK5Mx&sBOORpdFqjJ2U%S!UgX!z1hbKgTi3l{MG z>43Sr3+mjWyW%LC+|0+}@M<;fGWNO}H9*EZY**v23qor}{E_GJP^TNUyHS64^mO6k z-WQLCFV_40PVfGOg=!lpD%RTV8g{o6^>7lK3;62cYS4@tyAM9m>WAI?mlhZATgE>t z_@^7z292P5-%0#=4gZ|NKkNAC^x`6hsy`_sgu|=U)HdUp4X@hlEo=pypcq8OP0q`7 z4u;poJ5*|Sc#7G6Y z@D!cs?L_@@o#*IkMJUb>*UC31A~3WQJZ&VC+v{Oa3A^g_^-3FIwcQO%m2SIJY45Z~ zPgaIEgTu626&&1B53G(81Bo`(`8q^Ca-t8$77Qhj?R9#!D zR)W=~wT+Xfm&+xNR2uNi7JJ)Z)Q4q2%n>r6WyTA7y|CXqQERj}0yUyKT8d;c$6Y(M zda}H@vAQ0to~l$=7f-KOLU-H~J9QvIM!$rpREJ5ZOC}aXqrvcy-3_&`dXGwA@#VVV zDTg+DV19!xxc5C~>ITGuIt}`>9+?Jc2%LB@(3GZkMA7?2_ufldxkgR_cjW{H>nP|M zUJ&&`JHu3D-|hLgKg5rXo!uIwTQG(=u&eEq6PimqHc=X3md@j zLNkb33sJMSKq=U51&zk8aP$hNEn5aLwOj18Y7cjVod^5f0VZ>U5k1YYxdAe4cR`Gp zPtfSpA=1E@0wCsABg;y1XiLOPzY8`$`tTI76*;4t+rKEE#UBP4Xt9KAL6YnRdmD@O0v!aQgc&I(?@ zt@WRJBXH{L_x9+G>R*nQTb!0N-EOdJA*kkC)0*|?w>$07=K3Jou$u&N$9`Qjn46zy zK}KQ&3QvcS+?6DRTT)u}$9KrQQ##2q-?48W4d~8z1^WU!n%PeSJo2Fq6w-cs3?tW$ z|190Z;jLC*gnq^Y|JncqQjNk2DCf4Iu@mg}c+3>1p`I8tEn(dfe`|XPMZPt>K5ipT zo1d?Xf3AepV9=nRdMRXgGoUIP;ebITXiH+{Z>bx;Hi)_*T~j zuH$%w4e!(&uuB@M0UOl-A347O` z&%msOgu$WppXBrP2-Ym4t`#>N3Y1g22iTO>=d3b?)A`l78h4n zR!=XkET3LJxwL+IG386@nh{iCiVx?@lgn%C`1<79`Xa|vD;*mXQ{~~o<~iT3EuT8Q zwzRZza(S6cz0EV%ayQ&F+}i2I<&&$YSJzff@iX6W3eTh*ceqoSeiP}F0SL_wUyJH<~u#Zh39bg zA|;X=`qO3X;_@oKT3*GLES+A%r+0Wib?naiZv?})dpgxZa5~6RcUC7)pFRb33(71( z`;b@b29-z|6wY_2mzUO7R!)Jg7KsNR@*2S|^ig-P(`%61(N^k&awn<4DZ7%8hui|BlMadma=B$49#q!sr1iBDEwN-VBmmdnKdEuK+Y zU{{Gn0rQKeFv_Vl^^Fhr-Jn%zHxmN^?*!F#T)pcgv)|Q>!@8 z>tq8rc_s)IJMjf3wz#&2`K@zFK0@rZyZ!NTPOUDjt}m?v?>rv9gVm#Q(Gzvh!TQR| z+Uh9~@e-J1%6Rl8(FkU zB^^@5-7DCQr%#<+2Le}?h(5Jf_7m!%P#~k%$39wGSw6K0PIwa54?en{IJY0|Jyy$$ z;J0A(YikPO$?nZ|WdMyoUO5gB7&Jr!IT@f|mw-M_Y%9wvC)dI87EhgC;ch0^OpCR- zXZp*hPOYC>JdIshJ+gS=36|~7Y4Ozh%KFmksg+ZwF{go;1lm_r61LS>i?}>$ zRl;+{E>007MC=>FQG^awq8=K-Ri(JVdDsvorH{0NW>_kXhIf^Ax zr<=Rgll^e(eII#oG(099;Be@+O0djJ8$mCEt7CBq^MWl2&3(5dF1{-oFMp);((1>y zUOwB#ywg5h78BTf^zxJ4b1%Q|#L`Ej{XSYL^}9hiG#^!8Yt_$2Ctf?Vy0gy|SNTz^ z2YGKlT>HqQFMsI$OWT#F@ZmjaQ#@H}1h4OwwtJ-z9s$^OSDXvBS3mG_b^F;50VfM- z->sGE?VVB|Mn2R(Sl(@=l|tpZqB;mGgD1{Dy|wZ3KHr~mCLFYAh(e&y^LWMPsh78& zZ8X=Pt-^0`B5nNjvF~w^=v}>Hu<~3~TYhp7aAS_k*R=s1z}!cJByhJ9v*72%D_D-B&#Qp%1<=h(6Fc^%|Th_oj~DY~nNm z(-BUQ`Ly=orL(&y!o}To4NjLMRxJg34+MoexWI!)jc26HenlW&2~O=yRE`pH zj2J(Ort#QE^2QqlxP2LsSf;UXO#g*!>b?S)Lipe_@ZlbR6SjB*C-vA-LB-Mg3PT@4CMpiH1+@}*7b`X8(9*yjSO^|E ztT6MqiWuZTiN{$abN~Nu@oH5qu=xIh`r`uqTMIJLhxz9R<tb3cEQh>_nA*{lTLr*A|Z!>LGor4<3a$KRPzZMjNr3=KX~w zHHxK+1WD}d?3mRkilytVvY-hwYqcOh3suc*L;36;Jc@b2>(}0S@F-kU-Q7+juWWVQNl8{LNvV;|t;##R8$hsTfUo0>Qe z<814|*$QNvir>-YdNB-oWpW>mS~M@7rg@Hd0sen@;a#K67ZAJ*`In16er$w)9Up~= zFK8#&*zWE2W6 z(>e|O<0tdMa?tJ(us^YC0 zTL#0oTc#SjL0oh}ZR>|M6^I$G^yk{k4yN?DPjexOL`1NR)CH)*a3XP7#85L95-`ZMFv-{08N?hUwgd zE{%vrNgUW0z6%T64jKb&ALyXIQePcjj6*wm=1WHPQ}y-DU2Hu5JiHcIW`qz#Vvy;Xfr*4H-A>%Nz1NBpS%8S{Ppbp3ww=i#M@@dk)L+t%Ub>X%Zr*&jV)yBz|{ zt_`3Mf#AZ{$o_tXQb?iiL}ErdEK?F~h<__P}(THm?1wbY|7Ed%km z!#4osDMr8@fYAh>X!nUjxH5HY0nt~eAI?5ssQ^ic9K>R0dv#}5DT6&kXd&*fR&!vk zt3ynwFrcMauo;b*cm~(T-D19Bz}Meff4~B~#)R5S8%Vpr35v(MYAXyoaq!$U8FyuhDeRdgUUpS;ju zaWmvWuDYlBj%IK!YN9XmLIR3<#{TfHuvNpi@r0F-E&(cIePBe+sMk_xmcrLSfJSP? z-(8^^^-NC__fEvcn5EAyJ#*V0sPAi4_5A=i#7xJD-Nlg266U4FTsW)&Y;*^7_+Q9 zg#Js&GO5Eo0OMEL0QGhQQBn8IU8Uqdtp&yX>#Oz8C^}I;8!`3xBZpLK)&;{$_`722 zhgA=i88F(s`XX#3|HW^wi(8y*1lz1XR3YU0s{Q#2^_4J%5#*|YCKEJx7;U~qaxsmf zysK-h`Xlu-mVaNP6hcMd5{!#^d;P`wOQv6ayS`)oZ1SK0 z8WBLD@VHU(sK!OxgVda24?;7`UmWvpRIq`{`r0NN6nvyGFPzsZZJOA z;f*o?RIAdUgBVr_twE`gTDaCW5I&Rt=kd(IhFVk7_uiPCsEjpnLaoE15hELnCq>XBJNffhq46Vg0Dw8(q@=p6r zYW8uHQ5%Ps6#GyR?HIC3&J3rZC9WCj2c%Gy!i-tBy=q&X)TwFW9$2E`cRd?-HP-k%xX z;dBK}`LvY=Re{JEF;=S*A z_!D=%asJrxH(&Yqs~`XPs|&UJ3io{c<9FSC&++#b78VM3-CbygaDW%URth_i#$f^a z2!u>U13L`Y#KOJz9xmKlcurxtSJ1q@QsABzsz@&=1chh7!;0v|j*qB(h{7BE?YwsA zsSbsHy8sde;@H*plWCtffD4a4|9rt9tkA9&T7ZKYwoM25Sk~Mtyz$tFo_<~}{CwdB zJEKpEAMulLF7@j&Q=yUyzg{?Ou`2W7hsWfT`^+!~xgd^Szff+#cUgE)FQ=&f$^{-{ zwil2|Y)YR%%@rm`fjW70SK+o1ZHEQSRBabrKF2f`%^>t}0)ouZ%%CDmw@xVqzlcav zclUWsP-hwq3#tg(IUAJg$B3}PgAb{%K@B_{$BrL=uYz;lB^Uu1G1HtFc(2;+g~FrI zUpJ7b3yOg2I4F=j3vylyQ4h<6VjfnCg^xsyMqwi?bm(sdJ%EPP(EWPQFYEvhy60i6 z3@m2QP<>hj#NIblZ$&|H_G8_OWZ_N=!M?fas!0KoFI)HYITScxh0bj88admjyg`p* zqOz4(&7Pm$4Z!?C~j>5Y+= z_*Ww4ELlskGkFR}H!S5*a1=nImzzA~v3B_}auD^CApm5zVGvG8_KAO2NAbPlrUwci zYZrFHg0kBS*y;j@!Q$d^(56{euRyFG{lMAh&Ymzny57-;)!q{_(8wusl9lNFT1#MXOg~c70VTpdr+1CRDeycAW+MzHcoYN^7!Dy! zFdoJ7?)k*AdkXLI?k0Y|=lHSWy~po4uE2tqU`I7`%z&3*tK86WQaQc{x~v+Q2VW3E zBr-`Bue=)Xo~-=+?E!W|(^%YCYxkWEPz0E0j1lg%$%sVWRG`xD%JZ>Z!Uw`BifH0<%bW z!Z8jNLucQ_l8T){uYSz=JlU7C5uPR(=oRk1+Z}9t9)#~~l0a9>d1d+4BTzLg78)8UPxd`;})*|-bWye)bhD0E_XOyxZ6FGiiiy?E?Di3cFpyUxhGJ6X*MD8 zB_UwHVp_U0{+sQn7tK-b^l-p&bY`H!fi}h*u}f+d^ei1aUU=}q2MhPyGbwaA-InV- zLFGV!?P);|5hRoYRtfG?Ri_Vvsa4p-bsgfkAl`Ol=yEze1<|0`9;;#xS6hy4Q;6bU zn5vTU?rbTa^wGlUaj~)qpQ@ZQInmIdxDjCB&nZz1fyyW^Mz4{*aTa8l!FD^Us0@u0 zyi&tfC4M1XK`J#nPiJ750;jzX03MZC?`V$&~(-X?T zsQ$h6?;BVnLqZa=)>7ss0g*|(=q0dOu?8e$g)t{yttCI$%PadSe~M>V-H-TOsp3Apm=$~ zv9fMg<`4r$Dqf^qfk>Fu?%~ac>6J-N0gR>&%LeH^oI>ofQ$wsuf(+8y?N{)Js!MWW zH4oowgYuOYE=bVu*zT&JZ>!V9%>>o=k(Gt8cX9z+ccR&BoG5dWypdypngF5?Q&*b- zwf7?#GTaLS$-hw5m~_U_;wua-zB&qRKMM|m2qB%=gsYlK{_Skc0pMUkACsBqNqGA6*WqrM<$F8;j@{#oR**Yh$Mh6i*?eGQ4cUMcB&R?b*TYkSues^3;##t%t*Gjtz z80!O0nm@!?9Danu@N%rX-R-t_aNA72xk7&L#D}uL-Y-9X(QwCUUu(;CqC!sdp;TS_p4Mdt&yR}CAejC zE^fYFH8Xx~br-5NCfLF$sxfp3Frn6%PKVFo3N^F*khL9udQG_$jV1Y7u-EbWGW3UJ z4zO)LQsz~3IN7(tT^yT=+V$aO$QVJilB-mIYFDuu@GT^IUPgh6^hj_osy5Xya~^I^m2(V9p?I8*++I@P{B1vC`=IaW-0G1gJScAMsF^6I^s0n8=N-au2p@~ zuy6xg_rt@T?2vapN7xxhXi&qd+FJ-W>2r8}+@Oe2T{6{e$2NoQK#oi9fo`Q|v*U!0 z=~RQ#(5pMq;XCDuyh;cjwCp`Ib)8J-NZ647@Gjjs?^2KI{#t7z>p>(4jsV`6F*nxi zp5BOa4IUFVI?$0?xQ?yHA0fl&a@(R}t=HSXnvPJnp4of@?1fs%4RJG=ARYTE$b4zo zIstZKyWJ9Z)5Dqg?(o8;xZBlnHEcXNGNg2L*|c91 zk0Zgn;UNl|4`9RMwcZwYqM^dP1+W)}mcex5Wjn~X-6YQgDz6#vrWlr5JIpnupbW2B z81%Xe8@L!eHVX}~CDkX97^db}s9QZ>yfuD@P?!~A)8 zGy7xNCHclCvEZv_bS^~3fMLM4r^)V$)l}Q(HUkY1C1?}#Hbk-wRL#*ktj?2* zjW2{e!60GYm<}e06?fSKL+!g`!0mz2*_D*L7{)br7+X3;^j+K<*5jAS({TqO*7^4i ztZQi)b1Uv3mx5?CPzg1vJOZs6xKcoPAr5!-+Zc%Clhv!&uh5pz`kn&|Wp;3RgR}<5 ztfTWoI)?l0)>l>kw)ng6h&y~|{KxOA|5FR%yW`H^ zV+R@D9G`5?E#?8X_wXGlU9clcW3@e*T40#)=BHqL+nH{DKK^DskegqS_}dpI{`N)q zTkP=L{Nm(aza;tBxA51^PxD{e=|^{|`Sb9`IGCi}j7kp1&`}f&sV`vT!48NEclng} zz)=lvP*tcTp_3`XCHm)`_N!ETt=b%KxJfl2gN_BJC`fhjuCI()+x4o85w^Wu%z}xN zX1|6vt9Ec!IysSjZp5)O{1Md!+EPi<(#Q>tF~hvi@@JPS*CqY{j}v14$R-+ITxCm~ z6es|g7AdBoo6{)cS6K@Lwum-}5kwz3Ymh$L;G$B2OG6Mj30WgJRO%AhiTEmK1E1ID^Pmq8U;}C#JykyYLPC!z&XO%q#;PHFQAI;lU%f0>2cVDE^) zXT?$&lC~P(l!z~p=u3OJ>Qb{V8Vlz}3rEnd6pdI8*;eC=(k|1uQU~duP8(Pr=MZWb zUIN|H$?1*ZOMFZxL=G=qEuMrsz;dly?MRS#sJYg|nX`RQt}b@szMD@H5l^|;h_4~; zNi>fq5Vd&WN2URt>y>x+UcEo2(wpoAAkm$Uo1ePGLA$eV#Pv{yPgFSfT-3imX0@Ab z&a%UQnfOdRAEbuDIj<|6#Jc(|b|R*OqY@h^*V|4gKG@u7fz_!wnD!W*aHwF{kp?bl zX6}i)p6a2w7q0Yrl`LmzLust0odyeO3@3s$SIl}g-@(Pb)7^}BxM0n7^AeRFrGgo4 zDFMCds_dIT3xnRy;&vCDX!Y~i5j_nBPAxsuR*!PV$zyalI$@%jI z`)4HjRMjU67OqSel+&6#^u7YT9WdYu)i7)zku6klSa`e2bp~{i4}|}83$JjZ@U6Xi z?2R|{AC*izfBrZ#kvR4%$-&`bL`qeIALu`t5AKZV{7M(rXn2Q-^y#0Awc5hRUixrl zd*k(IKKw!FGZ*4$_|W)g&=wYSm)^pu)2G)_L}Kj}O01kdiP{KDxC?0jM3wWg5UKw_ z{RhoXZ{A5NI_i+p<~{t&G3S@TU}Jcd#Q0SCLilx_ypSo6jQZ(c#5D34L;a@BujgRj$bWq^|Me~S7d=ZzLFY9V(d3O?uKEoR zLCaS*H&ldU!>4J8Ef@hD5~aM+^&iSx$P`G1XHBNGN8Dl^|%k7TiV74 z&uuU2>LtU+ypZDZI$l6=a}kj`RNa^vOqZz<6W&LE$TxLef5$g%-BdIeqlQoT0O*JT zOAGmcIL%0AEJq+5x}t~g_rY>^&GL@sAb0B)q&kTYp4+V`-HP27{OI1< zN^1BH~Jz7GU{FNy=0e@tTt@j3MYaaR`gs;rcQc|7WyM-Ea!J~%IS@_HWT^FbdJ zXTYrafUU43W$7HTeAWld#i9?I+g=1U;f#7GW$TvtfY`<&tUlbhqxxB)3t%*S-Zv?i zawa^dQMC%ZZDc~V4k?i$WC@+iIB10xucCzuto{Wf=MJEjA0Gf*0X(eSm*v6Mi7ONeD9GY4}!7jeZ%^Aq>y(ePp4m^ttXe=+!F0B-4J z;F5euWFqo3&NFNyDr44==E++?*?3OMbRXOVs*~M|Tey|cjY{1B6`s7JFa4Bi#YO-g zgmgg25Gy{VFwa052%F1+lt;3t$`WVQu%d2KKLC^P-l?t!ud-DbH=f;O;59?|?%=IN z2qA}LN$$|38(L|nO*$KHvPThBcTiIVc?rXqAyim)0JqhYQeMJ6FUA{@VPeXI?L?i0 zMM3?<@z`f13E-~0ajPuY?a#xRT-7gg zBi+upj={PuZTjBNMIbKWrBe!1SP0COPvPl?fP51)ZQ#eKKm$a4)QeVUXBTV*Ssy%? z#EZ6PadR6Ahe$LH1{Ged0MC2YH_%k)KB|^@Q*1QMKJ@Oo zeRxUC-0fW4R#&e^LzNpa?vippTX3w0%psh<#a7Tl)W{s3*ls6~EbYuu-ikG)gnhz? z-o!l3X~~?V=~$#k6k!BJ;!!1XS`C)mj|o=DW@_WVl6-%snyt~4)r`zvisBAVk?h&T znCwwR!M7Unbzs&WRb!5y;4o^zNzXh*pQ zh5}*xtsPYX+_!s3qk?P&A*gCvs&uPTwR;FL1Mhe#$m_n$F)?5VjwR^%NYcZ+{5o@N zJ^Lo-k~~~w;9%2w*UWn?c05xjS6L=>oiZV8dl@)+(06=gUwuf`JC6U9NYE*#GkFwzaFRWsq^al2j*jD% zT0T5G0TfCEv6$*V8ouhAaf0DMYeFG0->_~s$WV4G_L`{qRWCJ`pwY32VKzg{+DAw3 zCp5ZqklOI6W-ANg{Lfr~bSvUsTnhoPMl>3pQMgIhhiE3bt;H%BIxES5krY%uY#^w!{i%>8@ z48Roz+PGHjDNlfr_$j(!CcU7b9Rhu@&wLUu2YXVFLimvFo-z|3!VO%NY-H4-Y!7sD z%d*EwP%@4C(eUML`k!bK!FH|GL1s23j`xgCKs$)Y;Esz4skq#10!J#vAKXYPIcg}+ zi;XG5B$W6k74S9s>A~X%37`r;E5J`V6Zb9)%-mkLGgRE|P%P(cmgA`UnS(fep}co1 zh=jvCRuLZK~o1T53o~YJ6;|(0qGdF11mH|MawZee#AxXCGG()+WDnLCL412O{E+WJWX{N}0BIi`CWS-8 zk#DeRw_6Ee{Z?F?IFv`j2Ydsj>ttFDe?rcC59pEA7ow6-NHlIoPeYdQc@65bccnzje*sy66$BsDlcQCLRbEa; zAcj%y?30te(!_l9vb9*Hy6R0VNJ=W-Dw91Z%ep8$tLlKDIIcCJ($!abs56s1>?zOV zFP_XT0$&AGQiQGH$`i+kST^Z1-s4M9cyashbvG2t9qV{Ve5{|9pTU}B4L-~!d#F%CN)*@~&IieDFVbVnd)?YiIEDs8yFM_cjX^ee_vn%jeF$-f zL&2&2^QYa;V32X=Vt@y_SvHCM*PDEjgM_wKU}V`hOW(G|&MD(r7(lSkA{mmsn;fm&DWJ&hi1nVc<=3o92;#l zQtq+JoAAoTB=_^}R8cEnX-<5k=OAQlyRJ z0zuBY;b5gH5;8GuWq|sy;Pw(TwTL1U?2bAK#rJe0Os91`G9WwdE?l_1Q*qBgCZ8&gvNmyC`wwyUuxy}xwB^;d-`k&Cp6sB zw`-;iS;#1*uV?*{%)_}4`$*8a?uWZQk{KYbE*D`FL;h{z9`#I&CqJEZq%CB4;z=;F#E)kVl_fdT0_J=Y z&F@U!hg=MW;HJNjAJhvJ%!Ad$mv6n^l&ty1%3%?5i^<6Ms5P5FqC%ee3&fH0r1kJ_ z%OPW5Gs^fxHC+9G?~fq^$-PN^8F}xs!{U=jCwiAFT3PEhfXk zBnMERe91>*ihE@nrWVam(&Ct(My{XlJAx zR>au6Rh-^7${;l&U{&J6u4qfDez`p8=oBY{czMkPTmp_pq&;f1Kk6Cpw5&KdXKY=lu2Mcv*R+*;Cl6%eIEVMcLFzN)L+!qVc<_QwJUfxV(xt(pM zr(~(JIM;TFP>v)^x#uX!1Ez{evA_&I#MLxiM!L5BcG!!?B}PQbkZ zrA>2%In`Fwzwq`5su5!fUe}ghh>!Yo6B5G%u(w%-K{;f8yb!2SO?1S`Gch|T#^iWCdsJi$8okdME9Ob(MNPO(-X z6E2**Q4uIgV5zJm<#+ZvN{w&hoaQ2w-mP7DvsrZj-e{A)H# z7CF(4*w~ohn3XL_YVP&%BH*JZeJ`!glUeoJ)qbyz1V}hR{iax~Q}{N+5eQ&{ZQeci zI;(PUcT{zQn&p)#_D&w|1KH{Uo0%%0%bvWGchyX{v*Klm3(a!LHeE*NvuRM3PDn31 zTHsK5=G2|Ov{Pv7(PgaqfUkT>zL9r>_Z4a?8#^cbDTJAI+8uyR$?N7jkSx}qp^ z0Jn2|$l<0eL+0{wj@JfprsW+Wmimx|(3Qk@HfAo_{q}*djm3>F>^ADA@D7ZIZ+En7 zlkqNe2Yt{xOb)e_R+BMzBn#1NW9DKWOm6d@#|dyIn$WCJ=)*bq!fahB%$9W}d0(%C zzI-8?0Cl^39stsS6$buW|M{YZDA?7r0mHj2MJX4o$#qe+w@b?DfPn5u-zLoApT~tD zyg&rZ*E3IQwszni?D0}4s!Axrvrvl;I#E7sZiILTlk4`TWoMp*Zad<$E48$GBoiD4 z+R&rnjzVS*^w)Pgxc84Ik9vky$X>*7-CI;_Z||ahO287DS1e{C0JOAS(yYf-JbgEI zP-qVi4Ki(j%m)H;?wh$)CGDL6^13-b}NBP4xqKD2m za~ugH&C=^(w~fP*osfcMnEI<;B6RI`r*9F-JI!WrP{yHHa=Nm@v{yHU;8^cS3ctpe zP#wD1sqadxHpL_6>Uchcxa~z^S*o3TC2WSK?KC52yV}PM_>}0sE7=w%yu)N_x_C9D z9On;VCgp*ZD>B}7?(2}~pnNWlN$h8rL?*AvDGxlc$)^8133f#qoK|{@MJP;?@?pXy=A!8cbBfm%aQUGZ))+uRwjzz8qE9abKF014#P@o#wL3Fp z{<$#)52ml2Af+jI)0X#D98(I5SF^QCXo4EEuiYdD9LB(Yu_n0!z zW|liL!i|mp%5h(LeVTck*1VPSu#X<{aWUws9h{^2`5d5-BB?%`0Mqs1#L+>qsm>E&N+K$AACujSOiNGkS?`<2Tx~m<%!^j19^Z~+VAcj> z497{|n|;}%QH;e9TrTLFT{_Fe6EP}2cEX;OM82A-%>WG!XGT0-16J*tRee-@Ux?L5$9`YrgNVqw zK|bd}xazIuk;jsp%r2q9gH-n}N;vCSXI9RrrP}?DKD-4fHxhClR$QcnFAjy0Bp=i3 z{Fs0cby}cz%lA`6OsgE}8JOj|MB#X+2v3o{EN1&SGH|4B4EeL5r~HWRD_ppi#b;{*&HTxKrxwHlgKqQ5#9_QO(zC>bE;3 zq_araL#@*58OSHP%v%gzR*-HqYCEyf>o;wjZhlEmNV%m8ND@ZUS3GVs#@cy`S0Tso zF;VC3pc^qrfs&Huj??tvY;jYlv#*meyzl*GqMuJ2!Fz=WBOmI;#cZY(!>#S|9&?&a z3UsW{`{>+dz(~Zxg<7Tjg%owySzOlI8)bM) zvt`?~%PtRCfiOjk@9QvQ^<#Fxw%hx;;yg${7gJrv=!3oKYZ%@aNHQgGnK#yuvy3OY zllA$$8j#rHzHN~f{V=Nvqp0Xt?2dE-Ew~g7vV>8ff{5OMa-4bA!R0M>c_1pjNS?5? z5OYQDK`pdzTBnpT%qOB4a5N^nwgRrV7GAu-*^N}Va-$|g0p3fsi8Jk}AHIEY`zCU> zRJQgzVpEYJa!`9EHWMQ#j*cz43=L(Y3kHkF1C~pRrLA_i6~Si6*6H`tcoXw89rwEY zRa_+dq)%pOngV_;zVxnMH}LB(ndN;Mhi3f4miWC!@QQ@M@;XvOVMrxy4B$U*Z z7rd;1L#N9O=13TysIt7NoX%`IF>!P+)Ks0g)?jEG4(wnW=aOA zw|M9MNQZj+R+XQ{H8FGVevG=P>c>B+R{|1@$Lm7dSFzfYGQe2mIdz0T8%b@NModba zQHSF-k}@+(sm01YU#e3tMXS5#Cw#2PgF~T)w80%uP3AeVhc-{%(LRCL1QqIjs;CU# z_(J|(A0?ah<;Pf2OD5&nM=>SGFeMsp_`h#urj1Ai8)g~Kd#!es5SHV$l5r&uTxfol zaR;L#OTd4de3Jb#OUz^JnZ7<$CHBj7G|IcV;GHL6y-&@_#2BUkC9aD~4NBid={P|$ z&KK_Z&V&nkhC-@XsCvN>ejpgRUy(!>HSi3?wbjZ?yDBKTlUDMVk<84vxi( zqI?Ap?|bRz>G?*2IJa|rZXa!m?_Q=6dJget*c{9|>t4~fRYZ$XHW3CmklG^&N%5eM z3=HA=_QSNPa#Z`>V1|bf50+s2H<@Gi4mHkrEg__E z`aiwU0dmD*R>Xm^+v9zY(nwppxVCqjh=u>aXSHA#7|-QC`_ip;1$ua3(4 zTyLDpnXt!L5(NlSw{mbIokEMau7P;1zS)I}CC=L9>g1TPwKBxFA+`|@2ulu+*Yje# z?GMA%hNK9(#?h=!q26mO(tou&ZWQ8**XAlFF%i!+zCrqMpU*tolX;+`3jKuB@~^tm z0$Kmv`?y`6GmKNf7@X3f6XkJc-5dmpAnK*=g(8&cqx!DNn39>6W2q+e9ksxIrM^`5 zeYVLtHDB*j1va;`NhR@Qs_ziFQe*r&u2|s=9Z;w8COqW83WOHJ?g9Atyq(L&i(p=6 z%Z`Ulc9vwd@RsZPJIouD)PZSFhank#I;<@}8pikHoaZ*A-iwk~^OK3?cDGw@he(3Y z#^2=B3t2XHg^0xE)z30bRK}d~CN{W}R|4%fIn!2b!a-DnLY@B>vXf-x^-sA+D)Y$c z1H=%ax@l(gi4_~M6NRE*H9@;3RgSHf!mD}h<9;4MlBC0+xdzrBb`_@FesQ8$QNzksThdqP?zi@Q7dKRrvKLj3{_fjCrx~g~ z&b1dv4#7pO(q4?uJ`Vd3Kw^Q08stfN=6Ey*v`Ba#$jip|jlxMhRVf52&1rg7PbD6e zs+fg07U&psKCC;*}XygJ1M|5rJU=ak})@C;kjg;8EJJbaFE6B<5 z`oawV^{v~qsoVY7>M&DWB{AiL>8@vwF03E>y>HCBPB?M{GI`}r@!vdQyUExhigZNf zdV{+>t1}jkQb}y{^2hY_Eop(n8EIO$4Ud-=cwyHI#Mx&rzGLqf1PV6M%Xl)iz&-C7 z$EtJe%CY2+VKy>p#a^lMPTM7A+Y>>VZU7GuQ;L`gkv+&{+yXcFP_bqk#pu8`$TXNp zO>$T_qHb>K~b`8ySbQ4`sl?`I-ZUYATJvBMuj zj)Q(F$%6Z83v5Jkv8pUv%030Lqcr;*#C?lQ)@F#)cMh#iiMcI7dW2wtu@D{isMyf5G3M(-m@|Rw?kTtJd?aU8n%6Nb4Ae**I$-$c1JENg~1(2`j$n{sHee#9WfJJ%Wd5*$RcQ{CJ1b0BoK^0ku!FhjW;R_1%hSb^X8o-ucIyBl_DU?IykGBb#Dq1Kwm|q1xMa3v zn!ZwZc$3oE>sKKr_T}(;Mc#V7pimz<;AdzMsv`T=;6DLITH0H-T$qOaC8`=tS9KDu_vz^|_$Hagrr+RTK zTj$Dx>29;rm#11?%*mEZ&R5=9r;QLOoi6(pl(Eb+ft!vd*|m&X;q{3*s9v!C5SC#1Q|LT$MRQEBI>O$!0H>KuqGXE>dSfK1=|`$TWR}i>$-d8@ z%?gueCc)Z^b?`-a$=hA%n+R4&093zMLtWFCIkzZATuORG_I#2(ij9H2_vOV_w(wP6 zS-z*>%}2;OJI;wW#bCQC6|Yy1s5MkG2`;%HAARh%1rSY0*aKyIokP|K;sa|NnKC_S z!1b-3x;yKeai*2p?+oyYU&-b?kB0B@!C^{8d^psl6e=AlT4fGt|IG=AC&&-H^U^5jz3guBna4RhP$`WmC*DTV1AY0Y2A?>DBYI9*2$=CL5$e)>HQ#K$nJQxV=%0kl+J_tj0S= z#%trEGf77o7JPtP0IG_Lx5k5wzWdIEZ7hc8_})V(Now}zl&Xkos*}Y=+^1f=Hn?>R z`{rpI@q}WF^@*ovc@Sy1#2J}G9yH#7Z|q8}X2uA)1qgB{PX#CYJZct4QILN-Q}@Sl8;-@zFCrsbsmM5AU{7)mdil*n(tE z?NuvI*&HgVdLTtJ5Ug|@;A1Z%E=w#IFNC&X!L^}^cokq{y80$)+Dyp-y;8rUG-eDw zP|hili}RfZX74=-IrpD$hy*Zy)$0+W;rD%8;2xZX*=!O`6L6~_lgN}^@&|{iyd0xm zqc;~T$5>>#-Xkrh4s#ww&9Sq+xOeoeM75TFop(yx4Jc}}vNoi1c3w|W|8pEAIn0O! z;2FDq)C}7L=y~zuKXLH88l8h(j5HR+O7(lE*{+Xi@xu$&YbN(*Z2xjnY5YKzIy{hN z^K)y#2H4C4-*qKr(u>=<7@=af*9_ga&~uj$)Sz4o0=Dprd9#BucF1YQQ`6l_Z$~|f z=Vc#>^X@Ur-FEjh#Z}Uu>WE1Io zQ1f(^SK+8=K)QHOD-2jJq!eq#-pAW?Vw!I~x~bShMoJ1ga_|>b6o-BsIG0nNUCVi( z4I7AS0ZQp!?3LG3Weqmp;%pi&|$elT&n`YzC9;QS8A8Q<;+9^mBTJx_GM-H_3Kz-%VcfGZY*&l$&zA zPqB;_v{EhcIrdWF7`r%*zV8IF_?&bs(-K z%rf#VE-}j_Rc1~)+1*680WswqI~e!Ej%^S7avcqx72mu)DuJuxOz@Z_@Vucy6kgtw z^Q1r~CGL4<^PY6e!QB#*y8?*}cdL7Kl5; zG`K_U?6~5DBMtv8nQL}1-QDxddAOa6K_B82808B&*->!!)5*rED#J`0_~tUzvULQ| z0t#RPM_U7PpUO*z6Pz6!cU3oxXD9pZpDe)cMml}LGRt645ZQNHj^)^QMq{K!4@U1z zc^Vg4KD>_iDfYX&C=koXGIon|5or-;VXNI#DWY>_>nQK8%F%#e=jWpdyH(r~ zlJ^*5MV#9K-|se_s`TxQwBSY*Y!k2h#M+U*uWcjl5aRg&^H&p`ReH+w^#+ogox*r> z7#c$xb2L5gEyp@TKg*J;1qDdP-#M)8mdoVF-SR=r$i5=TD_2Wo`Nv$ zl6?E?%8F!$H(fJ>T>Lk=i&{YE+{@0$g8_Dva*ESY+kW`oEs>z~qx4qcg2|B?!>W5x-==Sx^$Zcl@Lb(TV(25vu zwwVd0p9Hl5YLadrLkU{-@c+p zicxF7YBu|Dw6@G;Iel%K-DtRG&9FrNgrK}C2SonO|SDgQyGF_ zmOd%IgQxx(&Q5@3CP>svmhh@_SBQrv}s8JMVMG*5v((Y$uB8VPSo;Ha)+NaRG z@t0g@mkA1567P*CEFr{$L>Ya)S!mR&?i)nyi^KrVOK`u@FfMfLQl{alV~j9)@_Yj% zdlV6l8x7@g=o~4gdn@mzxL5Z*++%NEi$3Xf-RIa6Y8tji1pPvY=SY!PFYfo97#n$= zwp-Ie`ncr^v2%uuJ8BKu1IAtYAuI{8r7J$>=rYs=hoSm*#_j9IWQ+QhD>(-TEug#V zNdvFbEc0{`_v%Se>8bJVm9jZ@vOMT^`3Ak!w))_UUIjGA{cq8?*pY(&Vc*^u8_*jN zvW-ecb5N zJyJ!bp~QMaVve)P3&y#njtA;YhWHp$%t3p)P@4^<>L@g(m7Q4QD$>45x?7k~W{aHw zw3!|2n0|mN>Ng-;KP^-sfmm7)^G+IT23tsd*{&e-wgq2;xkK*N4f1SPUozgJZB$Oq za}CE)`ZBl3=?mw{0369Cb$fN9^dqB_*dQ_RoRf}OD5t-lAB9M$lgrxUw`epuK>Lgy({0htD~}F$pEI*#;YA88P^eYrN_uH3Uq(TU_f3 z;Y0GSe}XeAbrwg%E3I6u2Cwat@wry2BW4dR7d2rpNu9(Adi9D0XXCt^>;y;=!#wK#FHfwr!vO=b*`!yphSNe>GFJ+=T z-Id}(GG+brJAWya?(%bTRkp&LRB5y&-|;bRv^e2q@+z@8<{-g*Q@T}*hmR^mrQ?38 zyK_=jA^Xa8xy1csl1atvS z<+J%7kn-rpFVDpf&&GRYoS*3&fqqc8RlL_J-rWgsQA2K>x>f8?^o~!HZ-bq2V8|*! zhGe|AF`fQd;LL^iMp%UxK<>kPIj|H+^MR8V$p?i;JXwKoR$UX>jjDo%j|-5*Av2IX zWYpl4IR6CrP_H(!M3FK{yx7fjsF(u`b=#H>*B)N*sRIeQiqIGhrG%PGu*plkHa?*? z&h5vDvV<-W7OvLCTk$qb-Ol zKOb`RVjrM15jm^Ymb@yRbwc*VbW#|m*q9kUT&EdC!kF2tmTDFHXo^WV!Rf*ysD|%n zYdcwRovn5+;es!8b|r1Vo6MET{nXQxa6q&nP_#!GPQ8e(p3yMdz3!gSOcHcE7g3^g z8%3_^N-F!bAD4Ki_TsB6TXhH>R2vL4M{(yj*3)-PXov^Xu694r%43p?+^+5y?Y{ ztFy4L>2*1Ky+?W(eaLYO26$PPZ(p&4`Q(TBiH?JMKG|U2nA^Y2{tu@Pk>ztjuZE3Q!~g{?f=QS+D5w# zznY7dCy5s1JktAWlH0LAuy%VLx!xOKC45DdUI|=Pl5HJ$KHDcJ-hB2cV(-4>Xld_~ zm~VcOi&{y3vx+tB^ER6K^t<^f@-?}*apENzCS&F1tAD{s>aE)Q)w0wVQ#ba^7vD&1 zq<-Pv@iSjkIY#QtR_zAJ%|P?j7jc{uY3muQd1O91!J$s3eU#$gHXr}iz8|NQLogpd z!H@OM?M39evq+SWPSRJCJ9jE=(x>@aMm^E9L=1~hrTKt$arpEq&QVWC~=l}%%v zu=RZoR*_46hR%HOz5GC*ksKwC&1e6EpE=d)yuL8g`Ok@~yJW^3V{hlkvc56_YrL{= zi1-P(jrtE+50PO@ae)&#h`ENJ9*u{oS9L8dBmwQtsr4>h|5_HodqxTKm&3U~Nbh&Dw-i}+8#6vtHk}@hdm~YV2>`_I z45i(Dh_lEt+4n49Pdq?obS<$c{@n>?q#dfx%C-q7E1!H{>o#GTQj2|z>zoNBz9i&GSz;*{{zXY`)P1P@Vjmuu700#x@?1lm`S+-Aa{ zV`&S>e@+aF)i&h>U0YRP{yJH!_`IfssVznUcjL^P66aQ_U4DaW&N^`WQjIbnWOl#C z+0C@WCaT6WazA%CtFHRKQ%gFPWR6$OOoiHUuF&@|=QtC|Bus7v^VrY%t}09o#z zaersp5{do^w0mYIKkKv>fGb?9ch%VlPi`C*Yv%x@>==D+py7s@r=q)7cG!j<6EjBwTGv1t8w1f0bxb4^%Wzk=Zx zxoZbP5PL-JcM!CccbO3rdqwX5Nk(uW)ru3M_nQdzKsIko1b={=cOVf#M-=}$5quyN z;fmyoC_E*NX~u2yiRP~*h7V@Ws^F?n@v#FVwY{SHUlR6#Y@H*r|LDNb;EL|AKQQtg z6X6$=Cb9%&F5Y8B`5MuBASXB>(w`#O1L0?TMEe4-j1NQ*B}M&dPFGUl z($Dc8t9q}<-_xZS%jZAk7!vP1;4#V_?YWZ!{z3B3nsSL8@IalQ8(@j>n5m-sGTe7^ zxVfyW-%SkkGBGR&|uClA`?SyXE>|_EMeO>JZ#jT!z$& zJ`l)zl$I~%&fl%@WO9Z4HwKh?US;n!Pj6pDd5^}tOEh^)y3zX;4{r+Sfg>TEQugyF zII{ParT^PRfj$B8B0;R=oP1KrJ<3n>&RlI&tjGR0e!G-&SXWhjKleT_viEH4$2qKA z>WDGRZSrl^UWM}|e!iS@)(M@m&S~ex)tK7&uSg+zapfv;=lP-cIXw?~`1G{z=B#s% z?5JY@+a!42t8Ja*xC=S)%zD5=%fHD{^L|F&BA?yO(H3)#=BRHsQymdd^r}C}Stp;h?@#>ogZ@ z$PJS{{#*JG#4j;DI9m={V1A5rBR0YGFcCA}+C}Q5ndnavV`3W305pC8O{RJ~r#dS( z5oE3lxZma^X9X9p`Dz{{@7*qEGqd&@DRIqqRFMh(15R*eh{%w`>wN<85b05jpXv97 zId`mdCm=t~O*sgV%mx&Yf1e=5@EMyW?XoG$^9txDL5oM=;6Ni`QlNh;H|#|pTbpX) zcoLz6iXR;T{}5_ z_TJoCqw4vNooU0}3sm9KUfTbgpr+4!R^c64^TVVC@0Ch3@cxsMk{$xhWdz_x+ zA(;N8^WIq9NRTg|jWhsDi{-E6DyJt60&+;>OJ^fA=0`in=``myJ^k|nuWaRiB<5!V zq!sIbJR428MXY3IpW)1=XR&-1P;cZPa%$7_9tFwS$xm=%UUkj-Hhj#-HsUpFRkBK5 zgOs)Y4ncaAefw1=NPVgtsJ}u<>^<|jp~jAy?;{e$-#y0KasnHFl}J|p(yYjg!S>q% z@{f4ZyxW~~rg)eUFQ6K)z>gA~*M!ImPQ4(nY6i*#zl&=Yhv;;uRJF{L1>^+s_Y<;L z!Ob~W@B0~g*2II?a-I;jL!n*5oCOnRz6!f?O4hLM+5(Lj>?|5EWh#m=|z-R=u4SG9Z{@9=i?{F-w}OdXJ;L9cb*rKn8$UAZ2>>W0ryFW@ z&elI9zaYq2R0@FHt5SRiq0UGEA(iAux>x^|`xeGR4Yx%;{TG7rxwOzrlD*^RAxY;RXWqOPef!`;^iU z*w+ya(;cA1E0hAQJv~(sTCHOuk3Yu~<5v>1mh3I{F4Ox#PH(#Nt!`SP;2jE(?mgd+ zOus=L6av|onr^?WdZ(L{Xt^oB@;qOep&)$>$r$nZgJvy0t zK7GY$E(RM~=6oAx=hXw8?wQcaCVcP^C+8*V3Bl>4nV;wMW?pPX$Kp<~3K21O?3ZAZ1E7SZ>3{K8^MyjY2s8@Xu zM~;Or1>7~Mw(10nu9Y>kui}=>dVqB;WtrdKa8tbI9E= zoY$h9V46`6kyE^JCLn)-bTjL5LFLVs<_*6^!kHZ&iptCU{u7rxD{GB<*cvUGUL(L+ zSz)8xl65a$GMxM(xuPe|Eb`+kBACO9b-D|7sI0-brqZB2s@5P!37FdlDNT9n!S z$UzVw;c0O);QVGia(rAyruW+f=Z#KIvLo$UP(cAyJ;e_l$Sxb0dZK?vN}N@#$GTZ* zgr!4e`PXv!2L;t;k80sJBWFjr^f{3|4Wdw9#30ZTVNicvN9_= zJMCV?lw<+eGrWam*yWFMjwO(}{=oK#C zulYFNWx~ZxJ-4dDzvm|TIpai7^+h5IgIT5IzL#Y1qGs#rl(9x@0{p@?? zXx=i__i?ZMqG6J$CaNm@!oeVQtlq-CoayXHbt^GkMv&e#4!6ieCZYOjH2liJkbqn3 z^6LoFA19b(tM=A)_-@jcUw%vk*j9YFpEI2uU|b8LO@My2ZIT%}RU+28=Gm#qtsn6( z$)#uKC1aH(R=IS)ESY5KNH>rJ|FvBB><2zkjiSeMG&^PDf@Bx(R5^E!uR9p7x2FKc z6_k9lBOy^51<2I=$m%zUwkkrE{~J~Q8i;fWbj66FiHu=$~o1FZ>Vyhwtt z&uz1Mu#=JB78A!$a=iJSWIV>8Z|VNiIS&+>fqsuvF~6hCw4|PT-Agv?=jKa!+tgyRm$+YPfrJb*9g73q~b&0wu0_Wq80mHn#wQ!!De@l>{pP zJNKEobW9!OUgDM zthC}#S|_}Lq|lhda*#nTH-dU$tr_C}MKd&+BG+-utCdlx&5=amQxr98TXNu4JgHBeJkRr-073R~!J74Q8t?-om3c&w&he zd^5KyoBK|?q7A(1+l^33Nbt8c-(?|=u_*(6gagfwD$EnqGT62Br)*{(>S=LUM(DPW zH|1L_$Rs2F`h4+N!4rNm(7W=Tmb@k$ZHQz-cGgt@tMjR+x2bgwIRik%) z9$8bio;&q8jdsv4A>qQDt_H`OAJeE>?)2NFifn~?>VYaAOWP!0FyB=*;*`Oi`O;q_>}sm`eGZhZh)#>XhQpN3 zkksdQrjUHDIqmHnXnt!#nwwS6ZYD*{Pv*D6bN!&&H(crXd}*DDNVw=FC-@)DmjaQc zq(#UdaJRB;hiNHL#pj~xZsI+WpQG|QKlXGE0S=v5dCh#$___^Wzn5ryB~x?KIS-k- zw9SnOD+5za_I0jhJ9`ME8b+|ydf9`Ro<%6Pl~Q@o>$g!`K>u1Y=Bg0nqg-IN9c#Xx zWc1B#%?V_uHvZ&waFI zJ=$VEb~xqQpfstqnbH0tAD^FaG^ARw5E>+8yJ5YN|Byqyno0T-4mGw{j}d$G8pI&& zog}|`4YH!?;A=RD|4OWz|1lZ5Dkd%Sk9bNC9C}p?z9sHLHV>F^?%j5$J?NWLc`xxZ zr!mY%zkiNnn0>w@A5WePS7CD_tiVaHbJhQH9<)?7yS>8|cuR66VtJFT0MPX91~wZag^-cgK)7k^o=UgYFYaz)Vrvnm!+a+qRiE9|yH9o@K*YdmNaM)tJ- z&^&esUKxGdf0fL{TTyNX0w8$39sh>#<$*b)&-jAHlTm!j%kKu6Fl(T+2agcP-S%!-Hn- zc^681V;%>c%MtMZgy6G%iId^1tL&FVnB&jpv5c-|C_hE;2hC6jUNe+GorgT^wlwsg zA~(r)(oD7qJ=B06PdK@Q%Q$GM(d!$wemQp`JCKmfg3q?LA|4Ku6s(0C-Jlp$Hrrsu zLcaf%nCoQA-2{k9N8AYds%|B8N#hi{k%-Jrlbda&2nT7^{!57192(6`%dA8}tqSW) zF#9=NVGb@g+mObg{KwqKd5?z78d=*rxVG#(rP+3mc|0YA>xtHO%Vec|{IhXHFf`I& zbh(3fal~_TJ|fz41@YBFo)&JD!hxj;=^2in?ZBE1*>xZr1Gl@#4J$R<%v#V}&C&aF zUOh{FM5wv{I%=5@%23l~><39^*;$#ht$eG_OtDfo(4p0T&yzH7&a~AvhRWX3&vD#& z3%@=x^i;Yq3xUYmW%REgvU7N)X42tYiT6ibZVq39dTBgc4VMSW>w^slb>454Rs9NA zmBYC+(I8t$E01*X_d`4u-nSZ(-l>TOXe>EPxSV*(4wlQE-n@81{1cIysMmwQim~+s zv31ZxnPFNe^BxaX<*IU+u@m8~*KD`@^-=?7n}mCoER zw=*9V?9oaHHOKgB5??lhbYV<7V6R<{FXwwXGox{#`oqaq30SA|HJKo3`>1Sg= z*HgD8cQ~`gH ztdDb@^W4XZgVc-Wy)p=ETVn5e4wh}oOuvKG2%<3Q>RINP**>iq#)PvD>YnV~ug)8t z)ZrW2a43B?1{-LJ_zfH^TZ5SakL`vY>hm~McEz@B_C8=aPnWx{sK`VmwfOnN!y|9d;Q>HfVA8-rjxyo%v(fDf~ z`uPqP+h#X$W!WkCs-Rn@qeRNSsdzu)K3#ns_#cr(4t9td>e+UjA%35Pk)2OA$tsYh zh@v#*&>7_dE+pGMJIN^U%dxu(e#!~{mN^WvJU+;KiLY#yG|@^}1sUaSdL14f2Wyv7 zNk3q$$==6U`X(bpGY z{|zbNpqEgIx>32_FvSV~m}6uod`-3l=ic1^MFPu?0Zay8yUk@2{+J_Vy9aEM$IQL9 zJ&S`@H`qok8K>sTpA%o%W{WP?m^~H>L{I^eN5o2a{6-OS-cVzwe^4`IJhthSP%T68nACql-#T=LI z8JSj$uB=i*PSYU7^S`*YrX1d~869p$wzdIb*pGUBzPyo51#w?ql2Zi?WU#;Fp`G7g z<#xAQZio6x?ay#!*}1vXuB_bF@yxt;14q|HK-lNtL{|}zZ`7O+?GjZ{Jao7yu#@0^d8%P=1YSy%rflJ+SX`w4~%EKx5 zON|w;?1lLvk)s(x{F{6}kQtE3d`sa^kC8>sk3ZqgQwvYqYj4DN5r^5fx~_ekdAdxE zi}Br=C_f*i9^w2zzc?XehSW#j~h`P6s*{bfH!Ug*o-!N3)=>93X~V zs%j?l?>NaPr<`ONQ7M!CL~Bn7jfQuha@oSX$27e~0{K;U&kbLruIgm-4z`5|c2*IvbA+=VBm1XOJgx)Epv zSpdk#6^g!yGxO?#If%vFfi!0s8H(~^h$zz)hbaFij^m9tO)?HD2nyHOXQVGD`A>`M zTF^(nzo6zj320jOD}YMoqRp3b-=3dx-zcvrWz@3-MC$Q z)a>m+&hqgYW{Ik=NLFZSVtth}n^sD2X5FwFf*o~v-phk-&$^xOCN)jF<~ma2phxLR z{tHfW+MUs&%j}FLP9dP5BIu{4M5h5=2~kNlzIXD2T=}dpVS2hSe}wa#mZ_L|4mx;( zNHdjHPSRV`A;)1i0Jl*fG1$O+s4;gDv_8w}PP_T=y*RIXTuvA4v;?o+I1aeSd48sq zY#N*u>6!@<A$N;fu)gDA!9{JIDYwLVOnN%Tu3tS`jtNZK(LCxmNGFZfd8C+qC=0tsf`wY0n-u8YyaBTmUgD)-MtTXQ!O20cXT@iF2ElBjTYW z!6z;Z8a3-5kbi92M}f2|#Xljl zo_d!tJGeVwjF_U0-@?UC%MLj+f0idJo|bcP>B?iihu;4eZo4*!GU9 z8CTlDtColZ?V9;Pb)RlOJbQ=_d{={4l3Dt!5%1(T0g z`=)S1uvk{dg}`+zg}$gK{n^(&>uQiZSKkAco}`8%f+B;R(iV!GKbb|bGwGPy%SfaC zV%ojj;uU2iJ`3Vxb_&euulwCID^3)|*qRVm`-jN9{&?)3P43z_Gh=T{zaXKl^d`>a zuNY%VfY|nur$!FLi0%mCmJ#dkfFscVbmv<)&ESC}N*vm>K6)NNiKRVV)}ITXMfTF3 zuKMCLq0Z^*@MPs>{Z(pE&r_vs>4OL&gL%gJc*1scAs%r&chkyYL0W$Kq%Ico%jghz|_Bg5q*;AT{^ z?!w(UnBKz3StB4s{ES6Djvqs*>P|k+Vcf79YCU9qBKani>Xk9hu?FC$(OhW*QEBN@ zuFk)=evEQWpAxX$6u26ts^5t`EdksI$R&^;M$@MRKTn7n$L3iLwgIV!u zSBIlT`H*D&VJwZd9X_g69(_1n6E2oD^2d7nP$;@LF?n2z)(fnh*GydyLHZ1p4wtu< zfYtQr)G@Xet)dcjH_tpSixG0KI{;OuyL05R$vAO2lxO*W6KUDoCWP6ed>)~PIA3XLyFU9 zz#J(aGp(nxK0wu_lUZYkt$g#sZ2FXMk|Ul|VO#h150Cqsw2ck>;l@#hxG|BDM)Awz z5P4LUOa8g!msiPNk;YfT;a4d^VgsMnf8v~Aym%IotILPTgzoFMl+$w83Zuk#U`sB40 zYqX!+&4#q<&OII#s`&A*{iWZO^l7EB(GhY9xf}V`-N*DOkq$q!HzA2np6xjCa>Z!9 z-)37nrPBTj{SC0FyWH|D-=l(Jf<{|^C$Rwi^U0gL{l_e)kjf`7OYvsLp7Sq}$S2P^ zZmX~lAPOp7cgsplF+sW`624a$79ANB8R76Mr3&n{)_bB!(TcV-a3=X_H!by<8SY3(-A2 z;fXbS?$#o8x+j2AwkLjXW8%_xXn2Q_IM3S$V!{dHD7hHC1v9$)$tkAEY9@BrDDf)` zc{*f0@|Wf$*(xz38kgtAB$Fg>ZnwT(zKJyHj)f`aFD5o2N_@yIGA3S@)3>nWd0SvR zh{~l0jYYZZPW5i2%fX(#b>)IZ&)YuEXPSV#~+ z`}7W5VP#-Qx50{yq0s0^y?KBo0n{{bVAT4lm1)T~j#O;R#`3)*l3ahs5aiZQI=> zdKG9B28grwwyOe)riU@>Z?L-}hq|S1i#*koIgEwJG4JX&2{+A&kBVSb$Ma(2WE;Jk z)*MncAGUPcgXp~aS&SF=#n7!`VlBl9%9U(;NZklsmLVtn1L!%r!$RtI=w=z~JN*hz zkRZM_gfq4ic647orf?ID6rpk2FQ2)N)~P%5xM3;MZf7s-=r>HhVn?^m65C?>aQ?Is*31W~i-RCujAi8~vK5b7zYALjhUelAWR}ZWitru~;moAC3j)wKqBXRb+&6?~4=|SDb z#ml232a&iZtp{5($(tV5#7`W#jqE}-=sq*2aLI-BUJKjsS`ukWvlZ*wemhECx2wC6 zmWXKUxxycx#7vyHW{gWF2qn{)p6$Yo5n|IX4qZijjRrr7$6uWH50E19(F;6)id#P9 zMDYm{!K0}=p+^RZvqtzCPnfuW$2clFcDS@-M#=K=6gTYHeio1P*?yzf88#ZYo0DM? z(ZRM)?TxWF4>zI@9}^?KY+{TP$8N3VLJ#$8V5Nn-37}=K=!;IjGd$#xi5OFi5pOtT zGPpu(!GznzAbxZrKKLhV;fhDKNsU8XyC!N<{!-BT`^$Gx6K)rTtVHLs{2L3kvF?^- z(i%yr5hv9aO9WiN;#8Z{kcnrP0=mn=IR&>-ldnFrGO(TpbSi~$D1~v)EDhoZH~40h zQxa~VRo0{=U|KSUCGbUXRuUi%k(fr(9fq2o^`4?Ky=7$O8^~))%8}xep4R8QN62U86q3OY z_cWRx{9G=#I;W1jjt&Z*C(;vx1r7r#5JkB6cyY2v0`du?F>jo zZC&FwZSk7}r$)5{Ve|{b_CqRJ(0`%I^;N|_b&R+GNleh35_9t9CJvT}FJ{TJeK*iB z^vg|5QQ{jZ)~t<(!HT+B6Fn+8I?iO>n)?8$Cu{SNs}kZ%53wUn#!-P{AQ7hnf`wsgNor6i zYEuX`8u24o>uT!?%DIq(G|qM=b_N3Gw~4}nMsO7#L5UZ)`QzFaG4k1;97`g9MeK5% z2@ppNIB+}y7qbZ?qpc$)i-#gkyI6dzRs0-NoC=o>?G8fQGaGB9gW?9P+c^9$P^e`y z?^qgv!3m}a`i{9+Dj86L9ArMCtgatK+(jdxKw2kKQE&gP_loPu3sQv8bEWX)zVWV5QxuB{ma z@=7Bp#w3^6G}f+z%aUshB|Vd}BN$|QIk8`$YU=5jOj0if>oSr9E=9^K=mbRV z(p_lQ)&a#j$taql5~34u-$lGp{CveeApMGD=~)+-+XOjYvUU;H%j#H{7hrK>|3R75 z(9;qPPV`Jsd&bd0kul;FHwSo}Z2Z;$Qn6lgmTjZ4OGAAJ3AQ(EdyR*QGoxYR!3T-K zT31H!LUJj=9udoLDv<R3lGnt;_GUn8AXN4?43iGt*Mg& zCtb&)o`AHJOD2S<7dgq_Mk4gGW`7{2-Wmu!y#z#wZ$ycE$*7{mcwoN-ZW2Q16^0m& z&^tuS5X&@c8@&Z>y$ToCUx~32oROS^*X&*f}5545Yf8n$Wkk9_Qlg9<3;y2+~B9{TCwj0Qs4ixIA&o8fH35QnXb zuua?yYkg!ei1C+$uSO2-4bMJ728uHm;;fdKO>K**ml2h{G#qq=-Kfx@*ih40hoSB< zOxuS#2lY|mV+?p1Bq!-?uxlUv?Xz&8!)ed!=y!H&&Prm{XS>{WQ?k|^q8#R2v5qr) zAm%1(hGduf9yaZhiIaLrbR;5=6=S`qVBSwiu)ce)hk*93;uKH}q++TcCN_g;z>`tE zf)Mr!aSCB;KvK6g%EVqFPP$?^iV5dCO{~iq1&7T7ZB4~VUDP%e54s|96clB9RJeu| zHBTlO9Re6B1}Cv_v6X~tI=@Fc1N1G(uvoU6!o*XDD1Di`HxX|G_d;2tmO(qAdhLrQ zr<{%o7l%edqs6sv)Q>~u?yZX0YU{^ly&=XmUtfu663qFry2DMlxbi(l-0zt9T4Hsz zgeYva4E~H3T54IKmO$lzdIFUPdIhKg(DOhQfj$DN1e61)GSDiZDnQXdRe}Bx<*HT# zS|{cNwK`CKkq@;7kOinFP(yxfPMgK4)h491<)mgZ3z?tzg9r` zfLa69hm|%!i9l_Ewg9yQDu=M`fo35@2cYvPmySUHgR~RSMug}L^c?)U0M&qBSD;XY z?FQ5U=sBPVkahIc*j(iea# zz^^}06#NDNWyha^`13yOy$JL@^acU_j=a4DR0JUg1C4|9WuX1=8v@iEVP65tgFgoR zX#>BZKwkp|0bNAcV4!LU8v@h-(omp`Kt`Zzh&K%AGlUoh^es?0&>xVRfZm4{6=)y) zh6DW%dJ#aofFgm807U`yM~G;kML;n?{~+EGK%WA|0(C`*IH2F57Y~#Pe-iL#CiF%E zRflvG&}yL3K&K%c1M~^dSfI@KGY)?mL+@3f9zd@F1wwB;&@uSE4%7^O6M!xNy#e$b zQuQX#VxWmYgAig8P;KbF1ym7!Zv*9l-#b8WBgAB&FrX;Hx=k*_*sAk0DS-y4(T+Y?XWx@=ry23pl=|Z0W=>WJ_H&KznMUP!0#iV zs_^?5s2Kjt!k>(=@(EBl^kxHn0>3#xt>O16&~%{x0TqIDF3^3njn9Byg5}SFHb8G4 zP-*ym0dy38^MUf>&jS3J2fr_Yvcuk2KvNLnYoNJ63xOhm76E;Z5Q~AfAl@ZFcYu}x zy#>8*fG)!CTcGPe-vPBj*zbW>LGK5kG4T5lXc+vKksi{r9Hq@L3v>nORp?y>DgnQ1K%L-s9cT{x z{sX!RbOY!^pqoH10o?+cij>|4nt`x)fO5g_E>Hl_J)n&Eb02>)!|wr5VW5XV1@Y$* z{zSvdW1y{wBSQ}H=O_4O1Zs;AnSe?IWd<@rngwVRP*$K}2%8P4HuMyr07$a~{Ror; zs6F&@0#$)uE}(dX$PM%tP#&NQ(8~+-HT?1cwT54Qpl$Fg0MrDiAkdpYg@CdH6$UDb zIEn!Mg0Mw_+QF|F&301AX(MW8Gw;z~eG;a3?b4tiC9?gLc?G6Gctss&UX=m*4G1L$A$vYI4?m0Cdg zV7WGs1tIDH-9v}~p!-09Bn7Gqv;$V^0sRRp^@09{v;oivpoTyLAZ-M69+n#eEd*); z)Dn74f!4rYGoS?cH3vEh)B>nCLbL>W0DG-~3P9Q#=vDZ&0eTaDZGm>dUOS*5NZSLQ z1?m9Q19}~SzJ^~XpvOR+f%2m?x&ZZqUss^42+)9Aq+q}ARP)+6MjKJ3Q#c6Z;*xneFPK= z^bM>SfttfF3@93C7*JD4!+};Kr6!<;kg7m4Asr4Bhd3gD3c@cEC>L@R1@t2PqJc6) zF9s+WRz?67hF&aC73jqQ^@21WXgT~6fF{CkBv5}?83nWfXf)7LpfNzl5n?RRR-kb} zyMbOM1S_ur^+Aa7Ku3|c*MVk2Iss@Q&>KL_5cW-=2hf`cbOC4*&_n3G1+)j~ZJ^me z?*NrT9Fu|8!fy)D@35xV*(9fG#1;9|9GJy_rD&gWg9#!{PTa&_JMBKm|}Up8)+1zu7>Q5MmC{ zcKCe?lnC@cpb3a=E>Hx}XFx|0;&Y%z@S6wp9YTBo^f%Capou^WfJQ;@OQ4fLUjem) zm9K$H11$t9h7gN@Y5*+;T7VEsfKEYgDbQBr{2QQrkbVo)0@Ck*#=`G=pbqf+0q8%3 z_z|c%q|1OxqBNER)kSP8fG#7%Pe5M)tpw@_>CZsr5Ox*N44_|tPQ&tQpnA|-15^{z zwLqPL)&Z4)z4buX;P)%gDEMsvnvAd;fi}Qz6HpQOZ3bEizb!y}5ZhLu13=q=4gzfl z+JO)|fPO-Voj@aib^%pFyt{#p!|yksaR{*o=qsSTKo^1b0c`}@4|D-xe6rpmz!A zQ|Mg=S_kRBK%;@K0KE_CRiM-Gy9V?d{H_CKhn4?;azJ_ms2ij=fx_T-3n(xAZUZ%f z-yNXo2zwW(DbPKjB51MqfnGw02SBew`Vgoj&?BINK#zgy!d`});!jJUj6m-~nhB^2 z{4xV&f?pP(LO@x8>H}p1+5@Bj8Gy0_%?8Q=Gyy0lP$8r*7f=CM&JAQjO7j4{2)(>O zyCBU6R2kCzK)*p+0O%%awII+UNDBcK0xAqN8DWb6;nVMGQJ}K$D+Y85R*D0yM2HeV zJAq09b%$OlpiDrefj&owGC-%GR~880msZOG6@_1Upalp~0q7(`R0PTZze+%#0aXTS z0cjPWtSF7DKvA$#4JbcQb)W+XQ3L1g0v3MA3y;>ZvzDaAZ-A24fYxWZH8YXpbqeB40IcQO@IahH3h==2GwRjnc>$Qs4zmb z0Ll&266gg;TLIxSbZTp$jz~cppe2yD1$rH*9ngOW+aBm3PzRs}2+@(G(CY+bg0wTx z5%_fhss_KVKpz2h1F8+_b3mKn*BuC-mQs5Fsj%D=C<{<8p!Pt$fvO|K^FW#4*9YhW zpuRxw!E!&K#Xv6rX$a9DXchbh0JVbOK%gP;dl9HAtPBGB8GbJTZ3G$&^b@2n1FeDI z5TJ(edj;ru_!)q5pbZTL>Vi0efEEJ<0|g^Q2v9blP@t8N8iDZL3pEU=E&PT7Rfk?U z5WWQQG!IsyfYt#;1D%012IwoKc?8gBkj4VxI(;<` z2$$fi@jy)=O#pfqVMhXejIg7C9>H%k&>{GZ0qO(4u|WF~b{x=IpjUxDhu&*IyWuw; zC@1`02kHbg0Vo0J4WLp$Zvw3cnh4YmaZCd01HZR`?!xbFp!2Z&4p3G|Cj%8l%}fEp zjmD}5lpB8U0`)@(Gthm6c#r&G?|q<$KvRK&p=SXa48IS6>LA24pt(TPff_aQ~qC6;Mxv_!{Uc&_bYW&|3s_ z9bp#(^@Vf^5U#aTmjWGw-ZwxeApI6-AVPcxglpQ=?}1iB?+2j#KtBTE3Nv*XP;P`+ z4m2ES1yFhD{RC78ek+0U!S831BDPgP`yl-Vs0+|)pb|i9fK-H73lxA5>wqHQw;re% z^nL}p0ly7EKf`Y$(0-szKv@uWGte~nZ2|fKA+`eL1=-lY1bPwD zQ$Twl{TnC}=rj<1v9A6DGz)%b2qElQpje=DK*eF@JkVPBT>v@^zl%V(fGz>8hx9T~ zM%eoo=qCKG0DTK|6=*C%Tm#AlbRB2~Li`7G0(v)q$^hL2ng(}M? zR0`-2P-&oAKxKfgz)D%5cM-N65RUh&<$MPvpz1(5VWkGp4TPu(gk#TYEuf{)s|}O^dUb%Z00jUI0SW|q6?%1n_QJ0o z(Az-ufigha0B8qLL!iG9TO%Md^cn-ZhqoW`z=qiheN$j4(T-e2%E;E6C2^WDHG%_eI zB-RuoV#;hT@;Jd_)ULow#OK?&lFj44!H zU2GJ`LKDrIOreS9Jf_GXaSRGS?Gq6shMUa!jpAo8_%`quad0)6tFnM91(^y=);9- z&hVg!cteD7q%k6~dscH%{0u>yGLyeR6j9-)grTAY3dKc=1MwpgqQ&uAQH;1DIxcZY zqB=$-Aw0ACvv8)E^F)ZlW(g>0oXbp9CnJ5iDWrje3QGlW{9QyDHB9_IBSL&CAU^TA z3@2}9O)zK2g+(~VPN$nHi=L$^>i+8iEAwQdx6GRI)0Tb2j)~r+DG?7Z5&MGJkn0zT zohCND=m}y`WMzMy|A^uJtELP(c!gLaVkIWsAQnsEq6hs=tcK{hnlhsEHDWc1ot$!- z*b>t0xbYM*1IdO?<`|j~OYF}n!~1Pb={NTfX(p2FQjMF$@P1fR9v{@G7yM#I~2=RBIIbf}X6ogk&GDI!T&qNOpW2m&96Pdk3?uEyeK1tLI4*@5eP| z=q1kWUu3007f$CU3U_PwWzrl#vMi5|5&M#?99_1b*oUM!JM;pvWu#f58kfs)Vu$x~ z9+nf!nD{$szC!H#GY5&`J+-F1_7B&?x5U0uxs*;4`>6rTek2y%@i2w^o7k2P2RL?O z{f=@y;0?c~{8sfG$-0s3o`qQm#oqHOm&8HR%vRwa(hMRNu!`#)$~Sj7Etr8d<-u*1VXY?OyU5|NBGZ&l?{QgUp4XIuWjXIy zPiV^b12Rwy!$@<;ozlcUCoAWFC`v4p*txY8h#e*N+9QrHj97;svXZPf*|dDatzaI> zR(@KLWH{xcDXSKiAXbqyXMW3lGm>JDYR&Q0=CrImPUVTSLz=SkpJEhlF3I{_E<)@L zvNB~~RbqpPt*FMmV=={k?>zTuoPpAmfp@rcaWY9$?(|`sBT2LA zH_H<1PVucQQG-|>V#|B5W*gGHSC}=k6Z`mVA<}%0Y@Thw@f9Ezd5h~|1F_4)xV7RW zl%_15R*AyBMKMGTElv#QzBFZZH}0t~k?eRG?j2KzeKM9yeigCA@ueu-Ac|qv{>sEk zlPv$dyu@(MOSJOLT<=3kbHugsBr8XGSd@cX51v9a<&9-sNQNgHO?higBVt(3Yf6P? zeTZQtuPLuY*@GBX;G&(KA4&{QKw``qRE^jOVl!$sCx&MeP5Jy$Gh&U2 zY2n?7;Tb?v7M>YM3@d$2`Em2h#PEbCX5RoV2|P=P9`{~M=eAciL_(Ko|5 z20X=R%4gZ1V@+baZ*gsYK$>NlXJSpMwT#CXJmG1|=)mqI!;`M2d^?s~0iMD%<<*Wakqpm_Vg{2b~l0;_R+*_*zk2?*!vQ* zXcaRt>?(~d*JhW>MiVOL920vCNo41126(yID!V%R6tl)KkQ6MKhj4pqkyGm$J|ehjf(#HxQb zl^AySG-XGjNyM;orzs!)%O!DwSl(>YNQS*eO?mUBSBYU?P0al(J|~8qH%*yQdoD5T zKx#_Mn_Lgyk!;E0Pf3QIK26DWdO9)eH)_fso!=yey-7_ua+ymPyP=wLzSl^SVLwt+ z`c#-m3_Gu4O;lWED^wEs_k|OiMw&}+%^-%IN--v1)QDlHPQdy`~0t45W{|+ zrWihNMGQM&V#V?W*B|z@G-c<0E%p#?rp!A#f;8Wy z7zWPZo`an}P04hJ$B_EOioU`l(Ic{QuSt6fhdnn{DvWg#UFU zwwJBE%i{}n8bu68c&x)NqG&I7LrF6$$$o3dqcC<8HKo}c?nl_!)0Dog7L#T!Vgsx3 z*mIcJ^VK_$47;D2vba|dV%P!IlrQG-7&4sLhV_$4hW$@Xu}t8!U}sUx0sFW&b|%gD z`h<{XDbl=Fnd{*_itkcHXOgWU7J0)+47;o1=_Q_LL+qw%N{dP_k_5XO6Rd0A9j>ANrhJ_1 z1~HYwEiHY3SYOio_UJFfJ|@|ro!5!gq1Y3P?IIRIvLD<1K@9J4#Qc6~J2AY+(3Caf zZW6mkHcQRDMhx$g#4|#VHN*l)_T83)#BPwyKL-Cv3~!<|<==5X6T`bD@sw3-12Meo z66^V+UlDsq;f@WxM63(R7SGy8>}O(4dmkm1lUTp=3yI-9l%`Dmc^fgj_0g1x-<=|c zw>+BCXvG;~coU^5XHM-VmY?IRy@lBG#MBl`h~bTqm>Z{`CU%TukI$?nR*Yno)x*R} z5L;$Ey_NH~j@a|4iX5Zr8znW~WJiCcx`zYLuFZU9|8!1i6J>)zw zywMWRYIjZ&!y7D3`D(>K#Ga!VDwe!J4DYJMenF{!iQ!G17z+$riIt~tYhrg0!`nkm zX_x6cmJu7c^fzMJNOQzpZfAJ&EOrRq%3c>wpLk=gDIa`%pEUbWxX$~ElMHWp#j{~t z31WD&EuJ^mXCt?^M&HKb=^e#m*ym!`=A4U}>hWF}XJ-96+F}wj6wONg0Z$g?~ zFEjg$*u-@TY2xj=rVPH4l^EVfi?y4XP0GlMG^xn|haQt|!fPuW+jIwp^5aZZ6M0B-^!z zZQ}jDrfeEth*H*x*uoV>h~a&^rfghYk{I5@Yf7=<%)TPcxB*&VIr{kTmSD4h={agCiN*%u0@6Xz^6 zrEM6uf@&nIS-LIR#K{#+*%jK3*k)p(x0vC~i+Eyqy*0`HqqLly-HI5_s)*I^)Skpv zku3C1Ut&KK3%}c+7|xGq%8=-nh^ds8(ZxFw!+8_2)*taAu@{K#yxfr3m!!FKeI;Tz zu_M;PGnx~-O>EWYwTR(-jiv8s+xvPgRN4Cd~=ob1D5tvR3C?kPK&T#0YJAff&y0h?V30 z-o#pwW}}5N;_BaMDgw z%3Sz>SSDgs=L8emMd8|f9!D$#u}bexWlds1lO_>6Kx|#tImA{{9)37Bff!EkY0CZV z(~12-nx!XwL2LrWH)6PnSbhqZxyL8O@{neO3JZu8BH6>3vBW+j*?XHT#EOzEJojW` z3rNU4-DR)92f^&d{`6v?if98c^dvFR7g#BeT9thV=YT6R)= z{hGf?G6QK=XgZ7-PH&2*67fE>56Q~$2%gaolWbm}4Wt=PvP{LfHph^aNAK^U@wzI>HeOsz znmBnRM$_H77zwbw4TS>ES{a-2Ee3A{A%dOxnv10MtN%J+bvZfXHj)oMj%MM-z z#gOK`F29lHWnu+p^Qxo{g}b<(*OA+a&G?AhL~GKlczz{?yF+YRA)aq>0!&kWuCt0# z)`3{>;=4%m0LA`!maW7_6T8@)`%y-U;rnmCBUxvX%{sy}P!F<_;q8rN^Apk>c5(%2 z{z9@H`?#!eB24UjW#)DAuf$#{#cQ{@oTJ>F_r4^1w70mx&$f z%d=rHrKL%K)~rafR=qA#-tmi9O{uzi355$K&Cl}lI(amuCF`NXB&$qp(>zY~I${mZ z{Xw!{iQNu8Kny3_HRZj`T$^*q=ABOtlI$wQexuC}Vogal^5kV=b;-);HvbW8MVcAU zaVu{`vd^!dBiVS8MbB78>~&%ndu%2)l57^tx{cUAVzaw)3&~Eb*wqsx%Ry{Gp5?^C zD2Dbq&k*ZIHYZj;O$;Z(#mJCwgV=Nm_ub!@h`mN^NCfweycF)Oug{XK7s(=WttXa) ztV|3$MeKEw7}*A;wgq! z$959KnSU_@o!UsO3|Z;cnfrTLVq3?qCfRSqf+rs*_7btX^{)~uNimoMIW6xJE0gmU z$xc&z{ks1}tP8R0Wp5Mvl&sYL@DMSa#~1rV$`xW|$;u}Oxm@rI2Th6l-!CMqM6&3N z+*j~x6ivxrq<%d-lbj@*jSN+Z)nLuHYZ5y_vY(1HBUY1S!I@qpHk{as%SDJ);!^s# zB(Vh)?!N)Gh;1iL$7KDZU*wE0gRyVvpNbAU2R#m4`)%9i?zrD|49@BsR>Fm1ILG_OEJj=?c8Gel=cGK1uBUYSbyJqGgR+y~(otTB#-z2*kQIS|NVvqXNAa;s0H$~MZR+`xO zW1J)WLQL!)+{i_;L<-k>bZKI%xqbGlPOK)SGwg8}Vk^nY7ZtdyH&VEd#)OlsF0s%8 zEs5XB^t_|C*OkWEwm7l>VCn{&g6ZKSm9yQ30oN>--V&x~gE6pifr`2q89H;Y82+2Mo*|lTbvc4kO?S-Kv>qu-_t2V^&>nu%)y2m{gztGZ@ zzuy@|vVxqyzqsvwK{gvrZ$&cv#!~FQHf};}25FWZ(1BPqY34t~DVs^Mw;ytDCsXWe zNAx4jBE%*vmyi3;a0!!39)Sy!?1;OiQ!klnlfe~ zm&8NT%>3s}l1(I*|J%2T;g_MB5?}X2V$CRq`2jPC-6ESWE#lVt7KQ6xf>Zq;X)4ci z56DcKZI8cB;dYZ|?78=d?IE`J@<+siiG5S!4PyB1uz0d*^BS?`WV5^ZEn+iCvrFe` z#PEA#@s{S?IAXI&Ry@}%VrB|Ae#!rcBP#HtVr|6n4q3zV{< zo4GdUlC1BL2$JE~_hR?19H+&|G0fpsu!dykUig|cYmqD@WHPaSl(OZYttEDjWQm2j z#?BL~9X+39uaf4SFTW!;fLP%QUl3bJnq%fKAoefi{hvag6MI0Ki_R=17Dt+^wsMYY zkt}aTZc8I5T(frbNHdURjoObV_Lx}3cYYy;TLQ%XU>j}|_b6Od3%8~F#I#df@-2y- zEBzIPOCYx8zlFr`TYm9IdiRgS?o-NgF6Z`nkJ!SGMw2XvVmI_%POK@h?$f!(vXaex z%h!`^8HFp8Z!9s~tRUVLPMSch2WjR#ypq_bWF_hrkbr^(NN& z+0dtj(SkBpXR=--8Xr&J#Oh;(l9&!tFKxM6yl9)<<#a{zZA1SD*7< zo7i7NmXYQ!WF@NAW@0yq<=ew05kQ(V>u_!Z$mWn9Tn}H9tZh|Jbu`JsZ*cp3iL7i} z%4ODsG{0`gbrjFxj&VA-lIDYU-&5>uN%m_|F3$&K^VPY#NS2voyK`_1ZxSonitBF_ zX?EMPn>0Tpn>*Wb?CnT)q3c$Xy-IBL@I}OM7m8S4&*S`cB3aYNEE`5vMqlF+%ueye zOy`o%MeO3rZ^%k((#$w`HL*Fw%!9cEr;=u-uH66HlPsY*=e;n=ioM7=`jKLA7Yz49R4{js&6S2*oa(R}fa4kRN^2FUPno?jU$5(>V zGVB-5Z8g#yRAvWRxj?d&3%I?^Ae+DS;oKUDHP6H4Qju7@i@#C0&&bOA4f%cJ5n>PC z`kkJqXOiZK9z3?eyrVcWY>;kbW75^sIfY|d7`20jQieYUbesf-(SnnxZO3g^K$xo*!TytWN zzYd`o#!-B&+Pp+8Bgty?;(1UC~{N^yR8l*Wm|3G56D^XJ>6>3J|>QK1;o61ni>XYX9 zBH8QX3HlPrR^2#8;r>Ug`hjA^qDgaOrd(v@5ykgO438SPbx`b{SII=038dL0a29Ef zCRTLkZmRc|#2)1Mlh{tO@_pYQNV5U4-y24e6$`P+_lA?~0fl?<>!yfC_vHaTdv*tH!%VImpVG?~hRItB76R%%^#~6T8`z`|VrAUj9I#QtC!F zdll$N>^WlpeAtcR3#S-P^_fGmo)qqdXtwevX$~4tk7REUyYk)_l%wZKbNi{)#PX4q zmi_OO&5a~mbH6^Z{3Kg8uRm!<5}Q?hAlXbL%`FuRQ2lKo*6x?m#9kn_)-aSbKO#2I z!n?0OQ(7K1;_>AhviaSQya)ILv7g`K^~)Rz_fEZY6ni-emp6j2BKW{!`?a9!w8UWn}u$!+LP*DLR#uIzPcJ^Lkr6E>qymhOk_w z;TcX*&eibBvrmBY92w{J_2Rc)Pr*sAr{G7K0&n((zhxTS=?hO~&AiO()i66POQnKx z>(C&sM=`}43~q0^S?C)R-d&P}czqf;==G^E$m=N>=D{rRRJz{hvIwk82$$V@`nGIz zgdr>sy=u<GZ(x=(u=eXnb^ZL`YCbxH0f~x~nX(K|sB_0reULj&9sA zFv1iZ$QO9QSG?bf8AAr@xEHgvsx9;ZD3qB;eXF({5$d}aTYS7@9z9MXZj$jhiE}-i zI;{Cm=Cz^Yy4dV)zk9=jHA^b-J1&de-(ngh6X0$=IkiQP>uIqZ@SeC4H+8RBi97Xz zM5n6%M2!m<4Ee_Bh0BdRZssFpnd{CPQAUg-2A({uUEW+*uXLSM9SM)|+q~V9@5=71 zn@{;BJUU9=xrnt2D0*AQrrX9H`(&W4F9)XDmyHodeE)rv ziPv@(`tl-%8F$+CQz_K$9z0Gwm1dPErLjb}oGoe_51QgrNpyCZ0PnA|-}Cmcut6rk z`$d5}`P}VGPo-77C7ZI;pTH@Fq z&(nB@aFDnAcWIxg3*3R}@sfP#voAl#r&9}kTL7spCKm?@@urBlz=-H!!{m`m3w>Y! zDg)EF-(ZT2iH?oOCWIk4Iyyd1TnHXxFpiEl#zqB2(CWKY8Z8IK#Z&k$X$)^qSx|5Y zS?c=4mJC)?ZPREj3C2C@QK5k%*M@LoM2xsgo}WIJ%0^T|s>g{-*NtHb z5rL7>p$QSZO;^rUh8=!WP=wfGVl(FAt{PF|rga%Z1{p&crvw?r!RmxagLt$Scd2ty zGRW>|RkS5VY*mSC(5;bK==&9DRMs?eyA#i3!O?N1czWKl(C0ItRLdz^YdMJ9-^HEt zR3--T{eaL2PK4Q-RW@nWcGM`ZYtQkmhlM`afw=1l-GGtCsFAMQXd;=$Ix!-CaTk1C zVEl;C$Ut%JKeZxjQOXpUqJm<@VRbH{EV6{G8Ml>?LuDl?y*T5D1hFs|^~FYhkoA$y z1!JKPj3C!f-Vcy>Dvb7N><972$QWGJuT!EivC)voHaAbMc0DVMl1^>FI6A~AT4;2X ztfjYQE%iua;_V}gW2-Wkb&51}OjJ;$Da63aT(f`4%%q&W9q#o#yRY1Wp6U z5Sd%&NbzfkScft(ORcmHY~qI$)`87AA~B4_@J~3n3~+ZZ8ewixT75gU>)5kXKxC+R zc`#O%jkSBYEMW08#s+4|l%}d!C1s0|#`qw%cq?T^d(@FGHIr-_>q^CHvPmSfEQ=Kb zTXZB6VH?+6Ogd;-tJ}#I?_$}tEcE>;ly5ReapH_Yu_5A{E&Pj%6pkV}E2i=y$Vu5k zUkO7RQmrCfo(x6n_JT|9BZHz$F$oc={8Wa^Ac?N-uC;wh?5b~}uYMshUZ}KKciZ$$ zcNKBHw9l066xqRiqMC8Jwp)!eqr1I*zN{2)cDV&I4L(uCxQE9IaXCql#!e-t0}d^xkJ0u;NRj=Q}AkVEdxVhCg5mklB&fM?kWySSi0@?h%#gS?<-TICdVImd zXHtz%I{QpwrpY4oLZ?{oZtaE0#%bNsb7}A5!h{;;dU@fy0bZ#@L_;E2q5|&r@LTkjAY;YQf?- zC+$R!fj!fY^qj$*BJ4A;kbB{ z_~0w0UU#72EhH3)qiQNIqg~W3^jUV~-TNuQXP%G}>-2A{Y*BvVHH>&W$5ok9W3auw zu?4o*b85eev{e%od9O5f7Kht^0v&hSE%do~LgnQ_ z+}>`>_SVkhu_qL_4LOcHGcsfl9~c(@tVc1E%ZTnEctdvo_8uoh49>ygxVb~mH)ACA zY$!5C@k`!7@oS49E@X@Pt{guarJN=j<#B3PJk^MVghd1m<67$CaWe46Io>!-yn=IT zBj$9f?=;nnS(ZXNzGzFOK*g8OO%eFiwIK|JIx0GLI2EWxtuNE!1A~&!4Ac{4&#}Ht zwvBME@69dhG+BJ<(A&+P+n{;Lsh_50t>ST?((T&QeWoGpl_{|KNILQknaPMMMV&$#teT$HJ_#xV%69 z97?~5`&o45NO9GnNgRd_{g_sTs?&ghBQD~3D!G+~weOHzMq^QP%A!hP zsc+l%Pj>K3x`2!b8e?5~CjWDbTr%!w_XKfR#_0VfdeCRa*t|ZIlHoEXDYZrGhN!JA zCi&&-c9&tuX{hDLKgSVS_bJgnB0H)kGYdJWSX6v8)}7}u>w*M<343e$dTWjo3eiD@vsA`% z$7c-uRNJ!+q>$)XI{#}?56I$vc1ykrvVlFj82^7>qs?YnGCnlg1jzF7p(Ne#yYSOUJ|}SJK@N z+hV|V;hf|_-=gmGy#_QjO-1%pca!$}UMYRxd!_W8@Adq1GD*qxeEZ>R>)xW%L#e&X z*|&Xd*F!jICfyu9>wAxzmG`|Sn$5#XNv>EPprhmCD&6 z$0le!ai%jyJE&RI`(Cd7-Lm$*llx6x?)wkD9Dfrp_r1@&9REBo$KTG&W6w_6{=C!s z?s_@*Z+JQW{azjW+CG)o^}YpVQ6G7^q_fHRz0=M=_VOIt<*C%PyDN;WUe5hu_jB)F zmh_Jj*`Ji1U%DRha`xZ#a@Wi0<^1Q6S7Ugm>#z56>GzY3-&+rNecT^-^=FRHW%Ehj z>eG*_(^HAdy+OsI=61QmMd!)Qab!vE*MAOAcb*MYN4)$j@|Bkdik0rq6Hnne{Fs+Z zKf%kTU&^a}uc(*%-a0Q2(+2m4>8H^4&w91zRrm4~UCpbx|H!McZ}xJ#H+ePp|9N%H ztM1jjuk!MI^RrjW{&_FwUiIpDzs9R&|ALHN{zN#?<&22a(GvXX+wtBm`SUyHV=4UR zJH>F#^nOld-!VujtVR7&R+jY(fhi`KzN*5X`5@-)*QSbWUfbh0l5xDar#o-H4 z)@vS}Yay8_$}yaES0S~RJPu(j>TiBH0_^d_G*6a|!JlS_&;78RTgWu~=t!H%4~uk{ zA2!_#GR?l)4E(T256Cq8?jm8OAFd3u%EPA~HB^iGhpdcew6?IQ6Z~-C$}ii4@3z=H zvKrml%7{yHx~GsIw)f9ujy-Dc&+bX6s2>*T0^csuLVh@Myy%B%E+CtMKRscb^22gI zDbwtuBiLVZrzCAt%1%EV{|tWEhziMNpFefhGjf3O-Q`qeKWx2cWb5_aQtj@C6H8e? zO!Fm~X5CGEoo)X(@kx=8aO*c5tv5iXv=Q$dqKOB4@lGMd5!V7oZeqMl7f)qXKyYIkhfHQl_V{xw;t$)(a}(4scubeKY-1?l` z$x|AH>d3lstF1nzG;H@E4HmVvEVX3DEvL7LcTz54dLtP>CPsdj?V;3mw|^&-f;3-t z(Lu(aYQM2v>+1AM)&45h^Y2O=kp0jLQIB>R0$k>nq=%g{raZhjzMk)#a<)Q^BTXT) z@_Tq#`EGR>kM3OkMCL2ykMxO;%y~VfQ)CLeuNE~TNZ>9|fQ?6t4qT}@b6z-j=C{tTOzluX* zjpEn;(NSEh#pHIK^@H#(jmY6BU8u~IH;3%evU}j$xu%h0oDY)eY$PNdjm%H@2@dNq zKbLZH>NiPawWyW-Hs$O5Hs!ziZOU)UR~`P>&gaNcBCY-8svNxhFXv5V&i(1dM_t)N z+ik#W&65Jxi#mW&Xgl% zKk~m3V4vTnJiAP}@AiirGKFq+Kil@O+1d!*>VEcMZkK~Ch(!(a`7x!N?3r%o&Nd#o z^<$WH81-7pGW4f8bh>Pr{*>m|{C1?u>+@~6mn>WBYwKi&o}>?n<|ml(tmB-glWh*4 zAGBWg!|wII-!9$?%F<5T13?kL&G$QgJ0QO7w<(X8W6u)|dtTbiJ0Z7c(mLvvk^RJX z7qew$3av+hohC8fXw{j(p0GNsZ*yEGv7`}+ANR`i`R-EoC7D8hS{9akg3;gnWcQD} zE2H+O;yUfO16UV7e9rn*b}0XwE{gc!k@&KHyR10lx9?6W`E8m1C(GRW%!=CuO(Ry<}bIm9ERncC+!~Lz8D#_az<8Mv@be~J?=cSX4$)Yy*VEA6na1Z3&Z6#+4ambpic3-at^NG&Z*z;$Plm7dvS6+4)`NAn zMQtH7soQ{kadAIcwtG)UTyxszhhEP<%6$ITyZ`5J?Wo@;G@sJ37em2W2T@?u&+N543VR+J8%CSe_uG*gPAzV@97K3J!rp~iHrMN ze<|!I&F^o2E7)TGmf%zVHgcBsw*+7Ex7~t7e`~|5WeK}8Njd&rzNQD0+td6Z?@HOE z-ATVgI;*^sO!@>1G|bNJQvHJ@*Pak7@&*`s#4n&%st zHS6lr|Hh>;*B^N@lG%QJWl_IMV|*Rc z6z*BJp94PM!Vjh?g%-7-2g6g+8}PsIq@_5lDs#zw9(P{XB)NEJM%p^1bsS8lQ#$n_ zhaT$rJZn*-J?O6XJ0fSwd?j;Jj#C2TjPhd1$!Y65X~|WQG(}}mkEf}TJj?Dq!sk=? zqHG)PEI*vCUn=MGo#k|zMy_YsJSzEo8IJP#23%5(_`bW3@RQG%VVSh0Fx^+9m(!Mx zXE*_GkW-Z>Z|YoLM(KYBQs*>?YdCk-G%jH*>Ys9m@$^K8MeQXk!*8;BTxQj861-MU zP`a1k$p+zkx1Q}HisaUsF6!>y*!Q-h=Fs972Z(I<%VmTb-5?~!k%u}xak|9oat$?R{__HKXcm3z|IN}iyL z1p8YVWsr|5-tW`P{cWiaSf3fXcgr@Jrp>hy zaxCz4fniZgr8(qspDDWXJ~OZsmJ4gY>8HQTqVu%jJi*ga6@MFiFQjpwM|`WuXBy_e zKJz$W^qDeQ<1=Ma%V)}@pU({H=X|D2&ihPCUiF#U8Q?Q1S?Dvh^RLf58b0uu+KKa- z+NtF;WirBN+DV|#l*wbCNy!eMSry##nRasDXHwGAXHt^jGb!2SGcESM&y4o>d?qD9 zJ~Og4^_i4p^_jl2%xBt37N2=1+rwvS=To0)u}6KTOe{XrVtb2}%*d1>V+Q=2npoZJ z{r8^*e5RV-^qG|W;4>-t(`UMKJ~`N?^%fpa_V-;bt~R@S6gI!lObB25OuboTTekkj z!s+yl!}Sm@r;iKD&r~~pNZsvvIO{XHA1PDvEOUR}XL4Uf)_s-azd1fCHYg^>6g3Q= zR5vH{eR}&%US{jh5R+*|j@B&dChtc7mz?&!l>6G=js6#(X@xgsO1xAL0p6{L0Pl8! zuVwDNztD{KZb7`{-B#GdXX+u|yZvFSck7|8cXR(hb^`Br$IRX>h&O$vKaBF3D*4d6 zU89}P6vV3@P8Aj9`qt$J99pDWKNI5F(lw)elJwG=rIXhSV3>E?Vs@Vy9&&kioNO)Y z!TS@&91mMW`gh8y-mQxE9u`14KTQ|*Ztj1SLsIIwO66(^huwq}E;_SoS=4PlGZ+;2 znUoaunaO&E&!prh4`7XEK}dPLDqpb!JLcqhsBAyKFMn z_3nJVCXZEF-`6<>-+h>)O=aAV-}W8%Z3 zqXHWQ)TOMxs>#3YbGi*WeTuG{>>eqsNwf# zQz&DX&y!`85tL7Tc)sspVW!f_lUzXey-bg8chtS)%%Zk&qd*-h zt+9t$&@CGK$Y8qy_iLGqbQm7=cMduGuG59NsKZvIfnJ9jV=)|9)O~Vt)ZJ3F=fK*Z z%_XHJ)OcK=ade0=h6Wh6wqKT83gfRSGH4hr6fA02S&{C>oyy9>rHTLUVIAsr9(xHm zr2BVSX33SR+3hQfZA~scMm@KqwU2z}2Fdq-r%Rlj%GRvA2$MZ;bc`|96lsi#4~hu1 z&9!ECZ`pA=*yHY@E|(F)?Myk(JJ#Rp>#P}^i^3RXj17vQ+0@;Nw(lFcU3RwiX4ai@ zbxK=~GH%}n>Uy5d-2!kJ?A?w_^rMktt&61y6`Z?qIV{Z0P2Fs(NuL4SPNvI(((PvJ zbUBpnmuq$EE6FJBZfmkn{cbmPYSh-3P8Ky&O1m=lG0!&Yr?SMiC&;2^_Rw^COogdT z3{L&rqGp#V)E)4-o?MEnqnt`oSaG55?(%TekscM8%HrR-5{t+J z&|Oq=C8qnM=4rVw)op3^in0v|x_!s4XPfvf>iem$yzR52MXiwf;$B4KIG0$||9M!W zskE3R_WzMt&>h(AnRZ$wI993tD4k3|`@EkX4bPMF?JoKD=-a`r6Q?H^s5>l2JxQ+1 zh^s%xCsW9d{YQ6|nM^px;noAqo`iIoi9D(jmx0gR+=KKcS(r=Owao60nz~P0$ut?;5Ng(4D<>1m`V8R7P?h>K zS2B?~P1`*@oVHV05;*iUi&{et@LfZVk;hSq+Rb`y1<+(doZhseUw&p~i?Y@o89ZU~4H)!+QN@)<*PHtT%p|)*IHfHN9D~>G}E? zyGo8`ojq@cK@rB$Xl-behNjjQ*X0QfHE1L)S=8<_ZD}w$dRTC@IF7(+YuMB}s645q zMh()-Qp0BHWvNj^TchhH$CN&))Io%J7>jaPJ{syaF~p09(6|^=gi#DMW8@$?#!$~T zq^F}z>-b?&pY!Q;Qa;&-d#6&ISeP2c=o}x-PHd1V3M;7?Q;ZRhSO!xRjm-^ggU^#K zl%H&&yHWNk-&~vKw@%rql)28d7;B8P4M+9R#xMg~)I^!zj;UBgEn)@@5>u_cH;9#e zRD5i-!CG||b&Isu$PIfkN%h14)WACNc(d-y$^Pc+v(hWFj7##u&2_vAh>eR+G?!*! z(w4yD{45@pU}ivMm@*QF-m~? z1v{tNiDKDhb{er0%d#5OZq=IXEMZRrvnK5PMvq-;BD1j^ycx4a%zCn;aquO~)-YSk zPFoIeh>iWlDw|j~fZ3O<@*#UJW6$I4ENABxcH&s`TXs&e^CLTdv$Kqy*=(#Evk(q` zkUfLgxyG^z>}kJeZ|fu_Powk-eh)%Sv)&0v*#@iP>wcCxYOYGy|`xI%A(RF!4lvu8G4zbzWw^O^0Jv)hs?pF>smNjQFtHSISJCSUxE<24`>buLG0VlyVRpXd z04LZP#LjV!s3@!K;o#pfE5jGeVW%X^f|z~6Dt~jh1I$*iN(EN= zm)TWzeql|OWqsN6V`ghPIBz4S#uxDrZU^l>;q=cae#B|oaJ!k zS=N(1%d?Y>JukCLFk9)vvhyrE!=CHe^FBMfS+}Qp>>^x%6Z0vl@5p`i%R%VNt9b)z_YvyE@gFDxH_Uy-+eVBdDDxKKL&6-CzNnf$& zN)B+0Jrmfo6gx#Zz&chju+6i~sxzy`>?3wIvtwfCKekex*(zo~v-3PVDqC5@>;-nd zWY5=`-DYP!CvYIM2CTA?Swm)xX10=>*#|5;!k&fMb1}0Rb~N@}!mKI>xXPwaF*C7qlRfKmfZ6OUVp$YB zSJ?9|Yrf4ke`C)*>`Z3Q&zZGgClfonSeAjEOza$BXC=pwm8<^`_ME`s^0O=tdlq8$ z8MC6y7DyQfc#)j~?0JgWNp}9?#P8&A2KFq((VpP|m05O%W!>4cEIXIj`GZwHWR=6r z!kLX>m8#6HFbijut?W6U*;#g8W0i(1i(${p?9^e|c6M5`=N)z)veSW`0~~xbI~h4Z zXJ$QEig6)_ zvgc^FQkk7~?EK2kZLXs^ta+7#H)U3rRa&uUBWB~7z0S@^*4)QVc6M^G6UG6$v1UtV z(^>W!J9$~wONL{W*O|S~vVzQtFnfpD%k0E+fD@dDGOSXTo!{7biJg)h;9Yi3bGR<- ze99_CxXjA3${DsIQU?e z72x72&a5!2{LQQwJEz#QG&`3#4~Z;W&8#NdT*)dMSyq>w9qe3Sm3quJu;xW(8`(-z zR=LJb9Lv68){q1I#?BrNps-43R%y<%aqRgKv#*$SWaj{fJIGE!4)+CX=Hil=!Jg6V zIg{CB4qk+v<18D&&Wo&4j-AtNx)QTdtWuIq|HP~eJD1tnz&8Kn0KM4rIJ32E>~G0f zwv7YuSLD@)>^YGg{#d!%j04}+Put?cl(4b_DlE|#6$EGxkQO0lz?W#w7M-&#|DXI6zB{#KX# z@RrJ7y;6-V{*N12$lshd&~}hLPEXA zvit0`WG8_gzO!Gw&&KYt6U4!rvXhlHm$8hm2UmNr=clZ4l$nK9db3l2J>O*K2X_AC z0DSMQ%2&&(U$du$Rn9US$W-qZy6ZVW} zXDfTQW%htIGc$XWol)%hA#1i{_9{Dksgc@=*)Ueg&f#*g)0#c!urrlC+cPW7>_-m1 zjahMain8Ylc7FOlb5|YT#?eI6nmNpA)TV8cw&7x$HVr3j7|W?F%eF4EWoG7Y-i>T|?@k$=C%^R5AKJIOcl&1HW_g#5zU;>b6Ii`Cl!5H{1=~*L zC&O%Pz{Z9A$eV1O&W^md*t&<`TfoNI>^F>!FZqS@*!Be*qu3b8FAQR18+IJc#=iXC zI&8b1ZO8MIH?nOk`)$dNSFnwDbXhO4<5Yg~Ww!CorPT8O)KdM_dU$IhKT^*IuOzp4 zeRyiUcWP;NY6Z2`ji3C8X^&@Pedar#jgQ%JIzKs>9q(tAH-!C0vg225JD-ghJO0D( z@roTQ$&Sm|7{kWX{KzOaPGsXR_6xDCijCJf=(E^X#E;y?#!hS;&c-x;az{35`Gpzm z_ZB-I%*JeXtl&o;W?M(L)v>XH9Uo(3J{xDSaVLjz9Y1*!8|SiLfA-tcwhe0T?mZW< zqPeu~K>v#7o|&cvXo#%Z4l>zX77xe6!K%f<=+fZw#0om`-Kr%o>muT^_8}=Ow9YNG zzpXlWpyOxl4>wff7KUG~I6Tnyu~7L~7!|Wnkz32)u`m8^gB2CAh5FYz9B!y)Ep#s| z)C?9HfY$RsFXInd-@-Vl^*XGmF)g&EOD2z@0BEd=WgpzHBmPoVpN&>*)S0NMy{sFST zX#Clgur(Z3G*c`z-YhiMtO@v=11lQA)++p=WnnFV8!AJqH~#wI5B&fOW0Tg-chiVaK=(IYF^whzC)4co3_+YC02;n%NW+r4bN zkBuGp1xyi9VDIoFkFeiDwq3@LoW_o~u;Y7d+{(tDY$W)}>)Cjpjhor{kd0f|IEMq9 z#3de&a_DV&f}z+?$PW z*w~Vd@0ej*wq47{k^Ei_Ezc2aq zi`kgZeuuGf2|FIaws+WuDI$vIQ~dfK>~}5uHM4CmHhQq*nf&Bbwqc5hUdI#>>Aa$) zv3OM|maK0i4LGPd57xwr8SCaX7tjjkWMeq7VyFCM!k#>$w@~+yaTbRUwNEzad@`V* z$r#SYmi!15HaTMQh>YFXhMJLV(Boua@`#M1*$>qu*-%Z9aS1CdD9ms9gY`n_vm9w#gjVJj%OdgSdli9HkJ08dH-OEOA_6xG@Y<>ijNA%t+Y`cvgS)U*I zhHc-mfypC!(qg~4?06>IhVbiAwk=^BCXeWaKln*Z9+7P*+kWCFf8ZxEc|?9cv+Zy8 zo5Hp`*(heCl#N^trJSFvV51`&v)MSApL~~XJ=oTZjYVv%;!rSoMC|wQlP|L032b|b zZ6~p9M}FZmHZXZa?*-Uz20I4W$Y)1P9?>I}9LgN_`<(qgVaEs9@lQ6MWj{ZO8JH#cadm z5ivZ#j`R4*Ic&R#ADP4kCXeVzOdgSOIXm9LFJSVB9Fy$WhYd^~k>maR$YKujQ??Ca z+d#IR!N#L(MA-O|Lm9-jyV!Oo8?)K4IFx(YHlK~l*zrKN{mKR=k4Tn9Y#YUoJj}Mu z+4d;gFnL5ze$TXP6 zli2S~cI?WISF;UmZ+iV0cD#md8}kd8JR-jj*cM>}lSkw@l3zH7jjPzNo{ewW5tB#s zc1_26p_KjUnv!BpchaBf5~p{x=&F z*m#9sM+cYu*5MZ>vu!#*ayC2O&9NY5?9N6dhq3|NFnL5TRI%eS4rN0&?q}mcHZXZaPoB$9e#ftG&9>qE$ad_w1=|i_ z+ktE}@slsIQOHIS8`b>6G=6dn+fHG>{n;pIznQ7`_>lwIc0BuaW?MJ59m%%c*=Xb! zFm^z3=*N$&$HsGP?8-)Oe&JX)KH~SLuyGzgg2^KaWj%fblSgD5z%~p$knMebaxgot zV%sKcTf)Ww4)ap>dy*ZaY&(GcwqV<1Y#YtC!`QZzZJ0bFzJ1vC6#E^-wwF1~FguQC z+qP`O$N;@JlZ^^C&S$@IY)oL|P=4OdgR@z>iGkM@F;XzU+7g+b(C@L^d#aMDJnDij2|Fj_{A+wcp&@RNtL-;eB=!;a6g@@^p5@MkLz>Y{TRc*}`nY@&7~&c=T1xR8x2+3_1@ z|BD?H?6@i0_GZ6fZ2OlDOdb)@AME!h8)Mi=vVqAXdgM<>1A{QA~xR=P@kD;)Q?@m+@i`kCvEL(X zyu%Eev2iy)@-rJl*>Na8c?H{IY}=I|*@_(-*?62CcVOFJ{A3Q>4q;;{JD$c*j$_+? zY+&+;;xLJAHT*~+zgNP>_Uw2r8z->ic(!$A+s*v?6Kw0rMt63+jg8yc=*xbXJR;g& z9Lhj;{DN(#@{?gUHelmIe&kIyPG?6<9#JUw@Oul`IGg>3vGFCpa30&fU}F>;1NntP zY;41hquJP(-&==m*R$<-e)2}Pjb*2Q`X~6WRES{X%T3 zV&iod;ViZl@gsM!u@f7IvoVdI+>wo1eqjdty~U0PvoV_;EBKLz+18P5b!@C)$H&;1 z&&C;S+{vL_$4}nG#<}d*pZ)e^TeWRVHs?1+8fnihhRp1ZA} zMn-cku}4$VS!a`rbtV0gWY#%kB3aHOlb*hSjf>b=$;PF&k+d!+)4GEGi1b}bVS%(F zlIXCQ_H9NxEUs#kI?R6?1*73#Df4%W)K`b&L>{gV+F9h5;$fu}AIVabRmNk%s!%Y2 zG7>ZL-~}anJr!>u5Bk#iDQ!|96vO88WnLNbu2Pt&|5=NQqtfb#Wrti`k`wThIUn#>i zat`!pm0>lX#AZr47H5$bW|?$rsBM%oY$eN39;t5%Mk7^TpXFpFJ!Zg#(%30TTA@DJ zNayZ&Nia_-!3sG6)=So#*|3^2v6oVuePlh=5o(eSL<)K;$~vV0+sNrr+!&*rh&E8e z!_W=;D5NlTNG z8%-A~sjrcvUrJYfgqEbrpOO35D#`Da6UdYYW_{aUV%?LennC6Wyd zu{hl`lqv>h5)4pEbBmk_-9mImXBeHcjBTLdN-5rxrLeoonK~rfDfw@e`O8oc&^Mz6 zk~9X-+S^R^jCJxQ zN>R>{Rdb%Z*xjgPohBzhiOotwg^@;6_1vfA4#}#gPr5Q%eO2_dQkGZc)bHBbF3VIC zyrC2#C=1cMRTJV1B&8gyM!nFGbmYw^N>RR-%SE>t(}ygmk5n(G!`A{6Xyh_jPse;3 zpXZOJ6zv{Yw}-Y{CIM)4dwp5DF4LNp2ZD(}FfhO6sJ*x$TYkW7zx_$F(g^$CZ2Zf{ zI`j}Z=GaDRgguWeBty+=Gs~WZD2USj2fDhab>6}l^e>^-_0S{|aL`~wvYteMv3E=q zG*|4kSDWYd+KZOl!MQc)))|5<?lKaOo-7fO(cPt5yMi^ZJFxu%RX$i8DY<_6oGv{H6zX9IY!BRxy;;oQ9Rf{=T-+M z$7x!KmV+-bMVO`(;gQuQeGdvfHS5%Nx~T#ss`Ug)N9o%oC6QhFx^U@h^K45Av;y>; zpTcJiq!(sdgY18Mj%y*oWScoIzZw6-YU_^-aqpChdnmk^?hRH$gQbrs<@i-jhe4$F zhfJq_(&zx84-Psr5txunG{)+vCaMYtCdcA+H1Y2&mMGPEi#zj z#d}Ht_L2oCo)M!79V#M@!ugew`UW{uI?qc|>7-6oV0^eX*c72v9LD$YyHbShWvx)0 zp)$^2U)Lm@B*(s&Qz5r}DrOPrqLk!cS(1u*jdaF+FkThe$6XErO8$Z@_{Zb^5$LG# z_7xaLAsC|MKUMw&@+XE9ks4Dsk5QJ)petDl_7 zY$y_5RdS1A$q0wah z&}3a><6{@e#jiM2*FYnOiTap1t^SKClJzCoX$0(RHoj%!dp3TwjnuH%&t#!tu_~E5 zm-Mc=+BIhbv*G2J^zAH2>mrF-qo{XOl2*&4MU#{DA^W;|gSnrQc~%z1+ztJnkOO(v^2}`SADqk3(2@krG&dlg#O5zLTC>JJT)s3zm z!{JKegXI!d7>(5=XtAFe%OV&ZMakY7N?pD-80Nl;lsy zrHoDjOVrlH9TmnZCGqd_2c73`1%9n$T`s3}NhsDpi|X7-{fCl!tjwL~W-ScizvtE4ebkq$2lg&WNAiF=gXI2%!j zcCIU}pH!0WDo41emZoA7q_@pMir19PN6XB1$EG2gG^@#vl*D(*#05c`nRgDveXr!* zMgF7;X)S`gL-mi6xUU@HQtHWdSnQ=kOE%Os!|WrBSKqxTSxTGaNsGEV7(JETd&wzY zj3!`ZvYPgL8&$_fO6vY{l~p>C4jB%#?Bj2{5Mrc~9LJ;znxtrAINT7JNLwe3Xpc3S z*VwQxPHYt|XC3MPh| zTzeN5)9Y;y8Su+HLgp==7z@$*6N<5^-l9tC-{g{4+&TnnQZH9hA0$)T6TFk-wA_-G ze|ao?JVGhLS8~Faj7u~IYQs^i^)L$CDN63WW$sQ>i5HW*bHlvQ)s)}@r3Bx|5|mGh z$7AupRGQ?X%EtWKu2Ir&DbweVL%nLo`c5V7cXIvKxn;T|FfLw`L_gFN;W4EM+sZMo zm{#8qrLoe$f(ANW-qH1cS;>E`%%3-t7L}Q?eqYIYWES5$ttX>~GOgzFE^^-}Md%<$ zylfIRs*-g9I$9^;sOA4uvL7QSKq+*seS(kkYb)GHSI4ZBi+#m-+KCTEJ1^XbMVE%U z>!#%IAoCZ`qO7l@KB`00ZlI(-Nly2oh2eN5t#NhCYY$U0@0TYxWKxN4B=#63?+bEb z7mknA2jk9-F4L66xiWF_yzt&hQmGNzPtvv-yHH7eQx<7$*JF;aI;7OT z@pL8sm$FhRw!3WevA@ko^_5EMi)HFA^OBVToahF1PAjyloH>7kQil0*&Uc<1Sr(Wa zjG*Dj88F&NhI^GF943oU-rA6J=fYD;`b*?o=+wG27%OC<1dIfDT`9p4StP*3<#dc6 z?U#wv;rs)G{$nNmJ8}XPx3=fZnE#-p#$6}E00A{7!u5gq!GvR@+P_Nbr}9MVF0D<- z##+y=W9i1aw%i_a#utxEQ1jKjWUH5w`dT^Dd%H?~V0NS-OlrU!J=$0)N^=&eFpUOC z!}iKGqv(%PQtu^GcWPBV_RdLX^|ymkf*x`{6wfE6Lo<63huWE;q&`#r0;r8=_aLbE zYNY$FO6sX{tcz%YcvZyJWv@{(<9Z}PpoIOaYMR?)d$EvG?d$CFx~yYzyf4IG5@?L&N0%9` zCP&-u5~UC?${%!ji~g?1aSP_y^^HpUE9JD$O@tl$EALa1PL)Y%FH#NN_iB7qPb+D0 z2dhxH^W))$aL{ZNy`iKnkaM^QEh0LjF=+1j`b5cmq+Gy@GqlEkR8mLeNarP}L2M>< zhe5i=P>Iai)2qMc>Is!81$jdjq;slelBw40trX$<0RK{=#3M=1?%Jr};XTzu?CK3t(By-zL!-QD@%(sj2g#lRi!Lfp$} zDPbL5(M4OyB90|i4=LGkwYtl7!MIY}dxgU_ZJGP8L zcq;iXlmdk0FE5w&)0=wsSCe#&jYR(->!Jcm1(!UJ$U-B|kIA`Eng|Eup;}Nox-mT{jJ6}re#tkL$tzmsA5*ijhT_>!$-l3h=oM4K zbZBHS>Ny!aLdpM{TmlQQj@Y@XZhIx~PjbBTr_-U8jkt=M}V5sL}w~_f0dKDY$8rc_f#L3D%pRMV_iNoSyxF%!+7n2xJgNW zto%K7#rK5u*mUqT9da6|js_i@VD486(VT@4ST z?oB1vK97ek;F{bEhU_7l37arVwpdGI)+`$wBB7wTO!kzw6p+exq+d%B1-Nz zWbXVhjkGuvW|NZkRrw3fNi>?D(xFPu@@zOA@jOwinep3E~ zbDS%du2gcqA-8m~`?iVJjyb=g+mzIk<)rS|x`dTBAi8=q4=V-eBd2$#)>CagH@?51 zl;Ak|W6rG$2hHivca@~~%A}pAE^mm@j)6oZ;o0W?QYk`jIqP$rit{%mXHbrIZX)P7 zUm$N&U1RHPxrk+2C*N5~{h|D2SER-XJoC7}lK&Ms>aD{hp;*$n!+A3${cUm)%UeKm z0HzAxM#;LqT*xX~S_X6(IjK~04q~#B{~I~h-RZy!5S5EovX_xj}>N#Un0jl$64ea@Ja6E{6+rCO2fw(IU~4$c3pr2I)P(m9DHvqQM<1t$0 zO`~>>`)DeZ)cm zTh8$Al{nFXP8(cJ(_%}d7*pi*=tLSk9$A(tAtop#xKoy(fJ#2yvTn95XDfM&W!_Fz zw1}-1N7hmvP@x!Uet&x?B`B38$cxlFZzZ*qthussE8!DG6S1hH|F%@gT`m{;{HAb- zT1>{bc9@d3LZ&TkDdev8WG5-fJIds_;Yf{ny5@OG(%CX;K^65=Vo5WluTt`!oJEl) zed@R};C3bJyK-#vY#nNpsz;QpJ+g?a`xAOm$=WLmR?1b!xiIf3Sr^Hyxu~y=1pZ1% zx=PkmInE~j?@G@1<%UT<4nAShO4=ReFKIwaYGXfp zVo7)@{V%Vh1sd^42>U$I1T>1@e5FjE$ugC%rr{e@(tj#{=!Nvfq1kCx&Gky+fLsKM zqsb17>6RHP{YH}StE8SGCwXZ!(TFY0_92x9`B6&pfJ|Q2(gbWrz+X=K+i`e!56uQO#>V?)Q4vI^`Tq2cUE6ZJpS3$C4qqCaSg zXWd428alp%jl0;mhmHGeBQ=or09k10c#d2sI@2E2Fa}O>a;!%RJx3w69Y6Lf!sl|y z=$aBC!biAz2=TU3h)?9~=xnD#W)VJDitvD(6~%VlK*QRO*3U0W>OW=bUa2gwx8P?k z3^_w}h2dGbF!W9&8*ua*K8}|1!0OT*pXjI*;@#>u*=f-gm(%Ma07cN`11r;`6^xgeI&TpLYoQeT1A5}P9$OO))t%dzj5(oK9R z49%|EL!}|F>U^0}nuBF&dekSW0cY2iwu++KDqI(fn=>SbE9H1eE|ldo-)pyNsv=Dh zN2}&!CH)REePN_AT$iBL#zu4Md?oQea{6y%e~gLR816YCNi5Mc-PwQ)?2(QU$P-Yi}M%?pV6*0TGe<<0Hl|KdU zbJ2b>>?ou2>BG)J@Pc8wMr5&^0_A8)+kGqdnNnSq^hJf@p5Y>t0eA6VU&;J{ocQZC z(3Lmn&EeQMp^_S^6lb3NF?36PjjJgQ+bX4)BPU9pyAVuOvR)*Y!2(=AROQ%Cxj@M~ zN#-p?*^fpXM^#iRiA&{D-_niG+*ODvg?LkLsjp4UdcU3jyFd3L$w_iFIkG?Dh&32l@>jMjg1~`^kSorZKMX+`;mnP*dLWe=oU)G!(x5l1g$)ZudSSie%vM_YxusvAeIK4ZnWS%WE)0tZK zC4D$)BpyNYj08y)NXIER%azhtveN8C8&6{mBte{(o6ri38gne`2&Dw~%IVR$H9aEr zp?DYG+v-&zD!R3ZmsRM)D9nahxr<%6bH)j?;f+S zPYhCb+5SeuQFk`nsTAW^Sqz*S;XKCRF(vH-a>Ko#DqJ0;qsEO=_p*|AQI^ql^i$qf z(vFggTrstd&|j!?^vb_cQa>!mxOeNP-ZCoVt@r*^in6(!3KgxQcq~IH9HDE9JSrze zVJH@lhhpJsqtta%68|BW_I&6%N2%LDN&CIr<|w3n2KJUwBfi6w#GAMd8%VcxcaFzI3_LkSMraS`ODKS zKG%8a$0+G1%Jc=Ke_V&!oUY`}m3iAln>NXst=yGL`d70kZ+5L4sjoI~&$&U#{DQ3T zi)yK}7o#h-%wgDjmCU!xNuF-mSB1S=_D?BAm>?&6PAFz>%6?tRnIo&c{76lZ+ObAO z_py?;RE{b>EZ4y!KPY)ml5=@*TFd*<@&76%dsEJcqEIkYOY^VQX1A_%q^@<>RnCii zkKSZ2CGFL6g!5~HbOMYythTX|wn3)d(z6pw%`MD7(@kY`j9AODs;N5PJxei4DdsV9 zrWAAPP~XQK7T-ZheT|$#g*41ZXJR@6Bn1@DU6A{Or z%UzX{d?!~!9UGGNlzgn7dY?fWfHd@DjVZty8y){ZPNFU?hr3WmArTHG>7X#Pb+C^q zn-wEF4Ug~5MuLqb8%u2?H9WqYEHpeGk!8rQrFoN(x%=rzdb{m-xL?|z%M-Qd7W@m9^ykR*`8d-)X~z0mCGAymR`+a8bKd>MYLez= zjPKztr6BdPAZ1b9FJWIxSzT%?w&InQdLUsS7h$o%5bCEyWLw!dWT$FY{GZ7_I2S+-RZ!jYE&TK2|Bk>vDQ`u}>YO#xq|576RlaoBXEw$z3MfbeyeM&L9$O%x<+E(`7BxzzfPO71T5XGSY?aJZgP+&gTp zYdh^M)2(VZ?VN~JlO}Df#YNlHN^_oWKTs*c`?3fn zHSt(7)%7w`eRC!EJ97W07xrX$j@B8Hj8jVTwES^*LVZpHK~eAVpqWYu7R&iy_y42j zVCim3+AeaNqKHn(ZKCz*j)}ioCG#ipCs#!Kpdz8#sN=xWq>_0+nE@NJIFYT$v(;~WN{_!*D`G>?Hi<~xyM@61C``MqE7fngklx9Yssbt<>PVs_ybiR^Phh3`V{Y~aAniy;h2C(MQP-HhL zng5oV=@ygBXCmCMHrQLIbJ^GXz61=IDV3{mI z>5O1K%{o)P?Yto6QziL2^2e4xm&TT2<}$#al(duOIOk8a*ZUg9eVr|Jt)=O5am%rS z=A3%DlJjgig>&XPI@f)aoOjFd>`2Fl;*=44F}16KG)O7H(Xs%YuzRQucdmL?U|T39 zcuxQeE1gkLL)}Mn+Ok?H!FRI0DNfz- z>Ab8Wp`_kAi^$WdEwNC9v|ST*bLem*v)CP^lwi1A?DFXbK<9A9aZ1|l+%cy}Q7lr4(TcIp(SL5_PnD5hrj*>H1lt>|dr7;Q%=m3b8@Jb>#BRO5y`$;v(qR zuuIK6pk!{6OMFSoDN?i?$Vl#ImE14N+&$~;g&9=OVd)p;d3~7nO*!|(yrmSRP!^w4^&S*jGHvz!EFv`;&<#BSU<+qQ=( z*}KV!P;RgIMeojiso_aV`XlAY=h6tGsc_CylI|{((z$On^wHyVX0I!duTo0TD1UDq zQ#}fA&3C&}fK_s5u4G9q4(p`t9YOO@jz^T-{p2E7k%&^lV=MGhS~TZ4EA>Ss|9UdN z>!Qc^l$_7WoF%nM+R))q$$X{c-ZcyERvqhDQuDi#yLT3!T4g*ItP0s0-ah!i>_X*l zqifn7D@%ZdV>Et6+q~m3EcBqmsOan=bI7!dQjCw}FFxO+4;xU@PRW9{%DvTKh?4d^ zxyTjST_|iaH(D~ImCW7bA=-3p;)>N+~{( zReO%JAstk54v=GBkh;m!$nAP1?~hr;)oLrk@O zko4hf9LdJfY#eJFsUhj($U;NXgXM%Tst+$~3|2d@qduDgXgeJ3mwA;O-3;pvE>|*d zl0}@o*UjCcWL}a5Gacke=N8jy52K(zsAL`>>v6jLyV^W1^EoByrE(S*BqBBSl@W75 z=xrtMlX5Z_RC$~t_PLTbD#y2!=FibmaNmymi<0~RIfpZ>jm#OX`;xbiqn%eBcaF7o zRI)xM$G1Bz;-FQi_Pk=a1{Eb$n2uSseo8S$%aPA%vP`ADiIVd$IqKf?*IOxxm&%dN zi&i;vdZLo`ak-N2XzwGBRMX|c9wRJslmhG{M>{_rb{%`Ur;_$5Ih#HA1}#zY9wbLM zr`mCo{4yoy%d*NYx6e1WXH9S}hfzHquA~pkN$sUf5=nEl@5xFr#>=UYaZS$oO73mt zB*@*zxfSqgCFxOeQ7fY{B;NaogAR>czeCABQ)Vx3ip49j2FYU_=}{$pg-oBfjAo6@ z#eOd-Stc zN`VfQKk$M`B1H2<=IBwuwz?+T4Kims{1KfKa``ISG&ByF~NSclC_7-iVHWK?Xc67v>(Vx zoJ&_=n){zFR+9G3f|Mrn%pscVm84(EeXBycV8dM_-J>L4A?IvvI9_cg@smo@d*s;W zdu-x+&7@spBfgu+s=BBu9&4a!bH_}>7p6qkdt|3!-}l-0kd2So_|!I1!@i%Bg@%3a z$fB%8szTj*i@`aI z=jAUdm*&sR8uLyiX@OkCybhFkOi4RgE@3V05=TAxvXXhUoXPI<$lh0y?klHq*LpgW ziH@Yg8EoFQ^fyW&&X8m7byCuwO4`fixaT&+V&;z9!tHczvWYTjNoz~Y(emx4PYlD4z_A(zgxZ^jL{4`3dnBws0)=uY%e1v7tB)07gF z$m2p8k2YASxlMe9Qhy&ZA^Sl1tz6NaLeA zMoHRDChf_$U#6=HI;@n=S`V9Q^mL^l@5$L*MuU&I9TY0up-5LM+4q*&X`dajgWJ(e zxIxLivs~6Z56ZY#$=hG%O@GvmI6tN2{z$Gua-1VJuPZqRWD(!iJa#CtkCog@^bZ>GDMneiezm|b{Z(& zj*YQwjALVhZKMW@Cy|8)if78Xl1EDv91A$-(aUW|iv6;_Cr6m(UmP=BdnrlplNBr- z0G@R0C96}iekeyZhYFgJsrx87?~^mNfbJEorJ( z;No~V6rt<0od=y=sHFZ|PVxRrf{_HabX0~D37qy$`#We(g7l2X(xYpY@*FD5lh+Ur zJHD{Hl&pWr8Bkgqtfvj?9#MW=NxqHzp;gq<#nPE}4Zfn}|3xnRIW(tid~hEqIS-e! zxns)*N5cTY>R`z1D}AdJ;72*pNs&8NW&EWi&5=_&H{>kaMPqeU*0XX_7o)+DsEtSJ z&6_K_E2*ECsmoiGi^qpGKuKRI)8{x-d$^LbgWOQ3b)$5u81BDqa$W|ros#`lxl|WZ zqlgN2T`Xd5J>OADeY%|39V?@B*Ku9YTa7MK3hn+N((VPc5KuKLHN53c@uA>vrYqQX$)LJpu znw_B}oglwF@wt&;c)S#uUp)5EntE2-qYK#nk$VVk<+5GCn1a%9VB6L*Y8 zYCO6YCz$MOYzR1F~5#pZaetvmvvJ)s(BREx)BEJ-AdMZvhFOTJ9X&5*d|kvJ)tE2OpY$?kV=?^ z{8c6C=UI?OX&ll>;t!Ri`^iaMin#>)PWXDqPLl7GqFr;DQ=lPvIErIZ(;_r_5WP;`P#4%}V+)GJOu|4&wtpQ^}c> zIqepX*+;xo$@+|3veFgdvY0udcaxI*&usLh<6QLnm7IUboTYRK6z-Ynu-F;lXO!eY zS%DPLa*{}$<1mjmmAqTaym@p|q(e=As$|WROLPt$K4pAGKPfqHk+YX3+#+Uuw9a^4 z11DD=0Lb^~pp`3Wr_1SEXrH{>5H-*3=%XY)PcBXcRQHagI@rkEK}z1YS=p5=gw79 zUm>S*DRn<-#UdSxPs8Cx7GJ3(KT$4Nxske{sVQ$$l71@3xPUr?u7<|LO5P@!H`mo2 zd_hV2xlEcv!&XMFzN_TiNY2&HjSWfKP((v2!KPp&8mx?(eX}o35!TrF>?5*hJ?z`T zF}aDgeN8l4j^mrFO!@vX<+FYyI}O?X%*L;5{LaRowvigL{hKT_Wc!X>iS=r^+I01j zluR(&XMQEwOqQg~J~*6?O{ZB$N6pex$$qz7Jag%ycysh?BPHq2GHEF;!HG1{Ih9ld zjE`fal6lMM~2qo}wnnqTTztuXTE(5WT!?NwSd=4*BjrYj}5LQamH zV5J%BU6hjP*R~7?I<>iK(&&8SGoN43DI3RG<6jU(v>i@#-T1u;@}!G zXK_p@W!Wm5^sh2oI|nH_8)Z(M;u*FTaCI;lZPmm^HXNrE<8e6~itJ)g(~vX^z*$P> z9pnV)L$@fWt};)owg6nFl;tn^W9ZsC<`WI0R!r1J90w@etP~!Wx;Db69XIC*pdsiV#Etde!9oD(IjIpL^>-%@g)CVvYRs1oZ_*N-~Y&}T~i zadO=A&<-$%FMd|C?kBVMbt6sq7jn7qoF!jDMF#F5^{sieIZ*aNlRqXBKi_( z=Xj%I)OLcBd3!mRKTAh?4bonYEYQ;7SAXMOS~=^BM!$m!5Ix%v)b7o`ZN${$URvpWz_a)xEjuHyK>5Ty_s z$U<~$)y#3;&*ttLk5)=?VP1z0)(QPObQpZ_iv3p%vQ8#gd#iN{88qO08X3(Q567Bf za<8#b^fzUhGTdRct0|E+i|iDQIc&^hV*wkBY$G*pz6)7s-28MoPgZxjWDSMVcFnV2 z`tNha%kE{kVpCx**l6-+o?sZea@k-jW<*fEP1pI6z?J$`(@i5|>Gg+siN6W-sXYqDa((aole!4|d zXx&$YZZ|Yjx}TDH9XY}|^TOt4!cCN%*UPc>JlJn5CGYY1Vk&36y=J14`$jp=883aC zqvRed=dstR!+R=ex0I9HRkW5UIj@kTnz^a7OiBKt+`e;HNrx**Uy@TfZyGIvGAqK9 zm8?_c;+#QYov&nmS&Z+gLprR}0l#LCh+nOxm-D!E(lVNUjo>C)$FlD`l;rEm!z^C4 z)1yk-9GNyltLG&pb72gArDUF%-~PJdYbAHR%Jzi$@8vdwM(ylM(Zpnlg=7SQESiRY$h$*?xS8(sAwyhX+2HJJ6KNe?jwed8XcIpyq+%o4F#GKfq9Lz7RNlk?P61mH8$RRzg(*f z92cUq8gW(*rA=VQjM?$<{5TzS7QoW!Xd!LYTgXDA!9xl}g-|v#cgqCnaX2K!|nDQ8-rsmYoeN|4FH zP&hC@jB90S{m|0D#BgN3krK}tdq=lq>a#hDa3IG%*}*m_aAPd~nd2 ziNI_uIHXfE;?rgsqP?RO?R;6Z&Lf5nA05b?Q(q`Wh{-usF(5FlX?b8gO|Mh3)WwV> z_*KdOkE~YuPl(k~uF&Tbs}IDg1Hk|debR?MnU-C>{V7U;&XNJzS~sl7*W%Xmb1~f zm`Zt5if&3N4wj`D+)@b9KMDqFgOMf4ESjAgC?%UMXG_QFv?GujytUy#CAtP?(hO4y zP$8Gf0h8*hhBU^8kbzz#?U1J=njL8fQ(rP1psqe?Q=>*5qm=1kIZ=9!Km|5A9;^#5 zjm4Kx)fx@E`%BZ5f^?JSAzaxSt)ZiJLF ztdMiVj(!lTvsIXQU|M}+JXV!-=SqW8pvPo^iYPDYscs*!wUHG2E1BoZ%sm#x>AX2g z3GNzEvztqYA;&RFInI#fD4vsygqG0J-HvSorz@%NlvQatCjr`6uI9u_CH-~s2eH}2 za8o!M!vZ79h7b*v$D*`PDpnti2B=Kf>cTr)Zcqw$lPp{>9^IKm)6DjePpXIL)S&k& zB{?^X0Nov8{a6%LY5P0vAFda(3L>%BAIRjS_$+p z&__To0M+BUcY(eJ`Vwdhpx=PvcrI@}`WuYG-Wg~Up#DJDz;`pC#c09^&QBY|cBtpGX(Azuh|4cx8;x)*MD0o@1mIM5CVhv_D1?xo26`2~ZvX{>J^}h3&;1Cr zK2Uyu{%YXc1!!Zq4Fehmw=qDM15E>Z1ilM_egH=u&>?U;4CptwodnbfbRN*|@VyG? z7ld*<&o?6p)4IP6fIVz83-Y#v9iG-3_<9ZC^b1 z1klGouL9M;_d}qI@WwAdRX{l#(BIoY9f7KW`T@$3P z9pQZqv>d*F0F4DI7(jpf19b&D0dK4iv?JVx0v!RgEzoxGoeH!Q!dn1T22=?&7QQi{ zLZJPCj>Ef019bvA4d@}Di-C%fN7n-#j!^CaDu>&XK)b^2HK3z`J_5Q6=zE}D5XwJ5 zec@KJA^m-cH0TMm7koDY>JM2)0(}eLu|Pio%?0`x&n*TT0Tc!L4R0(5Itb_pps(P2 z3ees_7XW<&bPdp!Kz9Ot2U#8i+7@mv16>RBKG2Z}?;D^FaQhSJ7`PQ~M1L#sZa1I~ zKpOy^1m9sm`{mK!7@!y6I}IooXd%!|@C^a|3%3TK1Az7ingw(W(EWMzcRJ9Q2ze#Y z#XvUz&Bt^10v!hQ6woE`eI4isxP1)t4%~hKdMlUy{snp}kN!$GroTP#TrZ$&@!ZBh z&2Sq9v=`70Kt13)1L#b=yDQLCxYYoChL9V9dZ9$De$P|x)L5N4V!6(a<`BgcN^6=- zp2o&bY|LO|mTjaaljo3yCX*k8n8$;DABc1|&{=T17HA{5-39au(BnXLh{P*E!+|~k z+7fSk3$$}S{rv^>P%ixy4Wz%_;MN@|j^_pd{R}i5=m|Wx9njHuZbzUe;kF299dJ|u zT~a`QdjnkxbO6w^c0CX0fI|t|kgmMMYeR%FxppW795KzxT`g2(&MJM*zKsH?{}*32r+9J&osf2KpUtVW4N=76)noIuPg|NYxDV zEkZdH=vVk&3iK1)ZUQF1#0!@M21fV;C zW&;%i?EzE@WC7)ZV<}KM-aQPc0_Y^5jzH%D%?7#(=w!TmJJ7pudjzNl++GCg1@s=! zBA~B;R)OPpp!Xqj{t)`R2k&+PdJ)eBfKGth5TKXfHX7(8xJ?1t5uwZn`V1%t^eMut z2MXZ1eSv1c_bA&9h}LuyC44Ue`WkOs2UH1;2Z83`x#xgB$8&E3eFERlfgXVGFF=0+ z06h%1KY=!fTj2=$dlYWnfd0U{8vuO|NrwS#2H!D2Kf-Mq z&>nDG2y`4!2xvR_HUO=QkoN}~4|ELBM4;1wa)DL?y^1$(0D1wu_X6Dx-=}~k!1r~a z9B_OLR0_8rfKI}5{{p=U-_nuv*A>3KfUbty#y|}~qkxWq?+!rMz-WJrV1S*5?eL!8{_B7CiaC-x&JKR12x)g3d+Rq`B4x7{8&Ol{A zo#5LW=mWS71bQE6bD(#S8smVTMtC!U7Q=Tppe~TK7U&a%k_6fi&mCgB;kgrlc7pFY zKvxiC-zeB(f0104u71kW`CJqdIs(Dv}X6zDggn}GfX zx*uo)&@(`2+%2TYXXYmxkG{G!R+XaU@=1X>7m8_;e*4+Fgb^a9ZC zK<@%og5yh|4dC`0P!HsO-d6Ni1>ep<%fQheXhWcpK=%WU1$q!@I?%5uSGxe6i+8Jm zzC*|fpsnF{5YTYEaU9Tg@I4D?3%FedbO79L209Sv0iY(l`z+9lKyLvR0(}Nl1oSgd zH9}c;YxWxtHx1qmd zfw};Fgzy4DQ-Fp5orgC@19d~bO#xaDZ_Ee!1iV3@0dT7a`VnsX0=M z!R>OOP2hG5&=Q~rfd+v0IiO4N+}l7;!uNBaDBOMlIsnh*jHbUW;MNi7F}U>u8V$Ei zfDVJ(RzOSPHWBD?$TtUQAGqxa^c0?30(21EmI1vC-ot^y@I4u5JlxI)+7@nC1097o z?f{wz^e9jT&`Ut)fC56}uc_ax9g zaC;4C6YzckbO+w}73g6+mpg|3h68m1dJ1SgpfB*ora&X$wl&a0cy|)emvEa4^e{LU z18t2rqCnpREeA^Axg&tCgWD-Un7QWqq zo(CELR0%X3r~~4=9nh_KcSoSp;kyXvCGb`OoddVMftvB$0YIg2!)^4|wP3>)@zxw5 zT-k2T1;RDz)&d}0ZEih^cX8ji^*9i&|F-Nqym1Y;btS^Xwb)i1sKXBQ_bi?(1L}oP zdIR+V8VGbNp4%KKfak^m*|!MK1bP{6y8&$kR15S4Vw42B0B(l>@%6AkVYpocbT6K} z4ro)j-3>GkY)=4v2Dev%J_q^`Xg~OV2ec6AZ=fsTi)$aPZy+#GZ5;xHbD*uI@WrXj)@gVb z=ObI=;D$4ct^I)3ok)N7slOFKli=1Ds0MG~z*?&i;o%fns{{zAx?0=A7e}pH=K|r} zQ|koy;sjD_Jlt>&sMQs2hXLJ;kWT`70&Y05(&`C>vm>qU@WpwK)@?vIW6`=D=tZEu zcn*gPTJ{NnIM>hW1r8jmXAOjJ{v`VQ0&ZP^PQ|+cpfJ!7pbdaV16`O$e^Y?o1lkqo zbokZ)+2?CD0^Nh~4hC8PbUe`6cIg{ycG*CyNee>wAAJ95*+XU!(xNQY=d_Mh61iBG!bAZO;xjlilgzpld zE8w;a$UafxaG;mqdos{eyn8;-%W%8eM!AIU0J4t=coZlHdi*6Idl&sGpo#hP_cc&G z&>ukdrtg9&gzR0|U4h<(@A^Pj0SyIu2E5w>b%WbfppOdZZvoKpK$Sr2uL z3;eCuApus_TW7%y%iOIZyn*HB)?GkY_igP2gf-XJ;XqjaY)!+v?*r`!goVIXEkePf zTx$lN!#Y{(E%;)ss&z0B)`nWM;fqC@Rt4U`(n#xJxM6Lg)e&x3BxuzEVX2?2EFQAX#dBE8WA(>#SXyK42{){6 zv8v&Q#U{z-+{PF!Da8qc8^ZCpemGdLG8v7A8y80-iN+PDtnfU6(0;H8Pb{VdZ*>_S z8`NBpXsC_UFB?jC3fI%(^2CbfP9fUzMpw!#ZV1MMHFOqKZHAXwn4);NIvfwzhr*d2 zvkyZorQ15}8zWo?N^G#BIYD?HMUf^5FJR*$HdeB6sckeD(wU;+IIS34aa40Y@h9Vv z70r{YD5ZwA9K{}t4vRD`A67+YSS$u5Y(vwYLt$<89LmDk53Xn~4%UZiX(I|PUR_ap zE6+wYw~3~8Hc4UiBe9c}LF*i{AbVu7Qz3bzFNfH}4$Ft*VQz;K)v-aQr2oXRcc#C>$flnmZ0a z-nNOsiqwSiD0-C1$N4Akl2{UHSe)Qh%(!r^lC~`$l?r)uYslOC4!Na#r9V}caa%j2 zwU_5z#>L}7Bi$T1-$VknC+DsCt*MjnojTcOdUre1T~TmneS?1yvdsEA-yx?;Pqa0C z)^?uvppz;ZX~#e~-u8QO}%Rb?5q+Msq+Wp?u-w=wRxYU4wa!(XxWEOX7< zc{M9SxIdoOtb4U8TKtCEA{lj4OKZYPS4FGZo6hMv=N(S*Oo_b~+YR}MvO|63@8mZh zQlCb;+Q^|G)W*y5$6GpZkt=D<1aEk^0) zz?pUs8M9z5HU}tg+Qi+_E_l#)-niNY_xVmN&+N6XrErXlY3^)m6GMD=cj9jU^jRvC zJA8-iQYN?BL1g^i+R@Hl{g6>NZXg&*=E(7HNhE(Qa#xOj{GaE0uXK~aNH#~__nofJ`(6~pn&<_%zxKY4wu2E7cm8+xFG!a8-^F*x z8S=j!Er4_*f-8`A1d(n;oYvlgoN7d@T)T~kZjpML!@%u@Ef-0;W+`^_U4T6`PxDMo zQvy=92$^MrV(0c2sdR&4fgMD~2E|&eW9)1)6TqQo4)C2#t~zF4-znyq)0Rcyn5_z~ zV>}|^)-lWc3z4OcN%{`irDNjl4I-^$xJ;>Z%v_BWw6XA`wX0*wD&w(WRVbLCyCWOT zb4>4{nD}cLd6u~5DGJ@vDjkF~imgX4<<9mdeOjs9W(Sc`sjS6bN_pF;JJiW4-#Oz_ zC-3-9E6>ceo~Ce&d};1vH(T0D@75!4`e)BlkG$qPWS1U!*$!gu)gN8CkJ2{99Qj=~ z!|#{q%I{(dVofwt-TB?4O&6tY9Nf8H;9rI;b3NC0$p3k+_e}Rt+NPQ#=SS;vek}y`Civ?PAI;z)*=W^f0*s}~a&sQ`hNZ8gkdP>wRJ1b4?Enn$&MZylkf8MO|0kJ+A zlfj{R&hedPt~%#T-|6O=>()^ej@iao&(=H{qvBRRr}-BpOXYKl?~q-}=fw5~kybuj zzEsMmK_dlqT)tkr%BLJNEEz6we~Y5>U-w*Sw2q|9Qp3F7-n36^m{;r|GHRH$*>hvDSMoZBxvV z-Ba+B9qkAr-E(=dy~-=qbJ=3;HXeGJ zJ(pyLcEstv%dlqwY@V}*x-F11%NE6o_Li)4i{d0Zh>R_YwO7sbY}?RJr-4J^-03^B zTvg3&z7x$ezpYCt9J6V`3dcJhZiRERe>t*LI5+qX*`;umfx&#>6Bg+ z#F}Wn7E(B-PT|#HhWKt((%nCOma3$S?~q-pq+@%7NUIVqM=DkFU3*J&s_ilu+h^C_ zsB3vcJXRNL4AXoqZ6G!8b=i#)^uJamDe+R$8AaA(&UWYa7J;-XSzrg@KL^(M*lL9l zb%!cBz<1WTRLQ=+)5^PfVo^9ozN8kG8sfWE$uj@+S*ntx?~q-pB;MX2(yD~ZkxG@! z)ks0Dl1>&ORbWBTD zEjE(Cp=ZYX&MKFl8S6XEy!Fgb3dhtlyx+b>&lu5gw`0cm7b8nuvyJbNUAkt=_6CvG zHC(P#x~98E3eq);*K#|?9L{y`xI38Q^Ix}P+7AA)ghmEOP0W3w@`Tw|+U1!ZGruncFe0D7baYdHzMnQn#G#J7kw`IitNnq;(6I zCzWnlrjdel%T{Ywx0FZfn}X3umDjSi4=E~ZLak^4 z3M1+cb&@~FZ`QcfNe%_!uZicaPJW;SGu26IA1@cIRL-U7(_Nwt{^_$+C4aZK5TxgO z|7dRzX;s4INTo{N)JQ?9#J*c{?Ty@a3eu9bdOD$}i3V@ojg(2gi>zmPYu-`O844y+ z0%oaC#``X$sdApyCu8j({txsCWsebgheoOOojop%684>1o;hsIr*KS-($!uN>xh86 zc~a?LfGl;&V&5UBQYWobc5iPGX`RAlNu^W9Xrv&WvSRHvPu5G;o1LH4jJ8}xQCkzu zm4ylgV~g9)b@(gWn>A@=bDR%a}?Dou`q4l+ZqFcR5{0ti`X6#)7no*xjxv zn!9Gy&NPMEp#`3{d|5VY@=0WWP5)FuN^6=NJBW;$W-YGAr`%~9d53n{%y;g%w98=M zspYL*dQv#1cH!gGO!?gkWn=&RSt^tPzC(5?lz<(?+FLByz4gSSHU-|1=ev+h{u%p)MMUYY zhb6`l|Bp~K{3$KZGS@ubs~OR9Iw?+z599ON~UPveOLNX7p4xG1U^oM46mFi^{Fw1_(h9tAHAF{q3#Q%XF zq3kgt@6aYY`pzDgHksl(wY;^-mK2VuO?Y_K5dpVOndo1DEOp8_-yyqn%J%IIBCS)n zEU9$LdKxK6r_5NpI;9JAN^LMv8?20aPTCwz@mUkC63q%(Dwi!HW~o<>Xm2j0+b4(G zLHr-+70Mz<^c|YzYTsGp(kxf_PA_lGat4KCY8GBu;);S>w_NI9ge-N-#lAy!>6Q!H z8$?>SaCuVcmV-1>kZw6P!bV5uONz#tP$}*2=s+-*%P6cK9i7kG zo8)Ol^06I6Mn$p~2TDs?qtHKf zmYO5acgQZyv92A&+Uw1B;(^81b0%V!r zBYlVbpXYbC^iX1^Jg?Q~dDwTtWSi%FII~A2-1%PVUx+O8eX;M5Gvs?as`qpYfh&r3 z1d$#J{h+nr7#BjP9)Flw0crF zMus#O+jA(KRVmu^^7M`U(`KnE2KWxyr78k;5NokYNG(^ux8}&we4gz)bG2~ZRY)^}KpD_)E)#3K|7e~QVoq%}`a zGy_O77R;!4JX!(|wl~SsErI*&ApRd(0>v%Sc2pIg`OcBl2a>*%`eWbe)Rxq8|@B?~woV-0qsLR5RrGczuqK^_?!+<~SdN?T&*x*T?vmAPvC?;5xN3?EeJ7G^tNP`Q48CJKY4}3ZWfAq?-WC z+8dEn6X3PnwR)a#x7LIDGVb8qZjoOlgz@n&kG^OG*`~bOT{4 zJBW-8gtb?Pv}Dt2wsP*}JDXf}$sWE_%rmF0=@gFHTHu8Y|D*0p;N&W*^#{o^+4qEm z1R6#lAU#2lMGz!pfrMldvao4vdb;n-bf>4g>1C2ZG=L!6Wgid)MR9>Aih?ZeD2hAk z(}xdtL0mw1AgH(@|8uMEy>;tW-I+R7_jc#+?`L;HX1+T0ov%)v+GSpJjbORM*?1!q zW6T+7WFf|E(S=|!hHAIH7N~1+5pSE53*? zT``V)4vj3tkq2}kSRA1$GKwQNnOFgFhi`mTa7`{IZEW`Emg716K{HXeVU*h}dx`-+`6>p28 z3Qj>IN2oxfZ(!XE4JsNCY$*J9-O%O^g->s7nmWsW!M-Dtt<|!_{OdZ`qV+2kpKa2+ z_!fEwauH0@yIiHKCDyxKK_GUE-X&c9Q19{?w113-+u#E8TKr{M02C+cl!3DydI+We}=b1(fj|4 zMsBvLoL>zgg*z&`M@KumC|9O^tOXg>%^LkZ21)Ro1z01oF5dlDIz5J$PCvU&0XzEs5^(T7GBf<%r$ zv@TJYN;_DIe{Tg#43mTRqWMtu?+oH!X1mxG+=MS%(aSfWk=yR&nQVYA@$|RNJ^c+d zC#s&N8!LJHMQ?u%U%sNZzk)`N@U}*;%{qSC6=*=Pj(>%2Mcj`6rq<3`FX?NRbB#g; z_Ta-c+0AOTQfpY=b29t{L+9DpNF^1YZE``oXKm0}x-eEBbG>~$*pJJgU5T+&;WY#z zGF50@f8x7MLPRKmcpchpZnfFI{iSH;q@FJ>031Gnpck}{=2h1imRB5rH%2iA?TQ)`DXODc#stCN|vLvYjjrRDsR#GDsSL6G2 z^}u3IoeAbqmhLe zbD=H-i!oGFMlmL9Vg;!Yr`6U)@D*q#f<;u36E zJ*@wjMId&E{$nbucqoz_i}r~SNsdM{C3S1@K)~U954uXrY!{=)8}MZ-MvvE{k%j2d zO(0s=cg&`PHpW-T*Zp9RVXu)#v!d#2dI%s~1JUDIyakFLe;XRP?H-@cdf7;?kC=P? zIy5t?UZ<~4%4#8c{%X7xik`m`jU3^5jc%T03beb>fMA)zblr-$nL@p_oAc&1hO6+r zPqkJVtTf;cS#k6KkD*4mm?f2-(fXKUrDvpPBiB($hMzyw^#n^F9wiWw=|k)K72>84 z0imwtZ)i6OX~aut#-yGuJ_$IScWgSNDf6Oh1e?)%0dIt2jCl@?EX0^+bRk%bp_(#^ zG2bz<0@lYq-QpMnyMHX_fpn`c+bl_6Ne48PRnIOJ=Sk5W7L3 zSscbH9L_)XBC<#)t%ewE?!%j*7;NrABMZUiZe0i#Y^bh` zg3Z+?RzR@1ueHHu0^BGL0}}2`(?6gJafFuT2BF0@i_@wkmi$eZZ5B&jA`p?Wq=ox> zI%%at(PQ!3u-*`&$3lR>rFQb@(Fr)5N9-vidbrMV%Vp!A`S@}b!^IplvJft25{TA~ zd#BUcNU4w4fGxNdC-`_Znh{kW(^c1?^nA1>H-wUa$I*@uI*7;697%my{5s(9 zNdSFfjH<^imgN9H!WXL;Cw_oN7UIPBbRk%rpt>=N6Q3}#0^-E|t&J0l`1y&*3x^kE zut|+naP}ry@bD)g)MqF#mk!Sb+i@AQt1T8#W)X3;>OK4J5eI0(|B*Nb>;0;jp_j73E2!Ctz-z){7 z9fAe~o1duaR>Ym3Sku~Z#}wk}j!bW%!Jj2M@*Hevl4?zUmPm1+L2RR@ah;DO8#o-y zH5^+kBM_0&UyCaNhjWTew}La<#Sz3NeA$ZOV*?sl z2p{WoAz1jJ3Ni{GhniRcBZypU50dQdU7ypD8T|sM_dvaHnT}L;_7;PA3(r<&D&563 z_VrC8x?W*pjq3=+ZV+93mkBh4g3agAE)#;ygJ|BQUN3$OaQI-e4_PCP_NZ$L8W5G?jkeHq1`t4*wc*z=Rt&R)#*_lri|t@013P#i&Ly+P3N-t`I` z(&v;c$z}eg>jxHXULp{?LA3Fl6n(eK;w;ulLYP?y5V+(|9%ecLhjWfiUx1eQP>3({ z@ir*NmpN!;A->Gig<$c8D#|Fnyr8RVcW9JtZG2heA9`_SN#V3?rO&x`q1p_Ml->g5 z#t~&qmSkL0GsIFb)U%UQvn14xKWFjge4ybnG4N(j_O*FC)bZWW~Ea*^e83mn9CRRXF^XJyi$IM&5F1@u}=o>DS z`%^0_gVk)g5W3~%OHiX=y!qF@9Ua?7im%YGSLxRtDe@opBwteX*{`b%S+${pwPRV$ zDrMp3-OP?kZTqsp65Q)b4IuB8Q3E)cdV$2ARI~c5npMtOBgI>mz~j8153xPAZB#b) zEazpoY_5^1W^390TDCgiB0fkEBg0FqYcw}O73@i;HM8Y{`Fql{yzLOrScb~;@RS@VAMNCmKIg1EI#H#{8SUdo>VH-8<|4G8g#wz6M_`y z6d2)p;`&OyS<2QpruXcPMc)xjA1*T80R;xrM-8T5(PX;#Z{Jx7Q9NNou2EUPj$`=1 zL>WFpWVp+m;gl{!m|@nNsQTHS(%USR;8>2+D!8zO#|k+7K3&bMAygFiYi-XoXU))X zDqBxwQ(I~fAghIv#kbo`JgTz0{C+8KK^!hSn~^f`o^3YMU`3#wc5QH zKU+#I-?*lpdf~SB-NCisUGZ>TECUWlrM1?%77n}9@<|Gg6La=5% zL?B}K#)3_il9j6Tr5Xd4Bl(IlpRAZCh^0Zt{Rk|uJom${4^*Z$`?Iwn=XA! z=C|rXB<_KIV8cA5s0}9-?y(w9cAA2O!751_#3PA0Vo_JlHzQr9W~2v+8KOTP)+Lkq z;~`y$us<|9C#Pqj*(VKt8W7Bi({(H2_HX?yo9jrrI$I-AjlSajJ|2)bU&E*?#_5^e!kVjs!|H~R$Yk1$?jaWGdox< zh301;NsQ`AU6xm%K=i}9EHR=V(uD{Utr2@z_@dc^1_ZO>FS|UWrFb_F;ZP7@kw8OdukYocJeLrUJ?J zMy*L69prdkl8>hwnhH34rZ~+RKC(iEcDo3E!!TJ~pbNoT%v=Hydxt-LlU1!*bqhr0 zyz|IWej*eZN6#-(KBKF~7b}o{ye?x*yvOQ7Bu@IQO;)a1s~3i>)OxEiP|5QfyK{;0 zJ{x#U!p+uyL5SCR9~PA zkvP>8mgnI46Q1Y)N{r`;U0GV3K=Q|Q8Db=VSQjF3l4ozu4mq>0Sy+=;SIOq#&s+@u zUSfpL>8g{W(@=D}hXhpN$s0|krD;nAFj(2)BQ4Ch{UO$OT$cK(83QkwOf`xWEAAZX)-JPQg!CJ^n z0ud=?-Te!bPZ_ROV4qhVcG(4cqc=fuamD_#99T@j z%Qcmh+#^%^lS*n1?t)@HgPg7NZr1qzhXq^dt$dmq;-55;Omn|ZmsHk( zmg+(z?w5m4sq9EWLveB%D;4g@Q&wM}1$$M7tP-DIotBt`4(S@G>_|gPAr_^>J$pK6 zk{5b*e5z;;!1)9~)=kL<$_tT3^@+Ey+8n#rOD)#2l1jLuG15deE_Bv=(%( zE~m^bWnGBG-E!bbm2$IwY@qEtdBJ;At9Cla=p6T0*+vs~AaU{SJ&AdztE<;BC)jQ* z*OYXhXNu5nMs(R_4!TYkBJ3cI`9n4ZNr$5v5X_2%CRkp(*(&v=o$Y^cgclaN$c~0p zJFBHauFxRErtsE=ZzLv?1G?&tG0wI?Y7E)qV7bPSMA9)vkjd9{eavL?6DxPMB;SM+SDwUota*FiavE9sT3Xd2-1>A z%f%-_@rJqh1YL;4so#5(mG;>y72?y&! zgx#Uhxv>6;E~scgFe_frUDk1z$nG59(j~IlXTViD&QNc)x6PkVh5F;sn7!0rE934G z+CfXt_=gOlu3BZMv+}x1VPeY?h!)O@cdmkCZMBWVDXz!5G#+k?Lx97tm(A?5oC2%E zY4=;~y)HJV@j_h))>__4AYxxGn{X;D;M94xKMqC3u~a6qJ+*7QQ(T&SicH_3OA{09 zM|2^QXL`#(p`7EHel$U*8%}X>;{|+*On*n0CdTwPbs-XGdeRoFT(8vDg@VWniIF`U zW)hqdOU~Ri{ewvPbGm#n%Ae7NNSyM{9;;caY^>zDusx@cR3M31bDs$X8fLrGbRohV zYve{Oy`ufD1_ZO>ZMtG{)2l}&v?{#{T$>QQGh_xVF?7Q+2)!UHbZ0I z8*(bz|I(Wj>?M907q~aXug#ceLQg@P;ZAa}Xt9bwXyk6%n?j~<@w`u>QqBUL47;1B2sPIEqCtLx-*64+|TAah`*BX zQ7Ac%L4l}?d2n6?3imE&^X@|wCT+i?>j4%Lze(wf+E*L@Hqd!qM0D8oCS&<|gXa<> zcD^4N9eP>m0<+JUGy4Z!2-d=$qRxqXa~J1=b%ovGojYa(`VZ6Pj>VR=E<~7qjShnKF*L$y zKrk!D=wq}uW=CA7)SH;^N54)fqw6o`^0(?jBu=*cI;Bezqk6RKlrGX`i4na^7a~lw zM#Erjiw>wXAea>=>2{Oup!~&&Z61`*atGx(D?^?Z2o1}>;wp>`%Xh>$EdLT(0n%ZK zExpbYQeJp=fg4pyjv;*>ZGzj)FdaWgAX+&jpA22EbKP?IKF{B~jxrsNKL$7)arP9a z$Au#0L-F65llYs_NsJsEX>?qp55>o53zN2Evr1PlY%o3nAaGfsRP{yCOY}u*;wjpY z#hhqQeBp}2@eVYy%M1&oujuNCg>$MSqj3I9D#fTFi}rAQCN~^+t}727WqUJPSgNX+ z#Sg`$_oTl`*Lf@qzL7v^gh7oaOm0hENLH0oL-kZCd!BPa;2^xYAUU^|7_p1!GIM&U zo^~vN9c#=2VKDMmbB52-gE!%29vcb8h!-a z5vExqys-#Ln~eqpvto^IMI0+2LjJvF^S(qxlQ)#D6n*Q6i;IuOqa=Hd9~ar?s4?eX zzoW|`)6+KzL}UOgE?Nr#Wn!a}Yt$@jVtDK^%3XM#lL|S z#lJfr|AY_A?i|eS%v;sQz{uKH;eYnTT((N?n(wj4^_MEWBbVC~1`7GSRUWy_p60^2 z|KW1Gv)ml)g%^zTBd0=8ZWJ0⩔FRtuMDH*RnfUWt+u=U}50Yy~t}__EF0QDudQC z=Ln5eTjsr<;M@+jEMLjhmr0b;UGv`#eF_ZM%EDOdrkXHn-CsAc0$O)Nt99!RSvpTH zRqFL@jXwzAH5f}LVbAg%29lx0a9y+{vq?eGT25pQdxoA>0uCR;?sf*NIct zuY;r6RiHTh7{rE{9GUVRIaq;<6Uc0-^P;(Px|WtYmS5NDGRpkAMi+wlb+s;p>({@v z_L$j>4RFQ`$cFu5&I6tNUa_~wQ{g#;kLOuL0|#8*5Iz8{r*cx5Ptq@e07s14~V zvq6}`yV;!O8%Jk3&P|U?=}U*5CtD35_gH=y@&&?aF|ei@-0eTj*;w$VI{YF?{{$}U ze3<-Vmb@8l&pPKE?kCSVXC$sCLmdO5H>MeID%*hUthd?VZ|)cv{;EV|xHIg4tk`0mY<&}Ny0UVzf-y-^Y(>+!%` zMlPe5$uGMynnz{C{d9~{at!sPG@jg$!6|z5ddzVI-Yj#ralbyPOmj77Kw>YTH3|KE zLUoxOv5A>hD2ZlqG+gl!Y!+$fug-pE=QR@`DorZx|JPA=IX_2yV$@)s(S-;%7z|Tx zvt=U|8qhT$m=)LSR)kqWJ8vT^Y9>}d^Lo8j%B`I}ETH=aAZu7thGY0}BOW||2Uj9- zZSzdGZ5nQ@veSNw#!Vg5jRRIKQ{YYDk_^chYb%&#IL6vUAR@E1IP(bF2aj8~?)3E> zxjW+_x7ZIj9AkFGfzqZqZ8cp8)>ypC; z5jW~WB+l;ym_-fmyZmyZ3?CuR!hb=R9>(xzbs@qGYjhT@zoFqr1ARuoaE$nVOHw;;|p@Ox83yJe9@r1H#a259e%i3R zo~aAL+RHQo5!vr(CsK1(?S$+4oGGpd4Zjfzj-wwENuLYve$%qkeXRWmgX^Po$z%FG zf|A#|v!)AIH_PNX<_)#HRReZ?aydbtl^C~+y1da>#kIhvSXB7w<_vGvgjb6A%|rt~3Qh_D|t zI(L>I(DtSQ!K@e~-r*;+s2b+2VOOb>xuC6exO0q?!d;0;VLo?}yEAFhB&7=>?@nDW zG9i3a7b0;NIM3D7>D=&g+4mD;o;+923KafruRQ=;i?9dwN!_=4mcLNpTEvWHiHO zs=l=IA<|sX<%mVYK3#~!X`Z;EQnO%d4A<*ilNiy?)4w%qumtD%oG+1VTbC(D_T{<| zVX`&)4c7J0xTFEWtVror#O->{X>HdtdA+~wiBr=z<55#!4=meXHRin9*L68$dipAX zi0omCe}v79k^5eY&%(bVwj2~+a(@0NP-O8h@F%j1UqKkiW?0C-kcpg5i;(y@3ldZ1BSK&|gc`Q;%msC_k_<=JBs7TU&h1dHgFg0Z1r}@7GDHVcXR7BeD>xhZ0Leb0;!X%f$UHLp0?zg@2qoU>2>V` z{G5?ZkJsIzGrfM%T>c|jmz@sgX!)2m=qUsuvO&kcE<2yT3FOS*Iu{1QfmhPvIGSG{ z56#6C;BXw;3t$EpZduMddqALgc$m&DUKn6^n{)d*T?p3gEhP}KCzSKf7|1qKg*tVC zD?I-3xh+s~90{iAgL&}yT(*%e)TsyD(#7=WG+p|bx_fjX68FGf%Tqm-a(ZRcdHM*> ze5bs~!!?8*i8*0mS2kS+1M;2$X)peWj%etz$Q*I5E=1yvSm-r{a-}g!b9i5Zp75Fj zSTIJDc#kfP%o8KJ5Q%$Y=}FmAww!Z%272d2$xXvjI|_|~)T%x>ZCkL)IsWL$mlAW# z!CkP^ni`a*H&S>8r5%HuHyAyGgx=%xx-2tCJ*W$jxTB`6hXE@bAju9^ozq~!+l79U zm^Y?(4MM4D%PUo&{Fl0XG0K0Y3z0bGOV?+276uFFIgNuX06EY6_P|MxA(-5BS8lVV zLW6G`d)AWb!w>F)<9@C|bWO;4=C@1?@-GXf1__Sp0ILkM)>q#GoIGYXgxk+`z`&Gx7 ztL#Vu(ZaFO#P!R!tXqB(KLPoccqlEd1sr}b1R*usC}n%o^vhEedjsrDa}KxaLa;Wn zi9p0Y2AZ%rR|r29_D(1&jzN#e_0+C05Lml4rW7IT+UT*ArwKPVIxH$*0KlS9NJ(On+GyB5|gt zLG(Bko-AHxWou<#+J8ul@I_7#*^ZS4nwr$k{1YB>NCu zrkJu1(uGKz>v>Ov&W^ql2YxX~46Ug0qP z_SE`y@W2XBdp$AQ5A4d4veR{^?DSv>%7!b?9dm;JNpwh6mrdr7L0yQ%9Wr4>wy)3P zeQ;A^KA75-bBcp&ec@AN`UYK^7}MA4LL|;~=Zb-B0j^Bqx&B;YT+i%+jd)IhY4=;? z`vG0D7~h}Kg-D$5Y4lOq)uqag)a!ZDe~}pJi`<80`=HeH>)k62>0dAMpnn@dFw52hlLYaQ;=<&M#Rr!GYD^siiXW@;TAN@>C= zKA!&nPLTe*wG-Zsp{1sSe-YLHeO>Mt{omDv2-B~zw#t@g>GGWh1he9B-3d^4Rd!Wt zx34Y?-%an`ImB<$nAD6VBeU7{y4)gd_=0-x)}gVFKurL{40E;9kHx;!%>?NgXayN{&i=M3-15vJVl67IrO@H*bdv^)Cl#=WnbbNE$V2-ZZtOdw+KXcjxUQmHTqPYuBB_RedM&VR7rDFWDI z$?ZIPyr zZo=zUzAHp0q;(l&4d4)6h_Dkh`hAu<(7r_jf?4qa-Ina84ij6PI-Jxjl$>*Tsgp{T z99%9HOdST|(U!e$;GAW>&|hBG>lT{nrG;|cpCoOtbk)HG)=MB-m^SR~oJ58*j)8*# zNv3yxPEEjhG4o9TD7aW}-HU!QBI8VAuHuGF!&hSOL5Ula+A`r1B74zZh z&5#=eFWd!1$B|BmUYOGbS8j$pAjZ%;b=hMQ|EMlR;trVOwS`k)FIfpTJcQf8_Y-4( zrr!qO4kD*)k^1lI^2VtDmM%o%)KA$`%fcJ*sTXd0-yK}o`Ez2FPwZ-tGDW8UPnRaf z^q+Jg!c1%Q@+?uHy@>_{vm&Eg5jRn|v9(vJOjv0-T{kD8gLlLdGwm6n{9w#0R1SoK z4YU3(0uh-HByokxF;FDCLS@XP$hkpL{lbKz_lqCw>Fob(*t*<^wW38VCY6}80Xq+4eAp^juW_RkKLP6 z_RG#d*_j;NZa!u+uITd1x`Psdh-}93Uz{?11zZ!+U#ZEaTCb0X-{OUU!)Nj{V3#ac ztS||6jX9ULE(Gh;E+-JNC-5^jH+$hlyJpEsNxGr?q0ks)Euno@SKTWZmg`CXClG(H zE^AE0pVEa$ocM{($SM5(#p8+b-ART@FhUhm$H#OzVl@9q7b0<*r+DL|FxCG`jOwZW zxJXL(-*vfSbpKTsB5}GGv2b#VRf4O={K)}+{%fC|Nd=a@1A%3LnBY$kNG50Y20OH} zA?A#|bRiOV#;nufsyDdNJGHf3EtJbJ70Kl+%M@IjK#3>n`pYuuFYij##I)HXWYr^j&aXGMn;m$>5YV9FMY;hF)AYCz;?L z($xr)S)D*cX2MAfXfJ~z*?{)2&?ugbRsA6-`A<2x#-E%*A_LbW6n_h@2y9q=%~Hnc zuAC9?p^Cpq7O=Rn@B1CIZ*x9A1RuiKSEd`xIQSy~>W+i=rQ_gLxN)$AxWLf(S_j^2 zXiTMI6bq^*R>07BLThKQCZ91d3>{3NZL^l8U2g3XIRN!@UxPfewl`c3}kdZwb4d_qn;$-ua@$g*yZ@}TmwD<0U`vAzD zWN9%-SF0KO{ zjx@UyE_ie%+9bo!v(4E%Ll=UzmMsJ#_TV{n4TQ}C+?9A<_%Y54puiY%1PRyEAXWwn z6$YR0&}EAS$@6p}5+{7}2G~>!cWH*{{%~S+PwA?#A_cNPsLK>1`~A8QVX`&46V@Zq z2&DnRtayWNMcf|gXRW;kbI;YwPveI6KaWR4_EbNu@5`P$=5p5Kx~wq;Jw_l}*t;xV z4?}ThI8L?zx;xg~89Bbo`Byxg7M}qezROtx7hw8Eq`fU`?&O@LANspF&wtg0U~S|@ z0ug&ZG;QT@IXhU$r8YxoW5x$VL{bYkT1)zyIV)37@YModsXT+ZW`FSy|ZT@G1u*`sN5;dQO*O=A~zJArkk}Ja`SMTB$Ws@OW;-7Ku4;Pbw#!4_hQi>1il^ zwA~Ri!34wHbeb+i;x5>Gd8uL5=!+gH(o8ltYRz1uSqlvgj!MiCi@UPShBRp#b!LOm zB974IlC_A#bRiOV$E+32dZRL!+5nq|NT%%225KQY#)kt48GuTX*TVO_Qu;X}F*i4#7atnqMZ>1~NIJ)w(i z@DTIRTXp$i6u(y&B22NyoGP1^rBizv5X_1n>CRfY)3OsgVb9B~wf@_{*DvYl77LHl*0X(!jR)qxZ}fW`;P|BXjTf%7rk-B ziv@lH>iEQHp4>%m(RE4`s6JMgCl(Ek)`du%>P|{^-%c)UoRb*S5H`pwP*9*i^fq0V z7}00zLWGId=$2W}PJ_P&1heA%y7ABL*^8~+PC1*r)|;R!aU|z~YS}?+N2M0J5a;JmY#dvGMBe9g?Vv@c z{mt?c@*me_j>-5jU5LcVk9y4XKZ%h(rE4^@|E0?mBm3{V5Q&pL%GhkbcO)h9>0M+5 zk@f~=LQ1d?6m6L1?yU=vIOQ`}?SyA{%5dNK>PijXdgVj<%EVZo)n&N_J2UB|V1fAM zx~ws+pP&noIPnXdDk5e6W1M4S8J-nH#dY z5Q)1XwZ2(u6w>r^baJgH@yTj=S9?Wb{@AZ;kQhQQNGDf&66cK87hI~#Ds#-mx)6yw zW^VYtdPqF^;PlDFoG}j$;g<8Tz*nzYxk6td7jZw`$936b4!A=XB5?;OJ{a)B#JsRb z@Pc#Ut8r>Y*ojSRUp%E|B=D{S(pHLN_>M!y}8i0rw3uhVZeGO)pel*GkGNuTl!T^5<5zD6Kg*r&{0 zQ-G)#yl=t3k;^8A3x`)aTavR-M{ za{OkzWr>l#AgFVv__SNR;DkeU8DtUUU|k4hCunc0S^`V1PhRledWue?lMVFnNAEV^ zU<=rkm@^iWn;PrxR6f}?AFx62$Oc_HnMc+Uh!)25$Pjge3M;k5NS#7o3ZO*_ z99GOZEa^fpRTromqBaZaZnK)d*=jVLesgOz<=kEDtbK2{hPiltV`9WF=&IA=)6Hrc zigzX<(@yb%6Ry`~kO}!3U5Lb;Fn3M8-h@3Ja1=Fl8vKD==ES++vx&I?vKUf02_@(H zg$oY2Uza`RfO~Zz!Vb_FEU@tgjb|DV%nF)IX+SV5Xr`eDE&iMmQ2}yBM^~&WD<8kPPrg>2PAv1AXxQf z5Kf)pUpb$xV&rU5_dGPX{I{ou7&*oZk%Y{NRCdIB%Ie<1Ldr zKbw~StUp;ATGDlXMR&5*`Q1b0#ko_o-XfWE2`1$c{rIy}$m`^V43;w9;scosri%~G zFDUQBdw1Z8iIk&^{hg23Iv)o*A4{E&L!6I8osVwk<1pvraOdL<@F85s$+uU`MVvpK;XU((6cpS1B55L7c;BfTW5s#qP2m#sRtxGyO-Z8SY z_^*A*(V|!A*Q@kvj}-Zjdy+3V!DAd&bRk$qQqqNBc@g!bQ8Qgm~AKcfy^I&ebNRk<07}HF(>hRv58QfQ7aCvc6_H=S)6kOU_#e%W^e~T(;r- zrJMa*xARx;-@2(yT;Jy<4)!E~cW!!uwW{JRkeU{^U&y!mvCXCWwP!g4|7@<2ac%{o z=bVQo-4qq;ZAbfR}M@z{^ysb!mJF{Y*C)>e|T(*o!qqrrICrx`4^^ z2h=4szSz2jLfK>;5a6C#jE%PXP|+6MH%dD!%Dn^37cI zBED$F!16pA+2w^b;b(OroF+`ErTQ@nB;PZ!0;VzYtqmmO;Ekvf*Y_QLQ9L2!cxebx zNll1JoH8ZR;tgPCa3G=_^I5cbJ%QK_a*zp5jYEOrY_uDMKye0|B6*-#4LF=T>`5e0 z5I?!4vKX-iU#en^I1P;~#E2eU2o@u#YK&q;w}}-HBYx517%^C=4{$N!y-BY2BMYJ8(*&Y*1JS8uuA4|Yk5?pH&{QG+} zAFBSHLAnBFyO=co7GJiamw$ssZo8LfI(L}E^Bq=A=IQzGGWPTwfWYNNs-B)hJk8rL zdV40md_`|hLnB9cTchu0-9POLG$7bO zr(H(uv|=H7Yp4Ko)XKD3^wrfJg*yDw5sHOaJK=__0(q^qG-7uv{#L&QAs*&|mAwO# zDq@%6A|C{?a5^Mk8C3UO9cZO%we}&37QqI3burc9Q2}Qq zSXt=M&Kod24lhO^B-?BhVD(~n#Ih%X4r|Um4iJ-iif@O=2)i1K=eytUaKGQ_e(!R> zFL1vvbiXfhzu)D4U+jKg;(ou|{l3)wzRdl;-2J}7{l3!uw%zZm-0!R1?`z!eYu)eb z$hT#84rX`4n>mevk+rYF|Lk%7rAjaC&YYOb!n=kb%^rJlExUu&m2Q6QA$uQt=!9Si zuyEOwn{%*)fp#oL3Bx)QDdM^ zJ}){o4oE*~ip3v+jA~6B))fY`{UGL8eCwrdbe%QW9QjzL)NI3fT|5@LNnb2l;WNTm zyy2#FvDDSe_hOMF|}h4_xm;O_nz+eIQM%z`L>F8!S9hIw)hG7Q%~`eE^B=f z{sGdysN)klN9jjjm6)``PqBhKCYOTwxQtJjxIO?Na0$3HX)OK>DB%|-mXYbqVCZFu zV&G4#X0B~))@gsdZHiN!`x4|)lE^66#=endj$i-oOeWh~&tyW26PwI^yaCUnY%`?9 z$44W5?A1}6)?SCVQPJ0H(8$8H_G$tV+1?WtMLsWxViy=>*znIs)1un&bwuIRQ53~6 z-bO`H455+RE{fT~NMW5TXyOy*n)oj?E2^3}3Lhw(DvFZ$7~VuhNqiWMyn9Ka-x4J8 zQ*%lD1kFlDvFZmz?-Nj ziC6yrlf>L$$5AL3L{S`JE{enOj4S4t$KbmTT1inBX}pn&vN!~dyn988lGu5iV=jtq zXjT&JJe(?uk~kZ0qM{_uKqK#Fk`Uv>Rpyeo0?kU2l8|;Dm*P!Sl*Gko6GxC~+U&L`6y5gGO$UR)SJCRl5vZ~vfxrrnJT_zu8K#{w5X~=BlV0B#lv_T6-Dt78oBMF;Bt&ct!d>8LqfRttGO^< zL{pMaucsI>p2yp%D2`{*$ZZz~7cq8LYJxEKztnhGvM)d+Gc3`F7^IG(C>G;w zR20QRG;)L}G`8@wQvh^Fj|K!gHb{4MX+SV5=;m|{2xi5@WN#U}vUcoqZZ4gU6|gDo z!{cFtJNkkioh@thdart+f3Q;EAM6@Lw<&3)v{#e;o$Q7+XK($oz$W@Jj_!4Pws9NN zBsUlobtTM>CG-=BNa9;~gTW-X)}ei5*P?ym>WW>AbQPK=sauQZ0}kgBdny@7dG2xx zW*Y&oz!$6-ye>r}3&HDR0@1q7VKeAm0CF#X35+q^81{KIC8}PYO}xyRFLqQ9;)_@G z^?hjMw);Aey~zFjjJd!6fTl&&-}8yT*(6V7`+f>%xILbKm2%L=@+X0nvP`?qe_D6a33qyq1xWv92iUNKcS^TW7?Lc^NMMz zVU^)16&E|Mgqq;;8mZds>=-A;`e1ZXsTIz%@)>G{c$`=Gk?saD+x>+x&p=l7AU zE+G(+(ItAYp)<@I{bbTq>a#7P%kD0VON?I)YL-LJDaZ21x1 zW<~%10F5kkOWz|9txG!Q^Fqn?<}!uBDt`^`_{)uT@*04^MTZ-L-95%3guula@&P6my0N6 z^4!HBmmy}%Rq|FeFRJlmwP8H*Dl9~kv+yP>isW=Oa@$3+7blWN#m&e=;lwr<%H?Qo zRE1*N@%WV%zlcQM+G;B8kF&UI+y-BURJ zATuPKZ<-6|>u8EvEF8b?qHw;7w_Q;a)+6N$#8B48;O*hiP_uhEJ6(zG58oBL~ z>Ea|a1bGcC?pv7#9b3R=wC$mY(_^ljQ_(c3Mx4!t%8}Jyj5(*^?N=1gDl~H21$4lu z0-~FNLK1qrxrBD2iBgr&)|e&aZpw1~#P;Jg@ikBsQ4Nh8AtL-{I`Zl`eW8SIztMnT zdv|Yd@%D?oGQIEu6MbpER;e^HeT8z~s)f{hpSgPPL3>D5y&CIa@=A+Q?{2)&ih{ih zjVuV3N<~9$Yy&CX9H;@o1bdP0P7=oo*f%;jv8DS)C&G*B9hn0EeBMiFc}unFzO52E zgO-C^O@i;XNq3!xex{qg`#$FW&=+)7#P)|iM<61%47P3~SSPJ>DDup=jg$5{01-#h z{u;pHcZSm4=dQ1W-fkwoT*crq4UH@WkIA|aEO=1m7zK}KboJ{7k3(A*YlH|a`(1(OW~0v}A`-)r8vWs78=`A)Q_+=j!>vNX{wNu6EH z0}dZeBsUsM_L+O`?Di`t1fCk+M8&{UA;^*bjXq2e`~LDdUiJNb)}fB$b}$v!C7H&+Kw7ybb3G1SKQ z(5$G2ffIGL;a61%2;asVt0<0dppn}yj`>U+jYdYk8vbu{f&2r_jH*CR(iI4+t{6Z5 zhBsGHA}^tl+b)p>zC@hKke!)k)tMj;bub5CWgJ8f1c*3BCSnJ(LQ^Bb`idgy!rQAT zk`x-b?IM}!i^SVk66|75H&@4IG$*PNMD0YQn0|N_6*`!WcvBUHu^x@wc44p%rkaJL z!HtY$Md@AU^0)xajH*0zJD5Oq#n|xJ1l*b)tx{lE97TrYE%`Xn|}oBD~jZQ@%Ac; zZ^K)xD3rILk=rhmK&nb;6MLHL%r$Z~nio}#Xs4=PWkq>hi8oeJ9+#n! z+b)m2{W!w*5lTnAUp80C7tr*mszmK(4l$C1>nw`pvv`{o#d1Fyx$RrAYGjcBlbq=J*%NzZAv@e3VqZ{Zf}I-;?*O- za@^q5RWsYIau|V#+|AIs_3BA(r9;X0S!n0DRb;zWPDisO^>1+%;BX#suVMGR#SG$8gMOlnY&8sW~c;i zD}_{G_Q|pUf_c8dGmcZKByQZO%Q}l2*As}{AZ|?dToMW#UqCxW2ppe9(1sQBFCq6Az0*~>M@EO*O*uVk>kSF-qqY$s`S^Z*&LsG z{1Yk>N90&8iyYoH?$VT_W@Q_NO1axNixa3MX1uJ+H;Wm6ArO%JFXSotIM$U@MVMIc(2PR^vyrg&_H{Ja*d z!L>WV&nKffQT6j2(mC+Uu)r}>Pos#wQ?#dqzT_upmZZ)uJ_0y=&Y*Ul#&c)) z7O#S?iM#x{j347oR17>nB*>BeZDCe8$E&`7#w3(B?0KDW+RykV$Z} z^I_)NNGGNZwH08AHvFmz0pSq5v5EoVAT)B@#WB+thqpaED2;9A(l{H+=f!v2?MpYnc$0Wq)G3ws4d+_EeO5|=da@!>`D<~0hUaW8imE!) zwm3`GA>HEqE4-zO!uUBFx$VN3$AnRfIKn&YdgJlRbbv@^ys}(r1Cc}=er?6hWeVO} zMS*mpk=rhi1wn!MJ#uJBdxE({jzd$U8b8!d&`2fX*H;wDF?f3wMRFt>x$PoZ7!pZD z60+S~CIe`4RAr*J2R=$BUX4YeSa^#Sh0=>gZo5zdBNh(e$XQL~Ree7)io)7RB-q-eyIy zd=ZV@cCjpxibc8y{zY@SJdY+wRW53K;76BB)E@X}@m4De=4mu?gkUt5Y1v9IUG~v{ zU@N_k>aHR%E9l~)krkgbu>#hcKQX?gm%q-~n5|{uPQAlrw>Tbu19reDZ7OyyiCY}2 zuHmX{&&NV#a6?yD=WOlyXaW(rHrc|p=joo?BrDM8puOf+l5REK!k?$lBkr5*H_36FBa`BgLgG-SQf>nlUxev{aYN$|p z|79$-_|+DI#yxn$73Fd_8oBLqd0j{@*=n^kOrD8%a)V5@Rw>dK5$d6M^OU)QoZ|G+aZ%3x;2Mw+mMR5WYEI1Wt*2wZxns-lfC zsEDh)D4Z#H;}wO|iAHX_aOQ`E<83Voc3dZz3+6a9Gpd47dIWlmj?1gG&}|)qH(OCE zN1~D2E|sp3RD4p)^nucP_=ei;=DHa`)1;~!r8lSiD$<#v(AcQk|7V{8G1^%88YoJr z7meI@3GE*xAz0L?mkPPCf^Iff(2Z!8R28%(hOWw2kVk+hpzHA!P!!NLXympFC^80l z{Do8IN6Z!UFq$S+1;rYJd+Dxtj5c+=;fjK(qLJG!n8l)Cyf_`|t3GBfnGd7+QI$+j43P#T<5gW0%?I(OD~jg* zXymqwW`QUgv1j_Rxn6#VrbbmSO8bPW{Pu?MJP+ta+95rPw^~su-$5g{T`C8Mq~h<( z3y~WNHXSz^C&sU!$x;>1TVe<{Q9Ou|=b!j`D9Y(&G;)NTG+p{FO{p=Jl z7B}v7#mn}Rts)S+!_J}!PL)F;u#EPGTS2ymY&)7GsY8or0}kg8dlCtO#8GakY%ACR zzEs74WucLUfYnPNTDJ*kD!nyK;@?}q62px@H>3Gb_3sSgUuL`5E!~JOThYtcqmkS0 z<(cfJFo~zXW$x)m(444xn%-^4+b??iVSM?D-hK#;9N}$^zMFObv@6hnU`fbHx)pJ( zfbRdBt?m9N^;K#enNp=v<#K?D@4-eTsnG1xWH~@i=jwH^lbXr(K$47L9GGsH5$r)A zA~S;4bsLktT8EN?L(uMVTMJ7H4nor;^>A@M;BYQ+uS4}L7lX)a@g*w;k^RufLJ-+U z7lH*5sve^t@*l$>GSu3mD^q){dc(@6vb9=vn2RF?pc9wfNL6OPX^e9#g`weYcm_M0 z$(6G8x>fHk6N@s`B2J%@kkO~>bT){{5s1i;v9$Qdl7AnXdl8y@E!v%MEn2bmF8H_= z{^Z=3_NV>GMQP8`ujlF4pXt|2^lKP?e%r`WyJrkuf;5oprXxw}?#M4GbeBModyjeUb<@~p$ z$}nCI|DD+=ZrG;-SovqUPGdbLz&g!PiT*;p@200KAWQPqp&;sv$9 z;_HRhS(M8nyv>SoS%5~4kc&nR&xQfCchi7ia|txp(STr9(7aRwf?08nZtHWbfEkT% zxAxxl&Oxg_&|fR$xnylSx{*m+h^_yii*FW}s7Xd61G@5MqY;Zh><*dLWUtzxZ0c&X zKioFTW-zWq^CWd?@jSrceB#bvc$SNy>oR=FilOTgG_nx7E+P=EOO4zIT|Blze*OYj zW0(wm7R`yOpMwv&c=n6lz8_z{qPOowBe&h#fd^eY#zG$dqq)a_hvr4q5G}c$;M^eUr7DM2}$ywy90YfM%=eIxnJh~ zGAa_RG!0p`I=rV>AF)@C;iS=#+;{m#>{TW(#Pr5+6=qsbGQzQj;6S7yJHZKB`xFy% ztesV>R&Zu}v!xMt;}7R0?k}Sf-EWnxnuB7*bAK(HFMv7VcABws25^5F)tbU!w%^oO zrR*?haKv6~!f>fjwz9QMw$yL+*0P4`DOH>`k`XhX4`$1SYO_RMt2AWUIUx<^7`2F6 zww$jF8p@^)9OniK<^B=-%_iQeTMffzP_NV)#15lKT5o`R>WxCqxLGzE1(>=THjJV> zYH*2*Q?0;y(5cWvIqN~|-0$`7caQtM!TsLoexK%kZ*spkyWd;f@2&3l>F)O#?)RDQ z_gU`u+3xpS-0!!#-`m{px4GXL_xl|3jb5)h0e%f8L86v2;$N?lq&XLX4TgiTU8EZ3 zD^*7U4nNrL5@)1INbaVe%gLIuo7e1u872CJ`}uf#6w~uzf;>vb6y?g;SEVMBx_58k zCbB*O<{A3(zwq2im!U*o9-!b$sE^>ykKrv+^yY`r$iiUjg9IY71;_688Px5WOt!b4 z$%IDNKLuk9-TxCbCDK7pQFQ<7RNU{@OBBJ6@pdVS;D>1B-ADxaydZ)J?=u#`o&bRx zTE;B`r(U86I`DQWir|(1|3om|iv-rWf(DK-*T7+Tt`+-%L(~F+Q!P;fX}npA5;z2n z-1a!&OQ7EpByf(o1h%0WQ4Ir%5^$;|O5kj~S&9-k1C6{JNuVJ};3{(oT!CgJZV5oO zLN&*ctr6Tm(;{8BrC1VrSq~OO(J9c(W8G@GCU(ZX^LQ4$Qs9cvvtCAd(pts7gTE z8BE8Ur6_?ZXyn~T0%b7@EH{_H31~)Qjsi}##3*na-Yi849D_z~y9E3xqAKh{4o?x4 z%{8zcO^K=o6sL$ty+jcV;O$ZrfrUnHy9oTG5Y{@yIig$4Rd6$!6IB%`CWW+Oq6}`t z8>T3O>(R(uwBTFjN_YfKi>eZqsSOYOx`|?V7;l@R7#>0+w_Oag zeKE+j@KNauy1mXPRT7+k2;L|~=O2VdZoBi{+bHw&5J|A@Z!>rQ*=RmgW53c8l3OW3 z0B7LMQWU@zG;-SoFolNxJUNLJ^#2v+{=XDWN3{RpX6ijUod5A##t&BM1Zd?19bAkz zPf-UKqLJIKgL$qFhRfN(LN4RwO+iIGXs(F+(8NS5f)~OON5G3aW@*d z?UHb_Lg(Ncml!-{u7fAgY^dr$DJvvZ5}f}lyitnI|2Z1D?ap^M7!?}UV7+i2KP;H_ z0pnr8bbv@^SfDgx>{m+=!4$kUyQnPpTw1-@+TE==@$Z^6uh%xaOe5 zIsayJ=ii8CBUa~=DhbZN9&ePQ^RGc8x83>fc(6W@g_|jY+5aQv-hUWPhpP9LhJmzB zg8LuBTczm!FQSp#?tVA$3n|}==H7oE&4#M?l>$GhlHmMj@kS{+|7kRG+nw*O1l1dG zWg=V(5^VkZ-e#QgF9wKYQhueyK(AJU1Qz1$Qk1}aG;)LlH16hN*L%@h3^X9v^2=by92?tR7AHWX&{ups+Mzary@6M z^)<`623&cSEp=LJT%$3SRXlW=!c}OWxJ{K^LV5+7 zDXCkF!+^ujZPK^5nC;@=^-_G$6Vb>*oH$+=g2f4{8>2X}#Ka01QM{wIabl|T zl14`+U#h}hO>TI88B_$9(nuxdUW}^~F32Mvu4SA^B|+m7UD{dDxQIYR292eyiyG4c zH4nv(yU<<{V#l3ms-%uBz6WqPx7agD>3s^=TAT8wg@gFkw`)dFK zmqn@ieNkv&5vYdf`&ZE(Qr#B)Z!~g*?=`x6mNC#yLj!`1EOzNu#2r~&)7lr1##P{n zE-q78iB_vrYWDHk0}Emj*B41rgyrZK;R=SO2qzGT$P}S(|a zNj+KI3^<%S>`5eO5I?!4?z+&sZ8?iCRk43~8yZ=N5pU6ja9St5O`594C`KG-Vg-yU z*0y$3F=<6L)v(HN%{&(pj+ zR-%#HE{z3#+yK7%N`-2sUg$4}^l_fKK6ap~QPsx^eSP@#6-Cm(+p8#&bJ56c7s*~h zk(BC<`nehB;k1xS?l4!$N6_4;s$`|UN?3(OnS2Ouu%b*pfJSb+Oy&n=GFZu5nS7-Y z63PFVi{!u2%&3awBz=*1)fFZ3eZ0Af68SC~x$P2}7nDdjQ_a@0gCT|N@nPdk^*?B0 zR28yZUm^$0{*Fd&yFl1D2J#W-y~mI`y3N(`I)F%K9Al8GI#m^=u@rBr zqBIUbBez`|T&n8ul`X-o)U-e(etkueT!gn*Q6#(2$ZZ$N!eABxq&3TZl~Udc4`}W;m&v_oa#Urq zNa-c&_l9Dzn|yD(-jVTj|~g1IjG(3Gg^;yBHm zLq538;q6ou#W`r?wu^#g8vaNx)R)|3u8bSdyr?QeH`DMdD|RN=;*C|5$5m+L-AEq( z7%wD`ubIo^D`;MlmWN+iQ668y8>=Xf&!dssE)TZy5*XWs1oDEpK%PT0qbd;Hm6t$u zMTtCvH&;<2e?TL*T_UsmtOGa`$FWO3YCKX|1Q5xLRF2ooJ7`TsVJyH~swj-PXympF zqstctodzqE`<->$%=UpST=kQwWhhr4m(lQ9LX0wkwKfIU2d` z;@R65&k(G}z(!sx1CvL!YluMH8;GD3){aHYNi~5Jr!$ntwYU+(_172x?*WN=}RRIjd z#d;xj^r2~zb{9oaIP1)X!zwOj;yJwGipn_$jU1sIjeLZqG&GoLK(NGWf^J2a6|^rk zvf}r;J-TBBBv!{yXlY`#r!~wcRQCakxJD*zA@-ZJ?@(|o;`(Jt-gJ+yuUX!7H-U)k zK3f+D$3ulfk?w!dP7os9|DYL?`my*mz~Q`Mcaliwc*!kv7burrF!0~_LKUOb_tD5g zl=`kN1d9(;Ge+^@E)y#tKAbwSrSV}}89L)3OLo=s{5#@_6sxo&1+`7_vgbKqE^gT1 zDu{)QnFJy-WVA5jo*t}vD0sXP?H3_<9EIje9y|^J96or=BEchQy%ZcMi>qs=pTye~Wbxy?zef21T!LLnF7{>wB@w z*+%jF4d$M|7R`;S=l3R_m)Aq|{#AH86uo~18acxI8r?q29B9{}0l~&M({wB1jx454 zY-#2&?xbvJuJ%Vz0bHPxYR&G6Z?2X+q0aSClEKCgbctt~!}kb8Wabdro#;%Mk3Q=% zBQWbCc<8Ta4+&k#i)gZ>PA)zHIGkf_$t$?r)STnX;Iu5MoogQ(qCAhcPchIuOOPXd z+`{Z|QOL*sEkvQrVc$Ek4N`FTVt~M9)vE4(6X`#=%eBUIw_j1QgIS0-RMGGA(a1sv zGlxJ#MuFI;UKa`i@vkBZ&eX31vv2`h(8n4yIjZ`Q?5a}GhhI-2Fs#N~swj{ZXympF zWdE>0dTW(zK9{XGGUTPf@Rgs#=1Lhtv!tpN$>k|yDGA(szi>_>1;?9g*fs-ypf8sct0As?Xn1N32^eU?z}Zr$nh%>UN(YQ6zVvk=rhk#XW38Ga0?qvi<$A3w$tJ4aJft%vJI$G(V~;k=%z7 zj1=-%!m27plAq&ERTRnNXymqwM3^e`m}{0A1&LIqf82ObGX)@$$y&9h%EA>E1=EQ) zSWz(J(a3EVOn8l|JIr6EP|kSIREFZrapvMV2F;jioY|-|A|9>sqL7Zn8?Pv&!_mlX z7t(8m?#Zf_vNXkt`VqBZSC>*#XN_5xgkw^C6UHX6C@!q_VuO`7H2LOFZ}=V5bgJcQ;( zRU2B9^|YE|)c7LaOhs{g4vick4vp<(Y)2a1uA%|KcBDOx-b>?Fgjqp1Mj2W0Z4)bC zNBx^8v~*wG6l<{B81BfF3fuX0uxWQ;2L{r1VXx5MPfskPhH+c3Bzxi}gR!_Fi0gW` zCvGBv*d6vuO=T4i<=cm$ed1P=9am1HnUcD-xEOFauh=t4!o+MBW7r}1vK3?4L1<(l zhP{?Rv~JVWY`P1b@fGs*Hn7KVx6|2ZR#bgGkN7%V1JUDW;4M(}_!cyB+dV#??LLq6 z`W5D0zZA`ks@E41ughv7dj4X(6^fp}5RDw+d5vzKWeT*r(12k1$~fJMI95QW(AnBd zVPd_~*BH$1Dc(YL1Qa8*gbO-*q+p~@9 zk|c@3H*`5?iNeN%c8`$WhRo<`Fob!+i)z~NkCPbD$LbC+B2F8|2x z@9_mIhK=8%k%h4F8v@a~6k!JKVC7z3_z7&w6TCbhAaGf;s+VU6@`FfU&%qb3=?&{6xG7iatLcjU3@~jXs^F1+;U}fM99CS9AlF zn-*L(zNHfgos}}2#~-LPxV+#Jv|6Q7vrm-e1-Y6;WUi1hit@g^wx{2yrK2%l?o=PVgd6E2!9*4_mlx5A&COKtzOAGyu;Ir{ZH{rWTgdWn7w!_RLUS!$m-1~&o~ z;w7@ekC2UdBlfl=pq)4Jta80l8?kdq;5$!aLxm3aOG%^_jatI^4Ie+71WS!(ZaW-p zaXn!bucvD2DOw=ncaQWG``qt-_j|zoF1X)C@@*CGf?r(wD*Uhb3HVb_@ss59ZUWaV z9t79+_7sKL@W!;xynXgfq(8M_EGb=gkLfSyHb~W7H2Ob5Rq}Vh1Xq7Wfcz% z!|p+QMo7@_Ml&UKZt?wq!+FJBzGb$HOFDPq%T~=IoGyQ8wnoh_ZGo!r+fl_dMT)}kdV z)th~iEM4$sV`aI5_ix>fVQSmFPS({9%M(@-h}|JinBvzv6hsEm9uc~ZBAO_vQ;TN- z4xc7WCo4U^>0;#Q#}};_Ir3;^A#!91MC-DIS#$;0rz_;?_klTvNy2;3q^Np&ZeR`9 zuYl<95xfD4{=N>4+;)G@W2?A6Wg(w`)7zkd~PgreWSj7E;| zyGHlUG6dRDXh5(GVYzNa+zjE8i7m|#rZj3WpJ46GSyg^9cfzNzVM?kud$Tk}sFWME zN-5Jh$V~I%v*;>91@8b?|Ym=}2 zG&U+pg=U{38%YE@`LS{UW*yh@ND_hlz+%JU!#)IJcSr=L`1KBD11F>XBJ>t3(L_mI zTRZ}AIH%Zj%F#Dn>@1e!i&hLDC!mpq@Npc0XkAL+PC5E?g*@E=a}4u>bJ3)zdOA4e z=vP4WcNuShqQAGJk=yR?z?7p;S;*%fGWYoh(8Q?vJUr#-S3>mrEqEgo{eCkVIl}K6 zeLPDOXh)#|!P11ibt~eg375AvP3UwE3RO$ZI+rE<1}cGzQBtwlCmUu7zHwZCBuNr} zsmnT>E%+IM*d3CD$zHWXQDo11uwD^zgbskfB~wzz7M};QIG@)Bc@JIrMVx1!Z5m72lPQqL-`3zDP-@70wJOABry5W7QK zFv+cTD0V!A_J)uZd=X8P)S<<@0Ecsld$iPZms{{Ie<|T}_<|J!#sg?%Az*xlK(ub& zz`blj?&W8}7+gj!c=>5GC8}Ny9xaXZ_3!b;EBgAkXyms0I&id9?(c>78vA=bK*W*j zi>*3*v^3J^bMPi8`g|rDIl|`}y*Wz=Xy>2-!4iTSbj9l?1ZTDO&{JorP_9?uQfV$D zI1{Z_X=rgzl!i_`dE1m_OA6kgV80foH$y?c4F?D|-7jG;-U$9hfQb7z=s)F>{aq2+fPC$HOxPUL8cQ{{U};qSwEN zMvm~hMz78i1KLGsK(NGMgKkCK#9(o2X9}j4D*YW9XMQVuL*?AhV1txYZ}wWl#RM?W zw~yTNox6sjQl{B3v> z6n*{{G;-U0zJSfkNBjLcbH87WrbgB8i$WU|1Jw|HeNg>`j@G!-l2}=CA5oNwX!tg1vF7oFBg9eIGj`5!%xh1 zF{(U=FIzFHJcC9Sn(-fWAy`zQ3i6|hPB8hVi4|}+(>bl3rkvbYs|@xw`}(XJ7fTMm zFP>PU|E5mBFixhD*s%tNlAxH;&)t$kr->dI^*o6424^}5CHi2W*51SeXl z;_Us&Bv$ZNRI;oU{10PZiuz?;Qdv&<1p*P-FC=s+>XBmQgB2H;=%#y*>^EY6F9+8Z zWD8~J{A0PK_D$IGgU_jt1g`P?9nkJv_@cGt`GbgRItZHgyVTfPCo_s&wz)yZHx$Acg{W_I?t*2ib$d|l<&#nwvwV{Hw zV_6=`$>g1KxRk<6^z2DB3(`}o3~TB1VD&^WA?VJrO`uWVo|UT%!kT;|0M{0V|WM0LhQln^mh;w;GvVYXHzI%^La9 z{Utxzn}rK^%lQoav||GKxrLISBY}vPxJ2^Le!PkP5fbQ_-HRkBd26VUbL%BDwosv<{XO?r5h_ZdRK04A5*r^L5@^BXrAZ1OJ{c_$!$SvFUk;?`ugVwTIvkW=OvK^J$b|=>%|0k)1=$-Cb9bzcC zZ==hB>&+s9u-h$6>4ke8AqzwEQ7F;Nv&f&i zVIhN*DDC}=dqdgOzgOupxxWu_1%Zg9vxU<m|t$D_YKcT_@XTVY%<*ooHmOy;9 zY{`}1r_rQIU01vfa5x9qU1U9qb76P5Qr=tubK)oQ_KZ3gzJmDtN<&}dl*X<9g96CQ6RM~SzFRP}i( zm{M4up_-7C-bOXyQTq4peu$dd-qxpb`s)Na^(|tK#p$o8Xi83h!A*3r{MfGzX=+2M zR(D|CJ+;xT50_!d&mV=Semb5^_z&oyf@5=Wx(zX8Lg7MY#B)Il$dka2h$Y^5stGx6 z_TnaDFHGjG+PtAN4VlDfn4g9c!+##f zzb4ua*Z)Q;b`t(ms3sDJf6gZOWZ`Trx*_FwEiv@xrrF17)^w*Lyh24zfBY~f$<8YsF6wUSFlWQ|(bPKcYgXz^{%Opg-)@daTE>sLrcY!_4m8w< zH&S&XrFH{1(ZyP#Zv%TWBiG;)X{CDjMm*>iJ_mLb*KIr*}sRj<5OefZ6=FUgtqw`q-q-%ufxYJNgM81`)} z){i-Sm1qhK+kPmB18ej%K9dxjli31$23pitf2KjB5v$(GR1;Fg6S#>`6_aP`3~2VE zQvm5_Cx$eC#{m+3v8Y4cPsK?}^$4no#Gzis5+8i;O`Vg6DPE(VI;+P1jiBShSoEiiVXlL@kGK`^C{a|8R zI8bKvz*3ADn0mOpp319~#(SwItVto)SBG?D#awTFEirZu?aWSx`s-dQ#FC}Exrxx( zMC?@oFTb2zE>ILanHajF{DKyBkv|?CzQ?F0q{x3pH6i1lAaPHOe{Xd5iI7HyU_;qMP zym7j_y&>TmG+ySdHJ5-Lg`4J)zKx0oCj0fSX+h*oc;_tlEWVywCU8ucSaha%e+`HJ zES$B-*R$C`&9xhR#;qV~Y~O(gbTT{lQ7ysV<|~`***@-cDt8)o%cDs zmzK1D8g1EwPzLi)aT9UY*`4)qh^~+P2&>D=C8zFY;h!Nu1eEeS@G+uNevL-THZH72 zD@E_Gu9;uq{k7E0FVL2Iu9=jsneF)+gcR}n0k!P+xyWi+2qti4xvg4GK&!>yQ(Y(X z@Sa-gWH#Dz&vkN8XPv-wWF(-KlcQ^84H_p~t*nZq71mo_FRSq0TI%HmXv-mbAG$Fe*GZ~@*a zO9}4amiL4zcwU>*c3l{VJU2yW_d|FfEvw&W+p^p4ogQgEfcMUl=J%m3Ymw&N+(hUY zk9}6OQ0l?m=?<{Nns7iSAc=>;sfcCn188V$2mEubCE@F!u8RBc4qB?>+i1%nsvsl} znSVqGBADo5{+SNq-0akc*X2vW95n0mktI1DOe9lFKWl7B`nsj%p{aPsETuS!TMo@b z-3vSWD$Mo|0>N3f7dQ}jRz_#}d3Z1_bI~yvmSq?9(DPipiMR_p%v^q0yLhjwi{PgtqorkE}<$-eo=Te)r92ul~fZR z$G`6?$1~PetL18Hed~H5Kf#}jiC}pJkV3G_T9y|Zjm7TAsJKdYZ>E}%?A}N<;jw!R ziCxOfoDboN{2>H&+&&T$tsO2n8;i>yQc;v#KFm#oRwCiw{;1KgZxh^xwcSl|M3q4J zpLhT*{1)se$iZfP_;dh`X80v#dgA|QbR3_invi4SFWf|&wV&8e4kexe?bH`yNjnC# zr?Pr14C*D&EUwu1Dj_M^{ir4qhk6DVwK)r{P7LpvaHRu03Y`hRP2fZ-ViNQds3sBz zJq@RS#65kmYiOWRtCvSwcLt}}9`6+BUx_n=i7{~yI~3INB_n*vc=s3c{pJ}M8G85` zpkgcOIge^0NDrYdm!-W(CIl1GiwCH2)GG}B*xh&5=Ctl_fe72WZ_{7G1PppO22;XQ(FR z7`cs`h`mrqZ7#znbGVBL&Y;6QCUvSi3Oh1$AqGalJ@5C_3OvsU{Lv_v6hU_yFvEw!TXCXdH= zcU5^N)OAG%EV6ZCu9~Jd34%{oC=(#V7ojJp0+AZ~B{$K$ikFn`a;k~MA)jzIylkYF0xwDo>WOLgj*?+2xQU97g!ojdi6F#;^dU2l zh*1O+(u+r_kUwTDl*~92T4yR3_yB0{Zw~C3dkCDxEstufeh-hN zamSp_s@R(!&T6|;dOrOw-YH9ZzlFB!Ats~m*Qq9C4iF-Xlmp(&y$F?K{GnyaY0juy zWuZk0EHm$nEWti7fh$;T1IrRqV3GaM!pao9CziUK$Sv;yVP#&s`|a@;2r9=#XY?36 zj+Q~?kdBPDyQGJdqwp?SQhOxYvKCS@R1-3!2!X{AQV1rb7orp*n2_Q1qA1}Nw%uOQ z<*Rqs?i_%32jPRJc}LErKrJps8-tti+q~h$Nu{tdl)D#Gl_tyGS8)@ep)CH*d~?~} zG70l)_Efi$gFX-s#)WIZjsjqF9^Ylw##wB$(SytTqNDn5stGxA-oZ_TmITzjluO%} zB(b~8;UymHQnS3kw_T2BLqmc8*Bt(WZ*FnT68@?+|NDJxJ5QFs z5ga(?`;*?k#)BqP@f^_f z^ed_uq@I33HIb;ELKHLSM84zGg}0f#Jg3IqgLaGI&ULe&ryKph8CyMte*-Ku?JNZ! zTH2YKTH_9s;X=1^RZ$Q7JGHGzsAvDQKnQNAY$24%wSCY8bO3i2^M<8oLJDXx)kJ~< z5+ip$rYDt?lJjZ_nf zQ!r;$t>#vFLE73*p$vrWiQzvt4TYI#y1j=&ua#<4?kBPpTn1J#Ql>Bnf;;N(<8?>@a|bI;d~Ws*~3l_<$Jh^I4577buq66 zT&=OSHc-u1>a~C%{tF)ACSsZ({)NWHRuD&wDG1pwT?v23`(>$wzoISoTnTgeeG0HA z1Y$zAHtbY_7rGqrrN}~94kqGQqSqtC;h{p%x~1#jV7yzFI#`Cb+;bhwRsgG41L5Gs z(N%C38Wh`b;J?R9%@2W2=^8i#@06tmPDfkrxd!G9xutBQ)Tlv`P#YcDS}q2&!e!BA za0wb0TN#9B1-)Oo5?+n>%TfuiL|g8;68eT*$Oc>jfk1FebOn4IjfbrQ(xK@<_D5&_ zBY1x-ng1}_a?hDxGVIi{@Wxa=m-RyFz%WeMvgJ~7G$4haMwh~m(E!;>!GG18niD#7 zP}jx}@D5sP;~})=o@--4-XM*DDEjV-TrN%l6Umf|nb7!P>Y1*FiFnT})vyoRa_`kp zbcY~L)L?O6EU>scE5Wkyxaev)291nuhzM7Msb{(xj>3CpsfHubmV2&-#c&|Hmfu<& z&9;^n>g6n)kE;Z;#$a?w44~n$l|=YTQ)u^eU7Uw^&r%oXqAiE$g0Su^m#)R~Cc%VU z@4A7yP~t6JzqY&Eboy5NuB%g4u5UoA*(k;4eB;e{V_uf=eySkkV)c8tiO|LB!V|^z zV>sT*vbWC6zvmyumVb@k^Nru}3rDiQ|0!s)@ND>}b9XJ@)Jz$>zM|&V+2w%QMrGIK zyF&jKJd2jy>eTWBHU76kE*RX}$QN_W82jt&8v*>~=9D$ATS={fJGXW449#z_U%thDxu5;=0Q==3_{A*@!CyP&8Teme82+iLO1V&g-@B@?4Sv0{ zP~`tS0>7R*u2ACtQifm8-BtJwSaJ&I!@m@M0RJd9V4Qj=-+|FQcExac#9aYf9!hR? z1$!WkouuIZ=ODHLgv8Lk^Rd5LtM3wfH@?6uZpD1k^@5s=NJ7JrBGNmfcmW^NKG5Au zeP*5nyOvzI0cDFACQ49x8v24;yEg|V)45FV)u^mDJjaYsf1%=(|(5WYZcq49W-&Sv0vP=L*Lm-ICJS-eY@wBC-k?BOND?ycNJoY}cE z|Fby%P_krsYzqkBx8O}g0X&Ju#CA9z%GZZmA-O*&fOemB1w4-T$x;E2p)L1Z0aJwn z*tvS8Jlprnk-1+0CU6C>E%)NvVL11^H(EfSi}%Np_gQGmA-of6Hd*$Gv_dc;*IJ&EG735ZaFlR#JXzNxged%x*irvej1(4ALB8!3?<4f}B}-Z#LR;1%$@jR4F6I&rR=ao)HUZ_eKlof5iJ^$@}lnmP2?a6acb@5NU;AqK7ra zl+#K#l4Xu&$GZpGP9Rup$nU`Gn)7g!@FZCzC*a>J)xSI*Y1B(UyCzg;_o=)ZI#8o$A);GWY}<6I&UC*O+RbbOn4A?~|nhZbDlQ zQ2?P(khO+LIs_9vtTp!8aH_^SCVkTohteRL2&P1#x zPDDduJCwt}cPU-c`9A^gk|qBu(UyD8{}c|Ewop-t&in`(3|r>Ir;4&OS|~5z-LYhS z2yHopbwc8owS!0~1QWs9fnY*iUA3T`?XH2%T_nk+TwU*DL2ar+y%>($xe}0`E-}Nspwu7T2UYp7mbHk4R&rroF zcl_VRP2eGoeV^Clfl3wbCJfAVeu75Y8-Band;Wif2FXZP;p<>WA*8vO*C+wf`b9tV z%=CS{AC@udL9}HpM%_;}A)|v(Ql#i`OB634I=pg1SEIuu?^v1=8n42p*b=wytJs|p>T0P6oPqVXG&0~=N zvAA%%x~q8-@;`)2CE>6+KX;pL8FAYO*$b-xIyk~zILZ6Dn*a2lz-FhdH}P}Wn+oD+ zwc#%N=W+%jore}AMjDj!qIdy=^1ex39h8$#%9osKKJe&t4myFG?3hR860=ZRO)B}p zkgy#pmU39WoSO(8mR;OUId5Rt9oUwIr!%r!JpcmP`wBGbTK2vajhK@>v` zQ)KU!|NVNG^hAC!-X+UK{wlO(Es?*1o9NyW!~O$smvpI7$--&q?4S#;Muv&uQ{WkH z2x?;ZBpM%EG4%UNIVpzFuIZxq7~VBYQQVBS93l!r7Le7Q2s;E5a_;vsYDc`e-}vq( zlBrwV^BZodo_C5$f%j+V22RID5q3QFU6V~KLCcU*{zyetrj*}t6QL<3G?-AP)txu! zhhe_pYgo*+*fAGO;3{GxZH2wTj>1VZu(d{V*Y8u1=a0M(Viw*X%YZSRTgKBF`;>mZ z?0tlHGuBU`bMV&FVO{_ut77Sg|wT|U>V6QydCVQ zx#}=~ohueF`n?5={y?9!jCCX4E6aFx1GgN?Y-j-zd&b&V#h@MB16k|);4f~lX%s(* z2h*6fbc+2qm$p{P%oMk~r{}Kw@$Ol2{T;MrEq8sBYC`5Np}0s{UcCdwi(I)a8EE?1^TDU;aI#|mU1{6ZMo-iSnORE z*^)!+{%tpS7yC9Lj3{~-M#E#P2mf;oK|O?aP*;YFchFK9ThW$#u8c*Ms=J*93TI%z zt<|!{@_Q3_&+d>r%)Qe!aW&pMOHI5HZMo-~n8Q%Zmm9TKxCm4d z_e592U1(Hn)!={NDHtSz{nB-CC*Chh9ee?8x#v2V&i03T7zQNpr|1&+0~!!p2`HcM z0y9}(mvr`ji+9PA{U_0ud(Qq+A5>X*r=wPJ2l9jYfvk6*aX=9Vek1bqVt+7^%=BVq zhZHeJH+7Zli+9sfB@57&d#;k%48DT1GbB!&7F`t^(4g4HiB9v2K(}-iti!uyse;vL z%RN`YTn5+3&QfT;7>%xj?PyqRbs#?Gc-uV;`9kTKu7n!iF-s*>(3bZMCGaPmLL$Nk zqbuQhG%Rr`LFt&Tg!kedvsA*n(3X3ygn29`RGb`qj|!2(_o7STyJ%c&rQm<~EjW+R zd!}pQTX@ebweWSc<(_L{5km|f!>E<3gT?ZW5Iv0hX5Jj3N_V4u^w@WM&j&)eK6tSKwis%Bk6pe_j z0K}aZ=Bb0fPdfh><9)K^|5a$qA^a1*fy>Y6VoMIegxnQ;NtBQIaJ=N1?(Pbnvj!fG zgvSd@L#eeposmj0aM0vlw2+M|Y#!WxEV2FCB!7vLH=T7`O)I;547-ExrpiQayV}i7 zgl^6W-*!dVox=~^PJ%}x`|D0g*>(MRJh&Df1Um|7&B<)pFvHsOMu^cEenvGR zN5~`GM4THHk^GryY?n5<^IM7_r zFhy4M{H(-q7J6pwX)qr~#Yn<@2-QRoWfKal@s_#`?hy)Wd{=9;!W$A^eR3drt zvM64_n#bwgtv#o%D_2Jx@$md*yDr{!;V$u-^4aJ?WE=s_C5E*QxK*Onq*Ch`s?RM{ zamwm*GdIzlx`j`^r=13OU8PpD3pCWKWP3cA7F@8S0N3nG7op7zzu}^$=Z{)+6f0B{ za(s?(6QT71rP}9sFWTbP8?0>-e5@?x#SIlfajSKZ7&d1NGCR}lSdVu(&l!$#j$lUg-&dvpwMrJ9gx z{)C_*>{>!XwadYtboQ3i>T*tfQu)V;Aw4<0y#_!-dm79?pkgGY`ViGb@-S~6T|Mkn zM-)LnlOW8M(E;9`2J^qE7)hA_K{XMCnNax1+DXJEf(hxx7#V^(rk1RR;8iZAHq>ej zx0Yg`^-?URvEL5FwEpiTl_d^Hvk+P?W%AsM4D%w>Da;)KuHfb%p0=bgmQzhwQ$kMK z3)pGwe5nD4R8kw@y!}wsspre;ccB+0M#e%Qqt$!{DyMey+VI>&g;26^DmSqw6rkrP z2I%;7KKC3whm@kDw~cB-YIs->5O=Dc$?JSsb}G4KS7K1l61BdpHg(wFOvOx!_6<}M zLD&fiLFN=ObO-wrmS6Mnrm1ec#tYnsr37~2|{=#=f2rzG)g75%cMT+ z8u0ylJopxV1$Gqtnsd@s(Q*b_&Ip9HjQ7{*kp77ZDYe3zaaN7td8S((f!j*eT@Q=C z8&656!#OkEV9f%MUb7mO^P%mCHQXGk2^oB5aucBoFI3Q{3(%Q}H>_E!WWVDR!+b^y za}aReG;KYWikFNCM^jA%At$5^nRUbD-~cv8HKM;4F4Hv zmOL`GR;wE1uchK8A-{rZA_zHQ2+2_>ssn-v>BV=b3Dv9pe$(A|QKqhO>Q3s+(Mn)6 z-xH6Tj9-Lu&}6pGn^Ytc}!1qvQEgstGwpe#}jTmMG*>d#*$twhfGwwKb;6_r+5k>fq1w zfe-sUytXy`Cx8PHOT@joiBLVqk1FiEfvY5HE>p9r<>iUNIh}nIVvRB-8$MSY9397H zopFr+%i6*gj%{tG&UCg0!o&K+AYIgkw5?CrE6>{3RJt}gx+hUh$SCnbK~UWF?BY$Z zEN?@_w#2B|KV1SJS_&VNj$ta6G6}j=6G1u%wUI2Z#E>JHkX{@}?TGY31kgxcjFG^o zmBaq4szZ$txZbUn%9m1Qm}^&4>l&p2mdDgpxeq3$%_V84uxRum$jzOD%INm-mW!NX1^Q%t+bjXH-c^FT?MAkQL#1OttR&?k%7D7(O4`GwkqqOhE?P{sUng( z`~o)-S^>wpTGaU<+&uP9V>Ro0xV9EJ67@?oHC{H`-9F*^C>k;I{`vdBj>1m!INyP| z)*U>)zO)|U?bmy$$Csbty|g?g^<%VU4?;QMf51(IF2@q;q0YKkGMI;lJDu(DVU(@v zbrQ&&?_tY!O&~MD1g`$J705}J0_o6QT`7HdcP*7N1#P+KN;!0}lx44bWe4FyMeBZO zd118or-7jI!swcLJ{l@p&75Yd8Jmvl>NyVYxTSiIL0j&*dXBPEk3akblvIqaq&yln zTP3|XP9^z4&{Z{v?}VkQ2GEv!t}1>pxvvfgXy$FvHFF&r6kE+4W2qT-Yof10Xtx8Uzsl?Q6T{*k)Zd)qn4z%T-D`&2_%hNa1 z0@38p(RK1iG%U6{Io47qS|@c?{0{G=r7C`nwj81g!kUU)mJyS3f(bcG`z&>$=Pk>e z+1(2q=B&%_*t6D` zcckj&6dVsqiDNGaEvy!-Yu#z<|m0k zzaYJXwaz3Dt+Oj*GQ+HOje;Lh@skvMpK2mV0im3d6`4ra1QXJW!>AqcDzZzvTanFZ zZO}6uqFC@?EZM8M)KramTkyaxQQ;7VzW0_^CM1mG-MCtG4Y^VI2i1x z#n>Du#(2w}Ha;E|9nmAHCgf6N$sVaI;gb zvki}(;D1kI@WV+B(SBx38s168P}1-=s)@vDn70Mqa>zNwa>)%D0(T|G!TfZs-FT;Q za3>W#Nx&DVCK4xL&L%kb%Qh2)!2ip{;Gdf=c};f$|4}M(68xW1O(YKfe7G}fyIab; zrGYT~CqI-_0$#wb%xbmXiGm5>Ld3dqZ>otP1%zpboVkeVmS949F`cR zKB7KQA7{3#Wq}16H1DFCNSvJgl!zp#Y29G${|<0(Vx%lqqmiJb<$^}W-Bctc8M~<_f@BcN z16g5+ct|iIy*P(=B=*%FI8ha-1o*YN16t*Gf2U2-h>x1({{^*l=IF_kR zGtES_g1^ABf<2Qc-eSp#hO=J7O0i_9JP!wFB2ID+EifO}R2E}C%L z*eenH7Buu)?D#kuG;{2DH`q}KYCg-isZz4oAJQ$Y2K@-$G0On*VQx8;{k@Cg| zxfh`_jXxC4-mrbNeeVn3NTo!f`QMMM%Q;{ISMAwGA%6wqk3w3Hv;Z^{?~|nx`?%#j zAOP*J5!)V_f!OoH=o~*EkEdnqIWi>n1UYVZP7gcB;hnQ2`xvxkE$kdcH6g=}klg=P z*qICJ^lqXtmp?lJmxu|mfri#L@EjH@O07>?=&9npvQ%T4Tiydg&jAK<+v773eBK|O z=l9?dwG2MbvF5qmJw5!q6YriS;cr7**22$qR1-4%2-*E_g`WjXq1CdJW7i*T8FnhJ zUi$n9potiPzK=%NHUfoBz|7s!g3yC_$1F8@KexOG1fiv7irWJ<5QirGATrx~gNbAc z-LMImk?nR5^-%OoVzmDoZCMLN|Dc+Xp-71De=8Kt0G+OJx90~8A?O9sMR|N;qC6-x zIr_V!g`Q*a4q1ktqq*fhAoT33QraGnfsivCon03Xre*1qv0=B}GdUkeP6S3-fHyYjORgbA#TIhKP-Z4u}zLi_v z140k0dJI^!2WlV$eIq*CU&VuJ8G^#Ao=!c~L(x5W4=riG3vF2oMR!t7$WSE2_rDd2 zCWB7(;4}V*k%P}(U?Q0!{D9DmC_18roByJzZCdK?U)=H@5N_Bq9`Aivfa#CU=n;uA z8vgx2?UNo-mg9Z0r1oI6Wi6yEqneN*MF{MFE2Q)>Ew*+PC?Bzg0Fa0^O%9EzZB4T* zJgl@kqlFd+?~bMZUd}D=0ik7~pU$xG^5*Ewz5x%VW&Lu**vz*3rH7c;;r+6t_)4^8 zEyP?#H6cTc5ZeD%h?x$W+)&E7JN44#>wrka81of0sJ1aC9jZiMZ?quuWxPL@3j7kc zyaxoCMGB$q(HNK|{UtiLPvNn&j56V00wlNXj_G0M_jt!FN&XGmvKD5Zpqh|jMo8^{ zE6nW2Rk__M=5yNjWMxzLk0QsM!@)!{)1~l@8yiaIu4w`2P`q=N+B}F`-U9;A!QoW5 z2W=o4ofDn)Gx5M$MkD`o1nQQo5Z2qh)I-yY@LpQdzX@$w3r(j|O~}wBMEJiKnl_c| z8%8QcexIY8Gf%nR1n@*GhhC3H*tQ%B4^3fR(?Zj0@y=Ol^9pWx4+%{nc(ey?AT)h0 zI_sat0~-0~g}fY{_rLJ$^nmi#y}xBG#KWQySM$(f;JdYD;= zcg&LHd1%X8n3+vAA;XN2T9RRgaQ8*$qg!*u<84`4+y-*s*#Jw#ShEF6_ugYY@N5NoGCOM`n;N|40-7Djod^is_`EB zR4LVzQmoMLQgrVRwq+~-Zj|D_w$1igEuX2bmy*QoJ`A=_AQBe zEwVH^<_Azs$kDc#n+Vl8m7FpwbaS^I$R~|U8wB9$_0Goh5MsXz;iC+lrnkd9J^SS zjpSNpC|`%GWxY$59az`!T+=e>bEyiDk@MM96G8e23XmcaD^~;)(u-!4^#E9q{KkZ? zE=bN@n=jQGBdLm0A5O7{z1+Z~ZsmBi*IaJCjgGgTWvyphtt-oGh84;pRVq?#d2XUR zdAjqbjVS|839gQ>2R>+AjYi!Yl)KxPSiTVrlX-pSRbWSV=%22M&*J^F)Wq#*%RSe`oWXo4m*tDz&H%d^G!Pbk8(j}iqEWHc!-_HV5bT?- zg~#!}S!&@iwB?>_p>MEQu7DOArC?Op_otDg!U8aXEBkF#pj^{sNDi`BI{$O=URm-# z3vIdQ{7)aMx^8Zi*G7Rbur9g)R-*y26~N(RgaKc-bOoG3`aJqtbrMpC656|a8oKz7;;(iC~jg;SeBf|zn5p7Vlfaq{tpee z*GsuD`4TixM#c*3!Hz--JP`>WF1+WFBy;`kzUXn{Y`ia)abgSFvKA*ca}(WLk(}QK zDqF5*oziG_Ft`A96}S{}LGp4mFt+sjmmW;?%UzcTqdMuI!24oJ`bW{0drtZRV)Wn)=-{#FI{2AD z=-R!PU?mzCTM;bpR3iF2rOV)Xc&997@LaUzp37jmCxi1F zPH>7)h|d2I8W3Clmv-cz^+qQ?hxf*kcn58{=fuzOh-dGj2gCncqBFk>jfgGt{yQJF z@Xy~?H=HzjGu|Cb>feC2+;i%^F+b=OYi=Ose>pnyUqS<7%Y4T%&wHbf`7h$Vu_XTU zXv;k(em^nhhhUc;EGqMlP}%M5rnG3?`D96!n@USqfu5+H%i@G1C(U+g9#Y z0|DaH=u%jZhQu~N`0oVLr6BsFlfM@4k0tphp)L2E{KbNNhz0DWZN9U$X3P{jqYI&d zhR0S2{*8>95Db0OMN!53W+{p?+H%iD;Vl~FYw(@F?vw_Cwc`!ZweWs4Dz;kaxM(E1 zq)XsEc$X|C@J_Vlo=d=s3)|dk$z|Kwa_qz+4-bI^aes6zduQS^yqQFLp;b%bZ4tKi>gJZx2v>NJmFozZFk2i_S=+W&^O+;iH!nM1kc zW_LKF*{!V?VIA1c7KjGVdMxtH;V>}KgPDV|ce*eR!Fy*Zj5OME&xPUD2{mWL&F0vP zc>y)NB)S^TMx$aI6*|@lvP-%Iw%}c|l)z@R<(^BxTVbrR$Dsr4Uml(P*PsEhWxwMJ zBkzq){6%J8YEVdVER~fMuJm@>A#3vDozCx$&`xz(+*l#=-5kLD3kDBS_)-6+H#0c2;0)- z&UUc}nqWfiY(J8^vC7-o{;`Q&y@F%ElN$MA`wFKu<$+pibH3sh^Ck5bnA6Y_H^!@G zrhP|n&UGtr?Z9?-#a7RSEPUaE>nH|l*-Fa=Ws9|8-}?rtY~;T8b=(AD-#htU(-gni zcGyipUo*V(ZZ(y!rMALByP;IIQBv;TDaM0*;bmY)fwQ?(Ty#6^W_*soJv+U$9qsFpU4dxUB^+wgrDQRo!FOyQk5}vli zEpf~Vma%+JXv&xbp5RJr&xBOQcy5AFBM`3b^IhC@4V+3icUOT2+9_~3kGr$K8n_%f zmh)fV!7Ln(2GDk3Pfc@w zGptt{Z-=6r)p$FIYC?{srQAfEp)`cxnJ~4i=i$N)s1yeKE2GM2dMS9pVk@V4?s?}0 z{%(w9pM!?Xmh4$+&udl-4Q8N+8s%rA8`mg*5!FNwD4$lTy1f4HuMI17U*V^FCeSVa zUW`;b`W#;|%mnqxoWV!y3)6qM8WOOh~jcSBtzrFd@B2Dp${5-Kf>eBXI9E z+|kUBODPJw!&8`jVzA|YPI`d143}QFThKh+oIIpPmR+bqTAO-^~0Sx?LrprTREK1 zxtTiK5U^4iF;gG+rQliTo#+3HF|s%bn!#18wk%Fd%dY7$c|5vZjlI37CS)}HFI7V_ zCJPNkipdWM8OC^7dr174oy*rCCa~}fhZ##Sy;UT)+Aq2J=bfkh?HF};BAPr~-OWi$ zzcXGhwcv3Ax_M20E2$=={JKW`oZ7a0rNV+tw)Ogo!hFTgJR}bNug6IJ2pTwB>gT50 zj(2zlpnz^)<9>*0q6gehhNX*a&Z#>JPPGcVV;KO!tq#+Eg7uk=SJ|2cSn zEXiMiwj4q}A==A?Awmnmgp}YYkR_?Z*_)sXCPkY^qT5#txt*hVPWk zgA7|)TE%>JN2_HeLK%`rohlNUJkIAPx|2Nkx2TzGT)3snsh6v%ay1v2w7w-Ccng<< z9Rzz^#z9gu1eKRrCXQa17tC`_et6Jp0 zii($n{Bo*^#37%vcISZ0ciozC|9E1!&xJRhy{0>W{}C#368sNSO(YKff{pNn&@C37 zl3Q-n%w_-mi4m|cJ>qY^L-F|?DuR-PZ&FPJNg%9s$mJ3-nI@Q!UX-XsoVQ%EaAH@N zOQy12-6uJ<{DAtn#ndNbDX5#N_Bsj7A?wxr)&_fzdIcPc$Zi#_D${(!8p$N^Bw~Fx zo}1|68cE;DZk@loy&m2*R;q);8c;0A}7HwP)%5a zPuY~n7X_!DGh9xcSx&90siOQHJCBpNJ0WN2w;HfNv74#P}VO>vuZG z{-kPo2fVPQ?zns?G1#XI*x~vo)~YVz?@{5BBK|JbL=bU8DJrX3F_Z`*<>t z#bW9V_k2j0bv0K{_;pgbdPceet!ApNR<-E0H#8lw(tIX5@d-gbcMH7dTjX&rU$3Q3 zAB6q+N~T_(81VDbHP$u{bkKID%-h!BKR7!4%cv$2SA1$i2`(jeU?bCZmz|<)ouq|D z#JU54U)}qAYGPc#eNobp4BxmXPS&#NnQ%lSW<3>E84%Y}O;{5{uA%0i(I}Nz0edEk zMXA%u1E5v)Bu6PRIu@kiq6OA^rp{W=6us6p4z^JNlpG9m6QPw=>~pedJh_V#<4UA? zLt=3DiPSC*i|d*Fb#)JPd76g;K4jQ8-11-sPWR}l_#BlFIkY~_O>}Q)^|6UVYV+voVW&Ex zp!!H+sCs2{Wpscyszsj zlT11Cio}qfoDNNomr^m3FkehHVGT36>PwxSuh!uS!<1Xvp0AcmY@=Q+l}T+XdlOwH z(%h670SCfn4em(B??|RpX1Cn26Si8c`4AOU$;$`0i7v+UnPxCCZx*0BnXLnwR)<69WD~wuE_a!i6K7CL!39Mf&FVL zQc}9VqM8VTO(;}ltt$o)!G!c;jATs?YzK<<3$c6$X%rUmQlXQt{ePQO3Qwg){L1jv zJK;x$`2ja6h0MqH1!p1_s|&b^E(W$q=fIU<@L5I~Ue8Yq)yc42B-+!))^X9%JBDgP zs`@BFK-__B!bWG{^eqa=*~CDe2;b=k%7%Rr|3}3~hOd`UO(YKS#Iv?GO7(_<@g<32 zJSp7}&1pJ*H5DNV@++w(f*=zDyvz|I77>NQ|As(j(wdCg(Yn8E!iSUwnq(64MSu-A6@P67_AW32UOr_0`tUzZ|O-SX=;3i^U#xo`Om5CyJtd8*WsPIT_K9_1DafJ6dXUl0y{d8`E z@b0J;b$DM&#YVz=4%I~B@XkItUtizY3Oj;wZmj~3CabfqixLBSPI?F?u8pm*BHeCT zi@Fz5ag)$rKs6DBo=|kkx>dw}f(hwGLUn83ne6CCzT{N%0q#GZ828ipW&T@RjcT-i zgvyzu{liofLBI)|N!rDCK7tA9#Ukq39P&cONuntySDhTZuoBqM`Kx%e)ZD*) zkVw8AG}LZU`QB*wa{CLaD5S1_&P{Z&h?{&m-1ouGo+?Rj((mJ`;{FERQBZ46Nw*-@ zGvRn>HDW2Z7uAFu5&snwge`}WCm~DM?sP^faJ#`-HF(#AZB}9*$Xj|&t=hanq2Tbu zC|Cw(Ub!ck2J?h%Sz=$wTRP7;mAuZ)p;Ta{wh!Vax}xpn;zf(`Ecqy?p2ATrgj|-p zKWtU)cXzr2jXJ#E4D~~{1xoOex)*uu@N2i1tz?%ntz;K!hWyuKzm&1OIeur=9o*I2 z8(uAFPO6OZ`ww=xg;NjWFLZ1aKThXA3@>P~jzKsUxA>%5mqev%`Js}-o=!2KfXN%? z3)1xA{T!Zp*^XZiM)Cci4WsW?hqh;0em+U*foND9z%S%^ zqMW^|l=22(iht@<6?zFYTiY64p;vJ`-g_RgD75f@V3Mj&)~&|YBqaB&v{M4LwIUi{ zk_^?K9@t*Z9g8HkS5i$RC^iuZ_FXNWXlQ4d*4-}ZH0(C$KpeY*^mwpe>t6p>1ZW2U z!?&7Ss5r`T|8c5`AQc#;dI3z<-I3(cB9$8h* z4yD2Rf7=JG@Hr?t9ZRVu5~t(nlU+E02D|sRw4U>0l$_+ijyc$`%Wi_s59SBp)kl~k zv7LR6{_5u`i4k=SoaW%($#?!3Sz80%!PAhccN&E!Q}LJaY7Nyy;uJ1j*AlPf3(gkS z;KU2u)yf}Dy=>RTyDr>S;II0PBu3Y=bbA=JJ%N>8#S@L10u@(D%@EZ@kQzd5Aj=Dp z&BUc|3ufNp;}he%dUj;`1~^i?4mKXcspg!TLOvOf)P2WC zNLT8ULPYB60ZlJExlGH+QuuFwe^u{xK;Q7N>Uz7oZ*$@vPItd>;4_ahfojY9etm z4%jjb7d^|-upv<5`74^0i4k%jT)PTxNIJ%>G@nOBRF076QcWaI%B-_WjT&sKYu(4K zX4`WUqhWTs!5ePh#ch~0zm$ra1pXYViNt|#-MtOiuYm`|QfH1<+!{aDxyId|*YZn#TpaS5O^lW_%!a)r-X1EMO3Rf@mAj&mb2k-PNzQJniNwiCZEB2c9!+gwt4grs z)Jh|8Sah{hW2Kk!J@m=Ms5vlQYK*|gT)w>J6x(SfGvK+Q(egMIQ%TEXR1=BQvR`Y= z)KY626<8p5>TYT?Uny4z>3b@4B$y||G&o$?lI_MO~eu_pd2DJE`#7379mH?E0CR?P`;pwHbo=1m@}sMO1$`~s>8 z$=mVVMC?llQ_m{FdOa)A)qP7t@nBro0(R6D8#t#dn#?$c4N5sGQW9*3YQh?9^5(Ib ztqZT9 z(3}ZNj({U?mfeb|=bH~j2lE4+!Hhi)%=1Ahwlh`o>eWhLPYlrcen7>w5v*}dqhE;* z>zAn}WNi2n)r3srg4{@H{C(Vu*kv$9Tw4KONR+|!4`?lpb!0soO!aQ9Fpi_YQK6PW z>CaRXl5hbvfh|e62#o|2(u;)h|8%&sf!KrnCDnvf`(;!UGM@U_cYC_VUPy(OAu7`vfbzQC4ewG;8 zQvvN(iyG9AP;rt_|Bz}Tai}M+&Wr7gimvzhb5do}l=MKWK@I3}&}zgA=|8an{X}ux zxWm|n!R3W(mhf{<>_FA8iZ}#RIFkK+Hd81(8~*9sUCr_9%OfuQsJX?# zU6=223NHWs!Vvs8{M=DjW{T zIpXNmsgnxJQ?Nd@e8n)du!3E$?^ai^oy99)KEnSGg=%dDUnlIZ*6QAlNN*@7+wJ9> zn)6zRELXsDZQ0h^&E>l`HD~2qxT}1{`HlR*Hvap7i|gUCys#3wSa?4C;s!8k`k(N# z#Or*3t?)u7x5A+S)~Pc%W`z~34Zc6LTWBm0eJ;9AwUmXUj;%)l86JJ&&xRVXhqVS+ zY-%nNzvG=Ks%7Ce;Vl0x1*ub6FE+AYPKRGKxF)P&Fz>=3bq3h+kXqO)q~^AD!#-nf z7gIY1%KY{pRNW$cw8>?e*cC)x&cHa&1jbah$$O|;Zj^E;LW$JE+5mCE{lxQT*lKu>sYQ+WGSLw{%b#5#d5r~wW)9|c*#JJd5UGIORuL2S=tok+&Yez@98=gg6(R`L& zQ`>4@`BZ4w7Jm=86tV2Ri<=0AI{r`C%fto#spXp+wc!<;&p0e~W;H)F1Ys|iV(&-= zx3N4C5A219!H$Awb19#? z`Vmybdc zCSgC7Y9evi586^MSJ{V$zS0+d zS@X~yUuJ2yWBIiobAvXb@D5` zP<5D+t$&yp+Hf(s@B=nlgC7~sjZA2mdN?}P4^U0WF>s%tD{PL2zhX*Ue8KJ{cdH|? zn8Hg`xO^4v_+uoU18a7J#j<+W-+vNgWhvbB;yJ=AS2&?B9Lcc7L+*$+2>wY$RStru zsU{L9X4b|=v7Tpl0J7(R*>ZyaaAE4NNlhMRr$@Yo;V_73SOb0uv>tH|u^-h$;=s>1 zgGDD;xyZq}+p_v3`Rc@ApP7cYxY?U{t!6dQPoyFy)qVoiL=bf13Y1uS6p4pmLVA(V zOnv66YSkHK*J~Q)>(#`#hnWm(Hv`xHgw5K^ROTf4MXHI!VV||xt>())xX{P6Qgv-& zxX(_*GA(a7d}ZotDryq=H&RU`4*ZghP6^&fERLqug3FkA3v2Xx9 z$0WSSs}U6)%Az)Ep|7EA0HAwJ}iFR z%zqefAaAZQ?5kM88a8aO=x4v*&zY6LV|Z@|A4O<(JfD z;aZ2Sa5Cgd&+@z4mfwfA?7=jpm}h%U>h6dK)Vrycrfr2>3j02pK}BdX3fW4x@SS$Y zUP*MP@DTqG3vci4K9vLEtgTz+!KYph1S9Ppqu+vy{tYW*!(-HB^E7lg5?->cEM49Az( z5ij-}Jh7{L1(FgPDP!U&oC|goR+_VTAn`e`2aav{#w`QKFxs*f zI9#d;890Q7A_b1MQM`bu)8D!qIHs{FikpL3Q%T)M@(Jii9C71#Q{3n{UlJa1hZKPt z!p29bV9T&^6F0F3gpEGg??BY}9-0a4(FIegp+b`*A+uzwNi z5ZMVmdVCAtwq^AAI@+=pJ-$LUA)|+oQl#kdp(tKJ^cb1Y)w1Kj_Jwv3K-kwuZ{=lN zc3{|nl2lpCo%8p2BFaW|L}_~|oD^#?Ef*CP8)D2%aGO*K${5qfP3!?N=73H}1ftH- zXu7mo31d|i79;m!DlErZ1y(3Z7e z@j7mzdu#P#M^j7N0hYfE&fvzI#`2fYkl3<3hqKH#WVPJa6T=tr&0BK)d9>x8b3K=x zwuIWvt+oIQ@cmSDzJHH~#g^{{oNuiQI_JN^yI{%r6KKmJoD(v+ECxh!AefK~vD>H} zVO~Hna7=eUzf3BXOBcA+vQi8j`44PxGAgZkl4;ISgX=v8*clj8J<$Hc{+3@#{xOsU z8SpjYMB{L7Vvi^Zyj}-_#}+gnTC&)ThRH~2;e}vFp~Nc*T6B30%aULtzG2IdaSGb9 z7BWueCc0h{m|4CEoQYTxT!@CmmSulQ5X$uh_~tFS-hsB{&D?#GRJuq$0`#9&`IU{9F7 z4Ffuai&RG0HCLPJgN|Q0z%{=80xq^{Ii_SILxJ!l6@9s8@HjUSS|D^Ue=uqS{STB1 zGyjRD#v3&9V@DsDz*SU6b_@Rk)D&`>3;8@l?}I+kn1c7gGOA2OTh^k=K2#Gjst83z ziYkv$b?rr!ySw`+?*zEbX<(Z&&DaDu#t}x=nZgJhY{|o3b$;oQX{O=-b9U1d_@;=} z5J^s@@-8FEdTt^#l5}zPaT4!yAbOmSW<-k~B{WFp=y5LCQ3z@Bt93l8yk@U!uRLzU zH)|O%hS8R_fZ=iz-AfbG#nPRL;dg^8xG|?O{0=lAwhW8CG(P9`#PC*p=tT>%&4J+V~4tI(E16hJ5eWECOO2*HG`BKD$o z#H%8z-TiL44_q0hR1Wuo|F~#n6kGGTrp1JgYm&?pB_SC~g}bTf%2HuBHxXJYbT4;I zfDQ+O#gl08wesL`G(txH3J-!Eg^lK99xND3UZdBwR}CJ+H)}U9EcjLkwv6X&YmfxfXKLTN5`M=`{6RXf+!rSA|{o-yZDmBE6gTd8^ z(~D)?#2yecJX!=RtoMNcaw?h@Er6^?!(|R2&jULOHBETFR-Vz2{Atl-E#3pmXmS$T zvKCEVNHrm&iBMCdXmVf_FCdzHt-BvBCe`4c8}|ZNsWe^-eTbvdSZ@j;{?8Jol?wl# z_qV)L8Fd7nDmi>FALb-kb-@GN)_n|HK zoNM16DKp=b{u7z+@n8a1M%nTm+#?mr`CfPzEII#gT$~fKx-1Mtav+$H%MTY*JHotx z!r-dze#Dqmb!)>;MJ){0p~Y%cS~GfK(DF{nLWaU%HCmWn$dHA>iQL2_xiI1g=EOBUyH6J0M1%q(9A&O|H> zu0ca$%d)>PXbnw`>o?(>x8(ZuXv;n4+E*Bu`Mx_k-@DPU*zz4L3_>}-1Mh+*=buAc z4&j`T)n#EIk^{knEDTPdcEl?TzTVvxgK7K@O|gAiSvA=Ezt{j}R9h2&GYt2L?;0NS zGsQDhuw^~)Z*C&A9_U`W=#%{pR0Id3sqn^z+{~~HOvEv%m<@K+ia=ZlBYoFDS{#UP z+cIeEkG8A@jeV&mWY7=_iWD^dLDjJrH1_K5jSTJUq=H{7a)2hTs);LTw7ynYeA{%W zl*^#;a&BTz2pY2AfuL~(nhGswT#5$D$Y!Aic1%G-`mP6!i}7t+28~ytEo(vJ6;u;4 zXb1&G3K}nq;sq>0+|b=GofCEp!>!j!jd3sZAdYZxqUp;-`)Ic5vqbw3`-NAEJPivE zcT=&JF=ID35gIeP_(ft8?{gqtJc;H)ix-chK{CgS2f>a)h1fM6=h=6Z z!o>CJ=v<$O2E}$X2ai&O@O=W_0ZYDDqAiE;O~~J}1P}>jY>{3t z%ec67LGOdk`akeKShD^%wB-=i3E5p12qHxgOvnOZl-d!mK=^idzebF&mWxGYiQolr zxj8O48FkiN8@V{(t|>{#P#7E!?&2m$o^WJga4a{mClm$~S(gK$!$I?*C5xA%F)~tG z*a&tMKAKZ_QNW4vTD`8lO7Jp#tCqpy#c0b~usDmG=w3n4=N&}U`F#U;f*Wrdzpq2% zVau=h)+Bw`Q^J+_wk=t{3~jmREYFfj)G(4iAD!vXpfRy!T9kdN|2o^Z;oG-l`xdn2 z5Vi@~TNVH!6%b6w0^n$BN4x^yL)~2=nA9kVi#7a@dj1pofQv~+nZ>YAvE`kTb_`{} z(^S-D8SocwVoxXorg*&$R02!(!m^@eiv7R@u39n@TbKfN6iU2(iY>alhGj9Z5Z|z6 z;FyQDtObtQ+(h?^0q+2VndMW!8Qj>@SUwpIi7m_ieTt!6ufaEO$@MC<<(_lx+ox#e zdq;G>>u6YP`3~+=4CVZMybG3`m(Z3&I45LvSr~}qKrkT-gQut|$}0>$-Q6um^J*@< zxyyEpggyOzJ6gF$*_khaXAPS^AF$u=2iLe~V?6xrdtvuhs)}TN@Cj}rv_9xw`k1SA zKTs(A08NaRLLNfnW#qPS57C#x2Ps$ND+F96jDAK z#S7SwbboixM9mPl@IX|7TixIpdHtCI27zC#56@Q>fP+*QRg); zCmu)Ro41T2&p}((qR0wvqI;QRzPFOcUt2RXJ`65JoPM}yU~Cy*#Fv{5ozSz#R=g9I zyl2std(Qj5zIDA0++Q1=`>WC5*mA!==RTw(I{$CPJ7URy6Ky$!e?sb))q_YN1QT*X zGLza7Z$ffYcULOM*IYNJ)C>{RuQGwrq=A8G}90rwSj%dtk}ECobbAefL-g$%VL-c(`Y`BPK*`cJLr%s}DNs2jhLPWPKUhatP~$^e!s|ks=5tWQA}8 zRlZ(@a7A~wJ5C*OM&MEVTHRG&jVho8Ym6_=mBwWQx9%913*h(rnM1-KCI1*|f+4DA zWKEFcCPHh1?j?+A?QRDm$LrBVXf?rW(Ks2oER2F3g_GtCzOdYOT@M&n;G4D#7?+|g zYXRe8stFk|gnl9g3@3^g@VPPH-6_R{TBVp*ml(eZJ;0SSMtwD7c&?uNrfAdU)ep(XAn_{ECXaj4Qw3 zCiZ~1B529V-UmX;^hsD+w2(3tOvF)}{sS;msPW#c)%f!~kQ0$fcn>V2$#}G7Et>2_ zH6f#kP*bF6@^h-Dy@KTv-Q6hN=M^mONToiiY?nR_;EW@VJm0j~*)fiY)FwPqbZQ78 z8>pnq5VDS&*aJeybYI5<(W8teLyI0oG*ae*u$txEOeH{uk{h{+ zJs_0KHvkX_Dfgkt(L&0%(TJHt${k=w4JqPqub~rqX!!=-3Cqy(RkUR-wA@2AAw!GM zRHV>yLliF{w7jIdp=CPk#jEFwu#BR8ft@uuo``aSDWZ&Y`U30uWcLwvI=G3e)IH_M zP%@R9*aJez41do9G2|#T9a;=I5)G9(h8zfX)EFZ6^ZLElgGUD6x@GV<9Bo+(9*0s* z$lxJV6e)O2isA(XkDqq;5^HwaP&{ekzfqr{NZmf>PO+Oifd)^ZcwD+zp; zLTDVn3VexJ5WE77h%LwdGoX+f*s#=?-idGBlIaH8a?hFeodFei1xEDE(b>KcjfySX z!84#?jNgFwz>@Lzqb-LpPRQf36cA~FU_zDx2U9!Zl>*=G@(GWDa%EI((^ATTUqd%= z!O5sK^9hfRA3d2vd}G#_b-=HvP|M|kUvLwlbwKwL#k6*}194;eR4ftRz>s&zO$8IU zddbLT;U55&S_y~~9&Ok46fp_kv}M2;kG8A@jJ>EPWWW&mi4-t?PF1lNFh1Gcxx=K| zaAR<==ql0TG(a+rXkpwUG4`F4o=1u{4fBQ#RK8`rSjSC-#)~d4CrUc=Y5XAXIM!6s3FZ1aeDjuEUxT*XbFO{Q;h6dUT6DheMZ;ptcknr!P|okhyI{%rZnWhP z&Iy@Z76T$V5KPF~!)j_rykcNUcQ+_ZD>|cYRXkmx6a!E7+cIt}LtED3#(~^K_v(T<;+k2BSAgpmgFg{VgR{`6*m5n_nSwpg89xK> zfhFUoqb>KG@dfg-)=<_ji_ZEbXk=_z-lfE3GIp= zb5`SBv5YwVK=tJk%^d)$C;)iPMTA8lC+7VqIEx>uC;iPZrEzuyN>aN|wm_dzrsw)~1! zEa|(R67I*hZOQU?(3X47@+`R;U|@Q}^vF!_4JL3klr7U@tGw#J&h|5CPMVf%{~K*N zgl$6hmIZ)F1q2gv9ply1jxaBv0JyWe-#QlP>loTO?=@)Q8dcZCpYsmPgRRbauR@Oz zPf4;OcmX#NS`lnh=n1aqF)FUPG4dqC z^HI2{h}SULxSmRY3@z{FCPG6?7bhDt{9O+Om9L@s(SpjoXsnDB7j6SP3NKBuiQn(N z9!>7Xw{96tcB3t8(c}(pqI+3no+#k`hz0om8+e2pj~d^9M&n}3w>Z`B#ZeD%%^8WW7;NxgKZ29%CPMTT%2)=DgmOqTP+;f(FtCI$%e;S?XAEPm`WjeSzX=eKe z`1UQ?en?opHa%{yaqNGEcf!-t?4|1K58+Q#-ynW`Nc{M)_;EA;5kfm5jmt_vn#APk8h@03GYJus#o(D>TRcJ=Me#)brFF-?OB(;zMI|?n{UA8{w^=ZWM_{J@x z$gyb4TJSiUo9JF;Fjq{weSihnE`dW43xsWGSZvuAo9VPJ=$sGZU9jZbMO*GU=L_Y+ zK{)U4h|c?4(a_lPE}qaZc0=d>TD%*U++U5h9Kt;z)5~H(Bn^TISuD(_cEl?dzSP}f zVHVrL=;mPaWa~;s|6P$kgwEh1mQi-*ilO7)N#U0CN=Z$Iis4}@?6P8bfSU-d7`m58 zW(PVSNF)D2lcE(3|3sr@|W4e|sIqf9xZEOb|aN@gGK!HIFw&gQgsL2s#_XxcNN|N)6>Fn;H!VaF}ANlHO<)r<&larP|sGJ zsxwq|D#M<|W4Oi8Xwt=xmlGKfff(YTx$*it37(pCt1z(?xV;>Wn~~$fsbEK;%3F}+ z9C`zEBm5oF>dWx0c8nfpwk^LHZP~+RN-|2*KFntI36_M%Bp)s*#I=C)r zX8Y6l_AS}|6xwnK+cK-$j-=+at&L*Qt!G(~Q1S!bRzZsIC~A*>#s9;?pC&@)n|;c- zafe;Ji!IPz4ViHG_QEyr_s=l?1FqmCYt&ow z1;iqu<&%Y$RcXL#WF0Wz9&wluZE#t;Qv}G-B%;P3PM-*W|Elh=sT0YXeo1@GuZvBTi%a z6f`8ZEcy*@@N*KV4t|VgMavsMKx1Vjw(wQ3qwwPGbM|}R zT62^o!bAAhEknrn(3Z6j@?CDCdnJOm&)JVyfbS`DBG(BM!9*O@pw72{pR>OYI_vx3 zeXwMG9NKcvS@-R8_M;YH{+Q^@ABD!ocBBXQIs5yevwtMs4@>qlXv-n&6LP*R8${|L zn2=?|C#b>8D;tjJZrLz%bH3sh^CdSm>=t2@yHYtc(8@K+uK7H^njjkB_e^H%@R_vM z&wkD3w~zLFf7D;`oXL95C|Su+EmWzhk<~((n;=vRl!cql^UN71IRo3=Qf|Fd$`u1t zycJD_RxVtN2Fu81;Zm@p5Yt@A4og^a+8^ko=ccSHuEx7*8DrkaEr(Lwy=vh=6@&gp zCFj)L>{da4Abs2gUPoMDxDyZQWVi{+t(M@+)RoPN@OiIM&F?ZWzk$wtpx1h``2yZ+ zOCfv~ZCOh;w^L2XWFzDlDcLl+7ooz9KSa$@mAkQ=Q?Ky(7dRAAtba!%Ya6CsKo=|T zs1~aJig(pgp??y@?g5M2OLWHjx43ohca?JC;JJ~>Uj`=PnBwR;Dng`UEJ-T z*OofiA8lESRQqxhp)n%%)$#)jf;lH&A2uoG4Dc;txHuh+kZrg)C0e-X_jg*8%xQSH zEhV!7Z8=0Tgv=z9n+RY86LKci{p99jjP2lccd9$EUKd@hSE9+WRVymF89J&d^fJ7w zmI}RuTiyfe@FhA9{aLtRG+)nV16BBK(Ye0`52$4oeljLfb?CERgMS?Fv!w_=g0`%M zsSi_4$S@_Om}HoWJ-^N$f}JmeRTiI0x$Ho>G?*U>i1qgXOvJSM8#K1If$D`Au^RfS zi}VS+ua+YHCEBtkQjx_73X>ugOH>3CGM5(7GZn8R%nR84{EF`GZJK$qTVmT{y+uj& z2B*wCth$ZTZ0@vOl^hVLa`Nc5)lUx(a@FPFd$haTc)K^|Lj zS@TeCA~eT#^CRd<)v}WtaBB6n)oNK?VBUAz^sJKxkTi`svo zE%#haQ`rpG*_jV!r)NhOO@Csd>A0R`QTev|tZU;4yw8@AW;xn&&$ZFVaN1gKlyX6J zyga%(UWUfQHl%d?l4hw6(Q92FFUEUqsgJYJmV2&`8B8A|u2ag^>bXG0^1A2>xe|?t ztwK(XoOEQrb&Xtx_uEn?EAdt^Q7szdBIBW&7J_dpCPV4Hp1@E+_ zIzEoJ+;erz8FA{>{LU<_T-NH&R_%qSUq%YNoo5o_$}{Y|n&0TyT@G-+SNJ-+Nu%T^)LjZ02rj+rydDtSAM zoS+hqCll1e4dO<%2ZXv;xvTH8pnSODC+TkOHtr<;rj`Cs!%ty}JM~%Jg+J85hW!eA zXQROPbF2MF?JcWeA3yl9uQ1d~?GHIb;^PPD-B+H%9^M`-WL+iy4_tDofA#Rezu-za zSYz}+woC z_c#lWi|8I_aO6ae(`yGy+_gx0>icpQcigS_jHLJtPU4<8uXf=B~ttKHc+h|V210%A00*q`K&9S}^%4mevnqV{@5Go3B z{pJCo7V!2DFfDGVCd=I>;*VzZgk>8eNaYx50*#hyy8 z#I|9HR`T{`x80myXvkK&L`b!Ww5vkLW&8EM;!~IH*K&wNqf5SQZ~9o(spW3?+dVKJ z@=R5We0Rgea#EVVjp1m-RK@nZTKKk$eHK4F(ZxOmBU>)^2@a9o2t8YTQB5nE!T1v_ zB<~>n;V`_cP)S18En5p_70M^o_q!@ zS*O=jcjf~_@;-dS-t{}pR~2d|Si>O_XM+3_h59!8@~ar~8yO$wAGD~HdMf2C`-W8Q z6UW1U5TrUeSL`Va_Ga0G18fpIXJ~o#0A2{WqhvHLC2dTYVK-LTSFcLNfgw3=QU21F zOs>EmZP`%H^kuh}%A46=Ka_gR+Cax+ilk88m-<&X7E0?g1$MB*sei+M7JrDo6(|4x zW`DWVlN}h~f%Wz*OTdwl*s;dVmY%_#W0v(#y(B4Ccm8jFaNgMW`>0|DCyqH zdc}DfWWA?^M8T~0yXjuCjoOmYcOJNt#g9#iZreSMpNzHBx^|t$9=~9pCd&1Q|L#)1 z?yB9@m%r|c;?gb(99L_1_|{rE^X(iW(V0`cS{uVMHYWCmVJ@tR{UNwSPCD~nW;hxh z)$x34i)fMuRZm-d7e6R*Li;w1Y)xq2;1KCunN1QGH8#5)3(zyoV)wsrIjHPTja`p9 zIsP|(Xd=h|gppg$ai_X?v3cGnoaa3m1lHQ9Jd2eUEqwcYUWOl@$n~x;ast;LJzKSX z(F8mo)D_olzM_>^T>a^`{c$~meQbu+zlT$Rh3ZsUb!A}duf?YI8%O)k`HDxi{|y|X z9oqi{nYA$jTn%$#HHj)*CMT`=3mJ|^iTqYxjV^g$H3qx|KQPfY-V7sKw(%wok=_^} zzm?}^`HL(VZ0NRF{yba~D$DV2eIC{GmpTw%a zdLc-YZ(i6J4J+_Ci0*J4NA}>b>37(ti}Qs&L&R3J3fA7(gDlX%wqC}o=zNCAW^-45 zh3{swo{&vz2@i-!YXL^KOh3mV(i`d&|IWS9-_ODc%MX2N(Plsw&-c`#+mRDWSeG89=$o&H_avO1< zE0~*5y%5g*^KeC|+%IWl{Obo-eO{|>cJAn(`r2b*uoo$-9n zW9^K;Go1K4;CfJrZ+OOwTrA#i$D<+gejAM3a^7oae3re^VBDJdRXFiKhYLa_esQBS zK1#-R`k&yz5PAO*jNCT77uY9S4BjU$3ZC!AF^G|w?;7$RC1dkG8V`oZ`wlR2%Xyz6 zCp&RP+})e&(dWBE!pT1ft_t;}U)JcPk7s0g{{DDOL=AMo$Sv2vJgI?lb|ZTlkv%;t z7DNmi=nYpw2CfZN3C4aWf_u4C-(}=wJHokmTtqdT4I{T)4Lh1@s6SP02;!P>L0kow zhbjnTbAkjx)KjxHaU~uaQ4?3d$Sv1IZ7LkdY{?obxHnt{_rL|As-WR?5G7;tem5Qr zk@wHS$Svo6w)BFiRNY&%xs98w?S7vM=l=<~FjW4RHyRM)N!dDh3=fK^gWto*E!V-! znhrLVwsvnUXZkl8E--JW;A@203}R%i5gM)m57bk#H82AYiKu~27`f#dsNDtNchKz% zg%#lnI1Vlf)dw0YAlf5UBqWQh?f@Q*heTAskuY-06;QiYtdzRN8meIeH|$Sr5SQ=R|pc`0K9 zgXhDke-17QmHLKHe{t%gbYy{5|9=(_h{*mkFmlV;A1~S8qTLVNedplOe<_0)nbChy zqYJ<-Hs6c!NQitdf{_#W_IN&DJ>oAOCH8<&kN6+WA7D!FnbV0vb*rqwf||-%4d-rr5KoR4%d|QidEam)_*767{ahJ2^z+dkTq` z(fn6UW~?liij{1!mz`^yO1&p!4DYxPWWEUc7huf!E(1C9!Jb_o#`F4s;`q6%**K@T;naA*0 ziR}L#Mz$KtZ#YDvBQ*WRrR5Hp)c5V`=I?&=iFfkiW<76luwrI2h-QqowqhE7ZYItyMIo-+ zf}*%SBnq|*uiT>VYWl*^fI-Mj+kw}PiE2_D`jGKgjj@6WS>X}nZVZseB3 zaoiQp+P?4`heu5`&CxKjWtuy1i1aS}ru1Y6D)MX6#;wZ3Stx<)0f)c^ahgTm7RX6K z0*NJU>*F9iXrey$hml*Zk6E!&Ne?w-vN2pHy>MNqGI@EkWFm97)sn$uC#vOK7`gRo z*_f@ct#8;PaO(@~k+EoqFw`;>u9j=yx}>8PJ9k?xSK+Y})p8|_+;X){jwOx8k#vTyra_)D&y@?9Ln=b z-6&nmAewOz)yZ)5i>MPoqtfZ^5((QbwFnQG=u!({WXq-Ia)|VVx zR>PHWdPCk8MZEWRTZzrp)O zSm#cW(myoj{<76DPjh|VS3hbrxr;-1j3&*0oNLkv+t|&pT+d4ORWEI^{x>ig)_C$u zxKd6&^WR}O`gn3=qw&PWYF9i>8K`;`{bzWfM6-E>BYQC2^v87O#41pKw8>~R6P5-~ zA7dFrGe%OI^A#bS*E6;|%_ux#BKaLKvejw+EA%sGRsExm@@tOr+l~v9ez7F!7jxNH z?)Hctnq8jPp>Bx24>>EY680nldwp}`Hq93f4%f(ma9yar5T=oOzLr7kheu4*$UZP~ zf<`<>2{nxfoAQ8A)5yb(mD>EyHNWQM4O4ayxXjT@&k3cYLGA-59Qi8}Pz9A62${+`8uJp`O3p@vg(;Cko^3FtX)l zZ{rZ@t->rzR#2wDzpzbw@755}11!kEWty+SrJ|b3nN1W?tOT}>zJjMf)X|q<_kBw-(&%8A*( zA)Yf?fPo!w9b6`=iJb1;0X5g`iluMsXDuE+Q9r9;SBFct3Nu8NZo`KY8~UD^veg0Kf(K0$?3+1qJ9I$fHKDoy>V3elvCoHV;V!(a z#H+#6ylu?TLOpxi#XgNkPZY(SFtX)hcW{XGy5MdJ_7QIcQb5qDbd(4iCx`RD5-%vR0iJ@}mdSrTZ@cv! zkH<|E!Z9$i=i1b?D&bDG=R&R)A3kxo=*A2iWqV~EqO%P2ibz3+6c<4mk^ufpp zy76dHs>=x*^MGh!mzx<~xEoWicH8UTmz5bB_;N{)v#?f%G`FXhw;dXVt5Efwp{DG93s7Lx5QPunCTnB z8M}LMzZ=CMMrKG}+Z5r%lDD?fl-B|E|&}Eegj@kBKHk9XP|Ij&)RmW9z1HI z2wn>#TOIBk4v}7mTV$#wX7EOLyMcukcr|w&Tp;Rb+;A&Cl3-$q+nRYh9yn1mZ-bE& zG~>~hRA&?Rx8UCP>GiBS7p2b5Zvi}T>Y+2HueIb-32@Q^2jF251Ous`5WXe=-nIS z9S7%g!rkHWcnw?}YR|$SHAzU?*2=5!pov;J6Gm>iR%X}BmSc<5PMuW4b@CRtFjSr3 ztJ98zZH>Gc516QtH^Im)*T~#@$@;_&wfya9quG2uTqSqGrJpNE_&+dBC)9x_oU zcf!am*U7Yo?dI`tfjkP=ges7RpJAx5OTO;<-T=ZQyYyUbW&9S8m8gtg!N@IF#!TK^ z8o0;I<-w!sGzKv;qbmNSkCm>ik12S#M14$zkz1~hsSTuYOt>_Tf-6GxjicbJn0ThP zDh|gZC92{O7&$=|9v8>z`dVx*;sK$S{5}ouhanS*qF`H&SG{(Y@wiA6dlnqKC6g;e z+lDT#e}F}Q2mB4NzMbNvZ!D9kMbsUONZZ21v3>aKeC4Aymf7YDp}61T3n95bz>9mI z?EyIXqxy11?LnW9Hi_%w_|}NE5hPQHc8=dS`apYbppxqm|6QL@GKDVo>#o?ZyP~*; zWBkLuwN{LOkV7P{=%)C&urVxSR+B=ElBzuUzr)(GuSsU*r#>=jj&FgW>Q@d*!g8>TDNhGd%eEW zQO!TYA=;t&j~7WB9pbGpBl7G}{r_^fN={PqTNsYUNOcl-4oQ|gt{MR@#g9w0j7wl- z%Q9ZiA<`QGriwo55s$6EoXX$>ZDG#{}9gh z@8GIX*`9680!fVj8jpa;_%C4O1japjxf%yVTkwET-+FJIv>chdEJ}9Ydtah8ZnOt zMkIJ6jBGW9UJjAoz_(*v2|eX3v%KytnQ|^#VK=`7`EC|ipd#J{mxp?$A4E}vnV_wV zci;gMl`#Y(Cn&?C*Q;?s7?1~q8W#@di6rW?`F*EzWv)C>IW@B_TV9tdXZ2eEkFaP0 zMfoty3{{kSHV~zml+}eE!owm;@wDPZ-%Uo`3j4DB}^D+rErv%87+ixm0;YF}I;q*4G~o3s>a93)F|c za}FLIk?B{%$d=)p;z$xcOxTI9O*}Z`p;|W=2a|0d{ zQG(ZTVZ!52aq zkI>%sWjs?($>i8W9~;-OIVV%ltmj2mkwEKt0WK=ldKyhSdP!rC-vIMLmE+qEaKDGkNwt(+8Yr-qjAbgn z!NVa+@0T1o(Nt0#YiG#p>t~?hE1g}ztWIVSBQw$NH9V{JyliKgfX79ocPxx-Im;*x zkzRLMP}6}q;u(54lEoExmLCRJhkBMbdOj*CKU)_ElC4(^`%n5e3|NS77FGCmSPTp3*xksysem%nxGh-w5^YW@SutM*dIo2 zxjvR?{@UGJ+18)!&J{P5q~#hevoTyVy>OAJnt4qVG$WgoT?ku889Wi9j?RUVTdt#7 zLPxn`Z>}dh(49FyXWGqBxOA?8>q3>z%bOsbc<#1ZuEJv{s^v-;x#eovNmon%V5K`# zC>1xlbaP+0ZtjIEMAgl!ny4GS3bumo!LuML=x!Lfa#%csowmPmHoFL?T$#~?=Lda2=O z=x8EQiQ77vjR#KD$qX2|iAXq;RRMfa^l_lO{|qTJE-5 zj>BUos^w@Hx#en^QD2D>t1#x2I~cB&GF%m^RvLcvdstgBGq;se!Xqatr2r$hTq$#U zO04trW-6KPjoG66a{B$@YPkij3{@?s1}|!|j7LvY%#AQ|%N4U!-eYH_>tVYf z75Q4PoMQOGjA=IC50}q_aG9v`IX6r`Vk4;JQrKGh7M==GOAo-vE!Wa)sU`O6OC{UO zR`l4_r7_mL5U!r*;lfbWv$h%Pi6?LC#~vQ}3~V@a59( z3}R$1m%`>6Gjm%hOYz8wN?8mew_GVRWxe=)+4Baop@J4rn=4@Cmg{C}fqgc%yR@NufPJFIm~rk67t1|x zMW|v4dpahbwXKl5@u-Ok`7Dgwa)peGYGvL}dMaERPr#+1O5?a7AK~fRns^Kkm#B%~ z!^kby#Lj(#mBCD*u+82o6xOs;kk#V?zy2G=rM+wC_y*u5zM@etMZTUxw8Kl0V_3$9 zzuX3MAx{eR>f^0&iJWxiuVXkG9o6xXzjQ@3$%Cqo{Jjr9DA6X~10!2DaTA9~??uH) z$3{1lqe2<%{)hz<_?qGm;Brveoyys*hi-HHJ^au_j=uvVx18h7<4eU#CRfas9X#)F zP%zK`gG)l?c?RcM3*YAYKltH^T>lG3PT<<3XREd^nt%s{YWo-ZCL-JZ57KS>WBLY4 zW&LBb$G|dmYOH#sv+=W|vG)(64HddJ3>JGTxl%F1zWB@jGYW+Ls!K$q^%zIXKZ-?( zU0O-OsFr^?hiHeEKaS^Yw1pm+2brO2`mcqHewH-0zIZ^aKzw@2?*?O!wm4+z!%5AjVzw*SwJ>F7x8 zNQtK9^F81j7Ikz~M;F+xJKAOc3oHT5lbj-}9^vZ#gOyw%SJ~$3{_LzO& zWe}PY9ma6BFU86jUdbU6jUmO|(dHiiiqlVDvF42Km8ZXa%^54!oX~yz%h#+t`9#gH zFM+ABtm5@>(cD(i$8a=)sz*dtk+dtCxTpsLaZ@-%+6B7hw=D`YWSd_a{8)-^3O^7#loatEJ^xBV~Q6TMM&B|_NU=&{}`{P zbN^V|1CFG4KvJUi666o@K#8<}A4axJ;6YyqHDL(x1x*;KThaK)e@rs&G6W-a|B+c_ef;6w2`5^d+D2*LFXZNGUb z9wCwG17Kv!Z}#O7i9<)zuT`hjC9$E{UCi`lwG)05izaaB$ig+D4jl(UdZ?vmo%rkV z0Eu$whLPJ#4wZ6Nm&5hpa<~?*$%x5;r)SCGYCJ%q9I7yK%jGbm?hb4(^uBCm6MJ&( zvZ3e#CVvyVaLIo)To7M|t3nmT!H_?w1T9H?5f70liO<8xEtkaNx+De$`}^5l5w=rH zZ*~jYL09ZQtS>A5HC!N1!!@D`KoEhgE-C&ESXF}N&L zQIOV3tPE{Qd<2h>D2Wfj$Ss$|yn4a36Ui`(Uxw@AXK-z(x;UI-7Vb1{aXf;DNfgJ! zFmi%8JjN0=*@*kb9uR7>c}2+W1NO?$n3NwL;_rsVukd#~6rIqWQmh{DdU%L^8mz)z z>CN?I3a$r;V!!U|2MdW_F@KF4yM5}lyjBHuO0URQ|HTTKl-J7UVM(^0nA_-h?-vrl#%5P`X zJGxZtc0WZGgSFqpj8bgyn*HlT&WhL#R&( z_8Gxw-Nw=Vf8<+i)%}0KA=;t)PhFqs*&HoLL~Iyc;@>b6))eqhxK>Uw^N%wejhE`7 zjjk{ZO1t7o+6MCvJV>I!{0&C74CXH!BE6xZvwqF#P{gvs&~wvL#I6hio1LkOI1EvQ zmZdF;C3uuXN$dn8CrHAhVW^%X49EjQ^_=hdYFqZ4iRt#7v8QIXnP2?g0L$5_#p)8? zYNE@??1n*ciCO!Pu7WtMW?qh_(&H-&)l^=~Av~Ij&pSYkA3vRbY;UH&lG~C!cFV@K z?7Lz6>$mgY0@vNLkvGHja#EKcWH=f()!q3}YVg-(CnQ5sZ?L=x4~gg*7jxu9X47j9 z3#~HLpMNuEhflMRu_?}?_)ff@&L{kAiua{aT+hw!4|m|P5xKq{Mz;FHZN3nyKM2JI z^@odi6p7j#dDA&SH=U>BB`4p>0ps9QUE@)Fsg(YH5E+4}~8CH1LPwCj9Bl<@? zHvSQQh&FPU15T))iN@&i%W!Ugh8MIM?h?z%CixLOreR4I+&&B=Tki6ZFNAUzp|I`K zT@KXUW%d!l?lOZxjLh)daAaYLSnkq^he8zIWRBcMrgC7SsT>_n>5+IHn_()koNR6n z!($?HdoYY_naY8_5Xw}9!nQ9{8O!eCZ`ogWl=E3B0_T-MxSG^?Wk=`4EVHoeq>RTw zlw64;w}G8RyU;NPlLnOchm&~=UPPjo?An0LdP265+>8fAWc5ZE*)ozFd?A#P2yJa& zMiT9V%w%{*Ia3_yFAeA~2LFQ9B+yZQ3YV4YD2+s@(y^@N$9O{sVT3*VL+rV1*)Dl~QFdSu5IGI_zh{01!EFs%S*5d&YS?z|A zEhBl2FN87@p{?!9NchxpK*H4WK30>!spUOzS;ME6cskb9auXg9QH1a0$ZcRPd}@gm zq2AjKkNHkGz2C&EN%WZHsl}Cid*SPP$8Vr!g+qjZInxz~u1nS7ZWOUO2o<#<3u zR(FGuEhE{*7eX0{(AM^4Bz$T)Fkx!h$Z8Tewe-Se4WC-#=~z=s1`miR!gD!t8(0gU zT4F^=np&<2r}rwnn!!_xD>K_{uEZlF@_Yr1Y?;kvz7Wc6gxa<*vl(?lkG|9Rw^H4kWiuVi zRF>fZ5kh)lS?`+p0t?L-{iv3Q>4};>c}aD6{J6*H1uWPFZwxFr^C^#K?@H?iYmY zoNQB>i^oLdb{33mnaXru2xTflVcVCfj9R(!4DEfxGg%!1?PMKXN~)c>*HWSsEF)Qq z2SF6uYL46nMlzKpo@5~xhtqfwUP0ni;$BOMXJhku0UiyJ&#f@BWgZn@2xT5ZRoj<& zj6T_PkI%D01iHsva4o6sG2b~1^BgSu_%t2`QEqo~KlL ziA2`Zu?^%`csN8xe-0yC2J#bM2xTBbSKF6?j6bWIlr!nelg# zTYI%UEF+nNM?#d{Ope?JMl!R;V*Tthu4h(;6M8&eMxvRxcj>ZHvJK@JJR~BsN5ROJ zp&afDp$tXnYx^>k(WkCEW3^@`Z(xN8oJd{=*D`D(;W=1FvJH=dD7P&fInhW`{MvkH zlzNhjd?cL758*W=x`=xu(bBOUsr%4aW#(@Yh$+3oh#-l zxlEy(@0@6~l1Ernfv5AsaBZlk^Ip!`z@3+^hKKODh-&yQjGUkbk7l6yiLeN^3BJvCQkUscjNO6Re`5}eE+MrJ&9KOil$uzJb_JPxAd#&YDuo|2xeOc%K)HI>7{ z$vhY@BC)BspZG8mvW?_GJRl;g`@zVTk?i9Op^QXmYx^>i39B>b^ZkqUjV;Qo8iDPs z1Q(Rr&fGWeR3et06!1`p!pm{wHn5Xf_4Jb*<>qioZ^Y|JbQJf^J3A-aRBpgyB652j zjBJ_8+kGLFsR)H_pQd6w#rR`ZjX+cRAzaX=n2PJw^Y7!K5QX<3M{XliiM_0CT=u*e zPU#DH9h+e)v7BsEc^;36$nA45vSljI`a&pE5enNrO~rUE^w8siP35HwVq~s*8cr&% zH$xA=Lm>)pUyj^HrV@LX(lC|v;gojcb!>*I#B#Dt0 z%T#9Y@3fti&Ga5yVc#sT=L=UlsOkeqEiU&ezYvi(IE*)pEb`$8z=5t?g)@pwR} zD8$F9JRsCE@;UIQPGmWwDA-3XC#Czru}Oo)+<5AaiT3+=q=clf- z73U|evz0Cp4-ZHC;+5lTWK&p(*vuzOt-eM!kwYX}U5d9SC#%GbQR+aL37Mw)%=Lb7 zrJQ8ucV;*mD^>9sWEH#ZT>Ie1COX%iFtX)b%Q!@OcMN8T4@Rqc8C<`X#S=KIoC8;d z%JppC#>@pesm(!GhyVGGd)8!R43afhqJvBt_qcHF$kI& z*yF(QcmzbokAaaB829MqY8()4!2?2#17GtsDLD>2GM0Tt4F3A5&u49KSk%!`9W_wt z)n5QZjU|8+V39hVB)sjjxU@dwX#2;)XM+@t zYWpwa5be?S2m6e+zY*p_=BMrt^ui@_(wSe!a5Oq}qY_#qm}6p@|${2_v_h<9OS*c)l;3=X>FjP=kH=}7!>RMwg2eK#Ez}?6i18yuWwydi~l!=@M!TqYbkRVcXaG=$ z;gJw+VgW}^q%gf^K9wb&^q|^m7Gz*QUxioD`JkH3rLkXy!DT%qo75BWkcgz703%!8 zf2=Qr@_r$$An%{cqev8C^KE3zi7QStjO5KMhCuPX2`;A7`t!E;S@6Po(|0bI##67KdB&yRo#A}mf!B~|Cd-H6v!0Y~C%5B45sAGG zMz-waR$mBZCqiD^mz|70(Hu*jWQ7QHlgHs&Qr*OOZ71H!cp{dWJc@@x)ZA}5avRJg zol)lX)6VdcnI{IbIgLS#%#dlkCSkH!&&jruDR@joS|`HDmX(b2g-})^#I=1{$%K=5WzMOr8i9UtGF(uqpDa!8W-1%YR952g5Y=})M{WaCnN?4}eij8_k~dQB4oCm*~_Wf%;s&UXN`-WPq1nP+RMk_ zf;PckR5q5qd<2h&sJ;(z5szAI4Rg)IvK>s4A91QU-1DtmX2jGlktFv`kTO! z+rVIEtNfE3=E!hn55o&dbQt5?Zf<7lnb{U|Fdi9^;sar1%VPHPg-{kFgti@8Old=< zFLS@5jet>;fhj6m|-kNrej%52@i;W@eMGtWii+JLMV$7LfgJ9W(;e4IsN02KV_8&beA8)#iY7RgS$f_6U$hB zh{r-y-S;_i8yL$po_dm}yyWCyK3~LZNc5BjcZc+(Y&&@Y4~j_a^DweyC(rppC_54I z+P>^$^lEc8_lR)y9m*g^=5naP-65WcWhO7hLm_JJ0FK-SX3`mDp5!Ija5mTDB_w)D zgS$goPPUbF<1rCweGQCkS;?z>A(WK}acy5#GG?u{bo(AwiNML^Cb*bQm`p?_mYKX0 zkAp5~8n8`GrdXk%bGn~)+@fs4{q`_pOCuQ5oSMi{T#C{n@w(R7Kz7WbzguJ#d zI~i@c$quW6-Q<68EvatOU^3x}SZ4AcJQSkl{>72oz)U)$%#*xiuW&Y(Gl-FyGaF1M zT28i=?1slgq;(e<*|L(IeIb;U2yty+Rx&2y>|kw0wwF~Ra5Blj#iV*kgEbS8iDf3| z;;|4_cQ!|E12dV%Q%`b}tHSxb60c$SWTGc!+sPGpP()%cgOM#ed803cvJ)Y%?aNL^ zuQMM}`35UQpqqRht|iq?8cZfU5z9>O!$Toz?p}`E24>P3WuD|Ee+y^xFL()wUeaJP z(Q>k_$M2Ks9vyzYaU&~<60xjgS3DG= z=9X~ewy+YGd6Jc!5zgjmcnOUqf>VPzoy#CbX7FreD@Izjt<1v1B9c2DMz(BasxO4H6(OX7ir9o?}C1cGitMPD%+FQku+rU_6)~Kv^cEedN3TO2Kyo|(w zWv}5`t>b9Zp$Hn5b=DD(PhXV}Sa!`b{5UP7XsG+3V1a!K*wmjb^%Cf%+7GsSJ%t?#{7qi*Q5vg+Zk zt^Wrrxk9e8&GnT)`Kzud9&IZ+$HsumS&Z0~gp{n>7;rZZk!WUVZu!qLHau(%%z?~L z?F@JdTp}lp`NJ8GMu*({H=@bvJtyG@C7RR<7}+wZ<2Xd(PHj!!<4bP&Z?k(L3nXyf zI3F$tmEHK>zfO(^@k0|iF2l$z=Qy_aug&v^!+HK7ToNkJ=H98Jp;cV}Z z*VTD>YO{SfnQbdgdl>A(!z9wb7mRE*kL4U9y* zR9iR#6iPf#TPbJbaT1mCN*K9am9jZo&J4Jfa#greu7v9}Qc8*EX)EOlJWirgE`yO< zu9V%}p38Qn@EwDtE($qDtjR&{VWUZLNG350t2tPr=A7*GfYFsg%k+o7_@) zB3vqu!F8fa1?@laJZ+`?9*>i#l;6O}Emz7ema9}s-Emho2HM##51vzIFo==4d^wD6 zDMpsIN;>ffY+B8?{zxD$#9jgOM$_xs^ktw}vyLRxq~2 zSFB`<=7-vU#o`HEvH3Y%6{<9j@{&d^Q(GB7!6PLq<3})Z%at)JQ!Zz=ao?y_%&?7# zYlF2hjzKhIO15p|XiytwuC_Wx*|Ua&=5(3wMPaYqo|a4hh%9L2xywe(_RF z6EZ_v3H##_5|z*eBez}&(VSl?4`vM|^oA=T16N~Ylu*miR>HY>ghVBr4I{T)3A1|2 zS@uQ5Zaz|M-WvTdG;vM1Ca!|(Le&J;G3;DzbzF(ZN>s-cFmlV)F@fDbuCNKyki@;= zlDG#h22~OVK@CGDXzSo^JV2rjJ_{qaTn95{nYuH@-sqyV*l#G}sc=O+0hfiU2<&Rq zO4ZiJV|b`UZTucaZn-vQ)C!hx#WC-+;46;V3}R%iIIycxGgDg`Gw?`>%IJiVTds^9 z&3bij*y?nT72y&&4lWPXJy!bklkVEdP*2&`%F%epM6DbNBez^D^DM2n+DtiIC?&Wy zRG}OnCKR5pt&##BuTv%0@6fSBNA%AXl54ff{v2P#WiLtL6bbZlY?w1|zqDYRZ}3T(-z=K^A*Tef^nAZasT;t#%L6P|fqNl!ym9G-=Njfv^B99 z50j{gMKE&9HL<8(tij^IV1Iv!z2nr|-CNn#pEXxj*M%!&EnFa~jhuuvpW2CFCvEFx zH6AokFRNhWmg{A{SagrBi}@OSvD>){e{r~0E`p0g)yfHwRuU4nb#eh7Fi|I4VdR$U zWFCJ&N-ZnMr=yIfb4R#LZij0_l?ir%?9SI#$!&PNM3vkMBez^7bM&h9Wh z57)>~;L1=nax7#eu54|E{0NVhsE{AP$Sqe$r>L3RKE|yJo>@mTh<2D+wKQ!_?0|>k$* zu@@Z|E}o;|N>L5wG;i@FWp69!NIZI?f)0a`Tdts4m2#$s-80H- zxLyiyU8s7&9?7?JwbhZsV$h8CqW5y}<^l8MY0?7QXH~Fht%-b(aQ!a!-e$>aqrZC|Ar?a+yNzf@n|J>XHV3 zvXI#}{GTatnKZ-^8)FVt7dJRou~hCGrV6G0O0G|a-Duz00oKjgBW5hep=|zA!NZ#T zi;Vs^53R{}yh8lkLH>M+{5eYg94&v2kw3@EpX21u@%(2t|8@qv>P7ZX{u=ggYx39f z|GkbMZZN-WaR>YVmh=C;Dbmm1eFd!iNC-H{kA4^u1^ZaR+s383d-3SLY^JDfkFp=D zKDOtA+k%egQml3LOd;AKW#7n+*n8W#9`WDxtx+h zWgAnbwI_#2G_4drTQD|C*_eFR!EDF`)#fN`;Tky!%^%HhG(M^mq6;cPlsu~1s(3Yi zRO0Be3P!d@mlHWedi$JAJ~nz{n^(%<_hJ?acD7mkUIf>J%5Nv;TpYgvKQxi!*TKjw=Q#d#HjC#^h4cIgxFl4bt*^7Wxc(S^ zcp}#yfsqrq_UP5B-HRsR0iiB%_V!Igw);%F7dWE_GF!4*zyBLc0COX!#HvTQ);9_L zo(H6L7{@iuUwo^q8vaupBC+A8*B8b{85<3M)>$YCR!f-9Ah7Az$z#5Q;b?ToWlheL zJgVyWQ}Lq`9byuUY&pbuUkK$8LN!4S@r18-r9<45?j6~Q$FkdN<>=KA{Z{NcR?KGj z!~xU`&**Njj6>6-!yeZ960PiEHHS#FhZL^|W{AYQ*=0d@PoXqmdc_u)2+J!5;Ci{e zVm-srxTzk}=$SIbXqTCzeJ#UWF~A;{=#F+AF#5*_SUlLt zX=&oUa8*V~6ZITzO}rbAk*JAx!N@Jw#6o!v)$7GKMjF_ZvDEQUxH`TI*N3W(hVKR2 zj^W7G*2%Z=Xo))c28`Ttoh<0tlg^u@nDH6xe!Kfxk@H)$rJ|Jm5sgG-Y3Il@o~5wR9Wm# zl!eO9*1<>d=!iP_FpQj_1CQk|wSp!VRy-io8v82Wfl98RJvutoXNWt`U@~UkHFQ2f z^bD+Lrx>e;P?yo7bBYC1fBr&SuW_uU{n=MFYAx+g9HJf8(&lYq-?fOgdzIhQ>vp~d zKJ!(tmj>8-j-?`d%+~R>y>Eoe;_Gl>sIq9dylTqAk*nQ6?!#jx%Hv)bx#jX$ z=qQ;S$c#Z*YC6Drxw^B!Wt0%C=bkf`?2L%Tq9Ndy2(5dMtT$@KCxFgBY3X zmSC|Y%^^GDArr+i4@PdeSjG-ytxaUsgv;U-xDr$k*$=s#jgqt7;v_scq5xLF$O!`Q zSng6QW@7oo146Bs{n2+3N3NLtINfK?rVbW!YzKu7wy*49v7$eB_BL3}PAOK8bUmLs zkgY_oj#=;BXDeMIq*_GUnv7%B?5)1aQLAQ`bBK0WHS5%JHzt%jVLs$JqTay211^@6 z()`T~Mxo@&>^xBcUG{P0BoxD7_O{Nq**k>29hZ1Fm~Rx*R}U$Kw^*S>xZ7lz9C zyr`daIg+q>{|O!hk@p|L$Svo6zIwU65%&|%4(5IwgJ{NxX`k&2Irj;P*!+*i10nLi z1B{%&zem$obAxCg9uR77xYSq3a&Gusx-YMec||2x(8q<7VZl0`raG063z4@(@363a zq9$gFJ)279B6|XN$T0w{^p$`b0FLJni37k0y>-7cPn0LgM z3040??85~0O%mK`WzX-)vOT?`cN?niKfw;zpJltGm5M_Ni5E&6H?kY5Ns0HDOB-^9 zDB7Kz(Qe6>*GCJ5+u~b=^)c$Bt-^}(XG#9-mp{*wKg;sxfc#mJKL_Q{E%N79{u6$K z{^DZ%ngagBg(;SJy9Jfve>tHU9~Q zqcKwz`wr>x+k?!P@Z%E)nJ>V|)*$ma4w2pk%p7g@cXR#>iwQdmEzbW8SBA>@eESNf zcG}7))a#ai!lNKE|3?_P<;*XzCVw~ki(V7V{sIPpHAX7?i`>^Ri3*sDM?zGwzF+VH`_?IT)pv?rH*_)j4bOkp}=;??Pj&= zla(6eNa+nA3&jB9Dxjf-J6UA$F@$<9V)W%RHhTHL2h+?=6 zMwUwbP`yxTt6;GjMqJf1l<+GSXP^>(4%djPgr&wv;>yQX!%y&dh-&x|jGUkbHC0g0 zyy~R&gM~u2(jA$M)_-uUyb|X+-;Bnc6V0LdXHuR}`UVS?TnAfR%k*}1XDXFwuY0yY z7T+0l5sM5{v{Q}=6AJ$G1Hq2!f+E#Sq>)W5Mn6-8ckt+|4a z>8t7=a*$te5Z`l1anWOrs|1GY90PMCPbAfUj)H6Eq&dGg!_oMWV~8sY+iMQTqab?C zAuzJ#H3xBs)aMUZqF%~K7Y7!u~o1UkA| zcvrX*-T~K$sswZXaOGpGVF-_hsD^7`j^lH<_&sZjylR3p#UF}*A>B|&z{euPmnIzZD5&wNxEk+)q*3ldj z$0NQ3sEOlY4$%&)A5-J08~*YF%#YP+o`-AYq&WWs!_j!DPUqJ*@#t+gc@951(M_I( zku5iQhC`$`VayUM9Px@7eD85CdOliw@6I6NOYFl><5a%q##T1sIoPZ(#bY3{z8FSs zIqUO|uYbNJUNwXHGsBr*2iJzm{Eo&-Mm!Ij{k3=;MD|z1$O-Iww0|{0h}Pi&p(coj ze9cQv5czZ;%^2O!?xSgg!}YLSomxv+rpOhunKIkBb7OXWIpZ1~3fiCO;^Aq{$uTrs z>nk2LG+fOg+F@uI8>MVm$lWj}R`d8QTq7r~`CA!|#)sVem=h(Bsuqwwg&&n@7@vTV zEyMU2he&Tokl%E3@cS5x1RK^Zet!?wgUWCGn{IBFe}f;J$nq~?`=*|y`nzKwAjtYD|nR8Mm)EQqfgJLdv%8$(1I1zL+U7N*vh9CN}N zUwx@L;S>(h4s*gzjY?t64;7d*tG}EF*Um|M{fk=|Uft9-nIpTzD{!_dR~ScHM|#(Us8QT4Dawitn_;wC&MqAK1ABez@?%hlpU zqbeH8_+Gd&z5~~as*Jsi#fnCG*`D!DJT9U-?uU^R)ZsC7sJTV7CJzWTx18jgh@4w) zOn32OEL*MW$yBuEiz%-~t<9;v>WQxLBz|ARHKfFUAKmweg43FvV;L9DIPVH zjN=gPFqDiJNgJlJAIynNQ9V_$4_qZDt@(uvM`NTqiJOWfOCDD(VC;z>muMQxU}VcQ zcI6Q14H{GHcR84_4UW%Yu>_73uZAl^)?BXTH^WXa>Iq2O`+xJ2W46h^j;1i->%bAW11x~hChO>PdOR|!CG|+t$J!xrh;08S`%`N1#k3~ zkQxi#z#-aUESMm(Hs*p4!^~Jc-6sbuz!SsL>@4tOkSk;|C_1$1O0j zWga(ki1Y@7PI+5GoP7q%KW4#TQ@O?R58;wfSr&UFYT?`K1>eUHPvrVR7`f$K&s6IL z?z8$O>x21z5iSdr?>WYTLE`!S0v-a9^XFmY1kOD=yBZEebMSyr!@=u(6OqHg=5$vK zMwyR49t#WAsj})xO&JWL=(G;x7z$p-BF3(eq;%9!a0G{FhoNAM{qSQi%!t)0GH{8U zq~_N$9F30Zcy1jLP4b{>7&sR{DA6p=hLJ6^cqNBOZy1;)x~a|XH7t<8LEtL598`9v za(3&X+Zh^FBI zp(cla__i)NIs7}_Hzr2+6mtFAV+Nmx)#{X5b%kr)AU+WcJ2CLkw4US`74GsCjv5s{ z%^})hR2UnjY;=uZ!hBd=<7aSK7zjAanbm;r5my@KP|sxZ zl}R_-`{BnYvb_(CoWQn6_f`XdXayb+Y5=&?*PP@4@Ibmt2jkh7ZVK6f&H5(PgRoSc zI&*Kjq(4dM8Uyq{(NzyoYd(%)pzJFmH4KzEL^})v6KiQ31Hn6CZseJw77eb4>*S<2 ze<{P!IH^wImlL(f?JJ0D@goxrVF$RVLC-Bp5@oLAP?2=>pS*5p)~``tvn`4h$i7M#|E9D_j@3mCgX zlEP7g!CoAq9R`EZ=ar3CaR$tXOizsjr@<9+Qkp-8;b?4B$MKPXktC0)RtVPM$0QoX zDKN5S6en?r^oD_nqM2IUUc%xC90OhtSA)u}824(C+YDcbADPJT`7m9`hzfX0@EHHTQz-Q{~i#k=`Z(9L^l0@r2D$TsDUl| zPRxI1@ncTp6j+m`u?;HC?oRJP`p7Y^6Z-h%i<=K3q(8+Z#et06+85lW%Ymd&Yn!jiQ z9uTVe|G~Ev$>#s}bYCZ!ST3=zKxGQKjrzBrJ_2jiDYWX#Tu%oKyJ;c|O2(wM8b{~< zkgsl3=l=kQNbLM6Hi&xKM*DvdCc|nF--7GpXBD&yw8#99tE>uikb4Zj_#gv zX<(qEn|;%|T2VI$Sqev?4#DM>KRJ-P`DC4 z0N04B1oNZTu6%4Yycds$sD^jL$O&rjm>JaAAzFa7p?!VQIeBP*BHGWH#R^>G{N9%gb&c~I4$%(N#|$%l!*9mt zP_C@bGloH6)0&g+{6ARH^vOf)2y13wJIqV)2#5~zqOTUzx&4CB!kkqd9eZ3dbkWfA z{I!cZIyT*vzmEMlXDGig=@(0qeld4(0@Mu*u{uvo9cI-G-d`Hd`vG{>$LETbY&p7* zaz%A)IlE!7oEviRE-q``dD!gli^oA^e{UGs>Mv=tzfe8QIE(_;hby2Pt`GIh7c*ya zF189@gU3Qt!K+~81QmFU2x`g@EyV*uInghD%}h=iUr2Y#7{{K-*^(*f+djPyR;^QV z?ropo7c^=SYHiE0pz$7G38|6dCJxaKBgF)nwb4<&4l`p-68FJna*~_Bli_HT)OLlI zf|3VTE2H<~2PT@wJutFm9(Qwy^p-7ZyF!a%87%*e1%u7@7R!HuOG0H?+Z8&A>!eKhg-+sp9v%Xb^Vu+R0_Pr`T@44KIe0** z;ozOV;+4a}#B_&)>Al(h%BHQkfh@cE!R}=qpuf>^4lG-z$GG=;8un?Z+#P%nXl*gYm->P2)fq*)om&I7E7b!xXW`?_xN|LJ6D} zHoyg;GAwowj|FcxhaUXkM4n#@Be$IA>1rk4#q|y0Twezlh066TV;|{+^ZM<007Smu z1|ui%?a|5AFd!O&2ZS01ruil!hk?=Q?hQ4mk}VFD$^)gs7X8WXAG16#YjSF>y0$4J zK|D&W4><;dANn$&27~W&h;|qZro=Kg#)E&s49QbQjR*e+m&!?U{tpaCqeXsxA{M;e zJpPU!oMFosZQdTACfG2T(z3;as0SMbVaToEeAVjIGE^mdE*1%7lQ(?5lgTh8T%?xbD$Kw$Y86N{9Cot~O(bZ5O+JXm!8VauPm988LI@28rCW}XMJGzUd za-VjWVKppRr?)g|NkKk2%%jx0kz+ns<*Ow%ADqY`+F?GJ63g5e68d3=tOn8tm&!?U z{xu9oqeU($#DcfoB#$4Q=q4LsWXnx@IYfGsf?QIF70h7!-7KKMap7HXS*UEsmlR?t z*qpxu4}r+}5RBY%&SOgov7#Bge>tPSLMowDu^B9iChy1D~CrTbwEhX%ZAC+hrOJQWo zFcx!&^acd^RZ9oIuVRq|P6lVf^`P<_|Ei^%<#qV6i7c;$kz3Ak?5mazrr#XS^qb(C zP?tV$d@49EYB{X=bOdy38ZnaKH(cnCz!4}*~tIQQt}Y8VjB z!2?1K17GwtDme^XoAT=lY-iaX{n^AzV5vHF)}+@JM0{EoatsEq_mz(t3@+pl?JyXO z<2f5+!L2YWR>OE7TqGy4`L{D1jS%^|f}lzsRt*L3!4FF`jhkR(%QW7}A<`QPkvUHJ#_&C$wfh4{^`oZbR9TaT0TG|p zdmO{S;VfqC!br+T4FiX8h_)C8c+SQ!@LHG^t5uu>7s*L%{#1se5h8~HL6tnL8U|jC zAC_nuXTivpX`I0!QXd9f48M(q5;zRJ6)p&s;rK9+!1Lw!!HGOy3M03i=h!gd;`$5W zTz?KO3YBYf7)apzGk5?*zCQ^gC-Cjj$<;6*8iEIe8U_yXO+*d@b5mX!u-{sIo@IcU zl2c_(8U{psTJLcT1JC(ZT@3@za)`DV26)cKFtG4Elofe`s2c|J83Z;lIf>1WXE+)m zau^U)$-}B)U=Ds*qG`;8kuB4h#vxK423!oE%tFD=JB#6!a6zaH$A^Igo{z^5PUQI* z7`f#<$A$qH*IUB59)OEN<=Pwu68P@N10eF<2O}r&?a|5AFd!O&2ZS01p7Cu42+IGNvz!^I1kpTvt=~tEdm~%)_EMGK+#t`Y82SaA=+US7#pQ*OaenN zC-Ur2%L3QHHFDCLznI}@e8{&5I8pMbY7n>zKPu5Mu7r^-!?=P&q&Eo2w+I~k-p3*d zTokw$t_PLh_*(>SmhZujO=S6Q7`f#v$KE1vF#VTsrk{dqLS@=~i@?qH6Zr9oY(EAg zC$R0&!PO8TT7d_I8Ui-?CL)J`-=@2@;i%rM{szH51E?Q4C00Gj`33>{CSeqv)^Z#p zz@98(>@rA7M~wi>I7B;)0ApCj#sshyW<=(vCVa2qWXmj0;1KBz0F%U?J~q1-u|NX*{{?V4sO(PV?AAlKIo^sNn#gelMs7LB zooXi^o9ElZdA*;NVx`g;ky{Z;vgC19;~$G3 zmuM8DU}VcEIygjn?8>bOog5#=V!_Tei{pdgicmR@Z$+5I^nv)%iA?VYBe$IC*j9v2 zwl{>c-2+#J%C@-`VG`r7#Umgxeh!SBz_>>TS3`hk3my<^2>7jUbCN^Am(qP(U=-Uh zLYn|S2wnMA2!@$1x7P-&Z z;wW=tD!3G8NS-rlh2RpnR8Erf{R~H=Mc;>*(o5IO%ajNEe0?R|(Hy#G3!_g}!Jq4J)v53!s3 zpWsQl*Xc`_6YI=C3Zz6JfxH{dXgURfZ8TTBPVe0(fZZ&Aex2;gqj{^`6eQ# zhlkT$dzc_TglT>o@np|ucpfg4li>Ul3`ZlSDi*61W%AH!$>BNt&_ok?7Dl#Ank8NCS1)S+F?u>FIX`;$K5b5R_FLETqP&9`CA!|#z^fe%7QF; zTs0tk3O_Ehr zRd?lAD#IjXU$qqRfQSaQ8Ai4YY7>V@Z}?ayF7AgZqM?fSu^0sYQTc3Tf!$d*S-{4qPs(KDvzcjbT!=HS$e7G@?fChmjLB z;xV150Y@||4+u5joaCE`9B`gUcfgs-x9RTa&K4`|V~^XkS!T*M)a#r=tRCl_Wl94B z*@1m?Tefv=7%cWwa;0LX&=vh>f&Zq92Ud?uYk!VOWg?3e8~&w!)TA75{Sj9eYv7E%_7cv};n5uZlTMOTIkv;Ll6J2B(jBL5ct{fu0DP*>oLbQ?@ zjGx0o3Y1e``4Rm&3)Oa=*}+C$vOt z{x8J?A@Y9-jGVx~N9$M9gJ>Wg5NdiD?VE_49{!l__73COOFUaLg@H}l-0&@y1m;&x z!Btl~=LYooih77zr*e!C5BSzzjSyes5bZEROsu7C^pdAxZmj9yNw`iKeV$^z)V@`OZua4B5 z@CFW%I47jnL?+eKHu}ehVREeg@jzg@H<6NB3ZVZ>FMuh5nB$k!Di&xCx`&kwdHo{wcKLgi=%C}g$vU9Lm|1%x~ zk@Y{p$Sr4mo?5VM!2IIZ1v9^hK{Vr1!9LS>G!`x6dD!ePz~dmYKNm($VBcc|P*a3x z9Uc&Big=f=jO7$DHr<8GQN_LiZN;)1R;$xws)ssfhvAkQqG+^M6^3Ul$`7m=JTVcCWWd|ym^@S{Z6{OUwFH7FX@`=whpWBBo&wO6| zxJUf>lKAmu{==y=_a4_9v&C#VQ*b>!DSy?);;V-zqSMq`^N#9-a&|+uoGtcbhw?YE zC8Yel1`)#tE)-Rr-c#!9XSaE}`!nUt#&V{AlSI6SBesE~M5O6OG5qCmm^7LDxI&J7 z_B>ON89xfw&`Ey&A%>&TRuv0cRvtCW`62rYg2vzCAvCm{pVg6n1tZHMO(^6BD&4G5 zeX>kH_eGktey~trTto3Gj&AnAw6LLU zZ%22gT+Zl^a4%<(HN%Bgxh58Z3*`o)2>Cge?UnIqg0A^cUMY7sUd>GYX68oG`Zk$K zCDC03A=8r<$x~ZBpY14s;W?+k6v+<$Z2gQp39gviZVq8M8aq|-bgv@`+i+IkK@bh+ zI2c)0NS)e8`$9ygwlGwosUU;dIV1{ZFsG%viaKMk$fq1`D~=K8tt_2pn9GTt=EB1h zrqW=-i8;&VzV%nmaw&&sgIPw96U*MPl{;W^EL*u9E|=R@Ze%#Rt%w)uE&gN#sukRZ zM?mzHTVZ6&Q{Lwbp*%&XDacbU35kMv%9H7?smzj|k}LKXGCi&fr>9v$&2W{IgIq<% zNAr~@eK}CR@;HZR178sYb;t8JoTc;iC_$F9OlA=AHQV7wJh!v_hgD5?7O`3{oF$%v zJ+Dl_V<39VSQy#zmQlVC%3Fk@g1qHXUtP-!qQ}#{AezCam1JjG!;0DrXYrj^qN{dI zlbUoLS3;-wszCY5NgSdLd?g}B%ieI6^I&o;S1H2fa=Xeo3`e7;D&`e41KU$J;}H-& zWfP2Sc}mt7LV1c%Q;?^u2#JEtEBB4WHPH1tbnMU({o{P3j(^E`BHsb1CsWAiPqE+0 z@@a;tI3GVHtgu9T`-rGC$vWKR4&TZvH@TfdB)Un8kDpGe=WY1N!!RF~k30ky%Izax zW;hxtwe5rJl*vP@3!d-dhb9`xw_#+2BghauvO1_uwD(ZrP!T$bIxf0y~t}UdB zSL5^t*1pHmYR1LM%RSdpYhl)+l<$irJ;$c}<~zQ8D8Kn8he-6B6t7k4Y?);+Eaz`9 zTbAYg1+JUha(=~dbjw-9ABIgNR7Rp0d6m#v#&cIg7>P<4M&sbgs!)T8Xh9wj>MH1dU$c`}LHDQoSZrtCV4;%hFPD0<0|U9@ zM(y$Wx56rRO0c@pa~d&Y(;A#(!Sr%p5vd{MQVx+ggrwJjrW?r{E$0rH8mr~p4p+;` zZvIAwqcKwzYiULTwwv6B2S9X_TVZ6&P2T4Vq1;4hDacJO35kMT=KMEZH<`_E==SA` z9o@azVu}4r#@s~cX_iqlu5f%GaEvbePPH1#@s@G#5d}K0*XagUKh>6`cH=N|9Ffo>s8~_)~?IcSW zj_xF4&uu+^+e`Mvk5BZHyo9sM2kw@Fp_t`v{*(m1lP)K zByVCk8ZYt_Pg?l4k6eQvp6DZ2!N``6TV}Ct53^#K z$a8S5+$QoE!_j!DUDw2klSfxikUWbYo#-LYz{r+|{Fy_fcmGaqqS%1%-QR?sg%;mS z83Z<}Q~8c>q8QJ??i`Ep7>KMdf{|O!dTbNLc-4$EeO);7YvI~ZnKw64jOSsqzZ#E& z$o?uAIe~qTrmyA((K!PA ze;>oqM~t2MV`<5`*yi&IJQkw)d<;gm%;zJ%5XyXn!h+1_Eg?}b^SLBl^O;*5WFL*; ziH* zueRlc^KiO%Yo^xrfbGp~$r-!Ap2-T@3~%vWU=^Wt%g8jS|z z)ow8UAr=yLCR&Vt04@xbaq;H3BMF=L_u@eid4D&I+;ZOM$KIrA!2QGF+&=^thsymz z^Yxi{A~yfu#RDPo|7{pKfq#$YujU8QKs+GS3dw5UMCAN%OuF;K_-IG$f!qc9t=Sou zp?>8QT=i(rtCD(9T5oa;4V^4dY^;{DQA5LI4$%%n!^B$JM)!Cr%!buH4uI?ABs9N- z;b@#xr*H?UMQ&ThzW9-ema#XCY+1%093s6@VVdZ&wQ3nWuV>K&P6^#`O{hGJM|kx3 zZMI*7AD_tft6=1ovpq`<2nmc|9nN?at_ziMaofz!!Djs}cnn0=-wY!supCKY9Wq=?2R8ScaH;IfYm~ z%X4Oko-T|6=JD3TMQ)>f$Cn~COMH_X+>&26de za;7~Cw%?nZV?n;}__I%yh~UI6m0>qF+lR#)c=fU;he&js6qh_1H(K_F!>oh3u^eVC zTrRi69L;cahY>IN8wuEkvKkM7Xeg^-WXn)ai6<$ot*@pIVo|28}nq6Th-krOoF zF%77JLNpT(2z8ya%r_BvopWQl8>h~d*EtQhO?{f>gqfIAfmPpUG{oe~LX5rrHSBEh zq%RTbYUXhckvLnV*J|dtDqzePotL8|S)FDwgTTfyC(rr+u)68N^>1ZntZ!tlVFhi5xA?xk!g^lxjZ6`k zCR)ecmQ#G$SDtbbhe-646t7npD=KxvOwNN@vCO0h*UD`s=P(?N7y0^1JbK$iHsePp zn#d*?*)owVhe)q|$k$im6*KsL4~qyp3oX8Hg6l%%JO27gJO`Wgcj7S+S-&1eZaM3* z*H_|IGnoHQIP>3xYeQw;e0?RJht2-|cpOCbzX~HKucgzQLV5zIy$28Gd}Cm+T57TVArn7eaZ7P*RYW z><|(KyLIxhbT2|?)GtDMO2tYhSIp|4k}I%uuo1|qxT^1VgR-}&;56AfE=F>`^;drK z|J0ocoE$~@{uhBHoBIw42?P`gAS;&#a$kZRK~MybuuNtr+3C#AY-VRe!XbiyfP)Au zh=v~saw-aff_UMDq6mm63WB1jpn@QX2Z;XPuBw^pIyzfV)o%Cx`Fym+-F@n<_gnqe z)7918E0{!TJ<0H5gy^t~k#_ern{ok6$0#XHIA2!4(aEHvun`}q)O%nWlymV29E-}? zu(DB9KFlPtn?g2g-*Jo;vpgJY0vAG_iAkhRB-vG!7)iJ2xHg4saW0C)C?%Vd1ZLr_RHKQcqflv1Z*TEwQ4@_z zOS&1}xMTg811lT#W2Uc!tRH*~1=Wuid`GgVA0N$jH_t3qKUNQx25C1>quf`j4XW>U zT1HtNi7IkPKow!(wWCu;t)-T{&vzWiT5>Ft7z4E=#?!5IU#ln|g7Fv?&1@*{CZGUkO=P_;?DcEAI}8f-ZF@X6s9)#$QV(SKUGT zf$6TfvPJMN>dHuz6yN)8^yTo_@AJTv5o@U?U-!+stR{Cdi7`-32#V~vR!DvaLoo`; zZ{Sqf3(5VYqhJxY+mg|nHRLh8b;la=2&`<>kcWLGWDVh?D5!?q9ufuBkj@Dm9r!R_ z5-mKmqr>{)00 zyX)50gOPU5t0@|6(l$6(;heZ~RvwH@rM(Jo-;s7NteiXT zWGeN`@E9DaUji$qQ1_VBr7z%9golJ&^W4n0BVx_s+u5#JY|&pYR~uvvDwSd1?e;iz z4J%vL5$OF&Nfv4xDW5#)4wLg6-X8U(BJIO3m_(|5$Zl>~n4SmCPjq|~1!l}MufmD5 zGLN1i9o0|pS4yV$#k?wc8IQ%W`ur1CHmc9xeI;b|;Ug@l`ur>;3c4zJSGG6t=ZFnK z8(1^l2Oh)L0oe5YCMn-pqOQ3q1KG09u_whGc(JlOlNbZlh9lbGy6JKlkx^#4;fz@+ zM@vaZp(DOYYNIHE_~|Jdbwumw8aes^9)x3kc`vMN)R*`8O33=c$5c>#d2>h*0D@{4OTYF#8;R^c4l-6-!5Y#{5J{(JJSrpe}xm` zN|@iEPXuq;&A;G{J92&+R!-sUQOo6Yzzc+jguK|j%(o-rV)yE7Z={VMXw>PY!UM`3 zw4IvhFtv`c=H9*&f{00}K$asMv_th9(FqvPEhv3Nk8dy1nxyM{C z?Es$~JS3zY*w(ir!VVmitsR&U@2jbl2h>e^&rm0@>SP^i-hO~~X0Vu)$;aXc{^Xl% zd5QQ(CNU=bfatY0Q%pM_Wg*Ut7u$cs!U1(B`>z>>dtpGvRB{iT zFe~He4$@H#1K($3VJKpd-r;UM2FKd+9a!0@EqD1!$lAh3R8VcXG9(JR6ZL4eUwm)f z>8_SqA2>6L%fyeNHpn{g0`GLU0(7e`<0)p$U5nu)tIH-#VhmIlai?2JfL301gb^9# zWqUYdR?5+Q(oxF`|LzqpFG?rOwTx}?AROz<>tJQ0zHH?yA?phtQ$h7*qmU@5zTA-Q zT1F>(_Ave|hjMeHLcPE)t*oQX`@=`^BX=w)WvE(KGs?c{mW5;mlNbYqWMZq=TJ^X9 zhGA5XCY&ZK&*)^*QILr594^HSqCr~QNQ_8n>O z4=bn8_L#Hfw9lsk4+*)-dADzIild-u|JT{BL`*0T3=|8Mg8G7^^WdRs9cSJb3hkhj z>Bchsf5dm#$m#z~CXqV*XE#UCbHE&h<^Vnq!!Txu&%$Z4@{B%7Itr532U1&uNVF_n z!1Z{`juqn?SlOr;SNTfFior)uP{lYsBnqk+gW0Yv%!v0%w7ybi?x=r;dNUGN4ZdF~ zqdRosD`h-3Ww=@@$e(<(FDu9&nZy{VAcRKgyjDo2eH=w&6q3m#F%nku6-t>xrpZ52 zrggw{Af0#sj`d_5tZdYijeR9#J>g?1sGdCOJEDaH**x2N(#h({U|;__W%Xex<#HtI zi0`{d;*rRLQiiFefE?xvT^5i-m_%v;$#4Z?VyoL)=~xZZFiJ-i&Xe7PEF&F-iSQt; z$jzFu3UAr5X7s|!M$ITOiR@gaco#`4TN>vpC>rdnGdQn@bK=T5`7V-H{3h+o@b(>P zUji%VPCM}~l2*nv;`fFVzX#5XD{=i@B&|M})bGY)aHRenSUH8d$D}TO0iPl~B;?A( zLB1UkzF=;)`>*DS{a5VsAU&mOjs8cWQBxNxCSHivE9=l}9`1RMg5O_{zY>y+P??@A zmSH?ajk#zsq@-oogh`}YhV14Oj){FNB#{EG$m|GXGNzU7;hb4XNApQX;nU&)w5Wuwk)dFbla9y_5~u#%?c(l2FlHXv@B>9=K>g(QE{4Z z+N`{zlSxOdIE(nRqiH;iqH``DiDS_@8&)=o&WC*^WYOWHE2!ucL!zLf)1B?BNG8!r zf1^>V(@JWOvg~m`^I2 z1`{zV$zS12*(=H8q@z%2@*DIrcJspMFL>LIwc}}6*{B_VU=rDx)tTZ+?)D(pSZ{F= zdiEKtHzx_q+q<%!lh};0A>y0i5jYZ`11slFe6HNmAakZsKP;U3A#i3~sq>Gk+j?Q1 z>j&XcIFjEVR!$-BG097xz^4lj3AqSzw{OuBiy%*BdvP+U^?XQw?L@^VoCl9t>ws%| z`-Dbed8O1Hho#I&7N77D-?1Zo!kJ8BZ1{wB$F(Z*d6O&+rHwi9ZM{ z=T1E76WTe`sE@xmnEECpF%s_3Ji`s2(C&pvej_{zNAmw2De@kZyz~ity6}*YKH+rV zjtHNyB-{0bDSd@TvA3gp)rp1rO7)F)Z-+;%wa_$uzX`=6YXzpvN*1qh06a29<&a)s zUnY_26|$Q|rY3u?m69?H#h5@=z^SrwjgBE51&jD5R5E(AgcR}C9ZSdwu(C0EEc2C+ zC4`Tnpc1lINEEarxox(W8Z(QPGJWfou-D6LX$mM{ClNgWw-{9FBwFMOaxR>4kQZvZlXKt_kXy(?-B{ zL%}29^(2wJZW+Fax{d(;;g|Hjn4{pecr1>iU@@$mG76+`7(P*=noL?gSgFt*VfMC1 zUQhTugKI@{P+sXfuHVH{5nYyx2U$}p(nc?f2PsojSS_;-!!QrRquYQ7iDboE;X9(_ z{8Z#5W~6-3Gjq3*=)P8GnlK$>ra2eRmlbfdmUL2$MxqC1bvYZ4z_Ge~7*;l_%ZHdm zJ`N+1HI4h76cu(>8r*M(bK}b0a2SbxnDlSM<8Y*Z3#^;;K@$r=y$RPOsci-R2UsidhGs_Y3z#gslKse99EoTH;99i>)bU%$AGcB<;nP zOd@qLBfGh#g(#T-t;`$(BQhqMgW!x=DM!1JjzUL#TFypM1R-7F{&*0M^<^Je*{Cmj z`bx<9!pD?eUoP3WW227vpAD@U8sRJq35Qlu%h?v1`GtXjQl09|z+iuWt=<^upzqT5 zS7=AMQfxj#y}~S$br?36dT#UNQMQ9@$EXZxOTjtQmxe4jr!$Gvf|KF(j9_JCL905S zg;^O@=XyA8R@~90q@y5eE@Ybm({LJ<=Ndc^$I5dRtZba>S1^g}W}GegZqStEX`|p5 z6dZQO8l&K6aEe?BT{6eSe_?V>$1(8=tei3?bX(!zCZsdrlaGglyz=>=Z%4$H&x_f_r&uLp?(6LBe%n#FhQ3!f@t^hn>a7n2wZ zzGDhQ!h5b&l@%}(W0onxsj^~?jwT%iOOt;kH4(g7KTg0KcdQ@FU}d9zypKs_=Pzan ze<8=YM*Ct4D9}@U98QZXZT{&SqYEbU^YIWInV$zM=gxdyV$x0J{;hEC-+)u&%AG$B zZ|#Q3{;PNxj_mJ%l~dSzO!m?*@JYi%Li&Zb`F2G3g(cZ8V2mrRrEM+h7SjJw7qB{I z9c<0LJe`6FNtul-CgDH6nU*Hu-%MgGn1l(u)7p%&^(RmghCkSnBu3(@V=Cz=M4FS> zRfm8j+Leo*3-NXxOT~Ox*(eornM8KhU@D(it&ESPSg^CrV0<{75$g#XnT%&7RvOYs zzXNaGk@VYP<=jcnlryQ7_9@}C*TGqFrOh8D(tBXqfHimoj>HFGpRp*y@B#u?*=diL-b$;qAA*&7_T|rgn){rRZ?&(*vtva2(1u8VvLRG!~Saccc zh^#}-`*Q>o6%R@oua=UsfC9z5wHPyQY}i7V&iyMSBq zo3vNr?K{%$ft7Qoop={;D`Oh*PlXfz1e_OF;`+OQTYWI858*L5Qoj&ZPND8GsY_qL zrw9)Tc{MWIwPmGt=N_LNnVNI3XU*Z!C4y6iu%*zvl>!dDPI(iPNG&uOUZ>2|yRVg(<6$~Rd3isa zFMD}8lynp};`w*I2d1Yv4v)aGrW^w+8#U!pHe&|GWxF-m<69g`505oJd(hym=$p}j&u|_O}>H8 z=z>{SX5%3^)|DBsvQby2GKuWG#eBXq!$_M({$L6VJ2MUP2g1p5CC?uUO6iEne?L4B zNB(=m%DMAjBzHRuHwGHvV_-F$AlEU#*DW^C8FL&|@n9Us!75leWgK{z1L-gL#Nr_# z{l#B>r#Im*-kq(#=%ibzeWjjqp{m%5+u(s~9d*s+Hd|3z+h3}eV=GgrypdjC-k|NI zW%|VY8_R3fb*&hz7UQoh6)Iivzb1dTEAhKsGHzu~vlxzBe211a9G_A%X6)>?bi(Am zJsyPPdA=>IoWk8>_Ll~NPZS;!(m;IHcK{0maecNoKIYITSIcYYYls8%65Ihg7UIpI zikYavgV#E*G^@j#2^IqnVR$!@_+_#aaW6zCL?4tn%wjAmzC%tLi!zf)H5S>;IRc}S z0Bzp62*zkQj0@n5Sw}+jLDEs^hSB4%!leVDaCThZC3^isuKD1DH+ge}KdhhDQZY!Mo4lxQjA;`h2* z!N;+8w?bD&x25*n?@LJ5o_m=@YVFDJ{%o6HG6h=o`8&+ds6Ky#b7ma^(G#Sj@M-c- zt5`uA<>#+>6prQRFR-#vex7C$*-bkO`IUk#a~l7xE=SK_gZ~yJF%nljCVzgXF1;_N z5#Ah+#c>pD1}o=23Kq+22ZxccG<+l+2It7N61-Ns7P9rn91Vxy@i>l#gJ9*9(cs}H zq$S}~jfaH1EV{?HxQWZ6e`ae*#uW$q`U-26>!9=DfomOg&F*0>NMfOMSR0b~-7XQd zGPzmI$9cYkN}7+4Fp05XJ|^%^YtzjwFe_ua`8=E@EAHrW(ou+r$LIwt(XPC{`7GY9 zV==iNRyK;sHB2HqgCQQHw=#a5V!@jD&$S&uINI`ZVI3;1M_y-w0MtA?`8DOQXQ21rG^n6wdS=y22=YdlP#9 zaN4&tQVZ9TXkp6dH=?c5esJlcj*jN|p3;iKU`5^4^$vKfTFXjvZ<|wCS*pe#?y?yJ z@uRL*OvP*9W>Gi9Ka+}6Q1EJM5pMr<^(D*3uBfj!)dbOjE*B61xa%C*0Auq<8cVzu>SUH8YM_rdw11}UF5^`$T*S8~LYB)BB zYsj*?G3S@m1#FyJ2iYiJLsHO6ow7_FKlf!Jr;eX8iLo$suxrS2Rhv0pfmsd^8wuLlPr#RbevL zuOV%ux5is{B)ui9oI7dl8q%PBOgQbM;jFlx(Y9+y8}TFY2powY4lAb+_n76SQQ*^p zhlDf=5BL@-VH9@Fb`Q?PLVacYQl!3;`c|YNc(_`}T615|%SZ}KM5W9<7B_IA@5qsE z;A2c8)eU4fT}*0sTk`{Vz&MP#;!ALztVE;FkdDGcY|(9pZd!sb;!Qi2jW58;M%nnB zuY@cceEbBJjgN*zLEC1&m+ke%0`d5Ye1W6=g(?4_ZjHn>$B~|8r1g|dfxTuDcw5Sg zzC2`Ad7ep(fvVDi)q0C%8F_ou?M6O@W!Xt64 zIn!ZfqvlNUm5?=ukFKDa^Q`X}7glArY^}<)cFh^=?0bu% z_8n_U9ac7KNsUQl=TYbK#bh;S8uJ?{ChTl9m|qKL#+5nWacS#?N&ad)3Pi_&lo8-z0;G@N(};(JT=F>5wbmob7(Qaq%PebXzR>o!g&K z7qIeV9ciPusX_#;Oi&inaGx&=X&QdSB*ubin7})&6_yuaR)%GG9?p^#ck~<5QHY35 z6#|xMSFUD0i?{1oO#Tcj8^z=)CXtpt#7JGBYrR*fg|w)VdWI!9<#hO3Vd4dkdQ{<2fjs0 z7=^!O`4Ys}Cmi zjqw;9sdvE2Dbzh?eQ6x{6yYHujl+k1hp#XWZ^-u6#Pni~-fUW?hwM7K8|(VDJ(-8V z!`515ns2w=qHuV$uN|C-O_`A_F5w{GQ6yc${!Aj(C1f{+%+NZoRg_gQ8e?6ez9T-L25gy72?NX~(+pJy_YO8{cLU8O{@YUr`$Amnj_V%ri*; z6HbaN>EsKT+Z`}@{~Zs&k@w$V<=lBEUclT=nRa$>`a+m&qPZS;!@^a%U-vKNxHt;CZnTztNN;v;bF+}ln8y2diYU-8+y>{xl{a6hGW%ds zzXgxMk^1Lh<=m-nc0g;9r)vY`pA0Ae1e_aJ^85p%_I{Z3AIIZxr2iAY)|bYC zPaPf-(l{*h?T9cA=Vxmic4&QSsiS+a+J2mnTtsP2xmco4Sr@83^l#=8=GNDs^~^dX zo5y>)idNjouv<~bLAPR7CN_)V*pm8z8FDf3q~Tb|BvK7WcC*lSj!Ds`rh{OVA_b3L zyirHAp5Cq%?GIPLq{qbTR2DNW_MVR^(>MxC(FCv1D8UD;p(ay|08U8GQ5v zm5h@^qM(xTnv9<}Ur`&Zm*ZQpCECr^qdsr`N9xN+6b|3#%|&dj(3G)iDIZVzre2nh zCzwQP`N;4-%5=5!S{3QM7A0d;k#Qt}xjTCmd5Kb{kP*+DtMQw)WMjO2$6C?>D;u@s zRXz^proEaNf0^-y-@PiHH&=6}F@JM7^IhT0xH3;ZZ?5*jB)=0Lg(LYLVddP(C!RM~ z^QO@+hSNU*&WC*}xPhDYK!0^SEJr;Gp(6CiyApGG_+ zA2GF5uGac#QKVk#FBR0cwOv!pbSkJ!X4p82IGiAt4RJ zF}@uUhGCOz4MSqVp=YqD-nUqAJzArz11@~QfkmcFL>6x_kD|p~wHQIt8_Z@BW5FB9 z1&6rrnnTzN<|2A3cT>C#PL>sIv>oXvVDtqChE6mueZpJt<{j(EZm_aZM|Nfs+4%&0 z!NEd2qL2dJ!b&(XuEebi4tDN6co2@<3$SwT+-(aE7WSVAXFmid$CZ8Rf`gs^g?J#2 z{67XOr||cf{H1^36Nra|^ba$9J0kqU!x`_DV&4QRS69@OC5MNp7g)ivjyUhVQt=07 zSWwF3WN{4-`KDXChMzErRM(K*L=u0WiS=6Z3;%{;h;u{wg@3?lvhs}nKspK%u~(`U zxw%I9BHprN$#@=CHcG~`z7n!z@X-@gGVTkBg7!*1nC+`EJA2CmjoQk3LET>Y)*D8q zWGo-GRZ1DRGK4KvuFj`-SavX{67gaIopzAbl2`6j##8N736IFnOPW z2jIy2G*~%z-ib%i+bPqSe>t4_t#D#ond^_Dw>x2SzZnn0k^4=sate2k*{SX5b+> z)|IKSvQbwiF^TN_!+h=^jI?Rw52UcLGt(fyADkRl@_a2Tr6VT)z41UC`R@TM=gxnT zy#G1e7+4)X2C8s^T*ts-?M|rC8FL)0!h>-f2feUz$~f>a2hv~giN!-g`isB#PH)0r z9FXmr=ElX^8f7)}7I?^7$6NCQHbXHY8>r%lm3ho!GCuD+oTSP4ERz@uCSz0Tu{OCp z1XD65m!H5XvVxB8A{_-sa{?3Or7&#bgve<|Tqw z<{^tMDEkg7X$w{`iLqb{Ch$&c&fo%=l{jzY4bUc>B`faeWYSTHh>v**SfX8N4$j5f zbu1=l!^%c6`7o2n&K!u3d082Moni@GTDTL=h%4jd$Gp-=-;THLNcuKdId{^Dk9k>X z|0$gIAK|RH($+ubl}7wYJOW4JPr%A4#64ztX%zUh;2|N6LeaM)!YEA6cI6;`{Hm{1 zP(S;*2-7Ubhs7RqZWm_WBM2&crA zviA6uopl{=-jQ_;R?eNZ`uLTF_qE}?uZGj&%G>hzm7V#OcnFTnFNc*=n0w6j(lGGJ z!9zkChAn+NA`HWY*=}WMzfZNJ8+kSE@2Qtq`Ld2h`wa<)9S-f6rM83ic`@#9eOXC6 z@oOfLYA3RrZMJnviRLxN--KcmXPxvKn~(%%$*dzGdXW;TdX4SbnzmE7%r(%B@UR>! z)qi~ljjR!`BqT2B=-8+u{^!)8CDE*%Iy#mOMRWLJ9zV?Iht1hRp`bs@zZB^t3>cU7^nC?;AQz3#@2Ct=_TQl8CXu-furmG<#S&-(z6fW;m2uJrq>=st-nt{{&%w&MlTO$GEA8Kg z)BZJ_6<6B24M-#YD?9>6;=hEIQ;2)a;nD{1X~9E6+JN`_c0|~K{%mc)o2!LJc@3>G z4)ho519U9Z>xFe4-HjT3maE#sKO4BFP#J80K5(G7(67F{Zt)k;LS`M8>%wL49U} z1<7N4V|mTGuGX4)q0$xqYx0-7c#rrmckynDUh@Bs`q=7XH}4_))FAJlGUHi1$Rg@9 zX352Pl^$dPlSuU-*-cVAgUQjn$^kHbkqUWhWnVa())5rFk#rPt&E43o6|jTmLg`+3 zfR2UlZLqRY_}=0xAqyWLi$R5NUPu(QPwJ;B(x?Bw>%8E3)kaQF%;>|bh z(9ODWCEm1S-MAc9HtNPFnM8K;jCk`+J6#&-pHev3nP-rG08WZ4>ExSl+8r=?{}>Oz zk@pW_<=lBE-h9(ena2Eo;mrR7C&rbz{^px@Crs}D#)EL={ts9=g}cY(F8u+YC_E(O zh0!|Sj))7R&u4pKG-35%q1q@{)JvVcZ$@jBb+9!HHg}M`dU@kOgD%Vl8s%c4GW?Z} z{N1j0*vd?0u@8GtR|2nK-pVA#f_<3S>b6#23NSBYPB|XVlNEV%1nDSD#O{n%n;Fr7d0-O856`C}AKpm+EvoD)~hvl5T2x8gTxpM$sWNc${U zId|H#<%8d?jA_Kb7Eb&ta9&)A&tt^RKA6BeYX3|=hMgNi>%7M)|aVQSjDmqzUES!lW{JCjJY4cW~pF)CXUv{JL^78I3XA{LMYX11)fqfXLM2sQbu z)KWTP)|+{FAddBBHmq#an;E_mvfl8q6;yBj<~zbgy?H*{cYIIpAEbIysMM+}>9Dpu zpp=;pP)d_!rnU>)cfXn+2KZr+A5LTk>%eQ4ZDmHeVCgGV%l(5Dx@xIahrMD+{&E*} zfXC0nSH^d%0yR5XMJ-k7!%5NlMI9Z{d$qwbe9!oJYtAUv`uYpSMmOC|D$u*p`+J4r zdzfNsUCMAZG-jGeiB^wJhnb3=kFS&)rFx+v`ujmRgVwPTts)%-T9Z3owG*vc)JMO~ z37(9%zrkA6Xe+OUl|_a+D|F4>Okc7i?+ zC&(53{KUnM+6!|4d=`(waR6KoD~l9e*G^H^Clu*>R=6NW1V+ zdt#1&U*M5Aj)0%R$|)m2dI{$lX43M(N`EqrKpaSqDP&2GUXJH2FG=*$1-_y$z4Su@JolRyGRJZcHLO>I=9D zG4rOe@1wY|GuU7s!P#+T&!?iao|q$GB_4_62~bBwPq9r;G#-BN4j*e%-~V7Y_;PMP~bUM0k;Mwq9ghFWpWpu2SsB zBh&?~cv;7s!>!!pVh6S|BEnWCHH+nV*q4U191k&xv9R_rfp=P)YW@S$GNzh;!&$Nd zkDewSg@||{M!*v7N<;V$yj{m~@*=Ekl#}O~M0VCfJQr(ayxpzn8EG(nJxL_j*@rjZ zu8flp#H5jaE#A5#>BX>e?xYhB#8_#+C!F@X;HhS736+%<^S8S62AZHKe0(Y4VvR8NGQ)ax31tW1YDf zRyOL)O-v#?4>4QZBjG118|oVGKTt%Nw>NnI4$g}!Z@wsH_Q9n78$1R_>W{(7xl`Xv zE=eTM6^;DN+k(kYBZ-mlkmi}bxwaUQ?1xEzG9HH`{Z3dpg}#R|klun%9Ucr|L)~te+jat*o zB(n1tbNJk>q)a1z6@?UNFs^_T<4T-Aw`A#r$$dQ@gd_LMVCCGo&zBBkL+tMlXMZo8 z99Q;yJ7`KrO#b)afjIKN8&*!??_m(6$KVr)hlKPPhxm3xc#O-l^%&z;RA?Kfx^OY& zOK7#S4!2Rg)gi)G<}Qn=m`Gj0%()m=(o~FR5@W$sOyHf?=9ZmcTB3_`d*6<5maM>| zg`}ep5w|)7EYYsK)v-O^u46gb7FIUO$?KRzb~ZxX>aa3iMzI9?hxfr5ab=vm)saT} zSiE&d((i_qb0?j+)nTQ5UO4TKz*%vnt>5ZMBYq|xfg|zLVdWI!9`n4k3Vd4dkdRhk z6W@*qtMIvOcSUR_)}QEYU#03mtubsM{!}IwUEa95x>|g z?u9aQS-iyeeQ`-I@m(e{7QDnfYYsGP@eIsToN3Zp{0UB)bvQ)7Bpn4%a{*f&wRXe2 zaQP!1hGR8)5>_^<(GyG}JEyToy_uk#1=j+rPM!*I-V~&Ga zcrcFRU^=Xv`#9K2UiVv1BW*0aJ$x)204K?HEW9q|UWqce&GE1=9+2aB*b7!p84n&7 zL%I|`;dn?$m+~#&0w-KbHCvZ5rP5C?>8sWI3YGFn>Jubq!2{Sj`kL<@)|$la4-C6^ zll@j#r9Tm_GR0Xu$Qiz)N_vpfn8aA{AXAfF*NV*zFe_u?xfafq6?Zg5ItmxD1tS@~ zSy`^eTX(E1SHj9hWx1S5Wal`<7K~)ZG~Pd_h_K5BgZEG2ytwjCZox?Q!KD5G9)lzG zAH&MIQ%`KcNM=nV|C-x_$^Q?|jVpP53r4aZCjI~5aX8ZdH>{jO-@^(>H^HY44+-fe zPVw!Ca1+mEdwXQlm4&{(g0jG|A3R>IgRS}QVO>PMQ0=Mp4QnI#uXXWAm5It?Aoix{ zv8ypLkfedwgGr1912LZUS*s^KFdt(kDZojxB97ikItq~HM0T0NQHf^d?U3W~W*y7N z`(b6Hd>qFlva<|R_;tOF@P!mgpjY@9oDf&S(-VslDV#rwH}1&!99TJb&NJj9gpKt# z!&!d~PKqmQ{+4I01Ewwb3LbzX?=Qp3DZD-AbZHCtgy10|ZNXc8J0fhszq5VnW89j7 zetJ2Q;tO7-E?`y3I?P6O*MtaLnUgFg;bmVM(j@$oNsI-PFoAbka|w&@Kxv6HN8Z|4 zL=u>lvI37Lla4|}?3xg;M7z=^EWq1!EGP3|Wuu(TW)j)i1hH$v%J>M11v?`R#)rZg zab=v`HIYX8V7zrl(g(uIxsy)pny}J7DV+9+a8_Jt>$@h>h&S*E9Eq=nl~ag&%=6MJ z@M*zALRy8t`%X^6Dx96|hXKY{N^5Degz6RUgvY9Npf!&hb`2qJx?Ej3>>`5ry{=ZY z%7kRG2)FwVCutFGV-jP*B6NygYaZb-n36GnJOZc53Oc%nbQC1b$?Q6_g-bLnO~S)? z!;XdIAz0ZcBtKyi*_niCd@aFFx$`T*E@2!=jD!<3Df6dsl<>{#%Z>5o9a(q4%DJnLj;Kdedcf8$gfvobGPtU}#)KuN1mV-jP*Dr`zU)@;IMFeh=s z$fbl!;1pR=M`x0bf}=Ts6_gm0XjEE+i||GrOUMPVvQa{sOd>mrFsZeTP^Wu01roT3 z@EtfEu5_m+ZZ=pM--S2r$oT89a_)?$No!!9#V>?&ehyBFD`##4mGI5;`5C-Cd=za#D{f^j zvRH#I>I-(^BnFnW20Ji`v0x24MXxn`@NSrw=%cg;N5N^bB9HbZ9R-P4MQGs?4NHr# z6mQtEq#On-8ztosCXt;*5UU7w%BNE>fi~fTa7tV$Csz?tS)YtI@5p*BteiXR#43WF z_ZPx>e-2KID{p-jA(i(z`a-jK( z>0d=ziZf06izy_5*)Z#Hi2g&FQvhiXX)4_?FJLC(VK`Q!@vyQ{jW%Ht*|`nvAx$N9 z+6dT-Lc`8xV+6bnPLS&eusx)ybjBP9Z^46c90$9>%DImN%R`z<`n0hSg^z`maFSfd zLfS)`N{7tx(1Qo$I35bHa>{t{uo%*%@CnC5Lb{aS`%ZhprCgou!p6A4s`0w)8{v^_ z9d@I-e^P|4%yAYIa-Hw6k|yLcOkymUkO{ogTAleZOv{*aeh6pD3OxD>=_o|R{z(B# zv?~`izK^%-SWdnRD;wqHTTCK5n<4g3S{eVFVhQvW|9~^%$~d`yGL7_$c-#6uh%d$?a3sD6R!$-AG0#h@z^4Td327BR?K^aZ zRoEk2t1zXqOWOM!O7Mua7MGEJpTjP|`y7`0jw8O5z&n3y|&5MvT@YWqG%W1H(QCUu564|+i*83dNd4HKA3iJ-Q!g+D! zt-Q}6(Fc?I&3Fus)Ng{7bElqspF<*R+L`{laPq%_bK^?hc%MU}A13|B@HialKLRVK z(D$$c(oOKG!$U&4i4XX8M7W99Wa}oz^_XAw-0JISsj`l?QC)ZtVJp*?W#M59>I!DS z#juigVsj=j7VN|X-f6A890=1AU6e**KR8QP;L%Q`qYx1b4+55GS1vs4jkoJqPWFJ6 zjdJoqoG2^y=o!*c zpfvd&{&wi*RmjVD(~hO(pRlq~TK>)?va<~{_;VWVbZMk_3@5!kNnjq@l{9}{kk$c{ z_qKQdj=Wz7E9cI8j(q4Ljrse+nI8)$#+5n$xSFLCCii#aK{#?h3RX_x?lJ#M3&AG} z4+&`@e&$=SgoWtH)$~8`ei4FQaY+%x+-}`()>( zzT--|hl`oSSa1*1l)h{8%GY69hJ&~hPL>sTbOY(A4uWs*SHd@|%k6mcj@9KhSlOs9 zw=jw9T!i>!r;;*__@5{w%;y`#{|G0>m3Z=#ok}N6?oZ-DIC6giR?eM!;**_9+BEia zzZuMa7DdH;vpej#m9XIvTzlz$<|d& zqGgG`j_#96_1b`9DUN}Mt+n1XOT$_U{})EYv5U}^NzAe~akTIFlJ4S2CNUP=#bnuW zt=O!EsTmW^Ae<>H_^5|;6e`VW>;(fdcC)_J@wOf7OAS^w>Pv-5Walep@{4gt@pqrekC4(Bk{{&<=lzSm6!IZ)PEXI{Q)>LuGHsiZ=907Fv&Vct}Vuaky_sgqQevwq9bB<)w!Dd5al$p(V;X(wgrY)VI-l}8i*a22HO2-l=k)2JL%qLk3-vUJvXb_Hv^Wn;un?V`7IYGQ1Z`+ab zaj zcHquzKc2Zsqp(W-X6Aj=0jwZd$5^v_SUV7~rVt0MOhp!J@FQOm(i;4LNsI|=5OdP3 z!SgUFan49<@GP7oE9~eo(ouK_YrsaAXjNK+KjW=BmXW7mWuuJzo=IeG4J>>YeG5Gk z4ZaIV0<*`ie3RC|PI(^Qwj<@)uyXE{6V|{&`p|IF2g5mWC9PWnJM9DU_8n>O2P>!0 z_L$eDHQ-Z$hlI2S-}5a_!WwKkp`#;pE=ny}OQMB`c64la`p~IEOQMSwb#(OJ9$id_ zWkbe%_o@sTB*Aj_!JCpubifux)8L7aq6PLDxKCSg(L=X<%`;!*<))aJKIt zlV;(=Oacew!Drs$6ru@mY63Lta1#v9m|AXxGiGHUT}C>pb>R29Z4^Zi(n(y02jN(C zJ_9QoRp-;b60+*>F%?vGJ`@tg;PU8~*{)B{Dp%K(>Wz->{!+bfuu*7~YwFu@|3dv4 ziR+W%ur&w$k`9kt30xW2mTQ!!ec{Nm^9Lr8T6UJCP7EVncV?Rj(8|u#Z=>vtvNMS! zM#9m)Olec-H2E{aW*^K&uL*bzj#XzHhPUrX`>(Ka3T=;hU0MS^6?jNUYp~k4Bf=U? z&-Pwf=kij$S{tlX%E~6(H-87MO4fnq@M%|c|4b`dWg@Z|gI%cy*fo_HP|_Ie#3aUo zF__e*q`8Cl!kk1e@0$K zCb*q0jr7?RPM}ZtFq{-u(#dCn+Z`}@e+Uo2k@u;va_+nn&jhzqrZK-QocS$qVqBT) z&jhzSVRHXG9)u(J&%(+n+&$)eX&d-Nv0;fzUemErNBmDTxC^^cbs{?$;q2(!BjF#W zWV^IIw>;3%U0$=UqkEvgP>*k@73%fEI>k)9KwZL0mvsy_tHZBuvlw^?!+$J3@ylK1 zfw&i<6QU2wY-X_-&-tQ~7ULNvk!mrrn|rNg zLZ`{Ak);!6HJXM8;aH6(!^+0#-{~tMs}Ubl8?Hvf6rn%)j%-ncW@UR3GmXyVMmfH( zFW#tq)=<1PAX-ni{G)eMMn|Ihl!vW8{(JvK{H^enp=~KVNBIsCS$LK*iPXZA;T^W= zYUj10b0SR7C^`)|TlS(;BproJlP{X6@tgH#HQv5sy{W>=M!i|ZB(j@l=JJjAYR)v~ z*HBE@8EY`V3eJoxbN-~6trsTwEAS{B$*+f%b0@z*-c#Km{RhM8-w$WUmHr~_eyZ9N za|GOrN8&gF?tzt4Mu3M=kY0mNBOVfR!SpcSjtH-DRkjyAQz|>BeaT_^_t3g!9d;xA zC5N4XFF8!1E?@>-j4J6YCNhb!;4G$A5?$Bkm|bC3#vHQ~oGUBtXiL&jeTDdvLn3;! zvh0Yr?pRs2hn0=WvMrOy&Q-L&81LH= z;U?y0yK*sZjrk>qA5#~wQe_=&qxvNW5w%6>-L=D zS-vAmx`Z>B#8_|%lV!&>r|>zLlQE0j0B6dII{F0Zs7`_J^p&xj7a!N+Z97(!t6^oM zqFl)&vU3aK6^Sxm8tY$DJeY?!SpOW(iYx2nD-vZ7OyWPqBXA`C0IZxl@x&_3Ll)W&?{}1NVbR_>DSUH8f$J8&~1D`HDB&2&d&9@`MJEX3$;z_OupfNdh+!oy#NJF|ELeyMywh57SqalJ zrj#ByOIF~~yGTbNA{H71EYYr9Xei+AI+l~;VP&J7yq`&AXC1^sgO%|R#S&;6E`&4U z$~d{ukVg7rc%v*Z=j@*l?lmW5nlDBAT7en zOkylpgiXpjY4+f?FeP!e$lckCNn#|fJ*JV4LZdmJZJQ!UqD^TH7U69=mX8InvQa+f zF^TM~!9>2T&|v#ciX+e#906y;dJ;z_+bN7~D{_Z*YVTbYC`mf%j`VI?iW?Mz}USb_<>)0!>#4NOa%Inow924~3%Ji3>3 z6e42PK)@31N^9^4-mYUgc^FnU%E?1aB0Fm!Rt>C-C*Kon4?0O=B&?swIJs(&MtU6H zx+Ce0VddOOCsqxtw094u{bo2Tu4lBqYLG^JS3Cko;yc00Da1YId1)2+wBR8jt-@`- zMM_wO-(|aMFms@`g5Gf2=%rUH_tI<3%GH&MZCDErTkDu>Rz`6ZA?||O17*IlIEX>t z(Iy>4ok@%Z2Qka&zh)-Z!wki_CC$WTaKfy^Ao>XDC~%r{*>$MV1@kiH5oeuiQN**$b2W=kO>T$=?7g zr;zuU`lWl|(}jnGbPqfDc0{;`$2ZCJ+fei4SJ_qR<1B0FEq3W|vwNO;h1D(V@N2Ff zb|Hhu;Q2N?-VyADcF+0(lP=@WOd{1~WH zqs*y>gFhT@?}u5Crr>cn7Nm)=vQd!6`%1`y#79<8L3+w}e2aqg<7^)epAmnRkY1=+ zsa03fVQqOpSy4Tjayk-)C>pj9`R~h$d%!!u<5vc_Wj*ys-*F-<(BVuXwE|`MW;@0& z(R;1-48r`3+Ea(qWv@L2(oxVf`5T>ed?EmOkG6&f;8=7ju(DBf%1k1=DQ6yEg4B|x zQNNmk!p>TQ`jv2MT&XWe?B&wBVNN)g<6$_m|0JxOJNwP$I;xg9jsFAT{C^Cm$CdvU z+A6Bn6>|*y5D&$1416C}P8kCpjzO9ZKACt($g7}t_;y5?j_z#NP{*yPl=~}n#c52v z7p+;=0XM2!zC_r{EM_qnlc+10TNlGh8jJ}{Vk{Vp3B1!tQC95HBc!815#JGOhi+blJcT#ySXzD$D;uTdw@e~C+c1N# zLbTJRkzVj)^z1Z9&m#%UL%Whren+g`0h9M^JOD@DGhpT1c_+Rj)=rtm{NQlr2f~SQ zWv+imtlbHd`+j&3j@U9t@QK1hLRyG#`xY!=A^w={17@8)<$Af;TPdl} zn4Jv|SnFsT@z0OSXq6etVjDi}JD{X(_z;sA6Skq_N02y-$flk4C_Sy4xqkd6XH z*oJoKW;yu`-n3&m`82F-l#~Bs5}DhEcDgju4^udpsW(VJ1SiFnbka7oJ7Dtu2_AqW z@B3io+<7N#Lpx;}^NsHdX5K*(BViTIvslIYHLcyhKT*)@oFtF&EhC7JhTH><|>PU*atpy#L$ukVoxS9 z77WD1R=2eZQ-X;Zv&wQfPgdyBQKX|VY4R7Fv?4dlN;lrJ<8<-?SlK8m?`0C%*@x+T z)uELwjq^nmO`v4W-j~*aPZ1sx(mL$!+mY6aL$>=H#`o9C0|T|Ha?9es)Ca6S zS%+HlJ;OSOI=zIq);H|8$@#B!wPIB!CW~2k#g~CJ3;$vgW5FzRie77T$X55Gj0~@^ z1xbv=)yNdmQIIqzvyD?NT%uvQuVHh%VaGDE8LVuSkvU8vJF75_PqlW+ODP!aOf)DT z2B*Y&GDjxmnThR@sjLsdn|EY=5UiX#>sfM=wevnXocCHdEv~%zDp*LsFsw@mc;KSe zPf;tAlf^IG;XA6NU-%M}7z=)3JfZ4drMZR2VOGXG@+h1nEAHrrq@w_7PGs{43)`$E zzrdSytR+8#m5o~RAd|?>D@@^D!A5xE1Hn#VJV}g%A2bP1PdJ4X&YR$kJ96F#R?eOC z3^~c#SidEl^=@!dT+e2H_etx3d0y{~2jIxN3sz3y?J>bikH9Ac4+-fJzUW(^gh$vS zTaU15z1G-WeOLY(c%WKG*{E6s9=TU$84FF}|c*cmtCd3vOYW(s#`@90OAmJ(W*N91SPS3O?G8bQCa6 zzCf*nZ(fKTi8t?9We$gxjVkjFCXtc`+Rx5z9IHEhqJ#4PL3;k{@&x1j+p#!!~=2Ue;urx!r#LhNO!>}5Dy9I zF1GXSh;SFb%yt{(CP$PS1;tbRl{%2DRrl`J(XnhOx{n_o;D-nK;URXg4z}hFHcwGr zv#x8!V71sN*Q$j|SNyMiaRAC3)G`On&U$G@sa~oUOGDB6Mf70mU$o>79~&Pf%^Ag7 zUw@(4=L#GZci7uuPC=(aaq4)Oa20Aq9#zC=B zFHwA#)4#^QG<-nOXGT2jEQLdB*hL#O2Y3^yuRh$@`+lv4Ht`)VuLSLnOpi$}{ zYQ7Er^TZ$T1^;oq)Zd`cdE=$#_)@h|FY}%(jpjbMQODUsOQU(>xEVW^niKj8YkTMq zdxsAFAN|wZWM!qcd}wKNe6c`kw3%jUb7H-4qSP9Uwq4xOu{2u3{+r<+Pg;Y^vzytc zB(ki{=x?A(;% zsL2-x5b}Xjoay+()(Zk~QP0$qJ@nK8K!w=n>EExI8FRH?9@Qf%gYbKM~!^ zQW0I6?Z(ro19WGzqnrFoPnjl4#kSo;5n7#Q~ciY5%Y*4o^m>Oh+wG z7s=V@Zr|Y~rzH2q*FEAT%;>fAvX*gL{ywNX6M*$-i ze3bCbqVfm4dB>viJ6PE$D!*Y8+1Wy|;G?8WBfi;B(X-JYK8GZd>!HJ!N>}2^1s|mo zCij_m5RTlZ!OFRFPb~N-Y17yr6wZEsI61ED^#vcLBPRcS@IV~-?+GiX@b@qP@$Aj7 zQ}_hpAt61)UA_fOc!)0;q1Gm^zB zobEeVq*eGJlSp0Y$!_)-7x!2z8P~%IjOpSUI7L>9(Z!^r;AnQTYfHvSv?@K^Rd}n8 z_2CLw*{BceeI;al;G-s}KAap91+8}VW_yh>{@_xTtxugb6t8;nGWkd9!$@3QblFOT zWleach(Q^Mmb&nyZ*FB>c!Ei!)`ca}1{Z*%De+X|zV;i={y#UVYu&SD*#)wc@jUK}u^%#YU|zl-}+e zQ?1%4lFncp1oO7qdNiwo9>&{ z=)J1V5BTbc`*f}ItJKroQ(99lmIk`%3FPh`F_?}Il^?8%6F8*--#o4?Gx2rst)#b_mul+kolJ0 zI1YAqwodk*{#S9ZK0seR^Y2)1A^zA_l|u4Owy6HCWVZ*^P|BJnpHVk7*|rpWO2vAq zFJ5sCmZDp~Eh*pgyA{=7e@~%789&-{AhdMW6zb)|a=H~QPjr8b^ro#oG|P2Y9T|M^pat!T_BnzMi|K(o?F|NUcDZ1OBs6 zEEX5CxZICGru%8$FAubo>~{`_pJn5qRu7g2OWlofU#T`ogWLBcj->{A3;p!Lz{K!8 z*7sClYPA!);~i_=C(^F5{`eXyF-(20e&aYBef{LY2&Q%Om&0`e>!|A?LWQPbc9B9?7rxgfYx)ZPL#1dwU+P{OO?-%N37#a5lf`k0I8GJEY2r9t z9A}8*OmUngj{a_w#VHeL3DErf*OXFtpT(0&VpPxK zR_G?aLT*G32{A<`J+II;7!hN#v6C!yeq7nJLmZY z`^Ex|c{!Z<3OG5g%=t#ol#ZDEi+CW8{7-NwTD~}Q4iTzX>@#n*d zKMQBYgLt9`ChP?0eIIFZy|~FJC|sqvOl@+rG38n7rrV0XXuW z4J+r)dk*bE(zhpS%nuD`elVOE*OQz-mSyRL$^Ae)2uJSw!OFRF?-V;pHP$DFvu?o2 zaAnOu_R-n`D^e&Qt5}UU?8vtYE9cI4W_x>Xd<9DzeKpY6goC~c&WbB&?$z`jm}m4A zcm$5b*Tc%W6Q9=3SG*xx!~I}5?)%}CxZ>t-&r`xTS>KB{@5uTdSa}Swj(5##tp6L% z`V}}Oo~+rXf1{HB3vb?$^-HjF?yM*9M;kQAJ3Jh0#Fvo7=os-y?BPf8NQOao8@ydd zx?97_xznAlK6s*0J}#W{F>p>?Pi6l7PBnhBZXb=e?@0SdSUGpv+qPcgC!ZRyJRYPC zg0sR0!5MI>TnEAS>{NH^mN_;~!^3hM8>hg^xsQ$Q+DW8+N&MkV>$6?j=(sg}bleOl z%XM_TK^+|%?wC0~Zo&g|93MBr%DIn^3H;GI4gYV#@jnLV!WBRF0pgKDkwAI9{s`W# zBi)B#<=p8`YCkxs0iOJeV58Sb5~E}E_!|`4p_^y$IJ{{`#v8-Rxiemn_GGJueD`qV zZ-%qudQLB5B|WVt<_OpokHm2V>;x<4J_07ToK?DA5IPgEi*>DBUYk4bjlkih`%Z`M9 z4=ay2;Y&8|*r+4^C;sGs`b@!wA2wLfdN7Uc22H&3K|{abm%(0r9!ZRjSLenpttaMC zn2kr`I22~U$|F7$&=D}JmACd=O*Hfehoe6bPK)bVKbLuSqYEbU{qPVRnePoNj~(Xi z*UxCo8{y1X!)ftj-tL0Qyo!h5$b1#7oICUBt&@a53$FpcDjfI~a86u-^V>0M{3h-7 zc>9jDFN2kHr@g3^Ez8@SH1zj}qrVqUkSqGdN`1F<#vBLt;K4YKgS%nn+{eL0dU%^z zI}Q3P;n4pDXTudbxALvXO~NnXEjto^0anhP@KnlE`vqwl)ajuyXFi=ZJhI zUpA;gKO-FaX>ej(q4O>5mQI-5Pr-w55 zfXVwtJOD@D*TKrU^Bz~GmsM(z9}9>42%HI5$ov}+anvT+hw)Y&$vy-t=T4UVH-Af- zMz{0PU}rXtBu2-Xwfwhuzne&++}^S=-m)X%4p?~%5Eie#)d;^iobax2HeAnNLAdqO zUW4#Xc*~B2cZ8L5Cp@!a`EXKPVRPT5b-?6(9v*-r?~lOBx$~ZDd&{>5{Tt!XzY1r@75aR(JZkHON&XHz z3P>B?+hx305&W|hqEgApxzL=xn_joLhqu{r&a_*yGYU}Oy@jLW2 z?(=>X?9gYE#OOG5KC>sIH%ZUHTX!Tq6;{rj^yF5qsy!O#1H(D*2j|1}{GP_nZyCEu zd2hUJN6LG^%DGdXuD%FdBfUDDbQR8tD`|d@TaDkOy$WyNk#;YvoIC9WakgwPYuC76 z5zc)*oE=y0eD7LXPs|Z;86Jt_2)G1R&V2;TjPuso=@5V4MI(Q2IQe_vthkcrcf|A_ zn8feKBXA`C9auSc;uBfEXx&O9{jYG+FTvSxCCyjcT9KQCU%*>-B>Wt#oIByEah_VA zxX>tX^H{Ja-f|Gek7b2*VCHc-L`bX z@062A_Qz>)Z8VCCG2v$I_J^pb}Bk#OV>!)b9vF3)nM3nuf2 z@DLoC{{&Xfo%!6jEb3p#(y)(vJlMl+OcJBx;rRU&TQ5xV9e5Ou&kNnm=XX)QE z(?-Fr;iF(DJpU8uE4-z8wNM#4r#X%ua2~9eha&SsH{0-4S2mW@dt{D?9r1`9N5uB9 za_+TYN<1RO7w9zjCxpXa1}DU|^7D_QB!V|NzYlNRk@K;za_*eRvwE))K0loBd2lLR z2~XswH~WC9NT1x>_7S{UN496e%DJO#{~peVD`;_tRDN~ZIHP}yx9v#z*RXQ#lsm<@wKc@Ee;sVf zXOP6`m~#Gd{MJXo4Zc(Hh8_7%f|YaUyCCh;=Nj<+!h!D%XUFxN7WYK?n?mX7#%h11 zP%O1S;%7d4C5Fz>)V|uyXFaC&uX-?CW2r&DAf3gMIO}Z-V{zmLxGc{+quFxgEO6cp=`jBjfq7a_)?$HR|iSOO=6A zcePg4H>4dI&iQaSC9bD3Uo%m{H(9>}Z{Csh+hOJ0Sbe0J9ja!CwF;j7wYGQWB&-8 z7gy}bc|F+&llqx>435-Khm~`uF3xskqo;=bj&ST>f)nG4J$be(oiMq75f8$V`xjv4 z+_`VY3*<2SRev9j{*$Kgo-SFm#K^k3JapT5IWD*`iq8|?6> zlEmmZ{B4zyklrVAR7}ESavT*CVCCFL#WX%D?E6;t4j%w}z$tMp1$^~Z3EyP>R=jyf z)^CE9b7wtuO`$Sa>SnJh)!)9kDjan$oDo;le5XV*dXsbsZ{3mfa#%Tc(&N_j75cSm zepxu-OW;hn66Wt$jiWZnUWB*mNcI9)Id`(1`_=1(bw|*vABN5vI(_KWp=kZ0j*jT= zaJb)rli>=N-%pi+izLcD=y%~wI}-jnteiXHN$;$eisgZl!T5!6#?Qg&aAnM&B1wjB zP<{q)+>!F1VC59brRZ`xo8m8u-Md>y$Fia5K7M$BA0Fg~huA?#-1^`~9sC@8;-|6K z^^iEKE%7*$DELJ&xI9`nj%vY-LpwUQi%Wz4WxTm5KUfkiO!-N)RoV|Or93q!?N@A+ z*AyD%T6I7vM?3!xy>hUQv*s>6wc@}VR}5CEofb>06#OBJ|mIr!=n(qjds+0<=*3pMo+gYGvo((1=K=zcM&5)Eo&V z>R)xJ6wT*@d}(wHom^)REsfqIj>n4QapL%1aeSXRzF!Yq5q?Q zqAlrvEsYkl|K5rWg$Eir0q6>rsXieCjQi{Rwsnl;%;?MkWPy^8u0 zi1!LO9jRg(;(j;4*6al_-NOntDIe)UT7uU!h6HfMMI1?CIb_HROJrZx#k?i5Ha_(e1 z#r2T}_l$73r@_f^g)1KL78iB~-&6309r><Ie%Y$=y*ZrkO>i_DFmYm;aOXdbuinacAOlGKg1pLQ6gZ-6qvCt@qhaM@8(%SA~ zZ=p=LyqbH!di?J>Y3nVI4R(bZE!E>MK*Z0VQ--<=@xM?+L(RiILa~bRH17t>#d|lJ z`}_Qv-jxGGMR*tX!(|35jWSQD7%({C7z>TpLUr9xb6+@u)?e3Gp4eNemwZN;kYG6Q z6tw=DWrAt!33sBuK3FYvm-_k}lmi?l|MNJI#PGJ>{EB}kwRjjZd{p2gG=Ab)iw5tM zCcMm5 zIG!qwA7n@P=2wK6AgrAGIM|e~J2l>)3+H_U zoCsIm6BzIKV%gw&E#9aj*Q;UW+_}!86scFz8s%SxQ~o)e7FWvr3rR*7Oy)nuLvUpN z0IZxl^Eq0=EVX>oKL*>l*O0{M*f{>K0ZS)L?*D`7xV}y3Kd^G{+-LS_YpL3)zDqdt zH;x)~{-!{^2PW}1;1M{U>D$4|xf7o(mX2xVTVvfF&iVszK3vN>zfO~}o0Q*+x9v#z zJ+N}_lxMUuCGJpYsGH%a&xMoXikiQpTkC+y`)oV_N8TTXm2>CaI;&|0)KK3Uj{0^u zAFimCvzlTzDc^>-?MV3+SUGpfGsQ{4r#zGOAH!Kc31`KXHJ`2Z9+B@0z2L;S zp4|NU%hCyx``hp!9J#**R?eOKJR@b6EAPH=@)4XGSMvOAuGVgt>{sGpII{17m2+p$ zzC<3+hwc3{+8O_;aPFUg)8fiqeu-S^g2{Xc55bZ7g|Kq&%;#7(7-`gh5KjGjaAI7k z^Ez+ogvtHeco2@a+aQE0ZEw^6t?YSNja_jXzzPI_s*6Zi8eUHrCVy(KSqkCnk zTB;W+9o;?U3hlV52nv#n%o`+013xs=YCV zjJaSjoa9#R4knShRXe-aR4_z(2DAdR9gIlySH8C5^>E6pl%qMMqu^=IXE*7r97PoJ zZtQFEC>$%yVp!RzFpGR8WQF0QDyYJ|>RT#Bh3VZi(}z1c-&HEqi@oLQN~NguQZBI# zgVy2J+{v~_+VX_QKsyR$a9V0d$(ORM9m|aK8V7 zv*F5@KhfKY+$8)G-m)X%7hvVw33rOQO9Q;*Pr)bfHY9;v6uAQCZ`Ei`y2cs2HQulz z-z{O~-1&~ToxaC}(>)qag)7~OZ1Ux9$Y6UU-mD|r!(rtVwjNho@`8<9c@GJ>B-HI& zgv15gJsCfZzp`FX7l4M~(P%ulI$>GUsqhe# zVQ8reFZyOyR)y!8L~2zStpy$HTfTX(ZL28!Ctb_S)dGDOzF4R9bW>%m(_1)F-VZUX zmL}pC&_I8oP9LdPwG!(p3;xX4RW=vLh3p8gqfDVc%W@rMt}W48#omEp!cGaJVlQFc z3SU*(lysC+MJ&wQdSO=ZZSW`@EBMy1vQfdaCO=IX${Omy<1+*!}HRWA+sS>edffHUKYoZo)4^}-~78Xkos`BPx!6!IP>OZqfE zk9$bStGQ==-GsQBdn#j}7TMZKQ;9z0yFW6k~!E~gv%6p%6%SzOzx~<8Wf88+|y*VXJ#ankIJqcFMo%GBDYSjk4 zfUs1z)7~$f_TF$-T+e9!w1(aTllUHZ1dhbt3M;1&_n5(@3E zH2S&+`+I1Ma>^$Vhn3*ZS@xC+^rF~CgH}iB>y|^!w|Wt(_R))o_xAeJdac}DsKnpj zYaZn#FiHROfT}Qev!OFSQoyoH#U5s`P@9<18=OrXD5|`g5XMRDZ_rN5+4IY6b z@vULy+=<(l(vAz~d<>im{Cp;#Y@E+WGd9%mHq@g0!QM@VCCG2cZ#)O4fMs~pg#^L!xc1tQmM6wZJg2P;|)9V zJr7pSo$my`Sg+yzRyf{oz`1b6%bmHn$zag^D&DRm-8*3A-04oK$eSq|;%CDV{~1n* zD`Nf{!bI?9m3|6u+>!I|VddO8&$Zq0(tt1cYp@@mM-rpy$8EhZ$y$Fia5K7M$BA0Fg~huFdO6z5;{i0`f% zC49d`>yC{&0^S=|&K>Zi_FZHRb0Zw{YB(LPbotl#+M%0_t9a9nj90{o?jzXHyXD|Y@hz76%p90}|3XdFkvWw3I}NbuN3D0d?AooXHuawp=6zV~d!PQ=}^ zeYkwH(%MpSuu?!JX?ujS{lhL1D2p=@rm_pe zvVZY$-+?9fFFwj7Qui-rx39egOUr>)bvAx3*gSTS#7LOO=O}XupeA3?OJQlai&tTI zuHO-Q8CEvx%|Cr5WWC`dE2!T5A|wjh(bb>B<4<&#F8P@H{_udcR~Nq>kntjUyis*x zp<3*%)vJZR(vYQ&>;sp!>u5|q04p1X;=N2FJGzO-pN#wX7f~#M`|K`&GvdlvfBeZtx{0^$Ncvn@ zId{_9<4*?dyTWOI9nOj?ZGMmE0ObKL8}U2w2poyu4lAb+_n5(@3Eu77f-L{9neJ!!!3ynCqR&2@~WN`(r_$FSu zf`2iIvET}(Bzmr0Q*8A-%Ehn-Tad&^TvJRT9R*8M+<{176OGF~+MDBzJJyiRU}d9* z%wZDQ`GZ;f0poPqODQ1iEHr2z2B*b(B1a}|{!tX83+7_gA$SOm%nyQ&< zPY&n47EX;Tcm5G1Yd1{xgLoK@?CY>{3VV+UUwQ^UX?RFT&+wA()FnK_j@dpkJ+aVJ z=nZ!$6+SM z{P8H9C@a?JhoqxGY4Y1$?aF1Dyuu7V(YDj2k)HUsV5cyi zBu2s)nxy$hjHSmD7jyC5{8@1ONhP|mU;5$&H z9q4Bg8?XbT^Kz9DvP&WBG^{?gUOr)cX+s;th8KKN?naKl>(P%6FqN&~yL(ClMS3qr zdr8Xrf{WH~5A)Xcs8AdVTpa6L-i{=MUg9crsA+v6i({8+{f%;8nZ7R74(pJBtPeD5 z{q5ZaDep9K3~WuIGFa*^RC}1-P~sgRpQ3X%eh0{UalBj{|4$sR5XURU@zdgXl{j84 zj-L_7YuFKfr^os9XIZ|}BlUXWYZOS}dec`}U&3GPaTe)-*9%|9n|AaOx5CPXkI0(w zltfk5t`(l9-UL$q1Dp`+Odgq(`5JN}c+)Tb4sYC%^KW3~+&Q~#MVj+MF!GrsF%p-D zCUR^m(lk5{NBWat<=pApzJ;=XIO~1jOt_xjo$NW%c;YtC>pk&S9m(zvE9Xvje#_iw zwo|L+wQ$%KI61Dc7q(%?-!alUV)8HJfjIJC0W0Uue^a_b&{$s{&ia#ZB3xPXM^oa< z8j(7A&-YTiQAe&9!^*jHrF;AB3pb7L55xI>A5MrX-`2hTcJLE9cI6roQZL1KOdmC%ols(Uo6qHR@NuATvXyNByOZUK@j2_DZdrR z--+Xs>(VZWe{&7cA!ccHe;_&G&6gB6IV7u+99oJ8rYz?H_g(2D<5jrMrix=+H2wYN1hH zQ)-Fr7bM05vhKiYN5A2&Ew9%KJ;lNReetMXFRY_)Foh&asx@juP3!fBV_d~TwL1n7V`p2EBD#?7wxn3*TCp8I0^Kdg_jGyoju-*C|3}@Kz(-b8`#&s`OlIF_fEgGz z89>4&3W5j>i)@4J2tw#dI+O0{bcgQFEXeXeQPf5e0)ikueQqcU;*;lwB8sAjfFcUA ziLwf^FCxhQ+^XuXd#mbB&hJ)oZ~lBf&w`iaSEtVR+*9Y)ty^~}q_>Zco;1n%H8`&K z1BveCg*shAKBn{)%6)Y09OE&XzM*nY@F}+L+R)&jxNDa_C(Di-4cVcxE$lPof*i6> zz>)%OB5j7PiZGvxsZfqw>RwW{?&XzAsTub^*}70O6NdBCip-EDwNbmkNvl6s>(4DO zwWc(W!3fWyGl-gHpwCP}6GS|8A4{Xc3cF8mMg=3_eWEEU8$y4y$NU==4a4`j&coAOXm$Pp zx=RaI=O0wt5?OUpCds+HrJ=LzS z+6`2@p=u|nwq3OyqJ^Jo+)3T0`BY>)hFlp9 zTW_zQ?T+`(TtC|lR<_p9(k4BVd=)N?4A?9EVfVvMajs$&ZP@bVaAN>A?>ue*llO91 zIdk3CVzCZ?b?hIN##W`DWNF zT+VV!p*aGZ_)l>Qn8be!D`!r8n)X+{V$goUpZ2q`N4T`*OdYn~CjB(tJCpR2uyW?4 zCpFi?4a%Fn;$4p|B#E)9$EM1U|20?fl@s+|la276nS|%T%9#_M+M}OS7?2P1hkP*X z5bmWcU+@SSZ(qp=;+-=&FNKve=RDW(7|Gzh)}Qw(*fCt*@_-)4AZ+e6+z2N3L0CC+ z?(?1Np9cA_`jh`3*fm`8@&HHYFl_e!jhn$_|9MzBbN17lP7|w@2J=7oGrtpd375Hi z^&?`w&H8q{dnW7Oz{;7kp4)U*Xd&4k-u9|@(e@_n7%p*{-yMUnxxbDZ!Q}obteiRb z*-e+VR{9OX zrwAvBEnLQx{J;KyzXSV&3wXM`lJ)j8i}JVezL}K22`gt#xkGHQGXVe9AMk^)E4YB= z6)g7!T5SJCQ;%&bF6h{y*faD*+!SUEOn{X$ zkAX!k$I*TnWB;oW1$+8O!S1kwxL5t+XcX9kvEyJj+!$sY>;fxi9tRy_SFu67-=BCM zb_JKX%=2alktK+JwRSS%20~!!7|?ht0QH zKZ$qGWc?VdoH^@R^pZy8MK}ZZ!hd;}>l=~8*p%yX_mVjRoA^B30w(dbML{ok-hxVYv1#IW@?>CfZ6Gf96AR?eLCO!Cz_-Xyrw zANK9AQ@F6@n*_!HY~H`Y4Pf&A6|9^&@9E^O*oU5P`qO?Lb_tiZx(f@NZ?k?C@1Du} zC0IFo*3H*KgU3rXW7gj8b?>r#8e-) zPyHC!IovB;em){*AU6LaaYLB=m%+-J^Pd`e<==%Tc7JKua_lLh6_6--l z{N$s195(%K+zuxF55mfs)1T`&;mN4=F7ikJY1lDb^m4z1V-Pm?25tnC`^RDB%(*X$ z9vQW+N31{f=l^5aL0tZFFWfo?W5>Y{aATNpa09HIc^u4*y3SSaKkd)|N!T%5{_^^F z48rFA7;XfU``=*Y%(-t8by|30`OO#bhIl{4qRanx64;gQB{v6&plk;a`<;*$H-d~=w zyi|TtVE^ELDe_s7+x=<(26hXVwyg17Lr{*@Z>|0cH-bt17qD{X)Tbzy*|=Z#$Neho z4=!%G%PL~K#rY+?cP8iOVdcy@&s4rTF!-2>4SSn6y({>wNMdX%c=^1>9)LxBbKC?b z@l9dn%!yA|4m-H);C+lg?;~NCa4&ATtIjmvqP+|^fJysMSUGdrGnBiIr8_kH@;=8O z_gSz{xVYsT5SING?+@V?FnO6t-H5Sjg*@=!7=L$xW@jjZzinBm-E$J$@OtF^`kC%yGW)9%Oc0c zJHBjpW6}`PU$*<9kcj=VU2)zaZEf40GkoUolHx^++S>YWC|*p>$-~8kaX;8R?g#T1 z$4FgDiVcY+pb`w-xaa#Dj75dm9(S$RR=k4rix0!Ta*{3HK{^pG4Y_MGO3un758&N1 z^T>U$vXw{vlvG0J5gA8bdF20mte_80EKN6$%qsS=k-1nQt)fV$l7&JdHkB+%FPF?Rhi{~l z17J2*I@u5QmlJPsXVQtVX~@dN9D%)#^j_QoW=7cyR<<(A9zr5L;tTc-z65H8y}`Xo zR(XC6rULth%U$jjagW2MU&8HR(l5ZunbTjmv{J6;3RGQ<6aioGkAN#-|8OHLQW|OB=p_MMo9;v?oR&LLB-?DxSBSuJYJHZJ{D!L zs48}jttuX*(O?DzRq>ak&ev7NpM^v$fwZfN@bHbYK~mtSZ9eu<0+s z?O@X18dlDnzEM?#J!eF~N&XRV0_-1d1h}e-@L239I2N~s83jkd$}v%ppd`>$g`83n zNa(8Kk4cl6sw&o`TUAUsJXbCZ4wZ7jC)Oj&6rY1b*BN(>U0n;Fg;i_2nnzpaN?pN! z4ulPfOi_+SiO(ht7hOIK3yF1<4^Na@tCDJEQ>}A;JyY)CJ^W-wRorPba6`s}xJnG2HZ6Atqq=3u@$Fhn0Ymv;FBsOAUr z0RZQR*P#*8>%#px+8;9t&Z<^QrI>H6LnhS*ONCJxTkW)=eExJAoAbNSm`(Lu&&uJ( z!QKI1Tb&!st;vr{bk++c8k~O&&|`+t8s6#oYDHYjp-*W4gwkd33GJV%_9oT-Otm+w z_UEeog=%k6?JrgPE7jhr+Fz^oH>$l&wZB#E?V^Q0HT@m>vot?7-5z9RqxgH0Y`|{G zt=qoG#4wO2sLn~acs1!n=F~=~SW*&miRx8vN&6e#E3?dd7*@8*ytK(qqy=}HCk?jq z+Sd1FJDVg%I50%;`=eFSTkHgYi;-#{0k?;aQT8 z^v_`B%t=p_x5ftJSN$2k1p9)^Sk_$XmfpIKpU3-U()}l_oH^Z2wOnD~-D*AWl6rHJ z7@LxMinv{BuCrKtH^n<<^4$bh&YW+1u!dy7J<=cUGT0N`Ygf*|V&%&sdnn#3lkEFo z<;=-;h*doU?OFb4KLopii&lPyNG?WNY}er3GT9En%9*q6R12*J-EaES{W|OnE?t?G zn=8Z?->={uGx>fAR?eJnhgcpq=>FNC?jK=SaOtXRSFCDVY=4h;%Vc{8teiR9NzDfm z2HpwldzVz}lf>ARR8vJs)wJBcBYF$w&|ngN16IzQaC`8W$e_E6KiwV2jIOMy#KSG? z+I>6TE0gTDuyW>PJJo|b18%oJ+z-Oe;AUny?>3(}T6{l%cg*B_9ITu<-$~7^8R0bkjz;1&>)EQrm9b6kO99zKXb-BQV$b)Lf=C50mhKSz$b&HTlee>5oE=R~w zyS8h|pL7ijmFk6ZWuTCwojH3Yk_eRORs7+`eu@9QGSFSFR0jeZmimYcl?#2OGu+rC zkxDI}r#)uLyin^O>g%K3Hlb}T&r%=++ghGe?enUALA5Wc_9fB6+fW{%KTC5P%G6M- z81qg02Hy7q8<50k+zZ@CUWr`f4f&8WWV}7)wBemIr<^whBxI9~HRYtuxl>)x2IF1* z8SjLuO;rvE>HQzT>EescJ#%c*&Wg@F++yU>H$#*+gIdi_#W$ITM*Pwi= zKjo8QmpEs32W5HYLBxFfT0Rl)p2_-nSUGdnGnBK`#Av|2z#sM}V4rYd%df{q?YC)v z4DX*w`y;S&=Cs>`0>)tcLx0Bq2YZ6cST5vPd@=LSIW{R=k5Q9a=r3A-#{XWyT^Hw<=dC z<(3EUD!o6EVf}RDSIT$SDt&e3x9(NBYC%dmm!(EDtvoc)-9zT}RA^&X(y$0bXpHpt zha?(T@b|&xYB)RDHAj0yd-C)mvubI+jv6 z8U`x86kN%IG_Xo+^6Bo&_0%iX;l{p+U`92ZXElyIuHenb?jT!G@(f<4+&hse^-3#M zCi6+XQqPqli94Z=l>nSCP>$#qN^(TWoCXd}XKAiuPti4yaToPTvc&VH%Jaowko8_?nOoeAbRxBDW4hSV zqHVX=Le9hcX5L7h3oBbUQfX73PM*?rssZ}@G#*dT--BJk1ua)OBj($zugAM*vc48p z&Ybl|F}D*2^+)}wKLR_4OI?1sDP|xx|A%lxnEdaDl{4o*BRcUL*k?`fzSyUe1hz`R z#V%L5qxRdhr{MiFX?McPnbV#?)u4g+z5a;zf*rv{JW)*CWVFq754=+**LT9onRA^) zE)t6<2HcWA+yd+kE?l{pt!cSUxDW4{Nw^1A&YbYV_+>7G`Q`r1FNOWXWiHRQiyw;} z1sCJCFr(l?SUK}3*tF$2$I_$`2fy@>gP+45;>N+|BC)S)GUmgd1Vy%p+lw z*ac-H3|{mPgXduPaKk`;bvJe>b__g&o5GBNr(osGV_=r~48TCYxZS&YUqljPQ@zWt zCYU3ziEoTsz$88&R?eLGqIEp2G2kEW5C0I@LEP(pu}J^x7>peU2jRvr<6wVSIrBJ} z9(lxOkU!m@{A$=GT=H^-E@HmTx{i0xWPKW}oH^@B%_pG-=CAo<{xa+hE@pXe*RxnX}(0W@~{# zf4vUxQtm&nbGY>7`g_bkZ2teo4Po+s4OY&a|Dtv51uhr_~snFKD zV6&CM{d|A!=fR%ga^I-M-P-h{oU0GbJQufuN&akDIdk%}1bMk7O>B)bsDIC&`t`6^ zxYXs^jX47QTE7;zfJyusSUGdz)54n=4cd?R(|!o{2$!}zCN*rmP5OSkcP8n3Vdcz8 z&s4r@ZZ$PvPoL;r%TFPRv8m(c$b@d}m9=ttCvE_fcRQ?{Iq%7>J;4U)z5Ge<0lR~H zSx*zBTc+FB^gHpcnT&UZl{05N%iOkYpf32M?t{I;MJ?xRa|AZ=9^3*Z@l#>taX{SI zU~dq=)Svjpuvb9h#t3ZU7vdH$iC+LKXHI;c>s1JY`p^BT-voPxOI_ZLxkh1=zY({B zN&bhha^~b0xL;f`*gxmb{u$UeT=w$2vF>r$^q<1*VA6jaR?eLMOyfl(1N)**?|OY> zk{HW+-57w)dp>RellL50Idk4q_m}TH?{B|qe~3TpgJ6enFLC+oJZijhre0;+AMc(? zdS6&MbJ7#vU#;}f3BA?G`H8FjA=hDFa3RYl=PkP}zNg_mGx?TbtT=J8`M_>U!%SU_K=fg@fOmF&}hgvV**N6hWG>CDKkUd2`gI};`XExIzz~q z@yZb2^09(mxV|FYLx49pI$w`uhy|0-lGGVjjqO}-`8!Skrbj&^W`nt86ISD@;LzD% zmXL_e21|-#^X+%%iMKRlSB9kjcNd)qNFTor&hLmh@pk0D?Wqh=3XVA&W#m6Elvm}e zH9D5VdEoBIf4?eM8lt0FLI*1BMXnDHRCteS_g3wDMGGHHup|9hss|HjCPo%Nf-LcT zU;QvK82^I_wjrHp7MBMTXxr^%elXrQGnpR=I{M zE!v>vty{!=oAoNZdnW4|teiRP8Om8I)fup__J{pd*e6`r^2PM1{Wk6Y!TV>@{%=@0 zbK1=-TTV;{?0fuS{{eOh7k1>zR`aTIr(Tq~6YrkM`gT}3hIN8^T9@Rqa7!SeZ`!9P z9f-PV|8crE?K1@Gwr)B-udO?{ZI0CEb0?#7ku%&H&J(>_H|ehWwDrR-VPIgNG%r$k zIBw==k;$Ir`*a}@TfV1vGcVz^#%`pO-C;QDlF|3|yTQ(K@-1#fIuS4pId>TBtbDQy z-aj*+>r(6rubMvw=N$~H=oR`4Au(+1^Tp8TldglZ>}Ca0(doz z1}koz0oQOI>(|N|>rN;w3!4T;BG-{p>PZpk6@k-)L~Ke~l3q@kWe(rSDxZT1Sy|s2?_&UTgWLTfrP$SDJLC>x>vb5-P)p)@Y7eOg9YdFhR+#3b67r{ z+I0$=xtu}Q*opZNp{HdAZp{}*!|ri{EAB@+ z5fqJfu_rulCx!RpT{4rx;jprm6b=y*=@ka+4;CU9(ub*k&l2FjU@vfyb_k?ov2vSU zlsXgdlgadSSUGd186 zy$^N+Ml~?mqWUMiQzq5BVdc!Jc9iq0b88CGYG%?@?li9hfwN^djC;Au%3m@u{Ja8|yeFn2Wkn^izQX>?$YP;t8Y^t;^+im_x?fGejTW zIWvd!z{*w*IaNrcSE0|AOI{&|8MH4agFH+2OJTQgY0ncSyEO!x`Ng;iOy(ED%9%5t zuNS%Ex&P9i`_Ez5aJkD<)SSbx+24el!DN3UtQ^BW!Gy1C203XYkkB>5K1m0nYKEiI zU8dWpIeWL!*SKoI_vV}h#Dr;R>Tgm)=a5dcu#iXh#o<(j=p~~qa6_0$XERvYN;(ULM0!QW zW^#s(ah?$c$C7cL1;}x`iOghquUN3k(B zFC-oAa!7RauB}?p-{|V;uaxq&m1|?Zpd9^ej$XA=qgR&RH!8;U25*!(x3|J}^%im~ zh8v^fvp}m-&e4lqqchBWflM2nVUkq;XbqFJXp3o$^qe2ph7lCXv`=QVd`5443^$x# zS%>W^4YfWz?cDhY3l8M!149%Y&hLIFQL7f#beAjDftYXACzTwmtPX&Ts+rYXdF629 z*ipIs$&bOv>!ev5tkmdD#?cAH%1}KR_vl=4gCY{0-(!cloJLkTzda8t)k>8WB72UG z$7+?*Dsunmq`TUx-ccLos@@<)jaDY8=gYN9wYNgE&gfheQc!tsbWqUM&_gIjCsVDW zH$Q?)VU*PJJ)`KmRr#KJrK<8?@2DgcB}vCw)>h_Mch}Yq4CE=r^mNNi6MohCQ7Y`=V-JQtivCeMPmes`fS2 z{!6v5tM=cjeM7Zxs`fvseM_}%)8)9h`2&ood`6zn#qYTrt^} zB(UX1=M75nPI5`)ZlfVj>1kSS-w3}A@0occyd|t`-3X^mxT7byb1?9Jz#s2%uq(KD zCy50RVYbcoXuMk{+xNrDnX{!YO4kjtAN42uVb~E|vdu3_*KMx2mb8@g$W^wJnJ7sd+5LV8dYkRN+ zXn=jUKiGG{p5R`!GA9RC+hpH?_sS%@Gpw9B*-7Lhu^?;EUExo+7xo61uFT0z%Wc9r zyk{oiQ()!H33rGkas%(MKi<#4uHfR8_ds%G-^$CM!neUOmGf<|xNUL$5#A}2>-S;h%(+f(Jw7t%{?niCKVWxo>B{f=v`n`dKY@46Wc(@=crM;AlkO~7Idi&G)pN$+39Etleg23K zfE~iUhUNPnA>-|Y8Zn5HVoi;Sc+_ zuvfUS<#Ai)2<$8S*SG~t;=hEIGbi35_U;&%-|)x$FW41a%<>LdZaK29=2!4;nQUK# zl{07C9&DvD&~7`+yT*PSNsLX6EmtnZ1~7~4mUypBvWsEm%*k$eTGilsoIls2VLxy$ zS$P@`ZN{^xz8~+CN%e48IdiI=YLlUX_QU>Y{|j~o7p**Fqq#fM;(I3EF_Z7n zJH)<4gYI?ybiW0=f=gG-^r~l z>IUI=`4fHz><;eLE1x#BOt-J$o$;=jjJsgv%o$G&y)|G^?)9gfgB`-9ELX2W#@n1v z!8>PiJ_%ONoO6eGmBS$X8Gpi`f?dHSEbA-z28xxZKZ$qCWP3iWoH^Tx^356p?oa&T z{s{I37p{C_sNM*&=zbsXmr3_~u<|&dE8cW6=>Ef>?h~*tK)Uh`EsO4>c)v`#kHE^A z)14Z6^UOfJV2*bkJ(ncLrjC~LZ^(Fi{+)$)&g48DR?eLB<|DigXs|!PpZ$KYlem}n zR${xy2m`X?;k~#)%y`%fR*s2>1m~#eqgdq890??jY<->k`{GSUshh)qYF0 z-&XCls=ZFN-w`eRI{6j!XKB7p-l?uTV~YP3nc?|1`7gvskm$)zrOf0ykq86{u5Z)n#$AWJCWQ(Y0SX;5)H%?@AI%PxOnC5x3t?X)c%S0%cT1c zSUG#Ta*{IWZa&wW?xrL$8uw=Q#VhHm$;6XHItll@12lW&UUng&o1Y zaOI=Ppx&{#z7Ow|$@KtOIdiV<160i!U_ay!b`9(aE?Bv}E3n!oJB0VjBwK}*GbcM? zpkRXixeU8RaY$C7Fbv8m+(%RT)zM-XU?@fxal#j*gyJ%{XOgnE?Bi8Gq|C) z$lihX$|U<+SUGdD6X-_N0K5J?@ABy_*b!W?YWok}JzHGgz&mAf{THk}4!Bx3Jv;hy zeLG2vOMq(-YJvo(Xet1 z*96ZC^dkqk5S>6mKXUj`(pz%%$f1<(XYAU0D&_eP#JTmeU?Gqf6ex>k@&xwZLf z&9x#ff6}E4imabG9y?r?G+^{&hf9RSIvzXBJEW~`+u(EBONtjQYHRDip?EPhCl41F z#{FRPxF5`493yopDK;j`K^s}(Col(fP3Z5+{0R1v6J_xmq!S_1P)lAidaOk8eY{_0 zqWB)HY$b~8g+zLvk(nkxBjaTJ53bh`Tvwiznd^7JjbT7PAATX)}3xu>mrbu~9Qn6I`4C;0c|+qwrTz4=I$ za6BB#&a~6`fU8Pak*8}YS8|mJ>PKC|W?{0hxM{GoSDG7{u^ctTF-hZ1*APbviP#z< zy-8-Pk^NyLqtju4>T1*F#cJ4r&KM~6kxm3wV;iw2YUDB5>8Xy}#7s}8!OB*8DkqiD z=}AVMS9)6JV+B3xpPlYKO2@JFLa9(+8%aMupfO;DlQZ-hU9R-w*b+6QY>0%ZBd6Su z)VDgPd{;=s=9DGHvH2#|yIr18!*(TN^`ov_i9VN;_>ar<^(yC$BBSS0B}ZFwlKyoq zN1sK>7dN8af+r6zSyp_2+#YPBc~G?vsrF&f!rNl*q(4h@Tg(LFU}X5`$OP;fu`>KK zVif*cVs0g!$feVe%ZEYms802En5XbgnJN5nSlLS9>2ocwHMlNX;LUYok{FHKh*++4 zU0Yn|i@ei#AyKfKKFGi|qb*uS~N0!phl`4Q3XD z>}r3qb=VUaSur14WKY9;Ws)t!$}waU)WW))mc>>A34OPJUD8QK-R&Qn?%n>3V2P(% zDJ||RRaP&q4Avrb^$l>KI-{)dE>|__sHCh3heJD4I5oxUne9| zFR+hrxx^g5tI{@qr>kdRu)9F6I%<>^%fZ+4jvO`7KKcY)sZtq?`68b=EY{Eqecky| zjXt7x^r)FxudeORuj$DT(%?r=b#;HCl$XN~-DKQHp%>g_{6)3*tM&oaKB(G$8HvVZ_dHqQdEfC*F%bXzj$244l2MuuuH+SDO?Usm`(;jdPr%C7beA^W z$&xN*1q1M=8+ilXgd|4e2E+y|4=ib!Zr_G1z`JHLo(n5y&UjKYNgId{^+)_Z*c;AL zqG%(QA0}y9ZWBHL@0m$>KUg_)!kuc$RDdsOYg?}^_~*>w;uW;{pt#1L^bqV7E@}DV zRCCg|(sdQ@mr5b_R~o*Rw1!kG4acRs(lF(K zHME7GFp#HBG0_7JW^RlYkj^-3?CQD+bgVMu!-hoe2OKL5)5tiiG*#iER~RM>iP#l} zF?xb`n9CdCp}X#|!$0rJ_0$Wi=r<>3bHKQ@o<`$XIa_4R|4+hJf?^Nx(RJ*%s_fYM- zRlBEZ_fqY9RJ*ro->cevRJ*Tg_fzds)$Xs_15|sUY7bKF`&4_dY7Y@Dyxh8k{wz_Y zpsPYzDR@HIN&OJaamW27s*>yQ@LxP9VlsQen_YRpEz{dRbS6 zYlK96RhZiQChft9jl0J$!Vpx|tG9z*1-r<}v3LRLL~u0Z-UGo&^{RIZU4i$?yl=b= zR<`aNFG(t)GlYy9uM9EdV+Cc1yVA`NGwHrz)vmo_?|Hd4SfOe-d>Y=vG@8*!7tT_O z^?ur}y}>qfWm+Us9k-JYBz3+{9QO%{*u=3Uy=~^RBpN+@Ba3XX3ChOGB5fprO{(rJ z@+>(m!lohLa4|<2CuoXHI|N(#RWa>xh7p{UhK+*gxDWe=`vQ@nf;0;CS2?W)vI)E5}4Z zf|5X26>>^RAfZ>I|CBVDsnzHYrdw4^J|MKZ7Op3*gd^7(cI?x2BddIqa^;@>O0}FD z$PYV;hs%=&i!L566%y+x9>(T%66YbOp`kk$k2RsL+;Uo6a-RH(i1buQ#l04!`x?;{ zQt6L5wiPj^m)=(KwxztHM2o}Tj;RF)>v|hQD&!b%W9S*dC>TR3yNr$ujmf3KRi^;ecePcCWjoYFLL}JspQogTFuh16yNYnj*2DhMSsh{ z(IT=Yu+TSTd-4T(>&-XEiR|QUibziG^?W|Q-u#MP=owGk0|r2-u&O|>ihJjl{Aok< z(Ae9>`D))Nh^(PK%)XrH;mRnaCsG;M+26ag-9ESs4s|{y;lma(-MtFAuZQ~REJ}Yr z_t8-W{>WGKkcjU^wIXSjeH5pM9ID$U^WowQ1o*vG5< z*ddXfck(A5$c#d2CK*c2?hO~vm~y?nl%Pj}S7n8iBC~w!9vWQmK^a+zj+U5sQ^-3i zm1V(9G+Ks<>drTB(}CcHf#6FW-a?chg^+Kq9T+Or3xg$k?CkSGV->JJ=847NceP_#BVFeWczTCyyh`%YLu{2UUEx6zJt!Qd=FIA;cU1K%$u#e%LOZE$qE*~r zC)LkXd$VePuG(Ly_7>ItQnkNQ?X9Z)wQ7H(+S^q7Th-pK+TW@64%ObN+PhTyd)59y zwRfxbkE*>#wSQ9WpH+LWYVT9+UsQX)Y9CPTgQ|TdIn_R|+80#&qH14K?aQitMYXT0_BGZ1OSP}7 z_TQ>~L$z}BBWI49|!`fnS3Q3H{7K3k+H=_T;__bHu(cglRCcmk|!JyA@X zYkQ8?J`J#+@(24#*b~l2c|{wn+<_KYZIeA8@0CgRJXkq%vK@hs`VF){@<;o9*cDu~ zlf>o#VYbcodw91@w%5bTnX{chixLLeC;Z7i3Oj;JR%K&)?rLS@NAOOWTpxm!Gw0fo z3!W+)WalpOo@Zx~#MsQU>Y5b~!!5Sc@ot%Hr@+dYvu)4O?W}=zKYz6Eg+0N&Xw^&` z+=N?X_riN+lHCJV&YWyVK-QdTEBUk z?M<-q_+V>h5Y&gm=#5yfLhtIp-NoSINzm2I}|wqdpw=3HM^29YL)&izWzKK-)BYOl z4=!zaQku5iru=2RZzkn0!pfObp4;?PXdAh4asSC5_ua5#xVRTYF7D7EZ0>jAMliYm z4pz>bd#h5Ty=o&5oK zjTvCMMj~DvvB++Z_sYD2m%z%Ilbv8c96rS#>`AaAxS3i$XL3FpJ^}BP$@N%RIdiV` zwQ1|o@F)Gjo)3G13szmR!5dcA6?-1uE0gTGuyW>PJJtJRMmqk!Kiu!Z&fvn8XG=F< ze6#pok9W-Edo8S-Ip2x$9WMj#qyBgwfqlWnE5A^#-c7UUK7{wnqT6sE2j7_a9pGnBq;ViaO@NSuGJ7ML_*-oH0U=6bG^(VU*>Bx7#hU7vsG$$zBL6XHK?5yt{9p{iQ$JpTn-;qE)l3IC8*ZdlTL*lkJVLa`tS+ zNeBkp7ya2j2fG4eE6;(j*gk`I%Vhf$teiR9Y2i~Y48)5!_b!qbk;K>($uq?Rgs}DY z+`BQ}JCpQ$SUGdj?ZF8o2I0f~2_FJ`f_o9mxmTQ-{0XKGx^>ID`(DkdgM$igYtS?c$ZcGfnCC- zJWG^S5%cY9`QLc=OxCZ#%9*on4-OnN5O?__-kv1JrgD~bl{hBNx{8!N&mfP3vv3So+!bic%nG^01hw~YD&-cfB9_$J(Ub$)| z&lI$--gEJ8nQYI7mB#~HIu6WW`#pcQ*Tb$r*#-waT5PYyyJfPy23F3T?L>Kur2+R5 zf4C39zTm=@Pwdt4n-<;s@qU?f?}e2!r#pcT7d6mM-_pBgor7TXVwaC5`@0Ce*S6Df7vQzXKyawNbKi@vs zA6&ljofB=lef{>}eKRSa3M*$$c>z}Y%>Q$2-u z%VhgFteiR9cDew}-BgRV@-CD&CW)~rlvOat#!>j!v*I|EfA*-6X8J~_T`82$5 zCgn1$oH^yGM7jBe3gcS-vOnf8!VckLmM5!(jJL1mtMJa5oUeeD#}8-v*n`3OE`QFy zgB_BLGZ}Alz76l3$@x}TIdjfI))v>Z_4@sP{4xI<_6HYpD{Cv;ZOX6VeKRS)3@c|& zxs|o;Qx>-0+PlDBLK0(BU`MmI^OS|H@y?l?w}6#1=iI42hGb;y6Z{z;3p;~*Da(CW z&968q7wS_qj>0=;@;w4p9tV8oH>wQ2=lSzJ7j_27SAAT|;(IpUF_Z5ZuyW>nCpAAE zW&pn4AMmxXH@JZ14xOgu_Dp;Y-ZPW%)v$8rgs13Fx*3cg@@ITM><=zuS#N3EZOZrJ zeKRTF11o1vc~bLZdj{hvZ}Tp;I!R(|iY<8^H!Zgbx8prC32y)^XHIxB-CD|zAR37G z@JIYk*d5%<{-s*b!W~atA>0sZ-@TeV=pz-YJvoCt&5wxpt}#xf*P5@@IP^ z>Z( z2j6Zt(0~rlZLlM_VC5Z=^ZSFh z;+-+^&E_6PeK>P%@>}IfX=42<(BNm*caTZR=yP~?Y8M2f%nU# zdl;;oIo(OMq2={zuE)G~&-LefHtY>9U%9&6wA?0q2HrE1@LE_obHWqs&%$2o5BD0_ z5nQ;kmU4a-_G-LSCfBdR%9(R*Cl{F?4!z$W?7grjxM1as8(3{$vG?G;GRgh{R?eJk z2PNde(~TS3&TYMmsdkbWn_^0?SqQUjwj1ExGTFAl%Hx6UP`Sro`%ZthyTY#EUbaoP zWVX$AC%juG+Z|x#%-K$>SIJ4;&hMV|_#-|Q_6QfTJoPthy-oULymuz)6Jg~T()r?* zi`v@G99~kq?Hz4xCl42Im(3lrxl1;G5RHEF^Nt ztQcBeT;4%;%siy6ZQFB(gHc>WcJ<#-yqFpq%)FQ%EGaIG`AKo}xF1|fl8tGra;2es zTX&(>)*T#2iM6C0d#Cku0^XD&) zAsnKjhHlIgx4=}Cul8sS^k&#sPO!!AkWPe4Lne_3IE&Oz@!pw9 zk)E?}wVGQS33Y?_3uIAkd4hzZc|QyLh09xhNZKBQJ#{>d+rXs$B&?h{^#w~S<$A6_ z8E{?XH`~se{6dl#jcVV%(l-%rq`Svq)87cUgGqlLtQ!K|+f2RU^lkkFau@}yxL zSV4uu786n}940QMEkwb59w`}4fkW1rX&O7aN`{~|FiM4u> zhXPGb!;O8C3)FJK{5I^a0a>HysSK{|Rw~Iyk{=kXdzm2wx=V$XrNz{DU27j;ECJ&H$r4{SR zqqJTvP?UQ8{g4k->VK%aQ0^`C1RhPEz)sIsDYYR zwU?^)v#PyJwU>)FU)+=ia>!fsPjNH)w`Ik};(s?6!y77YLwDKBic7@*iUpn_`ZKDP z;+9cH{YHMGoP&*9x*N#~&s(}5ih&?^h0a2&I6yj)+NmL*o2%Nvx_SRUykBM^|G%)Z zRmi7Jw?mXA2HdA;9G-9=hh4#iE7$R5HD$5=JKimm?O$Q#%-MG4Wa(qVFpV#QXar-WT=<_X3u0cWB#f%6sE|Gb!&0 zD`!r*L)^9*fKT%WT!vl21uQePyj`_2^h&&2Cfj~kIdisC^ewpo_$q(ESHS+@0+v^> zw%xvhFT?w0QoaOM&YbcDS~4;4-sX?@R@f0-ymIGSu+C#$y|>_|D$QSP57&L&rHJq z11paM!s;29LHJ&O!uP=500}pr&M7DAEq{N&du9^86IRZiaPtYILAZSf?<#8pk{FvR zOJ2iG%k68p4eyyr_|5Q8wm+}9He<$9iWF#+vOnh+V2^M)&lc}L8rEBv z_Op2ZOx91s$}y}HytJs_dzA0QC6LhXJsz8MZ?JmrasI?q-+P>}tWq7QMdI`wJEAuR z&LC^N-Sy^>;|0I6upqK)-|@!d&SVvKub~1&zwy{5BvO9k(fzKD7_;kbNAZKMQf_U& z+8zA+a8AA4vaEOlng3DxZ}1(FL*=Mbdq-r7Hr|-%@??qUs|3r%VEo?`SxP#Qh-=7+ zPTOuzblrI0%;fh$SlLQ`l5&E~rIVk$JQ7IgZ zT>WJl2o|dD9C)BB2d9j~+FRYGDN*)g>Y zGBq@EBZd45=Ay0?eR{|*U{^WO7Qah65iAY$P2CVS)wy1~`WfCiGl%>HRlCb$_)_6uO;81@M!d|flhNh5)Tt{JXK8pNt*Sks>B4U;?& zk?Musw(i=h-pHNPsYcvx^Dc49-L|sXUN$?(W=GLDgRW6>RSo$ygZXMccM@n4;9Dsh)0Z?<2;zE8hA&kK>LYkJCStYxv&GB z(NV0BPJ~%wmPkpFF*H-rY4ppo`?K-x*O`jew3N?)m6d}!ONCm!o18SDT(njwrB{K> zmD6{`a|ZqYC6mH62siAD7q$HJ9oRoy@C!mUNMsN;{%_+(F!6sAR#r37H(DM_oBKw( z3W>PQVEFPfbph!qW?$GxPT<9zNGHOhA@^$tP^wo= zW^cS#W=`1?R}3(pP)F<^@W@|5=iL!;_jr$OVt-Qr(0i4r*-{$Ay=XT zW2k2(9l{;n^msWOxz4a_42*Gwp~lc0LS!y;)EJj0jWu0kTr4EULya*bI(Q@Z{1_%^ zRT)2kz2yvo;@3$hLZ%__X`=SqIp+qve`e14F05?joa=-{dUeJ;d9NS!nZf)?vI)B{ zu$Vsvdxpz=qtHW-=qPORf5WX{l7ARh&Yb+l`rbe4H-rAXUA^hgCW+CgGwmyWk@46g zIubhqX5f}EBVa1591{TviUnP7$Y~^jgswL(Od86n-gtGxRCi!>ptzWHB4`?O#hr^e0z36| z;TAAc&-Spgm3o#WmC&h2Mw3_SndoB$ZP0oy-H(e-8W<|o3vJ!K^cB1C;%JSAft5zi zSZnl;an2Fu3+p2h?MOC*Nx|r3Gaw{llTC_ywI;X5ZKRn?VQyBMxfpho6MgYq(uqK6 z$kWeSrrY`DLcD8cez^cvw(`p-ghYBX%1l}Nx7=lr{yCY0U7;4~n_#DKNzVx_gti7? z^S%)`fXVxZuyW?S=jz(O;|$n0T<&szk9!<8 z{k6CqO!})}<;>|X)DyLN-53#Yjei7O4f}^10h<}mT+OlAQSepV7G@Ou53C#$1qliV zU3HgdAgcD*DcxOO?LGaKN-cUy&Oc}fSlV(%Tq8H)`bD^gzzPm!c4R7Z zlo?MXrJ)xt9u*R?Wkz~)&O|w8Bg0I4Cko4|Ehdu$R*N}#7hfk&MS!TUv@2GsU;VIk zBHk}En@oU}t!%P>QVE?+WaM~dlSh)qugWIxNq0qbR-s%7_KX%z51z=_+eQy3r;bKu z85}XQM32T8F}Fm2y-N?HIf_VJI}*(yNy9}anuCNyY@$hVg><$xek17&!W^xnGXOix zope4(IuSSx`7qcTf?drNaTA#NX9cWm<)2<5k>2dGk-QVI+-8vfJeh@E!4~8ro3MS8wYc$W>Pq%5B}HN-cU8a_76yEanWq z20c9OsqNS|RPG6uOz8kGItO{j@DW`*23_Z!CxV85txNt|S75fXS{fah*&Jm@I}HRY z-Bp0;vSR}wF&@eeK`lIdWA1r7OwF2mwuSxW1YcZ0IuSOlZ6F3fWr4owc^hs4Gudnj zD_hBCv5-iw=upe3X4o6tKR{M_)*Q#dzTt8YFQb~{u&0`%aXXmw-w!KiPCvAaYI@Fy zfRFk|z=vV~a3jE6Mm5J`N5OyLwlJgMOjtQ43KCQcy5NvgN&*R8aI_^Ih$=YFN_XL7 zVs9b0qK}@OMmB=oLW95(mow%XD@HCeybca+86TO_9OcH%NvY^^{8_-evZQ9fE{+YC=z{;7^o}*VVVu?bGr;)SFWVWRetw@kOQ z%T;*S%>}gGE4!@mv4Y-HS(Wbo(#ZokdOL1STQ@B^M($7kM&lTb z`;)>L-=9ePh53a< zr;mmVRSUyKo3(uV(HwzIdTc!t>DChq268KDe;0iwsf|8nO3zoz z`4!^jl}K^%1vr46(buStd2z8aAB-g!iXKU1Msw5|S0;@;U1wY_B*sIXF+Tum`M{Wl zZiabUCC5);r#VBS_-)dO0BXpuw>gJlXQUtFW-v3-4`5|0Bi$e*(z}aY)SSCVj(}&$ zH0*Z4ih!qK2XP}n?)zECVC*<}5;uk!2amzZna9EA;n{rTSXlUO?^xJ~Bu3)~#Lfm= z8GFE(d0`%I5HlWT!^$!7kf6-am5Q8j5=iJu<PlsFd=KA`4H?SC*)$0 zbRtC5J1q*9>Q`^?T7&n?%ppUtvXw)sLL$A|Vw#+eos7Rpws;m3Uxz)yWjr%<1VY0EV%a|Cw1_`U~4opir5LFKJrTp61V5LAO`UFoj zO0;lby*Bm-8V;78oDnzbuZ=0Q1FLzjjoq1)i!Kyy7ZT&4P?%*7-zXYhfvKshNf!+- z!v1oCFFry#(V{`#dzd4z?>(NwEnp^_XJBP3**qmA(kmd;Yh$L@4DMU*g;YNV@+L$>OI|>fLZDB^i zL9lX66eOq?bipB~lmrsG;P_3_WTpy^gVWvjJ*!k%(blcVI|`0Z!vXA!zELkY$n2)o zyn>^VG{AJh@o^zBE(#8F_(s~f9;RkZJlDeha)K{jMLMp6!yJK~Y_7pAU?!WZVPz}X zd{s!KUT~ORGq^uQR$;dX7WeyM-*CBy3l4J}HvM~XJDBwEft53-A1XLZ&lwRgzFBaXW3i*49k+!U1slN1F;S49TF?cDoKg}<=z`;;NyAwc9DAj^!ZEd{ zQW_ed1&&%h*RwLRE#go(cAcq*@v^$dsh`4nWqf2_b36@sU(y)UHOB!$Vm#Cw(+L+#kN3{ZGkI9q$}`J_M0&Nx9Jy&C>@kD) z6=acTopBlL7cOu48nZnHoBAcV4NU46!OEFaU!b=itb_cm{^W0geZwU$D@^w|Z2C9j zb};Gx6jqL*pP(?%wS}BI5=iLUV!xyVQMJXz>29W&oT~+OMYYhI?~POz9ebns${BKv z{D^xhl2;bFTFdmv{N<=CHl*QT6}pNqU019pB*sHsF+~sDm}Rzusi|S=$0pmro^paO z&Lf=&74?d#w%yJzTj6~(^ULP2vXx&p6%y&y6zUaI?JtA%@nnx@MR5%56)x-WE2eq` zHt{2I3z)>0!OEEv54~cleP&Sqh(GmnV9#)=o3EJaQP||q!mVJE{}8MkLq0(vplb;^ zT_ljuwZwlsYl$<{ttC1KD!ufIsrhBqpTiOB3^&FaMf8IJ==TEx>scRGy(wvY>007O zAu%3miAl|28+qn2n3`2d{0;V#6MXUaq!X$tVTe;;vA(37k zp$^n*dduKE`@P;(#0-+aYHKd%@PT?w`)%4&@&1{#C&9{@(+(Y|*Yub{d>?<}?}7co zC2k(5*BpaQ{oS|?OzQ7~m1C$UnEZA9Ag71~61sl)VbWx!)*_~*yRl+MZJ<)A_tTb& zogLdM&W6L*8FP)3M_iBqkN+1&lg+$M6=x(3E?qpV6%ym2cu>TegEtb*mtbO63GoHk zTTbZ3PmxZvgpgB>V!sMaBUW(UI5@@Ct4TGXh?O zm180xL3N-D3^|P?kkAFjs-y!^1;(;;7bxbh$d~ig9K9t{DAT{tCeCW5cc>@&GU=ZC zpc%{=fMb3HmKuv3N^2yMNzU;cWOo`JcCV&FPnRFN35oGgel&STePGN;r@%bbi1j0p zlVGPgL!x*H=|ljjBe2{kl^Obd)Dv(smy$wP>~Z(0tsEH?2>dKs!-`ncgN>M=L*QHGzct@IRme8+$gVraF;$_ zN(w>O9?uJj@lbnos!<#HW#fHOM(T>u)y901z)CbH=3+bPM5~P{;tr^ZOLeU4i#d45 z%ses^R<`oUG$D~*eKB1w6SyfKM8;rOqD6Us*d<)bvqI-!#j@TP@1DteZ&*2V*0c5U zhMRZYpZ967Te!UCr_-$=*mXh~H-X7~C9E97Ji#Qd>jXJDB#_W`!atKvQL0WjJKY71 z$+>zdpR3VVlXs2o-ux~cu+C^3+ufVe_Q3SWH04;exGrgY>B`|-LSj5r4pS5~8n{tB z+yhgyrj;q`6gdR>i#2GSfyWHxiu7^S3fr)!LYkQfg&#$1O7j8t?H%u-!v zdZpsiu*;m`P&|utB6u1L#67HI5OyYN;6^Yr(Z^wBD-(TGNTgSFY$8`J9F8;S|C9{# zT*3G;>>e)tO+zafj-l8w@B`cwW(?c_D`y@9o9U$hhx3d$c-lV>o`hY*je{*j9ISIV zb}T%Go5PHSzro5ev5=sw(3OdtWD-c|%A_ypKvZQiE8SI&sXhJlnPqxSwI^4~MGKPc zm!fIR8GDR(OOn5(Dy(lBADQMHRmc(=5Oz`-qhx`ig4g#^(YW3RW&TW35pd;~O6}1T}(4R6CN*Cz1lv$>w81 zA~xBi_}%5{k+B=;<~o?4m2SQTJIfgY#VbiC0;VA!*hS2@%bIWC-81ve*I;EU-+Wm} zq&Kt7mA5$&ml?z#Ad|2w)*^l%>=-U_d3);^gw6d=xDib5cf-n=bKgkc3#^O%r2W0w zcaQ{DhjH02G;V4l1F`vUh#SJ>zaFd{!#_chpz91dfh3U7w=*9}8p!H)=40vJ&TQCI zDMz2y9t_8;GuRqEV_aPb!y|K-qo_DAX;|r^VyTcA4@E_LFl1w9DZ#X?nWX^x$O*i7 z0_j9}sP7pGP^wpb%hHGU%1k9au(Fj(P8AaAl@RKCMh?E0lO>*&!=+4cFRY+<;DaOi3b_@Pa;_9viI{Kznw^{h*Qktftq_bNGKk1L<)|Ch zr-5M=w~9AiH@qcCkB7QpmN|T*hFAhqRD;#apIgKJat1B^+S<+>UQ*oVU2SbA4;QzU&Gxd{K{h*z#!5m9g;sinh5F8s z={_R>jwP!+i;Sai_fIU8X=O7=Dd#uZtNFg6YGK$B0O8LLnB%a+;0W9fW*8g>D`!qW z^w|N^b4CQ5>mLDU!~Wr>0Q0j0=2+|~I0LtZ83k)$<(Mc)P(|oMM9wV}1?0ST%FU2w>0B!Pr3IKH1WiK&&3hc~2KubGFmwQYOOaB%l^5#5FL z-%z}m8oCLa7xRN9#f33HDQ+J3gG))WF?nTwj+Q;zx~sWLWXo}ts(6f z=0|2T$7;vvNn=dc8LNc^&L;t$`HN#>KyaI)$898>|AxV-D@iYNd>(d`lYOy4IuR)9 zg*I)wonk(R_svW(pM{mJ6f>MuLZ=uRL0&1Q?qdb*@miGb9HDp#3+3L* z>PVV-h{l4g$v8uebHZqDZN6F?`G9iqYhB9brpb{gcBGd3lOoZnQjLB>y&8Idk%%TbQWd4Ei7Rr~d)i zJKQVYyoHI5#EyXDa7&mGa5StO69EZ|16^OpX(WM!zJ<9bX%bVnFq@`ZUu-}N<&m1= z3OHV!!PZzl#v1gq{Xx=+CF;L@EI zdgIl}_))xTCgVq7<;)pRUs@^Gb96#Lwaezb;CAEbClRyFqT^3xFG-y>>a7Vgj!Q}p-<-vL5!IwoM<-zfAusSnJ;{zj? z2h??*vE(3rtxMR;`=H4&Nn=V^1xE^r@lX{^(E~S%gVSMB*7UI&_LLKLv5$13#ev)v ztZlb*N*(W;nNv=Km93mo782>z2&CD-5z{*yB*-l8LUQ5KX z?jd_TYl%}~uW(t1YY9C9oA}AN1x(^6!pfNw57iRdXGSe?p+EHtV9#)=o3(@& zuUZ+PBOUXn4du%{`N*R9DR2-wBarcmbMh%j4nvGW4F6Aoq?L}&f_>%;hT;I}MEEph8SDh9tkAc-AHuC*CZaX4vXzL2ghYzdk$lAN z@|?l{+hiG5Oj`WE3Hyi3UrtByW3i{Buj95bqu?vBa^_L6cxme)JR=hR;vWfrhJD11 zge{FD*<9nXqv4OZJU7X0NCV_-5PL54F5LKM~J>55++v`I;D~*$1 zH$D_iVa}*ytgx5-K6xQck4$ln5@bFN2dnN?Xz3DUj*u7+CCEg{%b0ZD0~50*op-}t zazZa|OF9uEjmaX_s5n#o>N4Y9c)!e)@(x(pN+~-FiS){hX>w|IGA@!Wo`uB<*dtuV zGeevC;z;-6y)#MYVCBq7&(fuYllEu*X%E9*;nJ4RP|Ok7<-%uh3z)<|1uMr8PcYZ( zazRcD2_$s6Ff-{uRJm|a%H=|DZLn0RN7gRxp&?+2$r)#j+!!vOE3+dLlcQAlLsA;L zRJc<}jEho14%#Rc{sq%gSB_pPe+BlE6L|4a(uojJrGkQ``qibvi+I1xbn+amY^9TD zghcA4f|K#v4nwad-w%6*OWQ0J z;)oxPTfiiK2&^1KJi$D#O9eSCB#_Xh!tF_ulqwajN_PWaXKfXISEjF27>ra47s1i$ z3^m5*tNa!h$a-mfWQKCo44+OKU%F;!2#N7fGfZj@+o&482UD|Vl`r=@L=< zZQA$a{WEFb3oB<%dyc+Ik0Cz&aBt#MNMbZ-s@X5eX!8{qXUm;j8M0xf9bp8cprdZ0p`R`U1c*IAWa%hVghJ`Cf_U{!%hMGFLh3 zheMObm#!b)CnUy0{V+uj+?ZKTgQ;0FOBwc*6MXSx(uq(pUH~9ys&BpauoCZ^nP2*0 zWh=krg+zKagnF4Umi1L+k7pHe1?&|rYu5_^F5;Kr7BGol0xM@u-0=dy&gLsVxA{}Q z74{65dfW>DF7mhFRxrum3@gWwPf!TxT0%}22_$qaaX`|6s9Ivvbhlv6?Wa$(1g8;H zs=YxoP#MUVqfap=EkkpbGxQqO5ualCtxL#}$bmG+5t+;!B}NC04J*)9*y$2uLm@F9 zN({v^;sK-9*a2p##;c!kYzMo{84ksbNGF1)AwPub!l;bUMaMR{5zIui6|8I}qRoXw zdPT=3^2XocID`I)WSD35aXjoEF8xhI8zme=u?x>*a8sBua3rjpc?@i(mopsBGveT5 z{&DaT*hSnp*uq%Za16(eg>!Ion6YpctQ->y391TRn8-;cfrKth)=N4NRhT@M?)mQ< z^j4x}$S=u$EO|L2Zp;r)4D61~YmTzx=Sf-Uvg0NpF&@f}2{d9O!8{4GQWuRbGaiFo z*?udGmqC)#x99f4kn7Twt-fz{ny zy5YkUos4JTT{9U^g_SdB96CJF=DgIO^FFXkxSY+y6P>KzgLltl{ccz}hIN8DU6%!N z5=bDS%Yqw|CMH!DY?q3@fU+-U2;S8Tq*7)^BzN)<$NeW|7e7qz`rH ztKyW5;uZ9ryyBiTkno+<$ODlP)tK2+85qp<)Vl|B)f{y_*gq^4cNdDWr9*l%%LHhlA2DV#5bBdo9e^~r$x;wi! zEaj`wJo6Q@BU}KD>;q?@F+L-gFXe+rx2p@a{D|L@3;k}FFgX&#&16&5q5Gwz9CVC+ zK@y4kf@q4Lk!ufzY$TRjVNUAu9;82%m-j8OkDREB|4TX%9*s^>xCl^IQn?xLm6=q2 z3M(t)^yT|wA(7sUF+~>h4!$pwCD?Un@qGdI2bZrrv0vM6PaV(VeKRRP4J&6(d4|3V zagg5PNN>`ckpxy#aY@UK`ceCB+6(dinY1^8m1AfpnAL+RS!PN(6(o?*ndQo)VXF#* zZPQ)0>@4Tk)N_4Qf<|8X%E7Vf3^c|w&CrYwRR`Mc$du$L5l%@OTDn9yNl3)rd8Ak( zOm2UwF?<_#3YYX8Q4tyguz7zIH-O3e>#%a>yyxm^H;(y({>=XZJBG_#ZjW>f z!sh;G+z2N3Kf=l}+!M_Hx`2=qMFI(3K%9_tAgX|PIMK>Nf{$chN~?U0PQqTR=V%o% zQa>y@3e8c@U~3#Q;wolg)!MGUp>j{XP$}n1UBQ3m*9_*Xg<#Er{vSOp`yx}4qfXeE zY{rUf6+yaAn4eTa1;^N;)v9=QaPOLSh|t z;uEE|wr$TDK67|U@nX7sP982^L{0w<#jgh!Q%AkhQ?KUp!^JDH$0Zl8^-2Q#;W4r zaK6z&S)y8yj$2l&5WkNOFDnkJ_B7Gv8xsd|YkKp8_5R^Q-lBgR8?Go-mJcs$boAr~ zgTzDsI;omlt+j@V+bnKtTUJ~m{#QH?IaS8SyhB&YmkJG2=>p z$e-)|up=<8LFQGiJEFDpb}!y3lj}XOatzl5Wxc*LkflKa30)fQlXM`eG+dc-X-FA6 zS1p`wEG=$&G@5vv(KUuki`wqUJmk1#*o4O7dCRasNUWn|Os!y;+#0u$Quc+3sS8Ly zg4`Q+loNV!2hxc^QA>+0)9u8vC*CzPvFr{jTZv^iA(8shV#{3y=`xw)Srn{s!xy)dGg+KGlV8?Kon@fwWLD<|c!Hr;YzX(>2;htdj z*9C-}C=y8M0%C5`fv5sv%XCk!-mtgO*B4n}NficPP4vuhNz#Xo9ks%W@^a&w z7MH@2>I}2SsUtpeOuA*MX?0{ea+C)bCk-oI9$Y9S#zT3~sYY#72tR;nSu@BDu$!E~ zi(es~2om*{WfPa`SQiQ3#XDvulgH_uqzI5dh0@%F>b?eWf;8DCgRq*fm`48ykl_g@$3XKMyy9$^KkeIfi|LazIxUa?(g3 zp(~0BNe7}Tin9`JW=Q(TqI3UTJ-4{Nb}%1VgZK>%0?Sm+a2tj9q z2s?$#T5fVS24M3ZzztyXF2c$&yb~06x;~T>LIMe0AUubqKf(m9dFJ=9&zwO}{2A#)_%!4P7o8xL6}qsv1Gj>i zfPM=rTM6jbLL$AwVxgRyU7j=euYZDfo$(gzA1?pRLTC55#$r!HZ{W5tqu^h#a^_L6 zSkKxn?-`M>qkkm4og_x%p2E%qTN-OsuJPE>uq|#6GaB9oE5}4bf{H>HC331sAfbzr ztCNPcDoWm+?yAKG!K>Qm4F?C7$O96~aMU`J&lsH+5?C9V(i|nn%A}#BOOAda5nFPk zH}6caU;qCM3`kum`a##HU=KMN7tbV}2n}@vx%2h^PvV_2bI19xvXwi|ODdsrhm0Ao z+>!UOVrY5sBkA7IOkAq&AtDLnP8tNZ(BcfP#=#>ldX9K7Skt^nj5;#L?MeNvGsbU( zL~O=bQe5Y`P{lqv_yIUqr#L{r9~=a=d_*TTZ{PU$dCN<=o|OZ+a`$RF52~_yxN*`L zbdq12r}O$(=7$@(F;MTPt)PYSiq;55UO>m))SoMB7o9i;gCOr0dg$D$Mr91dSLW!j z{%ZH~e65x*b<_9P3#;92PWeaE8r%&~c#bu^kR3GYDN&DIw-D3cmuB=jbD?5#Rb{~Er2R#f8H~PoG zc>6{-pDPcixL~>>jX~9h2F515R#mFY3$^A%kuO$dA+oIa5*0wf!HO@d_7&B>s@m67 z`!ChLuG)XA_6^m(soMXj_AS-6eL(83r`q*ZyMbyqRP6-SwyU;7wG&m_DcXE-H5o3B zdMvJ?e_K{uEB^O%F&xL)j*pWWRAHxfRMSkO3NzN0wx>~GMYeSlxP&A|V{Pdn@=T<_ zZpbHG#sKWaq^)rSm^Xx5z{=JQVcNVWH49<`^a=i;kA=PAydf*vpr?vO#HQso;iK@L znS_skl`|(iBYIO}a6ZqU^SQ83xSZuF3{m@S+GpeaGijdzD`!r7YUuXRKz+SG>T6+# za8b*hC?Vr*&e!0bGdW)kD`(ERQ`Nx+>+07wQMU_u?Hh`Q8I7 zXU=!ibuE+_(5IZ}U6gf_#Ml&Nn~S-6U8AwD^mg1DW+ZF?D`y@F(<2L52Kqhx(Z3UR z3HN%JZ?#6uw^{Fsch6+K6Rey$>)F;yqQSe*pLY-J7A|l3{*g5VoB64@2~6fE!^)X6 zpBh@$HE3V#Py0gHAza$BVhb5>bG`uYoXPnUuyW>{JJssC!T2VB#y7&w;4+pKTl2Ai za-pu+eu#I>4W@9?+-gAbS+=f*0x?-@K5NY zM)vBcTn0BrVuRlow}c6PZ&*2V@Xd?6UNw-{{gIyryCZ~rounfdH$6AD5_lQ!n#p)2 ztUP`g*A2#B^k;k(?2crN>o(&n@UEGRFN2jcXFOe{J-H3R;QTv(&bPrX;c}LXB@y#& z*0-q@X3?}=-VCBr&bKYw`*B|}auxGgFk@s59z^!1CUkfXbL-Mq9(75QY^(TJ~>={q; z!Tv`p-(QVe!6g4xSUGd@(<3`M4dnOxBfl4R2^YDn&?DyCtnb0QXR`hStQ^BS!K-5W zZ8Q14Q3475rs}W6mR96*-fAF$6|@(2b-Hh=PAJhU5z%*5H#r$CJ)JSecu6Gb2Vtbm zk?paL_ssc>gT5oy#3!%tk`l8z!Yjs9##$6Lyjlc5yq>i2zaO zYe`h9TYZzTJKilbk?aO5E93Mfyo-=XZ&$iHU&}>!C7I&6BfTGX2$yj9e61MHdAxHb z=jE_+=A1+4Yq?lo=Fj>P*eP7r=J{GNyf4BHVDkPntQ^BT!R)RJ1UVrjkkHv>R?>l} z0^!yT+uCAhq}ZgD_FF*>v{&=JLp{;+-YKVU z<-4$#oS2JWBAp14#$=IK6fD*65v}9CufzLgCXsK!%2pEjhLA|Fh?pj4Unk?gku6xg zZ!vxt_6V1;+<6eT-kvTVzPl_W-^Qnat=xkjZBcWqC? zEnpJwfR$s2Cz#!Jfgq=a1QNPH_(amsRRzLr>7J0+agdy&BP$U{z_IE~D~k{{*H7aIMjK>0VdVy5v@C^`|(bh3FKZ_*-9Yy2#NIWq$bOI5u5Jx zQ_*YCqC15oMx(H{>B{$RTBh5KJMpfWjN4)5%o$JD_fR(Hz5F@v0lS2I70Vr85%X=< z@5H-jvfdR|j$xf(HrEA#oCFd`=z`#eq=`ut1b26&`apMDPh}|hNK&~{K0RNpL~4T% z!SU)0wnpEGH&IDz17Up2_Q$usYr%ek<%4F7X9o zan3OaoBJ)e5lrqk!^)X+-$+l#>tg?!Kl_(q=Wy9CG!|wf1F`wPfE&W(|17K=!#_cJ zpeqbHfh3U76-G7bKvad1Pj`K`_2N_LlZ?TuBjHtucjeIR&sj)4W7z?FFlVJ0cjP?sm$H4@x{BtzyGv^?P4q!TZ#gX#r zn)3ywBXBE-0q8JT*$P05xI}h^N7^SDZT=r+mIc-y=feJ>@?YgA8J(lxEZi32C^!RF z&V3ZD>XVH2NcdX#NVo&`5p^WA{3N4uG~ABcLmUma!OAJ4!K0#3MTtl?9ulf3S?Jpl zS(NOP?Xt&|{maGp>(I;D7n-z6hlg4`MPuqFRmn(%@*I;FNduK&24;`&Po#)++YWya58{_MeYN4mZ zQYhv7f4-gQTRB)EeZ$SSfzpu75$yvZ-i>Tyk|-Ce40P*{(E0kP-1dmkU+G~%uYElj zC=A4PeH#<$KygK_&|8Z`M(Ym_`htj)+~N|O5A91oL!|*0yIX$~(7Oxr_0i`0m+hN( zE6SB6E8FR-Q;W62NaE{!a~F%R=gpJXb>wwjd0kIl*O%A%^16Y%ZYZxC$?L}Q`VM*B zL|!+Q*LTY6yX18vsGKf6Z?)`)65x z&2Ms};5VL(9mnjz?&$25N#2$4{gvbFM%HQ~+z ztC4#)dE><%hkvFWjCy3P1mylEoir(xyX8F$7j zJOn>P1ch;Tp;<7Q5FAYb0G3*H{ zViBkLlDHM8KZ&&;l}PsYuyXEX9WVQ>-xFLqufrtTQ#w!NOB&9X z{no}CC30O8R?eO4v|jZX(U`dJ59fOT>=5e26{ol+jJNCOeeuSLocDs2bLZR{KgTry zFAE1e1bc!CSVU(2^x2BcgLtb%vi-1f?qnzQ#!t`#MMwb$Uy z64_n}E9cI3a%1y?f%nJZcz+0cgNj$IYcwpk34b4NnMn9ySUGpX6ZqB<1Mh#s@%{^T z1r@KDy<*3U6`B8mH%nyuH&{7$wv*(p9fR%`#o)SmGbYiVx>?-qHntmCd^g1#Ci2}F zR?eNT^XnEzhtoX*b_F(fQ%=D@3~!dmb`h+cJKN59x0*3=&kaX=7VHTsT2U|aJ$BZt zJp*r*NcJ>XId`%X#XdoU?H%E4Z-;$BWh;(>mHQhly0_u&66xLoE9XwPGv1?Vuzfz9 z?X$2asBFc&L$&KL#;bJ)9#jrD| zgvI?(V@JC+hr95GiF{9hm2>CY8SlzB;9eXK_mi+EsBlH@=Y_w@eR0^Uu5|PZUB+@U9fWQyeIINQjDqmr*O)Dgk3?UELJ7OyEN8Z z{yp9-k?n6`<=okJ#_t0eXxCX1Tt%bs09U>`YAM@yKF#-qNfATo@%N(>@ZSlJ396)ut8QCd^Q z@t2MyaSO8~@D;Y3VSiBh&PW{H=}r|l;B6BrUkfYePI;y}vC~2N$#Bv?g?&OLy{2(c zr6@!kHN|*v^}!ADhxy_@Q_f2!J)n#k%hqp*?tmaTCG|tcXX8odP?2JA?+}% zwffM=QsV~~##T3t)^d`gMwrDqf)&wnY^fSyI+qv=HNx~{ z*Nq#FonT_JqpDWe0rr&>dbA1C(YVyb7x|Lb+Y7tf;;j?o%R*S$iZ5GoiR@~Ic`BPE zy=E})VO9m!4+YpaROag$StZ#IoBm0-9Yp%a!^$c2JyL_pE+U9{NT}>G#kV6eyDZ8! zyG&nJsV*)Jb#yIf38u1KOD{LFu3!V#IqC=}?liInJ-rCC8&+#^%#mNN^M#`F%QakL zEaaCNTHlRe^AOC;N-z(=&T?XpzQS}gF!IY1n)!B&xesri7-PNzD_b$C(>$ay8KoIB@P>Xy{S`b*)gzW_Uh%3ADLFgjrK{yc5~k@sg|PC4=H(?NP^IO#svCsfkrvrjke zBHlic_F`B$g|ikM2cPpDRH`_*iA#)y;=uiO;SXU}R{Hop>?J4e=o?H&FArAzcHzT#yToAfAgpW! zlkakg>l=1+B}bsjG23&A)Etvt5ZZ8+t}vd6 zod83%GS9KF@0{ZzdLPr#IMv_5H(ji}C z!M=rZPPQMpoX|LKCRyHI#rlAyQ|G87Y`X9*ZyQ!?W7-jWKJ80G#hy#KL~86=kX`Ue zIn(GKn3ff0z6HC<2|T)$>1asmEzUH$8*i8xQ0|14t$^|sE|DGI8KOpXpIr3{GX|TJ z7Uh>Jq#a^O7S{-6q!&@c>l~Z74E2s=` ziR_AonIh{pW~Ffp`Z;DzVAXIF>=P~JMFbp*^ol~iE!dS zf&D@yKG&!l8hx;-{|L8%Nc{(}atd{itgi|Oks>@KRN=75wO%G+$kqE*f>akDxCEH!9JmqHaFO~X@4AVpGf?0@Y=y|52@sNdq`y)nw!doQx z-}RXURvc6LCJO^M<#q73iImrdm2;<@C=48=4-O~&e%L2e(q>`crhNe3K9TmmuyP7* zkF2f=1Ca_mBvfJWkZ*93g~9A>3xm1C14ET+t;n`f4HcL47YAw`UH!#^zH{nAc;q^V zUA?d6&MEwWh=%%2=3K2_6gMnZ#&Ropvut@j)%8LYdm;V7OFTA3CBZ16(?u=c0?8@Cwd(y60LtwN5|%8jhsHR zAi8*dM@QdX(IxD1;z+b{+FxA8{=VM1UvU{b3sHNXaUeW!oe`*hV9QdZv~1^ro@YAG&~*#GDe#%YPnQEBW4k4hO!RHd=EuY>}>r>}$re|)yjv8L?Jw(l?F zCsFDrVGfNF{)2<@7ZMh>8UusA-dAIwpG&Nw+I*?poMUow$*Fb=n@UmdhgR>1u4aFV z=ioWJ@X2?cxO`MxJ|->~ic3HH`4dML5LWjRerWl&L*i!_b{EUTBlQzna!C9eNT17h zw@tpUQ0*D&tCj|qju19f`F0|1rB)c|8zCHk?$^NWG_RLu#nIP%id#3En5RuNm&AHtLt+iQT^8G*s!WHD+G>Xb%Yt z?dwLY-{{8Tw!yCTRf|J?l`@-prS><%MlYX*#i%Os$D-(RmbcCySrmO*UayeXE9Lbn zdA(X*uaVc!$m_N8dY!ypFRwSq>y7eylf2$6ub<`DVzitYa?soCSG0otX;HM2|9&br zZ#dd)qYn1}7VzJ%iu2^h**{}12xa%3i8u`!_v!aD8v^gs@8#Vn02$v|B}Zp79j&-& zYz2v9h^$l9!pyhvR*5%Y-++~^8}h8lj<>=7ne`$N?4MvqP{B^*H{DLIf5aOla{WE5 zoIBU4s`4}D?fQekc-LVPqp_x9&s*^%PuXtI-nH?ziImrbm2;;&xlwr=jNc#5_yE`& z)F~|X^fxTG3Ga)yOeDM)teiXH3H-jtz`HCQ?-1+?Dqe92s<>T~?o+vU5O0>qwjWl` zo$XY0%V_|_!saP zXD++5c0Tyw&v&LJR=f<>^ls43K4uy~fl%H=OKQuqQyW@e;Kaq|d-xC6YZ2 zR?eO5RJF`*@Vz6P@9nTZsC-2Ut!%d`--fqMqrlaHoRs(f09Q9(@D^%2TbkvPU z#8&L?!Yv>YKLJ)wA?~sDGTuHH@h8h-1DA({+Qb+6J}r}*_-0LHPq=5LZMjT)=Domo z`{u;%%HT@2^GAP|2XGBK#!11noWy+>yF#J)nK+B@mzgDjMZyf(WtKqZ@1Wx+0Zv&0axBdlzN zknOodc4dM5w7iROnVAw;7nER!PzfhLEuX@<7jK-%xf@o_opa*T@-Eg_gtNX3b_$iX z`DytS-k0D85P5$JR!-sVk=IpeAQFOygencz^zDc&4St*Ln!)(Km4lU#8@a2I^!-ICBhKQ$x0uCu#cRmqb{bS@sPU@I4IewDiHedR*69*f|acx zvV==yS0KpU2M)g1F-ro=gKJ=aQ28czAGj%BiMLIpd^xO~JLSag0|)6JhLiq2>=P1a&ki;fM;?PbUp@s^1}Gu_IyU-XQ-3dR1Cjdf zuyP7@kF2i>2azH?Bvj#WuWzuDg~Ld;dlJSKtG)W8hI8Se>KtcnTv6aAYstw`Fr4K( zpj5$d2A3EM1w&`tWh10~4(4Pfk(*#2IZ;QKFddDDTv6blWUGfZUv#`4Z=Pu`MA~n`$|w<@Usi>2TGDA00rg4MVsEip9AMw=6bE1J!R$`n zEVZ^rE+m-B>psF>o-P)pIUykQ2f}!#l`ACWw=}}jnofs`7$ahT`P=?y1_lA zYN@-gTx1^)JYtj$UQ+1qXBHnd%Cdu%($G+4V5C@|z`o&HEeVo~qCPgD;*XS-hH72RLH*J_S@Z5(T&xug)OWDn_@ItH*>uS5 zutTVn#bN8Q)i&VU@K%X{Z-JF%W%IeFOR^?Ar5SJyyw5X}0`WczyMu~XOyZ{LHsh!9 zriqN7gq3q=Jb`CEgYT46gZWNm5?B#NwQYN}EpIEBF<7o~4mHBfNV%}GSRHD4_auI7p|V!1 zAse@)k%~#fz9UOjhgCr&?I`68Pwk!3?6(nBu7Wwq`J+m{Ps5IKqK-bwbTlZkuy2}f z*94d1O%vnF#jvs!S3b!lvRkE|C62Ufy2~K_2r~zpkrwIi!A_x)7Oz_y9k6-dj~hVb zeJ`w>JMTH_t+O=de-CH=SJ*LB=JR;X;OK~SlE^skKH%PVWf(Mg99ule?*wVKnvK)9Y;~j3*-d?>Nc%5|s3rNl} zHtOX7H&jbMj&k5tU+=4O;AJi`Cdz@h%SJh{=7&)_a-OJVgPBYME18^tqqmu(G#;`X z;GkrysvMYxw@M5hlVN2mbWGq9nU@0&zI!oCu-Rwv-2?Uqm2a{fa8uqDZ<|PYCs;Xm z%87EoLApPjbOif^O4=+3+_abA?GtJDz{)AKJ#x7!2Sh6HkWl5oAAA#%EC;s9wj7vK z=!tjAEGu?&6_zdO=o+k4%G>D=7`_0HTj!vwFK)Sa2wN^_SRNbRuv<${j&kAizQatF z3!mi@W1(DVvP*cts2(1N*;(1;G1z5J{L#0Vj)tc$mL**nr4g!_coa8+7ya6lcJ_a^atND%z zWJH0@PY)gk?_v_8aSvfffp-`WCmh|e$HFGKImEHB5v-gt7Cfp5Rfvcr;~}96ksEyn zwJbz_kZmC{r8L0yuntzrg_{1>ejhw|oe`*h+$fhHNqe=t<|sRgzJp4Y9gDfdSSUND zC3=r8RwG-tSRQpkBDXN{aLUoO2G9=pzgS6?#9)j`92X}vOD%TbP!;R@dYr%Hy)xI}8nkll@D z6Qbz_ql~y0hA1bQDkHuPyUjTcqT85`hNwQD2cT4*(h^l$d;_n+Lm91FxRbL4e zi^S*(iba=%SiueedL`RilIhiA&u}-3M9WL;WU=MilI8zcS4QLRgO#oCB= z1f75T0#QNdEiRE7bTWLedxq9`Bh+ksCd$hSH5)LA(YRxo#&k3=by4eR=G%4cdU*51 z_%aVxw&KeiE|Fb^nImohG?y8~7crBt8EO�PGlda>Mil^^H3lts^%7VcZZR|0=AU!r!APP<4e!ARZFx9_R1AX-wYZ zJeciCrE63N^yi=7gomqhtd06oXKbgIsT?K5*L??(Dj~kcB~nX>?6S&u)?p)y{1QfE zWszrK4>{>Zk1`#NhFs~4Dal6F-N;jTqr|B31gvaDji2~RsHh>vOimn=4hDxX;HL{|Gu2dI*wl6p8c~dk6xat=7y1pk7bqw-p?JyI}?8F@|H|T zi*P5Df`Z6f8< zVddN@&(Ly)0s5=qpuY^egbG?L$Z6)=tiOmiPh@>7teiXR>B$ssp#D`j>R-Yhp`xC} zS7Vaa+oYetTPKo!3RWHiq!R^|L3-NR!O?p%lfdo~K+*~8ZPF9))`_IY!OFRlo>R8V zTLbv6;lOu-9YX~!7TF!0u(|Jm8$sm0Ev%e7_vz)tJ%<5&NjUHx*dtWnGL|Q-w@DZ9 z)`_G~f|XN9d#q}yg)y-};vu1y)7SJ(N^&{;p73lX<|6J4_3Cq$#=L!cF#}bsq0O58KmE2<^BvICZ`0GK2Xh=L9p~h)Imb9f3W&%~RK#ov^vj$BiIzUl&$R;qH<1RoNgC zg@=SH8?Nykz_M%@%650(gu^S@-aiJCu&2|IxQbLii9rT;iHO# z6S%}GiiGw&Q|oT&Bk6;dPu1klEi4TzD^}UJPm9(5;hNYpPAK2dR?5W{@jn?!Jd8P? zc`$w$^HF|cS=kg^xyAO8M{v>V# zF>2RgWh-iDO?{FaxCZL`Sx*8{-wQj#88sstwfL4=W5!7rs$DMM#v3N`{RXU@!q+3E zs;n#`vxkJr%E$V4L}ukLWqUI}^^n3qX>gdGF&2LtIQhoUYUiTk)H%rNhqO#Ptx|J; z(nKvZIr8)WeEqNT^S`-7=J~nU(osoAv`o^;A6{4(>KbAnlkO?@jMSI5wVk0#cZm(A zWyP+c?gHD+*w$Xv%Ebcvlrj7MUncFaV}LVhXZto&T3oFZdb(rJ4fPcU*%!tMujM6& z6E^m``-n)cC%Wa;YaT~*oOIJI&RLZP{o;J47S1c?m4Y6F>ULbuL zOvXML#!hUbyGq-%7e{}A6*k>`BWvpw4*yBmUs+ZxtSGTuc~TplHCSMSx1H&0u)r4K z*dE$mK1~MO+7;0fi(G8^rmI%zT2|~Hsh2Wna(E!S?y*kAeG|QGbN7a8U4?RGU`dx4 zh^_Zl`w#bOrM3&3xaBs|8mjcxx@vuFH+LT!jPc5FTN6XAu#`pYsEr+pTgVJhtuolf z3ea}mUa`2^-*sxST46!2oux-(y7sq`&G0~pRnT4C@p}W^!}0xTd;7F3gY3ObWbeef z_&eE}O}sAtE_vNdUKhyg=JL9QylyG4TgmIY<#nOFZY{6d$m_Q9x}CgkFRweu>wDyN zM|s^zUU!z)UF3CFdEHH3cbC^apt?jue|OjulvjE0rGmFyuMFf z-!HER$?FH?^qp@kn zp3ypGwgfI6sh$e1hPO?m{J;N?DQ|C5-XWawwz#J!^3OfQYm^t%JFCUs;c98b5w~^9 z>;Z&Dc_H35k@A+Xa_)0^w)qIfn9+rB)+fPUp~h{Iqs<=J#E-`;4VCVc_kI+65wuyXFCCyK|22IFsqGrk-41(op>UUkdIpH}3) z6K|JD_bae+?sTVjCm!G$j9&_8{37fTDq}g16V}`F_&0d#MA9$7%DIzXn=STP56}(b zbIuR0yk|3s_Eg^Mh*|CEg-w12ZUvG2R9HE8@)N~I27~oJ;jG^a`+_>VMFf`{Fsul^ zJKipl?k=$MSfCqkAu;Gy!s(V_U!ZjP))$Lz32&E3w-;8#Qbz$YPL3h|(%>H0F-9unsP$#dV%XXVubPvMY zCDJ_*R?eMnXS`F+n7OBivpp5|1eNV1epAf%_gQ3@(Ju!zlabGtQze}cD5r28XS zc`VR%EOd;!Ah@ntjY+h#u9B}6SakmfGoXGB^xv>@?sUhMwlU`Iw&7$KwvFrro_E>H z92V6r@ivKbb^)xMJJl)8*HH|(Cxyd39(D&cD2uGyG~H%=4Bj-6@sY4{?u;il-UTuc zUl@+~0@xc=#MAivZCGv-J`Zo1Nce16Id{V2*?U+9+`Gf!-U&N`3RirBJAQf0iq2ob z8zpl660Dp%*XhaE-wePnh6DZ$>=7zp@$f%sy-oTBymcb!=V0aBNzZNgN_+j#KtB6p z!KL&JCefZ!dR-o{o!zk6PsPn3vY!Mi=gxj+!)fBhG6VX1!=djE`-D2r*VLfP7vrp$ zz6;(yk@k+Ta_+R7GhKTV*MMFQhhBnRLxrx-bgdiqOz*|bAhPdn&k@?H8a_-DK;{y{6%o}|?xFny? zB-&Gwi)WAgAPH+WuZy=zBs&*Y&YkQm<0uRR@*&}n4}zUSoy+22dZPpOOg<1dfXI74 zSUGpz6ZmN)2IW)3DKCdzL8UA*vp7V>n#(o3St8q0VCCG|PF2Ui7=S+)4)`Y6A5_5N zg;r&|J%g{u+a^-}46K|x<%!OngFUDJjoUz^{uZp9JN1d;5GsT8!f?`CGKuz7*kVr0!?UCV z)vo#lc)LWp?}U}d0$s=MpyR{o9s~P=I*%K4-LF9%iMLCn`yp64g|5e!0o2C@#If=o z66)guZ}}c>FF!7@LuW@v>bdr*-z{4Zt$$EQ$L42^oIbK3x_Ev^N8er1CG2wINVIX< zUtGrizCP*jVxijIXMXhON_dPq2Uz`}mgfbw`m(@K(?0FQGRJ2HF83Wm>azkPTq4!| z3!-*>_J?pVb<+tgk9BYUBYGGNi+*KOrDXthPMExsQXTxDpbPwy}`Ru=I?7t6s zoBfK0*`F3g%lPlh`A-c;n{Cv={@()r`&De9M0W_+WcERx8Jhh@g8Tt9Ch&Zky~wvCGLk-?Z6uw3 zaA|xiinnBiC%DF>5^spGgr z#xZq4y|<;SbXT;Dton~HEc8Sbc5WBt{AK-Lq75xB)Y!>DJzbUIT9F<8-}(Ucu;$o_ z9HjHj!&-^I$`HS~N%<;6U`v$@8Y!08$=IzwG!oVm)<|C$TP;&xv}pGjXDu!(l-beJ zwKh+tCB=bal^uCs8erG1!D^*vxSL_Cwz=6p=26yOrP{-O@2~V1 zyg&OILRW3LducqUTOYU|*5uN@_yY`G)k3BH@ndO~eWZ-=S(m^bu~yh8i(==sdu;Z{ zN5&5=>**S(40H_?m+&uVwVxT^>A#|jom4^j+C-Q)`zt*~_Q4l6_*;LDC$OdAa;+qq zYJHUaXf&m|*6#KiI~p64y4~qus8VKMaAWhjFtCJu9FWa~)*mGa^JqK?;`i|>-=_;} zsj(xtS}3t#()tS*fvr`C<5S33jm3J{{;X50b;-${_$W#1k3 zJ-ksO*LkpV{#@B&mBDpUIM)xrj=;Fa3x^ih_u-8ax$X}u=gxJux$J2`J}n&b3fL=D z$l@~&W)E!Q!?*=R;#F8VcjA+nzv5+Q1N1H7pl^nqK?N=Dl%(M{-y86TiF~hxm2>Ai z*SXqn(0($U_D^BgP-%;|L7m;O**}h(L1h0JteiXhIgUpz2Km)L5nPSE4LgQPeja~| z%+U#(`+smFh}{1PE9cIAP3x(bL4E6R>RU01_SE3w-9f7hHuKGK6Nt>;1uN&ye5!iv zXuv)p9QLuWKd4h&yp^JCw<#Zmw@svcIINsI<<9tlufg|Y;e5}BJwfFw*24H>YUw<+ zqJ0kDDv|7&uyXEXr^G(u57`a8cZK8qD(ns_UU5!d({y|Gei?6?$oPw}a_)@hI(Ii1 zynh?c`&Y1QsJulj?(Bxm{+GBJME1|X%DJZW{xCd{V$hZJ2=gxShV4O0SFAoPj0{estTAZS#+i%mp2ydTA z`xCHo{obtoICN!jh(ax=?y*=Tz9X>B-&GVi<+!qxlMQ;-ZGK!99TJb!qbyG zm<`Gw2&eo$*dx^WEKadbT5pryA8(yVdLLLhchWOz$=%}y>J{OrhhdjcQHy<_n)x>C zD&9Pibp=+=o%I~Y)_sHc&EdpvfE`06E}mXGI$?9a7B_;({c2b_ckUC#J3R*KpN6A; z9QFkjwK&H`zKbLssMb#&!`mg&eH2zsq3dyUfI59ZymRg$p-vxI&39|7JbmED<1#(R zWn8JZx2ByrFzX_;m~@V<`r)l#!Y!;UR)<=@*Uo=zAvaWe&%|-=z;tFjR>sO#VIMgGM;kF6jYnNPBITg0(6JD2l^8m=oC4PF+)V-_K!b(1*4Za0tN#GklC&B)p@)eIzlIUrJj zhlDBzCi-?nmID(eWLge%9?X-iRuKGP)w?FiuN4jw0auzCKq) zz{6Z(6-7Wh4s=^UIMGeGfLb#ZdJ2QJ5_{dhuxv@!V5L&tmc6IGxFv_cMz(8bBmIRH zyeDxZ>_CX_p{;w_Tllq7WuQ=w-Lf@1`Jz}Y#b>gx{{i--S}d@$WY~F0gB5njP;sPw z>}a=;;LtAZ*fZ_Y-kxcHXq0`@6Cc?#>Z0tfrhd$5TUxCQvg5SkNz^9km|dHsV|1e} zUF=_6?CFUQ0UdRK@onj--$OFd?MUaHKzF9%g^pUWt5_Ns8t(5Zo-)i1`-zV;BAm_v zwp2^Tr!IDo(Lk|0`hF_$IoX~&_#;MnQpUHN%+*JZwk%HrBlY9jqT8nQ(nyYRgc|J> z(9mv2dTD6KG3xkHc6h8kJkYMq1KHB9%b%2SUILZzlDzh^e2bQ$W!$UQeBNHbx{e|7M#3wWTRbJna z*T2c@-{tj9dHsjHz9p~!l-GaB>%ZmoKl1utdHtWfzAdjE7mIdRlh@Vdbq#qPC$Hn> zwNqXv$m>LTog}Z5<#md@PLJ8 z#d?C>ddp=Hwc5J}lfYKQopi?yN45u2s(qm*7Sax%a@zV~BgB+_AV{8P5H3*fE~mRVQrjBe)Sn?iazz zxpSY*DnxBr$q4cfheLl5_6ilc*r#dsz$X4(+yWx;dtl|<=ny z@pwUg>nhTbsy2Hc-Zqi){;+cHl*h9LPa{;H7LIoX>XvY>H^Ytqxw3T~i|Y+|qeQOP!pgaGozl~I6lcuZC&TIf6m|!du6TE~ zX}Zn$alC0F}Ak=fjSm(iQb{{De}vPTd!sgEva#dM2!#JJ(L;qU{W@cZGxfD(nd=Sn&!%Y_(1H z%Xq6qvR{Oib0@oQ+O8#o_HV;!{|fdFmG*potZG_M>=E!w+!Eplcm`I^eFV%~Qq=aX z$lYWH|CyHt7u(aAM0*Oc^(22+KWzGwaXX0gC&0?N)9;M;_!+GC2xq-3>DBwx58Nb7wnIymw;2eJ~vEcVS;p;fk{Ygxz*bz6WoYNcUT? za_)4eCEhAB5dS3{@oTU{sEB8Z`I~qp%9_Qm;EfYGzXU7i&Y7K!D_&3A)_hvL!DYd9 z^mBY}|(J_H3Sqw@sux2UZ?Cl&wb-9|))XKG+}B$*fa$J)77cZ<|PYA6R+p zP_`aUtO%z(4Ew{6vg_$Y6>pnJxdJQaPI-Fr{U9SX-yF{Q2G}E1&f>(qr1f^xz7}tt zNcw76Id{@?9Perwz<(MJ{BhVZRN&%$3r8nx?vLR{5V=1JE9cI=Gk$%}0R472=>Nc; zpn?`FUHqj#={&X4^-sK2BH1@#<=n~6&|YCQ5N~yPaKXJflW0%DEzZ!?%(rLpyYS|T ztT%y`b7$Qdzxin(J~kZjQLrblS8Oc-_ddU$b#sF-8wo>9EpA{ zF25C*7scfd{31Id4=p@ke5QvMPLez7*^1_QBWI1AJ`!EU437?mN2oJ|jQXKj%3AF_ z1;;^#@An;0>L9}dxWp8 zVCCF-&rv4?r!jvtocTkrW2nrcOGJ+9U_3JyE1%`K zQPsifz7h)h+kwze%l3flwdC`Yj^sI-+9=pzlt#g5AG7Rw@Y8CDZ0pNc4UvUhBDH|b zuC^dNzB?L5CufAJB#(eS=8OT+zD!4>BacgSQItlghdhVjMi6t&B3RkVH6QSmP`O5o zsi0i5Wr!8*l)q1V<(dV)$)@w*%Fs}8NDDNVu`XcMuyd%5#<}{!IBmQ-63!*QK3CD? zQ(Pi7nkw8D?4XRd7=nc2H}n?g9-l^ z_63!&cx^$3S*!N?7v3(B?muAV-04n|0nxzw?r^+YFbVADm5O&NU&m`ia*OX~c*8`# zo5ISu^POEba<>8cxNy)%!(O3+7DtnsJ+R~T5x50J;)lV?`4cy5DTDY&!-<~@dj%tI z_P{277H$EN_!+Qr?!;&6wXMPXYvH`_fPF&cEw^guwYe41Z^zpw(!LE=&Ykvb^G?Iy z{p)bv&%<7!@)i-@?14SMpT#X85`P+2P9g5GxTV&|#43r0gj$yWKi^_gK8v{}+hzH2 ze7AdY_r^w7p|=puQ8wzI5EI|xnOqp??yFP>3jM_q$4c3JW;|Bi%3-8d%GTu)sVimK zt-HHkpV$|MBm1Wo+V_H8>q*D_fCcCtnE_ImD<5iX3x8 ztY8aF`(+zBrm*wsI~w0MO$Ly&SwFBEfS&RD9?15c>K89OBB>pI@oICNg)%K}W>Ticr|Bu5nmv(fl z))D_&_2y(M{&o1up{qOg5csFVoEBCPhrpY#a>@|!r~*_WA@YWYgt`S;>Dv)`3-aVR zpY34YkLbsXQ>v0B#GY59!OA(*>ZAP;O!>*%7B?ZgG3x_wLU!g7W1)I*9(`7T`B=&1 zB-lw##L*#4M=u;!dGy)wc(cUtaSW_%g^we-M0Pd9G?8&#hueLEnG#qoTnIaaN?06@ zl`!5;6Bpo(6FHv;E9cI6mP)NI*53+eeK+hBDr@m}fYAY)_no)_MBZP4l~Z_oK$bP3#gTYQxpBEP1T& zC{Xd^C@zs2Kiahqc%Y@Dl8$J(8#wvH3rj;?%*$QL|2I-UrM(Rf6l$eqMWfAjcGB74 z$J^LRM}u9p3VV5{r_@~>>RMJP53@^Qpr>o7uP|5~N$jgVlZ~->U+r1)dbYft!>{oE z*&+7NvfMvA$1$Lc#nelfNm%@_(%h$bufjLdE@e7e+>r0PI67fh&HslRLCkp{hn20I zmo@i!%w>*IZ=k=Abu1A5cVOSRD;yiW_$-IJA2$7O;&u?}e;roNo&KEG=wA&-|1#_t zDtdWHr6Vs%*Q)1cf543(a{nEyoICez9o$!y=!|f%?q`C-!CWRW8aF(4IM{(dR{=X{ z$BDIY1Bv5h7Ob56c$u|`PqD*!-OiUFwL6Og!^gvZuv4fpVr@Pi><(BFVsG38BJn+8 z<=lx+Nn>3LXMGCn4k~N0MxHd?qC9{%PNcjPR!*Vpv0R~6JjA`OhlE-)J=`~;$rX>A zvVGfmR-sxfq@S?xRd~QUM_ZlnB5Pq~u}XMDmjBqo*lO)q2-nrlX;$i;X*G59|`+$G8Q=Q1e4r*$Oq^ z_mxngMvSJQP;+aD6>NQE%EU}}ZA>}5#tNaKTB*BG)+(Sm*P<1%bFkG9Zn?PCa&0wX zp*CzC5oI>B8Y{x(Fj5g^2A4>UDD7HWEwuF0kn%(8l~wh#3m2CLx+}v2wUK)J+UTxS ztKF4i?@0ZGw)LaC!cKK)owI!1)IHqKJ_ge67D@vn_0}gF`SziY&E(3GYN5ZK-6$<7 zFi*9!h5lksslXg{a@)qzKw+T27&p;A7Q6}3kM<4PxRH2BwbfID)k;r0gU2bug@IbB ztUY|#g+<}`;lr--x|_W2F0XsY>z?xZUU}V1UiX&QedKjtdEHN5_vcsmA;wnhpJn+F zV{#*S8`b1V%#Oh2>*IM>!k=7h%5=1}T%X3*CmNR9Rpc>v%fu@3NLbmbA~Pr4NSy}Z z3t3kJ310wv!&$;bX@nb=+l0@npnWkM?QdXTP|=F5Q?k;v=)QorOQic8tUNa8mduZ@%)Tx- zD$igN*exnfmz9JT-KluHM7on;<=p8`Y2GOr)AzmMfOm)8K?N)h({Gw?Gu{Pnn#g!Z zSUGpb6UB|H0k|9vxCHxx3RrG!6*t({4DQ9-CDQGNmGh@776}ZxSA^5O4E6;^S1xW? zbT7f%CDQ#AteiXDNpgY4!23`*-Unc3Q1Oa`^BOBl7T^2uhKYQ?11smwcS>`0%pm+m zIN{e}cTfq7{M$6$&cCnXO%oZv3@hi(cw+1*tAgI>`rrzBK9gu?1ug8h>8^{nOQbs& zR?eMn9HHZdVPpOt5{~yE*csIM+lV^!V&d}=u0<*+xX zfW^vl!*Y8D*YK8!ginE$QwV!(K2ZA?#ItJ;3AI&fs_#;b+$wcxwl9aN*oWVj1XoaWFt$jD+n>4xCyuailPM)ha2 zb{${kBEAN00g-qIteiV>$MIDb^&P{hZx4HhI>XaWt#Xmy2DgGp{@t*03VDy@uj&Vp zE<7Yu{qSYqpe5^viq}?a-|tF|TT~pXY5N|B;j!u*Xru5E!-3c|EgLy%gsShjQ8hxv zS3*HA`$|aYmwOeBzR=e=yr?t3ew3K+*K)sF%e}75vR24H4wh5XaL5)%0Z z*&cH{uD7?goi@>bI7-kDZwb8&y+y$dZ8ZkI@9TXv1|H@TW8v1IGw!mn%(#TOUrAZT02sdst7f?cmNqS3iD~0}r!U8LW+FN4WWx zFAf!M?&cDy;U>fHF-%W(-H0;3hG|(*=6TpxPTC7AS>!F&2m=km~uJZHZi7*z{*xkxrj?-S4YTiJ1Kt|tiR9f!D@Vq z^~11NsH~F@$5jt(;t%2$5Q%>mR?eMx;^DaRnL+&@;ne>IdxlEgd^oOpVUzz0ZUvG2 zYp`+(d5`3;>Iac7JS0^8aEfn7Wc_fA*K<_ zqSeFFVQHO~lpLkP_RM1J)=CZ^RVr-5C00=?yj1S!*!--K(?=FWm(1rMRJ)j6`tFKu zVV9_DL)$C94-@mY1s}HV4z3k^t93iX{OBb{}4@myp!pdN+R2e9gyW&O0V!7B~ zWak1EqJG}qqUbo*&GXrR*Vum_^fvny4YNNjik9);m-C+*jyBt4zFC&w@$?U;qrN#OU*eg`l$=fp313Qbnj$1$^{wl1TJMqMAnev%IeUr}y zQ{RY5V09;zx_MisdSR2Fk6S?`zb>qtLf#|!tNKBt3l9lZKV0KGgk}BkyKFzHw?~}7e{@?m}H}>MED5aC^2k&7*@8z#!4=cU5PM7JUzAPeuWtlSQ~r^b_bQNIIf^+ zy3P0tc+*72pNExmXFNkaC$%}h5YG8I*dx{4c0`r|n`FF1b4pr@OA#A$P;uCdQPVVPz|( zyoXCQ z*fUh><}!lnge=)3_Lf#|!tNKBt3l9lZKg{v%h^!x$XS+LW4fa}=RyRDu z?8hRMbD)j-GD2*pmYN&|!&AP#R|UfpTw*K~4C7gkjX3gOn2l8_{0nxG6L0iKrlaAI z%Lp+h*{E7Z_y^u7F>L$|R<^>%U${heC4yW=u<34b3p(>Gx|=ZxtYW6pO)eui8E=X= zO=P?=teiXJ#4>`-`RH)YN5C$jayFL{oU9MSnI?3=m1cLqe4SKk*Gr zvJ6-^+b_V)DfATBuApVbjxP2XNh~NBFP~io4_oJ$BYbQL+?OCNj}7Ph#+lt(W^xn? zm-r4dRVaLlON@m=p~)`c0i$sE2F%V%EqB2#bK;L~W;z<4y7=08V*n;PVHXl##f=~a zo-f17R^a&}m&mS=SWhhKI~-@w|2;DdE9ouzzlGgHrN2Sq#WY7(>@n~w+!W#%_$92I z`xw|zE%-Z}XN-e2KOZ~}W-^J{GacjmW9aO*{(;Zx7CdD<3sS^bw;4JJk&QAhKcjs~SJ*1(&l+oi*n zc+W)1Y_QuU2j)gs8<&?4DQAMaiL?jsx2~~)E*Eg`qLgayLPavN<)LkeSdpf#mg@Hb8 zW9IqB=-q8keuB&%;__Z`*;`!pVd7-scZ-Ie}9)_B)op;}l{Ee!Ta#WT6$Sg1>; zCH!GTqT67WvfC5bNle9Rp)5Ol3+z7Un20WAIvTP1OnwKP=s_d+T+V(}u)7&=e3ilH zGfm|iU}fo^N#)WIJO8~_?3WI@mMdjfldLHgJraI1$UnmjO5R0K2YhsQ(>qVW-l0NY zJF)DM=z@*@3ETuC`k%ncGVlDj>7T5b&sA#%38xv{Cww88`#2_%tU+539V+*AjlCC% zZrJQs!_6SF|KDh_R|P|BAIZouW$|#i%#K5g1BjMMaIHuU#nXLzv@LgX^lY{-lTNM{ z26`&}toW#ErN@Er;B}6?`Ux#dkM3%b7alF^j>Zoz6ehEL#d`TyKTgo2u3A4sq)Jb*iTN{(NRoCVO zF}4(7Wh<|oGSU@e>qM_6)Itea&Q1whOD{%atW1{SC9vvmRh2kaK+1Pih%W z5;rF;14`m&7YduTvFnH@pYnF%Vl3ROOyGSsg2`hrDJz&f3OmUOJGz_cXh7AD77PrevD9DRB}0Co=_`ix%NGVTVu&i+j+7@pi&^ z18) zYfe9hw@;+~3s^aYwntW1g@H%~9ulfBIKj6gvM{(e+XHULS1ZE<`k8hc-;PEk=OC-^ z=d29GhcK3xhKkO`0`=Dmg=Jd8aTEX>Fl(`5Sq>ak0IbI)#zFxwf%n;{0QQ4<$R4W2 z#=T)DIgv)&FdYquTptjqtZ=a>-YhX(>;@}a;bLblkzENO*9TmLPhqA6)&K*rL#Tw4 z>jNpAm*R~RIrqWJxpPje54c!=CY<$Euv4h4&Gms4-k-(|Ao9KxR!-sVk;7FPAQFOy zgen8(`F2E>0l&?5eP9i?5lUMg_$9L+3rWr~R^KPE2#D>{GLEAJc*fV)sswn7ON@mQ zU_9%wQ2=y&31uNCg(?943%kgPGx`(L(QwEE>0(T>QMCf_FT7D=nD_^*Y=w!xaf$5G zzdVr6ru*)2x?3;_tOlmiO&&<+WV{*PG?DS9uyXE<69>}SoR16Vd^GG5DrfURIw$KR z@aBoE4}+CcSbOAbmG(sv@Q_ex{|Vo~)VTZ4cHh8+fu7PpPjQ8o`mcZos&kapk8`H} z6@$fUDgG8_p}citdy#V`An}6>8$Yd^xc}OE#=3gS+sCiIL>1u(B0NzU(WZB8eC~L6PKB zAy%**NRMXwM#c2zrpDp!rA2*X(5OI;Kzn)&w4$2`1wVu+aoD_bFEwy%T=F=8AA zg_ytkj%Hb`+@I~EipkYtcWJO%VXtm!^~#CNnWGV2-tP=A>Vbr_N>P8kFkzlHULA4d zIA8uMjvUP;Qsc;i?CO)Ls^dl!ITI#hMUm5CPq|B!GSkth$Zzf_+wBl?D&96Rge-@Z ztq@Y<64_CfXVfWw8LYp^?7?QC#rjs*D^%9WGwM_iY~r88Eg%xV30BUXc;bvYX$t_ zx^cURqvK>)Ic0QsBp;Q(L=f_jQ2A@7Z%1VQIw#xwHGZ&KH1_P@!g_#>U+3U!<2!xA zW-Zt`lG4q-BvewmflG{qq%?u|*@!ehfJs@|=MmURPT0}cnT`fT?%5NlWV32%{(E?{ z#6WUCtZW66d$~k*X-4kZa}j=vnS#wli}2rJhfoP8_w1!`{wv-%k@KHn<=i zzw;}>tlz;TusWQ|+T633!h1v903z@8VdWIw9@$+L2qGbPNT>qgTHk>y3xxkr*26Dd zy<@eG_}A$p3nJ}Yiv`j8X(wK6oc0%&&F|=_PwguV3^;FVd*FfV9Cd_(q49*?xk#S4 z|5cCjW232eu?62DrV56WxWrf}7^Wq9Zj=olg?U*?NT>vJyl+Qjg4re8P2n^83jO`10rsI%$BOA2tS{KWb&k4vp$#jh((Z=Y zS{QTOj=t`TMP-*)xx`q=E;IGc8{uZ{ucFkf1hXcS7>!DHb*7_{sf%||b^Gl&GZSy0 z7-y!z%2u42%q6nRG3%;zP~C3^_kEdN*le}9?*)6uIpHIl`+Q^NQ}2mA0`|ZyA&!7u zVdaz&;E^U&rV+u!LqcVmmwiK;%rtLiyL)hrp_2ak(b@2Lbq==R*N@e3A0P1@ zG%9_3m`jX>^f8|G*oYlB!z`@WaRclkC(h_1rlaAIuOG#jWTR>&^IE)7VwkuZR<^># z6H$jSIIylEoiM`7jM87E#pvN^vU&iOyEOQ@X9 z*N>d6|A{wGWc?YGwMNJ;mCQ0aZ> zdN1iD*jrBW(IHGnBU2X-ON;hH0bJ5kIc+^|p#1S8|Ee_>tiY z1MHZ?CFV`W127FMYTO6=$O$z164TLmG>2%eVti?%{GhgtFS+)eDz}vU6fzO+a^-}1FW1oW$lf= z&_#PL-ae7`TCj2oZI9fo(!WRr9un$K<8t3&EAKSc$aaBoT(`NG@&tI8I>%TW&p+lS zYl+BF7#!<6pj2US6qgtig+bh9<96aBFefWHnT6Lqwd>1aG;VZcGjR#joJ5^t3l zM3%wIRuCED5}6kU4!&PtmIM|CpNIWH<(n)F+>}3yw@svcBdnY|VZvsF>V2oco(dkJMqME1IlLx^-II4UkrPOO5Hqe zK=r~V|4G~mBKbP3oI>8C3Q&cFNEaRws*srB+Ywnv{5ab}V!C)=*SS~r3Dy-XSUJaB zy&VUj$=8hK4qq*2IVy>t_(D;Y#E-bdSg0gsXni+A%|BpfRx$B6*jY~O(QlcK21cHM zrkQWYn7`o76JyM4u(B0nUf~ki)f4Nejk22C4C1d|1QHJkm1BP3JCJ3LS)6T-S;Jh!?uLh}bF2|Q8J@WFgzi#f zi?!J0NGd1$4kwjVPUI3}A*qbFm$1)=DOo|~9N0xp&{37?XgK5s+8C2;RIOm2i8o3N zAg9C1RscDbOJtWo@H zaL&JkT|(t-ZlHCteg;v|VXgsi&wdU~hOg8kU@6t^NV$0=C+}=Bx(PUoYeqHVo8KkE0S;pBatS z&T<^7N?;u>k;)*$ZEn+(T{rGC_JQeGN#nh+ubhCRg-l1|QlG`|Gm_TZwZZOq>%>^H z3#@F#k{!83>U8rsXJhV09UYsWHDaCF5%B{!*4n#TEv(dry1~1`ED9_V%CKLkyytS> zb{}l&CENxg^804=GCw~R(8!Gwrj1`4sKWzG!;dT(|Uji$q(Dz9G zs(uiu!$U&V4{Q5&MAi>?WxFeWa=EgEZN~1el=M#kKg+s-g)8TXYva@JgyCB9augL$ z`!Z2Q#gklOEEE+}RmY7$^FNrGRZ{#L_LLKQ^fJ@YsK}?^%62=ryoI+-3@(3%m960N zS1yrVK_Q=hD}NcRxBLb=KP}b^m;_d8Q&}gUeybkX#NUZqKqUSSSUGp%iKpMnX9o3S z!l@q#dxlEgeEO|=VUzz5ZUvG2p|Elad5MOp|-Wvhun=m&k&3qkpmlJ*T zS*D|x6yjB0qXTxV`5JBjG1lAxD_gPVb}o@!T`^bOquyXF~*Hgv!)6olu$?EZj9WDm(W{KgVA6B-) zMZ_htD;MPF4_t(AWTpfb3D?06p%PAh{y+o^=}NV?@`Acgn$aRZ3FABL4vczfhOIb)An{tB$2a|$?b7syTB}?!s>!uOl*alKnyyY!^&3B zc^8++u9#Ry+_YP6Gst%_vjPi?6JY01$%`HMDIKx-AB!78boIC&dYW<s0Gxj(*A2)_L4$gsj17T$=eC)?1vP%)OL_wcM z`gCRvmeVcLr@~I5k`~KfMhEP4u^cym$h!tB=gxbMx)Vuberq`M&%utNGM{JMfiyc| zbH52Ug2?@PSUH8eM~+uzf=Cn|66(%lQ{RrrJCEBlKFM?_ez)(uk@#hl=qmR4*XWO| z16X`=4zxC&WXes}GL)li_`NR&b<^=%E-@C$hR(RlM#V7oJ18eBk4$0`SZU=%9lgaI zrSWJSaqfI?v=eWY7(~{9m8~Gs!6mXQ78*yK+kAInmSFSH;=3d44=Uf}Nv3={%C=QW zxINxBk@7aMa_*E9Cz(2Ca&I{4ZrCSO(&kB~ZrUf~?GtIA2rH-1_Q>k0Fc7K0LqZh> zzw%8;vM@L-+rnT{t*=@f>Z_FXSGjJ6$EtIn5%ymD9ucGL)>4wAM7Y6sXsHt6S}rjb zN`xuRej9bdBQP;5k9-eyloNXNHKwCMkt+*L)9pKs`|+lUf#qIU*$OP*<`UTz3vy+l z=`Mrx-T-t%2v2o!6mXQ3!3|?ZNhgjQvyqZ+hK=L3G4f+ot$sO8z*wU z1y;_Tv$n6=X8n9P>t|u7P+8mis-3)_#tk6yeiBwr;q8&bRT&@>f`^1E1CH_Sh%5t+ z%(x7wvZc)(wK8D-y=YK!jVqNZ~z#8$jfJ5v-iT z+atTH0zo7M4+&KutmWGgSs*-=?cV2c@rP}+`rsF=16WLQ4zl1+sdK}$oZ~10e(vjS zRRsKuON@mgpfm2WQ3L!3rXlBrssa89`^X72dWq?1JmfwD4obGFN`N=`DN+&%nWV^ZU@*X7PO&lfVjLD&OQj12^SO@V1GRH-eROr<~Yl;2?ceIO)S- zpHNAg`wZN)KZv(aqNVwQ{aH%5UlU!mf6bVyR$Bk0qZkU;sO74U`<-{J{#B?+&^2}Ie zyZun%D|p+);PNF{*$OUS;1byt4D!raKy)(G(b&{QzA<}XN1XxO0%Fuz3M*Str;kfy zS7FQ(uNj(NGq_*RtO~3%J_GxP%3XZ$#N7{@{#CdgMEakGm2;=RzIto2#R&LO_z3s` z>>ug~*wA=+((H>p3Le32A&!FY!OAJ4z@uzXm4`?v9ulhZc%N@aWaV*d#z!p_R~9?E z%B7|HC-bJ=k47%%psOF>vf{uGZ($Y-gS9;7s4*t9PGHr#98;>sn7}2*LX9!G(QPBg zYy*>$om7uF-VOW72|HS!>1a&q(|CkwSZ>FYE%26!@nkbt*@`Eda*6C}ikTu8H@szV zK9N}ySW6rS`-I9_EP(6w+q93y+b7aK0#?qQ_FAfjNFo05aN-|@{X!)!K9p$p!KQvL zZUd3}S+H^nb&rIvY6g)aJS0@jFwVClvSz4eTQf`?8eYt{}A#M>v*o(U`G zPCHQ^G(2VyKOmg=zOY}Y#Le=c(FdFQUbqcJ>U+S-Dbzi3yDASvitvz7<-vWv!Ah0~ zKgxDj#P}h;|0Q`Y(|Pb%bq=&PzBM6i*3y%sWH{S*NU4(HBU~c2WXLX`OyFHMg32v0 zC@YQJ4ExB*IvQa*8V~u>gdioGRXZkcz?&t;k!xXPD~??4E1}|u7&k$2yf^6P!01$yc!OwMltQF|$}3x{grtJ6{+ol>C}YjDb+n zI9R%S&%m*P3A0(N#kVL!az@@zl#yGLdrP2X<|rO4OX^7%Kv=F zj|wSb`~-!R=R>SuA!WU6L&_9(ru4vYf3aGq>CZdf4-Zsl(jpWncuYy!tc_qtR5`$R zV5z9GFP9htQDs`9<3?O5!?>)tQi46@Bpw~ZbTle;@#bH`cssK6;*Ap{OE;`+MV6C& zB~)Y)V<;%H>=j}Ki!66#yCynr=#;9y9(o(=z-W{y`#Q@MU_CT8OdFw&xN(cGw^iJ@ znMi*tLnby5xiAmsQ4bNY=w&Z zxkPsNtc??AZNC3zmSD5Z;`r_ku~k zlSz!mJ%v4!%{Rf^wBLcZPo%veteisIBX_IxFH(Vrgj(~w!FSlkR}5_q6G<4Jx0-~xb~rllN53DDy^bW{mY;1Xk@1ehpz7)8LxVIo$N_$cfpC)8*e z)6t03r|`W}avWI+;#|C4V#qiPR<=UM8C)W}GGMycY2;-5b!JOoA@DWWBUHw-IOC-C zcENWC-a3)=?XYt0q-U!gMo!wl3#a{S*eg`p;>`-P2R8BNaSMpVpM{lEh z;31*Pfs=eYBFllbCbF-?%sQx}WApf9F$L`wG<_$BW^cJcI@(=U8jwi{S~wwe;jD7&c;^!K!FExKzO~pG%~I$#BhJs_M8= zG#mgkligGstoMaI<-{Is$80g-!lS+zKN3%VFgd@*Y)yDkMa@@Q_f2#Jav6k%hz)*{&;07_5|6E-RF^4G=G| zK44MGIoRsQITsefHb6A&)zXxsczDj2gDM_=!6n8*@i0mD+K4NwKa6s+Du=gWH#t#9 zuQ44BNqs866>Z>>4Xeiv|G^t3hLV56%2p_OlS^b*Hms@c;oPLR4kx`8lfbHJD(SU3 zX{!r%`q&&dfyn$_uyP7>kJzu$hX@!R5-NTC+;{NG^zqJY)5pZPTCjHG4#1<;In?Tf zmifc?4D+VhTFi2!k)^%^OQn%ME-@C;2wydDoPBr^%*)CnpMd@3L>`^abTlUN9iApI zE0J7?w@eHw7r@F^P&toFWS2ClS#7EMo>8f#$=_DgJ3T?Nk_Xd9gT>*?QGDJ4XfME1M!B5kz_wu*@`54`%0)t zBF0WoB-uE`3br%mx@>Pj#toH>PbAb?2e2~7Ik zh7Y+q<1QP~;!7|MD_VR3_K_24bQROlcr-S~#v{lI6`#jjC5DR6!pc^txRFa_mkJsi zV{N|AF-x%7X7T+6><=nmZDXvH^3Uqqf(ji9K z(4T-uV7cBs&r{C_S3&+!W?vxrhhX1O$%_N6-TkoXKY-goq<#wLq!D*Q-gpEbC|Sg0X7<1QQdV=I`3oFFQHY!3U#2{f9=bTl4v z$$^8Cttv9_!doTAj7?x=D`srOC9<=p6R>8iaY9qVc>DHn2HrT4^Hf+lch0laO|^^lKH;q23p<6%dM#u3bIQEl z9XEi;dly(ag||lzS7m@m2p$ru4EVNhfRbgvmf5ZXjA!*;|F&8ga27mJoue$c3=o!S zS;tWZoZ&lgR2gs@mlzXe0PnL=2HXVmu#&{}u#=ofqfap%4TvlQ1S;9ADg!=)H%kl` zSHa3wxcD@e$h-`25&j7?1uMKQ!asr?LM5Cm15!Bu0B@Yg`4Lz-cg~42z{UE1;jI4+ zJB7;HECW(_zl9q>NC+Mhstj1++Ywm?9G>mLoD&BtL#0}2nZEa6 zkH^rs`w8s0KE{~xm^uqyaC>=P>I{&mJN+&1KXd=_mc*wm19F%NTtq`n@w@M5ZYr@J_sF=wm zvMUGVUI7Q+_cKed*=F%Q0QLu!Z*s4IoASPR+eFHH!OFQ)PV5zMkX{x}dICD166YY#_H!%RY{3V8C}2scK*;mlzAxz%+>_?zvGEjKFNwgL3?N!82;EfaG$c3=76-O@M64})TYc{vxHO9F?`@77bz!idfV7E|d zi?cPYF4)Y!g_}TRemAU~JM+2Pe!>*)uZ44e1$GUU`?~h7!bUf2_AlXP5ZS*7E2psc zNcyU75J|&BLe&j@z8#Tu!%^AR4QrIU`?ZG#?|vK&QqGZ9-zT(OV0LNw$WbP2!ED8D znB<^QWx{4$Vl0#i;~5DfVSEr~A^WGwgF|2!IdMk2GaU^_eIgGW@$iw2swIPi@J5MY z;y_s03KRQriR{XPDKe*8bWdl71eOD*!tS8bozCetO}7~@$D1ZHuEEN=GoFzs11!$B zhI9TL>=G*H*=G88&F7o&=83GYhm})Ud*p1D_C*r#kWguVQ{Rrrw0~>1PYb5R>p~q} zMfR;v{fiubWc|Q`l5?ch-yfR(nSIhcE$uj}fZzMNUR43Vs`urJ709-Z4+b28nChzLpr!bb~Sk)e);q#pp|VbXy-W4LCcZsx0g?DNuyXFi6JPIAJ~OEIhEwl`Jwv5#e!WZe!X|$* zZUvG2iLi1Cd5>hT>IIQ5JS0@T@GIY>CF_OPCS>{<(D9|Afx>{cP;fImTAf2J_!UH9 znU;MRI*vMTyQ_$ zEHPZ%3oBdU;@eyzyV5|OMBpO)cV%ht>yghQbDg#79@Q_etz}3D3SC#?)$@Xc% zWcD<;(9^?SIn_@kEWo4H8CJqq4U~CW{&5rpC;1K`RS+D{CB{NQ5byqwT#TyVT$qfU zDQeZ=EZ9>{xX~cf(Wo?54Vt#wcM@mdZ4*PtX|S>tLRN5z>`H^iszK9V2J1VRJ%RPX z?XXvd(TSp;EV24Vt~M$v=%-K_veq zteisLBiE~PL8J>02~{o}kF?9OIqn4MW>W|u?|1VK>- zK?o>eJm`SFK&Y2?$-@t&ui zI=UKGCS_t9Pa?UNAUIq=v)d;OaqI;Oa5%Wx4IeJh=6DJIXl9PPVdd0w96DS;^ZZr! zJbxJu2{+H`;R0>0m*bCT=K4#pvLV+NW40Xj{XxJ&LJs?D*g6sn`X8T}R*^q6Ev0D!R z{!m~cA&375Y>QJc{GXicS%Go+Y9*%}E4%~-RZCfYq2sZ_z_iGaqiF#yvPDO>02g=? zBcTPD;5)4}0k^>!A%n!taFn!3EnFjXA{nVq@=hfO$qJq;+khMK=Q2yi^{_H28P|Cd z$+ZEi_-FLBIsUt_1#7!Wj-P`g!p*V&Rm-sTbgkzZ{OQb0KM5i*bg*qiwr-ShTsrecw|FxpeHdB8iI*|*GflFgL6Vgi<99n zY13LbQRqZcQeVmI2%6~%9xPje68>Oj**FPSCS{}7lSr;5nCuU#`Yc~9jB)G95J5`5trkSXXg4VuyX3TUR@5U`h5SS2B!@|wCf9V8qf#&=^+yrLMe+era za&9rE%eKHD94sVcTd<$4BSBm6zhv8j38mbUEcu$j%6~ztlNL4SuNkzAi;O~=#$ZKZ zFxD{#_{hd!yeBad8iN&^ZY!O^R&Z7VC*_90mT;W3i7m_&I+2_NUo&W0PD{sT_>-BX zV-r}Jl#bb+L~^Y`@HK;Gw3Iv_FRXFw4UUCl!p(E|YX(jGX||8XpU=$pQLu9A*$#cp zpcyeG<6m&k_~+oba5Juc&7kQ6&HCB64a}^c2`d}2ZZWpY_P`$^EF@%mFvixApgs6q zvY$Q{i`G5)Qoa`b*wJr<6Ig-LvgX_#w2X@kMVj{DSGG}??ZMAIi4oBrG~HH;$Uot% zkoMpuI8NHc79JHkk(>nWLDOVLH0yidHZZfk zE39nDy2aQo+XH`yu#k}L!9BLcDrgVhP48 zGzVwd!Xul5Gdzir&>Tz*yjCj6cj26nG2>fsn6zmvEEhVFlmwd!&2$A1mYWLSz#q&k z8&|=~q-w zUf~hveE$y)3pd~Drh+l&@8c#gbN&vjY{T)&BL{(r%*zdT6INprrhp{bBkb%+jD#Lxa>RF~Q|N~CL&lIS94u{$ z3x^4vXs6(hArbTGG~)#P@yvR19IQ<0$uXWpa{a=Z{w{tbWJ<=rBusMb8omezhMV!V zLKh%MoS=C>4>y9D_j6(8)bl=F?&e3rrsV#o?z#U792{=$XDXK>M;xK~zYRBpng5$% zWkdcgngH2H_ydTAgzO`BuyrKpBX&u)j~FfP(}^rCd?4({N|ly1=Zgy(c11=e&9cI~ zwy~Bi!+$-Ak?;)2Fck>q$^{L#!D?+q)bp5xHP z1@u?^N%uUT0*8c~XZ7L&ZLVwh!@fTVSV+iW{|(!rC>Zt!k{$LN zgU!7D$iRO)jH#9}=Ua|_%OYcqX6V1g792VB|Jail2}A#Q&u3-ue-h3I86F;kgQQJq z;Xa`gNl0+Zv7ah3G(3zymRT+ygq2CTc)*iLZuk#wIo4%(;$zMYz&IfhM|(#z9KPk) zkmu3(!noSWd+B41Lt1P+xpy@j)dP9!bLx0D-c3mz_)2QI=N&a5LBz{;eK)IEvh z`UB-#$~4=*6b3mi6Wj}jg_~{Nx0JOxzZ*A!ne#hg<>oY{WP5Np93pKx3wsEiXnWv)OSzGz z;GwcDI0SzvvrHTaE0Z#@pC^%AThP4jm}K`%VTfZpa5@|gZg#`F2HG5-ia(l}NyVW8qi^kS--4A5xwaUy<*@G$0u~Z-*q>wTNHFZb zo9wW^(&BvWlzcVUk!kdK=PW;S`KOi_E?-A{pYc`U2v(J}s5vhe1O|HcMFt+ta>2{C z!Iyo&i=MNyWB z7leYQxOrEX3qo$t+;`(3;e;sLPE9$U$=!fXbW~owk;T&J9$9)dO{9HRa;k_4bf@L1UnoP|G@SuW0i zl}Wic&67y39S9B~>N0$@FvYPMxDgHrH^bpWh=x30k3XE5=j&kQ)bkuVgs98)bMCo* z1`Y~0*XkieL%yHH4PfT`F<9A{lACK%I|%NHZ#{!_vMtQu(%bN+U+XINyU(G2{L+eTXs{Ev7NBVphl z*Kk=G`8%FQvl09*N;*mkP=HxbFO5zB~HSgUeu0wUjx3J2@~dGURAlfJ<%B zkuAW*o`f;%bBuAf2>Y~IhTMAjnBY6DGy!+Q83}$JvI)2yj*>R1h3^WTNJfHhCkM$2 zo-5mcTkz*HOU933Wl}PJEOK^lOKC&e^)RPzqEy0RS zx0R+~DV!BDU<|-<(k8ahEp#F|3BH2Vw481XRPZM=OGg=2CZ(h3NhH@61RqIkMoY=_ zw}ds0jlnnIm~itP{t8mlewyv8@aHqLeFdzXdbUGfL25=!$@rh$Gk!lD7jDMYuOKyj zpjrPtZUZyxzk!tvS+^M5WqaTc5f&1%JvhkLk)S=eGTEbo<15+j`Qo$Rk?vs1vuJ(N zqUQVtLDRO#K%{97RuT4MeRBYhYz`)Q5+k8Gm>77iRFG}poCH3~1%r8Tn6zmv%n~}0 zlmu@OG}9G4Sgsg!;tyt)jm=?YQa0vz63Mj&!5aknEN6u=j-9~?a7egW4!=QQ%=K~j z#y?`M_-lK3e_ZALL4Mxn!SUfHUVW9onEZ2b z6PU?A2Ua#D-(ql={eeG9SV+kJV1lh9L4WXMvdaf!#FdrvBhA4dgacTK(qiU(n7}hE zG7M=tgWuXlTXqJ&_9R9^XE3heveFj324{oRjaT6qX%kv_Qs_kT5gaD)5*0jE_5?5E zPi2;h7hz>mD*on4B-axJhY2+KUFWapuZ`q)Z6Sem$K3pe4-@FKJPm&~Gs|nh%Bg2L zbeKSs=>yy|y)PUSZl=}41o~|6jX$56?FF#1A=?&Xw;cZcp};~y4*$QfEl$Dke_^s` z2}dvK>W+;5pNA>cBIf)GLBp=dV51rQKWht(9Q;4yNsNTSf2{CW8T+q;b3w+2YvB-S z(^>e6(21lYc!i*mrr@D+=>InUP-dC6#|;w$AlqRpG~s+FdPnU zcEhg_Xmk7^{%B^7AAprp&vED#0-EP>&pGFLw2+9S!=t}q^%Vkbt~>C@GjshxT)DOw zv*obw4+0hva@ha0ts}v(e`vD9{zTE=WxKl@w@-#IBU}ihs;wvW{T#o4EUk--Ihqz= zPZ-UhSjZM&cTZv@v;dP@ek+YYFPs-LROH}5X;WJ`O6WwAQul|7mg%$|Sd2fKSw1qb zG8rm9;YlRd4ovaCdE5$@lIcr?IgU-iMQ~8Knf6~aR~(@Ez5q9XneRHRoO-_3l;1iw z<@{dvoZk%xhMRN$8`l~qXx{I{jbP^ec39bvcZ)Gzwh8_~VId*ggk5YM3EG4y$!-qF zuN-Ad(Pe^B&!crp3!L+{#o{-W@5&Z44f`U)lBQSq&^Gw8S9s5p7zw>X>nlgXb7c&f z4d;e*3+oGsI3^sc3Y|z=l&>5$(iS{iE+4FmKb%=dX28m%j;!TLB-bw}Upb=LK3o{& z*fAUehei8iF3@a;uPqM$R7uVc#7$u4d_Pz@^_+*UEe-`u`IVpUp7&GX&~WpvURxY; zgZ|!^;$|>&KL9Hma&Ix{%f7)MG%O@!-|)8W&=vFzXC>P=G$yi*VYwrteC^;a7+NiH z_5Ix!7`(QD@omIAY#EYW!>yjgNaz}x4V}n~Qcj+QGZXw&UQrr*D`aT-K@cf@Xdj+zMvq=fTQ`%v%ih zvS09r3kwO^FWh8Xw1R%&$I12!V|$8arBhf2)2cxwB42SPCHstx|_`{ibz6VxLJ@Gk=BxQqPvk_xwtq*9l9n>( zHo&(mGU{mBfce5&Y*rM2Bin$vp2Ub~13aIVHsBaIAAyH*nP3qdByCCydkdXNLV`BH zPgU?(*#;beKbBc84uzFTxj4v^NW2ZuW%wLnienpa790?6hQn=uAT3C`Q-#*USM5h zN;$p%Y0;@Nz=Sbh?@NTl~?? z`tfU6nbeP8coNC=1i{M*t#B!s{y>=H*ciME2ZfvI@XHA;2WYiG`6 zoX`rHlJm`8bk6xELL!c4pZ>blmlIk}(7eyajbP?|eOTF$cZ)$@_6hz#VId*=gllX8 z4*G;^lie*?sgx~sWNPJ(OlhDmvT2Zqnbj5<=TnBlKw+O}USw3#vSSoZPS*iO|OKCeTBA>;d%`76Hft5)S`LrjIT(c0I zGL-RBa(%n7$FWO@t zJ!L4ppqYObw}P4Zr(k76<}F5h*)aISg@uG{7*4cxBxo2eO!k!Fn0#M0dJpnO|3FKW zmNe&m1<$a^V5DggHW0>QZFGQ*Y!TM;Bt}AuFs|XUQabj7vk^Eb_Z1exG14Zqu#M1( zmhW8cpSuW$x zW@fnvE2p02(7u8u)8BB<^i^<7xS3Y>74+G@0)IX;+n2%0hHP7m-E#Q%hXM-;IsDJG zbtD-6UrctrV0>S`lRa;~?FW28-J;X0uc$w#m% z;3X<}s%!=Bz@N%26}Q65q*UDGNhH21pvmv6!V;_lC;5FDjt4it;Z*^BmS4o5&CK%O zVCB@a99k97WP0tFoija6NW{_C(_gZ>DxlBy8u;^>*`5L`8?tRNcFW=49||lae<|7Fe{@&58X5gR4pXWvCe9x~XxJ4QY&3)a$84dIga479#7G$Y#|n>?vHvtU z7i4T$28T$S&O)!yiKHX=074^8!9(THKZrk+SthEmGAR@NoZf;PwB#2?Mf@z-JH)N>sA00PbP!|r*05Dp19&*}#dw7Gr&e>^kSe}I(@ zxwaUy<*@G$0u~Z-*gwqHkzm;0DA}_BtJV4kIx_icMoeSyy_V!b=C6aQnuLH_^QlPPef`<4TBbi+$u6m6 z`+Eb$$)2LIJxFd8X(TKX6Qxzy2~Jqx`uJkLmaB**AU}lL!y(irzA#(pM6y=*kDRG) zG@FNw#sA;8U>n?mw#8=4mhwDUIf&83V!m3-h&c5HQR=i+nzVSJSj^Qj4Z#RvviNYJ zEo54btz>CVp~w3d3%^XZ_)M$j#2Zf4a*y~={}JKpw zS%HLwo`HdVzIhRzn^mYF$z5if28rmPpO7i0Evm%!uBPfDpwyhJ;1mUe_rBs^^ndJE zz#-FSxp1D)iKM6QpLNuEK}*hMxE0Kjb1AGGgh>9lFSeCv{J8xn`&2oVn5v5v1B(k! zCHsM==>sKBk$GBp6-SXd(5lVxY{bjV6Sk?4W#&;&Vg$4`Yw2U46q-^0MAJkH&4+N% z^o8bCp%X1MGrX%?^?uM&^B!&ov(&r|E0a?5rmci5H9lERrRFa#R)|uwMY5%4=w+JY%N=gtiF6hI1oo$vX`!I8zSlN(mi?Le{|Nc;5At4t`F0;k9VTBm}-%NJ+UnwhgVZ`Q# zw-y>{15SW()v{LKUDpN-xdfW6HmqtafEvzW$bsfKTXbX#aEvEmYylD+C#2s>A8;m| z4l+)h4hKq`(L$fliS_~hI3aDP6NgjrXEQ6uQdpT(jsaTmK14*5YWns~>7rNt$L#D}!wn(+MwGS?;pUh^#Dk zcoHL^vb54gv1R)}hHZL)pL=B(!dYtY_7^_Eu%b#O~$4bfg4x9^8GOmF`q%Rp43!O+hf-~ri zG?6lKHU3a$nYa>GCS~GsPa?TVZEyyiX7?ds2=+@O+5Hn74sLeCXVA4d{v-ZqW{!Uc zE2p00&>3`^=TZN5&hv+GNVs`c&!B5_{T}{!X0G3cl?}PJ7_;TD?+*eN5^~}5R9it>(R){KcY_i)YGrEeoY^AXX(bd~n{_M+%qEZ$&V>dP~!r#yMhVTn( zb+qKw57JF4hO8)_m4T5B8-%S z+#qzKRc5BQ`e|^4)|{LGV(q*hBi7r-jtDolE1kMF19kbyO=}X7zLMM`r=3<3N zQ}ED@MceJaps_ywP-dA}7gi=^VumM?TnpMC1i#1sdB0?x4Kv%CKmT4yO1%_TMk{)KM-9A-QYiH)1$?$zN^);MPoV5Gbuu< zW@fRTFw=2nG1HS60fl76rq@dGSO}+r6puaOFln<{m?v~1DXFjQEle~mr&EmG@h3A2 z#xAfjDHuE2O2~rY)8kYyrn^`n3dSDEwj?w9bCoXfCRayhpxSoj^K9W4HgD2GXSwnj zSm_ywtbCqnn+@5TobE}CfQmBR5Co;bdv(oFn6G*hI~ zj1v-A$EU9}Z;G%*vQwYtwKAF{1~$l9&}iHSW|8TDl}VBLz~>>cE1T9{P^n~>b<(&g zx!=w`_gll!;pToFFZU)-=rFStZV8isEn(%<30QZpa;cWhmvWV%Dd=*i;6yk=Tng6r zC}`&mCE2RaQMTEg@jylead!_Ygi!~j?u|ZaMoSYxF=A&ToSw= zn{CuL@v^M;bO(&Hmc{xZy4GXJ(;dRlhMnFEv%Zz=^BuNq$-d(XPr}%DB)0%N!x#o- z1o|bMtl$SFFAlsHj+-{$g&TxUwEI}st35_nXyLgVH-%Yv?u3;|;kn&bLKYsMFQ>wD znTr*o@SK%w;TfAPEm1B+9`icdFl%|MYhP&trZ&E15n?s7nNh-8tTzw9kyYhGFJ;E6 zlHhD+yyvr0LNo)d-|6cze3UQ+TTCDsJ{%4RH^ZxjrYVLzAA&!endbvx<<#>$MfUQ#T%YNl>(k+& zaC7aym#R2G+kjJX1DN?<3M(7(Z83(+HozYcEF|Ro<2}bV;FM$+JSVjlJe7Mr?}2gE zvZg=i0W<^6r5<5kWB}511b5joBs+pTJc*Ie5v(K~SK5N-;mnXh<5@UT+T<4Q7dnxw z)crepr0ukZJcU1-SwkL&l}QbG#FI#_H&`vY3RtcvxnA`R=LTVAA%XSD++6!#yHGu# z8D9~%fSK{}uyX1dpDG7g`72SfzN>rIcY-6s&ANYrOXmg6{PwsN%*<~CD;qLzG1$v~ z!5=OxBxJvEt8LM0SRs}TE=~3X*W|`cex+Qo7cj5LMPfT_$SRH=F=*28UA=?6}c2v zCROBOTM1c3e2$!|NY%v(QAHLcJL?$RxcGH`WUVPN#`Z)Jo z9|H%4`)ekPkNSKs!VO^N`v_RskZ+4IT($xJfM6jZCli0MEl|N^;@+G^4 z<(`DGTS#s|nPCir(m>n=r!4qU$pa8~z;V-Ny>PA2iR7s6AAm5rLgyg2;-)Z*&rPs0 zDLyyYO332l^W{{0zT{$sn1hU(AUz&2BC8Z(m z7Jpy37RTg7d+2+}lUGec!*&L*ehz(i=R3Apk+tV7PXbSkMP{bW>gd??%;le2KBsVz zNK)@Dg^R@>$1g8LQ>KfAQhwHZ3r!g*KQo0y9Nq0Cp%X1X{@KsAc@3t{Xmwi&S%G}YoGQ@kwyX#3&%$KeAAcxqETabR+YjU$Z@SU$=L8YmILgnFv2{NU zOPS5jakgm40(6WgF#-zE+R=_dMnNe)XTk|1#piT5Z2I1(Pv}I8kN^6C$rIZ8oQhk* zEIdnLWm0$sY$asj@#%6ZJd0ec5UtOWWH)hE^S>Ky{HE(Y!kswk%|dOx$qnYa^iwVG zZ#up2nKx|Xe%JLb+vv**bB8A}0xC=+HJR|&QI*Q_Je(R*S)PT%rLQda3!P|X@ec&3 z9?**N6m9{tqC5^OlZx_)t%R&7K21&)}m2b*=j!eeb){C8&3^!{=RF& zun4A_1)BAQu~?@cU?VHYOi#jCK@!}~8P~{#QZ^RC*&tGh?Uy^kA9|%Jzsf!3SHQvHrks4}Rh#z9@aHqrekrVMNV~-# zF8cs~Ot6rUJ37;C9cfr0`hZEv_5l;cVy0M6t>vR1OM6;)ft4pMXqFdz37dSABEycR z4S2#f*s=|H)RQo_0m+ROD>l7WI)PDdqp2Vx#fNa1wAn1YDs&<#2`>0*T28xx_wXk( z3&z{9GAS5u+DgcR;nU+(F#h6Vg(w)iCA$;#e;dXuJi-zy@RHO zj2AP71lBWYGh3J>bfW!$e`q*lJZ%f6;}2(+kg2dTDIu%dO2`u8Gvri4UbiJVC?OXl zyW}vrb$mk18^z9I|2%C8@pm$#*YpoLnK;fi{j!7{<4KHw60&O4 zccqG)38#frk<;N|>8nVe(1}(NzZZ$xPYcPZ`16^CWGSpn3dw-2ge)XJNlt}ik&6{# zDPqrLdy&;^GP(7d}v?K@NSwFMHnY+3z-(dRY&}McES$m%gIR6FQO9)cuO0dO$16?zjcain0r=Oe)Hbwi2?U_%u0Hl<6*3 zh>CJkvS-Futd$!F#>qtIY~e;6y~%Fc=r72OM}jtBtz_GP$-&LCV(GCon5#rTVEDf91uIWl-s%VIRthXG_6|&p3`CmF z;2ql($c2NqJc*Ie8LZm8`qy_}89>&1AI(tkvynIF%oGw>AEixlVUo~^WTx)#jz;aL zQ;X^N^O-eeDy&Ru%Icm(a=pUT=oQ)8oF61?!hV$`=ljEv;pW`G@>%Bv&HO&N70k@< z1uLhX`L*R@Li87-{Nk6nXMYfm4mbP$eGw*4C;?U65+(utu(E*wi)KLf6aFw_AtC#T z*KG&0pr4qU?54xm#v8@aWrf>dVzs!rFDrPKMTRI%^Ki2*II?-T(UTYn&BJ&v8%hOv z0?r2+KOTjHq)lnz*Fqr_ zeOx8iGf>Gd*Zi8vvVuO}b8!Qh`Q8FnHvFzF#&FpN_ydB4glq$@w*@z718z;a4Gz;ZZ9+LRVPBXlAO zX|@4gsz@8~CH%3>a`8o2nUst3Jc;Dn08NH}Axv>xDEJv15N?JeZGb+{KgA!;%=1rR z<<#>WZUZ#A{*QaE{{;tyn`_br==1#wZU8gi|A3VZ`L-CtWgFlR2o@5u4LHfxk)RE@ zE!j3;dTF3f>?{l}6Q`OhmFzNcy188P4kbno9&Gg?TBx+-)eq3^GYt9am9Vj4Vql># zuyH_f$TzUI6gFcMqyQ<|AZ+GI7#oD-#*k^+5Geh^k#Ld%hvinoVQ|c}c`ocObfW#j z+TKwnts8XJ@nGBxW}P_zRwi|3Ut0-TXMC=l>dYoCR*1t)Gn3uLoYi0P?!(R&#YW;kJ_^xOzXPMh<> z)j}s)dS-d0r;RhT09}t8!z@78!OElnU27{L3y{y4Qvv$Cixr{(t(Nc?LVB~M?xOh4 zX|>$bxR>913!)=4n62c=n_O=Q*U~FLzM-C-ftk|E2-uoMk^k5xMV6m`c@iU`{Im&# zQhuiW4^0>;KWhjHtXtHVpV2}mlBK#|e%d%g%g+?t7-sod1y&~IXOgXiEI&SDPUYtn zThfDh*7RiGNB2KA(WpDY=Rpi#2lS5y}rlb2rW8Q+z@8b>4%j`(do05kVVI5%c|%xJc{WLQ(zR0S=&0y@BI`M~2}j~6GurhWi*ut5`y%jadYhYVgD=a=jh=+Dyd?Ox z>B`L`WWsZ$raS@XhSZct;ZW&o%CCh^BrSD+Qy^qKts{TIAI_{Je};Ar2-hFDE-$S#6-2 z6Zd!;@6M{h>}rP>{Xvl-cY_+nAy;ReY)g^s8%mypv2RFjIGLh2ue1(dh7&^uljU%< zw7D&OM(9L~ioeIKI6%wEmv94^<>ZU7GASqL*-FTA;XiiV0rV*+^6H(2ZN?%U{PI$}A4A!OEmKyy{6LHyBLv8*`f7jYpxs zFOuC2g+v^43YuO2#-f(#G{>{>M>BK04y>Gdjwj0|oaXsR_dFj4hlKkpUd{UzN6e?W zJ{W&IGuH>e%7$E9jMQ?l_XhzB2|0K8gKc37<_@`J2m3X=&k?t_IRv!oHQpD&)M}Bd z?`t*sH$G^qTn8N)eKZS?7ucdCn}NC~VQdDH8#5Z|QT$h0gPY;>kip|dIAGcg7p@jM zk>u2;c}0c#Kr74jxDCw8aviKpD$BLD60)-RL^)NK&%0P5rV$$?TUpj@?PgT+OM1l_ zj%shdCwd*m8^WVFCKlS=Q;Tg4&(Ofm2*{c$^B>!6$SU(MPr_Jb5}a~0bCn52K&dm+ zRzPz_>dYEKB910?w9tv9r|w_8*WBg^IYA4}6x;}Ap;-l1CWU5_Cz0InG9$WI5DJ`< z{k?@@*e{i2e*qjG{U}4TzpiH6BjgHYU^mfOf#UZ(MPuh-9DwE&W**Sdv1wyzcuwIWu{PX$OW|VihxnZO`li2V|DE+UGu{w% zbiUSWO50!Hv<2>uFXqKN^#TGvjDLp1s7-(2ZlM#&TzyBc@U%~Mr{2-vC;u~{>05a} zZe`ngbYDyP_nxvb=?S)*>uF=rnaM8h%H;d{qrcjY(b3j}OMl_HmggVfG1cz8)6DN> zo%xWrgn@T)dzlRU7gi2_OB0KtqGrVJsW137z2PYtD@E*u!oW<|Kwp2Qte(m0bZ2IB zArYRe42>PPS}d?Oh~;&>knO z3{Px^PIKU%tS-mE5#o}vhZ8BnSqjP`+*l?kN5IM>6_i}QL_s;%9h7t62qgfD?<@u7 zEZkToC}+URse>{@Us3w9OO!r|dkva5YL5uQ>+uE#B9B61z9oH`;i4T$8j zC54ga+!=WWjt`fS-5eMZu2M*z#7$*F@))d~IwYn#l2;j-JjS^#SxHC?PXp^xNAem( zCgPSd5g7+7r;doBj%X%1ySOv5BOIRu>PW*?T1U3SO=Uu|HLRREB!)Utt*H~?ygMU3 zaCo?kIMfm0DMh3Ux0H#6EYZc_m z-ft|IlMAnkQ22|3{#KNe72k2OLL7{Ge5`oMVTx)0YO3KcZ1%z~6?#sV!f88@NveVVvqb$gk=aq!n z*fb-6T5e2D^dyqWK>OXuX_?kxh{ld&BT+|*JXIr!nhz%`@K`Px&xM1g&2?d2p%Y0^ zUDH!(vf63#Gq6;qcMIH7W;NW@Q#NKj!R^TP4bcc~(S?r@d_oxRxMlEhJgV9aNt*wC z>G}0AegG?{j+ALg@5}^0Oc~EwS;6UfcbuMuBgVz)h`4d8l_^S3;pQ_@dK^|x z9i`2Ns!mF<6-605!!wzgqrX4 zHBP7&b4xSbns#Ydcb;~FL&xRmxOjNd#(~1MJ?;k+u5DoD)ZyBe3s+CEoE5K6YS1dU zqqPJM92c#R$BR}d3KXnv+zTdHSy(xBur?VIEDcIuc1LMB94anK2gZa_!*2@DmvFn8 z@O%+g9{KR}B0Zw4%ENk@Nt34#8Zuov7nH>g8RaR>>sdl>X7ZqhD=;S-5#@b z$2(8;W(bMlnd)U@#*9XTg0>d!4HL9AVdd088?ukeYlgxD-I3Z44i&d@#neZ6ep7fB z;&wCP*%MYy9iF*ERjGV6v$$L?YUg!J-60x)L&k;Z$av~f#D5A?1-G9GQyErH9i|~S zT0}70EkS+Dou_ZWQRDIy(?*LL0*cgCxC>0Au7H(OM`|lZeF`nPDE;}L-GRCvju{uI zqhc#ip#V^vevdoA#OXJ%a_Tq@xo;{CC@}rc9j5o;h;dvEw^T zarrcEFcX(g!OE%QVmy2z&o6lwX{ig}KXwP_M{u;b;5Z&WQC+79{Qx(eiO~08<<39LW*5XWj963XT*Pp99?LPS|aV&f~b*OmrTBl~YG&0~0#Ub6?5~Y~_j0UGs`U zVtBgdecZ5Vx=fK7kDJUyW(=&HIx_2-kkOqx+R2@l?coq{%Z%nSJLKIF&tD45Hn_b^ zSmwdXBNrCk;gBWnuyn&AN(dIip^z+YFB6s%VC9hui*EaLxjQUhfhYOER2Lg}Y$fhJ?CPI7MPR~8a+wDj+b=tYuLZ@VQDO|Nn=FY0hm ze&jt_E8-?IYvXuN*@!@b_hcz!Wh5e@o1?;aW$ok+!}fS&wRdGv7!GSUR`Ov8xlXXy z1~;CG#XMM<44Ivtgt3Oi{t2IUzo^zVHC?^sVy=49GNtKSB5ZZMI;$Iwn06>BP>_y} z3#8zxo@NYa3zo%wVDfYVteiSeo3|N~Bu|xcRXr=T+#RMb!QtY<)bqltWT?PQCExXYL&R6b=@bqqgVoEjSYHQ;L3qo6n@^Hdr}zij-Xx zr9TROj@|j}5@l@rmpewUz|rDj)b{AT4MxI$%F#b?`S$YfifXUM9u=3C> zU9v*QsE)=zg^R>Td3tXtTrB=LetGPR-t(AHRq{(SrE*36KKZ6AJJ07f781iVpF1{w zvYKI_cx{Ng!NhA8tUNSc!%UTOuaSPKN&HY7;p{J;LOQ6Axnp%C95rsiYJ0V|#gbDv z4wS3Ia6gz_9Skd{&J|LvD%sLWN<;M-cdR}Q2aSu>FjcEY7${Yr!rfp}^+{Mcb*i=l z#=x40XSKgvRll9|BX_iZ07s6CR@;kh?JHI*7L>2=;l42W`VOp|I$x}Xgz`X*41-U( zL-jZuE-qAYFC=&Ypd>wlJHRCAAy_$el2}XS{d6T^#Z{c!^zlMsc-r*1x9}SNQ;x>q z_A@ye1uLh{k@7Z_zCS-%UDw>+ouX~vSaHiy+l#X-#<-I;-(H@FThC;u6IM>0A>{@( zJww%Ec?mt3((MjX77iE}q_)@AT7VRUfL5dva2J>~9S19?P7|v~s+Nm`YUBMScb2{g zhl|Tn+&z*P07}w%xC2a*&V`jzCyBM$QXTA8)&_p+&e2ccU~xH$d$UEjPbs<$H=jw- z&9HLn6!Av4!S2Rk0)?bk+)4Te9560Pv5#(k2q;Z|$6a93^c<|5I!(&e$NFBWmMc}u zmF}{7jCZZc&Xcz_g~aeo-j0cRkEIm^O4Mq&6HKBe!^)`>#aapXgQ@G97P>RFCmb|x zjf#6EJQM~>)$X_(OsaN)l~bpR)rE^?-!8QauekG6hQr0>Def-Z3jiglh&#X}DGw{B zP7>>|%3!wCO%}bca!2V3I9^NQw7 zb*dI}P7nm)td%p>lX9nIs>}NNa^eJ3SH?d8q^u%rysGo8Z$lw5JhQ%1%(K2BLPP1B zg}cV2Zyi`Ub^4Uc>7uI(&6o8RypD9o>o7P{+(LF}On5bYr~Dj@+s@?Y09ZM7el~1Z zy}C3P6nxqpo=?GH;={;?GQfrQAKxrJexzqB~6I!C~XV^of`z>)Jq2vd+aFVUl$Y zteiSoZD;Pft0{isPSR~~n7AaxHFGyyNpUl7IFp@~ z*UVk}-pF&f*-UDlft6FIW_G)g%)fX+>4Vl>&3XQ{nvfWt`PacQ4PCzHbgY_;Th3%> zC0IFicG{lH4&H&++%U1HJ3za`!Qxh)xXxvV+@}=nf}78zXh&E%b&A@)0U3l*ccVnv z9it)~EiOiJy#X2apK_GP?Pqe-11qP_5vLkyZjiXb9iz+OU~w^uxf!0Yl;XN_QjGzvNdy1BSwdoX=4Em1ZRl@;SO>S8 z$<5lZa_Zd7YB!@NH$WWbPR+q^jJV~d?Y9Miop{~N4+r2@Gnv^JR!*InwjbKk-}vw; zcW^!l2Z{?$+b?kg;23XuI0ZMINly({PMw~%J&x{O#qYVZ^Bp)$Tz2B>aSS&*T!S0V zB=c`A}TYlN8EvW2#y{XsIHjSq}#=V&cgnL`@`hykFav;oVDE> zqc?|)S;M)N9wj7(rr86igOyXKrhQkWy(wg#J2{=hMow&9k?Dqz z&2iJ2^vr>kQ>SN>c4J%XQVeAvJHefwc&!p%qSUGiy+Rn~&H-Fsb&d<$on7I7JH9Irh z_;Dj{IFp>~Vdd1xX?r$Ed(+3?-O+gtjuRK1xXuQdZuocxx17n&ld$p#XGeFl$7*Xj zPr4=xiQ$=a#m0`|Mvs+n%bDyU(vUyQ*`$v$brdtC+1;bIO0oRw~(LbMu4CI>Y~;PVay2 z6qmVrhSgWhmc&gYl~T4Zx4ie3fSjML&`kSHw*21LlDNT>NG9sjW*JiJrDIBFK_ezd z=WD&X#5@isCJ5JaEngpj!==q_;a5T@lA8KFS{oyo?4-VtWIlvj$1HPy@|2A^o>MUW zv@CvE?Q=YX#Gx~jUEGz)_w^SeKf^IootyMgLL!bPoo0JyINKpFN!~vkw!FUwD+k8O zf#q!qsVw$jzx;3KDgv*SE>Le7O_#3f`moRF}q z6qIvtQ<9_iZu44r=g9#_D4}a zY>4@FSGiQn=EcP*bdKHntIoc#m5~{pX0qKOEXU>(0nu`@{ekzRFiymb^Dvtwj`kC= zwWEuc#&m5Arz>z;&bl{*$x(eTS_bvGRbIA>cpKO&7gc8A_A+bYI-asI z{Rz&)l^xe`Ktfa1@VeMx!uIN7i?uxo!ohf8wKtkk5ZdmVg@5F2KnVFwkT?LhoQcG~ zuySCW9H930B#gBq_B9-3*DT6TaCW$>nD196?4J^5Is)`bI9S|D()Pp|8=#Q$wADHV zH=fB*4OUK_A?0g9dWOoSuB^K3^F4Qpz5|DgOHtdsSC}Hteag`_xcN+uu7;IU=ScY` zhlwNc!z|S@{aJMt;1PG49)g3$rK#=r@hoU+1%Wd4C)^1pQ-6e&Q)g-`b8Fn02}*o! zX}|aYRi-=Nr+&h7%v#RF+$bS|O*FVjwY{4GMJf~nO4NsN-r4VWz{;r;#p#%OXvZ|q z9i`4;Ln+pdso^|jXmi|nW>uO4E2qv7XQb=TRr&^MIbB&g!JVb!;Gl8KQmi9gI0%%f zV{j*!Of7KP72L+0oz$4uFHiEk*mq z(HS+Irp)Y%8_i^9Z&*2XW|Vu2qRi;dAbrxEnp5B~aj9v0Ya@5jTAZR4N3SS1HQa0_ zHz&i&sdLk=ixvTF9k)@Y_1|%)=NdRzTzX>ZqQlNphOWkqXEJmpteiSSbK1=6L+5K0 zgdTE7=udF0xCpiVLNK=gg?y(3{SmjFNzm_L<&_h9cqT&|!OE#K)UIpR zo*6pMot|UhFmWqSEM2qdtk5FdY$i8Hz{;s})9%eP{TZQi-N88rjuRK0w%?oLc00zi zL1*E1Gs!svR!*IqcAbvqOwi5l*xU#QiHl7vosRx2(Dk^{OlGcwl~ZR%`L)G0J$> zXCiJllbms|a_Z!?tv8yz&|TcQ*%6LXvh_xPwr4xsY9=*X!^){sqkR7-I!fu!^yJ;a z>45{q1*h$|6W9Zl@hndlZa9;j6Jh1l*=g4mYtHao>dwu@aFDp%#L^Y(&+c4^8_i_q zd{{YkX4>^P`ZGH}cgN-)I8Iz_V(D*;XLatv?Pij52dtbrIqgQO<`ETT)%Z1cbY6u6 z#YHEUk*eu9T`_(cH=N1Ni?FhR9gAD(!4Fm?T@5>KpYqAb^G>3u4~g=skei$8JqJ46w531 zw)G^8cd8k$#ftw*y)~kH`I;1+0H-K$SKgs^92_ximJ0_6ok(`-nrn&WWqN)-mD|$- z4+9(J1$xKeHZrT;B2U?v>;x~+TUVFt&=qpwtMkqkRy*E&b`Bm=?bUfS?F-tSGHjFf zkgo)Qvv6yf0Gt6U2gb<(=QK~kSQlcyE>Bq!@_#g~S20C|m44}FVV@%{H^Nck7Kyeu zZnmW*xHw7te`uR@J#H_Pm+N5V)Ok^kgekn#${9b*3N_EUQ}YZQD=sx{H!e8Tw7jP5 zJc(P)WalwhIdyiFTYUp|M1&PuCa>#UV^$IpSnI~6Me}tPRwL3W{G@zL#O-AAF%DKv zosU`CuBG+sQYhKQosu2l7;!1F?ps>kQdYLZt!1*ZHLPr4#bTB#C(3^NY#|}Lrz32O zqO`)Fu{l{W-^B_sUB7&MqPO9XJ3?F*S?-HW*FOjUxU|2Fc&6(W-@eF%P%~XW+m>QE zT|d*4FwWqNZTYZI*EK2n9-N}!M=Pi6-+?2h&2r&Vp%ckY`{}x$Pi49uco^6yr|Z|? zHZrT;)t<63+38K!{ZNFau;Jxy0f#nkceYCMk~&~?G^|*>;yhjZsy=NGr8Fa zR!*H8* zG*HU-2#l1u{<-cDodXAq3(+BQlpq07;5wz~EZlS^MQ6ausZ-Q`1grKA^z@Lcp>B4^ z=SDbETzs5Iu)t@^&Gop=Om41&l~d~QBJFd zIBE5TN;9*IJ1slHapG2%g)X$TJf_TShg-~KW@}hEb!L=vs!?Y29dOHJCl))3a#PaZ zs<4odTccOnE>=n_{M|7pD^7Q@LTruBO?GQ^(vdasjqqwM-<2&!_DBB;|Gu<8j{2c- z9B1}c!2=^B+i;pq(x+{CmYbwccoN2aGvj7R{F|iHqpR7bWQ|$hxji2xB;sh#UlXy5 zq^RC@%Pf>xWxF)&Yfy3Ip6Q2hlG&d(Y@hoC_e_-=enRmGZ6<~{PCMNx*nHS1XuAc* zq9Eio;b9JLH*MRR_qP zhC4;)z|rDT)b_qQm?Ggkh3G8YcqT+=z{;sZw285kX}yclmoF&`NjJL_bR!%pEul&ejapks49_&G?a>YuD+0EzXRNP z*%uB`lJ!Nm+_yJwF%y>suyX3Sw5czeWxi9~d8xrM;_?zhebF!Pos65z1f~Qlrw&Y; z`ckc_+nd+8^KvyDA}%j6^e@6=IvibzTg=4ea#(pp<3jc^|KyI#AK?%siHmOY@^`q! zOkD1Rl}9ozbk+AmcU<0sLzEyc+ST5-af_L_ya_8CaIrYnDNlyJ=N${PkdWt7--geu z1&&B7{DX;3Ry^urg*c!3%GgA&?iqWCcvrR>IhnfuY;-oM{c+S63~@3wTd8E1&CL%k z>+H_fvYD=8wpz_qJH7w8v+*W)b$R5VqvkB?KEhON)*7T-o<-fulNbqSQ72~>G$L|z zzSc{VQiPKdcq;Ge$-}|Y=CyE)(1|3bz9oHoBb3EX)vv%ZdD^rGw~Sfbx;$lLb`v~p zI$eoE=(J_{jOnGqV8@ez7vs^?Ud}`FthqwDO`by@l8j%7+sMrL`LJ?eoE%8L;7KHR zjC7`oMlriASMe^xP!@)NE-Z7T;~qFZ+$yjGR0TSvlXNb17j7gIk2_#x10EJlg6uQ= zvScA4AwAL75ov`#^f_6vhl>@W+qp8?w{gbrn=9oi%9}W=Y=r)(w7-b@fkX5=txH~M z&(r#=&Lx3?kpWiI`AiZ&liY4coI zN9aV-Q{RzRK9W)8?VF~LWMteNw~|@<=6K4+d?(loDT|3gEJFQ4xFb4FnC&>`9fQYI z+Y!;sx4lLq_$})*AM%zkun4!8$-oh?G8z63^(2hdA@-MSHq{n~)}i)nv6#u7JV0&@ zJ6D+Lh|M{0u($=I?aNw2VB>9>c4bC4tC`K7w$fXN#> zk8vvr32Yw0W$Flbrd0PSOcQbQnJ|rml|K?N4d%LPW$oJ1F77bx2*)gGm_qJTn6|^s zXTr2KtUS_T5{G`v{nbn**H{29Em23iygN)iaLf{fNp+vX)PQ2(daKN}E9qK;DMSQ0iU5MMx#OQoj`6Gi-e=e(DLH~1ijP8L0mIg)* z-zi3S;kGj|x&u~D9V6ueXi|-qiu<~%%Jl6ucYa=lBgN&X?VDe`)qtGmGzI5n+-N2^ zFT%>HgJW9B4c3x+$^(_W*tpG=y2{;ZN3_l+&U3Z3g~ag8)!JUx!UHJkJOybQZafpD zHDKk`K^me0Ey>n;bLz|P2e<>YFC3`^E0FIr1!r&EXeKxdVCB@o8DcZUk71^y9>_n% zot+vSEG|1SY=*S_rudwU+s(wM1S_YGkMa>7wewk$t7S?9eVOijpW6Ri<4(}kaJ;w# zwY}+wH++R%rx0C22J8CQfg{ z${!V+@+Cb^o6m8cl+6(m!!s$15vP{_6sL`F`Yy!VS*oZo`Q4)ZafpDLt*9AK^me*%2zYqixbKs<2mjKodw5=i%<+bQqye; z&l$McOn6R%l~adjh*_G5qIhXe3($@309_BqiwjT;v$U}56r$^J)0q%m3oEA%(cB># z?ZzanmLJS%IeNyOqbK2zaXD&xKRs`@FE|Q&Pf>adx1Nd8!?1GdC=F4Ms$JPyO>BGg z6v?jZN}D?O*As=r@buR))T6NL6ryps=}d@5!^){cqxq&lFfWb$Et2S0th+<|#$;0hWE;>De0&7Ps=maIUE3H^pZG zZZ{L3-C*U^@fl);XfRtG$Ys1mH}&fBnma)!!|~!06vGNp*mVj~2{)Yy(Mhm!>JY83 zZ>(Dv9VjE$)$Zh62?vQwj>EkmEq^I4m*e&_arp|YoH{PbC!dfjhEjP?SBE_Yx~gd@ZS z#-YNPE>1WeH#pObGR?dfm#AU@{bD`xgtt(%^?PcQfIaoP$ zTxRP#m+&nC3Nd%N6LSX~CoVB!OE#aqkL4ixg*uQ89)K% zWp`j+gk!`7W>5Qux9Kj0N;lxezEnCwC2-CK7o+hm!B!*|25f>SU9;fLp zh2<-_xlC9tft6E-#W0H!(KB6O@H=;4?t|mR1;$|(6?U0I^Gn=hCN%fL%Be$Rcm+m8 zF#O8C($~E0&dr-}sJPrXyaJU5q)Z6G9u zXBxGe{p7phDurY{+*BqcGhyY_Au)9@wOn5{|4H>$uOr++ITVf&x3IW$FoC-imVNp@V5&+Mv1e)esK7LF1ZnZ4}?Bk3>&=G(ZzOklnVE2j>O;Z$DaS`Ve+eaxMihv7hRnQ=Ik7x9^5 z^B`_B6PpKM<H&n45Ot=);)3Qqv@+v^Um%!NFr$ZUyQ%tU50SUL3?V_1!822ej~I?)}QfTF#Q!bp9#~`uyX1!8S0L>1W0q~+8SFqPo|~_iQ$<{In zrI)Ie+-W%p4ic9Zhj$NJ{!(0eaeJA#Mp57WOW8C*~_~oVdg|>^X&9 zrqEo1o6LmfB3Rh~O|EdoIvpLKT0W<6=)#VU_y0K3|6`H=$I;#&fyAq0Mt2l0 z7ynja&PI*)z(Qj7=%&O*oi4(RCE^vvarSY9Ne(|b$d zV)2Iv=~TmC%qh$?{7qqf(_dUFBYTou&cV* zVnBSZRR@oUqoW-R3KSDfZ_UP}tdeae_~hdU#;!lB_ZqB%s&EhY_DDIYiC zrZV}s0ai|(kC}uIvAW^+>+sJ@``f559AdrCdu5ug@p=DqXSHQoWC=;Lxc7Nm zhUMbkXFUnyijQ$3Z?nkSe#K|?%z{cKyX@$EtyiC%>*3@CzgRhizYY$VHot|-g-#?n z^=;|;o|4T@oqvIaa=rFi+(Kr-`?jZS%yfcld+TT-(V1y2WP}&s9}`A9F55heM^wAI zM{~ZrRn9}6lI%Z-+se%T1F$j~?*8CO7%M{TOTaUAm}DzU`m#%vu4vrW&XkN65^=Q8 zl#*TSDDfSo9Z?5vC=-zn{y##5zR=)~$X0mdnT5mw5#3wgTjGW?5!nn@PQ8k(Yp5cp z^yVt+JKra|LvlPEA#R7ES=VE97@eYyc&^e)ax88t6O*H1<65uiSs884 zcc}ogK1fEhzK8IV%gyd{kIdw>8=xT|sklf*p$gOaAxQOg*hlrty+=Sc7 z1mp%-*#L;e!iHQM@uy7|5^{y+o3@RWw8EdJJ6Z7=7c0aH%_id#J&ZN(h-|65+!tA% z8M_VI=WBlx^*vpdXDYs3k?Fr?ZDs{wD>k7B=#^_T|MPwT#u>YDCKmtN%&M~RY0@$W zPD|jbT$tGij+QpFg*AjuBs2B7rfTQsF|;ZZcox_umt;1;ZDUrr^*m)`f)iYlSzAqT zXq6(o9&?1S*l|7PP&}O4X%tPh=8T=+AsbR1@{uI{Alyo3()Wjz1LNd?vX3WW{Qbwi z5)+z3`9G4*zJX#bUn=+IvqhylK10~%NXTh$gt*1P*!q|V3HeET<7K#=OhyJ_<mkjo$bM9D%z_RKSFA(vM8^KmCD-nU)TYFHr_Vdf;f2y;-m@v>TE5$1IGC#5Z! z^#g`jgy|}mYT0}#r+F8y^;exm-@eF{U$YoYA#j=Cf1lVPK8y@B8qOY6m--_O>^Z_&;N9+C#n)0DkFPd&!uNQ5}tcfY+VtOcL&e z1472XyFCeGfrx#zW^3KAr!y1WM7B6z%2t+Tx+M$iMQ4?dwgI3W)&JoRFp2s%teiSgTeKyr9ZDN*=Zw+@LL!bS8ZAi&yP_2FoHDc? zZaI^onXq!|47IOH)&6XynrmB?j&MimP&jOfRV7^jC{YLD4ls$@A68DCsLi!ii7~#N z;ZD+NaJaZ69b{XSbdFPkmf?mo2^xfzQzuBda4Bf6BUN2#jjnS?=UO;UTy!)q>hW5m zh{u$fZ{rp-nfWHHoH{f5s-r943ObLuqw_EvE-pIORY&JICFnuia3(ytYs`x@Vbqbu3|e)TQB+1sO&4(-pReo!1M zl&3T;jI4rb)+pB(R%7#=fMmHwxvnQM5|*u2%{2VZ^bC}`YWcGI5x#xl1O=|j^~t^A zXlZj?*jngBGE?8WT?5w4W@pqtTJaX(_Ax8oZm=?`csqL%$*oAu&USZuUw&=1BjPSE zu^v_G%4Pa;wcc{K`Z<7_u+VV{>SQ=hTteD@<)}r-&^}XYO1RBTYEFWc4b)f+FLH$P z3zUU~94BYkIuh)l?Ud{YHSVD7vRoy)gZ5+L0tUC1Ot)jqMc=MS?bD1(Ke7$C9F>0H zNf<{ZV;PEn=PY!LS(BEB;k1xZ=|MPJ+RPU26*`g3n2$00c?=z64m=BNle=XP;I=Vq z%O5;tV}cXhEejnB@xu_>JqquXb?kut0!gYrz{9ECDWj=29%DA7I^-is`n$N5%%uMp zRt}7lrTh(_8`C|$v2Tn`m&eNjIz&G*I8VKdX-juFHWLz9FVC$5+tKdSKjUtK!*`Lk z8k^uIGRc??E2mDzh6XY+HE~+6+F!1!=gN+CXXI!&Ok74Z_b_o7k3&)(sDSg zoH{M~Ix=6aBcF3;*O9H&I`UU{MxKU)!)3&(j%=-|BTwKaGRb%pR!*G^ zeI41_Tt`;f(Ro5MNk|M&&uUdi!p_nkdf{jt&SUGhzLRanuD-1cIkeq=65P&lO3~MF!`G@J~lM zS@As=E5xDgQ^zKHv**NpE7|V6DAv(aasPsUYTDn4+qYMiv`mW}ztS9xd&QPvc`)uD zo`mt-RDuWNLf>A|Cuhpe&K>zGLL!ci`~wlSNOH{IUTI}BbUaS_7t|DaLT(anA+z93 z@RW_2PVj_W=$`XdBti$s!iVH`cF*|^cto{_-~-(G2(^N^<```hBSGP6G)Rwl#U zTu;JS5n?|ox1Ma8BqrJJY@fJBBG<1>*L#I=*m>r_KlwUG4i1sF_!nXWrR6K_ix%Uy zGC|3}%Bh1Ay0T9JMLTuB#2uB3;2?2P(OgmE_tWibiie8tErsO*+*&3qbyzudShmzv zm1b}=-MMO)=nC~~KKHtVb2l6?E;yQtL^$9WJf{%diCfNu=yq5+b%?YTrj*7hvU)3QMJ`hh^q2&YjG3Au&AD9BWuw-cnem;?^=@ zSshkR9hQxC!&AAxmha1p&p_#k+25U*ec(uO%ga8d<>ltcQ`Jq3J5`q{HhbYFGqKqN zR!$w8&|%Geo6AR?)mphf(+smRUmA30rV59N%gkPO%tZX9!1UwxGJ)xXl?}jHEWyfE zTz`SbLPD-3kF_0Lr4{~yqLUSWw_Vn3SRvMuM|av9Aq>4v>oKCGNN7@@tT5ExzM0kPGqw7|XY zY~}g zaJaO&EzA@;k<`@ZnFhlklc8yJ)3?AnIhEcFw~krnHu02=IZkjYJ%i*pG~oTwGV^{otQ;682bM!T31bzAeOet_YYBcRopet9 zIboC|9B0F!;g*7J;Zo4>kaj(1;ubQoI2~3Vkyw<}FE-uej>QddXoeGu(lUz04{-~b zSbQH=Heg}VL&`SPAFC`RWX+mw>xi_%?~0tP7~^7vXokO->_;vqEf9B<4`v(hjz!-{ z_@D3tE4JF7ME%eq8sgTi*mOUs^;ezQkdcuNOw$~{Z<_$w9KYj97#kU06lvL{e1O9Np1oR`~*A*w?^X*)-3@t!0+O>7KGN z_X#%58ya&TYAeId^FhLN>?cbo*dLFpwt1!$97y{kkb;ocgok}_yO})f1uF-}$$@DP zPr_I=VsEDBv;imh5ayCxaX{IXSSGA=q-PM06}N^Q5(7OU*J*!M#Z6}d)DJ7C4$ziE z1Js+XbXUbCYrP6Z-*%_yn{dFm6df5KMJ@j+N?*tAXQK2qSUGi+%!7LCo3zDT_M~N* z3av;Fy0i2E95F6SZ9l~u>Q|uvP?-LJJHUkLx3F^RFwGshE)~m5GSzZVtuMP&sZ1Sv zIFD~1z#-$(v?#vH6p8@F>0R6dCQko_l~c!w(I@rM5pGL&jy4k#!!y^4u}^BaP665k zH=PO4Y*_iD0FY)_JJubbqv2R_3sH;!HC(3v9fh0D1n6*BIdy=P@2Q5CJX+mRHNT{< zoL8?!|C~ERXT#y*GIV%+gIVA`#pq1jdL~Av!^$5CjI=$`P3{=o0Ea6LjC}7YMnA-@ zXJYhySUGi!wivp-ZnW0@#R2t1+F#u{dK!)wm!l(MEJuO+6r?9`^O+z$3M;1$(kwGb znuW(z7C2ALCJBk*X{a@Ck)q4i4VNh}6L6E6z>I~JQwL@vGcc`%Hf1`$vpY3Az=7hH zoESDcT7FY>w#DscqB9>>P92?%&FB~x7JJ><$-$B0vZJ}!60JDWaSG33+;Ap58CW@W zcs6MRk8vUK5_ftof^ zGBsUD49{e0fA^WVaY1k@ZZ#8|)nVlkjg598aDR7f_JPC1Ej4jqV_E>*3%8ny%^t9F z>e$RSx5I{ozd?6ys&JgR+#C=?xiK#I_2XtU!RdpQ4d7UuW0yza{d2Gu67t;RRNEr~ z(hC11wv!ca*`5b)SRoGN-D%L#EAf;Q^r& zNl)GQRmf0ALvO2weGIIWhwq=ptz?$ICp=|iz7srrAG!lR6pPRi^zgy^RrYdjx+e*V zIGS#ndE=diLuNkYEn#2+ZZDI8v9K~3{#NiLjMX9b1NWiVo5QeV7pwcEI}5`c&)Dw( zhlg7tcBSo-e_Pnlpa@UtQsK6^rA$QT!^){668gAs1d*EKuOe+hOZQpy>MHZnCt;7r;drKmejIpEg5vDqzcD}ONmP@5w225 z`f*d4ko3XIsY7C_B_eY3l@aHg?v#8T4iJ|Tm%gOoE5+n%xUEb~z6vXkWK7f{=K*(2 z{s0FkAxtzw&TnyBnV9?m`fx-tJi@TT&;)AGpKvE*vHu!bO@}RIzSt= z2dG?8s?OQ&;G79Zi3`r&?p3E;p}?Gu8_WdeR9HE6U^Z_LOeMdhS6^~&a3|-7aJabS zXkJi3OHRmhiqQ9Q%b5s$7gkOkp&=UNrKIRQ?T*e9aG1F0#LyrMk0~;b;ubTJ`3tO^ zIx>c3yslhc{lwX%eVp6k2|{9c+G2-gyoRe3lCij{Oh{IMl~aerumepGv+Ur`$hL5J zxb?(g2U>fUWj<~x6Op;Fa_Wef>WDbrp)|TVcSaV&@!>M!Qb)8WSu(h(Oh`TfE2j>L z;goH6ZpnP{F>!^Hi`+T601gqC6U`;(+_pCGmJT^}+*&3opNExGM^nwXkl}e9%a~>zOVB%XR44Go@tIl3oAUOh^&rV%0y&USb4-E zvb0}8WFL1#_JYI1ts^doEbXU=?15X#L}XW3Idwz~vz*-0e)Tv@)t!-kI6hoP9A-HU zS1BZYxT#D?3b1nOkeE7>rTu;LluGh-cS^nn2Z&3FOGnc1m16Q$+*T$gUxt-ODkeR} zGFhhogF7a_g#(lTCZ4YplV9VuGBNoDteiR~v-R78Ug$E~>F~SmwEP#26PFgv#bexs zld#Janm2Hhnb7k8)?^a5y~Ng5ogW5uQ>+4#6#DB61+CoH`+k8 zh`5+IEZ7I$QdCaGt!1LJ6jn|hm5ua$N)Wt^Zawyg?!bH>4ip!deeKunBR*4XzKh$; z#O7PDa_ZO^I+c81c8M}qe!`uWN8$KzX>sUO8m>}E{(_szgyhe#a_W%G($|)JwI^T7 z*VOI63Hv*@v}1+D@U*mh+Lx84yA+lcaC4ck{O_X&i(&aKFW%`@_j0|G7r{s1x zJX}f~R#Swh6p>qSOPPrL7*0$V$O~|MxQsZ=bsDZxNS?<{WkT{S zteiR|hW7>=k<%`sOg+GPwzImB7@paV!+V3$VG7KuxWPR2gWq;l+^{4z1&IJ z0}c4O8rg~Va5 zw!B0=4f$JlTz(A)ii?X&KPz0NMdcT`sZ3ga1}leXNe7bk^=tQ{9%s9|#c5Jy{Q0jt zDR00*;*#RE6Bo6z%s$Y0`m?@}7jxU9+rWmR{t&bM%b znZSGlR!$w5A%-P-71N{c#QX&g6PK76h9&J)On=5LW+HPxteiSBhQqdf*`@iu0d*H~ z>_N_b?+QX zP8}CRZRsyp^P1YS`oYc1DHDMi0SBl9D+*T$g zYr)E?V`Au4s`(}AhnNp>r{q95KHP%h(5p0DrI750o63Y_A*`G_B!=m+xD!EXQciVe zWGNgTE+Y=pW8o=9WB|96iAV)j{(sb+cYq{S)%J%RBuZFvURcuXvP+JVGYc%slAD_D znwgsIFxz2vmmq?IgaHXlP>`I1pdcs+0)n6*2!e{DD4-|`ih{xm!h5^AXR7+1TRrEg zQ#E&nKi>Ux{T|MF>euJyd#xi9Sx1Wc3of_H8Mz7ehs%hljuZ_~Fkg>{%7o+^Sb5As zGN-KXnS5Ce$&0W*qXCIZl~$7H@lctNJPRvZha}?8jEZ`aqpU9pE<9b_bNviMBf z&WuK~6qHZ!V40wN1S?wyC1QoAQtPUgovdC_Cd*OTLP?}E$PujY45dq9*%S|#3CqT? zvUOM@y0BGpUDI)LPL77{;g%FZ7gl9T5jhf%l!?d;SlK!v5nWhioZf{!N6yGuus>Wz z1YOvAsuYqhJ?HPzzupQH_j@0U|@FKiH(62Y{ZpDV@W9z0eiCU?Qg zV;7TJF{@$nh8&YWzy^&9CMs8o$?x!3nV9?rR<@2w#Pb~0va-(nJjV)$ibp)lDv5Nu zv4ZD0!YNZ|mc~P7LbC*{9085nca^$D6)|Bt4` zJBu#TynExfd(=Nk42g{v8It(5FX2d{ct{?__asr&y83ooLfu5N;sG5Uo1VU)?&ZbG z)8700E>V9dOIMBfi%ETJMf^?Q`cZ#znUWk_{Gd{$;#L-%xuE{9Yg}=0Ec^>I7Sq8! za;0o#a?YtbnQY#v|7%+Rga2^NWN%=8XZU~9*?7+;--v5)X{VU&EtQK-!ClaMf0LWX z79RTON5!T0>0ybPzQpKwK4HCx59@!76@t4y44>tT@Mmed_4;tCC&O+TzieNh(rNiJ zgOj7~gw(XWA(o52MQ%2mF^=+UtWp`*(yI_3G9 zY*`hRXN$X!tpRiV?AFzpOIj|a@8=2=+TIyIq5;6|g- z*$$V54-@0^8SD`km&nPzC|p`HrJQ_%N6O^nBUsrwC$zd$`kivcZChO?%W>I4NhC4Y zq74yTT}%m6YBt3KW>T{;tQvGVK@^Q%wQHNu8E&*A8V# zzWZZ%oXqe32&_z+w}*U*$SRQdfP7;EAeE{*d!NnJir$=>n{o2`Ih6NRj6zo4gPr15 z21B1{gv!vFAqmqy(YtuSOlbZFD_e(V(-EP`sxt;v{ZW$j4;OQ@j*>{CFHLKV;kizb zn?}wQoi*{8ndqzrD_cirvk}qpiUY11m1#?)hsfDE5O#}ObM}kTKDE}IX3`X%{qUff z@azpMTZd=lx-;P9Ypz~*PL{JX4>pU-j=b(Pa;E6i@R*tClwoD-=&VEQPGtY)Ryi*> z!47eG*%_}jL826r>+wLDkX!>RTZd%*NJxzRnV039ya=1b<;1YNYoz{6lar`^%=37x zOjMqQm93+)K_n{X{>#EM#C_k-V3)Y87>+40S&8hoe1Zqdgykbx**YxIb;a0UnJi~z z3nh`xI4OQziR!0pipR=CWn)-50+krE^ua`bV>U2`M6ld&QQSF#Ad1GkvnYx=k|@-2 z!)>Fxvul}youb!Y%d5$(Qn7X20ses*E9u~VBdj~L-QQIRN7pjDZCZGUOLA!8!Iy}f zl#ZNoOn%{E)nJ=PoGj8KG(VmcW+ zc(6=P{st>s=OlC`V=E`6V%E{m|E_<8n3Q#tL?ZoaWp!&=i9G+yDJyEUrqZRXtci!q zWMws2**Yr|&E1YpWuBUhFIF@CPEKESkP~wtY!tV)7*-vC+7e2dals8h_TGg<|*;2_6l9_$kr8^eMFADd9ll$shIGn1M!tZbc{s2)r=?ZMnC z$K@v2ATBPV9!x!1%E|S3uuM*_ft9Uu64fg8yX8Wy>YB>S%W_^`gpK0zB5IYwNmFi~ z$Ae~a^DL}votvnhZ`tj4NzZrTnc|-BXRt+FVnjXPM!J-hPw;S=tb7D3TW2L|_NDAr zdYyiKtIcFNEL$jvbcRWh*9LQjNzHsIEt}%;GHKZuR<=${RL`YcB0E8klcRDpY!J7u zh{;=wXGnE@+X=OlDXU(2|t(x3PAsh4x)pqvFe#04etH4IKo@w26*d>N0H zNy?XCW$UCwwLj{PL)Se?Z-4HWvvM!&5tkKF`_s&q(sB481sq9W?AH1nmjc`+nHTY=+l(g~ud`Vyij=18JYTY+C(bX0F1S#%Gl;8IWi`_$nyY0Gvb9wzg%&w!Ol%XX+Q zF?zduSJV0Mie8n#agK^g2*+8lH{3d~9Slb!M@q(*@few8dQ*je<+xuC z$GxyUTsZK`F`Opl;~qRrCLedf%GUXqpj8gz<-u>r+4uu&4VR7W(ZVsDBI!!}4iAz^ z#&2L{>tt-Dk&#vX%ZyXa%y!lF!M*DCze>g{_Se*ZS5bTF$lG8m93^gSmQ@m12c65z zp(ryWB~Po&(s=MpmX?5(t+O-*V5#EH(K@xe$Whu6_Kb_t^dwPIxl@w1!((TXv^A`3 zour*iBxTi=dP8^472IlXDVLe6F5t{`=iPZ;S6*GYSMJe|6!giV>VfU!LUl|ms8}{o zzH)dPOuigg**aev82R!~gVpbE?A9;Kzg&*d0@x)kMuzg-!1TT07Cc(hDfE`XJ-)3UaS7Bx4M$+-hsBld(Gl*eF$xS+JX11l1gW}=jlNAN(I zj64J@TW4h5NJgsj$yV|AK%6_m%+=9~f>Z`WR zP9s-J%HDXaOj7oMm93Ma&+XNVbw)jo*RpOqPYy^8wuTD`JhwNTV$=L!nXrrp$t0r$ zD_bYSSVIb~Q#6ioZjvK%J?s$|k$5#E$d%TRYw%c^q+A6nTPI~}Q)|<&-qLls6TvUa z>3JUZjZ4prSQ9Pn^QS~Ti^tC->L;+Wb)u$WMA7Ns&*VUT0^7y~>hOetGR_Epgon@M z=|8Ztb)JlEStajf{R*Y`hqpLJJaF1nNu)Dyir1C}xzftBF&-!cWGVk)(Q zvD0(39F!wri?~%L-Uxd*Rm#Z>JX9tphr-HZj+6QfmO5Cgo^Gn|oYCfW&ysWUW!R$B zIB89la`GiSR3;~5Q=qH;gdqPAFN*$|`uUOjbS*D_dtp+YMg#w)F^<2FreOSoVfp;+7e7H#p6f z(y|90Et8hrU}fvHtQA>V^g($|&Pf^ehs%lKF*a^dsZc^nc$`c^^04xlBqUoZba_R6 zymY;skZWLnQYECBCne-6JWeJdUx$^g6SA?PhA8I>rDABmmDcJ!FK6Xh*eNb6hS&W@ zt|la7O3hF3h?&&<7*@7U&FV&KirrpM%U<746o5KYKz2l)yQGN2Vo@Da_1iO9z zgNMna^-;|#X@vxcvtOqNPeSV^5 zU5=FVGXu7ZTW{q245v-`ITR0@$ zx4_EQnc2wHpQ%+#-3plc(fj^tuZGO;_AKTQxe|45v)E zxwNBWp^o}LeR(`~CO{snY#kue_LlCvQ?0t8{Vf_l*U0&~3U-RiPps`NBx8b4-`DYo znbcecD_f_=*j(w<=zA=mm1FZ0*eWhI@tP}=GUevSc*sm{egrF9=f+rVO65Y!D;8R{ z`ACk4Fg5jzDK!V<5i_Yd09Lk6 z&8DV-c-X^!FFQN$<}`4=BnRhI*eotM`^6fH8WM?j{Y@Hp`#X{Y68|%Z1 zOx~;LTN>_?Q*%3P6PKD;7YntfOL@5k50}Zyjj-~VLIthlhw~4{YK8q zuV9-}<)t-U%F9c5xJ+JNfR(NDVmi*)tGd5xc|mKAmT<(q-$j)~I=$ami`dOPDIp8t zaWV<{bo>!wIv(A0uJJ^q#>v)lPPW4RXTDAy>v(iawv?7mJX$6#o5RZ1>xpSY-SG7l z8YzyPloMcwxJ^&24RynrQc8}+BV|%@6s&BW64PO|Vegs?+{Tw~E|4R09&8sEnOKL7 z%xP18&c?%L@^dDvY@Hv|oNr*H+ApEbi|R`S56RK_9_$nsomjJXBx6d=ckzgs)O-h4 zwoc6?!#qsj;qWrA)=K?F&dr}-uejXo8)q8EkTWIcbv$M!Ij_OW*2yvUYPvJ(;o(YE zuQRK3iN{HwR}$%rlj8MihBBp;ERRRZq+}Ub**Ybrxw_`0OQzPJQ+xNc(z1sfmEB;Q zxTPi5TwQCrl$V|HaGAX904rPP#dNGhf4Q$DMtvYL43%rc zCy(?wlT+o4oCLeXWhB;`VN14@mbrMeOj@e2vUOTadk_lFyv8LzEeGjumveFp><^cd zSpC%?&*o6+`kun*%4pz3#h-p+)sO76(hPF7rl2h^$>`=Ot3}s3y$qRU-OiG@E zm90}^nmHM!L~Ve}bk~a6sz>%{FPal~Ul&pm>2zOX&72ssru2LYf8#+WJs-o$*6A^g ziHqvxX#c>y-euWJj!b82$ix~G2dPp{HpfF{axw{4w$6!Z_eyENEzd2hr=we*4$+1} zC&-yO7PgDqFvZ%vVosa#a}*vnlb@NevUPs8FwF0pjns?Id2)cxhW+9KbYPqr{)oIO zL1*G|GYL8aR<=&idIo~}%eA7LaSQ!bedqS~!g^j(QUXlytbw_Qh$=u@;dAjmzG%9=xX^=VqU}JWfJo$tZbba(>1!9gL<>{c~?Aq zT3$({Gkl75jjo|Sm+<%8!k6GJiE!^*%@|>TW?}rSQeQ% zrDz8{awbLF!phbuGL657z0|SE%dzobi@4at8h;0=Qck+@P??-$VP)%_m>vlZ%*(Vd zH(!@?a~W(Imz!9R1V^V%Il2T7oypOKu(EZI)-;Tw%5JVk&Pe}Q&diTsd$`QRdQz>C zCgtN%JWM7Z55vmV`7q7Xl-+`wvhbg2%)7;&YOmTgRq*sn82&8>=AW=%Twr3&(?sM= z33>;Qn@P~yu(EZ6On2Hfo$N1r{+2rm&wAbB(bU>XBAwAxtUK*!%9NWm@Q|6@On{ZG zb7OkGzU=xZVpYAFt)C+~SWe6Vuu0r<6YKf4ylVV!847nHm_Vg`sXl{h<;zAQ^-O`*k z<>xv)Y$iWf!^+nAG3^DfI0Jf#c}Y&o3$Qs{T4L=5uO~^_cn%Me$;LCVvUN60s|FRf z+HN<*LOtSs?x(O(Tux%G8t4gAW}bOm>!ovjglEx5UJ{ea?_GC1+baW+pk)U}fv%nD#|g)MKFjGPFM6@#MgC z!xnLYiM1~(NR@Ju#Y1Isaw4p3ofFfk`-XV~o@2Pt{W3W!m%uJ@QHgcxz9m~q%Y}Hf zOj^!|m95iaoJT2@tC=qUabc|k^CLMckHQ{tS&27~668urc^HqCNy>w;vUO5SXGn(D zmz}(NF^#-v|4%tB@4!BBX^C})M9Y^F^EMtYlbE+)W$VP4ZuF>@6e(GKr`+0}cwn@K zl1OJ@6zf%yW}cLg33!}LLRN;AtrKFZDZX=&uP+`TCuLvQr&Mc-mM(sFmYR@pIUpl$Sg4aGAW^1}j_V#dKy~8CZ7oy-}~pIe8Vf zhs#Nn*B}y4t z91oPq$Re<^bw-Req^wq*v)ZEb4st@ah3!eVhWKexKBnPeGWnPSD_iGd4MPp76}@i# zUdwJd9$DBOE*`OV?)zC%I!?r+WYTdwtZbbQ(=Ml4(SNqee;Q984qqat{7b4gtMizJcvijq~!rv**Yzz z8xrPv>XN6N+wG_~I2u z(k-g7fm_Kq6@N}eZ==@8i-$rJltem1p;+&a7_+AItc*v^q-RA~**ZO@6(Zk9^<;9U zOFhf!7WH=*_mzXQ7i<)_?!;Ol(i5i4?2ZS_WM)@b**Y_k6{mjRa+@0pt8#GWz;1ED ziC=N_tSLQ3JZdIAvtecH^q6ko@PB}f+X=m5PBmOw5BWMdIak9@amk5w0|&{NQgbC9 zF_W4rU}fvnM7C4WcUnFthvpgBC@wVd+o@2(l$odTfSJrZ2`gJ?#&nl%=y#V_XQnfi zekbb{^%42Ua&$g~{on`1hyeUB+;Bhkv`WLKhogi&xDL2396uj(EzqsYrj!6aa zaB8BGNM|^Oo`Ka9ZGMR0UY8BFB#s{r~FQbXL95k0G(qB0~}z`x1St z9?;RT>FEpVaa^pFd++bNME#+{Su5%<){pv&3F}2jU8WQVm&#U0pMwGvjn+GhU%T z-}2kLPQ_d4icvj+&wMp*=920)Bv<{&@(a!$T)gad*UH`k!)M-(HXCg|b0|ad!LP() zWPb1~VC80TK`-*sxDr7-(!ef8QxrroTOLKDw27iPP!fe|&GuVtR9my9_ANU(Pc56Z zUL^c?l?C>zGFHC9gGXr5)TXwoe*r0N)rSA7vu8NOmLh6s-ToTa{GfIFvoC?yzc~Gg z_62Z4W_V+9y@fM>sO3xOha#=qGD;$eUh~Jwxt0$!xCD_e(Y!zh@XoKsMSy8RkJm&gIS5Vna6kgx&`=S-nFACH*{&AG6$ zb!aBGg{J0j>DRD%RF2KVuu)uW+V1EZDx{UjhResMku?S9K|E?EI1j+e*1_2-3Y;O6 z)lr5@Rt--wMu^^#L-aOm8W*COvc@aI0SeSxcm_;vUch zC6Ue$N?3_PSyOOU#-nC}vm&fKmcc1k%;4-R2WKzXC~ox;gEO2p1!s3WY9=_l!phdc z*(|CFEA>~sg4)PcHq%p;(=!Kli%ZWTvbIZ4og!4kLuVp18&BV-o5#eHS`ODDeEzqa8+ zhgJYu);#2&d|TX5^O^_wTDwI@b?JYZz3272>aIIAyQcQBgnwXPQFdZ$Lgq$qzY!Wee=iJO z`EP8Ial_HIlvTsR|LJi72->_a`Vx_qFnS3%`9^R3VC&QF*{V077O_gjO62Fd1^!&k zpK-7S>PFZ<;}`F{MCr7AtHHx*6G*>rrxT?fPMoMo zBNLT%^EGYZ?o$<|5T}n}uejA_Rth-PJ)m=ioF_BXUds61NMu{)UhcsRri4sbsC-rlc-Z*W$Q$3 zIx*<@DJ79kpFE8U<(oiRS{zS; z$O4iA%$Gi;P z@oqU$S=cfzQ75F(e+pSaxjGR~g~`?Nu(EZo7;~8w+T2|t2kJuDD=tuJ%w^U+pd_7- z=fEWCTv&NrkmQkB@kiw(Jq&wgl_cc>CFwyt2PR1mz{=K1VvOu6rS7V6HuD`hPjADH zad}E(WEVI=sd@{~gh|z#u=04Is@`=nQng0aAKqQMP{%?Y^?&d?mx3(=6O>ju`t&C^F#A`)Z**acZj@&`7_LkjBZz-?OM(x|6O9ItiuwmSqmBvPcVIwG0yW@#4 znc5Xrw$9Yn08?t@XPB3&%F&tw`^H5po5IL%7_Fusl&~V650kLjuyO=pF?Lf1+d>;V zuVP398)~lfcTz-ds7ZC>p1Qkdz%5tWZrr;|PWA2Zx8hRG+qkFh^BGDr)ZL9rzR5|j zvHcc2d?v&<`pS_T_adQ4e3w;d-(G|*p$%){eS5!>)A15+Z=(D5AUZ-e5Kdme6Jc`l z9IQ-=-7|3|f@0U8b$k`Ob%IuX&$8?9QI6cAyh2U9uC%O@NN2op5Uc&pHggP@IaAt% z-KFusnd~m%D@WG2=q>As7rD^%tBHlsPdi-Uc9c`G9d0hO!tr(hGN}j|K={}iPl3tD zRhfxHmZmd&cch@kXFrpfn@s z_`tyvVPbUxtZW^t&~^x8eRAi!>ZRM+`lCAw6rD1YWHcnMXf@uIUw#st)?W>8LD+9IaKR3+CdRp1y6^G*ymwo>xgXwBj)LZ z?I$N}Z`e3)(Q;BI%qvpB_Q11Y0=65hJpKTy)CyV&tH}W?!^Vvfz?2&luo9jP6RI-_A)lp2 z$S1HeDJ>txl?Yn82B&GZbjk0ESSwWE+yO5eUEOw-Q@m4Z6z|6x8RYy7!=;U;OsL%+ z51Lumw(*t6KwS&XZtX=J3H_qOMXgtkgNr-MTp#4kZZU8OB~QTU!oz2Rk%5&-IXf<{ zL{QEec#f}f7P_5n@4Q=|Mw{hTqHEf9$|d2N=Kp=E$O%zd1KA+8(D*CGRhbmHG#rXjCi(7Gcx7J`t4f#N48vcdn!6fP*u(EZc zLYuTAi7GhyiuJ^KVwyHk66uUAd1qunnv@5Wq;>Hem?W(QD~}J7$hyzra+0RQUUBPE zIwYA^dk(^LV3M>ytZbd6&~dY=hTLG%8cw14`0Y@f?^WeFavwPEzQliKzZlH#v0kpd6$JV5_(w z@y?lIy(VP=<>)><1tv$|hLx>z6uO5rlB0adsb>01bIHupTXLS>ge~Lp#5=?V@)TG> zx%wlX3X`kf!^+mVVzhMKbd6=@lf=Wi6_rFf!@4wDy1ECHq~-7&m?V7;RvsTDmGnE< zc9)a1E9@1wG^ImQDMv}#3D1E^()O^jb&^6`iX+>)vU+Y)>wXvID9wh=;-bXcQVh0o zbrUE{y?7E#mRwlbI!lZh@t(4i^VF_54W}#RI9&nz#lC{dT3AwC*K6h(&Km%OqPBKD_duYF>mQrOk3tYkkj-p*e)(j zY0O(TZJ<2;15bm=)8Aob>pU@PQ$9y~P8*yo9?q?+B+?nqrBR!F6DUh-;Yl!AS{+ul z&Jts0An%s-PWW^=N(aGSaSKx#ie3Gm&0@n>=n1YOQY{p_kfZ#3(tW`(h;z-b&{ryJf^Gk zJL)}|?)jOjTffFrTV6R=4%Js-+qh8iuIohwkUtht~Ve)l4tZbbx#!TkCe5q%? zM%4pys_ui$;!>5yOr~!FW$D{^5=@r91uI);iP7qvy}AdK zq~GH?FiH9?tQ$P>e<`XcrqrE{24~b}@7_@xIMXeU-?T@h&;Rx5HnGOEB+d z;-MXTm2lf=Oq>+JTkz1C_}=I%N4AcmSJpy9NFxoQ_95In{z}fpOSrkr=8-pqWOEU+ zfDrNmo&=MS=U`=0;GT&q5fr!vr{k-@tr>Lu_b)g-(U*9x@I`U+ysVN)r`x{|t9kb7 z35E(AO_(6NG#)Y&*(H4CF;LVdwjm(&YYrE*9px-+ha1Z*Xon`lLMU}Y#nyQ6Oe(g5 zl}RD%j4KfovId*utB{4RSU<>_uil-H?50(eLBfGXKkPBLo5s6hJ@022DrJV03AF`0 zXePCNzH($O8^ueALjzB0N$4jXu4dnq^Y9JaT4pulT~E#6A(T8J<8nNFCK(H0Wm3;B z@+C&ElOKBD)PRtabNZ{^fSYj!deq7IQhqD_{OM0syu$MG6zm$eyzsW(aBwmhL8mmH zz!PDD^%$%?-oTowgY{oISntEGjRCNx8csLAhbO`W>s?rRynv-H9Pld^0c)ev#1(6O zC6Uh1E`^E}7(px6I(Q;Xu-1f?t%DVs?=m%oQ7zzMa-I%>&EgiS8LZ(Us|6g+pJH?% z9zPSK{b1#Bf)Oc8UzB5XGHjMTj7-hkJUo6TMm1P@oM1Ff?>5~b$LLnrEPEJDGxU~j z!sBORbUmzW9it6``A$QlmdonbEc{x|&&#k&Tz(EptTj`K(`M{NJa8sB&%?@N9h`0* zoW;H*?p80XB+}_tCkRfr0i4g^&&xe?^9ihM9h}f^QA5RX3tet5=M{UjjmJ~v_)Ja> zpX8<`htsFkXA3-hX7$+=R<;gN`(~?~RG*9-pW|ScM!(roiBoWn#sg=9b0n;69h?o@ z_IH$jQ?~Ozku%Zx9jt5}osHTySnBDLs{Yi}N~eoQ zS}Q1tbVgddjklZ$XFqjXcb3INXTq~ItZW^g&HW`^p5I9y;d}CYJ6V~(tEI7T##laHYXHzfHrLJ;u$be`Wvil9i`AS2nLiI zXIwLLy<)C3SDRm4{|xbHZ5<_%&S;JI78$3j-C_ZSX-zx@CQPfr%GP0OKSy1rvqgu< z89ETQiCd47o1?C0PSM#9kDQ6l-mtQDblT4r)eY2Vi%yoaGY|HO%T98$MSkiOo*EuH z6P_}xY#pA^4XcJmtdjTY>+{dBNH^GK+DdJt`#A(G^J)k&UkLSR|=^9wsI!^7I zu}YOJ(!VT+=tbBjE=0*SWA)4_I?v;gGtqe#R*pa?#u3=y6m8>FWDE(5_nm|Z_KL1k z-aX&rc9osT!?eqNS=^cboRUbVGtVr8exeztk!ko)ZKMNDT!O2?mc(;lvb>nDJQmK@ zh8xQ$XF{h;!$)klms7G0?lAL+t;3r>fGG)iL3o*pXT#)WGOSE$-xj{a=$*J_f#u}- zN^1E|n@ez2sKUdxU9e%?1~iivSWPczlbXSEVPbV0tZW^t(1p?mMb@h>r<(0`bD2_& zKB9239ImgywsGNd(}JtT5sKI#o)HtVb6{obh=q3>L?V_g74!&}>KX?Ivf6N0S>ViF8JjURtmbS14-h<5@9LTL)IQjv8xH zb#}R=@9R23PS;_uTijBX+N5gT2ny68cp^-o4uqAh1I6l{6`a{_rZSMr6idZS(d}{S zxBO~DfYarKeG#^gOIT{XGov#Uxs&nCn8?k8m8~N;h0|OX95tIUFXPVZ*Esu@oU=P% z&$yiNUb2lb>l)ZW;kp%1hY8nBu(EZySc^o3QqIlL3H{&7(fT#)7#FS77Kw(;pkTd> zC&L8mMOfK7Sd&>*tCp{N2C|ksOWe6%Oi85Exle76S7FEviq^t-HcYfW8-HkR%|~nK z$Er1o+sOHvihmL29>VUl29FKChAg3wO~zAVLbe60Y`uQ5AnSL^^+^iz3`Lh5vJC7S zw|PtrvQ|qdWXIttF(Eq|R<;fqtM^qONOtEvy<`71IbMUXV_dva>wOKGLBTo)PlgHB zS+KHou)+@yMJ|F@-D0IwR?Fayr_X==Kn~aUVb{2D<(!-i16?#B~i0(LK~Y#lJx zhUjX!R?MpVv2yjvFs%#rS2!&hP^fmnQ(;22Bdi<&Rg81A!BO1CA<7sM7LVeFAG9r1DsJ?Hwx`Hho)3Q} zF3ZdZZT$?xLo1qc6O7={?EoG$liG@}JQfb!h99&gmV{22hELnxEa%|{+*;;L8S~|c zk$DIuPsq5IAO58acP!LV|EF)(-W?ssFBoJZ@=gA~qNz*@+c$iP(K}}wJ_ABo>aBID zO=5ZV7g}fR7b;BQ8QY)3W^v04^GZ_&PC@>(ef$|7KNF*$!phb$ni!hOrx?x7XL8=p&`OK#@8f&w`267hz@VNQFoZ2^fl~Q+oPQBdY85_Mn%7OYl zY#A4*d!ghP+Joj2y40VavF9rBuC!y`W${ ziRZ!u>v33lT!BU2s{2q5)(5a zS14@r@vNAz4ZzCQVGF&<83|ji(x3PAyW;MY<8>Qs7Z)$yWvVD%4Id~_H{*FQfw}=! z9w$H<8pT)SK>ZT7%QjGTA1F}2!1G`N^>bKxTmYpmv2n;V2aBI4?!YgiB+}`?r&FOC zK2V@K@I076{crpM6*}n}+2nP5YPU_qRnODpTus5h2XldkcRv!^^0nAO@!Aqkhl$r_ zu(I`f#aTJ5zn`Iw9%{qF6XjqX5BtS!0eM#l!eBLwphz8qC&EN(7OZR?DNZN7e&0jB ztPyp-oTzhQySPN9(*!nrpg?^U&w~lnS77CF15{04gnm#C)B~_x_JOJyUXHpC&w~ln zw_#=LK!px>Mfa&nc^#*>1!M@sta+I{gvPf(g^_VP)$uF*c=j_PWl1 zS5ez!v=(pWLGhq(MJ18Wpf8=>SHo6Ntd_%5VPf?;SlK#OoL*F~X{vK~Ia9mBc5$mz zI=!fd4-}}K@I076Z4WDt6QB%JokclNvthez17)7-?8Wn70_DQW)`8lDv8?P((OSGK zYHDE;+KVHT3JP6%EzwHaTZE!?tlb%cja%!w(AB z4R}6Gz^;XrtpkSCGgZYhQMV=kQqI{gVE4G3rCZNhY@xXQ98Zgh+s|NS>$tJ%S*@CJ z@}*)=#xR0heSI4B%PWm=boHoPLVB)k1tZW^pZ5iEt|H_|gZ`rN%s?nrZ?9saV$IH<=26m3y zH1ghaLMOe5B^0w+cuGvnj)0Y|W5(GyQ&o=xYh;}(C+n-QSzNNx**H^ofx`3^JPRgF zr^CwDVG6xK7uf{XZH(?@Js{`mKG-)dSG-r8(2AuQLJ|8mo)8nUZ^6pe5##i-s-^yn ze&qR0Iaq&$-Qt3kPA|*1f#URgJPjsJzlD{p5K@|xuGHOf`auqJQpTdOTx<5!QyQ8GftcCDu-$(*e-6NN@ufQ)O6|gcpglkwtMDkex}2fnW@}Y%K<~ECmc!KxTgQc~CzZJd>Itn}E}jz;v@TfLI%u5A zHDKDNe1#mYOJTdXaHUhZ8a_~&aos)RWF2d)mF4 zjz`aA=pa~mY%|nTF4g)?44olo=rq`?(Pk*fo-%X_9zBzx`LMEehC*XLT8F%%xD(NY(Q`$mf^iFCTxiE$LlpK`Pa9zT<# z4p@1NbJXY>nd;HDa*n3KZjE|93gu5Znu5pAQZoxU#T;WFG>=B=TJC&fc3c|yh|c=${*E`*gyJv-l*url*xK&ZQBxqd)eN+t3Ud%-o@hjv$m2*XLOfb{TWW5LbL`R zJ`C#d zsg(2^(od4(GZ%J>iw|${wmkBnsm z!eYC*dbr)JMz)xH$}#=|{EfIR<{qpOL&dGOw3V&Nk`lNJ9xfBs9ew4wtZ&nTo=j?BQP39J`19<2*QVbU{L(&A?Yw@s|;C|Crjx1!8Mz4~Eu56z{Jqi7+ z!`1BPawL9+d&{h5yj^=04icgC2^>Gg6JWye6s%0D+7rISn4u`|&a3;ab@2bEf)o~( z|AVdK78c%QJddJg`m|gBUp#y!L+``N5e&s>)`FI?QRZSuSnSrXA8Hw^PSvYay{wau z?A~v?Kn(FTC6Uf3l?ic>X1Ik6{@a%1NgWIRGP5KxZ66Jdff3sxr8?g(FE^jgf&E4xudb$P{XsaDjR&GS{H z!e;Ya*e`Cg$vY;m&VvjURt8c-KG62_t9TwvqP_wvj|ZZ%rE)o2a=W#T*n@JS9)SI_ zNz{-Jl&JggJeWj%8&cuVlcvwX z%HxG5Pv3j9yPT$7VYj%2DJ`13BBg03JPRgG+r!G%X$n0F7gd{j)f_;nr|jt0C=}&D z&4vx*0+q(tZrBLQR4<+glPMQgw$2ozz4J_)ORtmzbp`Ae7pOEURKo>I)1`P8Oqwo+ zmB#~31vlq8dVBY@oTevXw`|hXaDmeFIGzQQrXRw})@fqQWEP!b!6i6-Ajj!nuw7i7 zco$$}o$;m(l&62-X)t;EJFIM-Cr1CtH_}j`Hn>bYyjxdEq%*urqyIE)1Z8S1JP{^S ztHa9HnPT*x>Q<5w-gG%o2f=P}OH>;Dr-loZrv33Om^AGJD_f_D*W&e;OZpSdr^s=d z58K7XDWw*#ZUg0M08fL-Qw3JG&J$zhZcfc9R=vD_d-`p1pl*i!;sTY%%H5C;l&Bl< zJeWjX3oAzu6=T~g?#hovqJ)tudyLaor1fd z_kL1+PmfFS(+e-s(RZb?qVJ2o#OQcGVZDg2<$siwGkXr@Kg+B38a~l2@F!|I_WE$T zH^Pn?zjEItN~h)P3~om^+UVc2)0iRos@LH$GOOOzzH;Qp9>qgA>zJ$vbu_~LtQS<& z!bb5q+*0$7Vx`mi*>{im*+aP!0G`34WdiUttlSJPDD_YJ5|K4IMoDg87ABfW@mDso z^@rOAw$i7uK2;$Kf%zCVid!cPug9?JL}#WYW!hQ#5D%G2%?Gfub!sLvsL52-%|4a> zQbnJ&+WZPJKa-S1A_F^ReQUun+*uTdpCEZk(nLIXCP^E>%GOC5x&BPm>(5bgerCc( zjcWawYM3%V91odE&2(7VIyEELpQ*XvC#Y>GKU2=n8L(wseiEra;pA!kISmh zvUQS1u0PZC`tuz*KX=1MarsH4|1-@{f9}LXW>Rw-tZbc{k?YU2==$@ToS#==%eed` zQh&n9)B5uY9z2tzU&6{`oTQxFU+taiRs1Kk2S`t7nXij`(n~3cG1`;Xlcyvtjt9>q zX%Sf2I!PP19h2qCrT$V)Kl;0a9H4Dsr?{nP-`I0M&7piVXUfeqJZ2_0Q($H5+)Uzd zLneW`<>X{xuejvwpAb1)8Tvsd;!!i%IUZIXAMB83>k>IT7s6hRHan&<{P}p)Om@zN zmB$A=WbpNxETydwwaZP+L-IO0)z zBW2ptc?%DjNzI$EvUO@UYunSwSE_|ftzT^!&=)M$_=b3xH9<+FGt4?r+Sdu?P5D_F zkDJNQim5?44_2q zjwiq*YFAjT1|NE>ec$lNeI%jG%;Fi6_D&>)Y2~+mdy+O~(8F~gbh|AEfal1;5R4FA-y^J-3mmmq0M&IfqVOmhAOD_bWgy1tO9!%0_)hhh_zL^?w;QGGGZ7jA%u%A{mn zSlK!y(e)*~-9_sr&y@3WIBeCZ)R%D5w7yKogJzO*5Ud=RoJ$w(Sg51^4{-jZ{buLr zLPO@6&ya(28tfDo98sY$O)j5;hswldKCB!Um&7QEE;QkNEn1-xM z(zMXrh6l|g=Vn-WjFO}8W6{WYRZh+;uvMv(qbE(t`6V7Slbm0`%GSv-AJ{T)+F9x< zaUXbbC6P`ac(=G??8wbJi{P;`Iq86vt#h)Tagg2gj%?D|R!+(^*duOfiG8$hI9pm% zrr^;sS=ka+9^0&tk#$zi%89T?qs5A8aD6-;Et8dFVCAvR3K<+-C}-t-*rU;6#WX%T z7mt?7%2#1!>#UeZ(Z)?T56eM$5H^SlO6*Z|)MlFp@KBkQ+y^ULr(^?TPbIY3L>mUZ zEl1@o*d;D1d&ce6hVrGol{fKtnY{cFR<_Q|=0;vjdrCBLCVW#o99mgPq%#~cyoAkL zLNX;z30e^koJr7fu(EZ6HZl^_vXw+bXD>NAyTd+lYtG(rYfekXl$l-eh?&gn1S?x- z#=NDk-Chw5p*eDdim+{5gko>$Yi9r@YBrt#lc-);IfAGd*RKUPxHax|iXjnP>vLt? zJ6?h)8dr&lqBvO+g}O&>kNWU7HGjRqg>tXLrWwC=-!n?5 z@Szw)zvq0mkj5C4FM?^|=q zJ@lc@ZRO-lgT3Nbj<#bu206{s>5ar`Z)yr2I1`^OVde3G4|%sGE63+V*eeV8m>%Oi z9uJ&}&oQvFb$qlFf5z%Fx7RJ}C;l#!19U#@78jsHL_L>q;q_Ce73f?%bS6Syg_W%% zv}t6Yr&-5~rQ%6$xunetJS->ZLD(!VL2b`x@msKF<`kd@@W`0}-3KdM2T0paNNbR( z0KF~8=PlSOEf@515I|aoTQ*iN zVn_swr@w%gR+@Ti9)o+2 zuz2c}%g%iI2ABU|H=gD4Lu*-+Gc1~}q{799Bh61AESj$1OGGZ8jpCx|N}1j3uGF93 zs(+j#)VFDUBy9)y<217k7EHH=4KseL%)L&tC0*9<*<8syiEFjy#^hDXRO zcvF1k$S*yL3#Fl#Z-<=-Eg6OvNwX?w;cH4K;*J`h-=g2#aGHzp%|n@zuYWuqEA#6g z11mR!3mTePzC>h2Nc{1wwG0KJ)2Y-eqc)v(z5nF`Vh*RF|PtDJCo8p)xU94pz2~$(klia)$28UUEiuhwb4qvQxZr;^#>L z*%gnI3CK>c^4J8V+beeK?adrHAVt`olmYScq=3xE<75KT3oDOJKs*B=SIYsp61FF0 zK>R!@AXngVG6A_1R<;hvhNdRQt7N)LrF_QJ)I1{x=8+tpl@B1TfwCl2bJj^P!xW4`83T#2B_cFo_8zOp*B)9xxM`f56JtkueUA)o;!# znt_>ky?Dg4fs#mP#1nIH98Qj{EJ8fUXjh z!>AAR4*Y?dzuREr!`rZB#&6vBiqdKMJcBz#%@>BgXlUz0ILBs`!RCjz@FjiM}=c@{xU|5x;yWTf)GKc)UyomV=c^^Y=Ml zBC`X&-4X1SLxMAnIk8q2%E$uMNm_Q^QE}V#^Yt;(hDnF$0ans6UHU)I^0jAWGsg$~_^nQ|Oc)WK5BH5|5aP%;T`Kb!0+YH^ayjXlwMLoRtq?f4Hm&`YrWTDJ1{GLuEqp z4_JAuLSkrwCf+FS+-{&G(isK`AgQNHAz2p>l?lmOu(EYXB8JNqucuJ*a$48+a5*Q_ zVT-uMByz5J^!%v!giuN?WAM{&_9G#(!^BD4k*UUAw>#VlP%zzsDX zxTPQ5a4U6V?xxKL59LWd{jPYV%ul})tW27@?R|;JT9D>i(=a1W#rIbmX3bHN2^lHE z{uoPsA7v!+{7O4Unt9TW&}=+TCLz7BvUNg2WAR}^vZem{jdQjdBv;EJxe~UB3rXah zO*=?}R4FG{;Gr@(xfE6&lbpDP{_6Zp-kYtT-G4^T$Otre6H<)C~3d&C7L@+y#a1tpX#CFNgutV~k=0V`W4C3FHi zAf=Yin+nRro5j784U|MWLzY-Q*zTcBDJARTkuoV+3s$yHN$6goVM^3%q!m?6^j7C^ zIV96zgSf>c^2V5U#bhW^%E&=@piD;ghn2@BBc&b_Bd5t3IR!Q-T}GOTQby+Efif8x zfR)E2BL%n8+fybhj(5r#xeYcbRYryqrHtH+2g+pR23XlTBcV-~!);AbO>Gaj#?kOA za!!5;o5bbh3o+(VJHyFRR(^p8%Vg!}u(EYlOtY`0qMPY0>9+?hev7#8x`>iUr|%kT zX04egC8Pt7lS#<`#vdW3@r`n>VjAB}lQS{}_dd-T`r%9|C0pW=GAY>%R<>S8R;P<~ zoz=3J*Ct9%lml`+Y!0`r**;ENQ%{nzaSR?LlZ{!h@>pd{hgUZ~S4% zHag86imYWbjbWqH!YW#9B+(=|*y!|`|05U+J78AG)bq}C*NW<*fl^WHGEIU%Of%Ks zg#AR=E#tTCTUqI}e3`+?QC+5?FWK3e8?AC1;IT2Q+`6zbsd8)i5~H`zWj!aC%XkCL zT?^`3EA>)oG3#auZnd|R)A#<)RM83dx*QIB#3dtg)p3}N_PJ70rsJ_PNjV5sjvysQ zGZM5!je-_qbhUr)A^q0vK*1nS%#NHr}d* zD-~a6D8823XK0l!ipx>ZDqY}9M7Bzir6~FBw-bU9ed9CjZum+Mz+Z_pPWQp489#L2 z4N9lw0}V#@$Xh>aXeVxKqRmi)?YQ5@LuFQ=Z~4lRpM4a!K>NQr@l1 zp09Ojm%B|2&F7Q^HUQvOjeUjC4CPEaFiYYwGnrWoR<_PeXyQj>Mos?cJ>8w;z-$j& z#04huo)2b~$<`C5v}}V1%%o*1tZbc@(DtcTT5_(wPT4DG#f1&xvJ!bBlF5onmy*(j zhsz`-11no6CA3_rk>WW$T03;99F>bMdeFb`5GQCla)bO**Ytc{g#~a zu2gjN)yv1_y!;S$iOY+$-!halW#$KX%uHs!4=Y<|CbA`RJ-xjALypVeVS~81NLwP6 zE+yr!c(_bb{tPQyCnd5aQr77gAFg$~cto_il1OJnByEZ6`BGL^#p7kNvJ$Lpot4Oz zNO?Elw$4oC2-+(a-Llrz9gqW4fi2yyAey$_;W>u7wTavLfxbsB|eQ-^9aZlJX5$**Ynq zqpz(a=z>!%)bugY&*iZE4EBf%OXP*B%rSH$W6H}<@raqcJOwLT=VfBVLSd(Juk6js z6ielTR$=}phvxraqqxu*Q=a0y+Jqxuher*&X7M(k4nG zosrUk$)MxsP1)H9kDJNP`mnNfc1Ef?Wv8g$(lASo&JnOtqg-|BX;X3z!^38ha|o<# zot(`^s5({UVWq!R(a+_7MUKzuuv=VwrYBQ*hI6M3eG!kH$2NwhzpB!Cb*t2W#!j+ zyi8VJhLx?e5;~CGI{KcYPw9Q`PH|6oNhOg^PdM^MdFIG_PMLDD7#=N?lZ9br>zqXH z)2!r6J#<&h_HtOZflcC;m3@SrmuAY8n5lTkOkyU(%GQaA?6Xu#`2oGN>&kiQf-U0m zBJH#I2~%1!c)(0rj)Rr0(-OH}P#MslHn~{N%GY3nxU5Lm3skz4ltDaPCMoB@%GODV zZixnR^|fnl?)QgsT7CeV#HB^t5;an$#C#tQnMut3u(EYxLa+9<_HnCju~I7M$lXJK zmoxKM*d{JB(o-hGNmFY6j0er6<_%ccIyI3qz6}FSy_nVS5)YA9RTAk8k)-QPp|mME zE8$@?$yotbwoXoD&sR-%lIvIZku$R=Y!SECNPE71!jzUT-~lsf*#%a%PD|wehXJRU zBa^!oIWGOMM_gQ_`yUz^Q(g*q#7tiLVC6B)i<_lgnQP^|d=vI))OhhTro4OukC@5J z<*>4KULyN318%ljDx3Dp{7eqbPhq3D&`A3+p|mMEPvK!R$$0`+woc9tQ7hL?3#+9} zWwtvvQ<+~-H^!8`Y^JdnNgILxpPZ)u!sc;lIzc!WJc1RJu=nv)n1sCtD@PC(<4&01 zTA9Yx5-}u#Yh~_;dnG{-MdMx*Q55G%qEOeY{eE=clU!nE)ysR;`7O8F?ENitKx+Km z3?4Ybtv1*m7%%;aZzLRM6NExXE#F zt<7$}MCAP@kylkDf33|bnLUTRndMb`O&_Tj{z%PygB#ae*fQgH?mI&1w0xey9cX8O&KASE)N@nTH_{x#rdlc`pS=Z=A=xUenZ8jIHu!XnTd=2;1c$*FV@`lY9 z%r76xmM}1g$IE2k99X#-T+r~Ge){2uDnKDHKY(rG zmI}k@pAAfqG3_yZACH)c%>A(Pm`A3lUw-s=IWm8RZ5mBvit{Nlf5szbBJ&2UY#o_3 z%~gh0m(}kUSC>_l1lD)sqGEV1j$2(+rWBEt@JN}6tN<&ISwu)R*+-7Zp0GWmfrzP! zd;yP?iO4Rnas(nVM!3NsxzTHmArbVLj*D9kgD4tfHBl5hOQKLi^*cs)sQ$UV^KQW{ zR_A&Zw`I6~5&Y{i{xk-sCox=iLqWET2@ON`3*zz|4B5}~B_fA#k)877hwQ7jwwF;K z>pu8nHGjjwu>ISxZN~52cdgQC`9y<;{m?;c8Tzu?&^?@MGumMI{w+LOW;wjWSC0Jl zqd0umMr0vBLWA1y5dQZnbm55Xx45syAv~qPa6S~IAe1%X;n#TFOdei_l}YpXqAw9y zH4-1nZxUHFIx|Cq+b(@?;^*!W!?UE4NTS0{;W@b7%pa?Sgfpid@Wt@RnfNRWD_h5B z5(A%XN#|#KIX~OLUU8eCLlWdirA`5wY6$((sT~V-)c-ktLEm9}`+v-6{4ulf$1MMk zK_*F)4gZSv%GOERlt+?&Bb+NosS7rXi<05AG2D&~6=8*v;dZzT9y=4E<6vd$2yxo7 z966OC2k2|CRa}6QY|C<{0~&bbOnlCPm968$Y0D~}{_fNd<^22r_KM3-l5LqvowjA) z$3tfVbU&PuMIQHK?9DMd%B7 z>`a7qftAM#LV7b+kt5U(n`H?hLo-&uV`n1N2P<1gX!6K|`7Y02N6M(fLRu}lRu0lP zVavE6%}j1~DC7XGNZ-ISVB&N+tZW^pseGK&%}H)qf9vRHa-x0;yT&EzsN{)im_VU= z3QvLw)f2F?b*Q%GLzQ>CtC>o#*R6x~e{!(?3p>XJ>$v2>3XGs|y^kltgzG(6**aX& z>(j%FOGD+qq+eLJ$#=w~xs8-WI-|KGl835fxWjCHJOL(5>%hv^VcL#gsmkgN8FQ&R zLQd6Tuyx#0b$s$vg`A+Z>JU5=CSC`^%GU7$I_vXDu{vFj)fZvQxLBpoSyv8FoKD6w zVB$0nR<@24V+u3tdin{GZ^=2j1NMr`QG!#L_0%aqx8k8Q0lEoRwhj;F(r{sr#s2|W86lvFdjM+ zpwGr1K%0-;-Ojl^Q_GG%ak-70p{e+XVD70sEV(XrGke;MO~#{VVzdRUY`qR`#=yuM z@N)WD*xffO*7x>KU z*YNqP9G^eKR@uO3UO&a>4LoutK7W9ft>eRKz~=QAw$cDv^*-@%Y$YX;&TuTr2CSYt zMQ8;)b|ym0!ph?Tq3(Q%%uMeoN9YT%S=<_wAVPlb6ro-4*qI3J2rFAhXv)ZAG2g~a z&NL$Hmy=Y0J>!yeWO5_2umu#TK0E~`P(84+b)Xn?L_KBKp^qGXQ_j*iV7s_1B{)aa z%${O&IUYR|qXn?Cb&R$exh^%0%$SDxKb6Du6l@w7rdi1qrWOwRSJfvT|0}2Ieb_H9O@}8((@^>pr1$XfnIOFjD_aMNF>>?Ni7tKSXru3n zM{esYi7`KN^K+*Nt%JwTL}*P|d3+#LB*)nflOuEpY! zm8~PhSVi+Hs;8~*C;FnCp_5^^xC|w@iq=S;LNpH#o(WM6R<;fiV+kamEof7acgP94 z6}E~?P=ZS!Dszg@O?c!?e6EL;t>eSkQIvNp`Xxudmh=l=v1a}nGQ>OsEh=X`V9W$+>5e4ft9Vp#A(b*Jz8Tn zRZh|5)F?`_F)Q^@e73+NXV#)kVP)(1FoyN{QqNXXG=MU4fR2OB;-JoDMCl% zu`>}m5>_5B2jmdoS^$*uebyy z*`-#g(;9Ry9y$}Cdthbj0Bt$)GKVVVPA=z?&1rv@Q}hOG7?+|M$*pq?=TA}k10FvU zrQgBI)=^@de^pj`StoC}tY)PL#KW@{ltenivjoq-h8&eU*J8D)ZvIVjrr>PHij7w9Jb4SAlP?&n~ z1eh@8U}ftt0Zkpf>fsx5nl6VeKE*?D-qrbt* z)-hu2d@R)RRj)s+O| zEwqQoK{^oji(8Nq1ZgOJ3etXf_)L)YhLx>@#F(U117PE_|H*Qa=D~(>NlI{%ayWmA zQVoxviBcI>wvG~`aqBNtJVQ;oRZh}PuwPt~60Au>=~Ixd$HQlWbPcR*9VEu~k^a(L zZT0_UIYTePR&g0haQleLoZ|C59yt@AXJKXQ_%Me2>SC;^>WU~0p@qLM?qh!j+r>pF z!6AP$dy3H~c=Sw+K7y64W5k%%F1uN;zg$wwZW>9GeU^ja>e~QwPc>GM1X28nUQDW?lESGBJ z$(nQI7@Y;1#lJNE@ zc7+GU!?R_TL^_@7MC(t{@Oa+^JhR_Oo`a7KftAMxLbYO6L+C&`Li@pHaf?u*2&vpD zLVM$}GZESYR<@21;|A<%S=ng50ehaDq#EoQm!t%5zz$nLfhyxEFo7z;%GQBeH~Ij! z)1}{qb(5T*>tTzy{Om11a;-9^xLkur%*5p?SlK!*>$Sm!zUKL&oR{ZekGQ<-lK?Nq zXFQ+9LuLZ=6Ij_gFzdGmMjvo}CMV_-*d#77`zAw-VWjmD9y1e}|G>)Dk!jZ?<@Coo zxA=j0e6^{PNN0SNM3a=u(I#nQJYps;8^X%gacNg!iamLKb>e6_Fh{~Bjb??Z=S-2A zfyc~5=1^GKIx_8gF?3JHS#n~&412^SCW&5*aWlr3@Q|6noC+&j2c}((QSRxzn0w{K z+yk4$B_@epOg(2>WA4IZW+HPttZW^bb~T1BRQ*9t%W0t^UW+JmFtUT6{(VL|m<;ZLYo5U?L z2_a)>mbS)YW+Jl{tZW^bHrpt=yy{%9;u>y8?2&_$gRSC%lfX8LQ0BDaIC$htd`^Is zt>e>XPvDS=UU9%B+e#P63AzY&i%U=fdjeaNrx0C$2hW7)JXqN}L~Txu4*8gOyQ`T> zuh*^b3Vcis(j%~AT#yntHA)SjFg=7Pz=Y|0u(EZSHjZ9k81j-_sQIoOqQAjTaUnWL zzRD0JPT~0r9yk-8Kf%h@;c0V`=8%VFucy~siq?EYJOW!yNu)CZOW-0+g98+&Rqza$ zIDH;gwvH2{b4~AK-A|6u-mq2NVw7O#+ISD^9(d$Te0GDCt>e>X$}sDC`u!O-IX7k4 zBQ7@yOc~ZwruC+Ths*>f4=Y;-rp-z@-Hda+oR@20i@3Zbuu^W^i*pqoF%y@s!^+li zX;)uL6@9kwc{wl7!X9yXNus`}lxcnW2_7;Nm>}^{tR&JINbQ#ZHGa|* znho)wnb52UD_e)A&GM(KPMPby-y`MB%z#beR+G@7`~GrVnjJ039; zms?$tQTEvd&S_3b#nlk@T$*ds1435=HNDbxD$D?DT-FfYN%)`4l)gPGS~*h*`V zmVQ*+>s>-gq|@t7q6bsYnIf|&9y1e}g<$2ej7)dFMAj|0lOwY=Y!bJ~B!G;cGeu@A zJZ2^`ov^ZXWZGP0;@f9F`JI!KMV2hlk7r=4@EmIxua9**#f(2KW&Mad}B#n5{CVxO@+f zn2F1GVP)&Mv{^LhDZ5UUT;BgTIWm8NZQ>%6z@kAjYl_XE@Ti&Cybdc{$EMBwT1^9u z53H^Bn0OSmijqiY6qUf`NG-Wjgg%eQ&O~T=SlK#4ZF)9d!O>qb+FMS}9nYI%AvF=IC(s5CO96f zY#p37Q+=K~8?CQBT_dOFD%d10H3`hy_&HN#zK+MtMCLMBd2Az7bo7Tno|Pl>6WF9t zMMmXJk@+zmGZUE~!OGT=X|s>UtEi!rz9-@%IWzx(UE(s6z&@Hr(iED1<3Tf_`6sMw z9hx??HTi5oTZ7v8aq;MBLnV>U=qZ8O8kI4{Wj#D%CN68k%GPmdGiJ)W75xIx8FF3@ zg+1a{m;}a5^^_?v2jd|#fjIzHwhm02^Okk@jFU89l4El!>=YN91kPIqiBot^!UJc* zGZ$924o|zrsiaTP+$E>xcGw~=HAys1CByv8EqKICTyBJwt>e;Wn4K^6Y&Ave&HP3V z%&%aRxWFVZ%=UAp73L*8W+pN(z{+DCnSKqKC4MCC057T}(&+#vgp6UM=R$bQOk_SC zf5^1!0+)L9jhi9LiFAfn$uwQf#3?+>Zt$Ick9~f|2($vA{~8K*8g8S<0&vX+5uL!&QY7q#RX@c zSE%VLoFzF!dDtc{LkVmyZe~r(kB3Li#HJfo9@E&UZGIG+tK`^x9kyvSv1w#YvAGP7 znu*ONu(EY*+UyT4)bdrYKR;ia=lO}8n;*kIak)ugf9O!!6r3O7VKc#b6jrtlPMf~6 z+V+;ImNG@sQvFAc&c9)&xacI%R}K=V@ca`GoC(i6u(EY{+EksQ+v8Nd0ex5chEIxz zS?ei@bcR_8RGp!;DL8B6VKc#516H;UPMdWJHN9cnnRBR|oP%MbxJ4&{b&27;DLMz> zaWm1`7gn~8PMez3U#fV9nsch0oReUmxa1^IbB5BU;LOFtW`a|Nm92x*W=B_lX|C2g zzFp4DEwDvgW)j%Zr81_t+=xfa#N|3z**Y$5=5N$(vQyRlsv0uCk|XmHY!erm1m-CpQYPDP|HCxHC=}Zlq1P0(i;uN0E@xYnzOoElI!_#IQRdx%GSIm(+Oiqxq zb1ZBWx0y;{95tLbMdv6yZYDZ2VP)&+wAry@%y(grxWpvTx2dO0f%y&|G834)VP)&Uv>9@%yC<|x z&7b7FybfE$z&$06q$xDrc+gB}vaqssXxiLkU8$-??yNe?(398E`MMmP%V4j#=p=BD zbvShj&?R{2On@$gm8}ERW=nC?MZ+^4KbG_JBiJe~KM9-e-;U}*jZ>D}n-JuMzvt*s=|8CxZ=zz`%( zYtI^Z;7oWXz{=L)8M)~)+*f?CoSp+QwI+<45qW9K7!R8X&WEtFb#U4&hgQk8>YZ|CHdhkq48amu4pkXb zTqfZWGjW*+D_h5<&2p$RPhSo_R?f>&ut(e)lfdd$J!J~aOgv;JFo(m+)`4lWrAxI+ z{U>SN;+(V?4v?oju;*1BRyY_!Ob#I3%BBZ=ZX zc@$?$qNsKC{cJIH57LSUbaZTb`hvQb7b{PD@9(=r{h=&fHR3NO^{o~0H+}0z{l#TU za&XB#)p)(?m5K|_Tu}cPHtu2C@~7x<)A&OfJSbPnRwn11s*}m)ol3>k{zJA@tg15x zZh5jdFuybWzv~?StIq6Dge~{~_TJxQD7ZapGZi&9T4_o=J$wPxCcebz_&;I2h>z@l zm{nURzKx&hQ1~-76MlU-;e%n%j9N>_|>7kvD=xT(g=x#`DmJG>v^ zApbF_+Bd$K5!gg^1YCDMI0u-c98TuFxoypLLu(EZA zv|VMS0=b3$s$PFO<@ju_B(OmO7oWB_WN`8Ev!>)s!lP!AGZ9v{PR>Zx$M-Ok_h##T zpJV0t90l9O#V3*K6QoWVnu&+bWaw~M**Zho5=PHBwu>F?+B4s! z)SQ9G%%tWtSlK!?Ta3`}=`NQFnOwf#$>L!2lk6g&ve05&2XPDlsl#9Zaj7- zMR&r=)+y5NTp_imyO!7Q>v>&{&ug$zTzuLdBjgsJdeW4eSMi{k+`IxSTjyr8k*bff z(A4c&{#o&$YZ)bxPOrJ`#zO=iKXXdZQh4M{f))XIY2wW zW^t=e+rvCufQAyM{A`N{&g5qrtUUJlDfO86@#Oq;!)A>xKh4A`KUq9*CO;>_%443N zf?MhBDSP_WVVBAIxdb+ARQVZ7obq!a9ypVq^I>J{{Aj1aNYA3IuQwocDT<9Fp^MVtOv`)A@I*cwVAogr8vfl$!~7&`fSthLx>zGt&6IZlP)X zet;aFePOq_btjSW`*7xzpuOq*d-}}bTsb^d*eEVMiBz6?(v+Jy zc+gC4im>u{;HIXvSU1YKxehjJw7IEKZm!0IW^!{StZbc|k@jeu? z@0sVf)>&uI`1!^-2VQ0(HFv?v zu~QS(Iynw@R60AQuWUW756y1aCMq;qtrHJfW@Z;&WFj+9!OF2SBYbP1)}wK@%7qP` zCjMBv2RwmEnCSs)od~T(EE6*hFENprF|cy%#0dBI)QG8WZxR}&GxUL31e-+7F-vuZ zOx1v8UKZj7Ch{^5Rvx*$gzw|()aNA)o75a$BKL1?#0yO1Wdp1{VtJ`i6A0Ot^}IeZdtr~L$Y{;{`ti!N?7_=Rq~$qSId)p2#!0nZB|?gs_PF*q zX)2Q#f#alF#4<5c@DdY=nG7q(PE6EJEdTlnK0_gpvs|B?rLbGnOry0EONv}3XbE0& zB0-B`<=6>|ItlFi$o3>vl6F30r=_i+WqpP=!+ud2(mDwo61z-M9xpqQqD`=J>=aFp zIFA>ykMDMUY;J=MqGI!Aow=Iu{d?Q-!V)>T6;>X}oQV7O9@FRKQP`knaT2m$?-9JP zL{1)tm1E~5YP>x}bM%TnFZ*DlsJv*6x9fwJ+o6~7LKC@p3097so2b=EzEw@=2+w{( zdk8g)NthWzX{}E3kY#3O;zcGhGXqwRU`F8vZGH*2cNMOJ1iu4ysp>^^ycFIY%vz;5 zUZ)i767D0$HT4qi1D0Ft4(wF$e%})OiiKv?fpdnrgWJ8PQNDlM{lDA0{DK9pb`H6E zyH}N8e)V>bD-n4QbL6$UDp#KmeGl{GU}3(PGY^^2P;d>+r6$tWEN=nW$e>sKvHbmjkURw5|7wD z&x)pr$X?hWYC=#zq!y>#1KNX^lZeQ3uyX8(%m_imX*fb5nf4QHNTxE0M)a8FJn|;E z)o6F~j2Eel$rQY#L`){b%CTcICj=ArDU@P4S*rB*7K-H(nl{K(Q)Wo8LiW94h%4)oR%~*-bUv)JiZ|8J4^7!V+P*6IPBLmXJ)+l`3~jN3eJ6L$V8YhYE>8 zCh>xl;dlx!BoU4$VddE22wC^>d`srVYsn}4RJ-Fkj!Bs5xGJps)Z&y88H1OTh)4^p z96KVda%0nFm6Q1j`}ULFBlbrY=~J>0_K2EA7UTVq`cP$1=HW#pf|7uhV+Z9J8I6kZgqgp+a&d4oNjk8ITQlF^Pa&4lBnF$SfHUeE0^g`l z$~M?2Dk&j{9f#|=O7Y6b+<=#th|Kk{@<>L;&W9uOfIc!iVWXOWOf6m+nfvha5|OzV zR*oH+kil{Ft*i8AQe|;)yjP!>J+MnuUK9q$!C+-rp2G`Egyk7nId)h=`Yd)S^ou%E zf2KYBnZhK@41W~*EY&b&KqlkGBm!~>tQDc3#LS zkLok>2<#1&kwq$u*m)U@hw&m3!FUK(jvb7U9!e>lDwo+}U}sL+Q?O4Tke6YPsDLQ+ zQ0haKL3s%;DiM?yVCC3BIabafRrjRDo>@<6k9KA<2{WUeH{yAO2P#7{11~5Ml4D@y z*dYno&BiXe>Bw1Zv8T_Lb{4GB=VUc(5;dJDY*7ltDx4TMHhvejtMn^aYmh`4&#YMs$`pDb``$a|O ze1#?`B5WC;JMm%@0s0KA96LZE$2H1@WT%}I=ka&x^YRpI50w{%;~IXHG9FLjr6l6< zIIKKE@yM~AvO)_q?&sP)+A&PROpjI#4<||)j~2X?L_A&{eRzbd@38lZ?Op2a7x-AH z&&NF6dE(6%3hO)7Fl9gzcrl59oCGV!o=j%7>6S4s|h}ys?Y=ErA zDI;<@UQQw+m%_@iBN8&f)|bjvtfV`EEzZDh)2HMH*dr<>3KMMgp~|3Kj~A5)%6nnu z2v8KRR^zv`c~>|oNbo!2Zcx4Ig_pv+EKI8uS)Ed_JK~-@ps9Dnja|hqdMFLnUrqH3 z_{9o+D+X2!b3R!N6r?A@{`nOqF4NPux#jiO4&|B5#Ol{5^4p z2XAkdE9e!tg8Vm@-xRkGHY~J`vwN6MpmGLIl?UuXZMKKS=a-P*7WXn8@C$vh?*Tjwpmh0;lav1qm_7JiKwiA zl_OA5=uq%JiI=VvBzVv01vr=bf$&mz&7)Q+eymdp)-(D*b9+YPmRf!6I~#$n(I?<{ zEA+(}c*`(dBlmQJ+%57BJ!HIc1)ANEKGDZi>E(T*kGK+%EoEc|Y=%x=EWdFjA`?NwyFy2bd7zy+Ds+IR?jj-*O~w=^(TJ|HOvXYm8#wV* z$>kYgGG0C+6NkXcu`^M(^x&rsHsR{MXaX5a^~qQQ`$KIf;G9v5Qs!eZUP>Y#XTi!5 zd?<7!d2iHfw-h9J=DJrk`SDVC-6O414C<7E^@)!g+tk^@gU%`B`>bNgF64uAh989A ztkBnDV7X4mn2jWBg$wk-LVCvosvPs)@xQqeBcby&)jP(JWEmlEZAo^d(wi)4r|CU# z75Q&2?-pn?V>lV4q(vQCnF4SFz2Ir;6tOG!+Acfrb1^1IWOXkLeD zf&&FRMJKd`PqSi>y3x^nq}{L?R2b$&^^pQFcyY3TfC7DhiPkY4s@7#U^905ic7NgAK59>=;a{ zTIJPpBj;pfnG`@MIXa;l(4ua09FyI}AtE+=?7OJg85^1F$hvB2I&d z;4#Wr?8M7R#Ns|!Id&|@hYlW|*C$~w>;;vClPDxajUD#j#UfVzbFgykm46U(DYR{v z_ABk7!&D|=X6TS0)_>Hqa!g?tOiaDoK1M`x;jwawa=+wzBd2JdO_T4LzrBM!$X+z+G@<`EL)O z%f1t~EwsL~H#42!Tz1F}J)t!#?1Qb3)h{hy@cj&4T4Eyll&c(B_f6aa(iU0wb=xEA zDR`0Ut@I;9I1}n!7QGx_f=y)ih&(TRtq7maE zIS;LEC`VDFrW5e;6Hz)IR*oH|nb9bD6A!{T>T-R4E`?p9=ArZS`SF65^UpfG&_rl1 zhLvN7X4a6HEu-^pyxc@|-UTa1prbIV<^yxDSFRwz z2j-tpZG(9!ym6scDX!8f1)CoDZF3KOOkB3L*DBi12QpH*z|oJNz%N_qn=)`wBjyLJ z`cei)pCMb_eymC~pCI_5E1@t*Z2Szt@xeT~B+ahzWl5rtkF2?u;hOW`Xg*o+5^P~; zdJf7G3}auuPY zzmgSLbHZu`Y#TKbbs7Y$&JwvVcP<_hk+E}N<=7cp05K*b)~}CPAM6?xG0Qw+%n_Ne z5*`teuwGa>cEZkp2gBl7kMSUGmy zPJ?+Xr}EtbZBOdc_Bd=Em9}hiXmf0lS^E(l7Lm0dz{;_+b|%D{bNQf^NrvFo@*C}r z+N-d8RNQ*Z<5uU4Ox!>4$cV)K4OWhwIBZN%vZXOWLLar0n1q=@XA{N*jwLcK}OwsLpTDs>lf8DWTUuRd;HhP|WWw#j^-t>%kN z+yBGkBGUFBuyX9Q%^}eiGJE@sK48Cr?V(~K3J-9SzUsC0FhrOUBHW~&1ahsahER*s#mlSypl z3SGAN?Wmje!TK=l7Zt3eIj~$WWU4-h$3moP09KBjDq4%koGjU0Jq24F9zLXx*0*5O zsAw5%5xF5UU*Et3BJ%a0uyX8t(Xv)=QSQaRppVv{V85tn8O&O)7cy0Uz+)j&^*dO3 zlu+eBwMgi~AM@YZW5c7Fgqg9SL8@FYWU7wDV|55SjWItQ3s<%XD>~DBTM8^IPR*s!9+WrS_ zX!r!zNzZ7H7f)akX2y#K_diI!$g~}g$3>*=I9NG$+MtXUHr;ipK4|M;+eS`CiP^X~r&nW*@(K4Sk5 zc8!Xd$vH6Yh}=^C2ObfTu+PKFu@knKw2tlfKWf`A*@+_O^%Vx1ztN}dSFnRr+BTb8 z*^Y2WChr$`bVTxg1}n!-9&J{GZ!i~NJLp;Mp}=@1VP+^`a8`pGBJ(vC4~WRu>tN;B z`I<+{Y_*go;B~q_UZ=vIQFEEWds1qC$aF2h;~~;D7gmm)F4~Fjnw#Mbrlk*A2W%Y` zGJ_|+MO$Rnl6Y7|*4_>)N3f=FWgNeC&bv%XL4x0X_XqDjsw2;DX*u!TgI5jC&VG1$ zOH23HvNy3G8`ysy6Y)FQ+)a=gz~j?8>b{HTMltM;4_W9nY@`ouR!pOD#1!ptC+zL5wZq|OM5 zm05TwL{?_P%2Ljo;Yu{GJr$;Y!=b9qJQd~rM3=GhYTm=R9(IkIeCX$wAhhc3kjE5j z@NkHDt%j9j$Lo~f>_{kH9l2C`Q%@?N++yc5g)PDi$#wdGT?_k01&lrchX5uRA|rM+ z9uN_+D`Dl>5fi^Q64oqQ{Z=w(Z?Xio?$KxKZrCs?Tl6#I2wPPrWTdGVEKqf zapH5@y{-vN!c2#LqlqD3dv~g4hK$xYJQyNcV_@aj(ON?2b8Sl5C99b1uu5z@M>4~{ z)6vJ)4njL%XXvxG2sV+L$>_`NNG2P~9T~obcyvVg=E2Ib!$%oU`u2v>)~Qch8g`9J zo0;)szz!L&jd(ajyf(nfvE#LfklT7#M%!Z9UESqmPpVwBw+g-foAeR85q6G>82uOl zlF%eeWX!hVArUdV0alJ3Gs;wJZz0#;m&yrnJ*W@Y1F&CIxZZB0XXYCrBefF`goxCA zuyX83okhr8{=}j%|059gygp%jVf(0r(GRB}=_}k98Mr-oTtwiWgOy_kjxzP?8(W3&lxb$_RWL+GYziI_5wXdza_oo+--rmE#PA&rP7Vp6E!PKaDeN9K zrO`L2DWtTZEi!IP@UV!uEryk2$4%G_IW%sy*&>0pvOa5@Ve6=@bs6cP)n37xCo*Vx zJSHM&n_%VGK|7D$R~u@oNFeWaee!ODy`+-2)g*aCnIxmQ9S@R-;;pc9>?jH!EEy{2 z1?G_i_8!w`?@`!1DtmSl*z+bEW!N6UqawogFsvLqY;U6HJ!wWs0PYoi;P$}=Qh}p? z_Di8lCpjZS_c9(C5xSRP<=CO4EVcVRnD8mL*}u~srp{s#W`?O|mfC}U$bikn;~@ez z16Gb5FyT&^p_)*(T98Y!U1)aNDhUZ~y*_1YVDG32t=nV^T5pPs+G;!~B5EsP<=9c9 zEWP{hZY5tT6w7SUy<~OuSb4TqWu@{0bJyxKcQtGxl{qs@??bsG!*?Yf9TC2MSUGn1 z-c0Yk$?(}Cdw1)zw*&T&%3iO@d>3YpjNV;%a76U(gq24%dZkK_koI=#qqht8aAcy# z%#qQ13J;Em-jlF$?C1d#Bz=Wqhg}NaTZ>>d>_GmG<~w#eD*20Sbx zZr8)gvExSRhsnN5!_EivY1;{#N2Se7KP=1@8MgcIsEDxL3oDOK*yMrcUVYg1z~+rG z*g{8`&*4!KVS5HvjvY42k(R(9O6c`Z{k`_katf0$Gqf~wq$Oa7oXaNT;SljU1Xhl~ zOX12Oe(R8TXN-bGjMuKU1!s?!rpl>gxxd$nymjp&eXK8pYm1sZFCh;*GSxtZdxyde z@M+;!uAPsEKty@Ds~mapQ1h;c5iVE=HKy*qo%)N1uFz*>3vMv+#x?pmWr&eFD)W_@WkgaJGv5ItC0AtKDPQFnf1QHOwzpX=u5EA)U0cQ}(UGjO2;ZF!+?VWA2M zFUkZ7=t+1OM4%6Ll_RrW6R($?O9G_swXe^8Z`McUO}NLz+($nu2%}PGhXl=;ctAvG zPJ@-DEO?45(Y!%~aNkkHo7bMo<o_ccV))sqr01NoRfSs#J@qLP&)_vaPJVqVBp4dSs7srnGCJbI{-Rag>vqJ4!`6jl@dPam!Sg-xTPWwNJL zGeqX=&v-yYzWxX+$IchAEo5Jj$O>p3w^zHDbu5!GGu|`V7CK(YRJ|ULg-F#=uyX8F z5&Q4yLT^9&rnY#PV3j^u7r>rTla|T;d({t_uJiDCh;%K3m1C#tRNCA_x=>*UrSgS5 zYZePa@_MH}Vq0P3sEE+XGK^!cFu@xW5(|66!7}IK3<=N{i5P! zvTby{kg57K9t)AGPr}NvQ$?IP&DdS+#`u%~*3b08`Uz|q6)gJhAUtpRcF1h~7!QZY z)(>Ij*x4dxEUVa=7QlMlAGLe)|APIZf@LyeIbO(A{S%LcNY&qA<=Cm3L+fvKN_QvE z)rab2CShiXNdJ-;o~@V_GE*nwp%9sR1FRf7Q^GwiQS(}zxk9R(>@94OX13n0&(>RE z+o%bPelNEITigWd;m1Ad&*cx`q>pcIa57+x(zo>ATYz-YRWUAhS$3mp) z8d!PsP*unXeXOtPQ}q?tuaQAjAtO`uB|H`)RbPaaW2Z{kHXYd>7Okzl0#^T{kJW#} zhEcJiZ<|(V2^}+Ju6~UNL*(k0uyX8N5ohANim8mvcK8WsP5P7esPJGWVWtCbawfj& zhfLRjcsxY94uF+or;C`iy8C+zB3f_KN9#=3u#u3pTr*^@PQ!yCa&-!<+#s%QKCflJ z7U!Q0gW2QGZ)rL4-Gf&R&dz>#dP__9*RnUUAM7`#wnqHME$sIPh?AvuDQq8LRv)o0 z*gGm>CMQdMJ7mZ*csNAJQm}G^AX8_Hn7ncsxy$tteX<5&!>DAL>~gtg$XtC04~EFq z2Vmvcxgt(GScp`89abJKRP_`x;$rmw>QnV+ z*sqa5mE(m>)gSR#h*bR^R*s!2+7YMrd@3*BhjQ%m+JnQ_GYK<;L;C%6_`HMXhD_E` zcr-+^j)0Y8CyTgoId5$(r#j2h^3DbNaGeL6Mon5KH!jx6 z&i2v{Tbz8@s!vx1wv0-b$&sONhs;(H4~NKB0alKkEn*M8Waq_gG@sQ6>(j7bRIp6; z;2keysy>OwLZs^BuyX8F2_GbkTH-17rivxIvp-q3oR2;TGx9&t2kghNbyUFU_iN&v zF2NR=wIAYP5n1~_tUPL1E2qkKI$1q8EU@-3eb)X7TQ?$D3)&*H_IEriB5Qwzm1Ad( zxRuNQR!d6WZFBOUwFiMW5NdjlR4k+C*ddDJl`ow0taK4X`_wo!9g zQy2?7YP}W@iOASRuyX8-315DT?4Nm!L+yaE&}hC-AGG(t-cdo@WbldzKbh5hku%yg zcw9u;!M0IBYeGf~KZgB9JR~AxUx1ZkXN)@H^fFrY^s$i8 z{#&23U&Gc>IWs!q4B8^+vtQz25n1~=tQ_|(F=PR_gI~}d4jjlN%nSz# z=3CH!H!^hx;IR>@+aFerojR-)4LPZOrao+^!M0JeTN7H*@B`bY;2{win-43;&e$R- zvxT4A?$XCB13O2>jQ*h-g=t%_5sf^)ox-CclJ*W*Id;;pY!-5gdr%*<55cxkF>69L z3qQ>L0X!rkWB(2-$Ih7WeVSorIpj0l-_}R$o3LwC#4Pi@v(Tg6U&kXN5_UhV96Mpc zrv!&1j2~wf#sPoUC+&~0dsNbTnm`(NMji$H9*>Mj+;3s!*onj1&5-lnuYXZ{$axf# zFf-(ALc1A$?E45jBqC#n!OEkKG3oU8dHRekgKeXxv!*Z>b_o0}ct}LX&W4p^XY3Sc zq}dsA7QCVlSrPV)3RzbZ+RX4H;RQS30p@6tqH3F zRa@kq*~js)h^&1SR*s!DETe^;6aTS3Xg`E~qk`6ij23ZR{QG!JM9RJkE5}Y5HbWbJ zSp1**oc$ekj>=gRW@sbNjQM#w?(OY|XI3)@CbW=$AthMy za_pR8JGW~mtc59!U+bgxOV~RqYE9U=UGqhz?dN!0MB07|E5}Y7Hrfn7fPUah+M|F2 zn1q>8Kodrrk>}9&$D<;WwjZnEkB3BLtQ}U4 zow3Exnv-w}TWCQu`naWF2dTJiHoy8LxFfft@4%xYlJ_=PId<}}xwNghLRY`Q+lTad z`vB}4mA59$rMaHSl>Iv%6Opp_!^*K!hP9zrSY`2(Ti?`&?CY>?RLGjphB}tWjNOli zL}cu%uyX8-5pR+WOJRT1r|b8yVN|+I-Xt55yMBuYL*(jNSUGmCi1$#1B(0QGoYf+{QfadzRkb3gj(W$wl37kfX}dOy~CKQ48D_!7_W zKc*$So&Bxs!S0906(o)yQf^B$_jkOVXIGcz8LICe7+179D@A)S z`wV-N1`bT+)7=I3TRqm`z}p*-N1Y84C>1;qA}B>zS;}?=SE6}D3Fn&naJsEIA?)iTjkA_IsCt>B-={jlHMyx%Q zs-Njo^%K}FDphYakghxzWSV}AM?s|Nhp=)4O$yyA-ZS%>Rt1R|duD9{)c&`@N|AlD zL;g=YM;^o^%#1cJq0?LqRP3Eq|NnpiQnNcA4}pmCSXVi+f7ZOlRG8>k9%f8k&!oQp ze!4y*r{V?^J81NYj_SVu5`~dED^gnUu7#bWaz_7j z9hI{XLuAOV#seZkb|tJl8X;RCLUxZnWOu{PjUdPtWMs&8-~kaKy9-txO^~rK^0=8y zg6wI1$acfdjR45FAu?pU@PLSrJq0Vr4wb4z$DD{_TSd<0VMA& z$ViRD;~*k6238(LNJ;7H41J^)!G=-Ol{uusn!<&697Lq%!OEiusfA)Ut5YATG;CP> zNG%NMU2VkUAR@H^R*oI1Hw-%^kx7g5TQ}*mbR+B(m8EqJZ}FG`a#Obr4}b{K4Y2ZP zfJmAoeNZ2w2VkdSgs3wFqMdjEM2PN#m1BoUI3p6$1-E)Stc)`)D$G+ouaDAR*e@zd zjbFm4*&t`7J$M*Ipq_)3V+U&ZrcGYDnf5pB!Q50PVP-Jb_@<2+AVV|-4}b{KWLPErY$>=+fN#&2(_GeU;y5j+qgR1d?-u|qZdB1&~VO4@4hiat~O zV8f_PHGamM`yeCrG9CvJsh42oQG}GVh%$Sh_E2sXlQ1)sGlx{zBFaoW4kA)BVC7MS zl(dMlULUD7uwn6Msjx+q)p#64q*lVpu_HBi*lxL#@GJSyU3S;%Lv=N585ODx4WBHi zcS3IbuEZlDV$}~T$BxzTb5BKi(%^1=oOZxgQE_Vg+>_&gjL}_q1VoJPgq35*X!uD3 z$3$_`V7ER;yI`-V95sH@z_maI=_xz}B1lid%CUnqf7oU&xJ6%>hMMqq?GE`kCSj&S zPQS{HIt>-{LPl#09t#nz7FaoUwB9s4TIE#PPA5Y)=?j=G(#LEeY#=pp(Z7B`#w^ko z8M%3QTtws&u<|HIPMT^+>m#=jHgM!27dG{<0gsD_+~u(HC`7J0Q79pIqds!mU;{@E za@-d=%iVy-MMUm;SUGm&guCfOc2)Ve9T@G<<$SvO@;!K0F*E zVE4kxqYp4CmF?9BY!B?)hyg6D(R>aMhX~j+u=3~wOq#Zz`VZ}a=M*MkX5eW&gN4oB zPsYO`0(Js2+lqM-f!=I`%$& zs9uI0iyx}c1RO$+3-F|SPhqXo@uGO${)RdJrHB(yWhm6=tJRTxqD`4f=5hKsVS64Tr zZSq&^6Lux+8TE9!{vc{<4yN^GHNto&5 zH~!k%5JTiIyxSIGAIh5B&K!|Q_hxd3BxUE#az6L=s*s7`{FW6xaV zX^F7S_8ax7+5lTdZ5548OGNCszZ{Q*h}EUAa_m@<7pIGP@dU>!Wuei|MNk?X0h@<{mToOmKK z%ALB;uGN2g?tFb>mg6oH2a`5^!AOaiI!`2amf}$n*;xWBOF40|E7819(UBobWwHgf z8YiquZehjM{P<-VHjUcI0$&SLgUt6t?!9fsV@;EVJ2H=Tq{``TE0Zi# z%2rVT?GAm=ZilU-g4Sa?n+2Saak~wVjELKISUGmwsGW-TbRjQ($l?io${vFqqf!RU z?yIFU#}FB=NAZA&a6JMm#}3y5YA(yzsjg0Tzon4IUegEc71%W@VBMzESk)96vVC|^ zM95x-m1BoYoR*DjFf#>_uQ{)2_s3>42{Xe)V3(L$0%Ly2XwAaoA)+-CRvtZQS+@8g zjLY=VS`QmWO>~Nh;&1pTUO;)nhmr3Re z`DEVeVmEa5iC>H9)Tb>CTS%p?VmhydIy6|hd2GvmEzUpL&rfH+@I~{Dc&J1UH^9oV zb10sdi|p3*q}W(>Ytq`WYln9y}@{X3xROv14{Rx%1{4T77wihI3lW{<@onrZNdLqtU$ahBIJ|4BQkv zG$L@5Vdc>STyLuA%z%VXe=OGrZYk^?HMtoFE@+Jm+!8!AB5;dg<%&iZi5}9VplfZu!b2V!?zs| zkO<$cuyXA1iT6@P4jX)LL$*vlrqA4?uyIu8fG^^>p`!;=+UtCgQF{cBi-_98uyX9E zodM>#>Rv%1#l51B+dkMlDsF`)rMRj$GIB5Du@RAb3096BIr0>*{}#)0Z?pH)9;wb^ z5@trK#;16>Eiz~`@vw-X&486h9cXOhjgZ#X>w~ri_Klj>ngtrOMFwp(9u^U_m9TQ` zpe+F#QRe7STP?5Er|xRlL@IS#n$(zz9?1w^iN{Dpupd^A9YOLGu-|$xdqXx}-mOpG z4%j;?dB$htg4W2u-Gzrn1ny2)IdlIN^2LgNt!Y!pz`eYm+dPOp+lSg9k~3umx6*9YS=*E@X@5 zB7N=_!p2e4U$bWH!gp%U!{Z{NmVlLGN9|lN--T{R6mni#pS_K+lT`MuY*Nk(HA>EV z8}LAhFkTKT#||U;D1_g)j@-3*qdtM#VEd>98b1mlxg%qD10Ed_yX#@)*s()bEh2V2 zJ)jTWPS`vubj@0|sCpwKcOM=b5xIL|<=BxUpQEn6%hkP$LQ}g}pSeA-dsOC(pQ9Gd zk)eAI4~_`kGq7^((2-B&1bnT&(E@o>$7m01r!WaK16$*#azY)F@tcfCNW||DSb5ap z7u?b);I~vCza_AR)Wp{;{DKb2_$|gGB;t1#tQmDriH#RFlR^})--=25|G zRxhvWjf~tTJT@Y7-LP`($dPZA@SBsel`j>F?An}^EgrePO&`1Muz^(UjNd8|;*X5p zt$2Jy^lpZgV@D6&aa=A|^66BWUChefZK17wRG+;^U{i(ciA?YPS0l|Ix2)+#aNJX$&tGOXI$soRjhe-tS1z0(D5XrYvR~wkH zdv#{*uRYS8$t28-bdBFi9dJg*Z3Z405w~Mt<=Al}-vUtWKMPrIjXr6sVb`cx&iE|= zRa0chR^mYsAzJ|}#}1kJfz!z2JVT5ouGRwDrcwu=V4C5n=0tm1BpE z+<*qU$3j}$p-P(O*N#kJ{5wc ziyqQIP9LY;Ku%*4W`>)LaT7OKMrXHDPoYrmPKLLjTl8To!{$+813uRU=C+_GGHRRg zn24z5VddCSqc^0bLZ`F2sMuwPHl%mx!*)At9~CxpnN4&>#_cvdDk5&%VddCy6Tj6f zXST?xj3@K~dki*=3fS8kJ|5sc$Vfek$3aBu5m-5Pq)r@m(lvDI;x&DoUV+V`;&f@l zaf+I<*oVhJMCoN%Id+tWpT7_9Xw5l5dk{IBNthW#Ue<7yBBv;3;Xx2#nh7h%4wLwe z8M&zw2jRlx>Sg*=t%q%+W~fx-sTy`lVhtV*5wF#-@+iPd9CQnKU8j%NwXkjR;U&5u z_o}YOqaosTC9E7fUc)a81&7%JT=(e1bvJAp6|TlF3LPYB>SUGmIhHn_f zLA3za)B14jhHaz5)%b={bVJ5#7ak1}ucu(;2)q=wcJbX|-VPrHi5Pc>y&*U(y)c!x zdn-BiRo+5Aa*x2COXQ!bPq`^LCI4XV;?v z^EV%K+HBd<`CLjNpUMfXZh@6ub1PX6c97cY7ELCn+P1QQJ#sT_x7kKM^CsS zYgqJpD`oaMsY1Rhnc8ZL+ZaEt&)!F23#shUkDw@}I{(!S`Xj@43mzX4zMEj>*x?g) z&JGJ-Ikm|W(%tv=~-@&6Ig7zS+96M;j^7-(f744qn6;`nz zX1KrVjVbz3TVdvnD~vaeB=taPPp z_ldc#ZGv{!u9Zoc8F$h@Y@`F9?2!!NbUa2PgwtT<*dY{V@gg%{s>BYd6zz;9-i39M zK6Dqtwox-4eRrA)blejevh(qnh>$IZm1BoY*a$fUWTisdW|M1uRBb$E0{ z@UDfGV+U_8adJ0P>do0@A-CPHkJ?vZ%c!W)uX|BJ&GSQs>mEEFB3yUF%A*LbkcRWO z`fxo9TQ*YQa{Q3tdK!<12-j{{dDOsVZS76v#nI+r2WgKs4`mW&Mw@0cm*DA2J*Ej0#!CEM%S`GG3i{Kt#OKuyX8pQ9Jm~7xQvOfv%70({&4M8I>-x z&7|jt4A)I~JVdx|gq24XTotho_Fa9rz5`n}a^R|j%=SNs$3ukc0a!V9xP;4FqWfTl zoQT$6^wD||HjIiE{m7om#6%}^L(W>ybv|qvHG7%ub$Ncsa4pB< zA;Ps3Rvtxgg-oknp%2#<*s_rVSNODQ8IOku*JfBbcDUvc7liD2LaX>WeX#C;?V^H3 zzk@@i&t=b(GuG{REJUbogOy{4irV9HKPH^EuMm4&KhYT- zBK9b(96Msd4MLHf`kq3c6>{Wvzk{{=^sm9DQ3%y^OhX$h55sC7t;lq388B zeZDS(jicr+vs(=7U6Dask4HrWZ4Im(J80C)S*n&+Kek**_E~9xxcBQ5cOC2?l{mAP zvxM3sqjxPH9ud8(VddD-6Fx>A**B|tTgiuHxv%OocMohGmAOquduTylWZ3S;<08Vg z16Gb5HZ;$%?3OGSl3uzK^4zof%smY|NM)`$c`jg&jNWcMJR*9#VCC4+Bj>rHE}uH| z5bcrZL?&Tov|u>T1$>cVn}Ekfgl!zG96M~pt1jD%h4LBVTA2*}-{kK9eLdm{un(Ha@K8}ZPH$Zdm_M;&st`$h!hzN3%a zgRpxe3%Qy#GI9^#p%IbW2`i6QWS8Or67gFCE60xC8!`OqZz&Pb+oF$N8TOBgUT-tdt2al+ZZjSn5xYFB z96NSPQS64j$>k1x{BDPRq~f==IrzyY$r#>-2T8LR}1QiNa2ahX1A>tXAtY0c~+e$W@W z30;H7MTBiNtQ2S-Tc?j>=k7@>~-*>GjeZj93B}FxG}JD?7)G&wb08w&d{fA z5$qf_vo)o+7InwRLOd)YYV%;_(T7^d+*+qTYH8TH5r$g$+}cJwEFx+fVCC3Rqh8M7 zHx|;xA2;b^b|dT>6*IG!Gt?}R8_sQbNJPYLfR$rM4D6}Z?z|9sY7gp@_5f@im9(bx z)N0Pi!0p5%BLa6HtQJ=CQZ_n%Vwiot}%3H1(qtL1`GH!eDz=*g#2P?;p z8}&P$etW^M2)VhXWxp2ZpQ{G5+o!j*WTzdbJs6$JB+Lv(&3*=tndM z$HOC{cPp$MJ9>&aFmQ>6FvxgJpTI|9BdG*7H3tSmW>RMMKVwZyYUM(r*lvBzyl-Vb~&sZ zJ8sl#eZz*DH|j&S4R(wQnb~W7BgU9F;NcL_x*k@J9WClErE<~kNnT+U3nd|mJ)qCm zPS`doUuHKaaZlv@bsruR5wd$><=7#ke)%?Z24k;2V0&Q8sDPRM@@>@A#dCN(M7W-T zm1BqNEaF-~C2w!8SjluDU$WAbvfU?k`KKPCJ*b?*B+Lvd3r5!gWN+k*HW`nN2;CvD za_rDiGg|0G*;0MbmcW*cjEojFL$(-?hX~hMu<|H^D`aYHvp!sT*s_rVSNNRRCOjS@ zT-~s81YB13<7}t@RfDs$tCzL3Y#7X5?EP5l{aEk)xYYgOOFX~-m=^DRz@g)vR!2eN z_%T(9KkOdEB(g`I-_mm8y9b?ee3+G|`)k>o*bi2mW1@cJxTxQl+8QBs3sW38k~PEW zR5{sMEc7Hx7HgREX|X;2f z#!uiyCxY{stDK!2@w(4$Ug|h;7#!M@sg88g?&%GJvEPx}z5Ca2cgNfLvQ^A8NZ&s& zu4r{uiuPdk8J27Z4ov0K-39hrJ=WmBWsL=+&H@RMSMVT+i0p%vrQGteM_JRFA>sSo z(i_&^kt(OVlg`^HOnbHK<1~j!m>Dd-wZS-X7v#2THXa3$r&+M_$mgl6Sg7=d@$@!* zo-Tv^qPAO&=83x?^Ryn1g2>YvSUGl{glPsjKiPS<4}f)@!;pHvK2q1gmQj&!405fhD_HYJQyNf z3t{C^Ll++a33S=|baleE#Y`7BL#8W@2ScQ5Bdi=dUBY>w$lMhe3kiVTq7T?juya(v z=(}m08M$HS$J_n%74So5>_$8uB4gWN<=7b$4mUIE4_a zw?iiE0X!TcVLM^v(L-3>KuI9%MSa4ahmDJyusSV{1MVbhP& z9zITE5@v>vrgB)F9Wr54@opV)Nh-) zMxTwVaC?cnBQ9?=8+9f~lw5&_L8N30tSsfZvMbTNy*9%B2>C5*?_j%I3YA>W78=km zvXYiMQuwyUXKS08z5x40O*V}Os%C@SaDEOCg9y|euyX7`oiJ>E>afZwfu&#Sv-ES= zDk@9s8=jmT2V{(Xibp`i=m}Ukc8rG4OBuUpr@M1jSzzgaqqXzW{!GG5$G-7-sb+%= z)P8svM4(<9eL&3~HZOIhdV0jfbc#Mq^YL0B_L?qfcw%xbkU?t4Lm+}Q2UdH=CwpZx3kWZe%tMkR~BxfCWV ztZV*NJP;yO_rS`rLq*P6wXUhq68>JFtlz@6QOPovvubY0IqO+G8X{g#!^*MaCG3cg zZW6=#>qkt}9{e4~B+Lx{HZ;7y?l*@K-S$KANQhWXgq35*YW}d}Ki|yo-uqkh!8#i@ zjheHProf8q#J>@bg^1P}uyO=i3JZOFtO=Br++pGj z7=1T11WBD05-y*_gCXMbaadW(d>?fsnzwp*CL!fihnSUoG1X_~l6F30Z52iYKVjw8 zTub~h>>f1}Z6dd>7-W8bBjAfXHuxbP7m>H`!^*MqCJa5p^H{)80knVVgZ59@HY#Wt zL!bo=kqP@d9uSeRzrxB9gei2ycwf$Ih7}}Y?8{9T6KgrL7kB#WwR7jGOv22Nmwt&- z$tp|zw_wmxQ@j8#HWA#pu5x70t$7Wsu$yA76|khPpHkmt>(D16iCatTvaJJ>+%QDc zg)g!3c02$g8*hb`rKEO=ssvAJ9-*TvsU0UIwF3J>?-0Y&?aU?3PT{Sv(bTqj4IN`I zOfk8I1TR5+GhTcm#2>>M@s zSdGs;A&$rcg+JjD5h?ovtQ9 z4}-|lk+5>?JiTf7cF>Y)F*5OY#=px(Z4!GCoIw!nYnZEz=+J911rbQ+yXLl z;i;@&AGAK$H7aQIjT|s&kr}OoM?<8m7gmm-OJT^!N1fiVK|vzMskB)Fy1;UT$}KKh!uyX8V5!W1@IYLW9Yo9(^FT<8m(V|~njZbU& zcF1hKgoi_9>jhXjcD9K9E!WJD#5HS%_AqfKlQ1((G}+&(86xvF0}qJE*D%nhdx|)!Jbj!GP#mi^+TrXPCOnWU7vxK zW2fsh+B&trovFG!D`c=;`j9;ZTStW~YjE91utjF=NjxkfYmdXqql~rcVy(d1xK{06 z{um}k^b8ox@5FXAGI4`19(GP<5@v>-P3Wi9e35B81doeI+d;5$?6kpoEo4Dpi9TzK zVdq9xUJG9rI17)8NZRSJa_ppGGq=_0aAEkF*GFv=Y#kM~Cd{T)ZIQEDHy##|H49db zU`^pV3w|Spca4F9M2t6L2=_3qXX{;dxxan@JXn9l!RPehz5}i+D%|vY7%N_w!u(xW z@IEK}7L42R;u9gh%~c)=w_pgTl|p=}yYitPk00z7R$XVMG;rox2xPxn!4BPFgvu$CA$QzQ#(ec@yI+uy@q#(?yBz1e*U}Q%FNthKW@nE%zoq5GcMm#`{4jfT_t&yF zu^;To$3^|dE$sIP4p{45(;Mh{_Q9`WXyP8YAX7+}=4MjmR5G1Ql}eWIAL&BAoU-#) zajxCh-(LUc+H1en?%xtPIB;MppYARc^Qj(du={JiYrL~qQswxO*Nth(Zf9m>dtHg< zxIeWuqQ2Z}IU<-@!z$^ca3%ScJzI#oh< zyU|sStnVh?#y%sozU#WY^*#UZuwrX=%^t)(4ej~MHGhtB&DTXMz1$DrtYhb}`j6)!pwqA9R) z><}G43`BDBIbR>1<*-lGW~mEVhGrIC zWFj;(VdV&D6z1~za)38Ks35`ThPJ8B5%5xYv(j3n=+P+!Ta-9)Y*QB{j-21V@XXew z{cNh=PPg`zTGzT52G=NrH|{@{yQ>{v^nTp!{rIx?<16lu(A+w3a>nW@l;&=+d*{wi zmb5W>H~9#ubMJAB-sgol`Y zK%4(K$?N}AG^)<)uc=CWmHkDp#v5+(?5yi@dR<{@;mlTRYj2J%JGS=ODfaKFp5B~Q zYTeS^-|D~btv!W|)oPbo*|*VK%Z1i;#fsJ1!G7E7OjUAa_D8LJYq^-pmwMR_zI>PS zXHxl0YiF_0(;9eRo_4D+TQ{BWFUq>b8Jn;4^!5k-!tdO_kaCxB2PSOX=>Ca~8wazW zcNc5fenG34$_>_5mxpJfl0AW~G_K0dc7Ju3Ih|6mr0$i$EqR~}!xXw)D5kpuf8p;! zq1``GEp+zJ>~|Yi-m^|_?WmNiHFIt%S29vH2bQfo>nL~T3R?o99yH5)C!HnsfkQTK zB2k7`60Fz8u|dvJf1eyhTQt(!|vSdvb&&6GtpN@R_~g%@5_wAK}!hQ`4# z$C?jctNVo%-;#loynbx;HApg!livT;)6-kD80B_8SuP}<^bqKJ z)wa@b7T@8zr^VviR3&)jU#2SISAODv$jZNYY|DNv&OdB_)R7VUqm;K)9lSDiMZYs@ zS(fUuih;`B)}YEh!K>Mvl`67I<%5=arzUgk;m&}?avwfiP2ZsEG4ESn?@BarWHNSr z-tG)`o4(i>U$Y-)IswZD#JNwW2dWarEuO%Fb_WnaoBv|W<^$XK6D6x(RP~8l{k*D#ajVC# zVc#grw65EBBdtZVZJxNtUG+Lo+<}|I|7~MP{o9kcAhH{*|ayX+3_c6PF(IxdA6og`PL4L&Cir7shoXo)S()gt*a*35r8@+zS(!+c5>E69r<92T`?G#2 zrNp(#4N7ZF(5))LQ--A~!4sDUHR8GN1uw-iol-C|{uDhj*}%?kG<-yI(o(j@aVDF` znva%RFS3eh%kHy^D^>^Illxhm4e0X?%;1SE!=B5oC(k5%tItf@ zg<*5qS5*z?x$GWSA~KgnyRO=Yp1dyA;k@~st>>^~F6@A1Dd6od8slyDdrT+z>L1qT zJ~>h7Ow^t%z0N<=cl0N!68uH_u`3Y?ysGtwEwwuBygM`BZF#dV0qJR} zR(*7W4a?p6$DG^=+^6as$N6Pd3G?P(=*)JtvIAVDaUMVihQK1bAP+&V1{;R4>9M-?6N*Fi#fOS^M zS*Z>9e9UZ9z0>h+)#phzAI%=B*(E(vRYJ5`p){-)E^381GvCgZ4b2u zaGq*i@waN3s)T5?LS6Z@@1GoM5-V~@uiT~|Hotw|nXS=F>suOAl>@W+T$QjNcpkX6 zURJFmUd@|bi6*x6A#3X&X^gSi_c5K|L{;S4`k=mZA5xXzFUSX6iAa)F+xG*`VOzY} zYN{ z;caWniKdVqs%?E$)g^B9KU5_|qZQj$Z++cM{R$Gi6nWJ^{1(12)cShk7fcRqYhBUT z-})A-SY~VLJ%vDmJiReA4b1eK_mFLp9qhU8j>%zHqfTXI(d@1-P?g}dJJ*$Hc=I%M z1)H}|<#Mggq+!PDwelG&ZCk-Pe-Kg0HJeaQN?6mEiL= z9tc{U3`5P3Q$OCCl?V>s2Ny_)FB)Uzc$XFT42MWeU0EbZo>#3N{+{ktmEe#Vs-9ya ztLJ>-_}SqnHD(wfcNL~b*NamKsX`{Pl4y3@4px;gULnUuR)~CFbCIzsnGszjUNNLf zS*YqLe@o`6N{E%BkO%#d(reAVw0VX%rQsy>l3tG?hH+%#VV@G3Zd*DPq zG3s1WVCUS&Ckvg)ly_%Bvby7A*a1{hwZ?d*zulFH?7}pDbb7EqE-AIX_{k4{GvM&G zjd3`;ndt;aLx)sHL#2fKRO$7(THnblRVDcA)9*?&yxTa@8;CfLZ+}m~@z1gcHe$L| zcKl#}^y3)L9x56BX;rs4x}Q{)FmCwa{-D!oOT2enSnz+unD0}nqfYj0wt>%`Aur1I zKdkBbWnUk7dpoLAvfa$Wph)kt0! zzjY;=n8goT%XS5Iq|%$%v{t~=gXWmZC==V*GZWQkN(p5=d$4A&bgZfbC;D}+MB_8~ zTK7^0HiYY~lmmXZ8}s|%Ht(TqtmZsaGJKAzTO8ZjsuIQxpXP2qw`yB|ovUg5Y#Olt zVq^Bd-rE6h)%O27muggtAXUaHRVR66T%ampyfUVo#u5-Bx;2YtbsPYny`e=N~cV{2^`bQxnyvN|q0*`o%5( zkg9}ex#E!5TcY$@Zv_cnieW|$$~~#$y;sjU0#ve{3%*+OR)yW1#eS5x6pEYJkm7T} zPStmf0Wr&e6|wtLog3zhLqQrHlELyMu?!YhS?cKL~EU{aRyau3sOSm+Yw6xeV*@B|CD3 z^rq6>dC3LIa_z#Wz$Aaj{d-?gg_ZOEC08P{=hyI=p71@OPc_Ed?88haVA{Y?dqAJm zx9@RP3I2-wNL7Nrs9q&%y{KQ*DFwT#q%zbV&`64uU(`8u2Z!0RX7vPZk9(y6o6Bq5V@E*vr73Ko(_O_*y2TlGmGdB0B+YK{cvm9s zx46AA-e#vW9r{~5N8i5LsuKJyo~0_m-(s&4wcg^fI;CK5@z&! z*BDE)6{Zt>EvL7oommBE!YY->`-MobLa>{&*}i;fAoL!6o3Bxo;IHacsuKKF^(tHI zRo$Rd3ihhLvAM76Vauu?KwuX}yNm_j+i$XP8u8v9<-ND^xr<@n;jgP2%HQGpU5V&- z`1iTmx7hvfGdMQ`c7M(P>O#4YE*CBKZ5QBrT%lv| z-v-8Y+nJ1&AAJA7!TuBd|Kr~V#*-;=XGk5{Ziea$@`q|$)u$bDyE7JYX z>f^F6v*LK4+PGkr`>lDyO%UD=U-%zG@?twPB&J+{I<}0A4_u=Cg<^+Nr&y4 z6jVLsuV+qGg7amoN;rJ6n!T~9HG6#EBPoFio`^4`+}5D_CU&L*=_O=xcDt(GywYz~ zmEe_rv#Nw&>Hkz3W~jc-M=Wfgf2Q*lN9RV|rFLg$r6gVp`hy15vj1rm=X;KIZ}oiV z1CH$B$xQ9x!`1WmR2}B^{9mdPyq>?UD&g02TIuChp1*y)bFXxd&4!Y-+`VG8Ghe&> zqV<6!{?`Uo_pv;Q%U4SiZkGOws=vIJUvwoRdsxv&QIuVtxPlEQ*`aXxa@`~6Hl%IL zj%7N57i54PjHrL8GzWAz`x}~F)k&^|f|06e=?&Gp4le31cNg*t+fR2tG{A0-tn|8@ zHaA(tycPU*z#?M~pHMyQlc*KPy{z9Yj=PQ1FOKB>LVfS&sY>uvmGG*s(F2O(&dC+> zmRlWc{Onc``|0gHDzUwty}^q@-fFCVX12K{acjaU0h=&O@RG3oo~$HN)m)ZHpylU0)+W)L)+T_R&3N|`59>E-RKPu_Y28W(&deoSwN47B^-Fq|Kr$?V~ zdPLvZhgBsw(GPi*)95OAJ*xuOg;stSL}*3)*;qv!<5YxS6Sc|C=<4{Rs+Sz}->XU( zua3j3Zv^|yX=pV}o@c6qJf-$NuxCfxe+VmpW~88hQl@UJ7sgt02Kk@x1CN+@IyhD9v)H z4jT_z;7m?mP$=f@RGeoQ+Uum%R z-RCCwbEVqvSFJi;`+crN6MII-uE^VE+xa54vpswj+nU+OK1A+*VovIue%zS3?2gB} zVkEp`B-~;o++s*xe^lS=TT~@D<2QNL)#wSpQ|jGtFR*t^@P-ZS9%puZh<*7l(|W08 zcXgLbtJMA6nX}{bKx~|3KAR`uXCXw!As#yLMTY^QfxOf=s3*VUw&?`uqAZ5`_0Dq zJe++`FkdPZokvG6H@rz7#4}YTjGI5^{3VwKvO(II+xxdU&ywErjjG=8l)OPz!nnP2 zm-ITHf3dfo=_Y1p5;X61I^8R^YR7||E2yOo==+RS#k{s!x!m;ZbZfkFv7F4V`l^*H zQRs~5k-kUOb6#!Ns7i>{rjXVA>G6*#t$L{MI-KWh;`MLi3A}dqG^VZx>h|u2U7;~Q znf5=O7ns5gS^l_NwQ_jcK3Lo#bRGL$gocy zup5$Uxk@OO)NGGsWz*~lzfM&`tTcrYlHU`)pt(Ka>4DSZmo0ybbAODt*e1>ep3<1Q zAL0(4!1XnOK3hn)c)n^~@prUcRf1Rd99N>@-Qv(adzUt*0Jhj3 zVpR#_HjiCrm4xqDTw%=Qajd;}o+c%(Evo)-i_5AK#x0)Y?A~&gft{turKxgogZC$l zxjot4HpU+8PHDRjmW=PtZ?%$fmvT(AqSje;USDAL!B2+)#EPT4|dw$h9H@giSyK!UmU)#8G(7pIA`{(1? zJ!AAc-@NO;R=Kx-t@6H*;uM|D0lEbp>mFSOBAd*LI7C3Z>H|8$4Ji1h8y*MJOBfh$ zvl=PpQ#p3Y+PI?CSt;6sA*uW<_nLjT))UcH;-0mZ?U3G(2VB1uE==QZ$WE`ynzwKG zAZJKXJ*!l|=cMJ-#&llg_H&{;pr}4ma`9Dt7yqFu!Sl@DyozY_el35&zB6jUzRj5H z)dhR!(a{U`t?c=l!-DCm62{Fxw0hrDmA!i2&o$=!q&EM#(YBwX>KV@*Z&sBsZu`^= z3q`Bd+S;9Brv#i$qyC=sKx1SZv;U|z=lN_SeD(R&J@InivQyPVUJYqg39%ZG=FZQd zeC5$=MieA?DGZI(7A@;bDq*~Oj_`*v?B-yn zHZEk_!0mMK75a^_3OTacrDjie{I5P;dP9Dt>L0IyU#LomRiKb5{TayXhMIwloas^+ zrh3D;L)e>_FZHqus@8^5D)?E1Xj8O(;iY>czn?=zi%Wdq~dyr)SW(4Xr&_fu5~ z{-QqNN<_9ms+%?s2-_+DDtlG~@C`9}eD!;^@}$Z?R6XK={!LZFxXlx4?R+3lw4P?l z=mVYct~UaZt)9*vtJ&Y4rYd3F>hL29=NNN(sGj+oRbAptze!a>G+Lp7=54%}`V}O2 zDZZ@wa{43a?&h8&I(YTcwdc4e<(GTK68il%8A2l+wfYxVNgZz;UX$ z5(;g&@>IlO&VIO*(^q2iZ9SIriK##i+};>Bvo|oEV2gfuo3rOFRbrn9%)mHm($J4i@(wo?Bg4Xlc72i2wAHmm+nL5Qa)qi%P`fSP7`}JM@s;UIfIrn%K z)9BUNL!HTD_Mwm>`?f)aeGMMO_^|uRMh?uC`%P{e@AjK&Be~!tQ=hTw_u6>3<5c%-iGq@9 z6>;)vHgmwgmJqkICi^NK?S--yN#KBpli1GM9J!1sy=b6pHh_& ztyW0#yq)m!l!62=h1X6fNbpj4gLef9UW%e>2h*R0xv;tW7{)EH*coAf)p|xly7>bW zz3CV4^T)%^y-a6M)$C(Vb0s1hyX=r3c+dWdec&3{=bwGn`SWwxBeVa*{>}ZQyT6=N z{opfOQu61B*#SJtMo+dEmM17c2W0_J6tGJJ0?f z`?rB=Rc8On{_Eeee`CMCKfBNU_rJ4WFKEgB!~Ks}*smJ~v#+ur*%gjs*%R2AiVG%t z-z%R>`d+ygVcj>%PjiIyzESSgp4Q7ZRi_kene$i8UFJOEJa%1NxzJi+cOKRj8iSJ^ zT`ZyotQ19WPFR%eE^J|BCRri)YG-NK*EOSRHE(%Ru0-VP+LYza>l@>5wvXuqCr2Zf zJKwAC+`CmJcsunjS0Zv$rP}=;>yBsxU866sCp7@!P>a2%N!_B)srtj=yhByOxWy4m zoj)>W^N>rOKT!3FTm3y%3FB6WFLl0X%;}+)I-gf{i5tCFRYEjcp^@gDY%lFANbpj; zLp2b;ll^X`c3w3no>-mZagI@>TDw#BrV78`xT9j{GS0WL%Z1)R-kg1AL-OW;&?#LY zbV}Xg_?^-~3l_4+X%;JzQZJ7)I8#-E*ZvGu3BUF)YVHtg(n@Cow|kP@+rS;D<#i3J zRfMxdIo8PDwP7JWYc531ht>ieClgz@S-`BJMj z#ZJgqoKN<(Ubt$-+I6iNwjqe!ZtPw)SMIh;t?Mdm7MFc}DezhydR9YnUC3*dXuH%( zutFu=LM7ZnCHz9U7tJ|^O4JG^y>Am)$&}hUUSShdC5%_t@$1-q)9iFevEM!E?9>z6 zs@J--KcDKc)2%snhm)|QV}Y@Xn#JzP@(bf0b!LTeudDG3lkf{8RnS~jcXorD|vYoTbe6vPy;bE(>N?~t`Uzmhb7_a&93sc*~5pv;NMb%wiK}A&w;}tah zqFkZuUdG|PDQtA<)mBf)l>yt0)y%PN)l#^xOSKe^*0>+nxjcy1k95-hp;+W+mj9>3nu+p?_#2S*n#GFtiGphux!E zU%bknb0s1t?HWIU5OUV^z&AFg+x&MHOTe<|v!(~IM{4$m_g9tRFUx+eM8k*wp=V7K z#!MdKtm#Rr9&tcVP?a!lbHoDdMaGOCasl>2RiC)k=c`H>w>o?Qwq(rdp%!3!RbApn z_ozyUMk}_n-gUHI>Q|89rFcfQ0rFe>NkdIuN9IN4t^SkNyHh&O0CbI2Vne_{EB_xJ zPB)*~vR{ky53mU^^nTmw3X^}mBD+R{&0Bjt0CtuwZwN3L-JW9iuw4h$TY=d})^GX73-^C8&{VE7Rv$CmFCVy-;TEHMIWYUOx>pRT zQZ80?lqZ~3suIR4<#%%vn47~E+LgQMA1-E68eQ7b^g z>o&6jNUz~%R4bG7@F`cKiLKAf6?wbN7IEz>oR!{HtU+fpz3U3aba%MZ-!a=TA$r< zz1ULy!B~}@5v(#csI1kLx0b~VnD7gj@CzutJik+|1^)8q#Le4TqNL0(m3Lx=tx@u+e zm-kdxVkEVEg41s^=JfC_Uzq2Y>3hCjRf5yM#;dkwwS1?}Lt4If8LP6$mhaSgaLe~j z)mq>$&sJ3l;}xme^4)H%>h^E5GxOyXcAKh&ycV{rN{F?f&>rz7%}b;T61)^%lcpfS zOX1D8D@gECd|Gu5)F}l!7SPk&m6gNSRd2y%TQ9>dM)_@HkggsB5RY}tofm#MC9p&g zvV-DTRcbl-PrDM4ZFj?``u(-gO7N86*s~kcS^hs3O~AB)>RKp!pw#tw9eb)~SNLD5 zHNfAMf2vCGH`c2}tv7bJPAS+MJJ{TvPwt3Xxb}?AG?j~m47+X9F609}?Kd?BuYoqc z1B#u}@$S}Vqj>KE?IJt8!=69vis+g8)Sc!^M834q+n$u?@{U~RUGU-W>+~Z&GvM-u z#<-ka$#jA*@zl0;1$K6zwvn**ct28F5Oj@hLh4Tg6UxC^KN}RmO}x zg5UpMWb>rehfB6zp>OLJRSBLc%c>GQQ+k!Fl_}S`rD!+?6V|bflg=LH-~q%P>}icy z1(#ncwjZnZM5)5>Qni}*Ebdg5;1zDj>etV2cTRtLS){dkU#~NVH~8tmi}zz=<{#5G zzumbv)hk1yRt7d{$I2j8#}8G#R@xoxER=0I)p66u0@d-7!RlC0 zUmdkFuQRSB^o6dD!YE_ppV1qoh?Q&fra$K2mj>cOjS`I^9%!`LRm*7>Ig zu)44@SPdM`d+PpfMfRXTr!r(XeZDFR{Iy=LD#7b60`3D^gP4tsd+eK(-`Kx=Eo=)ootqB~=Mt=e?>Dex2W{ zROia0!2>U@*y&AdyJ|7G2l=xNs^>{wJ#Xeu8Sd5nw5ox;8b9euG;>gW#B%3MK0D=| zvr|QHaYTG`9&U`I*?XBzz{7zf+t||+)u($aAI{UIHufQXYrmyxt!nFXNVP*9^8JtB z8ng7!HvZV~Pf$Fo@8#2~5#Rez#c7Ex6<@vAC7%)CxD!9t`MrXS|y*N*QQw*C%|+IJ@$wg0u*zLM_#bF(a> zif*E>q`Ubku?ZF;#T%O4!TS&UpJ?jd=cacXli9*U&xY|G-on*w+1RJwJR7_FRz1Wf z*zisxiCWz7&$BF2cOI!He@$z6{F)LSz4ll2TZ31$N4Mr&;-j=iJ~3g1v7PhU*7dil zw*Jz+6Pn$*P4-`%#zRQdfUD-#=`c=P$$8v+4f5Sivpl_vdG=^$vKwr2*{E3-l1#f1uP$SLK%a z>2!{KKya0^e_eTW_x|+ujQ8NZi{O)%XVcwPfkgC0OGtzZtqvBe`!hKW+}iADmI-mN zSr#%BtIe|T?Fb)jY7jL2lsjW}p+fhWZyWIV?x9NZiT8Wj)a8z^zWrcPz7$rRy`$gR ztcsaw`2&blUfScGK6cin!K#vvUzLc~R@z7>-*zT>U_AfYaR>h02n`5?_=h zTQ)BV?_{RlAyHzzb1ccz;@)+FW$`auSQf9@U+AZ+wZgle=@T)B>6?EZeWr&9-F=3` z_|D(H=8b9!EFCu0pD~{$S|SoH*?V{iNkkv-AwqYdL82v)DAogKwcZ1Zn`I&M<8;fS z?F-WBTT8UFqFF)LmC*KzJ}pw%TN!*eDx0aSb99&gm z#aUv-v7dlhV#T3pLgK_aX{KKlh28XS` zR;2Y;DA^K6GW_6wINo*TX7w&zS8A5Uuy@@wEcJ)+JVP%;_H`C|d*{(_|BFAOI_NdS z)K5A`P}Ap)@p7NSfG4`C_x(EFDrF~3h9M#<7?s{~yEQVjoGVRJ z_!-S=OV*Bs&9WGFg&*%LeA_^^*jKzY@-e>c!>05p^L?dD#j!YSaQG8#sEQVe2lQx$smGH%QwWz;p z*t9;G?#`}M!dKzrKclZ`R$rp>p=MbOzsl)_2L4(eJ}0PD{@=r>@}O4x5yQC3Ki;gq zMCBiCmPJ(MO>F(;>4A5qO|TFt`01eu79s_o1vJ4zq2l0qbXM5dV-50+fYj%vvFn`#xNPYBayM-^=KVbIy_H4P2B|iFq zrHjc6(a0EM#V!)GP~`pWKNp&Cds#9ZLTEocphJ?mlK&ZrO#Mc9N>!oZY0% zHk?}>Ss?c?EX&)kwv*8;zqhwUua7TXmS4uRwC)7m(QMz!1l?v?{Qo^c2iv1p(@lJ` zPtbDf>MJ$NLMCW$vn*tSawoPlK{vM|1-Z`L_^_y9Gj9g}q;Pu608w|A)SlzeZqdXy>oF3TcyO19rM;`q&8q1KV`SsTI`ITl_$Q=EmWzqKC%GfIgi`|h?`**6U4Wl+e z-Q(u7qgVWS=I&-SB!l)Z&9ca>9Ycg5u^_BDhKk`-qlsNd z;@Ur+>ThwMILWd|T{6s{dPj^{j2j3RnODpnG2(`!=H(RZ|G0TK1?Fc_|-Ib9Nl_kDzBW;$B?5)JC@V@A&Hpj922NazN|_4J##NtWzM6f znhQWK0=a~UXYQxOO(V?%6l^sQ5q*JqnCSD(Blhn{iEbKU9<$(aqBl@4EbJUHV$*!H zh=L=zrTa^L-qP}5f4^5=3eU@>#RG@!|L#&(WhqN$e*tpkO4Yx};S8#~sg9FhZtl32 zez|#VYJ!DG!M`|7u#n07_Gah5zrpYM7jN)!QHB?P054LPwqf;6e*j;ZucGE`58yq` z4lr4lyDW?Jm7(3|Uda#OFKCZi%^~8W_Yk!n!0%{XeYZ8sLT1LZnq?vLlRL4c`FT?- zQVi}LJaSyM)Rpfa?90;|xwwba{+OIbvv$*H^Cu2|NzVX;-j1Nd{GL%i(mKrDoaG!w zWzMpgT&*eX3=TfPk$Fbvaqz#RZI+{qZe=bPFnS*|+rq&MxxNoD`ZS}@aBw*aj5a@F zX20MpUqad_b2ZRt^DfTvDnxde|KKdY;k`#KCVk_!t-e9i#u?;0;{+ zMn+xC^M_nRfrERw+&m8UA#$ua9cZ#y3N*#Mn+ zDWK8jrzk$zj2lnE7-Nt&(R>7vqs>fY8E-zxl6?ee9p+91W6VB8c9^#!ONZ&^;OES< z2f;|Q4LMIVZ{x`OxZ_Uc$UZK97J}o=Bb@eTj(j$xQ2 z|pPB51-v+*3fm~&1+ zFw%U1(J|1{X!Bf_b26jrn9B<|_#Y0g@ZJ5mXYSWoHm++k0SB}^CZw{^9%%I%r*qan9m|@tho!tCz-b)7;knV zZLGN+!FclyM2YqfMEMKghw?IPC?T_I02RGm@FTgSotugKu-rcQN`;&hkAj_g-eUfz!tFKpDqr z&*Pj$MiUWqn4fU)Auji84zA_kS6tClF7O>L{$WP5xrXUn{B@l6TQ2Y!E`BGY=`6&{ zxxnW*tqTQ4oBNpAS2*oV1QX0t5qX^X5%YWiXq@>bXL%H8r1=)30S^9&ie{L5P+**S z7?ESm16;$4P++b(!sS*V7;XN^FV7|`fegXj}nDvO9V@^TjNb_PY_h|$p%}g#=0O~NWN0tfZ zcUX~i3U1nMwnGnX%O+GDKpd%4=PILrNvZs060=EzGB*H zne{+(%x2E{dPI&fpJem`F86r^W6hhnq8%Lh?E*PYK-2-uWjD|`b2WmI z<|&-^T?C`e^$0eby)4qHKr_uW?%QsTJj6Utv(@p^D zFefv59;aQ;L6r;qn#b8}&N7FC|K;F14rZdjDDxsN_j@jP1qc7eSx)AGIft|Sf%P(< z(fwS*Z#d^-j{G&yNOK0Gn>m=zJm1MVzs`}pjGlqCk>(smU*Vh=0(F?%fu@;*oc2|& z{Z>ZbKw5`+7NZ|9PmhbQ2AXXyV)T4u8D+L|a2ywS6Q`|0Fv_e!&|z+4E+6J#4+lTz zoF{N_1B%mdL)sKGh1D~ibDqRme#dAU2fyXWSseV8+i;ZAJ_R(^oWUafH)r`Gr!C{) z8yx(Fvn*%y1?227cQN`R_rv+fGTz+FIV(sTW&Ry#u{oOy{4au2%y(FbamX^?tmgt3 zB5kC3Dk3|~YkuGy9#7 zkk(%X_(8nS*aLvl%GRVNT)TV8J)>!Co}sKqd#--G>*KQgZFae-&pE@aAbue z&t!B9r!8glBnRK%iXP*%$2qu|gFz0y#aSL_W{+`D;Ns_VFotvf2d9nZ)^6s=f8#7a zXEelFwsA0pBcH>;M>+Tz7dVc&9M8dfIC6-y{E^WC4*tx+0;F}AFLCe-)X-th;^32< zsW)!36aL$7q`6|x2iqX@U=SZ}n z!>nVpkF$*Daub=$rHCAD-pFY$<;c~HPGa;i=J_=)H=Tp29QmId{1?|Siwm5<)y`lp z3%S5w7`>7UcwFFAMsGouN#>^r=9yO`@)C0|x__Mc6w1vvyAg~tuSeP>vlPLJ<}POa zZ$N9zUl2?%D-n!03sGRaS%hGMxd4%)%!LR}Fi%CfW6VgPapprnW6VpC^JMc8pe^Py zq>VM_B66a6570^Gdl2b%^L<2)G8>R{qWJ-%A0X`qrUPxCZ$=@QWX2;n&a6e2V@*GT zDdxw>Im%2zTBrFXBFCBcA$Ya<7I-c;Cj*^kevfKLo0lLMW9D&vZ$dE6+)0sJolsn%183j7bAm=>9!Nmwhnr|XY zhgpeWq#5GiADq?&bd2fd$RC6CWb-9>AUMW+0$e883u=hj zM^Wy0^G2l6uMN^VtOpM1tjD6kBa>mTuXtT#vft~KVXo(>p5i_y>UhdkEqfk)q_eAc z5WWaFBYuQ<(6O$0h>nfTBOs3v@ytzBFXHbSps2e+?jhotSNic=4pP)MkgJGz)@Y3U zZ#+a%ZvuG>5ziWh5#RYNiaHhKG?3Fl7J-}rau!GqWEsc`kh6(+riU7i@=v{uqMiow zbdYC&JQL(uAkPMQ4#;gFw}U(vb?h2e+Ri2UY(q*HYAGkS!ovLAHTx2e}Gl2gpv4T_C$bt_Ilyat+9} zAlHFB1>|~=8$fOZ$%EWP#4}TTNxTnGR1e5Lko_P<5JSYX)@ms0&W};lA3**H@+Tsm zwP7Q1<$qArIUwhOTmW(r$R!|`fvf^q1F{a}3XqK;n?SaJYy-IpWGBdOkUb#Rf;tsKLGh55zpGXk!{siDQY#y8X}%GDkJ{F`zh*T zkWC<4K(>M02yzoh3FH=#3dkVHL6AE@UJ3FxkPm}=1mvScsEhsCb?c0gBg|7lo(A%C zkY|8A6XaPS&jxu8$ZbSCYo>&BPwt|q5xa?u1nB@71u`0B49HlJaUkP~cm_626g~cG zikbp)0?3I(JoBHvNPSPCsD6+V$Nq+1349BKFDbx3qVc>SqQQSWHHDYAZLP{1+oMr2eK4o8OU;w6(B1?&IUOLp`vn*#NQ;;}0SWDm$SAlDM{tQ7_wv-`Km0kQ|=8jx#2t^;`r$n_vMfZRyL zvz8ka?fpGP^?~$*lt2bRZUHHSR6wdAgCGY$4uTv4ISg_u$WuX{2J&=}XAq&W$QwZ32=Z?rZvuHU$Xh_(3i39P zw-fQKl?vs5eLqG02IRLOza!#V+Z7Uj@c>2r669APzXtgY$ZtV@2l9K6J3;;c@<)(A zf&3ZdFCce;{1xPGkiUW41M+u}dqM64xgX>KkOx5?0(ltZ5s*hg9s_wC(Eiuw%5XF)y(@_CRifP4|;OCVnc`3lHa zLB0m^b&zj>d=unbL_BNJ1LJ!-I;eRd_k!F9azDreL_BNpL$)hNQ`9Dq%^+Jqwt{Q} z*$#3Q$PSR5AiF?zgIo==2jm)%YeB99c?!t&AUA;A2$Bc638VnB7o-cMn}}y%bA&t> zA45@>fLsc484=IG%!tH0CsWiPK>i5wCy+mb`~~DLkiUZ54e~dTdqDmUaxchzAoqhj z0P-NnLm&@>JOc74$YUUngZu;J36Ot+JP9)5I3goKI*54I{0Z^ieG)~z2jsmV?*n;1 z$Ok|^2=ebB9|HL>5ziV)QS=wnDC(CWzXJI+5zp-QC;m^TQ`FBueh%^rkY9rQiil@T ztKf0YOo}=e_-@(Yk(g8T~P*C4+E`7OxrKz`P}zk=Ki@;8usK>iMLFUWl$_k%nD@*v1VAP<8)0`e%xV<3-%`~&0(kbiQ4fMV1oAM*BOs50JO=VO$Ui`y0Qo1#lOQ9mB{CAE17sA) zXpk`=V?oA&j0c%O#4|8ElWdhdWP_aC-`GfXoCr1!NY;Y>+u1b3r;m=7F3F zG9TnLkOd&8gDeDD1hN?943INH&H`Bik^@-^vJ7N7$O zLEZrJMv#94c@xN+LEZxLR*<)WydC5nAnzpN8Ca{qc>iIFDuNi0n?ZVsc;xp;<25NA-<2H(V9uZoN{o)I5r>N6G7J@7SSqyRp$eAE#fh+;Z zfh+}C2C^Jv1;|Q}vq8=QITz$Skn=$<0J#w4B9MzgE&;g|SfjkcK50EE7{t5CV$cUE{841z>G74lg$QY2ZAmc#BgG>N924o`0 zu^^K`CW9OYay-ZskQ0b__CNw6f8wwFD!N~;jKI@GX^=y#m zfZRsJGdQR~;stM_s0%?Z0=XFE5|B$lE(5t7WEIG2kToD{LDmuR%r&+ebKN`8yD*u7 z?VaQ+Z~h4KXOO!}lEG?Bs~Yv>Ymno2ueA=tnq zCyZf&&Qb{GF-cpd5DaFL2FsZsn2UhUrEtjFjRe7fBnXxyK`3xZi% z5bV=}V5k-Zi?tw_t_8t{EeOVJL9l8If_YmI?A(H2@D>Eiw;-6n1;G|B2u5*1u#O9Y znH1!h#wg`-<6+wWmg+U|o$w!PXjyg5@=c8nPx>L9oRN zf>Blwth0h(rWFKxtsod~1;K(V2&P;?u;~hdaaRzmyn?<)=4POeQ8;7`(t==_7W6%Z zexMMH){+wzcAyy)4p~#XAlTdm!T2r+R(L@$#|wg8UJwlQf?%l^1e3iW*zN_vh%X4% zd_gel3xa)L5Dfi-VDT3O)4w2`0SLljfFPU-2*UAzAe<8j!hwMxoE!*(g&gSd-6Ki6 zFqI2}&0G+S=Yn9A2l@+zL)JPk2xfXgu-6NM;a(6d_<~@{7X+KWAQ<-r!OAZPhJ2uF zC>*jDeL*no3xbVb5RCnTVD%RS^S>aR0|>%_fFPU<2*MG8Ae?#tbx}BEk3R(A97GTf zL^ih1i>^W2sRR+J_?7du|yE8CW2r-5d=Gm zAQ)5x!LlL;=JcF9;@lL9pcuf>B=(towps<`)Ee zzaSX?1>poh5RL)_;Y>gf4hIC`lt2)U3k2cZKoAZP1mPq>5RMcC;cP(=4jBaDv_TM# z9R%V0K@bii1mQ$N5RN7U;fz8M4l4xV)It!BF9hKnLl6!$1mR>u5RNzm;jBXt4m||n z^g|GiK?LDEL=es+fX<K``+Pf~{W=jQ)aP{TGB|06{np5QKvPK{z20grfpMI5QB0 z!vjG$MG%DJ1VK1g5QGB;K{#m;gd+z*IC~I;LkK}QjSz%m2|+lY5QKvYK{&Axgrf^V zIKvQx!wf+<)ewZ^4M8~P5QGB{K{)vkgd-3^I13SkLlHqZ9T9|M5QA3-<=5`+UGK{y!_gd-wBI4cr_LnA>rJraatBtbY& z5`=>#K{#O&go8z(P6~(Y38Nq!H44I+qaYkU3c@L*ARI>u!nvd%98e0vNu?khSqj40 zr63$)3c_ioARKE7!uh5k9CQl8iKieOeG0-Es307M3c{(VAUOH}J@`HBkl^tn2(CYZ z-~%KG&On0T6(k7mL4x2XBnS>eg5WtM2rfi|;7cS3PDO&?T_gx@MuOmPBnXa2g5ZH9 z2(Czi;FBZ>&Pjscr6dUMN`m0GBnS>ng5b#{2rf;6;M*h!PELa0?IZ|pPlDk8BnXaB zg5VJ)2(D3r;3Fjn&QgNlH6;k{Q-a_}B?t~xg5X&t2rgEF;A zB?yjLg5aSg2(DU!;IkzN&Rc@u#U%*tT!P@&B?t~)g5c>T2rgfO;QJ*APGExI4JHU~ zVS?ZvCJ2sVg5WVG2(Dv-;6o+|&SZk%RVE1TWrE;mCI}8^g5Y^32rg)X;EN^*PHBSR zohArwYJ%XeCJ0VfK+mOc$a-H1f*Y0~_+trzW0oLzXbFO=mLT|S34-&MAb4>Jf;*Rk z$T1i`CM5ZwC&!Ou?+9R38s^G^_500qGpP!OB~1;H&D=!x&3eeh2f1V?2- zaB2nGL*bD1ZWRPKS3&T16$HmuLGXYT1Xox=@QD=!=U74Tk`)AZSwZld6$A%bLGYv% z1eaPt@U0aDCtE@AwiN`oTS4$|0$M}ikaepB`e_Fc{3`{)(NYjRE(O8$QV@JF1;Mcw z=pcnd*27m2Tzv(>=T{J%e+9vF5@;cXL)L{-5PT^G!KqRZ+;4%tLE(_~!xaRFTtV>6 z6$EcbpjS{hWZfPG!T(VZ93ch4BT^7tBL%@nQV^Ua1;J}l5ZosP!F>|ws}zzwQXx20 zN*X*X1;P0W=s6S)SuZR>aK{n^zbrv;&=LesEkSVE5(M8ZL2%*{1aB@uaO)BT|1Lpr z^b!P*FF|nq5(FPGLGZc*`W1yk*8NTp{O|<9Ax{uI^8~>~PY`_d1i@)f5WM#U!HrK4 z{P_gIu}=^@`~<<(PY`_m1i|@F5WD~d!5vT#`~n5RK~NAp1qH!nP!PNXfjTH0vhIR{ z;5R4;4upc>Nhk;|g@WK)C1W!{z@RkGmIfX;kZB7vU=LEr#P7plm1i`gV5Pa+e!P!m_yzT_S{Z0`4@C3mj zPY^uw1i?j55PbCn!D&wry!QmbjZYB#`2@kSPY^u(1i{r$5Pbdw!TC=RyZ{Bk9Z(Sb z0tLZAP!K!?1;J%d5PSy(!HG~1ya@%ttxyo0GJ$4LIApyu1;I^I5d1X-!EsX%JU9ix zl~WLWIt9VGQxLp71;O1@5d1y`!2whdJV6D)B~%c6Lj}P}R1myH1;K4p5d234!I4xD zJW2(@wNwy%Oa;N&R1myQ1;K?A=p7UeSzk^;aOxBU?@mE*^ArSsPeE|}6a)uipyMeV zvYy0(;8H9IzQuyzWGo2Y#)9B>EC~L`g5ZcO2p-9T;F>H5KFWgNtSks#%Yxv(EC_zg zg5c0B2%gP?;NmO@zRrT+^ehP8&w}6vEeQV5g5Ve}2p-ac;3_Q$KGTBWJS_-b)Pmqn zEeL+qg5Y2+2%gr0;BqYpzSn}_ge?f(*n;4eEeQVEg5a+XbS8yE)^S}BJlF-nm0b{g z+6BS6T@bw71;J+?Xd8t?)_GnKyyykNon8?9>IK1(9Oyk14q4B6pj*g!e#pAe3xex2 z(9IMMSs!RYaE2BHuV_K=iUvB3!XfJ(EeL+ng5WSM2%gh|;6g13zSM%?R4oYJ)q>z= zEeQVBg5Y>92p-si;DQabj=~}9f(`U7^0*$dzSx4`lr0F}*@EDvEeQVFg5a+Ww3Naj z>$oilj@v+86b@MrZb5M676hMeL2&LC1TSwvaQ7AjzwZzY9+|YSx3rf$yzM;%m7^~` zdSnV;P~df|*kig&ee^B3?n1QyC-5U9yKFGATq;%bmBW2|OT9nLa-mu*^%ERN zSHSld`lyIm*a=3*6)QVDH_r=>OvrcbFZOnqz5b&&96d6L?yfKOuaTI+y+_8C_8PCN ziVGIZvqsX54I>7ROz7HQ=-=m6=o5};(KsKvS;lu2t1JlR@C#BoKhj?7FeyOfBj1CV z!6T!(1_r>=Y}y2uds2$oOn+&GnC%p`)m#O7WP)w{w(_Y)E%a3= z=GY)+Re2v_v(pycWvNw)*-d}Hz+6ofFFVK9YGA??Z^bJQBEjlu` zLjBZBUnrYh_9}zD)qM5vfVXII=b~bNXJ4s%u-EIP`}r3irLH(|IOpU!y8q)_tJLlT zB*2kQC&3n`ysOIP!r{(7ue!g~P32EUc^j9?<+KDYYfAl98jD_8IL!d3Fh0)Bv$tfU zbu8Rex<$J;sY&C(2#KmKGs5hFz*6;OX+*5tY`0t}o|HX7i!J3n^GkjS#Fuw&v6A0g zD)r{O)B0ixSgBm91*fW{l>V3|O;Onur_)tZz$u||r|8D1V$9LAx0O?`aHlLN_V;+@ ze7DzAz^F@YsueRKFEcIJyU(So=j<()3f*0W3XS7ZQkNeOIo(XEx%1qVptX^4JXQ4O z=2mlt1-hjI1)k$7aFMHy!I}-VeUqF$P+i%7 zcgyz8+`2>A&RUf#V6@nO#g7>cluLc3s%KZ?ifw#kDYlGMu7J@QE~EKDT{YWj*X3Bw zfZ+$+CN2!J)g5|viB8NNFwQGUT|K8R1y<5n&Vb>0F2lLS{sV>HVt4xF;3d?}6)?hg z5W;0@UZIljr(MATFP+tim}ilE0kfm7R7(c?UGeK`aV{9wC=*n2tD3@{Gz)rqONAPf z*!~phY|P7F1?KCtU;;)a@^pyDzvw!@;VD_(HW4 zIHlB2uVnTXZ%*8i+4hAwm_x9PhtYw)BYkJbEcacQRdF~qj1D-2JtJEh`{NwO=fWb) z$ul2t)ib+mzt?p$_i0jh*$t+XCs4_!l}e@+X)}=c(>?*+ZBtc4W=erzxJm=v>xJigGevhdCcMmIaT?2 zL2OVy6jmBx_cLL9L=Mkf&hyP5SJQfGYTu?R31&)xn%a+-oTEyH0*c@f?K>Pi`}vu0 z4X01Q@+Q++PLle;j^>2C+@ON_g*%$((1K6>mj0_?H%e}%fX$cG$iQB`?hnC9c4$X3 zDm^bwWJ4-XP~04F3*)iQDgl@;-QvQ{^?UwQ*_;;eV3)Wtv2sQ;Dmk5((UL*C-=#)89v%miMoaMUIH=l(heysHZW5bJ%jySu%^&=jVpr#1Eq46j5~HqmDpo;i&3KtH?Cm6(j*hAtG86~ z=ozcd9?MRsguDUMU#Ss>$KKjo^5C&oaw*+oDoIi>5bPilMOvA7V5#hi6CQixoD#Yv z{@5$Un4@Ptu39+<9Zio|-Ni01u}AE>;bu~jEpStUCMF0Ld9rj%1#;b}S1zUR zHSE}xEJ~)i5+6tuQMz3hSm}~i@t8010gr@M*&SyXpOZ2{n=0<^Z~@FG`QSOJkh*Hw zA(4=mnHJ246jQw)PkmUiOcU}3On>7tUFbd*)O=dA4_1k}1I8ay%hz<;bEFvbj=|3W zCv#bUr9Z_f5?{pZ@Z_#cC_7h|4ZBL_pB)NeysFWkvX_Er@Dmf z=0UqJg6W(d;EO$n7m)?rjt`3hey1~|rIwNX`XE{KzvOq^t2dKj{nQku^l8)n$^hNi z1IGNI8^i?6@AG@l@;NP?4}BtaU%4=_ADrxPj1@Fvk+)AmZd0jpL@H_Bi1^X!W!;WZNuN zirB~$dOO$qdm7?3%kommOC;I6pGpgxlWisaMX$fhbD7NanUDmWn9gFtdODWz@R?#< z>Wy|tM5MMUVM^zQLVtI!M`L2DF0v#@h!j0;HJLEH{%$FFk}c>*rxlxg1^SJY-G`At z)tzWd*;rDr9~-G_!o~xKJM97a6}~QvB>JnK)Rn|xg&QNmsB9E*eMXkMG8zp z4dKFe^vDTe6%v_LWPO>Ag-Br}l@yW4NRbmzOE5}kJgwTk@#v9hVO5f{1Syfi$DpwN zhA}DlxUi5P6UjW;&&+c(>=BAxLIr}@NTK7l6c2gbp@7sT?tL4bJ~WTrYVDFiUvlqo zTyl4wu$A`gFiyEuu^NJu^xDR6FAjKgrb{P|@NzF6rm zC0eNL4@{UNV9@O{nA$Vgn|{cO#Gu&ExtL$^)V^YcetO~p+vjT}aydWyj4*qAFXcR6 z$I8ui%Y|!;?4%;k*HS+C1VZpNfzR4i8uo11E+gSZM zzsi^#-QE9kIZ&mN-oK{YBVR_AFuUu;p1 z^BV3Gu2V@uV}p)-TAC`2j}6oqlcGg!G$BQ_S4bEA|8iZRMx_f{y#`7LTkDd>S1((o zl7q%*xzOtJ)%Y0YI+Y~rNRo18f3c^j=Xatp<`u=a$5t*c3;J0qoKYpC5U!+0%&XYTWTTkOtq zI=P&ZPi&I>Y#X-8EPlb9Y9Besr*aOS7tT-J{q_{Ps-<%AR`?Wq{gqNVR~;ndM%hP4 zkDQmb6Rua%-4$=xWtr}>HFVb47}sG+o8(JkD@dI(Ik#@ryI0lRku<_q_R#BF5|6gj z3Hz0uw6*Wb7s-E+p1Y!Z`-a3UROx7G?_kv|l(gF@;eglGMy0N8Sx}Nk$+*j3kh@9) zY%2PHL!}MJztI=opMvd|eREr6Pg)^v z3PdlJ`^c5{R^BJHG*qIB-`XDG0|Axh1M$N}rTw~ZkNBa0O8mXP_MLU6{SDaO7X3RS zswUhZO=!!C7#%&E+9iE-eeAYwP4rGyu=LPAm>rDUI{J6CCV!HUO8-649PRqOk9Nea z_BMpYR884Uo(uGWW$V{wUqU2j&u*`5XN2n;qAlxnHZe`@Sd#@|VLj8w=P`VwGMx`h zVnR~A_VJ37xoE+h#YO$ctF!6XgkHT%I9y0*6us+YAA^n_S;@uXhYYn!xtr|EckSBM z%p+AG0<|q}Lab4FE~rm+_r~C%CF_zGR3EaFANNbM49-~j;Uh}6&3%k*r~9~c zS(B0lk8Vn3JM-0QzQJ8aT)gPaUe%9DU^IyP)Y;aqp_rca2w*7q63p1jvvNi@IP;{!jP3m43r-M!_^N~xzxhXMUbyG#2% zS&$(p{_MbfZ%zL*drSK&^xkA*?Y4Z7L8*Io5F0F@_NYQOTh9AvK~7bEUJx6U4-YDY z$5d!NjL!unn2%?!4ccLkAsX5z%MnB)`{b~c-Y4&9YM&f1%eqev^5=H>^(l2Wyibm? z6SZgBC&$XSXP+En+xR{?#=<#Ha67KCyC5YUE|xP7+>khOuq-Q@_132 z7f?0CHdAz?Kddp{B3q^hidcEb76_rFYjD#PV=RJY+BC(=L$K&C=#FZ+(Fd^@-`F<& z@+?0^F*bC!O(2R=+b)U^yE|Bll~ZEEBYTW{Ovp_8x)>V>849DsyqZ&jo^PL^nf7&Q zf(GI!QLkcA8`#&y*vHh_>^!#WjE+iYUsrDE5wgCVnf7%tHaXcQu|P_n&b}@v*}m@2 zw66=Q4S#u+!0t-vnfC{NA$Cu4VFR{1oD|bsTM;b1M=r>2!Hbr4f95vhIx#SAW|tCS zOna3q%XXwxPD`MAcXxyKz1pm05x+9SDp{LX@_uGdV|KsVRj9p9mNSgn>{9kQ{e^*n z-ow@t!HzH5x8P1ZypWY~BGs-owpv}^y6)3OR-@;p9=abXzh*lR?e?^W9qU6A%C^=U zql8rQ?`p)nSf>}9?PwNUYlb|8PG^yL!C!wh6P2qtuJe|_!rm(20 zDf`_{3wDXa)0nH`N$PPMx)^+9|mN!_+F5-K^%M!mkk(J|2*K6ymSwnyF35q@3k zBRoxD9yp$PobAfN8q(|(z&Ks4naNirMzdp z;@ZJy_K;V9Z>cn3)$e+9(1V9HMF$yJ?1DL<9=BGcK5o(7dAR(jfQw&pE;xE*dD>%^ zn@yK-AFo#7eQB?owN=CUJe3M;Bko?GWjots2 z=@qPAuYX^4fAR(;Qw5!o&3W9*I1`&(R3fFxJz;8Ppf|WBCA!DWR8LggxOpTK8xfZU zVrf0|wcz}N&vEF=@BRDA$uFVU$rEHyt(_gj21{OK-aF?wK~7bEUJx6UPniFabDW?= z(2hryztd@{lbC0(rALp>4jt*QjoBrsl<7pr+bV zU!ZQew%Ci(s4eY%%hqcn&T6EbTl43jMtx^y(q+PnMAW|27oTg?m#yz&FF2#NVbdl! zD{WG3sV_3O+_u;Y%QWlKUs$eDUA9>se=(WHN{ttjYgCwRtR%dEd_lbzkZV*LzsMq% znf4*cFB+eZS9@!`_Z;ISTcWrlZ7egYO?sgi`b~e2H^xTl%&6b^3%fLenyN6{2#VK7 z{TaTg8|(wrA!3b2X6w(8y_%QQ&h!_7Yt)&ooz4rt{`1s1d;QC~;;%}^YjX^;S?cpy ztM;wfTc~)AZYvgMSi!+p*M#mGj+($%)pT~ZcYy4zjn&R1L-*#K z8y5Z1aY^@K`tVM%E8pZOS&^aRB2}oiuAs}d_BGnnETaW{RZZs>>B~eFdJ(MA+On)@ z0dG~~vc875*9$VJvrq4@SI}L&NpI`coZMM72)?R4E6N_-K9^yfxep9kY64$X(@OdZ z!9c?ul|izcWvuF2(af00(kk#(HJwwTm(9DqN~0>wvJ(5OxjxSv4s1;JF?$x?N@YV* zl9kGu$s~)Cd9K6y(XrA*MK%eYPacG5IE zypvip0rJ>XE?6*6SIU@eO(p4{-LQ9vI(bx6I-P`|EfIa3Ec$RVD=w!w2?3V`jYK{a z<`fE4@=~^@uu7)l`xQwV84rn&7%1e*Kp_n~p>_>~t{x3Ip-L&&xN&)K242g)5%=T@ znUTFC%gb6}{#;O>>WfC5P~+@m@0-O5HC{g10@>ipT5-0@Q6p{~t)bXZQ7O(D8>li& z&tT}PU2_(`qOmM57{!~G^94{Hxr-uudW!@3(62md|I8#>^!y`>S75S)p)g9!-ITev zQmx#ATZ^;a2obL!=6|pTlf2=cfF?y6CFo8{B70>cca~%jGm9%$oDIYbWKlxypoGR= z8;moLsWOYVYMc#ZOnUKc8{*0Lr1{wr9g@vY8pxsahe_jmn`FKrA>Q9ENmrr_Er@k1Ho8cKp;n(>xA6b$o%8 zxbjj%C_wX*JG!UY(43xKfnA?Q&)lJ&aearGgbPWOH-p#f_0ea>57KQdM~^I{^`9;= zi65e*7IB|$H*FOkn{~pr*0XLJUwY7uZ%NZKyUsRFy{ad#uJuAdgN)T<=9RHtY>->Z z6Xy*)TyU_TIOH0vB{p3)wJf&?$eQ-dC9ZAeWbbg|yUOEGF{N>#g4qgIWFN}#uhwaU7=*tndVTk%=orUZNv>{T<-m@qzppJyfo?X#ArGkAv8 zo0az9=g8tr(=m2PbjenkhpX+$RQgv4)Gz`kntAa9j#w^t%ApFSy!ADm8tU>AQ^`fO z$0)>&3X*JD+K_qnC-GGCJ^oW(w?Qd0e7Ahg(wgWqINT*l7yVs{n?>qN7!^hJ=jxP0 z$GU9YLy`DR+jWau+m4cCZR(+9U1qK<@f*nN7SAOdTCPbuw5-d`73TaV26_BYb7Qf; zpKfeUJ49+oqWH68-Qqc?devjAQ;zEDa&%SH%-D$?0dJ#;hV5~o_kuQmQG zRF_4%hw?_hEOx~S$7OXny9#Tj2c7Cw4{j(I_U$95?7jl~dqI)V=JI0^>>lV&Q z?MkZMLHuBEwb+7e?N~gcq9{S>Wg1prASm7Lo$v8KkJscdj0zop`7yg*lf+UD*i-ff zdgxzps9}l4O=!i1I|5;(pkHxvSEhkV7{OlGOO1s+gp22W;a~IGh^ekkFiIkRXhYa`Mb`-HXU(Rm+F--k~mUAo0V2 zwu2-KH>Y4GD}_u=>t5@3fkdT-8DaMLAhq?e24dxAyXC_6$?%N4uqNd_b6xP%%^kSE zQ0}gfjVtlHg|-9397^&zVRZct46`Z@r-so1hlGYiIxsB4oILXa)f#)1+(7SOqUTF^ zl^ilCNoHfk3X8>i!g+-#$f?TD3u0?DB=QPTP$Fo@|EPA%C{zk?tg`%)R&76BNioYU z6mNvHYA2QMjFe93i^!U%xX@*GYO$M1pI5DODW9J~wPCg@7H@>p6G2W@eqIopy(fYa zK~Kz5J%L*S^XROU-%#ry=HyY*bUF!vK#^t6>XawBlUZ>&%}EHjB=kwCpbT zRn=Js_tSTlQ(soKi;rYs76o&Y>f~AQLfbpo)01$0Ia$jr56Pk$HDBUuv?=myBxQmo z&9$2ybB}GAdBA^nIQXpT4A-PMSS|Kea0TN&IwCrHWV&NP)Jbf(m+yfut9Vt?lPzZ* zPprW1tjs9})N=dkor=swnFQLHvYoy_wPLV8nqI#W`}Uo#B+e#K)SbK|S0mpnB?F2-8vcTLpp+5jW@QMC_04U~*oT&)(i(5I^CbMo{tc={*< z{Y@GPW$VFOx zPTf{Z-MO$jmclc)@M`@x4$kG^?{l#f$oTxeRBOgpb1~ zb5=?`KgdQeU{<=y#er)4K`o_b``Sx_2Ev+!rK<8gJE=;8Rca-l0om0nVfUsQL~XV2 z>m}6~k5st zR8=n9N4sIJE2}1*-LP(&uu@g5+Fz*Ttus&F&)-GQ{gr&Fzc>CwoHAaVpBr6g4cmkpFEmEvByWiyzf)nXsLP*;P_<@>Wy^=GsWmuW%XVs~W#pZK;=c&`+mopaX4evbkK(#K^~X8V>OC2? zvnRP17H(d(WpyUuQ^yZDDA_ZOA6svD?xi;tP7{$WS@LY-M^}?Nerz?(jUQV>mhr=N zUrj|CxmV5&mDpf~_Mx(Ng&}Lz!sT??Ug$1T zlYz7@bsR|Rz*W_A`pzp-AKywr7gp$}?v%71A_j`%(ky+0TEl5#EtE-Zq+H4UVQsCp zM6Lc%m87nQs3f@$&ayS6|H^^CGeuIzu&qI6h-Y4Aw=%)g_$l$HH+o3gTO#w?;iE_V zXLaYvO%mNr%c8D>bZWHif6X-) zXQW2*MP2mp+dnvvFOYqw$0Kt`BNaM57Ko8cXBa4cv{F~{zP94sGDvS66zKwtSUoS$gj3xuCi+{Mu) zGYbb%pYu!=X;Gxoh!XvWhD*BkmrC>`Nq&>v^pydhMe3B&&7w9Z9JvH-PUNhbeqPsL zxlDt(@oF8zOSIJyo~puCk(-5rC)tFv$;dg9^s-|$h*q7-T?ujNK-oKhRu{Uuyh??R z4Z8}x=~jzKC8YBND}A8zWY((s^O2`m8mu&~b;rOKkt!Eus;XRxpIE;{_Mzo2+IrmC zpKPC>s^|)*BD~2AyL_>SE~}!Sx(a;@Bzxu7Z!mc#)~Q1YbRIIB!lA}nUt@$vc&Z97 zKw{sa{$>=Oa0n8Ns~FdKrPdPEcsuJ8?V)|f<;GioUN+%Ql#^n zgFU@;-E+gky2k8HX058X{aY=Su^r(_k$p_pQMKZ#Dm{mN1{$u=u~$d6tT?L5&OTVI zHqkiy{F6LkU4~qhXP#tB;xp8aD`A65Tl^mKfuS9Qdo;%NglX>9;q>i(iO4QX7ok<$ zK2zz~Tu@diWToAlTg#q*6IetV^4-D1!ZUB_^!lT5Nw)){@lj>`B}R$GqNpe^~fcd7f#+l0vaO;-XsYb?URMBPN{yIJ#H!-C=`1Odug?F zSTre@y()k^uto#;SSq<*CE&F^{du}n(#yknEBLLJA8$Xk-a_Xz%TeJb8KgBu%_4yk z+RG%gtL)|)u&0d;aHUa=S%aS*M}f_Wn&8Rc@C-VI4K6Y_lpuQ|f;6*>OQ@6P(#C9h z%uv4)cpd+eIdwLtyYsS%7pskh@ysq>0B`5u9lQYEp?=={XJCGNnrCnD#KJyiN00b6 z2giI7$>A<@XLG4Muajxb)(og4oL_342Cp;nbo2QI4f};!#An49arVZ?m;UHSHMV9u zsjlo(H}>22vUU&9ON`z+>(EaujvjF~Nm4YIlH28YS@4r&6%qb2)@33;cxTHHs9P%e zX@1Ja1BX{t=}wcqgVd;UxkURGN8K*hSVp%k7uIh}w7fLKF$vVFFu4UMQVUk|#&(@_ ziep*PEMr;SR-{-~YIBfwIF^;#MUq=G6)h=~(_a_4#O}oPw0?)AjIiX~ZhJC}utX-( zq?8esSSq-9xaZnqVg`XYgev?jGL5=tevYCN^dZ-+ey=OtaMhSOciV+Y}>#YEQBHN>({ zmhMqsjGoxPL_D46~?+i#a2PrEUVS9u|K(l+m;kh_)LtXVa~HlrjqHc+*+!V zr#WAV#Nid}{eH&p?0iEV_awZ061wk^<*3HXCrQ~{ zHLmO`^y6Z<)TRV}wNeeW$+1%>RFLy|s)vTlyGniJY)X&f}s&q6-D{o zjf+Jtuki|$2p3zU0D1CN%LV(L?8X|Mt6hDRxvKhHGMwT<=)v?8>jXuTrrm8|LYsxH zs_wjfWzXxzx52CN7g(dNp{i#c8+?L5Ift*R@OAoAMhhw$ohL!uHkY+Q~fwfQ}w|x6)`lJU|C)Hh>&SHNBIw?$>s8W#Rw{KnW z9z^1Op9kWh)OBviI!|sDh5p0&p45{vVW#J!#7iZ@O;s1Pq(9YBTbR{rN&jKR`Z8__ z-8Mx-kdBtSs_+!)D^#oWK4&JqIS+jzh2NxPwn_lsJ%v7mLSKWf^{Xh%sfo@nh{Ok# zhOAUY=Wt7L|0J%&A#d>1-w$C)RXN8367N^#GE9-6PvW>n@`E`ib0xpXEQok*S zs1d2tRQOOUoQDaC52UngR0V!YPocLGzqQ5x1rR>Ozn1)#i(-Ef%fF9)Uue0pi!Z;L zkZHs@wlgj7d^sZ2*#yT6@c!kVIRdF#_ zLG7}aC}F$gzjBeOI%k&>t1f}3s@k8*^rCA&xia;4Wg9uQrn0b775Qzv*(>*Z*fVr@ z<9=c^wdFP@@KjYVVfFTs8%n0SoD;v8KEXsW_eUqLy*XGooDVNa#2Hkk+G>r?M6RlO zzyB&YSL%lCCsUoZ`cGJ?iu}21udvEgN3GRGU4&&{>mUy;cs$w!^4SS2ikY?Om}6so zmc&%G%^x86Fkz;q)fymRqL{DemeG+0S^e>Lnzs*^Df_Q=(O$36mu*-&yT(`(YjS6C zJo7<5E;&+f=SE8bc@$ymmb7zoQr(@~3VdDIUe#icG*g=-#pxHwIsBIRT!fR-<}x~u zlv>hyOPEn5&T1_2ImIW?&`o@sMYT0Umq!01o>ls>~=a%4WwIdA1-8@VE5!9aPC zmI7Q-moMP`QZly1q$HuHVegQTmnA8f*KsGA6L-)>6iY~M|7}%z7fo2xw-@7jCgyg0 z)+iHHvVf)MN@n+z`U-u$mH4jBhk1JOky@0bO1se1Dil<+EHJQGrOtpeXp%cQ$vF{i_0zfZ zA{K6zTZr;R?y#AHa(stPQt8e}Y53n#tH|{>d{H2BvykHAnRA1w%Pr_H_0y|=e64?^ zw`>dibln2CP#~?;@3bJPbZ4Y={T3)Lp1H;yEvL~lnjO#f?Q60QB@btNVN^V8(5+wa z@4De0nnv50uA7s_$pmzcO;rk+DFx!{u!EjEG+uI!Dw&{)6H#Lr@7C>^r?4XYab-sa zd4&x27x5^UB)+}y3FASssdmiQX_iI2LDTgJP2sgLnOE2p887zrzA)a-nJ7=sl-)Z$aQp)Q(`YWk3?N5bd3A%Bl`%@A8+N6vq_t(Z5Snp7a=(L0MI2+&gkrwTGVN;b3 zXG(#%2A%aHUUH5qnV`MMdf{;J%sZ9TGb;xR1BFA$>*cX_q4P5+*=MU_aq;aM<1cqf z<>y7qCp02@y`SRanQyCkIJI0#F!ho0`I1OVRPxUVv&Ut(z3u<@M$651%O%Kc+a1Q| zkeloE%)6A{XV6AF?f1q0RE1~xZuvZkyN@fQaThfb=^>0JoBIKl$j6DFU+}` zyHmRm#d30^3g&xiA)4#|R`7SFlBTk4pvtAxbE-;8`Q5VnW!YKLZw%L`IGvuzDM4Y@ zD>;l0ezjbVo_VkP`!lsdhbu{Kv*Q$rfpRve@iM(o-q%-*+nH&EAA?!S$*K{jI7Q-v z<#_r1PAEH9mknDeL&g3^hViO?&x{Q&aJAdZ>2#?#*}RfkZDr?VExS{srtAr2=jyVd zjH$A_JUlZ_4a%9=7sJYwB)wf9gA7Xk*+Fc|D0J4xAg3xnFNh7wC$u86J_aS258Zy` z&el_EK9No09h3je#taIks1z}+LJw1keaPEkq^c&&lmhV{bbj7!HdS(tDw)vo$j_U@ z!7~$CYTgiCJv_*C9M%C;hDc-Sct%^0xzkh?0(=9=xz<4K&X zx|}=#lV7_`7DU$Bw5Hk>Fd=Wi^jeqc9GV<-%O@SZr##Kub;QjSu=$nxeV$1RitJh< zJ9aydf(%^Vf1H^e#0K-guG}({op}`GROROdu|fHS(G;0SK?&yLnW<_T*mXGh?)PvV zE*w%a*mc-15}yf?bvRPiuESC`LHdMsIN;%#@2EAve)2tSn{3yBFb6lFU_PuGKcljr zZl+BzM+c7ze!6P@EVod+{m!N(sdQ(gbbHP@j>-BaF{U zdCz>tT>}?H^j33WO~@N4;ZCK5Ido-hADo)#^gGcUX;%g}lTyk&HzgQMkpXE}HXe{} zZpCMTn-cH|l_JWDe0s!(sw!uff6H~VV5cH3@5YVa+;G6a7k!Vf zbBFId-;x#luq8Fl?x-U9m|4Me@#3&Z&L*bf1S*LQKg3XC(5$O>(y0S|Fhwq8j%dZ1 zzsRM^(KiI7T!J1VT`T21b6@bg#R5>%Ltc?3$3ATP>8kcwZlU;?bbhyzN_R#|Cx{>U z-BMgU^Oaz5+7`^I&>NCn`_YKx$49$ZxS3R2=D8`s$cprYvsk#f6(8DSM#Lb+Bs49u zSh%H_pJ&eW+ZS9czruM_iC!2d*OnY;9*-uzk7{n9IN;H@1?bx~_QrI&JXPLb%38)h zYP4Ei>wAK4;A>CxE65oc($)u;A7so;SNV3`?Dcp1H7ey^>wC%VbzW3&mT_m~<8d3B z7BQ!#QW9^_t=UrQ_L|ipzSh>94pFO;YS&J$>I-IH&TgKqdPBT<6+%L~2PhCq3A=j_ zy}myT(r#=?pE*Y=CGG|%0rQ?N>G@amc)V66)m4#qq_XySoUQD4);FNQIG@;C0Cv6E zjN5tXrESt1`H6Lv`g@9TH_ME|)4GEXFJ{c0OQ@Mu=$WSmzm z6zC>1a_=RN|5DsxulZ(C-(A(3>7&AF(Y?OC9y|5% zVETVb^r&!3^uEX}U`IOg-RUX$6QjLt!RDy>exx-)&DprLs&TupgcQhIxV>$twa(UG zXY9HLp_HgsL)5+W!c2FYg{`#*$S5p}rNq4k;`Y(?iDYDrpEESy!L-a=+3E-p!Ia3m zA#$?YKuhvo(Ym}=Dkbdo^hQIucqmUlS9Io@8o3lJWWW|lxq+1-K)i3db^;_n%~r# z{7Nzw+A}}$%}T~@JJow%G)wt2JK=89y{IIX>h9c@(8CsePiX^xQcXXbz;90Rr3KRZ z^hV=zib){w18SeFZXymD^wKvUa6PYk6LB=r75ALgxY76UnlhDJM=t@E2I#|A6}q=9 z`GX3~p2R+bIz*bo(Ya(^YLHwSc~Z*ALmrD(X0JH;8E9$4ZPiy^`)!SKQLQ|`UMr)e zrG57GqDYVBqS=#Mwq$c@-}X|mLf@gw)Q5WL`R&p?RI6fdtw+VwWu;ALCiR)l9BGkf zzNyTQbIF~Q{2cMB!CD#jc= z^QfKD=3A<?g0HY&u9; zMg2r~62_xAmu6s?1g;=H_8HX8P@5p@NJ`7{RBRW^9sb|4|>IY`~6463@x#5;-_?!%TLv`tg@f( zoZeS14DeMZ8S1IEkO;R(EqJbIXxP=PCFG`RSxOhQ^IDL#Q}o7JcYerB)v+Acka&$L ztkw*2*r|HXqy*oYIYXD!TEHwL#XD!C=$-JaOF*q3?|_%8Vc~(Sto1j`bPpU*JQr`V z&#ha$YN75nMt>q!aYcFN>zRAh1NIr5ujaWi9Ag$GWPUu zPY=DJ?Hw$YZ>AFg`W!gx*bb#8M5Iev_})@dS}pTT4Ji}lQL5Zz1;t&{?GW>_rusG) z%AiEE2WV~9V=V(?4Lzb+jwDLVE&LN{@9S=d4sn%um zoN(Cvqa6CKuD@>7W#TRz#x)oKC7rN#+JmMO1OR1TfU2FPat|r%%XZ@8`Eg z?VhMj>TXH&xM)grdx~l$ZtHk%@Dx>R8zQqvEUIT7P+JGzm80g?Az>8Lw`lg#Gg4^7 z_m`Mjn~M5e+|}VKy1}r}+98vck%sM>8tZFa>2fTP>hNuJGek>W9TTzEPe6SUA&wI8 zDz2cF2^15tH7zo`U@X2!9lM;D;djdVjfM}k`JUdwKHAfsTmQEyv7kHR)~`KGo1tRY zdSa=!>1nHb5=$Cp7u6VMNkwu_#j5wVW!&u6V=7zTwJnI2yz$*mdnbB8-gmg>2B@xt z?vA%5Ap>!gB6kH(73&B4?UhBl$om-m965|@u%m1FVJ5aXRSYHV4Xt#0Y85gFb~HK& zQh6p1iJRDg%}!09^}_a`)f?$~u07+W)+0#G@uEaf zQeNARv7*?^IH|Q&$}Vp57`fh2dn;okMRfZB2^kY!G-yC{M@Xgh9l_XOTga}qtR}S{ z1Zv705kg7&ly;1dNCh%Nwl_NsBOH^*$c>KrTNxvf%0&E~?GoP+RB3;6d?Eh48Ynj_KiR%caw7Yg!TXqSx-bYN7 zFRWHcv)vK1nfViPm5y$BcN_9Zn=7xJJYwVs{5!INoks9TVWrJt3{27n{fJ)J=;W5F zl?HeB1n+wF_`d~gjA&K9hPQz!awuW13NsaPIwg;0Ehw_#-=PEbke84^baK@nd2u?qB>fm^ z$4s|o+`M2pDb=OBi6@p7t!g*%#LUSXtxLP?rzprfyj;YI93OY2DI=6xYSu3mB-b3R zL$&$r^~G|fx*2yn?JSnPer=miRqf)`9?L}-s@g7zY=V>dM_EX7S7fd>S>G$J=q;5? z)!lr>bH=tVOs`b2Q!TwHTT2xKY3H(xRVKG`*+!XU8QZuZy+VhXYT>HrxbkGs`%AqU+gqbg6+2Z^#y(XHq^&jjRFz2X(=|~Y)Yi7* zC^FdZSA?#hYPnD)YHNJ)HoEU9qoTFPovIOBlzvxan=`g{-fPezU!y0HF(gngv}YzB3*zNJW#aa z0?6KQp_fl{E`XYeyItPLNwm@>y{Dbol9J#Uqw1tJ_*xq6X{Rmqiu*o+DN?Gw-Ocsx zEtPs(@(YTJe?{x!TbY!wMO91uhLCpZ|0%6Ez#oNiIaQ;s=SI=x&A7?4APKv%l$~jQDt3 zzjdnt!3z{Uut4W4rCxfqd2gZG zwLi}nd$n`Kw6rO!C8TQ3P0^g~Z%8fo;<_D?ES_q@KIEx*_NQ)myQHOu#+p*91{Gpi z+utd*TpcrYic&bsry6l}FWs7uFZCpUth7JU%$HLoigI#o!*3u}iDWz)A*2K$gda(;pcz&^qV5=k3jq!+dX=Zl$zy~S`+`eZ}jLrDD9c=DoLmHrG58cf|XUinc%;q zK2r+B<+Y!{ScR=z&Sq1cH%FCBkoiQ^7{(}hwv18rVUHSDpwr$+>YGUL-qCsAA z@KWm~x1fm;K_VtijYfuLP6KVX}4OE@n>dWZM@^!CX z2=o{V;JzgXzlyBQ$9L>en^prwR?A-P+aKC00%}tttfE_c`Glk9+k-WQsCB7Gv|ui* zPl>UuGB_|`zrNyM!sEX&-Mmn>d?RB*rPQuOysS#IB;P~MFAa3N`ou*;XkyHvFh_nG6$(?hnR6}WfID%S~1`a$~rBQVT1L+vmG0B&R+RrA^Mlbm) zX1EG!znx{Px(oEF(*xeB19XjVsdssInsX3yCar3JGmg&1*eD%d5ZPFWpIKUQ8L2sp z)X=9QEr0T6BHFqY?P=W#eFI~ots^Ny?}aR_ThX1|x2kD zyPEF@he_l8;1rgbklGJU?odOjPTLO|rgCaOMCNf=ORauzCvj>&q|IR44=dZz4-ONh zlT7o$DV(7noZO*?RGp`;?Mi(?gjXM$+59E<;G-7)qC^E1r!(u#X4DkUV13uBuuPUR zx0b#RzyDyd;_+l?ZVp74DCz6!K2lg(k~jw<`NUmBm@irSQ`fKGRafrB z@lFMm#C69zY6|t7INm8ovXt{TW)X9G(yt&&Dml-pHzsUdp`h9q+aD0fk}T=Mjon^< zwOFM)x9V&U^c}?kW52YLcv)SEgE~X06Q7U*(UK*fzj^1bEp??%)GDP%KGl=__A0veqFk+PF;=mcXzVbuh}Vvsx=EX)3=Wc<+{2_{B7p4ieK2O zwBKgGzED4jzs;N}TfSwmw_4ob6}ned$p^7oETz8G z$rFgSL&^2T_^7dz{%(^$FB9Yl=YxK?DYZakba`fCV7{_;&{>20aV0v*w-eDlN2FF+ z+oohu(g)vV3W^3+P#O33RcAi3P2n+L;)8X7Hgi?FpWiDBAG_X$@i{5O@_6Pas!h|` zTPmqN_LXl=R&6=ODH3mo^U8NZ*}1xGD5uD8^$^DATpphJp*k}^Iq55$)DiY{pVE}n z(}T?aA9e2@W?7Qlg{{ycBqXEP*8ADj@0sb+&g`zD+~^`6u71xSi7kYf~=n6V?oz3U*oD6;63;zP=*QC4^%NlipPx+@l9y=ohT)BB+b0sBpyu!67v+#u0&WpVe-m&#eKs#&5y=mHW2+*u?Fz_vvD z^f=+mgFDBg!NF{ugn_BnU8DpuHK!G9R7hsYZuq$Ho0Fr1F$5C{@iyh-BKO z^3b+aH%Y^T##D*Y5BcI|f5t>Wmf8H7|9B9i*`G0>Ey0cFXLbh7{>;$;{%7-N{OQ1c zvp;iiHupDQoPFds>z|1L|Fh}ee>@1#tbYcyCAcxW0L}V$G=Trv^v|CT>^JM*!P(s3 zbWLA8+kkG?KNA7|XVbs`co3jj{|snLaO35fr;cX*I~u_MZ2IR<2lkuw@8FuaAIv)O zwQx@~F2cS0^eo&HoX!2?b4_!YtW>^rza|4Ryt6S~XJAG#uqcuN+9b(5Q(KE9#=JJ8 zBFEfid5WXQQ#Z82KsJm;NrW z^$fj(s+BocCkD^v&NI%YrQ~zK%R8u%2x;}`RIv2{8tRyWQUesI`45%V`yea#4&M{4 z4||0|vhFA~A8D=6!QOJbx*v`AGcqLY(mq&>?@W5c9x?0F%vqXvR=OnrSIxl&Rq08- z3?1+RX{JHM&zLU4S6kiLR6T(&`7p5c9N)%cjY<0=jD7Wd3Zu(j@M&P}-Q@k|yCs>5 zPCfX}xfrTHh-^5sr?+eU{;M7|a~RTGY{&0HB z4d*u()7yLJ8E%an0HZHvU<-5k?uEGI&jX7eaA!57dwb(@_FF-zX_LpAtBcbQ16v<) zt;7uviCT;00rhZ?o&F-@;{)?(u$_&B<#BN^pe=bi`qCdApHkFMHJ^K;rcWKqt!x0x z&)yN(x$c9BNIZ#9=tDid0H3GzTh18>|A{=O38Tu zX1~r)WzO^P%y!aSd~SPY9!49!4@|!3dNvMl>5E0IaV{5Re;!zT0b%^=VG#zuW*#M4 z9|!j6qM*}Y{ZPpwe9bjT;H$vU*FzH()#=|Ysrr@kIp;3dFj^>@X)9nPN|1rSKa~?; z{2LMc&UkcAd{caScGMO3Z3T3uaNooZh~RY}ywtC{?%Oy4#=Y(Xc$2V;nD_j;pUMu1 z@Lo2b#oa^Oolo0F{5OG_k1A%m9)fKpFWVTj_yDHAK{Nd*OrWg*V=L!P%mDk(osEk= zMS+7u3JqUBrw1(#7O~g47X10AfwfoP7#FAcG|Pd(B0SC&xU}%#nJudg-aM#&4;)Hd zJ}!%V&Y-A{>&m!BkaaD9Q+AJ!P{!RDb>Te2+tPT?NRBJwCKt{lep!8==hwe8^sX7Q zb9vP$%BOg|w)~ud#u>VzT9*W&FLWdaOLaU-3j0kIdF)dg=xbGgb9JeskSW%t!ZMVV z9EA+nWmVL=^0fpe#l1ZHBVFqnJ*!3aZL+Pz=MrztpyOgPp`9ClNb!m3x>evh>-ir4 zJC$o5_WDD*w>k50i3CZWw#pO{a6kPRbd<0%p>i)hx90d%uo6B7th`V&8d`ZFJUJ>Z z%2ZoSoa@KjLG-6tSV+; zGJYP|{h-0_#Z9j*_t(y&`zA2M<`$$}cVGL{kVso8ND z3#h1V_G@4!)68=xR9lz|C(sLiqmyDdU+9{AgnF&brzg<+#+RYfUN!*cErXnVlQ?Wk z_$Sa7hcyG!8C}@a7G>11yRVv*b1a?`ZIJHV4X;_P-+jt!sjPlfqD+oX<(gKX5Eif;9DZ$_k9c7(=V%EkToLMe4S-#~{8X}floKSu3%7WszC-~;;>n3UhfJRs9aGELdB41 z4fU^(Jhig=W$=E>{ox=#c10qww|0%d#aaN*yFq#D3~x*08EhxsI^vhr4?s_>_m4*O zqWE1iqWT;syZ`{-Tk@-@F6jXNzV85m1pG_#tKb_l@T?ntPxvUSebD>cULP~5BnJ8n zC&BAu`1VQ-nrocp^;{=78xbdP6wRJJZ1_EVudMzb@Gwi0duD*bJ(P9 z0D#b2@~fCdvsnow;9rto1>ev?Vpf9T>6Fz!*NV8&r-QHVkvY1DFr*U(bxBA|D30rF za8c2(fHhpZJvb@GZ_c=`v4BDJn-+wqAyK1R*H~CU_m%}AbPe?;>lzDNRQ)W>UVAh- zj|cbLwal?d3JCmOOkb7ltLXLr{Cesc-{=%)m(RxJ4`%FFll4EWI zrXfJ`_=}=YR&Rxwa*K|s)3Y@EY?sA5^Pylsf?d@h>P)&v#a;>+s9aGELdB3NiMU!6XK^wbA6o)& zuP7LhVplbYKAU?*0RxpQszIn2LM6STkfc{W4?9X4;fkf zvtQy?;C?+K+1w%;{V!3T3r| zx^DENtZQyXt|LM#*E!}kU{2>+Q7Ef5rC zpdzn&R?eu%9IvSu64`Tnq*hkH7y4j}LL0gR-fN9s6bwqH8f4ftM=uH(s9aGELS?#S z3dvI|s~>?r+wf6mLs-c+6Ci+}?eMd3lgPv~BmYL%A6!IE-vA1G;b);>$ith`;rEnM zS^ekGPpkJR>uNiGA0cxyaIv9Ka+6cz+`|Fx4&nwj<1#ZD=bA=YeE_`alXYLwHL1zn z@{Qi)&0{){Fdp=q9)hN%E7z@?f(IPGa|*EZMADaB3CH*46aw(IFP#D`Uo#YU3-i)b z2>Gv;)jtA_?r>bwwx!OV4WNMkJ!lec6Wyp|695jBu0fMfGUQHM3HX=f*A`)tRHR^t9J_w();ZbXdGC6O)I=&oNnv3JQh z!l5?LL{a^mxBGZ>=JJGYKA+H$z{1@irsJadxoUEf+;17A5WVfE!|J;}N{45z(&L@v zc$g+_@fYr?VpdpUN<8KbSRwj#zWY2;I(+56&cqs-a8c9`NxZ^}daS;@O;%TTr*~gwvYgMC zH6ef!ZZ$zQXqERg*dgpUVFLXpo1lcgp>sZ?5`LfZowE8%eyn@5xWuQW;mb_w4o~w4CZwL$E@J15w(`m$Np~_jG2JZ3QUE1{{+h%q zZ1daX8R)pw*cFO1bJ<=t1?1_}F5*&#p2sd~GSkpN=c;aLvD;)a(^#HfS^X=ms3-jR zFYoth(}+%pyZycvH_aO}%_yS6|3H7@nmgvr-Rk@Xy>5Lx8k^G;pOCbGh3t=jH`=Ku z(u2XhfjyOS9|IKVbPt+Dsq9$dl1RnN01lL{L6cAl?jur5;$=Yd6wB&sK+5&OS$RAe ze9|;xj+X@hINFk5g_%Sw6)y`U;9rto1>X=RiI)XKwiVOAUvRSDJEQ)*<>~EX6b}?qr6kM|Z z(?B5fCEX$tC;C(VPeTJ833VeIGX?WGJ$jZ~tBsEDJH@#PwrTR>p@Lwdsy_v)+N;0T zmqVMD(ebRB0-B;CnS9z%M<#4~^rE*Gb;}8Qc6>_5{LDa?7n}-4g#6ul9P=9H_4D$a zuF?*UOWGc=gbZsKfE0qiS##xLXlGycC0JSyv3+SEA@fYz^{`IqH!c6 z-TTQJ0F=E2Xt|QLpS19ueaFw*HktZKpi@?VUhDUX)A4|6O}T5+Om@nY$@6hDim2*k zZ>ROD(c3a~jn#=f^BJ&0^y|Rkt~7R_-+6O)oI&&J5g}K*+T~<0k6Bj#r8k|r&(|iD za6B+-NRiq2vpT*VzDti0MWp=895X!aoE=plWkA5Dy1#%OoOGPy+4#fnNTsaaixQAw zyNZ&Q{#k;$9eCK(NUaiB*t-dK;IvT!pi)+!04qfQgmyFQ&at@&#o~_Lg8&HncY|+V9?%6S3zs)LT_beSS^&@cM{Ray zc;t@i&k&x`GwhDS?-UrwcWL`x>yW%5h5ij0joKS}01@|GYwHqqc^${ZQJVNvj-C=Y zA+`ZVzV4vTkL_z>%!~kl4!7i2R(q~T<(dT&@L7oPSzDipYeqU{wX98@uGTplnPDx? z0ig*k3i@-}AwTBG&bk8gX_W>9A>RYnyeX@|6Z0q_+hYU)9qz>68+w7`nc830i{O)R zbedPtmvb7yf}_vjur&PcF6!{ATWFQl&%k&jFV0z1O72>t(#sS;5}Cs9GsqNRfyU+J z^R{)RG9|Ri>V}^BUD}+=g*Q|ilt@SeNq1kbRTERqd+v%sy%X2C4a{Aa0*aV_^h6vKtkQn_f_1wZ6F|O|0S8(Snpef z3lw`)wamU+!C|a|0bX}igYd_aM*C8GcnTP(Tu}`|#gH=D!&68i*$wFX)$%@trDkHE zk0$tL;ABIgjH|W(=bh1{f z>6Yx_+$+WdH;glvPRW;Tx5(A?jWuqNiyMR8kDn>JwmpSwS)4opoiBj=KUQ7-wxc< zS>cG3v#;_{HK6G2!@1t<)I`vmBnfU*%r5IKrWq3JP!qM2Il*PUMcmo+CN#?G9eQAG zP-V{*#;#WTIQz7#>ozY`{}T>)=CrNy&0f{%AbzkIF;Kh&iee0FZA>eid#K zYf@2-KmtD1dr_Yy%>=HaPf4O0!4Nrq8OGwObLK7M!8ZdBJX=MZP9#v{!NA>7pR>77 z{D`JeR=)^A_c~qA<&sm4eINk9|CanZy$=Ku@Gr@)fQpQdK!L(u__;+hNh}diL^Yp)VYcmN zdw0g6sn!OYn+5`oF6kCwDlu3dF5a1FXrOadw+J1h+c};Nzwc`-k?;5DuKzNrCTbLs zrEM=)W5j;-gBBQ%y9LIK`2OQX^;OBy3hfgm z?9LDj^m-ZFM6*c`DR+0i{KL!KW zg?WRM!;#fb9D4|W7p9ex(GOAJ^|5djn^?1i6& zf}xOPiU=s4QdxZ$ba@CF56W3n2LTdz3#o(9EIcMs8mWVT0u)2Q9h!xrA$3FQAfSr$ z&%kuQ)E}AU_4sr>wE;g=oXrF0Ce6L>T~CU&sjv*bc|e8VsU%?i&9eG*n95fNcM4jv zvIY|0!YeP|4E$~=l$>Q1X&SgYh#MG;(?AkwY8td_4_bDPF}&N5FfWcVzSK~!8=Yee zNICoH7&C0=7&W#bK<*eL6}mg;M~R>7za#_-_3nf#amcmmr-d1OIcz3u-*t34K}R_2 z{eo({_YTd>mR~2;0D}HD(EMt1UW~2AH>1@klw9q~Y7E>R#5I(jSdFGpR(}dD{!Vdr zWMAoF-hDIju25QeH*j|lcRKHyMp>QeZhP8D%(*At1}6vfzQLqNcgxP{9~YrEo_KhN z3sC2zBS!GMzz8-xr#*W^o?Taf0CjGMpT+Seu3Sx60Td|gg`b6jq1R->3MigZS^f85 z7VEVAb#gWsn&Al#2>}33w&Yh~BoRfW4g?bLFUhZhZwQj44g^EwxTamoO}9E2mxm>7 zrH1#Og0=m0U3PkbcLm<{lrcv1aA9izlu`CWR+jdrF+^lU&u+iMnK78=1s=%+tU zJMx#YO+-&rrxq9p545gho6s`Um@F_5Pn7wS62&m1bTDi{M+{vFstIZGtU;07K{+V$ znYRnCiQLR5|0eaU)#ric9>nEOfG!V#fNw+lgmP%A;XrOadw+J0W zvLsQVu{^!9dP-a{%eQklpsbOr7SdD~k>eSF0?ziJNmxq^QZ1|i94K9bCZS{qnJlaT zO{Dz8Am!>IodY^I`;RTqHv=~t3Z>No4cr~XHAG0F4Nar0{yP{w*QFDE;RQEa(>WMc zPvVXFaDxdAl09aEh`y7a8i^qfab;>B3kbvtmpsgZK7m98!9 z-2~g|1<5=v$D7LaCVa6(;i zLifv?j%Kqj11OMc51M2oCq6>O+yD-gC^w$6Vh^Mw<_0uRk?akm+@u>~$GuOM^gxp3 z7WryI1Ocw7YyqI=-Nv@#!_o)~G%m;AML|Z#afTrLz8`T!rXK~FmT#A5W~Q63Ke8Qzx03*5!1hO;B#_x*@pR^JU#^72`6*G$|nzpfGa4dAW(W_Vi~FYwjK zZ^Wlt$o17C4#BPtM|4|@Qcjaomo8}>9&FkMtQV%J{x)>l6?*W4p7QO{Mf>CPGr9~v zGLzQqoO4i6(BpY~i*Y6Ck{s95F00=Tj(R!FX-QYetUkL7!uIRW|o0woSrg+Wan}H9yq7zVB`@_JcD>@q2;6LdP zO{1(n0=&O%@OF!DejjM?cHnuX2F>~9ttB4|B{&-q$KaFgF8sbPxMlVEU^A4xZ_VlW zX5f{w_W>p6SJ}IPOWAvk8~BUSM513!qpW@s^m}CH?-3Irhi|Vg|W549$(kc6r z9FZh&AoP`_Q6x{a$4MbSW)lRUb|YyNYK9(@T1g3_D6tL^8BB4RZTZ=*BZbPtD$=!VmTVRgO9X1n6`-{4Cl``bI^a z0Td|gg`b6jAxaW;1{CRup9UwpLB)s${iC7%&?8F|Ab^+c@U!sJEKL9f3VY#ap)g&V zfFjadfswR+Ji1plZSC`PB>=$5mi#J=B%-L35CRGKm*iK$Hw59(G5o$S7$V0{!}wS` z9Z>-hd%4JI>bf1c*wje*5K(Dr3wt-g4y?xcFG*7am9qLE*wxC}=(K0tXTDi_Kw*fP77qy*m zttgb$KLxHS8$B-Wl|y%!sx)u#ao+uE6<(+y}U*?c}Mzk<^na)PiJ?z>}QRQtYo_+Z;Z+|oB0G{Dh!zHs*NMm!Ki zsfgp^c-WhqmF6p@YkJTpxIK2YKB)wC(`PwQ)j*<=KOkO$ z8K453WchUL`e4v-znS|Tpnwr7z?l+g?RNkNN>qT;pk!Ee((iyKQvRR5-zye!xleEC zu^}aEEKW+fMvqohN1~j6<$7nY#aQYWEFV4~$L%c2vKN8zCgXXz$WN1H+PB))`Va(i(HLK2+V&6iV4hDB!y9S@p6`>c#ifE40QgfJNjN*%%}EJ zU;WWlf9Tj!5HHbuGbrXFr>ePAx~>>gi!kqf#2W1aS46+%)86uFZ*hP0Y|-s`W|2v1 z%2*x4Gl>8|*My5hZp6R2_)Yzqn=Y}M|p=63BA1^@U5`KULK^H3-z`Q(~!aUM{ zlo;YZu;kIMB=NWkFeh zdCPK!PMfy|Jb&$?1qDSx$@3JJ#jt`BI8abm#s6!b9z}WNn)JmVdSGQ=tjH##F7ob0 z&3xA-L~F8(zO+-5nYZ|E=n=Y*L$y2_E3@-DRcf-j^6g-H-MpMq^RoEcOA%6Wh;^3q7{975?=tGjtaigvr* zvtU%v7CL&~8t44I?jLGmvKOt@U+aC1jtkFI?3};3SSjlI%kx*D=5Jr*VK7F#`13)7fc8D_+;qh;e)Hq*=P-?a}3LO%Hg?X%d7*}2-0jE72|`+8w30G zS5`xS07SZORNQ@&4#?VH;|Vl^0P5Cobf@PIjx;FaZbjR@YvAcMO` z0AHI7?i`N><`FL5X06*3q-I$>l5Yp3b*F&S;kkJtotOOrkfRY3=I97$4#1<8)iu}z zY1=V#i}=|TD)1GBJ-0ywdWHK>!;UPU znrXxU!jz9P3A?%(7L$Bts|5#$FE#j3zPgvX(9870bkR6VmqEf;>1kjf)FcY;ff%qr zY>)FFUe(N?`q8<7PJ8rhjjhogId0s`0Sn=Am)$d3gq3jZ0=9Ix%E=G@7> zr%au*@%d(8g`$msk{@tU$HEQV9mIV`O6$ghTI^WE?^LhOeM@-%t*{hm?e*eKDtpx4 z>mEe+`mD!e>M_O2d$L`5Pljt=tnWQ1(31!5sn`>`9%nx=%{oW{p${(5ZT#h@X8p1T z%)k7OcA4K{$o!63zpMe_%U$_(Nf$T;hiRg*_ zP!vFQ6Phk$vV*jMf!xx`u^E1I_&Ot6$vYQZw$_k!jVE#J~k~I+>(Ke=4oF61C=YPfyW9_F@)kk zIQ*VdE2~>F75UtHaZnsLo@Rgx3)yO5lT<58{xZ_n`+V079&paR0;+Z)a7Wb=Z@tWS<_Kdy3bAEvKOcMvsj(T7I?G zt*YBWD=WuMD7?_(RzTSHOHhYpuZinJ2yQj&fdGBE>2th3bB&^~{}&Y2wsbxy&I*26 zqt&5AD6O<@db^G`9sDy4mQP`EG!Te$iJ!hZqhg-T6xjbJa6n|Wn7BtEtgrj!J2wN$ z-tF{rV>7VIv5jt{gT!qQKwcRzP@MZZXBDAHCkp$eZ^J8Zm(ItpG-wwCAU% z>^)mZ^PWKq4iH}%w2H~CfN+)IX*QLfYU~jV(M2XfW zFX#zqC?McY(@q`0>jzw_dep2OO4|2fXg6(5T7q@8?@}0 ziAETYfUeH+Hgdt!5>cqn{4yL6*`dbv@h<%mp^yMAkdH^Sh;4l0hzS4`5V#3Vz0o0w zOSQJm!N^f>13VDjq8bqNHX$=*IcT1J6bv9g?zRwQ+)TAOb`XsiK$tf~gm7b@g$)sa z1VT6U_okRL>#PADh+fw~!Q?FM@jPil1Hl^_B$|&!k@FiiIFP*Rtjy(P*yIYnS7Fg( zr)Izcv0MHuji`BQPqV*n!2#m+nI$3K*xSr063s^`6>itcnbPBIk&PI@R0@#&2PqC z{6tz&JtND%xapyH6s(cWjP-fDC+?1ba97h-CX=TD+2{C_S&9MlZl;Q3*sb%YXoWCRvDdevJhm4lbQi#n^5QgJ4J9(Cp+00VP~L$ z0Da5X3Tu26ll_^30pw*@EyrS(rE`q{zU|9lQUYUOZ=f)%8VJx=sV+jpi;1ip-wY^g zt_oLSCp>s}s%{6Q4@!z8#QOVo5&p zE3RN4AgoW`C{By}_CYa!fUpJtwB@GPgt$vxBY>~bq#0@jCXBHxbvq!fyF(gH=E|%I zfJZB_tRUeFwTldmy5Isz{c+c--bWG2#SUu09K*4}GYmOkzVHTn{GT#nJ zJD!WWY^8x+YH6Mf{yUfWipFb4jNNHAam=8JcX+cL`TMJBcSB-c+fOo^7|8K8 zV-8Vzhji0qWS+@k!(~#gOll1XWVWY~;K)t`0s5u7<@}^iF4YdccsZHC0TFj)uvxdf zVILp>aqnz&Mu%_PojB_t1x(1y>I2RaKp=As(-6%PaR*z#Ku#{2&0sOS6!ipKZRXPX z^l`_%mB0aCoAt8(Jv-uu$sa+Zx4U-4OjFv2j>Mz-71>< zqcWm7;kD2?tzC71OS+V^c<~q;=TLoSPXPn_S5$*gF$^O);HQv8vX{grSh7cQgzJfh zb6&!CBK;+2D_;5rM9{?B8-Rqmp_Qxd3*q>>gdU zi1UKqH3IGRwl`Y+`mlb)70{N-f%y?;iP`{onSMBGWXUxG_&WVUGm3qSnOPD5KwBA{ z&SA+2V)3?l-p-nl2a6%dwB8@iHh-ZcXF+g>-#gr~IELtT1yvuhK&yWTMTd_KO1iB zXlOrd?z6?N6%dvt_sk0{Y>Ctcz-#n_8y=Q!JxjhFkT(27l623&Lh}o!@`Mgd5(FS_ zdBjGE*d7!NAg@sW+Bq&(1h)dh>OD%1*j>+q#WyD?WxqizkHXD>vPDl$(lWSxd?^?} zezI<$b>`%5`9^Q@<}p>LrYieAZ_}23`Q^(gc>W`0_4{R-=g_aMx&$TV&jyn-x-LI# ztuCSA^z^mXKR>1e4yNU?A=T|5{wn=AIX6?$tZv_oC{&QP4aGMD3f)^bE1mOzpf&(r zJ}wKhgaVI#*9hQCbQ9I;Bu_iJrMldtAn#d7dq{h7W~$Q<# zo4()e|5TK^q4(58T~p7|yBzx9?9JAy;sT>b*-}FWfP0zRK!HmQE4?fU_e@XA5((NBNf3zHY06^}u zqWXG0RA(*KR8)UcEGr&I(bsD&4Y9`{)48VsK~H=fMYl4U+;=6%a5M(c<6}6wRp2@`;42RNDa(XC|E@JhXkmyDkfANQwZNCTDM+@y!?C!6fv@dK1FeRrkdcMY zNnr#75?7>cSkm6*GJAeREFs!1wW_*)q*b=5S*TxkjM9 zLcbh8X|dutcddv(L5*z`jKHmcu+2Zw!M7%*a`3Ey0DbweVPV4ZxW*LRUb@xb>B{6z z-}D)*T51E@Yj?(U2+v-Jvo+Q2fJARQGE%S6M0m>xpn$;g;J77o=^6o?s=d>dtHGHW z({dCi0D!hakNcgNCdu8(ttkTSYcv|pU_z~cusWEKCYm#Tz8O%KhJABM&Amfy0K7~& zXLF9{o_CD^PQ@Kv#h|8f%dR$p0O}GYw=BUuTO;g`6#{#&;w`~#>^64bFM(LQrv7O0aUs1Qi7uU#}wIlgK>&6Aq@;&%=sLD#KofCfo`L%T1M6S*BQZwcfE_qG`hthLuchDQ$bHQPV!b z=xurOx*d^waB2kVt8}=$uCZAW;&>+rL-NI_no8vJj!Fi65tJv3ABHte5BkH<2=1zIv1$BHirhanqmfMn- zqrUa)n*m5?BB&-Lt>{hH$yVx{LBf^7-Lq`$VQvM4wPMnU!p^L22c%7|J=}=L-YJ3r z>PlnvRJK`e1%yrhiQZ+nYbt`j6+r-XseIGKVTVI)0K9cbH&uHF!&ABVer7U)0P6DLxqXzA$GmF<@D2A%qc+&P2M9o1r(+mYMAF_&Wd9`q3EJq+ z6to%u(T?d#(VekfI-I{I0D!hV?ZGQv0BRsWUmH<*-XlAk&Bk1}1JW}6*t{5UjR3yk zerfN30D*|^Ty3LyanA(^KwPH1Q8NngvjR0{;LRoPi5Av)Cl^1UQ~7i^r=eUnt6T%Y z*H+vmBvXAnp1BneHuB~Sb5UV?*w!94PiWfS*^$u^_)Jg z5A2!l`h>0t(Jo9~8Q${M9zr|n&7mti+PE9eGDQ&K=>Vq4h3a`xB|R(#md}sspq&B+ z{Zb{pj7pdVW}`?1f*T09W&eKS|hu z;V1}uo$xzVsbmC^;E#9@=mps06H;Vm0}6WSI{BFOlbrA5z04HQlPjuUkeHkmvcb6w zR~XhJ#Pe-{0Hth)pQVSA-sWo?UM&F>DAX@5$fs@9u(OJ)Nhp=om&)|u{U1HZGwKgG zm(rv1wdSIdwUYt@XIInK1`*XxZ;Ao*+*{~5TeiT-PH&3o>6X>o{Sfv>u}bHE8%k>X zLk-;QQH$!UzyRpYTuKE|DXdRY#iK?Cz!sW8f{@p;<_4|tjNuI;)b+G0GW8k6)ur7MSTje>eOAs}#i)g(iVCSyVwOo{>YZl_?P5Y!8hdLxiI{` zFBl@nH+ea{;cvKEo2oL}vle@=0O1J~)jjYSoAn9dhU`5D7!d@7*@?f4IEgygaJ)Jq zEYP60aLAS4r;|H=^T4)ko;agQB918KZ-GqLkBhr>@%P>V#o8zIbVzegi}eQyv+gOT)Ce)f5oqxSF;$n4EH}DF)EHnYIc&L)OHtrkI{?S$!?I)jit1 zq8kxj_Ex!5K;ZLg+A4e|{zb{1VgS9HX{*qiE_aG4a(^ZCHx&*Vo*$o3A^3*8AdeLd z1pHmnEy7zOt6CyyXrMzU^b$5~f696bveW6{h$Zsk4?rSeI3;O~=+-r6-!hY@Jop>Q5|C$h6B@XE%mfjp69uT5-9!V*`zDA`Hq?>K z>?XQs<+H&1thIDKC$#H!;BQkSt=CAHGrr*xc$J1 z_b&kir)F15qI?Hfoy^$7z&s2U33d&uGUX6j}21-^IvB4yhbg?F#%*y$QSIdXM*59FCF zswGh9&h6riOGGtZTV$gJC=hoKnnchYZB_Fn9@&Y;B@+6Gx?y|m9M+f_0*`FzszoWJ4U z_6Z31-&9yeAG0G2zent{`WwLM=F$0W+LCNqsd3Ln5a3`Z{@%d8ns*~C(6}6b7aD=- z=tGlvH{yu)KZY{NWNyE139*E{Fj?=8gjk|R&8*!?TV=i2S zwK+|j0s?P0)7BOa6Q`JB3ZK6l_;gP-(*A9aPryv-9eDmo;u^V6Enwu=f)JjQ!NUCd z!D3+n-CGuf(0wMK4EL}+iiIuu_=hk_tTyi`aL&y)18*A&CAUA7b2D&v5Z91|?Kk|s zuW6Lkv&j1aSBSHEk9qga$h$&m<=w#DLEOM&^aBa+nnqcDJNSTgm;7xisLX470RaBD zUQAR#V7$O=UQbLEbQF`+u%OQFaVXZ`X#UHc)Dn*x@X={VRciR zXTGTZfw+?2Rnn0nx&<^g(Re-P8bxRZUkl*5#5`QR`^fONG@c=AvL1{0Wpz`!iW%5A zDes>ZhYh#N*i-@paK0UW7E@0KkUG#1K!L(u_*p0zf+PnT0*a?pRzKmj|KP2s#bEsK z!IQMWIvz_}~=#a61^yCmYD>aFu*!8qxK@ZI~1a4H!&CS%XB!?;+O3&Kmc#s;b*a)X8Q}EKw&TZEEJ~OUqBIQE=v%^(omJRL-P_N zkABw(9IOTK*3qBg(Yb>9GlXX_os9m7Usit{yw#e!PeYfnE#0%DuG@j@O^uW@t{k<6 zy_;Yg>?e*IsL&h4U_Ye7JH_#F(I`RPjuL33RtYTZ-2{8O1VDv~0YM*Z(bZ#G12q${<_IbLHO;N?>Gg<^PmwAL$T7D8)0hO4C_qsts~?m!58Efb$We?Z zgTpsl4goN=1P&y*k~FeM$Yo-K@sUk}0Mu?IjY7?klhbD5_x%J>`stIET9wKH5MN{HREW~NP0xAQ?1uN zZD^Yj8b{s&0CurlG?YT-M2~As!R@<{HF&I3;$xeTX0nXGB`M}k1639df5$ZfTkEc# zf=jPhC@j1H0NTRibN)2h{5hUws$yqWC1F*#Mv!SP@3>IPh6>8rRkWEg*9eTwpURL- zaAT(m0DkA_%~ShuGY3oD3J7b1N#nrri$C8ENGmZ;N`mf&kZjKVl+|IQrEnE|i|70!nr{9=0#n2+Va7Zm!&?ix15eVz?E) zy8OxV%*@#`ldjQ&m(^Fmq&X{Iy(h62K9f&^YI`kyug2Tbc*Z1`B-kTvT5?`E}Z%gt~b zFpZ8*mTihcS^XDinMFggmMz*f!T?wc;5p06GBdm_jb|{NSZ2g8tEYkA3wX*6>F z)uKy#*|K`Zf7d51%EhNY5^ zgL_=Tk4}Nix`x$AdJRhj&+UXVPd%;?`e3O6niD}O@a9o5KA0TQ3(aN$J06b_1irKG zes3y1$*W5N05n&B*glcqmk6#E5L}5}TErfY?80!&Vgv!ymD6#9GWc8EiU?l1j4VQ-qq11ro%d+un$8c*$fs77USNRh$&dF=y_IBGo!yk@K#m<1FVzk!r*< zcuuC{h+kH3gXwMV4YT#Q!^e)BY-v10*@<08{Ic3ae&@_zyeWAc*xD)@%Z6aOa|;{P6kjnA1GUJHrjR=sB#e8@SNy9;+NI;)_Rvy z%`?Zc{?Nkgv1|?RgUNXGeS>cKos6g^@W6_6{QiSLNMHTb9e4Wuc3WD{H3Im?!GK=q zJQ~{XDD!s$1R$<7W_daO;8s9btEJ$*VhM>ORX3IlB%u0)0U%Tj(UTiX2C}D4ha*4}TU0ufZoG`BE}pr+ z%CVS&0Umc%gYcF}td2G-V4!kEH3$_$!sKYPLK4Y-7Cgd=>wa_F)UN|wEAX)%5puIs zF)4!q<~Cp&yeBcKqEJ>(LVqkB*aL}I{?rEFT@~P*U-o#l*GjN96_&wkas(uNv#kDt z_fZuO`MS=|S=sZi5c9Jw?!5!>XMBVK=TyIar(f)D{*OjV(N=~o7zM*Un-XU<8BJC(_qu{ zW_3;TCn#W~8&|ic-JXI1=iJGgT;8O;zf4V0iiH4C}|0(7c%=iafRjL0e7U~3kFZO?!OV%tNn!zrRD zAdg;FzbH1tJ-JaH-!2bay$(ws>@5NWG7x?i!%v2gijM*)P}mDU3k757B=J!|5ospk z9C!rGe5B9af*_e^Khh@%b@G;VM-!BL__IfM6OYf`)A6>G;}uR03c8@nr1#w?tWMw{ zw{91)|Fm=>i~UYNkf#rPy6Z4FrCQql{h9jM*3|J2SXu!WD;CJQ+e^zmTat4IAq51z zUF_Pt_hE8<-45|MK8_&vSLZ5X=H*VyYc$H80s;pYt+aK+&oA?o(XLT0Uigyb?yg=4 zlUr3aB$AlIC|MyWO*K1f6xR$|UZopj4bKiTif;y#ox=eYf^Dmi#d8!u0f9AFikfQ3 zS$4smpl%1GRaXIHXx_tMMtyURa&9K(1Il@*K*kzeK5WS3^Xk(z!WTA<%Hkfq{&`?7 zAb4sC5P-OP)LxIoH>W7AoqI%qL(;i#8@%1p@n^VbXz+HRzQLD?`gGOV!eB`P1Rzr7 z(R(Gm=4h5v;C(a!0JNpk!t59h|ELXsx8*g6rrzP8MgswQe1xKY)??JWSDL3Ud7&kA z}TLEE{_EU~~{7{oMMtC-jAb`5sY$)uB3V<8 zM_xH7e*Ip%v+>O-N~^QEr<_e$y;CxH9IDM+YGP6ru=7U1H~x-t4r{y<*RZ#;nj6m(u! z^|6_oc?vC-)ep-yIO8r;?Hx14;aqRbx zl6~X3Hk&TI!!C%n9(Yw!|KxW&hc7=6gkuQRaP~h>;e5NzRjz$LKEn5Fe9S?2RqY38!-}{?ck${RwS^ zvwF^=dXFp~n2iuD+P)v+%p^qJNut|)@NSV9loNz71F~g&PELQomG9xfDA3!faafI25(Pf#lU0>G{|s z|27bN+92k(o$5MqJu1t0UQT+n6WrrBIV{HC;kFIuqytRszQA0*%nI^HX>Rm~bohY| zQ@S#WHy=LWy`l^ZsI0f)v%M<-k6Bj#RXxXg@3r6pxu`x{u3oVP&s-abHcie3ld}Px zk(&KprAE^ByG~_zxR8_8SDa=P090RpG#>XyrCC&j(F6d{mii;}wOw8wQX2rT_Rp#4 zv02ZHmo2_IN3p9A1(aB%fV*+yh;%uk%iYJ81~~2u5csX;qRf6(m7maGJud0MgSm8L z6yFSAS)0FPEy-y+@~r|g!so=mIBS}#o5HEKTF8B=ybBTU(mhB5CoOxZ%K ztVS0K*-vPtIeW;?&^+La>RY`ID|R<^%s+jJFe&MCkIlG3aKQD~z8Qk7IdeU0AvKiu z4+msEq;gPVAxk@ulSR6j1u5;ndCvjvxQ9)W#ME+X&8dl5A>jG?Q#Md%o2nAFYD zSfaYuLB0iYFguRAx($*`rUqAp1-UNA-&>?g23N!pnLZ*8gROn$^R9G6VmLUX$go~~ z-g4o};rR*GGH@?B?z{ieZeDz3LlE?&dTm5^V;p$TB@64aeAe{BQdqzu#g0gUZqH6q zz)B^_QUtdblMFs~qBZ@|=zxMI)idHc6B@zoMH+^^B|VeUDyx48E0wwO?W>ZU&kc)b zH9ut1{OYE{G8pDfx$ygbz@`^}Q2SzJEt5_J0hEzo=di zLtzT@6a->~^;khD_gN}m$6%m>ZNM~yPx5t&LRtN|%!tgy?8SH(oT^dOwR>`wRZ#Ds zfMcpg5%CO$lVc(gzpVZ@i8Z{I=|-J>OtC(iOs(+c^@xzOthCHvfVmBr2Gfa_6$PrY z0$N_8t9)#$$%YmuO{fjNyDGprzbZmXv0Uk*mf?`h(E*$E>#ex*{X5rt9!2$+>lGU# zU;N36qWXU5<;`)~A5hAH@?)0T*wP{hXpeSN0X0{mijpHN(6}6bZ&7J7Ek+zqtE_$n z{KKPrP==NNuC}LVTBLZ)Er)_}w=yYm{Z5c;p5kQ8>3XbYmUoUCkxC9#puGc*5Vm zkOUADU!o#GOwsaU)aJ2ncu%q_zMRKEn>LQ|w& zdY+GSxJD41t6_`clkf(n$OMn3$oeySKt|inrbxjrt51h+n!U~<_v%_G%b53+;#b#a zWV|hn7YwP9--usUKLifsVnz3uhaH;7biKY@0_E%@EcDmq_`CF)Ax+}!BaRG}9|oBg zdESd9y9O_RwJ?^{TL3iS?Kbc>Yhg|1V^vB!=Bic0Se1BWtWAYwC^HF00(M!wMG^)~ zhU(l=+Kz6R-fOs6$%nc$5cKRN-6ASXMx;v9YG|NC<;@c|>=BxzX*HJg#CL*cxmZb1 zR?QB@^tzg8-aX3lBP_^uIsPu%F*+-;{D>nmeJfbkq7MzSbXSsB2!*|*^LT>g-}Vy( zkn={;DAWvLlXsyKM3MMMAe5lOk7OQ9G?^Iv{Xy3X{7~UXLCCvJ1waf2n0`RC@Sg-g zib7faVd$qW-Vfxyx|KaIDE#@};%)1GoEO+(`A*9)LD~lbi^uX6~;Vv7R_t8BCfdJvQ5iz#|?n$qv016bSwvYa_ z?UIsQS3nVU{0|s8%v{Kqdwwl|=j^Mx7SMQZLc=iA|` zvY3>&)v%MIv>!l0hFG;%C>Vky+D|Bz)k`1^`H|xElT6O`Bh(5!kRK6*yaT|Gq?qJK z6sEy>=0^gBvU(M{o}<(>>wY~Vv~mqas(r5k=5($Vg|hkqn0e`*xm_5VV|v#JnqCXw zIm^n@GrTR0XE2;tdc>#K7J=W36~Sh$?Zo2PVycO;t4JZjg8Y2HU)9AXEf~@ykwQv~ z-Y|f1 zCBF(E&2k7N;9rto1wZiHD2HH(96zLkfZ2=07uA|~eHcB={vvTvZD;})dwIF2z7x7( zdGfklOUtJxs1ek+7Qpi%qFkAS0=zAaXQ(`JWf8xucEOdcPUv9R*gQ7I2h@Bse0xKo zOyiyMwp}=j{H%@B5kt)p&;m>BXLz@NPIhKOu&j7`}4D5f=1tIsPs*0^ia2 z6E_@jJS}?06#9c|4$t)(H%qgtk?h%kxAFpe`|zfBSzQGl=6{33yF@3Oo?;V?Dwimb zpwCP4Yl}7$mnayb%b)dATD^PH^4c~Zq^#RLa#8(JP=YHAZ$4I0=NZ$OB!K5bLJwpj z3PQWW@cuJ)zoi2?;Fs0U*YkJW58gf;jz;5Y85#{FynMruc7!kK7U_hf6IF&rLj#?w zx<%*&+lxaZ$ za-Cyt1LkzD6@{{TStefA_4?^(GB|4}$HeiE008e>@~hZsV(-dn2_)cOl3xYi5F&9} zg5l|u)jtC5)4OMrX20Va;rsONSq+}6UiqC2j~RF`ys3fv+r(6}6b7aE2zN#GW7MEgH4nHTTt2NSxu!SpPz$*sV} zdPK7L{a~m)X))QZ^DA2|`*o@orC=L$DubT5JdyohM{JT95jhYLgdm_LB4Y%i! z&@jYFdm`XSPfWnNmgrR!s~>nAP#bWtD!@7WY8<3kn+nTdI2i{4n`T?v05w| zxI2hzaLyJMe&5$L%Ib?i*J}smou|fjbyHpq)a}6irbf!y=YHmn*tf8E6YRif41tqn z8Bi&!e+v?b4~UA% z@f{9M2KMV7EQbI9A6xRP@X;)XKmz_H`Bm_z%OMyd$1lTZSi3`mfvPz%y~O9UMb+)V z1wBF#kykY*2>M6pT7@V<*5B>)bTu0fMf zGUQ86SOA*z(^rC&OEk$?edOb!(H-DpRe(#*kU;f;0tPBqRD)14Bue@~A$e+LRluybMi(Il z$LHqChP`av4!pRFJOL@UC^c_e*t-d~Aw}Y4fl66@DM+wVQi|OSns`)mD{#La5pv$u zsLnCB0n^|+8P$qHS^Y-vMN6lnH!M%Ywoh%q@u~pl{3_c|u{IT!!E0js0lTdJ7qERg zVL33>%Tcsz1YYTcWeuJ)tD@)(k4{)dJcHdNijMeY^;X%o;FaQP^9eeRqJ1;)Om80E zlS6ko*D8uOaCZ>b;5><UQ8_QzPZwpuCEOy_;YgA|ze~sL*~r z^u#jF$mW{e=iR6gcwYjIYDy(UXNrm;R}vXy)XM62 zfMhP{=I_~Ir{u0`5Rl8|t~6>c7Ur%j8ZLL0&@hC`b5}sCto|pEX@xhzEW6`afm=b6 z^@xxQp<;y`({C2GIMgIoP!!7Q?}9g7p|^HU%$yr@&8^6FL}=wY$E4h+e2Op)g(qAq z3T5@VFb`Aq&91UjXWwFp9iFx+`&NVJEGrM{pg>m2zC}EP;lzVR{IdEy;CF*|ESgv9 z?3V%raIhVImflXLU*(qqC{Wl7KMMszki;(q6i=zF{v_DUCS}WAsk0M1v}cV*5a7l= z0IyN={!pVg!UB!U@%I*ylF=J+M5f;dqj!05T$mvRTa;@A9@YYQE`hSB3~x*086A;W zRKzc+MiGl() z9Rl*U9FLRiot>Wds3c->uNVxA+jem=9%?C|7o({Dk|$X`enQ7fu2C(k9#<$mDDMsE zEmiW1=D{-_br!IY{d+!M^JH(F(@RXV5#|FYHn@;}LX+O+2by|^bgI&hF?i*rfrQNW zNUyWx%LN^aVmFfvGPY9J=<#lNiPi#m-to#xGrTR0XLNmHr4hfZ{<-JZf8RZ>N%xR@ z)J+!C%t8bak@vOco{$Ppy~+9MDLpSrr-6O1o953acbiedC$u?Ts`c(JgVBDznE~L5 zErAnae^P>e?xLmQw#gX}OlpG;S{2~Df7HNCu{IT!(L2e&4A@lGPK&)m6K1bZ1C#1O zmL|(g2%tpdkLg~%*&n*6vie2;h&t!EJnoH7n!22m?hWul{7Vvj9yBlaXo-{Pvj%S0 zXM(j!WLoC#RG)%fR%hB$uX%rPP#zYP+Nh1xGJEz)7O*Jb2eo$BT?gDbJvV#EZ`RcS zg8ns{tD961tzVv;_0A`=bxs4k5dSycglY#9QnkbKkUZznz%E$N85K#;Mo{Rw>v_BM zNfKo86?eb*&2fO{<9WN#G{%i9Q5zQm`#G+sP4}|3f**H<r$?^4$a;;cu6_AbpZw*k}8LE5E}0-bo%6UO7{vuGJ#kefSu^VE#J*wPy@L@l4@ z7p6X32-O_v#gCb0dmgc2wl|REGw;=MJceAI(<3X*Vz9GmLJ;zIw3X~}5P3?qDqG?` zHsBOc$bBXZ|K)-b6>P(1%twtLFT{KTo*Rme`BJ>C@EPp|;{lU2<_q{`_1W4VuG7%y zxzd{!%RFBRfQb9mUVAnF%Y`gEOmV|9BZw>D?c%0*Tj4Xai5u|C>W}E&-lEFt0}4r- zh5@@<1tUWLUad1a-!m;}VD%%Ikb1Y~XYXuuMrTsnqcFeJN&to2+cal;6nV_Ha!Ub) z-2V)YZ-WvwK76;#gJa$R;VIPpyd8cPcb-fMD)kgVfdXkpf7-VRls{ za)Eeu#X!xV6#_q`WrHnR9Dt7Wja73bAjddRhcWa|+j7fAO|hPe%x2K(tm8!434 zpGml;Nw|e;*P3u05ZbxUFgZN%pCZf|xQ-O4`l+5)ue*hcTkTH`f_Z<&g!V!e)u#4A zw@$}yik>;f=9&>LIP#G%(6PrYD&uu9EFrCQuNV)SvQ_+%799D=ns&}NF_35tJb0zt z058O^!?+GdcVu@gnLyckWzeXtHBMUury$6=9jOhvCMsb)sHhk=m2A*u)XM5-wc0Mt zuy*CamB5Lbz6A!?QbX*{2^wniSoO5CD!{oqRDveOqSL-U;bjl0B%u(n>6V%vP*+@h zh*Q2bY4YMa2NmJ>K=`Yo>+#^uQOk;*=RpG&lyk!XXqcT<*;@k%s6Jr;2vx(DlCrl3 zvZr2F-%*d22X8$s2IKH@f`4b>fR;%;eypaP?6U{k*AKHixJfzY^I>_*J=55(-k(>POTQW5wso&M#0^FyNC7eHQOuOerj3*hWoI?*Vjw|(49>&vgau)>H1;OYJ0*`9@U^;H*Vik=Pv zuAZg+$zOF%#bg4zi}!ao6fdqR{YDXU_3Y#<HUG-s^1mUEI!7ukb7du)o?C zMJ#wdmDS&oX!QebCW41hp%?q3lQSy5R*wCo=rSw#s?t>G`o$M-EWHpkxEc68G|#_6 z6en%-ufYLLb$Q1aaQh9P17mq9%zefzJO@#jiQkvGqB$rv%*LPS`7(dKViFQusn49_ zE4yjYzz;6QGcX4lz9Wp^9*>HHKCxdfOU?1HhzPHCB0|b02-DAnIU98@$k%l&$k_;l z=!p=0I&tXpw!2}Qc>`^qinhZhoZ7c@Li$q+U7FE1 zbkYNj{DOGnOgu`+#bZd1M!;|ER=}KN5HT3u;McI>F>k;&J!9-rDU`~X^lpzv!$;(Z zU+SbUfJYD`gee5_Xs48J!jzOv5QdWHp-+^1?tGqqxvNf5OoAXG-Xd`^N8hC*>n7gP zEP@bvgd|5Cx|E``5fXU>F>Z@d(HTW|tnQJ_>MwR;QHnzl;f0PCPoawSGYhfnxd9G8 zk}f|M9*xJEzC~*9>3u#yL1l+zT3ybb_``(2(6@Gxr=i@<^MZ82% zX1+Zz$69-znL+-#iH|$tFAs>H?$H<~B<**}R1EjrQ==^hC!U*xdtb+&;97S zrDM;<+=3v%bJ5}LM<+(do{M+|Ar8ee9~Wm-?dj3U@k+OoqGuOGxvNAO5AIWK^09p? ztSKOC3xl#z|IyCn5uQP)u=`2^I{+%+_9zEU+wSY^ekIJ4nrRR#?JIhd@b06ty+_km zj%N@m>*+LVtwuF&Pc- zJ;E{HabUyTf*>KVncTC_nszdQb{yCcuOLJ;t$PP9YJPOHOV_65`2}GH655=VCzH|m zpni4bkxVHc?l!Oq9D_h%{`bv~c*Jx(|0|wBsNewH6OzAv8~}3*f`moEJ-W;GD5v_4 z7X_Z(22slXBONwfi^A-JC}GUpD_tqAUtjAR#WM)?P2$;V0J?QPxm&)`o4k2UJ1Jv2 z<>Z6uN9VqeyY+Wdqzl_mFLWc8a0q;cEGbQ)X+ ze%to==HNF?C%@Wl8ac4rw#PRQyJ_C|qmq98wQI-1Ay~z$-6n>+)^nB#{-`8Wf9>j7 zI0QW(-YF^7OQl&jiQ03Q+Rp1YwmS)7gW|uw8>eTo3lhE7aq>Dy(2)nsv(>M3n(GMs zcH{xm+{TA#*6%bO9Tb(}K}I`7EoTkcV?cnzmLU6|W%jadI;W+m*#rO{G zgxW`jr!f>pZDV0MuYz1DR348%3pW1r@#36(@!Wdhj{+a>pU{Pb{*hy*v^VZ&R!n2X zsz$}=Zv$6fv$%5JHMeryH)Vu=udkr7NSzIf)h1G_!U&x+ee>e!Q zMK>IVp7BfB@y@nTbw--u6r^Jlv>p!FkcRt(?Zf6*e!4tsi&*Ctff)rM!kHA}ls-*W zicbsM>ntux+nJOLh!WTZf#Ny)`=@m7p?5Gio_1C(V7yC6^)_T%!j{B<$xJ)t2Q~=Mcvx2oO&H^2=;fmQgcmEbE1~)4wy) z486d7f(XHsCa<5D~L!Ug~g-5z-FNX6xCxL*)HzQSl1V=x#9)cx~GqnRUo|&Oompqu)Xp z-qGw8cc^N=$ASSoCCLAjIk_Iezn^O zIWXIW-C7~>YZ6~}J)?DD3&NY9&C2Rk*fXggfNCv=MK5^``t(@Ejp@53HK^Vvc^dag z-owOZ+adAPXm2FnLZcW?UejQL$yS5^3QXY7&9)!nziE<#J&^njrkPl3*!Orv_C4tH zQ;evMLGqteJvtuaYOPb*thcZbr*DA{KPGI37eqT`w#`qs2pyOWJORt^T}-3FcjUX< zv-NkX!Vd;E7f@Z`>Y`Q{m=LeDTdzisf^{e*MM5+1eR-#fZcDF<05^Zsmf=uEG^-(bS*JfL4%tRQ%i?$hiCTb0VM%d?Ud#2XZU9(0qr`)#BIV1B7 z*6&%b*oN)Fme*_-m7p!bJhuetvz8$YX?ieqQSRHqkomYL4#D0-7}EHz>Y}{2g(36t zo;|x7^xpK;>7u-Mr}svaX?hX$*ADC9!PL4u+{;~hnlP)ir4VK_6U(){)S*iWthOai zXJ$1uh?iO(%%0a4I^@)NK>I^Y4`^SQ&9NtKWHNnV`$JvL z7oo#D&}1?}yx7^q5SUzCli5u0p{578FWlXWYchS1`$JvLQbCa&@OXX<;lPKwnvOc; zG0Z<@^-tiz?kkO#M*NK$SMp=>@WJJ#m5PSa>ys~uSGrzsB-(PDiUzGkp2(KBs$Jb% zVzQw4cekxOT8O|JBj0Oj!E9Jhyn9%@S+vBrLm zqr1Lj|L{Sb|Gt%Rki+Uee+Jj2&-&6xZ9SjSqyEotu4Pcks;mAG*uo2KwlE_>u#2{Q zRjoLitp*zj$?ak|?3J&dPffYDek5CMwk?%gDTUN!;0yE`mJ4jdkAU&E<-&}NkH^KE zo-<%Qyo+5-Cgu37SHJn|p2#{KPA_ZP`teNvZSP{YQi}Swxdf5Iy$g3{vaTmNOZCiF z4l-HVu3NQI3bLf^wFsfETTe+dw|@Fj38C1tg`i-6bUNvc>B1`IIqyt6s{N@JB4rPR z_(s_Z3Q$zdu3HJ(&Vjb-BG?k}Hii8eE+e&mG_#@(*>}7F`yUP3zdx9qO}n5sAKz`u z?N&-r?aUM~9CD6_qx12A0-o}uKRW2vUfObwvoVg$fdE0{cZ##4|DU@r547Z{>YhM= z0J13vqG%L_uw9Y~3E3b_CX?Cs$xQZ}e)sl$ukYM@`_5h7%p|M=I?<=1Jlqxcec$)b z1;qt-R227JL{Z!o@jG>@tGZ5CFIC-DJ#R99^y}%{UFY{Zb*k#rsjYH1=u&Z-r8L(# z2Sor&r-A?0om4GLwZq)pX^^-GY#AV34HwbnS?jP9XV=er0N%XTQK1p=a!3;1 zn82*Y_0R+UvLQ*s;!DvH3R3@bSiA-2D#78&l}p1*rE1krbN#E(2>AO&tuNki+|-s$ zZ7x-UtT|I)1i19!A)dZ6Vp|KWM~;26=1wrdM&PG<=kQ_EUZ-`91HDUN1h_oIA{$od z^2*+=+fa7yi=p`}r&HKUNJc*dOhQVX@H~P}iPNko8?7|s0MmFGDgs$HRq!LYn$xP& zkV_?LHBNJPO~4|crC$%fLb)CVRp*}Bp>FQiOI!rDtl?od&}G=grfTBUMw-{~Dl`KA zpbT&}LM#Vq>IaA=5Q6Wps|c$^ST@vEYEZB@Tz*LPULT=UiMPIcQUHtS_e3@*>BbD| z*AQ7eIcSyWB4(rVQ1O^iebf={^S`Ne4R2i9sHeF+MlytKV)) zAVhOV)JUEih-H&)$_ulKg`hkj!gg*D?x8FSlsLq=4N>s{@a~(3{v^iw1}kt7bVuN+n;4%& zSijJ#SP07F@Qbrxo&;LIADw|iuXp{Y z=^U#DR+!)*=#Ge(T;oWm)LnfmRIw10hr}-pLz)uf&f1Mnii99MO5%fVs`B~{IRQg( z9!h>{8l-fg$^59~Nk9mT%^)<>urTv<(vnj@mY^Ua%DhMX;G%?Q;nuGsGpGpUyOSU1 zaGYPSVexoUH5OfFODYOGkW8M;8{r;o`Lhv0?Bgk&rqWX=xiiM*L zhaVsly^BwQ7zFHab?}|~U4B+mXC;`!zD9+oKooqS_Fs11Arn0jPT*{cvf1AG>E%xO z&VRL&l}0k^Ko@56MvHDYH4bE{lq)8r8>Uh)A^iZX5P;$0 zIDe4OFl`s=6F7+a_7t8yYmH3rjuw;z8Q5H@~5i}dh7R(qVM(QSgdkupW z3hJdh;9#nv)v^Yurlxyy9UZY_v9b$e5m7;ZswG63u*e=jc@}0c=T9lL!lc)Z2A?x6 zp?qReyC?C4ZNHdXv<*^Cv+kB!S(k_>n07f*lfECG0ilkfqj2~_vJ+);Y+hjjh)y~CQfBy`OCd&TxJxCMnVTG`QOcq#C217YEb>5* zm1q*o&Ubq=P!lYLTFm0g$%iG2ZEHOBj*d}!6RChOM87WC|lZV!hql+&}AOX zr@?Fp{+vde?+9HttSFRK;(Yr5=lcd(rF*vYV{n#q-1 z^p%1DjW6_s_0aU7MXJs z$($;m9XI8G*0;iEPhL|qMDf`Vu)RbK_D|udl=$rY1;t_JDU)0<@YxHJAuVi?&tC9t zLCg9YFopGN@|U=BhpQmHwAw2=U%BAJ4wpz&vX4LOF2HA;Pvd!6AG;vg6ptRCDkYNO zNo5mcsGsev>t}nPpg{d>hcShVr5{x`L5BLdwsrkno1>p=FQR@_*+f74`r&l3b~a)T z6O^=OmSk($S=j{Hjy^cg@iKoXqO`=MMNRK`lz!MrL=qf3lZVYJA=}ze3eCmRESqX# z$&`7amu7{lCYDV3dd(=BK+rtboh!}p)KqL+2`-W3&aTmX0sFicuj@91QWRe*XjwXn zSc2ye#=E*}VbJfg)wdJr*JV!wHUy?m@+$q12fi}$3Br?X&>zO4VZ^b^_99&N7H*L0 zPI)=fG8`OnIDD9FnpZU*v^op=5vUwozl!mo^i9?KQ^tcJKF5-R~@}AO^o=1MdLxGDHM2xdxL&3hSk~Ow4}(FCY%=hdblJ2qOkq=xUvQ? zM5f26GMSv0fzXiw)o=&|+bJOx_5qpqz%r|AD)GfUPf)5sJ*H!VQzV{&Lon|j1>+TG zIP2+Cfsn;En_qNn5(2??B%Us!F--HBIRmKAS2D@uEDnP5;CvBJyTT5dmt=kBgb73f zg5wK^mytgHrxgZZxPW=M*xdNks!@NsM*Z4!MDBRFsIJ*T2Gr?SX%QBQKq;e;AW`(I ztLt${o+d!*ZauJ5Ahw{sel-lHoPpKhu*$h4n{^Cw$n9EF-knquQNfPnc`sf zQEx)SEkJN#1jlU&j%czD5uLI)f|hDp;TCNRt9>GXB+>{Hp%I);*p^1PFpeV}eh=}e zUQkiWmT*XBv^c-Hk%Zjz2q!m6@t*2U-JF)TJ9#qIB`!$^O5N23)|b4Y6r3b+qUbxS zOJ89^q!bqQ3ktt3D2=z47sJBjQUfez`}Fvm4ohjkQiu)EQrJ?i_aC1wuo*^wq&W|0t^NzVFI(gn-ZU7FlCGvlF(P?9Nz zhxRBCiW4T5TegPMD76AhmYa{PhNER}rEaMXZN#-~^ASVj$yy8sk!V})&$kxL`f~`u zt$ATkwm+X81BsK+kmIhSFgSf4Hof(f6J=xHc05v`gvdZ__ce-FyYqOkD4KED)TT~o z&531-ay(x_N~p+kG4^Fu?#cy&m=E5YDY*mBAQJF$&%SxII*z0Kfd|X%)+(j4O>yjs zLV~h@g2yu8kOD_ZD9An0SuviDmig{&(`+bPPG*@62~0u)HnDJ2mCA0E-if!=K}T!F z?v$;9lh#W@ZSFEiU_`4Y)7sxHU_In)tJ@SAL3~Q7<=sNo19#St)25POKH{w5kp|J+ zcD0t~h_e>PAxf=DIqtG4kwD8GRdd00L3ko}d>y0#!79-T)L}AgJ~- zRQbJJYh4u$+nK?lJ&xTl`7gI+wMNw-2m5r&&|Ww=rr@pwtfBLV>t}dO|7eF>UE`ob~p-xY;W;dq}IUd`v(Yu;MyI|25xe) zzTE?a45o8slMpNQpJrhLOy{Nq)1L6$)RB8vzbrBg1l3-6GQP%5{xz^F27=-mjABnog5WxWkID}3u`Y~y4An4+j*5k#+%p)LZi8Y`0P5Qs!$45&UhO%m^Xr#NfIu+q zUxfo<;S4M{C7^y=l)xa^jwTOF4s$lNl(at6mt7hr(IH?6&OOmMSaqYo`qsuU5LB=) z_JD0WS2mr`q8#YE&Y3Ds;2`MsvW;IIwVU9W00hCcFPcL^b>#Ke z_scj6f^7GwH+G}1`n4KBAei=y!udsyG&2kY)gku8Wo1^s$DSe~2zSG%?nTebnAT%^ z0n;^CyFpdIL?Q^HE5zl<%Wj4%<7WfZi|%JL3`AQ8;Ry_AfVb@?C+m-wNgxE@A^F&m z?i!R$p((1t!+5G_iKlY-q^4Sj~xU#lNI6Bq#s!N_tN_2{a5)hMSE zBm|+<;ueTO3T0(uko#dCYBXLtYWeH;8xj~qfBT{1wI#4|7zEn^T>d;Am8~;q#VZ#$ z2)aYyc6MRgTiBG{O*LJ=Y@|pC!UK~KPS=7{r`_PI->VTg2)ct%*|>D@>bG(d2*Gy% zwuyd*L!5p)1j^l*Tm5=2fkCkCan~cPA9r9F2&zM~ zuouC;3E--@QCj^vBt=3H9-M{aAe!`DMZM~mQVE3M+dG5xppGJi^?Mcwg5cT%lPevC zM(W!e!$45&hCq@VL#tnF00e>wH05gIPZLc|=(yva`I(ucSq%+P0S2P0ee*NRpmc+9 z3xBA7WQ(I9$PUbxE3kQ3&ymjR`x*iVLAM)b1YK;q2M7ey9yUwK4XFASrp=Vv3z;~5 z$PKLe^(lfN+5%j#ujR$Z1t18nBZzB@jPa>hILdH%E7=I6aXmbm0|j;!(221$|E~K{t1IicJETtsgJnREDIJyTt{0BeTvQ5+`O+y2V9B zLZlq&TU=CpT~Lzl6l=ND?O<{(q9S!|<*jZS6)DK2+9?pCxw|qzOZKO!kfdSN$KNYb z$YRaezUJ->+_G(KDx_(6^~uH+DP-~H?Q)aVZ^>>q71A`kjrFT;hI7^MP<;8ejXP2^ zsb#OS=GPB8s-P#f3d(NOvNu80z%V5!-J>%Em1Bwf5?oCzPy*BYGKRqNOipO5fvHJg zwKb;NRyh1t;>8v3C(qrAaWILd%MosNv$;{YpM1{CYJ0RRT|;)kqQ|eHKP4ZgBLy#Vrg;SXFncI>Z=TK^o zP09>MLeN2Me!dn=%ZB%?tgt9HZ;(hQfkN=@o5iKuMH-}=>aIy$$Z!y3`{z^GiO^NH z7L8OH@arHDg6$wgSHtk3Es?7U6oLC*RT&Ah1g7;e}p0$8`fq4Z@P z1)2zS5~}2MNYX_8w|Bd%;Q}V_j|)zXr^0ATX#;a($)rgNPMc5om*kB*F3qhZq|3!qa|gZ zCuN)GzC=NQ@`^ghyaHX9+8WM6F5ADp!bl|K6b}Kavb8r68#-s-?ggcCKLL^Z)L<9MQY zw)Pg51*i|iSL;oKL7?8AK%ESt)du|)%c!6tl%P2weqe_H&AYA|o3gE{i|Ua?u^A9m zXd6_1(g|yfR)QdCZ%cGLtr3Tj*ev^{QY1lgh(E?%g1XTFVxDtot)0f zga0J)+sbVDxKg-@;6T^ zGgWP}Xq^h850VL>og5GgL^e>5zE+`(33qt=TJZA}$FhW(5HJ~wMc-kO1#8s#kVu0v zr|&pxfUgJ#(cclo3|n=<(QA(SYx<6Q)nIi1WhiB<)j*|iIY_)h)IPLbjMMhYcRUT{GqY zA#i!`4!Z6zC1qZ4%zT-YbO5E6i3+&{6R)h3da%2k_Q6}X*Pg6!>ePc&I6=qzp3No& z)aiR>=LGOZBOMkKgE`S8e?KC#Tr4|euPDBei-G8j*N3dp?GEFD9a&28Wy@_HW0T?u zH15RWZy=;#Hn0^o%kf~AHu@uMs#s=vH}B7n;(`@IR

y=b2=pEpGhdAb-VIDIQrK z>li;sBsh5E4^L&cxJF|j5!Gq@iEM(6SE;b~AP+V+hfK5jhk&CWRo$4$X3V{qK$3U5deGs|#)Wr1aR2HdVf{G8h#OvYg z>aq`6k2u)b5R3UfP&!VRWYAb7LKQjCS4%Qxp!!7ie!R| z4{&5AyEX8Z>I`sXq!WC+=E=O#B!lY=aAd_3ggh>szJeX~)Te2n%Q|u4LL3A$uYu&d zP4ro(21*4JRJ`w#{@8V=$~qHBih&T++?SYz{iTbjOP%p^E}MYj)gx>H33U_3sz>2u z71j=nqH)1GPBZ7LPW4!Tg5c#5>*USpEJB~Q8PqxvYaIYV$>$0sOLsw+r&z8W zMH6Jad4Zqn&$*KBY@OyskxX!Lr$YHP9XM%H>C|y5@<9-^d}hQvDA)notccX?b=oa1l%PpU;98u&a@k`E1d#*@Z;|HkSjGr&noa|Mu1<@j10X1m zqH{lw9tykh3^tt(`_225b>hT12nbH@aHcCg8fdYO!%{?cR`fppU9=qn?=9ACY;1FrCCQwDf-tT3oOVL(ExQyuF7h!%MV0bX)3 zOQ22%K^0Aq@#+MAhS1(DSQMO3WY)gcsZJEh1Q&O7m0wvU+{90-&rsZV-5R@{1S;+}tcL4h;Sr&|%`70z7TzoJV6g+{xDR?IrVde}KPSA1Z z7haeJO&rcT&My~A&?IfdEE?DIM6zvaofUwKL^=VMsA&d%NdA`cX7xrbHK9;~hF7wV z)&$q-M4@N`i93?XE=)L*-lPhv<46+OdDw6o1cL@MUmDa6wXmtO2{!Ib;;ttBa1bm< z$y&I0)Tn`~6CTP3LD2Fk6Zj%5Q<+8KoXrPiHCmJ0t~17%i-BO}?JB+pGe5d3Ff|}7 zIQPe_@YZQpv*HOtMVoB2#8H5{wl=dE2v#2KLOMJ+%}#h~v{I=~uuGFqFe*9jCV*Z$ z#})AeAs>`bSd3uZQx^^s=rx;kRA*4400qIjr+L+}wCRC$Dd5sJ^A{oA}Cfr}e!oiL#v&l{9j- zr~Iz$fR4!$?cG+kBVS1(WJ5lE?pn#0+5Py!;hx8-dsDuYt1U;nsnM*$*^UvkRP)V^ zWD|T{%Xx3B+TKmiS=lX;EYo^UnxOr%3272(=HwMAj^xI%vfRiKUX&=wowC4pCA@5I zCFfhf!n*~WE6{^K@w6*asi+*qYx6?b*;>48i>u1iCwGJpo`jkbj)kr|riZ+o5BFZWXmKU6K@zSMQyk*2*%VOHi=l_LZ*(f5ih|3q?N(G=+IyQ{%@xw?v@_1zwuNF)q zc2{IhxhI3LNzSaoBRKPY97p*Z54fY_!P-*ngwx7&=D#NJkUI#QGGRon_gpo5V1lp- zleIZ)+zEr8BCN$D-;It3A6h~ujK=aYRB|meKP&Dlxhw<0&%VnDeRo(xJBRhhmR&~m z!-6j3&NS@?T}DNaX_ry?L~%(A;0WE}0nfHwMk`77T}G?q^)4ft!z*ke2)Ml{7{lhq zwHDz6`ITx2C)3!$PPS<&q}s#^k|e+c_M4O^0ZGmO926w;1Iu`Up$wAkM!izQg!K$Z z8y>8{mRhIbcuF{cY0@uPo08L6FqE2hN{wo4!&EyN&?IBJ;rXz50iz2l`q)GLR67DK z;Si6*QTHrvcnh0Sz z=tnRe5!R1@H!u%ZS-`f-j{b3-J#u^?a9DqJa-kD;r}b9~HYKWW@@ZB*=$BkXw`SD2 z!2vklGR`kIKu+@QwrM;%50m$iPVtnRl1$4Th$(r$lSmXW(0#bh#(luaK)4t2M&fqp zBTqR1($7=};;z(zxSdThV(B*UAfymbi$1DYhDz}va)E5VWAC=hwy}RI{GO#ZA@Nm- zBmRU@M94U4-J?Jo*luM5;X0hnwYhPPg#!uOd$Vs;^&L}kAAfC<^_T$UyT09OUcTeo zYA$H<3DWy*GrBr`lEp@?AJL?hE z|5&Bn5y(jv1p#alXX+AI$xFEyjhI@c-C?M+Jj~rTD_Nd-WL&lZoOu+?*jypcnc|_u zNa!?YAWAdzOvZzSG1P=d$WAAVPfaWHQ1S(G!e`ivmu%<4cml>2d(I$siY=WB z-?XZP$@B_*!VG3f7wlrtRH)awKszv{-;Y*<@i_3DH+Q?wn*=z`m2fu5UvRpmbA_QM zJRTgF$EIpl0Y*_!tF$`+ny^?Kz<$1q?leB@y`?b8e2?ff*(KlWrx z=M2IoOyDS=HacV;TFC@BVY4#oUy>yTVG|}WNowZ1=zH+{8EV3#H)_KPyUV>3#&Hua z0aVcW`+K=7^d9nrp(Z?flVD;olwno*r!Az1JmI(rm%$`Fw+IHXlauGB#Y2x@LMM#+ zte3oEKC8H9_IRj~6X1kRFpnmeV84Z-COk&4Hv`OM8l3OKk%us#>)G0jhH zGa45aAE^T-C(?1T-8{_(gC&Uo7%0&6k@VQwXAW{y4hmZC&TY%wG%Fa-Q2j^V#uCk2H9gnUt4v-p1OIH3+k zed1Bk+2ZxgFg0wWAdC_A6ewYEzwlo?ImOP}$rNWk{;lq(2>e+;MLgf?eoBgy=pUBc zo$D?q9=laWD+o=BfQpoGc#sG9ELU|Jh)m0|(Y!2!6gvbeVR34<;7DuAhc;hW#j5Wv9WlVU9*iChRSuBRG(}3j5}hLG5Lx zR%kT6)m}gc;8Q-ZlSCVtLZvLNh+&{GV%Ex9(n{58RWFgrbl;}xT}sQK#iNfLzHls^`{+i>GTPgN*o zLRrFWY}Qt^*iiUlNtqCqLsp#*Mv?JCAp63fx^uotpx{85!AK07MGroCV7~E06LvjM zHmdR<4CBRYIqAWe7;OBu-bzQ_SB!!XAsm+r*v$^N8|=av&UOnUnq;Og4>gAl;k(wJ zTWYlI+g^tq&OorjaI)RZ&zPOXXgTwff1`$v)tR68Ym>M!CSW}C6W>+?x0-yR9Sjg# z&-|=TpG1VsX2?`0S`Y%he{Hz}eMs1I$vh@dEi7#{%*M8>Q|zQTiTdw8J?cWmX6(jP zOG>dHGHMg5Q|xez1ou6oYy2tQXd*bvayT_r8K=PqYC-EHAPI6<4$h_sNAo%K3=E56B|LiUd;@SBW~l?G+L@hzEqph2h!4gP)S`a?qOdlAO=x^NnfaSYQ^e#*|MS7Vtvu%j#pM_@M!gZZLsJ{{0fe#*{I-bwuVyv(Nw zZcSd9>4P%A%%=}-OV2L6vZAN1~mZ`IO4jL1}HSEu)BlG<{Eaj){j7HNfQ}1x>Sw5{; zq$fTMJLLnzH-Y(F8%qs(&L57Q@EHvv=ICh=S(!by9jn9(KTk8!h&Zn!LJ4OK! z%hWpzImw%~wJ=zZ=Fl(kUVgmvwj_MQDqOpSTUd@g%jeQ39sO*XdPkrqoK~iR{|3lt zs~uZ90Gu#6E#?Qb(h7O$1*!}Pw}tpcjH1Wg_0V{?KugW0W*C`_`&g#l$)!Trj>Rj> zNh^72bTn*Tnw$gSCvy|>(0)FEC6JbKlTaaS$J6BkR#nBY1g@33(@$;^4uoHS7B6n} z-)tLgLuzRo9fVHUOmP@To@{Kf-G!y>)Gm$Yi&>`L(P$8sy#>s{_3oN@>8UW}gv*3I zX|sSC%@DKAuM7#ou)m0>UH^eyFC`426E+cyc8$C2FdYAWq?b{X6hGk=w$xgCiDu-q z(r1>F2*T}M2wTs?-qL20zNPV}RpG#g!=>|}`L=!u#{@X`ET2m^Ca_Lo0`^;oPU6`Z zCLP*rA<92dCrc<>h#q3;HJBxViNo{=qb)@7Wo2H3CY2*?!RPC#?csbqT*i(!IJM6#&;sRLUnFtr_{S*n%kvFVZ$Wd{HD^p`D+UqP9{&rN@;>t8`B@Y_#e zpTS^nJhq#{o_wP=C(0D|W0+!t_Jk*II)$CTt+Xh*e4(9MQ`imCCyk2H6n29|3!0Vt zU;_IjUXDhQX~{B>mDUZ;&`X#^`KMMa4y3RGZnVLWL5dxQkYK*AAI+lP+9)*Ms>48x z2aQXZ1pQrBCr()*H`+$gAjJ+sB&hF6CVzXeaU-|S1a|^bAjiu0I-5z*bJ&ckw+8Vy zyK^AY&(tbdIS1mnNVh>PEQLTtY?RaT1Ens`1tRo?)v@h45XMqSrED}fWt?;{(FWY5$>|1(*=KcZ5-dPoU`=Fm zY?Am$t%sCjlaBK=n`9+V0kYHR*rWuHnx#4flC8GKCK*W}*=y8aG)h*_X0*)vM&UX3 zy>X4hRZ^~`w6-yF3C-{)Kt%?iktR!j%vKFS&wdfj7g3L$?{&RRU88)c8tZ*Zos+)O z#9-4@z-Y~Mmwuw=N%~ZUBXoy352LLsy>2v~j;_4QsJ2Vftd>NK*sRI1Nxs0C!xcDe zFkYH(?xdK60jF`eSd06RGe#o}R%v$xa*{=1FP_bMacF#0s+G*NlzQMJkP|)+_G07p z$2F-KZH;V|HY`h6CoFosb z7!G7Jj+xh_*yx3staN)QKmp&YyJPy5+F`92+ zrKnBwX#qRSg|iMnA7XRks-mv5_Nr>LJGwhXN~fa5+5tSJ zw9HhqseyrBuk};2FLm;y5NkY8*6lS)j+owS>Om^7vr}w|Iz%YgoU-+TO%u#8@^n(G z(&yJ0rPHB+h$aL28{2_!GM~ot{JPyp+?83_`f!U;IvLn0G(v!AyI?B^BXJsR7uwG3 z%|Nuhy`NIbt%mBscA;$*TCuhZHkhaf+l96>J4O&~U%Pd+twJN(mIV6Ybg_0en&Ujx zb*EO|)LgRA2!Xpq?E=durf@omLo>glZk?S}&Iuv{_nr(~rL^ zIa3K{Av>)`96`?1B(jm=TZ}q1n} zyXAAYiSKg_OWXTh+}eUU?G81r_cM(2Aia@1c!bCUf(SX7&mjYSrjs25f{Q?h&4+j% zz+Pq}*s2+JyBCLxc*zSrm}JMK3??DA2hwfki_3ANSJkwCj)0&##-BNH10}xQjqs&d z2vXEvqqarjYofnQOM?1SebokqOyX;zKNX9vzeWw6#MeZBnPv_3r+S|kTYoARqQ7HV zH}hg5&0--)_cnKRWmdnsW>L=bZTBY+8~L;nS>1?<1VMBru(_#V8e+@TF#?;L!rKsA zru^<{?2gI|ty`<)_@4(A56?w0y{%>`P+$;iJDKOfxd5t9<1_PS^6(JEhl$7L0_yEG zbxME`j1QFgVlE)p_1nvEaR%Y=u_TWEQiC|UoLsxP@sjFLdiu5+P2Wx9+{eY7ZL@&7 zOcP@2x0Gb3d@mDLm*Pk^9y5!qS0+m0>t(T;%9IMC?DvbV3hbO-G?6DQew9+R=x+f1Qmpfn4sGO2Xl0p3Y+Jv-c2?j z))Ddvs$G3Irgl>;Q$yht&me-07@Mo89v&1<@kAFB4+zw4sU1tT)z_K?Lhv1e6R%F6@6Md*uBa}p)?JE(AUw>DrDWTm z7RA1_@|JJSY4+-UF2f``3KW8I&)8W8*S9@}fueGktMySa3Jk|OP& zK9a#}p_1O- zTZ>2G{B&8PWF{bO3iSCuRzL+JqS8Y>I9j8u*Jlf|C`4nHP6y!-ga`Vi8^)TYn<}xW zYigEG2fz??2ib|ZB~6%FvMIcx5S&>$9fpSBJIbE0)%p%GHnc;5h~PXBMlRLZFqZ)g zL3a=yl*L%ha>rRNGc*L>QFyW*j7sCcwip}cvOq*|9*QQgdxAq#Y*^bM9D?vbG%4Gb z%~pvG?GV5abcf-rO_=8FP=Q6^YBQo8j)!18f#-pqt2#BpOh8&>inc8^ONRlSMI01C zduQ^)G(PLpF!kwxR&BM4ir^L6h5aSU4*4?EifipMPz3GW36JvaFl;oFLOxXB?3+;+ z1|g9V+=pP1y;E~&SWh7wg76@8vRqbF4gC&=hTz+O#$`2MG}vL7*Jow~+mSg8wYl{w zizb5^0!#oAl!xZ=XuT{NX_j_cU>e#W!XXF`%-72zfwuS>wv_;epgRH&m`~)ev22>l z91uZyj2}`AE5se*Y}lifkOE-_5R50_H04D++hYEv0*atrOMY0y-TCS8Y;3NJyFQjhCbjf(C$4F4 zWmftnf=G6jPFyogkOU)jKg=+df;i+!x!P=$-)%HZURz|Q7i7bf zDBGWHb0Zn*(1$Ma-&gC0{j`4AH44Y!WWka(t0NQ~P*3Pxk6Z+qx_C zq~6fu4VI}D)E{!eXRwm*Nn4813TN4ZPbDXc^_$iwE6J>}tA@#5yU8w0L9gKS@TS$B&Ti&~8` zS;OwoYycwBdulfD%a%7AhLONebq|B@6%Fh~*F8Wa;8WehFWbGKcUWW@#$xze-gE#y zHJyQ|FjpdM>$}jq_L2uDv~HDUT_&qd1u4miC`$!`t6{;hWR|kEx=26J(K1Di4F^jI z$^8%o<54(Rbmwc)AV2D52|*)OwjZKVwV{zp0TW_!vrR!P&X0OGB~-R)Pd!304T(>( zCO3m2W}jJfpYu|rASQXFRSf4mWs>`f0gw_ZvU%)<1@k7G8k#%Tgh3?WrAz3`8+X@} z$U5Vx-hKJv4)vaO#aBep?uV<}XMvwa@rbkHoS-D8lWyQ1tw;U*F|nqWU$%j}T@~9$ zkc5DA4cVDLRgohjXKy zn|^+>Wo}Cw6EF!0Sye?4((%(oxGU?3u?Rk#FzBU_yMzxI34G}uMRO?Le%uRp?hyw` z2uS~8)XP7w*3wwBRnvyMMj8+j=(1}7i#_}dkhtp_Fo*=a3}3KcJl3P`!WSt}LL@by zIDZwv7BZliE-jE%C(KE_=ISk8_aH{1c>>>$hwZNFWbmnvofhAC)lbOYVetisME8B+ zIsh+NP8fRX;T&`31xcKQh78cb&k-D$a|uN56{O`Vd2H|a7RMGBqU@52$h#d_tjkkC~*=R(xBkL;D~J} zvc>a4z$7H33l1ykyx@1&hXaHJx~!96bYwe>KX`%fu3Ak{5(=`lo`t<=I*Y-L^1{Mh zYn=imL}Zbkg=08sy=Z|%Q~$|bk(M|K4cRT4#Y<1~P~3Hk5F>#vyG5{%p`Un|yKWJK zNWjaQ2x5_53W2+t2oMtJirziV-gBw<37vtJf zc*NO?5D8LW8gA*Lb{Hmt@+f=arYeyz^-X>1z@+W|VTe6DDRUB~gB;H+>NpxqR!467 z)e@xxT{2K4&yNJIoK^|bfn{dh)T0dL*0W3oDx*zTeuPVHW<7_aaDJGh^&%3c1KVVv zh&B=D*2{IkNpt;_n2hgg1&GvY^Nybajp+6s@q@#q9uju*eg{QIkUt=POP5HvZ48=+ zoOFbQ!AbGEqY*Bt_p-BZ%^a5$8A03?&y_U~Zk67Ad@%nIpPH|=zryO&*C`AHo?w97Q zLOJYe^@)Vp+~3PCH#y>LnTZ71yu@qkN=~NBG~AZ?<`I3px6M`bTM4WDxf;h%W*M1xU=v%H|!Y~nS-U&|}F7A*TZN6ck1V-?ll#dd+nH+XLRj+w1m7S>vnshx;&xIx@bjH?^ zxvLc;F7rFPMC6#mr6Ce$^GIgSS`e`>gu6+vd@r2|pld^l_a~fOjVxx7H*bSefVnz%HWZdc?#x`Yfw6u<3A*w;!sjMp zmL<@9t*eHUr#Q0<@$OPrwYkmx z<_?pJjoWHC{ME;8+jjrvRaXu7#g}i}c*!{KFGpeNAzMADJQh(r+1yBu>U&wqY*hKO zdc4*ydc4-oBtf&YwM2?=u+~imf-|Q+30btLnjNVnBo`z}4$~^DPb$(WI7aJU>5{`4 z*{f9x(JEwU+gp}Z)D>yTeO&_tMl^e$1U<(ix+_XVg(MAiS(Kw9trRs!Mqta8*u8jq zzUu>dSz$Iso`NIb?-4o=$J0gC&QcY!G>w-<7c0_|8b@3NveY;J)Ez~qUE8+{eW&0E z_`9UO&$~ul){+`)`#fDADp$G>X7RY&A5DYaX~)H~Y{H@`Yy}(QGc7tjiT$E#Zw zcmgdS_&A)etC^Y5RjfqJPEsN zl~ZCWqFtJ^1xkN6}xa<5f_0hU03|che5k=T~lxb{K3FUw@gM< z%8s6|$gWNTh2VoVzK;4|5@J~ltqNj_hN4V61`P|D6O<_$g7T>1QM-cKq<^BoAvlk) zA6AxwLFE}k71@;zH8#of6b(Un*p)Xgv%E>fNP;044+-DcRd(;JA8+djEE$Au{BxhUCap~Zh2T3Z-9A@pY*MBr z7=lp@F{ag0L##GKj1?7bCmG~Tu@UGGCOj$D8T>_kh>pIej?UfO-7%X5=TAk8wcR|KvVl304vfiNtywmCqoXBG zvf+-hk+_P4$oQK+G+6Om&&ilW8F8q>S$6`w*6G8YEHdZ0IorrmJ>6~VdgB%b9TfKwqU z&DI^(O3cd7LAM_E7V+%jp;P1&bUXXuAXtv_R|^`e>;`L$dP*G+*S$uZ;n{ z(q2(0l_1$Sh?lb{oOQ!VFD^JI-WZYYwWKvZ0~3Q^6^EJi;PbKAo%tP_{(V@jz4c!b=ubpR60R+do(W@ zZLP?av}UlkGa;9t*#l3(VqGAzFN>;dg6cr>i`?F+S^n933t9OD-G2C04VpCr_ZsU8 zBO{(*dkxz*su`f`Y5>aYR<~!~3l-6xhCx(t`b33E#iIMO2A_9Q1j0T(pV&tdy3SdP!V7jkT!$f~&5chlG7j>ZY8f}C zLFn5tkutMTQvsXkXf~m~poF)1%ETIOFSCZyWQZLU)ty`+8iWE1con=}Qco2mmS*~P zJ4JLLL81)Srg0%nP}u513Kcf@sbu|AvZATb=D@Dk!`U2GKS8bZqH@Di-&L&-#yHsc z3hu2Gp6#x{{QEHRASYMyB(E&ct&${|Vi9-cEy(*EStK8BU_d|~=7Jr77gxjVB&idT zHzW7-%y2uYMPpfnHgMuyDkAtb&6Qqc_L}rGYYBu~g4yc4zRHWLA62{}fr!3U{J=F+ zBg3yT$Z#rz0JvTLmMW(PitBAqq>>1fSJpQA7a2(Bi4%c0NsFw(_@!ntb1eQ=CN|YU z4cR7nPK9vZ;qaZLYVGi*qTV1`WEs5gT-! zvy9WTuvn6|Jfd`IhZ%M;e+L^gqH%d3JS~E*Ih1XZ0s0YsL$OxmA{B{~&^YE$|8kN_ z>0}xs&>R&(dZ#4d#8@QQ<`yo2alGO1uSl2U(n(mXNC4zjA z)Ka+E{$@*QaK7szTF15b;C5(0jR-ya??z@9v1~1KjV8qUL|B`t~~{sr$T<$~qd8v>mSK zn>DjcNv-FNTFQjj;)p%>-l9r=fmeQv2VobnLp$=v-W_$QQkVY$Z`6sOFC@)6q`gST4f4q!SZ^8yS^q6$>tyxzay?Ol_a-IF)nl`{fWektS8HHCGodOw z!w|z`3h`PmXK7EpdFKV}NI8bluT~;EvZeLc8l_AK!?Da=uh}XI`Ws4;LiY9Y|?eM(V9%pmom6l`k@=MiN9-ssBJCj}Vo0>|J4A{wW(-uU) z%Nj`zB4Q#@jp29;S;RVwdtw#>bi+W)pUWUWY`AIF=v&Cv#wv{ijTS=E8Apr>$-Bu4 zY~gWw3}?Weg}s{Mvo?*O1%fo%XxzYCq~6JpAPiT-^P$Opoh0CBAv~pK9NxD`y(7>Q zPUE#;3@0M5wv}ndPKymQ%7O43t_73UERxNNFPi39*C;v)0mAIz(?JB=*K}7xm{2)_ zl@YUO9UQZk3ZHRj!X_Wf7!mHH2s2__jZ&^O1+?gkAkbyA#@)}elKf^+RE{>9{HE? zBMNzlD#UM#o3(&7{~F+g2<6u&l(qJ&t&BIGZCRtJYorMEMMB+k+nmj3FTDavh0r{o z{05skjtqAeuIs;R-SSnBHm&j@gv9{F5(b553+N`y!&SB-r8^F*4@Ol&jU5Y%)0lhd zGbA~gON^-CO@(h3>{kR)!DNY=v%HTz=Dn_g%$`Vv3YahRH#NP~6#%@51&F3>J)W(= z9w(2Uri>6GluxTQg0JRF4%Iy9!@N}ngj=8e;w_pgN!{&>6b+v)^z!SmYL@K0^eS?x zki47gulTElC0Q@-WFC_Wt{yAgmbqrD*b%9UyjM700&|3d$VnXFyU})l50|_z&QD>} zp=5B-blooxBjcy)5Z{Azi0^i`q@KOBOYzZa3022}K|nhOthS&oa4I0F9VPT*E}HB@$yXjxSq_(ai>{#W9@V(Hq6{{LP{Z zdSlkY)A*`!)WupxM=&8-7zN|toQ+RlEjQ(6yzs+XMu)M;^0ISYt!1{vD-$r7tVEMw z7QxX%EoGX=5+|w9oP$C&Y>Avli)1VauQ5A#6jll3Z{m7M)g*!m;Wz8WO9)<0;t4zV zs-+Ax4%}K7Z`ch>p+lHP{b(>~iJ(UdWh@Ag@ ztv1cDR%t8V*8uwegx7E|gMM{Om56bS#9DbBq(PXCS7$*#Dmqc%-}qQHan;uTkV7hVK*H09~C7IX%J>`63DErs>Gu|!dOsVP-#92 zyko|K@H)+ofwLQxZ%~C858GPH=x`o{+hh`+TLc3*oT;U@&0|zSQXvdStmnOAx9N_x zYSR|LV=b8wA?(=sUXOyl4P!xgE#}hz4r&;{ISV11CDoF38V|r*TSzBEh_DrNnMI)1 zFIztKDm7W3r1=tj!HbX<+bj5wLuUzl?C&Mh+O(*2O4fI9`eKmHgsSDzi*_Q`S;odo zFKQHGZqNDgYmvwP!`NBI{ta3SYKtmMM1&u0RhHmIs;oCA#hXNk+hsm6oe)ynxCuEz zUl_RmD0uq@uEoT~{M1%L<5|AObK`2~a$cZZ!QfT4X&-*?0*}eaZ!Kc45-~!|hql{!Lm7zNch;$KWpp*-S)UEQM?#FrQ^> zycDv&IkV9Q()J2}OT@U_^*a1_5d|+oTI6vHA^i69SP$q6m!p-qewMI*mm@FAFLJnr zV1Jgd|5B`n{zVP#e*_@Q)_-%9jt9Ksu5FiXWB;xi;#5k(+W+`K`>eIm0z{RFVe287345DsN# zr<^9s;EY#0iVxNGOZUebP*9V>%1_%bwLLC1cTAwQM{&#aM*g!<5q?xdz*t_@gGvu<_Zp=A0;( zdaIR1Km^VTwq329eyWz>%xdM`$+XXT(=sg5v01Gw5oXJ=NK6GqY@*I;Wh-ftR8PKBGe5IX{Q#!iF!#9_$bRF6 z>immL{_9wX0n}NjZYYPCfbpVg!^CwX;46+ri#`}w%~v;+sx{`uu8N@m*^~o*l27LZ zvH1vA(AC=B+7N=q(YPOJC_r+gR0!Qk&<~~y*#Eg3tgpgCrg(IX)sh%PDCq<~<2kj4 zDR*)RR509rsWaS8*ZZV-2rHa04=-7UDFKp)VN1q&k7@g9Y@D)C<@52JQQr7uEKugp zwSJ41H$KnRLrij^3!4e}E!gfkWb@%c#=&ZP4(l>uypfw> z${mDEa$*ooU>z5179A|C!hwbo)AH@SoVv41u6|~S35N&SlS{0AM#zLkL}LbCT`=Q; zNmKix*aS0msxhs9q1H3DTR`j zpDt%>v@-t9ETJpo9Bs6l#&bC=>lR6ZWa6;&-`NU51 z38ABC5(cwwFj@^)X2Isht1M@RX1-Tv2}X2^=mC_pg9~apS&*QHNrUFWOY&uQ@?a4} zVke6llSrwWOvREZg~ki`>d7jYVR$C!4`c8at(@IjI!*@*&1c}%5(IPAkP^w%vn#=( zw+08R#!JhcE$gW}Wox|CNj*UwLX2>pz!qJ0GlgpDJEdywHq{aY$1qIj45C>-3RVX& zy4|Mv8ZW7?nW2Ic$;)xyZpZ3+veT?I@0ixhN}xmeg^}G1q*`Lz;|FvIzlY$#S{F`4 zWw{$qf>E0mYkaJ6J*(+txe?}P;MetFG;foz?-nMZM0mb#4RSb~b>mqduH%>;-`ytX znen`?T1BUmLyz!(IGRL@C>X(F+wNl7J8idrbUn*U%d_#a_Q2JdfGuZe)4oC8d4B3@Zxqbu;hebxc?ZDP%;8*u zLnHDyLvzafb_x7Wqb#w>l4rvwT4 zwjrzv(@L(B#IETvswxUWci!V#jE8KbrSwsXyA>>5281H5whNRWA2&_ zcZMO!b+I{UJMDKi(|x-vf_Wy0AV@>^>>^}$OQeAu$>|G;GT?dJ0fub0ueVdzWtkFn zh(-@yYANcF)j~^+UP6$N|J=kDa{B5Qp+KB(#~gCV5~VznC`IeSUj&t$ZAT>9pO7TB;QULqh*8iLvnW7Gdx*usf;FkqUedY~`>dY7mj6#cVn0 z!9w~z8wR-u<)NiW5}`>HA$k{!MK^I37IBTkI31ZqOTCL6vP3E3B&F7dJh{21!$ZF3 z7m4D5L%M|eOw<}J6b3oR()S3F;6#|Nw_F8Ewx>P!5ma7;@mW$0w3)%a?U@iGoL`qy z*4t$6yP?aWNBB=$tHY#y8=vA(uhHmmMuH_yp|;;xHDGH=53s z#zd?(R>d!}law_qLTk7aX|0V_&E$|-(B>P3nI&E@?Rg>gA6;9nz-+A%BxY68&4g>- zy!ot3GXZk%(UbeG7iqb1H=dKyWPI#Tp)`wo1InT2!dch5Qkhj425S*@Jz6f_5Orq%$mZ?QBtA68V z{`t#H>o@YX+M66u-}0a$MfEUi9Mz(Vgr24G5^eRnjOSZ~PG}Z;nP+M&y{#dW^f-+} z5H$o9^giD#-1eQ)F8d#1uU?!sU&OQ(M-U&i&sOKB+rNu%5M}o4^uJ5-G{#1rW)AHYV!e$L&GXHg&L>*^>IVc1c#)ejd zsx=U$V`j$P-WpOmDIdb~EG$}!dl9ai>&|o;#DpM0KnTa9gfo|#R@WPaN1Hn#P7X7)-wyE2P|eveu1d@Y!U-rFbH zv-Vn6v#f{>&wKG`Ii9e_sdw79BO>{F^*~fcgzLl5=E78-?qC*=yYmoQ;fdXOxs5E^ zc&cj+DQr=+#*Ar+Fs zE#)8QLijC6m$9{q$awWu4P|x+CBk;Xb}xciIIZzC-Z`QcPfms~9J86TqgiVNy_QGL zMd!C{ukYfW-;(aJb$Sqw+GA%N$*pCcz=Y)8bPdi_jONhyY|T8qh8rav!g9R!C~EOJ zmn^?WPm8~X{x{(lMOU|Gp2lNDb;@6KHQ_bIS>!#~Fse0rUQ3^(Ls-V+cs*<*vMu{m zFw@Iyr=&W0DA*8=!)ef76Jb09s}4ONLYU3P@}O2*L9e}Hl@a0kTJejR6&`oj!(MA; z)9ZLtE;Yh_DPCDlTFqaEEw&z9|pZHP3hB`=vusetIH5O~LaJ~jUzU67wH87-hY`oh?4JjRs z7GeE{WNB79;N;tkxxlu_Cx7wL(LOwGHCCxth+5cG7 z#U!5@nG%bUvqL#;8^7^lYCi$hu)0u!X$840@>q;tl_#I9W} z4H#uvd+oR+_MK28)tt!dc1Dr1tlKEnIb%vHY5zk@7mIXepy|A@f)>V`vXqT?m1xj_ zv8WO;ZLxKT9JOh?+4efwD9KGpj!+i{-psZ)*QT!p{v9QWwDX0HgeOp1sHE6 z+n_zvND@`Z?L*ngVUN-Uo{1f>C5{S3q6Se27V)&}eO<-HCo6&8M=FD<)dL8iiUo~`bNNeHe(`_u(mb3Z1&WP65X0KAq?1*Xm6eGN|(pt=1$kyZtgUR zXJgnM_!XABI`Plc?VRqS+c_O#>Fzo=4Ph4%I7&Pi)!4@gg@CROn(7Ka$n5c>0U-sn zS7Xa2BPnE)CgVNyjFK+cmZ^tlg~9>Xv$0LxY9un9GkKTOyy&EuX|}A+;^p)b6JgiKhhB-@~SH7(;Xfni>E63~RnOt_*xi#?Z-+M4kwkSVh)2|{r! zfAv!rWZ4;aysg<~Y6g*avZVPi$1FQvc_&GbykkL!Mbztht2MIp?sHvvs00YLY4VH5 zsw7L!ct0FV%gj_P=uO^e8+x9H!K}9itKBy@Zm5=Q0-*F_Y6ZLef^!h?i*`=dcn{;A@ISV9UuYSPw_tXwnbQ+0x; zCv3zrC!Mrat7KXLv=-QSnw&Y!r1jMq5#plf3*h?PG4(UQKuT>6U&jhIbbr_xT-HIqmx zZ*$kpR!l)9E>CdkEg?>4=Z)J!(CP!@RW6FHnkiMD-@|EhF$$3z2;}Fg%_1x08VVRr<;WlDzU)UNsK&L<4#r zJxsxb@Dpo-h5PB((L}}c(#$ko6Kt(fF=8Wl<&qXY>7$Lb;6+HYWn663-Mh=3&1Ca{ zuC;@jQX*8v7^HN9+Rb3|G03`vB{4!Psv|j>;r2Uu+UihAjU~N_Ae-U#y4gC;_*5Ko)=4Xt$BB~GN~P{xWt=^hQGDanCa6&eA5 zN`iN+^^IMPmCdLTu=`zDhm0h@rZ&I?2En#>%-}Y%TZ!z|wUHqRg6oKy^={zR&sh}< zLAl4B@?KS2d78bQN=kk6tj$zO4GM<}iK{RizUXnRaU1^h<@o1iPryIh`NI$L|Gks{ ziTT5iVrw}3JO06vKRn0(+`|97hre1%Dedgp3eU_=6^Q%!*}yPC-|Q)<$r#R zr}EwW&F|-bzKZ|$Dg3tw`2Pm@zvXh{F~j-h>o%_%-n0MmZLizhcmi+q*|Xsrq50Uq zZMktdY;V4%zVwteIA1S>?geul`RAVw={++1TfF`;hKj8H`yw33X zivZyx!x!WAJMl>u?_Y`6Ux#dZWVng<58+og;{CVd{Xx8b4u18Wc>hy)|Nrp%8hrEj zFoi$DUwm1+t9=!e;UVi|ue}UH@#OqgL3VZRs zhhP0JJ_+#p&-naP@w$pnUV!&6$NO)=>(Aqp597C=iTD4B_Y1t3N9HzYm{07k~W; zy#GFY{#STi#V22fzxMI^hj<;}^)SBk^?3hb(ENqrr{R+^e)Uqk{wL#g|Y z3cP+EzVi&c{v2MPgxueXZ$1_8@4@>=@cQF;y&K-VF#IIE|9iytAb$HPnC6G@$-mPcO^^JJ_AU-*R*MG$8^?3a!O!H>E|1P|KHom_N?>`6czX9LbhSx8|C$Gg{ ze-ocvj@R$UC;x}{ugB|Qy#6#k|9kxE>+yO5pT7mK--u5>3-A93@86Fseg(g}AD@30 zKHtFm2l4uBeDY=Z&K|t~Tm0%1Pqqg|H{-8ggiqd%*WbkJ58(6j_|D_-{`c_yNqBuSUVk62zl-lb6|bl9 z`pfwK?<0~s@X06Qlh4EVe+sY9#peOue+B;f7x@0~;QbHdub+y){v+Q16JCD;-x=cb zWBBCD@cw1^)d=rTcX4_m=!C(Ii@85*i-^O2GgV&GZlgH!r%P{5L`22Br{~dV$dwBo3_|B8? z{)uSeKZ8$><2y(3{_F79U3mQ%eCH2P`nTYdAH_HS7@sWh$tU9VAFL-}H-hUomUxiN|gJ0c-*W2-WIbMGkfBj8N=ST3# zPJHrM{Ptt;{tNN>AK;T`;*;;d`zc;O2cLW=-oF6f{3lH9&+$IO>%ZZX?fB+b;`Q6{ z`2?>Y!YBWQ?|c@f^XvHJH}HA^pL`wO-;CGC;PqGW`8K>h2Cu(^*B`|+ABVa2K78^< zeE;eA{3-b4I_ouj}~EZ{hU{ygm`H19 zeEvGPUKl^z%>69aXt@!{baoUI$rO=>vQqV z&&BIsV#>Sm`qlXBvrrG8jKBUhrt^Hf{};UfGkoVo_~cLV{>6BI8n4gCbiN6n|1v%q z;r;9J`E_{zZoIz<@85#=XYu|QG5v?|{#Wq%8}a_Vm`;dKZiD*^!<+H`0{(gkuTR74 zJMsAryza#7oAKN4#p@~j_7Cy-$Kv&V{OVr(^%=N&a z+{EWUiT5wYbbb_neHT8z8n3^C*AL*Y*Wmrn;X8ki_wT}QZ@^#w8LxAE{@r;03Vid| z;d){C8~ElE@Yg%=*PHOyhw;gm;yd4h_qXHqckun+#p}o7``>`?KN&f`1E0kBtAAO&&T_-`0H~qwI9Lz=i&7q@cMI@&inDrL-^!R@c#c{ z3V*@x@%b;|n?H-s{}-RU8LuC~CpY4o|Bmmx6`%hLJh?D@EI#=)eDWK3UBT-%#PdV= z)tBIt-^O&l67M(g`N!b>cVP-g@p=recjEOI@SR`8>mTB`--hqc@cL``{1foaPsHmF z!Sf5lEAja=QTluF{xk6U0Zid*;Qqq!AMrlK=RXDa7ltpv`{S7M-{Sq>;q|rnL8fzN*)uYZJTz7(%NfxrG6UOV`tgYSGR-p6=<5B~Z}e6qmnFXEHe;QdGN zoyX$+XX5oNKKWvNX9wQD7O$5f&RuxFioafg?>`x@uf``|h1V~@C%57KGx7ch@T*_K z`{&^GDyS6&#t44-euCm+Q7cj7h1Cm)6PFJPeZ!f=UC z&cXGO;VpQ55B_>BUf+h-kKj8!yzk@neVE#p*5q$DA{PkV<)zk5QjMq(k@@~AI!0VUd^~dnr@5Xn&AFp49&p!p9KLGcS z39HW?<|B*EH*Icw97}S?Y!;{q z53hgo<=d_r{`c{1+lC*4DCoxH`G7?7&9m7zJ7d^xJeq_v1(5pPhxP9eJ{*D9A5GyL zn9byE#P%b3*sfr5;3$U?dG*KhUVUmxL;c{x`+&h)btE548EBte&_5AimITaCRfCZq z+C4Mr^rqa(}rhkrVNk3Y| zB(rYK1N-qzVis)r;d>4M(67=9ccyUU$;3~;M*s9{7Ufkd7miFa^8m@I0*E77oV+~Dy9E{eTk^i4wyl5p{(FGj9lE9Hwq5Y;Uj19d3A6Xd@gnRpACuO5pPh#j z<&kf?@c=S$y3Di!pOg1B)?>49&Kh{lsr|gXFVMWWQRjSj4eOabtmhkg5^0Gq`ttSq zm)I`AmV2@eEH3zOE5xgQuh*e(&-)Jbs(zPK1hEGG;=HesuljXDZqlU-pGf!-l_XWp0CfI_=zr0TEBO95rm6m(^OW8Rl&hKpGM$2`F%5z{r{ zaR1H_%;_6gLCFR@z{nfaZB2T&&; zVd+0HSU@ypWw{V)(I;^lF#xsq;;GC-6!3pK0e$wmY3hSfH0{o#)d|tjV-91!syf

0_x{8 zJ8y@i{!~5n`uWUK#}mGYh-bJI0U=RdSr8G=)J5E0JDWiSKQA_bbbP z9`*={=j!R#tdepK^?7>oHSH+RO0Q(8UjfY{?7Rxg{dhHfQ@uRUjP&_B^qQK_x6l_j zOF!Q{U!bnDP2bbuX z&^iy_{FckN@p5KjOqt|5N0Q{JYlNvko3;JKHQHy7HzPoElTgxgbuVMT15sjIYf-(T ztmiRVn#-i0wV`Kux#~K>bUHeZ4L4>N)PZb35!W^(E*r|fQs;WOIoAPnY`a+p7v()) zm$$dMyiDDXl3u_hW$XSE&1FfwC$;umc1cj|i*$m=9SVhta6W?ZLSjTO)n&RQDrCwK z1rmL^ccHY_LZRDrp(ovHH|u1f*z0t$N8O55+%A-OgD%lQ9RxX+Vi&-Xne*SIHtp43W(yW?9 z8Dv786US&%iYa~&Qlw3(iA%31sx_aO`iEHRbiRp+U!0eGw#mfwKg`nCnoN^kLym|{ z%Yg#^jS0xM95pFuB@QM0r>-IsZz%_VPANkP|D#JValP{;C?yLM|EQk0NpvAE@mV)7 z2QJggk4gVOUqF5qT&{~S>6{me$kuhJs3+(`>e>-h4Wx?0^q-`sZ_+8rAt9?Z_)YDU zpqQuVVoa*+3Nf@LLP1a01sT)JAfXe7+1c6MNoHp@Gqaln1d%34ejo-Aq=-_aN|z!Xq)Hd1ih>|W6{Lgw&i&rJ z_wK#ld2ePmS@(k77R!V)MkQ;yKfuy2yR0hU#SZV9w zQMMmfgKr9%N?E>~$>!gVd?id1QMvPt9)Cm6T4YgdTx!FgA$;4jW&G}y`Jgp^ub&1C z4h=Z)s+mqYgY<@tCA3X-Wb_*u{!p@66JpFWw$*q84(c<9=eJFY>ge!9{g6d%+7zq& zOi$8}1}dp5?@2mlz>=(;N-)&%ENSzmYUl2Hf~*r+R&$n;4Ykq!DM&hbz>@s>oib2K zC7;u2EU7t{>MhUms&_hzYR>4gzsYycU$CsUrW&wPsdg7SeS7_q#ck1?I8EAlEUn3k zR{PpLqg}wVnzKKPx{yURXR}(RPo8b+_n2M6;+kVNyIk=^T{bXL?Q%#oUyAlCp$}bY zMEUV_<0jg&JsW>%g`}$oD#`5kbYlE{I>xd7yLe!(0sAj5127f}6 z)J%Y=%J!&^_`CvWJ*^4jWGfdPIgfq{4fXu7lJBi2>7teIarBE|@?K0L0p(CB$yZV)=7L%rXASW@{&QkUDfhNVStZ zNZoRQNVNudNFB~nw`;k*+~f~(w_&-hTh>klA$9u&BGtFSP76Y+ogjki_gQM|F6$(V z5W72zZN0(V#1V2wvs~V=8+U;CC%Y?95(&}cSo97p`u<6GD66mz;at} zI~F^c#kOu^N;<)K3X5)?v6Fy8?EWm4hbp;NMQ-a4u0?3G{}K)ivwtCD%>FV|Sz`>d zvyqONwuw-%yE$d$h&;%Qe$H6KpLv>+N?!rM_)sI>-B2@*{I)sy*qB+7nO`wq>Z)}| zJNlp}!+Q7=K#O{+z4FkGtEQdR@WPIx#!mhJ@mp!b17!2E)rOoC6WngQk=9HC;tn=@ zp`G^IDc!z?kS~$i4x*>=Hf#P)+K?@Owt?`&jBxsF!^f2x%a8BNK*||47}Vsr4jkPY z>#(O?klShG`cpxU$W2IgreTm>&}8!iEKSI^&&on{Q4`G@K^luLl;rZIjFaO-L0MBU z5R2PW8c42ak{iS-)z|IHg`p4{`iurQRt>~7b@}#UImFM_D!`w0ZF+5L1uEIDE*UF& zvb_%dBbfd`x>G1!&RQ2p$5E_~+F$$!A%A|SO$1zR)HL+Rpc+7B zmoU1z^2O)|wcTEkd%af97$=C_J2+spoGFTI%mEyHrnJXioMfzMipR4ATL&N$8G@td z-PuYXNSE7##>wC_no*o72F2b3&GD>k9XZf z67nlX!qa;Ec3n@SW_g+oxbzs|v?@3;!x$B?QoL!?Myy=SvsVbK zbGX(%D+P5vqn3fKq-<}oFG`zXtf3k$v_{=n9_T$2AYNn*tGEHe^e0;vU@tQ)B4%H4 z0AgEe#FjEzay`A7LR5=Ct|oVm&S+O6FXCcQxD?+!fbu1+Jh*hqXQg7f93@;RK2s}> zmM(P4)1C1si_$f%G&-l;lbXrT&gFZfdk_Gal?a&CEtiQfpTji(Y$GRAOI^{Rk2_C~ z(XPW>(ik#puMwc^@mg6_G+X7;Cu*gwj^<&mxK>=}b@ljDkVUhOHpa3nMqG zak56t8d(@N=U2k*c^+H6ktG565(8o2d{3_&=&yfd0kcyyW~d6v@@1x{X#lG#3|q@Y zj?>s+UR4r+r!#PI<16_&u2-F|@xpM5)f?sR-Ct-3YdBSKzqmlE@&+5%8%~puZ!r?4 zHs#yjKd7vfD`NdawDEEnJu-6y{VmU@ zS-v;eXsAmWh0ZKxqpSmzuG1)?2bh^;Uiw&@*$f+j&bmW5jR``9eI?gA##}C>ZDh8V z>z*j+;iE$z0(=hxcV^l6uAYph6<>(iivt!mJbH5W&d$kK3=4_~W>Ecdx&N3qW7D=(jzEd3dIjvY@ z-zmB^&gW{RSVN@f*7!AxNwJ0zL)N%Rv&MIm{Bu&+*&UPomP~^0sah|I1n73ToGY|> zLoNx%xr${a+Bl{qUwxxVC1SueEGD?)GaNfC_n$H@8U=v8o(zL+OqyW?s+;8ZtUs~) z86mo-+`>{48yQl_QEoF5{BGk81yyF1KM)9Sw9<3BLKZq zptRDwiE-#;0U24@$d=}0I-{#3A?hAYR4SKJG^K@rKWYMorErn`sB&p$r6Q*?GP2wv zZ(P@`gS(LVpe7UEnNUC37Aa@z$;6Lna*!}3$T8m}%r~lHA%0~6j2_b@t(Q_u^GbI# z_k)NhH4*46Nn~aVizxenj6Z8K(r9#Mt>r0*_^T!Y`_vO?bjc&+@(CDMI0x@Fgh3ke zp4a5zL~OdeQb(f5mo$;+-bo^5H)}1P&V$$AH6d*&EhZJjw?nfDwW?I~RZU=;Qx>W+ zZ?0ua@x&R#Uf1NL5tDPnrF>DYN$cn^_y5_OWFhcPP2jpIH7(|=u3NpWNl0r$GjE!e zos)^SWSE=X9k+N-6PaeMYPQF_8y=PWK$DZ^@y^Fti1z*1-c5)qI!4y71)`bHP(Q!$fuer-{Z)Ip{s!hWnup%2@P(JCtG` z;gmLy3}w3WMY*Fia-Cyt5#%~9(lTpZkBw{_-(#N9m@2E(RTKK-E(=-Tr4iY(NK@iy zc!t~!d3YWfo4Pr{g&tG&vaDsu?gG>zY)`1zm{siDs)~LI7`04bB1iaUEF9nN6I+Pw z+-3_OD+{2Gf-P8qHA<=m>YuZ>Jn`f;;8sSClTukhBvp*wa3h%4hz3>-d9~$d=W`i3 zXKk)NuP?!)rM6|6$oo=^**|BpjDcgFlcSKe1J!q%hV)`lZRRX$rrH}{W(=V_GeInP zy9B$lrH*23{$HAe_+>#_39*$BhPJPxu)`ofyEY+P%654|UZFZ!$y~Y|YDBPljq9UC ziI7>YyDTq5nd@lexk3MM5ahjKsbP+P7~a!m=Cb?%`vK-OEDEXBn_cHW^S z$zx0XlG}SGd{>jI^n_4qZzbPv7-nGv&*zC8mnfhsRKGEc0Z=_Djl4EYXF`i%Olp|nbLX*2YE%Ui1JEfJ4?CIIr zD$lPpSxTo5+r!A}nO#b#^$=}*Z6K}G*CSslH5)FXNgK*h#O7u)LHRDMiCat)m*RS+ zs=?8Fc~4}PDso9pWP|$3>lC?eRoXI|G-a>}>l?h^p;dKxO%hgObnly0sOgke)C4Kr z!JJX36Oq@9obdbPQxbkR6FFA+RdN?aLR(I@E6E1iSay_OLFg75Ib8MS*3uFXk_*O{ zY=5>;#KTKg5m(1nnvT8L2Q2}yj*>inB$+!t!qz)-+_O7_e+_#!YBWOAcEAGEW*gJd zysf5L8L_o`nvP=q-jTb5CU<;uHS*-9#YI?eXHD03&FKpIQc^8;)g$UiNhljS}mWqdriG~eF@8KtdXs)Ea5RNI9uxxAqX9%)YmJESRI+pynG(hx&B}9zZjEL3DKzm-61p0c+mFKc17&_7I zcZu@-T}xU?mxD29N=?ckizkwHNbKmB9pYGdZ-Vbuh2v@QU-Q;b}9)0{QpM*2i(|D4^!=i0_p zD&;5uLCpRtJ!^#_O_I*+AZBLwDyzEvb4CX9Yu$8*s@&}8m?}$Wmtl4ZZ7b};ci5+x zOFGzi?JB{9wpGRH9P`X^1KnZz=Zwa|Naoh9a&X!b*?A1 zz;$A|CSM?eGk*CFy=~{V#x+5t&h=F0n%L6&XN!GGQ2V(`FR`U#DLSJwn33M4f;FM~ z2@e{M&oW~CWov5`H+!suiz>rh_><6 z_(5O|S%_#a%SX%TTgAfsCz4G#2v8j7V8L)e`mRiF2n0W*@EPC13a?byG=0X-)REXVWdcE8D2w1Vz6wtj4 zS~{TQ?9714{;P39SP3~fnEk#I@0!l?y-ocxhqAAv1FDBnaIH!?-dYDrpJ# z_zFbW=PQko)np##>@TIs4rBRVlWC|NqXH|{WXk1OX-HQ5)E`=HE7^!?p9`bWEZesd zVa72AXML)(vc1{a@wzz7w1`Fteo=2Y4|Lks!s-Op;GOmHbpdt~!{FPp`7|0*L25CL zl;ztt;1|n?Gi}D<#q(`~Y{3xtk_^+fMZsrDjgRF^9%jjfgwij$vYsz#sPhWf&Z{v)q&IDN1e-?;8K=2~qR)G{x0%fKV^L z@DG&oi24$`P2;hOZ)p(JMRp}*>Q{uw&K0>-HW~mA_@{8&Ry(o{Za6n- zl|I?{>Ky9^v%@q5EFK_|{VAs*vE7T1)LNYy7XD#ADktkKXgIL-aHO%QA<+Uwb5by4 zjyr}8J!(t2nBht7h$LDd7zP=(>e3QPR^vegUvT3jCIPr61JQ73=u)}IIzsaN!oqJQ zE!4w=0Y3$|#qvUMZ`R`-N>4&gVq}mW%V%wCMg(@NXzZ-<(QJ~lFvor>ImA#NP`vR` zLv6_@=&5hRGwm9mW&pRF_2f#gH+J2&Lb1iz$>m&@Bu?W-08Q5e%e`)JR#Gr4Rb?5<=@^*5GB9D(o|c z!Kq5+lF39v7X+`PHC~oed6->4lg_a%%lDj0L+!vQOzPNH$7-CcNu7gu=6}NIhb-Hh z)G_8qjKO#&Jz6He8SCKP#!Ja~aiZ4ytnrLt>yDBpJZ^tlNb$zA1mI5?h-Rr5$9McF zBL>5hHHKDPR*~l(EF?cTfJl0AIT`yAW8v0yM8RxXimyom(Ni>{R$SJhS05rwzhZ4( zTuuQGIgqMpn^Zol^u_ZUFg;CU$|iM@zg{3?tONK27 zQf(S3E7@=%{hJD>cc+qPc_X_5`VWIZDcBz5P#V^Nk_&mk3<;-jWcMg3pwk#sUpa_Y zDPW?lH9lC03H->)-{y@FGV{0>p_OAd@)2h;0xsQ?&qjF|sBEWEv0T~)?7E+DIiG{O z=h6iEHA4ck#JL){?5J_E%@UWtbrYfTPxb)cEFR)tjDT6FXYHa3JsmE0LT zCO+b7Mg&aaRXZ^GK_ez{`5h++leJi`&%{Hl%LsIzq8v3111_j!H7dcFDjVXRq8(aM zvn5#0J<0V7ZRXF6S$?hWBv!8LXg@$|b5p?0zPM}Krliybnz=+KSCqqzAw7t_)rj@K zU9~0{C+F=K03i5wO|UsO+_>H$<47>hTsR+9q2ex0g}F(;2^GP`Ci1POuh$$2mu>m( zJ9SWSucly+`BQ+pIPcg&)%}{PT?VX*n&Tl&{;ti*hl|>#itZS%?*>N={-kNxsyPjq zf1uSI=X_ifxn-Kj=&)I*+)I$3Rj$m4rl+TvA@wC0Ag3?)f8q6Qo2SSMD+yZG=Av^a ziJV=9nI$K!p?o=V?`>DroU_V>n?J%jL-I(i&gLwCl2a$jmm_g}IE zbMB)l7}1J3I*W2cQ9jCQL3^quwIwI4OGPv?hhU-&PLO|qCch;o4CSjna zp_Fil43gPMNl(7k9k1x1&1Y*WT59v49-2QLp~;@mN=rDhqqFwLkNaektaUI6bva7Y zx9`C9byeh8Tt`O6C^?vxr1Zy{($*^(^_=iRfh2v$Y5H2PWTdaDO8!Jsx?RhbRs8R# zn&iC(D7m4B{GX<6@<6pUWxAhfDqBiu%u!Esrn^%HjhTIgO8mJPUO!J$&{AZbRgvvO zQILpY2&GPEYMRV8{-ns-RV=s5eS_gZ(6fys>X*tQl$EIO*cje6YQKH=9W!xiX6(L` zCQcnQadc+Xq={q4k8{LcVb-=5#cO@RJ4?fx5IkN|l}e?rS7w`2tpN)>e`f^JDaV~! zmr937ApTlji%XmP)GgU&XpXjCf`_adj4bDrL0Wq6i_-bs#Qf5dWD@FK^Z}l?!laTs zR|@U2W4?ZHv{kV+Ic4lL{q3sQZJKDQ(3)*>NZyT2;Cq)UI4zYRGx)0+88=~pntN3> zEtw@4C!;9|#NMxp9oB?dWY?FuR-?Coe(l)$AtSVv)v3@Tfy^k#7{ZR=KWT!SapRhN z*y||Il9Ngr-^VqvY3WVKHxipn`6*5I7Af}ap3`d%byvmPyju#sFdsTDmhfst#siQL_VrzQ8GmKeHn>whyht~fV+y7ziO>uAk7X~R;ZI@NWzm#wQhplO_@ z>5%!aWxb7pE-TZg&T`$nq2ogPo|^WF^RHdD)|%~>nXFv;>nNO{DLin&DKyu#WQ%3F zSe8^z)>Nl0zc$&X?rsN|b&94cEiY_NmDp2!*FK#AZToB5=D!iE=0598uXwDrTnU8- zX$tqApGJ)OW6&2}pE*=hmzMW7w5BZH$qKz>A{ld$PS8~xH_d1&r_E0d>kE6L*_;F@ z;R-XXm{h${6&7yS^iNs<`s-W8oohs(F|TQyuQo-p0FPCANVldgZQ|LmP3!7#!a_E? zRiZumsNM`s-#+tWP|{~^Dsr5tr0HA$bqvhO0dA(IZ~Xk!v3_@q(m`sPuK9}NShg%w zMOgR>-8OdBYZUzW6}L37U@iYCt(REsr9| z?O)O072Hc{PV2e@*h!l1w3X0?^|N=!pn7vP6)h&=K}7SC`_I;sBs}AO=WNjn9J%#G z7{80HWR$d<-A4ZGti_z$Rh2W>yvw}?){VxfPF~a0V#1WD$xkOt)w&nBLeqmy_26>g z5)C~@;S5dT*w%WKTSKD|zi}I_q$x`Kbf~ztgexosHu`75Q+e~M$=a*1) zv8JfSP^l?uH{WrhUI$f|YO2z{;x_JesFT@?Do3cJ-DyyEg{G{jH(>Y6|Bw#?_A$y#Pl`%deLX$!wT8_6L-$b41Hj<;`~U|Y0~PNHAeM5oogx6qrH z6*YMi81D~-JdayZ>OM<6+NyinQokogp4iRJkllHE$O@r#{}-elZu*Jyg)MDVN*CN# zzu&cPYKQ%iMvr^JQd%aMu4saFgBoga^a8Af5iSoY*6K!cYH_U5L)Vq1Eu%E9NZSGO zT7#zS1XWopR9o{y!z8!D^b{^SZt|4)66ZV{b zl~(Cwp=47?pJb%FHccBzQ^ZG`m*q2%Jjvz0A_ZOh8eQb`Y5TcT)Io`PMI&rOsMt?c zk(T_VsgU_YQe6&I6{U@Ua~xsm&p(lC-_#_{fd-?eel5k&z9p@z&l)OuF$S z5oyK#w6z;eR@>+~V)H_7tOyRNLhdn!s^g`jQwF|9qRCgG<9MUP_0{=OA}t~xNxGsX zd?-0lwRu`#Rx1;B>aq1re^cdSzA;*qI6>LTWVN&v=GGMHHavxGxL>Ocl~}j7U?qaR z?ljh#)+bXdI$olSZq3ulnrXAT=9TD{`~}x3Z5^itbxBtIC2LHZAg5{!1{>Xu=aC)L zK7+QRMz`bzT(7k64lOB6vgL)WGc9=QI#c`hC1l04rIY3q==Qse>yq~UuSr!&mb;R* zrA_rzZKe;WdEnJ#yR_w!W>x6cyN>IV_6fXcWl8qCk@cmeK&rkp+ucmIOPhx^BVM=L zAGjWAnPXFml5BPd>q?uos=B7CBkNYk5?(oU!DPg@%~_sA4U*O{A`#Vza_0v}&cz zu+-K`vD?#{f|kdcU><@QqLS7BMbnYCMyXaJ(MHc{;?q{2jCfgb^A|k7K2T;LPrF+< z8(G2<(^h{hz-!cS9s=oq(e~drimz!pOjR5W&uJRcR{1<*gtZ8)?TCI+6PrEOGg<(qk@@`!}pP`&vn$wlRC}7y1)` zSDK4EoJslj(y%nnL&(*9`^P$oQpSxL=W)1>IBcAb)>+)hEY?nuUR&GK#I z#ELqHKQITgJg7Ec+a9vzzB;Q=jh=afG4CKEn>UuAv$?w!Hhbr@Gv@4@_snu%3v40@ zI-3WW%?61z+q>K~rO?$=E<~SzVVsAF&d?@A=zJb+l~1{|X5H5WK2NmBClI0Yd7Ako z_ad=RAsTc**1kgH* z*O*1JC5XfuL?YP|2CQ>wgM=2ohL{oF8ErRB3}1D;&SViI$X(}7VWI@C#adyK z7PXdSCf`l2lSt|<_PM#sGDOA98}uP_N?m|%mF1aBvY$@PmfV4NMdFd{rv|KZ_zrWx zou-kG$Y(|K(6n6K8g|u>&8=P=2+qpjHgQZ4W7_14abGbnUsyFE8&MU^8c1x)6gg&R zL64a?&i1~`f!(HDE3-V&f@FDQVn&}Pdgy$Mo*|ny<>YB_g;@RSCa~U;MVqf#EwGk1 zOk@{>CVM!`ZqXvL2h*G@VA|WTXft_ij<#I4k!X+YS+JY!TmB((M5jh?CnLpQPg>a_ z=(j@1y+#t2-*q>W4f-P>@TwBjE7OMDItk zGLfj)Mzu+&l3rSh(kj3|H47U~$ad3lRRVe~-9l#nkW*1}_CJA~CrGdFqDG=yUpM`5xQ#28 zE9KgL?o$I`wm2~}*RLfobHwPpmSSFRH*k23j~y!v*kH9Ru`_K0&`2T z*&YW`a=)~M;m$Dn-M?j2cq>#RS&dw4#P+592Vwjahe@QxE#LKU~2B#VMGFlC78n+n!A~a(=eC7(nP>rmaG#9 zkh%qyW9=z2rpmKQRrypB?Ms9|e4A*vOPdajNQBO3W#*G;4bLT3B^rq}N%Ds^SbK_$ zs47nHSes}hT4VU=NQ7>U^_WkhH9Y6sfM_JvB*`;3V(lq1qN+I7*pz4_T4O{bYYb&R z?gB;K(MIQ@i4gpAOXA?JIK?o%6^653)efWO0nKjtDuOi*&pEdt4yqkI5jvmkna`S9 z#28&E_m=xyTkJ$U@C10Y#uM5ifa?0c&-&GS=y=5L#6TTABCyV3G;>gWVeHtc zj`ne+UG)Wl>3a8Mz3z9;x&g=giYJg_H(|7Jy5`BO+5K1=O6ZWwUac3{(FLZEb~OhX zU&rbU_Gboa-S?g{b%JB`gGjqtcZ1V4AIh5DY`I={NH9ks>e;h7uqgM;)mPSFi42QU zL+ajgz9@bI0?>Ax@K64~jm z#K&D&RVC39cKxg7Wp%=&*GG8$!#$ZuD}H!Zv4~C&@S> z7U3n^bQvZLdomVd8Ls_Z9_{krskJVSnk;EVEFs58d*y4?ocb-I?lA5Pk?o~UO_pI6 z?trKWFkcj+u>?ex9|(~sAA^V$H4*OU=u&YXMS+a(Xfo35;aqkC5vyq;+$A5EM&7!q z3li2e65O7ihPNN^0e&6EyV2OyAN(yNS0uXj{H|6JHz2x#D)}zCQ%R1K1)k=3$%f3y zjXVjWqBClaw2fI>nuV&?yG5|jW{h`Nj9oScpP7{}balt4I3Z^XmXqfD)$a1FjNBI9 z8+~(zl&xBnViGZKt`SCx-<91F!mX8j+*5kMwoE3?d1~fDZKX~-u$Z)NBx2&%-e8oS zSwLEVgaG*p;<(AKnn~PD-!)0U10Siu-R}|(d_umKbp(tt0-UdD7-7r@R&&)Ot{D>I z?mEz^Z^^)PyY@gYKCgC!Gh_3_PJg_#3D{j43_63i36sFZ>7w&Ke!LZxl{K%Lv`)U# zmI{A>;Y*v`qQjj!gXg^(&u^R3b)GKf&n2NZWWNZxaD80kx~wT#DHr6{-a=ROX&mLB(#i)hP4YYQ##*_SkxZ&X&iW^q=NU}|qHAED zY7>GE%ZQn_;yPkrj?L7xs1Yn`8DoT8cUiU>%!m#>Ke3#=m-wjmTJwsgcu)Z!bX8$mEYOKkeyjBB4NzMN9@XoC5&Y{3h`lkQ2C2SWx2SyY{1bK;WC^hqjfDV zmJUF+VF>)k$Tnv{oR)e{BV_rH4_c#3NS(!w;Q5aVJBMLtFG=Gl zOA5+7BtC`!La!)<`Zk$swU`fkc8<_GlYPQ#F%@<;!_eakB}qOUL%pW(nrroV2eHWv zq4XG6+w1X+d6F^kph79i6Jez{G&Yt8S>-3U3zq{~uIE8M;t)naezDKH#}Rzq()b|j zk?ZGV{B%tDu2$H}dR)k}hYA1D%*M-l6wo*Zp~31m;+16glEdpi8ZRsBQE-R$2)Vae zkC*i%A>U&p>`*V?Tb|{4;eR!XaP%P3YryM{5RSiNM@Nz#huK8vwG6e*D3gg9ju}7E zII7dGIc9|)U`xTfB4L6A)u zvY1IAX1W1+5seDQm7puc#dpgKk)v5Ex?0=;JixIGz~r)8EO%My5zMlf#>JXkdYIF* zLTDn(_a>JbY9B_yb8v&Y(+!u@I9Z?Yp&Gl2Rr#E2vi2q|m&|du=Cd+Vav%JQ}ZZ8*eO+gsl%JTj8Qc$-u3bmGRQPr}% zeB>tbD{8#Z27yl#>WzM3R^m3m*Yw!6b=*wG!9Rl1PFtf5zoW6U0=t6yr%8mKWgB>b zJqh^&BjN25(R0yaKDe!>akISLLHw*Ntd`>1d*05NWf_Acr(ZVadVzaQjgXb(xR8rx z38UF8-Ai&5&=Cv@DCKj$cdgTik^{M*D3o5|2Jk5{=rsnRCHnK`{_hOsUEkGsS$?J9 zh8n-`;HrCmm4xhKBvyLs>McfbC6MbP2b- zx0cpW#APf3fjOD=X&P$;z#wR<$hFL*aV{GQTd`uZCu2`#Y_Oe1J|9){DMmhBqiY$t znj&Dvp~89zwvcD!h9Z_`5y}@~QY$0p^BiKYX~e8~nFf5rtUj;B zn!I^gB6MAbBFyGz_nKGIItuaXGmQ6!#?cD13T_$Gr0uN73$sbcJR^~y%U$$Y`>phk zo)R^+A1JP7E&KSOt$r$?gAb;aF>l#Ng-v4^+E)ro*j32Q(#Tous{yC|LOCa__F~oog%#E zv1Bj&5#&sU)H{j!pb~#DMDw1Y5ekae@;y~Kh3fD>Nh@ymDG&7B7l9S7}HL=7yVz)OZ++>U52Ui%ij5$>-z* z1e@Y|4Hl`B*CzY&nOdPIZyi_w&EIRdAWs&WcmOA<&2Q15!R8`BWnYu|f|i*jo10`S zVN%=QrinqGWDHg7>6Jt&T37_-uI#-BQSw7s|if#(3pHV@S>g(+-S88Tl31UsK z=O$W|1kJ}ZnwZ(u<8T8ZFa1b(zs%E8?DnvDHzVd17K2Duzn#NzYmk3ZBaaplhYprL7k6FkhG!Ig)MbwTOl~no&qGq-;GslW?o*BrNS;{Sg@QdD^{E>zN9fj^#hL*6)x(|qlDU%-1dkzu?y+AKQj(ZTC2>- zRAe%bef1!b)HteUt zx)^*S3??(qlie{ZO;;8UMwsPO1(^}wEtF*AdA@3%tL~HknZ*((2tev8np6Yki6$E_HIlq>kcKjiYRxec8i3|g=T)9%omGhmUbwF&h2E=^O1{Vmi znXJK!PAaU%FnkQmm80D&;IxIt$@&;*mA~^cq4OTgMP!L1l8^X+5y6^bUypT_Cdh21 zk-=aW1j(EOIrm)QGn%C%YFT_3G>$q;$ zJj`}i2&qL_zL#`qsKposzd~8E)kuw(#-R~S>9~8K5yxo6 zEWdIgFPp%51WWfCQ2`yrps*3m=5D7E_s}@Gjc8+fE)i1qvV3ktLfy|Oj50I(^MV70)nX_Y$jWo763R-8IF5}EIg!vn+A7}gGyrKaUNO_B; z1nFTm*PYLFMuP&HaZ`;pLYDbXTi^HKY}o*8s0On>GbMptjg5p^m^T8xW*T~IM-K^D>Q4en2h&s z<&q3{`EnZ#iSeW(->%JUMp>lCm!ZNlWR`oIDrPp7fR*cYNjHm++>SxS2RMP z0d~?9Sss%F-t%nHxEgEp8Xy(ECc{z12qXunT(;lW*uwllZ&s0;{#K|y%DTKY*JSJy zjCFbT=Cf||?cOX;8+q-;!t)l^mBf>zQkoZVYjAE!}6CK0r80`wxGcr_aU>%4IUO95ZUU~C%;&jW?y zj5*(z@5f37_H%HM*i);)=4Rz1k|irI!Kl?(+5}A++O;cN>yEcKqB~F43R~^!LaJAZ z(bna>&1+W$v_6B7WCTSs-lxnd8Y?SbBGhTW6JlGi4liHQaa%DCUSRUihToF+*QjEg z#tlgR$HjxR;;^?VZa#h6`+d+vhiVWc*nxj*z`hH`9_O)xdY_&Xp%*X|QN;i%dASRu zBG-Y)Pcn#AWmkwZ6lFBNut>LDvo7-{H?p*A#jPoa4;p%wRBb8d=S?|O*s=^mONR@^ zX26qO15sCV>Xp}sB99H>9eKGn*PgDR{kkHyJ}zPARXq3&iB8njd9hQ(;w0aBN1 zq%0qEA!|P(oUY=w@qA1HUBjS=QlIN%S2aN?hOBjiP@2sZRw#L(BN&A3gq`L1-YVGW z8jX;(ozMoHbhpsif-8%F76);HY{d{HOmc-rzwAAXb6_yKUSnh>OoV#QG~7+B!%LWS z+^vj5+jUoai-l-n17g3|h*|FBLLPZQSpAr#du^wHj$=@r5=GHl8d9<$Z(J*s4rb3F zN(7q5Ae?_JY~@6O+cY{zm+I+3RD5}3ompH_m@{^zSUv!UGXRc+gRMDhrzzU&PK}M_ zNQ8RZj56!X9H7zJOZi z1z@f}YMfx+pz*Bo$K5P+Zr}nA zE9BoNtLEMq@R&y2N;q|B?p|R$hMmhxI8(rTFxWA*7}(f3u$N=%CpE^3sZ|MIn&jg_ zHdBJBlVv=@G6GZgnaOrpUUa68|7VT3ZE6)d;~HT+mbLk&P6m%>Ft(4%GebK>K^cAS zuNp&Z`>2CB{&6ApCO0FZZ0xm+d7ClF{i^b)U8dGu$;%~y#SZHxJ8*km<7Q1i6VX3; zP9YZv(;F#ms1gBO@_eereKou{axdQ z9v1|t1Z?(Up?D$d^G>&eM0FVb{(QbphFpi z?$C~NQug8a&3`OwH+qUgtwF=uK%rk71)8 z5_)H_7LQ&6@GJ%*5ia0huAJf_1MaUewAOP}{pD1dl!d+As&nj zvn&|$AdRM#erv#WjT25{i+JgGB6MGd1|)|kkUX>zNd;K@gOGfY&EbzO2MIhO1t zVFdX$LtrR5zE#L|7vn22!RRfGk!2`Co$)83bvNtq45j1lV;oX0XRj)Fy{qxEQZ5HE z`S-%A-Bs;7I*(l>yTFLR*}0uAq+ocU0&=?#(vCL1Od4W&1?gc!-hS5av{1LI1S0p zJXXk7HL_j?l`P`(yM*;dtQqZA%+HqFqM{X2sO#6%S?%Uw9yB@Bd zUkgybZ6s^o=zt>>%WC^A5f|gb`HA2aG%${`g@;L+JOKJX?MqqR?~;yyE~MSjg0TZ< zMl#?ZwLU&1E~-JSu|or1yQ#R%>>Pd8^2Uxt=n)J>eD3ebM%TE2+~OKJM9*wTwnw&* z<)iY)|401fe_DAfdJ^iP_XYJ|gK{5{@S>-V`-E}9#!$n}{bmbx3pKdN1X^6&fy;`e zZ!vc%y8Qf&p{xBAbbaAaH zqE;wcHUw33X7it0JD``+(AEaj1~OJQmu=t6_4GENHY4SJmV!m_>Dg!v7mSzH7^CHj z*`9W-jw@&gM6h5oq~NaKQtI_AcNDMXlaMbkvd&QUu_&#uQbUG>Th{cQe{&xohC1>c zMq+wswxai#XX!PXt7tUg(t#n9z$Yv%);yQn*V~Pm3jY7wyQ(qai^Vd|2#_<`^h+nO_K4X0j zFWE}m%wmkS;UFujZ`U>k%GNT@OHr47Bz3)_B;@^@=V2)qZ?3~}(D|D*n2W1Tm{)Vg*F@t_lsal{+lj^Nti9r@1!9L2P!F;XxkUiZLhuS1{*k z81&v;Q4U?mqknS3r^8%*m66MkEcCVS2|BBx5$!sH&SVg>-8`acdf;C*5C#NG{A)uN z88Ur@796lELrP}kYejUl?VV3V@EUjWo>aPuC{c-*+)O&ScN3qG28kV$U~ zWCsm`&|HU@Td`zqJnC=5-WAj&4TU8D+4bRe{CUPnU)9Q^KDBa97T!6?JZ|E}3(2sA zF0rAp-WD1RhIcaym+0f~3$(03F_j6RNv-yd(YuWXhAsPa4?Wg|x-B&~LHDZg z5~h!hR5`J^4zHiGo+Wq2g%R$GHN~tyb5n7Q7uohGz|1oaIYl!)7DlqUcuT;fPo?NX zT2U;po1)Q!Mw7mfvhQeR0|Fh&F3Do0=ewS&NjqMQbt%H~T zO$r~Q@r4^ZC-rMDO4$yrEb5l8MC$=VpOTW#Y7~N!v!f;G-Hd6+YBFI3Ipq<#`)UtM z(dnAdfa>hto?)RM{_GJcdsJdsnKH+%d*VN(>{A*AjLj%3$4BhD8V`6#Actw3@;ZD{G}Oj@3)M zS5i#=t6cX>o=t6qM9RP#41!f&Ew+Hpz-W8QhX^*GMdrcnH>4i=+~s| ziz#KTm8u(_kh1q_hKAc0s$!HVO}gl5Dg3rp7^W`fqU(@$eq2gkqm_gq{~TJz@i*ICAiG9QgV|-L&!5l!=l}$e>VN3rb&f?P1&gXJ!s?( z*W?DZD|bcR@5R4M(F?Sq$Sg%{wnM(@Mxv*_BIR$;$_Lg6%SQ@&pA^7j8t-5gzT8zX zyFjcVYK2z?afhbDL6qW`caDBc5SM5=LQ>EX2Zuiy6%RI4VGS0?Jtv5rH3a&mTuD~w z>5JU!<`<;&!O5ki>sY1VH(hPH#I6?HrCp33`sjFBiqF-Aqqfp{%rvsz2$1b7QgqOr1*(iW1)Lk*V1lf zM%|Jo7&e!|akvbUVJ+7)o_wZO8cuJ=i7VffqN`~JhXu_Q%5s^KxMe82c#Qy7nV}5T zFo_(amA9^~_k(u6P0C-Vl}Bfljd*cJw$<;X?C09Ia`3KNPYPdsgA|>hiG}H`JodEf zrR1(!$-2-ujXmc|0sorYK7qz)xLIf z*LRdEK6{T8Uq&mAx>?Ee+s0svCe}?#M)~m@cS_NJYDLiwLZJ8Xu#J1~kg`vtl$A+& zShoFEDf>&UERu^_#Z2Jc>RoBAT%eQ_5O{ELPwD= zdeQpuJo6mNO4_y+bQDu`Sd{i%zKXQ#p4wYfSgZ*Oo6FHlvQaXgroZz)(ead7G55a) zMLLE@I-WLm2Y;!HjS@!la%av)?*$?@?PyYdq$DPu0vJ-q=x&GK}XJ7Ssx^5w$*8l?KRlTj!K! znHH?M9I>Y0ag-IdP>b@k2Uiu?fi4WgL$Er|Y!Tv8(h4MAJ_pg(UXq{grY3~;fjRM;L2!#v1(5f(;TM&lHx_ia}BXC?}r!?`2D zODsC^x(X0SG6F#@FKh5JFi5D#c9l!+XfMRQTr%NB0zv z>{5y{9q{~)#?$Ja9_F-3Lhm>>h}S(e)K3_Nyedp>3nfW$Gv*HGzIaj$j;m=Lk!%KT zmnvb;-GuQ?Y!UDDeq$N8vJ8ZZZgB%4E-zurpFL&!4m7Y|Q)7=E8Ugz>ym8oGwi}ZB z*kKzIH?c+^p}>0`jW>c^z&jCr=(fUo7+VW17PC&rZ_Ri_ zz8T$F>2jG$HoD3gWWTGCMO2+piO;y8=!RNRE2`Rnt%gZe-r@bzUQ{K>`wT%yG6nNw z>5Vl;=o>xebiTY2FGmAQ@*YP7zRJViZ?MEp)s?Lv=Hi;t%cg^tOIe&vYOneT(GqPw-)1Ig+Pm69hh!g zji8kr>(D36khc)WC@(oq0WZp6Pz~>rQKH)p4XEnSONSe(Y#5Jf3V2Zl!||)-qU@HG z&?dJ|%W{buig(t?28+lN8_W%JPMWr>R^0Mn6Hsi>ulJT(9m+QJJXnQg7#6Gm=S#Bw zVCK#7ixlvYks3K@3i^I{+mQ`?+l1jyIHn?>iv2hd`Z+_9;$WHDtf!e6>zHti#?qP@ zsL1kGLi1JD<;@I|v9B{0I&1RwrWy8T^Yuos=^h$eE5%5`A2m`qKf_Mxr5KGQJj)WW z2&?qGy)?4cvVsfQbT8qz2RoU!te}AQVi3lp?mjswo+-*|X4v8vpDj9`)o58`62m(8 z5ZDH+#T%0nfEzIo7Mo!fd82i7PHG?lO(W z9o*n^q;?`6H4H{ahOJ`K&$C&J7ljgl=Q0r5>aiMC+nxlQHbF>sa&Y$TsRIiPbm+xP`=ED1 zlk{TP`s0P(7OW+Ko(J5DfeyWRWghfSYLZ?IyT`=&N4Sj==y|}$7>KrNuavVLIn%s& z^r+>VWc!Bq|-OuJbcAh?OGe6yU+TNKH;<`*|sHBJ}4BMVsZyrJNkY?5vdKjs@>5De8BYMi%A| zB37D!o;`*1_u2g3i)0N&?9L+4936aX+c_FtE0=O1ubJ#~UzQH9j3*unXg>x)i^P1~ z5@X&(3G>gF4>VrbDW75dy$N3HY2XdI1^j^lyWbV-`+Ew-K1a=tni}j+sZYOzUxe7a zCbG{nm+QE)vE~q0-_UX~7cd6vS#q33K1!SUR=&$Dl*$pDcx-_gcG37*>shH1epwQ} z<5;)1p4C{!o-6~sfsyg-7W8-1=v%!ZO~Bm;2>Z|2Z@k{nP{fxkLMLC1cSwT#s8-2a z0>);A{0T;Y>ne@N`yx(a5tvoa5?)&asd{q!KOR;1k<3W~X2o_D{p=mj2Dz}A%0S}DM))-lf zri9vJiqN`+`;fP2s^e~BT=;Ewx<>0v_ghX(1! zBriB5V}Hb0v}Q-4Gdjxw<6W%Lvs%*zylMRFUiK5OH3@P*L$Es2;Xd;WK9_2ItkoG0 zlig1!{gvf=t1}wvc}BrRa%w8tEDTClXp}4y*?@Voh0k;BB%X-~@*+d9XP~nX-N^?o zztgx_dj_oXk7a~P#gun_2*!*frjO`j1d=Q{btT!fZ1MM^)U_HTm_G>O3U2NFh1oyY z{7AGcW~>p&e=-sc*J%wGFxCwkHLKxlz~4-y+J#%eYdC`J#t`JMofYfTA=uocv9a=3 z2k|YFQN70%_3~H7e83n)&TtF06Ps?;C|Qxy2Xz*O)uvoyFLJ7|p$vney65!9yH;SR z+cj2}p&Z1&Orrl=mhBmeF_$w2L8(yX?CCCzkrk9Y%;htL)4D9*3rZSleMZ4bMf)HZ ztaPu&$+D7z*le0GnqUxaEby$vn8}PmUy}px(U&{WxnHAW^)(xC!(?GIj~&(PYXmuy zA($)|ojX`T=OK-bHCc8cw@ep8E3@fQRry}*4w-+_WLs6W0c)B(`j0Hxt13YrWC*Hi z9%78=KB(&B8Xc>uF66>KA#^QE_tpgz&nyv#K_GPypv=TUAs zs$bEX2@i;b-SWVFMeUWQv-qos$bqN#M?(!tUY%I7f4W=pI<4g9%9%L(%${~VRMo zRz+{RR?2RiSk@HXHuQv{=FsQ!T3PgH`JPvlC0M(fXIvqOXEo|UsI`cEYEJgvrU|b{ z<+vGZS4q+LHK{O&`EKeq&P8_#;9X5N3}WsJjZU_ney@~WMQa%dH$`3H8~Ok)IsZ!3p{7e;EZuMV`M(OUMBSvJ z6z_siERrrNk;M{%F{`~OAD-lVp0}ua$t|MvXIcf&L-KR-nPMS+!D=mYYmDtE~Ftg6=uVwi>q<{PCB`-{pB=1BKG8Y$eaHzO;T0#!2Y za&v{;*)RLH$<|Vf7IXJE(e)KAm^kI5 zX#Bjf>F+f8Xumouci-4j=9YsMHB7_48(l{lTID&jJoARzceR7v&Y z7L)m2e8)6qIC5>iTp2DKX|w%ib6B|;ZwI;fQZeS$n*Zp?c<00)ekjP5wC~0)QWnmj zGe$mlxga0abYcjRyCSmkVu(!oqz77^`=0X!ww?yV(8hH;?HmDopzU&U05P!}FBZU0 z8fu8QXFT|80Zh^W$jCb46FW06k&>q+myC}qzIT+A9H!Y7J-VY(?v*2ZaSQ(Ba4G+h zNgw?L*DfDd@{qHn{Jol0?DBCP*EX$nuf`nZ^F8hP4*QA88;_Clof?1Gq%*GRo4=Kk z7i*G{GfBxPEWY>~DVo)aVv}6ZE9JR{yu8~bmzbK1%0B+G#IDpvaPP#|{{S5)J z(`{i~;~Wiu`K6)MS8^lSqo$dP8U*pk-0>inAlU63)_;`Q==`K+UbLD~6Bgalgp_x+ zqQUTqNwSwREqkS+=K11&xj!{5kniX(QeJaZmYvxF51mBPC{W{ zp|PrI{YPCU4F%ZuX&h%_(?Q~RR#ot}O1KmeUa4x`-P7h=u7PI)C%AQJXixX14Lm{i z50ezdP0}zCp=&qrG}p&25$&}G$C%a~9M>3AOmj`qFs1S?zB(8gXctJ1bY8Z1^i_=nY-lHf(6`9+WXA+dA5nVV%xtl(b%FtmCc$d#7_6Nw|?E zr0I``Go-$&h>NzU-;=O9OVIR(<8O>c0{sNDPpW@{gr`{o67c#4DVi%FpZ>@Uey-WE zjV@l`PDsQ*WuT%ht|XH2pEAV+Z65Id7^rBA6AonZ`!Xm&n+M#Ffk=)6OIiscrU9pO zX=D$v34O#b7-7qgQ))~ewr0Qb<$H+j7-4-*)2AGtnl#sS1SDEkE!3&X7mQ;?>zTED<1|PB?Lohf8Rp#l~ z*IXXW9lJkc7G^skA*t)&B@fKZ*5kT+o0*d4bQ>_z3WDLN;LYo9W0GDFOaR`=Kt)^J zLoq3w!=MCh9`J_@RJ6r?6f?^68I+(+fM+Z`WT7GEzvBZ_<#2{2L>!J}NsyqBE`7^K>WE^ZF=3?qP_n!8$dItx_K{Azy;R|%u(?EDfZi;z$#+_7n4V8r4pOIFSq*v&U;No7CB*;+=v2rE<@w)Gs zcX8aBc)5~~*n|;w4g4qX&R_%kHSi&4F$A0fFVbGh`-~A@+iR#V8D-7Fygh`%wymLK1Eil+d_ zGaFyNhuE7DmQTrd>1bsd4+!=!9nYr-(#sIL73kf;A9H!X6$o=2V=Nu~Ug0xbYflGb zo@IJDI&acm}6?*>@E@7$xy3p=$XXVxVYCg1bKrYjt1{_#W&dmq``x{%@E6f z{YM$E;?kb~`iN^15JAM!o^o835nja7P-`&CS~X671oFF#^TzaK?1qfBT8AEyT%3mo zuXPBrR01Thp8EFWvP{a$&Q#b646}MDKU?`Sm-l)oV_sp5qeIR~hJy;8yL^DXpLF<` zhZ$pyT*@<q9fiQVquVei zMTd*oo-ua2`|p)r$i@A3_aT=s1gwIHBDGeYIlYN7-fUXO-O4!I$3k6E27@P3pJX%p zKBfcz%s^|tA`I2{Rqtkw-h3qqc^@MceWmz52E5LC8M92#=OeFVq-#y>ZP!PbBwJGh zKE^<$cGm0<55w-tsD#@2$dQahpAY;}J{H>##o}4nX^iml1PyfL@vw~UmLQBY*{HcTCMRB zJ21lXFL^oIJ%u;#bJ@N7I&<>;OUJ#*IIAw%_UL5Xymv**{#@E?bsupMBdpfQS_@T^ zJ{1Lj;^JQ3K#<27Vr4(3cyuIt(ifuQeJ<~1KaBa1F}9UDq7(Bgy)PQNxwLO34>5xg zb{$Gx#b{A$r4L2JTrTg|fiR~s#%>8~%f_%zM8zFk+;0gVayLWlT1fGzB_8-vR4kg{ z=W*A|5@vD6*tL)^HDTww_H9wI8&mRY;X_6-#IA)DkJ7?-{wpdj;_`l55azdx@pMF% zI`%8ku^iW0(cxmg%@`|B3fH>jk=W2+4}2|}Her;PCnX^_XCwyhAijsFLa9F=KUcoA zaf8p<7~bcX6!2FGU{`A~-)XMqF2tKtKl+boK8nFOejhtvs5wEvk6D0~;e_CFB{cEl zrt_Z3ATPs70G`c2>y$zWs^I*-Q`topmT_n_w~u#9p^=1fECILY;%IrUDA(fWt8Ljz zB|AsET;;jn2#Jjj$6#omi{9RR^GX-dmO*nKP^fk9o~sr5aiTODnIL#mBiK1BG;*MF z+cMeqT&B>|8=WVJ%br@oU28kV;j~ndf+$2Y+Xv(o&mOuO7ZlaGf-2z^|H(&>JD zwO1mTBU;jLF;VEm5cZTNY>Na#`oc;$I_b!JMw2(ZS$PRHepVCO)`U=b>!xZ<>DT%N zP2jK=1S&QEn24?B^}r5b&1|r$66!%C{5f%69=4OednZBO_s<5I;ierWYd7Y;{fDm zs|XxnXN2^r9Kn)Cs9Xwlb3J(wmK^B^EEwtep5EFV=e8_xKbWQCE@52RH)`^-CK)=gg!ei#eiX#hoS?)k$ig~<1vBnWB9kXGj*W*{UIlWQ$_}&E)`#+uI#Qv=lOc{Z# zm@ztA%T5(}Q3?lvUx+|A`X_~rB_V3Dptp8oQ!u@IYc%s?#C7QYRK zQN}gVqO2t;6;H20tfdycYymSZ&Ki=OE?tAX(w8xBq=j7t(wAcCNueWMdIvSYvI|Od zXQ9;T+GK?VCAvVOS7Omgs{rW+k;jPI<-Vj08)g+&k+cfXP=#zkllLN6$Lg$OV16mp zkVDmqhP7D3fDP5Bt5}y+B+b;*4JG$o$#>NZx#;?=VC|$Bk?)raM8m#w<+BoRZ}XJJ_V**{Crp@{`Lpq zzhU9?!QKAs2k{rP`1vrr^~n#?FJ+FqvKK%4!eGWt&Zek_l5(cQ|mAKykq32fCv)6p<;g5FEbvx@yN`IQK zQ~Zq&I__c}d(U@$lrMWwb}uWNe^0Qs!9mIWtYqL_(LMkL=?}5=fk#+>bodhspAYKR zeiBfBoTVoviH+UKJMshtPqBie)te?1I47ha{~4A)@G$6{bAtG1S^U78);i<_;V&#u z;qeJ42>%-kAGqJxr<)-CA1r-7%x)iSg7|+fNb$~@CW!wRi%(kJXzY~QIVNcNH)|Pq z3)p9vApISdK5);pju%1r`z(CmVZl3B1O*?mg0TZ0V$`EVQ1daX8F&-e$A}>PGnSsT zOwibk{NqE=@Fi;)csFxS4nh3a3s$^!Xb9pLuF_h7#+H50q@gO6JR2 z-pL;5*pzk5zqR~%%urS`@NwBY$AemIxj+@T2Y8@hI4cqriSk7nTm?+e~p94Hva z3I;w%$S#@aGdra3$7$x;s@Ra_RXP? zzCTMJxPSVq%LlRW`Jo;kKLPba7pQdWx=={Zu=Igv?(RjQkl)Vo2OfI-3qqkG&l(2a zwEo(AHwzzl(~59+ZF~kxA9$B?E(L{UN()xJbsH$e&t&lfUt7^`0ELzsYuO-a{lI!J zC;VPIZ>D_gysF>%*tumBcl;PjL4WI=GTih_lxQw3tS<8YDGnV zZ&cH#*8LZ}dizRNXuid0c0a=Ix8T)U=USlkHr9IRg4fFTwnF)xto-1?QEmqzsJ@3) zAF$w6n^|GBr3!lg$a)9C-lEq#djjPTvhqQwv~&L}^gi;9=ymRdh2F@RDe<56EOq zGnR@&6?)vVIQ z>wlsBf2_T^zSyL>&B2W51O+rMG>eR!U64lZE15SmC5Bb=U8W;tdh+p&6kxC@GdOH; z85E)`F+gDPZ<>HS1MLKnrIL4|m+$Xm`ibrshR0s0qDP_1slX3d^B~l? z*x@&Fmh}!oS1RT!u5Wd)+5;DSm@aaZ?qbD*P~V<%hdV4yXSIV+U)jUt&tiL6@gO8! zrTpw#wzKAi>0Z`72))T3_~H4Qn{)k$)o$KQ80pHF@|Ad-7OHTJ$g-AF z#wk2j2+Wt1rkOi{ud_e7(TmQW@yIJLpE;Eo@j%nj4jDp!~dM7M{a zX-;vQrm0n~NRr(+^<1Nx*gU6E^EB0cnpT$3M5n7wlyrfcjN$PI5OY?=T~+vnYpujR zIV8oh)OaH`(MrE0D@|&~n?N;9NrH9GQ?1j~8elOyM=o7-T=N3gJWZ_u24XDgdqZxb zfi5HiHMNA+gqj2sU80((sgb@JrP+>buUu%G&t&_%GQDzL%dqI?E_Be#jCyw=Yw&ar zcXeO+P3V@XAnNVuzM6IK+e}Yr%I3PMuloj6dbPaq8&EmIZPc4tWm8{qn=x!h&P^8o zFqpdHtGv-s?qFRDEHdPK+VdS9g;JLj?(Sxd3(S(8UhVEqPv5OAb zWIEdJY1X;G;$|4Cy&>u^-+)RlZa()7sPy9Ii>$J#-5Jd^rZH?^Ng4fLW~EInK{ul` zm|J9K6-piDS&k3A!de$tu&MZ6@-1GUCEf&lep;`1TR=dC~ zTCI6w#k;I5>Ap2*z9To@=ChSdw%C<#uehrL{}GYa48A#&IpXXLAOEm>pe8ZV|F5Zq zGo5d0myBD9X0#^c{ht{9G`IgjQ#okMHE+vyOfSn7gibg7oZGQukkq$lYq@UOv{aUN zE!<_Vub4!0^N-eTAm4c1RCUN~n)@{Mp>+U0&{4>Cb;@AsG{7RPzp2kO1JUn&E?MlG zQ=KokY3-7%x@(Z!PE>biWRIS)e!1kW8ZN^;2CMf8kN#}YUCdaX)fWfJ4D~frx#m>X zPBXm~c^t=^NUg|ZrVkRCZfO%?QLc2zpFL%>htcU2-(f1%z-85oN);(Cx(UYB#&s6(6%vKP2wxP>;^#dvYI!vaiZzBT;Q$1Pf zt+O+dHaI@k^2-#!MhTNSz`epqgQ`Z;pk0C^KDC z>z7+Fi@|aR(=9rS1=kt3V*R;6YK!1Ap^RWzZ$sV)<}g^P8;Ec)9~qX=+o`078^9QtZsyoBPC3HV@i4k#1KJWle;d`@{h;_EZGF zNSyhMG<2PrPjd^IjnyPfb;cNlG}UQt*{BJn-F@wnO2`&n*OYs3t4wUFpEjX#hTM8z zh^`FBD7hD_YwFXQ;VrKk#t#tgjbGTU*H#?H)tkurn%bArlst?KXL{LM<5VxM#3$-Ksdw&fshagBoIg-fPrClrgwKb zb7hWA0?H+b;GifA%Ap{Npa_C;D1xFW3Zf!{il7K8Dqbkw$LIH6Rd?6%s(Whs*!cT7 zWczi$|Eu?2y{dY3*(C}rG~BAz>+P|;NzuzFY-)8S1F2(_P8Bi%oIt6nU#etRDFajP~jQz5d^K^t!CY_;=R?!Gd~@LC?fKFRP} zPQOXvt;P-gdO)#W=~QdrgwjQ5tWoMv0jvho{R>bl!YwWAKDHK|(CpO2O(IN?)l?9x zR9C-(lv<67wxaO7NrNWpKYx;-VZ1DztIrgE5rwuIwD+s@esH;HSOn`Ef^G zrhf;O#OkP+{!PHsj~%#|Pm6VTQ4um#2B-ipxi%!d?xB)oql``)ChhC6@_pvYDk@qUrn2t7DENMEA&AeADM7Pk$PG)f?Rm;zfRq5Ca90*4v@ z5h_C_#&6df`4vj(AEn5d3~FIeU(K`2Y!&#&D10Uz4ny>LoI;Oe5sEvtGK}K#uwpQ(&c)ZLR)S0sMVWQwJY%~aFQ}{RvSGS7pWON5xIuu z-hPC#D!DhSY;;eMkZjxY2uHGQRy&n?L$cLFFhAW?kNNp2HAhN-qj1P|g95%p0j+YV zy-Nsp!Nb9PMTcVkf?`@tob<+oTsOYN);}nf`&ZdP&JKZmH9JUdM_S6?Q%I{xyC!5> z>Z&8Y2CSsoY&B`e*+|v-6vj8SKEICQD)rfF(#`@Vq(=V@0ZENc4HTyAYV}T~QdV5= zpVTN;>sW1yIjnC%{SO68t$3w!vs@gjIO^J_|4~G%wa7NbqZ{Ve!RzPMtzA}afDM{A zQKuMheTp|=(>H0ss^H?7-nE_z+@wlnrKfrc-O}X=g3fr)Q{knq$dBu~0kIHZzHBthPY4oOU=s zh&{G9+QVv7Iv&ZW`|nPwUKUvCh4Ya`=TAcQlOy`E>XCQ?M+1fEX_iq>R*};Vw&JYD z7Zq>a13}eTwx5+o+b}QMYU5>43ctNo>)1&zc*%+rPeZM=FR_wcH5aUV1BO^@Kcls* z25ZnI^>t?f52v@WBgGUo&!%R}0J>OjHj8yfJ-6jx3T?HuslQSe>*^|?Ln*3NLa0yF z4jf^ohV#QF4Om->cmxH`z`4hu64&9Z2DRfohhk@-ZNrIi^Cktj>cGURIme-@I~lJmY=>a#y>RhxaXbq1h~~F)%-oGC!_= z=CC@r+0M5*jRy3ITQHDoR0?8o6)VNb6ew&M7HZDHA}nR`7un0HR)(-NH3XQ>Y}cDg zo|7RgqX>ugt*nwWQs`8Ikpp9VCS}~ea-4Fl-e~3FRsgVdO`O`q5YD0qNAxXvfB<{* zf^f{(pOY&4h9fqiGWJEv{>}YM4{Igb!4wDMJ3{#$**D*jdZ$^2#r?3J5cXv$A*W3F z_b)f>c7x4`3f~Il+kdp-eDh+zF;hvMvVLpdD#7NU)~UjpJ29ukxHl>HxAe_@4AwH^ zS(J)OI+SzR6{X?v#S2{dk^@(J$h$t7@T=2=fRU&H;yen`zeD<^=rrJZ1l1wWr~LcZ zf4P-s&55G_izw&*{RTLLHyF5ILb>-JAU*CdU)+YhYFd@Lj3OM>w`T%EjjwU13c7*< z92^5cbpDx7UP-z3uXb3F535s~u#HfQyH`=}hxIM9&s_^NS5w~ow@5H#9In7#*z&lv z;F2lkTFO3#=$yTDV>IJ^9pxQ1Xb6urdT%MutE(E-Zlp;4_c&l>7Oa3)1HnxxF|I(H zs>Fd?DC7Pk3`h*kMr*CIGQ0al~15D?@;nBaF% z?zym9-4`vFbvwHr3{0@?g@%KCRAa#88B3bLZMa97f2oqiD!l3V!m8$1bJ&F z?sVi%hC}fX;AqGy>=|)_?ad5f1|q0KqR?P1gq?$9pk?Lu*s;Mg#$IhF8Nf^m5H`mf zsr5mh3SEj;5wF5BfNf8~;+3XSs1BO|c1jPR*)jp-C_vb9AzvZ#Zcjs7*bW0lW~hRsHUsnA~z|Iv~SdhQgvd7;rdcA zM(5&RN0bir7 zi>1~|Vr?Nq_z*=1>%rL~z^QqP$DI^mUb2b~+eaa&E5*2*f`nz3 zEGvk2B$Yf{#)|VfigbM9;^4V>%6)na>V689PNASD9qhScNME2xVaF-;r#{kYXK)Wu zxP*?aoIT4hzDzL^hJl9e*C^e2=0e>>%;IztW+U4Cfh&ld$S@9BP># zQlx~|hdM82xmjs`OfeER0pqZtModI8ke{Rv;uLke{EUJmw2NWQ1S`(ZDbiWV+8GZC zGx;l=Rr%JMYSn>FutjfSh|-?ELeWDLUhD)m|7&+Kj89g#mGMbv!pnSio5JcmV5JU7 zLdWiAZgd2~L_8n)k`YL#=ZElSw_2~s7jZ}c>loUQeF%mh4CW$)QHLL4Ymh?D?i&ne zehFpXZvoh)g^-L1Ex=_IV^)Y8%G=L<8(zKy+~H2(A?0_&as%@B(&%fEbQ+z)_HGnS z$@Yc?6${SPO_=DPLk!|3VOcdB99)W}6ytuX;jpIBihmtX>rxQDKoPe|%4&@)#$F?bga^wI5_#OpF zqN5g^tl)@)jTpo;6e3X>-A{^%3L$bIL!78Srcp5@TPX7-18w?34h%Avk?E%p0#% z8se~tR`#LP0-q=!alsgMfsxwuhE3EMdC|s}aeW_hC5>&^!cQ}2mZ4WxAT!n3b>jut*WjoXY)v%6j`y2M&fQPaO`f zyARBbO0K(C_-BgKs!RrOf>m+XueR%}494~l$~LS44P^^?Zn&L0@JGh?EtGHH;W_HfE}=P=Fk z(-M3oKDITu%=;UP%Y^N73q6`ZVKxEGRM!cu6kHV94gDwj!cHdU2az*zp|FNORN6s^ zaPr{^jQ91(TkY9|8pangSkSq|dr~EAKTO$%Mz>J5Ja`~)ae6)z`ew>KY#j=I4aaX7 zbWLRb80ETam@|pv4}2f^@;cy93+swQg_=lwE(<1}DohsxQ`ND;Mm9Zna?=>a#9o33 z#KFP_nY~epu!vmRw9GJ0Lk!i?!bVS40Ig22-=Fb6BTfFW<4)(l9Qa?e&XhMy!T)Im z32j=1Ma^~|lzJSj6nR>T(0bFGxg$;pVBCi(_XMJg4h>`OQ0DPPC+;&wxyKj1)ebh) zGtpP1%3O2ITAIwq#SRK4`AW(>tO4}4miwV)$0HzK9R=;D)MpB707G}BE6nC%W32R@ z!WzI(el$KYG3O&^5}(2bC*j)%5;~IW@J^f(12wD!Ahzb zxH|6wm^+hf5|%CSza7luzw#rUT2Wq_$XH#B({NJ*(&g=mizd2ZcQEuzVB>yBoulvC`~FfZF-C> z2J>_MO@+9>WKIb4C1?@FG3k<hI6uq56osAv= z8W(M>&@8oJwRNzpjFoXYg`_8H#D#>5f>x}7z4Tf!^AvNbotK5X$ROT{1E+t%Wn!aw zJjz>Yi&;U3DQJ3@tmWa}GG(sF6wqM38U>^$xy3Fa z05&QeHHNLEh;#{2zlfy9w<${UXlAbIt0)v*+1_t~LTdQA6pQZs>l-ViX1{}iCASo* z(HCZcLTd6mDGEJFreDRGYVf-<0W#Fw%PA0DB-M9`Of|Mkk!V*F&}(@W zX49lz3q8?R{dRD!-&;9a=k$A=ms7eZboX`?v%x%`1yyc4)qLLXATSYMqZ58Kzte*= z-i5BQeVwxHTVO~a8U+3u(E{s9G^U7uB45%qqlX?xvqmcH&B?EDVA<9f9B08! zUBXLHTChT+7$lP!vTZ3YHla02Oo~i79Ztt!Ymk5F-@*d0q8`Gg(mTUoRSl4 zFkrl=Qrz`r^7o-*%^1$uG1;|e(NIhDDXnXUuGcR zsgUD=#Z7Q1VA#0SLU25a(%>&Mso+t=qELryG&?oNuCi}WA*1@6F(CE&z7s`^W&Bp9 z48wbfXsYpZlzpsv0f|(Dg=Qt^j+GgfOX1-k(C#S?wg=@-vxSlF#rzfn;YgvPwfcKg z=5*nm9dpr)DB|x+5&8^wf%xraCzy$2A!EOkc(?My^?F5hnc0+g)Tq)>2e{n)TtiQV zaDj4Xn6*sG=~1jO2WJNew>Ec*?T(mNXMl%NK)OcD!uGs`aCj0Nu_~QE&M*$67*TnL z9$E}Aph-8C=m?5N=VdHPB=w0DU!Ftx_t`h#J|Xc}oo*flpm}H80;sHyO^0={UWJwZ zYBfBbvZl+=drJ+htM!`HLMggmL_zxOr8C{b&qz5)QZpZ2jGXlrJZh8{=A~W{qbm6l zT8hL-=DKhiMe4J^=beh=Hw$mI8 zwMVC29{~XDC&O7A3Phel#41JrF@{^C)nW`&j5sZK$#ELcW@vVBDDyrC!_2<=2x1J` z>Xji*3$S${N)MU9iyGV@hPqv(hATR5mZn8A~0wu^qOf z;E)r~QHJgkA9O1kYSVH=W%I(oM&KTth_1$}lu^tP=v;~tr&+)gC1J;=XcrWPy@P_p zQkV{+Hl7z!lvqW*4O-BhrGqdAE50Gwq#bI`5I#T=;)Gi~ z&=^9BqMmCg>p0z2k2TK`DgYm%0C5_)pj)pnzkxE3(^U$XdvVv08u|!Dic`A<61X;W zGSv|BQ3^tL1oo~I0>m72KTcs{nPemn2~z2-bLOkJQRZ>#oB42QhVUth5T{q8C+Y4) zwtBB7YHBI0VHHUZe-tk*d0{2Eo0cGs0WcEf-MUzp#+ZMOGVe2wg&xMj9A?GErZC3+ ze#$*g=d4mMsA2jGly4lPRtv#yVJ7ZFlx>{w25f__l3HcIOabDU64qiE1|VNW=DJJ9 zVh=Y#l;Pk4RXJa$vd8gveqtP|s9YoKvX~XVNrB?HBp&t8I>xFAzD2pmX$0!9ihorT zQme{*m(tvPhayF-MF^u3^F#nw3iJ~S7RQSNFtsQ@quk?UK?V1GR9Svb(c)yvnvQ%$ z3-hd3DCanJ1TL+BYQhF|6{j`|)3Fsev02TX{Dwls8P|DGjVA23G@$&BqQprUd#3>a zzzQ`p`bWw?PE7~?#(ejmDf>9lQDQGf*{TQsl_JII8nob&UZvjsgYu0NNMQLzcx3-K z#fa0r*D+KD{T~I1V`%}RvVQ{}ysfTEh?C!yV7zuBk(ieBSO9B2IOaN@2?8?L|@IG{%5p&gH#{@{i-Fz#j$@%>rESr#R{$Wgn+0 zlh|WbQ=5SUC`L>}_(jO8JCRv*J&2;jR1|s=-mau5>dlmWoGcP3ss{Zch^ZuNJ46xU zG--g)ET|37TPf!_t6AWz!72%)M^WCfq;5hGEh-wHOF75sJX@z7!sbZSa#qJy%uwRRcEJA zpg4hu0YM@)KMZ+7N8G%|Ld2;QBX(hMNFF*4Je>l?>AbVT@KGR4jq2+S-bO)UYb^iwTc8!%t zHJVs-?biTc=ODweQigQDl{|T?QQ?`pl)e9^BbVn;I z#$OPruWb{SXx`>a?7E57;SBQc^xnRx#oK-3@vB08CuflVqL5LO?{<)eqWzcRBsUy( z>e%h4N|C0V4~A2-AG0E=16x}LPVDnI{0Z>k$KI~^a8$tZzt$iWZfmvM$z|pkZb(Kcz5H z`@d{q_!6HAbYg<@Ng3Qr6fQD|S$g3}M;txIaDG8?q9&QFiv>8;RKKENQG1YW!Jr?A zy+GAouV#c*AEj8o&jzasXDp94#ol{nu-7P7)V@bs9h$D(W_YhtyfngL9lGvg^QU}|ff<&cQdRgDt=IxX+hN-Q~rHf%~<7QEeBr!9z zZQFz5B&qbKHf?VTk;J#mZOpzDBuRtjjg3NT%YGCrNk`aE9W=`wSYikBhgxGjo5Dp+ ziuI~Dq}@C?b^dC5c_`(d#Fs&Svz`v4I7vcfNHci^McFMP5m73%3wdQr(fW{y=)gIL zQZ_AW&1b+s8(z-?#!KONhM>!^GcsO{2Pi6;w5Ud@CvTdKU?}Gy3du%94P-2k{Cq@< zXzP4>D&(m)Di70GkdYW}!aC(*0hU>7Ycf!k7g5xx6ANz z5l)rBV*1GthISc6J2Mrn`g35gnYRIFtmM@lb*S1aDD>&6LXW@#blCDqJn2db95s}) z*D!^;Dk~`1*f*m3&D9j@>{Qh0&p*HdsYZjHTg`Q<#++*@{5k2u!{l(30M}6g(y?lp zsQN|<6_w1lcOaMu!UHG_K6?{|OegvQWOx<5g`!3si`iE}!)oWP6f>QO3nj(HzqFFx zP7zZxXU7bA2Zf9}RK#Afu!I-3fzZCjT@)~C*wq^l8WQf_PmuMpmE%Ut; zEovsDcZmd=)*?SZk)pbky^)M9@q-j4Y7o{Ng*y7fX+zLf=#jJ`X!L!QLL>|H;ZgT7 z3YE;GBctu(6fIeA8qmU`?2{BLS?vjpuHU6diOm%fRiCC%Q90S(RVXZ)K1+e#7}eQv z#$i0~_q&hZ31a1R_1d|pZIEz)27Ij#V<^iR3ENcJkxj;U1W?3mpmAK zN#~9*lmXtNc#owJ5hb@@gL7j;)cf0bak%tB)x z&Sp`{xElps7SYPb17#P>1vxop$~`IW+fv7^I3w+RYpgt?V(&w-qelGk$}ASdv+@p5 z%;l+Xec>|oGfBLg$yG75NFYAuBan5VVkObQ#7lI~BtBz1K4($H^t`nUT~)Ov zo|7$HP3x-`DO`F%wA=#63DyKMw;7>$=|#0lF*v53ft4v(dJSO3X{lq;3Pnq=zlLar z>QJYcDXOy`9Lmhp*(6|{y}Ieu1-K{efc=%K*CBu@!>R4kY6_R4yVOV3VcU5WEo!Q( zzeonUgliTZt>HbNLZ;Wj21q<=o($bCnhemIShvkw^%4r2VqNq~sx|zVQOxwUs}EnU zprGls`*2ELxhk%kWtzP*Q$T2bb-=4AV0tY+J4>%o3C?I`MZ7vo#F{gzY^Gy~*HXmv zVgb|*L(6d;g-lPaje4uxE{k)eSRrqui0QRe4RIO~1G|ZWrB^RtBsv>Lq)J|6=QeOm8yvp`CnPDwyq!X(*8^zQJ6hiF4holElMJ^Is)^gX zC|Y_Rs;9v3p0s%Sx~L|mK0D#C*lFTG#}*8{biaIv&f z4<4q7>A8wNq3{R=OV3pROil1VO3~7*;-JaKxr!zq%N7pqEmzYCD2yKRenC-EC=8i9{Z&>lsx!YzVUo8NVRNOw zr(nq&UmwgcNBSDYOWyPK@j~WCU#FN+>+|e_kdLX2>;Fcvl8@_stgyMze^Su&JVs9< z{D*=iuhL}h^M4d2c|_M+r*-I_^Aw7r&vmX(QKDAH*}0!-j&mvnirT7Y2}GxlHlaAl z!!4b?*^I&@cL9Aab9yEqS}Ju01xfB_kgrv9#4{;M3T7cQq}yi!LuW>JqAaATU(-J1d>ANqw)=I%@3lAEYpEvT8f{U}P* z`g*$`9>q#QZQ7LYu@oe^N7ISkhwLWX`J_?dXQM5V54`hO(Pdi^jQId~X4AadYqBzMD8U7AOGJA9bMN8gg@X$!c z=_46}k>troDOmC#W4!G_ImU1}Mmel->B$02f=y8Zah9VvuEbDvO)BtF*`96r-_v zC79h~Ub`0+<*dv^A>r&z6g_gsztlqX-J}faVQi3s7c(n*NccK{%23Eu1`;U_q7pO zOA*#y&80$Q7lvB81?EpGy534Ipy=6Efsod5A(bJ!{({IQXu;qlDn)kfqL9KA6HcL` zWUdez8ctmcQqTx-I+Y^B2+@XNXE9Ie=-a3ejm%m~&o_cD6Lhgj*gl&IlwGwA=|~o+ z4A~8h18peHM~RA%-2f~Q!DNt8Dv5QzL%Q@*DV+;ErTmF?zC+@tV7LOeHCADD!7A9YE4D(jzV!uE2I~=C zKQcIL9OaHF27WOGw+@f}fR7cburznnRQ^k;2zV#(AUkuoSShqxPHPZqZ5y^bJIz65 zc-5Z>HKYFDP4TUp&3^D#6yQ+VW_}n>igDoH0?7Q1LyR^!#CxbfnN$l;AcF+&r4m?o z?fOwk6%?_`VaE+t3vf@-Y9$=LpGpyVxMR$aIM}FH){JYj0uvP5x}V*T2E51=6(2rG zMad*ad7>D@#Pw7L>n=*!E5^5}1P9pqWpJ^I((`=^I7&H{$OBO1UT?rn%LL5xFVzf91$-aNpd?hR$6$Sd zh9m=ifbb-nGH9(u<%$;;HlI^f7j?$H=itn5wKh=1@)Iii`K)OzJWvZ`D>#-t-Ff-i&3alij}&! zYlgY*Z&3<0DP=v`8bbuwFr?Vw50eb9H7tLk@EQ8SaJg1!mf`ARMFoGMGGu50$Zfd_ z{NE{jhCW!VH`d5|8<-FNi;7@9TIjZwV+z=S!duS~^sj&sEd#g_MYqmF#z1G6 zAj8HoEgDRtQe`W!dPy-eDWOSy1H&Xlzt6;@x1_u)`_}wNI zzFIG-tUB;Hqqo&mj_f;z=0V(fRFv$ii)k!(J{2T; zKP5xDi>MUVi*aH{^{A2EB~+m7qsVI5bQs+5#quqeQ8BW&&bdxoO}$@1rN}VpMYV7x z#m_L`K#G4Ah2PJ1&@$@4Qf+NX?bX0fTGSAE0gyZ+@A1-Rl#k^Ip|i=?qV&pw2J5xM z)_@_i$k!n>S7&&K!FI48S*0VC%&&en(F|P~{fj zDEW=`VwixN?m1qHzZL2`w_+I--?6UueSwDf&+Q0L{Aa+n?%`=ysx#c7YB2Ip9=YZ* zPMY=>Aoozs-9lHVaa3N}Y(5N=+IB5;;g{hGdHJ|=4!mI0CtUDY1Vz(;gQpo8!u+rn&uCnphFEA@9L z5&A&Y=ucB<>usmD3NMMf8Cl=t*~!4vV$F{zX6ixKsSZ0Oj55k(+4B@Rbq(v0^`{gw z@=7eZ(YLi~SvTuTlL4xi^cNJ=x`Sw4QUDDuqGcZZD~g(Wt68qW3^?p0Dzw$k+^ZBj z^$_VtXRVd`{UkzbA@a3Jgw{gj>lE60f3~fQp~5>gL&xB66g>5s+|(=8KPhPHl?p-C zO7$O#YMt(|)pJBQ@P8EEI!kH|?=5BM(HmUnLeepwG*PsAxBglX#g9IkC{w8@)(e38 zHITWBxXI*8py^<<$(KNjhSRA8sW(5~cv0_Q%$P)It@}8WLR;ta`t&_>FLHY-KqI>rGLPVyE8t`sF4q(ku#Yz4W+GtB3XW_MjqU74-bDt9APJo_qkM+tf_s| z!zgrCI&ZbLw&w_no%#@ffX<SwMN_8HvmF9Bn`}YbPvv;XiXZHkceHJtE2$(|$68pR z>E!i5*QRo0-7jGGnG!)(Q9-I%`%9@wyD2Or#g}E-H%kW~Z1j#uLTZnYx^clXb}R#nJjy-L)o( z-nDukm1KN!JUFt4^#LkY)*;X{m8qk34V7liZXVJX`#2S7k|MUT?{OOyC+mTquOHSS(z}SCqVi!Dtm_GhbBNO0nV&fhRXL-ktV6{ z$SzWa#Y80>Au2L`fyy*V4P6_~17_#G=i7DDK@$&A$+FH+`Ua#)g)dWKvL3M-z51(E z4(lr;W48XG?)-HsOV$Po_v3F;VY067y&U*kR3z(-Y;kQxJ@-3Q3j4hgb-aH=i5K4k zcG4t{{oV-1N}s%84?|~doK{|f+0U8vDZ&c4l%zbaSo$Xv-g+k#mIW?u$mWor-SJq=V2pvC_g z#kWt+^^0G}of+j;3v#E#4nLnnL3|-_E_FznBPz_GBXU` z#|Yho=4jbqnBP%B?AHWX>La9X{*gkTWs5B{*S_^Zh*+T_J)g~NmTdi9c1h9aQ9ic(SeC>xQ|Y0 zV%7tuQfISQ$sDmO2QU+mSLf zFUEQ9O{tl!yV0>!<8=TUoi?l)s>3C5h1F%X8?*%#$-22oB2pVBR28q;iV9+#;7BA$ zvs}&N;n=EPwxQx!=kb$>)2WqLcAPv+{j{872a;i`mbRl}S$9(6h*fAoClXd|IBH&F zM=FN(;542Xt$MKxArAKW!Y$rvoZE#8ldVqL6{pZ@=e5*Ed?GQEuoVV$~-BSfR1*2=Rfex|({e^z=#4-W+@NTvg9Ul4!J ztezit)Pwv>R3htTGVx5q7gly^L^-2Wlu1zzs3c^{*QF9=tDNwxLzRkRz4tPXotpLb zThw^gpb}Uwh>IfuOaHaUnoesBs*!$@O>45H@lH!HkM76Uk~HRV^_sOSjW)b~``VR8 z8)aWWrLkV~63dIdt0|%e+ZR)rtk;+&kSTP`eJPd4dP!#@d3p@J-%aJpbj0W7f(;|^ z_pB{RNGJEbYey2pc>MiTl1v**&pNnaQ6CIXP*EnsQ4C|^53W5)w4w3!R1)hIV+krX z>E(Tx%8_ZB({mH^K>21W%w#xoKS`yS3^y?kqCZWA zv0mkvpzavQ(x0KSWIA`_nMWT|f0l|d8GROiKuf~PeN>*+Sx#LCYVr07vWw|(7^x4i zKTieAbX2PeW*BFGkxDd~stO-&e~Ai~X`04U6&>n+g$iQ5$s$30j~?-UjS7|NQV35w zxa=ToDa1FZNRwf(cD<2TX9=I6f=os`Zm3+}UOSSE(+vDmYfBQ+qxe3RB-2?LvQp*; zRDev|@2EQS9F-;0L>{dyFHi|G?Lok57}I*87pWMTPEr{v>&sMxOjl6#SgQ0(Do&;v zF$9fYPr3*sTKtxZupm}XuIEyYKOoZ7kxs41R)SvMp15eDJ79}dt2e9a3b;Q3KWX{s zqP{q3YbH-b?x71t|ALY$3r4M%T{E$JfrTs){X4>vC8E}M`Pf0Tb0y%^m}XU($ov;# zs|$Wp1|DtJI}Hl_UkYr!Fxald+ccZ7RIjc^@1232)HGUe)8wqQ=IRv2KeTatBZ{sxj@H{W zE#X3%$K4Q^G>@r+!{*Fdy;G@_m3X};HP}+y4v1~BhxJ=2_o1Mv7q?VymWyK*M?L0m zfFfI83t?N_(L%MV9vQnoMYZmD*`j*ez7*pgNO7%4(6+dK!({ZXL#P1OouIx2(5^mx z3&qZ=@Md2-oC;ul&~%@Lr!IFS1-D+s*eAHj^NyzQ2iS&{7M#3X9Mf0s90MGsrog(^ z2HdpPV2O_s+8`Wpopypdrn|2?$S`1?#!-{zUL zYEbLN>ivllF2l)GhBw(emD&(21zwUnS*HqGPMbJVJJf}ip~Q*{S>K!16DY)O&O}J! zHv3uYsSYz!+VyW|sk%D3PhPsdI6|n-&LKLpZZcY&b#K5B-4%_xvtIaY4_~g0JI!{! z;WVoqT}vM)TD)V|Hxj5inAJDR;qcKB3q}t?UB7`(?bgtDvNak-nT3!Wz?wv z2U`0+nzhv~7qt_(o4`|wJN9N3{B-vgl+ZfW!ICI($Ub-r_IAJ_b!#<>K;n}1ydQHJ zu1{MrJTEJDpgXQMX6I4EPLd$nQEKO}6+vo+T2&L|A}WY=0;hk|43}%gdPh5f{gO!) zp;&J=i*;v2iGG(+5zdNH;Vm7sSXWOfx`LwH$Gg63si9h2Iq3puUU(H1Aj3E{2JyKL zm))x=r>m(98Cs!CM{d_nssL374$x5dgkDDlu+F6R9}6%TIhq7FQVBBj1115{!cA0$ z4E?|ml5e2`WNU^-v##!cyOm0iVWY6JQ>eAe6?Grt?NkKo6*~RC~harAHNae_|ckB6w zDU3f%1BdKz_VPE%w@cG`X2Deko^6(2gZ_vf119BW{D9WYg0<> z$Ld1*v(;%dAOYEe>4rw7AP!7oI=z(wM}-tS;36D9;~&?Ki$44S#t?7M3=#G&wChb} zofbp9BMU^QT&p))`6kS7!9?C@(4S_AcTvO>6Z=kpSn6m-yeCt*h9fSWWTm^8!X2Bu zba0YmJ6N&Fa2}vIQA<AUX_nytZ8$m%ZZlIn^FfN2yj-J&Hr$A);5>Sp`sSP+NluR$y%ohXM&0)whZl2iWW8FXNNWhXEs7_Q+18UDAFm3UC@h< z`I1v?D!l+!xW}`EgiNgg@<|GryaM>8>@-Sn$A{vW-=%oT?N@H)F+>KvSf9pqhXTg;y~q*9|58T^8(FN=BxA(*WeWQD zrV+*Z6ls2Jp9ql1NMdRxFk}R=357W_erf2)VKd4j~{Hz zBZQe0;+WW`2pt)0Pf_N?Mlp^EcA^OJ8yvrnY#s^ZvVby=0A^9B_>SzC%Fy%QgW|-u zkFm$UH${l=XQ4g)eJM)(o)l~SLwfl8QJ}ZRc4#;wSnXuYrrZ;lqwQ2%(#f-|V|_41 zh;I&mtUyL4hfAkoZ-^ z2Qj(Wu@oqN?DBy43E8BRD366w}Yqvizq<+9J$qia4|)UUnJ8&a0vy7A7G3F zz|$x~{H}|6;CBXvh#$j32YkyZ%5G8a)hv|CPEDk;|6PL_w~NM=8Mni280fP*M#h%_ zV|CUoGWhvC!g$k}HzxjNh(c!GA~UYNk%B4>2L{3VK&CZ+sLfEXKvZ=GE?MCUr2^a= z(sqKopBc=R6ecnt_AD8LQ9D@-=qd^nwF%VMiGDNYv4H^o8<4SX6~X7cs)eCZOvmP-MO*P?vhas8AzLxmTfs)HI>pNYNt46+O{lHEf8#-$bEu z5rLvyEr@Bye>Wh?d<+;!YeNp|^|2NO77&J?K#7#)A4kODX^1K)?kABui7Ic5K&TYf zIL)AOzWRf}WMqv}=0kdZtrdD9WmyK6YN?|dUoMl8D=jw@xq|#jxucq{NDMEI!ht&D z;tDSYR7W5+fJV(9*`wff^|e-`-U{ZA7+#a&rBNzzWI03WP?R)EHMcFs4ou58l$!WC5R+U@qy1#MFY8O$wsK(sJ7fa20quvQ-IG7qQp)gU+ zT^}%7-MTC@AWd;sWCo;p;FT08sh{(U>HYo)GtgBOC8|BOF;Jz|u4+v;gSwhRMePf= zfvR>Y?Q$NDt1ji)!RGRwQigdg#f(}tW`o&uFioFd1-r$?j3ooRj)Fxk&$I!<`8B7M zFV$h&ENoQh6yc^-Ji(n5^hSyul>m#vHndzfQSMQ>gWlXjV*4!=CrK%^s(UNto}?6^ zE!6E4CrK%^xNryMo}?6^Ez(`-;Y7AX_fVXuUTu_bnOdNGDf_tHM~}VM@;s0_fabOj zrVgNa)WZ}YuD=>um`5o0sLWH8eZyLoM=3Tq#F;n(jIJ`wc{1-)x$|1+_T)1Qf z+9U<^zZ5iTWn?_iW_h);b%WKKDGd^iqK?>&j|_`JHQTOBp|dG8q|$=>5?G-(pvX~& z%Ed1<$>K5ijVOG|6$z3ynzE-+%#_1aL$67jQ^=?VkTJBpQVkYcQoyL=^Orfkhty)qu;ftd$wOEFUpi>>kC31wBaG+N{$uIs(forwd%lHo1(W*RPpZvsWefWO!}x-#xc(!6fSZ!Z$IWK zlCjQPC|1;p@ji;C2mZq;Qe>jtzEn8SQ0#Rig-Xd@#xc#&6fUKbk+IA%6e^{X8OJck zQMky2zP-)7-Ab?r9L6wyYF{zp2^2e}T0qB5CsM4GYJuL%JDDOy&d1nm)G$t3O2Ja< z_pqBU4dbI_6fvcKvxi8>MQ2jTbPGwwLuXOMloASFAB zDJ?S^hE%I5T1uIA^HAzMikDI}3mZb6PZ3jcR62CJh+?JG`Wc2ymt+S>DKknLcCe+80xT%tNb{iwd=JqXQ>{NS7Qi_MgIlq14SNAGSoG^^{@V ziCCnbMz!D8c>d%uoGhkj?`|3oquPPK@#-}=bwxq^97T*u`o=(nvcg`DMj=RXGv(e- zaic~-{o*>S8;}K6&U9k1U!bsQ8gxWA=tC4QP4)7-K=7;?ads6e=a(sNnvT?T^RQ3s!qQ{AyX}*d<8Qr6}FevNlgC<#f(~7Yimk89Y<-ienxSkvIW*Sv~~PBMM}d_V2QZ7 zReXiwMJ4EMOBU7|{)WP(VKCAP{*L0Lp~leG?~fEO4F@r_dVi)!QJGF#gPB^pzf!0) zj73_xe^8vLjH+#sXzTWG3Y3QKOs(4gQK(ePM8fVH=wV$^LpE#WnOd>+C{`K{L0Yd3 zDNY)8GPPP8Q>Zl5XKbxDrC3q>li79Oelzr|AHq=gGw)D_x>5U+L+=V#7=9KQs)O68 zogAS&>2Q{bdmnNq!`Y|=i`Qu-h& zoyWh{5(lSHmiwTcm6SnLIxm7N)hiQu0QnQWM%9o=3@Z@F<;5hvt1H;f>q-as0 z*B-4_uVF_>@r{=$SX9ep4@S%NO9~ZrJ-sJ8wbn-5IaZAE5QZkzJFeRG6comGb6NNkeh`~fk6VA!Au~G+P{tt0adFtecWQAyOkob|+wLJ2xta2g>R6an`Qlry8j&94<_}BqAvG}yuRI!Dvaq1c@rTr54f_)iPN#eBKi2x=-rco7juK#0mYMM@vkCTR2UMWr+^BbFK!BD*KP;B)J> zb^+EyHkXy#V@v#}UYCoE6=2~-%@}` z&yOrdmDuDDlzn_Hh1%jz6ea59iD)g6GW>;dPf!NDz7@8|5R|`Dls%$igt!LQcbM05 z&`~%EhG0^hh;$agLa)<;qA))N$9GD+i0mW_F5&!XM}igOR74_iBWebg)z=p2wor*e z^Qtvm;4a@T$}mr-qt~d}nZ5yAo#4tmhW9p#7dgPOQ>RzJs_3mVu(K&xWN_>YjHt3e z(b6lLuE$cAVB_Li8m7ll3KrR#S?ST_jV=X>?0nh+>DsGifdf~O=r|3E6FHExDvy*6 zVb*C;kjPMN2jYm!f*8s;MM$Vc8XtT6pOFjX7osE&LjU)mruv0p<3(jZ6q zN)HsTosx$34Ci&kQ9JP|fYgE|;0)w%6eKFm99HDpgoE7BL%!K7!Ll1Gjg38^s@(t3nJn2 z*Zn~Q=cpQ>b0P^$*5<<@g)!;4uU_rn=FFUVk^!u zu#aZV#MMB$@1s+uxUZkM-juQX$L?o!-F+F~u6${|DSNpKuLkN2g}VEt0rl%w0rfYF zE#f`z__$`vmpy9|Cp0^6f){`tTz_Jx%%cSAu%}Pl5Vj<=f4!2+I2r)Sw`sc`;?pg!>ppgy8}yXlpIRKv^OFvWdfnT&gY zpuTr6p#Eg3Og%_YZ#)U8M=IamA*j`ZfqMI?^0%)D>c39~>aEJRzY)}b4gz(K^6ldH z1~UIM2h_YG)u^BzJ_D#%FOhL?5!B6h1!`0I_8vifCfP%qgMsH+stFAD0N zy8v~8!uel<`Ypu0K%sWt7nJCKrvvr-iZ(tZsGH9R>L*W=OZ29zf^Yw}2&l7^Z%-7| zUu^@_uP8E~DyXyf0qS2BsXi~Lowoq>RYe;Yyg$HQFcYZXR5)KRsBhi@sQ*={E3XT_ zJ?dqkPS49F>Imx5)7F9eL<%ysE2v-J7N}#xGWC6eTHObz7Zhdcb%OfMzX0z3=g8FW z3hKe@!MA%TxC^fjWWHkupkAfmo_9k)&210V^A+m(g8J8|0e9xvGVc2X_0m59_1}s% zJ|L*?`z=s!QKQkEm?h}g4pBL2iUxjbqqkQ{CLH*?afck=>jV}r6f1g6B&XQ&R zil8q01yB!EIDbu0=k5nmeMhmvHw5*^>i~5NMdl|2b=9wdb6es3Z9(00WBB$`<=dwO z^;@sQw>hOm-xt)YXTZ06DK`3npnh{EP)}E=AHFHD@5ObXo-!(H<0V1e_Y|Ps>d4ez z2+{Xp=O&0-mk;3^&K|N^=P+w9s`CUQ%bnH|5)>1@&&kJxjrT zR!~>I6Q~X4+aC$)iVp*IW98f52A( zbytP@x<ZTg?g9>$9je4^}eWynKlR|w}qaL|hD(^M>PIi0G3YYO$x8g;7TLT~t#iaSH0PSdD6DbyV_>fQ?VOpSVmLM;pG z#oq(>J6dtwe+cS-hk&|?;<~%s5y)J`%M@2B4z`b=eif5e&%kh1IQB|G{n+h5y5br2~h7;sHX|)>ANB4mGZZapw2i5sMjb`T_UJA%m(V)73#+X z^{K;wx{sobFA3^nTLbm|4H@@2LH+VNKwVgusnhNZO0?q^yMhoJ7f45+Uvy6S!=z`f>qp#DLz{%wMK_!B^V?CrA5$KM@%yYu=$?IU!tP)cG29LxuXdMs*eHGa9v}P*1v7 z#eGVlo~covQ>czceOaL{zE9D6g<8|7cPP{~8ueaPG~X-Nb#Z;<2B6FyPGY48@CMMKpUxqWTv;3hIl3%C3jPs}Tj&{bInG9r=ov zW(ew84+YfVlpsO9P*B-kX*{z;P&auv_%_()C8*mAD%<9P8PMyLUz46cDLwzT^!#4w`F+y!XQk&qke)v-J%2)a{+RUq8`ATK zrRQIgoc z=r&W~bU?TZ&RIR-Zu|)Pba&HMW2{_TJy@yZ?QIj?>G`Fw?We_016tgyuf~l0-WN@{ zmv1s zumN9nH{ou_q%wT9$r85RCbt+buH~o-l)E!8&sK}qz@%O+r-5`&-mg?Iw)XR95DS(4 zU`}tpV$)&A9^oH@f;NbM`n17%&1vN;~T9L4<^+6I3T*(TsR)UGf0Rl@Y;9>8o9ypU8; z&2ojC1^zMN{`q*Y$a-)xePzP?4;16*_+E{ixCxLmnBcA41SceC$+aIy?Ou$E#~+Y5 ziL-hVGxog3Gj%Z4xR)Xb{s2gVAm*!ufrxr80lgc6@CWrDyNV;jA&KkZ=sVoJz&Am3 z2c8|@Z8{U~+s^RZro-K)gI<};Z5Vsb8Qf-J8g9cS#)c8a=e*qmppU_RK;mR>BiILS zSKGzd`w_$c&mZ!9Y&k@1B-p1W4L2m(t_N8Pc^WDsU$g$i-XdwK7k~ry= zga(p88V`6e0^<(=FG=JXeu z>CihB@mUGo9no_51Eo35WVsl4Lj@T10Uiu6P`SKZ?nP)oqCxY>)*iG5Ns4h;<0@N` zKl2T_^kgvP=3q$WF+R!5AEP->N@z}*AG*|pi{N0zZ_GZtJWKEZLR&(o}4wHz>5&U%@}1l=G7**9V$#5dm!W zA#O8s-@SkNdHoY*a9yl<_ye+=8=;sWESuyhh!w`IA{71rl({b&4@$HM3S0x>@CV?I zOXPc~E^s+XYac{E^UV+Z%}tzTafX}qLa7M+^K4|ryMw{Q0se5pz3Fstxh=?Z>5=z6 z#*oEH+%Uk91mgJMkhgJ%H23b4lo(x8N9L&Ro@h$^fs(CAyJS)~CIo&TgvTF%uV(@; zTsTC80Tcm$K!mdrIJ3@vD0r~k_a5eG?kCX0g}3=cfKSxj3E=YWI_vHP4+h$B7Sodp zvAd%@lm3Kn5_fk3-kty)6a4yq?$?RBJ34dbTJl4V=3bA@BL09n6Sc-N?_gZc^D{EZ zgZ(hV;t#-%rsKz+6|wG`eAu_Cdox1g4?v%qivPCjvhM~!_o3ek5As|lQS(_W)bbdf znS$Yu0sI5<;irPHP7VHM|77o>kD3RHmf=wbF;wbKV7-jGW zN|309_W5c)=|A@1Hbgl50k}jxaG!4gCw$Q-d5{|;B>n)Tac-$kO%4J7<=pDbA>6N_ z|Djg|u8^o#RUC7QEAk_idcku){Cj}?J>lNJ6g+Sf_KNq&`-^{oerTSFuq~tt&H=#{ zpW&{U%tKV(+#AI+j^+Lh!v_99QH*K5{!22%^tIem5!0djeKZxSyX5l7W6a?)1BDZg%o>rIw zSW7|iIktNwR!{taB9;;~69)7l@7Z#$%3$1xWp;mx4&Ylr*L5O2l$?=5r_zSq&2T7| zvs!Wmk22s8%nHW4**`Y%uY8OIV`1bH$@lr}4PNE>_%Om20_r!OGsV9LmY^pvC z{uV+c%5D%LAol>UVD!IoqbF*b33tWVUS+>Mv+hU#&uo zi6XvVP}VjZsyTb^+jSwPb+_{EDwBezyde_8C5reV!cDj+2v~Z`SD4yUiFCRGFyb5V zIkvkkMtuAMt0#&01_WVyCQ?wXvCQuO&;@)8=(1;avK(Kq4dPsRTOnS;(a!REN`m$1U)4;1d46e@gxEDR5i z0<&XT-HoB7A^J^}(elgK34~z9_l=8>eX~z3fZ4Y+P=bef!37O}N|K?vSuhCkAO%$X zZMfyj=|d=SUMdhncHfKD9)F;G!ztKa00`sbv%vaTUUzG>zOQ;s%ZWxxQUlJj#P807 zk=N&Kj{jdM>M@D*?2jTQTx1W{dn31Aq6s4*It$c7eE02WBm4oulXWkB!I@9+^pw{e zV?o>t5D0$&C{cD%EsID3$Y2*E82$j*{3M=-g&LAM=g_-6o2R0({BXI=X9F0_0RB1Q z&N~NOYh&q&_Xm3$%Ks@eP1E8hG0N+|!az$6 zT8A;_CR#3o?1zTp8sv`wEK&6zDZ|-4Ea0<$O}JN`hSi_{;r|yv5>@{IgtG^u9F{`$ z54bXWNaDMjp(*eO1W#1`RR~`FWuWN@gg*e3$iY+~QT=7G83=|y0G6csGoC{-=OI@8 z`4eE?N)qb*oeud{r_o@iPV=rLj|M(4ZGdj+}y{y?D{3F1sB&X7-8E=2G;Bc7Su1?Vt=t;B1d zsnH(kXbJ9?i*zH29yroW%t`Lx7h=HhilD;LWjX)~pC~orBO7>gcR~TdolfQMbY3d% zM9aZ~y5dmuoe39ZaSub6!XGGlI}MkjNRm@YMB!FUj-}{Uf#nSPL)#>3?#e-P$Nn|p zZi`c4>+?VS{{l#&<}Lu??7`IMa8oDh?FL*~b0>-K{tHK=_yd9`YVK4B-rUJR|3x7D z0iZjY*?HS5+@ld6JbHqAbW-;+ zlo$q7I`V{zsBRAX7x)7uOEfvG^EZ2#BAX||EEEBMK!mfCIhn$q`I+}5a5YxwtI^er z#!a+(5L7_s&RTq7j~_C(#VzHVfu|``hVVfC620uigfT`F1p45B3_kWz?qf-7mB!u= zo6=*B=>7mB2>w8sl65f^6$RcE1WpS5975v{Kqu?mnW2@?N#S2Wc>DqQGn2Ws#GE-b z`#W%Hw5)qGy0pQMiV6K_tk4=O3|Hi>G2p%aQ{SyWgy(cjrv!YK_g@y>l0-A1gd>lk zC<6HR-Q2&Ex|%9;;B5qZ!bM#7*Jx|}0b3`T2_^iQxqV>*i!;p6pvBGlO*Sfp&1wF$ zH7_`9XcM!auPy>pPXkknXZWZ12BTM^4Q(GnbNT;emy24(8*HQ#Uf7BfFe9fDD6b8ubdF+NFm3!lc1`!Iro4?n?uIH^m?o9P1c zYPfJu1jeRcpk46??3!c?pT?b;R@=hI@E%9&nsl0UFe;V^_~ykYzHy(&d^Zd}2c(B= zFe*MvV=yYXakC;UnDtq1)}%hHa`$^x;^~Boc|%xiB0kSgp4m zwx^uW1A0#ea1tFRm0Vm;wyF9s_?v&0*oBD@92Q*o7b& zZcO1l;I8kKhdOj1P=8BseDW^?gy}X;|~|A2ntn)kjk+%EhDMl-WU z?@lygjT9QzTJq83Mqg#-NVFm&5{Y?!=o?%P_v7dp_ydJrnIOuA;tT-=`ZE5spPv6j zWw=v86+H}+Xn-OMCnkg8Y2ZEHRPa?e8#tX3*fYNnDdmlfLcvlzJ~KFjdq<)%w-JGO zg;aF+G4uxf0dGi>HzLTI7s!}fq481YRKJP3L^4MyVaehp&;rvlnjbdyz-87m!^n&h zh$%5m+$D+-7Eavai?es(E|FS1mE;c^kq|k!4DM>|65$WHN0Kg42#V$;Ouk?kgi3IC zMqfemgc%`GUR~xJWTS|`NMrm@oCV&pHGCF0lOVF^ftUe1^pr%afkK6Zg@_;ybfWg* zev(?{31l~VNkHZJ?g;t_{y;&?DK#hohUOvgJn#=Jyt_C02O7kz_-c|-i_BGw!ijqz z$&V(VI1&6~8`(c3DkB7P3XbR@r)483mr=<|RlFZUPE$4?;IVyM(AeQLD>#AoznmHWJ{;6?{J6JrB-cdKnLh+{#4aPxC4x z^o>Mo&q9Qoa8VF&jH9??BnqP;7|bgSG>+|_jd25ipomG1mVzh|S3@XJv9zBYiF5EbYLX0Y+ z7}2ojfk%0r?0MKp*~&!no(4kl50ZwM5aD3w7w?{&mO_XL!7zA=qy%>uLk#{T3^4|D z;u$jTsVu}8zQS5Mf4};;(;P255NjN#kuSlypLhl;oCaItNA$oSaGWsoD)1k$R;<%% z*Q>B(tmF)gz%})SHrxON+1&N(VCUWKUheL(0C+6~rb9XS*PgB1T*fsw7r5r;3$7qw zu9tuu8XAuRx9r}%KA7c~*b{nc@OO9WNuDxLH3#)%^oH+h!Qb7frywbJY6G=# zwC{q3N;u@#si7SF3+f85fjO*!xxf!RbGYYVW#3DwUN2vGT~r0zEehMGarxa5?1w(Lqug+y)q;S*q}YNy z?{0yDz^l2%{;PnndvAnt=>U)Ey7cH`)FI5Z%B)mY9A*m+vnRTn&x5nobH_S0 zhle{<&SAX;S=B7FqOPfTngjJ!wSiU}zIR5~c+9s8f1$hGGX8N6KhD9&x!_{}4{eW7 zi`>jU@3Elpiq*FbrFXaWp@rUrPaNF4*uFnON3&Rm0@tzk!Hm3>iPYW7ce>m>@c|U_ zz}`@PA$-0*&~!@ZPWOxD!!d6-zBh;z5^#3hvqKp!eFI9J^}3kay+ZC~{XR4UQfpWr z$t~gj0jzV#8oORX^K*Jjx@rv0@vjf8at3OSQyLg^Dh=4q<_Bb7IlJ_Ft(#jmwkB7q z=TzdXTOQW)0C~WbodMku2b_@+r-;YcSNsaGxBUm*y;{)l0Uaxg`S?Y%^&M3DC8Rh1CeLUuM^Lp!U zxL)hP!evo=oz-mzZde47;D*8u%&vM8?P~F6cekUF-H@cGJ#)u+40H2+hM=g>;RbVY zFPm8zf#F3B;webfW_>?rb)!-)mfI}GK+N`J+pXnTyxZMv3BCrMH;*N2d5`f}vKoLa zK{~70eUJwZ(f^F#ifGvH&-XAD#k_6X^fFneOxHOKzNb>?1=JqooKFc8TAKgKp% zZO+}Bk&m$f-!qb(@OMw3k0T?k1>ZN41)e*T`A0U$`$x*}+c&4T#qPbxIjrd&jAZJ|>@)Wwk^6aM zX>MkZiDW3Xm^o+$MGMQDK^^BI#ObT;d}|~;w1?5H9k=x(2y4|e&X0s+0~o*I((SG^ zTpagnh}&OtcX*@#L7nv)DAv-6*4?Xl-$YoO#%xX`7;Bw|a-y7j=KPi{r?zD7lZdzn zX{lg%Y;LQffwiWGwJClx#p+nlOu0`XuyrF8UE@%>dUM0=_za?iHAm4k&TAnszo3MN zA0bO~({pH~RYa4Lq!k*VBN?Wn z?IYgkZZEWT92*F!U2tR9EKCweI=3L}2&WP?%B)Z5X>d9vbf=%jU(THxybM|$GE_$c z+K_n0d|p%%cPsGV&^lr2WC&J4m4Mp=s7t%sA!madzu8jezzWdI5FYIAglvsIYYKKI zX))Xd?&`h~`N^I-+fqKyBPCY5BP-oEP0fi(Dp6d0T+F?~-5a_0a6eOcHi3B#meV}X z9Y74Ts~IbB9WnttCPT3CZi@|`4X|eu?iE!C#+&PpyPKcnf1F!{A7hl*(-b9wFY^Hi zX9@xMSP&S#n``;qtkFt+7)IfZLbFhHU5Y;D!Rs8g+02jZdz@KXE_^Q)+A?0@^R8vK=Ge>F#nYW5K2e1`mfxe`In*PH+Kn z&bHMHelElr@VK!-IEHgJix@oh2fV(@4vG17_pl{W5r9cvDh5oF0P-N8zZA~}HWbfP zRW)S~1%KxxcXa2YqnkYN2t(};Sa1g%;vSLYzgGb{cL+reloUQS z<^;{3&f-HBtou08+G>Mh3(b-z?=~US?lwHd2A{FUe2M=VfE#gaV3NX3f;?SNJ zJm?ulT6gPZ@JX)R;;`N)ENg3wzahAVfg1FAN*zq?LB9b{|73Rbu(u7RcekCBI}tve z=YN`8;(rQ7??(i`c(ppD7E$v)AMPpJhSDJ^4ib87kC@XnUSjs(1r} zfmP-97-q2{@#)lxki=%*yO;I*-Mx5y z?p})m)_ipUri4y}zRNf)RPd7MoHZ)N5F)8ghWtl4E!4Or40<7<#gs(x83}#E96ILZ z{W`9O2G>RY5nfQumK#ko-(i*ac>l65x5nppZg0f01l_g&I-hRWKas_K!ez;OEuHbXs{<8u8Y{FeN zjsqF}ad-2hy^nK8vyZU@v70Wm34wEjLfp;^p(J?1#qyFPA|PU(1mZChZ>FCp(aGH% z{G^EpcbGqEg=a#E^?k@X z)N)#l)+^8uHxsuG7xfFsPq&(qn`Ht*ar1CreIY-BNdR2t#R3ufFI;S27ziH2X4Ta= za4=B1TQ0yXQY%-;&G)&Wk0=R@2sF+bs{Xe@X82Cdw1s@eW>p!YCZPKymODfsWkFF0 zXSVRy+dbZD<8o%cQ)I$@=t3wzTgt`A6MPbP4ql3mr9FUD3HVmit;(FUgmV9Yms=Sv z*@=f8b|%e0u~KM3++#v+u0QT>z7*D=GEsAL*^3~slAf`H>(t64Yp_GghvsbA5kuV4 zKM$CU$>?2u7nS!|N#ixFodzD=>LB24hL^WWt?Rf_Sp2`mnp{ z0tltBOoxAl)kRqjXbr~MLu~msl%gNc4+LcG0Q?0@1v;>X3>SnmiE%-=c*a)Oia!C# zI;^NjO{W11u3)i~HxtOPHq)MVH#&(s<5ITWQHKL)2k~m}KJqA|7-% zI<@8G<}xA_T3Kjo?~q)P?JCwie+2Jg%`nosGq|?3Pe6j0fe~yyQXcJiE5CU$H&q{Y zH=V1z1Yp*Ux#~)|cujNQY09(iG`1Gq_i;e7?y;yyHK&aoYFI2>9v#EezL@w`jsZ+edJxl;XWeNFWwzec?qbEr6=8uPZDH+ znP(Y8WE9p+`VaVWCDfXGHaeEkz$7yn(h2vOqJ4*a8!(f&C1fsJ!?rpoJQbyL#$(8s zsNXh7DBLAIbKVu?t!X@BL;@MeTB`xOE5ulrB@o5)3AZ*36^rdq(@A`pJWJ?7qS<4F zqu;&4YlYy9^_X*q>hunf8$OH}Xs92~8fn6C8&_D0)Ur2;z~tRFl-}KGzW1q?)^7!A z@`#M1CPlLj%Tr;77gKjYVkvlrzomiFop}npj+0WD;907s<|F#W8YV<) z8S*WsCG;fF{=v6 zFU(|N-oTss81R-`f{!tj9V6fA?zl*>$ocbH-tu2Is@{d7me$k?)pBv51r3Q0v#I*9 zyXidsQf>)*3B;EUGVpbQhZeDX2V8gp|0<3-#T6{=!6cs}+^H-ePNT`Fht%1$M@_s$OaKuzb6_ z=P4fBeVKJxo?yJimh4v8GFYE42qn#a`9i@;47~Xnk4gy|8{a{NRAAw%w?>E+nh)CfR#v9k9im?8?l4C%$g$EbVcB2C0LnCrItd?^c@sjA zCHBiRof5j!d4kNF4q`6@Q$vlwMo?^bWP(pqo^_`!g@#W)wO}R{jrDIl6R*$z=&rv6 z`|s$ITLjS-v^NC*=Wn{#W9;;!-rmYfQmD%LGr9jy-Mhfcl~m>8;5_n}Wb&L>m>Kp= z7?=S%f#KoMaDhx7Gnq*;VUl?OgD0JHI!V`@(|tI7P98WQqM}^4g4!ymJXAzbR76nZ zAt><27YZW66?}kCe&8RyTt)FJ_xskW+EsgZ?e2X}_sJyr{Zgm*-c{>cYt^b%@2b2z zGjC$*p-yW{j;t+9N#L){n@OkNN%^BI$TS_07^3*6B=4WhTS;P&E4nJj1w4*-G2)xe z+ex9%_gs@pChi5h5;9++N#DVwQAcxKF1eH4`k2J~81pWYDD^0LGEs-2oV-WKl(`On z4hj|O{D2m3mY@X1TSepwXIH$H^7~17F)rcyoanZ|OTl(cPg{D-he*1-==*a}$aPSp z6XCg7>di+;Zdl>IHpiV7Upuwu%eDDkl8P7PygjjHnlHoV51F>F;{-X%(?mIl(bs#%+5NWd*-t*L+j;|@Kt&V_6M-*E)h`puPP;_$V;m%z6QBWy0_yHCD>cPO$2o?Xg;r=b zlUl+0;=)?f!m(3gK`=bAAZ6-G5w_gON^;N}OToU()g)MIO+kkWdwaUw#@rcovG$>7 zZss1gmF{CNU3r`P1Y^8B@J2y$O$E3541gn=ZviMKYQeJl?82`U=s#6FPuNGx*sZvzhG$QABD^?M%01GJWn$4V_ND zXwG8{{Uj=00lIo%ob>9QAqh4>`NEL^Gr=m(Au{5mD#v42POP*XZ0P@xZrs&j3rVuE zE2mV-Zl++>!VoZa&~z;#D^7=N5ic+KnqJP1oUTk{#pyVp5%|@#<;Zo1lN}*I6`Mn} z-I!tdebIwx`n;DMGtVcvf=T!>`~j45InAu(3zwBj`$eQZG|&Ay!U1SFPt2*KD@QhB z%ZI3=L5z|N_EVw*D6=uI>j+slIS@;|N$Lag@rlvGgCk)kWCfuV8y=V@Pd)QVt}|Zc zU!<$=!|5@ynouk<82bu1&XH3h@Cs+Z8Z0T;Gg+2oYrBK-As*V%thKnQONy{hnlr}UaHzWk^5 z+B9E$`RkKIl58K6xmEwZuNVWZLvPsmj%B^D72=rF%*}$z{mgKbM!SPPGGy;pogM!c z!Y?D?DthuWZc#Ky>{LOCy`pqAy}@>uk(+Hls%bm3!l z@Frb-Sf@td?uotKdxt17?OL7e) z;qu%W%wgKGXkq=T@(AfwyP247or$HIc8P%;xVekW7sY68-Bxq1s@Mcy3! zmTt~f1uh9>DXk7Pj;Pjg&7r_xU|vMJEdDXQ%t^*UU7u(Ph|{g3b6D!mnd^Q;|1poa zFG~c(pq*K&(ohV{Z|M3l!P^x3lx_;;!~C%%09G&wS&9`ndlhMQ@TTbggH5WX1bqP# zj?1cmip9v65Y@PO6Dt7*kk6lFALGVX1ZqAv-o$EvOqtKIRI~l%$!h`hN2^9DI_;xf zA(ep;`vQqY3XebYCrT?}7-bY2!s|S(v*D!rPNBk^Ce`>vFMp9nKls+e- z?IJ;|hlN3s-oT`V!Vqm2Y5Kh0%}q?5D+ocx%{9?WYfepMJJ#(BJIZ+p_iC@ny-U~J zt!ZRzlReKZzJ*^T*E6Jma_}55fvBGAFecUu2p2Nerb*1R$#ox8P$h>1w!_799$N=p zrSX9`+1M$X08i zDs}Um+!Z4SCuEXYIqWz3i$KPRINq0+GgSwbY$VcZ%G^fn_p8T`o(`hNjn_H8m2I=1 zL`%dC_T1%2Ypp?ENb2h~C2*i$^Q zr}WZ`?`k*gh|{&!M4ezb0zIcr<-x|XLqa?cG9PPTcK9tpRdNH{>p1L$j4faYC+3B; zzk!*b^|mXaO;4Z1%10{NG)OwjG~b-8L}zBYg#{Nvrzvz?e)&aJmFS@QL0PtxTBH})m;Y;+@HwD#gc8en>Zp4fg|f*q^k}b*u5u_ zk0ASuc-6PvDJrK`Trt$dw6y-Qq}S$OayQvr6O+|85+JUyrOc7E7ofR3v7a#kuKAc{ zSv+g}UV?$z#ZhreE{|qjN~?S>z z3zCNzIzrzogd~5&+f^i_s!kr#zmC}Vlh_KI8zdL>f^({a%hLmYwCMQ9p1ETVg=Tf| zCSAQJi%pt0l$eiC!ir7_p@_T*JRwyuH$R9I6x`{?(VG6T%&g77#KCSm4)5D>YhojT zcrZvchC3i4Fq7gv$&PpW(2OMD<2$Q~8Wc*-l1`9-wqLEyDWdU#K z{}PLw-mpU`B!@^e*}o4&(Yoy;T3zOEUtL4 zn-i_rUL$`k>2<}|>AIa70qfi~A|NUnJhu0BJ9AuHUVAd`&+-oz?5glxK0}~G(Fh8}D|GK;=zE0O2Jfj}XMXb*AvFU}=*h;j3wvW^^tNe>})gHXZ9sqm< z!C-88kP=MebPfM4xfSj)U2(^b`xAZusm0sL&7m2fUn0DQc2bCtvy+=cJGprg3`{jo zVUAym3_SwYPkr5<@1~%B{m@j;mr2XJe`s?C8&wO?7 z7p<1$19n=v#)MKeZ)7v1K*q1iEhD4VdGe6{MU#eFH$Nv$8e8L2nSK#h86nh5vuBcr zLGlZW~%Ku7^zEVVY^5&08ce1R<*OzeX{4uvGPIy|GJ*W7&O*o>Y!IGg|2KN(0 z7SCenOQ>C>59vjB$V<>E8;k9yBQ;CSw9r)+TC4nvRDW;dN6=h^u+kMhhW3yZ);&X5 z{@jL7An3;Fg(1s4dnz$d{REOX>tkU3^!TRS%R5%*-rI z&$lK{;yj?voRllh%lOmLZ3$x}oMggCeuBui<9epfJ;;d=8x${1_6wX zW|*4lA$&Qv<{=t>B{M5?FheZE^|LaoFs~qF!5aKFqeYo;Ju?LJN>X)puvBuH37G#W zq4kxG z^_5{O3`+DHApz0{C!JN}UAuxfhsOP|jBjwy{zJM!dxv))wj)||QU#YyAC|Gab#h^< zQDb1CR{0kgsJv&_jzm5}nn&5PSWqI@WjF=fD9*3u^PpVM{%G2vYO0r`n>WyIN;A`+ zy*C`hsoVAR=Gd2}37Iz&V^yYlT1m+gmYBxt)FnFB2pz$tSV0c0@#}1GP z4~rk7y2{pplvzC=oM!?zi9PK?@=A?RV}x4HkCwU1lKw@XR|uW_!zbh!S)wfA}D14g=C{k1WP&&{j$5#)VGXR0REK#gO>4@%xL!GguX4_^B2JX zAYi4Qf62^LKXSow*AKxK0|84aT*LvLoH(Ofal9ec>q%%~E(u?ym)yw+I1vrupgvRy`FUIy zIEl4}2p#$G71n0*6V@3r0=O@2h{hGAz4&PyzadM*rm?P6a@LNfgdf~!%DyvpGzF0X zST?s;B9HV~1wwnQD-Sdm<~j#EQ>2wug~}|>Z}bauB#n(wv&6#|QCTzDpT{!9)a#aL zAFA2L(p1t4FRQrv)LpkGmONyCV042rnWvKaN@s{vL&<1Kzeej~Rmns0$I-im^e$Gb zTO2hpBCe!?Ejen>5^8E>q*mr^`{i{O7N*mPSMe_LOaZIiP$vQARU z9&+|)E2rz3cmFhU`)da%`%WB{CJWgVEQPiBKEs=3He%ks1|*l@>)(alR6Au6QCEww*_aiY!W-D0Dv zr5ubFomdtdC@`T1AdnG^8TE9`=oiiwaFvmxBERn0*`Da|3Jw!6fbIR-`NMrMt|Ve? zp%@Gx#=FiZG5koA$Z-wjU;sHjdLGGvwK~&hq<1cbe0Hv5nv?cyeGx37U<@GGd(I=l zcr_7fn_QXMN?8~{mUo^qk1Lu(x&W%mjhI$ugRfs@0Q6L5o=>6xT zKxkEVai^)1=ZTbu!TFj&P9DtcO9pMHKn%`ffpU)EW(vdr0)6m2wKzZKBzg2Sio^gS zz4ts7Nyef?np-Fh14wf|H49L3a)$Oy%E16~{Q7y6E0CjLU(co_3?Rw!be6OFK{cp* z0EW-A7L&PWO9hg6v)Vx+7(j>*pGVn|b)TJZc`MsRu^2$C?sD`)3$S(f?7D74x^>I5 zYGHnEX?@ZxUC(^3jMF^SF_h zCu&(OeFa)F44|InnH})ZIH7Q9yav5X$=a`yX$D|=d4@;E!nE&83fKReTr&XI%QL4j z4z9CKiSYcd(%6%0k~eCiI{OHJZnjUm`=n9^J~dG12Dfl6EWjvKG!%|Pxcvr{biYm z$+*W2JFcBr+In23=I;Cwo4YO@?o3G0+uFH`?w z42);(Fj4k<$TNd;+DK*_*mf~*D^}tAedL<~_&#@wWYBmNu78VMGdQPBJL?x=af~(X z-zMV>!1ywCjK*NvuH7iQ{s>uSaBk}wV*9aeVfY%7&%Ay2{O+B%r8?9W6aFw+Jm1W`wYPT^7Jqq z_x1U#X!b)P)m~QoxbXKR z*OsYi8OmLC$||pDeR9?&ntPDe#sJp#OJ_%2m3m7#VMD%yo`?w0rT`2ez%QR40{C8u zNbq7xz~H>e0>3jt1em7)3?RVU&xVgc2}-1n)R6av*C_ zH?fsTWOylMU;r7GsoKstm8!!ExkNcn#ZegYzc~R5INVEHZo-WncgqmS-(Y zzCId57N`sbhxAIy!2ohB&x++`k|XbzUPUn&K#X^vAEjEeBiJ7$c9l{P2Ird~ML+v$ z3c>(_{Kol|BmM67hbamJh_XB@l$WWD-Eh{=TCdK5n6ovtW zdEa>{Os;G3lN5&m#5reM<`YL-UEPK-G1tMaw__Z|#!4i~kT*~Q29Th$9IM@OMWn7z zuKzl)XZze?=FxX-OoKO@OSe&e^~}>>hoi?X(uedSxyYTz=+u`^S!tpl{ABG1zi8>C z`um8=e-J8~>2gAr0eGKSR={mI41-EDCke>_kj>?VoS0}F?eb_G0X{=u24@9$YAOSM zh`lbg3=QV zqX_c%5t+f+ka*f_`umB?;H=z-&G^ZEP}1ZM#7p?iKyicPee8kQyfJuy+hem$`noE4RK z7mj9`{U#za0P?b1SqS{I1ZHqH@_K%5p*ht$nMwT?f-^W9QlG}vP_DXo8-W=tKk(58 zW=`4|GZU}yqRjO$5!gqRGLU&rmK7EYKG9e<3d43-~tuGzo|nS%QJ zL}dWfWiChE6OF7KeVniimS5Pwm_9*N20&fr3b>0?dZwD#KrLGS6oDB4_?bh7EaJ_b zy0m62xhJ6~9}EuMzUXo>*=f%=TJ7eX3_WB|J@e<^h2e)){sm6+bx}DC@$Au%ls<+c z9@3$R#e2|U2j~GCnh0)~c9}kJZZu9T5aRaK^JeG_wcvu+Gu7EId z6B%IuM&{49Ms!?3_;@1uVDND8q2mm~$9D3;;9=oIdP%~^&E$gt_&9mC^TnP1ESx-z zoG^GeG@|1Y!pAM-gTceXhtHX3k`D$C2Om0aA^LbW`CtG(&blwN;~2uo4l=?3jGT2- zb>kYs$u4rj0GymT+l3|==MZLYBQp%Z%;~evOg82syxc)v7(6UlWQQY!ll|m`0XRA9 zRvR*Mkc=>RIBX>tClRe2A~Osg4z1X66Jg|DGQt3i>|AVPHEZnDvtPE|_3do5=9`oE zFSyZW_0ls3e~Fhc_J2q>?8$D(aC3T)bI*7|+!&%GrqrmusM$`(=^uwO*W})%YYs@7M5923J4QzB z83I9j?^NwA-edO3(bt*E#fUrv5}W6<*Tw+Sedoy1^>-E`@HPwdi)M$vh=bZO50EJa zVCq#58&h(+-W(<}rkm~K^C!^H73L<$90M@-eGfl#-P!5ZyyNXCd1C3u< z#n+rGEc*5E!s8M0$N)V4_&LJk(Ya1zYO>LtpOCRdlyqTrlB_ZStKWZ)u&Prg!rn2m z#{lg8z`4Snom&wGTV#*{7);L<26Ylf_?sqw48Y$HpCkOW+89k$GqhINA(sr!AuH7B z22tW1*<%3qe&ifcVpxS)EiRBv2Io*-TQ+r#s3`L^xnuw?f9M=h=3L|WakS}Y8nafF z-%chOfXQ>kgF7Y{rsrD$t1ly~48ZEp!=gf~soIDd+%Jf=Cbkt>#r=2_#}?XhShm&h zcam)eVEc9FiWxL#ryG;a2}rD+3s*~iH<@JsX3rHbZ>I>QOnoo;V*vinm1=UKeH1H^ zZEpWhGROc74(sSI(njk+`!(NwA7^`}Io+ITw&zb_t#$RDMUbdx{`=?9!FU!_kY2Le z6JtN)1!FY-0FrzvEV>(C(eB1iE+5p8UPs87=CE`=g4b3>&!MR>fM$N~9A3p#=G;4c`TN}3P-E*-Q=7BIByK;?k}Qr26aT}$Taavnlq6(Ulg$6E8x0kNklYR7Zx$mVUl@R2*@b@LBpC~y!Fj?Jw zwOp7BkhB25KPJ(33>>#k!pu7DZcM`9^S0y7=>-v)KYHc`KZd-#P=4D#kkKyNaO|jz zO94^(P{LYO!t=()Ju}WrU~cCS8Ut{D-&jF(s55}NlTZu*^}?}2W%ClDWCsYxfcX-! zp~YrPJrHFL?MpL%9C|y^n49XN&ORabl|A*$Q{Dk1TjgJbzX3e5O=py~5+)pM?rOEU zk@F}=UFzNJjf!Uem>!)0glUXw5*cyPBJEsFFne!7|Ae3n0NNZss5izU@TUpP0Kj*T zXptH1diKkT_bBmw{w=_sKdO||&BlXgCgz+6l*bw$d*=0=m0KOWu@4fP%|<(QwRE4D z2UkQ`=@ZmS?cTR>kry-dh>B)@i8;pr^4KMnV+B-0?Sp*>VHp7S_?YvM<-?n5AM~#g zngO8i8PQff@w)tcKy5=z$2^|qs`ita%*dW+x^sM@+c`Er(>N{80M9l1+%sE$4HkPz z_)4B!0^00dBP%=4fP%tk>uR)i|KtcZl&7y&>)$D!`8qR^0YnZo!d(|{YZfQEgVv}A1vzcp97%*E#Enhhh^_~IL6@+2{sF8h1 z4$9kI0Jnv3445w?8XU>i1KPLK!Zh2A8)IzH2BO-X%gfA`Eo-wOj<;U4`j0Ny#OnFW9f1WP-vmNv2x1hmE2 zoCG3}c>xPN1Bfwl`?Cn8CYJ|%5dj$haO8ec5zrf69`p!7836Rah_+`b*YgO+Xn~n^ z0A_R}3>tk|gYUDyC`PECdH}S)064l4dcd9`5RCBTxQx)#RwJ~03yyg$T>}G%F}e{J zpsW$*0DqEz3;;N~5f%UgBg}!mfuIZkIi7f$829RXrzKx@ufq7#T z#fc)#=LyLGkRx}=`ylh?7{LA&VHp7S;HXZ~nt~W)fbre5NN*@W8jDH7_qH>Ww* z9K|>Rtl}Zd-l$m?FW5x_iv*FZQ&APq{0uXW0pyBy-$y{K1L*a+w)1A(&WGxJ4F}l)4v+Y3}Cy8Usl8!m(wl1F7T31FAhyta%r+l-kWy z8gKM2N!He}iRQFjGSfO%zp8^6z93 zA;YArf_;z~87gy(HakCeW}VijGdW`bl2Yoi71#VWTdWKq3})(8I;=XO>HZ|pvEcbyiaC`#W<(YZ1J-+Q9vuR7Z} zGA5w>*USK?9#G#qidG7T);{e`PO= zA)x%PtMcR1ebtojsftf>T#FFqZ&>Xx0P7{4no4$G1d-E~^H6_JC3}ZbwEvCfmE}JG;v?df5P082u>YHnZuj?@H?o=x-spqIW;u_~ z0WJZyXNU!RyZ8@AHHCsa($UOBR2=ge7JCMep`?FM#S|h?T3G!D3;5>*WB|aD_WBY5 zz4`Tl{slo90Q9aUJ2y`j2RqE74X0jSGR$0r>?#_?2=z;IW_Df|49l;cc`1iMF4710 z7t)MSzhn?f942>}n%oFJI-@BLE@0iPWUbBsOfS8D5sLMY?q=%U>II}nDE>lqV!HL9 zwyET?#>bwyniFEHgE#g;Vvkt-^RSAAyhuha{&~VaLzHQe$^0N)GXtn@gyJ88(&Fzw zs9@%Y2*?0{BNTs6H=FeE#ovFlpgn>z0O-<-zbC5(h_-!Z9Oltd{CyM}#Rv_M<{4{* zXJCCFehaMc0=(*J2+}*2-nOx%l`ITxyBgXkzREJo3Wi(?!)7m)&H(H_cga2%^y;4G zHfmWk0iq>iN>yqPIl5zNdKO0(>zL$RXQrmlJ@eyi$zQ@K?v*}G*a(0gL0JW8g+n&f zH5=kHkCoaH1!w7Xk1S)SHInb2^W$?Ydg&X55B`TLX zB`oHV!?>Ns5#|^Kylv^8``E(tw7M(&=$SpT%#|;D>4owKbPl!Vp!) zG2Mf(C|sNMYz#6W$4f7o5FI<&oG#2gRClI{5jyIm=^KK4vhBd<|1yf;D*r-%XRW{y z^EQL*83G{(8kz&6)O0yfTsGL23sKB(u%2dsycl6HAg{BaI&ciAQ0BdaV*t2O>K{io z(*Da>v5+4iBm+S1AIaK8Z(?$;@h2)gLc_UyjmTuhZ})lpQ(PZSv5tQy`3635*fUZKl~haUAyoNEvbuJ@b;+(%iD= z;3wclFgHh0y&F+rZa+A(xrJoK+}sP5#2jPag8{f7!Q33x%;BiHxz`q~MKA^c8^PQh z)eOv=oBLz|rwPaafJ-+wN3`yKSn59@=9aw##t8k7Hs(=JHiJ=pec{ISZ@}r0IMr1m z*>~>IkL};F^fq-7zGsLC6MVgz;0O(_B55(h@TFpz{j7=@K#?Q#u0qP0g{V1(pDgG> zf-(ST$;!DZZIh642I|c+{A_^_5tsph^+2Mfw24B(b$!T2`Y9 zAZmYksGlPg13-;XyoylX>hf@JB^(35>5;liF*r-Jj=v8`7E9inU!|@(8B~3 zT^!9HJ#*-%VOtl>OF5OMx%&%E}x;3sxtfGNG`0OPaN-cX6E zriBVWsw%XLcN{<&FYI%>IF`kujrqwFnN(H9$X*DJ5KPvH; zv!{S;W2%8{5$;|}y)gh+2di_H&+!83Aa4ZY<-}kB3|l{q%>K4+6XzwfY+FITiy#aD zGO$<#%yJ#lARTF8v;eOp00RKnar%*^IAv+SinJMwQA4MS*^m;10YJuKMbnL$qn7_y zlQaX69)}f?bdmiZCI*8s=}0h&R`jC;VE~YESdoGRX8KwJFc@1V%%S>|V)m0H&0uVq z05|9FZ4it%5QD+kG65LHO!#SnFc@1V5G2TiHxqyX0PL2(k&1HWQfyBAJn1t4eLM0$ z9{R=X_yqzn0Fd2oGbW&7p8OJ#7yxM;K0H$yGNy^0L}Fd%17M89a0MeM81E;22B80>0j;Pk_t5_K z4I5Q;ti3a^QPpj}cmW6awi-G$8f%dIDA>mMduUXB8a$?}4`nHbHmW=YZB&s88dahnqS4Tj*G|7m&rES1Rs${biYeadWv#2F_nAX858(|cvn#^;E{U`V!k3U&W; zfJUFI4Z?-_*0gTmm0#N$-EMPE4iFW7gA6Nv@0r{G8oBlU=P|c-WXYIYkEudi(<7fQ z(|odPC5JG?CS8$}ZIdUOlMhZbIMpmXeGohu2H?eJ|43vfuuZSgJ~MF)d&~vkcL=}$ z0HgEWK4Zy#lw=uzthK78^Nq{MCnh^{bIr;53G6eRY0S^J+PE%T1o&MdF#wVsKpg?8 zg+sc#JapDl{{vEI0P5D2EuA{gFy=}2(=B$Gg!?}teFmVvyNazz!4?)m16Q*_A>>`t zLim#;%m9RKB{c%$r@^sP$)A!kgK@BYtRXu(h2_tXFar?2dsJNW2Ntgi$+fy)>u6Mn1Dyp7;Ck_MPjGVu`C)Aqff08Z( z(6y7DOXq)~-R;cr*2ix1IIn@wVg_@aYhb`u%fo*YkO2T6FRj{gJZw&KjT@Uf)_A!o z?nIAbHFC496XW)G&ph#WIR)e%(-pUBB({OB8%jo#qXBe>Hh>-zW#1CVeH((WiOgOk z$-zwxgp*NNQ4DVBQ#p7i*@@=#Y-GH%G-A)Z;y2OcyB4j{^pYLj`NR^Symm;wsC^4J zoB^c`ZQQNe=!`0mZz;w^Zq3ZXw&t<_w9Cd3D+!V9IySc%KqPy+=aNMVS{;>G2zs5u z%VWq31Mu>Sv#gG7P!LR`gXvY=%p=OO8hRYLVgRllI@?^GM1?q?=jZX{hXMF``NPQ% zS2$Z8)yNYA@N|5cc{+J!8g~q42K*#KGXV7LS%NMa?o-GE1Mtv2TRb#RHzy~wziM;g z>12Ze*m!W+*_cJ!`55kA%5vfvgl7Qwg|i61ja*E0XPc8&56>ba48VwP*^yU z0s5;Q_myiDny2Sy8tuk$8i@$0@D4JX-Pxu?#w z8#B1_$pT|ErhO8FYgyj^|73vySeRZO*=OgPCnEm*;FO4bzF$CS z27o@XJZ4UHa})*VIOVY~CN=|LFH;dG_B_U4J9Ba#XC8kQ@fj?y+UGlSlP3zIuOT!8 zK-+z#<1XVEAm}r+b%bRA*rUsn+oxLdMPWA*l>tznJ*Xca=?L3`g`1D08DyPAUkhh` zvBGp0j=C(F2n%m%6DyLSXFmBSXl^|olBJstEgVg(c_ofn$XhZ@Yhy+Pj^OCT9kI|1 zd#yIZ7TuXEp&Mx$#bQq4G9TQJ?UjZhCK0~Iyk!7cUp1~w=x-(l$XRwtOTKZk(VFJa zW{kNfkvRrn?nlltbL|PVZ<-VA_qrO+S9!X48YJ2J**7H+cr{Io<$}ZfXVMTyG&|r(66`WkR=9S>E1>9=75?j zly$u8bAuJ!AtQl%a<6r^lqc5WhG}8hGWADnRWblOc5%$2X~Xxn7iKZZJ~eTyiB-`>j877S z0Wfq4a2Z6sz+Jz}O5}IFH684XuYSnK>6vGJ2AQ%4rj=g0OFMgs9V-Q&H^#FjPeUs{ z(m@8jS2O6YstJRdtw2?|aKm9gy5bR!d<6d~!+TjE7=X!}qXi;Qt!^KkY=gxvnKy4@ zB6DGelQ)=yiEB3(rDs0yAuxO|@;qI;TM{Rln8Q7fi>oL{K~+mCQ0+%lwRX2((RljO z1)9x&vwe8XT%#Wkt38S7DVZ*}{63$C$^cB3OvmR5=7$jS-y9e`PIq#yHOtimqLl}T z!T>0C#op3Il14^nVV-mTb}mvtCJ4d+ASEW5XLpb&IgojbehI`;LNFMIwvIR36ASHy zE+-7n%pC1ZJ8dz4ao);$?b}_+(~@4E7Ux}7ywMyKn~2Ry0Yv1&OnbetgxfYIB>c(%QPRcXI}P~aDlI9 z{jzDdbAj_G!fDsq5J%{#sXHV^xWm6zcUZCvCc=w&Y~Lz~#h7fgaUeI=XbIPEVkN@> zsy?zPCS$%g5M#1415bs{5LVty96d8J)tYpeKTAvoz$}@Ch%sK`w*pM@UL3!l;}z;0 z$P*dgLOce*D_O6%M7-(FENpn8?Ie2}kr)8U?zb+r+<@=lk{zFGHmA;@TAs(%oFdfQ z3B>?V_IUB}K*?(22A3OUSieFn2Eh8ZaTe~oSOyPLs|>(cS(W8U70RIh5XT7S=R_Na2*v76@VnDOQYCg=7HZd5CoFfs8qChVu z7z2RWZQ4sL^q~mzq{;wPM{^}YwaD}-l4k(&WrG0KvO2Ri>!e;n$_zlctS7oi%0=d1 zN(cskD4Ed6xEfprxCH2QsP>nWGy{+x&0l!ZMfSgo7z}_hnj3GmW!-<#3EG@^C2<%4 zr(}I^Wi>@{ih{k0fDA?!4A-e)R1BL*upXj`EaJ6F(v+8aFeMIykp(NkDGK�x|&L zXa)y8F64af50f+lkRHw8Jn16)KS~S+z!<@o=rp3eSBXtBYiF+|c?KXKU)G&vV7Kmn z+SIWYWJ&83y=p9!qanmwr~Z4-eEsjyI=$d-wodnE$v7HW(mM5NweQXJXq`Uw<097H zcq=HMC};%*AF$Fuk2R9%Ht0+^yBM4q2H>c~q5>NE7Etg36L)fOk6l41q*swNgVOBq z1nU0h0F~9_(&KEq3yLPjsJ!6*0iSuWP*U#4q!O`|$>z?Q=Oi$HXHB4zSKWdF`tx=OL zOSAOXmhuhNBBzhN4@46sn(R$LlnP54-K3FtqR*k;uLxL?flLk?K_rW~CigB~vy)?; zE((%|*@n^j8CdbWv!+%4MY?Kd_7SNFLKDq1(WQZX(}2PG zmcBIJ@HORWrYtQP>omP4B27*75EJD~!zPWHw|R~Ia>nkreiV4hlNq{3{%%IjnY^Q% zGh~hYeM&j^1yVmzDbrw`A-2R2Awj<(DyfvD7Gb*^6(eV&O6fJE)Mu<#lin;fa*vVo z25R+^*`h{#EhFZv@^RZcs6bA(ny0phTu4(ElObaH}Pe zAaVkSD+ewzBCKs05F_1^ z%Qj`mB?l|}m(B{!zQ*<7SU+R+Wp$P07>dP9lN?(xp>ASH1@`oeXqoOWl68kCC5(8= zi1|Yn^?3Q)vt-)V>;aRN9`h#zs!&3nTNPETEs0pTSflwf;tebYcPtL6-(*$3Br5^t z&xu*l!f&mLp3Awsb*iL)Nz@@meEX8nXeXJ`<#O|j#H?hYx0Dng83Wf7R1^OJ0g&=3alPc3tIMNqYRDKf z|4tP|m?^6!xxNRd5l>(azOyig4R<25eOt@k;?Ql1y`ld@y5V*uk=*S_Q24THGK#0v zA^*4hk;q@-Kl;+v?VF^)r+FmklrZ+Bl3eM`VkzEyqx+z0fR8nK?3p)z9-^-f-thQb zGzSkeHif;R5=|upDKAke>y=V%J=Qvn?5!Qch6?_jZ^{8p!qevHw{-I!Ns{c*B*|e( z0zSXB8sdr0soH#}mNmgJTqtlG`aeL)om0ttC)w%RYfUQTDb;|m3j^~SZHykww&3~& zWNrRsx^|C^ludz=bHA~bd+-A=~@D1jgB}sAuRzyTctcJyz%{d1DfJB5CZ90}EQ#sw~({pOxC_&YH_bEAw^3 zBc|8&S+gaUGv@oNX+tkHgllTFYprf~LE7O|O1E|#t;~g^w%dYnAlzmx& zGQD}HT=RkcOQW6aB^=x7Q0L>i$!)E9wA5`ouK~Yj;gGXWh*zmz$2d3?EAq+RafO1c$67WP?A zpF>jpJe5Gz+}EL@5;^}vS0bK^t^|U?m8j>+TuI(@nOn%kQ_DQj7hnFmfxf7$35r=- z4rWX&%t|BNKGqg674f7mvk4l!;bFrPJGn=u9m<-Zd74THP0$7efLFY=#KY%PZH4_m z$l4B_o7&`br|oLKx#n!g@^<4FRVo=PkUF(V-XPAcjIXM>zZUNkTG7EjiE$##o+KjUyfXnrXFLs5Yh=R>*b5*XcSP0rL^7 z=ZVt7VBkrYC&3#`SIC&3d8q?6k-(#bxM zE^u4cwJKympcS}3bTFG}+KPE>ihaUq6jn_Ovusl&dzb(@RW?#ofNM=X-IBk6KXaB> znZzxg#4WwhTq;sH)y2WnBI5=8nO<<;p?#F0Y;2(*gY6MaViA&D2`jA@;4UwTO&!ApQs>b1^wRkAt4hCrbz{vYvnM?l8b zmGR0@lxvQW@X%UwILATtsDzDhoUbTv9LjOd@0vDggw^AYp#*H5SFF<7oy3jcGKZc$`9&l-KdgNV`h) zH9YfNRiz5}2@(z~t;Y`4WKdt3S2DS;tR6Qsaad28H!yWjM?HIJa$n@6FKugGW5t$q?;{Uoe@SV!b>f0($7s#r=ooq=@(^0JEXb&B~hqLo!4j~Oak z=D5wzkdX7+CBqH@N46_eblK)DBop`1wV~X=6(@Q3Y<_|C`kZoE#{dLyQdGA!spIwH z+U2oluKE%?OTn9T^|mn)gdw&H!mBTE}+O+pKJx5 z!GsV8jUTi)8zW!Rjr(~tC`;w@5uHQE4^pCvxpwMAha>cuN3j^IgE#5w`%ZL{!<}RY zK7(di3!}h4r=z8h$lfZZOwc3~HErnskZ!yWkui5M1JS0SuXeLeq_QSP3<>+;PT_PA z3$jK)+`DwG(7#oq2~D&Fg3nkV#+~Z4 zLL3w?)oz?dk%fS^cgM*mB?Yd^#_$VDm|JM;I0iM0?u9*MR5X2A{9}6A-I_>e)X;Iz zL;!tqHC2dpxCW0vT@t=ZFA;lDsc48hs*!c>1tQjFI`9u%+0i*xYjLH&z&vVDl=M-~ zA%Q?b0tpBtony(~UAq@s9xRvjNiOPmO9rq5lFqXx^ttRBT7PK1 zN}?O%K6be7;7mCfpSf4_HPKz(tq$joCW=`Hb&~X`b*sUz3wL6(eLl2g<{=PT$XZwF zDE=oY_Iu6Y#ONEb3?Ouv=9@yS&r6oH!2-_23yQ?_cY%X67yL2!EAxjXy`X?_;0ig; zZ2LYkqZ7D7vw|p50K&Iug=tyA=UXS@hE0Dnaq<9+Cy2o?Ya#P6Eiqp z7ZsauEbll)?G}&x!ykk1b;Z}|x*c9%H7 zE$S{iSt{&p=>L#zaP=?EBwN)Iw4Mh;N&g)na~Kog^=X20Y2j^psrKg&yJ%2CFxFlP zfr|oI^$NgR3t(TSYn47lu+?iY3p1GfTodPoHRrG~1kH0QOI8IfVD*#5+A<(Uy5;U5 zxu{Q82ubqA2r0nb2V1kVV8aQSf0?dj?j(m?B#`(0%u*TaVv(FxbkpWkpgBO(kJ+Yo z96E$-f6M78E;-f;|Vg|k4_f#RM*T(L@Anq z=H*P?mu*|iv5`SJ0^dyn`KT7u3mIhO`jeQZoClXDAG9>Cbr~|CN6CuL_m}%iszdk0u16g zv9c6Nx7D8HS}Ss+OkPp;IlW?+J>E9L^uDU#4wQpQZkbUHTcvn4MyfkF2?fP!Obg*M&)u+>+bM5;A>7OI% zL7Kg-0)!(?4LGGHR;fu&spf6OtE{qMSBx*KZmYrsdqwE1bSJP?x5<92+P>Z8m2C;* z=3n{TGcWvG6odRW9TM;{3OgJya??!?y5!8msGSwJrsWt?RFsq7&~kEU@g%m<xlS z!E8;$$NC9Oq94V{dB>5|F~UM59AT2M8A|qo_=m>_cJPi6(nvtiIRx zy~ltN1cKQhs_r_YK7*}rl_8mxs3x%J7Qk34(Z$aCxrNDjwE3{PUgW!aV4U=7W;JSS ztbQX2=5jy+Y&~lU*(^I-Yd99d^03OkNcA@hA%%`MT!xfg9AG)$!g?!M#4#*cu^8)$ zuT%GiM_eA;hKRrmcEnUxGG^0-BkXgxSeJya((Gv)A^;;;HdYzKHp*nRrM;kBa&JTb zhjhbEX~AJZCvVdcQwHkpCFGMO-dLFL;K=it#+*~;#>kh{zMKf71NeU|0r&*^JJ@I= zw;+q0tAjV`n!10I`IDt+bgI>b5K?2q>&xap)oA~Rbc26~+uJ4b5;ZEFBFYsk&==T^ zkuRx#IpLNa(}04>jLHT?FM!ikvDQ!ER%XvBe@@6JkoKGJs!;CVs>uT{f@;$II&13u zhCleVe06vr);K7w4eRh%ZfB^g#`1NKNNCM?t#&2- zy1GY+e}u%tTF5Vys6>sN!-@M^Maljy$wsRjzwNXVedY{|DPC15)*lk5PJ`>@u2~$!bEYfO^90}ch zhVZvU=&K3*Zj_2S+~?UdfPWNC^?jEbd~tbk{qPL@BVY zJfr^4q@MHe(J>~pfOM{0hlBiM&-}-)qqnmLIu5->pvmA z{AiOPpJZ$Hhy}hlkA^2o%rtR4!4$@Xgr_Y7Vx(JkIvz1&rpc52HaU2Xj)7$K?8qag zMoOSJbK0cuTe=y0_o8so$%qIXPjF<*H81EUq7^@-n+SGD6NI8grzHwlZH&+68X-=n z8zW!RjR$P>#BBnVf!Ejwn8%T`T4egt(l*y2?~Ar`OQayhXkZzL&BUB)%;QLNNM6TA zOacr}ER;}x0;!i~YHUWJK-Xqkl4p85$(ChbYhdSslIgVj6cR1Tsc6%mL|g3z zUTK>RG}^O6{U;c?9fRam5uf=QT*2ifU(?HXW)x+XTE>%+48?6*nTv=sph$2Rw?QZ* zkM?{$8xj7w*{3$U&^=L`ox?$6t>d_-8e0cAFCo)YB8i>L9}q9SUiS?pHy#A7?Fa9^ zDLL$j$y^zUfx%!Aov(HVFv!NYop%yWWJW+==rA*0=Hlx#UKUGdrdZ6+j~dQLf%$Q~qvG6x;@TX{y;^ z&IC~D;B343GqvM$_=8*gET50gn@)eU^wD`+YD^~wNGQ3@5dv?~f%O5##cbr!O|luJ z#uM+(G+KqczGiTw^wG>_9@unfwlUdEZnRXk+YG*mhPYVAf<@pmxvPs3Fu;W2Y4Ujr zYqNM~u~ixuiw};Ma?g=Q(K&Z%x02iY94W9DoeUYEwi#TQ(n7)JU@le!xIA3n_dZ>} z-$qUDwow7MSYLxHgk-dKs-?$|tFI}%O)tHh>fecdh8hh(i}p2Kff6oN5u|lG@5#oI zb)B*00E^WjPmJi`CZ+rpUhBybxHUt-MDja;wChbFTUZYzxtk6vp5CI zm@By;I!Rk(E|lNtg>-Qw6&>Olz;U<=+LBz8dzY>Wm;4c8v6c2zqkH0Lr!j|tbFsfw z{sq=xWgkJ=@Aes{25BX0RW2)?U7JY|%pSJs1~jYom9(Dw+Xld4lPI~7YTiCOhq^9n z$FT6Q9iy20h*`1O;}?kzl@l!rj!ktSa$Sbw1c22QEZ=> zBV?j_IcG}+4LTwGPG>iTX%mDJRJ>HJXoQZXyV?<2*miuS9_E70)k@U5+}%kh)!mrD!CRdjT*6arT!=$&8|Ws^to zpVCbp=wOxrSleTL;sO??G$wIHE``BzXHn{!+&kpEMxhY0C_dUiEg_q6=_ZH;;R=UP z{G49lz%oIS!!olBaiTqu0&W{?y2^;FbdMSoC4JNZ5E#Hiw1-mQp)q${PXCwFF64g9 zZ2lOYMHF!Lz&PpEI~)l#G!r3_AI=R9ob%4#({fYbX^*r88KIk9^=0a zh>LcPBOxOk_jr=YE@$de^zN=;cvT>4+2xT=aoZQ0EZts(>12nyrBe8>QgGZDKQ2cq+5`) zlH6NgxcD+Q<>B$`{FwxGiTOC|q(U7Mt9oNJu;Yoh(rD>6pCYBG_m53OMCoOY(USZO zNtXHf$49yq0afb{$)n@&b0pX2*kkJ*B6Kp|aMq$M`e9a?zaq&&?mO0`45$ZgIf*0u z4H1Sp=vebIK*{{BcdTx)jx~4l4}=-&f&F=SF$Y|S-Ev)Vb4omA;CvG@le4=o6R)ys z-9I?5tKcR@uWG(Z7M9{DhghDQQu992e2q|jo-wu$D9AOp+Bnl4j=6VE(R`g02ROhX zR_$q8-zVk78N+{)_#ihI>wpEEJOAag-LH<8V)IP`4Dn>q9ejE*t9&!_|efiS-cAXV2d!4Sc;$?48-}>870>_}Vu_crj6~nej z&paNA&Sg=w#>yql>KP&MBogRX@wdiYge5cB{|VKnlIl?Z7cKdDUNfzzxVMmQOk?qu z0u~-(*b`@Ix*LILq+7WFO-_r~eQ}zcKP9-MGs|$NE|u9a;4FXi;!cbAUZV z>L?X^!99{jcLQY5xumj{3~OPOM7l!ek?|Jg)?sIlJ@au{vz4h28zxt0W-FdM zK9G@7Q0Gl5Fw^7U26-0sBv}fdS8zp4XpT{c0&KKcW|!U;ZrE`58VCCwf8>KKmRSP- zCEd8&MbGVfj26o*eGaf^NFDOds=U#mfp}6WM%gFbIjQ8*O)OExPwA$;m=4*UalDf| zBUvt@vxiyg9J^c}cdT`MVNTX@u^rA+nRs#H{T$rsjInt~0n9u%=JQLKK_=k9QmnSVB|FBumqUzAyB!w$C?Wfgv_3^#gW!PUPbaHmK|Ma zfa@A2>|G7Pi79wnyl`j7pQ1wA(EkC~3$#w>uiBA~O2Kiu-YBAIJww{4j(!%*!`Vbv zD@0Rn#o!FjJZjC!3O^;3URrpYuEUUY5KY*7YRsd>LG0dQIfq`fFz6im=zw9IF7}Xc z(Hv~wt&kMz>-*lP>$!^rOW_dJP7^{+(S_Y{Brb`7S9FFbFl+NK)3sdxiR1sh>y3`q z#{se{S8&vpRL*+%qX1nN|CnBOpSw{AiNpuFBgkT1us+;6-sEo?!5LZvG(RI{U{BO4 zV?!nVr1J*k=)RS7W42VulyYY$3!iT%y~5eavEi0}{$L?_b5OzGL4r|Ri7gE8C#x2b z`72@aU8LD>8?k}HeuCMh7A}XqS(x{baJdac`vGY7&0zQqjVtNS`p2GW{t?{M>flYf zdQTRc^?I});NxpQfK=d!{usO=NpvlDKFL<>k(}4doY2M*CN2qIrI+kOgkSg z7I(rKry>^|4i2ODK>l<_0l2dCdwS&|CJipG3eRY)qEc8s)_Usw5~|YRjovR|KSMv! zE{A7ZWI5RdJ&v3UwH59$U2*Rrtd!I#(JFMZBg>SId(54}9c`r+_)#0T2guqx6^b%n zGdNOu%}#Zda{H2A#fX-Bc=JYduBwj{w<{sP^*{t%%GQI&M*UFUv|3X)+pNG5`ZxFb z%riPdQ(#=|+rP8)))il;>%{c;WDKwr#=6#?RNenns^*XAB?=|^rpO4LPgo}(dXJhd zk>;OCq*xGRYdQidQpQ*-S%>3K4rKnA&ywW8(l$iWpjb)KFrODmX-2+)-7r|vlU=Mx za%Ic>H3@{pYDj8VgcSa7C3SEsNUW{v)gh}ad07xIAhSiFPo#e&&EbV5S|?|UXMY7A zpSyR^m=3n+NIrap5ChhY#s;MVDa2O%vo*T^L!vS3jSlL#zUD+WI;@qGy+sh`Vc7)@ zJ@ZTN=b(;D5PU%++Fd%hBa2?@VQthrpi)QWwfRq^@`{d)I_P}Tt$xf=I9!=M=P!>B zZto77^igiM$|ewW#j%Zoiy|Iup1}%0ET+h$Q)MJWn=LA6DkhN$+BfYj8s309yK`*{|eL?TrD~@huaG?N3noFCYmtp#lfa*+{N*7 z&EQDsH3yUkyUBN1BH3t+Xg)gQRbs~C9xwpcpy`jyIbwA0d8C~$Th%W7Dh&2_}+E5sG)v2eOVq2<@y zAoPl*Hn#U6q8BNS@e-$bcoV4)DVVX%{t+x&+*q7&x1f~CY=p>`22&&4@PZfZgvYe6 z#i&r`%#(={FJu*M-j$+00iH(ECHsG)Tf#F%$%3VP?QGXD-SBDD%$K@|c6ncV=^iVv zUl$v1WIMfN06jyBsEzLdvnWIHF|EF27|_CbS#vs}V2|b!);9EiNH-kR$a#kuoy>89 z1*^x<%Jd~Rblie>McL={3Uq#a!aR0#d2R%Irga(%DcuJcreLlszE0QeXT&^4Rr%Z* zSVf|Wbw$}{EW*+=wUP*Syz}0li>MfI*C6(w__L3kkej35(#?mmBzbY;J;{DZS6ceC zx|nkg23NM3adScrw?MU6$M)fIiYM|>#=PD8yoj-L0Gw^8!TS0yD6Zx({XnFM##YuB z=-JW~x)z$Cd4YJXXt|2b-4v+i%1j^aZzJtNr6;z$v49}P+(-E+DaXo61)gm=z%^kk zX%5a>t2rh-4=54QUUbenu^-G8hCcF!~E&dgSe zI+-JB&fsJ*_E@H*!8+JS$V6{8ereO`%&|-vzw#esmZk4Qy1{`Y_i>t;kx{M0Cs~}1 zLa?48X;etB2Kz`k*sp{su~f~@mDSLL<8?K{NM6O9O%!42vhjObj?m6i9h zt6QKp#XhB*Bnu>g>VydZIoOHiAY1KYm>8lLDgw~Ctti$E#O`|BvyKD+~0&e zEkgS4i3a-1-h!<8uJ3!Fu0O=6+`n&+;-xhW?)m4W=RR7$PDe}0+WgCOEe{6Ct=n0I zxn>i=MU=&?6N(R#M-68N=SDWCryK1i2H%QBE-*wWVxa;u(oiz^p(APqgiHt zkd8O*2M1Oajtmx%=KYgok?E0a%y$j!r({IEWhL@1b6e)MBwXgD23A5D@yrbsY5x>y zmpG(>wSGpLy;;}I^{cAsi_DuyywvkVrznf|Q+Lj#K>E!j9d$DUd$<|b)^`+|D+Q3Z z5~P9`sV0dy3U2*%UO~;~?IKCcWegl=$Rwd-2-XgX;@?4<{Vt-Ktz_PzNcCN$TCyT3 zI?CUdnYp4~G{yIj{D49qy@mp(KTM(jU@z#&o_glr{s|4BRsKb~>NXdZ?l^WU(e^Ah zyY@-~4V}LPUq}(1T+F4|>SkFi`pWD%U3nKWojFD9=%TT$NVi#SBsdd~OdX019Xmu_E=wM`2(fv(Ik_;8whk|d z%%Wr+xLUV$95+hfyll(llNX;bead0*2(WDyY=U4D8Q6_CWi9o@!$FMw!^LP|0gH}G zLcM7J4v@(T@Px%ANozZ>R7(L8z20V!9MpZZsh`Oz<4pGOX!kNxHab{h=~tCUNUz$d zhg;v~vfOn6%A2_k$8Bt(jt7|G7F zenr{m^oqN137{rSFvsWsme`lAL#!6j=>;V5Ig z{tkCEWCXy%eZy^4uc?~$N6?cExBXQ1bsfXGOZoFb9CJ@wTH^F+x5?dD)5#%s?mbzz zTU+%|O@QK%{qQ_IF{KKQEz>|oh)wD)&MxOwI&y`8*z1)Bg?A=e&LF=w6@PJBq+JyU)DA%hLS^(yivn z?{(GAc0cvzD0bx$b2y(?J6|PJi}$;+ zZiLsAdeqEoWGb=c%Y2QXgMDkP!Q}zeX*$2?-Upffbs`LLpRpc`Bh{_*7Sxyn)V%yp z(jVj`V?7s7-2EcQMfauv-z2~=H+c6zqp(iQ-=IN#6+K{|Gg9~qJ_Y!tyR*S1x8Fgr zZ67)xWnu-HsOGAoV+5F%oW^4MiG^8gXtgJ>*mqb-Ebn^e8y`SxcU|#yx^Ax~PVTW0 z;SZzRSR)`x6z$&{1VFmzLgz@jt>FNa<%|mz{8|QGx8VAWYyd@P+hVjQJF~nPPFEUO z;%oCSQ+dw1q$D3*uoxrH7CMTzX!9a{NH4lqUV==lKUSc^No3|$lFJ$MMA|?sGh!`( zBFV6Wt-P6=Nl#XPWV!%T{DhzpT{$;v$FE)I*8@{BaaYIybMdC^hCVVGYV+K}A#q0X!aF7Hp zTIUJQ!V%W>1n;;cAb14jXd|{?SayV*_-Mv;Ta!-YO|ehuCia4y;AnzL0>DMb-umHA z;XGM(a5BhX3PQx%G9X5}^q-cjHaD z(|~gEQa4(SNwr-(v*Iuh){<2qy6auIy0w~NyZb4*kj|ao?hnovi@17Vob+nhcWD{e z>kgO?ZV8AE^7rc}vq&D&Agd&>+tD7fg^euJTyiD+Twft(dVN+zG8JJRwIzq+dPxqY zrlQ4S?F%XycZiTP6n7?%Oddv@o(GA# zM)LrnD!9Mcq<V zba~0w^zuD(*wWC%jSM^xI(N3p@Wyw5PL1;*6ovCAr0|Lj9`13Y9Q+^e|AkHN0?A_w zJS0U#kV8`BIbBVn{Hau4h?!nbt$|!} zpOVA;2%q@2o7}79U?|bS`7#b0)2&7~9Gn;N*A-vmNM1$^hLiww$IwPxpy13VoDa0^ zIJW~>aIYN_E4?Dm$B#}l4ar##4FnMV=Kl^A3KoC(d=GMkP&5x-SZI_;K4-k zOD%L!ZtcXGSss>!BPeRzqAGLvLVaW8OS;UyV@ACGdzkKrgipg}vb z!pDu7(uc)QZ_L!5jkAkcu#jMwJs=I^jja`kSV^ue=}xL9W9D_NVM_dbY$0Zpc&=?J zWZy`#eQnF3%?vGRb*C)h)J^JHCu4q=qzCxm=x|KGzobg6mlbDeex7vmzISNj&hkrA z*0(CHUnH%9%Z(lX9@C~Zqr`e!JD16~-6Zt3=2r+((VNDG++*P4F$4do;`|zsV!m^C zWDGe*Hp@`wHf_@}XNtc;lnSnK|2RO4R`ouDFT&$3#>&*EsVYB6oV=&2T86zVOL9)m ze3&##oZ4NBRaWMoByZ?+BL2*LjF5}+RCjIXAz#~Fm##6r9fq=frqOQU@)MbZv| zwhRC^rnm7i{J!njbZb_3f8a;Yy!g^b;*58`?Abq3n~x1f5zut~X9x?@hsG#@h?+@Z zo^$BJM@Rse=Z_gic2eKTGGP9UC41_U>tX@stDk}? zsu_U(#OMN{JuriHHWO2=867LPFL3eE3@V{_uZ7vI$-T=SB@IV+?jAoIiVSo7CIkk= z8~rKDarj*_amxsy}ot$N+$ivCHOdGY9%%f-(T;fsw6JN!N1- zYmr-_P24jM(PTBQwL$saGxz)##-CQqHTBW|f?)f{3aL=A!)w$I$57K+u0s*Hq0@^xSIBu*$IHg z(4^#vxN41ZwDA5%ut}-M3hN)h+%X0tv@ktG1X$n`)dI)i)tv-lewh^J2bd!aAi+2c zJ%q7_=fPe>Fa`h{hszDY0+aKAKSDqT%%9Qi4TS4@I5P9cJb{*$<^S_W&;Kr_54Gl% zUp@1=i(qIM>4W@j!}r9$_?Q@OE?CA z8-rub%jFF&g!~*K831zM$QCD*>mmI*ZO&Q*AjXkfI7OxTlBT$~uKwV;* zh8Sj_nItR&z>Z$oTGV=8w7oRP%uWC_4ll?{ahZoENSpy87O| z>rQH`)8n*FZ!*9dLkDEOHLW!?fAq|cuVDv7e%n8Q8AAue!6*Vu@syh47&;)1v}BQ& z!aR<{W(**~7%Kl9jQYX=?C}I+0I)H1KyqN->;k|V0U0oVMm9MTt_Rdl($v%pKz|Hv zLEOPcpDN|o{_dGokA$(UaF6~MAji-a3?LN>R`*J^x-pnTKwS*aNg+a+AE!fL08z$J zGZw+r{PK`LK}ZIG979{M202)KJ{F3HeXJWQ7 zB^Jqt8XkJ)100ZEnLX=I#^a>Q7^>wER?%RUKdM$ahH5z^FJ|dpD36|UQ7SXQ$mKmTx2F{&1 z15R6mTQ>SMTfLRh*THcC88b(nlww>3;#@?l&{b|4Oa|_JFfwp>(B^g>>{+wtp$MBP zA|Vy;l~jzGtIp&Jv*F_ihWarRLV<)_G;>0Hg}j8u;Mug$1@#`L#YW79C_dis#XGTH zitU?Q%gaq}v=^G4?gGE2sq=&8Icdi8MY=gtxBd)$*0GTzy0M^zJ=g`&j3t;O*vQ*o zOWxuWumr`rKN}5!;Hif&hZOMT%2*C(L~HH*ZYH|Dt2w{a!mWxr9qtEsco9Efg|&C# zlQH~3rtb3JD6>0G{Ec@wg26n-?-rUE7l#;8NwdW=r1oo)+CdGGVP`tY4zWSqorOsO zPgiCx%t-(ZcW{e@LDy+}*A|mMW5C~&D0z+|5n~eKtIiXXAY9>3G*g5b+|AT6{|jCm z>b1Q1KwMemKhx?s`#ZB|Cd3smr24y(>iCF1lOsrMjv@Nh)l4G=Vs-w^Y0TB(S$!0c ztz^bYeTNB>V7aiw?=xG+3w}Qm6+G-|HO&@x0A{koqbOf|vyE!zTHL|WOx>TWZYQFi z$Naz^i>M}Zk^(-#R51t%{dY;|N(w_J=-1t}cpLLbheO?!-8KarTuMmy7<^=(M_8ys zoW(H_s9nA9Qlb8hd@%WlSqPJ=i;0^>jmf`!v;5XuP`P)Q^b>n@#9*xeCdW_cQW$Mb z#%u&;fhfNaqFh}WQ7pnFs^o!DC$ev#fSb!zk%jsv(Z$2Rm4q?b85{qH%pRSUmaGQg ze|#nUR#0GnZiX5okU(`{HuOCb#hc!;lFpYuga;Aa;<~?xcR6r-rDy^=A zV4L$bzG%Cig^`XJ`imX#=MO^%e9Y(p-4?1~hkJff*h4)sNg^c zF;hfScV@>*0Y|P#Nl>Vj>5BBD8tNG4k6{h}gdr^Ns_P;OX_K)Ss|C_3V4F0{)s&)1-!Uy_ChTvZD)Qi=j zRu}7BgQ0$RJYT!h-JPiqa25Md`GIb+JNz}_63#?IIKe=YPM0JlOpHT?y4><6(XZ~p z#8ANI+0R6Bb^0aO?FGy~ZFtma%!P@O4NLs;E7go$r?VLSZTb_sK`KmJrhae~%IGNh zDPN4Ff124AoTZu;czN#ZMHDeXAd#MjN_rAT^oZ6VN7iQToVt|VAq8A`)XWuBz{;}~ zf;@yNGhqyZmR>#RQT>!*H&X+BLT|Fg7Dp5Al&T&BCm2Z2g=MS9DD*Q!Bef4|jnzX@ zrh1^xaSp+htofvW4mo?y1%Cx3Byp# zj7$*~Il4@8lrRj%)CQT-1BdfaJ(l^RfETk5Lq)VaYlPX-%yBMd@=Q3x*d;6rui{hp z?PhyrbtvPI-k;O^nR@&tbbN>TO=eI2fayv&9V$Qy3^LV}OeLIs7c}Z5d2NEAzQ_Df z!0hPdRHk6;Na5*g=Hn$kn1(cb^Pv>DeA||r_~+L zcJ8|RCi6`JrNU(P1ss`ug=Iu*11*si7CNS$!i+MkqaiHs zs-rUW`}q_`y^o{lZDNOXt8bA00|XfJf+X6kla1wGVj zF+2L#tjhRJHT>hL0R;t#dx<1&%(Q40l{#a&TY{jD=eZvRi!eSrm>ERwyB&c#flw6W zL`6{fO^qXPcOV=E;Nla$X&q~5-RN8J2PSMUCgFqwF75Fg_3=94-b##UazvK3y1kVS z-lfB}Abmb0`GP#F+tvU?I$X z2txswcn3N&Oirv2>J&mz0P39BRCrpXMyU6lB$LZElqVLy!0Z0d^kveb$ITYrc6!fW zM{jmS*l737pN*f@%AZZ>NJroW5H$O+&@4W2pIxsbTW`f$tzA>EXM!jY!^Dne#0d?S z6R!yQCPGpGGX6YEqJJR?i?DAdECpbrOUARIYC`r_WQes)QGZ2V8oJm(1FuAt!Hu+O0gbEYX%C-T;TBgJ&rY8&idlA-aNaHsXzGeIyx(Z3Ul#^*%|ihYg-{;7+Y zItus^KOabi3s@S0K7ybW0F5snq=Js{Gz5MWfhhnSeYj;tT*uT9=5I+=!yKO|XGiC` z>tYVtZF%I18=3ki_L~RjZSxM%|>DPVHqT&D;i#T>#MNf-*iB=*8Zn7n*LsAC940jRXOj?vc$_5P47a=C`` zcs>U0R)2m8uT_oBH{3zIZDiX@OYU2h%}hOn&jK7|_S^=5;+M9Zu4#b;0ereu_!K|u zoLQ}zX3!l$Q2)aUrWl*-R1n;rZz5-)_G7Xs02Lnr)1Y#4`PotX6OICK7sUFena~=6 z?w^xiHvQ0FnqHl*o~jU}gO3oLyT7Fu_5=tU04hx{0TKkz>(DRh_>`uXv7f_(?}K_L z=|utC<9*2tSqMNZy==JDpAm`zP^IbRL51{kaPJ`;1>nlktJBr=a=H&eR{X4&O;3K` z3z8#uwy5j*;NZb--`k`^(OJjzsd9js#sSez6r#n?ITIAyp3L(`{e&r@sDJ^^0|R8} z=EL1WI10eU&jVBa3Ml78{)~_mfQ&9U&4@_a`T9>F@p4iCC4Se~lrY_1m(PdmuFY&` z>S25qa+BT7w*VHOoz4y>AYk3e!n*imX?DGu3)XV&h&r7ap@8}Em4`$anVE%P4?twwiZzV>B5x8qPcRtKCch1q?6McZLu`E+6Pg1fl>?DISMFIk9}Orx1(+ zVCR*XnrWR4U-JVyw)5w->1{gi+d0F1t#V%n@Y&IRf(Bkc?!JOYe61z69uPIm{s zs3mW;Gb}SrnY#J$;NFpiR@;E5AM{_cXN%wJu)d!jxS)Z43qrqfgV`+pcs-moR{NxW z&Jm)sA8I#71({{R@%ZOs56szId}36+xTAUBxW1q>cD(U`$t z!&8#T2YDqyC;*bo)zF8WKt9l`2}A*)v!Y|;l+HAKtuG{XOn%FFAPWs-kGuHGi%`;# zsgJW?I^6$JR@epjnC02^-SYL4yn+XAy;``HT-rs&ngf2LAgN`RHU+#GGgX@13y*LS z$Q~gn02#k`hOu9#Yxni)s%Hu1^z#oJPy2+W0BrPKurs3KB6*P~>Q&@qNEV=tS>T$& zN&G}RN7FKO(b1sd0eai~2j%g{lBe;-C>On;+|8PDYbTFeq?y59CL_05UCGc>z~1D6 zm-<|$W%A`gJf08~fEcrmGNb(-nedkqCG`ZtP%!d|T^X%zc&5LVq>;3aH-3nZfa1g8 z^YUfT;)g)-`f7W4^ZeS%YQHDEgh17PtN_|N8)0TUGP?=!-` zG1HnPKlA|O`J#S!8S+8_AI2bZ|W zQYhd(wN4#;X_de2oGSrF&3g zx_3&D1KmU*3IL5c(@FCsCsq#j5`s|xEWU^_6Bgb*gC)kGV=XgYI@q z?mb(<25y|V9CSKBZ=3%BGUj}9b`a4IM*UnERk{bJp>CF*d!SyyC3y;1UwT#;fJmR^ zLH!}2C;(NugAAZNTDjb)*AR|^d5NA9%$Amh=gQB>EJ;4Jm+z;{U3B`E#`m7A`zhSx z2JS)vpnN|i0GXn4u#&sXr@Y($obl>goSsm?^z!|b2Vp41+yCf@`ey=B0H}OF zx>3+(cWO5@@_kJMzDZOp}gZ-uZDGMU{!Kf32 zQKkDSt5}aqxd-Y?93?1Ved&HG01;AoP+uh!1)xgzQvp;?D-Z7Lgri_yO7>G!i`RMB zysO)hS(1EcFWpZKhUPJxA&B+TbJ$Oz3H=l$07~~$20)a9Rrjo@pR$JQ^)G9@dhufr zc?y_bx}WkPgi;KOj*|L)0#N{{bU)<-<%G(?UO_MlfR*j1pcNmwv~Ju(_fy=5>hfeV zCxrU6^U`xQnXn!KGC=~MJedRlFFA#Bkm&(ck;xdY$;1^D>Q}E~*ePIoc`|trhD;9V zj|fBopz>t$fIKoeu-6le0$`=dw6@Z4$yWClGD)sWlW9k*uV=UTAFtayk!0eg$STNW z07N;+bZ$jtvWAmP&Up0$E-g}2K_(wU$dm*9h(HuokjV$i$&`crm|zqYkO^8Fx#n{; znYa(t@!JyC@O`7saCdAW)*Rw@iZqGzt&QhAh9u&qNGN_-bY*#Z#hIc~kmoWXPrQel zUZ0%1^FB=KReyX1!b<^D$l*ZlOb`lyB$K1NyOGCb>z6e-B!}mw z7Wi_{d=r!#nL6zLpvM7v+x!Q6;}?XdV6#;&dclxBY=*-4J^M2#)cr?pv3ecPL?~!& z>`Y`z-3?FY)r_x%0$P&;JZSBZTXVUQsr{~Cfc3WduS|fga?y(bUsp1~R-q1XZn1jj z6$mgzi2zew!_)aB9bnx6tqa27rS|eF?q=p-*Bs(So`cPlO?C<9(B{^FU$p7;%=f}p zdJAjI?YXJ`AX8frfAwxSvggnu_=K45IuO!)Co57{?I6l zb#F72y5U!SSqD2mF?~;e6JHi|vuWe%S#VWRz`1KS z-kimLuRCmaF;~`sKbO`}z?vs*q%}Cf9WXovdoG|o6tJhif%XiV%eb2mA86H4xrkO! zY^)Wa%8p@w4TGj3K+40)ohH=lM#L{6kkWtIl6-8P{5oGtY&LYp?V%iYbapN(>FXru9lmNJ6YN; zNLSG;3YazhEOMkr#nS*Y^}xj-1vWjAHc@PB;J-{*wXB@E~5i=A!8 znK$zq9tHf^R+kC*JVv|UUt7gOJ^LgB{Z>L#0DAfrJnPmvr&ac61?bI9Ow2pOX4Ba4 zcG^Gz8=hE~`}BFCHEbEocM+2Un4P*Yiw?h=;1mF#e#zZNbIPDwhc_>Fn_aAC8^_;E zY>JJ-9`@T7`+dZw0Jf?<=$%2+j=Q?c_#n|KfIj^-fz+rMuZlJ8iIukH!?cBBL$aXf zAd8sqYV3~^n*!L2b!7ps&sxJ;z-q@_?$OAfATkAzx7Um8I$E!<`!wMx0AFLxxB3gc zo!z4Ee?xEzfKPv+d}j6;@R<95M++!m!5PzDY%>Nl%>RZ$Bct!5r_Scm?$zFKsXah- zn(2tX{F67&ndVI0%BQuCjU3r?>;+ECN%rUP%G}O1#WW{Z>RTa@m<}BI6&)pc_gIp; zMvmYt)DEd5pnIGH?=KO?N%xK9#yEHNO{H#+W6Jth;MP-2h z@jr)!PJy6*c;9w(Yp=JA#YpYe`E-i{Zhd**cFS}rGAF=fc(G>^Y+U_ax=I08Ke=za z+QEnU=G%j2Ygfl6@?v^N0q?%>|A%*2QpAmEz3w*O&qvZv3i$bvecMm_3PW9pm(ni^ z`1P@U+Aq)&J!xxK+fwr}bd6%4FT6n$pNMO&qW|RGFw%oQmflgoyN~ayiF4zgjCnS5 zTj(1FeEami>Kj&ta2F+3DVp2b-Ec@~(mx9L_tkyYKe;~yZqDOAk*=P(=o!txogV8R zW-FbgfU}?4$DQqB;fV{!U5pW?4%>8(VqdO9y`G`_&tPy^qHh%N?GyWI>WpuC=8YHU z_wl@p=H+%eM*-(P^Z$)=O(f7b*rkIM`+oL>mHvF}YC1;&=l*(M&7QnzDI6Pybc_Oy z?XweVeS1>}3lYshZ+S->*C>bcOU;$mu;0PEfpq!pq@NV<^RxSE0*ihI9$rHaDd6Eg zyGB6|2W>r<8Jo)M=qLpo{hNI`m4Tx{E}u#lDd6Hhd-}&)o14AG=Ad&8uHxt_d^-K2 zfM4(1S5s$h+13s{iw;rj%SE@cHeAD_al2#dg7zHgMmkCXNB?qP&78a`M<;F%{h@$A z&zSa##^@4jnZ;$ig5O`}mI@iO0KS2%`!azw%ZyV#Uo#q*&4C(}|4CTgZ}M@bBhKN& zY

SKd_3bc+IRZQu%bZEocgawctw-cjt!-fbz@M_}*lfbEl-gCX`#Qt^z1CO=HcE7c3C_e4|dXdhqpeR!hJ`Tll6J9Q~ z=cw}q#5s>FT(@!DDp)3i3a!JSvQ-9^4eX^N*33Ap6g9X-bKC;hLm#XI{}R61i2||S zz;m#oZR_06wmy$Gw^mm%@g1}l+r!<>#n$}Lx%e`=NC6i&@Tx%dF1iG|s~$Rqe?b2z z_I3Z-D_h$O3%FF}22$G9yvz5Z%otyn-NcR3 z#iAjsng-d&AZw3%)hXzB`**=S=H^8#f|%*D%xTmp_*b^Tqb6oJi6(oJc-PP9*nkuxFdq6}(x*OCs4_>0qyM z!Gr<<-oT~pf=RQ_dkPBhaGLdK7d@hYNBeM=#6gp#Yv~gOe0tV~^+#ch8?x&va&oaw z|8&gC+VZf2>p{4`crg8Y#0r0vsqf-z8|oi%8EMZ^7l#`8VCjRW?i&k=rS_>DwVz4t z56dWy6);?*(=I5qtP@I}Sz)LZfA?m;BaknhqE3K(+!w3I9;ZWQ*{ z%i{E;TJ5a1anEeq3{m=2c>PCX3V)TUXB-Ps?ZiA_&ry#w8V&zvBUM4Mkc!Gds#goC zrhm_8MA;-#6@P9>wS=3dmw6>e`*;l}JQT?0^v}N+Rj)&<;?F}%Hm|MXrdi%Hq~Gyj z47-koQNXb2->+3fDrFdWgS#eln4U^&DE3~MXw7DvZ-ilbIt`D zE)}_+9bwY1GSKF{faXxZoT>Zvf;A1hZ#&F&I@9UjI5EKcb>{J6Z5H+VeY*K|rvBv4 z=*us}9BR*|OGU$MZ=CR8MH%|;KbO8+OE99^ zgOEuhVbJk>S~{NTFRqW%IH?zk{>{Q}3AkBquBeFfw-95Zo@Mu+OlWUG74BW{oC}S{-?yuc3<|rP*f~574x1;^C)0mHg&&V zzj?(3Kc99|z|NQcD%mMFGx#BW5ly9lsWo|!W07W4c{8b<-+e(zVtxMHSXO)Dv2<%@rHtQ@WA z*V0f57&`sAWOZd@UW!`G@*8Lt1~zLjiO4!gSA>6PcrY zgr-rzwCS&@R~D(QYn|lLVb zC-1FpHL&Qbw1@&0P5lwFSne8Z99agNW}R&M%e;ihZ#SQ10nhuZO#SjotlfPcFWKI6 z)McX4-Q|ENOn>h{#2itM6}zLqnvi7AN`1Lw!hJtQY`MOhU*M5CHNJj{ZxyG2d$SDz z6E!%=9_OK6a?n$G=u_%On+Ua8biEze3NESz>L`@Grof} z#sl~F;8kOT4!^2_2gT&WU%E8DO>-z<&eLYdME%?gM3K&w-coFfZxcCh{lpV;Fau7 zaq9FNw<8~qW=)%HWorIJ7`4gn?%8yi3|=(sZqsNI4Y2gL#nO9POUIyFUdZ36295VY zFA`A80p4_*69P~4b#~}a_7unI=x=c6<9QgB|M)S$IPA>)Z|U4`&443%;N#iiMQ&xUW&TKQ{}iE|^KxxDdCO*GvfCf)FYSnE9xx zbbIRqI!`wfgaRPHTM5Xv_BQ9jJE)xk+Apn6d(nwMB@6{%F02T~`S9mdP66fSP3zMY z%GfH}h8!1N_zR*?0Ob*txUht`(GPZZ21|xc?!e<3>^oZo0qzC`U5&|XddrL`BG_$py208>r> zwUXEU*QuNW%B$(WsJ!UHH;F<~Ssqrsa{o59Q&g4*t-a{PcL+mKSspwezE9;8mF0oT zi!S_-C=`|DfhZ3!_3*FMPElDNwDzJC|4tZ+%JMMChmQZGa*E3GK;=aj{);FS)w$4d zQ<9%kIYo6YKzY%H{~-zmP##{%s1%NR`|*sI0{SnnQh(8r{Ru=-og=|`cM$bcROd*1 zusei66ac!onuq~tb$N}?;PI^OZ~{;O;4zf~6mxPEktl#v&5$>2b?sF5SSqK0@@j@W zDlfWlJW(isa+*E^U-!JA;hjvIkVj9HPn}X-ep)N}dpOVR!xP+z!Nt=9JKBBRNIU-2 zKL1IkZn+p7xhp*0bLiRbFL@Sy?@3(AHOQ^7)PnQ+Ka}(OiPNg^PkGO4zUJT^lRKvK z24m?xm>>#RxG=qiQ^Rb=#k3V(gxS>;3k>ePh)V(7c5S#ztrl=KoJKjfz zulw~D)|T;nmFC1L1f~G6`Kn#K7V;d~>mpMnR3g3FTEL@kA@XTNrl{3rywi%W!}eXi zKY=L#JYPqWhrMPb(hnpo1z;ap0W45ZRiSIYO$-WPOzMg9WH$263BAPGlkAPZE;VO| zIi9KS-4>nDhwzZoo=q3Dmsinuu?M>6l)B~b(f$0HbUzc%8GW0AzQ-OAMuet)gb!g+ zz^Z#s=*P`pHNw9hactr^&&$)D)-qlXJ)sBpf0U`y?v3#M6xWIO9Dbqq*NmZA#g135 zuSNQCYC<4CD1p3WQUZ#99Coq6Q7{Pxba4i*E&Xp^)~0}c6PHE;CFTlR&Ys|?h42P+ zjdd%rD1i0Eirv{fFJE8T(du{j-0>Jk>mp8=t4jyhop1%IthD7!2ibrq&*WY4E?m!aWB)T+fs^0lvqiP9|3@ ze~qc{f6LT&Vyf~#3n#s%y|vI<#r+lS){brbT;zRmNl=^ie;GlF^-?vfelJxT=-&uL z0iX&UIn6rq6Y8g^){)Z|ijLeuAPNATGhHI%87XAqXVgmpy%SHy*2{#|TQvL^1fZzK za2NSsQZGd{hL1-4*Li_}q8h_bx0E@MdMT`r$N{b{plG-UM(T<1Oy93-aiuF6)2^>T16wp3#LN}G|PJ7Xb;|N1hLEIh9 zZ%3sR6+~u~^PJ1!#ClQ9Cg1EaXy(^VcR1lfb61@kt zQ&gheMaIPaUer!eLEKLtANTtZh5|4TEioi5%wsuB7wRe0NCA!Km(y4z$!SzgQ8MBS z?bYED?mOc*2zR(Dy+5^6l#F;md(nvp5{3dWXO)Rhzqi`sCxdm=f16qfci2s7xx(lWA>TUO98!QW-d-|(eQH!KmmX<{9atNkv^XqDWI_ozoD^c z?C(-F1ynz*1T{LjwHH$*1yoMF`*$5)P-W5FM^ZNhbWgl+vYzgRc6Znr;srLE%9m0t z1=N=XlrGU~h(@jxYj7yu^DWJVfmxP-_gVWk2>ZO3* zGF_6>TQqz-0Vt|5+>Kvd>ZPd0@X?9p)dZlZ#&9=H8&WStHHMGQ)OHepqAUR4{=C%2 zf(Tx8gf6Rx3s;)y*ARdL0242fty81=rNse2kv!KCi2_I`Pgu4RpoaWstSqi2O)m5v zpQ;+aNTm;F>cZP$k?P~T)P2yyr3r>jUZir0<*%_wwe|0{Ka+bm_h*GA5ozDr>9+d2 z=dqADKxQzB*}aTSW8bHEy_*8IJ#ON-ngZgbNJrzdM56%O7E!9&%{lqJl z41mdCxH2H^MfF8DzCaub;7q(jYaJZiPQKdf3d>1NY-yFay4RHdD>7pMIoYNvqqi5#8I_N{A+ zi@aG!5_JfbQ$YE|iT1(|a%uK70Y z_t4y`yPmu8(409m=MH7+OWW`=gxiieDhEb2@@l=g{W&+JtchX^W`Q@$EO2|}F<_+P zArfr$sw8FLe197jsP~%eMey&L2y_WQyuR%})q5&B$CrqcGApUi}YKLIIP_ zW&g4OhJOLfevbtV1v8&WJ1+qRwgpi86N&;*=cJKL^fhc=bsp5m$tag=C^r+CS;J*k z+sPxln*ZMe(C8qu=QaTGJ87ZHAu>hX;LuluLuT?=!e%|vo2wAitJxoktJ~fSB7BOM+nFF`ZQabRmH#0CZLodqiC$(E4R^$0oQ$oN)Q7Dc@St!zeE~ z&B;EVxw-}mbWrtyIUbmE2Qqb^tH8Ga4C=J10#^8>%He_|6EyW_;)*u!xQ=G9!> zpEa-RnVu}_z z@Qcm!OFcXmzJ0f@HoJq*-!7oC4tD$ACL&|5?icwJD4r2o5K%4nmTDO@5iSFv>FGSu z9;yNJO#!dQtcjI|l!_<-?;tP*fXA$fl?Kk4UjW}ta0-AwCd%?u>_!3UUZiqPBjAlW zbDJ5EcLfP&xs|DhuY#}#>KkA(`#<0=iT5nYZ~_FLK1g`_*oyTFNpqLfF`PkBz?rIw z!o@B>EtSCOD5~QKNdd?)=WNOG6aU;gh!1-^!cqYCk=3x0jy8OZ2a=D5C4d<-{hHOg zh4xTW5&viE!CY9|pPM29GiIWi2qO@n-~~d#iYm%FK~6YF)PtB53b;|xh~ooE-JKdmm9kjgH^8imH zAO!$h)pY6sphrEIGj)H0QZQfDa1Y8Go?DM0`-B?6sH%bi!jFD93UVh?x927Gg9)zp zy-h$@G-tHh2`z}A_{l!Mny&L0|^~-xJMF>0&o>ooe!6jFo(R9kQ9KdW|)TV zMy`KI)@eQfprTJ|c00I;HAIsgo)XF-2PPzvU&l3|*dB%eiiI@#wqQC$V& zmS(&(pV$2Xrgt*+mE9bs-M+U8_bM8ut#%ovi3m#GB$TYK!^piey`kr!x``bI1-z}s8m29R&Ln*eXzF|YGJ;b8yqaO!Vw0{u((jS7IgNl<(FoV+ z@^&tAR&QnMsK99B@-@(&{$sEV#B6msy@Ih zhQX|8*1Xah;uaF!f5;|g2v0;74>Egh18$CatYFslv>Z~fki1Vx@+vCv96)Ez_e-70 zdZU0p6>+5iCnH(_dJaJ;09w&JuK=2NEdlWP1f~G+qbnh)sBZ))pCmgiVJeMlzq6~! z7vEZbVtdQ9h=KnR;VA&$t7ZY(^HC--!I^`1)R^#Nnm_>)uBwXB)=knH+gpS} znq%s#B)1`&qgF-pQsdrgZ>Kq%kcK(kkg0cE3yvQiwAo#J)*62^;ntu;8aPt~9W?)e z(0t78p=Dug2h9w4UaL2AbfrL=S1M(i^U#|C`gst?)mv!*1q`^lMgxM5yBLMH(+CO} zfxB$x2d9+1z~p=C*zO1Z`=qA#06)TV&xEUJ0tHN{ zv_~g~SAW7modVvjRodA)BsaMTD#0B#hP;i2P{5GgH5)Qg6Gda*Nn*Xu)jrE3cyygfU31Oe2nAC zOT!YtRJ5S9YS#q0k*U``0aQFdZ=3%BRnaw23neJv;oXIY6|Lr2^_qscH|nnJN+{q- zMT>v|l#tK^yaxd(09euFF#yad=z-pgpcKqkB^@S}H#~&9k$*xBU{usOT`lXVSK}(d z@3cX^U&odffG}_6DLeKHgy;w9?kA+HsC z2P<&k-r2&vit^+k=swSSqn%S1F;5h5siKjv2q;txVIM(Q3cyyhZc>EJNf|;viqI5* zzN`{v8vTtB=PYv6aR*=(%?k&;UtfV0D+#57J63H zXF2^sPC6$@>JFSOQNWps=7k}cA*KiU8-%0)WL4GR(iPtEA$iitQ+FXO1z@Y07i#Sd zALCJ^W6qAMy00DbTBgAcyc+Qr9Gds%rbu{G(S>#Blyh-HfPyWdU{w`moM3{SBkBhB z6BKZxqN{Gk4b5~zJ{vdn9Kulmt}3>BetEs2gM1z#DF9i`g>^XC$RqefQcm*$09ADt zI~I8RlJtMFovF8V^e}C9(dn8kz*fg|3oCFS;i{0Zs$tr5%n*@?f~MZhR8hdCsye0u zpd+LQ`(DCQ0Jf@Ox&Rvx(}R8=p(y}e(J(E@B&dheBT0S6RFqG=hJMiN;}Ky^RkxR^ z@9zLv56K(+ZTMQz8Hdv^{U$*{*{29)D>~f_Fm$KpTEtDYodX+1b^LJJzlOUUE#Xs|g z&cpnsa1UlwG(dY8LT5sQ&d(P*S9E_t0mUP<=dk)B`z4C1d6h@GNNOMcD}<*2d_`BI zVtyBi?VIp5nm_>)wp2)MjbX^`<2{e`4tQ1}v-rYcUCvnF=iAO-*aN8#lpXs&;3_(q z(t3r$1OkO$DHN_~cI5O6d2^T4CiX`ZaHgW^We8?^VGr_9LQ(*-qB%5{kTL+>MNkTWRy1%FKyz9Kz}FI(0>IVWXejC%0m_@n zOiLIbRYlGAyq(JK(3_ch^|Gd>>;Y0X09h3^9i(7^ntxF(H64IZQykEKsc&+OqkunE zQ8R=y)bv5WO;8GeRz=Ma)T5>k{2c;Q0JtJ*YV{4DE9$*MO#!YnuDH+M-F$jiU}E3g z1A8ByY#rt|**$loVnuUQ!Ek2aO@eaD^-1Aub@>dOh^1qsHI^G8atPMiVGtLN#|xc@~h?z_a(jGSTW2B)1`&qt=ZT4bmE} ziEnQVwzqdS2fJ7B-G+W=zA1M{>3oPubHm;oe>3NPGbg{n>*IEz67Ia-&+IS8g7J!5 zMUO+8h)!}#%tp`uRjH!qZCpUT${J^(Sf`#su2CQ~H*KteK?Sa3=F?~<1ggk! z<#UNm{kp5B`Cy{1a5*ri56qbZnR*~^lRPeZ%r=L*SiocM)JZi>tU#51U#fJ>N^z=s zJv)nqMR3(?IeVdiXJc-JF9j_{Ho<^5&;SY;Fy==1QU>JZGr@>IrV$h{BL1G_6dM|X zh)-njC2U(PAx-4J$67Gt8)ey;iPd^$j55DK`8)E>2S6am5R z{}OhOS*n>?ucme2tRSfy+51tzi7`txX<$O+7~~#8QUEfs-wM>aDPm6D;JESh1%#yl z?4zRn{7jC@I|4nDGI8n_l2qv8(<9N%0X}XwXoqCi-pYYu_q=@zyXWXJ+Z^gD(LIkd zEmO1t1U~2+I?{>V^EmaI$FYNgs}5wxM1dqHcF!^Gj$*><*iVcB2h#uw7?9XK$Fw^G za*oG-W{fzDMo_?rwC*{kydjOF-7_<;4n)4kvn;-(z0&G-R@atW{DgLFmf|1ZJipvo z)nVX9ranFovLB$g&3|w<{>3d{&D1c003shRM2=r7O;RnLvGYQ8m@W!<5byBQVN5ri zgDn$`0$}m0&*@+}IrAK;9swzspIE;;GhV~fejI5hG=TmplGN+Yx8yoH+`%S>5B&hX z+1qoF*#KPpZs6Jcad3hI!re^>7hgWq z>6`gZlAks85Q0(wG0hi(V zwVK0&wtSa=!(l!CQm#^F2r>wIx)3xzsVN0vY3ke;Om!mDNCD5{3qs{#9c7E)cO*Ck zz~gg@^5Dp3PT!&dccuXpFyQg!dr(6rGKEyuX!x{%rItF4jCTC8gsNbyXzyCZMMr!v z*nFHu_UE{tslz#*ALcjNJ^csdbo}26tFx#|40FmpcSAVM<@zF#V`M-K;_IUz+FW+3cy7_ZZrd0ql3jMFZt?` zq*;*m_;S>A7`PY^@(c}@YggUCu^(K^+qm0we?!h)P=a$#5l^);MLh8CiNd@1$w`t| z!aav3Na_L15(T`7Poz@890!Y#4&6O<3Tf9 zn*JX%(-)N(_0$q(WK9HSE zz3c^`3{D`-zPAam5~q+km|%cDuNV51IEBoWntsgpLcN^9r-0=bBnMwqA_0N!*D(os zm`WvL*j^cQu93$vI%X$RcX_5xgxv?2-7J*|4@@wSh_{tZgr`&zVNKOusM|9U6tFz~ zT)qfmrlKL#od`t%sPxG|5z4FW5bh+xQ2;KPVn$`dC0L?%vrxix`?#LylnLqYxVc6>8>zCA$CFJFEtw4on;D)M$z zv3axwh9u8N3)*EqN?;`Llaj#X`DjG9o(6Z*PjqU1SwE^z9dJAh2{viYTYh)A!`=3;5`+6N@KB4pv8`uK~O99x_`HHW$VRrE4 z5JwdCFJ!7^i=#*KxtPW4n)f0JRp+|6N#q+Z0xu6WKVXa7X<`RHo>w-s0xC#g*f@LC3JhLm{UOoClC1t9mva)sXn6muDBz+g$LsJ2{G;3A$h}|Lmuf4!lC4=Y@-fI z?;IE-@ah)!&lCVmot}qy4eXk+7Be)LLv=7>8Oz%xsVoiLY2;zlaaBhWE(~b=-m57Y z(%v=SUgdqpe3$!tJ0z?-IHwO9>R!t(^aO-sE_z%aYPv(7UedV~=VD5Q*t7}6zJn0^ z31x^q4#cOp4#9YeC(p`Bxv}`V>mTz2T;N3n)Z5riQXtaXOAs(-gA{-}vPBYWYeB=` zp5!DmqE0aV(L0+;P}Q#wZNf>T^--$B>2z0@N9w{fntHhE$*6~;Sr0+GZo>Io{`U+( z@@0KS)mJ9GCpLILC%jL-tRGYEI#(YR_oDz&eUjZP1w2Z(ei<-JD~)y^=9B>r z0>Ee{UvJRLu$ZZ*I@p=xawm$2m#7YQ`+Bpf4*@LsdV>!p7)aRzC1vSzT!zDXV7rFg z3$=$`0R=2iy|K$0Zc^hyq|RVQ7$+B;^!Y86tY8^xYip3tl+ZB8hD?3ndSv8qX2iAW zUH3PnLGq1V^uPxfJY?r=$xf*mps&~!lWi0v^&c!G3V4xvyOZyPWC|c#bU+QtSxgs$ z=$vKL(oZ6dqJ?(12dEZa!{F)&`*U7g zs=!8pZ6_Zb5ogtV$uSCWEc!aYDLEGC7KYg-J0#O-btU=51cw1)GRt&h7E9;SpWA8B zClE9|_bD~ETkW^!J9v&bI7v5+c5cVvN6+nocA1U%e^1X#&Fy?;W^M;;uz0($IC;^W zNh&J$NqiMu98cm>bIK81%VGZj=9Dl&{VOR8_Q~Iif!KTF$SfeR&NzW<$-!qHJ zi=2fx`}Eb2tE2QS)e~R6)?RBjhnDS4c?QOT-_lCf5Dh0U#Df| z4whQ0<~Go|UIEs4j zEs1HD$M;>y*NDeC=O|Y+OuSa7k#!V^Z0a@Q7`6~kgBI2x83Af2zcx3kI5NHur%TdS+Mz!+JV%+$+BcXDf8;-o%;u%2$e0<}r68m++Odx!}>Tv^2< zq4^m-_VFk(uIn7isl;KdE8C>^>>sdN&M!k84_LrZ7;llnD0K?w>2>|LX%ifE5otyN z7ou;go^rS{T7^;A;WM`;aO%xW6Qfs6yf`h8IUl$1fs*GUIS1uIc>yt%9YFW{N1_Ncw4~uh`Me@WDT3KyO1(3V^21)P2Pc)VrU-KW>0;OJE8B zUz$otUvEQl$WABcjQTJcYKUWx05QGJ1ah^vQ@S6$JBMA|uKIi6=%I$AY_U5{?f^9X z-kJbZkU-7P3pLZPJp^iHaBxk6qTbImQNaGPHDH6r0tguC!lyn&I10d}uMRjT#&a=; z{0Jc_0GWJmjYD)S%mMz66g0fBR7f92@Y3alw)ys$Y~x|MJz(CZf!WQs;L+L1BVZ0B z03h7Ag>dN?C~}>KZQ2>puU44|3YcAj(|LS+p7}rn0#N`c{SsHf7r(dj!FCXg0$}GQ z_j6h!xaDj97J22e4)y7G!mO>X_WDEK4=}rWHmBVpXKS};XxaB^S@zHBwxw*6%kzUPzd{dQ%5?vn=2~T|_NzS|4?lIPe3JKc~}Xcs*7hs+xV+(~_rLqW67pSb7x2>PZ@WFlj6Ouk!= z$ZIRB@{k}?#vNR?eIZhKu-oUR{EkUWzFW>JkzSk_$kyE@TghjwzEay+cwVSKVty!K zdGaF82#8EiY_kMRy`E4MfGSmDE+g!jf)2y?>`jED09@*QfYt+{T%LS&H&QJ~dzs!G z4`|p|K!8-ThdbDKd+i~41Gk&zAbdJEbw=m32+;@wqTNr3mb`)8qX1a)y)vUd1#Aldzd%3=0A7?nK#5Mxw?O^rBwR><^m6U*Znl?k z|4+Bqm9_L?fA<_)=Gc;{r}G(|Bf>_#pZ^(qy5u!iXwEeW3keApo-Hg)?;eVpg^7Nv zxTk*3d{MxW=oh}HxbzYDflqW|&dMnA(_A);>MSOXvCKVY?2Eerd+49ct8-yUm%&P>r5Y6PJ2LX2vniOvU(1+uX9;w$n9qGRPgkPA0W1mk+zRPa1(V4ak zh5c9|!&>T~H5taEMJ#+`g*uos0tyhMm)J#*x5HA!8Bn;4&J?LD$r{Pi*i@7(7`u|^ zZtfIT*fl&hV{Xpw;n>I#)9BVm^v@Bm_(!{@=p!XyMWe(5@M1xDk$eFvuHNH=k1VL_ zqwFXs;MWsM@xWJZ^KaVhO_z+cnrGT2+#``qo(hTUygA-ILLv#}qX_a4$%%aN>XC(3 z(-1rok^Hdjs1cbWDpK2%)Rr9S0{=MQ3lRlP{SHf;0x3;>>@`$u(+Pb0ND2K?U8Yh( z8bmPp*@_(2dzwL?RqG@A@gMI99Oh%F$Hxzv_SnM@$)}KG4HQ$5>1!m@+sk$C%(UmI z4ndf3@2Fs_w=nM%$ooR6QZAqe=^w@2O%_NFVzExX-&bNCJPqJc!M2-w^iSkNd$$oH zgojM)=ran*XQ^WhLmFTNDDX_7K*=hwUgR^|oB+Ww!Bx*@`YDk9)F+H0p4sGENZXgw zSM?00UZOr4-;!gue@niXchhXr{_f}HV|Q@GjxfF!PVY;O-M%^+l_^?)oWD?VUUKX% zs`tij|B#@nXE5Uw@T=U|?JKtlH*GfG^i#cn`8H#>|2K?m$vO}2nD_Fn+w(^m9>H7O zOr3{^EDr-kG^}Ku2l{l*U;NPher-SgQ?v%je?=t)KLX@sKRA|YT-9d!Dd1zdf)BLY z{Od;V2?zSBUhWlq@K+3U@}2h5?daeET0W2YOd*Sq-j;q&` z6q1W*$Zv?wh44k1b{~(=;L8ZhrZP36S7!VlZ}xw@*Og;G(>^)+KY-`h3PQDEGg7IP~2=#U$)N}WO4Z8D*1XpZRr#~Kaqdj>Lb#uUN1$MdwizeS^rTDd7F?4N3;*H!^q^jCm%Fp@1>*hYBlCg^o#nb+cg5vuO|o z42s^mSE)UX0{TZ;RXJ5*LyhG!-|P41d+kL%R@t3Q-SyQh7q{2PWR8q6^y&a}fcHoYcKSq)4kETo{pyLZ-RYD6as^U9R z74b9jDiKXV7>Cu5m~9HUTWiN8k51N-fw*fO2>YG3anv4d-2k-w= zcwZ;=a^H38J^$62%sB=8j$hrcI{aP%_=cQALnvTKokLO~7WONbn+*>%E7bWkh62Vc zu77ruIH?uLMu7Yi)`KM_&}%LU^K~zpz)xd+@0GSBuqS3<17_4*684j5#79Z&|BpKI zHJ60KbDmP)2<~8AT=If($4rF&fhJMF zq~+R%5r^7vTL%9aR*uJ7m{H?+(%II+981EYH*uNg|8P8!0~k-t2F$2&Jju-vd{oO_ zY9CK>P|Z-|sPe3BkfOjEr@vC>}XwB&2DvWXiZ-om0Vdv2rNqR7n$MJo+K(Kdfa~!$ z5LBLp{FFR2Wq+DN0aI$6;T7YN7e{E$K{ST~<}B4VoidoXlBj7ayigBieK>x?fV%nN zh7D~8_cHZYFXvfE-r#S;q#Dmc944oCVhBp*5mG8O_TK?+UMzVy)V(;1px6M8x||dW z#xv(WG=~D_)OZ#$8ka)RcqW}flPF+PePvpFsm7|nW=B` z;@?4L&uzer8qY#d}9-i!7jk-!&Jkx0oaoEYZ=} zrUb>|ne$PaLjiMYop2G8<>6s(XMJ$OrQ2XYjs51;Ypw3Evn&tO+nr2Zd^1YqV7KpW z!kij!8nK8n*P<1ul53?(YP>w`!|F1z4H5};KTf|X;C+o9w?%d9t5PVo*%)&MjiG=s zHQqF0QJpb)sn|otpau=1fI;=$G-5#;cEg}w!)nQ?3LB=Fe6E4>o#F0v@BcHu+uYM1 z+-xm3x8W5A?d3Lagx7(w2j*}9FQU)~GWCzVbN#sJvAo&W#S4vU{gwNw%oYn#TF;Tv zdiuse>+-UZ2|}Qwrp{o;OM!^oxWQ&gxlJ&xLE|W3-19crxV-!(82AtxNC5+%wC*}V z6?AG?Yql_%e2s`#1L{T=rz?aY-LUYIXb7ixx~H|g+-##CSk^U&y*a&?srUR53h$7- zL2t`XSz_l_0w^%3o|j4WTv~}%T^P%o!sc_A>BnavYOa=ukPkrkc0-?QcV1rK`*bu2V zG8K%I3r>3NLrE7OE|>R7GxT~dQ?LC)UHh&9skc8ZSNm2Ab1yJR$2-f`zOU8g!*fM# zVL~X%REI^8jQHx`A=P1jz!0T(Wb9A;9+~^LPk!`Eke9>s*lL>0US5{xr;|DW&J@9r zo%c(2l3z5Yt@RvotDeSYjiY|dXL>0RyYvpT5IYAYPgn$i|3N?s0LJf6o@Vfj0Opem z&vS{U`YAyv0D4JmPB9xMn24OYo|*|$?;{t5A~`AIE2Yzb4F>H#KKE02LxSEcm;-dRWLCsKcq1fFebVc$y1#9*8EbtxhQvR=$*MmETLb{do~Vs`(_irD>cRO!2| z@+ja@{F?6+r8gE-k4&43hYj@S2u%U#G=YwrO}XjSLR6Vw;N-;zb{W}Pnk^Zi49WUQU$3C z%5zeC2Qo!O^<}1(qBN;J-HurvslCGn`tJ!%QJU1AZU>!@rjPeGcuJx*ty&ZWBA?T75;#Z}O_g7{kN} zbzEZ~<(_tHMbrh3sqi%no zkC&;Rh4x}=ZCS4AnC(nm$!Eeg+1-2#Kxd~GlLsUKNZuVJdCBDPbn3#i7HbF8MJz}P zn0OcFzXRbZ0RPxT-WF9iq+yH46iq61Pg2=1%R30@M>J8h}Qa>H+^HfhnqBD)o9y^}NzfXn48MFnJL-S1J7SY*#}Ny$l28Pp3y!YgUBKf~MZWo`3?rB%h#%nhQg8c+kM! zOjruQCeLd_%?>v2`obR==ywpB0??Ny(lb=tFuS;Xsu^W~=E+yfA$tg*H>6hi;#zlp z*y(lc6{hwAK5(!@zZ#YAL|w>NyX-IRCDr!AocX1G6RP|&Q$OKDj(4B#$NBFj!m}ol zXL{C>i3rj&({z-|KuYDg^@o%l-cCSwS3=>UlPWFhVgN)vZ|OzHfmvoTY&PrZ(PBn86qoU-JdY@tVA?}y_EtgX9_ z1a=&lBD2Zo(A!$WrM4_K%Vwqqf5Hi;*>f9+Q}To}2NCUH$Bn{{*7(4D*#ELxjg zdE`y@=DK+3?L~YS`5}3O-NsMZ^(NmL9RLapSoQnDs**{!Zg4%}h|h_~hxi zQ|e}PKD`(k9XB;cFbaSr&y`2PiX_VcPbDA)08{Ubc6f$rxE5;tc`4~;$iP;htfUSP zd?JSTSnJ3Qa3@l8rM=SY%a^D5R16Nv7aaz;+ip${X6lnXn?7OeaeXMNm&RUJhp}Q4 z$oobiZ~UpuDHil5MnrRYOvuCnwLgbM3V0fQYQ2OF4H$=+8gG@Cgz^3|+ybIgX7JxY zb}%(##mOGl5eC}lGCQh{ucKdo$|BlH{zKxz9STMmra^E4zO}@v>S1Kc( zK@kM?CMJ&pmZ#ohW-%mLd5F~8nHk2(1tNWL#(B!mPr1BhpbfqW$) zDFB%~|Bpg?!^kM?s|ia1*heSMuYFYEB*KY#vtx?-OA?cG3HXtGEsu)&?Zr0k0_gK% zE$#;xbau!U863mq0&@&o=2)fu%HoWq4+ zSb9f}3%+_NXA%@}Gxc8OG3gL0IA~t$43eQfMOH8) z6o5*;QfqZOsJvIQhYZ{igrfjl>Ii97Hn4$ttxLZ85-CRpxU?rvZ0#qK&BWF%EQyD5 z!@Zr@x`UZI@Kxa83FePSkGn&5!kqsp;*mVDon)-o1kQd}IGa4NodlveJnjc#fqEh{ zPXSM(FAA7qVml6^VGiW;+B~p2C+a(-hD}T~`pGi^Yt%w}zMsDvz_em<(X?i2e|~4; zn9&2S4GV_$#|Tn#{}?q$;K74`7akFbbY`bmI*8J`JFN0gq3dgN^9U3GYlY{{9<@Zb=prsx-s#Nv;UP zU2CQe;*0t$I8OL2n_U~uH*H%L40qZ{27w2|_xrXEc4>wO+5?8WBZ8^!%p6lx!EmR1 z48z@V1OA%?r>KJAPPqdgWw`r|G2rerfT9A1JKZ_MU6Xnue7?I)wN}O zm9y7f_Z3+Fk2fz2hIk@F^GY@|b?RS&LI;^Ww}B{4@tQbacd8*`0eEsR;Ys}Lrh5Om z^y0@r{S#MODBydXto0Zn9cp08cWDX*Oqt?kidCdR4<>mh8<_J0nnM9|qH9o<2Br~U zpUj%E^aOsbSB-5ty<sZLB`=S_oK>1b0dwjs4*|uUt|Y1OLY<+@!!*?$j>QhH z6XW&R+j?E|>Nd9Eij%Zt>WS|}u^bUL%D($EPC06=;SnRnEL70>QbA9NPDBvGcE7{- zLgFje=^g3_x-O)kRqRpQ*{M<>AkW-*lccO-hIMHe1q_?w4USdEDlf8_aaYqg3K+LD zHjS$zj}2PF>t#OA)p;yEP4@f&=(`i5XX9 z-WV|gHTD>(vH00g^|(@9ejwCekRcRse|N2Q<>ey3a%|I}v!dQlV<=$EbsK4nS4BZ| zK172kU{G`kzuFu%!f;&9l5tFh3H6Qycst6n+>*JdH#2poPjNP9_S^;xsdY9dc$`*> z1*ns@)Jd%;J2|W=6NW=9Q2&Q>77F-Y>uj!Igc)|cbf`a}DHJfJ*4bRa6u(5g$h?i_ zP{5ozXLDi=3dF-+V0~D60>Ae1Sd)_-8nK2c}#k3I%yk=a~o~@z|i{pn4jMK!{j( zE|%J@9i2hPJoxJNGWAtXqYlX%{B0OjYh5~2nNQIa)W+{gZPdz%09j9|T#JN6y^EZn zKoDx3?mJ+;R+*oDxOQXEyJ-*w47$F~^A88?49bhf9WzF~mqt;*sBVpw<8T{p%UJLt z){w_v7*cDmx-?kD=Sp;FWHVEr`WUBLX3uTFkXol&xglZ!D(5v)IkldN6u9Y|2A70l!`6*xET&2GvtD zbreU9U+<1~}Z>_8A9=OoonXr>4P{4#* zPk%fUa@spHuAvzeFeCcD&Wg@`JEt}r=KD!?Qm$^-^=qu>JJ-m)du}gNKjIxKhvW_Z zHjJv3j}Db3D5jtiJ}Z?_YkwRd>v6%gh#l(xvIC?*5NbW!aKLVIFXiFdjY0oLgD7B7 zt!En!*cp@;i#ukF`U#DqfKhdxZ8+S9+cFk>h85)T7lzb2+g|DIXt(fIEFB!Xlc`62 z24!@x+xIqM&{Cb_h{co|q8+HAZ%7Trze-Y3Kjs5V37ODHG}Oo0pHd(Kwa#cp3^4^1 zn)4}|LjiMYy-Q)l9It#rlRit6C}7fZjpyptqK4ft8TvYFCnqhesP&TeYD?C9@qebC z@#iR*{kbU;;PIQOD`Kkw7hqJ#kEBB4PvKUJsf)uot=`T)lL9W++Ep2sHN2EWZp6E2 z1O<$!wU_XX$O|DiXNR$KjH2j9l!BC{SdOv9Y4 zI=}86D1*a;Hn*$)hBL$EI>(QqftjLBsE}KwLTa7-6v0iY zXT+=pnneM#;;$2|tS8B_BhxZJj3#2+Xc`4fTdTFMa?4O)dIukV(w9_7B=vKanq|17 zbo_006-Ns0zLGfbar2`5%n-)MNp~1Q3;TNHC3|Potp}F!W`6&rpAG z9B=G1X)Fbdy>SD|I>>BZ-_nc^&h)mhwoD`s0U;-p%Z7|3Yxu5iVWgF&OwE57Req$c za?|P>@cu&GYay`RjbK4;s91)AK2Zv~*0Xy%ROIkMC7U4VSgEskenNqmY{>9dFeoQ6`s&)2)!MuJIk0XqsbFrnd7vWJeZSb%XbpG_>9^c*Ib# z3lJoqgutW5&XXFe^>VXA)urXRufEH<83i1#^$b2VK?=z?2A}V30vp<)=b^- zaTLliqX(odP{As$bsaxyw3vuux?GB>*0CXKfiA3(BVw0&Ht9rx;5@I+E^fpCH#|te zjT|=yK9>ekz`z&n9Ru@19B1V7X(R=Vd`gW)IfCC{3uc#IrI@%~#%k4t5gvtwwcaZ- zY;Bi&SGbX>uYUmbd4S$F|G|J-pBS+Q2sR3DK?<+dn>Q_}uC?5Abv%hd0k3PlWhyX0 zD#|nC1e!qsGitqGCom(g8_$$G&=d;tpvF=mWW&RqXFUiJfn4j21w{4El5|JMw%`P- z^+^=QQN?Cy@&1^DR;}}|h_RWXaj2YuR8FlUeFWbXksk+blX^ATLxHf|Sm$Uk&aAw& zMvZ$djiZ2ZwT`9Zj0+2H)WA2;KnfW6q?&8bL)T?kIM*V>RG&4eYry+;?I&Bq-fC0c z{)Mf%?V0+-XL+(EJNp0Tb{bLZ$(A!h;8AQ(lVYp4*q!TK?$b61zWO?;K>^2WJ=t=O z>nbDP*iSCwS*i z^O|^yY(;fG%JO(@q9|&j36X^STn2m(+!{9oq5%;UMZgDbznPwyuGiB& zbob1A4}&`p;}{njbt<+jrj7^u0B_ zKhC>L&-Z;*bxv)!Ze7n@7&WnAY*|QAnL{Xv29naY+n(7=3S!9Lv^lknvS=Xdij;xm zi5twCUAeq@4ns9vUthKxruUUASdN3T}s->alf1) z;@lJbSEsDqS9+Z*R@zNu!w}zG8M$xc=;fKrc^QP?aEwqCfZL}>lF zhE~$?$vSz*Zr$W9Rc6kkW6>agk}gJ@RN&hP7kfrEZtIIss;Mw6*O7T4 zWzsKjFMU|UL*ATbc(_-n6NiTrGB#9z@c87GgomTG z;US3?1?D1-3uw}ZM^1zbk3h;LltPm}JaSUP@CfAWq8ys!;XzV_N5K6F8y<2A{0kem z#J&DtX}IC;_wuWgceh5fi%lL&P{`>FPsip@{uY68L~zBP$gkP2+m%v^@*^z1tYHzc z=A%No*;mW5Lb=W3S?n}OYsA>BBE5#egos&+pn-^piKmJpvH+M6GEX5i5Hh=AKWjQ2 z4PnLi_q+p|FVX+i3%%pj90Lo3{>pL|19EC(;LMLP27)X0#7n6;2J%wIhWv9G{mpHWY%8 z_=Sc<&GqsGpF~COswyx)W0#o*Wf3u$s8|+gp0s@^lky8np@Ec$!9;Z_S%j3y`6cDh zKu)LDh9bv?4;-n>x=^8Gn4dFLyqkKrthx8l-66=WuG<`@yFs?@T|&I1p;OJH>4yYo@H*vF^Y5&C*eiqHxFlxNrM#E+2#I)DRXH!R7%36+D2kzhn2n!hPOGKS-J!7&xTQH9?l9?$b;rlf%-5x8x;w-8 z82y#RM|cgAg1<=-9|63^2UQ?G?vN%v3UnGD!Nsv5zxe_yOPU1n5wI2GBe-RSe3?RM z62wQq=7j|D5!|+7{*_{A>W`0rtkK<>iw`M~+iQFTKch3&U1RiTvAqRWR4?;+i^PhC z39rw%>$d0hg7+g@j_a1(vRCs!lpC>JW>b|)x!kd#G=$LaY6wNVCshNhM$)7rRbzgW zRVxj$VYSxYhm=4*uN!i0m%r$`BFqFqS9D-F#6b03PJfryBxtSTalg<@_rD1-(=Hr`rmN*#?N>w_5s zfe)tfyHU&f{-`xJC&BaRsyOJs&{QLs-^HwS%>*6kj=17(&4N{k& zPO({OJPe}Z*)b|E}QvTLuqJre^->EYAOM0IzLO&r@_QEv0sEMpoZw)VQ) zlld-$*4_TP74ZRzpn-_m>uyixMP$zI?^z)qrVttksk`p>Tn&F@SudBmJG%<$rn!!NQyL^N;&sVs zb2h8PL-Oa7oCf3(k6fydXO0~Tcp(MQK)|InSL4Fd2-%kC%+{|!SbHfi_dCO3Uq2UX zkH_X{zVoxqon}W6@VL6&ED)f?aOtbmrE71t0xofCmqJOfxskOMO$yH{Qftkf7jP2= z&_F=#jYm;H=G=J^pQi{Kh`79F_qI%pJmVkG#l5$IHlocMwp)YQMQnYr;b_zU5=(yv zt<`q7+3C%-_etwzugu7m@%48)=oSa@pE=_*@c*Opcm28kedLhXvsckM7D0%MHI0ji z$%$HcB}Q_&rb^6@=p!^JtcX{8>Jy_;Qzq#@D2WD=B3|vOPf`{~WwQQ@vS=V{<5zns ztHJ_k@$p^ONyTx@GZ|pcoiq21cruNRXGc*%roTJ6(_3v1M$P5+U}LqL*ia z%VYBkPNLtYJyB0y zNEMK|_`2dwqBt6e+q+?_QC%C>8qm{r<(x!(%Djl)ZXGLk8`2^k!)#Vtx4n;lBJGJi z9-EJHh5t5pnjJwx#1OcG1f_=WzCnFAqI+I}O}xXUQW9-m&)zW&k{YqXp(?pH2zd!N zPy!7kL~JWkRYDdWc^Pk_3>wJT_)APvs%YdnUr*oneh1=fH}0+vv85#*c}h-h+)D|5 zd~#>l#2Bp^0_dc`a0b_B^!khdkIgN(Z}D-Rl3Tnw0mK?VrtktiwTM@t2%vXq06p_& z$w0OPC3zy5XdcMAmIhgL^~QB=ojKI#4AHe%-M`BgI`*v?3|jj&)66^Red`tGvl3@y z58aK`cBwP!t%5)PiVKO4hd-9x<&9X~WXv!sN?L-qQElQIL%2k4{+DBkjY%NN?c_Mp`*t77ae3@?Z6Q4?G8?QPDl z^k$oT2d!oFc$=d^3#)jS`t}>y^0OKKY=%FZu|J!UpUv=RV>5sITOPD_mxy25A03dD zK3l%Dv9?61V)*7K)i=vujINE&j!QSnZdGL-y&L{WgM27`9kmu+7*ZUE%{))FX}O8Xa691vku$h5gDYe6>0hD_#K17T zXwRGW&*(kBUz-4>grj_39i@CWajK+owpdc)l}qx>haZpPr$IsLOP@ zl-t*}+{zzoMC9Z|s#t8{MP)K8vnVwhq@w)c&9r1XVkn{9M@kw{mQS-!OPP%jN@$-z zS{l$kYD)hMVHx=Y|6XHV@PORZ(8P*!m;HqZJsIO8F5Z2v=I z9$Xb%ap817QKy@_8lo^An9$k0V)InC3^Y_bZPo*>5n%q98Le3X)CsR^@~FQ)QmB&7lA z`K4aB$^2}P0X+}z8|HuMgyJCHDXJIU%JN)mq`TLO>*@K}TzoWw|H$x?o;B?ckj!%{ zhe1ZJgz(9uzA0I_P8VVmd6;2mUKu9Nyt9Q8qp8JBigcN0=1AX7QW}u9Ys^1MW5GLf z#P20B4TvwS>Ys{iJv2viB#LjsQOY0aM+RYgA2&*BH}`f%i%tJGQt{hcGrTq9Z;j0l zf51tAb?*8b1w_`d7gZ^d^@XY;IQOrsbC*8__6ay}Ex107_(1t>RbalrN{R+)H5Hto zoTOndV~B(T*_9QRW&bt$hAWnm++U|B5Et{zJ#h*ijLoaR0~a_%j_rR)@>x}i*AXZ- z3iBi_%=791m7>d(n`>E6G*n%opa_W1hYBLFdl> ztc1rGF*BxcUp1KbvyP@ga?4i(IQ)t-bhPBa%Ef$$VrU@ds;WL-l4fxfjuW$1>%f9O zLP0bTRQg47_vh1Pj)VzyV)(Bfz037=#6!$I89Uy0-H+UFAnKu2a>=yxE3o)~Z2opT z!sK8css;F&HGnHHT>Zi7>XkZhPB4qmi#AVTA<;ncLn>5UKx|~F4`S9!egL*oMbK?6 z?G9@yp8MMA?WeHM8(z}0po}YJS%G|PNQmM%SBs-kpSOT5wM}qMxy((RmY_jCRvH=w z&_0m0RtfG{($ABW2BekxyaBW)&1#R}t|k5wiD^JwrOz86H+Y;?3@ku%4!u*{CUBIB zUOE`&y>u}2UV1d=2|$-!(zAfPqL=2#v3wJR@X||b@zNZ&^-_OLxy-+@_d`?NOFguA z80V$_jwSsrNolHksfYHYp_lr*miYT5rm5_u9vNObz(k?zb+G`=CDu#*kJzcIR0s5z zN1Y|?%rOXE)nD}fdd-ojRgayx9$a!lA?SiC&79{51dR>(;l3Sp-%1rw8G-n4@rJUR z7qT^^LCW^joiZU-Z(fJ~C8VbTeWkvB5x>N*i$AeB@N!C^frQH{^aqOY4SykXa~8B& zq?>2n7PwZW=5@%g61WbgB%fFOq{G;J?z5 z$!|q+8jwG>f-C2+8$8RVN-Wi0IWo0zivv#6Eno3{#iFBttxO-NI9Mh7u zY}c?k@o z0~a}gNBV+$3UO(G`@phR=D>0rVFjRw&tYJi>IyjA$;1f&7r85I<^_v&ZEMdjNFN(0bF zq^tU(ZTKTAvBY7@JIm$HHyZT2&G{~tY4(@ZS3$swGrTy1i z4cghOf3x;vY?khZm^$2_uN{7-yM<(&7VVn>xMCu9{z+r!LDPVUW4EwPzyh3u8qHHV z8B7CR53B$wFGdLB)kLHLVswYi<&+N5#T zQz`N7rR5Rc3K7IVCL&EGp@P`#cKF$BfqgDvX#g8v0|(xt4gG$HHzpnp@S?ka6Zttm z=r1+ry36=#gw^>c#HFc}eB$n2nV)ZCxv?bwMTDgR>~xW-HC(rA0bfc$8UQ|IYOkNi zhHhagy@IGTK#lKC6ica#ou!ebuBcv3P?~C>{e=+pbp)lU1iI87E-nl>RFP8pQ-aa} zG+7P;X9)?(enE>x~}6WuYv3foq5w0~Kb+45|LXLzgort#Kojk_qeDzTv=Ym?j>y-K~DKBX=p%G{s!abXz*fY zIng|cXsTsVC&;1>A!z_vp?(1()~mQM3f-kk0vZrh2!8BfGf{Q*2~ATGdf43E$1G>4 zdO&CzKv!tp@Iq=?g}6d=8lXo{)=l~)&?hUbeZ-~#c7+NH*o&>z7x2z57Qbp#e#St_!~U!S+9B+nz;W8UR`{O zRA@6TL5Tb=BGUl5LfvPP#eG8f_Yj^2@D-Y53lFym!QV%48h}^mVp(vyONjn{qSF99 z_943OVKsQ9(?vQRaV(~M3X@3pi+1$(Dy9$RxzwB-j?KLe!Na}7?Ah93XX#}q-MM*C zMZ>hzl{zgI{d7m^MHeZwr3aCwqM|HLSXb$i2$ALO3Ti8wO5tG+?9(Q zXaE{Nip;Xog1WAr$Grz}X@Fb4oU*K$%j3>sdD;N8JF|-z=`FRFn*APnAWr!yWS{{< zd_9zBuue-<_=e4rodl)?8? z(10U;&{5!6#si39v$fjlbU7HaxpWqxX#gGH{OK__5&C|PL0 zGHsCdR+gHxNW^R(BLu7d9OBXdcUs>h?!q$H4T{^GM@Sk##!sZ>GlY=qmE{G*rvd)7 z^$Pa4(>J<@W%bI1WS{}Vv_-l+VBhROK6w#YXuuNRr04S~90TNPuuBL|1Mv9n$Rv2^ zl2{t)oPHPKX#hWMJW=~_x!V~v=dq--Z(BUmBs2}6qo2WP+Wm@?64>2@r2%Yw&##an zs+OB1;_I5OE^ZT<2FUS`bn?i2sw-D)3@s9qrb7OX`XhWAbfVGRLui^R(B)NOkI*!L zp4RE|LyughTtRpmz{igc@)@o0>v;8u1T-L+)<;%KYm~i2rUCM_)wk`b87O&y>v z^=~F94M3wi9cAu>N1dz-_==j<`&L5J06KaGxmA1P=+QA@e*^XlJEXc|CQ zsw!vO9D7TSe2ADdz^qiGXSMG~2uV{}W}j~eip-A@lLnYmx0IZrnQJfXl>M~?_7jAq z0c`Z5oicxz>#TM-o)FYe6O{(2m6{){j%&Gsx{;tX0IgI|?E&605}h{@lBP1`KD;g> zke??c4InGIXnWtXtA4*kOq$Bsxo>%ChZXuS1f{78ipgyspkE~@4M3xxzn8g_fMQ$g zz^T4LY?`V$JHOF_$kkUrCoT;Xnx-yjdG}Q+gcAu(Q$v1;YTuThL}Z$}L}&f@yAqlP(3RRVY(~*pT5)yGJqSxv z85WI0273x&X#iWP)mg$iuFi57ZzM|5?IbP@a4WeonujK)obi;!BHxS1G*uP%+6(eM zD~o$y;?e-OQdGl#bM^1(1g5Dfc)369@B>^{@B@iU1Kdgt+j4)eg*=0hG=Qw+yBLJ+ z#9++Ao<&$1z*ee+gJ%7q#H0acB?lX{XFHfzMx|!eo3IaE z0dS>ObI@P$(?J&yl%{Il>b55mycZIa2AGvRE1P4yh>$eZW%?<`ONdER8S{#Po1NN4 zOd4QT>Vpn3x*xbuZ4#9RsFiBj;mU4)=*p?xOpGP;vB0XkT~dmelh zPB8CGOd4QLFBF(PtQ5sehk%|yP#Scy#X{bfkTg{?y4~qvw=?W-$(L7Tt0a+oI;0F?zrWW93Ouk#-GYCur;ONaRCKT`M4EeU1NIi>)G(e0V>=hB``zwPE zTn$@N$m&2rekhS?fPC2$jk&CMS$}!5Y%MEq7`UXILqZx5HY*dBELEPQJdcz#RmuZ% zC5s%%O0Hc%L>eGY-7Y9%lOtIHy^x?Z0F7Q;T`Xj`x>{cVL;cNFh5Z4hrG(=ma?pTd z>PC_rc)sFl*-MB?1I*~bU72pKB%bRmIZxR|TpHj`-JntHppDn82W@<70COEHgP}|z zNp>_zK~p6=@WwB{g6d@NCMFFqr!Gd@?z#o?em%Y|#x^-Q0Kq*6osV zS#lNOX#hWU_X_a#Ri`kwpG;^PKu5p#HQ^{SwI`1EG~&?!uYyMmF$3Fj4a_yfq^X37 zI(mptqSz991~F-XIklIelRdlG+_SeeSa22I8gXfWJ9Sa%;}c9n;q!=31N`W>M~e8_>m%#1Tu&C7Dj5&=7-4k>_O9^#%oh-s2Ds64 zwMF#~*LOo+OjH`6PF+Lug%Qb(roM?HrTH=<(*SwumXXN15iUMO(Bx!rJLGsJIcUH! zb(KdB*Tw|;UqfsfU{4+Bf}M4qUQbLKU``#B#KgKMjPJA9uS@p|yDM3EJh2S&*uT+N1e71$f!vXf&iA_^gIJWj%!M-Dy zKkl!%p3^%CP6P0%t1IRTwvfR#PZI(3ZsOAb|Ke%KPKuAM$vJ9k?!^-YOd?MP(tF88 z1ForOsmL|LUg2{c*RcH!VQBz6)xdcgXidt4zd{_ES}k<5T3I0mszU6qYft zhZ>gNXNgNwB|CuI#bk+fh<_v`4IroPj&Q|=ERM*j{T!ib06ldBpo=+{UElwU#H0b{ z)Kdw-%yl3CnV>WPojNFF%X#c)k6F*2YgWEOU>X2VT{Y{AeG|3Y*NII7?5R6rihY0% z!nepm1D5F5M~a;$Whv<*e23^XK%ctvr09hP{ojd91LWv8D$8{fd9q3WAqi+eFm;bX zrI$78KOsC#^?WaB*8h{}G}XnIHSGUQcpAV*zZF!T`Rg?8|3d~EFkCuq)2_KcT->m6 z|39+PfNkpfLD}-n`z`pvAQ}Kq-A?ES%w+KHo)R5GTpHj`J!W5BYGI|RG{f77M+3a6 zYh9_qg1+Su1f>D!)Lka)+yU&-grx!Oy(8buwZ7M||JzjW;o^Ys@qO$z)DEuj)ZJW7 z!2Dh}@tqp1k>eN6_4_#f+je7f^^ds^b#`HG`$OGNH}&BrkD%)<2#ZArr+s^q<>Ry14U_jX2$ z{tJ%i*a^oWX3&cVs5Az<;{deVkU& zk0&|}(Bpg26X?0mi`pEyBcW*k9p8tXfYw&Re+X1%--*~Xz>eL(%z4_d;g77+Q&CqG zYMpx?o6VDc4I!Mu@}G{B60vRuIA^bB{v$Gb6j z*#fJO@O-3@5jT;B1~jp|`6x?6|Fc=}D7IQb>k>UbufBw&FSK_LTH17pd(GHOWAm9~ zuqgT%{h`0QcFe=&XD7IyZK@>YPeW2=LDTj`ZQA0SjtMAj;uiaOCv*=c+^F7slA9*c zKxOn0wIpje6qp_K`2wrpeulU-z>N>Sa>;XT%w`JeKM<7$sL^A}b=1yv__DRY{u5zo z09!SG3Cpj7Tj(zknx=+)Xm_08FB6rfhI{}j-pr7E_*cTx)Q}H=MW2+LdIKR{bz zMgM@nGysks0<906tsWNHKPEa2(Bs>^@_@E$lkptLm*YEur`YDQG}Z)xpsz@)`3>;?e-OYL&N~dH6xxU4aI$(NliwILj3-7!M{W z4M3yk`_};-;@$GB;y;YYG&SVzu;1ldvr=l?iAw|As?F4J6&-s)J&LF_b>ze99P3ew zd@CZ;0J&<#gpTL1KR_SMV&8_?G{CM}e<*gC)3+l!4bZE`hpcn4s_#Ht8sJu~PFFF1 z;sfv32~1N5aC+hn8x<5`h2^7)`|=&A29YZP6@o_k4WI)2g#-O;w4bdtldIrO_S>7-{E7U%(l z$4@$WP(?$}{6pF^k8c${g!IUFV=WQBXD+>GypDixg!6GYm6|{1Ac%%p8(o-r_%ht* z5|;+J)5^xDd z6PpIu)iQZL%jEA7l%{fSU?JHOpEL!Ee?V{=fLANQL0ez3l8pEYgCx3{(2+Q%AGfDa}x4S=hK1U}i}^58In(p1h{ERqOvVLNeY zD(3<}Tpd(8M-i9?z_D8igdWxiPi)S9mTl2QBN6=>Xmp%(4v`0A^UKem1v*5I*A6+4 zmmu|?u`Rp)PZpSd@CWi*>9)g1IJdZvP{O3nR< zNCU*^#SJ;cxfOhw0$mZeyqg;&?Q701;@v7#X(IdnB%uLG^m3XUiGuQyg?tbpX#g3$ zfUN*2I|JZLDOef{U_8EHZnyVYhKG=W1`N@QRbm+MsVA2)XOn{l9MPTC9EYp`lT3aX zv1ou5J#$mUD$R*=iA)3J=nmk4kb@j}1hHv=9o>xPvAIv3mR#uAk0dY+fT#00vLFIm zJq+a}haXKy8bC(((Q;ZH>ib0-{k zGE~&vAu`R>c~U?QRCkF@1MJvFm+5cNSfAaF_AP5CqxTQuUM4!7BS&L%<|%modZ?bP z9r_5~X2ZK9wjbpI6$&ly{j}wccTO*feH3}{Y_~_( zXI?hzku10qfoT97y_&56JZy8Rk-+^X;bbW)G7aP~_!SwrMd zw1Ylaz-GRx)9ht+N&{ulwN5!ExB90@b0slpfEgW>rI@y(A*fdol?JHML%2y)ygtRz zx|RB5g3??&Uip9VU9CyjQ0dbMN&}^_%U(TV!yj3R7t=xWE)>1bADU6?ov4U@_XyOz z2jkLs?cfVxq3)E}mdXMt2)wYXUKm|DIw5SOP|;wDi(hzDIP-@LWtz>EtR^i$oW(}8 z+@y&KHP0j{4L~>HgcG3hJtD4j71Tc_DosVHvRv9peJ(+10D5v{D~$|=r`S?8d*~ys zP@}7BJbfMc`b&?;=Hvf?+H0G=HD23xp}hfZ@otv^DNUe~wH8Gwo;i`z zqBM{dy;w6$FWqJ-06d9+Gysflpo@SSy1dGUk2z`XN?aP?M!zaGftw}#9>k*oUhL~f z7Or9cx61y2J`)yi^aBCRp^or|FZZz5+9f+5o9k|iTIR^$C*!pvFARPF-O(NH07ctC zg2R{oSbb?~!7TjQl_f6yRKe!%e1=Q|dGWPHmMqB!3p?cI@KkC}CMr!;RBV`+q3$3m z4N&95sYI*v0z~L(grosvd@rC3vdz!q3Fdu>NmE%SI~D@jAS6vynL)`vfS5E@We!Kq znI23?n#z#glg=b0O;t#2rDZeo_XtS?$k+{_gMe%V#}@HftWk==9^D%8Bki3LCfc$0 zvppW0kKP`&$u@Vow(T+cBlcaQTcZG20a1gzQEQN?#4*gJ^Fndvam+>~x!R=(;q}TmH0Yv+(lDxj3LFIgcbXAbCvb=xVbh$Zg%~FHdv< ziD*Fdkg1(!$DFv0m;Vtujw@gwKdwp=vUl$SCz=TsE`R_35UarR?un--JB|tJxjeU2%f=CKA(txKlH6(LE=~ zKTmQRkUzG9qh`R?Wp`y)YzE&%@3sCE+yrrjDsX331@i5~e~=ZN^jVx~sNet;6{8rq< zS_OL4Z}=(@mw;TM3JhOA_Eq4{xuB{uJA4(GyRKdw{(Z$NFoe=7kj!wlpH{8{i_pI1 z4R4GkrRJlo3}}$C6{^4xSu&QM9=c)>{Yw0C64QXVLKRp_Ty)O~@=uYR2ISLMfg!h4 zfjj4NRUix0{D-ds!=KZ6DpY}|W>p|xdw=8)(QHd60cZXI6cwsKrBG~m<-y;T%&O1} zw3=NN=yaQZW~D&`y%nm!06z0OPx2L#(14^u6&R4@easVmokTPsn!XA=RjWXcdQ0Sf zSgsYSz;IUsUj?3;s{((>PdiDgoxAQX1<`~=R_Fy5rHl=k;cT~2XRFW)EJFJ#Fub9B z<{Ea~X^@% zEKqZ6daw1TKnI9tr|XzGZ;KpRow%o$i&(6k%a;L0jc$r? zlr}b00pI>D_3ee4Q|_wOBDeCIWmZcxNZI43?(-MHrNno+tGlw@Oqf=40*hU;-TlJ< z04lC1&4BQeZKtfC+2POJw9~NL!TOE`?Bj(+E_=lt?4=pKG&Vo@JydMR6t4OU_AgoZ zyVHwPHE@V~s6(uzr<6)CpG~U59My(<&>-zk*dig?N|(yH73I)C&XcxCPF7)-O1cdt z(LmBtSpbDDS;=!7mVcM?M{!$ocSe)*U3Uv&E~`C%M)P)!0uILJq|*^IhYWda{{w0H z?%Gwdz>+E-qT+OoidM4JvBH#8NeWGG4&_UO)RouGHKa}g(E7d4Tyq7fX+XUvX?g=6 z&*(>_r(wC)?b)Egb1COXra>oGX9C+WBC)wG7s?(wgvD}l{w-o`MQQq2@+WP9Jsz96 zQ{m9t+-Y_cnfrAKQX%m4bJWxKZe?c3=v*^Lb(q8H1vJQptF~MUKlbBF%L+P@f@mP< zDO)Wl3l!%k;x^_OilTui^fG3Lr(}=7=$xm7-grvh8>e*MMqa`1GlIPLLPkvcSjlI1 z^OH7sb3yhXkx;T%X6&vcFF6wdb#(rsKi5BFpDL!qSFg~qp)`cpB^qK+OYKIJS;auh zT~$ryD|93pWXv;e9$DHBm5KX0#nC|Avu+-7Spb#^{1ye$K;RP+hhdJtVb6A1w-yI8 z7c(YZ0AvoolsfB>Nq!y>vw#<$#hw~3qNgVRA$u0LN`&$w*cLU|l83ubJ!4FgD>-1k zOXr|L>XSFBIT3!|(H4gJKBdsmPq(Td+*DWgjM~Zh5#`X(FA|3hGltUxj(dSI;=M9v zuv@7u;HG>06qvME?qqEK@jeKV!~J=1h%D)*E+NNDQK|*uvRA`p|5lQVi#Ro^#5{z~ zL4%w~-luTfQasWbl^&qGY$csdNi>j@yzO?}UJ{(whLF2uWj&0tXdr7jaTq!3hC8qt zRvAv2BST5d$gx^T^=&k9f3TY#fj~N#TUe=ufS6Hp9RkMJpMB6R4&pyife^YzL#UrT zglrDbVP*F&=7QPFnIRhFLHc?vkf6;?Cge&Ap@ER})kz>Eh!p1=<|>MzftdN!LDC=L ztsd)@=4yt9xF)ERM+J5@l^R2~V!h#^j0zsAg@EKyVFh5h9>@_4*KbiUxP&tpeB#aV zEOr_sJ$W#M5;PbxA$Oz@8VE@q455%L7&0+;q8J*8NgWJeZDh=22?m~n`s&mbBzP9_ zfDg}MbjxEG8H-q8<1dcQZO=xS9Lpc)uIr`n? zGV@dRL1>Ue&%QZwD45DFYPS-9Mu{|#c-_q=F&BR3kfN=I7RNv*l%5o%{dQ7fZeYAroWDDiLlSTgJa{E zyl1m+LR2zB@q-$Q$!qv^m5B3|-c^m}9jxJLkYO)O9TlZQq~uwDXwa7a#)^Fx#nM3R zOK)DWS<`tS!SA798VFuX+Gdn43uo&DV1 z2(MWPhI#VIluSt=TxBB2zoJ2&ytXV=At63-N41%g+5XTVlb(Asm9B5u*AuyeB55Ep zc`Y;{q9n8@eq(dv#p>(eyk*R zsf@g#hr6UCq@c_X=tQ=(TmdCtqp@dTKRCgIvAO3Cc+4SkZ2v>9BwwT9L?}P};}_~5 z$=7H&V)YE41LnKj29pM<46o3?l`97u4KuYp88aXLhM=Ox?Bg&znU!;x} z6i6fB{y76gopY&)FEeM^PKx4NVaDe!ea>Al9=_vR1RWh`}elaM?AX^oFHq= z!`VpFAT#i}uB59_eJO~egene4eiTY3`517iwFeviug+o5)gHFzUck0zt8HnPd1nT9 zW^iZ5-5HxV-w&>IyYicQeFAPv=GE3sh)RaL-B#T#`Mlb?O2qX_@2W;~Dcz6;ZkT+; zS}MeMY_(P|{f!lS8O72-Z1Q=vQXyV!R_~Yo&I*1!1=B$Avl0h+sSbSeWKVk+!($i2 z4aUZs6?h!uUqb8V3L$jM_cgKN-c|rSox$nY{Dck25&BV4x#CXv>n-V*+Yg#rajFPG zeWC_+@_u=q-bS*^E>&YLpo7uC!IH18D-q;kwjk?5%A$d+)+0$lTQ#W_2=;EGP~@HCo{6<>c$5m)(-dQddS}~&XO;w z4MmL&wIIrNYLq3P83@TW#%va;67vfB3k`B2`I6cRF*d&Pl3qqVB6VYDsT<5OytB@QgLE9TgHa`(?A$l`&{V&N;)9Ccp3$g!>S-JT$!)n{ zkDajOL!g|nv7sCU))^XD$%n}~c8x6gERU2GwV31SFf?$O`GEfUw{e|F}Q1U>X6gw7m2-M~l1?r>(ak%_tRb~Ed4N*t(p0S$YaJrQLXn9C(j z^FL)9mAru%_PeWC+c4;~dJFiVx~^}Ki(JfaFOJO#?7$v7aot`D{+^khFaiJ`_-e8Pe6p^>Pa?>REfES-3uCcQ1S_g z2{BsZyUSM6E=r<-q~sG2j=Q9mcekvpCS}n;R_X}|N8P}|F7;G#9J7zHMNjtbn|z{p z)b8OUM2KX3Us-ZVFK|O-e&prfxm@9>+%Qvp>{0OWrpv3XoU} zFRCK*Q}(lHkSodOu0wwB;2Lw`Ei3J3ltu$-$;WCTzn7Nvu)^C`-Y+PR2J-eN?q7xU z4LxB)=N;Z$%Q&=NpSgMR3Uq`|8S~5Mb9|nr!RW5=$@bXv?}=zU+W$;02Iu@U#$)nT zJzjwms?rdUf1&}IykehFpb_b^OL9W8%Y227MT3k<-oq=GWn;2L+}A0N2I8KTycP`w zltpEDUrW?{ivnpNF!e@Dxy)<$GkF4S0C;pfuwHg02AUyu7uvf z7;-KP4V?&2?GK0T;l?|a%Fj+-T-l9x8oM|V7m?E$o{r7@!w@b<1Xt{d{F+VPwIY>1kAzk%hyAl#?ih z22$D^hs2ah8p69veN9}^e2B52{^(t>RksW7>EZ(i`svF(U3`9Gb!<$7&4xYW0e?aN zzcd}WvcmWOL4CiSj!LROn(`SC3lVB);1`;l- z*~gWrv8T&#ZCLj*H%dKkHGp)s?sRu|WR-k(hppicI|H7*&7Jbd2iD^f3K$y_!@0kv z&KbP0%w7nuhPjwCyVL)ZjQLW&|L0!hC{qs;`=n+{=$sCX#M_W_lMsf zJ8@ku<^GzkbR9GojG>my1&$Pf1f1C%0!M0H6h3j`gbX<+Jmf&RJvEi8>+gx0Mz zv}&((CMhMb@|RVGxq;3?gS5v?YgJ6U2+^P_mGdUbp@E#*o6{=^&j=3{KOk6s2E&6XnkS(=(on@>I z9d-J>4d;@>AD`SBHiuY6I@i|q53S*hJsq3l`JUks!4;mkUsG7bgP4%3iZE4!@S2GZ zuezwU!N?LW`C^_=r=dYUL^KoiiqVg^6(zlpl4u|)BD`vqlm%JfBAQb#p)4B6+IXQ~ z9jY3wA=WUcSF7Wgdoa2R?i;a)t%{mqf3_pLWi*GgEnVu@!c>R7IKzu$^T2ztA)C0K zyCi?lc#Bx}SFd2zhp4;1MqR{G_j(1`*z>ujSs}S*PM}}WAZH@hqofdKV2l2Kt|*?^{}`o%y)h z2|;)H{V=X@C5tPZAeYkiEpx(D4dUw3EsQIhC!EuFPVDl<+>PEsvsG~wiqSUBXOL!& znV}?_t%|Ea(qvruoVq7v(QHv%?VQWv%8R%p7gy@OThd;gnvbhf5mz7NGh)|7&ESeZ zY2sw7;!1_78pKs+3**Y>Nf=iyU(83@-=W#6xC+JO;>t_|+Ra^y`V?i+ zY*AdD8pM?sv6zc1T!xsWW47Icers-)J;C8(Yq_m!?EJ+Uy*M`i!nW(!iR-~7`}Y)_ zbj;>81cFr`qHdo?UD7dInE>f47H_C3a~kVw8stpUK~a(4_Zu^(FaE?zybmSPKw`>4 zQIWpkFJMR{?q>z#1ql!2W|KQ{p=o&zuX(=a)HwpxG**ieuDm}+%-y_Z#rF713V(&el}gf6$1FvRwMoH%2E%rv8~xXQVGw>1w3WIg|WHx0aA^G z*WjhW-=wcb0y3Rtp(ePdmg3HKw8p@H&E749enoSo!h)fE8gH|bm@o}W2@vA-)e5o z5Bf{ZVf%`ec5l{J!+qYE;f)!0V{DerK@8p&xjA{yUCv`M0TCO>)Sm#=irBnCWAj-_ zTMfyOe9A-Lo5*5SXHI7ak_NdHv6p!Lxg?c{i`hv}ureP=nKY33CpTw4j<5{?KH8-I zm(Ol1^$bd-fz)d@T>M;bh9ah!h1fL&L4(M);bfKlDTCXFPC+`fChc9#4VSwe{ji-L zj?FjajY)g9c9=bYkfgni&jpTf{pAj&H*?E$)XC!c+@_<)a!b5i`aPYkE=% zl`xA`h56w;+=2$Fk9d+-laS0uOCtH$7BO-2WiIEGfCt!Xs}|kBoTHt4dNiMIR*Byl4RhPQwCE zn$Vzw6bg7L1<*i1vbsr&nQ6~^zb$n03W}hCh|3eX{fhXzWBf<@x%D-WMhq`EU+OE| z^Gx0ex9Z29qDUb#NpPM4$OUc7AoE>|V{?6v& zITT3)kxxz#kfq!Wcan_BC+I`wI2(Gl%Xxyhi#e8lY<>#8PXYR3|MQVE5f2!sHM+w*P@XVrzh^^vaCTn9rKxzB4{8YVrsq?5kVMuA283S5E_<$x)1j0CO!URvQzq?(knCE{{CCw_BO@p_Ab?C8w;8S zDNgG4A-%Q&KI_d96hQ+KN!>mW5xTw4jiV`qhUK5o?K?fVy=Oh$y1n{c!cy4X>9q!( zE3xhY^T;Rqv$2`E5CO0~yAU2DD-uSc=cFVRf_OMr;~}9hi#@IH)$5SjU$=7JO*u4>6Y;RLJ~>&S6eYcvl4u}lK*XsO zK?4y9>xrBQoMh|9tPhxbQwR;qKUteW9b6UWSTB(_LoR?f;edL!zr26gS_2?x{@GF({X#5{vy zXdouxfO6IQmF90v2w^rEx@2h@*WPM@fCAm^~bi

QZnf;u-q(NpxtPYvB zcafu(@{$3Pj8Jm-tgJtvEE>p)Sb0&etT4cWe6-S@L}@gTw(-jcwJ1ZVK?gR$RDZWZ z_A=nq#r+*&(wf;qhQ>zQf_nA#!a01AW52nWI-`1k$w{NC|`3QA%T!rP{oo zeR3M4IAPx`N3V@gAmT$5K|@bWH;s}Lk;O(JFum<0HOFHf=5A63hC|C)o7a8KyyU6V8r=dbg7dMt^F?s{ zBg0GfO#gtR?38Yqm!@(M5FgTjNH|GU%oGWXOpPir|H3W+4YDEO^Mo=nHc%!ceU*}E zASvOHzf4jPI1{qIL0L4AwedEJQ&(ddZ$lLF8!q0D%?BA#>dcw@ChR%QyJZqQz@9+z zv_p>94w3(m83}t%j$WA&HaBY6BpgvYO6fUC5+&89!M*|wi$7t*=`uVULIffnKoK+$ zk+MDwMFcV7eZV}JLTFh2=~@#IHiG1Tmfr9EE@iDfXzyE=5yL!>#^zAIQF5rBxc`y# zh!--at_Yk2C5P{SRee9|en=TKkdbgG zpU;ON00JpLp%fZOnM)S|WNZXZXuiT2u$~C&gq_-jL2Isq#kb-R?gZbu?IIKo_vgVO zAN_Rmun3Gr&(jfH-dvlJ}N2dmdyKKeWm11ZhCgI~7 z$LhsoA>wXXLHD2_8VE}F$j^~B+<|5PA!8+TRcJ`qW-RVs?rW^b(b)W(yhpDmYlrIp zkdUy=@Dh|9@$swVZHDKR;Lub`(#>mF_B2Rz!T`++(69()yq+>>AR}R$k(ZGLL@4D3 zN}++2bZv$(HbUP2lQu)IfI49hqBG21yRgS&bHg6A7~9-wb_6L2XTJg|Dgohe%nu~* z6ZYQ&RtX4~YRLq1CprL4T3;-R(4fdm`Atfpfs}-gB8pP7z{tzF3+2#2PP#`Cma~!P zJ{n$;^U8#+M0d`OEaYfx?sgeR7JB0TM;;_>CAsI4?(|@&YsjGF)X|{P@;7&<->dt9H>DF~s}#ESQTV$JT>mh8<_{nv zVjH+=XO@&rhtcFm0GzG?kZ>{~Bh?TH(r<3fwx1@k|7F>qO|FIoVQxzyG!QbM&i_P5 zBgfpJ4>~^pd&0_hsXwQS8DUimso@w_b6=7TJ5 z8l*U3<(s3|$~O@4w-iAG5eX~boQSOQ4TOA@LTFh2$()~rjezx`Qu)dS@FuK$d##?^ z5kwEi=G7~#eC?S(fQ*EdZze5G->^>AVI?*C*-XZLIWWQ zCsGSSvQWs0c?ZSNKuo%pKq(tJ=8L2yu$RD|uwv@9_l;WfBfDtApN-A(BM}(evkT!d zBqeN|Jg0U~C@Y84-;@R!kZ`_aQiu(ef}EF94h`faT(>bP zCkU8=q*qW94J4&|57aAa_#<0FZAMPuwUCi;MuRWI?Y4WM+vBl$?V}Mm+uUh(1Stt; zIs+*x0U@)ZA(OE72v{XxT&g7#%-_=)Xpr=T^C?9U8Z3D!pQIETNJ$vEMJZXJZ{oe3JGIB7uI49`ZlS=O7sq6iv@NZ63(@*oTWpBsNoAv7%iWaA9#fb)CS zr_uA({lJ^>+4yj|H5hj0_cupv?mI1y$lbLWy*4)A;-vqrikGu1_K&$XHDwbvDOIH* zTCUS*iP*(%+G!}4`Y@yDxrOVh$UK^p;xx#TYtt>iE0FsI4z^v%XPA}tSW2UTv}bO; zv>?bz>xrOF*c-dDJ<=CMc`!B$3+#=_vHcJ9343FXUYX(l zZ&m+K*c)?{;{I8x%{S@&G)Qs6-dK)aoj(xqZHl0Qh=jedoQTZz10mm|5E_<$vetow zjezwn^m}zb@J3X;3vGO+t<~Ld(^dPslLzg&75m*mJsg`?T@IH&%%1rJ(C^x~&7PiK zdExNySBH-X@#)FL)x-3f%UQfMNM}S_Q;}NTJSU(<0W=U05p5L(WG`?iVxe7i04Wk`A?WAl{W&4DhHBJuFAep<8_y@Qe8Q&LJ(2~0#OjMk! zMvD{wkIhvVvp9LEHeGRATBSsBeluxtx}wd(h#g`?%0TL$WF#!5qo}IyfJjr}j~lM~0Wyjyxm#14?-0#<8IC9c} z^YV0@qgHRxGG0zb8ZbUC4I}1!I(SV?O0Y#bnsk{8Iy`Av>UZWW=Nvg{(j{?ukonC5 z>1fi?k?r0#b%t~_po?fVHW}j*fy3EWw>{Skyk?1{G$2hB_QNbkm&rzxkWD_fDlR%C z8x7bJ#r?29Kgz}ZDmiJunJ5Z}LGkS;9Zk9cpG+_(D0OqkDv~CDw%1(eDQ{T$4wA7!Zu#3)E}~=QEcs>Ts?;|fTz!lw7Y?2 zfh*ni%tliEAC1jD9)%YBwdg;uZ9mgNu_JPR&C-+!-H`*m~a*SU{kjm^KZe}1?>UpxFv`#a|1BkHA9He}*&X(mR@KX2#?VXFA!-QCvg z9(>r|eRk^lqYk>oLHs8vHQU%hr$Op!r~_TT`R9i1{q1JAv!|^|HAj$+26Q#Fn-g@4 z*ax!HTX2chG#*V-8j#k|zbhf_`RrB3W64MZ#u{4c2}Vp}bY|N_o2kc;Tt?s z;p-;n%IdK@*Iq?;Px{oc*(`rCHWzUM_YoKpuN`)lUV@)JyiP^Rf!w`JbN3OIomf-b z(Erv+Lc|lWjVh&J*{0-da6UG-+|8-|@Y33mXJ?<{t!ZjMz*k2lEwXZ6v$BTHWr0Du z^VxS+NoStJ8i)p-QA6jllu`Cg6t?TgMw60_jft>5pKLT>tD%cfmNq<4)^7<~$`_K7 zCS3wCKZ4I+NdjL&HX5)ca+mBYLc;iRGSYxCV%^eaqmaKZd~Zf*UqxD)blIw3t`N4@ zl8pvz391?<(tiv<2;V?Lnsmw24cLY4jbx(%TMbY2%EChSz!tJMlZ*yrHB9-Gl4W}a z+qifuNomsMr*6wCNqh&{Xuwv(BwA?_b>~f?dl%_wK$j@!-KrIvo$nzdO}Yfy?b;-P z?;{-z=n{pW-vCPp-%moCbm_Aj4GGm;AsY?YYM5au^G>&whwy!j zd^G7&hh8vt?hv+5kc}o?>g>Dd%J*sV(SR>emm+wtSCV)mDQQ5NC>;D-l0tYB32D-m zpuU+VY@a6^4cH>qnoZNAa4+My_ieN&zeHjh5GSg(?Yj<=&VL~tO}bpw73RYBRkG25 zt@^{zAm|&xv5mntrx%LjqsLSqW!iBeRiXNGQqiQMlBJbG^)^z`fU5e_exE46Wi_5=3eQ{VqIplbuzFl~Tl?Ds^-w(= zn=d~X?s=F!TRZIG@(Vg<4fA6eo$|mdKcHS&!;{JkT<3G3! z;xKV$R|iE#gG6ls?@q_tBri=`Ud$>5+~GbdRnz>SfMl77qiY(5@g4O&Xqg z$1@@i4R~r8=@pz~ZqQ%uuZ(=W?5f06`r78WPcfC}OLDjXFjJBJE_3+Rb){n+!JF zSFFfO6PElLB&Pv+4Udy2$VXwd+{6ljUK`6xB;9MIrb&{)ojG5lJex!`X^1kHc^-*q zKy*>xL<6Q8`mu##)0Wgyy?|6SpsHbxs+1~hv|mg<8t~QMXuFPy zub5v(I+~<(zGi+U>1dMD`KtLfq@w{{4f9il!eeHx^m6^$*OQP2g!T7pd+iohwCCy+ z>!ml4mj=A`*Vas;C3+KyXh2lM41Xa$l-SkB-&Dcw0bH_D|{f{YJT|4IC@|P#LpVj0z z6LORva{|ZwNOHD@#bzaGW*@FKXZmPpmCzi-(xgGcYIrqg9nRgY(d;4?h+|~JwVKRo zb1<1{z+6WYF_EP*6M}^i7)T1?VI-shVI5Ne<%Dyc*1|mI0xaovlG1>*j$X_CrK`#mlcmlC}V$!S2IE?_{8wdt6P6wcd` zlLnl<8v5Gh3AR)87{p+YpXTxaFMV-XAqwt51vF65O{QQGSq|#{055kmm->A9-SYoB z`Dws!lJR$Xol&RN?OfSzx+UI{`rjZs4cOB(46G#gEb{e^=AhNLiT*9p(ttKyZMA36 zM;AiU`P(F<0bva*itz+t? zyarR&LW1v2YMP|fc+rMcN50;;AE{|Tovxu8_PcoMf~up{TUhC~Twmw@B&Pv+I`3jc z&38L^tw~(^K_sOCX$^}g)~P{s`(7lu#U-{v{16h;fH+;Bax}pHOnBxp$C|`4pG{^O zFsEx8NAB&v=BV$Nk4VZNMt&Ob*D>xZ53O8#crGbvK)LZgZW~VG<`^4V=6>*_#d|bH zC}rcKIv&aP@jj`2BrAv5yZ?pqNLJ4X=H+)9t}qxt&!@^(9i#fU1TiD@=qfCHhl$N0_XCAr}p}>Zs}p zTzx*z?hJ?MI0Sk5Rg%&qA$5ekZZ{bJZdWkp}6iq0_ex z>99ZBk=i?P2eHuw=wt$omS%mZ&lG1DeDIc{6 z=`%=5ldxoW5BjaSS!VEXv9-)yCWLy8)HI;3VJu!+vY0oV-9vYh-n7s@o3u2btzj&_ z4sE|b#F$hFpGQKPldM|SDwy3JJHSg0X9S!;u(Fr zH|tXU0@BkY%;ve_a+iD3NjATjgfvMBgA9Hd3271%Vu}IVP1qE^l7uuMtl=qTX^GBv z&`rrEN+oAsLtYy2*6{GKoEMEP27@-GuO}l-!mQ<3w~HaRB=H6k(j+Eaab@`?64HRM zhT%eap2{9-lD@Z)js|o!%ypO2Ew)>$ogsP+Hc#J9PMU;yx){~~?<65jQo^7HcsB`Y zKv=`N_tISL+|y>~dr3xms>6j|CVetU`y2paTAL3SvY=_v^1ctVWw%FMA~^w`Dzv?n^xQSYMfLDA16Nz z_-mNlJ0Sl`FG%>ONKCT@2}g3nDK<&?XUR{KGT|#DEEVWuiACVn|43pQ5ZCY|w=~BG z{n7ngZSgts(SWap&3;PxWW?{c&Xl#TlF45rHx0N`wQVCj1hUTj&!nRPT@4e)rAZ~- zWTAeA%rprLb<|&Ox-R|K$wvdeRAYaP`PX@o?X!gh~m5dPI8)rsa*{_Ek7h7O;W<3)AAD%(tz;N%5MdRx!VX& zY;d+XIX5vkwpzp7nEU)z}cYtB{SC7-r)mc%hzbbXpW2+4#Y_vXRL6y7fBJ zYxt%@uRmDQCr@%THg|stric&KleI%1!Q0HGbE`X>r&1DR)5kTNYUnL{Y?%g@b$3{0 zF<4S6a{;Rk8de=OrbO5l2K|-gknKXU(SWUnh9{pkyjFr;v1i*M;YB2*0bvb&v^*gm z#qffxNwV2_3HfM}@a>%7+eJPa@YOKbDWtEDNmgv0K3ry-8fI&gv@}VQsV);{>u&PV zfbZdzYhX!bL#!>fzh{${g>(%Mu5~j~sfP7%Y|h`$2iNv&?XXA5rn9U;YIty+(J2qA zkgwHNg=FAbhv40*{z|voQ7ZFIZmCa$q}1@n!vq^Y#mT%g-zE_ah-#>-3Pf|AL1%Wc z+eTX`Y~Ldr4cKaU38BEYfKA9!iu`lCaJ;9J-o zy^P(_gD=E6(*66j2~l(uq2oT_1qn}AZOkXwiUSp2Vs$5a8jxO}I#+8&IW_@>&@%E-PH%=DQd{hkJ?s-qqW zGEx>Qwf9kqrqHaCj0R-Y_tvp#Y}o%T$2R0)uB>X9f|re}FqJhJwDb$^dSON`jLn{x z!cmUOU0XZqLVk(9eS-c3>8)X9OHqb0!*6bNUh97_Q-5RfYQ>$4w6b{eo>Q$yt$q|Yb6gq;)g zc1QdsUXxjA51Z)e>N*jdFUM0E4V2X|lU-Ucs!VSMkznpfZW?gc@ES!a_ay6`$Vvm& z>N9j9X+uwJC`+`P+p?CKi18W*+!$bwI>S*1<3jC5&b7b(7@!F9W20uX3 zYnYY^@U=@uTGTRk(^{s6#S8@o9rJX0vg5F(()=!qlLl!@#5mg@3}*XnY+=a+n!Aya z28?yIgju=xSf1@;d9aYpkcG8DofjSnFuO}acKrFYY_$w!kkPx&sXb<&5CkOqW_sx@r-(;IcVc+e}Q zcrF=fz*v0;(x9Sg1jm-^u51;HEm94`Gdyd=l11%$+vBl0`?VaNxzn|6kI^4-AX~%m zETB{>G=S%616af3@&H{Lzdp7OKCxZP!5`v#Qkab>r%tKl|_$eD=s^|c7b z+Y=B6U$|I(;YnMSQOswTBVpP_kNI;t2@SI1>MfNdL*n&?y^X?XAnX}iDGZAgMtD84 zJvczF{RPF*K-|6!XQ(RsPs3%?E*9V}zey-P$~=}K=zTscVTel~jyvbd!;$Y<{M8?n zh9hp32*yBBJ) zc7Sm7;_gUsG!U0O9Cyx@g`?LpUmlLQ4{_HT-4Ulxw~1(hhz3v^zN0~`xS*PrnPCr#hKi`(;s{p z0`XYvQkcK4m%_bJDKg@j&L%q;B_hX$nh<|iYy9oslAMvYu%Jejm=owjG{}J~>h56` zC>tz^UAcUh>@ZKK^GG@6ZbDMTLfK6gir*((eI^*xJom-$mLq~;j-0qoAjCvW2UHO= zHdFxLc#ir;#N(PObXq0*>`->|6Ta6@gY*t-cTUe%tbqLuE8{;Yg9bA8Zh?%Tx-Cli zZ%Uzoly=<_;>jAh0S6tyJeyHLe+*nOSvwm%N8y^q2l8M1d%6L#QssQou z^2G5F^nzV(yY!oDSwGUGjE7Kwjt^|1dl`R388j*5A&@Z{4_?Z%D1|0rJh1QY2H>9f zWx063We7+X52xDUwv7jFEb!4+hVg(aSv=qbVv@BFDn=C`9^RZd9&FmB*I*sdrQe*- z(x*XsleG__fLuIy8IPh28puf2J_Ir*DPe@J!@{4Nj;((=*F};^QD;@-@`ki&&IxF|( z{^1kFS#bzLSP<6ltV*b4aMn+xa#ou#dJfYfi8DJm9Y=$t)$gnUrOuLM#HW#%2E_F{ zYd{=0t55ZPNKOOt+MRVC&gz*yuFk5yQ~QLu|0t2xuh}PxuDueDyWQU&hsQ{B#L9wA z)`X6lLdJ&laOE$lD@SaxQ-MuuU&pW9=0CYSp9YDI_%>lxdh6T;5&umQG!Rky^p!7L zKMW2Wy&&X&D1-(=cGq1uJFbRTWXs@-bp5~wL7plA?5M*kU~m6%F9-qv7rYSd^QQ^` z6{7SAfbXUafMBpyNV@qDXB=n}20%cc3jmk@<|7nAlP~}R5fcI6g?x-cXwn4$hMUDQ z_)ZuA>UXIEzz#F40(S53%m+v=`fwpUMlPfZ02QM22!Nlb4S-;DRYqvHnshVIJ}wOsTYDGCllk6<27teAMRX{F z1|n+j0(mkoA`1Y2&kE^M2n~eP-39Vo4S!@=x1sb4epmZ|6<^_!^vh?zzVmuG{lPp` zi`3RWV6}u}Lo&Gd?bXF=pIvbYY)H|)sTr)>%8fI+GLq9Upa~#+2&~>yl z!FF}sQ=jX7_*VSM-JH>{;?87W#eL(G;A3}K_kMP3;)A+KM8pn+n{yGTqe#X?j19HI zKTlQve8!gMAgkH+)TuIaIvY_Mi-d;u3TmYvS0 z)Sr>LPnO!xAX`Tqg$syg+!vDfyc%wJJXZdf-IW{Rx)t|fWr&Y>;dQevxSn{tRtlAH zzz3=WCJ5p6sHOJedlA9nE0+nP$}F-bqd}fLv3BPxBZljZa!ZYNjS`6AhKM zx1Rh2wm6x73;WC`u=SK<`yWVaZ#^C9*!+L$&O1PoqptbogGnZRfUz+m z!}op_x~nJL?oRbw_ue0Gr+en=y{dW@ySfTKnd2O5j>20{Ph_l+#W49TvzLHkS9t50 zBekt(Kz&6jJV4Zi58-muS*I_cKNfm`d@b1W(9{C1yJKc+Cb1Q7UG)>Jb@gGGocb(d zT|SGHKSZ(UYMOv;!wR3Q`=EJQ*AZFk5*-u6xQJxx*7F-p$0@q0KJ!pEU7byDx@Mcs2Rm3fafw}<|(h_~=M`Su#> zl-N?rzbn?iTiBs)MyAxjE}F@&$VWgCEPT|PM$ph^7WU-7g&Yuh;VW75}3EvwwT z&$_ueKPqeIAg;-A7sGDJ0(nkH?N4f50{usDmaiVbO3XM{9^oHf_OWdFs= z-jjnawYCxouOz7W>M}3LicoGp#^!c+KDiwvfX1<598Dr5*QYB5D9VLTL4WJMzT(nUCA)F@?gbS1u743o^yE!){l52`uHa=B=>=NmWMzmEH{lLU7^p#Zv@ZaVk!qw8iOBMGw%Y@S0LJ;XA7*`3!S^ zfRbW=!4{gpsv~ercIKY!QL4rSAMjz^ve00{@VRFDuBY%eoUB^qTK$v&F#Xc0LB)h_os)BCP43 zYw|UUjI*r&MoJ2={CaxUW{V6@^OE116%O3gV`B41q=i?0p49TGIQ;jVDnCzTOFz^<$Hug+C@vnNkDm(IwGLZbCi+ zieTZhGeeHo;R@NOWz+H>3=A(34UllEJcX(t7Dau)M=~(k+-Zc-Lw4(Y0*Jwe~9C0L5oYO&3Mz>X|f^9qo0X1w=cgt&XA%YM4># z>p=~Odh+RIvoNc}Hk>c988Ztm+@l8RFEHGX`coe1s zL^%0i@okunaBG1Dl0U_4S^h^?Nd4A|?O^d?n7rj3ve_}_v-_i1+&$I`p2UVPkDYBj zcAugGHWtfbkeo{%08$^_Sa|h@#2PH1Iv*-PRM8c9jw-WPKz9Lj0QnMGr4ei`2>Wh$ z%Vxepzh`{rcxTC2&w9Izb#!0H;8+yF*#!~Uz~!n3SXV_?zEYW1C@41KlRJ>|fTZ8Q zAn7?vd7?W*1c)fQdJN+d8p@O16*53%cZ>EDcJd+LA2*pCSI`C2Q=L_lDI!=MCNKP` zt*7)E$Lfzr3aFjx*zjeo zK~dIn0ox`Jxh4k5ACdt;A=U~>oV7Bl8$ksWVy%!WuvSKQQ|N#qtfgRUS-vNIYc0qW zdVK#xF9-MRQux04I863^SoS*3U8NsHc8};bB_*>gGTGy-$>N)6g8@Dalka?h9-H~>{)i-cFyKjS z_;S=+t)rql1wLR?k7Y4PzDeo>QXf4S$dRO`a*36E8!A9l(Sv~;RnAtP?t9Pym2lBQJFQw!28`4`9lkws6u=HnEYEQsB|K?sO2cH-6W)xzlf zEk1KT5J3S(+vqGhqv_Ky+4Ej&G%g_GuZRjTnj^9lGTNsKGnxz884blI8p&Uh6@Vg8 zfYCx4SC^UOv1BiT3=mlXMhnS8qh+ysDTIIssFSYiymh4E> zkS*97!(`XHWxFfo?zv0%e-Lqgbc;;{0}+;2Ui`B4V)U~}6M=vrv!suPiD~jk@(xg} zR*H_5Aq@S$$P{ zAnJ~&w4dHAqPEOvYuQJaPbbPPqn@2(O$L8DXX7u1$;JPuVst`!9eh;6EYCN$yd0}S z1?W1q0L`&7^$|7I36;9PVKpRYV+%mBKX_zfA9STg#M}chfW*wXB>Swe-O8>y<*km^ z$&Ls*7eRmoC37t_=rKix4=!(hmjaVnRT}2l>u7gZT6TSa`7})4{YDj(W9^0iD+yDc z0Toesq!KK-%EwJ@`BDZ zb+W#KEI_g@oZBEJ;H}xuyRA))ags&KlrwW`-zm>wix@fgeP4?Y!{leY-g}Js?EWY* z=J;69(_3a0o4zeJb9^l5DQ$U4W1YN@S`;Ar=jckG;MsGMEa{UEAOetxdDf?)h@ebl zsqrC%0ObGt3WEr1LG*jL-`Y>S^R#`-4Ke!qFiZw-GPdWl==npm=V$^)Z<%HL$IjpO zj?&tmD4JL&KcdzH6ytf?KBTw3sVwP}A0q;gh~fgA@`EY@Ck1zM7m_u{S*nbchT3XTp?H=p6m#rd=ZS66 zNR!CwNPb972q+EaI7>A_iYq3gg8mypfCSBPmTH2apva7h`d>r=5;ebBs!UTY`{?rN znG~YXz)~{Let$L?vBQwz->U!}+cy{fuO!TITyD5*iGf@t=B2j8%<-v5%4rKr7WL#> zJn;e)>G_R94S&t1azd<=myqu+-9vHy!HP+B5sY30guBAVG7iJu}`^P*!_pUpi4M zhyo;Pezj*tYu*pBR(1+rZ)(r%7j#7C*c}|KYB%oHZreUBORt8>JKnE?bYgZR{47ax z91^6QwiF>mrRcr36wR?yn&Y*F$S00Xj^rb_15g4yVt#{?aUreS?4!wuc6S(#WrHrOTnSC`iOe(3lw7|__^6 zEjC?)?SHsyPrI?WcdgM0x0Cnx(hcQb{T`LetBl^x?gTq_Z=t#K+)*Nj38GXSFSEsQ z3$08cyvFc8C49V%mgJcj36PPt&`&E)jxB$aMLh>mfJ8lE^Ws;WsI1&g7WO=Z0TR~V zwAe-Ks(BUJ#`72``8>rfwYJYtY1+a-eEXuB2b=YFYp;E2PZtYZ43q1bT|Cn3Lnrv( z(avq*yrVcFmS08b+qNieVJsd;Xv$C;MHBnvij2hp>@W|XdcJgUV@r*{Z4)6m78!tK z%%#5de5s7AocOPtloOBwNXq6XMb4fhHSz8?u5`rTqDbT{xP`IA_W4&EYiq5}O4#tY zTWPyN)(Vsw$LFh zOiX6liL!2oEI_h0e=Z%XN=wO&ld_tfTuOd|jlFpSuWaEpj9C$FJ+f=3lX;aqNv^0I8S}(ky3*Pry|viv+vdl99wxVC>&@fcSHtX+ z5@X7KY~ezV?WaZ{!jj9BSGA_x!ZL~|KH~%*QxoyzJ~Xs|qPzJM)S20JNV!RR8{_0E zWOlFbrPfPI6PneJTabJjk^xD6#vF!k zhm%mVU+#96(>@i}*IA`X-Y3_kggNt0cjsJML8pGaocSaAzQNPCE8Cy>(&n#&Zb5U7 zX2`@16Xd9@+|-tpxeR>9lZ388?yl95?8RDutTmT;lpN`VfmrT)C#r)eK%%f2rePi_`uf#`y5@Rm&abv`(!R>^{*!ND@ zYY+xV*cKil6q#08!!u3X>k$V?+<`fizA@gK?x;C2C1AHJ0xqF$NioFnKp+S#Zy4NNzxH z9#GUbe~o?nHVznT!Dq*Q7Usz1hh)rUAg95E=xx31J`a=EzD0I8-d|>)Bw{WDxj=*^ zmj%wV7MROGF5q+7ZxX?BC#O(L0E+HB26B#F*&edqn=DV$d|uhT-fbV;*YF2-o6p1K zhisE`y!%SycK>N!*&T?mQVZvoyrS23n9Rq zeCOD7#CVYJ$%BpW{5?_6rNs3bTHUo)UtBlc2z#}#xIRoSXYuHX*$w|$Kc%DBn8(N^ zC&o&U16QmA=hFD*7>x(hJC;AWE}0J~(kpZ5nxuR+`)M}`Y*Ig2#sMx1T(Zw)=;kD> zH+qfb#^RZw6a2klaxTY=UB&)%A-(PI)YCg8(;U6wd2Fu)QF2JnI%F;*rAdjy$adtu zO`zl)nkYcYFpsC+Bdn=se6lzh7vdb3S-Gs4XB{$dM{}AQWns`8CJ$iS9bbp&hW}jG z=Q-CQR*aP(hg>}WI>bdk@PkymlbM=7TcF9!}0}UL$ z$OJ;_0UglfD>QvMZx0wTR)Re6L(zpmT=h9~ASD>^35%8@UgV|_8trZq^C z&>KOrB)@|{042aYCLnY1&pZ-Jcs4$9*%M^PLnk-qTi^J4Psb( z%>acmmiaEAy97Fbe2Fw1!D^FmpYO>VahT0~g?`WIbnDuM8jIcjFj@VcjCC|0EsEgm zf(UHja@G5+tD-AZsSGl~iBJBpqm&0E{r&|>H@E2qHj4(Px$9>$n^%QbV43cLv{Q^jRd_5JCq^9yz&xHyQReU`aQU&!?7PIF=2aqqZ^^}6eSUxHr zxAhb^6#50RWpSywa%Qh#-;8vh_4d!_WU%A?W%fyg(G_DrXo=*sFIuNXn;;0=n9aw) zL@2qOTmck~hZUJ_v{%-0dBUGV2#9dXr0Ui?NTYGfjF%_<6{LVj?;Ytq7jiAn@C6*0 zx8p#s50Vo2|9jQExwOdHG z0vRB(=&ChOmYFRiOdteA7<=fO3AYx8{!^Uhd?148Hm})RHhpUS)ozxbmC26gqeT%! z4+b284P5p*{&JHt@g>9wr-e(!CzsL00FoYEXFBP|zs^`bm69((1c)f!!$DjEQ>A2I zfea8?>|j8Vs%7bQoN^=0>v%IAun%-~5XvyQBU5Zg^U-1b}z_)BFuDPy_RNna!qR{F)8Tik)^`54~6+K zOn&#{vePl6H?oe3?l<~?ZR3~5AW107fYe71Dsm*Lsa#?uYfu5A zitg6ssB*UQbnDOouYD&W{*$9z3AE@x3b_vNxEIMsf-H04M_SEmMvrwOC5_7{~yT#rLjqWI2hJFitmgRr6(U#j?_w>np8YWNvCPuRt{%;XRONlInjCNK*MoU9BMhl{m ze3pg;D8guY8f&zW>|Y@RiZEK9EHhe2co~F10Y)?7*22*5Y>Z~_6c!_QfUc?7Owj4s z%@6#TYDm7(LN6N|0I7N5e2C52um8Ly zYa(f2&^+}b)PSh>#tzOWQjgd*PrnR3Ao|#|n?rVM-t6pVGB&vnCbq8fDnuLI@mtmg z4%Wl^FigI~p!67S>XCx^Ba-NjpC_^5%cBkJ(ddq!57>G$jY0Btat4t4=#F2G#Cb8J z`cJ3;QAKzBa#Vr$GP>_T2aqq39Y5G=fX$cW;aDuq^#ZKbwa*il*Sbr?<#jT24K~)GP+cw`i(>VyqRAcx(B@O1=vfP>i(#s?b^~-S?pb3b9sq zN!Cik?mBDPT#ugnSXs2r(%)h7{IAJaNAuC5qft$Wbb1wjANL zAp}Gi-6I_(3{00Jy)LAHNMj#;I?kH=>(cS*7%+8*Xrdpjx$x`RLl1Xn!99>T|MN2B zmGd{#Yy015P@}t4V?u@r)UxP{tVO51jJowc{uqPlz2)v&&g2GUB%p{zuWHN@m@Y5n zBWGHdj3&a#A3zR>d@XixF`0bKz&QaoL;xTG4~^{V<@mjscjxFX#nawknW3V)fvvU1 zicM~P7$&#;4&6X*svBtjD0nDH1G9@QbCjg2`berSDPRX40Tm&8Em7xSg z8C~~}Q3e*w(_R%?K(yz_+Rz1E^Ykui@5PRpQN$G8!Eg0j9s7{qd>STq`A?bgSbO3B ziYWSNM@nQVLT^)#i@b~s40Apw&BrM; zT^75qLkNg4_GyRVlijk=KZe(w4@6La(K-z~bJyzYlgibKQPM$C;|l-Eu`^vTt@bfkO3kqz-S>^Xta#*;}8NOj5nIXmC>@$ zFLOrYjtJs=Kz$9a+zT1zqmI7%7g_DNmc2?p5S#eM)stBkx$QgFZ3T1|e9+ErTw0do z`{W3qIK+3cf&>d{wt()xpaVo#Kr5b$S7^C_@_(QNL>ap%(`LL(7li+9T<0wzj_65} z_Trl9m+0>>x&5bQxTE=KQ3TObe2%~dE}#9>`YgI)_QDxmrs9*glKz0CM_W0hu=QC+ z^md2<5k*&>AyH}+V?{Xh<2seWHj;2+cHP} zL8t*y-@gEJ+Q5xP(-}E3GPwp$HU4q@B8+cWyLL9N-PL5=l`b>wsy?c&6^bCfU9|)@ zaGCLj){OD(suOP7RWCldDT6kE%!u|uK;e9s68#B8fQaHNjesa{T1vJHGC*X}?P_5irA8~}MF`o;z6imGVe;=^ zmCcSZpWPqDB7UUcNNo7>*nO@+G!2CN|9F!#*Ex*~~8}-5N{U@7ER>@z|?ja=)+3WG7}f!p|a(AN_hN z+kiqR&pq6Fu82GeqUDSiMlE>n>v{^vMa3qd7GvBtpVNTFj@bMEP7HZ;>=<0Lgev7Ssy_|ZW-m$ zu61byRHogO&a=oDIVRF@P$gn4ex6&*A10&rcI;Eii zODfM^Vm%u@v+vZW5p<^YoR%;7Tk0D?Q7WRM^TChTul^fH{C5xoB5oB>!}{P;;+%2) zw~qWDAO}PqyXRbx&eXFo?KUPcE=n%OyxvOQJcYTp)3qCldaLSsm^}JZp?kTN3E-+o z_c{TVRPKFx!R~e8`{A|8N8(^2nY@}B2q@CMA!SklA?&ZEXi|8tt^mH#=dh@c|=O?Losq6W{g6^ajb-UMR5nY9V+%n3zms;Z% z(Nze7&-vEJFZn3d51_;>qN^}Un0IYT`w3_P(H7BF7^NNeY)btpr~y$&&w5*P$Pbxg zQ=%7QSnnTanZjyYzdxhj5>V$-BQK*Bzrrf&5yFcC@~LS6xi zMs!U+N@d-dCwv%$fC!@}Cq@Y~SLR6{4k;kg*f&&M$hADfdoW_^4$;J$P)n^-6WY(i zpI}km{OMugYJSZhsl9& z%a$hvcg%(RH9dpqp-`UOGRmCaw&skkyYj&sduF#RTk;FC4Jg7bS?K93khN&`g`@p7 zw18-%heBECDQ#xc>`O;|6cr~R>IX#5nr4C5^ie0eba!JV$Mh}iih%;pMAxC6=1OCr zL*%Vp-Ni7uo_TA^e>psKLi$nBjIKj{V31la+4S;)>d-K7Ytme-lB4hnpqND0p<`su zpn1xpp#(%3U5AcQ2IkDu9tSNT+SoeOv)23vn{UZaOdXou6jSt=K+{roiJSFgci@*$ zzK=~qPSn?a1tp)e)o{^|M$^!&FQJn!kNufR!01_rTI#! zYmSiq7*ar_(X#;Kq=7j{h%bj25b*`E6{iooCI#ubNt39@DEo|QGNVLSn(N(uE3GvB z#W1m*TF|cF}l+9;aYRTC39ZGnlrlJ5(aL(>2KIrB~NCK8cI&o%CuA<2bI4Co`jnDSCXo-raBF zroY4F=A2n{G#@RBAbKUQBd~$Xd8b+DML#$7!tp^WKIu?70FqunakXg^TFs?Wav?;3 zhzcl08Bu63Pd0!I5LxU>UZs_60nPPG$Am@%}RV zB*JL-285PK20POlEV?@pgl%dz9|IGifE0<3iSvg2p5^zmhXBVCoLhMEAzh7a8q~g>U?>?01a$?EZ)(dhw+v8771; z*WJmwE_(5$57=7Hyj%)H^1BQd0jZC-cKR-E+K6U}mHZx5fT*H-uetaHHp^mm1Ly$q zC9*#UTP=vn9dVbe^|up)3BIsqM_S3+~$m^X-E9c9^{GCoun-P{dBIDrQQ_G+YcnOb{jSJk)xpz@nAoG1Xw+ zIqCOSL-Ge*`36vQ*9!AZ$};8}eUo~IL`WWjXKeON&V&n#bIeAnYeKcdm)BlV+d!Zoz)HpzjvC9h;GF`!8kW zwWodUz8Mdc%$+>;i;+1@kfUsVw$0|X*-H4~5`vOB<$KGXG{|~DQCywaOm0@gObNec z?(cSqxtlE7tvqsuAm+)lFoeyG$!R{NdE88qAI90tF;%S}yV+Z+25BBo8M&L@z(}ge z$@a-}37cm7xCG0o+Y zB^!NO21$3P+5D`uby=on@js6`S~Hlsr8#R*G5NEoU~Q1fhS%C`xNB5srbb1V5t`hB z!3rRmQ+ijMr?`#1X;XW>23hNazcs-F3Vy~OhypW-Ybu7WKju86xGfZbC~iMfb)c~1 z6EFESc*E!1>`7AJ7_{vEateBZi(&GEpQ;F-kY1aQ=69In&NF9gN@W@3ly_OD%%0+D zklrpiv!N^=@yV7FVIF z2CzG3`L7q!uW4=hdYF8ge(iM+^NZ}u@zBZ1`^}bfa2PoDgUQa)cjYwvt;mhkHW&F-(+9cgRevB4~VqSgkY_KP$vWZlQqzk+0`u@XbO#~FnkJ3jADY0!~VX$UC_5?G;P1l zdi?(*6J2Ne56pLygU0zY4v-HkS3Pful6Nk%-kCCixS4kj%VCT&^%qt_@&sH1kS{a2 zW-3EX-{=L|w%(FeEvQd)Wi*J-1^`Ne{e!a1;(P}sLwC!UY z-CSt(7t))<WV0beB-e@%|j>Q2iV4CRMAG$Mn#Z^Eb_P_TO;AjPrbB^p;S0|8tx7GtTpkg==yH9(Mn$GSFu?*<3#iH=rg{X_^oA5u1R$YC~`|P zXYN?sY)3k59O}?-uwjH{t#qis`kdeVu+Y z8Yp&{al-vDGKUFrWQglpL(Di9IShj-;#0o2?8$ygJfJAfHsL-c{F=M3DIn#-=!82l zPp*S8d~Qri^BKEl>pd1OOdp?_@28E>UPf*4dx!gp`*tz`R++JDwu$Uvf;8FXM%FGf zcFi_nv6h*hfL29v9qJN5(Ve`0YO^llVRY2YcZVIXkrc@d@sG`_>6tO(SSDP5XPYE5 zQLWqR&6~##u2-)Fxq==F{LX}L%uNjr>?%GR3jUb``u_e>4Sc+fT7qBlPBWQR0PPA9)fX#c$%c#)!N#NcH_{A=civPVv}EDojGEu*+ykqA;}puRe-1)Guv%6aBDd3W`n>ivy&R0 zBge-Q3)ju|7;{o+wJep5%aS`noKNo=C!Y-6db_2C#Er#)+y6>87y8^>us1dR&;0gP z$L^b3b@NmA|B3jFlTVYRSZ4Y8T5_`h*4^d<;AA#dyvh(85c>6 z25T#Wz_peqxh>fSCFzY*x)U7R`leGAX@dqmg`r>;aTLGZy4D$g~2sFPNqG z9o4s>0z@@q!>W^Nwi)2tV}>ezjEEBOBrZM6wK2+A4}W*PBfYs4Ab>PbO6Kjx#a_LD`=Un27W zCG3M|%)ETS%0t~4os}?Tk0di~+6J+Y$tLEAhX`C^#Bmn@K{fbw*<{?}+^YPvD@@Xv5P$!6)O5HZgb8I%xICz^DyvgcGUs~Rz zOLhZF^oP$>geL_)_STE9mWgZfY_i=Z`-Jq3N`TQ(WRUrM+0lHosEAE|;vR%BDSE-zp1=mK9D0Y%q4Opd$KXG1Fs*00aV9t;^EveJW`w?U~8!~2Fb@reL(6b zj}&Jnv8KwXJ_!{ds>#EuS*ZeBWptm04j^A9HBj4RtC_qu`JQ|TXW7hG=<&r}s#i_d z1CCW?{x4;&W9^0iE27D5$~NO+h%ANt^;zq$$@7=9gq#}8MI-qE`2Z*a@s&xMQmm4& zGZI0XB|m};5ZUB*a^^VYP3B|wV+a8e#-1@~B4TXjL;nmub3PD3e1o`T4=mCdNyFso zjAoAJqeT(KH;9(N1}=Mj&DtxzggD_Q*S+|pN#X;N9^W8_6t?b4iB=&3L=^AgfG99k zO12j=KxEMk;?hzr&Fti>*vaI$f{xFV&Wc+B-Qd&kxlcIi3PMKVUI4vN2284hJ zqpL5%t=ZhRY4=~Y`Z9bXi0^{+TOHd>>Vuv{@T%T14L-X+B8l&UIT9PbJoa1bvG^{S zS8pn@GzQ7vkOzR&$9KVUB-UUV)!#w|h$_Ad7E%TF%IN+MI)HqM?Sd&-?Ev8OJ^2mZ zvYD^Y<0~_T?7Col8YchvD^rJ=3)NxfuZZI7Fi&JD!UUZ20on^{vO^>o6CvwHR_u43a;iqythPUx(#Ltidv> zJ3akT0=yn1ZdDytb)!J-lTzU!lj>VG7QpjI7E2<9jA*Tj&(MVoKJ^+e9d>xjjNiF8dUI`f>viLeIN0v94CwvWr zfC!`OF!+qkeCU5->oD$9y%b_J*H|h{)s&C>wKv-8&>C$OqC$-3<}09((Qa3u(QFh< zZ!C*Oax%>cpa>LVw16fxnoG0f6vzOP6=JlEEN?VVcr^$C5f))IHI_lz)l#FG{Ex1l z_q5DBe|iqFyS4`{|06G7o*dpvul!lL(M}%`pgx=3!SWu~hLhJ#Y-5UPBz#lr1@|mp zaw9SgP^L9wpDhHzo3T_jkrsU8h;IrpAmY|Mh%=Lplm7|ifXF94f|@OzYmQ0pC2(9f z8Je7fZ@rbgd7?MW_EBne_BDIStmsyXw>j zTQe8ttc)V(=P=I6PigP~#clG_>lt!)gxF3G=X1eEI{5|kfatr$C#{M1xVLjD@M|Oh zlJKy|j%7ZMnZt9055nZ$Yk{>2E7&=*hl&W5)?2Ty;Rsq&M8 zJLyGHXO`#5Eu)OT-x@!<)0q!GXLujK7sYlNc`6LO#wY558WbP+ga~IaKkMQJN9(;X+GWV|EseOO&i^80xfkH#zbIN{RRAs2lg$ zlrj5yFSZ-~ep8LHMzwW+VcJi#WGlR#u0GJ=Y})3z+p(*I*1Ag@?I!zI*mFQ!AmhIt zCSQ2D%yQ$4B<HH8E3I)WySsc>MF3A$9R19sYctWA^-8`bZ>=qyUTZ2`-OqWK} zM*oi#{RB{~pHT^6lDlWI-dbDN3tc9MZiYla5}#TPi7UVWDb;A*3{)Ytk< z%{iF_JQIn4BtEkm38-DZ_a3bGvShp!8Ubm1Rz);+SIh$EwZ;LLkhei3P#q_(W!Zc? z)B)8|7i93CqYjX|r&l9``>mC=ZcB4erj*Y7KtozPlh0kifsFND4~edYg^A zOcI`rLO=@bEB)~;sMh0+wpkOK?6_WpI#8M;>~FCb5&U|Xy!Z?1MSSvNdJ$)3p~Uwh z0utM|hDg1Lzxstq-?(1HNZ_VJ9p;tmE`>j{y$Ew0d2@e#Ph)X!llfZ{{ZA|U380L3 zQy5`r+vq!mjG8Cfk}$n6s$P(j@>!$+l5$a0DVb4=f z=@Ca-Qlq!h$3j_teF-^$)VI{%J2_j#xm-AC<3G?suc_}pcZ^ST$8gN=U1J=$w=DFD;$0x zz36^AOpbe%+P{0M(LZ#;S^lPC?$#d6YK%aMrBKWFDckZrvbZ=-bG~QKM$RMgy|?0< z0E+1o%hVH&mQ7CF2W5biJ-$?BjlP+!m;b^fXWSe?F6e1f zC)tm(_KJJNP7`@1(!W%s6F{+zt93KB!?d8;k0wY8d$>m2Zx9DaTwLvz@y;x+(YFWD z8)a9ZU;t7U_n@T!WqW$v#?qqn*);W8dkh)@X*^V5shTpB$|5o;Ycq|5uCw0p=mVrL zuE(2E&z!r9jgIz0WVxEj-;>Y=NLyULvH)#Mf$^@4FrW&;mRp@=pPN@j7*GXatw7k- z5e7(D+~cSMvQkG{?df*g?jUmOwQC^|kifX7J;exIZg(5nFg!5bbx;UMVd*uAl90m+ zLVedmA5f7j-WV15`v?Ri@M&dN#X37_qdlkx`TK{+10?Ufm~LKbz#5-yH)?9rTz6l_$6HrGCiCP13(hPyc@<}S8iOHLCuXMCFoj~YMDpuqydEtJ6E*TdwW z@2q0@%svm%@0#r|7yl4FAh87!A{EF#wgob-6E_n0v{D)VEGwG9T^If5DEbMYoQ_+H z7ldsxVoD(me>PEASX@mGJr9Y1B*u*kL+-WhmT0z{GvZ!=I6&g!)(M8JapKH& zXhz+or~{-fuCXsvoz@5%c`rd8P@$Y<})aZOKIsxf?ezkOFulPA%z8|fCw8l+@7M`ZOxnC8^JCh0znIzZ~;CQAz|&P&aeGkXo+LHsNN0SSzoiY!iGYhR0_4ow37EBXNG zt4Qa+dErLG7mdr12S{E;ibk`y?9%Q_hyyAl?!dYe_Z7qe5?7HbuX$kIcMrdYI-o+f zJFvcXhD*F}A`hsJJU!(|o3n2t50JcPSEGYqc?c$dR$8+4wO60SSCgH5}*!*2CuGa%2M4v0!VhvEmZ(=cogu zF782UVSR&EU(d)}1K&IN6$$|f88>(Ndky3P)sp8s_t!=qAbC|O9NiV)xxX&z0I93U<3i=F4!h6* z#O3exkqAg)Rm!iI=#%kOGy>9Ck(o6mV@oG6+x;<3MR*z_f$E9u@YaD5d1FKZmC9|C zlIfW4kI)EIFCnve)SDp^kjRRROSB6`Yi+~#8cs(bP$7ZpP-gmU9( z5`pR@;(E8=3KH>7CaoL_di>x7o{d020xQx<3(uuh9kqAg)MaEIR?grcMn8xG+ zNUngFZm|D$)z=Z|oWLw4<3TxJ?uSQdp6qk*$4OMI2Ba^Vy?LOr5tEb%4}Wq)JxK zu3zMGwu3yNO7b>3i%#B!$O9y=BF{DlJ;}>I+Z>=0kjki?l!7NWwcxW$jEV0Z9Ef|~ zc3{2PYppdqgGPHR??MDW*J1V->Sc&G?bFK;SGsHXg;L?%LRDERy$TLtgXBye3ShI;~O1h+ZyOJgWlpwFGxa9B^3X`wzL_8qzudKTGMYBP# z(fuBD1JeD9s_V{VzYp1fWWT=ZvdzZLtG!l7TP&GG{{ZR%sekQGP;VP(qy0l@2c-Q~ zRoBjxyE;%h5c)E?TQU6iY13Mwv*X;(;M))TX4(tTs=)Se{%cl?yNcbD7 zZuGw9U7AbvpqzdN`GDkCzCr3|HT&n#4eSWrEe;GYKL0$r0qL%Mi`3T!-~F&f`XcIq zouD3<=hS~0^?=k@zUMet)t(Hi-L_`=jB&n-ctGOcTJ?G+6|c%BsN}yv900|kgwaN@ zi*7L52<}c8ZG0EWKslZX#BDBlY_#!x!~+r^`I1vG4m<2i<>BxAzHXs%w_E0fl>Q&Y z0uo!o5MzsC$I|#G$OcL>h)d8-(sEoDqBtS z=E0`hM$)MMC8`0bE}_e{Rn=?Fc71=-9OAat(1w#bN5;ti4e|lWFQXRRqGQ-1)Aw4g zuwRk^Nq$RpeX`N%cY6c1IsN7evv2jaCJTj4svkoX07c==J1GjhO<`hiJTU-vSPc3s zDKRlPi5LKi!DCCzgY|Cv;69!}8&y|E6(ChFJo2i{9zJZm6;$Ery$S8))sYKGZV59h zskF`HjGy%7o>OWWT^GEk1>;HgSr zi{Nf3-W9tWAsLY55=LWzxXmSxrT0w{4@i6oQ?uI>-)OfN+ugn%jGOxIPtXoXdkIrM z+thAOKr^~`p&Qs4y3=<140HoK!RUKhokp*vO~0L4Zi#qcCnUN?%Zbzdr|1TxyYdB; zGfC`{DP!~++5u^Q(~)l|w^u+HwGwSm?{qtC6z>xM&xio96HK$zTGqRcCgJahZa}(U zQ}u*jYOOTZ)*4RwSx5(VLXvBH2Q5W0Nq#qU1JYf>tk3qmzMPKX&p|dI*(FRtY*V(` zyjiQN(^~yr$Om?UTb8pfzx&i4fVa&EoyY$pscg6Gm2nQs*^3CXq z*5%2;5>cod49FXwJH$$y{IJWpdNC$R8nz!xCswT}F2nQs* z@`Ivwv*!!w61oBDes$HmEbXwzvVwA8C#3jVcgc4W6LbSRA;tApUpD=^hH^m4D?j7X zX&x9fmd$QBrhu*^9+3FTSBebgwAZMs&-+LRc7oIOa*Xer??X2r-6cHr*v1wc`#e8=m6mhG~oB0}@=qW6O5qV6zvR*WQ?rvadiWAfY8Zw%mfyv9x_Pk^xCBp+~wE z$&IDPI@=}G8~ax3>pG|H3_q#!I>ZAzNc@>z{2LJu>;Una|1&9{ihm2@0f~RT6EZ`LEFoRA2Kgys_VnWp zlZG2Nt!fL?T-(!JT55H)L5oS@ze6-o-4tFlJ*}_3shHa zD=TUrM=elcwV4zC3AKRKmN01AN-d_x<^#Vp^`DUoNNx#3=`G3aXf9C;KefTO^Y6bP z8j$FU_9A@GC+&0o8=8UYYfgI+UqCZZea&ev;@{B>NOK7ZhY6>auFO|e*9-Xt`T^uqN!1WT>P%Cfq$&O=8N0YDKbVU^Y_5l9z19fx*c z$7t6poi5!^L^~kuf4w8hF0Z53^=2mq>UPps;I2eO07YbHRHBNA-r&uX)!y>&TrP2vJ5 zF7MnCap7#HR->(VVCsX7#l7j8>E9(LfMT*Unz+5at{(;b9^!!=Q$W@ldz0Vgo2PB`i#up}n&k0Myk3cje*_hytJ}?2JB#mOwV^OKH1(Lm~hu0y|^m zV9sC&VsH~;04N4;-w{=ljloDp{4vo0c1$$1QjZ!oU%f664PeI<2r8%LcFULOn-c** z5qR5vFxO+an*4{4!Qgb^HBhZuOM8F<~a`&Iko0w2akLn+qMA z`noHU0ZA_70oE2IuWszoh(MbU_>tP((F{oQr6tsoThP3>%|7I=LcAw>0qHGaxgsgI ziGO#s&j=Iv-UtRHxP%viwj{XAO1f6RubzEijr*V+sIGFay3=ll%I}AAK+4N_#D4l?S35sBVh01*w|G-byRym4~1lkn$219B3oG*7}AfU|Zcz@U$hoJ)wzt zIHCcGE}9J0uqd?PjAtsHZDf+UN&%mi}}#OBemX&eET*Z0VsNkp2?pZMItq7Q5|@ zwT?=%wl8&EvJGMYC9oRYAH+=8y>1YR}y@YY?woQ}m-2Y6J15&;N zy8Wxo#=cfx{bpzQ=O7>08Kzkc8>#1^9oQ+_gGTBFXa}Udgh_?%8oqUN=a);-4eSiN zn`!q&J?(e$UxIu<@=G|NWxL6~*4@`^9BBFJ)t93lkopqdUf-_z^@gwBUxjc$!gs*1 z#6QAZ&Z_y>5(7Xnc-N7i+1`HAyN9r5yA&Qf?Q8mtU*14e07a#Qvu0+E%0?&1jyDqr zU}t5AGGXiy;M<4_utTzAW1tn?T`lMjDyDZ32S9NsVf&`-TB_F_+}1Z}??O5t=_RZa z*{*amW1b$sl)VZ2UZMdg8ato^J<$3u*Cf9m<$#ozu(D#i8G!Qf0`Ng10ql$dFzBw= z{e;`!BOQ?R9We2)N&mGvyHWd2(MQk^NdFF)X3I5WA45AJ?eD05uVSOq(hO%^FIV)N ziyQ2l;>z$Ri3hMV@?c*$iu^R%ft{i~7)5>-?SQnGuq#xj+gl5l-+gz}DOG}HVd;ajHub>#Hs^XPicVj(N{52E{_4 z)zNb)JY2X8xF2={x+I{%4$AyO!N293{+OL^>UcbKR`1e z%_S^`?CB{|cP&`@VQ);Rj(?0$KtfAc47mlNV-@n{NCv7aSxX^1-Hmp;<%-?Ukqk(3 z3Hu&wC6)JNJG=f0wLocO{mpQMlK+^B}|T|(l(PjR=1ska6rOKcwoMD z;TxS^W1o(_)fvN0f86cW5D!TFGmiWSw%;7&(t9w$7}rK3Ac-aH8F*NUV`jK6VgZRQ zVTWx_*c~Zy_D(KcpL^h_D;&i?`+oMRXa=OYgr5ACG>;|pX@~|Sx`a;9)px0ZA^SZp*}l)kJnTlssmU(-99ydhxIwHoQZZ|Cum>n_Iiumrayz_R%i#Ly@ZXxCZIBH}b_tJQ zwkdl=4JW z+mP!7T!3^y(ktJAxp1S=8MNB|k>Uf;4oG_m10g-#)Y}jTgN~QG6ZRNgGVewzAgLvc zf3_rbtaDpOG$7F>Joew3=&lauU?a2oN^?+mCx*F1--CWY`tQHgUF@H})EG4Ci|q#Q zROc@my8*VScZI*%Wp3{ZGqe_7IHEW0JLafESGsF(8qQFZov67Ee~=Z&?`Xr9 zjdpWkiaPhpVe;6|9IYJ;E|!+#&$h>4A>-~v$*=^g?@SK-+9c`0q5?kc@DU3NSU#$E zRa6r|v3y)+dO`w82f17sJkEPfC{M70@gvd z=bnfgbq_=xAa#!^FYT6^%Z-h;X3C7Hhad_lH_4i1)3yFCnbfYd#y zyd+E2+2j07!aW>mKt-gjH`xZ)NLxf2AZd>-G1c@s#z1QijizNZ0n+s3@-!`XH+n7Y z#G{vwwT++C)xt!MBc0sN#+qKJ zUGoO(p$w3+$CjsTRoiWF*tAQp4O9VA^|bO-xkkLc)LiT}?XI*YI}acasD?aE%;)4i z0(pSsl~`%`)Z19spvYGmm!J(O*Ke)9J>u8-?J=kVq^iX7DODQGzRxpJ21wcC%S$V-ENwWSgDyb2O6pFrLA}O zJCnTtU4V2wyTq&<841^IGvHhJOHm0(Wr?FYy|=0@MttM+5<~%|i)w2O;PUh3hyo<4 z#2%VbN?pfwU%9>tRe)5L*wL0M)fw%E@BhCRS%74f*pTaN3BAUoMpJ!SmyK^g86ai% zjG0b$vzWE~Z06X+Z7;6q`y=jmZD9u4|8|)Cx~4hgllz)OKJo1It|EMo;>1`I%_D#0 z*Cs6=Rb0?hXOewX!ntIB&qewaMLGc#+sK}f57{LBw8`!CN4B@PzcpCZga4(Lj?UnP zsXdGJ*4nxzZ%vL|4RJsf#OXwI?PNA+YU6Vw?iz>#BrbBSmnHzFohjvvI6q)9@~(|M zK=R@q6K44{vpgS!Mx^~kWwmQmT}oaTsX!G{vfWtQlb3gWRyIIVd}qLQMu z)>vt7p`A0o8zze#wQ>7-W_#>8{7;^e-mMq`HgL6VU$t$Uo-#)~ch2H9r7E;P$QqC^ zf)^=*382_rT!M_S4KpczF@gXIIy*X9YGGVQGP4~OU3X&X=G`Xy!(sBFKb4<8*OQ-) zyI132v)9K^XBVWw1}{f_-#ThvLE%noU8kJa>SFnM#WDdD!?-6bK`Ku%_Y@_euT08+ z5luj}(P!7BX|;XqaBKv989{&q#Z7s{3gT#&PJg}I*Z9~-`zq3alGBRal#QToAP6Wq ztNai^)J!Y%2X8*V}811k=GOlBpKY)7+o#)(t z7$&cHtvb<9xk#PpQ|@KHI@KLoPiOkPg0)#Xb*iuR8H1f-A;AX$@ zF}8_uNQsdEN`Sa|s}b60fngWi!r!S!D0YfuVE zX~ileb2Pn6(AOgqsGc`l9lc&{y!j?X0uni_Rx_ks=G7l{I^T*;Ksw{L8!5cvbcfK| zcMD9Sz8$fE#Kvt>H7~JRIm3E3qxPMs1uC1gnvv7Kx<>4K5DQ3b+#ZtiO4?xl&?tT% ziUBFESZ$^GmDB|vKqerW73-O-XVuk*Pzgw7-1Ex9v;RV0o<595KpNwAEG%4OzujHQ zI-?&&C{R6T_PcGiK{f^G6UYQ4vtk{4b9}lH`6)yK70mQ~OIn)che@A7C?KH~8zS2? z+%>!7GX8T&1thg%ZN8Nny7cpi1thj&)x26HUdl8+{UR~}$*fp^Z=beWO`D@HqZ6p0 z&gNp~(XXNtsGdi2Zgc)d0Lb5m!JudrpU)KGi%Z= zbdBD@x|!|N>!<@g8r9^ik@pzn0g@N@4oiDxd6RTK9$i3*$=272V?5esl6WN9o`gI= z^5Py7nN+LU#G6uB4@6b9xubM8uQtM;50j@{pvvP-iszv#o!jWN);IL_6VLP%?Q;uN zWvNt=bZkWu_X=hhiNmc3&;2f|RKnXX4c#>+yBrtpB)$iUfF#BZzYCVA_vy5F-5lR&GW&f91tc`CD_*2f z?bW1yxO-dP===aWfl8T@Lz-QVe+Yp^1wVjdhJ-jmA%)5vY_Qd)>AkRv3YwLLeZ4e^F>NJFQ=xOYF%F;VySP zmr?i`6atmX=DyBBYjUcv(fBzu0@X@Idr+8B_<0lpQW!TgnajV!tc%F~ZdyL?Z>%>C zG&SL8M1B#GfJ9cOPht0@Gy=bjK%i1y+~Az5MLl*h8o!E0pi+sruhrBG@J8S_5C~Mt zikv7J^mx97NI)W^c9#r`K`p#+sWExP6Zggx&v*M= ze`6{YU<21!>ry+`>PIy(X|U7U7W;#&vN6{#f`=5r1W=B~t?ivnMmT~pDgF!u0TL9q zbbUraX2Gc2%FifzHi`f#ih7632&#ptKVq-AiAi^q(dIJ@_J_md8n=|gpQ~lmhmO0i zIVCOr9j;7+4PG99eGwCrS-8_o?tYQE+}?1pd_F720p(%b#N^CMLZ_RQe<7LxX^LCL zKD#EfUcA#?Yq4djQT1X}0nz1ec2)e(R!8#zM$yYq1V~Zb3~8LA?wUJ~(dl|6x&Y~l z+gvtUmrfvFHiw>?1bYp_fD*H?zq+x!%oa69(d$tJNKw>mtxc(#{o?{3t-<2<5XsK{ z+Por7e>+TGc&6&oM=FMgPQ1XM&_;C{w}(hdK)1z`s7C#utx@Cl5Xl8Sty0Z?l+~;0 zJs0Umk+*P*Uel$s3qqkxXmodto zfHI&e%GmGCD0?!>04a-m3Xmm7Oq%W2MyaYujJBtt4Uo3D*Nh9$*6DT_A314%fiytU z;+lg3q=jkrEQA3Pc3#Xg_f%Ic{p8|4q2gPP8q;t(;8yBiRf_+7d)2&utQW=(9esgb z(@-SuQUtXPShelH+1hrkh(M>;vm@sEVn=lAT5tLvdQAKm^0-xL1&WY*2n=QC+>~HS(8TVYqbT3 zDoLZ~w&(#$OCGb6oKK$HBL|S2v*PNXfoh(KMLzD_5r69B7HS-O?B_7~$Td~#JZoLG z&hZzxdy3xOR_Yvg&~M2_b*QK&fMOZ9b7G8`uvRiT z@PCm7NLJj2oKdpWv*Z6eTl^)W0Evq1q-Tzp+H_3IxLs?3q!%Fxkfg|daEv6|Z$MX5 z8+@1?d@0HRDT|x$i^{aXmK*J1L3E2<8= zS66k|$rl9o743V))ni#;wl0H6b=hxhT^89n&IdlVSOh-{>a^^xi~jkFegY`gaZmI| zGh$jrn@Lb@=HK5A|8uYprpciTkO)X(-1EPX1+UC3aZ!8fn)CFGzy}}@kibJlIwwkC ze?td~8hsB&A5a~AI%Fo(w;O$c^hM5~1m=p$U^7o)60eRpK;oWSjm))&e;RdrPzO{f z>6l0{;+lv9s*`jDb85H||*XJ2mKi*dgkCfECO^zQt%U!{n3!-BW^&+e$O0rQZV`d! zoJp3MATol^K@d=~ppM@1FoN!dAV7km#uP4rYVPl}BCsCSQt$6I*7eTz$`+<6(hE0noYE0ae^cjEeR-p^Xg5?daeXZB zvH^-^+;ftY=PBX!T||?b;VO$!q?jy>PVR+zYyhslyABdSlR$@qYDw=Xa+6M0JVVB zRDT9!wn7O1Y;phbBcY5}Qz zQ8f*bZ%LkrV4%W+b1leI5DZB0rrQRVQxDUj3tEmtCfBw=1|dKDwJY=p7W| z#XXJw;ZK@M7ew#n+WboFN5g*fLG%HMRwDbsc8Vk%h^@eP;}55G}r2NmlHoi8X#$#zCbZwX{}Cc zkm~v|x`6VNOv}o0Np?BX07=_)y~13REISm_l&YU243My5TAJBhzst-v>GX#B-ljG- zTGjdLItIS8zA>mb`r0yKQH!CB;9nsakl;%TtppC&b2gDm^Tk{pR&c+0q0{?Y^a9db z%;Zf}0_(txw$2^ZjHq@}GgG{EX7_XodhV7L(&0B-*nf4G;!up1ra#u ztxa9(yql!QAjS;Gq7ab6O;CiRRwUpTIYK0x})tZ1_3L}OUG@t%4fC0Z10=4PnUfjoLYs2^ zezRx#h66KX=x^-Fo?AP`w?Z*cS;c*2{^DSR*HTRy-v-5i6mPnZ)cgyOP2<**cA9Nz z0O3U54v~OFzOc-ZSZIV)qy{3Jsv0uos2aLcA=AkY{6 zyPyz|!cA8w9ib%j+RjEBPzh~|-8Jpe?2Gd~&<04`rhCoKJ>8^jt=kE@yv~2;q7snG zQfC~E{{+h|oj+&l!}E~_NZO`nR2+c>>`ZTLE7v8sY_}I} zfV7ogu`IQgmz}TRDJ;LU zozB)dbuUC6Aa&)B^HX)M7nFPc`(mU5l3ISFok>-1OYdNSV2J)H0Q$ zU7%N@6R3tQm+M*$(;xU$d=2UVsVl$YcGY2hV|__IbXRg-k3>Kc%O9p@s}bIWE@lE!NTj!tT?)Pxr9dStNSjvVG$T$we$a^R9 z0Ld$V#NX~Ve4pz*2m>Un{Bp6@&=FN8!QO{1K)TBBDM(j3fcBN%2T%w|Vfj4;z1f(X z+58adfNH4QXb)OCnbzm-hfxPeUHP@1*_0o3>PZKi4j3PP6s3TamS3-QvP3#i9=Gywe zkE1?^K0x})f3`BRM9}5;=g|mAWBCuMMl|}2{vsj)i7bCwITL9nAF|$XTFR8^{GDxBTb%z2?%!q93h%3u%C)m0wr(nro^q&4hQm z*;&!s5bf4l%TI}Y7p;J_mjA57XJe!=%?;{hC%<`8vx$`-taIeqv|3V-jf#tV3 z5;(Fx?0?V)NMHF~jX+=aB*s@nKS3%WspXHh`i*@)kAH?RK*Gvz6ZI0_q>kDz5eZ0S z`7?K;B7GkJ29lm0sT!_DLTgedRw&58oU*24#ShmEZ2=CXJ6r8X##ED7dR# zofc|_fhQphkg)O_xxR#@^ATFs-Si7fu8d4TGRvRN?zb*#*1NqW9VfJuAGTfU$0b`mTdMK>Erbp!%*%qphd- z>0+nrp%IYA@*k8Ay5U>gzmGPc66t5Ojjew8Lo@nq=%X23_Cq?Lr?QedTwo1AWwqzDsxpB7v%y(I;Zv zpC4uVI=4h7P?fxD^e(Yfv{qydsv{&+6jj!+rcMb}HYA7`8LJ*j}Ky@z^0#aE1L!!Q{N+dHamU+#QhNoR3|yf@d*>{4?-y*rRC4d zndG$7?0UT*d+qC?s06B$>EjOr{tqGni7fy5N|2OoP3F}5>y5>1-BkmvfV7r6SF&`l z(^%8CSo!j^ggij* zUvD$nJtBP7y@oVE(k?o(i#6)4eto3Jzm6I}YWhc5O|QA`2bq0j0FtrUAs<^_D_rAc z3TKG?7M{f%@F5|bRov=!wtB!v@IQvhbHAjmMSplP2Yj5Bg;d-D9|4&?yAnceG-d7nRIow8u;ZOY42mcvms~UNuEpUU!xbOuB(}I36uD!OC%YPs07W*+M3@YjS6jN4Qh_;4?N;UK$TSFH!8|)*p zX|3m#j8u6($~GN7rgTUEr9d%5F7p|>S=-@%H#y^X`8|6ZeX~B=>HREv0qHHMh4wlM(#uX7_Sv|T{I5s`B)OOs zsYN@&EkrhkxD2&GWfRz_b?fYm<{)H#-L0{g!f>uCUi`fgdXsz~j?zUzu z^s19d->;z=kmeT@-uxW4@9xXyCUwN}Mq7LI8L{6)EFiJPY}QzK0!wUY-*2NBkm6!C zq%T^r=CGK-@*e&kf`RG^?yiJ_e}G`1vVzx|{neEo$CMcp{|Lc=1Q&BWQqh*Mz4cr> z_hUo@5?#%%L|0R>t6eQ~H;H^XdI9OJX0;~0n!Yn)e~wr{VyjuLAvUbmeuZM7vdODQ zT)x%#En_)A%?sM;O)D@26pH1l# z&<;p@F{^Kjs)zHVqLa}HNM|t*yNl8}HX1qwsX*nVj*Tm>hEzaOt2M3|@1tJ>tw80H z6|H;pu#6?`ruw=zQUOV=)?5z5h_DH}E=mC@E$F$0AJ9ZjHjMPhua8imdP4I(@lz2B zR8Htf5BxNQ0uoxS&f$cf_l*$?NNly5seF(7kI)H7XSGWHXy^52C+5=7TrbR- zME9-b^N0kXNW8uBkfRtCZ=b}_+`>(K4e=WL!irai+RQMYZ4oLVbs%jPO z#>K0OL972}WCN02%;a5xt-d;k_MCURS8qcpAf=V-(`J3}-1y-gXa=OYn8gzXrf#M= z9XGrSy@2!<^K7g@y(8m=_o5Y$)?yyx6sR?<(%z3ypo&7n{^O*cbYHgaQ&; zxuMGc=kB`$Bq_`EF_4#>CD^ziL1rT$j3~nH0t>rK*hPY3Z%^3nZeRpTsOZ6+;Pu7 z6yv46Hp9oi!%C?_3Y?oT9vKb1`^P;&905({vK4%QQ}e~C!bKv*i{%2o+}_|(N_D7G zg$j6eZT93mZqD#XCD_56F7C zbPUdQ0eWYGrU2--C(>WrNRkCzW0Ch61uWgDNAC(ud_aJPF43v;@oFNjR z_a!B{4Y4<7>n!&5s~>3V{DWHo%v7osJqkxknK{1@M138~Dr4L^I!* zDotn($C3jDI3%+^y3Kk|U4VGUrD)ejh@Ar1liAU*&9T=@lT-c-SV9sMAd!(8yw&8u za)PG-_>_+riw+NFigI%zQBweQ$_MA(F!yAFrpQ22*BZKiI)$hyfI69dBipQsjysdf z>ipuZC?ls5I0b+wvx8yV0WZzqli&*X>BLO|+$o<8Ih$JrT_sl$HU(g(yh=Lt36<7o z5i~^xKySrIbw$BGhoC7kP(Zd$SC%T+>j;}7{jjk#XgbLA37Z12-y9QZ{swG;`P0~ zT_R`-fKK^br|dMecf3s06hNKw`8`qln!y^eQ)Hl+)FxFisS`8>K&QL~EY~KNE>W;s zgiVnR*m^X(m9QxQJMERSHmRM>FCuCRpibtV>TTA)ql^^B#~m|$xPs6r06pdIDnKt4 z@i9lw;d~XrQ)CBxl~>D&G40g^PXX|0Z^>24n`zKB#7>c&g!i1B*AYAgz^8l`R4HsN zRa$z)ay@}lWB@oO5gzax2%G}IQ$GKx;6zJlx{NOnh)Q}RkyE4}dDWRzx8n=sHxW4n zkf*#)LYwFtC%&1`DbkRERx`1lOI=dPf?htMeiJ>@f^daY%4 zC%m7qDF8d=Q;SAvQg6SxgQzKhI^`{jw?XSpf~LqqQk(r*cM~;522gJ{n^rzX)D%FS za-U%X3xsv;S-zLJDS$iWW5PyjtXVG<^~CK{L{0(ZDX)^=HogZ4nj-y$8=&=eg9nM4 z0;p5o)u4n-U#@z{hX|V@3$SrRi-P?n!lnT1lrL^J>wxWF+kSik!WGQc z{6`3u0$`K5o;`W6-d?3|5G@7JCUa7Ao1oRL#|KAcf1#qX-lcaHX?fCx#u~PthGPi*w-Z^XRX8q`o z#7qIqDP48cn7eoQ|C!(^06yh4(_8fVD?w8LbV>)D){g#v5G@7JrgSXtjgFtl??O?e zIBC5d{M!>P1<)pQ+fm}pg@5P%P6SK=z{%XhlRRL1lkKj=O98wooh;dVQ+Fp^3cyWi zRr7Y}??tc_DF$n{*6d5L6absjCKvmF^d6=Ih?XM7#nw7M@D#$ONH1Lb+`yrPO98kk zU3>~TFOVZ@iu9J?iHf-vU?I^`0BuTJvdN-8kM?wer2yEJcEkQ77{?GW1puei6(4r= z;yA*lNN*7?RSJ4X!(yVP0NP}3NlbjK6F4BUjEE_KIHjW<`(VfkgiDcTxZZ(~lL(gr za8o+=^&JFx7V%O5Z%UhB?*Pbi2$lk1Q#wAg4t|_Qv=l&_Qa4Z6fsd8MOp)T^U=Dhm zNw5?Eo6?rdKHzaS;ZmdZOqqNM=Z zl(uKyZpPOVEJd1=*6iJXJ<(F67_E1V<_$zk0kkRgwEB+Eyoq=zfH$QJiuyi!YxnR! z5j6!+r*y)vP+KeGZzX7o)PuGbL*GWw6abyl&RM0jw(fDNf^|w0jxg9oGcYU7f>SS)U-8${mOZ@yknch((@Bq7SBaEZeE(feLl5nW0C)xPu`P|6x#(U=29S? zKAtTG_BXdg?(aq}6yWm7tZ`9euA)^qy&0wBvDt@gD8S}38D%q7sE;?M z>ZR%?l|}oL6a`4#pJ7sRm?0|BL8L?hN}tUrr3S7|a>nx(t3$|&0<5yyG&D-4X?QB> zP-M6=HEI)0UuAk4Nl|2&6pNgX)R81b0a6cSv^q7X@Nw&@S{Yl>MH6u}IZ=SqM>59A z>R+Eh8Wf;$SH@^~{pupJpa6?cWQ;{uf4Y=pC_v_886;!%ILDI;1*qJeF)G}{hRdr& zWq&4lP-L)tfd`iEDz%bsxkgEbB7>PSUH2;ev&n-ZgFHy%L{+$+OCA*9k+msK_aJix z*-(H@*80VUSGdj~4T>z%@W#liNrM73veq$njg8lk3@9=6aeY{JO=w)kHs^Y$(9yp^ObKRsAuO zN;qn)kq2wS$HWf+@r=B0fCnKG59^V=%&7gDl zRhn0m83mYSs4-K_d{kaTDiokH-p&_F)W?C#tIq?`PgfP88sjp-xkA3UoI&lMDsO40*;fhYSks zb>2cs6rglpb}Ej_pQ%Ey^SO|fK4C6;+7FQs1qfwmh^jKD zRc+MjO$<&O&LsCY=POPDA8QlL?jkb^F#CMwvZ|XIuhtaAK1yN~|2K#=c+G_%_Hh!U z0I}>f=rgtYSgGNkCVi5OD8T5R?3BTfcH+}yLIEZp$`%v7=le6HKmiIF8nbq{1YR5W zIZ~p?R*mVVWE!_GkP$`38F{VRm&u3%j56dZ32V;2N-7kf^8VpA0^@~dA>W*xb^@+= zqYqg~_$J{~0RE8uiUwvJ_+3j0-ysnS5J~7G(Q{qS8FywdnhdfK%8(rR5rIg;% zn83Tz{!vn(7(NB-5Mdw#tS2G4@KaKt0EHoYqAZ~CD0Jn=&q;;?WQIJu9Gpy{TrQSt z4ZVo-OLCzAmm%+Ko&y(LWvB-7za|fgZ1OOJk>8OAMHVZ{SgBg5moDd*;>GOhagw3P zVy0l9gR6M_i99I4BXbqLSeu@eH(rT6`3t#FfXk5GNrPATVyy*_OSM)-8LO$x`5OsQ zWU-KqmnJ3@kL_Lx9u(j)A#Wn#jQlRB5 zd#-gDsZeAwPs-z7MLC>AC_p50lg6@B*A@N<@}S5fk4kM^4;_yp4+`)Y@|w@!Eimr( z^E}tbk_iQvWX?}ib+$GO6HPNv86g=8kjY%r#VI4cfvvieC8R=;#hQW}l=X;yIeAck z$B-A~2CpfN=>pD_Ow8t+4mTmFtT~aCC^AV&o`nlIB~KJ5H0G%Q4l$}Ezk_9g4sXU#WC^DQymcw!t=}>@9_L@1FMFGF%S)@b(N}n6< zLhzhRU6}jw9P*;baLKd0nCnP~0(6GFp=!?AMg|IXW*R9g0lTG5*etq(cEZLq4@J_cCX>J&WW+ z0X|tBECjrt6Qo3u;ViP9pe6F50H3V(s(xQ+nT#khoI|!tv_?J@;FHxUtK}K3lMY3O z=~xcZ7U@ucPUbc}D2Ia2Pr8+aC_pHybMT4JFw5$YZY!=womD>JYsiNp!v*hhr>XZ7T}L_;pp&^B26nz& zPa+f`lDUObD?@G|4+`)|=%Z(IJqtrKl?$`Delbvtq|%oKGUY!;;1mEpkHQBf(I}V3yDpV`fP5&xXULnG;_@ks7pC#yIVWG3 znZ%~+T6wA7<@+GXP-K|QGEL?olA*{T8SE<&Ib+CtiDW21=EKA7IARyGVCj0894NBK z!Q{gu^2 zDX-HHNr56e>F*6beoXKb0RO&hw4x=i=>HqhQ)CFem-hco^b|lpqjEZXGpBvYfg*bxjPKw8a-aZ*Auk6H zSkZ$ngr|@R1(;-HDy2%4H5osYBq*{+!W%#4NP+?+GBSqOIbjVW7m@`9SPc0}j{$2& z_YD2%1+3L>q$iz(4k0BL`%u+Gk`EjH|ky$FHJ6}vH6rhrk^-5LcLuT*GNQMGr zvelDVllT)zf&wJ6)d<^j`IE?k0xYsMOsrS6KjK;BK#{rP)M%P<;&VuX0wglx(X!B= zM)VXwKWvv!sp=H!`9gWp8LJn9`;5dx^(=TM##kFMQEXOj^H7!7;l z&fFLk#@!l5Txub6E%{J@&yY_Q&oPI_3eDmaK2lR_dDju0M^+SIHSF$vZn=aTF7!r) z^&~?9GDAMmHODL(FBK*yumGpZ-1A6?0)&P=Q<+=tjGH_AE+H3+%yPk3E>*s~fLtiR zWys%jnqxuZ7d!L#z77jqt!h4anI|y{5X)wx4Py9yr~a(i82M0u&liWhfn#nJXbKsH zkKoqo`2KCaQsdXfR3UW8jRM?;eDZFNg|JjDHA{suE{D%ITg6T0j=U){qX4sPc1oM- zH9bk#L^2d0^W{ty!AfD1lW)w7^N#g=)tM}CGq5UzRkEW1yCL5bF~>qEzgnEfm|RiX zOiC1>l+95D4!Jvdujg%&5CsTjb8b;-m767t(H1hI0HX)9S*HY}Kt^3oS`?Y3h07?} zqWhckmyi}kW@#ypqJKhoC23KB)|WC_2o6cCkk--=PYMh zui53>NRk31v+3ecZA#Z9^POZy0cM#Viv*@H?fhslm2>y?d8xQTK}d#XM{UKHS!P4BiUlk(dYSdS=}4+`8vZWQ2_ z>DhI&-l`UHq;8xpROMp)1j$i=T&4$=&1PP8ZOxkh3ncfEA_XXBbGclXO?zeHezKwf zt8Ds)15Lhy6kwIj);_wm_zJmEfZLF7N}i)@ z&bNU1HPWE~onha4Rckbyu3N8!GGrUtw+Ng9z&|wP<{%#Mu6<|UB?Ssl81|l-xD-@Z zGu0ZyB7Yfgsd2&&$b|x2hP}ISKrWlg`SH?>;_)x!K>;2^zE6;;8>2of%BwsnFSRq| zUrB@lM25YTIw+AEFYhWf8d$`)ir7!ch$4H8G@EL>uBa)F?o0$UchsP@8TwagM82oy-@umh@z7PjaIGw;_-H z=fkau-MngAwhtLmfYFc_A?L-YUaI6Tcj`5rQ~Q$_1$Yg4tId3PwW_7fEr;K*XgI}| zwdwjG@}mI1ADQ4(`g+&?A3y~F>2I`C9y9)-zXOJ*8iuH z7ez+%sabXkjb`55(C{?!p~yBLb4|mMa|L~;h>AE znlJY(B{K>z8?y6#F3iRo)8&#rUw1sYP-K;hRpOpWE)?11f;nNqobnze7YcA0@^<&R zl(DdB)3Zs50+fb);BiirFsa8fylUN^OEMJMENk3fRjw;8E69Z+yIfj&lzj%dP=L#j z9j0?CWVNzpvYJdNz$AnIped&?Q)*!TqYBv?(xJ#^A)B&0&2!0xBCA}iPV)kCp#Ya5 zd$Z?KVM`MQuiD6&~y#0JA6E(uU{E+!oc(788z?$b(b#<9GL&nFuSuo?2!h`AK9 z>4I*QUq~VpAdO)3gNB?5dqWC{S z%ed-aN?H`4HRR(>b80eV-HPzozl`K4KyJu~K<7a&#Bu)$5~BdIA)l0=7qLkH{k0@W z0fHIyt*V_VJ~#fWNr@uklq|=@YeQGiqi_e83a z=eg7GA|DFy$?hCV`=G7v>7yh@0b*av-tvvfD0R`PQ*G4hbl7^%^^cPw1sG;<-5|iw z=VSjQsZso&$h_jHNQq_D+9>j3~fp$TwHbqq&cAQh$!@D8Md*Cr(s; z@lZzhiIXpo8%3teVzV}#*E?UoOhy!7lwJRluSxtWDN$sa(u}={=j)_Ik#S1a#N?Z# zL;*?}-27%8+WHQeP=HAWNAKY+-SdB|QDifZe4WqF$%P`TT&!N_m*heLF1My=uG`}T&#wuY z0+8P^T*%d0y%M~+Oz1+c2zZ>ZDFA!O*O|nE-E}FzpGbfL1n$T{x-Sx64Z$a&>J_!8 z@GoRQkrf7$^;&D%X7D#Mpa6p*UzQQC5S6N!KjQSAO=7#3fdmCe4Eb`UcqDMG4+Dzt zz^S72Byyn042NZ19CjcFip+43b-~Vuoyma$9EQ9(JziN-?v$>!X#t5)WQ<5x6SW74 zP=LsgN82AIbCKU=$8S*u} zb(~+WRRT9gNoB}r_HY8H0PrDS!y6NL*Ld~_QlQ8V1zf&ct+mSKk{X2^MG6$4@V?;= z$>Zk2nA0pM^v4oCMRqb^yi_k0r^=4LfnkIcC_v%;*~oy&LZzZ}U$4&`Mtw!Y5PL%st}hFJO#kNd&uBx*zecfEJ5YP^6%QvFJCNrDCBR>?gb@A?;R+ z6evJp*!{H!G#-Vn_G>H2P=L&k_wtHLFi3uw4-gew@F?iv)QiZ7BI}IIcRsHmBZ@3D zsurph!{{n9q5z{IFVPHM>c&ddVy#ux9nRI{LXkx-#ag{ytT_{^^Sp*!D8S_-Lmo{I z+_V*I`dez(kp=~5472QWeF}R=$56S2R4B4oR|FL+Uv4ECiY%5e z->Bv7WI~bA5;k40>6<9uMJg1alDPrc=2oHFES2?Tr|%&b3UC?nfvLeOzIdaU4~!|_ zPf8RSrW6=j-a$$fpfqep*}!8ml}p|T^G>p%0Gna2L(G*;a8PqMIZ=SqkZ*aJb3O8n zZ9Yaq6d5Mu8{*tcLKGmBIcJTkL;jJ@r^tvR!}TaQ;CXh zLBm6&L;*@eUN^&M>+nUL*?-p&J^~t_L~WXD zWrcEn(rMz0q7)sg1YF&PWfWDs;y^^vEZ{MY0*Vc05yBAf)q>h9o1Jy2rh4`|X+BuSzn9leZ_%OlWMDyA1_sO0e+B(DS-Iq^dX+Y$IjtH(P$qcS_+^|=5~!l z8(=k_$d5b4x|#rrV(}%yrbstz>|OD}eweT+06T?^n@;W4H0G1KaeIWADbiVH}kXAB(kDw{inamA*4!nt8 zdIFz6PzB?ML`(t1x1=wbHDc58{g`+ufH#FBW6ZC|$`1Oy8S&Xz(J22LAycF@i6!Le z+7?wL{+)O!fH#@r)QR?e!AW&qHp{x_{u$9z0R5ZOSDIIZ%9uS6CJV7OZaC3r2xw8o$2_X2KDv=l)5#`M%PgVyr??L?>)DTQiz{dOf(3P8OfMX73g`*tTr3Sdl; zXEM~ww->Qeq$@pr-o1T^kpdV~)UgJ=dIu0D1z_Hko}wAz&3g)wQUK}e(}OhN#XFQJ zDS$FX16J)%3VQEygiDc5xIwSoLc*m0+!QrZI(2>Cx~CH>MY_ssz)N=wQBnY9it2xe zckVbMr2x_t&9cM2a*GL;0$^X0p2n)w;JGw0@mofO6e%m7O{dZ*U9Mf;ClDn?x{9av z5n5i&lZcc8NIU7tagEe?GoMAA6u_CH5q_8#^Ere{k+LKWdM{5SP72^mk#j+l`-f2-IUe$@=NhVOi)(IOEpNFJDs z4BNx^-$85-e{J$n^xPn>=>@llYrRU0tC1Kk1yUiQu2sh%vZvSnU=uKJ&KqngHK%ZI zgUa80VXT-hRi?|GH!R!k3ET0X%))DkngXbkxdq*el&1~mhuU!6m3*V=Oe?V06D$S5Cgc+`Sv&7k7GSmGLe%RU2$uqIlQ|-$Gf%cO^C}eD6!xJt zifFvlQoKs(8ws5vjVWC&RL1;pZz5cZbi%DS{BYk)xD(z})_g-Ivos6vDVplOUK z-T~U}?N{?{9yME+EEpLHMiR^9NaE$mn(x)w$prCt&o=SfnduZ@eSHdG*@w$S&b*fZ zDFE=?Bub@VKWe8zAoI5-k__d-tW%FWz?FeJ?u~CmS)7_m@W~mTGZA>-OuQ7po6P5olEce`1kQMVyoL`{;KIsQvDuZ} zw-7!B;3qRpoIiZuNcUC(qyWHVHWwrXuxk|dc0#2{Sz4N2;avnsk+QT58PUFnP$^QD zmZsNwKLJvtEG%W|Q0eYrB8MdN&bL0AX6(7z&{oseX(Y zDbk10v_%@IwfQx{RoNVQXpZH*)-B}HTG?rA!ZCTl;4w0w0E2|)wSG(qCcb7+uQjj`E#Uu@@F@U4nX47IUD;9a z$N43C0siL%PXX}B++DHl!Iuh?3jHsMo+3MCAKzG+f zMRw93=&={Jp&2|*1{7eBk+!E)#f8W!1O7z#6o8+Rwg;a}Rp9?Z@Du?5fo$|#xaAeY zd4>OP#7_bI$z18a&D&1jEw!Qp*lrpmC_v(_%w$5nv^9?lm`pu*5?N4WE-SEgVUsFP zJCFngNZgaDtgtp%}-6rhliF_ENT*McKRf&wHm(tV)^=FRe= z9vnsZ6o8+RarI20I&Qk(V~L+4L-?JdR|iIjpCUVTz<2YTC`3z0f&wHypN+Oik>H8k zP0p5lW42OpaE837zRjU($8r**0I}QCO|0nmlb%TA6hNNPD$KU>lNK%i=*fgl0oci0 zD!I+3$=*2b6oRGz=wz-N*mj^jf9R=1O_Bbx9q@ymPUIBnPjAcrxr(SM(x2V|zvo#* zP66Z}Np~x#t`opFq2Tw_y9-rgehz6+fJVxjMB8n8+IcZ zP=G3a=vQ>4F)cRPEp zBX|mc|5UpBrFc%>>q&?LgbIo5{PuZDN98cbY^Rp%E>SzJ6S@orJ5HV0m%)g@9ryYZ zumk)K-0_IZV5ABOlF(%^29JyeJHB_>QCxDE&}A^je$U;7O+1?*c5=B&;jbi zV29zomv|{sn9PmoLYzlg5l>O=+ul|r>N-NH9iarZ*ZqfGWI9e3{o(2czt z-FbV#TFVxXF5FFEcA7!F;$qxc0_^w^TbY( zi2`4*m2tjD0RJL^Qvi4}JH@tTqBo|?CEdt>g~%x~QCu3ETaLqzW{Fh)8nIJkBh{OQ zBF^s!P66QQt&P4> z`0ojs0+5s0;H=+zy8nlODFFDb+r+uoYdy)AA<=HPMfPa>e~FkP z)y2X;%KkesQ=~hUt+CP*HUlvQ5GS+S$d}iB?g;XQ?Nu)Pqv|IUGzCDXcZ_6>rgtP@ zid2_n|0sGFVx~xS$q0;|cOz&DfW9n=9SU{{9kqX`(Qo+jNiv^Is@Ce2xLXrM*pBkLodOS&i3p0c5(wi9by}A(@$lp!~og#i0h`SWX{ba8D zoF6QEX-4GCM+uMu0F${Lcb)*nor`%IQAzl5BBTJqbCak*0^q2S;l(qVeLOf}FkY*~ zTn3eaJMK+~p|%`_)}p<`1>*hWKI-J*k!i z3x-Z#$0gwHo!4tC96crTwRaN{fyu})fVxEvpkABEgu@p_uQ8Mt&_9eadX*U8XVhiR+YTpCt`}U zBQD`XSR##oM8p(8oQz-FOS&Y}c*~Si$2dS>ew3IgfH|4vgKdDhTC39SqaZ&<$P|E_ z%&2f1K(^EPrvyv^z{yMy5(Mn4b3Z3iinJm%b?ui#N&%$F>?%$+P3`>uHL+3vYcd~1 zOAxESZvBo>DF8K@VPb+%?KFLyKq&z9q9oi_2Ir{xOSLy4gPwXqBa&w9aTo?guR0$i zuva%R0(;VWe0TuF*CYu;Mu1V*eR90YQHh** z9idSGS~8Bbh9k>EX=ZlOc%fOy7s~~4SP>gTngyJktS@4auC!W|SK}wlq_77NAFhFG zN?_~|BLy(tIOOE>V=UHM)h0I037BsrObWnEW)huLQsUYs2j|HY&YOvoB6Z1$+izRk zgD8^oErdw{n8|!bY0k;nRU&UAHVR;S^>9n1!saW9?;t!1z-y-hp1%a%PJ9%pNj_i6 zdoSTp0Ny#t^vX^2$GSK0b$*v8lRdS1a{zyc4Bc^G@iY+q{>#u8@3>y+K>56+A<2l) zCx1`&$*)Q}f}Z`dN}51_<4b}cAqiXxuurIiQL*-$@b&^{_the&9wkf)z)Z+hlL$=D z?}6LDQOX6_#|V}JU=woHBnegykBQg8Su%n6r$kHv#0gDs6GiN$?azsn0!Uw%n#!~Y zlW?m5{E{Fk05T!pXA;R-u^|4M5Gm4?;~{19cSK47q{%EHF&T81(QBx#f`vApi>$PK zoCqmWmX=K%G{>di7ScZvDFu+OPo#U7X*8;mG^$^HSu!=1gc{&fD94?4dvA2y-{vs= zJ{QYA?OoSfdL+e$Z2?b4h_3%}+4U#njq#B8U1P9<2FkGaL?z1wToR)|Y9!=E_Toqc zs68YQIe8%=Qvh-@M?yqrZk4ZIZG*)wGHuPYzSycv*K6o(1@MaroC3g;ITErhfj3&% zXeMw!pSUT2JDH8g+YEPwZe{`cg#=9j(8*i~vCTkRMWjH~6zNZDuY8OXG)4MB&lK>X zEm1xu37P_+6IzS1nudOJAS-BeE8=fGTmq&5;AFOdC0?Kb*eewk;-yG0UZ+&`@J*hT4W5G)12CbQ2n@xoAX3c4+xAzF$QC#~r?W(k%ey-90z7%wJT ziu5LJqp1f#FC|!t6oWORo|h3UMS8({z1b@WmI7d(pUC{qYr96Rra^U{p_8d(+`28C z#VR#tW6twb=#IPL4$Sd>aXH<(7fK6UW=+PeYeA9`VQ!b(N!;|Aj9b@=pqE=$2lI~@ zlvX9duaE>T1=uI!*4450>A`fcP;mAfPUO^Y36laalbIju_~!>x6!oH9hZR8oK%f*U z1zN>bqyp$436ugrlQ~e8NQ#OTZ2|Dl1W1uGfF=e1N`Mpqn23)|CE%#~KdO;>aUxEr zE%m}QKE@Guf3ObTahE?6E$5eUt!8_tiCeqK>WWwe7 zSAL>ZE%G)_#s90kTa*IKli8GJ;_K5OnQ(>i@jM()Ui*pfeW5w37M(o4;y6_s$0h-h zS6?Sq3Shl3iN0P#7}bA77K*+L>l1}yvsN!%?u_Tzq4E;$!Bm%Ugd(nWcc@=`OOSCA(NnF5geZp8MC{r`nr7%S#Wm1%6%5(ThC z%oHh3=1OfGH$n0v)dF&vkSPGU?}ge!N@jV|S-`CkE=7t<1wOj#t9*50rU2%?{^ubj zF)+8P6SeX<_XCKOZV@#FQ1|tU4i7cHfuR6zC145w?stpCobisbhf)#xyPN$Nk2{rG zV{zRnj8~jRmGOn*cgJmwpjX;n{%CK%l7ZMg?HLR&L!w8yMD{2n!2k=3u+3HLk-|u| z)^x^dwM`>9xH>}HDxO1nhG`$NLYc@Fa_f|d98Ba0i>US%I2DOe@k3g6F9s?L{xQCQ zI#!s~$b?x2Qt!Wz@Ar*=sUpoiv(3ihB}-A2(7qO$&Z5%vY;|m5vo?ZzsLJ@l`{+os z)Z|&%gO($K_u6po$OWs;TXWiqRih&t!~^PbT9=bLP<(2iD5OE;LrLbtv65*wqS0n8 zr?KQLEbbJkhDW|cMeb}ZfR@w9;~;8YL?DJeT0H`_$X1N>zRL2mcgU0W-m8?A9D<81 z6ea7>o^eQnpjVglo+0UJ`yQZCtrFHnDEY3tnfxLme|BW#iwk9EYt?BAx+*s@SQt@i zRf<lk&S^@$Q00^=M=&g{#|;u$$E9r$e~~19@*poS6eIAmytiLkYA;yL zQMuLyegfTKNx{wHBhx5Pg*qxZrz0{cR#JbSrEl*^RnAr+vU3JwW2JkkI)S5Pm|TpM zsv{V(7pGLzhuOK{3$;OnYBPYz6B8g;s^(+>z&dRpShCxkDA%?Ci$bNq?7P9KVu#5Y z{%37Vjd=Adhm!m>cFTT{(hpwap8;qnSH=LA1oW>I7dvQk@vp0{Cj|C{W`g zPofIT3MdMwdpR2eR#;OKbnRRg)2>~Mq|Ga7bAhjV#mC8tl6Q{-B z6g3uhtIoLBGL{(iLUyf-brb8gy8blxDuh+?WE!;@Q)Ka99*+~seV5@IXt=wuZ-{46 zm+~A-xmWyj!3h>W$)&?6=TLHcG~r`T-PhAB908sYYE?&b<}v7K_EXELK4Bg+#1@7oD(1accRy(>rHE4pM|?dR-5_1oQh#?Rc#6I) zMt6tpddRLuSOp5k#C$jPb!1DaIW^L7aKwr|o;aLUn!t8K+2slh$FfKS-dL~SSi$35 z-WzQO_Nq{h=5so5E)WueJ}Z3zA{ZKT zFPLoJ5p0CPI_^i7pp(z7rn!;zUE$F7j9iE*W=91w-S0@$ceOJh5oDO@>+Da{E$(|aik)Jo1a;-2f#!0gHsUiHxZ*RTnzTbTOwF=f@ zYkG%jivXgb6=rhEOir5tRBTz9XU5Hx8m&UP)WFo9RX}0e<9Pvf+tcJ^z(isX^s+kk zwKa}uR-4Isdk>+>d74DBiHk|N-?4N#9i~-`?`9n7-LRX6!&cj&*2z%9d7&BxUx1tp zAiW!=S!m5Wn|x4p<0YFi%wzE-b6guRKC;CrO-?l%BaeOH8n2uk?<1faH2E&7gnsuT z|GRD9YhuE~Mou<)-fKDaT24iYe7ShuWK~_R6dIeDGv4aEXj2YQ)w%0&TRq9CCpq&X zP`UF))j}QN%uAM8IGI(iGBR6h)n)Bzpo-sor7Fe8Tp0U>HpA*6l~abhAg7GyXk6B~ z1}Z*`gUkAPbMc1rBV+i!4rY=H^xhjhADVvBwv;)o1dNsQh9L$ZB2%9P&snD}BrH$Q z+p_jCUV_k`SO^yn@H$?W~jhuV~d1gnHt4)~J z;L359vfyJqB26BA^Bq?ynf7J*GH& z?ku}!0xTo$?-)hsOkmyI5|^yt@R?0;tLF@^xE z=Z?el{i;is5&w-5hjsV!h)J}Wo=-tGHtrL4W=tVn`#jRt?kIIt6jKkoer(T(WAxi_ zutj)~`qvI?)F9^htedL4F7b=bQ1lo_xy(apL0J%8?)RbA-nJ|(Q(2&-2YTbz5$ z=v!lUe-g`H#4=c?xn}O@yx!7ue-g%igb~p@K6~!*nQqZNh!N;su{3v!raP3)POo0d z>P8M_>~rbiE{X2HD>&mS$DDa=C;?M7Q7;sWPTAqQCPsW-AUWD<$kD1um+2!hUq9+J zJNVkQ7?5t@7}ytF3@Lmeb6!a4QEbQ>$&eU!=$!>2OD-NFAMB1xIGC=lK~llO1(8|Q zWnk21obw+0fEmW_In0Ye$nq@g7si~jrgIQ#Nko9QekR%nyv*^cdKvk9 z_8>6&IX^@KB;ovc)*z_NSV#Lg1PpJOqtu}TpB@vPuHwB=P7l4cAsJ%%@v2N6D26+p zZ$niqJa5ZKo|7XdD;ORj3)T%n)*b}u8H^YNVPh1lzCrUepKn0=E=Htt!$jWp1@b#M zOduc}pEE+tUJS6lJ`Is?C;4!D?bGt(`}#F}uUhTc^5bLpHl8;K$1aC~T5y;R@fZkJ z$98!PqTgsUuz$>?1Bdzy5-7tbEa_c_@jR*w<5ALO*r4$h&ykQaOkBP|VP#k%Ori{* zuw;H^Sig_fI?6W}RfbPk5~B<+9;6JH#+Ry0e-i&3wA4i}D9VONj6p`l=tE4Bq*li0 zZs3q7biA=Na+qbCRg0n4V8OkVCjBD@l*{AdnX|_R?h9$j3=m)>9@TEw25Y`MCa7{y z5Ztu)oLJaY*B{b*i;;{wLHoV?_!Y4t>gT!;Y+S|`!*y|dtSC*-t-TZ?jw<8ux^MLi z`4Bztvdf0(r9FoPHtE{^qFbl+p8fHev9Q}6vELgJh;W7x_HCr(P~ft`qo#jQ$Jo~i zA=3A90*Y#9V)d2h#)8>3^N;SuWKn(%feqOC&8JN0e#U)Sk1`>9k7UY(iSU)N%7l!1 zUS&de8)!vTkJIIt5@q7LUS&cX@w%;$wV@sh&0>7&n_MrnXUHSdvvLG0YOd`N_~0VU zRFCjE1kRh4V^}+^@CNvTHTGy^kp$8+?!H+SW-N32FG|{=QUJ&nnt%5bWBHRM9c!k>LXj$-SvDeeQobyHR3nq?^FnXVs(}fKu2TDlK1#B$J;-I|0;y{948`UmhD(xtHc#c8{=>|_*mGSMN z+cvFkYmFUKkJ(;GOqCkEM$Xo$0`|#p4}|i6sv>Z}+K9((@dVpa^ox3j3Nx=bQ1Uvw zUR?TqMGqt@NU7qC%rq8_R9hA75~MpzWICVK@mT>LaTob~;wtZL;RR-h4f^eM=55hv z@!19P?Y8w|PQRGri#bG_lP}T{reDmd7eTMb#+#4??&dU6$Juur;c1W-Ck2YjLXE>C zaE2XJwhSheht`B5VBJ`pK2Rp8#-dTH5)`fxsF#X5jrUVkSv_2<9=0t#Bi4GPQ1pDl zP9T3LsGi7a@9g8K+< zc>O{2VHuwV)e(r+-75j^H)$-i>7R-mQ2XqvY^+Y^Hg3d&h*p2&M$zz!ApVwr<3?E) z-R}~~JlpW-nYs@%^4c_CqEfp*WaPm%`=od&;5F6(qmR<4)nc2+$oJ^^yAP=zr|ITb zqWuXChc(2}GY_9tw!mQxskHtxTJP1^z93$@c&%(sw@5gYs+v35%CZvcRyJq1vhFVl zVjeAK^zH#)N^}D=O(n5e73DVs6t^XOR=gDQnm|V8YXaRrFuv&a?m*SnPPVX4+Ym=} z<)0mQ@yQrM@1TCQcQ{joU?;g(*E=#WM!tvaBBm1iNZj(>QQM$ zqm60YkXD_{7cjNLxy`(o66u4|-gBH6*W(Ql0{b9G##*KF_y~G~W^KCT9?CPu&p`L2 zP2v?j772gF7aGUDebX)OaT5{bYCIk{&E(K0pC!#03?wR~){!!`^kJ{q1{R7UKGM?s zb`m}O$c59Lw)``PKY{E*I~#fe8$|)uDFn{CxezJT#aSe(djvDmPT4qVr4E?HU^*%| z<}^q5SVre#cWI#HEX!LYP;#aUrA@6KB}Y8>_C@;3%`-<)ZjSMnn_e&Y!XhO^SUD~3 zO23dY(-(WkB_foW6J(iL@6XyE?+3EB7cdcrdpuLxrrw`Uuo5p1WJPnLM?QG{UQ}ir z17|{ekv}swm;)#gZ~0yT1@DFEY|%GU=^F*Is1a-hcK6xLYdd9QCR9wORwX7!cLk&KRbqWsMyL4kSX-HK$~9i|hB}OI%gu1p zhdv~ux&SW>nsbJ!m2m-Gty(CLAoP}6ebb298`5#xD^PrnTWRd}c?avVSX}XfBT0Nw zo>c)dk4((VoDrp~D+k>o`{TGdd$7u;Fxwqr3dO1ga3}>w zNhZOdqe9_JJVJ1rk%{-5h)6l^+EOny9dXEy*H)-TOen?fH7YyqiKm0&?iVqrIJ+;j zN+EW92n8T79xx_p8kDb)l(mO4$T<=zzwn9sJK%f}73~Vg4?>aUE={@mBwA*U2G;ZSYe(Pvf44BZo%uqX8N2YLf5w?b^ zG}{NrM^2ZARz}WJkJ{Acls2ce;HSO3vH5X=Inrp>Tg7GzE2b*aJ?K#zS?{UaLX)#J zh)lcNVn;@n`j8TO+`@E8#kV&}o}q3X#go&{TaAmi$k9{gs6?##%;`X}^6Fw|qGiV^ zZd6*Y^&&=bXNy+p_y#WY-W*F7`iME!GsD}D?z)7VM^UrIei5&}yDwpTA}hVGjw=sT z|I``vS5EikH0Z0A@ez9UkuYVZy4MJV-E~m;3u7QOmCv&JYFh2Cai_#iO#sw>Fif^& zReQsB+dW}B{uAw#`&z~kRmGH3E(Uzotz58fxi`{ySani9n;3>k!K+6(Q;*y?(so3> zIeDNI(iO%s{!cU>T1DcQId5*xy5ZhRlfGfSo(grR!ZMt5FHP_YVABx_g}4E#<1XO% zahD4jL~7Izap4Zz4ZUeQj%8^M9pC)`htN_)6Wcv}oIqvLKplWC7>w$`X024HmBcUzX` zkoJ%COZ)D3t+W@I22Ok1Bqzp2N2NW@xnC1$FL)Yik!kNU<&}G3=v!TBA3X#*-nc}9 z=`Z|lIu8yyk%K^Bv$dAO0FE96hR1}9PLeJf7{#;81r>}`T(jl)9c z4b8egW|DgR4c*ALsmrXFN5bI0cjb{@&+e{gC*;e8%V+a5jl6>ct93O_rw%K+BSP14 zZ{bOv-PS1ODhBMx-&lXm$=_&e7DYA;p|ME2$e!QG?1^rwLSJ7f8W;s`d(nJ$+UozF z4PUr5QDw9>QBhz`{ts)>MJLjlEX~T|&Zc;G+ScE&{LH};%_@^3SE97h4e%r<3nBC7rbC5y20paM%PIJzPnD&)v78B z(yA;5R^5!AR`teel@4LqDj0!65!T<#A-OM#jJppD zCd*Ao2xM$zyATzZYGp~lJ&3lwx;(HgD<9oMg)Nzxz!f>hkHQtmJ@;_hv$7C2Bj-C& zHoZD7=pIRvG3)p(p zbNVIlimu~5QONjE$4>??n29dcJkib81sgAI24UTNSB9Yvam=#`11ydw4r=#NX za+)06=XB+?zN)ah13f8_(_+CmG@r$jj{Ep?kjwk{b6GyJw1Sb;B5R_DLOo)aF(H3f z%lwV@81^t?<*vZ3au;jTx+dUHAXL|p#7v$*-dYLcp2ej1QpcYTkq(zo2G%^0*xhwj zu1eH;GhjFDla<4|AXjbCRl`Y2_qEDd>A5bbg;#5(?b_!ecMp&*Z2#lc@F%G!SgR78 z{p)AZgUUW=Ixb^HPG2H(TJ6{wfR*yh`C);rwCrBYl#`^wp&y|JJC#zSxES9sDyn4S zpTfV-F0JEU_e>zOs!KO>~L^_!Y4e;`mz;J9hhH(G3;5C?k`{@z(yWH5qc04zBuLSYD zY|>jT%nstM)(fCvsjYo%mg%@oX}z8pG&_mUcTJ6;qbza(L7-i5rqH3~q^>Q0a{n)X z_Q^7l>#!z!R&7yanRo;%`jPaPiV|UIVLu8gyJ?-g8tQ4buDt+1jh~ZHpB9n(G^KlX zNqSdW(yBIp*lu} zqOJEXYF~EStn}zb7I7nRBfv)256i|D+6eVQs|9Q?Jw#RD#!pif+!yif zt_l#Ek|M!_CEtB14TzKsDd=4Y3U=|8S@Cj#fJI3s5lhp-!93uby7bByui=Zqa(qzO zdsYE&8<>#6H>UYua5N;9rtc_$GeX8fLL#V@LrN#mwXkS&7FuD z;q<f_5$_OxHGjU zy$ctTPj=sSp%o?vYpx@SqfA=uwFHZT?CHAOYu)sBfu$`|zJ;mY4ff%x!45T~3cN5A z-D2xDzsrQ@UJw?dCSt0NdasXqf67wtewek*t~D%~vWj|PM^W+vh1isQ_a0h^F6OGO zwv2h@TQ-uU;ND9sA!S;1TGs2jFk3HwnlE=1;qF&e*_8!TG#Kt@#jC**dqh_XfUoTD zf<@JRh!&#S*KQ1KCUpv^JovJ}fO6?QKrX1J*<#LDeI?NS8s7}Iuutg%&ljx{=YE5) z`I}hPEL*X86J?P>-{Ctxmx%UXZz)YLUXm9(iaB!{E7#CSL$gFKeyaJwl0{2KagQgK zIy>&TSoahf<-Om9KXUR1xa<8=u}n*QXutmqhfz>f!>3)WYN-5wA(_}aX+&R{pA9o zTcLFFXHNe_TIz+Jm{CZp$cmj8h^**WM1lytc1@s*$_#ZWMPE?Jj-{ih?G|HqCm`$Q z*(ZAqPRr3igzoON=BpLjw-yD?+q~{&%QD<$t7j!0_w&agV|HJ%2wJpDY8gW+I0aG) zWR5O@5x zyI$=fQunZ~jM6*7Xbj&cG9*w-(TRaIYk_u&xO5aM_VykhA z6Klt16v(n;WR}^DTb%dxx{LtYy)I){&{*b7WfBH=)J;X({DpF97pquCt?U#p=8O_-FW7VQQh5{Mmo=8(x?jW<(l5C8W^J=7EH%eQ+rc>Xa7h-EEj>sxM9`3s? zJK|ur8d)r5w`LyW%6Ij+lQ4~XdJ@{#8Z#68^l5s3AuX+6-$NKs$c zfgY^beRLqPdsxx6RuJf}wc5WwU_zNUx_d zOl8NgNceHh?uU;1C9bCKvy>yI)3_S2QtzhdNNw&kI{iH@sMuqtK=OpgEMq~%Zh!?0 z=%v{B(ABg+fbFi+dPyk0J(K^!qRDz+A<&=li*MB`2EwjY0s^I>M>ijygjQ!POh;AX zXM6LbK3RkMi_xR-YX*vgTW4VtWg;Z^qel@ztbC<(2zl+A$f1 z!lb^v79*Fu^;B6P-79I!$|P8e?%%s`c{NlJyqd;*HB{eI6#{K}etfnHcW9A&29xS6is`2mVj5ms{1lfJ9EU3in%d9=j!4G0gr^s<6skoFj| z)G9fV72>DN3S8FE)P@9w*p|Gk5avWypbV<}f#TJDw8f~tnis0CUBultvSsN}!=uMh zA$4d}#UhJ~`xe@^Yh-kD8fMIg^KGywXVu1yBHPW~KqBim zZamJ;d{GYvu;^vKF^eLwaigk_?z@;M|0hbc-H|L)TlMgH=Eck4^Vw9ZS4#yo&Rj-k zkJNPBYw&5K_O3#8jtJC|zjEpqs*2t-!Mf7Rur!8V=^msh-c$D)N53}8Xmd6a_oK`X z0mlMhk4KlwtxS!@%Ry_}sTUnw8K-ynFDEmj?6_C)zKPw1_B@DRGWUP#B)}@IF?9!@LRZcFadq6%LG0!^g z_epy{@o>F(ab%@_5v#V;bNm5=IZuy7upQztVwdqCExstz!W!E4d>csu01|aBfZF{6 zQzjasoj~H4dA^3U#TW}$*#+;G5YI=v=hm|J$9a*&L8tSwfsu2K0U3Zx*y>r%d*)l- z*1M`$viqRuxQq*l^v^Pp?5R+nR~M>NocyZa>pv|G;iP31DObjI4MOSt#@G1}2)Ssx zJ^RKW?-Ylve|ou!V1YbLP5aQ{vT_*&=J6Be_2IT{CQeKT>K zWUbb4ISSGULsx7ItRv;dY8a@BJ$KF7X@`0Dn)fKkPhS@=bQ=M2A&P@9!_{)aY)+UJ zSDxjBS(E{o1z3Gc&^*AJBp2wy!p|Y54O32K1oiN6r1kZ8Da;43V9tg-Zks2(h@z6?i-;dDB7VJnH%@9|sb1C- zGy>J}LYZYXP^sFwQXOe3l@%EE%A^LMBXFDHq@TeH$Esz*0V%=(sXmhu2Px-YYWtfP zqe`d!*5jeRL*WeV{6^OVy}3of(SbNo`0MWiISSfXDQRB*J)a1{c{5hcc zV%@>r1%C4@q)wZcKRxsI^t@jQQ|4>axEZl@Id_c;279U~&NceBQlXR5LBV8@s7lpo zG#g^NTc~3jjE-ux(QlA??C_&X%%7ABQ4P|Sm1~WLw=+pn+HDP$dhZvHUgEd8V1ngs zkQgwL#Mcfmp)c2XU7$#`-8N|D8YGGj)?lbkn@kYfQ)S z|3MG~^r`BK$2lSJT51lbef^sR^9zERTkmMC9!HlA-7N-tHyQh{8GElDP@VMX%^mfv ztCtECLEZJazh{i``!#h;uXp_PV(IbB3-(Qxb1FK2m9;>ppEh$VC$YkLv~iA3G=Cbr#Sa3NY5)MKapUPVr*ag+^^~l;r@tZd36eqzgiKfVO$2_6mxZF^<5? zz@pEtv+0Y6#TwVE*mvb!6}ou-?{TJGA(T?`L6D zN*d=_bN+ZV)Fi>AEauYkMO>dF^7JWc$`BT!tsa_YhI3~9I^gKfrp8ZI^|H7FQ^%-) z?7Kql@$^5#hvB7K+-zuGLF9wi(&Cg;+{7ANMr}CkGU;S{k6m~A11!~q?kyZ8Dg0FWKZ;EuEp!f z9DQrADn)y!LTc1)t zTT*dPXO|zRo3%C)S(d|k+0np+kA&Q_#Lz-}dCi2++CbIUs&CpSjINnrl~i4FRKKh0)Qf30ti?aq8as?T&U6JgW_ydd z`BF_yk5~Y_^CKJ$=+H+symj6Z?qvAF(=ksvdZh@Dd6_tI!SE|#eJ!jbyjk#FeQrku zH777wa=f74qAY@j7T>JU-wy^;=c|C6>+iUz@qK;lLwUcjgt3zodj z7)!J&oAzE?gB#xeq%DBQDwYDjzjKy3td&XE+klSy4=tDScpwG#d zOe5Q1hR2N+z5!Fxf=O!b^$Db^t@kIay~xpvtNv2XbZOe*TB4%4r~Vv{(YLiKXH*~; zHyZjiIolhrZK?8OVLFF4+@@}$thyn}h5JbwjcAklS{03vzjcvT?-y1@i{yWdEVTxd;aJ(~ zbT=T<@PjlQ-Nf{@ZM7|3N$~|?8zot{K2`|ewmih)xbfxW~cT~ z;L$ga_O&ebL-F%*Q?=^yMJI^`ZS-5MX)(&#*0y)6n7(@j_dN6^;Y$?Z!JQES7Vz z%^SuAUNP#jPbGG@Tc#}4Tk=~$ton-Gc>G;s0?E;Tk!C_a$>U|MSJJMy;2loonHcxZjo@X0I?{T|HUX22~ zqyx^e0Eum& zX++%}(XRDvE7eDOBcthV?%dsIx2us;m*n;^Bw9Cq$5FO!;mwdJ9`0U@Vt|(GxxG5i zQf*W;Sv^}B8Sj3KH(s06b5x5cRbv#Ry^v8K#Ha^rWvuh+x-@u$T0lVa;%hZzM29jW zUyJhCmAA8%wN|=A&8a#QXceT((HwzRL)XWCRBz0@1L9g+nww z$IeI)&A_hT()=+rzmLXmKOZ1r{B>9w9`PlNKLku)Z1rpoJV&^MT>PiTdU-vp&6ldy zWv2+jEwkc3y)R6M9Kn$?^i3W2qx?MC!c{UT|I^dOk@M7Sn?YA|kGK_zGb%C6%;`{Y z1ask6l#scgl}IqoIuA(!%KGMBwiI9xlQNdsYIROk)$Lw54x%V3kG=nq_TxjVE@R>g zh<$P{6!2NUCfsiFbF3Uin8X%+YhlFero4_ur2n!tecs&A-9xtJOX{P(99QV*9XEi$<6PVEZIN{35O017ci?Dr=S&Wz{{< z=g34299buqf;(;VNHp(wl+%yqo_e|+;ocy5d<35_Eti_!HGI0l9if|u5$-*W3X9a! zEeV6kqN_~$U6dEhDZ8i3wWeqfSRb1jz4_3%$mc`P>lvtRo{MzUM$FgBk(l;&jQBa* zD9iwp#>LYjHSX4y`MUr5;8WqU!O3bq@Q`3%s(b(#=X>Lu7$`;&M)eQ$s>$Zuv>|BD zQP?CH_gr>Qahw0s218+*Y^wzpN#I^6dRw`vsH=tEI9M#AY3|WhdQGz#(n}DR5XA9l zpM}3renCBcV|(dfD7V;6plD^gn?Qdn>t05D1Gk+Q42H`zng$MAIMrzC7EY#Dfp}s! ziPlE!I3-rMg`)VQc$!TWGH!=)_iXhB<*lm)o4csCNyc50y!8ux8nbf-OMl&pdDWiv z!Pknp6$0qrR9UO>aZ;RZlou;E!Fz3#yO~k;Xpijsho&a-ULC_tFeQEM?^J7Y5^N@L zO|m^eVu+4=8CN+EK1&8UgF&p3&`PJY0d79)sr{*R@f3}sz5|v6$tVyqA`CuX2S#|u z9wSA)vrt}jUMy5c#vEMF&}bFPIKMJ3#t7r32JQ-&<*&xbRFfx`aCIYHlVkPTmIjx8 z1hr?&yV2)rq%Ggi;r-m0gNq3?2r+9mAh?a3AaVr3*}nz>s@Bay-AqTV%&{j^Ugo$r zunhFegBNPk(4F(3pvdqRJuO7y17g%n*Sz|#E56c?y z?IRPUeeg0Hi+KtxFaRto21u9XHWtyP5J>w51>`_H_kf7;t$Nq%Vft7LHBjV~)u+^uXIe>^x9~4V3E?J^wv6K(jD3;Li*NDd#7{&2YvB4;wDHYE%3T5#UD&F{fL~$wpLKK&2 zg@_`rf4OU=fr3$-Cly7bPzENb_}mL&aT0&QqN^3cVp;!ko6E;DbhStWPNPs3 z@22A6HHhM)_zO{dTq{Hr_v&Bn%`zG8Gm5uJ#ixzpHmP{PD3rwqsrc4~h~jhj3sHPQ zD?}7u(!bm%ON?JJiXElmt46VlR6Jr7%HlVuxMu^R_$K~B6yMPb5ykiPFZYiU;}48N zh5r{SW-o<-ALB0=_&2Q(27aP{xu;45KQ#&!{^wLIIu8c^6MwI9%CKXdgv7L;Rw{na8aIo-VBp1CAq-rhf4N_l2Cg&;75?Q^+;I*JT#dhA;2NzE z241Cqxov6S)kg7Jskq)KUN04|H40_%^;GQ12K+|+g(z;)3K7Md^e;CjQ|V@-SSS^@ z7=7@74J6+W$_Lw-o&BXhwvAo zxJxTU6nE=i?$4!xdyGPb{{$7kSPKL9;x8EZlvW4>_v>Hod!&KS7{&Xg;z6UhLn=OR z6w2ZksW_1szl6UK#lu=5qWGHr<^H=g@O7h5;lD}64_QUNg}-3nyILU(d|&@^SICU` zp;4S675`!stEJ*mqfizfqrzo-`V;(xDE>n$L=->QzubEz#$OnP3jZsiV0-#&`~?HQ z(+XkW5Bit;dWqn_jY5V0A1an|fct0s1p|N83Sr>y`j@*^BG~S;I{b^I;)zCag;YG* zD3rw=skoMTy%YXI6uWALh+;SW%YCObu!m8o@Ox8n1FP{q_zMR1*9u|aK>f>oNE&#G zQK;~TQt@g7SEA=n;g%ZIT zMxny5rs5tBX3xf7FtAoDgn@JQFZUY~!TCm^!f&8rCDY(S`~?FSYlSdyss81TNdzx2 z3Kc$2#r8EA*oePipr{qXfTMr86Y_D%C|s$i7)4boHXB7-@s07->C{zONO~qAPP@eX|Uno!eYlSFJ2kKw$LGtk-MscWA z)NX11)p)6i%6w1bBMxktMGzw*- zNJVZlP>tg+pqkVQfvTi`xvqR%F^Z~GY&MFzRJ4p@Mk;2F;&Q2YiBVi36;~O>%cSBJ zMxjt$YZMB{tBpe8c#Tmg9IrD9g`;B>3db9bLgBdCC=`yjP;nB=>s#>`Qs-@2AyVfZ z`j>uuI~7}I5dPgV{QI;*g#Up4<$h2;{;*NpDHV4c#Yd&$<3{lbskqN5R226cg);hC zqfkaaZxqVt7mY$0{R$P=ZUyd#@fUbLq7?%7KkHxm@wceB?@EOKwhaG0tq|dVpnthP zl#hRG6pu>9V@B~4srV10_?cAv!YEV}zcLDC^tVQ#jQ+tWl+iyLg);hQDi(|b_h0ZA zc>YZ*1nz(6U+#9F6OW&S|77?lOT~^xv6EEnY7`5kVh^L(Q!4f`ihZTx0HZiiDh@V^ zL!{!VMv;?>g+_6NR2*d#M@z*sjN&+{SZowaq++>IDDEd3g<^ZMQ7E>j7=>bcs!=Gm zryGT0yUHjO+p~;9u|3Bq6x(%1q1c{p6pHNzqfl%wG781^Qln68FQa13EOPpV_zO8* z&)b3noEk*#x4q>{(c2{8b%32^}N2?+on5)uKD5Rw8u zCZqtQBIvF@CFnjrBj`Rd5Og135Og0|2)d8#1l>n2g6<=)haCPlw0u&@@e3M++xf~m zd;GPBv+ZPkQLHa+5Y~Tdojoq?;d`H72J6ckg!L7zv&U6Dtm`c6t73h1gRs7)b*>g3 z*Co^gG$1qtG$Awvv>@n+Rs;=gOVH5v1P$#((9kX(PWay@x=JPY*xexPyQg)o7asQ| z^aBheXuuGH{*j*v`bS21xYSx^j+9Dfjxh)`$605OCwe&JWc?(ppK1`+Pq)s^z~f&D zvjOu6^8vpR76FzLmH}20Rsq%$)&VvWHUYL0=HeePwi9&Uy9m0|-wC?Y{RG|VA%gDo zC_#66f}lG+P0*d5Bj`>qcxc>GF7%>Q@&a5o2p4+QI`LePyxC+Nmv5p-j53A(Wa1l`z&1l?F-4<9v_ z>q;V(Tvu{~a9t^^b1CsSH6aZk9pN)T20}(aX2N8gJqtl+W+&*BTm+qxm!MM$5Om5{ z9%B2y3KW(~4pP)09ON78?D4lAn)vl4vA&E!SYOUMS00Zm5h??!5j3C%LH|f?56#=k zh&uQq-y4Jx4Xkqw@wf@0DWCtz;|Ur%iJ+lV2^u=XLzxb;&6!fkHfI}zZO*mM z&BNn`gx>&52ulGg2rB_=2x|cw2pa)g2wMR=2s;6L2)_gN6Al0l6OI6m6HWk56V3q6 z6aD~PBK!%sO85(Kop1wii*Orok8mIGi107qDM7FNIYBS^6+tigEkQ3i!ajT1^pYbJ z^pc|y^pax|^pfKc^pfKf^pX=2^pZa!=p`p5=p}zl&`bV=pqHG6pqHGEpqKnPK`%KI zK`;4Bf?jeq4>!BZ+c>*a@;1(85Z=altaEwsxB#IbpfI5bpcvsBz_)~wfHDM~S)QO% zDiL%_Rf0~bPS7c}JRJ7_=~`{6;U(Y=;VmG-e%oe5sbrf`2vGqs2r&V12zs*k z1U*Yaf}Z6gf}SNQLC^9rLC^9DLC=zgpl3-((6f9_(6eMB=vlt>@M8;kQL;!Sr_F8< zUX+~Hxm5ogYeG~&TS5##J3?$g2SPkR zC&CAS9|?&7T?t75-3ZA6JqRfQy$GoReF$j*{Rrs+0|*%bg9w=cLkL*`!w5M5!wIHhcJel-%F#^5H$X z%^=+04(r@KJl;ik2-rh-4A@Kf53rx`0&tM<8gQ8K4setZ5&J$)hyplChz>YShy^%H zhzmGRNC3D%(6j&Pp~-N$jQQBdRfBLD*Q|5D;qi6C62MKua=6ogKEMmYLBK1*5x^V5alkvmDL{k+|93l)Jxm!Q*VO_mq8Wti ziea5=g~zc7Z2@rz?E&!!od5|4T>uFQ-2jOQJpqXceE>-b{Q=1dg8(TALjj)oa5kyr=WkAfaKpK+a~<)H&P(_a zke~1qpdg_K;44CJKoLSeKvBX#z&C^;fD(kC0VN3|0Hq0|0c8o}0Obi20Tl^T0F?>T z0aXdJ0N)Yj0BR8C18Na|1Jofb0n{Tb2h=C50yHG71vDmX05m0R1~eyZ1GFUU1hgXT z0kk3P1N=ZZ2xw0@0_aFM4(Loc1?WQ1_ft0y7y8Q^th-e52J2-I-e7&Kb7}Do?MFxt z7(mDf7(~bn7(&Pj7)Hne7*5Cy7(vJf7)2-u7(*xw7)K}ym_R5Fm_#TEm_jH6m_{fM zm_eunm_?`xm`$h-m`l(LUErb8Qn}%UQppW3HV8Mo)H-{-!b8`IvVJAjuQ3Sg*IDOk z;U(Qbs0-Lcs1MjeXav|s&=EU5{Ix)4*1)e>dkn(Nz1F$fc)Xub4{(ss0C1Sl7;u!( z3~-##5^$2x8gQEM1K=#71K>QNGvETDE8r5LJK!>*7vL(PFW?$s0N^@dFyJO(7~mE` z@9(aMck|>z3t`0rgK(jbtaC;1_%Wdv;3=U5;2A*^UwSycMn=4nO5Rs*4Z?``*4g7o z2W5Q||4EN5m8_3u5Z1@A&K}41Pj3_0Qj3{dm zMwGYCCBm0bMM4rlWkPa5Re~l~_t0gzjHn@%jHqo8M%1;={f<3;PuLG=KsW?wM9{>h z9(oLx5zVBM5iJeEh*s9Q+Sp?oLOs9_ga&~21WoMZ;rwD5(OD`P(bXV~=w_Xpggy2k zOa=5J%mDNuXkvd45B-~VfK)PKut69x)H?SE0)8f30{lX_0vJiq#4#QgjFb^$rIHa7 z48n*>*13zghA9MHKixwl|M!>~Qc1wC1|eXMb#68S<`H!LLJ!ybO2BVYNx%|=5U|WT z7Y6|=2)cf?hs6G;*cz!MV7);I*l3-rg71dS1YN()LkWKe+oh6#T?Qdwk9F=GcCeSA z>koMN$iJZvN+khD3_`#$>)cMf3MUA<{6A>g%j?r+?|Tf$Aid%|r%#6$m=7{$X+Gi5|nsboY9gD@hNb?zMY7>95H5RdRD zAOS%WKlISkzZnxrB_om;gb~TCb1`s_9}{%_CmvGxZ-rD+Nx-KDAt0S~ZUhdQo-i7a zfiMn`iJ*yJde}W*Mr4snMr1b#BXU~jN+TdQLD%Q=Fwwu(`K6M8LIxqAuyyVRZs}{n zEkH5CT|jYyCYJP2)c?j%N-7yq)*y^1Z=H*ZH*`fpi~yZ8xXL7rsOI5Y|C8xEsU)+e zLCCCaolAh%rY=F(*Y{9snFKVDN&*@ign*{jx%IfX=7ddvmV~WCK>!JB78S#Tu zGNOY)7}3c(cOL;i5*`7%5}p9M5j3%VvKdJ8D9QzgqDB_gw}vb1Wlak;WPi&fN4_6h?xdq#IM%5 z^0tK2nztu35x(P2}=R52`d0^39A9`3F`n658IV*1Vkom z0YoL}ixR^_qyzFQoxzIO2H{nTYn?lf$MFdl0Ur=FAd!bsS0!;v-T_Jw^hGJejh5cwCc^4p5u$IiM~f6X1Komw*O@Y=B0DoPZ{T zJb-3|{D2mOLI6k5gS7E5#eV{>U`0EFaIy~8xoddbiEsn(BjFaHE8#An8{q+<2jO2p zFTztmAHs7$Kf)`(0K!|qAVLJZ=tBsR0mBH<0K*9}0V4=;0HX-;0b>XW0pkdIe-k~N zI4KvJ2`i=;gbST!o%<4xXArUhW)X4%W)t!N<`VJ)<`W7577~g877=t;OFeY-pMXQS zzZC{yo2#sINAY+K;RIkEK?62=D0EH|zs1Zg1|e~qb*?lX?;z;<-5$2?kbvqKvDY93 z?6=O0NDuoI_C87{HDCHk*kCshFCPF`yJd1Il{nctjGD;1m@MLSiNBTyi|FLP!ayMo0~)PDl%=Nzf5> zJRIC7Gk0KD-y4LP4Xks!@wgE|*EjW0^;$*JpjE4eE|Il0|0{wLjXS$h66?tMghhW#sMZ0CIO}r^r$lkdbnQ+dbqg+J=_9< z9&Qmq54V({hg(6=!>uOh;norKa2pAFxGe-d+;)NrYtcPU7(y!dbu{gbRQ_36}wX5v~Dl5On4(f=;80G|^w0KOn(24p2<1LP#+0^}v+0~93a z$qEznEJX==mf{3GOG$#Br3^vOQl6k^sYKATR3+$HsuT1qwFr8ax&%E-eGl30%B$2s zDtT2K8-!P>sdcUy9=9YoKpR3^Kzl+5Kxe{_fS(B606hu40DTGl00Rkw07D7G0KX7M z07etW0LBw0045Wr0HzaW0DdLR2FxSO2mD4@1XxPY3td6bD_l*`D_lp=E8IxXE8IfR zE8I@dE8IoUEBu|HhucrkD?CKd(;g-06`mmI6`m&O6`mvL1zjNM1^r3T3%cqd*=>2p z{Uw#W6q;*vQ)CGXoTp1 zScKSsc!c2A(h-|DTDAzm$A+sm-q0`Fnj_C^;NBN z)$q6mp(daXp)R04p#h*Vp$VWlL1#LGPH98XDeVY4r6WP7{7BF#KY6(4e|C10N^YX3 zK{#1&>s%i^?oSv17)%%f_?a*qFp{7n#t<}gJV8Sz5j1ovK|^PFi01$Gd!|&f@7V@n z-*c^V^YC~f;Wxk%f(9%n=pR`{&_A-)L!Ij~bDdN&bE83+x!F3m1&_BAb^vx0_5k(~ z_5%(P4g-!6jss2+P6N&n&I2wIE&;9(t^)ohTnGF^xCOXNxCeMhcm#Mt(93v6(Br=( z=<(kW^!V=ydi+So?S}REQ3-nd7z90jY=Ry?9zl=)0YQ(Sh@i($LeS$UC+P8067=|~ zJ-l2e?}ao{$$KH4L3l5ux6XZz$C(IU0J0FW0&);?0`d@aM1F#X79wb95rT#mBWP#| z59gl9zQ2`9_FdW_?7OUWt{fg$Bvb-aB~$~{Ak+lZA=CxbCo}*wCNu#wC$s>xBD4nl zKxhZ(NazIULg)(UPUr#XP3QyYPZ$6gOc(Qqo1j;? zm!Ma8fS^}+*u&}L@}4{*mAog98-(}dN$cDxJU&Y}2e?4E2)InR0=P!_8*r2G58w{r zF5m&-A>c9L3E&ywIp7uHHQ*iLJs{GF|2t|_f*vjgK@S(3pofb`(8GN|(8DDn=;4wO z^l-@udbpGXJzQ#n9xg3G50{>xhs)?8tN%{SB$d35UmAqhF{^bh8y@E*l=N`sux{=;2|odP5PAao5c&cJ z5C#H<5QYMV6Lb?J2|9KRLC20K=-5dF9XpkvV`mU_?5`e*o|d!EmP+nwoncE0DWhX(W>>=oseFU9ykf2kJcxZZ5PIgo(IoSz= zaI#a@xzl)jj&L4uk#Grcg>V({H{m+qAHprbUBW%UL&77#6T(x#bAs;s6+!>VTY~O1 z!bv--?ldw%cN&eLJB>-uoyH;PPU91FV+lPh-69wIp;U6Ai4DSqCbiBb!{Zc$lz`NP zG=Ox3&j1++83CCIUjnibvIBAvas%=abejbUy0O9p-B?kAZmc*#H&&9M8!JQ5jg=?p z#wrnXV^uwTc1G^6npARsH4MW2)w0gj#^ZW~?*R=7jQ~vv%>XS44$y|s7SNv10nnMC zyXs2NeRL=2K6(*!AAJeBj{yYT$6$i)V;DjA@r#E+|H$o(kV-z}0 z^@9Z6`VoR|{Ww9leu|)5KTFW9|3T2LU-IzmzPtv1N+qwsRfF&vT(i#ojmI|${{Zd~ z?gAbV9s(W{o&cT^o&#PHUIX3{-UA|?vTa6|O12q|5FHSUpa+Rd(5)vR=+-|Z=++Yx zbnD3oy7d$U-Fhm5Zv9h&Zv8WYZao7*xBi8PS6k&Z$Sjo{E~`O!4YFJ3a^P`pLLNYV zLIJ>61Wo*!pc&r~G~-)>W|a1@q7~;_2C5F z`bdIqeGEajKAxakpX6cFdU*{dOC_(tG=uOO%&^YQ#N*k7Ie__u1%O3_#eijm<$zU$ z)qr(`^?*%;&46u$?SNf`-GIG>eSm`mJ=qb0p5-_}&vJ^OXE{sIv;0BOvs@zRS*{TD zEY}EnmKy{;%PoSQ}SLvyBu1MAJ_!*%X;02)s;1xj= z-+EXZS4O;(N=8IHtq?{;w$9~7KvY6LKy*SuKum%r#_RAodn<3}6jI5ER0d&08tYth1f(T6z-NRufX@k>R?48n+P*12C0kb^J^kc%)DkcXg&`8`~WDkBO=B_qBv2qTJE=guIYDB(Qd8^T3E z34$h;@-X?0TvTbPWJEcGFrtEWt{ws^5gGuh5E=uj5j3%ehkCDML`|t=L>+@LqMmiG zC<5veiUS%FN&*@aG_je7(eGtMbE#y6GYBJETj%;Cpe@s69;&R8BsmvV$XQc1u*gAj1QI`^W5LcnS3Ty(q@&JuL}A0E=Y zkR4o*N&@~g2mx2DbDv=ce-U*3bq^oBlYkpiNx&_G5OBvj*B$})2)h2Ehur@C{zxhb zcw!I&{22#8D2^$9$jiY-U@Kq?7HWDo)pTjx^Y2uTUL{$meS{m;S_Qb|B6gAkC$I+q;* zX$iVMy@!|4B;a$YBp{PP2*_-m`x{5dLeTZuJ#6kw1_AjAy1tNy z+wo-wUr8kaUmJvgV%E8;I6`rPt}p4Kqkkinl1c)~8iauI*168uK}CYDui_!E{|Qr7 zDha4=5CUpi=V~FKHbK|d^H3+c9N~MZB%q-|2xx4b`v(C{3A(<8hjIR$*itG9Xl)Pz z+FIv6LO?r$uJ7n!qJJ4XNhJYY3_`$9*10PP=uXh}y*&Kxzu9|BB?0{mLcjp)+^+~2 zM9}p^J#6)NFia{5_{AUujI_?(MZjo+t{>+iiT^B&mr4RA8H9i-*13=HKA1*G3YbCo z7%+>ViE})B>ECK|rIHZ~48n-ttaGIiu$WK|u#`{{u$-WYt334gUyG}yk`e0+!iWvl zxs14mO@z#VErhIqZ3Io+>EZK8a*AD2$%x+#!ias=xp@dUKv)PkL|6mP#98ZHSp=LXQ~+EcR0dokXyO$QfBREhl}bkZZ4gG>u+A+(r5s-+WiAg;4^}lQ+l}bi@ zY!F7Iw9Y+2Kq|sBKpMhJKw5$(ruR_9|2p!yR5BuyK^T$QI+qgxSqOOm*$DXoIS87V z+rt_EEuTj!8Ij*0j3{WG`w0PG5qbcM5PAcO5;U>6hg9FlMU{|BMwBuLBg$Ck`c@B* z%Mk_uDi8((DiJiXs)uQ{WkfZpWJC>vFrt=q?qQAaxDMelpdR5rKz)KHHuA8%j*Mt5 zm5gX+5Jt4H&b>l_BfJH)CPb(i0@@NZvAu@{No7O_sboZFgD|3tb?!3W^*<5*0(2)_ z2lOOpVjmB2K9CW8rIHZ?48n*(*11Lq7(!?Y7)EFT7*5c{ksd1Mk`be%k`ZGK!ie$K zxhda;#}f(D0h0-{08$%xqoVZ>bPTx;xcKH&$zLP7_?B7!C^^-wl} zj94a>j96*lN67z5!fNYXO+>6E)B&s~d=J=2(9A6!x+j+*TcwgAI}E}(c3J11AYc#S z8DKBrC15{66AyX#F{6w)ER~EnW)Mc4u+H7B79O7>JOG>_{0lfo(8LQKF8a^+MX6-O zWrHx{s&($?>f!M zo%;(n9iMO=@B!f;z=s4)Oza_3J{gfjDjAX7AdE<1ojZ$b_=NBWAT{9<;8TJoe&%6f zaT$?bDjAW{AdL9JIyb(0c>JZn_^9&FW&Z#02Pff4RxX_i$WGAcTpp^HkXgBJpX%z9(p6Lk|VY%ZNr&$%v)~VMKH5T(TPB zaZ5r9Kr2EjKpTQ4w(}4>w~S~nm5k_Q5JvoHotuj{PFI4i@9rT&4GHKWl?3!Q2myVq zbE|8F$NdSqevpSoK43jo3^fP=KU?QE;qfnot$>k)9e~k<-GH%#y@2tA1AvKy!+^Zt2@SLy-@RG0<@S3m# z@RqO}@Sd<25b?YnX7;TRw~;Upj?K`$eYhu8k6cwDLEJ0^iaxSfR7+2fBq zyv!o&iy|?pL0F&MI#(QzQxHl5J|UC=q$ZRHd`hSUNJpp&NKdE^$UvwC$V8|M$V{jY z$Uj$AP@K>o@GW5w zpcG*!pbTL+pd3M8$BF?`%L`i{-?>!`!V6o?I@bt~s}q_6Y7$xiY7<%k>Jr)lz9;C+ zh8_wfl1+@ouLeyF!X}zo=O*BB3&Lc8BTNIdCd>r1CCmo2Bg_MIAS?uQA}j{{NLU8w zN>~Z#Mpy&rL0AvyMc4%BL)Z%FN6^a{=pp{6ayuPxe?tty?F_Tdb;jf2gsy-QgzkV* z1Wg?4;ims}_$uBf6AZ$LN!Gc)@pua1CSV#t17>;{kWdo4;8?Q_LgHNOTsJ(PPv{9) zNazDtMCcD#LKp;CMi>fMK^P8LMHmTKL(pxm_pmgT?7KAXYLh|O_ZI71IXvD*s0i3W zr~=qU_ztj#P!q71PzSJ|pqn`4;gEj|^u~Ppnt#keG_#|N<;51qfLDZ_fH#CafOmv_fCzus%XSbDiEsoEg>W1Yjc^JOgK!oQi|_{^ z4nf}>@jbk+Desn3HNp?~ga+Z=lE^xD7LOAX{s1H;TmmE~TmhsYTmyVUxB*B_xCQu> za2Jq{pxgZ1!<}lf?+jAOFC||XgnfT$ojuOxp{D<*#_U+1%OI@JW1T(D@1e2(D{KL* z|H>e&FJhfNF6JTrx3c~>{H3^rL0DhXI#)_6*=|`vIY33i5(HExEC*C2tO9&TSPQ5@ z*Z`K5;ToVb;Rc`!;TGU0!d*aj!UI50!oPstgr|VMgy(?%gjaxpgtvgfga~*$4<$qf z{7i@j_=OM?Fp>}lFq#k_FqV)IFrM%cU?M@^q*Dm`E}ZV+ng2JBwD=>l48q%ZwskH& z9?vCY1k5L71}r3G1uP=u04yQo1}r1w1FRqv1gs+HHrIOiC$a2%Cw^FOFbMnJWS!fC z$6E-xe!GVpnIzypd{gc+2myPnb1(3CFX1&{Kj9tVAR!`t?>S6}0ys*D4meJT1vp8F z3phs2gpV!2*^Pw49G<&3dln! z4#-C+2`E4)11Ll&4=7Bi1o)az6;O;&9Z;N53-B$WE}#^lKA;St5uhBQDWC$O1)vh4 z6`%^CEub2qJ)kMd4uH3+-vW}S$prR`Mr6iL3kZk zTjyrh43F0mbo~Yot(^pHlu81&7=(ar*14Ss*g@C>*hSa}*hA37eI8D?^`8K#WW*tZ zFye@H?kxh25hBzI>rW6O15Ob%@vMgz9c9Ehsbs_jgD~Qfb?zGkTqb-AxJoDuxJJ;# z8y=o@lMy$ik`cEJ!ic-pxnB`*pD-8jkgx#oFF_NZddOT)M*Jt0jCf%XM!d4l#m7ax zAtVI6BYXsiaPj{VBYSAuLqxl*#Kz?IRT#$G%Fe0>Q@4Z?`8taBgW9*YnX0g4im0KOq;;wDi8_*DiMkRst`2sI}d$2$cXAv$%tA8VMHD4Tvi0sBjfc7JJOC=))8H5o-taDGW$6FffDr^u9PQ!! zPcmYRR5D_`K^QU7IyV-3oJ^Pim`a!om`>2dSspU9k`cd3B_rkht8L`?Rj96=(`wju?2{i#533ULQ37WXg!#Mv%yj?08vCANg z*khfWj%(OU(DesAoNpij2c?pLBL*Shn02lwc5s4F9B_(I5^#o~iRV4kZ6hQ8kV-~e zG6*9sTjy>g;40xB;2Pl};5tDQ|M9S@yNtLcm5jJ+5Jud$&Mn3@JR~dw{7YB~ctX&` zXCB&hmJ!dTk`b>A!iYE4xf%#~N2m>maLEGd0U{AJF{+2BEo4MAsboYb~(|VZuy^KgF zm5lh@AdJXpolA>7enChN_>zzjkd>f`IXrybR7T{KN=D={2qW@Y=XxTb0HF_{5TQSy zFhLWGdKlMGMii4uMwBoJBT8E5$|9gNp#q>Rp)#O6K@%%^h~Zz0%2LUQY6f9Mb?e;6 zxapdNPXM(EX#jNznpoe%8-Gy^q>>Sh4Z?_~*15shV{^hVKuf|efK~)eZ0lh~OBwNl zR5GH2K^W1=I=3DHKN20u~;e@vCJThSYe&(jDS^yu7EX!?tpa!P2A{VR%;ot zNh%q!)gX-6Zk@Y=YuHJ+2G~uw0r;JuiTgcd_AmDVsbs`qgD~Q#b*>@yc%0A#aFWm* zaGIcr=R7p%DkIKIB_l2xgb{yQ=XxXH3ZWn1FTy~;-vmv(=^>y0GXF;^8F9xTjJRi= zn}ch3K$s7BMEDKxn4pROc}U@ZOL``ijCg4fM!dGp4aFYc5{3ib6Gj3e{`r52Q9QJ& zD@Jlg_A&^GeXMia z@Hy&7(Deg76d5D|gQSvxp#~w~XX{)B?BEx|7l4t3EP&AjO&sUp&k-_Wyi_t`l0g_T z#X2_%0n-R$0W$~_0J8|1ILE`}kuqYgR5D_LK^XCyb#4j*787*+G7o76O2BfdBw&?6 z2v}pCOOAkbgp_~{gw%jd1WnxP;k&UiVw+SlVy8hEvD-Sg9|6A;bp3u0llw@(0jVV5 zut5koYMr}@*ZMd?*Prqbd4L3*mP!K78H9j8taEX&gNp=Rf7!!5|0%p8l>}Tf2m#lv za}5!2lc4Kwd$`e00`5p90rw3;z(ecYI~?I(LPR7!Aw&WEN6^F<9{wCHBVI}+BiNkAQg5KzxL_dOmrBy2)rV}b@WBj_J# z>7kxKq?1ZUv@r-Hez4B9!{d&G2N= z(Dj2ny!Jl?21_LY!wf>eaO>PJcsz=b1Bqh@8Ze%qe`Jz}Km8Z%WT|AtG=nf=hIMWx z9?vGE!-%;A4Ol?XKeEU}EPoA)rIHcL48n*N*157sTt(3JYdx&^SpwEcB>@`^LcnJ0 zTuTIOCA0=?CuqPf4^90y?ry0haj!v0+;5#rfPjO94*`b>i2+9mns~y)>TW4Z?_<*12{FxJBp)xI_36aF3vg z4?X66EP?(^JMLqQQKVXYVB_m20gb^jJbFUCknxN~;d6?{fEiNyW1XMBz z0adJXyAV)~pzCXR__eKKH8de*rZxTX38UEj#VYrliWQb|BFgAmZdI=2@) za0Ff7#zV63cLk{=puIr|=xCk$8awDrXp8k-1NdJdeggC`2m!sUb4w7=hoI~G2k<}N z2S_D57;F#%hFa%_AmC?$t{>rH{Vx(QQYr};V-NzyS?2~IU;;tcPxes3e<4qiN&==E zgn*gWxuyvCm7weAdg$)IR^~}10SgU6z#{A1dAtfs2)cf`hh9@9V1-l?u-YI5thLVN ztP>uuC+PZ39s(O;ydo3_ydjhXyd!90 z#H%vmpXo9pl2kGxszDeL-8xqV0Wk^R0b&zs0^$-hF@cAY3uVLyQpt!!24O^E>)d$+ zBqdw~Bqv-3q#$TwDi7Tk$%xca$%wQDVZ>+Fxo06j{ud2CC%r^wM#3Aw7X;1B;$i&~ z8In~h8Ir>w49R7kONjS<9>Pa}e1xQc0t8L`%0u48GNQ0lGNPzK81apDE&>8d5F!Ig z5~2Z06Ev}$hh0--M0u%XL?weTqKb7cBd(zuAv2&lAuFIJK@;nExZ*#2b)}LK^$o&^ zhSs^R2xv^`4rof~1!zvtMCYN+d>PS7DjCt%AdF~do!fzc4usu+PK3RH9|@ZHlZW!l zWkffrWJFJcFrv40E*EaPFCj0WKcN6%AVCv{c)04niib)iBZeD<5hJW~d9lY)gaUvu zgs%YO2%0$2!^YV%Vvh3IQ_-V*$SsCIIFTG;zL%8w+H_0;y!gB7-nu ziFNKY0+tbU{YnpWW=Oy)sU%>nK?qoHovVw0jRal4#Y2?|60lV&3D{u}0(M#F9^!}U z9>Qb5Uc!HX{RB-seVZHz7xSLW*z-@yNaMwC_1UtA-I1YG7I0g8ZpovdCbR8!n z{*y{Zyf6qOURmePA>a++0^l9tPe6pf{x31IhZ_DJ8$~J^5#1n+h-sZ0j(00= zgyVps1WhdNVdXp-Q9>#iQOY2UC}W*lhk$Z~jerV-Er3b{O|0r6-b5KuO)42t!yt^P zWu1G8*RBrX4WJ(3J)k~86B~K>Z?24JER~FCW)McSu+A;P9vxvhpfzC?pe;cY+k1H8 ze~fpKN=9@x2qU^!=VIZL{1ZXf_wbP2@3E&;641vW1oX4c&BYD|5On=u4;`0Ez!0e< z;Aevn@QZaW1$Ho!kP0xG@F`#{K@%r<814TWFi|QQF~uN^m}Z^Jgn$`@F9EX%*#NT% znmEtHLH}-;FO`h=%^-|eY@LgYYgkIq^(#D#_4l|^DhXI)5CYa&=N2Mh13}ks_Rx8b z1ZB4LKqRnI+qFo z(FmUcVh}z9#3E>7To29tHN=xjMtoopMto?UYl47}2+aXW2o8{ppou9w-10AGN~vT- zYJ)K1Q|sIZ2uMfJ^`CplwnYLmNF@PZ7=(Z?t#g0l?Ua>p6Of&78<3NriFrI!-76#V zN+lx-7=#gptaGkjcwCs!2JkhZ9iSLN6H9n#uv$iZE0v5WZ4gG3wNC!~65(-qLR&yZ zLVG}Ef+kk;@byL+@tssMqNYI@QQJDV83A<(+W_Aab^;m@G_kRVl!s(Q6RBiGbAvFV zrFCu*uAvoSDWDBu1>gsQCU)?UVvUUGD3y%((IAZIYMtwhJ$55>1@s_v2lOInVqXtK zcgl!s%)6aVX(Sz|VwifL{ojILgBx{-Q=pB_qZegb@?0b88SViLf3p zg|G=Qji8A$JsjF6BW6h@Bjy-{5%a8by%4Z~&=>F!9i;HK9RY6CV9>H#(pG;ynk`2G~zq>>Rk4Z?`s*11mDyWW*(@WW*JNFyb%k+k#F2?GI%2%4D0 zL*v~tBB@j|;$wp_BBgb%7;ZWhp#&fep%fr3K@-z^c;mlmKbJ~IWHJaNGF#_<#~!l~ z_5-pJ4gqoyG%>e_R{oc$JW|Ps{03n}LF?Q%2>6QdEuaXYG@vL!6N`HocuYo=kV;0B zG6*BeSm$oy8p;uF11b>i0V)wRv8so``(;EmsboYAgD|3&b#4d(>JWYg)FX@l)F)_S zBM+Ch%ZSEO$%tkKVMGh-+(!s-grtDhgpUDj37Xj6L&JkIqJva2qO(C5(ZxD93jse7 z<^Z}A<^y^XG_j9|14m^dd#PkZLxV7)v2|`60-6$b0-6){09q0>v9*Uv>tsY5sboYugD|3l zb#5$fx)Wgn;77t_Kv#k$cJ~n1|G?=Xm5k_Z5JvR1&Yi>_`xDLp1`^H#1`{-Kn1`ar zWyH@?$%qjKVZ{xAv^($BRm64AZX%b53l^Yeu`8wV!A;XG1EGi76HE!(gWrY zG+@4m{r<~;fmD*X$RH#xvCb{P#V#W(0<0h`1*{@y;#v<8{V%BNq>>RE4Z?`c*15vi z<5q&M-{IlC|K8mxl?3cD2myPobJGy8pP=gxd1#g-lKl9QN&=1;LkwGNbI^np6^S!yp9wW1Z{VI6S^h=nA+? z=nl9~(8Na`en~DP{*_8bJT(X-o>}Mm;gBx~y8g9?1CQj8Z={ld_XZ&#;thNJZ~gE% zGT|v8D&aXGIzba-d8ipz_840#84=GQj7VUeTh}l=PDt1YNJQ8INKDYgWF8(qkW(a= zN=BqK2qRKi=l;MR(-3rhIuCPhOTcGRNk9gJ5Rl0_Hy8n#3A#S3heYw@klCb?fSd*) zAh&gH2ab@Jup5w{uoqB}poxV&{2o(A6p>0s6f+1Tid*OUBH&wst}pFjbyf)|Bb5Y{ zHwXb0t#fDaZmUc<52#AG2>6bmi8VdM^>3$IQpt$A24Tea*13Ohj|~WS0F4Ou0Zj;+ z*xbXQ*m8;%Qpt!`24O@S>)d2q!w-aMfcAu$fQ|%B{L#a?6LN|!Qpt#J24O@G>s-w5 z!{c6rIDkHc_<(){O&sVUoj=7Osbs`ZgD~P}>)d$k@fU)wALZfeYqH1DQc1u#gAg#m zI+qCdIEj!1FolpDFpZEBFoTd9FpH2DFq@DbFqe=KFrSbau#k`yu!x`sS?Zx!9J!h~ zIQt5NaI#g_x%qg!hVUC;9bpMz17SH}6JZr#3qfaY_wajC*~AX1EZxD8M!8+FupU+E#fq=_| zA%Lrdp8?khBLLS4qX9Pw;{dk^69IP!Qvmk}(*X|%vjC3>a{!MC^8rr@zX6^RmH=K5 zmIGc9Rsr4+)&kxUHUJ{rv>V1h(g#2h(_20h(Xu~h($OEh(plVF}{cWPvz5` zKq`4*KQst0>_^tQocLWM2_X+486iL5V?rT7N?Pfck{lfQE#5fX0M{fTo1SfaZi{fR==nfL4SxfHs8nfFB5(0PP7|0UZfD0G$c? zaq8+JcNF>J{7EYLeDyF0pRZolx!!o(kB|{RAO;XJ0|pVY0)`NB0EQ8A1BMgw0Y(rC z0!9%E1I7@F0>%-F111nk0wxj40HzSi1Evuw0cH@Y0%j4a17;Iy0p=3w0_GFy0~Qh* z0TvOO0+tY30G1J20ag&&0#*^)1J)2a0oD<^05%Z10X7kO0=5wJ&9R-JZ--qT7Jn>n zpWRZ)+h?yqc>C|fLDaefH#D{0PhIb0TKSOm;N6>B*Gm)6vBN#G{Pf548jvYEW$HD9KuUL zJi;450>XPhLP8|`Qjv%d6_A(^1CW#u8<3n350HZJ0pJrtB0y?F62PZ~}|H;be>I13}8Ud;ingXg5S^#PiS^;Vk z+5+kl+5^5P=r?0S52^jXNHvm5zABpF@%hOafHl(352YG zNrW7LDTLgBX@q=$8H9p>S%kuX*@U8ixrE|?`Gk^yg@iJIMTGKzC4@?VWrV7L6@==5 zRfJlAHH5l=b%gqW4TMI3O@yX^Erb?;ZG={U9fY=kU4-_4J%mnxy@W1+{e*6SgM^-d z!-PJ7qlEr|)%Y>w+M>>cL+-X_XsNh4+yIPj|l4kj|m$APYGK9&j{NAF9^E;uL!>b-VpW!-VqJ~ zBHXespre3DgcE=$gwud%gmZuxgbRRJgg*gs2v-5|2!8_-5N-kz5^e($5$*vJ6CMJR z5*`DR6aE9FAiMy4LU;{GO?U_Rln@dBVwa8(1(2Q)9gu+#3y_Hr7m%5tU;9}J`kkD^ z!@zSZM&PAkUK*y`?UG8~ zEx#LtcgsHO+z7ng4iH8I4iUxyju15QxQE}~%ZL+F$%xYiVZ>SM+!cI9oF`lZTp-*4 zTq4{8TqfKFTqQgJTqFDoxK4NqxJh^pxJ7scxI=ggxJQV9_s#=CWWXarG{9p*Ou$n@ z9KbVzUe`+xZ~cGG;+0f#e{T)K{k^x&y~lqWAmVLX9|=FiA`_wlq7pPQhKCy0WkgJ= zWJDZ;Fe09HE)QPg1cdy6goHwXM1&%M#Drpiq=XWH?KyXb`Ua zE9=||{AIHULDv`aa3PWed?S?vd}|N_N?GSV#QUlYAu*sFAsL_oAqAikAr+ts;Zs00 zf^MRQhc36|om5jQ*;O5bu&a93xh}Yu`h;$PhJ>Dg#)LirnLg(3PMgx_dbEM2_A=Dw)~aAk6G*olA>v zkN$-8fPsXJfWd^!fT08(G2Fx0L~_nwq>`DV48qJY*10e6{XdS71u%h-9WaTI3owO{ z7ch-b05F5_6<`+OYrt&6H-Nc>ZvpcOdXV2d?Dzi_rbSZ8$(9;~lP$N-)j_~Y!uNpH zgoc2%geHLX1Rb%-!&v|CF`K25ncED)%pKOb5Ai*^i=gX&_pm6jY;1wj*2dHBeGpQe^dMx-?eBR;dvwZk4iC+PZ29v*xvd;CHw z3CLm)0;xrA9a}eSKauE^&@(?sJzlZb%Wkdm~WW-knVMGz@T-zq$aZy5hz&C_W zfD!~vEajm|P8m^JDj8AEAdIMBor{5hN`%;eDuj4|Y6MNJ;bGc0GNPtbGNO(_7*WqU zcNGEk34a3`5^e$-6Ev}zhnmG@M02TRgfj>uT3hGtAfPSbKA;`p5ugJ>6FYl2omWQu zD3y%($smmAZk;QJfS!aBfZl{sfW8Dx9N^(h1sO3=Dj6}vAdDDho$G@4%Wy(Bzz9N5 zz$k(yj`gspq>LCRm5i8Z5JpV4&Lu{`R6;VqbV3TiOoArP_K>KAjF=;pjF@i_Ml7_> zJ;gOFB0L8yA-n=CBWU7E52Gu}h*eU_h_wb`#Cq#oU+i%sVE|w=VK87TK@)d)DD$<9 z*eR8a*kcez?6uCV!5;S$)&mX_HUSP3H1U{+Wd7woE|rWpWe`T3vCg%@9?ucl0sbI# z1Y9I&;$;tY^T>!RQpt#G24Tc?>s%J>@g^ZV;1(el;0{3(?|T^TzXl&jB_sYd2qT_Y z=VD-w{}FWk3lG_{OTbI1B;buf2zY0myMy1?Biyz1_W_Xzj{s2!ni$=~sC+UahEy^l zwm}#X*E&}Yhm23q^$9&J%P#>RN+kh_4MIRt>s)OFBq!7Zq#!f^d_vH~G#(!NJ$@>c zjQGqTjQHF-R|x?b2~`1K5UK;dBxqtb4<`%Di0o3yh+GC?L>}whECl2u%mEZ2%m)-A zXkrl${c_2OuceX^-x!1uC9HFa5m1tl3{aYo0#KHqi4{B?_unrSrIHa<48n+N*12~G zs7{E8cVJCI6hLi)Cf4(?Fo%rzUMd;U&>)OxY@K_DH(XOfM9geXhyrLy(8SgrQu~W) zBbAJ3XAnkou+Ak!KqrE(@8aRtauU#0DhcRr5CVEy=W5}Qy$N*zeF^me{Rx^l$iqGV z$s8<|j2LDRMhv&kJ;gPQAUp?*BD?~OA!y=w4?kp+5fh}65t9wVh^f}Os|c7*_!}^j za1-z=K@;bC=v7Qc%#%t+EHnrs7Fp*`;-;4n&H$DX&I48uG;y_ujAdoS8mVN&dV?@x zqjjzXZhAAJ6ksc%EMWWpSiA4=EUT?e;Gq`*0g)zP1f=)g1f+>{=^zji5=b^7gb*Oo zo79LAVgy7)1f)w75s}_|lP7e1#CsNI){qhR zrIHbUD7X=SYG+0w;4i|*fG31;fWHYo@r8wp_G9@=sboa*+aBDAl-ij%1f(Vm0;DAj z1*9kV#Ecdu)shjJq>>R?6x@i{v@;74@H$}$AO~R?AQ!7w~*cb!YLt@j3}+(MwHdgBq5+YVH%(!VFsWw!6#O;P_v?p zs4kU^sHxya)Yi@fBA^bT0H7YB5TF6UC%$i?b5j}7NGci8RKbmCuAS+IAFK}u-2tr# z5r8%XpV;0){`X}>2dQL4Cj~d6i*}|M0=g1P0zwF70HFk**u%nR`=b{wm5k`A;70V) z&g{f(=uOxI=tI~K=u7a4{VkleS1~{;88J}7jTo$*sem&MB~%6sC-{I-7OL4lI*yh~ z62~gI#PQmhGdR*jg5N*M!c+Trd@7X$Ojd9KiQ1WB2uLFM{nIRTd`AMNOCPY6!{e-oYoo)dgxz#SRU zAXr8ulS)RURB$6wYiCB`PNyY|0i-942V@}l#8)k>u&-`rsbs`!3U0*f+L=cP$U%4l z$VKo0c`O_sAc=XUlEgp-mzZBWvllnEAmIR@5aBSO2*D>7x6r$;S^vN!6$xeVM?5gm?M>p_)fu%SfHIbhC988a1yYD za0c)_!6&Y;us=vftdvSdtX6O%)@WyX<4&(7!~oV2`T^DxeBvexdE3f}%~HvTZ3=G0 z4(-fY+=g9*3xGX@%Yc0ZpLo#1S^INwNGcg|RKblnrk$yV+i-&L4&W4_HsB1wC!VvA z%KmydFO`hAq~Jze(azk)8LtuU0d5c;0B#X{;#~{fBW1)rsbs_h1vlcMcBT-{_=r#x z@R(2n@RZ;apIf+Qe^tMbN=78R>%omkp`Dq7fK-I<0BHyd0qF=nF@uGLJ!M2jsboZE z1vetAb|w!3vJu_{WGCbYpR3iAqsuq4SGNPJPGU6QtH=>qyCJS!E zyM%0jx&$B4z``5$SM_^RNn#@fm)Jx*vl#)+2-^TH2s;5S2|lrng>U=Gh_+J6hz<&F z#E06Mr3mOuSPlpxtO5iRd}64D=nrH>m{c+%T)~Yn+L`INv5|zY08xZlfM|kG>}z3e zYZ(zMm5dmm;6{9;o!O0mL4i z-oorIGGc>NGGeoW8?jY8(**(B3BiD!giye4f=}FMp`m@(+b@-jIHcf49MR6?#BKPM z;P;=f(A2)+oRmre&M3Hmv)Y+>JaFd;e*Yy4L)uHgWvL|Knt}_sp`8i9CEOzT{dX;l z>@5NJq>_LK3NGNGcBTz3;Sr%d;4$Gtz*9mOz%xQH-~}NR5O7Zq(F2g2U;rrzy#T2R z(SWpszJT7&fTDzqfZ~MAfRcpQ0Hq1p0c8of0ObjJ02K*u0xA>o z1F90<22>{$0lY&f4yZ*a1$dWG7EqT^0Z^Y%8SoyV8sL4xJAlT7+JL5nx`5_{27nI; z{zYkR;iUcadL6H7I|cVDbo=3}FT!mhd&8KVdc?jxZN6kT4%Gn6L;il&};qoUj})lCTOe zn(!lF3}G!`9N`zh1j0r@JYfr95@9_kI zaDdPgaEK5EI6~+H_>~X~I8GPC|eaE>qvaDgxeaEUM;aD@;LxJLLC zaDy-zaEtIc;0|Fb;2z;i!0&{afIkS|0RAM*0sKYy4)BDq5b!r)3E(+l8Q>*hB_P>- zeK=MFQV@Ouq#~>Xq#wx@(oPdIaHvokQ`2a--Zvl!C3Ia+H3Ij?JiUGHumJ>I3Q!8UpGO8Uq>-{0sZOg}Kw@m2M=J zywXh-+$-H&J97d79}rFhS`p3y+7K=P+7T`TIuNb_J|x@(bSC&yb+wRrv>Y>7DmiAT zf;(n+?aYvHw;WCw4lsmKfJnj^Kons-Aes;lh#`Cmh$T!0^e21{h$Bn|3?zIB7)+Q6 z7)tmCFq|+4Fp}^cU^HPNU<_diU>so?U;<$!AfB)qFp2OJAc3$BFqyCckVx1JNFra!pq*)f10Eu@0vsW<1^i0r060$Q1UN|u0-Pp<0DdF*Q=PZa{3AK$ z1*znimlfPGuWDzm-~;}3!gat+!Y#mU!d<{!!ta3l1V8f+3kxR7As$L4hxkju9pZ_0 z<_WIiZ-U?d!oo89;&jG~lk9g7E+B<=x}4fVpHZ?ujZ`u)y@K1HK|9kI12Yl&12PkQ zz-tzIekF<7q>{uO3NA61b|xbZ_y!>}ATQxHz?+2ZfVT*_00jtn0B;lgA&OWi__ds> zs8n*Q5(@5ArL;4J5m1Iu3{Z|x5>SCq22hDm9#Dl)2~dqt6;Ojv15lGt3s9R-2T+Gl zA5f3b5YT|o7|@X5uf4H_`g7%GG?7YfMso#sGd|GHj6y&wg5TfP!rb{1&`v4|=&0ZV zI%#LVM?e?C3P4xF4}cJYPYkp0^I#d#T`Cz7q2NaJ)Xuzy=dc$cJD@iq7oZQpC&pSh zxll&*lS)R!DYy{>wKMy0#=(SxfT4sVfZ+t6ILgB2nKELuR5D_$f*UbjI}?b2i3GoY zl7-K{lz>mAl7PtyE+A1m^8oMNNrXQEQwfg&(+NKDD+@o^r(vd4GU6KrH{x6E%vhXp zE@1-TJHjV`1q7eC*uu_lWW*AwWW+KBH)4f$ra1yu5n2LP6WRdQ5Pag#7W&MS5$mLq z5gQcTh)vp=&k(SMApbsw-M@|S1z-okC+@azZ>WseBb9v1eg!w;pmwG#9=OAV3V@@8 z%79}8pLo*3*nu+QlvFa}Hw8E1oOb3<`~tZ^cnr8i_#1GA;1jP~_;9L>xFMB{xUJwu z+||x(!SiyTupRJ#unX{z;1mC{kk|fTJ(fyF{H@?dJlD=_!JU3d*bYecKm&FGQV@J% zY70M%lo4s9k`d_@+=vX?neMpLnFtYp%!EilR)SA_-NKFUWJGqUWJE3nH{uQL%v_u? zFJV65O~N9;TLhn2(83w}+xl&(WJD1KH=>w!CKv%F2%&&d1Rqe=!lGf4SWYTQtf=4; zD{E(}R&W7LwKFgA zfHo&2$B{lDqyn@e_{6pr0_|T$wUbIlbX0I7I%#K`;{okLXbI>_Xafi#_{1;^O=rl6 z?o!E!2n9Eyr*`HU0(uc%0(ujY<3{x%_{3NX>Ffukep1PZI0ZLipmruT0tOTO{$Umd z43U80Qc1ul1sCwKb|x?G<5)rdYG?W*U@qY!z;}effCU7fxY$BT`;)vxDjBg% z!Hrm%&M8?u2_*sP2|h8Sg6QZtxd8bIc>o0oKC!Tc8tY_4 z5vgQEaRoP`q;_Tn0!kBp0F))H0hA~B#7Y**ER_+JrIHcV6x@g!+L@<#=xY+518Nfj zFrp5@C)T&{{VEyJKq?vWzJeRkSUb}c0Zj=l0L=-l03Q&1VrvVZt&|aMq>>Ts72Jr9 z+L>Ai=tQUk=t8Iu=t}U3-7I{$Q$~bJB_nz$xDgTBnKqGbxhJ7LpcmmoKyQLijIpqG ztBmL?m5k`G;6}u0XYwOpAmMGmU_ueVP=Ze!VWIyv88K2S8S$}#8!=WpQvw0w38euO z3FQEv5PV{Sg%g`)#Ai~;h(rZ9B1t=w0RdA9uL7nMvI1rheB##@Zrg`;mQ*t0TLm{_ zu68CRUd-dxfK5?mq>l4ndt~PO85$J zj4%sug5VQRTPU?gMx2pKMx0Y{BQ9uX1|#4SVHn^FVI<%h!6)9d(DMfwaZ4&0aaX~O zxUZdQhkyr!j(~@R&VWY*pZLT=%#SkSsZ=uJxq=(*S;1hFL7_vh~EngR+Cd}1LBYZl9h!cxhIVhV0V3GK{P{CX%wxB)0bxD6;r@QD>I+_X>EgHsboYu1vjFDcIFfUJ|z4G=u9{d2qO5z5DT9#k`djck`dh%+=y`P%n96S zLpTkHB%B3A5qx4F3yVFO?gVKZO|!6y#45W7T1jF3u3 zj8$Hez4{d{Qd=!TCs>E;+A$MIbO^=gj9fggtUO)2|n?mh2-`V>z`7|h{p!6WWovB5d8l37Vg^59v!5TfKCc7po?~IE4wR4N%ULcxs~rJY%bfR71F0AmTu z0OJWhG2TMrF&XiRR5Bt#!Ht-#oymrPL_!Wg5+OHWD#0gyX`#h&88JgD8S%A(8}W^H zCLaR6CA69qToZ|%%71Ux6K1iU1y1|<9I-x5<= z*lIr>q>@TTq*ZVu(ragCARq(bYd|K#Y(Qp$Pkhb7V|x|Zq>>Ri6x@hh+L^Toc!Tf@ zATMDf;7x*0%x@vX2^mp9Dj88o!Hp=QohgFnr5K?&pah{5pcKI;mbGxy{?;oem5ivU z;6_x|&cx!3RS5$C)d>Ru?+|=qZ3{c?RlF;ejHsvJMl{gQl*1Vt5-I{35vl;15PV{D z3un&Dh!#@Gh*k=2L>ukQECjS8d<*D6mer1av3- z2nZ*v1sH-)>}4VPkc^0uN=Ecia3lI^XZGVx_ahtv3?Li@d_?exgDqsfBqN4MB_oC_ zxDg|@GwX52(S%KaF@&vvaRi?@(ZcZkG9q3o8S$xt8}XTTW**Ksg|GndIbkv23xZFa zZeg#ziZ7*-5i=Fsh*{d1ojBuc!XCgJ!hXO!f=^svVf0BEu}~@*u|&a*_+C3x0|Cnk zwE!y#bpSsQeBv4lYfj6EpQMrz>lECG_1c+^2-ryI4A@NQ3fM~Ui90OZx4&3-N+l!q zD7X>(v@@CTYx4jh3*ZnT8{i1RCmyp9dQL_hmr6#QQg9>AXlLSa#h`_Xq*Fir)!7@u7u0_T#~yQpt$N3U0(x?Mwg? zpAk|3UJz0P0v`WcVhRiE><7-2Qpt!k3T{L??aX}yyh8W`kdg2R@G8M4X0^~{uZ(z2 zDjAVo!HvkNof(H8tlWf&fINgrfP4g>_?Cq-_HPgJOC=-TR&XNg|?;34VX5g^+zvl>~gP-~ztU&KyU;w*{AK2D3t_UQE&m*v@_=raD(9Y-?os#{*KrB26a4<17N*z}Y~g@?*qcZtBbqC?5g%x0enes`g5TfPLi5`a z&`v4|=&0ZVI%#LBBA^Sw?+><6_O1kkNF@Pb3NE0BcBVN3A_#teq=hN=r=^!v5)iH6 z0%Ei?mk6 zf(wY(&Xh#JB!b`nnS}%QC1A2t67ac#3;04i(;ETP2!8(z3wP`ZzLH7;W+}LU+1ivf(uxqooR&=tR=Js ztRr*)tS9)yO%|FzmJyq!k`db!+=w08nOz9jMc512LpT7~NAQUU9sDgL4oM{=jw-kj z$Fwtd5O9KUA8?BB2jC3BC!VwLntiR$OC=*NDYy|=v@>A{xJC#E+#vJ>+#>kIyAJ-4 z5%;8$5f2pHh=Vs{IF+7Asqq>>Rv z!HtO2&J0386k#YJnlJ(oL-2|HEF7>udi|x65g#eI5recdQxGtOkOUY;m zq)0Ar)gMbGBgQGX5fijC@8V9!6Y2pb5#9qN5Paek3nypGh(ZJ1h$IC!VybqgD3+%a zN&sdMN&{vR$^m8(DgtH`ssQE?ssrW`Y69jH-UTcq)B`Lgya!lH@K?6n!pxI$se6aG zOI@YlE_Jnb<^Y!05Do*@5`G1&Bb)%NC!7XsB%B3oCR_k)C0qtxABbn}is^Z9+f5T|yk-K4B2x0m0v{KP|jHOYYy}kKFxxtl;k7Q|-*( zSbj!$0eC@3HqZqG{H=*80m%tz04WLS0jUWY0ci=D0qF^^0WuJ>12PeE0WuTv0J0L^ z1Y{%R2V^Jsn~}@H;uCUr*5Ucfqu}mNKJCl~EC&)c1M(BL0SXd!0tylQh@ut_){&VB zeccT$q2Okg(#}l5av4Grpd4WupaNkApc3J0Ko!DlKsCZ#Kn=otKuy9TKyAWOKpnzz zKs~}LKm)>$fQE#%fJTI008I!R0nG?o04)gH0WAr;0Idmo0c{Bf0PP8f0UZgy0y+^+ z0J;!P1G*B<0zwEE0HK7-fbN8AfN;W1fFaxgL=x@;q6mKgq6v=xF@z_8Si&fAix?z2w*KC46u$64p>j<3D`)80&FJq0c<72 z0=5(UTjeebQ~Jnz=aT;JIo+$^-aGeeXI5hQAYnD&FySY_QNlXFF~SDG3BqQ;DZ)0u z8NyD$S;8K`dBT3cMZzJ#Wx`RwRl;$=b;2pYO~P-0+l2FgyM#-C`-B^S2ZY;zhlB@! zM}$8Cj|qJXv<^$2|d4G8@K4GA9s8W9Eqnh=Honh`z*v>=QFv?NRfv?hE8XiG>0v?ojlbR>KQ z=tTGy(1kD$(3P+N5JFfC2qk;nuW90Uv|903d^90Lp|oCJ&{oB@m`oCAy@Tm+0GTmeiV zTnEGxZUH6{?gA1B4*`=2e*qE+PXS4U=YXk%fH?O)Ih~LKFoTd9Fq4oDFpH1@Fq`ly zU=ATGU>@Ohz7 z0ZtIQ15Obl0A~o1fU|_&fb)bHz(qnoz-2-l;3{Dd;5uO_;3i=N;5K12;4Wb-;67mj z-~r(iz(Ya;;1OX8;4vWy@RTqO@Qg46@PhC)AmF)v6qyZ3PM8ZwNth2vO;`j-OIQj> zPgoAfKv)IHMEDVqnXnd+mGBE78(||LJ7EhTCt*7vH(?hb4`DALAK?HXkZ>4~pKtAMh;SBAgm3{+jBpuHf^ZE`if|K9hHwW^j_?Pd0^t#$65$D;3gH=`8sR0N1|d2A zx~nE36`(fZ6+j(ACO|zx7C-|+4nRXfZa^bKAfO4M0H7J65TFI21fV6MG@v!19H1?s zBA`8?3ZNsQI-nDwCZG%9T|ietJwOQIJwPa-5uiJvDIlEC0$>QO0Fi{YfG9#IKr|r; z5JLz7#1i};76(`uc}V{BSZ4_SmP5h)>2a`jraqR35*h-A6B+|X5}E-<6FvZpA+!dJ zBeVldAan%86FLJX5xN2r2;Bga3EcsSga|+qArdf^&>JwF5CfP&=m(fdhy%0)mv~=0a~#VL2&VuK3BLgz5zYf16D|Rs60QQC5pDop5N-nkUg$CJ0g@9Q z08$eE1f(WB2BanY4MUYp z&ctIm58+clKEh-`AmMXBe!^5hLBf}SLWG%sB7|=M#Rzi%B?#XEN)Z+U$`Fv>^NjXh}E^Xic~TXiK;XXixA@%ZCGiO2G6!l!^agvo$;1fRITLbeJr;&Z&+Emm+NmTG6F zVtEV zz)r%)fZc>~fW3r?fc=C?fP;k30EY?wRKHp{SVN9k48I9ZD7a&u($18`@)<%Iz*$0h zzw*Ipa1S)hWu_WatJx>znqXaFcg zcpp%N&;(G7;763Skj;Ju8HQgoWfa`Za@v`ZSgt_$7*L7e1FBlcR7(CxAG@Gr&N?OTb`4@_z0eXDA^RU^pQyU?kxcz-U4yz!*Xnz&JuS zzyv}LKs+HgU=krOAb}7Fm`o@DNF)>jBoT@NrV>g3rV~m7W)R8&W)dm_W)Z3YW)rFd z<`8NE<`Lcn%qP?XEF`=KSWIXHSW0LLSVm|8SV3q7SVd?HSWV~vSVQOpSW5^3tRsW~ z))T@28wufn&4iwSt%NARc0wP(PC_hTH(>x^FJT~HKVb;qAYnM*FkuwnC}9lX7-2l% z1R)-9its7m3}G_hEa7v&dBRk{MZ%YW%Y>PLtAuX=*9mg~HwoVXZW9&)?h=*&?h}>) z9uQUn9uigq9ua;5JSMCIJSA)ZJR@udydZ1?1O%k=?|VA|$q9P^DGB=lsR@SwX$eOG z=?TXH83?BUnFzlDG84`NvJx%aue;X@)7<71QH$t@)Q0B z6ePR=6e1+U-vbpPqy!Wrqydy5qz9BDWCWBUWCoNYyauR1$PTDP$OWiE$OEWGcoR^A zkRMQ!@HU_}p$MQ3p*Wx(p%kD2p)8;wp#q>0p)#Nep&FnW;T=E=LTx}xLR~;>LIXfs z!ux>sgeHKFgyw)wgqDCVgf@V#g!X_C!iRuRLKi@HLNFkl5DGAa9)L)K0Ynjc0ip@f zfEYqwKrF$3q8VV}^V9MX=k5^qVPc?y`-n4GJM%l1hY}tFh7j3ERJ zbu-5i{2?YAB zA*2GVC8PzcBfJ7wPsjw=NXP=%OvnbO$Y?+B@_VcClmr4BoqZ4 zCX@giC6opnBa{Q2AXEgLB2)pKAyfyPCDa6*C-}$sl7)P!9uUR?9ug)19uYnPJSHRno)V@2o)MA&F9_2B0m<}IX8@8D zz6PWu%m$<;%mt(+%m<_=ECOU8ECpmDEC*yJtO8^u{0PWKSPRHb_yv%Yun~}(umzBZ zupN+(unQ1K*bB%{H~=U}I1DI6_!Uru;2)pj78>Q1=P3*R3bK@fd!EW@XR=|r93cmw z0wFh`5+N_33Ly|sjZgqkgWwNQ%fhVhMYUz5m;jhX_yjPUkN}uNm;#tbNCM0!Oam+=%m6GVd<|Gim)xwP6z~~BoqLoCKLjsB@_juCzJqWAe07VB9sGUCR7AuB~$@qBUA@uC)5PwB)kjA zO{fRRLwFC6kI)DZNN5VkPiO%sNN5EpL}&{rLg)Y}M(6}6K?nkrB7^|S5W)cE2;qPV zgr0y(geX82LLWdiLM)&LVE~{eVIZJ3VF;iOVK|^3VHBVNVGN)lVLYG_As*0#@F}1f zVKSfv;d4Ms!c;(O!k2)ygqeW$gl_;H33C9Q2;Tv^5EcTu5|#i$2+IJWgq48qgw=p> z!cPE0SOj?b;>j@tLHWCH{HWP*cwh~4Hwi7-E>?Di>>?TYE>?KSB z>?eE%I7mnY9434LI7*lfI7aviaDp%kaEkCP;0$3N;4EPQ;5=b5;3DCBz-7V;z*WKz zfa`=cfSZJ$0k;Y30e17yA;bW>68Zr`2yuW=!XQ9* z!cagsVFbVsMgt-VV*ycw34mzACx9420w9)<1n5tg28bif01PC24H!(A3m8h64;W5Z z3K&UP4j4`N5io|Z7BG(R3t$3aBOsoz1u%)Q9gslS1(;0O3rHj!03;C(1Evyw1xzQL z0L&nq2FxU!1*i8ro>?ITc z>?afg93&J4943?i93_+n93zwioFG&LoFY^KoFP;PoF&u*oF}{sxJY;paGB5uaFx&$ zaGlTsaFfsqaGTH;aF@^laG%f#@PH5mct{8VJR*bv9uvX=PYFE%&j?X~7lb~5fRy_A zBNmXHFaVH}Fc6TMFa(g6FdUGcFba@?Fb0r`FdmSZ5D&;o_!N+hFd2}Y@HrqSVJaXu z;Y&as!c0Iu!Z(0G!W=+;!gqjzgoS`Yge8C?gk^wYgq462gw=pjgr5Lq2Ssw2}c373C96-2&Vw`2)_Xu5Y7V{5-tH65v~H75N-gP z5pDxo5bgn55*`3r6aECWB|HYSC;ScQNO%G0L`XKmy#;q6qycm#qz8l$G6F&gnE~Ai zuK~gd*#U--3lK@jj_@~HWH=-HWR)AY$ePBY$tpR*h!cN*iBdf*h^Rp z*iZN#aFDP9aG3A|;3#1Y;27a&zzM>7z$wBez!}0;z*)i$zULRCN!LJdGMLM=cELLERULPJ0qLSsNV zLNh=G!Uup#gm!=`gpPn}gsy-Zgl>SEgzkXaga|+#LL{Ibp*Nrbp&y_jAr8=pFbL3u zFci>?FapqmFdER3Fc#37Fagk(@Cl$jApy{lFa^+wkOb&Lmlu01jG{70{Rnv0mKnD0tOPc00tAb1BMdz0)`U~ z07eoH14a{m1&ks1e=aoMLf*IK9~33wUpR_aaQ~oal6GbqmJQ0IVgP2CO5T1*|7r0Bj^&25cr=18gPS1Z*eV0qi8)2ka*N z0oY4;1lUh_0ys!`1~^Q32{=kfj{hy{F+wW92|`-HDZ(p&GlWclvxF>w^Mq`Gi-a72 z%Y@v3tAxCO>x4kSO+o>{Z9*ZyT|!a7eL@Mq143!QLqa*gBSJ;MV?q_cQ$lsXGeS+k z3&OjAfYkbPUJsC*@E#x~p%EZ8p(!9Op#>m4p%owlp)DX2p#vZ@p%Wl0!M_2$ZsBkH z9|akKf2}^Jf_q2Gt(_T-g9H1Ft5TFHND4-=_1fVrxG@vbEETBDM0-z(|6F?_I0-y_F z3ZN??2@pb<1_&k00CXpO4G1U91{lIzKqO&4Ad0XE5KUMLh#@Qo#1d8k`V)Qx#1Ym4 z1`>V&3?^&@3?*y<3@2;{j3n#=j3(>_j3M|3Y`leM>E($#iGOW6UICvMv@>V0oIp4S zm`u0`NF-bVBoVFyrV?%erW5W0W)OY{%p^Pn%p&{+m`!*Jm_v9Dm`4b}e+XbcAq8L| zAvItzAst{TAp>9;;Z?v2LRP>k!s~$5gq(migf{?d3Hbo)2yX$_6AA)05()!06N&-0 z5=sKL6UqQ~63PR16Dk4r5~>3B6KVhs5^4bs6Y2nt66ynv5gGzc5E=tc5t;$c5Iz8$ zCA0>dC$s}xBy&-2zO(+8xLnsdzN2mmt zK&T3cC)5B;BGdvT5b6LX6Y2vJ2@L^BgvNlW1b?YtTG;cIT>C+MteL6cu6>qv<_MN& z6OIAq5KaQ-5zYYS6V3q^5-tK36RrT360QT55pDri5bgq25q<}(COibJA^1!E*~0h_ zch;4onU z;3&ag$Z-oF=a>JA%t`#^)+q&dWoNWAXRv&ha1L;ua1n5ka0PIga2;@!a0_sqa2Ifs z@H^l(;UVBI;V-~_g1?YIEZh&2*Q`07=tm0f${uTHT4MPrp$*^}p*`RQ;X^<`S{=~^ zkem<hf_5CLdJ zhy*kt^aeB|!~j|l`T<%J;sC7){+R77^eZVp+wG;Y|6gD#xN~>b&UC?YFv0H+CHNgZ zEaWOLiQ)K`o(e9pmv*`wZDF51K_BdoRdDCKBQSpAr%PQwWKGF9`k+(+Pg;R|G$H7Qv7Gmf*+EBlxik2!8Bh3-1+`YhNOj zyjsf?+_kUJ&aA}pYQm3zwS=Dm>j@hGn+aP0+X*`Wy9s*$`w9M3hY0>0M+yEM#|i!% zrwINWzY+X7&J+AOE)o1Wu3A`GM()lvspRh5RB(6awsz(YmhTgO2RtPF33yC+0(eGv z4hTr6Gm}XrGgA^$0n!rE0WuIW0x}b_0J0HY2jnE=0^}j&1q2fOwHF}xt1U$ES6h_e zueJoiUu|iEzuIyHf3+0}{%Wfb{MA+`_^Yi+@K^gT!C!4Xg1_4L2>xmtS%`jHUg^eC z$z5-z;9lt#+UasD3u|l0{?^#vPQmT(pq=T6<<5jIfM7xhAdJu*5J512UW6z>A3_YE zAE7_sBf>zy5W-Nv2*OCf$AmF}@q`J0PY9C$pAr1cNF?~n|AOEze>%Zm{#OKl`LhWA z^1mhc%b!Q^m%o7EFMlz?U;g(5fAkdufB8QU{N=A9_{;yJOxJbAJxJtMNxJkGL zxJ$SPctH3A@QC2A>gC-SO9wir}v$Ex}*QD+GTnnF#(`vJm{W zWFz=%$wBbflG{S*s`4tmA(gzU`4rr%6sVmp7qF1me#j_@{e>0W{-WBMVpuLo@cYXU z{EqS#Dp!-l3iy`F3NEp#cDh`{LQ(r1zJvX>72N(h+L^joZb0z+-zWGTO)SLMmBgm_ zmKF*wv88sp+{VJX2C}~`_IFTl`#;pqbi#5Fp(~&pAr#Pq;1dnOXY?ZYjA(+-=xd>y zy^pa{$tyWP!JX732y-k z65a+BA@~u+2|lzG!H1S5_|OUjA6nT$ANvYckxI^8UBR9E9qmj_EWbj`u7) ztSN~N@hy!NTw+u0OfxKhK=Aup6a0>L7RJ?<#P;}>4;5TuXYF*ktAz=bWq&aChbp-J z-L*44uxtoD0a1kBfEYqwK!3sjz(B$vz)-?4z(~R z^e+hh=+g=Q=wA{1(Pt6-(Z415qt7Gwqc0%%qc0}-qknH-O^_>*2F_>*2C z_>*2I_>=xl@F#sp@F)GtLa6=y@K`Fj!+$HdJN#Tb^TI91XXw^DGB~7U zNWa+F-cgCBle{+nW|EOC!@q^5Bp}A5v9PI}j7=+*e9J2eZfr*FOeQR6A^82-2!2Nn z3)@OaVorR^8wxHluXZLMmfs@y{RIhrM_~(Nib!G+d`oc!msnCeQwqyv3FQD436%g< z3Dp4a5d4VR1Rq+L;6ob_eCYcGAKJvilj?Hrrc%khZK2@K-BLT#3d?N??EoDK9|F1% zf&d`|KO&6aL&FI^v?sxbMiG2y9}BzeFOe9ju;G@6}G14_H`Z|M+qc`;REN{l98wj$!#E;S}IE!dbut!bQLp!d1Wx!cD*(!d<}c zga?2>36B6z2u}ge2`>Q2GU}BjmrCw*Dne>NIzoCtMnWb)7J|P!*$DoA7R$yP|A^7|89l_s^g#>>;mJs~?SY}~IA$d5KOC=A-Dh2m& ztk%x_h~>3}p8@L$8vvULTL9Y$I{>>0djR_h2LOi&M*znN#{s7ZrvYaP=KvQ8{>rWp z{Iy&s_-naE@Yiye;IHL(g1?rB1b;1m5&X40CHQN3PVmtCU{By-FFhGa0d*nUDpLjqo}kCm|Og4a3Os~F)LlTR`r;Uz?4vUP4 z3QIKQdIbcSi%snRS~osJME{QhLxQ{Y42ufw>zB4-DWhHL9@9H2_FvZaVJ%(vnBZPv z1A52w^xyLXJd^#N*qGp`zR?kpVKIL3*uMmJle}O#hOX_#nmb3g-o5_y+jjWO9x=hu z;er3QxE_n?{lIPvJc5O+?)3ely2VEHjtY(p433WQr#XlXS$GM7;lWX%|D1LW)?f8^ z<=<9+#%k{1ezCoK1;<8olY@nZ$(N}9VKIGWmfpoheoS;sM6ci&xs(1Zx_$-gIqY@y z?i=Bc`R}{F_lM~f5f>Kv9~mdHnyqiFTtRST@2If<*m50PvPOl;rjW@0+;9#XUUydz z6%iKI?LYUdz@7|Ia>4z>0)t~>f=&+do zIN&X}v0uM_@u}rT^$6>m82?J&=P2*mO`MWg zbVOnilaM_i;8Xd(_TOMhh%Xr$)~k2lps={$UeS?ZeS_qV1c8Dh!{VaCVqF(hC8$g( z6Wt?GeuzH%-@d=p|J(PMulP^ESRY{jMTvy?I{(K2cU?h!!+P`zlZW5F(m?|vV#9;v zo(1)@Co5a-pU?^aQ=#Q5NoaJGyVUXjW1&_52_5%86AJZ`$v|9_#!yffQV@MVGoP$6(R2d@}AQzOy0F( zf+BhcRVe$<1r7J#YClIO#25a*eXD$DxqmtTi2vGmmiuSsu>ab3{>z1q{I7jyrGIA5 z^xtVe%_hWG`sX_3*LqNF?;!VoV&r#nL{yI;{geV%KyuoNR$t=2H0J-xKu|bvpd9}au-)29%CBzs1=iBVtU$DGU|MSGiYZMh5(>v&2 zhA!~mZ9n}a#OL|vyZz5{jd`Sq2PZJv1U4Bo= zZ};i~@fqv=uhOmNH*O+|=YRxNMAD?RP$6+Z0u_YfY(8i?ao|`HAugPd<+Z)Lv#~vk zKay-E?uj%~FaD$Wix5YCzZpNTy}M3RIHb?(nfGQq^FDs>%~W4!i4GzLufjzvbEtDQ zRX`)YiwIS&fX&RKGESkeK^gGZZXQp3qNMnyfBb$MbTz7;0)K``m?l zC{CfKnI9H~9|Dq1Veuu`1?gI)SMOO}xN(R7l^^8pqOun4$;Ds1uFTS$vkVP6+ZMC_Y-KKfv1#~gAs zfT1r5GXSlzlbm6dCw>vmVz>4$<~Y~fxtPDQ|KhwE&#=6mi^^?n1lXv65--f*gkXy% z5UD%{P`!$4jD46@=@{;cxY8ddI=qBZ;g-gZ*>}4Io1Mi$1jKu1_W4A^4YF{i^P&do zKah7tQcZm#N(}aBR;G!c#!#~PYYKZZ(YnlZ89Vc{0JOd}j{)kVf?m^y`>e{ie*KsE z7$~m5-~eP6;QmShdw7XGOH`_`7MSC2RxH;?O_mt<%^SLZtQN!`MgYq*9}5T%fm5zH z;oF1m+hP%f@p{(?22--@6W2A;6?aQzHkG+Ed({Gl6GMZ`*&G{nYxbK*KTLw6fbz{J zoR{n~_9?s^>l-xO%|^f1=IKmLX9@nOWvdmxHMZ2l+baN;r6%@SZin;=}Rv z2O$Q#houX_WE9?3GoG8*v{LXhc7K{Q)mje*;ZR6b;zZbZC2gJUqzzV%Z5F7@s?Wxo zY395BXs2sz<)qKUyJzOK&vORjx{4D`&y64nZ+As-Dw%`Kk{7rdNb0S_F@ENC4)e6J zoa!xHytX7;waImYw1hU?<>0lXVGjF&aAsW&UOO6|*;%_JeJ)-tYLdAv-*XP<0k?7m z4~$$fm(St79&_&2Z}W4$_h;}rP@}4dv8bWW18jF8%tW-q%maW{n0b#zc5ZXzSDlX} z8t&;AFU**iLzDiY*}1?mVeZreU?v%v_h-yg$DXPp^mJ5&(#VS)=9z2!qf&?=WssNB z%1a4iLjcR(u|KX=;++AppdqG}MYYPwivglI zWP>klGYtGV-mU{YmN#ealech<{I=i&l#(#s>P#leqw(%U*G4>XIJH$BVdKfPIT;-C z)Q^@xIVz;SVgpbu5>B2To3B@#CrzS+SmU7>;9u%IQ-Sp6*>Sh`sndzV1M*!ZIMSOZ z$K9>!^d4~<44{#kOrTM#72xr)`DQgCo6q?gIKUPxiVeTR6U6S4xvh8A4LyOwauTGV zC6i;KX1-dDvo%kX&P>gkM8o5jZgy5$`ZB!{LuB6vWH-XfgvNZin$u=JBR!eJbXRFG zg%JjOiRbxBbepv_9V)Zef(n;E{8`W60) z1IsVxQo9gYL;;Y+s1Cv?4Z^?+!XOI5s0hMP2g3LT!hi(A5Cg(s(N5+4t00om%cK}S zAeEs2gf1O~&KrbY8ibw~guWDnz7d4Z4upOSgnkHwP6dSC0)%b=goX`5a|NOKwbOri zxkRQ*gKXK~Su&9#gmBYDTkii_h!9~k+E&=ZiV?y}D{fies~{l~Xx6QS`->6{OJyFn zhJLN0DUt*vdoSEsyQ?eiw;h7&1}R}}UV1Z~#$H}!I56>e+~UFG*uO}Jg=eF-cZBCM Nj}bXUKwXWG{sq3LmPh~q diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index c78c796c25b35c6e07dc6cf3a47efa5c2920007e..0bf1bbd12f7020a53ea854567c6467f3d5b52f41 100644 GIT binary patch delta 98529 zcma&Pb$nIF_XWzGb8;mf0ueO9B|w5pfZ#5{J-I|6ml#RVmImq#UefFe6sRjw>I&2q zD%6Wqr~wUCs=T#k&JBEj?fbm<&&@h}-1gqHXZB?CmiC*sv|oLt>tR*wa`k_##HEgm zaV5#wF?M4qz1Bp{(AnI@!f}#-bKZDKdQgp!qFT#a zQ){{9z>|#8Bcz?3wXmc@N{_47a`++DUmp0>^2+tqs+DZNS#_2sFRA)+`&tyWsaCa@ zInz{>Y`R@_l_9BCT+KDAjSOgN`y_itu)ygB6jn$~DXNxq zt(7LO{Xp3Ztd7z=V0m5DlDylR?W`pSV zyB&fGB*}?OeMvI!CRHMzpSN1bo@uJLY${Z?yL@3;LGdEl)Y@t#J7%lic1}rgKo)1I ze0hF>%9ZjgHOIZMytJ^OLUs;8!#3Tk(j@%`<&)coSPe0H9c52HD@t1IM!x8nUh>*d zD@-<(U`DjM9~G$`WVe)UDORLB|D8Aqh`x%XRR1HvkRpy4Y7LL{uOy;lD1Qg)3uP*_gcNB@*dSe zqDz!pGUlSwbSD>HZiUL?Pu1WMe|bT1wWI~CF>+>+6^fpWxfjie-e7eNEzHZW$SPl0 zkY6Et??=+;aJ!>iSB)`muuAonL!a4hmNP--&rky{bZ8;-hLNd0@c(wX#lQ#(#3^yK6~IqtmW1?3gxCTrb{(kd%XZtG@ot#|b1 zEnea;tX{WFGT%`Jvf@q^Ew8?VV)xg#+j=UBO0#kc$~a^rrR95U+bx*;1AXYGq;Ea( zA?sS?mgLC(HLAH@Sc@ltReaY1b3;%1q#<_akkYb}+-lkLur)Pop})8|Ygs{YZpkun z^|ppu1;zQy+bpS&1$l)_s*B4CRVsPnI9)5f zY&U+7Ma)sGS!DH>sOQw2kTP^gPbqbUBuI9-N|Nd;ttOho>jYU_v6zx(s>xPyaZslX$Y;TNN`p)B+eU;y-fpWZ)9pcWaDDxK-OXg`*2h6OEcv3J>51mi}%~m`M z_4?5@AK}X_@GmGS#?0UvjgzEzt$|YdjhaYtK{nG(o?fWD61y8yCAF`W%Goj4otw9` zASX}KR-y<@pjPrvG}eg!3Jf4RzP;RXH`-VlVhtl_94?)jLQv=|z;fD2mxC_1Bz>sn z$n~vJb3F%+6<|URp39Zn4ox}}V)epLb3`A7UfB0JTlGvKn;_a=O{HUN5^Qfbi5XmZU43&C zJm7ex>Lka01^?ZAE(CL|O3h#uOR6{_YQa1|U9OtQm-Ep&$`re(pnRchjs1WkAo|4+qwq0GtRjm@Fw8ZLcs?W|2D=o{*DJaj& zDk{m94PU7V@>3dStX`Nb4Gqe#DDp2iqZQrKYAX}HmL1|>UcIiptR4ZLq?t(e)o5Mk z2rE)HuUDgQcnY1US4Z?8$|D(%VgxnA%sB4tARE8(hMQF6G~VJRMOh0|h&#Kn$LJFyJ$$nXN zb(NUx&wXG;Bai0t_Gqh#JFB3idY#{B7y}-Hk^+^YAv?8={8McC5HVRRS|RArC55uH z8$=}}U1uu~%Wr1`aGv9{Fr{|v)rx_Cx;0#UGa-hc*!0%p6q1IPEjNs|cC;NOAsxV^ zIr~D=N~_nU$lmV0wo=*|YFyf3HB`>@z~V`MPmPsUFQX}K)a2nxTJVxURjCwAA?Mx zU~?DcVf7bZq=e)ara>%xwz6tj7+4zugMtm6+@^$5I zkXKY%v7&licy3-%NqLt^!v+lAI@6lE#fNrw$bF8n7c`6)C9V(V1 z5blqIjMG9H&1BlD+ zt|q2ej*UlVNS!XLN-=LJYNXkCOmQ%aSyU~G7aG}rVe()07_{JSO&viiV-nD>5En-7 z%3l+pP{x)*fr6NI7nGOf`3sHOee`K>EE#va(QJ-~LuhKQgQ?I9!p?3e$M3_WF8LW8 zcH%o~g{zh99d5NkUub5WeNOeWOG`=$<%gxnB%|1B<1u|(BFPU~lPS17GG-q-3!2V6 z+5Qdc38phiHXVi*(lyr$Ta+C4S^YC)vkK?bzOK$k-amX=>b z6hbBU%J_cxiP?uD$=f|fbS6pKiIDj4e8|9xyyD#Q>U9G(zqHEpDvZdS+}ye#GKZ_2 zQlq&-Hg=KY&wG8+FdlVS{kS#6Dqm702O48tVPOM5kr3oO;ZLHb zw=FaM*IhQQ$Ew>k0riE-+10FC_KA;uVpzZCP~hpkWz9VhG~-jDL1N-y@wK-dpGJ&e)q8n8yoxIzf>w+6a9YFVhK3$(oIb>k!x zJhNs7rla0>pv-Q;^+46Wg@5USEY5?j;4Ae@mgbc$Ey!EeB{wgRTH8|SHHp+~5~T&T zXi6)0P6-C6HD^@7Z^(9WG~Dy5sbWH|p|h*Fj~|x<5pBYj=5$ztCSM+j~Qu zc;Jv~AelWeLH|j&+hYJ4>schnySv>|U5#0%ca8<0ThVB6=2)w-RB>agw`Th~gFjJu&99;0w+izYF3HO((E2sk$Pluu5mM#~nId~jFqg28aCG|GE6}hD z+pT;GL|tbHnNGp|=IQeg>rilp$i%4-ym~f~sf6T|m6VrD^4Ds(Yf#-(jggGaSo*r5 z16%o=@gH%+ZpZ??f5YJVi*wD!lxnt|iP5rb9Mo8-Mt?6+q2Se!NzJIoB}naYA2ul% zLrx7Vzo<0*NYa3 zZ4_20_)daEx3oKXatjLm6?wTba2qr=i&cF51>K|5ESW z^!y&M9-FL~TC7s7qx|LrW8|h(^IuOn_U5^!K+Hw#hP{+JS*8A5ITQ{xsapxAM3<>H z*cYv6o*cvPwJ45vB84hlr7!6kbKbx#@%oe+el{)Et)b7Vin?V+A8F`pmnn`K-byF8ROiKw)0@-#eSjMx7DEx(m z7!_`Lq}iJ)EGEjZD`=8AT}pDxa~$!hH>{VrAfUGUAz2UJjwz7zoz*X*ps*0UBB<+Y zB~0txtM0&*pY%Hh^VDM1M+R+!VC+__2HRyNg@tBXHh%=u5)!k2Xvu=|QhyHk4Q3{- z18W;&jn}SKJskPl%<5@Y_5OdX0aS2DhOkVCvsH))SvT~52hj_S7E^qj%Tc`-8_?6%-n~hBjo( z*>8EHplj6$g?#^F-SKu_!GeV}k&Tm9?Xfn&=3u7tL9jn}2Uf+(Q0$xQ@5aVj&)VJZ zLJc;1Jle?4T?N70btmRMr=(g8ZeHZW1b-g(ht2C%|FFEmyrR6~ie=b#7}E{oVVA#@ zo38{pG>!@c)PK#$^2+ir8c`_K+7>WaqN^<%OrV#XT?<*AG|IN6aFiW}&YCzD=Ez;4 zn3>iRZm+mW&)NkY4a3)0Cf_pL}V5N`@*)JNq%Sd@=GF1f_8KW@s^2!R> zY}!#eXw_9KKd_Gukmm1tL*$2_f%H}r?7pKU`N1!AMT0v}4=Qj$wZjI!>qYunw_IZl zD5W{Tm~bTlCS1)l#zV1}oX4=7Ijh{99RFKcW^Gn+3M<>2h5! z%zs@x_G~@Oywl1`>LV)JmBS5Cj@))Pw&8W!vqjFWZE={O-3?DJEmgx+!E*VbM)kmk zYUfd?*3rq1>4yXCDf8!c&COdttH@}*hlg_1Cd6M>=3hahh+~3#{XwWj*i;YoEU74f zU2_GQ@MtaSYxbztoh^if-iB(jdUr^Dng1f%yypqnrLm?gUBq_SmO4AN_}sy5f&HxJ`f{-r%eu0IEZ zkG6iFnge@;Rw7Hcq35;o2lb}Cwx$~0k>+ckzih#>g?VLpK~8eg8jXq7g7P6jW=}#n z_20%iVxBf+V6~J^h1w6n5hIfV=o)Q0c*4edtK0SK8gF`8jglreqwT3L!c3$MhTv)~ zWmGhnSL9J}=z=2u0{P(wL>U+XUjNR9kaP)u-y4ha`_lB?K<^|a^(Lq?gHL%Ha8o_W zXk)N7wverVf&Fw_iFE`k5jOkRTJ8{kPK7xW7y>y7BZXFhG>h1HHMq#xRI9h70OKvMkmt#^z)uJP{TDw2R z>L}})VW0K+eDu1Gys8KybmLdh3lGnRJ^}rzuN;oRCNRQ_-BU~f;?189b?la-sIb;! zCZ6#2rhTfFymUFZI&?X`>IQTD&8Ky}xBMLqJy~VDW zWj_FmNm7O8K3ckfpAB)fpcSBnoK3R^%l33Ar`l?SJsX!u&Ak>`MbK8#iz@jzc_`W4 zP!7$5*MfdF|0rS|QdVC20_t0S*4p^{mdWMn+HRxDz9-=hywGpxl-{r_x=< zxaKR*^Oxl;q`gaT_>gBiGVA$fSoJpH&>D0gwz1PCCdO)4Q?7i_t+cVWa4b$BZY^`S z(^5>b8`!;!d4aOYN2B+WqUv=GC1xgUiN{r$k-VE`VYxj!)pldJQ%puT7NN%6Lu(Dk zQ!Zw8H2hk~$B=Xoj38M;-n|JN4>-xpttQ+t@-kkiKPLzeeM6 z8&)WL24ZdO=nxVnCm%;A=mmG{Q<(Fs*J8Q?@RbaDv`DrEhIPDVH1q_ir4}fFqQxDBo zc0|K=Pdg(G^CMhk#ta!$Z$emE$BMr7Dr_gAJLbsS;pl_)5$MlgKJ6tV5qwnd-Ofz5 zeZH)`<^G~l=;EwRys-xExB^NNIzIyjTO4AQj)1-7pTnx5=Z1duT=nYJlhp^oj3Ar( z*$Ycb%8h**ZSQ3cMX`17B42-iEu!vztz_0#qm>Xf>5}RTaa68}X~^aH88fE_@@&#r zUOlBHg)5dq9o7m)(sD2_tr#;SRglUK90Hwd;f1p%9C&!SQnAy+`I?;mOGUU^O8RK4 zC1#(V9?mh0mZI}|+4YT9ppTPMn`7g_<09G9&`zxruPIheQ8idyP)*+WlNE~G9Hpwu z2yAw_!|`ES=9XZ!cQe+_?E`&e=Y5O`V$5(WNn8WLTQoBzd+_Fzl&&Z*SWryGqJwPb z(WY7go||<@^>O7(W}ccEnS*U^MV4c^#EAtD(4wijww?g-qpLmVcC0eZ{Ix*P2ZE`; z!a%I02Mt*AW@lJI^3JG1WRw{p6l@Ns&|{K%2Fq5PPLkHcRHgeEhX#Gzd1WxpOp#=l zHKB1Cl(k}LjAq-lte~_Dj)IHxDzeggJLW>30o?l=Okmoq!2P~mP?1-3(RugS-cSeX zti%fXo<3T~__qqf_RKk7LM0S zoH4>N&~R)|X{>PtxbQ>p*_X9IFrj;ZltvCuHqW#jmAdGt!36?D%p>M=M3d( z=!G6#-5|sxA1UnOvWMCom47+))_HXYmo4On3~YV0trLtQLwB@vxe=3HAMt1_PevZt zs@9H!>TrmS8wk$Ag8olCzY$B)?+Pr3;9MDObeqEmz1*>B3p`Du68$YC_Q8Bgtk*FK zH1p6rFX?%#cU=MQ~v&{M4(Nb_UY zqYNH{(E`&?_6@||1ABL0-I=OgP+shpK?lij)~ik-3ot<@>FucOp9S3;qdN@tq7##? zL1dnp=iwMS#jK_(6tr1@W9c!kqd0&hx$EPzgp5l!S_15SseQ%CS- ziWVr`y^W-d-fX4FgaOcDv?ZBGf^L{*F=sFATbnM;%gL%J$%4fe$6D3v!p!v5v!Ht2 zmI=cX<(~-jmDYQ)KaVsQJ0>*5s^)f(>b=S-k?g-AAFxZvkf(1#2hb8520IEYk>%KP zm&>lFaUBHLJbKGbymW$N*beg9Zpj-*u%8$vkv&lFj4tj}t$^0V z;nIY*aq}2YaM)`0`x2H(?#X)G@LlnxMM5B5UeKqD9=rC)o= zoAe55D2sZ+Ky;`l0yT%(G!=?Vwd_rHH<9^|VT#i(;>Kl;>UCYr7WC){+()4~78ZqJ za_Jnf1;Y%UrPb!ikW|@Rf~u52UdX(*^Ub9hh6MJEhgFxp; ze_YsUl`qXTx`LjfxO0Iisv8ai`3R$)1P5e*WPglazih2a3@s_mE6%F$moF-p+97B> zw0^8f9vWXhUp2lUJf!(-Fx2Pwsx}_Xe=K@O0msIwv9W$>^|98A+M-nrLi0M2L+EHVchBcg1hi5OQQKCIJ`cX3bsMfk9GmcH8k2d1HwX7)^2!&jU^1*1 zZnuudLRpSWL5FG4et0fw#tjW;7tfa>jfnz$ux&`OzX&X=wl&t8UV3_icD^ez2-*|m zl^v>)q;A7WKlsfgd2WIVk<1?UfY&KaVakvSEYbxV*l|!#%bznm|^rG8N5xcQ@(5kbR)|E*%=36n?0Bq4c z(eCJ#_93+`a3 zl;|sDVcgi#t|t1h`nZtYuf-?$czc;1h7NZcaLsuY<1!`6cgG+GU~3uZTH=_8U-72M z?q{%S^)U#{%R^~UT@)FKyD;Tl3YM}puF1o>x})mfcRkj}%cVeTRp zlWNpm99P8DMI4$S4-U6d)yF!QG}o;XGs5bs0*Nwggw?~fPA(Z?^>p9Ba#N)F7pjeX zHp23{$0mT#O%8pmIz?Byrp%w}33bA#~Y0N}zB;!SuRF~){2+wh-?D|C6FwW}Md?~HjU(uaaMcZS$2OL=VDxvPfx-OWFU*5gTXrcdgTt& zv@kZUzu~+%;*P0#T!osD2v%v>g%F-7)|ciJtPpowW}Z#&DjR^Ct({R8A8o4#^F8V0XY<(beWZ0&Hp+#}3Y5<{ON`zKg~ zWJsnJf3kdEZ0K``!3Upu#5kv1S;;naFdIe#*vvw)g&v--G}|4 zi|ZeuFX@@>RsOlX>kqp$ncSHH)}XOpcl?t58^ zX@dl&SmE{}c1B&3ZT9egg-PI!{Fbi4U!O@>)s)_wd19f*I2Vx{|EV!Mjokwqw1mkG9 zte$PT-M_JtT16g8gKC)TXI;zsX8&)>ztWT+RHGx+TZx>tEqOt!O=z(HdnD+pOWV0t zgu88B`-Vy7Tq|0&*P&Bg1u}0sIsvw|NLPvsoM+{@e`NN~1uk3>_c?X_B~Bu;tRnX# ztf3Q(n;yaG_$!<1ko#v_QK}_wKxbQv-1jhGl5GA(jdupHBPlaU87%{@#yl9GiI%rx z72DKZDvxrC{WDHta;%P$eX9yLJm418PhuMIY;+a$#)$b=l>HD{VUj=lW4xxpk}S|xpnw!vMLuFJzTK%m;{N?{c@~ySE`K9u?DzalxOo9 z?pIz@`Z!eHWOO{oYT+tn`c9IXYlYcwu@V{EoJ!PGLAN+G%L;LwVw~O>N#vL!&?_S3 zhg>VfPD6`j&>|>J(Y~7$T>@oRhaOvii8C!h&MvT~s7@EBt6GS3*U5os+>!|z%5A46J~_U|WYAL+Q0^9^5UG?Pr6^H=~NIxg<WUM5yriMaYZM9qnpH673}T2`YR%c|*{L5Z?+ku?`bn>!Zak|^#CMXP#X z5{1?%*E@2y%o-4(PuEQBA5ha}sA=##AlQ*!rvo${ry$YlC+ra1C=rx4@+QtjT%VdQ z(S-P7EQ%j-$El%-(pg0%N@=k*UQKp#3f_^7a@{M(dZH^qXfG2>(5_vwb2}OeLU*+h zGc?BJ(OQaDDz7uL4H{iUPb~#s%1gM2g8O)puD2xSD&(Wc1J2fwZ4$=Y&O_?=8 z^~E^}`vumA&PaLCX|6U#Tvm=Lz1$h;2fTe$Mxvx$id)i6E3Ag{a&7Wp3wH{Dhwe3RPt_9l;t?jPZ+OF8_sG#zP&I;QvC)oB@jSVRYb$Cx zaW`xtbNXZ7v;*h0sP1t+Oaplu9%kRgc&0@wtPJ&8g6zK+)AaBM-rlImeq1SmjIzSILT#dVX( zsrYMeG^np6nqqM4vAZOF@3ldjl_*_SS##9!c&=$&-F@E+!T_MhGX7~HSP+;x}X zL~W$~T`>HHY+r^thmFB1)GBzlnFZVy&l)>4+|%ROg~^&V);w1X*;S@p%RJI*xCx{6 z2Oc-kIPTlO82zI+X}Ho6;k0p`X~a|*%9b7R++7qww^xr%o(>vJLhWa)p6mF#-Oth%5r zu7T@aIdL7VNvCjY*oBKu{lH`%@~Y2z1pApP=e%k%TE*1umOhWi@a;Dmy!)5ScGuJC!aWjsuhqyLIo-Iy3ReL=MHr=9%mp7WBdnUr&KBqj+}!CQ6E{L|+-xLd z=|*d)nqQZ9w=kRxm=xbazk>YN#=;4k(Auj^Yj53z);?z1rUOqgaJdoYFc@}^_iH>f@aQD^gMt^s{9v!^JlyE7r(%qxOUb`N>IpU(kiCe5N)!lTa zj!^)DYos1+{f#?a;Z84Iejy)Rd*_dAYn5?o9Os`f-q_LP8dgDfV<}r3e0dCjj8}iT#jQ|-Z z_lA6@=|NqQZ)$LZ;XT7)VBt&&%_%aG76!#7h+(+QXsFX2#f(vTVh$}!F!ef^)n9X? z)!p@ynOoXidg+b0v3|&zmzwehD6Tzb?vvo_YBD|-M+OgB%5LCsgws1uaGgWe*Qy>4 z0kN|)3X9AT zg3`rVf7#B20VySPahbCn?{73e62tYSTvN&zGm&xCsH>CVNqC@Ijsv7w}=9m3ac@XlIF4f`m zOfr>y7TcFcc_{;A+){O@gR$@V*r96w>j>k2ZPIuo=}9Li26~;j(MI;)ZxyHs@U39l zi4RyKRTOND_gix#N_k_*q<+95X&+8Qnj0_v)4}3!?J>sn+=a?Yzg<{;(TUFG5mvt( zx0_7LW=>(OzToI2S~YB>OO#7@L$Vx}(vMM7+;18zwY$LxTF8kY{Nqh1YK@9>R`d zNWAQN*qY9>MUP`D`3(83gKNaa?nsSYpGot_P$K-3V%0>aH*_`~AGYGvUfpF*#-G8J z(kbu?oqevWN*;U|sTVy0zB(6r)T7qC(411!L*HU=`3L$|=N5ELj8r%3anDy{b@VK+ zGj}Jm9*fl5@$&X7!9=(L6)r!(rAzgNh2fC=ksY5#d|cvr(wY|)ydh)Klt|QvsEJPEdIlX^W{L=-*Pe;;6zkzc z`SclZmC2@H+`!H;F%IeeF$IU^7c4i_Ct!o(gw=WDx@L^)Ta%D(GA2s0GiHnup|9Z^ zdTD|rKZ$zdB6_5{`l3kk>VC}F=j6ci);#H-Xa%hjJDoT<^Xc!5`z5CBVTHK7U~;_# zPQhph&xIoNO?yKg)QFw5KvgH0@zj+u*9=Vr?C-c9NQWdfhrEsu`- z=Mpo}y4kpD5ao>j^D^iFhHE)ISyq^QKQ!I3vW{22m?-{V&||nD+S6&p?+G&KCF@eP zL(i)DxMcV2OSt`d>B}g{8Sdaa4WUkwNM|yWUjKrVmnjp@;ChZAaF7%Kw>Y-Dz%@g5 zylTw}O>?xFYvN_+t5y!|#hTpBA#c(fSD40lSLWH*pjXzvn9}5RXgt|+=5;)55zJ|+ z{tWHv6U8UqPC_gTg`&fld13Wy0^l__#n3 zBE^Tm<&Kbv!Sgy(UOfbh|3mzYehxfM=iA{hSk>Qg?32m#gp78Lmz{^LTy;$MlcssY zgS~V=_tBamB5~KKCB<~K3--s&W~MfuM*!%o;rt$Cy5*)T!g!;?bn8j3`&^lL1l%we-h4-_ zr798I(T}Yh>H9u9Y_#cR?f!(HXCp3Zz@{zUDe%%o{e#!b60_!6!!irQY zs4X8`W$r1=e!0mW&RGo|Bhmu-S$K~cW~*zA$7LebX&Cv~PWU)Psn)pl z@tL&@dx9>Xp+mxt;>0u2h@YTSLU08?b)ie((HN;BpzMB$c~tjEf~+`(-As&(++ldO59G#nxa#;@Z;9xH$obUbhqS zq3)fnn49_zoab|l;vy(DpJQ&q?J-Wp>yH9;2KO0xoiun=E;u2oVc}rpd%m#ZTz|@Q zUs$E8uWrr~*9w06<)3(5V2Sz)8>r5@ve|~R8WdMyU6kN4$uONbOJlZ*0|f`X^s@ z{A6X*9XVVb#hOD#68y}X1aUw>=WS6R;N1Z9M4rHT2sY|5s z%rkWv=STo155*lWLw!TCPorR5@WyO`Hp_xnokA92PA$IUN4^#}@FKuHT3HjIMzCrpfY*;U#4S)}m%x*~7at3YR_y~HA%algcw-`crsFy2uL zSKniVKf(wj)4{T&){3?Fk#T8l4YYo8dX9>4X5E_!lJuB~+gIkD1s6G|mws#6bk@pL z4IG7rO%U8Eww+`%6J`95Rt28d(24+q!?iQ0X+n4D@)M>{f$o|`uB}{1x{-Ya@5>~p z9!@tM%Bnj6^f{#F3zgd$Uff~*1wx^We_Z@diJrCcxcA-&0t3v#P#D| zj&8e{%%#jY{oxweIEQ?ey*M6a>`|ghc(vs;Oo^3 z>~_Xb2W2Ze0_$6EDl`E;kdfHof?2f@TmTyCbooGi*pMK+04>*9cBFkdI!bmvulhs> zuQi(*T;m-7@QPrBz9MMo-#g|8&@s`@D4( z(_3at#z7z7FkEQ2-L47dumRL=&M15%wauX9@X0Xg@<^T0_F-qwt9|S65I}nr(p*LAx;EVYXOx60i8s1gt5zH5)6BTtQ0_eZ0Q)V3>M4_7E>_ zu=k&jt$T*ocB^(;frnD(wa2@j=N1(fn2T>=#jA8kUYhRfd?K9g9_MsokRGY3j3q(e z=)^lKja)k=ISRfBbmuUa*DJ3_rGqy6(~r{9Ovb#I?A40#uG9;#iq z)`i(|>Wp&+q$yvA*-`L+*JrsP^mYAUTC4*%hNBA(7&TK9@Onm~>wVU*zx0a01bfyP zwD5>U_(g}Izvxj5K5YS`V+4lsb8TD!G2Qi7-591h-Et~Hb`D2(!Mm@m9E!vwIYi#g zSy&&AL;5uXGuvW=beS84)>Y83l`e2}3!YMbgPG6_CNVuj@GeM{6puvl?;7*J8GE>| zxIU5{O@k8&{wzsqjAIeQoj?7SQjGcw(lEvz<0>+JqAvr&Z864WhD?9sIe|v5j%J!_ zLg~&rb91~INqzrzYkfOZRbD8fhw9Ks8}a$Rhjvp9?!fPH#z*IdyN5w>)CD3q*3MMl zIEQOG9M|YEDH~u?-U=P10&^J-VEt8`-WutT_Hw)djyV@E#>8flDCeCq)1B%1sCl^h z%CY*w?WCt#fNI9r>CqMb`Gt9S^kSKbdw{3jIQeU6w~o*+LKt#lU2kYFkKn1$Qm3uD z$MHa0aC|!Hb=fZpH{$7SYVtT}1`R%_ZR%h2SeOYMue%X`HId5iEFYaI-hhcx?>H6L z6u9cfx*jxx0fK(9AsUx7E{wGH4u{)OBUh#|RqJT*QV&+I9JhEA?FkTnIEM^JHNe$;S5GHvb!I_ElFPPmHd~|^`a3F-%?Mh!` z<+0&wZ>NUyDFc)E+KUsz(J@kegUN>DNc~Vjgm&~XF}FFKO4l+Ro{jcqa&N5@Xd1j7 zqg?%^w7oq|S^Ad6#PDMHK$zsem?KQ>d=sIcW;67)I_4}poq`SJIj3Io1h&TLU{|6#HB#2q!yLc=Xal zY)9!e4fn|KXG{byZ96$+;GRndyeW$pOJdXvZ9;Sk#`}lOoz&CKIPUr$w*^L}TMeAr z4}=1qYLCShL=UqL#zVHj;4h&#@#OY!n%y}R53-n=JY%>kh^g{mn(c$Sf&+s@#u})4 z;c`(|)bn-OK}i8xC)w2%y*<^OfM^07N$R^!^W?&bF{7IuuKsrBua0tmH!MZBa};6{ zbpyZ30dMYZ4-eyutfn@$nYKC#9!m<^HzRe#i7?HhWlkx$4UY%DdO%Y4*Ef#f1l7at zrFuC-sI$N$a1k&h)g_7wKAU4o8^Fas!k)uRLFdi{ zJFhM_Xeq9jO?T<=9hItyMD<3MdZ0?we>52`iqUFya3a%T054?4%PG7F=97gN}wLh4BV(AKR<`G3Ro1)2j@#Q77ix77v7lYO!95C5MO(dtF0O#SRJ>PzPeo2da_q?4QaVSXP7 z3O47Vh*&w(56zD?2c=HM@P34(r(@Q<%;R{d*6DV473~~h(T`1ss%M=$Wq8%9i)!fH zzteBk;W^!)GF9KH2k5QC;Amk6vZvEOpqiI3orSX43?9hAoneX=Rzn~<$@k4`y?6>Q zLcI*j9`Dx$pTDyubs)O9`u~vKQaKRX=c^`T9r@IB_^Q1{>M3)OPimy&Uu)|3gq9-A zJH@G4sFY;bLtS^9YUrmU;O!Z%Hanf5DZK_^`kttZ(ph!Yx)yFX>UW6GD32T-gzjF3 z{R{6Gg4|hkbo4Y6C&dchm5A1o%_O~VFg#lxtA+;2S7zlee7Xi3r5J=>N;yjvA01`u z5Xiynou&=NXq_2?j@jrG6Ft=Kpo}wJHL=wr}Wb^H+i$kfU&xI~fKgiR_U2{=Z!54aBTs1YL?P57K3ftI^ z;>9)Eh6^q8y0q@i%ZBdVY|JHwfY*j2of7(y+`&91hewElYh`VMxW?Jd`RGrmvzHXg z>-~55no9UsJHp+RHR)LQ3SE5_jqBTE?T$EN8aLKXmRrVRjbDdlGS+ThU%%YxD8%=% z#8xIDo=)dA#V_JmS{K!|ktr3gh(&@7Z@kj+SZR3hil4a&@CmWos9O@`49R%aC{kUY zAjif*_nigLz43O6dme`C{L<{KaHBF>Lzu8D$oC^=xK z$J_1f6{w=@@WWz{H#?(UI0Bep4|TiPrSKYl+Sf()Px3g|yKh53)a>`A$^Ks61`<6H z5B{!X3!xR$#VvIr7TLgf={?bI($vk$#n!zI1y3pX+nXu38q0H{9p}D=Q6TvosmhthWLu%7fx_rP_fPkHe$8n`Ers&*uf}RKzQUsCVb!y@dOggSfN63 zGBDGQckf^g+tqm^M#}0;Om81^>S(BV-#Ny~ZP&=+!zjgw0>gRbWV^KrOROP@Pe{m1lc7;glI$rc0fcB* zl$@Vzr@9(Q>J&`2P@TN3`rIVp+i~)2Z!2iBdX@Fv(Hkx>pG?6cSeZ070t_-%Klj;ICFxBqhKFR*-U>;Vy_szQ1-H3hE+>j^QJ}(9{&g6twNSZhu z8BR(EIT7#cfE%XEP4_f!>kf8LL?hikJZ~6>^z9hCB_5CWwRV5OQrqZ9Y@EDYEU+yp ziL!f;FB11&kAftb`@p{N+N}>c>}4uEEY;oD9bfk|MK6A}6+Rdt$EIUi6q4Es3ZT1z zoS$yjcZYJG;5GMYzP3ozkip4NX?@A~8qExwVw>eobhIH4RFoNZTX#jY zo)({Bce4LtjV2cPu#8J#+a53z_MZKu9XR5K&0;3{+r?J4(r@=WtSAIo$>En2MDA6- zpoPDfsot&tar_z8(CLH2tXyBN1ze_m-VH}HeY0gFvXm2*D0TN1Uv#9uw7|I~cO`S4 zu*H|=MC{2-_dbcU-`Z+lL)7~!T*#Vbcdfh{5tpos&VsiY?Voh&FZEX}tX@^!EfJh7r+8GBBJ!bc+m(AfhK^U?dTJAOoZLLx0D>XrjxB#t`{X+rU_&(?sKd zDg*Ry42&mnD2Wq@K4y}MM7NTbNfcnbNkr=yI+=*hje#jd^lA)DC8955U>Xs<7z5LZ z=)V}4!Jkh_n@L1p#lWmeLi#BNW)smfF))WHggV{HypV|gih%X zyDm^oWD(s!6v>|&{%j{rh#q7vHxki}E^rf3N+pADCfv;6TZrgC7uZU4HzRH%I#1fI zMD&vjY$y7eXa^Df;sQH~-XgkyIsf((e!?UNi0D-oI7pO2^gPj>%=!hQSjKyisGR5}qGyO+ zCK|>RuMj=X6t5CZBYKUf6XU&3bRFZp0aO|Ak@zNwYZ&n@qAd(QM07jRVWN6OZxbD7 zymyGMXWDm(<}mao0CD1)?GqVvr8EKw?d ze&kQ(AB^}Dq0Qi*iPkd7FGO^n3j9iRgy=V-`usV^A38?`ekZz#=ntar81GM_X+(b! z&12}_L@oLA4}b0owpCR#!iL)4Nf z>J!l^DG*CUZ=^s2B03@k8WNpjyf~uUh~kOD7@9y7Q^^by3F&tfXhhVA5gQY&BdrP1 zR>o^e)Q>H0MzoZn&54qTl8D+fZ88zPhXO5#K4sdLM1K&qA{tNBx-sY9dM0i|;>}Fb zmgq~;+7b0(#P&q5Fth{FyQFm_$|Ws@=serriRg2t?MxKKs&*loL|Q6QSEfxPs!v*F zSHee`O*f)GMBR!0Vun44){xed$jcPys^Df$sLWxRBvl??4q zbR}s6h~7&i{~JiShrt;{0VWOk5& zqL)a^B09tr*+hGY{6y#2NAroEV2T`~4;Y$D^rz;3d4!jem``*sGh9G)1CuNy`iHav zqS=fWAR0ilh$xGwkf;??6cIg5S~1ZNq?HhLV~b05DDzuPRN0%bjBqAVIne+nsUYe~ z+7hC>NLxy@h*>Wq$|h|&QGe1_5RGAql|(0rE+IO@c$X4wAzDSWjVUf`%=z~Wp&p3u z7`&RnqlnfJ{lw7AiB=I^K{T6LUrAI*+Eql`nc`}qO46<&`j)h7iCQtmbwqz~NUDhT zAzo!*E#Vj@Sx3}_N!Am6#fTe-){(Z6sEFBY((%}tn~Cmc+UtpI#@j;lAW=0@0z+>g z+RwB#M9-2YM1!^dcO#*P#G8oP5Zz2Pf!W+b6vf0_i5?)@Ml_f4ZY6q-wCzOEOtFKg z8PQInhOFvsM2DH;cA^#xy+iXqUhNOuNn#rk?;@&4bT`oh484cQ%WUo?8baEAM4vI< z{Th+>0MSIE2Z{EwTDyp@AZ<5M6;tdXnoCr8Lnn5dfZ-X@A?=sQF|6TM6H3(EaBg*|BpoDnc+`F$C%`2B3|bX{6cgyQ~XNw5<`C@ z`h@5l(L;>)JJCYY{vf)PDgGp?CHjk~oS}bf{&$kZe@M(FI!~0y*41l*pV7?FMWmQS z5xq~EMYNtYo9Hg05Tf49#Z8pXcpjogL|&rT8P7-b5#m(_LJ3>3xG*AKs}6({@g{X3 zg6L6Z7)f-ReH2C1nkk}*_Ap)yQ6l5jCwhvsSfU7`21Gf`xgk+9)5Z~P*StEO@LDEL zAmXLxKqAqHOwx#G5owKy;)$9Nond8~5>+#8Gon8k+MK8_Q4-M#qGY1Z%&!GeA!#j} zQ2!f7*owrriCPm4U=7<4O=H$=iC$o6JEDA|_C!aSVF#k`N$W_|fhdJ2i>MRPN}|q0 z?U{2IqH&~ErV_rvLehv@6LlpDW7ge>@`<_=Wihk|QFEf6L@S7T5xvU{dlTJG)Q9L2 zqP|4mv$y&Y?PH2`qBk}F>rZ%&!~sMNSlmFOnWSY9xk(#D)SVd)CMsa)5TdQ54JGQq zc*BT%M8krKC+FYDwB;qHv-qM1zT@67dplU|J<1FWv^G6D6=-Gl+g8Z6;A$qFF@0 z63r(1gN4i?x`ox6OH@GGJfd*sl0`I(DYA*$6ZwgrWQzGjS7`fR4&huT&L!GSltMww&mB(pC_qv(hVx#xe8~qAHel zX%oudos77O#1cJU8w3@UojJJm94C7r+)Qq$%h<+ftlIQ?KuOfP%w5y4p zCG8rbUx=94mn&>ssZXoKYN4ADAp20#?$;3AjbzsNcM05|6+)UJkv|EV2VZ5zG zw-Rk5iX*y}=uxKFPL$4^cMyF=w3BE7qPO)`VFG5NPCkgmf5^TluUGpD2C`T(Kg0=n`kl7J4D@? z%ezGNh~6Xmn&lqRORO~`zE9#~L>~|Zh(07*z^p$adX4B~qH7uY3DGy~;7^IRF~iS@ zHZ$}nQGe2o5m`)ooahGUs{DStmFOlQO|h;|cwN%R5HS434za*}8Rv;LZ>KhZZt zUohUcMDG)QM-R4AhZ67 zXe((y6Mf0H|3dT(Q~XM_lkt8d>c#xd5xvgP--)I&?H@#^8ShWc|Ndt1UnIIo{F^9; zw10?fCOJN;fQAE9%)*^a{p*GO~rU)UL!%#QTt3)268pNv%cnR}J z^bx&G6iU>CS%(p=CM}$37PF2Z`i&@(s3YS=5&gq>(L~>|XJUxjunP5wek3iH=rCyw zh+fqEuOZ==%rK7V08uQBI?By$xS)`US@C$6033}Gn;lqn@MX=bb_=F zL|vJpBhfO3rVw=`>O>UH(8|t)j}dku8cdW*q!=-c=z7w+5^W@{8_`Qd-HE0U^&lEf z)RU+?Q7@v=M7@cIuv&eHt{|;1(NV4c^&@tiJl_LAbOK% z5Yc@^gNb6;!9$3Wh=vmJ?oVJCQ4Qk_*N8cf0ICdp#NtMhXfeqsqTQs8ChA8thG;F5 zj3pAHaYRj-;dr8G(k2i+#}pHZu48B>(S4*%BKm@rnM~A`rA?_M9L~g3iE@di5#2&G zo#=X^8AP*)W)jUKnng5=o-=%5dBKDkSKEhcKn&@!TTm|;1Qhp2*R5JQ&`O(0rI^a(?k5ltjoPV_eOTR{{? zw6ZDnze$9bkQl|pml8E#l2t^ZM3)hL&UkvjUL|ccX_-W8h~6W*oG63n3ZgDdaV617 z=6n@VBhs!WibK50z%_*7OmZ#Ja-!>qBG@xkMD0jhOY{Y^Sx4kzHtUIw5^W&b%g~KP z_mj4XsE}wgQ7H4fo~R*dTZl&M{ckm)hr}C*dNP|DqSr|iqQ8i4B-&4O6OoJ6x|t}1 zDQ+PuX6RO;!$jMNHZtC=L{~E2cA}mP-O;pO1bT&VCy7@-_Wh-}a$U)DoGMTAv9o3! ziE!%^p(;<`9y9dU5oA&2@fM8GUu%)J$}^*8xc+(r1yy;@jhv*vl5|+w&XM|SgZ_H% zl*xt1R#l$3CX;m-PoJth`AO6D*E!0BDo^s#Df)A{4lIvN*I%=AHZR{lO@B4hF(3bS zrvBoIV3lX_;oka-M{QM}Zyp<`zYgkj?=0-Azs~D){XQ^x-lW5>?mJ3{eaAE5D$kE6 z&F5V@>Qhfm)PeJK)L!FErfK@CQ*BQj_KN=cyql?7rmlAUpQdNd>95$srbnmguYs41 z*6IGxUmq+Qs=q$tp0LW(re~)9+^37*9cTK2=ayBT4^|D(VRz^Pn`D{do9k>QAM2&V zGIZEY%S;PxolD}>VLEKTj(NM75{~PbJ#U$y!Wcfu z>!^ctrdMq?Bl?~GO50>w$Rk;d?<0M5%;$C3fn-wz&rhp7QC>4IzSMc{={Z%$you#i zdKTPZKFQCjJnb@ybs+f{5*{hjU!2udo)zyd(O;azRh~cJU8=vx{i-}mb4)s}rz+1U zXBO))u6i^ub*}#6g0Aws@=>n-A}6i#RL*^)NPm)bR(b9XE!AIKcvYSU`<3f2uJtO< zsDpX>i`<~f^Hd}AHCl&7d|0BxxHzjkMG>Z=o0QADo;Vj`TC1O3yZSc^e_2fm8W64=_iWjD$m?bmsIMgl+RV37n85j zUlh^Ebietcm#sKGFUnT*=(`*B7X^Ej zXP>%We^IzsdDeEnepV&99wmI0XR@l+ft2!9o{wLw(O;DGRUW(N&H9VdzRI)r9`i+s zU**~MrTL=Nuks90TXjrI{wmMT&gScwu3B`+tqfbje`}9_!IGPY|4Y00O1qzjOn75; zJ4w66&XjH&@y|O-*V^IsCh%i9vC+QVLr(mk5!RXr>J9i0Fd`Z8za#oK>2v-63?O@E zz}ai;HgLG!e2v{qj$V!bu+e=Z{;fIdfz;&M|C#z6y64{ksQGfZmaoN?>Iob1Z&zkt zWp{#WS=tS_(U?(ec_TWPuBhImFD3jtF^VIv|91d##bdkwpSe;P{5vsnrCeaZ&b4-m z!tKwx>d0m5?G!|ysQAy6lp6mT@ZEp*3o3e-84o^;i*e~D&)w$kmDQeD?AW2{}GNN_c;~CgTtIat~+GS&G-*4|2b@4Gi=TO ze+(^U(!cA2@^G(NPgDw~e@Ea{`_GgJpt$_wNX(3t1uq+HZxAN5odU2@=7#Ah6YL>mf&E z*uz`l3GIaC!c%D{{{7&ot?;&jd%-_j?Uf3z_paP#XXAGFnr(J3`TABnRjnJrk3ll$ zR(mp>6&VobhvTwdg16zHcWt$&Vxp{+zqi7Z>YnX(GY`2X%X94j3wU$8-5vEK&m^s4 zhn=kW-zvA+gQZ}H9fo?&OOTs(*lm4eorr_$-8*(*sh{5gHgf9@xProm0hMi~;JBbG zywJN8QWbduP*ofj|;^Cn2p)N(n_&tx7g>s?n=`Bdg(~n*Oj-nZ`% z`xA31RY1xiPF$#hk2FyLQb7Ua zcqFc&!6ye8V>mGe4RI?BVRuN$2P9PzfOJRz+4047Ecj&a7PqC~lRei;njw6$pNb1! z@R1G(K*}EgX?*~)Yl$mt@X3B;^cwULD73)JE+HHwD15R5dxs;0DwdYfJ6v@ zLHBtifrLIAW>03ZWnZrTcjw${SR#hH(6Q4%?LJ?zR#ChxS1z3;Ifxvg) zM0qY)Ex`{Hq69Z>2jX@&wK%W09*6>&S@a%r8NP-PkNAO;V5i9zb8&k4n=*Sx#u>NE z9A>&NQC(%i4=Ja=Hi(1;Ll%=-nrCbTqNL2J`wo1gdz=uZB%;cCm=vtD35c&{8oz(6 z2Jmf!cqt1NwFzo&iOoPPkuk2l1yjtMwn0IdPS`udPB`D_3!|ZJe304$!mg3Tled}! zc={F~dP?HqUjXqfA>t(>bF(=V&jn>{LCKCt6soZ(Ol1jFnk;Ou3cALNZ-v>hf3|}5 zk;D$2k2ZO08xXK;Lyfd$8=CQ3LOhX(d)v)XrhJ*y70J@FKkyNJ;_rBGVA*y=+%B=d zlvImx?;SwI$%?7H8<`Cz#HW(0ty|EpHwh6f(pJr*vS1J{WhcJ)Y$T)9>#Rbob|Q+I zZ#{-eIrSO-D(nIxU-Gj!T#bZ5?E^be+5)2jGF43AcElMi5l?ob@v{g~N)pw4Pc6lN zCB!-zgSSB&wb%^=433iE)%qNkPCp~W9f^2WLao4~zW^dh7N@}^H3A=|ii{7+IA=Dg zW%(_N6C~rD*DBM=1}E@ zfvZI&59ZgNVNr7Rkg6?C(ux-KEBVG7BYS5IRC9vU)1hrtmFBUbY49U^%}q?+{QiE_ zD?TBoI?4aqoPZik&j;#fS&?nVYDLk$0`;GaRriP%24zd2R!G#Ad`M&~iOQGN(B^B@ zOecxjD$|NPj_%)AqD(TDb{L&>ghaKHu|^$6T9YJ7m8hH!S}4X4kz;w8WBnFdanlD9 zHATj1K1B;Ot(GXAl6R{NK6bx3%6q4?HbVJ>UY0O*U|nliNgg*O}$H*|~ zh8DnAA2*jbRhOycf1ri($AoAm^Q-8qhw?Tjfaog`IVa5ZO&>{j!3i)1IijA>s*UJ>>v&?UcEp zsimyv=s9|E-r+O?t4i|sP9y)`vQ_RJ1anU*@T5ef9MOY#>oY)%m59wJklC^`<_gk# zhsEDdeJk0c&S+krrp|M=nz2tXbqDUCuh0T%^ufbI3&+oplMhNU5`~ zAs6X&ldapyNxGdipIoHgSx=ISG(78%;a4XDv@IQv0km$wdonYh!Ye?q^LU*E(@Qr8_xE1+)$#7iodkG2|je(E2X9NEfu` zl8e+q>r!%&Mri$POEY=h9jKmwG zi%=D_$t6x{CT}Arsgu^D_RPGg(K6)fNy$_vmpBt`NG@?E+L~PAOtcHR#F=P+a?y(3I+9$w$u)&sMmO(w z4v$LR!n4$Mp^uz6hv)DDa-i^jJ_o8(^m%hrzIUXG_XLmPGyHCI)j+=QJRXin_f=a{ zycoXlf;o@pzO8EfaE=-cz5470n96PU0Gp4CFJhnI`~{3H`4{j7e&%KKM5dR)N6@{k z(8s^m+6sLf)@#zPn3MU~ddLQ5ol5X_7L{QuW$Gn77E;h%^;W{m@U4y13_kXPIRaW4 zqF3cB?&A}C?5A8ZCo7d4gDIp79_wIE7kRm}HJ3k_sJ0P{AEhoV z9-TKg;m_VxL!H*nym+JLYNS%9EKggh)=_HW)c|Uc|C+0zO3$)!wC2+2v(NXw_XEpo}td9)X-m1lsmc zi<>@_d2_eCXO`!G^iZoS*s4WuNL3b!4C*NJu_)-LcH>$vH3~0N37)_4q^lMN1@T^g z)r%qp@LrGbK+^#unSC-D>@|RGDY_`c2w8|>Zbd^O3gj3=yA60n+N7$<{OT@s7;Fn< z=xTKy^U$m-Z&Z*Kc-yX)#%sceWQ?d~c}5XcN^@uhDORg?tC1m#O~yOHSWFzo?19{& zI~PIq#!#|}7{w`d$5?~(seP5_o~%8hzSdUmdkmDUt@Baq}m&{a)D@7|hhKRF)YO(@~ z+OyQ^7#ZL-#_T{I=!-^)yMsn?&^DW`#wyJX+GL6>Xm8I}Yhgfe(Khg;MM<3#5ZD(5 zKj2aDuCi;fQfX(7Qh~@?InJUR+TQYpcDm&9TajffX(W zu){zFakM{@6ZuaRSVb?xpC@P?IPF|1w=2qim1RAq}?$k5*3`H%86@NxC zhdeUAGKAa(*noIgk(V!`)-kCPSMU>-?+UqP{b6g%odqN*Sh(iGqI1v@W?kqmv}K0v z0A!TR?+;YFn3_{UiAr)M+3vp%QUjqTxEQgzG18?HFMiD&={I`OXjgX_;Ko&77gtI~ zB`Fax1z5dfGbmD>s~`c$P8dH`fF}?~Df za52r`VzMU}yMSZxC9$sRiT-}R;)k2Ura5g95xvGMlh7Y*F`~7 z4lJuqRxZIz-fh%lm*Ut^J5m-6ecdf_44L1!<$J&_2>C9N#dmJQDwV6qZX(q0Ghee{ z{=pM-G1UKvs#O0~WSbyQ<2oV&2=BLR%8f7;Io;y{e<~VM-lt zM}I|fLPkmntfNWp&_LPNwF#`uM>Lv{g_;0+v=;v7dr%YRN}gsLJZ>wq<&I}KB*2t!z-Dl;#Q9FOMLEFGqt;)ML0w;GRCwGu} zBXuO+*S(&Ixha6hCZJwkR*@32=S}o&U&0yn;ze#lN7Jjy?)q6{yx{a}b+jtT#Ok7R z6E&QFn1EJw#EEXNdh<@nVx$lmS)CaPIe3wb$$o%aMtwaqa_^;JSrqw}N0EC5gj^Im=A9xc&+Cq2e zpQ+y1n-wv{pcF&yM9R{=q+n2#bd_YRr;llY2?&{O(Ra)tua z8w}BWm0k&B&Rm1L*)Hys>}q^?5e=KtmDLdF2rj0k38rv3L5Vr!AIS-xdI_vU{*Op@ z=;T5g9*(Gw4gxI&*YeZ#jLvN@7@U~5BL zLxzq;fG@@L<_*T8Io_lg?Mw~$)>dcU^TW zI_mt9%$*K_l-nZXCdLlLbLPjR7GO>Mi(BqDjNC6GK=F>3)x!9LR6|OYhjDT+T#$>w zP?Z6O=730vP#WBMLUMwqYaTqkEqS7ID5X_AKf6uc0DS@EMinF@U#bE`U_5q*8m;GJ0d7q6C3m7JLnP*?7$hf{cvD~<74t+gL1$mehIrXGur#U1^GCt_ zXmD>a47hk&0}e=mJ>DCN=xKwU6EbU|P3?*2gZe-lJt}dcPQE2KI&8d@x_A1jrIcp| z?PE{csD9AI{&S=K+ewRsPPS5^x?{x1=;mk(Wa(Jsl*K?H0*rwoK3(SPE}kfYsE1XQ zvU9zDMa}}w13zV8b+?Jq=R77#v3A9JqMM_EdV?8iAP~hUa}Cb0mT+>GU0q7aTX%67 zf)xb?2+pQ);*5?mk(i@_kepx)%L-r}4YXY{MrV%7F@vY3rPO|;%sDyv2ANZ{G%t-< zcMVSN$P7iZT&m86hWEHMG(4;=oSfVgoG90;%eJ{+28)EE38Ipf@C27Oh6LU#tJYFN z1TIwx#PhJEh=K5Iw4TP-l*8%q?cOxpROk8sXkq+^zAO@UQ!$r))Q83#Q99RB!YC}3 z5{@c>x`GR9LXV~cRb^&^Y=Q21Y7gbz1gSMn0dG{&x49aud}c7Z#*NX%3H%OM%PXrA zct$IXQ3jt&6J!DJeE=2oyg~Q9C!KAHT2(n?6!7FLgo{4Jx%K|b-{#?f7 z_pD+NS~}5;n&2oNo zyE)QimnjO(X$M%LQDR9K9QZ#Uj~YE%lP7cq$My;8T)Y=6GI!s`0)-d|aC%Gyb5~`| zax^&k8O|r)o}@PAB4dozUVPa-Jj(uTlDdp{xsT9olU2^y1GqA#s8{&&2Y5s|V=Ah5 z<6qd}D>}_l(VPCpJ-a2fWJTxk2Q#rkDwv8&o!A3-^F*b)=(i^5t|wR~M9vNR)J&Y7uIA?BEMJQ6t|WfNJFL2uQ%LnW&LlwWMD2X(Z}s z&@5ETJsID_S+4 zbT{=7)N(hmEAl1v_t&;qD!gkjF-7JmCbi5ua^*EY6>Fu5G9czQcB_dICA*Fs1Shn^ zl4KBvlp(%Yl2l5=0wd@H3}=owSdv6>wnWBpEV8`$vJ9+0HY`!|C?d+?Y;CYc#lkfY zDy*Ziu@ypl{&c}ciAt2En)si2xCv$xmZ9c^@P{QzDYQMr3*rsop<%rqMUeZWl@fW} zBXeC0sX(>E%?Lp%PG9h%J0;`ZCy?6pX*d#c1~_=RBYB~_J<2457xV@Q-E&rqe-!|| zZoH%tT)ks(^-c_?&XopN%P4~6Y95k^Rp|x-Q0;L4L}VzqS}fh}Tp=}4J&=A6hB5sm z88bZHF;WT)#;{G40n^YTvS8;&a6q&ClF3--6yaM}qdnii>&cFjpnHitVTxMS^qgqg z;R2VF9pz!7Z1x6IaqzfhHJTKWTfH>L@T9d^WBE^mLehB++8z#Sr69k`y{LfI04Mm%M( zblkzx1~cOm0-^r>BUyUj#!^8N4-ZmnD}Nf?{BCe_+bvs+kw{B$b3~#Y^>b79X1f2S zB-C|Ih<%i}y0TiT)RoQI?kQrt4G&~q=}_0zo{j7BJ5OQvp`E~`DsAdgZ6uoN%C^Mh zrSoUc@YMRd2JsY6;-!BTAEw{g(DkG$XR zR`)ry``=`W{LmLJO#+6P_Cre3YvLN#l2Tfbl2(tu8KX7f_e*JI=t$f@Zx6I5ZI4=o zAGwH`xCJ-ufsPopU-dOZ3~-O`d#$fB)u8(Pdo3Op$QI_Kw~Vhxk{HU(v04|u+-6v!Cs6m;- z7FoZ+6@Uv`bBrBeu(~B1@HeB7kq5Q*re9?t ze?}prw6^@;gIcI!sn54wRGTP|>hZL1wDQ=3&Od;PC{mw4*pCxBBZD{il!IymUipyb zr&M-POg*HPrD=vO{ZPnl2NaioB?lbbn4+Yh;{PpJ(pWD&fMZ;CZDd&&y;f z>H3^<%tf(vmllV0qoDYvPzt(msN8i?+_!7xl{+X#9W4>}BHU}z$b;_NVJmdRF(~L@ zs^S+~B_48IP2jnwRbBCFP#6te%EQ9UL1X<=tE$8`;0F$12(3~mg}77+JHtjUJN9Tb zl@10)yFw{QXmB0PLE-n6)<79!P>d{;LR?w=*h$fEpH^L2Vo>B2Ns;i){oJpDv+*QexTlC(Li;ehC`+m_2>?0C7-njv{q<{zjgI^ z(PrA%jC^2dNN7OFM)cPhfBmdq1K;W;e%6C<<#;vD=redgR_5qoeHU2|0b{d%i~rfy z!@_+8|0%d+B|OLQ-vb|809czgQoV>qZqqi-vo`vN1l zJXS<2sjQJ@akTC#!)pwKNZY-2-)+d#cIb8a1+!KX8S%s(yMsG7b;t&ZtC7fZ_NMzSSrHNnKcl8Kv*_|G-9vZlXW@vx+IufsoZ zlBrGi$R89LS1`Y}x}kgVcJ(wLWuuGigByAj-(OGjGkq>;*S<r|zQ>)rea=qAAD=lbd_~QxhExxI#9d_!Q+CW!{7)e{ViNMk`}_EV5Vr zLk%=iL;klK5Gd3D?_{9{i0PkiiN#^(>7Evq&xzHVwYECcf*6WalKx8L?^U&+?f;D` zz&n@Jn&K?|tfo0v17MR1=xBz&WhEOrPQF}bk}9YqCrd$XR84D1x0jHHoa7oLi>3}V zw{HD*8<)P`7id}>bV%k4f5wf!3>OK{Qnds}!*olQeY$?U=C921APV92zQP@v=`Kps zRLQ)dk~wGxRM!HP&tIV(xDT{z-Dp1*ZbwPG@eH%(9EBT5pOJ1|5tG&lr)prGKpzt+ zH;nRs`;*qfbj_8la#@z2e{fkVswhomsUIZs$Coj>ymUpx6<|^EMjnria$mXvg{O>* zto~ID1SNT3h*7`zo{ij&>T;09T*Fw_!bLXY8YZ!(Ze%dbSP0pm0MWsgd_B#Ptc5+*4s^pTaa3Vh7drkZfA%vp-1e5Icj`oDXFREoDX z6}^GS&)3$Kbx8kVLLQ~ReWUOkg;14e)cGWDvKb#dmBKBH{ri@(CRCFWy|--5P1-N<~ZXXcX(et&)ov(V>GlDcne6_m9G$)|;rgm(hTNhe8WCy*R7 zNDdcHlF}I@_njoGI)mh{L2{>XlF41LtPgH3dnyWZwF{KH0KT;hR@}Y>oV^W2InY>Z zz>jvt08`6F5!(&ZAC5GM0v8uvr^xFLf-WwC&fP)qwj}8ADuK|!YV`oc1Q*5p9$E#g zrbQNG3Z=02#1OFDMRB?(b}&Ac6iW)FIMfSyeC?tro{l{BONzaPQanzFX84PXqC*A- zwHuP+TA>u<25COLVQ=W6tcA0NFAc&+gqwR~fK*#Z8CP0($hbphCiDS^m0W~B^g(l$ zH)zTfPP3)27NE3s(dhlOa!QIp)1q*i>-|u!5iXj#{k1B}FoR}r;WWhtAfH7pnydlH zXQ4qezi^t?12L=FT{NEz)XFG344SQl)1U?;lpkF*sJzBmY z&^$3{9==ZFrs8CvyOP%!ZFaITM zpio<5f%TD#BD1wt3tO9%18IzfP;_pCMch6YMf@!_n4fQ>mBN)bK?cRK5V8$zu|;&< zMOHRdYld%G1;tN=Qbe~y?VDRU3qPqHdOJQBZ2;C@6iU%O4SAGvQJhah9;GEkECJ^b zM8$V&E!4N6kZy|CoC@g_If&C|$x5$QvXz!j!M>ngUo-XvyCAdwqdpoU^wD9h#0)I- z(YCN#3L~S@eEwAJ?H-Ql_+5%IgZ^gW@73uzM@tswZT~;*Pt5__(;!!4MClzfR~H_i z?3#Svc7~UI(uSLvnX&@9Vo$^of20ttxF!Rgy|}iXSHF)r3t{K4~R) zsM>jHX8xC-7NVRrS}4C2Z{v^I_mqry9B6-Sg7Ob8o?}aj8Cy~hWa45+3KZhx^P2!I z-1Mgmpj|1`@8ou>6St+$n5U16(mHzLkydiQBDbY#=EZ{WaePG{*aZ3l(w-0my$xR> zwE)|tQ)Cyc5sdX$D`%AD!I;&WizudK0?thFEJ3Q)kk1JLYeSv!Z-+o=tup?A*W)+f z--co>m+OpQG7J?mPsX29Sp4TNBvt+j`w&6G)#q&Y}^kAn1Fi5G%~G2ty&n@+ZRF@zElO*qB*~3W>#g)KvTogm_k6BK@T}rmxYE^#)Txb!M$)m36uf#RFzZio5x!pnv;IVbX58yE zZeumF6+^c%v(}K29W(1QlBTx&2woylb{kx8xu`W%b{dIqL#F=NCmVeUQ{_d2gTrma za#}fOMEcH?gVToBkY*&|&cS9+4$jCmn>Zl};0O9b^@qLVMm+sGzT5TXQ!^m3UTvxB zQu&8_)L^K(h?J~Ex0Or!Dk2I-rK#zzhAY=rs?2Bh;)+NIcLHNM-%e72GfyhfZJ&Jw zsxh8aVj(|LQVoBN%B{Y^tGkfsBCeylajk>ykck7NO|r1@L$%iUkU^AlohWBpt`Eaz z=_$#;S4KIH%e;?xD zGAp{89|31apnTlQ2tM7*xZ0zP7#8TOWN`@DI#qUr_aCXr_;`d;R+=G0Qr0paW9S)T z?TcH%EpMqkWi=x~!P;8bI z8w#a(8Kvpm>$&QyoO6+(pH{=(zsTrxp=6C-pfHbI6k@mOUrF)TYZPu(iP~_l$|fSN zLtNe=y|*o=*H4tVcCsqZG{n-rb$hcHZ(Gz7%-MA8rBrDr*E1E{$*SErU5ixO!9#j* z!*<+vhE`c=V?=7z&SQvaj;=r=^v4V&G}1-Wb|y||hZ{6QU!xH#(zsbr_3~Uavu9yp z@xDQm`x=eNCw(?HoWF3crsrpr+G(;y#xK@Vl^SWX3F6aa z6P(_QM+~~=VFlU=7;1-RX?$ZI%F)q?nU?0!4sFxq5z0)C`Wfe<`I&1Km287%)N3@N zPU#&PWvPoMY6*_-KQw6g>ojh~1;6gattulsiaShB4<~kGiaKW$7t=$yuzSz#8&M12 zfnpg345QrLH$mn3*I?yl8sD`^E35ovuyW6nl|PU-iQa$=m$ila3UASK*d$1K8_H>b@Y=cVJ&5f+{Yh-Tq zb=tGOPI%UrNiJ0BqJxsx-q~Rr<1Vd}EhQIu(*XE!BNTg=!N}_N{O?BKf4eIpeJ~IH z9h-g|asL(i(aASKb;(6lx-qEEyHVjQ`d6tM@|TU#Q=hr0@-M3)d~g%!-jCf#|9gcr zKF6gI=i<_+i>mAyi|u~egjEcS{lj8iAKDp5Q;AGdc@kE+;sqQVzF zfXiwf;i0b4qyx7dz*h!oMx?eKJi10o2Pr36U*lS8wu|PcukpIWD1&B1VKn`f4_(o# zeuJxS+=#wNMt4+h3O~ERRo1G)=MbDqM#@HEy~Lf1l04>yUXhPKfKQ3P>%im7Xp@!G zM%pJlSvhKCWzeseeX7S-P`O?hmDPT`lE9Nsqn@4`X*@FO>DFm{CR>7E{|G9NZ%5wr z3?9NL)=}1FL`RQm3hgMXspMJQp2YIXAenX+9}+Y$Na_|&lJOnB2*8t52FW+ysnwJW zgQRESBx}CMr*N~JB&Hv5S$eubGPQ7$pMHQ|^|_NI;hb7pS!uN>Frt?KyNFB90sO!kjBCCG zoP&s?j;~)*LzG%Bij`PL@zfttB?*!&u28bDpYYLF7Z=%tpVaEukrf%C;S0$q<1#MH zPH<76mK>-!jlLBY(9hK#-$j`2*6|osBA}@J0vKV?VUB%akU%M!hu0aXgFDdrE zMuBlq%nUgCedN(a{`C}bA2|%VUQc`SmK+q~uA^cfisY4lkSmP@e_h9=Wb~;mkZ{Y} zyyFdA@D1mt4UWM-M7SLtHIS!m#wb|xXDl@9JBft4g=Y+%M73Wh3guhOxNzD3Cho$f zyHgrVf*vk%r7L#HiMOm@a2FqU&kf$L{G!&zjdNEv<2<-j zpmR4 zhG)O+q2!@`-L-B*sH*>kVehaj!F7MBjg@bV1P^%fV2~{R8(*j2agjg}L;P!qmmG{c z61NQcn}yP!{|BFH`QnBSjXY?K#DBqpS7+H6dS{QuFtRN6ANDKaTqLt`CqSuUkW`c; zj$#LT78_m8z1R{*_VR&;aV_08LstuL28s7gAE8-o|@VppHxc2I^mkN?^ zP#HW^O0V#|va;4u`O)C{!fQMWb(`uOqbRD#UHhJFL^eWE)$XCaWGL>%Elbuq$~PyQ zc98?C{t@;;8}pSX9HVAKZaRwg`{E;P6!q&O<*Q>CUhZQp311Vs;`I`4hrD#}B2|cx zr8rBN?IIhw6x*^h+{mUCN|v?^6}{d?_T@5MKU?QUw)#~vacgYVax8gHImz-?;8gm! z8`Y6lsl?QEWd)@2fs=|iT#4Q2Ki$ZFFO)3i6WnJC>FTVJnV;ayCy<{#B{n?(oO8XS zG6t^#MQsoj7sb3axN0{} zQe+oOF>)=s-U=5*!CEA~R8o9cD8-3&SP>s|QB?a(t7giV6kokcAsQy=b2QAaE{e?0 z(K0^^3jWKFt|hdirdqGp0{G%fxZn#>TeV&*#h+i&hPn%v+e)e-WQ`OGW1(G7w3cJx z87fy4;tkcQKWR-lmJzsSY__qf2tdgpF} zS9HCV*HO*L4nS-RW9JvoyNa)u@w{s@y!C3|dIQ^N^yn*no^JpBXYB8hZ+}tvQh(95 z3Ln0ej^@`^Su}n(gjwuyw{YQxVx2CFce}j3bcHI$VNOGn{-F3MHu82 z#pmDAUXllCR^;u%nc4o;?^ZbT%NQc!-G|_l z#7ML5ZQt-GB%A^RA3IX?yRYRE%D&=(*3E-ZwO9UIdryRcfvzIVm8~@b4=sosd;RC0 zMlI;n7~Y%C8j%*UP>2`X)T^D~_=7 zz;BAuEJC!K{e55EY$6{@9?hcz^icarKRupMy8`s_CalN=5gq{!rwX8;rdYF1Fu!=gCq6!A`%30oIqz(1$tnV z4k1G#D8eWgx?{B7LHO>E!Y$styDWh`W;9+!m{byS@=uK3R0Q^@q~o&vXclG%zOg`| zOkwtmrDV?b=4JGmgtmhP>F88mpCTgS1H*9p{R;YE5ss8*3pDY{@0MlW_UI~lBM}BZ zr%|OGsDoFEFWW6;`HD*5qI#TO!Nh2 zD*9?25(86FdxIqXQ{lK-SCZQ2*VoqwOs$4`fuOjTp_k^v$Fop-+MCqqND_sQvae{Y zj}Sgfnv4*}msepv_Abf#LV;hAkCvFwT#vO^Xr|XBls&zoB$AU@@F52*0sKrg7QrtsM>Y0stuLT7mMll@q9lyx zx5r;<91G)Lq#{D&wtAvSW@4&7M>xRYLL%v22_)c~*+J4*me`iXCGJ8e^S#_U(#(mRUe5<2M^W56CVz$;)iFeYtCU_O%Ar;A>fh?nO(h@)#@ zXb}m&*VQwuq}{hWNi&iPm<2vWUfm8`{AKhNJs?o-Z1WYA&4t6*PZ#OM_3}(FgukrG z{Os$~Nw!gsXgc)HPx$q0@FJ@5gFgBb%-7Eb62sA`B6bLmsmuKBLx$>IM1;e`^iPCi z@Nm7h2{)64VB?|hmdbm^_|Pefa)b}P2%jg8*1hcWM(P=avZEtcG2u0EK{a@co~m>; zs4kAtnTdQD^TK!>zA3T4$kx3~cqv>&zIqDJ3Je>Iz5^pcLj1oTtB0D%2Z5@{b0`6j<^mM(SK%uQG+PBQ0KG-wD4&OZC0B`XooIarp zZ8=^z@1V3a*w3A#7cr4fR?}3>y2G2WVEf6rdP~CFBj%B$!|~~S8m-_cn~SC=5-N)w zWkIFF2X@O4tv5g1l=<3wy-&peo_aJDPbBQk8#P1fzc12Li60uAJi|18vKhvMS$Q&h zj_l)jyXGvEhku~o#hdJ+8QL$w00b*cq6PLW(F0B7!>CZ6zsSK5?DLUck5KkjAM2Mz zn4>*I_@DD2$LY)TIwqth#?kwGQ1?Jb@cC=d$!{&!a|H3|l{5_?VN_pn{#Cy23v*6- z0QYOfyzJFh=^u(f7Vm;y~i zKVrkwUW^#p+zbl_l&(Fm4)+yy^xaJ zk98mWrmtv@1h--i1y`7_(VXDr2Z44pXCO~aV?liL*N~0g^3)Y?^ryfrhMf-I==c(> zceou23)BL#*F}A4%ppCH4{MLHGvF`?Pf9|(<=+BsLAdn@O=>4)eEYehV3&MICW_Db z%~FhyIu63Ik`QnHw}e{|hMm+ElQK43JRW9`J4Ha7HxGO`2J#U!(U9f1(u^as7R%w@?B$i)xl6+ctSk$VCj{j36`^(!X(f=tHuX9IV z{Qnwh>hF35?)$sm8fW1OOR|0Ftak z0Fa4@lp?}D1bk#10)Q+-ASRiGpePba_8@>HV-P@+B?tgA0|7ubAOM6BFF-Q?fT(2q z0e}oY07+IK;3Ja{@R7X-05bLfK!zR=Mpho+BNGqsk$ndMGVTCCmK^}dtOKHuO$YeM zpaXnl%>h6d@d6}64gh4t3vtMT1AJt@0f1~bpuA+b0Y0+Y06-=i5R>dRz(>X!QcS{9 z0|1$6Kp5F*Nbwd18h|7tUMUt~nIVMS!6&QGRFWyvc-TvGQTtG~+w*a2V*a8wGOA7#GW&u&i#zKlN3@iXi z))gjGPLg3VtN<)oRY2Ng#4E*5m{Ujz6t)x)MurrCBr6J_BNGY$WIrJ#To_M4_GCE$ zJ~EqtRLEumDuE0pqy!0T3E-a0CL$(TN=&J#2qOuILlzQH7&4ELQq)Se5fFzABLI+9 z1mr{}5l}Sr#r^m6#*@i1#{b_p7U)td+0H2JgKTOJ!oT`O7PScBjc--zVi=Jht59=L zz^k`rsS*euh{47hM1R5f>qiCHb6+(^SaKt zE+6sW^3m7j4qrO(q~GuFdL-=Mj|=oJg{YZFkC)*7sKV-=i#Her7)`NTv5p`AJw+Y z=QCdVX#CH$`i+Op6bh8y5*~pu9=?(uzIYE`f`_lMhcDT~*UZD$0=~(v>|1#RcJc5H z^ze=G@J;vd&G7KeboY(U@f|QEvv;pinSDlO^~2*N3l`OFa?oSWk_j`HWKDV zhxA*NQ-%lT;B(JpFDO8(8H@2Hi$aJ|-ulLbH{ReY|J6?_=fe4Mm32_&MlSxFeQP?w zqaW(OC^3=z!V|r@GCz_BKf~$=&-8~CVQc&fj1EHdIr!l859nmvht*LYMes{65D{jO zm+9;~rE4UQd5Q!|MDPhu^e#$Cyk=%*n-n~PJ<*%J2`hPVULboJ!8bmGroJSSk5jEVCNekzXUc&VBqi}whu@0uUd5jNh zuRICo`--q}-iyt~E>;eLB-J)_NDS^B(L~V zKcT?P@9_WhO-iFkep+EoVSBFYBmJ6^AI|$eLrDrEd4HAlQAS5{s~790lnUoj7S>6D z(cL{JHkemaSWD&22wwNG-ph1{KYph7Rq&#drn5ZdUA_gDN;0jz?1c#=d^D*8$SFij>hRH|4nRhg0OTwpCUu%L z2BI}{O7puu=qoFISvemvuH*>dzx%KnlWE2WARLg!rO-hvwX3C8yCvlh<7(u?Z8RG%Xu!w6~f%Q{q`)5N{)`-#O z&7ZZ{9W(8z{8*P&5j!WA`s{1koj@Lu{8D4=apz|!n*C{gcF;`Q2S{>*nHF=%_KAho zWFr5R_E;&tpT_R%q)dQ)ezH6(%0F$-{=ovu{$U4p1S=li=PkB^w0!k#)>bIRHlY*S zgi34^8nI0%#5SQ1+k`r76WXv%D8n|P3)_S$Y!jL=LQ#D-VHeFN)L@&?f^9+xwh0~B zCTyVDgaT|6`mfCzPsYS-LjAP~?H5Udb(_$AZ9?_63C-6g6knUrdu>APwF#})CX`;A z(0Oe_0)BG2~F1~6kTvC2uRJfiOyjYeZwZY zhE4Pgo9Gxeq2Ss?Pq2xOU=#fSOo+^=7uZB6u!%lk6J5Y2dVo!I02|5wWJDrqw+Wrr zCIs9jfq+a~1NCdAq%q}nEg+9qV$CPW&HLZWR#gS80- z)+Y4V_BNqTAURPXq`lgN@@f;hD_U1%L)N`)LT|MRwbdrHR+~^-Z9->-3<*XdS1UWS zx3#ny&;j@Jw62(30=uv%iTIi)bYaz{`w$=8g_YN`t0CgMGUCQAERfgl1)06rg@tRr zH4$`zr}o9T;M0|bNyKShzAG!Gb*Y5FG@`2{-5s3~ef>u-vf9wJ<*g!CC;n$QByj?~ z==TyqRs^4r^uzJP6C@-t+C*Nu8&b`#jNo3BDkigTEJ(Xl0SG*(L*;m{8!Ijmjrq=Q zEJ3=PQtFkoqr~j@GGan^6!;P))kh)*b!Wla;shY@q5~zB*PTU5#BRQ`JF6z$d-xr4 z?}XKk6JgydKn#!wQ#vc5EhWTYi2&0oZ;;N4 zYF((rcptAfsy#cM`D%Nr0x?!b%O8YjtI|<}0y}{(=*?oq^ZtHDD+~PO3H(7i1S*v3 zy_-y{P6pD-tOLXYx3v0ZAT5FYN2Z0RI(_k$$CmDplI6L`?MMcT)hAIIy->zMs8-e+ z?a;C|FuzdJWwn=75WN3EMHL*5>5WtcHj7fND&3>`!QPPg?COZUR>nqk71eH0yIhxu z=>C`-Qu;vJG^)Q65}Vxz^(PRqd}$w6OS((*OMM_BGs`1loQznqFWOch5~vGQ(JoPD z>t$eGUluD7oA_6KS#9aw%AfRQaauMBH=bFfG9>q7k$U60Km-}histd=)B2&)2z2N~ zzO*01F&D*&n8I`b?i|9*Uh#=M!)N|*S)-iW;!1tn_$ z=vx$f9^cuYRn`_)guA7reA=It)Te3510&7{F>s zw-4W%fm{j(pxl+Hvp2Kk~JL^OP)7Hw0(fR#gE2~fNb1Q2~@PU=pC0KPZYeI13U?vXk*AGUE3agH5 z__(3WID!}F^D#r1E`vVf@xxgq=jnV99a;|`!rqjjoB5OxsE*@9SXm1Adk9M=m^c(U z0*)EVn#hQIWHLB%57R}K`yd1FLk5ZuLw69E12U~1!x)|sz=Q(hGT^E*|1%N?WBJ1z z3>}s!IgZ`~D4&2#2SX=iB7-woMGD}VP@@2^XR=lVs|;sNW&W2Y@@0LH|AOHxnnJb= zXN?K|Gh7xSX#{IT{s|+nj)KOvYXmA4@ZS+whX6LpVhMEmJvxge65Nu-TI#|a=3}Ed zW@WMBJZ>cOqTqTXv48^19m$$$BAUWSj6v1iABnCc5UNBZjbarff=R^0Q5aN33~y(Q zD1K!W1}A~_lUVa;^m2g+l!%CI7DWf*#VOwfqtOx~G@L@?_@2@%#MkIs0$)^8)gQyE z62Z_hES2ECF{p>W5qa4xP12Wj#)}eX;~t5?m=6^SWr*UZvzafYa5bB?BN+D%Yb2Av zi~khsB}G?Q~KBA$GQRVN+TG!|749k}jTG#=orvFvSv*T%98f{n*v zod~#m9M*oOqIu(4GxD|=&)O3FU_7cE@Q?A5yv_uyfZ?Av0mCbQO*LzOA4wT$~NUpX5y^Rg)r0Fl~Enc9F! zcu2Y3R7^D&abE07q4-n>WsZyp;lg7~Q_-OW`2vIEsjM1h^kOP13`fGvrm+s1u+X|h zM%X?LHHLtf)7TJ#L*HfZ$Ot&irFOU`)ax zaMBC}(1xaUn+#Yq1L7(WJ0;@g3>HfVzxqt{Wl|iidu2fHnJk9ZGt+0Hbiz{XK^cIW zkE8?NU`Nd(QuHh|o``f*Mv_%93soSnC!C}S5^-80iq3`>CSrUi5oq*!ld>7&r$NEiByLCZcHGJ(-o^ zo919>6WHHnQm5xYqY{WeNm!!!@gH$dA#pAXrbOD#WhpZB9~pi7T#P^n_;W7nA_Jbt zfC_U!J0*ujQRuQ9R+G;2&gG!d0gKOro-J(b>O6K4E6-Dx=|PUZEbuTQH4mqr=jNfi zfWUt~Yc2@_WWb2|EQta(&PSCC3fLH*hXET0ugDj-lPEN80VH39MoF?w3s_Bwh~``8 zV``z}RxgLj4T|_&baOykE~_Ua!fqvTQjiO|ML^&}$dX91stg#i5Mwa{RxX6-hyYl( zAd2S;Sq%zEc#pM}0ZB3dL(iKOa18+jtG&;<5}fu2lD3TF+oQyUrmFn7&>T#8_MW13-+mbqQi{>;l+b3>Lj6 zxu+66&6$em-gzFO4P2q3OK=K?}krs!`E=bw{XL^bi+4w!#8uoS8>Bvorvl| z=|zd-+ydg=2x8puv2OUTZuo9)_|k6pGH&>`ZunFO9{F2)xCQid1OVUB4gZ!KzMLDr zyc<5v4d31kU&{?&+YO%%x5d%+8FuAkhAT3#Cev>z8$j^XQr6d7ZZcq}9Xk#6m$AM+ z0`WB=zMcS+(wJlKFJ-m)%VjK7Mm|Jghj{dI3{XfVdpWa`S+<{-BUQlGE0C((k)Vk0 zQp84N>CFDTw}N@vRMu z)bpj}lbm^^u7c(So1Gh0AumAfQ{*N0M2Id8e=@J(Sw*Vw9iOs5ZxPy&LOW81J^kh8 z2q8M*PiDi%u4dkp;LO!*Fj+tNdo>$wpRXp#`AJ(S!{p^)6kAq`kS?g$6Jep^F}LKIlg%fF5E6(i}4dVY+cLxDKM28 zu?|H79KDWp_m>+n#9J@P+am>wy0xsLSJJqCS(ziz29o|cEnA0M8+kp)t`ksH}~vetRufI~O2EN{7oM09=l#$Q=uY4Wq~W)?zG z(>6o7gF&hNn^`)+*exvGTkbLu$xfaFgr7j{CItQQ6&KNfr?+5}sO44`P) z;v;UF8&I&uH*IAWO7)AaEL(w@wCdZ~Bn$0CK@h4>r^aqfcHTm`|8^GcE%&S_ouxc} zI~yetD+sZIZ`sb?@fR^x5rY0^@!T?yhWn$6#Pi8JSW(L1qaAFlQmGaX+sU#RZCoKI zm_^yZnovewe9BI+_47^^>@9Y+E>Kz*xM>#~;v*1065_`R{Pf?FHG|^#E>=81?t@W; zE0p^p7`=rR4P>7Xl+-&bGox>xjFF?dy9 zPsXtBy@-uPR%H487c7%37AAkmGQDX-4wcbsx+7oMJ&YAt>q1IwA&n*?X8j z5zgMjrYX0}aG$+wmN#wSApt8TV0uVhcrS|=SZe?!5Wsy7A^~87dFEFvf(UJ2vH2Qp z^yP%+?SrzCu#b(jkRJ(+p3b*!2Z6A<3X>tee8oO2hXVe>ipGCG3->oR2$8fOb$*_| z3jKFQc9Cja#GbvM74;TzMuDXqe5kPxdXvu!_NLR`yM>43V}SU&950*CMiX3`&xZNS zEk@$GJpN|!n2U~t(+{vPiuTR{Hk}O4zBqt_(*`8?o$D+(%+|&WtaSh-GJpy`l%kJ6 z$Yv_A30veFHq}DglpxESE``ZqT-J|!?`J+?gNBXj)pyj`;TRd@ekP?fm@!w-Wy zSWCTjnDrpo;0WvKBX>uMc1Ri*lWk}3q z!eFy>(orbRNb%HB44$x;oOFy0vC!rz%Drbg5i}>m%PL=S3@!We7z^~5TdPFh4S%!v za1-7+7A9Xs!~w^dAElIi90Pi09e(vVcm}M00z7AmU09-hVDKDw0^Mf83Gn>z1oM>< z{-Fr}2zDEDSA_JF$X%rHkRs6EES~XPX+UvQucZEihV@6!MP4UQve^oZaNZN}q4S5LDNl-7&WI52Bj zo3A*-mJ@vQESnP`_kxL=Ux=GUJm9{hi{stv7eRkGOO0_F^G$>ASg1urzeZA+e+IkP z6Td^{!;0_8?@&d6mA^+7$t`6{GSjFcSP{0AC^cxz*s2*>Ss7!i4wB`RyUY|Z%cv@f z$Xoru!u&nZExP8J3#5 zKp;vJg8tAF*J*MsxCnzyb$((&luzrQ!0ycQ{Dc8pU&ah2_t1$hj%KJPJogF<;3clG zGBPNEf)aS!D{O#8#4Rxc&3FAL423^j!Hf%Am9?&-Jb+uSvf(~*+ntEk8*|X`@kQ_^ z{xw$2TZC<*uuU{QHo+$wGDyuUU`72!@Ky?@KWJiANK-1n&Lc)bl$TP!pk0wutzV$Lyr|2!8!+xymgVz;4ho_` zfoRh+z^jhY)k9 z&5gLJzph!AZljGKXf4>IZEALp(H1kgWclhTrl zVRh;pDQda*n6I}y=%8pY8+IG{itzvLu^1WTLqR^I2Xv>TC*NoD6_|tbf54Uy{QLo% z=`GJgDB@FI_b=Q75{UO9);WPp{^MWF3R50U|7Ozwj{MECy~LRb(ZGH^O>n~S z;FJ)UsrvXI7A}I9Q3|j}WwM0w9s5{)r*XmnUg=*Jsle!9vwzw91b_OMP4kz>E|lhP z_>*-c6d{*U!@R#x@H78mLIF|1f9yRxp)v9yn{S~L8dUzy8Bzfe6pbchz_mTW;c=UX z%;Jkh7)>^JDTBK_=Ml>S@ykbG;9*6+=rPMBSoR5<;w?{iC?4LVd%{Lp1Y$q+^UaU3 z0p98<=Eg&%`L3sI7Qu$kP-%xsBfdgJiX0hpk1D}D@;Qr;LC2^zg6U=%9`ksP7Ki=2 z)6X$=01kh_<^;)uBTC>U{?Ov1`GI9hU1?pf_e<L4Sf&x2p;+n=+^<;L6AUh58K&KABt&GmW+}>77O`}tfagUlBV|A+A5j;d1mu`4 zDHL$YY)K`ERdYJQ9M#gD;2qV{+(Ic?|0U)t6+!O5L}FhwU=5V$OwAHSvF2%(9t8i; zEL{jT*DY-b=ING31TX3q@y0=MW_gp|I!HI*DrV_G{znY)0Fx}1Zkpw7!S}siU@LT| z1#BQ7*b97%fMCAxHXblq;RSvX@W9J5j^I#l%W{H#K9&y%uJf_1B$(oB$t8Hj*YcrE zpfpeOvy|bV_@Sy0@SmTh6Twt}%TR**{4G|36$32IER>_Q(o7Wm!F32mPJpEfh3!EY z!6Jc{w+MC(wDctSWuT?Aq-jVr;4zZd2(rXe*nl8Qe}bojETaiF3$~0QxG&f;TGDh7 z`TVJt&qrBi6HG5|S*uahoLc;JaZ7EUTmp53fW0LkUVz1-Eh7ldkG3o( zSSAL9cO%#WN~zhT38mFs(rjhaNOmme-VO7@>+#E| zI4USo7DpC3qAW%XdbO;ICT;wo>PNcnLmVM!nU7R|(pg6T_Yp=mv85YcPWh3JFQ>|q zt}UlpX2xe`{w#-?*IiQ$el@I0VoU71+K|0YeY_ql&7V zq8*&tlQEcZ|G-^WQPrWcUn}D5gEp$fzOyRfux)PY-mRp%=BCtaEJ0nc7Z$G??xyOh zl$%^x6;S$v2c0Pzea66DSsCXjz8`V7vI--u=ZB_3Kk-vZr2qJ-p7=Wb(dNu%Kh*vGuu8N}yb*rKx=>4kbGPF}Q z9A)VD)zkpey47)Xq4TOE4)k?(HHdUz4V6NAr-u5N)TyZ)FW(MmSbjGk5LdOwHBli7 z!fJ8gZ)@Qo!LCr7?YXtFD8hbL8)FP@TZjEO)nPkVUGyA0vM$CIx~nca1T9(*rxA2~ zJ#-j)uO9Ojf!x3^139j$&kgTaU&Ycp08iJ)e$YA%uy#SGHNd2T{?-7K4cet4m+x(e z`e7Ff!qNmC5`=irGeN2oy)dmpBgBPHX@vGcFE>(SNV_#w!@Zh>V*m=fK?kvVK5vYM zp&+~o8VcRnM8zs{aPm&U;U3sn6?dBlt6(ad5sW1o?`}97jF}336|Cx$)@iC@NS8KM zVO|}&>X~|MF=lG+5Y>PR+J>m+q@RVT4y2Dm&^l=AW-5{N+h({%K^ryaKx>-g)PbG1 z1!gHUss&fHw1vWJ;kvpTa3>+ZEdMaP}#YbnEB8= zt*lQ&@+q<03;(;lmHLRv=C{Hk2K~Jijv};eD6UP=#i3Zlp!Y(tP(jPK#;FSJ*cvvz zS~ROQ+66sjGXeV?|SJV%^)m4oq?cELY8+x>x>a708dgQ37I9lsxd6jZQyJHMcmew6}+6V6o z?~cAei}gTXprJi5xOk8D+#V{_hf;K~mX)EsBjRu|#P^E4-8?;2PI4*U6YB|dU{BT8 zi(GL!Y|4jO^H)#II21JN#SZg(VFtjy-3ymn=*&2UzyDLHgb3wLWK;|uc}$N`0lG?L z1)#B#sX>EE2~P>PBMGhdzu%AD|7Q&?o4}Q5bjV9;0uJ*6WQv;Uj+& zd#ljglw^cH^+TVqJ_opAy;W)VWVFiR9g|!+Dk(1AfoFke73HNrTA1IBjK&f-D_V7A zP=K5Zx|#c^P8Kxk1CY`O2N}B_?SsVzicXerLt`-4VW59)-Zkk>=$gYnHUs9|z~?ev z#wh(^!@PYld*IuvFM0*t*cYo3RQ1Do1&!{9Sqt6O50^3>Ypk28H=d_25sT@Gf|jwk zxx?GGQ;nX8Rkg^@9*1FrwvNLvLD8}nq0tSRE_HA)pqCw0$4fhIr0UDLPhwRz-?}lwq7stmYqtpEhWEz_H#5*p?~fKi&-ceY z6ja4y;^NKLJ>$_u=!STlP|%0*s+RAO)|f&0lZWCfw}UFXQSrFoh9%$xMET?d9B}BB z1QqWUPM5?&u74tKZ-QJ^%pISo@X69(_v=JV6KJLZ7)WRvqYDP88oqk3;x_ufJHMNR zxdG=MNm#X@JCd*(LjN(m#XvN9WqWtyTvgHiZXgaPj28njqRoJU?gRwe5BL*WF^y|S04$V7+ zHFgLt=dh0t!DSiRcqp!3&?Q6J|J6{elS4uL1^woGY9vU(Ml|w(9fO!u+K7oFqg}MF{akfB5OvKp({dOW60nIcCjfXa$ zqz`p0BdjkLlPTos@hQ?U9&b4=y(PE*kk*vqD>Wcn2I23NImBd6i)gt2rQjv@4~ zX*fjCZqw0qa+;1a4Ek`o%J6y-h%-C8o3>DucaNlE>`>tQiRzF`7v!CeK4j?<+QgBe}csbuhS2jr>eOPW~i#ULvgyIa}}@`*3m|8)ByY#+3+de zcd}{*eyqax;0)YuLH*Ov255Ym8bx|P4VN=$o0+)WLYK_M#KybPchAFzrW?(|q6K5b zEF5F#fm!H1H1BN89cbiiRnzNR8t#&AQW~m!Zx(uUWj1?N_!L)2cun~fXEF5DryQkl zI%Xigp`4J8TVd$2bc`hw3sG4&a1M?rjIndjUMSAW9;BEyF{C*4lfCBFN0tAsItf&O zBalXlK^aAg4vb^Rf2Tq%U%lshcI6qEuJAXu&v46w9n^e`DzvxJUGp*FVdq_dks-bS zM-{qrfr`jZah$Q!-KZoi8VwfWlt9V!g;)`F$rSfd8WzJMi*Q^~5V=V86GMx0sBGjiGy@lP=;;g<#je-M^}4(J3%E}HQst)7d0%qi7hhtA!VX-Iijm#4 zY&{M#^v-(K!zbiD?D&xOe&}vmhntx^8&rU=UqnP)Vq8i@L^>X5aW`y00N$~X>%9>Z z0l86aH)8F8rftNbg5KJQ?m&Y#Vb(zxY*Mi~b?)px6#bvk?vw2*#Kp_4eCYXZH+r+` z<)h29As@=g=6bf^Z&)z{2S*{(1Lf~;K_8(*w&2i1Pj11lBWR7S7$)fAtr%A5%dMDu z(8z5#@1VQ4sTi)eB*iT`X6`-pzFT6Os*nRW7`VfL&*<$O^VEdCll3!%k#scEEZcd2yJpl{R+(o^54**=*tb)8UZMX2jJ zjK8^z{RXFDo82l$Ry>G@q~CAx>kS&cTTLXrzZ>`R(6~KnGU>BD7)&T?9!klrhxX#2 zK@0E0-2imPKKw}untMO?BYQvlWj}x)?XagEKqH~v2h}jr2?u$msa=a3fwqd7n4S;@j8YdC-DV1}d!1Fy+}1%k@@2sb3*37@V#-3Box?9T z==O8?_`>4smyxsPnbc~@}mLoZ&z$U^H}MMI&huBx6nbwa2&CAfKe+`Z>;?WpoI z-UQeFnkq~_3DY?p!VroOz-o&*A>U#_80yOp(?|1AL1`~GmU(^6@TYYL<{r|SD+ig_{Clc*_8$%2o zbDN`Fy3JAQ|H`#3{1xXp$}j(lR`xFB*1Us}fDXBXRzOeP!G6$+ci{((yQ?}N@%8#W zOue&rRT*r*VAT4a>I!T1JynYxI#3>Kjr+L3K?mN)4GVPdeM}K(@dvok(wUtJ)Oz~I z4LgcM>~mlFx~m_k56SD~159G5dZ;=h={4%1st;N6P_=YbZ zIL2){C4dqi;c-R)B6^6NBcd}G&tnVVk_EbspRA=*AW?i(0Hr;x7br z_Tp`9VVAoM(0^UWeJRg^y9Sg$6hN7d0FMNi2u}&<|Y&uVEjKIpmP#SVG9AuT7Uqabmt>$ zI@>rxc>$E&h#e{lpoB(%$^uNtDg<;kVgR<_QQZRF$ePx27IA>u7I+-WXT%P5Ezzlr z0D%Hb$c6-T&S4O?;L*eaT}M-EITtu$GXa#u2>%uWC|?nv)dbA{w?eid7oAYp7F%#> zZ-K6(gSB+JB8oc+D8wPV2%wBacytqBBK9Ppp9b!QEe~9xEYWpDTT7=QqBuqX?Enx< zKtDbl#~|JU9U#$KIt>y2Ndk=jAOf5zNb?UaLoLw}hFeP~8lrfl07@+c7(+m(4VnPs zEYJZaSW71q!hezg<3E)E5(zQ>)36DbPYmJpAkA7jr4Yrl1Q`Ex0y!1ymA;L%BgORk7lTs*OvtkYbk^UG*upLsEYOX-WG$T!h~l3F zc+3vhh)6;oTy9#RBm815of(MYUj4&vGbSMg2!tMbRGY*md^1*@jJ-Lc*{Qv0iDv968`{?@P2r(fO2we+!5fRq&@6#pU5wiNcVujBMWqdC)RSF za`Ep1DDe&fUI=)};I)7^4BkO{6<3i7Ti7Kl#KR;TlN{or7~~XSnw49CX~??*OhXC? zFb#Q6fN4lk0huOY{-Gtsg_wqXAiy-F3;~^QR~B2?rJMzNd@5K=r{kg6Pk=xBSG8cy zht1y6|2frw+@#FjIXpUWEq1JH9i4g%8VI1YJ;ZJ-pb3Kz0nHe+6wr!68v$(@v=@N9 zK0OIL3F*u(-2`-J&`SX2`Jo}b1w=FGD}b{7;Nb``!wv@(-miV!nK(* zd)mWVwm5>o(_s7)$^Ow6X#W^%Ieob}ZZe(!dIyI|g196y7$_i_!C(QVj$r~!)R6*A z&@lo`(2oTq)A2{gCJ>?E~dYi1epF_5n%dzU4ZHDO#!CAw*{cT)ZM!T zLc;LRy~%tN^w1K0v>#c^dCWUJ6Y!kDp9213@Jhfv25$tI81Eqcl`AzdvS{F;W|$ye zM065xc5I=c-WKR)<+PUL%f)#FP|`5`^9v}z;5`8*Vo?DmhNrj?6XXK{CP*0qI?cB% zwopwu3v{z8Sj(x%#eM?(8B`TOdBO-#Q$Q^ble$9cF=!xw@`kZbV*yPVga~NHprwFT z4B7~2%b>l0a0Z>G(2p?Px6VwuiA#3|y#$!vM+q?f?IXbSx1RvhUq?VKY@ss=0z9U_ zNkUA22MI9!9U{Q=cenu4-%$cge`#>Jcc#DN1eoql{MW_wcM7>s^0YG*TWD*l1^Q^u zu$Gg?#j^!`%3!Vlm%)4i3m7aGu!P1Rbu1UMf?ZY#Sj}Lq0Mo251(=3x6kr;%MSy9@ zb^)d#JEzd~M|XA!%FvK+#KkmZj{wt<{RAQd@y`L?<*)^Me7>`mE&hQ3y;I*g#{MTQ z(Egs&*0kk661YK+0-WO=E?S^>xNI$3e3d}E?)c{#``@rY``@yb^9vW>5pWkBUkae82>M!p3Hpx!6ErgtsvXbYbbFBno7l&T2m#&l9M;mw z=qS!9z?c2=2rvQi384IS>{3vG*`+W6AG$>;qCGrLF-vr%C9Gx2ol*q!n z(EjDD<&@{*N&+e~s3IVML3IH&rtUGT34O*1xSxc8JSp?)^>yrqXW&m}>S2FxBiAV5&JJz|`^`0s0z<^F6lce?lFz zM0e$cwM@BlngC_`J7@F`&N&OT{{?F~7rFQ+0aqAY7hnS16o6gy{qJoel<)8S%KO~2 zK-clWTFyf*ek|Y#gXaQ%XYiMR7YzOuV5;~Z1I&LLH50PFxfLdARskkzb^L%1(>KG3NTU26BrVLe=1-L z?W}BpZl}MsoGR1!{I4dYI`2?RKy3!~1Ozf@C?JSI69K^tnh9vmpp}4725qO&^A;|~fG!NW3+TZhLO>*gXaRi~^b-)vpud248h;GX03k^X1_?-EFjT-W1|tQG zVxSM@e@A_scvNAJi2}?pPoeSW0Wjk{U0lpK&k$h7d6ob(&glZoIJ*MOIL{YghIx?y zj~VBsLd-a?5Mai6l>jr&UkEVcoFTxB^9BL&*upSx7GQ>X+rNWm#`!C8G2^_8z%TSO z?HdlV#{xZ>_gTx?&&7uX9A@ynfTIkK3pios|7js-*yWr6Q|UzkrkbAwm};&GFxA`; zZ~|NC{VxRQ5fkS&gS&eE^Ft>nzc1wvxcrfT#|)kcc+TKY0e>-gCBW42Mt}+W4xazu zR!~s7{$&wjqIwbFXHT#N4{r|`33>7ep!AJq47trEQ*k!taR0e4RW-|CxKsp0gfa%+O0j4vH1ene&)xc99gJOEKLR?I5RtYe@`9gr{ zO@;v7n{;P`0MnVx0!(MN382o<`S%qOenbab0N+@kkIQarIeWNxzkmY_4huNK;HZEf z7@QDrlEE1RaQ>ZTa$a0^GPoqb)O$sMsrR}7Q}0ayrrz5EOucsr$V-9g{_}w)y0gDo z%bCk}!H)%e#^9-dg$$kxSi;~B0rcWwjOPmi`thC>4F0wt);I8;_`n4e8C`7 zs*OO;DPfl^0yZ$nCSWsz>;kqiPy)VU-~-^{cI{%~D=xbkBpx~M>PSD*}sMW6QDK${k+k0_NZrpj_9dxP3KQ8 zZz$j;gGK^gGiV}!9*5ZDgb0D5c-9x(!{ zGUz9u27@>Tbp164CY}g=4bn-#7J?*MppR6twQTWV0{SVf`W$kY1=@dvwVWU>9wnd& zgE0Ueju66RthlsbFirqH35GUJ5YU#vBmwOiOcBtL!88F~7^Dj5K8AmP%@AU`GK+w` z^&Iu4TcGmBgJZjlRKwcFO zu$zE~h#u3uQvMn5uwTGJ1_uQ!VQ^T$at7ZCSjph1fHe$`30S9r$2lQ{USW@RohBe} ztq1tg0^QE@)^awp|3v}Y7+e;xfx%S*`U@628T@PkU;l1e)A@$We-U7IxI;icRkxQt z?pvVS^w3()0WN+d;4p(H0={SPi~*hh$C&&sE+-lMDc}r)7Xr>PcqQN>gVzFnV(>o! z*BHF>$y+_a{bv>;`cb}{?BZpC?pqFPIk&mkTL3-vhvSn|zyk)k1UzDpN5E4C?^@t- zerJ;366Y@l1qHlf@ScD-42lRa4KGGOKMR%X~uDU%f+iCLf9m zJxz$dl@s90pn`xr3@Qo8$G}fOK?YR>6lPFW!22F1)rFK`P*XrD2DJs0Wl&c@IR=3O zDl%vwz>h(YfB*)KKY{W9RA&+_F0~kh2&l`Txd3{o5ku5cKoEma0ZkaR5fH+lod8b@ zChdiUGUy<{9LvrG=ifj+oBtmTAraW4U#7(@y%0ipps`lE*qec1wC=}Rv3 zsS6!4)>`;tc6(3MWGmNS%#CkaR~({Cyfel`>FQpKVl2Q#eY{EX=)u4h(1F2x0e2ZJvcTiC_tHU@TH@r&slf^X)$?euN?;~M+BIz9TiYLh+BSK zi0RuY0j6(f1(?2_XW-tdhq^iEjQ3)~h_9DY8x{;N=3w6^z{QVT(KN`D7#U;ih8$bSpN@`Au9X%i+DK1`$ z_$w-@x%wqXCB^>#h1K2DmA&(ETU)sID|;8^?GV?;&$~z&U9X@1MUk4jH$KdPCYOwj zO6>D*_yD(spLc2gkPCkwB{gqSa$G`GGI}{UF*+q~K%(s>e?~pJ-ytQezqqa-6HEKwrb!#=)e3?1Meu}VGX_e{+Hir$h>9H+x+Js=1m&C%`Y`#9@zM8ex@<=8cn=s znE2)0f9_|`=00!YT}>^(|4oZ6>XiS~&3n(QxZ66|yZ_r>cZ0q0E{Z_6SX1wrZaL2~ delta 98641 zcmZ^McVJXS_qIFtW_QyQ5=fyX^qNBNgx(>5AU!NefGlYwp@RXz7Lg(`$3hAA4%kHz zP+u!j?4r_CL^YUPz1*rJNgrB0RAC`Q<0Wmr zY9#ybP|>nsq#7u@TOnDkN3GgbbF7|H{*r1U$C9ie(*6}wt+t-hx$|;!7w5{c!zxbJ zxvly#yo-&ZSlgr+tF;{NiY!XMRb3=vzVg~L^L=GL?m9xUs(sQ%UrU#UdRQvIa5wG|}Sk5#?p z%lB1;tZ!;vCn~|NEyeq-9zlg=xh2K2Vp32qIry44MpmSw`lE;2_2j7#6)Go2syY%C zZ?%-P(JIoFB+1`Y|%Vhn?K#MQ8 zv%_TT8r4*eeqv=XU<@kJCn`8DY-ULjDqomWTDiKV)EjQKbXCfZzpTbpJFIpxvV|4Q z{^7uMlo9#pV^^>>MUKV-VRX=_7`vIQj3Oq@X%d{FX|Rqs^_lTuFMlwBszTElGK* zwOw3Nlw%eIM!JbCiLk@bM-3&pWpG1zZ4z6!+DffkxjH^4x1gvr)mK`YTUMHymY!9X zTTqNCo@)xlR7jSa8{1Kmw1SCNS;=y4rRA0MX4YVDUSVNwN#*KBvLn{rNY*bvH;>wd z1>XB>D}qgKB5D7zdZM34|7DGqC4cJa--iR$P%e(Nkc9JS`J+~fG`whq>S-u?P&ph` z=Pb9RKY)dEDb1?o%9ryWSy?i#s}(882%UuPchA?HKvyTIv?zamuF11_t<_$7&qKGi zZ)S~f#mf27!Lg`FpVL?!uXn-<(EYb;t*S2@7O3fR{~EBH$SA9)m76z9(wCuLX|=3= zs$C8{B3?4bs#bFQv&eA93e__-yQpw}Zb@lgQDLcU9iuu(`(@~Qt`Avv5Nx4+PNf{b zjL8*sUUhdD&Cm5M%&Q8<967c_b@9&jmE@H93TI35MKxBw>5A$^t-&(Dg6t+|kAn&P z{1f=#n7`1mQSr6?$)WohMZTncQT=gY-uZoegV==#;co?HR_73!PL)#9P8K0vX z+czMawPCi~3?#T_7w^oH+=a!Js}p4I7&}2em}RC>8LC3(SUINZSaMzE z&=)FJZv9ovv(;s$4C;qTo2$wjnq{ z8oi6jiLUL8>bMfnC&yaaU8HSmw0=vq8YHhw1bgc9pvsYcV=y~Tyr&W+br6^jD=E7h z*sUTfSBIIkGizR6PHw5Jcv3adtSxLOm~V@FRb16wnAlO3%8jL0XG7+|I)MSe@^2C} z+gF@hDa&m;PWChat9$z!v=Y;33Ya7&)R=6mg``bWQApfg(i>XMtFBdHGIufZ{amHn zIe9+J(^oJATBh#%1bi<$H%Rk6PkvruX|XR`R%EMLoWc-p;8X>^;!4>&6S87mHAKf1 zfxI6JB`nmmCa*9jcOmB(s)cGw&|T5~+fW^r?!lI~j&`u8-Z= z=4eVrX;2S)=DhrT!w1Q`J(xP}$Sc-oV&HH0VHHO-wi>w7blapjScQlR#){c~8gk@6 zx1wQC0ourAx9!pGWUH;b!ugW?iIL)6Bw;t0hUOt!a9_v(FVzb%s<+iOGQT*hu&AWK zm!G#dS2L-BR)W+Wh=Db-o~%vJmg)%0b~QJWv;7=QSFIgXFR&mO_jrS3^Lf?R$}O3x zJKwCT;tKGlmnu}0+#jLZxO&v^v}n0F9n(ZJKdu>RxLA3@otZLbK%f322IxNFM3-d+ z5O&2U)fCqNBfS>KqCqk5fjx45BTh?iR!%-f61t9-RT<;eU|I1JCN@wn$tuL)JaZCq z9+M!Ps!bPbW*&ww2Wv;GLJf~Vl*T-)`gjUw<)a&#%lTn;UFkO54#RBhGX`qL$i(27 zJ2R}du5qRnN2Xh?rMf33aSXYLzmr{G4s^oGzYXyAwZ5L*@-FE0J*dc-TlTSbdT0cMg?IyKrjr|dJUJ;{)WMx z@v$TMw8kREuR-a{mgp=iTlRLc#zFVe<2!u>dJP(|o)~TAT&@a3n~aX+nOByVpI5d> z_I7Z$l16W%*005(9$NRi7-2QG^NV~rX607bx7ygbdHIes%Y4G>D}Bq+OVfMUDQ2uQ z?p3Y4Il0*-xdpke>j6AftlqcB{ zGU|GF7pY7Q>Sv}y)M1S9u9v)CIq(G#m3P^GN%anJitrhjWjYJ?tQ?(XgsCat9263k((TWQro4&#-WI|hua;-9~D}mgh3KTMX z-i+Lmto)+VQf7pmMQ5=1|B_N`8bNnH^a56Nd40gehy&gTptWJ7QJo?Gs&|4pY^}z^46MIFt`gG~y3-CU z!#+iKlwN$`W_9G*4^d6@TPLy4sL56ywASd>R{vnAI#@u3Wu=n*B!p8`IA?3FDweO? zW0+rRVD(PfqT9%^0+NfedLbLu#R+|HX7O%9U*f9CIwiHQR8-yR0@= zF8XY3Q)`U3WaiAW!phZsviirAUvRSVDSxsda^28Cax7X{Ln2B1Lfvm|HjLJrw(*H)esu zkL_ZOG-}M2jwr3J-rY#19c-gcj`&*lsbWddk5ZN6ZY(3gj+GN#p_DMxOMnLz&m z4{71X?k1QJohV9IBZ=8a#p#ecZwZkrl782@#~bhp9VFQ zlEsh_+`oDk=av*@6=U)1owngzMKj9^d=M!oIE$V6-O2Diy+@y)jXAG5ofg8adqAXU zy+m`ycP^mE?@z_f?xnU^$e1%`hhmk^E0FGMR6C3$)WRlaM+Mp6!^VE9%nai47s29F z8bXz)Doo|dOVKm0hLg?8#RkNeZ`74-YgOwY-@*W+mp0_|SyRvlhi9S3bnOmwwIk90 z+H%lS&TT@~x8H{vLehZ|M_M-bj$NwaZLgl~K?OxQGo1-UMO==p#H@v4IYo-ouw?hn zh7{KvO6!k>*DH^!F?T}=vaL^W2*%Gx-h8cmc@t{T_(?S>C?{_wa@2bR&e5Pb*d;r9 zIV5chjC4k6B8L!#R24~MMDk_DV&{m=+!k%%wJ+$4Z{&pLM zE$xhG>|bJ9Ljp{{VCLBvS^k}>MZuRO#~NGBU1etE4}OYj#&&irD0c4Lc|PgW32ULa z#A+s&=VJfZ_zz4cYOZ!cZkf+?_F|x`_T=H&Mfvjz3bXVM&*`F!LMQ^7rDOlvMr9X4 zVq#f=+)P?+#6W&M%5eYYlC}@3n_diB58L0LES9^;DSx0}polDy*(+3Md1@4xfL7}{ zokPlsvhwpvp)PdMTt)5~gw1bF2g#OG7S;KBX7`jj&TN;o*3e!We_~{w3@!qz#x%*6 zxuY!IH_c>3Pc&Os54@)lxK%;cyy6_$wFE*Aa<#j{tnYmqL%YJpRs`EG>`Yr?wdloq zCf=r$)BHuVuA+8U19{+QSjH~3ff9Me$aK96ReGwUHA?emD?huybVBtjss~3=cOKS4 zI(IhXWYQ*#ofZN?D=}U=6#K)bGP0M=`I|)k6Dyam0|!T7H(3_~lwPe`Q^NO$G~ z8Gk@WPdbII_49L}X@Xtk6<~SqIO)ag*=`MR!vs>fx`7-Tic0@F8f)f;3s7UQy!&ZB zfKeJF$1*XMaz4lKCEa4B*Q#6{Y2^PzPEM)xoomA7=>jIt8! zrH!fWda6#4a*m!2LE`p;7vyH;6v6rxFf@Ws*iw)WRj@{g1eN6ape<>`B+UVC$gs-Q zj_qPicWA^~m)%pF>NO2Fnk{|N-Ht(LFT6_hoEvIKUS(%2M7i4!qdgNJMIycBi+BL5 z@P=$|hWc3prSBL>oV9nMGOvyUx91K{Z!*$~G4GO>!k+Nj610Z~h@fI^4uldlQa&C7 zISR|ZE-mIH`LS9!N~me4(?cqyVkCSsfSJb6;qkR;q_ST{{c#I()XS?DINr) zV$u+sh8B%CyD)$EF2T4!pKl}Ywm_p>t-(HCVW8rb9$c=+d{jim*f%q1oeQBdG ziI2Cl^5ygp7yz}UL9-zvh$c%WSB;*w!`=dC<@84*`qb=cQzYqi6(kSLH{!H2I=4A( zkPX7pv$Bf{iu1S^YNa(M3;PAVr(`e4Plr&wmG5|aNYV|co|c1JkgfX|%>)OZPFdGO z*3^e^(K;XZnzDH*B#Blmw%4|sO4LJ8zn3q9s@U&A*p;dmsO zlhZ-qq_89OH(UKZtAi4*OzzsHbGea<$SKM$P0gFXD1|$TQqv6q+ZXJ(B`|6g|Bmjb zEcMLxm1e;xD$7@a-E=$xjnFgIfRRkNGuC{H`mUiL*{7G{5e ze$so!V{PpqcNUf@_}J(>(7RVwXxI@e0@F@!lC`Rrkqec1qKBi{mCD%*g4m|rEGgv@jPsC18b?*dKD7bhpY|8{Lq#Hy&5AQ zgnaoTf_(84)E9QY0dnFpH)~jM()(v{DAYzT-JW{$r>EQQXRL5kTbt!zK51bjE*WrD zFPn!2+FIJfn^)kQg&8|U4o!slA3fYeqW-c{WczW21BZZ8B?tdNulFxUF zwtcn?8QvF*850<8Th`RZEM-4v15FMV6E>o~9KleI@l$8WqOjA2^#&#>8qkhC>}^H0 zwJA-m17v%wJH^)-h`c&W>0=vrA5*iB93zMbgh zqWxgj(1y%0SO`x@a(&oojjXXZrCw#f&hHO-rFSiQSA2ORW_Ys~o#{p6{IQYf7#zNZ z8!bW~-)!#(J59~0fZ*iDePtu$F35$ow2%|dPg~d^a%C(`Sj%`^!<`7Ww$l`Zi&j}+ zt{SMai^cZ^cDWFmK6zj>n!)W*C{8T1N}Vl{W)+uuV6*0m!wyDoITt*HnCac1r8d6k zD1*~mLYV2e=!iyg<|u|#AE)7vqL)Outr;@41r(?i?|6Gj%2_Yu$^&Ys%h}JLE5eRL zZ>7)KFvn&EK`qdkf!#NeS7$=dK>AI>@GmU$&BS3LckQF(wRcoYso&j-Hfmna=~!3c z?VvDer2`rk+JB2?na8JKlT|(y)Az9z$Wb#-ESPBdqzVRUu5&AArrwa{hu#@^jq4iz zTkRMucbY?nvY?H zyy>froixd`GbeePIq%trYU;7YXE=AqJ!_1J{irH}qhc8?w>rv!73hiO8&xaWehiZc zI`3e^II+DUxkJ|N}|u9ul3xR zvt7jn*g&_Ii2k3`m@H&Ao}7}R;-YzFhH+_$vF#U36R^0xL6CRFi>V4inWkw$+g0a| zgSI#LT02^P{UWf6snm5cr=_sSq|4f|LD*7gu(nbFE=aCr~$C-XfsoDnr(yS`bUClQKRYwLq7_JKJFaN-F>rFOL~T5 z7HhSNJ3PCf7*6!pqc|7 zIhStJOl#~}a%2#gf|f@a$Gjco`BQ<_+3W)=#Sa~O z)liOqhXZN7>x6!vN^?zbw=p2nGCEE={DUdV6=hQex=Ku(hBJoQPD6Q34lS6Mk3+jr(Lw>#Hb=O|&=q4qcwS+yuO!QtKPz`eiSH_A zn{YSSpl%D~bDGNb$&NZ;WqQl@eHXhf#%ib>pKJ}SF%a~nu%0fxK8CibxBeLu!E<|^ zh5mn~PqvLipKxW!{{3h~+3V;^_DR*R(2KQ=ShL3J&!IEw7GRt;n>Ci;D8;Su(=NVRTd@D;G+R;UzSYXWjtb%9`O6 zua&$fV3T_Db7?2Ukk${hX*}x;^vd(CtuAJ}zzzs4E}2)Dn+0zHtVyUAQ)J2>OuW5& zgSs1ia%O%J&ZV`wr#EV;w?YJIKb9k}z>h_@6ZW8%vi%|0`e}E!z_lseF`nSA% zjN8S-s@I);vCex92FpGF1H?n0pAapeb-JMz&^)XSw>FOs^$@|>2Y;DWm~1~p+wtaf zM+Z|<}5Muo%FL`H@1fR27X0X^83X~~es+!=V$KRDx?Sw#Pz){-?CddC(o z__R*Iiq+1=Df2vt;IJCTH`6y)wzbDe%%yM$NS=@J3>+tI5RAQK%HQazhr402fmO?v zN6|NW*6PEW;_sj-z-HJ%mi4eBZGD0OYj_i5^B&UM3UlSlj#JiTX*~r~!q_tClrVcy zaS=A9L$p_w9GtB6Qr~s3i1fY%<>7=7tmtReUrX_-INLdzBX$|7@f=4Iz*Ex=)C5me!ZG-1`VvhuVFGhFI)ra2qjNe;$CHHYgKc7EKK z9e53m)8-R!&{(-K76IIlht9wr2%c`JaDp740e6I-en3xQU(rOq;&wkUr7awr8MAg^ z#(HIBci4Q7bNhp>8qFh1Trm>e7{cJE4i;=#JZ;pKNt=YywI5U9Gm=W0_A+S~oS!?h zEUR>O-b^W8j76k(Rv~|5=9rP~2bV9L4A!A*NbsFUFf;W*5prr1h9#d(4Id5n_RF9vp|J!Dt?J zV=(=cjB**A<16!JQTT8|cK4KK`AX;*GP);h7uT1ARq>3GGPsLjhI%yLD#xH_>;ccy zOO!&$HrB3hu?*NB_Dopvt~#P9T8*r*cgVTQF=*qBn8e!AAnKR@ZzCT(0ZjS-6RcsT z8oF?tsn}AOrNUip%xT=(Tq~$%hu1c2CboE$tAmV>1-$0QaBCVXANRMK#AhTzt#)jl z#!(=pAg9v5MWP2-jXP$?A=Ek4HV!8#C9qQa%Sd-p>1+-8Mv@chb0XyfEO)~N{I2ug zXW}V&#fu7ORQh+z0|Tt4Fl-zd2m>w7Xk*ohIJq>yN>NpDk}?n$+{+2bAdN>g39|HQ z6&)5x`(2%Dt`XnUs;;C&s?gv7xwAwMLS7dKTCuJdh})@>I2ka=>gd`iO9ok;+>bEF zHgY6FHIuIfSzgyKa&nN>&HYI{=qdX29qc~deVp-H1y19`Wcgsr>wbgnfe9g8H3+Fxhoj2z4Th6 z+SZiOiL^$t?O|1~rlJ$$WZEz*RlOW1YlorSvvIP0n3e7x$a=QbW=aVfZbhrT@e)5A z?q5-HGHN(l_9i2AFuM<&b=R)R@y9sXi-_*IjL^p{iMqBPsO-o`Q_cR-Qxco&+)N&PKg66Y4z0|cgU<-E_Rx;zNxNxNj zck666$(~U#!r-hXTFr@AsKkcQ(cqW2{j31;!XCefD6xxn+t9@|t{nV005Om!|K5VBJ5-a=Sa2s+oxMYa-4} zknQ6U5fy1EXLBsKI+!3|jkSikYnhz2%d7udE6hFes>-~0Eh;mK17sXN!eQYyCAR=k zd@EG%aIyNj_xc|B;0PZrOPUGKHlW# zL&QG`UDcAEJzi`6I6bst)T??t21|pC z%wRbEp*yBa?`c-HJDPQM&X6xovm({pI0?_P3fv#E`%FOXvJ!ah7Q*q)RB1U2aMHl; z6RE}~$jIr|9QP0gj4|sAPF@||9a#B^H3aSTWtM>ZN#@^70?vB1UAIeAw$(<`{3^^W z-)iR8!H7Bd2hSk+Qgn2qC;4l$lLL0`*^*L5+ znp-@EQjj3g*;WtNN*S4L^-{~?WcN%&z@Fc0xWQUE?n7N*fe&^%{k+Zu)yuI$?FUdZ z*}4;TNXmw)xb9JG=?_eTUigVD%dxt+_A%c!+---;PdQdl&=&TCxT@htr&GX(#vM%Q zdYLu8Dgef~Ak+F0OyW3yK*)!xUWuj|yLwsP5Tk~ z&d;*0b@h|IQSi*w0Tr{Y5QSJZ8HG^|GUatll;bM`Ikd>L!qvNRS5X#&0f3p5q(l~Jy0oz{2=ybpg%*BaAD+GQZF5Cbz)Mt4G|fsmqd;G-5di9Qg7EkoHWDK>v6LFR&-hMyWUQ! z7`6d~(PJc3&BEo7W%vkKC!?IIR=}m_FARrn0s@m=yO>pm983)gl7ovd{@*%P**z%; z_POgZ@!vDGg+ELe)MJ{YFNU1me%Kp@n!<@6{nT65edP_5aXO9*d#u_D2FONa9{2Wg z;XIAYZu<#uXQYbN-G8n6AVKy#YO2#puy@847(c8G^HCwVXGbGuX1t^>v!ij)$?(3pa~kGDNn3~SKuphl#5;yaG@nawTlBYo9G%xRs~;6-mcNx+D)sh1l1yu zlMK_vxpb4@Oo~=|8g=Cbl_;k+-DP>JK*rcbCabQ{2j*g=bWyNr1*%`5CO#-IU2WEO=Z)~XgdrIm{d;P z8VxNCw^lx5hP^BQc#m8FI_rw?L|mg_XPzl@E|()i{S^=!(Fm z7wP)KWHtE@6`03)@myV_)NrTh%nBIL;4L2^sqmY3-78yD0$l{x(|U^2i>2s1ahMzF zG%lJ0-ao`QqtvjzgPJSz>QWmizRe0&xq*bF?7j{CcTO`uWJOBkYHZe~IZe=%sjDFY z9<9kHRkp9jj8450rIV|t;ekoFLs)<9yiN z;g4x*Ix63Aa4x;Zj2#njMFq7B?}bU+cQwkQ4~US^sCOK6)A_%<72lpKfrAx%CN=;((`zk<-gm90wy zOp&E`VFrI|YNZMLK#)c&twer#+nLNPGJa-et{XXxnXjcue1Pn6$c@cZ(&Rn&SV31N zZI}NFk)nIRDen)|G(`|S0?HWY`<3K1v+>tDW?t#;n0+sl%3GY7rYZ2{2nG*Z` zqTi}#t3b_49lcgZhs#rx>mYT|{!szf2GiPRTJ+&)npg5*ybG47O<2U86J_p3s~`O# zz0P!4Y$ongo6w9l6e`YG!Ivvg=6|l9XCraR*tJQw*9ZqDH8YEA0!YvS+TW$2OrnTQ&(6)y#2Y=QY#| z(AS-%+D4wa4}zk(S!4QK9f!qXX3utm!=Olxs<|>?^6;1*)hW`Rw?cxrJ$hWu%|fSY zB0L!*T@P}s6ZI7y!G$!pGlr{V?gQ3!Do+pk0D+rTxa;Su(yn{c3NgFF(VSHSC21Lq z-+Lakf>es$pRkDT+RWnm-4t=`K?_&4UsrCEZnsenbxm+l#_S2zC)kgafJc!WMjvI< z7N0W+xayb^np^4&O_ejzL2V~_8{sa+n@GIq?sit)H+77dfVDbBCO-m&W3n@KNC^%Y zXkMklII!wbH1Zyac+{HU>dN*Hyfe)XGqr7}*SfA&NmJ82bx1iyAV0I4gBCY%=`;ZLqvO1Oxq6I)?IIrFr&2zMOzzV1YW4_A!(BVK%G;N$0boJKoy{dL`SntJcE z$gMByirlV?yvnqHlGY7f#GL0aP5zcq&s$l+*~O-tGbHMQDG6tfkxu_Tfvv>z)=b4? z7(@tS>t#sBJ4_sD{R$FXpTGf_DpP~4z^1tita6`moS6bgn&A?$3&a1nlQr*Kn5>8D z+Bgxv+=bye@5G^VfQj>RV6`B#P~4<6)Q4ff!f=@)aOpH!Z7{6}qo<^a175cGaVHL* zKENFxL!ZKCPvhZug!=5NIP%UO^lJ!Irx%=5k#KZ}oDFuBaY4F3%ct30VXIVrZrNuM{ZrOFQr*qhc2 zl?Y?ko7O~G`WCc1EWKtmzGpE`iarpJT*5UzX~FFr{rWmn|3HBD?u=5gdM4*#+r9N5 zF5Rqs2hw{E4t3tKvRwn^{O>hIyaO9udnc<`;#6F6XfiB z*5r_MC&_3W+rDQ_3JKJvK!4A$`*Uex;f&@*vtZe_5A!fy@2E}oA-D`+x@R+Yx|nMy zGZaKekJ~1rzYEk6{>#`pzYl%#2ig5~fZA<8wo5${q|XP|Sb2Ou)RkicL4U#i#)eTeh$@o=YSPv|HDr(5a&)DoDZVa&$^e!^6`Qw*HLy~4)xfB z)|7}qKMkcVG)vCsz^4t-wBv6;(Q;ok9Pmy`Q1|I7PL(mQ;t)=c(l2mYQneCI%_o0| zn*S&x{|dBg=ZBc!(N0(K;60?!VF*9gF#_15Tg3G_4$k|ps%iRjcsJl{CvEt=>^T8VIaJTE zX8Lw)?3LTGroi9XPne-ibZ~@mBQ`;)+U|z?NV`-=i8z7vkS5DdV0Gu6z<3nHaDD99&WDEnbg-&I{M)M6)2_88pcChe`DI56IvqjUzbJ^BiXOx)J~MK~hpDbjm+;f*j&6yj z3d>HTK3$yp{J@WOn(sp}!XGI(FU=$^XVN0|D`d|ZtH3o(t4PKlZ_8OQ)8E-|)AjxJ zFuu5BQq@CNpJU!==RiLH!n^I^&SLn$Sw~ZKDm)Amrn>!C{JQowa$hXAseBSB))hzX z1|p8mhPbR5ID8$TCvj6*citMUf)kDEV_ChNaXuC&BY(Ea;Ecf3`d00+C-HoUsbq3QQuo0e^-coUTA&iV{r4qWpMtg`0h#Legl)mD!Fjy>4hH3X!>q`O>`j(5mn@^csRl*_dENltZKI?cpAj`FtF2uH>4K=QmAa?h%+R*Vy5 zlQCXN(M>L=)`ab6*qWMTCQQ46r-t|i_p*i11=fwY;1V-C&FC)F*Q4*wPO8z zQ(%YWchwHryP76oj~6%!F}t10@lh=yhsl>*AGl# z-OWIe9_d_!FahnM*}Cj}wdAUla@u8wg>uD;`fLN|A&!Tc*BPorPPX;msjg80KR;8Af1Fb%#BUlo3m3Nvavh7+q=0GB zsxd7l$}-!YXs@HFVqSvVL;;n+WsWTZmlkTfMqWjLV{Kq>vKxkj2C&)b*Gh0@Ibi!8 zYxej$eXA|1meZay+Wb7&bxM*Sf&zt05c-LjaJAmCYJigF#BF_r)FzBhW~PaG&HfL=UL+IK_{ufLfNB0&2yz|`B0qS&p5CenhJ4!+@+~S4Y`Nm{8gR4bN-+=8*@!dVvY^i$3KX zrf!Op9SInKji0Lsr_^`Nh-!cBv(a{<>pL^cH383F)B^L= z?T92er@3m|BV3ov={8a|k=3>B5Vg=*6>tXbq%PoCDcbH4Rpy(KpPN-&w7^We2sux~ zcHk~+z~23inOZupm+RQ|UB8)Os2yk5Qt9A`Zo7MgbAjGulrQHRINcn$EFEy^*{C}P z)Ckr0>XkAq-i}nK9OIZCHaz$hu;kCyozcB&k8%s{#7C)x5V-XX`)I*OHxgaA5X6&R z?T-o9-dZXuk;66$7GRtcUZ;8{8cUpxfJYMpSwmsaUKOOr!k(3#SDKr}JKv@y?XONY zur9iPF%5LOpsvnrXry&qaDsRkw*RPWC#l5&7Q~A?lj>pZG;xOiU_A`TgZ1oabt_U0 z1pfe~t-8TU5O}g7(seDnFoPG4qt#owwUh11&MI-94(r(fuLJyKj*E1{TN+?+7SZzo zYHb5MRh8=1k*RLe+_q12Nhu#6fPpoCA4?fIFdVD?HZYzZ1<|!IB$SdPPRv>i%yekqRX~q+p8jUa8Ewp7EomU z4uc3h)>X4@mpB>S2wDB<3|kcoq7g?XEz$U>#$Y@3bhcdu?-73<4~O+-jfOJ z7ZT!mNbYn99&4!QWW9*S=AnF-G+@6vV=Th~pZLI93o>Uq@RY~HY>wpen0{x}Fuwn0 z2Jd=())=odnA{x9v6&tJIJbU`oX8#z+@VAX?hvF;#K)Jvxl9u9<|Lw5tH*BVN}F2X_f<1_x=Uf=TvY zU3q^mQWajQLpZL)1(IYqr&+u@@KtNf_w`2F;5&G(v-29KJptI9$Wn9b%T!~7 zBZG9>HW2u|Y8n&*KYJ6Yu0Ge$eQ|SJ%!}hSjqK)(-32ypXw73fp}3;SGYlkYhjWx{ zXDz)%t~}oLBD-X0#QfZBJQ-n1=&1c!hREHicC_nx?vj``ov(#7bc&eEi3YW51l$kc zlOLFEO>nlAW)D}9&ccJwen%%oZKJ#3=1)pU%?3W%NFfl@(zN~?(VR3RAmo;2_ zd3Xax!g!!2yZ3@|;}#k(5r*J7MpMtbjbDq7#RrOHT~{!}-i`mUn!zg3%I3qw}+{EiIQ2H+?#oA=#JU> zsW}YP1UycXptd?ET$+M6p6cRKk9Io4LvS6`5l3p_qmA_FfvMziyv=YuI#u;|D#V+5 zGP@@P*-Nl}vP8Ue(8A%U*E#zO=kbF`^_P~EBh(GhYI@oI)FCI$u3mPE>oeo7g8Oi- zC9OBQx@Qfct(5o17~yFk`aQ6@x2;3nH z=&@&=QPT9s`l2f<9M{aGJk_qMA6h16JtXzRdcY1}yCC2`mTc^YVy|)Bjrd%Oob88+ zw9_dGl#Z@vC4GS1KeXn&Wug;^%v<9WugGDBZJZ7x8Q!c8^&d0jh8Q^H>3D@0j;m^> z`+lW@qSqYm0ylFuDt&6!R-1u#8`pU*q8_+W?{l*Mf`ozYTewC#2`=-skXXFFs+}|>v?uL%*Yqi~%t|H)Sd|;)qVV+Krc+n=&{WJ+qW+2$|(>pcJ=^<4^?Lxj(6Qf>=7uQgGxw`@V zwwJPO=OsBj=TqB#A2V5U6}4=b9qX=3YAf?@BVIBJILhCFtVY-k`OJ5S(}CAeT<&=w zxW0r9x5M3+*e|VX9`vlG9)s~}xZPT%!{K|loh0`Tw?kE3{n4-%RM~m?j*M!`lub;^ z;`@Vx;V$@b9E(d;%@a(qcn2Z^}GHZIWrP+>c9x_l|K{Y z=m@B;PbNsjNV|=@IWx!0OwPlJp~gYrXRwHoc1wl4bcUIyf<78yJ^qGFj@91;_wh#U2@3M~zh;8grZRZ@ zr8u|EK06){y{hlxq+pEQSWU%qW#b^CaIH9Cg?SH~%Q0XlAItP>5gk`yqudQy zY3Jpjz}?tdGHNXP^7{nwU5gy>*h-YE7B1n~O;uQY6-mym!C*PSh|LmBL{Ot#6Xfz( zI}L|1Y1d++Ezx;2SMw8eI^2`2y>2g z?BW5oNN{@HMm#bdXwD2&ZJgc89m(!!WgcvN4v!VMA7#yGd{zWbhfIH|EpoP2DNPc<2-Fp$80{q%^O26EMPE z=^u;|`O05QDNYFvMh;Sm~6o++IF z;;TSrXD5Pp#8f=eVOHe8qW=mGM#5W7LM=bVn=5kCR=K z>~yt0Ud~Oj+m#hK;?d3g!GRjkvAXxqlh}A(*8`M z7l=j^l`zQ|qK!mjiFoDFe=X53j5m&m*B$-iiFnb`e;pBTH~J?K-A>v>BHn8BPbw$m zeMbLeBHm#1PvK87X;XEb zeGFbn#5;ffRYX1}zLAL6`}{ZYXC`Sk6CEVFg@||g{I?SE5}&_$K{&hspF`M;7yo2YzgXm4h+d#yNcm7Hu7vtSY#9Md% zDxwdFgeZ(Zck$;xtis(yMdeI<58>a8crOv})A={@=T%1BL^O(_n~8Xb&cB5ylt0z{ z;iWnMR-#t?xsN|n8Sj1~UXb%YKs2859wZ7PdMJ_eZ#v<_B=T~c{}KMoWwjn9;=MTk zV??|L=YO1NEK@u|#2aw_Cy99V&Hoe;Z@T%n5#3I-orrha{5yzvsm=d1(Nd!FX9#(b z&HpS>Lq>d#sDK$hPqdPuFAyywdXZ=?Lti2~&lEd}cumd!GSMdteT8TrQ|uz*oizWe zM7)IN-%T_kf%9(hiE6!n?&6h`W8_m(%vRo z!Q$Q_`hm1}iTaWD9+AZq`+&;*9r^t}f8J%p{Y0q@K0vgcNe&XdMRbU$lIR1XcbMWs zqO+Ws9}zVq?PH=R81ECJTBLnSltAqZtk_G=p^btdUC;F1;4^3m}pG0>P{Y7+%SzjO;&0PK_`iG$xiC!oAhp3pLmxyK& zUDo`sf>~cv7eBig(M9wvks^AJ$Re7?BsNhHQ4rB-hPsKiG8Yd~8IhMLmL&xfeLz|W zk(;zoqDmvnW#3= zr$lv#?q|F>q72gFiSo-yOdx!N#6+Tcq}3(bMOrdMfjbvgg4m`yVhe_|ociH?%if@l_#v?S_B)QV^|Lt7J_ zCTc^phH2Xpjb*$PqHzpOCHjIWjVO=t(uszXR^E>AUM6WzWHYz}Q8a@)5*=h{C!$=2 zb|yMUS{I^eL|usy@~n|HD)LE zCECm+{fLGT^(RVZh69McWQu`AQ4AeK6v@!RMB|Bu5VdB0Ly59T8wOPFzlVv3lh}yF z5k#v=8%Z>VXcW<5W}Qh?o3zn7lqtp#bz;_IiC$pnwM5CJjU#GAG+u`?m+Odr=8~OI zPN+znNK~5laGYnluw1}0tzAokO1s0+QqB*l(&fpsuyn@KX#5WKJnp}Xusb8(O*EVl z?;)DU(0hr#B5fnlW29{&TFPuT6a7H6h3I3VY9cq|Z6*4NY40QYjp%-j82W(be{|sY zKS-j*;D?ClsPBK6=n&B(MAI4iC{bgg$B3ed9w%zTT%I8MgDIXQdY$MgqP`5>Ms$+2 z?L>bwZTSwu3ztyyuCwk@f;ncgA~>s4LM+L}!V160IhB znP?tUyh0R1w2P>>=6|mezR8HYiSA$_dx)+l+Dp`hgYz2E-=w`xG?XdcAUaRle~4Zt zdXwm37V;L+2BNo#EQY>AG=;Qxfy(`#k@y~oAuMDc(PN~&Pqdj4_Y-+p+ySE5LOABeUw?TJUArnPMDaD3in!{mvu_M5&}D5~VRoU7})!)+4%|wE9FH zNoznfg|vo5JDE0#D2phWs0Rn95zz{!Xk3r_-$M*;LSi4HrbJzdnh{;c44V^W6SW|E znxQR;3Q224)RMH;MBRwm5KSa%OY{d(3einOsYI_6m8TItOqfp8jWujX)P-5MCtAn4 zb|BK)az~) z(3|KOlVlM6Lez(-gz@?kwIu3C^bQN|PZUhr0HP$O7)aEUXb{o+3>{45Wf?<&%Kgnr z97^KbM8k+?FvH2IB9Sn35>Y%eoJ@3vv?)Y>W<8at0ns#~>lvCw^e5N* zbfQ+I`G~qR-VCDlTK~%?T*BZSqGT4FOEiaQCecR>okjEz(QKkbRwj?=A70MC*tOh+IU4L?elch{|^p788zT)^mx@kXAx;iuErgTF0Z6VQ%M2m=?WzLIt>=tmT?Qwhd|~2TM2Jvk_w`>M7I&qbJD+> zD2TM%iDr?uhG-ONYl%*?kJb@ALfU$wQ$%+V{ld@cqNYS!h%OOT6D?%Ctwa}?_CC%3 zBG@(ellTrJK0x#vgC8VHC+#7ke4>YmHWEET)R*W{qEkeV5zS^Hj}t8 zSlUxWZAdHMM%a_Y?L;mn-a*u!w5N#{vog;RH6nUe(-`kLq9)Add7@hx`U24n41JO4 zT86$v^cK-hqREW+GSN?3|9gdS5tHm9DkXZA=r%^&O%%(-dx*9(bT82^hQ3DhHEFLC zUBh^95N#m(579-&dy^=Fw6}=-Oz}2QxnBt1A@NV5cZupS$$Lcgm}DPOIz!(lTENi# zL|)Pk5S20BL83T@9wKT>^Z`)U*J<(T0cMu&R8pL=7*QwEj_c5P%HI=&e=+!LqC%o? zh%$)2C0frUCyBYch)xm361C9!Uv0vA?1ef+pE5X(Xe%>}Cu&EOKy-vvNF?$wMO~u) zOi_>MC8GL7*D+oLqQ987A<+#)NkoSjFS$PF-)AH?BC#h?W1=DkHz9H}o2EolNoz*5 zkEl6OJE9gu7a6Z5(O}YA5&c5cnka#&4bh)0qb<={(#lf^E0{QyNJva0YRcB76J0~p zj%X(nwmN3cnMDvOCfWG3`pC8O(1LQ6$lgL=Q9cCZYyF<^G!q$20gAqQ{ADC92Pe6-1wr zb{kO&(Q2X&M7I+SX1p~-VXVShq7kI6Bl?E%))TEH?GB=5L>q|OYQ|ehn7}sONpzaQ zRYYr;ScpC+?JlATM0XS2NOTWTE(^YwD22IfB#I|(6Vc~Hn~5G}iY-L>%(=S$HQ}fn ziCalL@WPKv;Y(UR3<)Yc{ttgnc`4kjkK8IeFTVAG{t80u3Qzt&r}fu+$fm+G_2(b; zSEvr#Q0JKbx>M)!VcTEy7muPUJQF|pNq5Uck95@jZ=BFyH|enHx0oWP>95LhrfNLxtMH7i{#3_&S%;l&`J4XYSy_eW zpS@@G*K{5B%#lO->jUb96`t-L&goAcrd4>}t#9hRLl^(h2ov=q9d`H2$92qab=c7* zrY}zFuS1hf*eqSdXG_1=F?m{8;hBEgw3i2z6`uBkOhr%ACRXA3eg7F9b(t>0zH~%? z?bq3S`P_&4YnLu!W6lry>q{Loxw+{Xp7K?AK0jm{@s$p9Req#n@@%xi^YqD2^cN59 zDm=@+HAC?!zRD{+kN8bTd3Dqm+nc~Ibkw5$pX-DnI_#}}ADiNJ*w`=4P`s|IcA(iQ z9agNvF03@{7}rOI zr+j4lDE&#+i8&;n{PO$%TBT!t--^t4lg6S9OKwQU}v|uGk9C^M$5rWFZxv zDY?PA2(qOL&%K40bvnw33QygICKoa^e9bgfBipL*e7McTY^!75qf7(IswzA&zH-yS z6fhN@8FzS05&COjxv30!MulhFpQbWoFcqGQf0!_eBNX_fNk^em;n{q_bT`>pg{M{n z(|YntOvLfm=n^QJ!C6vjm+Mc;=L*mM-y7&Jis%Z@V~;k}Ulh|7p4QJL>o1Dx3eSnQ zjr13UD!w{RY_7j3S1UZRQ(EdT%GL_c9phT*FADYw&+z-(=r0O)H22LmspXt(l<*av z4VzMQAfg@hdzxzG}WG^(#DW4|mdGl>8N* z2Hwv4D?|6_`=`3_Yu@Ux9Q@q|JcNcn={I+k-Q6`zT=&{5J#=_jTiHT(SK@lxlG|{P zBH*D|9pO$mE&tyL z);fQzOy6Lych?f6r>#{|dl6x&NNx<$q0q zc5XG@NnT&moe!;sNBoU<*lo~Gy#M;|IhOrvK=3;4o>G(5{}~xPz5DO^;Za*XA}5{y zXE`H;hj#xZ0cvi`h}-N&|95ClU)`O@*Vrjl>+B|ozs$6hvf_VNZ`aj{ubwbp{%gIF zty@nN4@JrU$+o43GUfk}Yo_Tv|2it@b-ZT#FO5ck_g|}lfGvm5OTo0p6z7b~0-jCwEud%@yt#;Qyuy-q_XE_*1z@tL+E`80AwZtkbMXsCky-6bV!RRnSuah0|Joo2S8RI0GWFLWaj~p zfd@dA9RN%^0%Xbo$Z;ti^+JrSHUKi$0Oa5j53eCcmKngsNEoDmWQzfi5e6XjUp$b7 z7};9@WM~19g#|#S6#&^(0Ax!6kP!ty))N4kO#oys0g#~tKo$}JnMMGxiKY@HV+eq( zAOJFd0LbnEAcF^hEFAzcaRA7+0U)CWfQ%UcvSI+pd;uW41%M0|0J2m7$V34k+XR4& zlKOyTjR4U827v4j05UuP$l?GXQ-cy^9vK&iL4~yUt?vR0xn%2!K=wfK&+J zs*I5eAx0_$Kq>@4Dg;0(1VAbTKq>@4Dg;0(1VAbTKq>@4Dg;0(1RzuhkW>hOR0x1n z2!K=wfK&*8R0x1n2!K=wfK&*8R0x1n2!K=wfK&*8R0x1n2!K=wfK&)Ts1P8j5CEwV z0I3iFsSp6E5CEwVCCWTfA;h3U`#;1-JyQ7EBbWrAUB+8E2_IQID)0bsU?V(s-p^J8 z__mL%Neb*Sk#gx{yv$YVV-TI-2Tp;gL=UwjpN$0ibpN@dNEtC%jo`l#$`Z+U{4RVe zpx1h!;G6W|63)NajaP?GAjQ&4q9kvE5tz6E@4yA^fe^QT!%VydQ3b{rDB>(X@U0uH zi3&_GA;#27Y6(7bBN%)u#n`+-Ern0^3nW-w0%_BFYY9GJ6S%J6;FfrYPl=6?bC?rp_tX5WH@ zuO&w89;}3yDFGhplf_j3pI#awjuQ=iPo^H z8mQnMBT@P-nKtTU6!tBU$m4*JF>)82ayR<~DX^_XO6x6niEk&RpnF7B$L~Z{OKk`1 zyOK@R2KahjObL^v1h+e?QOb9+EOPT87(EX|kEibd*5{IJlS8%feV^j>!lRUWm1rZl z&rKwh--+@xLsgb0t8lr46nyAaXw$IIAiz^fm?;x7spkiL3L02VqA+#=pHr#H*X}~k z!eA0yLgWFNjY@nZ~6-Dj<%v^9p!;$zkbNP>j<1~9O3CyyGX0$| zt;LmanWo&0Ma18T> zwW89;kPM&dr#Ym}ZZ$+1X5hSGw97k7vYjtI{kvP-D{K{HP*(ekFj^pU3P3P4xN6_($NKo+pr_iLW4YeSP&I6A_aW)WA z1fP@U7sX)R}LwJkRNZ2G3hK<2jO;%Gvc}ai$v^5!D_!g}mJy$QzJDowMRbnqX12MMC@SQ`D z@fl?nlawi6>A}3sStPtKF}9pUVXMwsD_~p;VXvLV5XJf^BJt;}t%aRs9}6=r`( zAu`15&nZN##848hAW>26H8D{nd6e8QqoI5Kp`^OrrNhtkjyswehQK0WhMc`Hg~*n(7o!lFbM{yYkws^(Ng+C_wKt{^nRWK| z6uKhr6M9jQtULQq3Xy?lA44Is@$7FU6cV>DGbu!tp?wjB$T+mGrV!bO_Kg%G6Vd(|g~Tn*)GsMWmZJR|3X!pB z&!-UCi}rgIB9qbnltN@R+V#@-Bg4@iN+Gfx?J*Q0^U)qhA#sUQmqOy!ttExTP0MQ( zB1_WVk3yHl^CX!R6qj<7C?u}k93q<#mr_XF6un0waUr>tLgGU5a|+Snfc-dy#C_yN z3eh2_{YMJX0jK>Dg~X-d3kr!#L*Fw0`A=_oT^Wg>ysj)uA#q(;Y4?J&e3}ZN9i&}=CJde-Z35z)Pg0&g%`kl20 zKXU*!rS;36~4xi{s%D5l;H^vtsVGB*R7?L+6Gw-PqMR{RE?+Ku*N6} z25p?1Ht0uuwkP(obqY%_i?^No*65dIj}sBU$;(GW|if~bJTMD^&8eVmH9v;c}|U1Bb1{;owIIa(C9tMU9HWLS z2Ml5M8N!%^BgU%5l;6wpMw?Vm!oIg*8|q-pX-iV(cVL;UXE%tmFHh#{yg(87S4En^R~6x(%P!7RKW}NRJ-!`fY}93 z3DFCdPQ1|_YgL}R2IfIyq&0^7#4Gpkfv*mf(ZSM|=o6LJ<#?kkHI<*aZ;e*oFleWF z(`G)vhfyX=vI#CSv{;U^)u7nqO;J+EqF3*cwX_A^4yd#bU1aFI1RM1m>J7mWtz)Su z>SER#UnkE-y=jZ3JP`G6!bjYMUczr!9PD~my?-gkr_WT=2vg$=dZL+w%gf4R`}W8h z$ERJxhk#y`<5e%AACh~i(OB_CM#=luQutI7!ig5Rlz(KcW{L!!LZn+>BKgX$7(Q8z zw4^S5Y;DS;C&1m;{+vQSJaCFy+|o`k5xtRuj~P&J9G`*~fBzwLEv-Dy9Rd}aFcst@ z+!FAuk6;Q6DbEu=QM>Xn)6__1tx(5o@p)W#D;yC_ND9xMK_x^pw4_|Arx<5TXp(5l zX=khW$I5Z$ze3Hzwj}*eD3cy5JEX`;Y%Jn=?sG_2g|dvUh>GR=SE_Z<-y%))LU{^T z!*_V$mA#Azn_U5JLI$fyHMJvDj`e-J@zJGBLk7_qXDSpb%!f`;i&!#YYr>7m|LjH$D2LhUGI4(oYMJ z(yW4x@#Xb*ppd(g$uHhaMCXj~!@wREs`^@Pd9eGzo1JG5p?0Em1_>0ib$ZDjqJssc zQU%#V@N6DN?&+%YmrtPqgD0rPEa)h!TGF<}$M|+GpZ+J>vup*vcBh`sSA<|c(yoFW zODTMzO*JNxqzW9;hV#y$ICp4C867Ne=xbGt4s0yKW(R_u5V4d%0mEJ5lfqk!rS0 z2RVqx7gmcX4@CJ>$rqqMFByOqxhp04#gODu0I-59n$yYJAk~~s3`yn$LaVTWpbTR= zLD*;qjndt7iXqM|FL6@&IfvekPphOBS5hm=uKMc`W8Ew33WeCdFJeP!N75U66YIV#sZsCRrCUTSw5n;2FQYy-}YAI69w!(1@ z&B1iOq--~Y>nS`Ol5p@f=`ZzYtDq9XZ8C%d4ddN5s)hN@08#p zTBEUR6Kf(4U5c2hT&5CV@t3s*rF4KVSI{Nm3#deHmJAM}WIvH=mfS~bQOc*#)Ul%E zsl511H5Nx;uChmpvM2Dzkt!?=6y6wn(8aTGnz*Kj`le;RS1~{q#f)&LVyeYS-L^2b z4S!i0$5oe&8m5&|2f<0NtDJ9)I`%6Iq<@S`{_Ro8+m(2ux)?TL<)BDUWL+NC2bxft|c;9V@F4_B$#mO4D491`;DW5%kx{KGYBeSF>sX&o%DNy`0qaCIeld}OtnZCy*%3RoGPy4DxExReBgT*O% zKqg;hM`gY?O&!Unltt$Od2za0i^rE!-=v&#(RwQXupf?1idK<2g|Bf|H8mU9`+wKM z`L_db-?=Xxr(hxv(?e+r$;pA(psig-5I3rvXVk-^%4xC(?rz1=P4_BN%iCnAN&Lmg zLN>m%J}TIS7$?HoI}nR5XxjjD!X!ho@g9;5slu-hhax;}poUq-xWp=Df%6ViFiVyQ zn_bZfpSB|7tb<53d*N%@3v}|U>@h@wTGr!PlL`g!4LDe~>>`3h%T6iMUry-ebwi{p zlx0i<$E!%)+^`EYmt=;RNY9G`%QyOJoj4t5 zD^ra!&=GxuyqQbt-0t$+jG+;#@irGs#jRtY`>`KHfw0 zF&?$Tbn>n2HrMex2K2UMwJB}z>XCP0U*4@Hx}gqFZ)nV)HLJ>2+h0uAd3Y-|2t)fo zk{H?t8k=LObyfc03Z{g8t<(sNZ)DK;29HEbN5RVMIdBuoR86FsJ@=DbW$5@HLs|$_ zBoDd-m%$}5u3fTl_}b1>`|+QB5VL z*Z4K6mgiNqTe50&i=lLnms)vN$K2#{@ytj3gl$|Gp5EGM@lNqlhsxc8mQ9M6)600u zH%82mc)s_RwIar^NE3r)l%SWkY8L#hlRh2#8K>>#TcNI?z+4y4&$oiyl>G^|dc%Lg zNVyO%mt`;RFlWPgsXNvZSexBNoboQhv+fYtm?MDh+9nK^(-z&=C}9aawWm*Zo zk38sDFyGb*CSO1T)pnFpC&65s(>t0KEdwIz&pk`fpHLaf5VfsJVPhJt3XYX8A;>32C-aI8oUMBZG#^kmuOW{$$X8?@b%{!defWAOt@_d(}nj+076`RAnCJ zy2im|IqA}kBeu392SFxbK%qK=EiwGSKnPKyx~xFk&T4Ufq94X=_3HfB&QS7M{V`_i zR+ln9eN8P53llsNEhCB2s2-5ThOF##-1fb*o#}jDH)tn3O%RHZco>C^F=MjZ-c>D+ zYhJ-_l{Y)oSR54uNlq&~I4yH?!upXg%%~|=o)Q#Gq&V{K~jSy&g}~GH;bzNN^gTz z4>v3G^v<8xD+Y|N28+&;g;)K*ll8yoRsYYWCcCbZm6bK*xPk#)kC!;dit+g$;oNX} z4QZz=ts#dO2yk+dg=W}LgLj#W#u_{l&9J?Ouv5&@18h<`WwA^)8~v)(IonOlEH8}m zFtgbCicx9@zV%NW*5-VV9&VMRF60d_Sv6ki2V81Dr0A0zwF1wF{fVvm-{aI#CQqEi z?$_FJo{V9i24kNNB0Jp17O+7hOjN!3qa5fO?F5t_HKjH`X@tYLH)_fmVj3YB#&;&t zux#Tr5osOZB0|s#yL)U+*GZ&}f7k?e)K-JRCT|8fj*RBLo2ubB2oPL8^yY#=-G}#S zhV`TNL^L9bG>;?wmz;*BL#HhK)NR=(lk_3;E9|Me8MQ>~ z@UNy}4U7H&UEX9m`rxfM)GBEHJ#V<1f2J&*9wbmU)RHO$Q=+f(Q7x%B@7I#8jwLoi zIW74rCu+$tvAdQW6BBG`(XWt6!{A6QX@MRD2buzh`(XBYHWRG{bYEXg7aL}weUOc< zP%1Cxhs7thwj69_Yr7cl^;2sprI1cMqiYMEmVFYKE)E1cWb$gY%G9p)6~$8 z+b-bHd2nr6C9(cZX{UtoeHZY!!`YkoH1~kovWDrk<bu_gd z&GM0fMic1!h9Ee=wemyr)KLCcWz|nPZHRP&P@5{d6KP6|;H~H57#4P%ORgi56}1k= z;lJd1U&{4vfgH$n$gsNb&=5Q_o!fw|q1cI)99Kx?7usW$@=20IQBR`DrXL?x8wPbe zp~ms7dwACPtM}DrN>q}x+(YVMDR1!sI=Bq*>!?GpOt?^$9!YWv0k&zOM<`vBTx{|lB z;9fd(7uLpj9S;vG3g(f$yVS4Dw*5si1Q*zi* zkb@;y6Ib0qN=iMBNP?BP^S*o3nl}421Tl77%CqpjU%{uug!;|`PZk1^b(j+6CWOQ zT5ZVdEz)9?T5ghci?n#9x^KSgW9Pca!|NSgWmcF-ST|60^O0>Wd26 zs8*Om@5%a_GTad@!;C7=Cv9oXlds?m+4Z1dNM3#8DM0&uJj3FC=ucTFN~*%)-#(nL zYJz9E@O5{UheT+_l=+4^X@yeB~`%8og=Gfc3xXK=`K2E zjZ_vk;OV>7CVW2E+R(iSYM{K?fTtdWbvR%do}b)i6u+hcKe$Y*XxS`_-{4jJM-6z; z*VremUal2UzI9W)T&`8NoRbu%3sS6oTkEd;=|*m}LaS=|T_Qg!h#d1SCV(<4(P{_J zt4#~pAT9*K$_H-RQERn2{QIjoCNFtL)h%mYNr`qzRgSrdK6_UyZ~4-rz(cPj69q1Q zPm5OWx@rG@Ppf9Z-8i+0sN=0y(ym>ny=DpEBX7bGLYvlqU#o zqOf8gXc0I{G^xga09~r;K?UcB;82jN%ZFM~9B7+V&JVRJIM{ZV)xIE=PiswK@@hg-0x%FBc3~Uz) zo~rQ_dR?*{1)prdxIXKm63f~t531t@sUH1jK)OBY)79)QlzF^w9-l~H__%TS}jaHf=F~){42@$R;`56 z-Ax8dFO28-*n<4%Xs4fCD7tvC=~R#n26+R1a~tOQNp3bxKEX)GWeJHaN*_~@OsGuR z?HV4yc9X5%t~G~^<0f1FO0s1;v`WfBH<`~)tv((fag*(RCE3%RS`FnVH`(Y$tBxup7?q(h}$iW&^q9XIe7$mX97` z*(giErT^$RPfbR*d(P*kqHWoYcI@F|S9Xuq*wR(9>+HqOBq+L9D?#sJ80AAVLkrgs z$8<(t;yj3i8C#GV-Pn-7_Bk|kjf)!dbqGK9xfX@1BSH0cK`POU%l2W>!uG}}Q~g3q z`3P3mPZ?TMJjYGKD1S8OF+ao3 z+A&-U#<{5FAM}q;6Yf6(GYA}4X_}#WVIpjHRB#iyaNHlE1;RCvN!2V9(|BDED(uR^ zp#W7-=OIH!^e^eQ5Yk-?#%F;+9}fmS3o;N3T$hnr2p(uRi`_aB{X5-*YDz&W(ZY+e zL4~QvsG^u})_G8^El4FA)tDsz;3E~yWv=`ty2ET@Y`D66S$XuXN67b0Oe?Pnp80iK zd6pYgPMkFI-oFery6P4}x!gpWchhF5R&M_ekJ_=OVh$_%C-}|tNgvUFNM<&<%*k6~ zIuz%ZzQZ0%KO4!}$u3 zT$PNLF{1&LrNQo=eA$GH$$05C93rJl0Tr=3gQ)3lwCEdn z>}LwGPqa)FrI;!*t|?!87qk3l*YQw7a6aBvS?5Jog0~%D^YNTk@e&xZSyhmY=<<#? z)e_24HwWiUHNkRNQXCKzrU5#Rs)vLA=RR7ZDGX{UxCpECiJObtDt#sEf1% z=_RDX;aUx;P@od$BMHr633H=Vv4P0*uIEA{YUmWWi)tI@=*VVLt7f;rHt-vlK)(71LvN1p?8qH4$JGGtzcT=jl2@*4@mr4YZzo9 zJRus|6G*@{Pk})6d-W6;D2XnD1u0sr1qabYfP0x&5ZK$G$9uU54!6OS-dz%ODM;Yi z->6i9c5vyP@xg=i@o(bT$+ zeI;@*TGDTKp-J_hTaEl9h=__@7m_t2~sm|yjQBXY8b4jh%&J1@2!eE;3-XN%z5 zty;_Id2poMKV$TOf%Lrqk#C<13i~|zo8N-Z{z5Iz+Rd{L&dBVS#~1#j*Y=<1lbt@+ zWXM~nS~F#wQ5i#e2;kY~-HgVeTpXCJpwl6|2v|j{$lLB#gK_#I>hRufTsg+;8dG+( z;OX&DNAD)u?9Jv4>NFFe*p7d)t1r_FVT`WJ_v!a zjUmJecy2pSP2tKRs7U*keDe_;d?XywB9$&JdCDPJ)yB(?l)3hh7De!jLpTQmBkN%; z$Kwe!M50pmekTi!sn?a(?<;O zut_9U4c~WwAm7-GSX$B+p?SQcNt~0v1XDm$ruV+oI+H1a%3*;kAd}~4L(M()7OxMG z{DxYf{X8=@k!dP*H`(~&UCg^i<3G@}R@jn?HoetS48=fen>JnAx{WM60-T6J`K+Zp zKeX|Mbs-~ODyZ#lw?eJt6mpko0oZkV5Ey%`%95%=K`L>I5aEMC+|iqg4h{K$TBaG> zrXZnblR$9KTL0ix>k_io^s*^-pOCBx-*ii@g9{$2hccrTnX&2Ebqb-Ex8lcs#`O57bh4tz)Q{Mn1= zk4DQy{)(3y0$WRE2h-PoRcqp?t5E~AwGRQ;A_EG~%A-UPHI_oi2s@~^($LMS**zFd z^&~6Y$at^eqiAz7<#PN63Lpa-z8X1ekBKR}bcE=!nN zumn$G(b}FpHC;4?sh=|q{iHX5KW{B3hx{Cz^RAw&)xlG5B#z>2EtE7^ZQrh4H;-X= z&5-6~YrgAE9MOCyrMc)O&9|*ZeS_6@?V2_BApQ?t4x=-25dSg{#Lp%1(}Kj}l>G2p zIP5I#rihvkbD$)j-WoksoPevRP@HGwA-ZSfcL?rgGBxr$DdzN zQ-|it9Q#y4n@)dk;BTOP5zz95Ad5*6y;K*zU@)C-icxDF0<7!P{Q+}EliY>o^R1hNKvaw5p$++;r| zf((zIyU6fT3&P%H_4(N(oW!KM$y(RNNlZHrGO+h16NYKidRV4%++^?8gDQ^nARAGT zOw?^!eU!%CWKZj(v^)>8g$2nx)fm0t*@Y`b^O;>ZP~J<4ck$1(k!n1pm{!kn(#>8u z)<*VY(cl3egvlG3bklZi+E6 zI5r$7DMlBhpot`;^N@k*BQiavp;d0`&q|>wR!Hh)ucGG5N@E&2;HG$38Wj5^#h!u` zSZ3QPKf002l|^-KO62PWk%f*Z<#3Xv^XWse#-WV|!vt2WcvFXN&!CxfduA%J*~)#& zV;RRgG6u=c^0*o+Z;+Jv7l|lkVJ!ANZCxb4#%fiR)&@z7f02lGK3M^qFyj;+CeI>;7&{x1^GN<(fDHSD!KiEP%ooHPUI6D2qg1^Xs^&lN3Msblc2 z*@0@^p3l09?Q&09e(Me#JN#Isn}PEha6B%zJMx(E*eUP52E%5Gi=yInElHVZP>g#e zMZ^uQIG&-UI^x0R)JZsvehW#;DuZgpE2( z+W>X*Y?*2Xdt*-FQaG#yW-3e%CFP1Yv&HVws_l=uVv{e-`N8H!rdfun{F zhQ;^)WF*?>ki~gBm9K9E!wzp@Qac$6;7k?OG>>F2Y>@pwIS1>K##85N?RcAx zRv+H3s4ax+qjB(8hzGre9m0P)N=4W>S}S5HN0^ue!#Z-mF}N!)EpTA21J$Jn#XCwx z_;n1pv~p9l9gFM8=8^&@y51C6!rS9TY#0047VvN0BAzDMlr<0uV^iKbKb7E*%R41unNukrF|0q|TPCO+{>#UT)BOGL=7}^CPJqM9h=9=nNMGm4B;pn3-vWmZl zV~Xr#RIvllX?ocef$PXIgwRwO*ojw&)aods44f>ZKx1kj-bt!eXb~L$E_adOjyHra zErKJer3T&Nf6;mN3`+KtyREm}KgzBVpPD)+!6%Ac%Lxjt~eFfbdRJE`JMP1 zQ(+R^H*kLSF8{V6ch70CXhS>8nG`giO+(d#_{bHQNedHj4Iq<(z9Oa6c2oQ|9W}2Z zDG~}&c-9e8de-qP?>gdz=@Y;U{i_w@+Z!+#(4!zKUSnNv!kd-2^vJYBe#uM3bC( z6~VDnXv4oG0ao7w%dm(hp4K8QxE7>#{Owgl)-xEy#rVh%p<}4Vpfi|;BKggCfgeV| zbr!mslx{6*)0pYFo{>m2a=Nc^6!!oT)45N5dWyLvu0Ktz+{KK!pe|!OVO7~p& zT`ppdyCd;`eieS5OX!3^T%_QP$LxfUE}`rFyU6*=2hV(YSWL26gVjzs={X+Hqg9t2 zs7sDt#x_6RpspgRO{->BXQ|7^v;*ZN)iyP6knC`mQ6n__%n4lA4#S(0^rV=0wDDRW z9DfGRwE1)288}@ZViYwH&w}96Jv3)fT#M}VtRZeA_Dw^$30=6)Oq`p~F(_twSM7D4 z;KU=FYU}iIS=nyt&2H+XS*Y3ue5i0Rdf`>XJa9H1D?R6?7&aTj?zB;6bRZeGhyYf+Asg@G`br9M z?y<;C@%wSSF|a^V%qvJC_FZRB;OKRyn$0 z)}k9erIDLv=sC5T(!ijp`zo4rWq=#~v#-_KO1gpG=U?dJa(~wm6fxUPp>m^K1cX2)!)HJjIuz?1p-(4*}PF@VvY1&SftlLj{v64~Ne9wiuz8eiizXpRvleF|m1D z3l`B<62Eyte9unI@9x!!XjRYLt}<#aC$M~=8fFjUPMtnqMPCH9k0&rm zOl5A5|81rlcL=L{2s7QdLnzHhmMIj@@AT0MJNtdEUbjrOo2L5?Lj08ecG2H%`rAu? z`{-{!{T-yg!}Rwh{e6W$ZxbK44SpR5W?-=$P_k=g_OSoGmGl=E4stJfq6ZJ$ueN}} zA^OZ%c2QSqHnW{(i%hefF3VMeRs@_ei*~{(i!aBjTN5fI8taE1bQRs2Ps_lQE-U+L zQT&a|xQG9%hd5#4_bzM0%~ANDo?aUbP>}|+*0EQ#X1tr9){;NFqRr(M z{k5X}?WzQP}enzn2161w%28aS*lGJd!QlpBTd=Es2R|3>*FKr6v(+yF}XKrM!^ zzwvLBXMr#&j`tL^JHK&N3+BUvK=gOM7b?{O&o!;R2?fvPR{+fB!(v0*L3~8ExpF?j zx$S#A0fqp_o7LgYUw^=Z?iBl?s2=WY|C6>&#PHdeXnx~8o5t^jGMh90XFTprSZB)V z;oR3pw|Qjd-p2DG_!_KGX7Od(q&s+dqkIvLqN4cxJK9T%fMrGAA%a<*pZ|)jJtdjk zLPa`{3&-cc-oCB*I^*tP=S&!VR9zDBUKw~*wun{tb#A#rz#JtoF3ao9#_3)j~^cah6iN*Zr*|rBbbq0rr)6f@o zMb9M6rGa`hfB69V9+<^KonY5Q$bqKWF9Mi4y9t(QM?jX#^!_47wREDZ`iK}6x8#`~ z%Ap^-gWrjgnEm&7A6cftTK7?eMQN+0;R3Gn3=17io_72xOi=@?a^eE?< z2z|JSLFy{bVMX+gf(}YKK_sWgA$drY-a;g!GCA(#&e3`&5qp@UNAbO%+Jbn=(Rk%+ zN+~GI?1w^=TsIas~Z$ zPe$dPYbt>?)sr>z_Zy05cZyk0}3gIyKpk_5fC zh&4z;8w6I@qb!#9h=n}hkh8faR0Y7yfozlPrU)%VF0TkuD>^kUA=HT91yc+^dN zrW4L={=H3F?hxSTOdDMl|}NatI>V~ z+UN^Jrf65xgz^0y@z*|{h4ata1EX;}JyGzP++Lq60uXVbpy^!+3?Vslf@Xk7!bmg9 z$T|$Y5gbNzCW#>c`ZbE5{L&W6H&a5&#l3%d}DRyC#n6q z>vcuun*AnqbPdchg7u;v1u{!H{d}h>2GB8?E~|-x{T-Q<4({yNU%b zo`9+y&lsb(Q#Kh?m&WMKLNQnEoG-@eKC~POJ;TSzBl(E&s9AYK&kl~)!!RQX^{U8o zCqa3Vzp({7i%+C}Ksr>Sq7&(m95Hlp6#rtOZgU1s(P?QBD`gb-o30n;S>M_MogYq> zgia7n5(qS>aBVu8yY6|L&H3Kz)Nmk#B1%GM^bCEVNJ6JqbZ(s~Cg}(#VsBBh6RMA~ z_M5CjiMe`b1+J1r$K=k{3t1>8n`t^$;;bet#ChsXy%nW9Bi|ymM_}E2nz;}tmrEJ| z5~_<6bwQ&d264+0tuH^?jQKnJE~aWAU8owWCm8$k>p>QZVT8o;7xOS3`>oLHQIfOu zO8u(HGy5}?-+v40oVH4bK>!4d`^zFQdM&L1;DWX)&OhI;`@@!~WyoAl`-b3a~vcAnj=w-hm|kQ2jiyNF>0!&0>$ zI+VN+@)r3-he-p5=oCW=q}!a+w(BcIx=^V$Uts+{yAbP4$DMk0kuK_oBp+UKktx90 zPxZwj6Kz$|xnLJr2VhNWj4TpK5u%+q+R4}1aJL6OU(+6QE#&ca#_Xke(2Ek85j=k{ zbR&1A?&sY6Ijxew5UVJ}!>Wxwf>7UzWU~{4c>7cq%(onbMr@ZF0cQXy%63B|Ivv)1 zEr>Z`!HlPXV93WD(S!Jij+i_HkAkw891idr&{8R842NxBVPT_~kl_3=eUJrseUG3O z=l)_V#&b@9@O@b%ybH8a-ZzR2Kcy=ciotq9znrFCLhOs8Xrwp4)`R(i&REWNoY5PK zbS&30-C6pa-dZF<)+i@XyIbUf3tt7HyxF&y-;6nQ`L`$n5%EE!pI$@D9Xk(clIeIn zgeU)o?t5l)B~zsy_Ix`%$0v z->ixfgw*pVJ@>yN1(35zd*~oz0~*R7rDD}=a!cp`m5g`?{j8t-pGcv%^&S5U$@%g& z>h!;`c%3`?lK(5x^k4M~-2Yd-_kY8f_1`i}@#MSu8R4cP#VUMM0FZ+U0P;?eq6pU% zh>>3k#K*%%K)xsd$Ponqd7%Ix7Zd>Gegc4ePXLhP2>|js0WRcn0x{tZ z43NA{0FbK*WRjl=#K_46V&q{0fZR&}kZ%d(kzWY_aw?HhNO+V$9=VeMAYT&5BS#Vd zq z0YJVXfI^NT0LUvuiY8n_q!bqZAX0*aF9;-(JFpa+@B)$IBi(^PC~^RiViDdS0Lb+N z0Qr3YH*)#_Kpr1bm~i)i82Net3ORZ}A~|_T2^Ah5kVozvQdHsF0e~Dk0F%5rr0Bw> z17hUQ0mYIthpC_-R}PSr{5XJuoH(TT3U^@0Bkv6;f?PL%klcZxzT~t4nB=hmfZR2t zL&104ZT>ri^Z2T`dlD81lw2ju92(hJ@e zQ>7{W|8f*n_kW&6Q6mt8AWS#*VEPNe-$1Iso`?FlsU!&8LE7o*h+Od`ggZu$M7U!l z8pY_AJ6GIjyJK{v97uZ_54^S$z@1t^bB z?{dYdoI6IxbM6?O)45}GVCRm}$(=j4zXx2@xTAEK=Z?{-o;yazd+r#W^SNWxwiKhb z&J~U9j!|p7V}285j8=eLd*O+~n`10GgQ6w8GD~{JN_oW+ykgb8VvW6GO}%2xy<#m9 zn@Y0D;#+%VcK3=6@rsS{ip}tf&Gd@R@{En1=TGke_07rbpOZZhuL~{6o9Ep8SpVKq zl$_i{OJnD0qu{kPV_@FA;@Ja7jn2sF%k!V;kv!swzL7lqtx(x!ywiE}PyHtaZkEp~ ztdqr;FVxr#1x}Uc*;rrl*SF4>T_-2X=b!1_mE{rqtH1OX@@>2wF|3crPz@c!_KlLxk{oMt|hS`>sH;=6v*;p&` zf%oxqy%Tx9OVL;}1@43U{jGnXOvaAR!Y1%)y;*Udsh~P=au@%PzFC2f;5|C)ufQen zktd+Uaq2%W^&gdMMR-Rawp5u}gztK)f9*%B3XS*wOv0CD*8Bk@4qocYTUaLrU$vgh zP~j`6u$Aq`n-`^?>vhNnT}j4zDu*Jt`Vx}E;avVddLsqCcklSHzLw{FqJ?#YGdbH+ zy;liZW_nAnlK`~Lps;z?tn{JTdGku}k-;$Bz71x@N|QGtV2~>!0P;i$KuZq^7c&{h z;-v_?D1Q>fO4`UJk;vc~!K_Ij`6U9noLsRc@pFEx2VO6%?9b}^)BV`7m>Fgk5Tpp-M91d}JI zBU-R%J}(-(!-mmpj*ZR%kHxZFFT9K!N-2*cMQ>|Td3dmX~+bqJ%^A#7fUFnJxq;&ljv*CFg( zhcI^?!n>M7*t!m3>VlR$Dm#Rw>kx*nL)f_vVdgr7mFo~ju0z<6I)ruW5XP-Tctvvv%hn+bTZgb~L4~e&2&>isqZVthLm0IVVbeNty-yR&K%XA&RQoyBTHssP_E@i%p6 zLE0>Mda}cVMh{jhAS2J97Ks78{Qyk$emz*Y#0uuIJy>b&L3L2eyw8Q`kB|Bq zECkj8e!nMJoFwVK?2Uo)6b$&w-Z)XI*^>op-4em-1+gl^2T{WAT1dDq#aq;q6_*J& z`OcoKx(xqFEGub^s{!!?iCDcCi_&gaLINHbprVHMVjQtX?2CLqvph(!kd-Z0CGVGMq_@p-r)zZoXyNtxn@6Dohkx+gTe`g>j zA>qO)z7O+}colhaA68x)5)YdBl4g1zR!k-=;wboUEI87oJ?+bqW zx}(v$_GP8CgB6j57muhq0sWcEm-S^~+R6$@O_r%gL7?R)AmLq^U`b;ov^1i_o3TU( zc~#yZjTO~b)>mom_tIF1Otwwtx&0u`wKV20Q~dCK z;4~JiUm~hNgQ|Kudaw)$uuPUG*bGQVXNc4ld_g}J!|{!Ff0+O$TIsBgoV;?2-~2%~VvIMS6k9 z45OOddNG`@#B0Yn5q~W=q7T1EGskVv$fyCZJdF>I%7+S}>65 zy2z?2^r?o#t3%a{;P(fz2<O=8`5PO_a+HXTyxK1CFu~#%w zO4*_KALFBh_R>a5J3A{z*ZRZktUkf@c3AF!kL;{2!MI`A0052}#>9pGhGFPw;YjiW zK4CaBuI9zPeaQ@_%dC%iLKdqeuk>+iA51seSsAR6%-zDLjYR95$YA9t<8cOSN-%La zN(3A;oHdb%dn6lN#fR&n$bA@=i*e0Yd<2GxNI4*R^&Y{>%7nutRb_s^2=2)Ck1z!~ zDmj@~@_|%NV5TY1DamA5CaXvpJd?E~cr%l=CRinlHIwCEp3GPENBIk~STyBq&0>uS z{+=bPkTjAdQ+(1$R)@^FPe-Cr0sk0@?Ga#dHpAm@Mfm7!h8NjEpUqn7bg*Op+vtwj z+1Mk+k77QQU2hcYNHBL4Ypw}2g^wJArh7OFLrf&7G9f94RgeixCQQ!36k&4H`iIH_QM!!hFW8#z$IhI9n+>aNhauUq=L*u9isS|vCN-1Tp!Ci5R4zkk|hg# zDUSqPxd?MdN;s|sHtn)SGr9Hy@zgk0jSOVVcr-n3t?Q0Q=K;=cPC2nI+L);MEtEuV2fMWqmwWk0R1MTrgSSi z8FYY~CbQO>@RmAE%Gq}gqJYAnWP7!N>tFa^CVkj6@+ z_ETA7nJ|HGo6PXNdb(%6d&K5%R2xJ$rm{9vLX~N(jl_L}ubqQ!!>Vae0KsjR)I+nRhxH@)oC_de!#Dn*Sa{2Q4(=ng~`2s`Y>8vUh^kO<147b9~UuT^(;S_ec zMA-g1S_~O4UuPKvhrhwbNrZPL!pk>U1IlPPgV|-qM>6Bk4D_*JwLvBnpNTmM_rOUr zkwJ%=_D^I+-b|>gNZ2V8ew@i-=n~0)$ zucoXl-#iynn@IgtvN|&tmX%1jPs$R_Pke{_m&7+&2r+5*CQFgIzf1J(Z(;^Q#{D;0 zcbV~2W>lC9+G+Dx6y>g($7(88oH@-yrvny$3kJBAnpx*Dc`TNOdt%x5hm0lvpb86)SjB+A${A5AVO!YQLN$8{{q#iL7Gi@UI>nDrb>Hr zQXVE$?5J1dv4#Y%=3y2Aj9J2};j*&x64pR$ukF1Jf{ja96`7J|q+m?=@)t{3Al*?0 zE@icJI=iB(-fK`2d+%)zf1$~x^K|F3d`9|4t2ot^^)KWRB#y}=GwXhF*$Yz>?J0P zzEeE8M8EFhB8K-;uiOUiTrs4#c;&Wo=VE-HqmnSN9uS0L`Y#7WQ&%F0hHM4cK=_uX z!*6#zqEQ8-9-_Ghc;!}e=kAK+?=5FNrVc|h%*wNWiBo!eh71oPthOHM?L5-Ec%*mr zNN?bg-q0hxuSa^CM|vk2o+=9N?2*yIgCNx-y@f}5OONzk9_hV3(z|=4_wYz>2*BP6Ft)Vd8GF@(^0;Cq(?@!nSt~n9_d3p z((8Jp*Yijp=#f6iBfYgpdWuJS4#GCG??*e8l?+eGz`@6UwOzu83Fw4I(%)ieKve4eE%*B3lLesltq8D zd1`&Nz8|xRtd)k z{)qJokOwnF_dy!AxohXvXcmPvX9=8FH|K_g3gTN=(GrwSgdXrG;Z+70ibZ%M0;Bw+)Y-69UVgbcO zS$#8x4jY(f7uY`%HvP@!(`OhW3EqKHu3j!={>cV5N`b?(@*7z;!4(@>Mu0pvA|@XQ zCh6ZR4S26-iXTtg#DWNI)Fw7jfm_yx1{}VbW&6p)B_iuKiEqBe8u8*e@TOUJ3kxOO z)GaXb;0)!9Ei8>-%vP4>E6<;Z=6601357+%pOipOU}oteZr>L=!^;)Q4JoHZ?nea=p4sF+gXIKJk26L z+jzoumLn5(P{IzrbvqjuATXSiK!5m-*jSYGFsD!gpSpv=lYMo*Vh0;fPSL}6vTR1@ zTPO){-)v+}q(}8>JJE$d?1cWw(=g&yhFd;m8GgoT7!q(KcIL4Z&4&w$6Q8o;fdZi- zQPAJ)JZ>oh|CA`cdT>&|?9B85{nJO~^uh&Vo*fc&ap36Tye~{tSW(ggipXqdBIS%k5(*74yw! zEK`B+%%;0prY{}Jp#l2NFw25F&KQwupGFL((a35nopg@f!vctK&K~x<;$M^d?Parl z{c%JC26kd#`IE-)UX~C*srF;Ufc|Flm<#9z;d~O=Aw2VQh8H|*a>wUvzD9?C^TL+y zgT+#P9~)((I5>`;!MANk(ZV4$d_D(r-!E9P0C`kMoZAS_Q$GXeHDe1^m42b;e8GzP z3Y;8BG%t*&ZdAj${|g8PMtE&=KeQVDyvyxpqY1vVpN$BR2aUutS@6udW%5irz`_Y_ z+yOR2$xq-f4xq|(3<&|>bX6IC6B7dD;UqD6S1=J(7J{Y4!W&8YAygS0CLUt56gbH) zbeK)I(fK7fEuA5?$@INln5yc>>%Gu@{Ot0KllZpeLEoDVB0O~WI0EUwEBgp|uB^+S z9)XmA)4s$=Fit^17m3vl6L7k$R3ZnN5089C1FtU6ItnF(E1VlgS#N?3zG8j+jPp{^ z(xK@t6be^7nBBg@mh$>mde`AArb{dvnA>rN8gz`M%M?FK!5Qk5W3ZjU@$@mwpm0@_ zbev__=u8zg-ZO&;TJROeq0}#rv!FoZuoa|%Brd*q^)cRRN-nM@@WCfoVPY`$1SWI% z)x3TJq5{@G2~p*dEH%%vNm5ie`?T=|8?jx=<= z8WdzVj(ou}R8}SZJgOqJU*MlUgCi6$d~pVMXz;SP<}6!Hu+cd-H&C7qlQ>84hjs{j z=s{eJUq6G*L4&VZm`z~bASK*?7AMb>zeaPzU+k%`(K>*Yzd`HB^JU^T!)P6Nw^jMs z@rA6#OAj40J}x~wJAHhd@Hm@im*>ueJzF-F3z@h6mWBI@{JE4rS2h*p`y{!j`QC5Y zB;`dpo^&3=gifo`R8L*Q_t|CkGX^e4rq=`Y@E`#94~YkWPlScvk|`XJe$BV{f+bX4DdnVA`V2jq;;!dfg(%L%;*&-jjI2a1F!N}xY<$<4`y z>ht_dIMl9l1t*>;r_B|J3vZt%4cO)?7AJYUPIT*OacaVa6VVdaSXr61iLy5FcGuWo zo4_qG6P9HxGXqR&()?h`0d| z%csEn_(v8KAoA)E6Z)IYh3z7;OaFwfMOn3eg6#sg-P;Wqe+#yYyfGlM5yEyEKp3Gv zLrOSa%>9{-W^_vcEllInE~DqOeuf*@{b zimY!ai~dXn5KbtM`~n3)S(kr7N4==PJKcfe0Uo~teU;Y_MAww)xX{AwE#u+;rs96T(I&z8bfrk z6h(6_{mtg92V#B)^Pa@x)II3qkutpPeXR9>`|dM)u)OUcaTHMvn51j>uzEc1J{sk_ ztr!!z4=`cMI}k!ssb!kT{AUlKWg?4F7J1rWy@>VHhitwQ70Ux2vE>BUKVq|di}OpW@CNCbqdjRkPBVzROnIipH`Kx z{GCOJ>{Y}eh_AKS!uXDTtUljA4?e%j{lQ9*Te{|du*C$g{J~xiFfL=jPVs1;TzHg; ze}XA=>2EMj&pyG*0)qS}Y>_32kNT6%x6xe<6lUj4X?{o{rWW$&j;Ab$xBZjZ{PXPc zLWg91$mjjVvO)avFBG0sf#?0ratW4u%BK0sdmh58$G1IYIX02-1&#A9e`80}`WeMLqTBd0X2-N=*gO<@&LV9h`#7;U{S4c^GH1~YxzBO?(7G}| z^BhYFVAcyZH&|XF5uaYfCvVL4 z8$8&z;uTd}8o_z0trx*Ns;z~M7})Fh5l5MBW z)=MTt^8H&h+-3OKy2ykOKGFwrtnq>1AbsRxn?P{5uWdEK!hW`81V8e#ttFV^Z_6ck z&ENL6WPt1V!nU&f-NI-pWIQQs>q@YFfNeOzeE~K*!HR*l<^;0?Z7m4yG2(@SY_Czg zN06-#!QDZ&ZZ?wL-f$LL3UU?UHG*vkls7ooHi+PvU>l6%WZpc)HiqE75Zh=;(}`#@ z{UJ|!sI93?>q=>7c4-y(#ZXyx$uQdhnb(){UKB z8Y}n;*qU%#UxJnhs0(152*?AtBf^$WFd`ED0GJVpIs;ycv`r=0y@-q-DPrqJ@#vzc zGvJt_Hh6UH$iFNq`2`h&wjiEa%+}8q))8&6OVpFLF((@18258n|srV!lwYrzF-Hv{)%MjC4*ZwScrjX;j4fYB!cfKcKnF zs9@5tGHMLzWg@+y`JidMkR zg^sO&iGp6Mpdv|IRaApX*H=`d6jgMxO{bmJ*sGe`vyy5=W%DYjA*BDSgvmYL)eWhv zd`Tx)RuxFsRaSwS@vgoFcH&;=8sUUY%>;>r9s%-yM z6|)b!QZ*H-sDjgw8i#uscYQV0h*?u&C!b|2;(Ap_hv46`I@g<59ec5OhXV0( zwy{Tg!y6|ueCWA=S6MfyhAK!NGizYJgZsL-YpAZIO?=T+=!d>4k@O#5HOecvFS?xH zjqt%_537aK4D?(r%qKqg)vz`ig1WWQ5cFn(94t6y3`#NeUY2&)s!O)NEA`bL*U7W_C!|JJI(p&YggP~4+<#?@Vj*b;@Yc<6+ z?NNO+h=Q&SIPf$5qX^R~tbFMCR%$$H zNNe;Dx~sK{QJI@z&E%Vb^)alKD(SXwquNl}oHjU1<2_I3+F*e~U$s%qye4$VBo=qW zkKwVZ(6(?y!HTxnOVDR+(HUr$cB(z;C+$>s(nsykDQKqvl|cGU0Ip8ZmhEw|fv#kqh10Sq=4y>w^g@=5Bg}=fc`_!9<{7P8VELpf|c; zZ$pEEx#DNRm_XQfgH;RCYF*K3XhK)jQ&AviF?H7WO}5hRgRa;MC@atn1A_MLhLr+M z?}oi}1kb8>Q*}uzg{Uf|-9l88%uYu)H3Xf9{t%*SkiH60L7AThxb3^Ej-(5^V{)PA zx?^Vr2D?>yuzGsnS^@iD59}Oh^`2@X>4u&-)}f_);kpP-?S;vMUhjpS4{h8VD;>J5 zH+DMob#IIvF9{6pgMLC6^ie@xQ8>$_6m^@t=T*$j9Ew8(1p`B|#G%JRv9zJ(`r=T8 zruM~BP7H8=>5G9tOZ3A)ph5jGx%d*z!hR~qhjMgq+A2R2(-jtr%iyN0UfJA@Vfg-M z-u@~l`IYRCRSF%}UqyS7KkkrAcEC-=U;VM{P!KSH9TpA1GJt(^0Issoxv{F=f8xc5 zDR08#qwpkTT9~S(8%Kf=c9*YvIt+JQDD@7`TR9nW7*t2Df_nxM_;flQF6R+1X<;Z_rM$m?tQ@)`3*ddRUAq zm*00pLTvPyG{>Y~p^N3*>W->SUg3^vPP)Ru-hf_qR3k6#xQUvttiKGKt8vumi1w-;UE^^eqI`Nh_Bixvyo&SsyFL60yM76{$MJVDfs+$dJ^Gx;*9llB&`d)y zk`t=9|hvpl}8Z#0Xbl4|G;=&AVH44`+=<-qQ|7sL2Dz7+jBG?;V2+KD5?YOeS>NSdM#bEXQd)4rd?mnd8|0eVp=mT@TU+_wm{|xTlU+ zb;#lC@mT86yzk>&4ej?n<{i4~eas5Wo%(C-tR&#p~Vb$p28bn`n6u=zaD z2Yrwi&}F*vq7P{InvT;Ybj@^h1p0hBW*Ay^1}+fL^clDiKy%FG@}4u%5!fqdsw8>= z+(uV*bi-%i0EMw)7WOCfuUR+)K|^O_=;SmT2O0GKY?bbHvNxtXyPLX1RdJ7|VD3qFH&w=T#x8)L}QI|v`uT&apJ{4R6p9E}G@My5IN+VUYzNBEMK|HrD1+kB3yo#%Nw zJ+`W-gtJ*oH)1G$lWhD*<#kuj!5svA56!_X7t}8mU4X`=;+6?|Hx(B)Xy>`O@Isf* z#nQ%W&-Z?;nz=3K;j{%~>^$sZ=)rjyJT%{YEF)<6d{y5oy$gC;+D%MFlUL5-k4)dp z$0|o@)sJwkgwFT~$1(KuM;xU{8WtnoJQ$yb+hOSOG)yHFr=kjO(*@X}FeWZQf1x-o z`;lVRM3Lg)Px5Ng3r+re-ifCI?0{5KOv-pt3}6yF{<{(y=WGo zpn_V2S%nTXx_c4UJM4UmF*C#$W2ZuQEmnAs3VPs7ob5&=;3_Y}x1HStyW*m0( zr#QNxTRz25k*e#n3O66nfK^zZ&?T$z3mW=n6^0HC`3xO^Zutxs9O(Vea8rXcpPz%S{aXh`8?Pjb|9dbkriil669H6_OV?{wbuU3&cb?R+8-9)6n?>^k1@W}fbRn6OX zxPJdCxffW20}GnC27`p2UxU*HwB}k4leU)m%eCkmc<2{gzWoa>FS3ryC#>W0jCI_{ z7VB|`2miI}Rg91B#s%ue1$XIM73luGUir9*=_(t!j7rC49eO5RMX+lIxn{U~zkuuX zFI65Y{rF1`{NhWjP}og3pkd@Xt=xc}4865M_4BDlsaE%?_I-ErdR5NNyHVB3NfyQ-Q4w-~s` zfY19oIL7ZgFax>|RmiuB?gJ(2W~WF?cdBTPKXVGd-(b8rg=GcpdKyP1bo*(XG1w`b(r&w+!8HK- z$r&6((3fX$&@eCNhMvU*06BY~p9O^8JByZ}Jn;iMF;9)ek)g^QlntlnF zD`?@%_<0ANd>Owdq0cX44?~Au!EFNc*DE+PL(yhwH{>dg{j4~%T*a{uy?7Nf3vF}_ z9fhvGruyg9>7m|~?&j@r_n*hLqvp?eLtMA(stEbSU*|d}ucITd8)je-&?OlhL;Z}? zE9|JBF^AA&KXbY7FI>L(7o6(BpZtPTJv8_RmNsiZgP}nzjJF#e#dc+^2@)Ym&nene+x4K z9eE4AfS$gEdeCaO;RlVqt-2!(HscPK-nrYVJhopj>U2l-fwkt2YQPTNDXX>KU0mRx z!|vjS1-kz(mI$=uJ=|yMJkNOQJ^kZ$J%(NEa~JRBUUN@XB(GEVu!y1RzUqa)R7Tua z%^=I~tIm*z_f->y_&=c!RDm+|8i5!$#VZ7twh_bAa3ALF7n?9BYP4_C@Z>alDsjXE zRi2)DUHkxd*3dH#5FhIE5GOWh;6t{jJj8D_*gGHMz5sg1=z%BbVZBE<`vK;BikrWs zk5o}Ic0FRxdyjCcgk9t@x76aXDo6I9$I6csEf#k-KURgwK(oc%n~znA?9_Fqdsg>R zFp4WYQSVZ5qbD3|@Dtps!%j1bUUVQE9cWM5^C_24eyS>wo&HosdUUemmqK>l>BLC*pA?XX`*d0Wr9r~utN=vx5IIjoCo*2Z7QiJ7bQ@Q! zr86Q?d`$plLIPw6pd?6uUj&$lzY)-hjyJIdkJ}6|e%;1hDgTKh+!sKZkErlafQj&g zfX;DziY<6Nw?Iey%UU}75ydYB82{G*9!^PogH5=+gB%VGbcD>-LKdVh&MJU%9pUdK zfYKQOatJUHeF*4;#hloJM;;4w6Zt&W)VYi(&o97KC`3T#E*8cXJc?SNBNVq5vKn=9 zNdd;c3;~^)SQc9dP{9HO@Ze6^n$8~_p^5;?aYTh`0w}E!poRbwvL*qYlUNH|@ThBn z?qq#yIh#2^Lkm0(Wi_HgV@q^GBS2FDCS(f&I`hyUTkvRYfo`L%wVd)CF+e~i1|0-Y z)*=FQoPzcLR>;oeqSFeyU<)qYEYNLqx0X&?L~&06l&1*LTL9%H0)z@M5&IL+&j=5| zmIp2omgqJjt)&waQ5+?JDgeX~(3yv^4B{-%0TQgGa}wd7D8Tp+C&0;rwEo~S$`T!6 zjJ0&`A&SQdplm~c2?TUHp$Ra_0v%wAwREB({HF;p{xb<6l@Rkk3!8BH&=5W!q*_a7 z8KQWe0OOxVKqn0@z!p3{wm^4bk+q!myd#zfF#gL4cy#*U3Tz_6Dk21QgwL&|6AMwi zMu72OM?mKguE!QUHdvqoY_b-z3w7}p0hCP$|7}y~{I4TWHX+CkaWNrx5ztA4Ut)BPKe?I0*wD50y_EcFt*_Fodp!Y;~cXl5({2ir|%`U;PKi5-Nyf{rL+A|{0?$7 z-tx~vKxg-5#TGoWdo0lrl(lr?AIg0MmF9I}D{%JhSOB>|M_2T+xO&dsaFz}Etg4q4Nh z$oSJ0Y73xTKSZc2fD-!v>I*O-8xhdSe2uXMk7gF=CR$j_N#X!4HSo|w{iZ@2B052@ zEw&J$y#+c#ptYRZ93eGm z7(hTL>V;to5e8bI0}Qg3bAkgz3pmXnMgS%G(e=j>VnW6f&`Es>*n-C}3v?U9t)>mQ&orr@e_nOohn=4wuJ2Q?P{y(=E^uW?D<9_@Q{V zfNVU>4+T&jA3Rb8n27TUcytCICG5dvArS()jgPJ6_;Q3r0*wDs0_CgWpJmuWfRz^L z0IRI!1apAT1sMOeQ|bJpGx)yX2(JhfZW8)-Z?xva07O1Y#p5@44Mm|Og=Q-NnLGKdyHNq_Kg1ej@y z7honT5x~PUYi4S=xX=V4$VdTZipB^qQ#4+HnIew>GewgGm?@enprcs?GlZBqnk@ix zL>-wUz)aCR0cMKQ1ehsu1(+#XB*0A3Qks8!8x>1y8OqSiN^&8fm)0t4IiGRy8Ubq= ztQU~ZV55Ld47Li`#$cxa%8aCo;BFzN7kdSmb`JvNb_+2vH1j3dqGEuK?4n z`~plz3JEYBDI&mhq__anky0KZrXytqn2uBsU^-Hnfc{c(6>OpJ)h*ET<7+L)6xSl4 zlS6B>e?1G}kDKrY*3`+Ph}T2_WsU;05a7?CwSYDZ0tA>g0tHY;Dq?gJV1fo~;Gv{d z6E#F!Ow^tP^cQn`VGBV*Ezl$FXD!DRhY_G8R41JMBQ4PWQPy&zxj1$@9sjz5!z5l@ z5*Q2FDk%wQP-k8X51lTXEE6@%3R)-YHnU_FBk0yZ+(B48_n9RhYT_*%ej zntzObuMji(0|Lx=4+${iJu1MA_m}`P-V*}Mcuxy3!#xM!;aNB1y&x`Tyq5%+@m>{R z#+xC)jQ55BGv1p5FkTw&Z2~_d57N0aoo|BfTcY>&Lu)yYxWZEb≨︀4cQR1l(cp zMu3U&&J5eAiIGJE4|T%?@gkx#g0o`_9rdf&f%9D9q6NCbWoy~uYXky=@y~Vk|HT6B z|Esl}-?;defZN!j``>#)?z77y0go9x6JXl-Q-F#3QUFCo(ANS?(0>G&pqY_V?RY33 z-N}MY)bS!hK=(X{wH(F8IR)fmkXL{SkY9kQQb>TQQiMPv&2CX_(I3G}SfU#(Wi3DfvGI*I;MY@y2M z7U&6EV=ZSb7q1tP&S0Z}O$@dgfb-urCOgHY9FKmN0MqCm0j8OK0!%aC3NXza7GPTW zj=*xH?mOROi;lnJmgu3Jw3aD%&Jdtnf9I^O;GDNW`~PGu=OPzh5pb13h5!@bh5%I2 z_rEuZP{zOWJJ-2mfo|iTwVeB0{7ArK2G0ci!Qd|eFBtqSz%=nc26X>nqGm$UH}}Fs z%__h|%}(HWApXgLEi3~c3v@qoSFZ>V2FS?nt!xAR7fI& z;R2Ewj1n-K!8ifq8R%X4-&vm|9yQrxssJ<1Gid&K0?a(m78f(ma|D=qo+rS}bD97% z&#nM7&x-`mlN%WBQUM+_&ntwOd0r*J%=2miW}d$gVCFepfSKow0^+cRcDD#H)4cuP zNi*~OmAIIB-c4X^PyDlogY2_FFXjW*a=zu_!vc;l_+G#<1}6lZH0%G2khAP^UVv%z zq5#v(6#=H1>jF$OzX&*qEsXv*0`!E5bCbbsz5e-`6O`YT@_StVP{1PwPX#<<@TY*k z7`zf-+ISGJ)sq@J|(Nq21~h=zjWI%kksl+5+k@s6U&I zKOLa~lg8p=LN*g%g7^zCL0S`_2V9&s*g`J?EYQ8^U@a$*i#rMEJe#k7U4?XGmmUIo zGUy|~w9!w1i5eyVQK=UL1(={w1oV?9(d-cm@o1tuIz-CjxO}L9L(4&2$;xVvVbWB@b}m0LT0ebYyl|@QU%Oq@R5Kt2Ce`zwnYNWV3rCngIS@0hn~?f zqgf>`W;Ck>n9+P8z>FqcfF4bnvr&K<%oYJ=Fxv&tVCeY!iU>cVgDrqP7U=!5*ILd# zF8)@)K?X+z9A$7!zz+;g3OL2!tN}Rw&M~iNaEL*E0Y@1W6mX0|VF4!?6cKRRyrQ?5kaO%(LI6Dwh4GdWaEU<~0aqE66F?6} zp-Ke-HyBhBaFaom6uSTW?~bWXF8cYXJM7|TfnFW8tfe2HLK}4iJYxTP0!)C01oZPp z&)B1h1v;XqnKhk1xx9sdmke48c+H@-0D8;{y=W^SGoAwh2oOLIS^;zrkb^--12BFc zCY{73H-jz$@-gTtpa6pq0fia#5KxpsF99VO^btUhYSHo6S4cT_=`WxngD?T~$QDKu zA)q>gNCEWN7CfQ^)MhYPKs^Sr4Cwl6c1#=*`aYx+k1YgAv_S8vBx~8?5d`#8TFp4* zXbZIeSZg`{Ts&StYX%blJRG4NlZoQefx#pJ^duPiG(|uc2Gay|V=zNN4+gUY^k$GE zpzj3!{WV938Ol5Y@(y&gn`VI?+d^wO13Bc!0-_i!5)i{+iGU#tmTBOj`A%T6LR^M1 z_*6hLgU)!?;)7WK`fSC-o2uNYDO+YGx9RlVv z_(}l1MINo}CLk}42iQx%LqyN%ekuQiD|{1v;u%@$z z%YPGKD%>KVpQ_u>9(OI!eY$Tg=O7n96mW#WV*%eYc*=l||Km*l5SLR7{uFSQ!3zQB z8N3p3k-=*LR~Y#wemok>M;p{EHkw#ou>F{mmaFN5j=@-y%iP>4ZI0Yw6&K764=##jp<64AwufN%zJ0!)CR1mxQoh?r!7j+ksMd}%~S9O)6_ zFc~d?9=Jq=u>ukqj2A%P-++gXK_4A=k{L`Q4+6T;Db{jEaq%<($!7V@B*M>TB3_DE z^y6TTwVdafbaV3rJkF{?nt*-`Tmjt~ED~^=!BPu6PB$+dWQ8S8?wlH|5>Pj<2CD^B zXYhr9!wk{|IQevyjRL-7u*HHH7em{wkAMAOry1Kbl-z@pA`)Z%|HAg}nHt{txv%}*yEVLv@ph=|!m%er+ zv2Ia6?~;x5NSg9UawbG1$Bv9Dt=|G}CXm0MlA>q=|I0hN!~DF<@uZB{xyaAEdhX2Q z1Kj=1y{pqh!+$pO4#_+&!0p)Fd-#9(!{*)*#Jjfej{Yyd)q;7T|J(d$f99=QzRfSS zWZtyZ+x%=R=Ji^8&oS|18}A`+d);p1 fU5ENtqOJGbw@a?I{kMLXf9tp0Il7&9ku3iYY!fNK diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index 122e97f4c1..0c2ef3578c 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1389,7 +1389,7 @@

Meta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1443,7 +1443,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1520,7 +1520,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index cd21122e16..2df2c3e082 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1392,7 +1392,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index cdf5b77bdf..8018e8d50e 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1392,7 +1392,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 80d794cd39..6da54a7f5d 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1389,7 +1389,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fd47f716e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f5a4f56ae60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index 44a97d226a..044c2495ee 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1378,7 +1378,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fd472e55d20>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f5a42ca5d10>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index c22cddc647..af279c54b2 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1505,8 +1505,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa350>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa3b0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181f00>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181ea0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1543,8 +1543,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa410>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa470>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181e40>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181de0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1582,8 +1582,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa4d0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa530>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181d80>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181d20>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1620,8 +1620,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa590>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa5f0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181cc0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181c60>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1659,8 +1659,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa710>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa770>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181b40>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181ae0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1697,8 +1697,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa7d0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa830>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181a80>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181a20>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1761,8 +1761,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa650>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa6b0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181c00>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181ba0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1918,7 +1918,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa890>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f1819c0>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1977,8 +1977,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd47f2fa290>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd47f2fa2f0>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f5a4f181fc0>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f5a4f181f60>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 5a5d6d31a8..f38f040cb8 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7fd47f716e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7fd472e55d20": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7fd47f2fa350": 779, "0x7fd47f2fa3b0": 779, "conv1dtranspos": 779, "0x7fd47f2fa410": 779, "0x7fd47f2fa470": 779, "filter_shap": 779, "0x7fd47f2fa4d0": 779, "0x7fd47f2fa530": 779, "0x7fd47f2fa590": 779, "0x7fd47f2fa5f0": 779, "0x7fd47f2fa710": 779, "0x7fd47f2fa770": 779, "conv3dtranspos": 779, "0x7fd47f2fa7d0": 779, "0x7fd47f2fa830": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7fd47f2fa650": 779, "0x7fd47f2fa6b0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7fd47f2fa890": 779, "get_initial_st": 779, "0x7fd47f2fa290": 779, "0x7fd47f2fa2f0": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"result_type": [[175, "result-type"]], "tril": [[140, "tril"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "default_dtype": [[154, "default-dtype"]], "promote_types": [[173, "promote-types"]], "default_int_dtype": [[156, "default-int-dtype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "set_default_dtype": [[177, "set-default-dtype"]], "invalid_dtype": [[165, "invalid-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "is_native_dtype": [[171, "is-native-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "ones_like": [[138, "ones-like"]], "check_float": [[151, "check-float"]], "iinfo": [[163, "iinfo"]], "can_cast": [[150, "can-cast"]], "finfo": [[160, "finfo"]], "default_float_dtype": [[155, "default-float-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "triu": [[141, "triu"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "triu_indices": [[142, "triu-indices"]], "zeros_like": [[144, "zeros-like"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "astype": [[147, "astype"]], "zeros": [[143, "zeros"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "dtype": [[158, "dtype"]], "dtype_bits": [[159, "dtype-bits"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Sharp bits": [[850, "sharp-bits"], [849, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[850, "examples"], [849, "examples"], [848, "examples"], [821, "examples"], [799, "examples"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Wrapper Frameworks": [[862, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Vendor-Specific APIs": [[859, "vendor-specific-apis"], [861, "vendor-specific-apis"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "One liners": [[847, "one-liners"]], "Glossary": [[842, "glossary"]], "ML Explosion": [[844, "ml-explosion"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Compiler Infrastructure": [[853, "compiler-infrastructure"], [861, "compiler-infrastructure"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [21, "Round-Up"], [40, "Round-Up"], [31, "Round-Up"], [30, "Round-Up"], [11, "Round-Up"], [13, "Round-Up"], [29, "Round-Up"], [20, "Round-Up"], [23, "Round-Up"], [33, "Round-Up"], [22, "Round-Up"], [32, "Round-Up"], [27, "Round-Up"], [17, "Round-Up"], [18, "Round-Up"], [28, "Round-Up"], [19, "Round-Up"]], "Exchange Formats": [[854, "exchange-formats"], [861, "exchange-formats"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "Motivation": [[843, "motivation"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Frameworks": [[855, "frameworks"], [861, "frameworks"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [861, "vendor-specific-compilers"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "Design": [[833, "design"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Graph Tracers": [[856, "graph-tracers"], [861, "graph-tracers"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Multi-Vendor Compiler Frameworks": [[861, "multi-vendor-compiler-frameworks"], [858, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "Related Work": [[851, "related-work"]], "Array API Standard": [[852, "id1"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "empty": [[125, "empty"]], "cmp_isnot": [[116, "cmp-isnot"]], "full": [[130, "full"]], "mish": [[109, "mish"]], "Functions": [[104, "functions"]], "Container": [[98, "container"]], "sigmoid": [[111, "sigmoid"]], "arange": [[121, "arange"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "cmp_is": [[115, "cmp-is"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "if_else": [[118, "if-else"]], "softsign": [[114, "softsign"]], "logspace": [[133, "logspace"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "gelu": [[105, "gelu"]], "for_loop": [[117, "for-loop"]], "Nested array": [[100, "nested-array"]], "meshgrid": [[134, "meshgrid"]], "Array": [[97, "array"]], "copy_array": [[124, "copy-array"]], "array": [[122, "array"]], "from_dlpack": [[128, "from-dlpack"]], "ones": [[137, "ones"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "eye": [[127, "eye"]], "native_array": [[135, "native-array"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "empty_like": [[126, "empty-like"]], "softmax": [[112, "softmax"]], "one_hot": [[136, "one-hot"]], "Factorized tensor": [[99, "factorized-tensor"]], "leaky_relu": [[107, "leaky-relu"]], "full_like": [[131, "full-like"]], "try_except": [[119, "try-except"]], "relu": [[110, "relu"]], "hardswish": [[106, "hardswish"]], "softplus": [[113, "softplus"]], "asarray": [[123, "asarray"]], "linspace": [[132, "linspace"]], "log_softmax": [[108, "log-softmax"]], "while_loop": [[120, "while-loop"]], "frombuffer": [[129, "frombuffer"]], "Data classes": [[103, "data-classes"]], "Deep Dive": [[807, "deep-dive"]], "Logging": [[796, "module-ivy.utils.logging"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Arguments in other Functions": [[815, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Device handling": [[815, "device-handling"]], "Docstrings": [[817, "docstrings"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Nestable Functions": [[812, "nestable-functions"], [821, "nestable-functions"], [822, "nestable-functions"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Introduction": [[827, "introduction"], [826, "introduction"], [41, "Introduction"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Helpful Resources": [[803, "helpful-resources"]], "Error Handling": [[802, "error-handling"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "Exception Handling": [[818, "exception-handling"], [823, "exception-handling"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Backend": [[786, "backend"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "PyCharm": [[820, "pycharm"], [805, "pycharm"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Continuous Integration": [[820, "continuous-integration"], [813, "continuous-integration"]], "Lint Formatting": [[820, "lint-formatting"]], "Array API Tests": [[808, "array-api-tests"], [813, "array-api-tests"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "Setting Up": [[819, "setting-up"], [805, "setting-up"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Ivy Frontends": [[826, "ivy-frontends"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "fomaml_step": [[702, "fomaml-step"]], "nested_any": [[715, "nested-any"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "randint": [[726, "randint"]], "nonzero": [[734, "nonzero"]], "all_nested_indices": [[705, "all-nested-indices"]], "stack": [[697, "stack"]], "random_uniform": [[728, "random-uniform"]], "map": [[711, "map"]], "nested_multi_map": [[718, "nested-multi-map"]], "squeeze": [[696, "squeeze"]], "reshape": [[693, "reshape"]], "index_nest": [[708, "index-nest"]], "nested_map": [[717, "nested-map"]], "where": [[735, "where"]], "swapaxes": [[698, "swapaxes"]], "roll": [[694, "roll"]], "unstack": [[700, "unstack"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "random_normal": [[727, "random-normal"]], "seed": [[729, "seed"]], "argmin": [[732, "argmin"]], "repeat": [[692, "repeat"]], "zero_pad": [[701, "zero-pad"]], "maml_step": [[703, "maml-step"]], "split": [[695, "split"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "multi_index_nest": [[714, "multi-index-nest"]], "prune_empty": [[719, "prune-empty"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "reptile_step": [[704, "reptile-step"]], "argwhere": [[733, "argwhere"]], "argmax": [[731, "argmax"]], "copy_nest": [[706, "copy-nest"]], "shuffle": [[730, "shuffle"]], "layer_norm": [[724, "layer-norm"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "tile": [[699, "tile"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "permute_dims": [[691, "permute-dims"]], "flip": [[690, "flip"]], "multinomial": [[725, "multinomial"]], "nested_argwhere": [[716, "nested-argwhere"]], "sort": [[743, "sort"]], "argsort": [[740, "argsort"]], "searchsorted": [[742, "searchsorted"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "unique_values": [[739, "unique-values"]], "Data-dependent output shape": [[739, null], [736, null], [737, null], [738, null], [632, null], [632, null], [632, null], [632, null]], "Testing": [[774, "testing"], [40, "Testing"]], "var": [[753, "var"]], "cumprod": [[744, "cumprod"]], "Module": [[781, "module-ivy.stateful.module"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "min": [[749, "min"]], "cumsum": [[745, "cumsum"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "max": [[747, "max"]], "msort": [[741, "msort"]], "load": [[756, "load"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "prod": [[750, "prod"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [56, "module-ivy.data_classes.array.layers"], [79, "module-ivy.data_classes.container.layers"]], "unique_all": [[736, "unique-all"]], "einsum": [[746, "einsum"]], "std": [[751, "std"]], "sum": [[752, "sum"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [572, "parameter"], [573, "parameter"], [566, "parameter"], [576, "parameter"], [575, "parameter"], [567, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "any": [[755, "any"]], "Converters": [[776, "module-ivy.stateful.converters"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Framework classes": [[772, "framework-classes"]], "mean": [[748, "mean"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "all": [[754, "all"]], "save": [[757, "save"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "unique_counts": [[737, "unique-counts"]], "Utils": [[773, "utils"]], "unique_inverse": [[738, "unique-inverse"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "multi_head_attention": [[649, "multi-head-attention"]], "constant_pad": [[688, "constant-pad"]], "pinv": [[670, "pinv"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "concat": [[687, "concat"]], "matmul": [[664, "matmul"]], "slogdet": [[672, "slogdet"]], "inv": [[662, "inv"]], "expand_dims": [[689, "expand-dims"]], "clip": [[686, "clip"]], "cholesky": [[653, "cholesky"]], "qr": [[671, "qr"]], "svd": [[674, "svd"]], "roi_align": [[651, "roi-align"]], "diagonal": [[657, "diagonal"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "matrix_transpose": [[668, "matrix-transpose"]], "svdvals": [[675, "svdvals"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "inner": [[661, "inner"]], "tensorsolve": [[677, "tensorsolve"]], "vecdot": [[680, "vecdot"]], "matrix_norm": [[665, "matrix-norm"]], "eigh": [[659, "eigh"]], "dropout": [[646, "dropout"]], "trace": [[678, "trace"]], "cross": [[654, "cross"]], "solve": [[673, "solve"]], "outer": [[669, "outer"]], "diag": [[656, "diag"]], "det": [[655, "det"]], "linear": [[647, "linear"]], "eig": [[658, "eig"], [421, "eig"]], "matrix_rank": [[667, "matrix-rank"]], "vector_norm": [[681, "vector-norm"]], "tensordot": [[676, "tensordot"]], "vander": [[679, "vander"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "cross_entropy": [[684, "cross-entropy"]], "eigvalsh": [[660, "eigvalsh"]], "lu_factor": [[663, "lu-factor"]], "lstm_update": [[648, "lstm-update"]], "matrix_power": [[666, "matrix-power"]], "nms": [[650, "nms"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "unset_array_mode": [[589, "unset-array-mode"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "to_scalar": [[587, "to-scalar"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "multiprocessing": [[561, "multiprocessing"]], "set_min_denominator": [[571, "set-min-denominator"]], "set_precise_mode": [[573, "set-precise-mode"]], "set_min_base": [[570, "set-min-base"]], "set_array_mode": [[566, "set-array-mode"]], "try_else_none": [[588, "try-else-none"]], "scatter_flat": [[564, "scatter-flat"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "stable_divide": [[579, "stable-divide"]], "itemsize": [[559, "itemsize"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "is_native_array": [[556, "is-native-array"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "unset_min_base": [[592, "unset-min-base"]], "is_ivy_container": [[554, "is-ivy-container"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "is_array": [[552, "is-array"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "shape": [[578, "shape"]], "strides": [[581, "strides"]], "to_list": [[584, "to-list"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "set_item": [[569, "set-item"]], "isin": [[557, "isin"]], "isscalar": [[558, "isscalar"]], "to_native_shape": [[585, "to-native-shape"]], "to_numpy": [[586, "to-numpy"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "scatter_nd": [[565, "scatter-nd"]], "stable_pow": [[580, "stable-pow"]], "match_kwargs": [[560, "match-kwargs"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "current_backend_str": [[531, "current-backend-str"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "array_equal": [[525, "array-equal"]], "exists": [[536, "exists"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "has_nans": [[546, "has-nans"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "einops_rearrange": [[533, "einops-rearrange"]], "inplace_increment": [[549, "inplace-increment"]], "nanmedian": [[517, "nanmedian"]], "native_sparse_array": [[506, "native-sparse-array"]], "optional_get_element": [[521, "optional-get-element"]], "cummax": [[511, "cummax"]], "default": [[532, "default"]], "cummin": [[512, "cummin"]], "arg_names": [[524, "arg-names"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "inplace_update": [[550, "inplace-update"]], "corrcoef": [[509, "corrcoef"]], "nanmin": [[518, "nanmin"]], "bincount": [[508, "bincount"]], "container_types": [[530, "container-types"]], "all_equal": [[522, "all-equal"]], "get_num_dims": [[544, "get-num-dims"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "get_item": [[543, "get-item"]], "fourier_encode": [[537, "fourier-encode"]], "einops_repeat": [[535, "einops-repeat"]], "nanprod": [[519, "nanprod"]], "einops_reduce": [[534, "einops-reduce"]], "arg_info": [[523, "arg-info"]], "histogram": [[513, "histogram"]], "inplace_decrement": [[548, "inplace-decrement"]], "cov": [[510, "cov"]], "igamma": [[514, "igamma"]], "nanmean": [[516, "nanmean"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "cache_fn": [[527, "cache-fn"]], "median": [[515, "median"]], "gather": [[540, "gather"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "gather_nd": [[541, "gather-nd"]], "quantile": [[520, "quantile"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "put_along_axis": [[478, "put-along-axis"]], "unique_consecutive": [[486, "unique-consecutive"]], "hstack": [[469, "hstack"]], "partial_fold": [[474, "partial-fold"]], "fill_diagonal": [[462, "fill-diagonal"]], "flipud": [[465, "flipud"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "lp_normalize": [[495, "lp-normalize"]], "gamma": [[499, "gamma"]], "vsplit": [[487, "vsplit"]], "lexsort": [[503, "lexsort"]], "pad": [[473, "pad"]], "flatten": [[463, "flatten"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "unfold": [[485, "unfold"]], "l2_normalize": [[493, "l2-normalize"]], "dstack": [[460, "dstack"]], "matricize": [[471, "matricize"]], "instance_norm": [[491, "instance-norm"]], "trim_zeros": [[484, "trim-zeros"]], "beta": [[497, "beta"]], "take": [[481, "take"]], "local_response_norm": [[494, "local-response-norm"]], "invert_permutation": [[502, "invert-permutation"]], "fold": [[466, "fold"]], "bernoulli": [[496, "bernoulli"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "partial_unfold": [[476, "partial-unfold"]], "l1_normalize": [[492, "l1-normalize"]], "vstack": [[488, "vstack"]], "batch_norm": [[489, "batch-norm"]], "expand": [[461, "expand"]], "i0": [[470, "i0"]], "hsplit": [[468, "hsplit"]], "soft_thresholding": [[480, "soft-thresholding"]], "group_norm": [[490, "group-norm"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "take_along_axis": [[482, "take-along-axis"]], "fliplr": [[464, "fliplr"]], "heaviside": [[467, "heaviside"]], "dirichlet": [[498, "dirichlet"]], "moveaxis": [[472, "moveaxis"]], "poisson": [[500, "poisson"]], "top_k": [[483, "top-k"]], "rot90": [[479, "rot90"]], "unravel_index": [[501, "unravel-index"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "stop_gradient": [[611, "stop-gradient"]], "conv": [[636, "conv"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "Searching": [[631, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "grad": [[605, "grad"]], "conv2d": [[639, "conv2d"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "conv3d": [[641, "conv3d"]], "lars_update": [[609, "lars-update"]], "adam_step": [[602, "adam-step"]], "Sorting": [[633, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "jac": [[607, "jac"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "value_and_grad": [[612, "value-and-grad"]], "optimizer_update": [[610, "optimizer-update"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "adam_update": [[603, "adam-update"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "Statistical": [[634, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "conv1d": [[637, "conv1d"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "Control flow ops": [[615, "control-flow-ops"]], "Experimental": [[620, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "vmap": [[601, "vmap"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "value_is_nan": [[600, "value-is-nan"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "lamb_update": [[608, "lamb-update"]], "truncated_svd": [[439, "truncated-svd"]], "kron": [[428, "kron"]], "tensor_train": [[438, "tensor-train"]], "partial_tucker": [[435, "partial-tucker"]], "adjoint": [[416, "adjoint"]], "solve_triangular": [[436, "solve-triangular"]], "multi_dot": [[433, "multi-dot"]], "associative_scan": [[450, "associative-scan"]], "choose": [[456, "choose"]], "initialize_tucker": [[426, "initialize-tucker"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "diagflat": [[419, "diagflat"]], "kronecker": [[429, "kronecker"]], "matrix_exp": [[431, "matrix-exp"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "kl_div": [[443, "kl-div"]], "stft": [[415, "stft"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "column_stack": [[457, "column-stack"]], "as_strided": [[449, "as-strided"]], "mode_dot": [[432, "mode-dot"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "general_inner_product": [[424, "general-inner-product"]], "l1_loss": [[444, "l1-loss"]], "atleast_3d": [[453, "atleast-3d"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "check_scalar": [[455, "check-scalar"]], "batched_outer": [[417, "batched-outer"]], "cond": [[418, "cond"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "khatri_rao": [[427, "khatri-rao"]], "sliding_window": [[414, "sliding-window"]], "huber_loss": [[442, "huber-loss"]], "atleast_2d": [[452, "atleast-2d"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "tucker": [[441, "tucker"]], "dsplit": [[459, "dsplit"]], "svd_flip": [[437, "svd-flip"]], "atleast_1d": [[451, "atleast-1d"]], "higher_order_moment": [[425, "higher-order-moment"]], "dot": [[420, "dot"]], "eigvals": [[423, "eigvals"]], "jvp": [[358, "jvp"]], "lerp": [[346, "lerp"]], "nextafter": [[350, "nextafter"]], "binarizer": [[331, "binarizer"]], "diff": [[335, "diff"]], "signbit": [[351, "signbit"]], "digamma": [[336, "digamma"]], "float_power": [[339, "float-power"]], "frexp": [[341, "frexp"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "vjp": [[359, "vjp"]], "ldexp": [[345, "ldexp"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "reduce": [[356, "reduce"]], "fix": [[338, "fix"]], "count_nonzero": [[334, "count-nonzero"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "zeta": [[355, "zeta"]], "tril_indices": [[322, "tril-indices"]], "vorbis_window": [[327, "vorbis-window"]], "xlogy": [[354, "xlogy"]], "amin": [[330, "amin"]], "lgamma": [[347, "lgamma"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "isclose": [[344, "isclose"]], "gradient": [[342, "gradient"]], "conj": [[332, "conj"]], "fmax": [[340, "fmax"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "copysign": [[333, "copysign"]], "amax": [[329, "amax"]], "trilu": [[323, "trilu"]], "hypot": [[343, "hypot"]], "nansum": [[349, "nansum"]], "sinc": [[352, "sinc"]], "modf": [[348, "modf"]], "allclose": [[328, "allclose"]], "erfc": [[337, "erfc"]], "dropout1d": [[391, "dropout1d"]], "idct": [[399, "idct"]], "rfft": [[411, "rfft"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "interpolate": [[403, "interpolate"]], "rfftn": [[412, "rfftn"]], "dft": [[390, "dft"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "reduce_window": [[410, "reduce-window"]], "rnn": [[413, "rnn"]], "embedding": [[394, "embedding"]], "ifft": [[400, "ifft"]], "dropout2d": [[392, "dropout2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "pool": [[409, "pool"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifftn": [[401, "ifftn"]], "interp": [[402, "interp"]], "Sparse array": [[379, "sparse-array"]], "area_interpolate": [[385, "area-interpolate"]], "avg_pool3d": [[388, "avg-pool3d"]], "fft2": [[396, "fft2"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "max_unpool1d": [[407, "max-unpool1d"]], "max_pool2d": [[405, "max-pool2d"]], "avg_pool2d": [[387, "avg-pool2d"]], "dct": [[389, "dct"]], "max_pool3d": [[406, "max-pool3d"]], "fft": [[395, "fft"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "max_pool1d": [[404, "max-pool1d"]], "dropout3d": [[393, "dropout3d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "scaled_tanh": [[298, "scaled-tanh"]], "random_tr": [[319, "random-tr"]], "logit": [[294, "logit"]], "silu": [[300, "silu"]], "round": [[278, "round"]], "tan": [[285, "tan"]], "ndindex": [[315, "ndindex"]], "random_tucker": [[321, "random-tucker"]], "reciprocal": [[276, "reciprocal"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "prelu": [[296, "prelu"]], "hann_window": [[309, "hann-window"]], "hamming_window": [[308, "hamming-window"]], "sin": [[280, "sin"]], "random_parafac2": [[318, "random-parafac2"]], "sign": [[279, "sign"]], "celu": [[290, "celu"]], "tanhshrink": [[303, "tanhshrink"]], "kaiser_window": [[312, "kaiser-window"]], "elu": [[291, "elu"]], "trunc_divide": [[289, "trunc-divide"]], "logsigmoid": [[295, "logsigmoid"]], "blackman_window": [[306, "blackman-window"]], "trunc": [[288, "trunc"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "random_tt": [[320, "random-tt"]], "remainder": [[277, "remainder"]], "selu": [[299, "selu"]], "threshold": [[304, "threshold"]], "trapz": [[287, "trapz"]], "relu6": [[297, "relu6"]], "tanh": [[286, "tanh"]], "softshrink": [[301, "softshrink"]], "thresholded_relu": [[305, "thresholded-relu"]], "eye_like": [[307, "eye-like"]], "subtract": [[284, "subtract"]], "stanh": [[302, "stanh"]], "random_cp": [[317, "random-cp"]], "ndenumerate": [[314, "ndenumerate"]], "sqrt": [[282, "sqrt"]], "square": [[283, "square"]], "hardshrink": [[292, "hardshrink"]], "polyval": [[316, "polyval"]], "hardtanh": [[293, "hardtanh"]], "indices": [[310, "indices"]], "sinh": [[281, "sinh"]], "floor_divide": [[242, "floor-divide"]], "exp2": [[239, "exp2"]], "log10": [[257, "log10"]], "expm1": [[240, "expm1"]], "positive": [[272, "positive"]], "cosh": [[233, "cosh"]], "less": [[254, "less"]], "logical_not": [[263, "logical-not"]], "lcm": [[253, "lcm"]], "less_equal": [[255, "less-equal"]], "isnan": [[251, "isnan"]], "logaddexp2": [[261, "logaddexp2"]], "erf": [[237, "erf"]], "fmin": [[243, "fmin"]], "isreal": [[252, "isreal"]], "deg2rad": [[234, "deg2rad"]], "negative": [[270, "negative"]], "isfinite": [[249, "isfinite"]], "greater": [[246, "greater"]], "greater_equal": [[247, "greater-equal"]], "log": [[256, "log"]], "log1p": [[258, "log1p"]], "logical_xor": [[265, "logical-xor"]], "exp": [[238, "exp"]], "bitwise_xor": [[230, "bitwise-xor"]], "maximum": [[266, "maximum"]], "equal": [[236, "equal"]], "pow": [[273, "pow"]], "ceil": [[231, "ceil"]], "divide": [[235, "divide"]], "multiply": [[268, "multiply"]], "rad2deg": [[274, "rad2deg"]], "log2": [[259, "log2"]], "gcd": [[245, "gcd"]], "logaddexp": [[260, "logaddexp"]], "logical_and": [[262, "logical-and"]], "logical_or": [[264, "logical-or"]], "floor": [[241, "floor"]], "isinf": [[250, "isinf"]], "fmod": [[244, "fmod"]], "not_equal": [[271, "not-equal"]], "nan_to_num": [[269, "nan-to-num"]], "imag": [[248, "imag"]], "minimum": [[267, "minimum"]], "real": [[275, "real"]], "cos": [[232, "cos"]], "tpu_is_available": [[211, "tpu-is-available"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "split_factor": [[207, "split-factor"]], "atan": [[222, "atan"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "function_supported_devices": [[194, "function-supported-devices"]], "split_func_call": [[208, "split-func-call"]], "abs": [[215, "abs"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "add": [[218, "add"]], "unset_default_device": [[212, "unset-default-device"]], "num_gpus": [[200, "num-gpus"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "angle": [[219, "angle"]], "bitwise_or": [[228, "bitwise-or"]], "as_native_dev": [[189, "as-native-dev"]], "atan2": [[223, "atan2"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "set_split_factor": [[206, "set-split-factor"]], "asin": [[220, "asin"]], "dev_util": [[193, "dev-util"]], "acos": [[216, "acos"]], "valid_dtype": [[187, "valid-dtype"]], "default_device": [[191, "default-device"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "gpu_is_available": [[197, "gpu-is-available"]], "to_device": [[209, "to-device"]], "acosh": [[217, "acosh"]], "bitwise_invert": [[226, "bitwise-invert"]], "asinh": [[221, "asinh"]], "atanh": [[224, "atanh"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "bitwise_and": [[225, "bitwise-and"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "dev": [[192, "dev"]], "set_default_device": [[204, "set-default-device"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Unify": [[21, "Unify"], [31, "Unify"], [33, "Unify"], [22, "Unify"], [32, "Unify"]], "Trace": [[21, "Trace"], [22, "Trace"]], "Transpile": [[21, "Transpile"], [31, "Transpile"], [33, "Transpile"], [22, "Transpile"], [32, "Transpile"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Compile": [[31, "Compile"], [33, "Compile"], [32, "Compile"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Data Preparation": [[4, "Data-Preparation"], [5, "Data-Preparation"], [3, "Data-Preparation"], [7, "Data-Preparation"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [9, "Imports"], [7, "Imports"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "0.1: Compile": [[29, "0.1:-Compile"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpile code": [[20, "Transpile-code"]], "Transpile any library": [[23, "Transpile-any-library"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Guides": [[10, "guides"], [15, "guides"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Learn the basics": [[16, "learn-the-basics"], [15, "learn-the-basics"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Resnet 18": [[45, "Resnet-18"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Unify code": [[18, "Unify-code"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Trace code": [[19, "Trace-code"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7f5a4f56ae60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7f5a42ca5d10": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7f5a4f181f00": 779, "0x7f5a4f181ea0": 779, "conv1dtranspos": 779, "0x7f5a4f181e40": 779, "0x7f5a4f181de0": 779, "filter_shap": 779, "0x7f5a4f181d80": 779, "0x7f5a4f181d20": 779, "0x7f5a4f181cc0": 779, "0x7f5a4f181c60": 779, "0x7f5a4f181b40": 779, "0x7f5a4f181ae0": 779, "conv3dtranspos": 779, "0x7f5a4f181a80": 779, "0x7f5a4f181a20": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7f5a4f181c00": 779, "0x7f5a4f181ba0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7f5a4f1819c0": 779, "get_initial_st": 779, "0x7f5a4f181fc0": 779, "0x7f5a4f181f60": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"type_promote_arrays": [[181, "type-promote-arrays"]], "result_type": [[175, "result-type"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "can_cast": [[150, "can-cast"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "default_dtype": [[154, "default-dtype"]], "set_default_dtype": [[177, "set-default-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "zeros_like": [[144, "zeros-like"]], "promote_types": [[173, "promote-types"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "triu": [[141, "triu"]], "dtype_bits": [[159, "dtype-bits"]], "zeros": [[143, "zeros"]], "as_native_dtype": [[146, "as-native-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "iinfo": [[163, "iinfo"]], "dtype": [[158, "dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "is_uint_dtype": [[172, "is-uint-dtype"]], "check_float": [[151, "check-float"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "astype": [[147, "astype"]], "ones_like": [[138, "ones-like"]], "tril": [[140, "tril"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "invalid_dtype": [[165, "invalid-dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "finfo": [[160, "finfo"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "triu_indices": [[142, "triu-indices"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "Glossary": [[842, "glossary"]], "Related Work": [[851, "related-work"]], "Multi-Vendor Compiler Frameworks": [[858, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Wrapper Frameworks": [[861, "wrapper-frameworks"], [862, "wrapper-frameworks"]], "Frameworks": [[861, "frameworks"], [855, "frameworks"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Exchange Formats": [[861, "exchange-formats"], [854, "exchange-formats"]], "Compiler Infrastructure": [[861, "compiler-infrastructure"], [853, "compiler-infrastructure"]], "Vendor-Specific APIs": [[861, "vendor-specific-apis"], [859, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[861, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "ML-Unifying Companies": [[861, "ml-unifying-companies"], [857, "ml-unifying-companies"]], "Motivation": [[843, "motivation"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "Sharp bits": [[849, "sharp-bits"], [848, "sharp-bits"], [850, "sharp-bits"]], "Examples": [[849, "examples"], [848, "examples"], [850, "examples"], [821, "examples"], [799, "examples"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [22, "Round-Up"], [20, "Round-Up"], [28, "Round-Up"], [32, "Round-Up"], [40, "Round-Up"], [29, "Round-Up"], [33, "Round-Up"], [21, "Round-Up"], [19, "Round-Up"], [27, "Round-Up"], [30, "Round-Up"], [18, "Round-Up"], [23, "Round-Up"], [11, "Round-Up"], [17, "Round-Up"], [31, "Round-Up"], [13, "Round-Up"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "One liners": [[847, "one-liners"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Design": [[833, "design"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "Array API Standard": [[852, "id1"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "ML Explosion": [[844, "ml-explosion"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "array": [[122, "array"]], "ones": [[137, "ones"]], "leaky_relu": [[107, "leaky-relu"]], "one_hot": [[136, "one-hot"]], "from_dlpack": [[128, "from-dlpack"]], "softplus": [[113, "softplus"]], "copy_array": [[124, "copy-array"]], "empty": [[125, "empty"]], "Data classes": [[103, "data-classes"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "frombuffer": [[129, "frombuffer"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "cmp_isnot": [[116, "cmp-isnot"]], "Functions": [[104, "functions"]], "gelu": [[105, "gelu"]], "softsign": [[114, "softsign"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "log_softmax": [[108, "log-softmax"]], "Nested array": [[100, "nested-array"]], "logspace": [[133, "logspace"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Factorized tensor": [[99, "factorized-tensor"]], "asarray": [[123, "asarray"]], "empty_like": [[126, "empty-like"]], "full": [[130, "full"]], "arange": [[121, "arange"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "relu": [[110, "relu"]], "Container": [[98, "container"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "cmp_is": [[115, "cmp-is"]], "while_loop": [[120, "while-loop"]], "for_loop": [[117, "for-loop"]], "hardswish": [[106, "hardswish"]], "eye": [[127, "eye"]], "mish": [[109, "mish"]], "try_except": [[119, "try-except"]], "if_else": [[118, "if-else"]], "sigmoid": [[111, "sigmoid"]], "native_array": [[135, "native-array"]], "full_like": [[131, "full-like"]], "Array": [[97, "array"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "softmax": [[112, "softmax"]], "meshgrid": [[134, "meshgrid"]], "linspace": [[132, "linspace"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Nestable Functions": [[821, "nestable-functions"], [812, "nestable-functions"], [822, "nestable-functions"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Exception Handling": [[818, "exception-handling"], [823, "exception-handling"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Introduction": [[827, "introduction"], [826, "introduction"], [41, "Introduction"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Backend": [[786, "backend"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Array API Tests": [[808, "array-api-tests"], [813, "array-api-tests"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Ivy Frontends": [[826, "ivy-frontends"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Helpful Resources": [[803, "helpful-resources"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Setting Up": [[805, "setting-up"], [819, "setting-up"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "PyCharm": [[805, "pycharm"], [820, "pycharm"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Arguments in other Functions": [[814, "arguments-in-other-functions"], [815, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Docstrings": [[817, "docstrings"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Device handling": [[815, "device-handling"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Deep Dive": [[807, "deep-dive"]], "Error Handling": [[802, "error-handling"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Continuous Integration": [[820, "continuous-integration"], [813, "continuous-integration"]], "Lint Formatting": [[820, "lint-formatting"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Logging": [[796, "module-ivy.utils.logging"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "layer_norm": [[724, "layer-norm"]], "random_normal": [[727, "random-normal"]], "nested_any": [[715, "nested-any"]], "nested_argwhere": [[716, "nested-argwhere"]], "fomaml_step": [[702, "fomaml-step"]], "nested_multi_map": [[718, "nested-multi-map"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "permute_dims": [[691, "permute-dims"]], "repeat": [[692, "repeat"]], "roll": [[694, "roll"]], "unstack": [[700, "unstack"]], "argwhere": [[733, "argwhere"]], "split": [[695, "split"]], "multi_index_nest": [[714, "multi-index-nest"]], "copy_nest": [[706, "copy-nest"]], "reshape": [[693, "reshape"]], "maml_step": [[703, "maml-step"]], "all_nested_indices": [[705, "all-nested-indices"]], "nonzero": [[734, "nonzero"]], "tile": [[699, "tile"]], "flip": [[690, "flip"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "multinomial": [[725, "multinomial"]], "where": [[735, "where"]], "map": [[711, "map"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "random_uniform": [[728, "random-uniform"]], "seed": [[729, "seed"]], "prune_empty": [[719, "prune-empty"]], "stack": [[697, "stack"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "zero_pad": [[701, "zero-pad"]], "randint": [[726, "randint"]], "shuffle": [[730, "shuffle"]], "swapaxes": [[698, "swapaxes"]], "argmin": [[732, "argmin"]], "index_nest": [[708, "index-nest"]], "nested_map": [[717, "nested-map"]], "argmax": [[731, "argmax"]], "reptile_step": [[704, "reptile-step"]], "squeeze": [[696, "squeeze"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "Testing": [[774, "testing"], [40, "Testing"]], "unique_values": [[739, "unique-values"]], "Data-dependent output shape": [[739, null], [737, null], [736, null], [738, null], [632, null], [632, null], [632, null], [632, null]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "min": [[749, "min"]], "Converters": [[776, "module-ivy.stateful.converters"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "max": [[747, "max"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "unique_counts": [[737, "unique-counts"]], "cumprod": [[744, "cumprod"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Module": [[781, "module-ivy.stateful.module"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "msort": [[741, "msort"]], "Utils": [[773, "utils"]], "unique_all": [[736, "unique-all"]], "cumsum": [[745, "cumsum"]], "mean": [[748, "mean"]], "load": [[756, "load"]], "std": [[751, "std"]], "sort": [[743, "sort"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "searchsorted": [[742, "searchsorted"]], "save": [[757, "save"]], "any": [[755, "any"]], "unique_inverse": [[738, "unique-inverse"]], "Framework classes": [[772, "framework-classes"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "argsort": [[740, "argsort"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "var": [[753, "var"]], "prod": [[750, "prod"]], "einsum": [[746, "einsum"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "all": [[754, "all"]], "sum": [[752, "sum"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [46, "module-ivy.data_classes.array.activations"], [68, "module-ivy.data_classes.container.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [575, "parameter"], [566, "parameter"], [573, "parameter"], [567, "parameter"], [576, "parameter"], [572, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "qr": [[671, "qr"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "eigvalsh": [[660, "eigvalsh"]], "inv": [[662, "inv"]], "cross_entropy": [[684, "cross-entropy"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "vector_norm": [[681, "vector-norm"]], "expand_dims": [[689, "expand-dims"]], "cholesky": [[653, "cholesky"]], "vander": [[679, "vander"]], "multi_head_attention": [[649, "multi-head-attention"]], "matmul": [[664, "matmul"]], "inner": [[661, "inner"]], "cross": [[654, "cross"]], "svdvals": [[675, "svdvals"]], "diag": [[656, "diag"]], "tensordot": [[676, "tensordot"]], "matrix_norm": [[665, "matrix-norm"]], "nms": [[650, "nms"]], "lstm_update": [[648, "lstm-update"]], "concat": [[687, "concat"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "dropout": [[646, "dropout"]], "svd": [[674, "svd"]], "outer": [[669, "outer"]], "det": [[655, "det"]], "matrix_rank": [[667, "matrix-rank"]], "pinv": [[670, "pinv"]], "lu_factor": [[663, "lu-factor"]], "linear": [[647, "linear"]], "matrix_power": [[666, "matrix-power"]], "tensorsolve": [[677, "tensorsolve"]], "roi_align": [[651, "roi-align"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "slogdet": [[672, "slogdet"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "clip": [[686, "clip"]], "constant_pad": [[688, "constant-pad"]], "trace": [[678, "trace"]], "diagonal": [[657, "diagonal"]], "eig": [[658, "eig"], [421, "eig"]], "matrix_transpose": [[668, "matrix-transpose"]], "solve": [[673, "solve"]], "eigh": [[659, "eigh"]], "vecdot": [[680, "vecdot"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "isscalar": [[558, "isscalar"]], "to_scalar": [[587, "to-scalar"]], "multiprocessing": [[561, "multiprocessing"]], "set_array_mode": [[566, "set-array-mode"]], "scatter_nd": [[565, "scatter-nd"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "is_ivy_container": [[554, "is-ivy-container"]], "set_precise_mode": [[573, "set-precise-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "isin": [[557, "isin"]], "itemsize": [[559, "itemsize"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "strides": [[581, "strides"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "scatter_flat": [[564, "scatter-flat"]], "shape": [[578, "shape"]], "stable_pow": [[580, "stable-pow"]], "to_numpy": [[586, "to-numpy"]], "set_min_denominator": [[571, "set-min-denominator"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "to_native_shape": [[585, "to-native-shape"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "try_else_none": [[588, "try-else-none"]], "stable_divide": [[579, "stable-divide"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "unset_array_mode": [[589, "unset-array-mode"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "set_min_base": [[570, "set-min-base"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "is_array": [[552, "is-array"]], "unset_min_base": [[592, "unset-min-base"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "match_kwargs": [[560, "match-kwargs"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "set_item": [[569, "set-item"]], "to_list": [[584, "to-list"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "is_native_array": [[556, "is-native-array"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "gather": [[540, "gather"]], "einops_reduce": [[534, "einops-reduce"]], "cov": [[510, "cov"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "arg_info": [[523, "arg-info"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "exists": [[536, "exists"]], "einops_repeat": [[535, "einops-repeat"]], "nanmedian": [[517, "nanmedian"]], "cache_fn": [[527, "cache-fn"]], "arg_names": [[524, "arg-names"]], "corrcoef": [[509, "corrcoef"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "array_equal": [[525, "array-equal"]], "has_nans": [[546, "has-nans"]], "default": [[532, "default"]], "fourier_encode": [[537, "fourier-encode"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "igamma": [[514, "igamma"]], "get_item": [[543, "get-item"]], "bincount": [[508, "bincount"]], "inplace_increment": [[549, "inplace-increment"]], "native_sparse_array": [[506, "native-sparse-array"]], "cummax": [[511, "cummax"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "nanmin": [[518, "nanmin"]], "einops_rearrange": [[533, "einops-rearrange"]], "median": [[515, "median"]], "container_types": [[530, "container-types"]], "current_backend_str": [[531, "current-backend-str"]], "inplace_decrement": [[548, "inplace-decrement"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "quantile": [[520, "quantile"]], "inplace_update": [[550, "inplace-update"]], "cummin": [[512, "cummin"]], "histogram": [[513, "histogram"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "nanmean": [[516, "nanmean"]], "nanprod": [[519, "nanprod"]], "all_equal": [[522, "all-equal"]], "optional_get_element": [[521, "optional-get-element"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "gather_nd": [[541, "gather-nd"]], "get_num_dims": [[544, "get-num-dims"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "partial_unfold": [[476, "partial-unfold"]], "unique_consecutive": [[486, "unique-consecutive"]], "matricize": [[471, "matricize"]], "put_along_axis": [[478, "put-along-axis"]], "batch_norm": [[489, "batch-norm"]], "instance_norm": [[491, "instance-norm"]], "unfold": [[485, "unfold"]], "poisson": [[500, "poisson"]], "heaviside": [[467, "heaviside"]], "fill_diagonal": [[462, "fill-diagonal"]], "dirichlet": [[498, "dirichlet"]], "take": [[481, "take"]], "partial_fold": [[474, "partial-fold"]], "pad": [[473, "pad"]], "l2_normalize": [[493, "l2-normalize"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "i0": [[470, "i0"]], "take_along_axis": [[482, "take-along-axis"]], "vsplit": [[487, "vsplit"]], "vstack": [[488, "vstack"]], "hsplit": [[468, "hsplit"]], "expand": [[461, "expand"]], "fold": [[466, "fold"]], "rot90": [[479, "rot90"]], "fliplr": [[464, "fliplr"]], "l1_normalize": [[492, "l1-normalize"]], "trim_zeros": [[484, "trim-zeros"]], "unravel_index": [[501, "unravel-index"]], "soft_thresholding": [[480, "soft-thresholding"]], "group_norm": [[490, "group-norm"]], "flatten": [[463, "flatten"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "top_k": [[483, "top-k"]], "lexsort": [[503, "lexsort"]], "gamma": [[499, "gamma"]], "beta": [[497, "beta"]], "invert_permutation": [[502, "invert-permutation"]], "lp_normalize": [[495, "lp-normalize"]], "bernoulli": [[496, "bernoulli"]], "moveaxis": [[472, "moveaxis"]], "local_response_norm": [[494, "local-response-norm"]], "dstack": [[460, "dstack"]], "hstack": [[469, "hstack"]], "flipud": [[465, "flipud"]], "optimizer_update": [[610, "optimizer-update"]], "value_and_grad": [[612, "value-and-grad"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "adam_step": [[602, "adam-step"]], "jac": [[607, "jac"]], "value_is_nan": [[600, "value-is-nan"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [57, "module-ivy.data_classes.array.linear_algebra"], [80, "module-ivy.data_classes.container.linear_algebra"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "conv1d": [[637, "conv1d"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "conv": [[636, "conv"]], "stop_gradient": [[611, "stop-gradient"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "General": [[621, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [49, "module-ivy.data_classes.array.data_type"], [72, "module-ivy.data_classes.container.data_type"]], "Random": [[630, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "lamb_update": [[608, "lamb-update"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "Statistical": [[634, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "lars_update": [[609, "lars-update"]], "conv2d": [[639, "conv2d"]], "vmap": [[601, "vmap"]], "Sorting": [[633, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "Control flow ops": [[615, "control-flow-ops"]], "Experimental": [[620, "experimental"], [75, "module-ivy.data_classes.container.experimental"], [52, "module-ivy.data_classes.array.experimental"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "Searching": [[631, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "grad": [[605, "grad"]], "adam_update": [[603, "adam-update"]], "conv3d": [[641, "conv3d"]], "matrix_exp": [[431, "matrix-exp"]], "partial_tucker": [[435, "partial-tucker"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "batched_outer": [[417, "batched-outer"]], "mode_dot": [[432, "mode-dot"]], "stft": [[415, "stft"]], "tucker": [[441, "tucker"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "choose": [[456, "choose"]], "kl_div": [[443, "kl-div"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "dsplit": [[459, "dsplit"]], "sliding_window": [[414, "sliding-window"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "higher_order_moment": [[425, "higher-order-moment"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "truncated_svd": [[439, "truncated-svd"]], "kron": [[428, "kron"]], "multi_dot": [[433, "multi-dot"]], "diagflat": [[419, "diagflat"]], "dot": [[420, "dot"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "l1_loss": [[444, "l1-loss"]], "adjoint": [[416, "adjoint"]], "atleast_2d": [[452, "atleast-2d"]], "kronecker": [[429, "kronecker"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "eigvals": [[423, "eigvals"]], "khatri_rao": [[427, "khatri-rao"]], "associative_scan": [[450, "associative-scan"]], "solve_triangular": [[436, "solve-triangular"]], "huber_loss": [[442, "huber-loss"]], "as_strided": [[449, "as-strided"]], "general_inner_product": [[424, "general-inner-product"]], "tensor_train": [[438, "tensor-train"]], "atleast_3d": [[453, "atleast-3d"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "svd_flip": [[437, "svd-flip"]], "column_stack": [[457, "column-stack"]], "cond": [[418, "cond"]], "initialize_tucker": [[426, "initialize-tucker"]], "check_scalar": [[455, "check-scalar"]], "atleast_1d": [[451, "atleast-1d"]], "digamma": [[336, "digamma"]], "nansum": [[349, "nansum"]], "modf": [[348, "modf"]], "trilu": [[323, "trilu"]], "reduce": [[356, "reduce"]], "hypot": [[343, "hypot"]], "isclose": [[344, "isclose"]], "amax": [[329, "amax"]], "ldexp": [[345, "ldexp"]], "vjp": [[359, "vjp"]], "fmax": [[340, "fmax"]], "allclose": [[328, "allclose"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "nextafter": [[350, "nextafter"]], "signbit": [[351, "signbit"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "zeta": [[355, "zeta"]], "vorbis_window": [[327, "vorbis-window"]], "conj": [[332, "conj"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "xlogy": [[354, "xlogy"]], "sinc": [[352, "sinc"]], "erfc": [[337, "erfc"]], "frexp": [[341, "frexp"]], "diff": [[335, "diff"]], "tril_indices": [[322, "tril-indices"]], "jvp": [[358, "jvp"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "copysign": [[333, "copysign"]], "amin": [[330, "amin"]], "fix": [[338, "fix"]], "count_nonzero": [[334, "count-nonzero"]], "float_power": [[339, "float-power"]], "binarizer": [[331, "binarizer"]], "lerp": [[346, "lerp"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "gradient": [[342, "gradient"]], "lgamma": [[347, "lgamma"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "dropout3d": [[393, "dropout3d"]], "pool": [[409, "pool"]], "avg_pool3d": [[388, "avg-pool3d"]], "max_pool2d": [[405, "max-pool2d"]], "dropout1d": [[391, "dropout1d"]], "interpolate": [[403, "interpolate"]], "area_interpolate": [[385, "area-interpolate"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "embedding": [[394, "embedding"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "max_unpool1d": [[407, "max-unpool1d"]], "rnn": [[413, "rnn"]], "idct": [[399, "idct"]], "avg_pool2d": [[387, "avg-pool2d"]], "dropout2d": [[392, "dropout2d"]], "fft2": [[396, "fft2"]], "max_pool3d": [[406, "max-pool3d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifftn": [[401, "ifftn"]], "reduce_window": [[410, "reduce-window"]], "ifft": [[400, "ifft"]], "fft": [[395, "fft"]], "dft": [[390, "dft"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "dct": [[389, "dct"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "rfftn": [[412, "rfftn"]], "Sparse array": [[379, "sparse-array"]], "rfft": [[411, "rfft"]], "max_pool1d": [[404, "max-pool1d"]], "interp": [[402, "interp"]], "stanh": [[302, "stanh"]], "random_tr": [[319, "random-tr"]], "softshrink": [[301, "softshrink"]], "random_tucker": [[321, "random-tucker"]], "trapz": [[287, "trapz"]], "logit": [[294, "logit"]], "reciprocal": [[276, "reciprocal"]], "silu": [[300, "silu"]], "ndindex": [[315, "ndindex"]], "tanhshrink": [[303, "tanhshrink"]], "sqrt": [[282, "sqrt"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "sin": [[280, "sin"]], "trunc_divide": [[289, "trunc-divide"]], "thresholded_relu": [[305, "thresholded-relu"]], "tanh": [[286, "tanh"]], "hann_window": [[309, "hann-window"]], "eye_like": [[307, "eye-like"]], "random_cp": [[317, "random-cp"]], "tan": [[285, "tan"]], "blackman_window": [[306, "blackman-window"]], "threshold": [[304, "threshold"]], "polyval": [[316, "polyval"]], "sinh": [[281, "sinh"]], "hardshrink": [[292, "hardshrink"]], "prelu": [[296, "prelu"]], "kaiser_window": [[312, "kaiser-window"]], "ndenumerate": [[314, "ndenumerate"]], "random_tt": [[320, "random-tt"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "trunc": [[288, "trunc"]], "relu6": [[297, "relu6"]], "round": [[278, "round"]], "celu": [[290, "celu"]], "selu": [[299, "selu"]], "remainder": [[277, "remainder"]], "indices": [[310, "indices"]], "sign": [[279, "sign"]], "subtract": [[284, "subtract"]], "scaled_tanh": [[298, "scaled-tanh"]], "hamming_window": [[308, "hamming-window"]], "hardtanh": [[293, "hardtanh"]], "elu": [[291, "elu"]], "square": [[283, "square"]], "random_parafac2": [[318, "random-parafac2"]], "logsigmoid": [[295, "logsigmoid"]], "log10": [[257, "log10"]], "erf": [[237, "erf"]], "bitwise_xor": [[230, "bitwise-xor"]], "isreal": [[252, "isreal"]], "cos": [[232, "cos"]], "less": [[254, "less"]], "fmin": [[243, "fmin"]], "expm1": [[240, "expm1"]], "isfinite": [[249, "isfinite"]], "logaddexp": [[260, "logaddexp"]], "logaddexp2": [[261, "logaddexp2"]], "equal": [[236, "equal"]], "multiply": [[268, "multiply"]], "negative": [[270, "negative"]], "isinf": [[250, "isinf"]], "log2": [[259, "log2"]], "logical_xor": [[265, "logical-xor"]], "log1p": [[258, "log1p"]], "logical_not": [[263, "logical-not"]], "maximum": [[266, "maximum"]], "positive": [[272, "positive"]], "less_equal": [[255, "less-equal"]], "floor": [[241, "floor"]], "deg2rad": [[234, "deg2rad"]], "greater": [[246, "greater"]], "logical_or": [[264, "logical-or"]], "greater_equal": [[247, "greater-equal"]], "logical_and": [[262, "logical-and"]], "imag": [[248, "imag"]], "fmod": [[244, "fmod"]], "lcm": [[253, "lcm"]], "not_equal": [[271, "not-equal"]], "minimum": [[267, "minimum"]], "isnan": [[251, "isnan"]], "nan_to_num": [[269, "nan-to-num"]], "exp": [[238, "exp"]], "real": [[275, "real"]], "pow": [[273, "pow"]], "rad2deg": [[274, "rad2deg"]], "gcd": [[245, "gcd"]], "cosh": [[233, "cosh"]], "floor_divide": [[242, "floor-divide"]], "ceil": [[231, "ceil"]], "exp2": [[239, "exp2"]], "log": [[256, "log"]], "divide": [[235, "divide"]], "valid_dtype": [[187, "valid-dtype"]], "tpu_is_available": [[211, "tpu-is-available"]], "num_gpus": [[200, "num-gpus"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "bitwise_or": [[228, "bitwise-or"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "add": [[218, "add"]], "as_native_dev": [[189, "as-native-dev"]], "asinh": [[221, "asinh"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "dev_util": [[193, "dev-util"]], "set_split_factor": [[206, "set-split-factor"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "unset_default_device": [[212, "unset-default-device"]], "abs": [[215, "abs"]], "gpu_is_available": [[197, "gpu-is-available"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "dev": [[192, "dev"]], "set_default_device": [[204, "set-default-device"]], "atanh": [[224, "atanh"]], "split_factor": [[207, "split-factor"]], "acosh": [[217, "acosh"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "asin": [[220, "asin"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "acos": [[216, "acos"]], "atan": [[222, "atan"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "default_device": [[191, "default-device"]], "function_supported_devices": [[194, "function-supported-devices"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "split_func_call": [[208, "split-func-call"]], "atan2": [[223, "atan2"]], "bitwise_invert": [[226, "bitwise-invert"]], "angle": [[219, "angle"]], "bitwise_and": [[225, "bitwise-and"]], "to_device": [[209, "to-device"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Guides": [[15, "guides"], [10, "guides"]], "Examples and Demos": [[15, "examples-and-demos"], [2, "examples-and-demos"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Unify": [[22, "Unify"], [32, "Unify"], [33, "Unify"], [21, "Unify"], [31, "Unify"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile": [[22, "Transpile"], [32, "Transpile"], [33, "Transpile"], [21, "Transpile"], [31, "Transpile"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Transpile code": [[20, "Transpile-code"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [9, "Imports"], [5, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [4, "Data-Preparation"], [5, "Data-Preparation"], [3, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Compile": [[32, "Compile"], [33, "Compile"], [31, "Compile"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "0.1: Compile": [[29, "0.1:-Compile"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Trace code": [[19, "Trace-code"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Unify code": [[18, "Unify-code"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Transpile any library": [[23, "Transpile-any-library"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Resnet 18": [[45, "Resnet-18"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file